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Abstract. Programming with logic for sophisticated applications must
deal with recursion and negation, which have created significant chal-
lenges in logic, leading to many different, conflicting semantics of rules.
This paper describes a unified language, DA logic, for design and analysis
logic, based on the unifying founded semantics and constraint semantics,
that support the power and ease of programming with different intended
semantics. The key idea is to provide meta-constraints, support the use
of uncertain information in the form of either undefined values or possi-
ble combinations of values, and promote the use of knowledge units that
can be instantiated by any new predicates, including predicates with
additional arguments.
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1 Introduction

Programming with logic has allowed many design and analysis problems to be
expressed more easily and clearly at a high level. Examples include problems in
program analysis, network management, security frameworks, and decision sup-
port. However, when sophisticated problems require reasoning with negation and
recursion, possibly causing contradiction in cyclic reasoning, programming with
logic has been a challenge. Many languages and semantics have been proposed,
but they have different, conflicting underlying assumptions that are subtle and
do not work for all problems.

This paper describes a unified language, DA logic, for design and analysis
logic, for programming with logic using logical constraints. It supports logic
rules with unrestricted negation in recursion, as well as unrestricted universal
and existential quantification. It is based on the unifying founded semantics and
constraint semantics, and it supports the power and ease of programming with
different intended semantics without causing contradictions in cyclic reasoning.

– The language provides meta-constraints on predicates. These meta-constraints
capture the different underlying assumptions of different logic language
semantics.
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– The language supports the use of uncertain information in the results of differ-
ent semantics, in the form of either undefined values or possible combinations
of values.

– The language further supports the use of knowledge units that can be instan-
tiated by any new predicates, including predicates with additional arguments.

Together, the language allows complex problems to be expressed clearly and
easily, where different assumptions can be easily used, combined, and compared
for expressing and solving a problem modularly, unit by unit.

We present examples from different games that show the power and ease of
programming with DA logic.

2 Need of Easier Programming with Logic

We discuss the challenges of understanding and programming with negation
and recursion. We use a small well-known example, the win-not-win game, for
illustration.

Consider the following rule, called the win rule. It says that x is a winning
position if there is a move from x to y and y is not a winning position.

win(x) ← move(x,y) ∧ ¬ win(y)

This seems to be a reasonable rule, because it captures the rule for winning for
many games, including in chess for the King to not be captured, giving winning,
losing, and draw positions. However, there could be potential problems. For
example if there is a move(1,1) for some position 1, then the win rule would
imply: win(1) if not win(1), and thus the truth value of win(1) becomes unclear.

Inductive Definitions. Instead of the single win rule, one could use the fol-
lowing three rules to determine the winning, losing, and draw positions.

win(x) ← ∃ y | move(x,y) ∧ lose(y)
lose(x) ← ∀ y | ¬ move(x,y) ∨ win(y)
draw(x) ← ¬ win(x) ∧ ¬ lose(x)

The first two rules form inductive definitions [6,14], avoiding the potential prob-
lems of the single win rule. The base case is the set of positions that have no
moves to any other position and thus are losing positions. With winning and
losing positions defined, the draw positions are those in cycles of moves that
have no moves to losing positions.

However, clearly, these rules are much more cumbersome than the single win
rule.

Well-Founded Semantics. Indeed, with well-founded semantics (WFS) [25],
which computes a 3-valued model, the single win rule above gives win(x) being
True, False, or Unknown for each x, corresponding to x being a winning, losing,
or draw position, respectively. However, win(x) being 3-valued does not allow the
three outcomes to be used as three predicates or sets for further computation;
the three predicates defined by the three rules do allow this.
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For example, there is no way to use the Unknown positions explicitly, say to
find all reachable nodes following another kind of moves from draw positions.
One might try to do it by adding two additional rules to the single win rule:

lose(x) ← ¬ win(x)
draw(x) ← ¬ win(x) ∧ ¬ lose(x)

However, the result is that draw(x) is False for all positions that win(x) is True
or False, and is Unknown for all draw positions.

Stable Model Semantics. Stable model semantics (SMS) [13] computes a set
of 2-valued models, instead of a single 3-valued model. It has been used for
solving many constraint problems in answer set programming (ASP), because
its set of 2-valued models can provide the set of satisfying solutions.

