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Preface

The Symposium on Logical Foundations of Computer Science (LFCS) series provides
a forum for the fast-growing body of work in the logical foundations of computer
science, e.g., those areas of fundamental theoretical logic related to computer science.
The LFCS series began with “Logic at Botik,” Pereslavl-Zalessky, 1989, which was
co-organized by Albert R. Meyer (MIT) and Michael Taitslin (Tver). After that,
organization passed to Anil Nerode.

Currently, LFCS is governed by a Steering Committee consisting of Anil Nerode
(general chair), Samuel Buss, Stephen Cook, Dirk van Dalen, Yuri Matiyasevich,
Gerald Sacks, Andre Scedrov, and Dana Scott.

LFCS 2020 took place at the Wyndham Deerfield Beach Resort, Deerfield Beach,
Florida, USA, during January 4–7, 2020. This volume contains the extended abstracts
of talks selected by the Program Committee for presentation at LFCS 2020.

The scope of the symposium is broad and includes constructive mathematics and
type theory; homotopy type theory; logic, automata, and automatic structures; com-
putability and randomness; logical foundations of programming; logical aspects of
computational complexity; parameterized complexity; logic programming and con-
straints; automated deduction and interactive theorem proving; logical methods in
protocol and program verification; logical methods in program specification and
extraction; domain theory logics; logical foundations of database theory; equational
logic and term rewriting; lambda and combinatory calculi; categorical logic and
topological semantics; linear logic; epistemic and temporal logics; intelligent and
multiple-agent system logics; logics of proof and justification; non-monotonic rea-
soning; logic in game theory and social software; logic of hybrid systems; distributed
system logics; mathematical fuzzy logic; system design logics; and other logics in
computer science.

We thank the authors and reviewers for their contributions. We acknowledge the
support of the U.S. National Science Foundation, The Association for Symbolic Logic,
Cornell University, the Graduate Center of the City University of New York, and
Florida Atlantic University.

October 2019 Anil Nerode
Sergei Artemov
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Computability of Algebraic and Definable
Closure

Nathanael Ackerman1, Cameron Freer2(B), and Rehana Patel3

1 Harvard University, Cambridge, MA 02138, USA
nate@aleph0.net

2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
freer@mit.edu

3 African Institute for Mathematical Sciences, M’bour–Thiès, Senegal
rpatel@aims-senegal.org

Abstract. We consider computability-theoretic aspects of the algebraic
and definable closure operations for formulas. We show that for ϕ a
Boolean combination of Σn-formulas and in a given computable struc-
ture, the set of parameters for which the closure of ϕ is finite is Σ0

n+2,
and the set of parameters for which the closure is a singleton is Δ0

n+2. In
addition, we construct examples witnessing that these bounds are tight.

Keywords: Algebraic closure · Definable closure · Computable model
theory

1 Introduction

An important step towards understanding the relationship between model theory
and computability theory is to calibrate the effective content of concepts that
are fundamental in classical model theory. There is a long history of efforts to
understand this calibration within computable model theory; see, e.g., [4].

In this paper, we study the computability of two particular model-theoretic
concepts, namely the related notions of algebraic closure and definable closure,
which provide natural characterizations of a “neighborhood” of a set; for more
details, see [5, §4.1]. In recent years, the property of a structure having trivial
definable closure (i.e., the definable closure of every finite set is itself), or equiv-
alently, trivial algebraic closure, has played an important role in combinatorial
model theory and descriptive set theory; for some characterizations in terms of
this property see, e.g., [1–3].

The standard notions of algebraic and definable closure can be refined by car-
rying out a formula-by-formula analysis. We consider the computational strength
of the problem of identifying the algebraic or definable closure of a formula in a
computable structure, and we give tight bounds on the complexity of both. Fur-
ther, when the formula is quantifier-free, we achieve tightness of these bounds
via structures that are model-theoretically “nice”, namely, are ℵ0-categorical or
of finite Morley rank.
c© Springer Nature Switzerland AG 2020
S. Artemov and A. Nerode (Eds.): LFCS 2020, LNCS 11972, pp. 1–11, 2020.
https://doi.org/10.1007/978-3-030-36755-8_1
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1.1 Preliminaries

For standard notions from computability theory, see, e.g., [6]. We write {e}(n)
to represent the output of the eth Turing machine run on input n, if it con-
verges, and in this case write {e}(n) ↓. Define We := {n ∈ N : {e}(n) ↓} and
Fin := {e ∈ N : We is finite}. Recall that Fin is Σ0

2 -complete [6, Theo-
rem 4.3.2]).

In this paper we will focus on computable languages that are relational. Note
that this leads to no loss of generality due to the standard fact that computable
languages with function or constant symbols can be interpreted computably in
relational languages where there is a relation for the graph of each function. For
the definitions of languages, first-order formulas, and structures, see [5].

We will work with many-sorted languages and structures; for more details,
see [7, §1.1]. Let L be a (many-sorted) language, let A be an L-structure, and
suppose that a is a tuple of elements of A. We say that the type of a is

∏
i≤n Xi

when a ∈ ∏
i≤n(Xi)A, where each of X0, . . . , Xn−1 is a sort of L. The type of

a tuple of variables is the product of the sorts of its constituent variables (in
order). The type of a relation symbol is defined to be the type of the tuple of
its free variables, and similarly for formulas. We write (∀x : X) and (∃x : X) to
quantify over a tuple of variables x of type X (which includes the special case
of a single variable of a given sort).

If we so desired, we could encode each sort using a unary relation symbol, and
this would not affect most of our results. However, in Sect. 3 we are interested in
how model-theoretically complicated the structures we build are, and if we do
not allow sorts then the construction in Proposition 9 providing a lower bound
on the complexity of algebraic closure will not yield an ℵ0-categorical structure.

We now define computable languages and structures.

Definition 1. Suppose L =
(
(Xj)j∈J , (Ri)i∈I) is a language, where I, J ∈

N ∪ {N} and (Xj)j∈J and (Ri)i∈I are collections of sorts and relation symbols,
respectively. Let tyL : I → J<ω be such that for all i ∈ I, we have tyL(i) =
(j0, . . . , jn−1) where the type of Ri is

∏
k<n Xjk . We say that L is a computable

language when tyL is a computable function. For each computable language, we
fix a computable encoding of all first-order formulas of the language.

A computable L-structure A is an L-structure with computable underly-
ing set such that the sets {(a, j) : a ∈ XA

j } and {(b, i) : b ∈ RA
i } are computable

subsets of the appropriate domains.
We say that c ∈ N is a code for a structure if {c}(0) is a code for a

computable language (via some fixed enumeration of functions of the form tyL)
and {c}(1) is a code for some computable structure in that language. In this case,
we write Lc for the language that {c}(0) codes, Mc for the structure that {c}(1)
codes, and Tc for the first-order theory of Mc. Let CompStr be the collection of
c ∈ N that are codes for structures.

Note that these notions relativize in the obvious way. For more details on
basic notions in computable model theory, see [4].
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Towards defining algebraic closure and definable closure for formulas, we first
describe when a formula is algebraic or definable at a given tuple.

Definition 2. Let ϕ(x; y) be a first-order L-formula, let A be an L-structure,
and suppose a ∈ A has the same type as x.

• The formula ϕ(x; y) is algebraic at a if

clϕ,A(a) := {b ∈ A : A |= ϕ(a; b)}
is finite (possibly empty).

• The formula ϕ(x; y) is definable at a if
∣
∣clϕ,A(a)

∣
∣ = 1.

We now describe several sets that encode those formulas that are algebraic
or definable at given tuples. These are our analogues, for individual formulas, of
the standard notions of algebraic closure and definable closure. See [5, §4.1] for
more details on these standard notions.

Definition 3.

• CL :=
{
(c, ϕ(x; y), a, k) : c ∈ CompStr, ϕ(x; y) a first-order Lc-formula,

a ∈ Mc having the same type as x, and k ∈ N ∪ {∞} with |clϕ,Mc
(a)| = k

}
.

• ACL :=
{
(c, ϕ(x; y), a) : there exists k ∈ N with (c, ϕ(x; y), a, k) ∈ CL

}
.

• DCL :=
{
(c, ϕ(x; y), a) : (c, ϕ(x; y), a, 1) ∈ CL

}
.

• For Y ∈ {CL,ACL,DCL} and n ∈ N let

Yn := {t ∈ Y : the second coordinate of t is a Boolean combination of
Σn-formulas}.

• For Y ∈ {CL,ACL,DCL} ∪ {CLn,ACLn,DCLn}n∈N and c ∈ CompStr, let
Y c := {u : (c)∧u ∈ Y }, i.e., select those elements of Y whose first coordinate
is c, and then remove this first coordinate.

Note that CompStr is a Π0
2 class. Hence even before we consider the com-

plexity of whether formulas are algebraic or definable at various tuples, the sets
CL,ACL,DCL are already complicated computability-theoretically. As such, we
will mainly be interested in the question of how complex CLc,ACLc,DCLc can
be, when c is a code for a structure. The next three lemmas connect these sets.

Lemma 4. Uniformly in the parameters c ∈ CompStr and n ∈ N, the set

{(ϕ(x; y), a, k) ∈ CLc
n : k ∈ N, k ≥ 1}

is computably enumerable from DCLc
n.

Proof. Suppose ϕ(x; y) is a Boolean combination of Σn-formulas, and let k ≥ 1.
For each j < k, choose a tuple of new variables z j of the same type as y. Define
the formula

Φϕ(x;y),k :=
∧

k0<k1<k

(z k0 �= z k1) ∧
∧

k1<k

ϕ(x; z k1)
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which specifies k-many distinct realizations of the tuple y in ϕ(x; y), given an
instantiation of x. Note that Φϕ(x;y),k is also a Boolean combination of Σn-
formulas.

For j < k, let τj := x z 0 · · · z j−1 z j+1 · · · z k−1, and write Φϕ(x;y),k(τj ; z j)
to mean Φϕ(x;y),k considered as a formula whose free variables are partitioned
as (τj , z

j). Note that (ϕ(x; y), a, k) ∈ CLc
n if and only if

(
Φϕ(x;y),k(τj ; z j), a b 0 · · · b j−1 b j+1 · · · b k−1

)
∈ DCLc

n

for some j < k and b 0, . . . , b j−1, b j+1, . . . , b k−1 ∈ Mc. By enumerating over all
such parameters, and enumerating over all choices of ϕ and k, we see that the
desired set is c.e. from DCLc

n. �
Lemma 5. Uniformly in the parameters c ∈ CompStr and n ∈ N, the set

{(
ϕ(x; y), a, k

) ∈ CLc
n : k = 0

}

is computably enumerable from DCLc
n.

Proof. Suppose ϕ(x; y) is a Boolean combination of Σn-formulas. Let z be
a tuple of variables having the same type as y and disjoint from x y. Let
Ψϕ(x;y)(x z; y) := ϕ(x; y) ∨ (y = z). Note that Ψϕ(x;y)(x z; y) is also a Boolean
combination of Σn-formulas.

Now suppose b0 and b1 are distinct tuples of elements of Mc having the same
type as z. Then the following are equivalent:

• (
Ψϕ(x;y)(x z; y), a b0

) ∈ DCLc
n and

(
Ψϕ(x;y)(x z; y), a b1

) ∈ DCLc
n;

• {
b : Mc |= ϕ(a; b)

}
= ∅, i.e., (ϕ(x; y), a, 0) ∈ CLc

n.

The result is then immediate. �
Lemma 6. Uniformly in the parameters c ∈ CompStr and n ∈ N, there are
computable reductions in both directions between ACLc

n

∐
DCLc

n and CLc
n.

Proof. It is immediate from the definitions that DCLc
n is computable from CLc

n.
Further, ACLc

n is computable from CLc
n as

ACLc
n =

{
(ϕ(x; y), a) : (∃k) (ϕ(x; y), a, k) ∈ CLc

n and k �= ∞}

and (ϕ(x; y), a, k) ∈ CLc
n holds for a unique k ∈ N ∪ {∞}.

Lemmas 4 and 5 together tell us that {(ϕ(x; y), a, k) ∈ CLc
n : k ∈ N} is

computably enumerable from DCLc
n. But (ϕ(x; y), a,∞) ∈ CLc

n if and only
if (ϕ(x; y), a) �∈ ACLc

n. Therefore when ϕ(x; y) is a Boolean combination of
Σn-formulas, and given a ∈ Mc, we can compute from ACLc

n whether or not
(ϕ(x; y), a,∞) ∈ CLc

n. Further, if (ϕ(x; y), a,∞) �∈ CLc
n, then we can compute

from DCLc
n the (unique) value of k such that (ϕ(x; y), a, k) ∈ CLc

n. Hence CLc
n

is computable from ACLc
n

∐
DCLc

n. �
Note that by Lemma 6 we are justified, from a computability-theoretic per-

spective, in restricting our attention to ACL and DCL (and their variants), as
opposed to CL.
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2 Upper Bounds for Quantifier-Free Formulas

We now provide straightforward upper bounds on the complexity of ACLc
0 and

DCLc
0 for c ∈ CompStr.

Proposition 7. Uniformly in the parameter c ∈ CompStr, the set ACLc
0 is a

Σ0
2 class.

Proof. Uniformly in c ∈ CompStr, a quantifier-free Lc-formula ϕ(x; y), and tuple
a ∈ Mc of the same type as x, we can computably find an e ∈ N such that We

equals clϕ,Mc
(a) (where the elements of clϕ,Mc

(a) are encoded in N in a standard
way).

Further, (ϕ(x; y), a) ∈ ACLc
0 if and only if clϕ,Mc

(a) is finite. Therefore ACLc
0

is Σ0
2 as Fin is Σ0

2 . �
Proposition 8. Uniformly in the parameter c ∈ CompStr, the set DCLc

0 is the
intersection of a Π0

1 and a Σ0
1 class (in particular, it is a Δ0

2 class).

