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Abstract. This paper addresses the issue of data stream mining using
the Restricted Boltzmann Machine (RBM). Recently, it was demon-
strated that the RBM can be useful as a concept drift detector in data
streams with time-changing probability density. In this paper, we con-
sider another problem which often occurs in real-life data streams, i.e.
incomplete data. We propose two modifications of the RBM learning
algorithms to make them able to handle missing values. The first one
inserts an additional procedure before the positive phase of the Con-
trastive Divergence. This procedure aims at inferring the missing values
in the visible layer by performing a fixed number of Gibbs steps. The sec-
ond modification introduces dimension-dependent sizes of minibatches
in the stochastic gradient descent method. The proposed methods are
verified experimentally, demonstrating their usability for concept drift
detection in data streams with incomplete data.

Keywords: Restricted Boltzmann Machine · Data stream mining ·
Missing values

1 Introduction

In recent years data stream mining became a very interesting and challenging
branch of data mining [3,14–16]. In this paper, we define the data stream as a
sequence of data elements

S = (s1, s2, . . . ), (1)

which potentially can be of infinite size. Each data element is a D-dimensional
vector of binary values

sn = [sn,1, . . . , sn,D] ∈ {0; 1}D (2)

A proper data stream mining algorithm should ensure the best trade-off between
the accuracy and resources consumption. In the literature, many algorithms
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based on traditional machine learning or data mining tools have been proposed,
e.g. neural networks with the stochastic gradient descent method [4], decision
trees [10] or ensemble methods [12].

The problem of data stream mining becomes more challenging if the under-
lying data distribution can change over time [17]. In this paper, we focus on
the issue of applying the Restricted Boltzmann Machine (RBM) to detect pos-
sible changes in the data distribution. This idea was first proposed in [8], and
extended in [9] to allow dealing with labeled data. In [11] the resource-awareness
of the RBM in data stream scenario was investigated. In this paper, we continue
the topic by proposing modifications of the RBM learning algorithm to handle
data streams with missing values.

The RBM is a special type of a wider class of neural networks called Boltz-
mann Machines [7]. It consists of two layers of neurons: the visible one, consisting
of D neurons v = [v1, . . . , vD] and the hidden one, which is formed by H hidden
units h = [h1, . . . , hH ]. For each possible state (v,h) of the RBM an energy can
be calculated, which is defined as follows

E(v,h) = −
D∑

i=1

viai −
H∑

j=1

hjbj −
D∑

i=1

H∑

j=1

vihjwij , (3)

where wij , ai and Bj are RBM weights and biases. The energy function is used
to define a probability distribution of (v,h)

P (v,h) =
exp (−E(v,h))

Z
, (4)

where Z is a normalization constant. Let us assume that the data stream (1) is
partitioned into minibatches of size B, i.e. the t-th minibatch is given by

St = (sBt+1, . . . , sBt+B) , t = 0, 1, . . . . (5)

Then, the cost function for St is given by the following formula

C(St) = − log P (St) = − 1
B

B∑

n=1

∑

h

log P (v = sBt+n,h) (6)

and its gradient with respect to weight wij is expressed as follows (see. e.g. [2,4])

∂C(St)
∂wij

=
∑

v,h

P (v,h)vihj − 1
B

B∑

n=1

∑

h

P (h|v = sBt+n)vihj . (7)

The first term on the right-hand side (‘negative phase’), is intractable to compute
and can be approximated by the Contrastive Divergence (CD) algorithm [5]. In
this paper we propose some modifications of the CD algorithm, allowing the
RBM to handle incomplete data.
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The rest of the paper is organized as follows. In Sect. 2 the CD algorithm
for learning the RBM is recalled. It is shown how it is used for approximat-
ing the gradient of the RBM cost function. In Sect. 3 two modifications are
proposed which allow the RBM to handle incomplete data. Preliminary results
of experimental verification of presented methods are demonstrated in Sect. 4.
Conclusions are discussed in Sect. 5.

2 Contrastive Divergence Learning Algorithm

As can be seen in (7), the gradient of the cost function ∂C
∂wij

consists of two
terms. Each term is based on sampling from different probability distributions.
The second term, called the ‘positive phase’, requires the procedure of inferring
the states of the hidden units from the data element, which is presented in
Algorithm 1.