For example, for the single win rule, if besides winning and losing positions,
there is a separate cycle of even length, say move(1,2) and move(2,1), then instead
of win being Unknown for 1 and 2 as in WFS, SMS returns two models: one with
win being True for 1 and other winning positions but not 2, and one with win
being True for 2 and other winning positions but not 1. This is a very different
interpretation of the win-not-win rule.

However, for the single rule above, when there are draw positions, SMS may
also return just an empty set, that is, a set with no models at all. For example,
if besides winning and losing positions, there is a separate cycle of moves of odd
length, say simply move(1,1), then SMS returns simply the empty set. This is
clearly undesired for the win-not-win game.

Founded Semantics and Constraint Semantics. Founded semantics and
constraint semantics [18] unify different prior semantics. They allow different
underlying assumptions to be specified for each predicate, and compute the
desired semantics as a simple least fixed point to return a 3-valued model and,
if there are undefined values, as constraint solving to return a set of 2-valued
models.

For the win-not-win game, one can write the single win rule, with the default
assumption that win is complete, that is, the win rule is the only rule that infers
win, which is an implicit assumption underlying WFS and SMS.

– With founded semantics, the three rules that use inductive definitions can be
automatically derived, and True, False, and Undefined positions for win are
inferred, corresponding to the three predicates from inductive definitions and
the 3-valued results from WFS.

– Then constraint semantics, if desired, computes all combinations of True and
False values for the Undefined values for the draw positions, that satisfy all
the rules as constraints. It equals SMS for the single win rule.

Both WFS and SMS also assume that if nothing is said about some p, then
p is false. When this is not desired, some programming tricks are used to get
around it. For example, with SMS, to allow p to be possibly true in some models,
one can introduce some new q and two new rules as below, to make it possible
that, in some models, p is true and q is false.
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p ← ¬ q
q ← ¬ p

Founded semantics and constraint semantics allow p to be simply declared as
uncertain.

Both WFS and SMS also assume that if all ways that can infer p require
using p in the condition of some rule, then p is false. Founded semantics and
constraint semantics allow this reasoning to be used where desired, by applying
it if p is declared as closed.

Founded semantics and constraint semantics also allow unrestricted universal
and existential quantifications and unrestricted nesting of Boolean conditions;
these are not supported in WFS and SMS.

However, founded semantics and constraint semantics alone do not address
how to use different semantics seamlessly in a single logic program.

Programming with Logical Constraints. Because different assumptions and
semantics help solve different problems or different parts of a problem, easier
programming with logic requires supporting all assumptions and semantics in a
simple and integrated design.

This paper treats different assumptions as different meta-constraints for
expressing a problem or parts of a problem, and support results from differ-
ent semantics to be used easily and directly. For the win-not-win example:

– We name the positions for which win is true, false, and undefined in founded
semantics using three predicates, win.T, win.F, and win.U, corresponding
exactly to the inductively defined win, lose, and draw. These predicates can
be used explicitly and directly for further reasoning, unlike with the truth
values of WFS or founded semantics.

– We let CS be the constraint semantics of a set of rules and facts. For m∈ CS,
we use m.win(x) to denote the truth value of win(x) in model m. Predicate
CS(m) means exactly m ∈ CS and can be used directly for further reasoning,
unlike the set of models in SMS or constraint semantics.

Table 1 summarizes the meta-constraints that can be used to express differ-
ent assumptions, corresponding declarations and resulting predicates in founded
semantics and constraint semantics, and corresponding other prior semantics if
all predicates use the same meta-constraint. Columns 2 and 4 are presented and
proved in our prior work [18]. Columns 1 and 3 are introduced in DA logic.

More fundamentally, we must enable easy specification of problems with
reusable parts and where different parts may use different assumptions and
semantics. To that end, we support instantiation and re-use of existing parts,
and allow predicates in any existing parts to be bound to other given predicates,
including predicates with additional arguments.

Even with all this power, DA logic is decidable, because it does not include
function symbols and is over finite domains.
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Table 1. Meta-constraints and corresponding prior semantics.

Meta-constraint Founded/Constraint semantics Other prior semantics
on predicate P Declarations on P Resulting predicates

certain(P ) certain P.T, P.F Stratified (Perfect,
Inductive Definition)

open(P ) uncertain, P.T, P.F, P.U
not complete m.P for m ∈ K.CS First-Order Logic

complete(P ) uncertain, As above Fitting (Kripke-Kleene)
complete Supported

closed(P ) uncertain, As above WFS
complete, closed SMS

3 DA Logic

This section presents the syntax and informal meaning of DA logic, for design
and analysis logic. The constructs described in the paragraphs on “Conjunctive
rules with unrestricted negation”, “Disjunction”, and “Quantification” appear in
our prior work on founded semantics and constraint semantics [18]. The other
features are new.