Proof. Uniformly in c ∈ CompStr, the set of all tuples (ϕ(x; y), a) such that

Mc |= (∀y0, y1)
(
(ϕ(a; y0) ∧ ϕ(a; y1)) → (y0 = y1)

)

holds is a Π0
1 class. Likewise, uniformly in c ∈ CompStr, the set of all tuples

(ϕ(x; y), a) such that there exists b with Mc |= ϕ(a; b) is a Σ0
1 class. �

As a consequence, DCLc
0 is computable from 000′.

3 Lower Bounds for Quantifier-Free Formulas

We now show that the upper bounds in Sect. 2 are tight. Further, we do so using
structures that have nice model-theoretic properties.

We first show that the upper bound in Proposition 7 is tight.

Proposition 9. There is a parameter c ∈ CompStr such that the following hold.

(a) Lc has no relation symbols, i.e., Lc consists only of sorts.
(b) For each ordinal α, the theory Tc has (|α + 1|ω)-many models of size ℵα. In

particular, Tc is ℵ0-categorical.
(c) ACLc

0 ≡1 Fin. In particular, ACLc
0 is a Σ0

2 -complete set.

Proof. Let
(
(ei, ni)

)
i∈N

be a computable enumeration without repetition of

{(e, n) : e, n ∈ N and {e}(n)↓}.

Note that for each 
 ∈ N∪{∞}, there are infinitely many programs that halt on
exactly 
-many inputs, and so there are infinitely many e ∈ N that are equal to
ei for exactly 
-many i.

Let c ∈ CompStr be such that
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• Lc consists of infinitely many sorts (Xi)i∈N and no relation symbols,
• the underlying set of Mc is N, and
• for each i ∈ N, the element i is of sort Xei

in Mc.

A model of Tc is determined up to isomorphism by the number of elements
in the instantiation of each sort. Hence there are ℵ0-many sorts of each finite
size and ℵ0-many that are infinite (each of which may have size ℵβ for arbitrary
β ≤ α, in a model of size ℵα), and so (b) holds.

Now |We| = |(Xe)Mc | and so Fin is 1-equivalent to {e : (Xe)Mc is finite}.
Recall that each variable in a many-sorted language is assigned a single sort,
and so no non-trivial Boolean combination of instantiations of sorts is definable.
Since there are no relation symbols in Lc, every quantifier-free definable set is
contained in some product of instantiations of sorts, and is itself the product of
finite or cofinite subsets of instantiations of sorts. Therefore ACLc

0 is 1-equivalent
to {e : (Xe)Mc is finite} as well, establishing (c). �

We now show that the upper bound in Proposition 8 is tight.

Proposition 10. There is a parameter c ∈ CompStr such that the following
hold.

(a) The language Lc has one sort and a single binary relation symbol E.
(b) The structure Mc is a countable saturated model of Tc with underlying set

N.
(c) For each ordinal α, the theory Tc has (|α+ω|)-many models of size ℵα, and

has finite Morley rank.
(d) There is a computable array

(
Uk,�

)
k,�∈N

of subsets of N such that every
countable model of Tc is isomorphic to the restriction of Mc to underlying
set Uk,� for exactly one pair (k, 
).

(e) If N ∼= Mc then uniformly in N we can compute 000′ from
{
a :

∣
∣{b : N |= E(a; b)}∣

∣ = 1
}
.

(f) The set
{a : (E(x; y), a) ∈ DCLc

0}
has Turing degree 000′.

Proof. Let g : N → {0, 1} be the characteristic function of 000′, i.e., such that
g(n) = 1 if and only if n ∈ 000′. As 000′ is a Δ0

2 set, there is some computable
function f : N × N → {0, 1} such that lims→∞ f(n, s) = g(n) for all n ∈ N.

We will construct Mc in the language specified in (a) so as to satisfy the
following axioms.

• (∀x) ¬E(x, x)
• (∀x, y) (E(x, y) → E(y, x))
• (∀x)(∃y) E(x, y)
• (∀x)(∃≤2y) E(x, y)



Computability of Algebraic and Definable Closure 7

By a graph we mean a structure with a single undirected irreflexive binary rela-
tion. A chain in a graph is a connected component of the graph each of whose
vertices has degree 1 or 2; hence a chain either is finite with at least two vertices,
or is infinite on one side (an N-chain), or is infinite on both sides (a Z-chain).
By the order of a chain we mean its number of vertices.

The above axioms specify that Mc will be a graph (with edge relation E)
that is the union of chains. In fact, we will construct Mc so as to have infinitely
many chains of certain finite orders, infinitely many N-chains, and infinitely
many Z-chains.

For n ∈ N, let pn denote the nth prime number. We now construct Mc with
underlying set N, in stages.

Stage 0:
Let {Ni}i∈N ∪ {Zi}i∈N ∪ {F} be a uniformly computable partition of N into
infinite sets.

For each i ∈ N, let the induced subgraph on Ni be an N-chain, and let the
induced subgraph on Zi be a Z-chain. The only other edges will be between
elements of F (to be determined in later stages).

Stage 2s + 1:
Let as be the least element of F that is not yet part of an edge. Create a finite
chain of order (ps)2+f(s,s) consisting of as and other elements of F not yet in
any edge.

Stage 2s + 2:
For each n ≤ s, we have two cases, based on the values of f . If f(n, s) =
f(n, s + 1), do nothing.

Otherwise, if f(n, s) �= f(n, s + 1), consider the (unique) chain whose order
so far is (pn)k for some positive k. Extend this chain by

(
(pn)k+1 − (pn)k

)
-many

elements of F which are not yet in any edge, so that the resulting chain has
order (pn)2�+f(n,s+1) for some 
 ∈ N.

The resulting graph is computable, as every vertex participates in at least
one edge, and whether or not there is an edge between a given pair of vertices is
determined by the first stage at which each vertex of the pair becomes part of
some edge.

Observe that every element of F is part of a chain of elements of F whose
order is some positive power of a prime, which moreover is the only chain in Mc

whose order is a power of that prime.
Now, every model of Tc is determined by the number of N-chains and the

number of Z-chains in it. In a model of size ℵα, there must be either ℵα-many
N-chains and 0-, 1-, . . ., ℵ0-, . . ., or ℵα-many Z-chains, or vice-versa. Condition
(b) holds because the countable saturated models of Tc have ℵ0-many N-chains
and ℵ0-many Z-chains, as does Mc. Condition (c) holds because none of these
N-chains or Z-chains are first-order definable.

For condition (d), let Uk,� :=
⋃

i<k Ni ∪ ⋃
i<� Zi ∪ F .
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Towards condition (e), note that for each n ∈ N, there is a unique chain of
order a power of pn. Writing (pn)jn for this order, we have jn ≡ g(n) (mod 2).
An element a ∈ N is one of the two ends of a finite chain or the begin-
ning of an N-chain if and only if |{b : N |= E(a; b)}| = 1. So, from the set
{a : |{b : N |= E(a; b)}| = 1} we can enumerate the orders of all finite chains,
and hence can compute g(n) for all n.

Finally, recall that DCLc
0 is computable from 000′ and so the set

{a : (E(x; y), a) ∈ DCLc
0} is also computable from 000′. Hence (f) follows from

(e). �

4 Boolean Combinations of Σn-Formulas

We now study the complexity of ACLc and DCLc with respect to Boolean com-
binations of Σn-formulas.

The following lemma captures a computable version of the standard process
known as Morleyization. The proof is straightforward.

Lemma 11. Let L be a computable language and A a computable L-structure.
For each n ∈ N there is a computable language Ln and a 0(n)-computable Ln-
structure An such that

• L ⊆ Ln ⊆ Ln+1,
• A is the reduct of An to the language L,
• for each first-order Ln-formula ϕ there is a first-order L-formula ψϕ (of the
same type as ϕ) such that

An |= (∀x0, . . . , xk−1) ϕ(x0, . . . , xk−1) ↔ ψϕ(x0, . . . , xk−1),

where k is the number of free variables of ϕ, and
• for each first-order L-formula ψ, if ψ is a Boolean combination of Σn-
formulas then there is a first-order quantifier-free Ln-formula ϕψ (of the same
type as ψ) such that

An |= (∀x0, . . . , xk−1) ψ(x0, . . . , xk−1) ↔ ϕψ(x0, . . . , xk−1),

where k is the number of free variables of ψ.

Lemma 11 tells us that the methods used earlier in this paper to study
quantifier-free algebraic and definable closures can be applied to more compli-
cated formulas, provided that we allow the structures that we build to have
greater complexity, as we now illustrate.

Corollary 12. For every n ∈ N and c ∈ CompStr,

• ACLc
n is a Σ0

n+2 class, and
• DCLc

n is a Δ0
n+2 class.
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Proof. By Lemma 11, we know that ACLn is equivalent to the relativization of
ACL0 to the class of structures computable in 0(n), and that DCLn is equivalent
to the relativization of DCL0 to the class of structures computable in 0(n).

Therefore by Propositions 7 and 8, ACLc
n is a Σ0

2(0(n)) class and DCLc
n is a

Δ0
2(0

(n)) class. �
In Theorem 15 we will show that these bounds are tight. Towards this, we

will need the next two results.
Suppose that L is a language containing a sort N and a relation symbol

S of type N × N . Let A be an L-structure. We call (NA, SA) a directed N-
chain when it is isomorphic to a single-sorted structure with underlying set N

in a language consisting of the binary relation symbol S, in which S(k, 
) holds
precisely when 
 = k + 1. In other words, (NA, SA) is a directed N-chain if
there is an isomorphism between it and N with its successor function viewed
as a directed graph. Note that this isomorphism is necessarily unique. Given

 ∈ N, we write 
̂ to denote the corresponding element of NA according to this
isomorphism.

Lemma 13. Let L be a language containing a sort N and a relation symbol
S of type N × N (and possibly other sorts and relation symbols). Let A be an
L-structure such that (NA, SA) is a directed N-chain. Let k ∈ N and let h(x,m)
be an L-formula that is a Boolean combination of Σk-formulas, where x is of
some type X, and m has sort N .

Suppose that

A |= (∀x : X)(∃≤1m : N)(∃p : N) S(m, p) ∧ (
h(x,m) ↔ ¬h(x, p)

)
.

Let H : XA ×N → {True,False} be the function where H(a, 
) = True if and
only if A |= h(a, 
̂). Note that lim�→∞ H(a, 
) exists for all a ∈ XA.

There is an L-formula h′(x), where x is of type X, such that h′ is a Boolean
combination of Σk+1-formulas and for all a ∈ XA,

A |= h′(a) if and only if lim
m→∞ H(a,m) = True.

Proof. Define the formula h′ by

h′(x) :=
[
(∀m : N) h(x,m)

] ∨ [
(∃m, p : N)

(¬h(x,m) ∧ h(x, p) ∧ S(m, p)
)]

.

Clearly h′ is a Boolean combination of Σk+1-formulas and has the desired
property. �
Proposition 14. Let n ∈ N and let L be a language containing a sort N and a
relation symbol S of type N ×N (and possibly other sorts and relation symbols).
Suppose A is an L-structure that is computable in 0(n) and such that (NA, SA)
is a computable directed N-chain. Then there is a computable language L+ and
a computable L+-structure A+ such that for every relation symbol R ∈ L other
than S, there is an L+-formula ϕR that is a Boolean combination of Σn-formulas
for which RA = (ϕR)A+

.
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Proof. We begin by defining, for relation symbols in L other than S, certain
auxiliary functions. Let R be a relation symbol in L that is not S, and let X be
its type. For every k ∈ N such that 0 ≤ k ≤ n, there is some 0(n−k)-computable
function FR,k : XA ×N

k → {True,False} such that for all a ∈ XA, the following
hold:

• FR,0(a) = 1 if and only if A |= R(a).
• Suppose k ≥ 1 and let 
0, . . . , 
k−2 ∈ N. There is at most one s ∈ N for which

FR,k(a, 
0, . . . , 
k−2, s) �= FR,k(a, 
0, . . . , 
k−2, s + 1).

Further,

FR,k−1(a, 
0, . . . , 
k−2) = lim
�k−1→∞

FR,k(a, 
0, . . . , 
k−2, 
k−1).

Next we define the computable language L+ as follows:

• L+ has the same sorts as L.
• For each relation symbol R ∈ L other than S, there is a relation symbol

R+ ∈ L+ of type X × Nn, where X is the type of R.

Now define the computable L+-structure A+ as follows:

• A+ has the same underlying set as A, and sorts are instantiated on the same
sets in A+ as in A.

• SA+
is the same relation as SA.

• For each R ∈ L other than S, each tuple a ∈ XA+
where X is the type of R,

and any 
0, . . . , 
n−1 ∈ N, we have

A+ |= R+(a, 
̂0, . . . , 
̂n−1) if and only if FR,n(a, 
0, . . . , 
n−1) = True.

(Recall that for 
 ∈ N, we have defined 
̂ ∈ NA+
to be the 
th element of the

directed N-chain.)
Finally, we build, for each relation symbol R ∈ L other than S, an L+-formula

ϕR. First apply Lemma 13 (with k = 0) to A+ and the L+-formula

h0(xy0 · · · yn−2, yn−1) := R+(x, y0, . . . , yn−1)

(where x has type X and each yi has type N) to obtain an L+-formula
h′
0(xy0 · · · yn−2) that is a Boolean combination of Σ1-formulas. Next apply

Lemma 13 again (with k = 1) to A+ and the L+-formula

h1(xy0 · · · yn−3, yn−2) := h′
0(xy0 · · · yn−2)

to obtain an L+-formula h′
1(xy0 · · · yn−3) that is a Boolean combination of Σ2-

formulas. Proceed in this way for k = 2, . . . , n − 1, to obtain an L+-formula
ϕR(x) := h′

n−1(x) that is a Boolean combination of Σn-formulas for which RA =
(ϕR)A+

. �
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Combining this with results from Sect. 3, we obtain the following.