Algorithm 1: Hidden layer inference based on a data element

infer(s):
v ← s;
for j ← 1 to H do

hj ← P (hj |v);
end

The first term of gradient ∂C
∂wij

, called the ‘negative phase’, is intractable
to compute. In the CD algorithm, it is approximated by performing a Gibbs
sampling algorithm [1], presented in Algorithm 2.

Algorithm 2: Gibbs sampling

GibbsSampling(K):
for k ← 1 to K do

for i ← 1 to D do
vi ← P (vi|h);

end
for j ← 1 to H do

hj ← P (hj |v);
if k < K then

hj ← 1 with prob.
hj , otherwise
hj ← 0;

end
end

end

Algorithm 3: Gradients updat-
ing

updateGradients(sgn):
for i ← 1 to D do

for j ← 1 to H do
∂C

∂wij
←

∂C
∂wij

+ sgn 1
B vihj ;

end
end
for i ← 1 to D do

∂C
∂ai

← ∂C
∂ai

+ sgn 1
B vi;

end
for j ← 1 to H do

∂C
∂bj

← ∂C
∂bj

+ sgn 1
B hj ;

end
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Algorithm 4: The Contrastive Divergence algorithm (CD)

CD(St, K):
∂C

∂wij
= 0, ∂C

∂ai
= 0, ∂C

∂bj=0 , i = 1, . . . , D, j = 1, . . . , H;
for s ∈ St do

infer(s);
updateGradients(−1);
GibbsSampling(K);
updateGradients(1);

end
For both phases the gradient values can be updated using the procedure pre-

sented in Algorithm 3 (where sgn = −1 and sgn = 1 correspond to the positive
and negative phases, respectively). Finally, the CD algorithm for minibatch St,
consisting of all mentioned previously components, is presented in Algorithm 4.

3 RBM for Handling Incomplete Data

Algorithm 5: Missing values
restoring

Restore(s,Q,m):
v ← s;
for q ← 1 to Q do

for j ← 1 to H do
hj ← P (hj |v);
hj ← 1 with prob.
hj , otherwise
hj ← 0;

end
for i ← 1 to D do

if mi == TRUE
then vi ← P (vi|h);

end
end
Return v;

Algorithm 6: Gradients updat-
ing with the masks of missing val-
ues taken into account

updateGradientsMasked(sgn,
m, B):
for i ← 1 to D do

for j ← 1 to H do
if mi == FALSE
then ∂C

∂wij
←

∂C
∂wij

+ sgn 1
Bi

vihj ;
end

end
for i ← 1 to D do

if mi == FALSE then
∂C
∂ai

← ∂C
∂ai

+ sgn 1
Bi

vi;
end
for j ← 1 to H do

∂C
∂bj

← ∂C
∂bj

+ sgn 1
B hj ;

end

In the practical guide for training RBMs [6] several methods for inferring
missing values were proposed. However, none of them seems to work fast enough
to be suitable for data stream mining tasks. In the sequel, we propose two modifi-
cations of the CD algorithm to make it able to handle data streams with missing
values.

For each minibatch of data elements St we assume that there exists a mini-
batch of masks Mt = (mBt+1, . . . ,mBt+B). Each mask mn is a D-dimensional
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vector of {TRUE,FALSE} values. If mn,i is TRUE, then the value of sn,i is
unknown. When necessary, by default this value is assumed to be equal to 0, until
it is not restored. The first modification of the basic CD algorithm is to introduce
a restoring function, presented in Algorithm5. This procedure performs Gibbs
sampling, however, only unknown units of the visible layer are updated.

The second proposed modification changes the gradients updating method.
In the basic CD method, updates of gradients are calculated as the arithmetic
average over the whole minibatch of data (as in Algorithm3). In our approach,
we introduce variable-sized minibatches. The size of the minibatch for the i-th
dimension is equal to the number of data elements, for which the mask in the
i-th dimension is FALSE

Bi(Mt) =
B∑

n=1

1{mBt+n,i==FALSE}. (8)

Let B = (B1, . . . , BD) be a D-dimensional vector of dimension-dependent mini-
batch sizes. Then the method for gradients update, which takes the missing
values into account, is presented in Algorithm 6.

The final form of the Contrastive Divergence algorithm for data with missing
values, which we abbreviate here as CDM, is presented in Algorithm 7.