Knowledge Unit. A program is a set of knowledge units. A knowledge unit,
abbreviated as kunit, is a set of rules, facts, and meta-constraints, defined below.
The definition of a kunit has the following form, where K is the name of the
kunit, and body is a set of rules, facts, meta-constraints, and instantiations of
other kunits:

kunit K:
body

The scope of a predicate is the kunit in which it appears. Predicates with the
same name, but appearing in different kunits, are distinct.

Example. A kunit for the single win rule is

kunit win_unit:
win(x) ← move(x,y) ∧ ¬ win(y)

�
Kunits provide structure and allow knowledge to be re-used in other contexts

by instantiation, as described below.

Conjunctive Rules with Unrestricted Negation. We first present a simple
core form of logic rules and then describe additional constructs that can appear
in rules. The core form of a rule is the following, where any Pi may be preceded
with¬:
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Q(X1, ...,Xa) ← P1(X11, ...,X1a1) ∧ ... ∧ Ph(Xh1, ...,Xhah
) (1)

Q and the Pi are predicates, each argument Xk and Xij is a constant or a
variable, and each variable in the arguments of Q must also be in the arguments
of some Pi. In arguments of predicates in example programs, we use numbers
for constants and letters for variables.

If h = 0, there is no Pi or Xij , and each Xk must be a constant, in which
case Q(X1, ...,Xa) is called a fact. For the rest of the paper, “rule” refers only to
the case where h ≥ 1, in which case the left side of the backward implication is
called the conclusion, the right side is called the body, and each conjunct in the
body is called a hypothesis.

These rules have the same syntax as in Datalog with negation, but are used
here in a more general setting, because variables can range over complex values,
such as constraint models, as described below.

Predicates as Sets. We use a syntactic sugar in which a predicate P is also
regarded as the set of x such that P (x) holds. For example, we may write
move = {(1,2), (1,3)} instead of the facts move(1,2) and move(1,3); to ensure
the equality holds, this shorthand is used only when there are no other facts or
rules defining the predicate.

Disjunction. The hypotheses of a rule may be combined using disjunction as
well as conjunction. Conjunction and disjunction may be nested arbitrarily.

Quantification. Existential and universal quantifications in the hypotheses of
rules are written using the following notations:

∃X1, ..., Xn |Y existential quantification
∀X1, ..., Xn |Y universal quantification (2)

In quantifications of this form, the domain of each quantified variable is the set of
all constants in the containing kunit. As syntactic sugar, a domain can be speci-
fied for a quantified variable, using a unary predicate regarded as a set. For exam-
ple, ∃ x ∈ win | move(x,x) is syntactic sugar for ∃ x | win(x) ∧ move(x,x),
and ∀ x in win | move(x,x) is syntactic sugar for ∀ x | ¬win(x) ∨ move(x,x).

Meta-constraints. Assumptions about predicates are indicated in programs
using the meta-constraints in the first column of Table 1. Each meta-constraint
specifies the declarations listed in the second column of Table 1. For example, if
a kunit contains open(P), we say that P is declared uncertain and incomplete
in that kunit. In each kunit, at most one meta-constraint may be given for each
predicate.

A predicate declared certain means that each assertion of the predicate has
a unique true (T ) or false (F ) value. A predicate declared uncertain means that
each assertion of the predicate has a unique true, false, or undefined (U) value.
A predicate declared complete means that all rules with that predicate in the
conclusion are given in the containing kunit. A predicate declared closed means
that an assertion of the predicate is made false, called self-false, if inferring it to
be true using the given rules and facts requires assuming itself to be true.
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A predicate in the conclusion of a rule is said to be defined using the predi-
cates or their negation in the hypotheses of the rule, and this defined-ness relation
is transitive. A predicate must be declared uncertain (using one of the corre-
sponding meta-constraints) if it is defined transitively using its own negation,
or is defined using an uncertain predicate; otherwise, it may be declared certain
or uncertain and is by default certain. A predicate may be declared complete or
not only if it is uncertain, and it is by default complete. If a meta-constraint is
not given for a predicate, these default declarations apply.