Theorem 15. For each n ∈ N,

(a) there is an element a ∈ CompStr such that ACLa
n is a Σ0

2(0(n))-complete
set, and

(b) there is an element b ∈ CompStr such that DCLb
n ≡T 0(n+1).

Proof. Let P be the structure constructed in the proof of Proposition 9, rel-
ativized to the oracle 0(n), i.e., so that P is computable from 0(n). Let the
structure P∗ be P augmented with a sort N (instantiated on a new set of ele-
ments) along with a relation symbol S of type N ×N , such that (NP∗

, SP∗
) is a

computable directed N-chain. Part (a) then follows by applying Proposition 14
to P∗ to obtain some computable structure, namely Ma for some a ∈ CompStr.
Then ACLa

n is a Σ0
2(0(n))-complete set.

Let Q be the structure constructed in the proof of Proposition 10 relativized
to the oracle 0(n), i.e., so that Q is computable from 0(n). Let the structure Q∗ be
obtained from Q by similarly augmenting it by N and S, so that (NQ∗

, SQ∗
) is a

new computable directed N-chain. Part (b) then follows by applying Proposition
14 to Q∗ to obtain a computable structure Mb for some b ∈ CompStr. Then
DCLb

n ≡T 0(n+1). �
Note that the structures constructed in Theorem 15 do not obviously have the

nice model-theoretic properties (ℵ0-categoricity or finite Morley rank) that those
constructed in Propositions 9 and 10 do, because the application of Proposition
14 makes their theories more elaborate.

Question 16. Is there some c ∈ CompStr such that ACLc
n is a Σ0

2(0(n))-complete
set or DCLc

n ≡T 0(n+1) and Mc is nice model-theoretically (e.g., ℵ0-categorical,
strongly minimal, stable, etc.)?
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Abstract. Epistemic reading of Kripke models relies on a hidden
assumption of common knowledge of the model which is too restrictive in
epistemic contexts since agents may have different views of the situation.
We explore possible worlds models in their full generality without com-
mon knowledge assumptions. Our starting point is a collection of possible
worlds with accessibility relations “whatever is known in u is true in v.”
We call such a structure an observable model since, contrary to the pop-
ular belief, it is not generally a Kripke model but rather an “observable
section” of some Kripke model. We sketch a theory of observable models
and argue that they bring a new conceptual clarity to epistemic model-
ing. In practical terms, observable models are as manageable as Kripke
models and have advantages over the latter in representing (un)awareness
and ignorance. Similar analysis applies to intuitionistic models.

Keywords: Modal logic · Epistemic logic · Intuitionistic logic · Kripke
models

1 Preliminaries

In this note we will try to present things at both levels, conceptual and technical.
On the formal side, we will focus on the propositional n-agent epistemic logic
S5n, cf. [4] though all the major findings and suggestions apply to other modal
logics as well. Similar considerations apply to other classes of observable models,
e.g., Aumann structures [1].

Informally, by a global state1 of a multi-agent system we understand a com-
plete description of epistemic states of agents along with the state of nature,
represented as a set of propositions in an appropriate epistemic language.

A global state is a maximal consistent (over a given logic base, among which
S5n is the default) set of formulas. A set W of global states and truth assignment
to formulas at each world

w |= F iff F ∈ w

determines relations of epistemic accessibility uRiv:

whatever agent i knows in u is true in v.

1 In this text we will also be using terms state or world for global states, when conve-
nient.
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Each such structure (W, |=) has an induced Kripke model (W,R1, . . . , Rn,�) with
the same atomic evaluation � as in (W, |=)

u � p iff p ∈ u.

Truth assignments |= and in � coincide for the atomic propositions, but can
differ for compound formulas, cf. Example 1.

For a preliminary version of this paper, cf. [2].

1.1 Motivations

We quote [6] for the standard approach to motivate Kripke models in epistemol-
ogy2:

Informally, we interpret W as a set of mutually exclusive, jointly exhaus-
tive worlds or states, . . . R is a relation of epistemic accessibility: a world
w has R to a world x if and only if . . . whatever the agent knows in w is
true in x. We define a function K from propositions to propositions by the
following equation for all propositions p:

Kp = {w ∈ W : ∀x ∈ W,wRx ⇒ x ∈ p}. (1)

In other words, Kp is true at a world if and only if p is true at every world
epistemically accessible from that one. Informally, Kp is interpreted as the
proposition that the agent knows p.

Formally, the characterization of R via knowledge at the states in W is

R(w) = {x ∈ W : ∀p, Kp ∈ w ⇒ p ∈ x}. (2)

This yields
KF ∈ w ⇒ for allx ∈ R(w), F ∈ x. (3)

However, this does not guarantee the converse:

(for allx ∈ R(w), F ∈ x) ⇒ KF ∈ w, (4)

which is built into Definition (1).
Conceptually, the fact that F holds at some designated set of states should

not automatically yield knowledge of F at a given state.
Technically, Eqs. (1) and (2) do not match. Given knowledge assertions at

states of the model, we indeed can find accessibility relation R by (2), and then
determine the knowledge modality K by (1). The problem is that this Kp is
different from the original knowledge assertion “p is known.”

Example 1 (technical). Consider S5 with a single propositional letter p. Consider
also a structure M1 consisting of one state w generated by Γ = {p,¬Kp}.3

2 Analyzing the role of knowing the model, normally assumed and not acknowledged
in formal epistemology, has been long overdue. The paper that prompted completing
this study was [6].

3 State w is constructive: one can check that Γ is a complete set of formulas, i.e., for
each F , either Γ proves F or Γ proves ¬F , and w is the set of formulas derivable
from Γ , cf. also Sect. 7.
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Fig. 1. Model M1.

The induced accessibility relation R, (2), is wRw, the truth in the model is
membership in w: F holds iff F ∈ w. In particular, Kp is false at w. On the
other hand, by (1), Kp ought to be true at w. So Definitions (2) and (1) do not
match in M1.

Example 2 (conceptual). Kripke models are a convenient vehicle for specifying
worlds: each node in a model yields a specific maximal consistent set of formulas.
The downside of Kripke specification is that in order to model ignorance of a
fact F , one has to commit to a hypothetic world at which F is false. Such a
world may not exist.

An agent knows the axioms of Peano Arithmetic PA, but does not know a
theorem F . In a Kripke model, we have to have a world v deemed possible
by the agent at which ¬F holds. However, there cannot be such a world v
because all axioms of PA should be true at v and PA∪{¬F} is inconsistent.

A possible way out of this predicament is by epistemic models which naturally
allow F to be true at each possible world but yet remain unknown.

2 Observable Models

Definition 1. An observable model, OM, over an n-agent logic with knowledge
modalities K1, . . . ,Kn is a tuple (W,R1, . . . , Rn, |=) in which

– W is a nonempty set elements of which are called states (possible worlds);
– |= is a complete truth relation at each world respecting the base logic: for each

u ∈ W the set of formulas true at u, {F | u |= F}, is a maximal consistent
set over the base logic;

– uRiv yields for all F (u |= KiF ⇒ v |= F ).

By Ri(w) we understand the set {x ∈ W | wRix}. Obviously,

w |= KiF ⇒ Ri(w) |= F.

A Kripke model (W,R1, . . . , Rn,�) associated with (W,R1, . . . , Rn, |=) is a
Kripke model with the frame (W,R1, . . . , Rn) and atomic forcing relation “ � ”:

u � p iff u |= p.

Definition 2. A model (W,R1, . . . , Rn, |=) is fully observable if for each i, w, F ,

Ri(w) |= F ⇒ w |= KiF.
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Example 3. Model M1 from Example 1 is not fully observable.

Proposition 1. An observable model M coincides with its associated Kripke
model iff M is fully observable

Proof. Any Kripke model is a fully observable model over the same frame. Let an
observable model (W,R1, . . . , Rn, |=) be fully observable and (W,R1, . . . , Rn,�)
be the associated Kripke model. By induction on formula F we check that for
each u ∈ W ,

u |= F ⇔ u � F.

The claim is secured by definitions for atomic F ’s and obvious for the Boolean
steps. Let F be KiX. If u |= KiX then Ri(w) |= X. By IH, Ri(w) � X, hence
u � KiX. If u � KiX then Ri(w) � X. By IH, Ri(w) |= X, hence, by full
observability, u |= KiX.

So, Kripke models are exactly fully observable models. Here is an infor-
mal4 sufficient condition under which an observable model is a Kripke model (a
fully observable model):

Kripke models are observable models commonly known to all agents.

Once F holds everywhere in R(u), the agent knows this and, knowing R, can
conclude that F holds at all states epistemically possible in u, thus coming to
justified (by virtue of this argument) knowledge of F . So, in Kripke models,
knowledge of F at u, given that F holds in R(u), does not appear from nowhere.
A justification for such a knowledge

u � KF

is merely assumed knowledge of the model itself relativized to a specific state u.

Definition 3. An observable model (W,R1, . . . , Rn, |=) is induced if

uRiv ⇔ for all F (u |= KiF ⇒ v |= F ). (5)

Informally, an induced OM (W,R1, . . . , Rn, |=) has all possible accessibility rela-
tions given (W, |=). Since, in canonical models accessibility relations Ri’s satisfy
(5), all canonical models are induced.

We will further discuss the ontological status of observable models vs. Kripke
models in Sect. 6.

3 On the Structure of Induced Observable Models

Let (W,R1, . . . , Rn, |=) be an induced observable model over S5n.

4 It appears that a natural formalization of this condition leads us beyond the current
level of propositional modal logic.
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Proposition 2. Each Ri is an equivalence relation on W .

Proof. Let K and R denote Ki and R for any i. Reflexivity and transitivity are
immediate. Let us check symmetry. Let wRx, and suppose x |= KF . We have
to prove that w |= F . Suppose w �|= F , then, by reflexivity in S5n, w �|= KF ,
hence w |= ¬KF . By negative introspection, w |= K¬KF . By definition of R,
x |= ¬KF , which is impossible since x is consistent and x |= KF .

The intuition of indistinguishability for states from R(w) in observable mod-
els is similar to Kripke models: we can interpret R(w) as some set of states
indistinguishable from w by facts known to the agent. Apparently, w � KF
yields R(w) � F and all facts known at w are true everywhere in R(w). So, a
state x ∈ R(w) cannot be distinguished from w by any fact known to the agent.

The principal difference between observable models and Kripke models is
that in the former, a validity of F in R(w) does not yield knowledge of F : there
is room for ignorance of agents about valid facts5. In particular, it is possible to
have F throughout R(w), but ¬KF at each state in R(w).

The following proposition shows that knowledge assertions respect indistin-
guishability: either KF holds everywhere in R(w), or ¬KF holds everywhere in
R(w).

Corollary 1. R(w) |= KF or R(w) |= ¬KF .

Indeed, suppose w |= KF , but for some x ∈ R(w), x |= ¬KF . By negative
introspection, x |= K¬KF , hence R(x) |= ¬KF . Since, by Proposition 2, w ∈
R(x), w |= ¬KF . A contradiction.

4 Derivations from Hypotheses in Modal Logic

The standard formulation of modal logics postulates the Necessitation rule:

� F ⇒ � KiF.

However, this rule is not valid in a general setting for derivations from assump-
tions: for some Γ , Γ � F does not yield Γ � KiF . Therefore, when speaking
about derivations from hypotheses in S5n, we do not postulate Necessitation.

Definition 4. For a given set of formulas Γ (here called “hypotheses” or
“assumptions”) we consider derivations from Γ : assume all S5n-theorems
together with Γ and use classical propositional reasoning (rule Modus Ponens).
The notation

Γ � A

represents ‘A is derivable from Γ .’

For some “good” Γ ’s, Necessitation is a valid rule.

5 We regard this as a feature that makes observable models more flexible and realistic.
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5 Canonical Models for S5 with a single letter

In this section we will offer a useful elaborate example of canonical model con-
structions associated to S5 with a single propositional letter p, S5(p). Such mod-
els are defined by their possible worlds W and truth relations |= since the acces-
sibility relations are induced and can be recovered from (W, |=).

We first note that the modal-free fragment generated by {p}, i.e., the usual
classical propositional logic with a single propositional letter p, admits two pos-
sible worlds: one generated by {p} and the other generated by {¬p}.

We claim that S5(p) admits exactly four possible worlds (maximal consistent
sets):

– A, generated by {Kp}(= {p,Kp});
– B, generated by {p,¬Kp};
– C, generated by {¬p,¬K¬p};
– D, generated by {K¬p}(= {¬p,K¬p}).

Consistency of each of A–D is straightforward since each has an easy
Kripke model.

Now we check that each of A–D is complete, i.e., that each proves F or ¬F
for any formula F in the language of S5(p).

Completeness of A. First we note that A is closed under Necessitation:
A � F yields A � KF . Standard induction on derivations of F . The key point
here is that A � KA. Once we establish Necessitation in A, we proceed to proving
that for each F , A � F or A � ¬F . Induction on F . Obvious for atomic formulas
and Boolean connectives. Let F = KX. If A � X, then, by Necessitation,
A � KX. If A � ¬X, then, by reflexivity, A � ¬KX.

Completeness of B. Here Necessitation is not admissible since B � p, but
B �� Kp. We will use the S5-normal forms, cf. [5].

Lemma 1 (S5 normal forms). In S5, every formula is provably equivalent to
a formula in normal form which is a disjunction of conjunctions of type

α ∧ Kβ ∧ ¬Kγ1 ∧ . . . ∧ ¬Kγm (6)

where α, β, γ1, . . . , γm are all purely propositional formulas. For S5(p) we may
assume that each of them is one of 
,⊥, p,¬p.