Algorithm 7: The Contrastive Divergence algorithm for data with missing
values (CDM)

CDM(St, Mt, K, Q, Rest, PosMask, NegMask):
∂C

∂wij
= 0, ∂C

∂ai
= 0, ∂C

∂bj=0
, i = 1, . . . , D, j = 1, . . . , H;

B = 0;
for m ∈ Mt do

for i ← 1 to D do
if mi == FALSE then Bi + +;

end

end
for (s,m) ∈ (St,Mt) do

if Rest == TRUE then s = Restore(s, Q,m);
infer(s);
if PosMask == TRUE then updateGradientsMasked(−1,m,B);
else updateGradients(−1);
GibbsSampling(K);
if NegMask == TRUE then updateGradientsMasked(1,m,B);
else updateGradients(1);

end

Comparing to the standard CD algorithm it requires several additional argu-
ments. These are the minibatch of masks Mt, corresponding to the minibatch
of data St, and the number of steps Q of the restoring procedure. Three last
parameters, i.e. Rest, PosMask, and NegMask are boolean flags, which allow
to turn on or off previously discussed modifications in the CDM algorithm.
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4 Experimental Results

In this section, we present some preliminary results of the experimental veri-
fication of the presented methods. The numerical simulations were carried out
on the MNIST dataset [13]. It contains 60000 gray-scale images of handwritten
digits of size 28×28. In experiments, we treat the dataset as a stream. The data
order is mixed randomly. Then, it is processed with minibatches of size B = 20.
For each data element, a mask of missing values was assigned. The mask was
in the form of a square of size z × z pixels. The position of this square on the
image was chosen randomly, with equal probability for each possible location.
The parameters for learning the RBM were set as follows: D = 784, H = 40,
K = 1, Q = 1, the learning rate η = 0.05. We applied standard stochastic
gradient method with momentum – the friction parameter was equal to γ = 0.9.

Looking at Algorithm 7, one can see that there are many possible variants
of the proposed CDM algorithm. In the simulations we focus on three of them
together with the standard CD algorithm:

– CD: Rest = FALSE, PosMask = FALSE, NegMask = FALSE;
– CDM(TFF): Rest = TRUE, PosMask = FALSE, NegMask = FALSE;
– CDM(TTT): Rest = TRUE, PosMask = TRUE, NegMask = TRUE;

Algorithms were evaluated in the prequential manner using the reconstruction
error. For the considered minibatch of data St a set of reconstructions S̃t =
(s̃Bt+1, . . . , s̃Bt+B) has to be obtained first using the RBM. Then, the average
reconstruction error is expressed as follows

R(St) =
1
B

B∑

n=1

D∑

i=1

(sBt+n,i − s̃Bt+n,i)
2
. (9)

In the first experiment, the considered algorithms were run with three various
sizes of missing values masks: z = 2, z = 6 and z = 14. The comparison of each
algorithm performance for various values of z is demonstrated in Fig. 1. As can
be seen, for each algorithm the reconstruction error is positively correlated with
the amount of noise in data elements. Let us now look at the results of this
experiment in another configuration. In Fig. 2 the algorithms are compared for
each considered value of z. Although the values of reconstruction error fluctuate
significantly in each case, it is possible to notice that the algorithm with all
considered previously mechanisms turned on (i.e. the CDM(TTT) algorithm)
is slightly better than the two others, whereas the standard CD algorithm is
always the worst. It is the most clearly seen for the case with the biggest noise
(i.e. z = 14). Although the differences are not striking, it can be concluded that
the proposed modifications improve the performance of the CD algorithm when
the incomplete data have to be handled.
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a) CD b) CDM(TFF) c) CDM(TTT)

Fig. 1. Reconstruction error obtained for various sizes of missing values masks for three
considered algorithms.

a) z = 2 b) z = 6 c) z = 14

Fig. 2. Reconstruction error of the CD, CDM(TFF) and CDM(TTT) algorithms for
three different sizes of missing values masks.

5 Conclusions

In this paper, we considered the problem of mining stream data with missing
values using the Restricted Boltzmann Machine (RBM), focusing our analy-
sis on the Contrastive Divergence (CD) algorithm. To make it able to handle
incomplete data, we proposed two modification. The first one is to introduce an
additional Gibbs sampling procedure at the beginning of processing each data
element. However, only those units of the visible layer are updated for which
the value of the corresponding dimension in the data element is missing. In the
second modification, the fixed size of minibatch is replaced by minibatches with
dimension-dependent sizes. This means that not all data from the minibatch take
part in updating gradients of RBM weights or visual layer biases. The proposed
methods were verified experimentally, demonstrating their usability for concept
drift detection in data streams with incomplete data.
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