Using Kunits with Instantiation. The body of a kunit K1 can use another
kunit K using an instantiation of the form:

use K (P1 = Q1(Y1,1, ..., Y1,b1), ..., Pn = Qn(Yn,1, ..., Yn,bn)) (3)

This has the same effect as applying the following substitution to the body of
K and inlining the result in the body of K1: for each i in 1..n, replace each
occurrence Pi(X1, ...,Xa) of predicate Pi with Qi(X1, ...,Xa, Yi,1, ..., Yi,bi). Note
that arguments of Qi specified in the use construct are appended to the argument
list of each occurrence of Pi in K, hence the number of such arguments must
be arity(Qi) − arity(Pi). The check for having at most one meta-constraint per
predicate, and the determination of default declarations, are performed after
expansion of all use constructs. A kunit K1 has a use-dependency on kunit K if
K1 uses K. The use-dependency relation must be acyclic.

Example. For the example kunit win_unit given earlier in this section, the fol-
lowing kunit is an instantiation of the win-not-win game with different predicates
for moving and winning:

kunit win2_unit:
use win_unit (move = move2, win = win2)

�
In some logic programming languages, including our prior work on founded

semantics [18], a program is an unstructured set of rules and facts. The structure
and re-use provided by kunits is vital for development of larger programs for
practical applications.

Referencing Founded Semantics. The founded semantics of a predicate P
can be referenced using special predicates P .T, P .F, and P .U. For each of the
three truth values t, P.t(c1, ..., cn) is true if P (c1, ..., cn) has truth value t, and
is false otherwise. To ensure that the semantics of P is fully determined before
these predicates are used, these predicates cannot be used in rules defining P or
any predicate on which P depends. Predicates that reference founded semantics
are implicitly declared certain and can appear only in rule bodies.

When referencing the undefined part of a predicate, it is sometimes desirable
to prune uninteresting values. For example, consider the rule draw(x) ←win.U(x).
If the kunit contains constants representing players as well as positions, and
win(X) is undefined when X is a player, and the user wants draw to hold
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only for positions, then the user could add to the rule an additional hypoth-
esis position(x), defined to hold only for positions.

Referencing Constraint Semantics. The constraint semantics of a kunit K
can be referenced in another kunit K1 using the special predicate K.CS, where
K is the name of another kunit in the program. Using this special predicate in
any rule in K1 has the effect of adding all of the constraint models of K to the
domain (that is, set of constants) of K1. In other words, the possible values of
variables in K1 include the constraint models of K. The assertion K.CS(X) is
true when X is a constraint model of K and is false for all other constants. The
constraint models of a kunit K can be referenced using K.CS only if K does
not reference its own founded semantics (using predicates such as P .U). When
the value of a variable X is a constraint model of K, a predicate P of K can
be accessed using the notation X.P (...). If the value of X is not a constraint
model, or P is not a predicate defined in that constraint model, then X.P (...)
is undefined, regardless of the arguments. Predicates that reference constraint
semantics are implicitly declared certain and can appear only in rule bodies.
A kunit K1 has a CS-dependency on another kunit K if K1 uses K.CS. The
CS-dependency relation must be acyclic.

4 Formal Definition of Semantics of DA Logic

This section extends the definitions of founded semantics and constraint seman-
tics in [18] to handle the new features of DA logic.

Handling kunits is relatively straightforward. Since each kunit defines a dis-
tinct set of predicates, the founded semantics of the program is simply a col-
lection of the founded semantics of its kunits, and similarly for the constraint
semantics. All use constructs in a kunit are expanded, as described in Sect. 3,
before considering its semantics. Therefore, the constants, facts, rules, and meta-
constraints of a kunit include the corresponding elements (appropriately instan-
tiated) of the kunits it uses.

Handling references to founded semantics and constraint semantics requires
changes in the definitions of domain, literal, interpretation, and dependency
graph.

Handling disjunction, which is mentioned as an extension in [18] but not
considered in the detailed definitions, requires changes in the definition of com-
pletion rules and the handling of closed predicates.

The paragraphs “Founded semantics of DA logic without closed declarations”,
“Least fixed point”, and “Constraint semantics of DA logic” are essentially the
same as in [18]; they are included for completeness.