It now suffices to check that for each formula F of type (6), B � F or B � ¬F .
If α = ⊥,¬p, then B � ¬F . If α = 
, p, then B � α and we proceed to β.
If β = ⊥,¬p, then, by reflexivity, B � ¬F . If β = p, then again, B � ¬F . If

β = 
, then B � Kβ and we proceed to γi.
If at least one of γi is 
, then B � ¬F . Otherwise, all conjuncts in F are

provable in B. Indeed, for γi = ⊥, use B � ¬K⊥. For γi = p use the fact that
¬Kp ∈ B. For γi = ¬p, use reflexivity p→¬K¬p. In either case, B � ¬Kγi

6.
6 A similar normal form-based proof of completeness can be given for each of A–D,

but we have opted for Necessitation-based proof for A and D to underline the fact
that both A and D enjoy Necessitation.
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Completeness of C. Similar to B
Completeness of D. Similar to A, since D also enjoys Necessitation.
The collection of A–D exhausts all logical possibilities for states over S5(p).

Indeed, for the remaining four logical possibilities for p and knowledge assertion
about p, {p,K¬p} and {¬p,Kp} are inconsistent and so are any of its extensions.
The last two options: {p,¬K¬p} ⊂ A and {¬p,¬Kp} ⊂ C, hence they generate
no new states.

Finally, we describe the induced accessibility relation R on W =
{A,B,C,D}. By Proposition 2, R is an equivalence relation on W . Consider
all six possible pairs of different states in W and rule out the ones that are not
accessible from each other.

By definition of R, for ARX, p should be in X, which rules out ARC, ARD.
Likewise, B and D are not related by R.

{A,B} and {C,D} are not connected due to positive introspection, e.g., since
Kp ∈ A, KKp ∈ A too, hence ARX yields Kp ∈ X; this rules out ARB.

The only remaining possibility for R-connection is pair {B,C}, and they are
related! From the Kripke canonical model perspective, there should be a state in
W accessible from B in which ¬p holds, and C is the only remaining possibility,
hence BRC. The resulting picture of the canonical model for S5(p) is

Fig. 2. Canonical model for S5(p).

Proposition 3. Each of fifteen non-empty subsets of {A,B,C,D} is an observ-
able model. Seven of them are fully observable and hence Kripke models:

{A}, {D}, {A,D}, {B,C}, {A,B,C}, {B,C,D}, {A,B,C,D}.

The remaining eight are observable models which are non-fully observable and
thus not Kripke models.

Among OM ’s here is {A,B} – all states at which p holds; this may be regarded
as the canonical observable model of Γ = {p} which is therefore not a Kripke
model.

For a general theory of canonical models for sets of assumptions Γ cf. Sect. 7.
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6 From Observable Models to Kripke Models

Each Kripke model is an observable model, hence observable models constitute
a well-principled generalization of Kripke models covering more epistemic situ-
ations.

How to build observable models in general? To define an observable, we have
to specify complete truth relations at each world, and this is the task which
Kripke models do naturally. Can we combine the generality of observable models
and the convenience of Kripke models?

In this section we show that each observable model is a fragment of an appro-
priate Kripke model. This suggests a general method, “scaffolding,” of defining
observable models: build an umbrella Kripke model, and carve out of it the
desired observable fragment.

Theorem 1. For any observable model (W,R1, . . . , Rn, |=) there is a Kripke
model (˜W, ˜R1, . . . , ˜Rn,�) such that

(a) W ⊆ ˜W ;
(b) Ri ⊆ ˜Ri;
(c) for each u ∈ W and each F , u |= F iff u � F .

Proof. Take
(˜W, ˜R1, . . . , ˜Rn,�)

to be the canonical Kripke model CM (S5n): each u ∈ W is also a world in
CM (S5n) and in both models, (W,R1, . . . , Rn, |=) and CM (S5n), F holds at u

iff F ∈ u. For (b) it suffices to note that uRiv yields u˜Riv.

Example 4. Here is the finite example of such an embedding. The aforementioned
observable model M1 from Example 1 is naturally embedded into Kripke model
M2. A singleton model M1, as a world, coincides with world w in M2.

Fig. 3. Model M2.

We see here that the Kripke model requires two worlds to emulate a singleton
observable model. It is easy to build a singleton observable model for which the
corresponding Kripke model is necessarily infinite.

Definition 5. Let Γ be a set of formulas. By Γ |= F we understand the situation
when for each observable model M and its state u,

M, u |= Γ ⇒ M, u |= F.
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Proposition 4. Soundness and completeness of S5n w.r.t. observable models:

Γ � F iff Γ |= F.

Proof. Soundness. If Γ � F , then F belongs to any maximal consistent extension
of Γ and hence is true at each state of each observable model of Γ .

Completeness follows from the saturation lemma: if Γ �� F , then Γ ∪{¬F} is
consistent and its maximal consistent extension Δ is a desired singleton observ-
able model: Δ �|= F .

7 Canonical Observable Models in a General Setting

Kripke models constitute a comprehensive semantical tool in modal logic: every
consistent configuration is realized in an appropriate node of the canonical model.
However, in modal logic we don’t normally care how “possible” the states in
a Kripke model are, their formal consistency is sufficient. Epistemic scenarios
are different. We can imagine a situation in which some propositions Γ (e.g.,
reflecting the state of nature) should hold at all possible states. Furthermore,
if this Γ is not common knowledge the corresponding set of states is, generally
speaking, not a Kripke model, and requires a broader approach.

Definition 6. A canonical observable model of a set of formulas Γ , CM (Γ ) is,
by definition, the collection of all worlds containing Γ with induced accessibility
relations.

We show that for many (intuitively, most) Γ ’s, the corresponding canonical
model CM (Γ ) is not fully observable, hence not a Kripke model. We give a
criterion of when the canonical model of Γ is a Kripke model:

Γ is closed under Necessitation iff Γ proves its own common knowledge.

Example 5. Canonical model CM (p) for Γ = {p} in S5 has been described in
Sect. 5. There are two possible worlds in CM (p), generated by {Kp} (world A)
and {p,¬Kp} (world B). Worlds A and B are not connected by the undistin-
guishability relation R: p holds at both worlds, but is not known in B. The
canonical model CM (p) is not a Kripke model, since p holds in CM (p), but Kp
does not.

7.1 Common Knowledge and Necessitation

In this section we consider a representative case of two agents. We will use
abbreviations: for “everybody’s knowledge”

EX = K1X ∧ K2X,

and “common knowledge”

CX = {X, EX, E2X, E3X, . . .}.
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As one can see, CX is an infinite (though easy to describe and decidable) set of
formulas. Since modalities Ki commute with the conjunction ∧, CX is logically
equivalent to the set of all formulas which are X prefixed by iterated knowledge
modalities:

{P1P2 . . . PkX | k = 0, 1, 2, . . . , Pi ∈ {K1,K2}}
and we regard this as an alternative definition of CX. Naturally,

CΓ =
⋃

{CF | F ∈ Γ}

represents “Γ is common knowledge.” The following proposition states that the
rule of Necessitation corresponds to derivable common knowledge of assump-
tions.

Proposition 5. A set of formulas Γ is closed under Necessitation if and only
if Γ � CΓ , i.e., Γ proves its own common knowledge.

Proof. Direction ‘if.’ Assume Γ � CΓ and prove by induction on derivations
that Γ � X yields Γ � KiX. For X being from S5n, this follows from the rule of
Necessitation in S5n. For X ∈ Γ , it follows from the assumption that Γ � CX,
hence Γ � KiX. If X is obtained from Modus Ponens, Γ � Y →X and Γ � Y .
By IH, Γ � Ki(Y → X) and Γ � KiY . By the distributivity principle of S5n,
Γ � KiX.

For ‘only if,’ suppose that Γ is closed under Necessitation and F ∈ Γ , hence
Γ � F . Using appropriate instances of the Necessitation rule in Γ we can derive
P1P2P3, . . . , PkF for each prefix P1P2P3, . . . , Pk with Pi is one of K1,K2. There-
fore, Γ � CF and Γ � CΓ .

7.2 Canonical Models of Sets of Assumptions

We answer the question of when the canonical model of Γ is a Kripke model.

Theorem 2. The following are equivalent:

(a) CM (Γ ) is fully observable (i.e., a Kripke model);
(b) Γ admits Necessitation;
(c) Γ proves its own common knowledge.

Proof. The fact that (b) is equivalent to (c) has already been established in
Proposition 5. We now check that (a) and (b) are equivalent.

If Γ does not admit Necessitation, there is a formula F such that Γ � F , but
Γ �� KF 7. Hence F holds everywhere in CM (Γ ) and ¬KF is consistent with
Γ . Consider a maximal consistent extension u of Γ ∪ {¬KF}. Obviously, ¬KF
holds in u and F holds in R(u) which makes CM (Γ ) not fully observable and
hence not a Kripke model.

7 Here again, we ignore indices i in Ki and Ri.
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Suppose Γ admits Necessitation. We have to prove that observable model
CM (Γ ) with the canonical evaluation

u |= F ⇔ F ∈ u

and the induced R as in (2) is fully observable, i.e.

R(u) |= F ⇒ u |= KF .

Put
uK = {F | KF ∈ u}.

Note that Γ ⊆ uK: X ∈ Γ yields, by Necessitation in Γ , that KX ∈ Γ hence
KX ∈ u and X ∈ uK. Suppose u �|= KF . Then uK ∪{¬F} is consistent. Indeed,
otherwise

Γ � X1 ∧ . . . ∧ Xn→F

for some Xi ∈ uK. Since Γ is closed under Necessitation,

Γ � K(X1 ∧ . . . ∧ Xn→F ).

By standard S5-reasoning,

Γ � KX1 ∧ . . . ∧ KXn→KF.

Since KXi ∈ u, KF should be in u as well – a contradiction.
Now consider a maximal consistent set v extending uK∪{¬F}. Since Γ ⊆ uK,

v ∈ CM (Γ ). Since uK ⊆ v, uRv. Since ¬F ∈ v, F �∈ v hence v �|= F , which yields
u �|= KF .

Example 6. Consider worlds A,B,C,D from the canonical model for S5(p),
Sect. 5, Fig. 2. The canonical model of Γ = {p}, CM (p)8, is the set of worlds at
which p holds, i.e., W = {A,B}, Fig. 4. Model CM (p) is not fully observable,
not a Kripke model, and is an illustration of Theorem 2, since {p} is not closed
under Necessitation.

The canonical model of Γ = {Kp} is the set of worlds at which Kp holds,
i.e., W = {A}. This Γ enjoys Necessitation, its canonical observable model is
fully observable, i.e., is a Kripke model.

The canonical model of Γ = {¬Kp,¬K¬p}. By negative and positive intro-
spection, Γ is closed under Necessitation, hence CM (Γ ) should also be fully
observable. Worlds A and D are not compatible with Γ and hence are not in
CM (Γ ). Since none of B and C is fully observable, CM (Γ ) = {B,C}. It is an
easy exercise to derive ¬Kp in C and ¬K¬p in B. This is a Kripkean situation,
i.e., CM ({¬Kp,¬K¬p}) is fully observable.

8 We drop brackets in CM ({p}) and similar cases for better readability.
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Fig. 4. Canonical model CM (p) (in the oval).

8 OM for epistemic modeling

Kripke models represent ignorance by building special “possible worlds”: these
worlds, however, can be epistemically impossible for the agent, cf. Examples 2
and 4. In this respect, OM ’s offer a more refined epistemic picture than Kripke
models alone.

Another area in which OM ’s can have advantage is avoiding unnecessary pro
forma worlds.

8.1 Ignorant Agent Example

Here is a natural example, Ignorant Agent, of a two state OM for which scaf-
folding Kripke models are infinite and nonsensical. Consider S4 with a single
propositional letter p and a situation in which the agent has no specific knowl-
edge about the state of nature, i.e., the agent knows only logical truths derived
in S4. Consider two sets of formulas:

Γ+ = {p} ∪ {¬KF | S4 �� F}, Γ− = {¬p} ∪ {¬KF | S4 �� F}

Proposition 6. Γ+ and Γ− are consistent, complete, and decidable.

Proof. Consider Γ+, the case of Γ− is similar.
Consistency. Suppose otherwise: Γ+ � ⊥. Then p,¬KF1, . . . ,¬KFn � ⊥

for some Fi’s not provable in S4. By S4-reasoning, S4 � p→(KF1 ∨ . . . ∨ KFn).
Since each of Fi’s has a countermodel, by a standard S4-model construction,
we build an S4 Kripke model, at the root node r of which r � p and r ��
KF1 ∨ . . . ∨ KFn, a contradiction.

Completeness: For each F , Γ+ � F or Γ+ � ¬F . Induction on F . Atomic
and Boolean cases are trivial. Let F be KX for some X. Case 1. S4 � X. Then
S4 � KX, Γ+ � KX. Case 2. S4 �� X. Then Γ+ � ¬KX.

Decidability of Γ+ is immediate due to its completeness and decidability
of S4.
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Fig. 5. Model M3.

A natural OM over S4 for Ignorant Agent is M3:
It suffices to show that worlds Γ+ and Γ− are indeed indistinguishable,

i.e., Γ+ � KF yields Γ− � F (and symmetrically for Γ− and Γ+). Suppose
Γ+ � KF . Then S4 � F , since otherwise S4 �� F and ¬KF ∈ Γ+ which would
make Γ+ inconsistent. Then Γ− � F .

Any scaffolding Kripke model for M3 is infinite and meaningless. It must
explicitly contain counter-worlds for all F ’s s.t. S4 �� F which does not make
much sense since S4 is decidable and there is no need to carry all these additional
worlds to define the situation epistemically.

9 Intuitionistic Observable Models

Consider the case of one agent. Nodes in an intuitionistic Kripke model (W,�,�)
are information states in a discovery process and u � v means that v has more
truths than u. In order to use (W,�,�) as a specification device, we have to
assume the knowledge of the model. Without this assumption, the fact
that F does not hold at all states accessible from w can be unknown and cannot
constitute a sufficient ground for claiming ¬F at w. Although

w � ¬F ⇒ v �� F for all v s.t. w � v,

the converse “⇐” is not well-principled: the fact that v �� F for all v s.t. w � v
alone, without the knowledge of the model assumption, does not produce enough
evidence at w to conclude ¬F .

We propose an appropriate adjustment: an observable fragment of an
intuitionistic Kripke model K = (W,�,�) is O = (WO,�O, |=) with

– WO ⊆ W , states from WO are called “observable states”;
– “observable accessibility” �O is a subset of � restricted to WO: �O ⊆ ��WO

;
– for v ∈ WO, v |= F is defined as v � F

(the whole model K is needed to define “|=” in O).

An intuitionistic observable model is, by definition, an observable fragment
O of some intuitionistic Kripke model K.

Whereas the whole scenario can be represented traditionally, by a Kripke
model K, only a part O of K is observable by the agent. Within the traditional
Kripkean approach, we assume that a model K is known and recover the truths
at each world. Within the observable intuitionistic model O, we are given whole
truths at each world consistent with the intuitionistic semantics. A scaffolding
Kripke model K is one of possible methods of defining O.



Observable Models 25

2

1

p•

•

��

��

��

Example 7. Intuitionistic Kripke model K: W = {1, 2}, 1 � 2, 1 �� p, 2 � p.
Intuitionistic observable model O (circled): WO = {1}, 1 �|= p. In O, p does not
hold, but yet 1 �� ¬p. O itself is not a Kripke model!

Observable intuitionistic models can help to ease the aforementioned tension
between Kripkean intuitionistic semantics and the intended Brouwer-Heyting-
Kolmogorov semantics of proofs for intuitionistic logic, cf. [3]. The standard
Kripkean condition

w � ¬F ⇔ v �� F for all v s.t. w � v

appears to require complete knowledge of the model, which is neither well-
principled, nor realistic. Observable models provide more conceptual clarity and
flexibility.

10 Findings and Suggestions

The principal contributions of this paper are conceptual: we suggest streamlining
the foundations of observable modeling.

1. When epistemic logic starts from a given set of possible worlds and defines an
accessibility relation in the standard way, the result might not be a Kripke
model: only those structures that are fully observable are Kripke models. The
full observability property is a propositional equivalent to common knowledge
of the model, which is quite restrictive but has been hiddenly assumed in
epistemic modeling. This assumption should be acknowledged, made explicit,
and properly studied.

2. We have sketched a basic theory of observable models in a general setting
without the common knowledge of the model constraint. This is just a step
towards a general theory of observable modeling with possible worlds; more
expressive tools are needed to capture partial and asymmetric knowledge of
the model for multiple agents.

3. A similar suggestion is made for intuitionistic models. A well-known discon-
nection between intuitionistic Kripke models and the intended constructive
semantics of intuitionistic logic can be mitigated by viewing intuitionistic
possible worlds models as intuitionistic observable models.
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Abstract. We develop semantically-oriented calculi for the cube of non-
normal modal logics and some deontic extensions. The calculi manipulate
hypersequents and have a simple semantic interpretation. Their main
feature is that they allow for direct countermodel extraction. Moreover
they provide an optimal decision procedure for the respective logics. They
also enjoy standard proof-theoretical properties, such as a syntactical
proof of cut-admissibility.
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1 Introduction

Non-normal modal logics–NNMLs for short–have a long history, going back to
the seminal works by Kripke, Montague, Segeberg, Scott, and Chellas (see [3]
for an introduction). They are “non-normal” as they do not contain all axioms
of minimal normal modal logic K. NNMLs find an interest in several areas:
in epistemic reasoning they offer a simple (although partial) solution to the
problem of logical omniscience (see [19]); in deontic logic, they allow avoiding
well-known paradoxes (such as Ross’s Paradox) and to represent conflicting obli-
gations (see [8]); NNMLs are needed also when �A is interpreted as “A is true
in most of the cases” [1]; finally NNMLs naturally arise in game-theoretical
interpretation of �A as “the agent has a winning strategy to bring about A”
(indeed, non-normal monotonic logic M can be seen as a 2-agent case of coali-
tion logic with determinacy [18]). In this work, we consider the classical cube on
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NMMLs, given by the extensions of the minimal modal logic E, containing only
the congruence rule, with axioms C, M and N.

NNMLs have a well-understood semantics defined in terms of neighbourhood
models [16]: in these models each world w has an associated set of neighbour-
hoods N (w), each one of them being a set of worlds/states. If we accept the
traditional interpretation of a “proposition” as a set of worlds (= its truth set),
we can think of each neighbourhood in N (w) as a proposition: a formula �A is
true in a world w if “the proposition” A, i.e. the truth-set of A, belongs to N (w).
The classical cube can be modelled by imposing additional closure properties of
the set of neighbourhoods. In this work we adopt a variant of neighbourhood
semantics defined in terms of bi-neighbourhood models [4]: in these structures
each world has associated a set of pairs of neighbourhoods. The intuition is
that the two components of a pair provide positive and negative support for a
modal formula, being more natural for “non-monotonic” logics (i.e. not contain-
ing axiom M). The reason is that, instead of specifying exactly the truth sets
in N (w), the pairs of neighbourhoods specify just lower and upper bounds of
truth sets, so that the same pair may be a “witness” for several propositions.
This makes the generation of countermodels easier, as shown in this paper.

It is curious to note that, although some proof-systems for NNMLs have
been proposed in the past, countermodel extraction has been rarely addressed
and complexity is seldom analysed. Indeed, the works [4,7,11,14] propose coun-
termodel extraction, but all of them require either a complicated procedure or
an extended language with labels. [12] presents a nested sequent calculus for a
logic combining normal and monotone non-normal modal logic that supports
countermodel extraction, but the nested sequent structure is not suitable for
logics lacking monotonicity. On the other hand, cut-free sequent/linear nested
calculi for the classical cube and its extensions with standard axioms of normal
modal logics (the non-normal counterpart of logics from K to S5) are stud-
ied in [9,10,13,15]; however neither semantic completeness and countermodel
extraction, nor complexity are studied.

In this work, we intend to fill this gap by proposing modular calculi for the
classical cube (and also some deontic extensions) that provide direct counter-
model extraction and are of optimal complexity. Our calculi are semantically
based on the bi-neighbourhood models, and have two syntactic features: they
manipulate hypersequents and sequents may contain blocks of �-ed formulas
in the antecedent. A hypersequent [2] is just a multiset of sequents and can be
understood as a (meta-logical) disjunction of sequents. Sequents within hyper-
sequents can be read as formulas of the logic. Blocks of formulas are interpreted
as conjunction of positive �-ed formulas. Intuitively each block represents a
neighbourhood satisfying one or more �-ed formulas, and this allows for the for-
mulation of modular calculi for the whole cube. The advantage of using hyperse-
quents is that all rules become invertible, thus there is no need for backtracking
in proof search. For the same reason, the hypersequent calculi provide directly
countermodel extraction: from one failed proof, it can be extracted directly a
countermodel in the bi-neighbourhood semantics of the sequent/formula at the
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root of the derivation. For logics without the C axiom, our calculi also provide
an optimal NP/CoNP decision procedure. For logics including C, we can still
obtain an optimal PSPACE decision procedure but, as usual in modal logic, at
the cost of sacrificing the invertibility of some rules. Finally, the calculi have
also good proof-theoretical properties, as they support a syntactic proof of cut
admissibility.

It turns out that our calculi can be modularly extended by adding modal
axioms. We illustrate this by extending them with axioms T, P, D, the last two
are of interest in deontic logic.

All in all, we believe that the structure of our calculi, namely hypersequents
with blocks, is adequate for NNMLs from a semantical, computational and a
proof-theoretical point of view since it: (i) has a semantic interpretation; (ii)
allows direct countermodel generation; (iii) has optimal complexity; and (iv)
has good proof-theoretical properties.

2 Non-normal Modal Logics

In this section, we present the classical cube of NNMLs, both axiomati-
cally and semantically in terms of neighbourhood models. We also present bi-
neighbourhood models, a variant of the neighbourhood semantics introduced in
[4]. The propositional language L contains formulas given by the following gram-
mar: A:: = p | � | ⊥ | A → A | �A, where p ∈ Atm, the set of propositional
variable symbols. Other propositional connectives are defined by the standard
equivalences. The minimal logic E in the language L is given Hilbert-style by
extending classical propositional logic with only the congruence rule

A → B B → ARE �A → �B

The classical cube (below on the right) is formed by extending E with any com-
bination of axioms M, C, and N (below on the left).

M �(A ∧ B) → �A

C �A ∧ �B → �(A ∧ B)
N ��

E

M

EC EN

MC MN

ECN

MCN (K)

As usual for logics containing M we omit E, e.g., we write MC for EMC. In the
following, for any system L of the cube we denote with L� any extension of L
obtained by adding one or more of these axioms. We recall that axioms M and
N are, respectively, equivalent to the rules RM (A → B / �A → �B) and RN
(A / �A), and that axiom K (�(A → B) → �A → �B) is derivable from M
and C. As a consequence, the top system MCN is equivalent to K, the weakest
normal modal logic.

The standard semantics for NNMLs is defined in terms of so-called neigh-
bourhood (or minimal) models [3].
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Definition 1. A standard neighbourhood model is a tuple M = 〈W,Ns,V〉,
where W is a non-empty set, V is a valuation function, and Ns is a neighbourhood
function W −→ P(P(W)). A model M is supplemented if α ∈ Ns(w) and
α ⊆ β ⊆ W implies β ∈ Ns(w), it contains the unit if W ∈ Ns(w) for all w ∈ W,
and it is closed under intersection if α, β ∈ Ns(w) implies α ∩ β ∈ Ns(w). The
standard forcing relation for boxed formulas is: M, w �s �A iff [A]M ∈ Ns(w),
where [A]M denotes the set {v ∈ W | M, v �s A} of the worlds v that force A,
also called the truth set of A.

Neighbourhood models characterise modularly the classical cube of NNMLs [3]
in the sense that a formula A is a theorem of E if and only if it is valid in
all neighbourhood models. Furthermore, A is a theorem of E+(M/C/N) iff it
is valid, respectively, in all models that are supplemented (M), closed under
intersection (C), and contain the unit (N) (and any combination of these previous
axioms/conditions).

Here we consider bi-neighbourhood semantics [4], a variant of neighbourhood
semantics. In this semantics, neighbourhoods come in pairs, the two components
provide, so to say, “positive” and “negative” support for a modal formula.

Definition 2. A bi-neighbourhood model is a tuple M = 〈W,Nb,V〉, where
W is a non-empty set, V is a valuation function, and Nb is a bi-neighbourhood
function W −→ P(P(W) × P(W)). We say that M is a M-model if (α, β) ∈
Nb(w) implies β = ∅, it is a N-model if for all w ∈ W there is α ⊆ W such
that (α, ∅) ∈ Nb(w),1 and it is a C-model if (α1, β1), (α2, β2) ∈ Nb(w) implies
(α1 ∩α2, β1 ∪β2) ∈ Nb(w). The forcing relation for boxed formulas is as follows:

M, w �b �A iff there is (α, β) ∈ Nb(w) s.t. α ⊆ [A]M and β ⊆ [¬A]M.

Every standard model gives rise to a bi-neighbourhood model, by taking
for each neighbourhood α ∈ Ns(w), the pair (α,W \ α). Conversely, every bi-
neighbourhood model can be transformed into a standard model by assigning to
Ns(w), for each pair (α, β) ∈ Nb(w), the subsets γ such that α ⊆ γ ⊆ W \ β. In
this sense α and β give upper and lower bounds for neighbourhoods in standard
models. For the non-monotonic case there is also a finer transformation which
depends on a set S of formulas [4].

Proposition 1. Let M = 〈W,Nb,V〉 be a bi-neighbourhood model and S be a
set of formulas closed under subformulas. We define the standard neighbourhood
model M′ = 〈W ′,Ns,V ′〉 by taking W ′ = W, V ′ = V and for all w ∈ W,
Ns(w) = {[A]M | w �b �A and �A ∈ S}. Then for all w ∈ W, A ∈ S,

M′, w �s A iff M, w �b A.

Further, if M is a N-model and �� ∈ S, then M′ contains the unit, and if M
is a C-model and �A,�B ∈ S implies �(A ∧ B) ∈ S, then M′ is closed under
intersection.
1 The N-model condition in [4] was slightly different. However, it is easy to verify that

the two conditions are equivalent with respect to the validity of formulas.
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The transformation in Proposition 1 produces models with a smaller neighbour-
hood function. Whereas in models produced by the first transformation the size
of Ns(w) can be exponential with respect to Nb(w), here the size of Ns(w) is
linearly bounded by the number of boxed formulas in S. As a paradigmatic case,
suppose there is (∅, ∅) ∈ Nb(w). By the rough transformation Ns would contain
all subsets of W, whereas by the finer one it would contain only the truth sets
of some boxed formulas.

While the two semantics characterise equally well the classical cube, we shall
see in Sect. 5 that bi-neighbourhood semantics is more suited for direct counter-
models extraction from failed proofs.

3 Hypersequent Calculi

We now move our attention to proof theory. We will construct our calculi in the
hypersequent framework (see, e.g., [2]). This choice is motivated mainly by the
possibility of getting direct countermodel extraction, as detailed in the following.
Moreover, our calculi will contain additional structures, called blocks, which are
used to collect boxed formulas.

Our calculi are built as follows: A block is a structure 〈Σ〉, where Σ is a
multiset of formulas of L. A sequent is a pair Γ ⇒ Δ, where Γ is a multiset of
formulas and blocks, and Δ is a multiset of formulas. We sometimes consider
set(Γ ): the support of a multiset Γ , i.e. the set of its elements disregarding
multiplicities. A hypersequent is a multiset S1 | ... | Sn, where S1, ..., Sn are
sequents. S1, ..., Sn are called components of the hypersequent. Single sequents
can be interpreted as formulas of the logic in the following manner:

i(A1, ..., An, 〈Σ1〉, ..., 〈Σm〉 ⇒ B1, ..., Bk) =
∧

i≤n

Ai ∧
∧

j≤m

�
∧

Σj →
∨

�≤k

B� .