Atoms, Literals, and Projection. Let π be a program. Let K be a kunit in π.
A predicate is intensional in K if it appears in the conclusion of at least one rule
in K; otherwise, it is extensional in K. The domain of K is the set of constants in
K plus, for each kunit K1 such that K1.CS appears in K, the constraint models
of K1, computed as defined below. The requirement that the CS-dependency
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relation is acyclic ensures the constraint models of K1 are determined before the
semantics of K is considered.

An atom of K is a formula P (c1, ..., ca) formed by applying a predicate P in
K with arity a to a constants in the domain of K. A literal of K is a formula of
the form P (c1, ..., ca) or P .F(c1, ..., ca), for any atom P (c1, ..., ca) of K where P
is a predicate that does not reference founded semantics or constraint semantics.
These are called positive literals and negative literals for P (c1, ..., ca), respectively.
A set of literals is consistent if it does not contain positive and negative literals
for the same atom. The projection of a kunit K onto a set S of predicates,
denoted Proj (K,S), contains all facts of K for predicates in S and all rules of
K whose conclusions contain predicates in S.

Interpretations, Ground Instances, Models, and Derivability. An inter-
pretation I of K is a consistent set of literals of K. Interpretations are generally
3-valued. For predicates that do not reference founded or constraint semantics,
P (c1, ..., ca) is true (T ) in I if I contains P (c1, ..., ca), is false (F ) in I if I con-
tains P .F(c1, ..., ca), and is undefined (U) in I if I contains neither P (c1, ..., ca)
nor P .F(c1, ..., ca). For the predicates that reference founded semantics, for each
of the three truth values t, P.t(c1, ..., ca) is true in I if P (c1, ..., ca) has truth
value t in I, and is false otherwise. For the predicates that reference constraint
semantics, K1.CS(c) is true in I if c is a constraint model of K1, as defined
below, and is false otherwise; the requirement that the CS-dependency relation
is acyclic ensures that the constraint models of K1 are determined before the
semantics of K1.CS(c) is considered. If c is a constraint model that provides a
truth value for P (c1, ..., ca), then c.P (c1, ..., ca) has the same truth value in I
that P (c1, ..., ca) has in c, otherwise it is undefined. An interpretation I of K is
2-valued if every atom of K is true or false in I, that is, no atom is undefined.
Interpretations are ordered by set inclusion ⊆.

A ground instance of a rule R is any rule that can be obtained from R by
expanding universal quantifications into conjunctions over all constants in the
domain, instantiating existential quantifications with constants, and instantiat-
ing the remaining variables with constants. An interpretation is a model of a
kunit if it contains all facts in the kunit and satisfies all rules of the kunit, inter-
preted as formulas in 3-valued logic [10], that is, for each ground instance of each
rule, if the body is true, then so is the conclusion. A collection of interpretations,
one per kunit in a program π, is a model of π if each interpretation is a model
of the corresponding kunit.

The one-step derivability operator TK performs one step of inference using
rules of K, starting from a given interpretation. Formally, C ∈ TK(I) iff C is a
fact of K or there is a ground instance R of a rule in K with conclusion C such
that the body of R is true in I.

Dependency Graph. The dependency graph DG(K) of kunit K is a directed
graph with a node for each predicate of K that does not reference founded
semantics and constraint semantics (including these predicates is unnecessary,
because they cannot appear in conclusions), and an edge from Q to P labeled
+ (respectively, −) if a rule whose conclusion contains Q has a positive (respec-
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tively, negative) hypothesis that contains P . If the node for predicate P is in a
cycle containing only positive edges, then P has circular positive dependency in
K; if it is in a cycle containing a negative edge, then P has circular negative
dependency in K.

Founded Semantics of DA Logic Without Closed Declarations. We
first define a version of founded semantics, denoted Founded0, that does not
take declarations of predicates as closed into account; below we extend the def-
inition to handle those declarations. Intuitively, the founded model of a kunit
K ignoring closed declarations, denoted Founded0(K), is the least set of lit-
erals that are given as facts or can be inferred by repeated use of the rules.
We define Founded0(K) = LFPbySCC (NameNeg(Cmpl(K))), where functions
Cmpl , NameNeg , and LFPbySCC , are defined as follows.

Completion. The completion function, Cmpl(K), returns the completed version
of K. Formally, Cmpl(K) = AddInv(Combine(K)), where Combine and AddInv
are defined as follows.