We say that a sequent S is valid in a (bi-)neighbourhood model M (M |= S) if
for all w ∈ M, M, w � i(S); and that a hypersequent H is valid in M (M |= H)
if M |= S for some S ∈ H. Finally, we say that H is valid in (M/C/N-)models
if it is valid in all models of that kind.

The hypersequent calculi HE� are defined by the rules in Fig. 1, in particular:
HE := propositional rules + �L + �R; HEN := HE + N; HEC := HE + C; HECN

:= HE + C + N; HM := propositional rules + �L + M�R; HMN := HM + N;
HMC := HM + C; and HMCN := HM + C + N.

Rules are given in their kleene’d versions, i.e., where the principal formula
(or structure) is copied into every premiss. As usual, initial sequents init are
restricted to propositional variables, but it is easy to see that G | A,Γ ⇒ Δ,A is
derivable for any A. Note that the only rule which expands blocks is C, then in
absence of this rule the blocks occurring in a proof for a single formula contain
only one formula. Examples of derivations are the following.
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Fig. 1. Rules of HE� .

Example 1. Axioms M, N, C are derivable in HM� , HEN� , and HEC� , respectively

〈A ∧ B〉,�(A ∧ B) ⇒ �A | A ∧ B ⇒ A
M�R〈A ∧ B〉,�(A ∧ B) ⇒ �A �L�(A ∧ B) ⇒ �A

〈�〉 ⇒ �� | � ⇒ � ... | � ⇒ � �R〈�〉 ⇒ ��
N⇒ ��

〈A,B〉, ... | A,B ⇒ A ∧ B 〈A,B〉, ... | A ∧ B ⇒ A 〈A,B〉, ... | A ∧ B ⇒ B �R〈A,B〉, 〈A〉, 〈B〉,�A,�B,�A ∧ �B ⇒ �(A ∧ B)
C〈A〉, 〈B〉,�A,�B,�A ∧ �B ⇒ �(A ∧ B)

�L×2
�A,�B,�A ∧ �B ⇒ �(A ∧ B) ∧L�A ∧ �B ⇒ �(A ∧ B)

We then have the following soundness theorem.

Theorem 1. If H is derivable in HE(M/C/N), then it is valid in (M/C/N-)
models.

Proof. We show that whenever the premisses of a rule are valid, so is the con-
clusion. For propositional rules the proof is standard.

�L) Assume G | 〈A〉, Γ ⇒ Δ valid. Then for all M, M |= S for some
S ∈ G, or M |= 〈A〉,�A,Γ ⇒ Δ. In the second case, for all w ∈ M, w �
i(〈A〉,�A,Γ ⇒ Δ) = i(�A,�A,Γ ⇒ Δ), which is equivalent to i(�A,Γ ⇒ Δ).
Then G | �A,Γ ⇒ Δ is valid.

�R) Let Σ = C1, ..., Cn and assume G | 〈Σ〉, Γ ⇒ Δ,�B | Σ ⇒ B and
G | 〈Σ〉, Γ ⇒ Δ,�B | B ⇒ Ci valid for all 1 ≤ i ≤ n. Then for all M, M |= S for
some S ∈ G, or M |= 〈Σ〉, Γ ⇒ Δ,�B. Otherwise Σ ⇒ B,B ⇒ C1, ..., B ⇒ Cn
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are valid in M. In the last case, for all w ∈ M, w � (
∧

Σ → B) ∧ (B →
C1) ∧ ... ∧ (B → Cn), that is M |= ∧

Σ ↔ B. Then M |= �
∧

Σ ↔ �B, so
M |= 〈Σ〉 ⇒ �B. Therefore G | 〈Σ〉, Γ ⇒ Δ,�B is valid.

M�R) Analogous to �R, by considering that in M-models M |= ∧
Σ → B

implies M |= �
∧

Σ → �B.
N) Assume G | 〈�〉, Γ ⇒ Δ valid. Then for all M, M |= S for some S ∈ G, or

M |= 〈�〉, Γ ⇒ Δ. In the second case, for all w ∈ M, w � i(〈�〉, Γ ⇒ Δ), which
is equivalent to �� → i(Γ ⇒ Δ). Since �� is valid in N-models, M |= Γ ⇒ Δ.

C) Assume G | 〈Σ〉, 〈Π〉, 〈Σ,Π〉, Γ ⇒ Δ valid. Then for all M, M |= S for
some S ∈ G, or M |= 〈Σ〉, 〈Π〉, 〈Σ,Π〉, Γ ⇒ Δ. In the second case, for all w ∈
M, w � (�

∧
Σ∧�

∧
Π ∧�(

∧
Σ∧∧

Π)) → i(Γ ⇒ Δ). Since �
∧

Σ∧�
∧

Π →
�(

∧
Σ ∧ ∧

Π) is valid in C-models, w � (�
∧

Σ ∧ �
∧

Π) → i(Γ ⇒ Δ). Then
M |= 〈Σ〉, 〈Π〉, Γ ⇒ Δ. ��

We make clear that to the purpose of having sound and complete calculi for
NNMLs the hypersequent framework is not necessary, as for instance the sequent
calculi in [11] show. Moreover, for the calculi HE� whenever a hypersequent is
derivable there is a component which is derivable. But as we shall see, the hyper-
sequent framework is very adequate to extract countermodels from a single failed
proof, ensuring at the same time good computational and structural properties.
As a matter of fact, even in the bi-neighbourhood semantics, non-normal modal
logics without monotonicity ultimately need to consider truth sets of formulas.
Hence, to make our calculi suitable for a reasonably straightforward counter-
model construction, we need to be able to represent essentially all worlds of a
possible model in the data structure used by the calculus. While this could also
be accomplished by, e.g. nested sequents, for obtaining small countermodels in
non-monotonic logics it is crucial that every world (represented by a component
of the hypersequent) has access to all other worlds which have been constructed
so far. This very strongly suggests a flat structure, as given by hypersequents.

Structural Properties and Syntactic Completeness. We now investigate
the structural properties of our calculi. We first show that weakening and con-
traction are height-preserving (hp for short) admissible, both in their internal
and in their external variants. Then, we prove that the cut rule is admissible,
which allows us to directly prove the completeness of the calculi with respect to
the corresponding axiomatisations. In the proofs we use the following definition
of weight of formulas and blocks.

Definition 3. The weight w of a formula is recursively defined as w(⊥) =
w(�) = w(p) = 0, w(A → B) = w(A) + w(B) + 1, w(〈A1, ..., An〉) =
maxi{w(Ai)} + 1, w(�A) = w(A) + 2.

Proposition 2. The following structural rules are hp-admissible in HE� :
G | Γ ⇒ Δ

wkL
G | A,Γ ⇒ Δ

G | Γ ⇒ Δ
wkR

G | Γ ⇒ Δ,A

G | Γ ⇒ Δ
wk〈〉

G | 〈Σ〉, Γ ⇒ Δ

G | A,A, Γ ⇒ Δ
ctrL

G | A,Γ ⇒ Δ
G | Γ ⇒ Δ,A,A

ctrR
G | Γ ⇒ Δ,A

G | 〈Σ〉, 〈Σ〉, Γ ⇒ Δ
ctr〈〉

G | 〈Σ〉, Γ ⇒ Δ

Gew
G | Γ ⇒ Δ

G | Γ ⇒ Δ | Γ ⇒ Δ
ec

G | Γ ⇒ Δ
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Note that, since weakening is admissible, invertibility of all rules is immediate.
We now move our attention to the admissibility of the following cut rule

G | Γ ⇒ Δ,A G | A,Γ ⇒ Δ
cut

G | Γ ⇒ Δ

In order do to this, we prove simultaneously the admissibility of cut and of the
following rule sub, which states that a formula A inside one or more blocks can
be replaced by any equivalent set of formulas Σ:

G | Σ ⇒ A {G | A ⇒ B}B∈Σ G | 〈An1 ,Π1〉, ..., 〈Ank ,Πk〉, Γ ⇒ Δ
sub

G | 〈Σn1 ,Π1〉, ..., 〈Σnk ,Πk〉, Γ ⇒ Δ

where Ani (resp. Σni) is a compact way to denote ni occurrences of A (resp. Σ).
In the monotonic case we need to consider, instead of sub, the rule

G | Σ ⇒ A G | 〈An1 ,Π1〉, ..., 〈Ank ,Πk〉, Γ ⇒ Δ
subM

G | 〈Σn1 ,Π1〉, ..., 〈Σnk ,Πk〉, Γ ⇒ Δ

Theorem 2. If HE� contains �R, then the rules cut and sub are admissible in
HE� , otherwise cut and subM are admissible in HE� .

Sketch of Proof. Let Cut(c, h) mean that all applications of cut of height h on
a cut formula of weight c are admissible, and Sub(c) mean that all applica-
tions of sub where A has weight c are admissible. Then the theorem is a con-
sequence of the following claims (for all Σ,Π1, ...,Πk): (A) ∀c.Cut(c, 0); (B)
∀h.Cut(0, h); (C) ∀c.(∀h.Cut(c, h) → Sub(c)); (D) ∀c.∀h. ((∀c′ < c.(Sub(c′) ∧
∀h′.Cut(c′, h′)) ∧ ∀h′′ < h.Cut(c, h′′)) → Cut(c, h)). Proof in the Appendix. ��
Theorem 3 (Syntactic completeness). If i(Γ ⇒ Δ) is derivable in E�, then
Γ ⇒ Δ is derivable in HE� .

Proof. By deriving the axioms, simulating MP using cut, and checking that RE
is derivable using ew, �R and �L. ��

4 Complexity of Proof Search

We would like to use the calculus to obtain an optimal decision procedure for
the considered logics. As established in [20], logics without axiom C are coNP-
complete, whereas logics with C are in PSPACE (although we are not aware of
a proof of the lower bound). We accordingly distinguish cases whether axiom C
is present or not.

Extensions without C. The decision procedures for the logics E, M, EN and
MN implement backwards proof search on a polynomially bounded nondeter-
ministic Turing machine with universal choices to handle the branching caused
by rules with several premisses, as shown in Algorithm 1. To prevent loops, we
employ a local loop checking strategy, stating that a rule is not applied (bottom-
up) to a hypersequent G, if for at least one of its premisses H we have that
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Algorithm 1. Decision procedure for the derivability problem in HE�

Input: a hypersequent G and the code of a logic L ∈ {E, M, EN, MN}
Output: Is G derivable in HL ?

1 if there is a component Γ ⇒ Δ in G with ⊥ ∈ Γ , or � ∈ Δ, or Γ ∩ Δ �= ∅ then
2 halt and accept;
3 pick the next applicable rule R from HL, a matching component Γ ⇒ Δ and

principal formula (and block) from Γ ⇒ Δ;
4 universally choose a premiss H of this rule application ;
5 check recursively whether H is derivable, output the answer and halt;
6 halt and reject;

for every component Γ ⇒ Δ in H there is a component Σ ⇒ Π in G with
set(Γ ) ⊆ set(Σ) and set(Δ) ⊆ set(Π). The order of applications of the rules is
arbitrary but fixed, and once a rule has been applied the algorithm universally
chooses one of its premisses and then recursively checks that this premiss is
derivable.

It is easy to see that Algorithm 1 is correct and complete. In particular,
completeness follows from admissibility of the structural rules of Proposition 2,
and the fact that in view of this it suffices to search for minimal derivations, i.e.,
derivations where none of the branches can be shortened.

Theorem 4. Algorithm 1 runs in coNP, whence for the logics without C the
calculi provide a complexity-optimal decision procedure.

Proof. Since the procedure is in the form of a non-deterministic Turing machine
with universal choices, it suffices to show that every computation of this machine
has polynomial length. Every application of a rule adds either a subformula of
its conclusion or a new block to one of the components, or adds a new compo-
nent. Due to local loop checking it never adds a formula, block or component
which is already in the premiss, so it suffices to calculate the maximal size of a
hypersequent occurring in proof search for G. Suppose that the size of G is n.
Then both the number of components and the number of subformulas of G are
bounded by n. Since the local loop check prevents the duplication of formulas,
each component contains at most n formulas in the antecedent and n formulas
in the succedent. Moreover, since we only consider logics without the axiom C,
every newly created block contains exactly one formula. Again, due to the local
loop checking condition no block is duplicated, so every component contains at
most n blocks. Thus every component has size at most 3n. The procedure creates
new components from a block and a formula of an already existing component,
hence there are only n2 many different components which can be created without
violating the local loop checking condition. Thus every hypersequent occurring
in the proof contains at most n + n2 many components, each of size at most 3n,
giving a total size and thus running time of O(n3). ��

Extensions with C. For the logics with axiom C we would like to use our calculi
to obtain PSPACE decision procedures. It can be easily shown that Algorithm 1
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works properly also for these logics, ensuring in particular termination. How-
ever, because of C-rule, hypersequents can be exponentially large, and therefore
PSPACE upper bound cannot be achieved. In order to obtain PSPACE deci-
sion procedures we adopt a different strategy: Instead of the rules in Fig. 1, we
consider their unkleene’d version, i.e., the ones with all principal formulas and
structures deleted from the premisses. For instance M�R, �R and C are replaced
respectively with

G |Γ ⇒ Δ |Σ ⇒ B

G | 〈Σ〉, Γ ⇒ Δ,�B

G |Γ ⇒ Δ |Σ ⇒ B {G |Γ ⇒ Δ |B ⇒ A}A∈Σ

G | 〈Σ〉, Γ ⇒ Δ,�B

G | 〈Σ,Π〉, Γ ⇒ Δ

G | 〈Σ〉, 〈Π〉, Γ ⇒ Δ

Call the resulting calculus HE�
−. Backwards proof search is then implemented

on an alternating Turing machine by existentially guessing the last applied rule
except for N, and universally checking that all of its premisses are derivable.
To ensure that N is applied if it is present in the system, we stipulate that it
is applied once to every component of the input, and that if the existentially
guessed rule is one of �R or M�R, the rule N is applied immediately afterwards
to each of its premisses. Since no rule application keeps the principal formulas
in the premisses, and since the rule N if present is applied exactly once to every
component, there is no need for any loop checking condition.

The calculi HE�
− are sound and complete. Soundness is obvious, since we

can add the missing formulas and structures and recover derivations in HE� .
Completeness can be proved syntactically by a cut elimination argument similar
to the one in the previous section, or alternatively by simulating the calculi
in [11]. While it is easy to see that the calculi in [11] give a PSPACE upper
bound, this is less obvious for HE�

− because of the hypersequent structure.
Nonetheless we obtain the following result.

Theorem 5. Backwards proof search in HE�
− is in PSPACE.

Proof. We need to show that every run of the procedure terminates in polyno-
mial time. Assume that the size of the input is n. Let the weight of a component
in a hypersequent be the sum of the weights of the formulas and blocks occurring
in it according to Definition 3, and suppose that the maximal weight of com-
ponents in the input is w. Then every rule apart from N decreases the weight
of the component active in its conclusion. Moreover, a new component is only
introduced in place of a subformula of the input, hence any hypersequent occur-
ring in the proof search has at most n + n components. The weight of each of
these components is at most the maximal weight of a component of the input
(plus one in the cases with N). Since the rule N is applied at most once to each
component, it is thus applied at most n times in the total proof search. Thus
the runtime in total is O(n2 ·w), hence polynomial in the size of the input. Thus
the procedure runs in alternating polynomial time, and thus in PSPACE. ��

5 Countermodel Extraction

We now prove semantic completeness of the calculus, i.e.: every valid hyper-
sequent is derivable in the calculus. This amounts to show that a non-
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provable hypersequent has a countermodel. Countermodels are found in the
bi-neighbourhood semantics, as it is more suited for direct countermodels extrac-
tion from failed proofs than the standard semantics. The reason is that in order
to define a neighbourhood model we need to determine exactly the truth sets
of formulas: If we want a world w to force �A, then we have to make sure
that [A] belongs to N (w), thus [A] must be computed. On the contrary, in bi-
neighbourhood models it suffices to find a suited pair (α, β) such that α ⊆ [A]
and β ⊆ [¬A]. As we shall see, such a pair can be extracted direclty from the
failed proof even without knowing exactly the extension of [A].

In order to prove semantic completeness we make use of the backwards proof
search strategy based on local loop checking already considered in Sect. 4 (Algo-
rithm 1). This strategy amounts to consider the following notion of saturation,
stating that a bottom-up application of a rule R is not allowed to a hypersequent
G if G already fulfills the corresponding saturation condition (R).

Definition 4 (Saturated hypersequent). Let H = Γ1 ⇒ Δ1 | ... | Γn ⇒
Δn be a hypersequent occurring in a proof for H ′. The saturation conditions
associated to each application of a rule of HE� are as follows: (init) Γi ∩ Δi = ∅;
(⊥L) ⊥ /∈ Γi; (�R) � /∈ Δi; (→L) If A → B ∈ Γi, then A ∈ Δi or B ∈ Γi;
(→R) If A → B ∈ Δi, then A ∈ Γi and B ∈ Δi; (∧L) If A ∧ B ∈ Γi, then
A ∈ Γi and B ∈ Γi; (∧R) If A ∧ B ∈ Δi, then A ∈ Δi or B ∈ Δi; (�L) If
�A ∈ Γi, then 〈A〉 ∈ Γi; (N) 〈�〉 ∈ Γi; (C) If 〈Σ〉, 〈Π〉 ∈ Γi, then there is
〈Ω〉 ∈ Γi such that set(Σ,Π) = set(Ω). (M�R) If 〈Σ〉, Γ ⇒ Δ,�B is in H, then
there is Σ,Γ ′ ⇒ Δ′, B in H. (�R) If 〈Σ〉, Γ ⇒ Δ,�B is in H, then there is
Σ,Γ ′ ⇒ Δ′, B in H or there is B,Γ ′ ⇒ Δ′, A in H for some A ∈ Σ.

We say that H is saturated with respect to an application of a rule R if
it satisfies the corresponding saturation condition (R) for that particular rule
application, and that it is saturated with respect to HE� if it is saturated with
respect to all possible applications of any rule of HE� .

Given a saturated hypersequent H we can construct directly a countermodel for
H in the bi-neighbourhood semantics in the following way.

Definition 5 (Countermodel construction). Let H be a saturated hyperse-
quent occurring in a proof for H ′. Moreover, let e : N −→ H be an enumeration
of the components of H. Given e, we can write H as Γ1 ⇒ Δ1 | ... | Γk ⇒ Δk.
Model M = 〈W,N ,V〉 is defined as follows:

– W = {n | Γn ⇒ Δn ∈ H}.
– V(p) = {n | p ∈ Γn}.
– For all blocks 〈Σ〉 appearing in a component Γm ⇒ Δm of H,

Σ+ = {n | set(Σ) ⊆ Γn} and Σ− = {n | Σ ∩ Δn �= ∅}.
• Non-monotonic case: N (n) = {(Σ+, Σ−) | 〈Σ〉 ∈ Γn}.
• Monotonic case: N (n) = {(Σ+, ∅) | 〈Σ〉 ∈ Γn}.

Lemma 1. Let M be defined as in Definition 5. Then for every A, 〈Σ〉 and
every n ∈ W, we have: If A ∈ Γn, then n � A; if 〈Σ〉 ∈ Γn, then n � �

∧
Σ;
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and if A ∈ Δn, then n �� A. Moreover, (a) M is a M-model if HE� contains rule
M�R; (b) M is a N-model if HE� contains rule N; and (c) M is a C-model if
HE� contains rule C.

Proof. The first claim is proved by mutual induction on A and 〈Σ〉. We only
consider the cases of modal formulas, the other are similar and simpler. (〈Σ〉 ∈
Γn) In the non-monotonic case, by def (Σ+, Σ−) ∈ N (n). We show that Σ+ ⊆
[
∧

Σ] and Σ− ⊆ [¬∧
Σ], which implies n � �

∧
Σ. If m ∈ Σ+, then set(Σ) ⊆

Γm. By i.h. m � A for all A ∈ Σ, then m �
∧

Σ. If m ∈ Σ−, then there is
B ∈ Σ ∩ Δm. By i.h. m �� B, then m �� ∧

Σ. In the monotonic case the proof
is analogous. (�B ∈ Γn) By saturation of �L, 〈B〉 ∈ Γn. Then by i.h. n � �B.
(�B ∈ Δn) In the non-monotonic case, assume (Σ+, Σ−) ∈ N (n). Then there
is 〈Π〉 ∈ Γn s.t. Π+ = Σ+ and Π− = Σ−. By saturation of �R, there is m ∈ W
s.t. Π ⊆ Γm and B ∈ Δm, or there is m ∈ W s.t. B ∈ Γm and Π ∩ Δm �= ∅.
In the first case, m ∈ Π+ and by i.h. m �� B. In the second case, m ∈ Π− and
by i.h. m � B. That is Σ+ �⊆ [B] or Σ− �⊆ [¬B]. Then n �� �B. The monotonic
case is analogous.

The model conditions are proved as follows: (a) By definition of N in mono-
tonic case. (b) By saturation 〈�〉 ∈ Γn for all n ∈ W. Then (�+,�−) ∈ N (n),
where by saturation of �R, �− = ∅. (c) Assume (Σ+, Σ−), (Π+,Π−) ∈ N (n).
Then there are 〈Λ〉, 〈Θ〉 ∈ Γn s.t. Σ+ = Λ+, Σ− = Λ−,Π+ = Θ+ and Π− = Θ−.
By saturation, there is 〈Ω〉 ∈ Γn s.t. set(Ω) = set(Λ,Θ), thus (Ω+, Ω−) ∈ N (n).
We show that (i) Ω+ = Σ+ ∩ Π+ and (ii) Ω− = Σ− ∩ Π−. (i) If m ∈ Ω+,
then set(Ω) ⊆ Γm, then set(Λ,Θ) ⊆ Γm, then set(Λ) ⊆ Γm and set(Θ) ⊆ Γm,
then m ∈ Λ+ and m ∈ Θ+. If m ∈ Λ+ ∩ Θ+, then m ∈ Λ+ and m ∈ Θ+,
then set(Λ) ⊆ Γm and set(Θ) ⊆ Γm, then set(Λ,Θ) ⊆ Γm, then set(Ω) ⊆ Γm,
then m ∈ Ω+. (ii) If m ∈ Ω−, then Ω ∩ Δm �= ∅, then Λ,Θ ∩ Δm �= ∅, then
Λ ∩ Δm �= ∅ or Θ ∩ Δm �= ∅, then m ∈ Λ− or m ∈ Θ−. If m ∈ Λ− ∪ Θ−, then
m ∈ Λ− or m ∈ Θ−, then Λ ∩ Δm �= ∅ or Θ ∩ Δm �= ∅, then Λ,Θ ∩ Δm �= ∅,
then Ω ∩ Δm �= ∅, then m ∈ Ω−. ��

Observe that, since all rules are cumulative, M is a countermodel for the
root hypersequent H ′. Moreover, since every proof built in accordance to the
strategy either provides a derivation of the root hypersequent or contains a
saturated hypersequent, this allows us to prove the following theorem.

Theorem 6. If H is valid in (M/C/N-)models, then it is derivable in
HE(M/C/N).

As the above construction shows, we can directly extract a bi-neighbourhood
countermodel from any failed proof. If we want to obtain a countermodel in
the stardard semantics we then need to apply the transformations presented in
Sect. 2. In principle, the rough transformation can be embedded into the coun-
termodel construction in order to get immediately a neighbourhood model. How-
ever, as illustrated in Sect. 2 we might obtain a much larger model than needed.
On the other hand, there is no obvious way to integrate the finer transformation
of Proposition 1 since it rests on the evaluation in an already existing model.
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An alternative way to obtain countermodels in the neighbourhood semantics is
proposed in [11]: It basically consists in forcing the proof search procedure to
determine exactly the truth set of each formula. To this aim, whenever a sequent
representing a new world is created, the sequent is saturated with respect to all
disjunctions A∨¬A such that A is a subformula of the root sequent. This solution
is equivalent to use analytic cut and makes the proof search procedure signifi-
cantly more complex than the one presented here (moreover it makes use of a
more complex data structure than hypersequents).

Below we show some examples of countermodel extraction both in the
bi-neighbourhood and in the standard neighbourhood semantics, the latter
obtained by Proposition 1.

Example 2 (Proof search for axiom M in HE and countermodels).

closed
... | p ∧ q ⇒ p

closed
... | p ⇒ p ∧ q, p

saturated hypersequent H

〈p ∧ q〉,�(p ∧ q) ⇒ �p | p ⇒ p ∧ q, q ∧R〈p ∧ q〉,�(p ∧ q) ⇒ �p | p ⇒ p ∧ q �R〈p ∧ q〉,�(p ∧ q) ⇒ �p �L�(p ∧ q) ⇒ �p

Bi-neighbourhood Countermodel. Let us consider the enumeration for the com-
pontents of B where 1 �→ 〈p∧q〉,�(p∧q) ⇒ �p, and 2 �→ p ⇒ p∧q, q. According
to the construction in Definition 5, from H we obtain the following counter-
model M = 〈W,N ,V〉: W = {1, 2}, V(p) = {2}, V(q) = ∅, N (2) = ∅, and
N (1) = {(∅, {2})}, as N (1) = {(p ∧ q+, p ∧ q−)} and p ∧ q+ = ∅, p ∧ q− = {2}.
Neighbourhood Countermodel. Considering S = {�(p ∧ q),�p, p ∧ q, p, q}, by
Proposition 1 we obtain from M the standard model M′ with N ′(1) = {∅}, as
N ′(1) = {[p ∧ q]M} and [p ∧ q]M = ∅.

Example 3 (Proof search for axiom K in HEC and countermodels). By bottom-up
proof search for �(p → q) → (�p → �q) in HEC we obtain the following branch
ending with a saturated hypersequent H (for lack of space we do not show the
whole tree).

�(p → q),�p, 〈p → q〉, 〈p〉, 〈p → q, p〉 ⇒ �q | q ⇒ p | p → q ⇒ q, p →L�(p → q),�p, 〈p → q〉, 〈p〉, 〈p → q, p〉 ⇒ �q | q ⇒ p | p → q ⇒ q �R�(p → q),�p, 〈p → q〉, 〈p〉, 〈p → q, p〉 ⇒ �q | q ⇒ p �R�(p → q),�p, 〈p → q〉, 〈p〉, 〈p → q, p〉 ⇒ �q
C�(p → q),�p, 〈p → q〉, 〈p〉 ⇒ �q

�L
2

�(p → q),�p ⇒ �q

Bi-neighbourhood Countermodel. We consider the following enumeration of the
compontents of H: 1 �→ �(p → q),�p, 〈p → q〉, 〈p〉, 〈p → q, p〉 ⇒ �q; 2 �→ q ⇒ p;
3 �→ p → q ⇒ q, p. From H we obtain M = 〈W,N ,V〉, where W = {1, 2, 3},
V(p) = ∅, V(q) = {2}, N (2) = N (3) = ∅, and N (1) = {(∅, {2, 3}), ({3}, ∅)},
as N (1) = {(p+, p−), (p → q+, p → q−), (p, p → q+, p, p → q−)} and p+ = ∅,
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p− = {2, 3}, p → q+ = {3}, p → q− = ∅, p, p → q+ = ∅, p, p → q− = {2, 3}. It is
easy to verify that M is a C-model.

Neighbourhood Countermodel. By logical equivalence we can take S = {�(p →
q),�p,�q, p → q, p, q,�((p → q) ∧ p),�(p ∧ q)}. We obtain the standard model
M′ with N ′(1) = {∅,W}.