The function Combine(K) returns the kunit obtained from K by replacing
the facts and rules defining each uncertain complete predicate Q with a single
combined rule for Q that is logically equivalent to those facts and rules. The
detailed definition of combined rule is the same as in [18], except generalized in
a straightforward way to allow rule bodies to contain disjunction and quantifiers.
Similar completion rules are used in [5,10].

The function AddInv(K) returns the kunit obtained from K by adding, for
each uncertain complete predicate Q, a completion rule that derives negative
literals for Q. The completion rule for Q is obtained from the inverse of the
combined rule defining Q (recall that the inverse of C ← B is ¬C ← ¬B), by
putting the body of the rule in negation normal form, that is, using equivalences
of predicate logic to move negation inwards and eliminate double negations, so
that negation is applied only to atoms.

Least Fixed Point. Explicit use of negation is eliminated before the least
fixed point is computed, by applying the function NameNeg . The function
NameNeg(K) returns the kunit obtained from K by replacing each ¬P (X1, ...,
Xa) with P .F(X1, ...,Xa).

The function LFPbySCC (K) uses a least fixed point to infer facts for each
strongly connected component (SCC) in the dependency graph of K, as follows.
Let S1, ..., Sn be a list of the SCCs in dependency order, so earlier SCCs do not
depend on later ones; it is easy to show that any linearization of the dependency
order leads to the same result for LFPbySCC . For convenience, we overload Si

to also denote the set of predicates in the SCC Si. Define LFPbySCC (K) =
In, where I0 = ∅ and Ii = AddNeg(LFP(TIi−1∪Proj (K,Si)), Si) for i ∈ 1..n.
LFP(f) is the least fixed point of function f . The least fixed point is well-defined,
because TIi−1∪Proj (K,Si) is monotonic, because the kunit K was transformed
by NameNeg and hence does not contain negation. The function AddNeg(I, S)
returns the interpretation obtained from interpretation I by adding completion
facts for certain predicates in S to I; specifically, for each such predicate P , for
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each combination of values v1, ..., va of arguments of P , if I does not contain
P (v1, ..., va), then add P .F(v1, ..., va).

Founded Semantics of DA Logic with Closed Declarations. Informally,
when an uncertain complete predicate of kunit K is declared closed, an atom A of
the predicate is false in an interpretation I, called self-false in I, if every ground
instance of rules that concludes A, or recursively concludes some hypothesis of
that rule instance, has a hypothesis that is false or, recursively, is self-false in I.
A formal definition of SelfFalseK(I), the set of self-false atoms of kunit K with
respect to interpretation I, appears in [18]; it is the same as the definition of
greatest unfounded set [25], except limited to closed predicates. The definition
does not take disjunction into account, so each rule containing disjunction is
put into disjunctive normal form (DNF) and then replaced with multiple rules
(one per disjunct of the DNF) not containing disjunction, before determining
the self-false atoms.

The founded semantics is defined by repeatedly computing the semantics
given by Founded0 (the founded semantics without closed declarations) and then
setting self-false atoms to false, until a least fixed point is reached. For a set S
of positive literals, let ¬ · S = {P .F(c1, ..., ca) |P (c1, ..., ca) ∈ S}. For a kunit
K and an interpretation I, let K ∪ I denote K with the literals in I added to
its body. Formally, the founded semantics is Founded(K) = LFP(FK), where
FK(I) = Founded(K ∪ I) ∪ ¬ · SelfFalseK(Founded(K ∪ I)).

Constraint Semantics of DA Logic. Constraint semantics is a set of 2-valued
models based on founded semantics. A constraint model of K is a consistent 2-
valued interpretation M of K such that M is a model of Cmpl(K) and such
that Founded(K) ⊆ M and ¬ · SelfFalseK(M) ⊆ M . Let Constraint(K) denote
the set of constraint models of K. Constraint models can be computed from
Founded(K) by iterating over all assignments of true and false to atoms that are
undefined in Founded(K), and checking which of the resulting interpretations
satisfy all rules in Cmpl(K) and satisfy ¬ · SelfFalseK(M) ⊆ M .

Properties of DA Logic Semantics. The following theorems express the most
important properties of the semantics.

Theorem 1. The founded model and constraint models of a program π are con-
sistent.

Proof: First we consider founded semantics. Each kunit in the program defines
a distinct set of predicates, so consistency can be established one kunit at a
time, considering them in CS-dependency order. For each kunit K, the proof of
consistency is a straightfoward extension of the proof of consistency of founded
semantics [17, Theorem 1]. The extension is needed to show that consistency
holds for the new predicates that reference founded semantics and constraint
semantics.

For predicates that reference founded semantics, we prove this for each SCC
Si in the dependency graph for K; the proof is by induction on i. The predicates
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used in SCC Si to reference founded semantics have the same truth values as
the referenced predicates in earlier SCCs, and by the induction hypothesis, the
interpretation computed for predicates in earlier SCCs is consistent.

For predicates that reference constraint semantics, the proof is by induction
on the kunits in CS-dependency order. The predicates used in kunit K to refer-
ence constraint semantics have the same truth values as the referenced predicates
in earlier kunits, and by the induction hypothesis, the interpretation computed
for predicates in earlier kunits is consistent.

For constraint semantics, note that constraint models are consistent by defi-
nition. �

Theorem 2. The founded model of a kunit K is a model of K and Cmpl(K).
The constraint models of K are 2-valued models of K and Cmpl(K).

Proof: The proof that Founded(K) is a model of Cmpl(K) is essentially the same
as the proof that Founded(π) is a model of Cmpl(π) [17, Theorem 2], because
the proof primarily depends on the behavior of Cmpl , AddNeg , and the one-
step derivability operator, and they handle atoms of predicates that reference
founded semantics and constraint semantics in exactly the same way as other
atoms. Constraint models are 2-valued models of Cmpl(K) by definition. Any
model of Cmpl(K) is also a model of K, because K is logically equivalent to the
subset of Cmpl(K) obtained by removing the completion rules added by AddInv .

�

Theorem 3. DA logic is decidable.

Proof: DA logic has a finite number of constants from given facts, and has sets
of finite nesting depths bounded by the depths of CS-dependencies. In particular,
it has no function symbols to build infinite domains in recursive rules. Thus, DA
logic is over finite domains and is decidable. �

5 Additional Examples

We present additional examples that show the power of our language. They
are challenging or impossible to express and solve using prior languages and
semantics. We use - - to prefix comments.

Same Different Games. The same win-not-win game can be over different
kinds of moves, forming different games, as introduced with kunit instantia-
tion. However, the fundamental winning, losing, or draw situations stay the
same, parameterized by the moves. The moves could also be defined easily using
another kunit instantiation.

Example. A new game can use winning, losing, draw positions defined by
win_unit in Sect. 2, whose moves use paths defined by path_unit, whose edges
use given links.
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kunit path_unit:
path(x,y) ← edge(x,y)
path(x,y) ← edge(x,z) ∧ path(z,y)

kunit win_path_unit:
link = {(1,2), (1,3), ...} -- shorthand for link(1,2), link(1,3), ...
use path_unit (edge = link) -- instantiate path_unit with edge replaced

-- by link
use win_unit (move = path) -- instantiate win_unit with move replaced

-- by path

One could also define edge in place of link above, and then path_unit can be
used without rebinding the name edge, as follows.

kunit win_path_unit: -- as above
edge = {(1,2), (1,3), ...} -- as above but use edge in place of link
use path_unit () -- as above but without replacing edge by

-- link
use win_unit (move = path) -- as above �

Defined from Undefined Positions. Sets and predicates can be defined using
the set of values of arguments for which a given predicate is undefined. This is
not possible in previous 3-valued logic like WFS, because anything depending
on undefined can only be undefined.

Example. Using the win-not-win game, the predicates move_to_draw and
reach_from_draw below define the set of positions that have a move to a draw
position, and the set of positions that have a special move from a draw position,
respectively.

kunit draw_unit:
move = {(1,1), (2,3), (3,1)}
use win_unit ()

move_to_draw(x) ← move(x,y) ∧ win.U(y)

special_move = {(1,4), (4,2)}
use path_unit (edge = special_move)

reach_from_draw(y) ← win.U(x) ∧ path(x,y)

In draw_unit, we have win.U(1), that is, 1 is a draw position. Then we have
move_to_draw(3), and we have reach_from_draw(4) and reach_from_draw(2).

Note that we could copy the single win rule here in place of use win_unit ()
and obtain an equivalent draw_unit. We avoid copying when possible because
this is a good principle, and in general, a kunit may contain many rules and
facts. �
Unique Undefined Positions. Among the most critical information is infor-
mation that is true in all possible ways of satisfying given constraints but can-
not be determined to be true by just following founded reasoning. Having both
founded semantics and constraint semantics at the same time allows one to find
such information.
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Example. Predicate unique in cmp_unit below finds positions in the game in
win_unit1 that are U in the founded model but, if a constraint model exists, are
winning in all possible models in constraint semantics.

kunit win_unit1:
prolog ← ¬ asp
asp ← ¬ prolog
move(1,0) ← prolog
move(1,0) ← asp
move(1,1)
use win_unit ()

kunit cmp_unit:
use win_unit1 ()

unique(x) ← win.U(x) ∧ ∃ m ∈ win_unit1.CS
∧ ∀ m ∈ win_unit1.CS | m.win(x)

In win_unit1, founded semantics gives move.T(1,1), move.U(1,0), win.U(0), and
win.U(1). win_unit1.CS = {{move(1,1), move(1,0), win(1)}}, that is, win(1) is
true, and win(0) is false. So win.U(1) and win.U(0) are imprecise, and unique(1)
is true in cmp_unit. �
Multiple Uncertain Worlds. Given multiple worlds with different models,
different uncertainties can arise from different worlds, yielding multiple uncertain
worlds. It is simple to represent this using predicates that are possibly 3-valued
and that are parameterized by a 2-valued model.

Example. The game in win_unit2 uses win_unit on a set of moves. The game in
win_set_unit has its own moves, but the moves are valid if and only if they start
from a position that is a winning position in a model in the constraint semantics
of win_unit2.

kunit win_unit2:
move = {(1,4),(4,1)}
use win_unit ()

kunit win_set_unit:
move = {(1,2),(2,3),(3,1),(4,4),(5,6)}
valid_move(x,y,m) ← move(x,y), win_unit2.CS(m), m.win(x)

use win_unit (move = valid_move(m), win = valid_win(m))

win_some(x) ← valid_win(x,m)
win_each(x) ← win_some(x) ∧ ∀ m ∈ win_unit2.CS | valid_win(x,m)

In win_unit2, there is a 2-edge cycle of moves, so win_unit2.CS = {m1,m2}, where
m1.win = {1} and m2.win = {4}. In win_set_unit, each m in win_unit2 leads to a
separately defined predicate valid_move under argument m, which is then used to
define a separate predicate valid_win under argument m by instantiating win_unit
with move and win parameterized by additional argument m. �
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6 Related Work and Conclusion

Many logic languages and semantics have been proposed. Several overview arti-
cles [2,11,20,21,24] give a good sense of the complications and challenges when
there is unrestricted negation. Notable different semantics include Clark com-
pletion [5] and similar additions, e.g., [4,12,15,19,22,23], Fitting semantics or
Kripke-Kleene semantics [10], supported model semantics [1], stratified seman-
tics [1], WFS [25], and SMS [13]. Note that these semantics disagree, in contrast
to different styles of semantics that agree [9].

There are also a variety of works on relating and unifying different semantics.
These include Dung’s study of relationships [8], partial stable models, also called
stationary models [20], Loop fomulas [16], FO(ID) [7], and founded semantics
and constraint semantics [18]. FO(ID) is more powerful than works prior to it, by
supporting both first-order logic and inductive definitions while also being sim-
ilar to SMS [3]. However, it does not support any 3-valued semantics. Founded
semantics and constraint semantics uniquely unify different semantics, by captur-
ing their different assumptions using predicates declared to be certain, complete,
and closed, or not.

However, founded semantics and constraint semantics by themselves do not
provide a way for different semantics to be used for solving different parts of
a problem or even the same part of the problem. DA logic supports these, and
supports everything completely declaratively, in a unified language.

Specifically, DA logic allows different assumptions under different semantics
to be specified easily as meta-constraints, and allows the results of different
semantics to be built upon, including defining predicates using undefined values
in a 3-valued model and using models in a set of 2-valued models, and parameter-
izing predicates by a set of 2-valued models. More fundamentally, DA logic allows
different parts of a problem to be solved with different knowledge units, where
every predicate is a parameter that can be instantiated with new predicates,
including new predicates with additional arguments. These are not supported in
prior languages.

Among many directions for future work, one particularly important and
intriguing problem is to study precise complexity guarantees for inference and
queries for DA logic.
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