6 Extensions with Axioms T, P, and D

We aim to extend our calculi to systems containing further modal axioms. As a
starting point, we consider in this section extensions of non-normal modal logics
with axioms T, P, and D:

T �A → A P ¬�⊥ D ¬(�A ∧ �¬A)

T is a standard axiom, and P and D are of specific interest in deontic logic:
If �A is read as ‘A is obligatory’, then axiom D means that there cannot be
two contradicting obligations, whereas axiom P means that there cannot be
inconsistent obligations. It is worth noticing that axioms D and P are equivalent
in normal modal logics, but are not necessarily equivalent in non-normal ones.
The following dependencies hold: �ET D; �ET P; �MD P; �END P; �ECP D.

Like the systems of the classical cube, their extensions with axioms T, P,
D can be characterised by certain classes of bi-neighbourhood models ([4,5]).
The corresponding conditions are (T) if (α, β) ∈ N (w), then w ∈ α; (P) if
(α, β) ∈ N (w), then α �= ∅; and (D) if (α, β), (γ, δ) ∈ N (w), then α ∩ γ �= ∅ or
β ∩ δ �= ∅.

Sequent calculi for NNMLs containing axioms T, P, or D have been studied
in [9,10,15], although in none of them semantic completeness and countermodel
extraction are considered. Here we define hypersequent calculi by the rules below.

G | Σ, 〈Σ〉, Γ ⇒ Δ
T

G | 〈Σ〉, Γ ⇒ Δ

G | 〈Σ〉, Γ ⇒ Δ | Σ ⇒
P

G | 〈Σ〉, Γ ⇒ Δ

G | 〈Σ〉, 〈Π〉, Γ ⇒ Δ | Σ, Π ⇒
DM

G | 〈Σ〉, 〈Π〉, Γ ⇒ Δ

G | 〈Σ〉, 〈Π〉, Γ ⇒ Δ | Σ, Π ⇒ {G | 〈Σ〉, 〈Π〉, Γ ⇒ Δ | ⇒ A, B}A∈Σ,B∈Π
D

G | 〈Σ〉, 〈Π〉, Γ ⇒ Δ

The above rules allow us to derive the corresponding axioms as follows:

A, 〈A〉, �A ⇒ A
T〈A〉, �A ⇒ A

�L�A ⇒ A

〈⊥〉, �⊥ ⇒ | ⊥ ⇒
P〈⊥〉, �⊥ ⇒

�L�⊥ ⇒

〈A〉, 〈¬A〉,�A,�¬A ⇒ | A,¬A ⇒ 〈A〉, 〈¬A〉,�A,�¬A ⇒ | ⇒ A,¬A
D〈A〉, 〈¬A〉,�A,�¬A ⇒ �L×2�A,�¬A ⇒

Cut-free calculi for systems containing axioms T or P are obtained just by
adding T rule or P rule. For non-monotonic logics containing D (but neither T
nor P) it seems necessary (at present) to add ctr〈〉 or the contracted version of D:
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G | 〈Σ〉, Γ ⇒ Δ | Σ ⇒ {G | 〈Σ〉, Γ ⇒ Δ | ⇒ A}A∈Σ
Daux

G | 〈Σ〉, Γ ⇒ Δ

In constrast, for monotonic logics containing D we can add rule P (notice that
axiom P is derivable in MD). As before, one can prove soundness, syntactic com-
pleteness, and semantic completeness of hypersequent calculi. Since the calculi
are defined modularly, it suffices to extend the proofs in previous sections.

Theorem 7. If H is derivable in HE(T/P/D)� , then it is valid in the correspond-
ing bi-neighbourhood models.

Proof. T) Assume G | Σ, 〈Σ〉, Γ ⇒ Δ valid. Then for all M, M |= G or M |=
Σ, 〈Σ〉, Γ ⇒ Δ. In the second case, for all wolds w of M, w � i(Σ, 〈Σ〉, Γ ⇒ Δ),
which is equivalent to

∧
Σ ∧ �

∧
Σ → i(Γ ⇒ Δ). Since M is a T-model, this is

equivalent to �
∧

Σ → i(Γ ⇒ Δ). Thus w � i(〈Σ〉, Γ ⇒ Δ).
P) Assume G | 〈Σ〉, Γ ⇒ Δ | Σ ⇒ valid. If M |= G | 〈Σ〉, Γ ⇒ Δ we

are done. Otherwise M |= Σ ⇒, that is [
∧

Σ] = ∅. Since M is a P-model,
w �� �

∧
Σ for all worlds w of M, which implies M |= 〈Σ〉, Γ ⇒ Δ.

The cases D, DM and Daux are analogous. ��
It is possible to prove the admissibility of structural rules in Proposition 2.

In particular, in case of calculi containing rules for D one may need to use
the auxiliary rules Daux and P in order to show admissibility of contraction. As
before, this allows us to prove cut elimination, whence syntactic completeness of
hypersequent calculi.

Theorem 8. If HE(T/P/D)� contains �R, then the rules cut and sub are admis-
sible in HE(T/P/D)� , otherwise cut and subM are admissible in HE(T/P/D)� .

Sketch of Proof. By extending the proof of Theorem 2. In particular we need to
extend point (C) (ii) to the cases where the last rule applied in the derivation
of G | 〈An1 ,Π1〉, ..., 〈Ank ,Πk〉, Γ ⇒ Δ is T, P, D, or Daux (resp. T, P, or DM in
monotonic case). ��
Theorem 9 (Syntactic completeness). If i(Γ ⇒ Δ) is derivable in
E(T/P/D)�, then Γ ⇒ Δ is derivable in HE(T/P/D)� .

In order to get semantic completeness we need to extend the notion of satu-
ration to the rules for T, P, D. The saturation conditions are the obvious ones,
for instance the condition corresponding to T is: If 〈Σ〉 ∈ Γi, then Σ ⊆ Γi. Then,
given a saturated hypersequent one can define a countermodel M by means of
the same construction as in Definition 5. We can prove the following lemma.

Lemma 2. Let H be a saturated hypersequent occurring in a proof for H ′, and
M be defined as in Definition 5. Then (a) M is a T-model if HE� contains rule
T; (b) M is a P-model if HE� contains rule P; and (c) M is a D-model if HE�

contains rules D and Daux, or it contains rules DM and P.
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Proof. (a) Assume (Σ+, Σ−) ∈ N (n). Then there is 〈Λ〉 ∈ Γn s.t. Σ+ =
Λ+, Σ− = Λ−. By saturation of T, set(Λ) ⊆ Γn, then by definition n ∈ Λ+ = Σ+.

(b) Assume (Σ+, Σ−) ∈ N (n). Then there is 〈Λ〉 ∈ Γn s.t. Σ+ = Λ+, Σ− =
Λ−. By saturation of P, there is m ∈ W such that set(Λ) ⊆ Γm, then by definition
m ∈ Λ+ = Σ+, that is Σ+ �= ∅.

(c) Assume (Σ+, Σ−), (Π+,Π−) ∈ N (n). If (Σ+, Σ−) �= (Π+,Π−), then
there are 〈Λ〉, 〈Θ〉 ∈ Γn s.t. Σ+ = Λ+, Σ− = Λ−,Π+ = Θ+ and Π− = Θ−. If
HE� is non-monotonic, by saturation of D there is m ∈ W such that set(Λ,Θ) ⊆
Γm or there is m ∈ W such that A,B ∈ Δm for A ∈ Σ and B ∈ Π. In the
first case, set(Λ) ⊆ Γm and set(Θ) ⊆ Γm, thus by definition m ∈ Λ+ = Σ+

and m ∈ Θ+ = Π+, that is Σ+ ∩ Π+ �= ∅. In the second case, m ∈ Λ− = Σ−

and m ∈ Θ− = Π−, that is Σ− ∩ Π− �= ∅. If instead HE� is monotonic, by
saturation of DM there is m ∈ W such that set(Λ,Θ) ⊆ Γm. Then set(Λ) ⊆ Γm

and set(Θ) ⊆ Γm, thus by definition m ∈ Λ+ = Σ+ and m ∈ Θ+ = Π+, that
is Σ+ ∩ Π+ �= ∅. The other possibility is that (Σ+, Σ−) = (Π+,Π−). Then
there is 〈Λ〉 ∈ Γn s.t. Σ+ = Λ+ and Σ− = Λ−. In the non-monotonic case, by
saturation of Daux there is m ∈ W such that set(Λ) ⊆ Γm or there is m ∈ W
such that A ∈ Δm for A ∈ Σ. In the first case, by definition m ∈ Λ+ = Σ+. In
the second case, m ∈ Λ− = Σ−. Thus Σ+ �= ∅ or Σ− �= ∅. In the monotonic
case we can consider saturation of P and conclude that Σ+ �= ∅. ��

Since every failed proof returns a saturated hypersequent, this implies seman-
tic completeness of hypersequent calculi.

Theorem 10. If H is valid in (M/C/N/T/P/D-)models, then it is derivable in
HE(M/C/N/T/P/D).

7 Conclusion

In this paper we have provided hypersequent calculi for the cube of classical Non-
Normal Modal logics and some deontic extensions. The Hypersequent formula-
tion is possibly the most adequate, in particular for non-monotone non-normal
modal logics, as it ensures good semantic, computational, as well as structural
properties. First of all, from a failed proof we can easily extract a countermodel
(of polynomial size for logics without C) in the bi-neighbourhood semantics,
whence in the standard one. The calculi provide a decision procedure of opti-
mal complexity and enjoy syntactic cut elimination. Finally, they have a natural
“almost internal” interpretation, as each component of a hypersequent can be
read as a formula of the language. In future research, we intend to extend the
calculi to further non-normal modal logics obtained by adding standard modal
axioms, possibly including also regular logics which have a non standard rela-
tional semantics. Moreover, we intend to use the calculi also for metalogical
investigation, e.g., for obtaining proof-theoretic constructive proofs of interpo-
lation complementing the general result in [17] and completing [15]. Finally we
wish to study the formal relation with other recent calculi in the literature such
as [4,13] in the form of mutual simulation. We also think of implementing our
calculi and comparing them with the theorem prover proposed recently in [6].



Optimal Hypersequent Calculi for Non-normal Modal Logics 43

Appendix

Theorem 2. If HE� contains �R, then the rules cut and sub are admissible in
HE� , otherwise cut and subM are admissible in HE� .

Proof. We prove that cut and sub are admissible in non-monotonic HE� ; the
proof in the monotonic cases is analogous. Recall that, for an application of cut,
the cut formula is the formula which is deleted by that application, while the
cut height is the sum of the heights of the derivations of the premisses of cut.

The theorem is a consequence of the following claims, where Cut(c, h) means
that all applications of cut of height h on a cut formula of weight c are admis-
sible, and Sub(c) means that all applications of sub where A has weight c
are admissible (for all Σ,Π1, ...,Πk): (A) ∀c.Cut(c, 0). (B) ∀h.Cut(0, h). (C)
∀c.(∀h.Cut(c, h) → Sub(c)). (D) ∀c.∀h.((∀c′ < c.(Sub(c′) ∧ ∀h′.Cut(c′, h′)) ∧
∀h′′ < h.Cut(c, h′′)) → Cut(c, h)).

(A) deals with applications of cut to initial sequents and is trivial.
(B) If the cut formula has weight 0, then it is ⊥, �, or a propositional

variable p. In both situations the proof is by complete induction on h. The basic
case h = 0 is a particular case of (A). For the inductive step, we distinguish
three cases.

(i) The cut formula ⊥, �, or p is not principal in the last rule applied in the
derivation of the left premiss. By examining all possible rule applications, we
show that the application of cut can be replaced by one o more applications of
cut at a smaller height. For instance, assume that the last rule applied is �L.

G | 〈A〉,�A,Γ ⇒ Δ,⊥�L
G | �A,Γ ⇒ Δ,⊥ G | ⊥,�A,Γ ⇒ Δ

cut
G | �A,Γ ⇒ Δ

The derivation is transformed as follows, with a hp-application of wk and an
application of cut of smaller height.

G | 〈A〉,�A,Γ ⇒ Δ,⊥
G | ⊥,�A,Γ ⇒ Δ

wkL
G | ⊥, 〈A〉,�A,Γ ⇒ Δ

cut
G | 〈A〉,�A,Γ ⇒ Δ �L

G | �A,Γ ⇒ Δ

The situation is similar if the last rule in the derivation of the left premiss is
applied to some sequent in G.

(ii) The cut formula ⊥, �, or p is not principal in the last rule applied in
the derivation of the right premiss. The case is analogous to (i). As an example,
suppose that the last rule applied is M�R.

G | 〈Σ〉, Γ ⇒ Δ,�B,⊥
G | ⊥, 〈Σ〉, Γ ⇒ Δ,�B | Σ ⇒ B

M�R
G | ⊥, 〈Σ〉, Γ ⇒ Δ,�B

cut
G | 〈Σ〉, Γ ⇒ Δ,�B
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The derivation is converted into
G | 〈Σ〉, Γ ⇒ Δ,�B,⊥

ew
G | 〈Σ〉, Γ ⇒ Δ,�B,⊥ | Σ ⇒ B G | ⊥, 〈Σ〉, Γ ⇒ Δ,�B | Σ ⇒ B

cut
G | 〈Σ〉, Γ ⇒ Δ,�B | Σ ⇒ B

M�R
G | 〈Σ〉, Γ ⇒ Δ,�B

where cut is applied at a smaller height.
(iii) The cut formula ⊥, �, or p is principal in the last rule applied in the

derivation of both premisses. Then the cut formula is p, as ⊥ (resp. �) is never
principal on the right-hand side (resp. left-hand side) of the conclusion of any rule
application. This means that both premisses are derived by init, which implies
h = 0. Then we are back to case (A).

(C) Assume ∀hCut(c, h). The proof is by induction on the height m of the
derivation of G | 〈An1 ,Π1〉, ..., 〈Ank ,Πk〉, Γ ⇒ Δ. Here we only consider the case
where m > 0 and the last rule applied in the derivation is �R, with one block
among 〈A,Π1〉, ..., 〈A,Πk〉 principal in the rule application:

1©
G | 〈Ani ,Πi〉, Γ ′ ⇒ Δ′,�D | Ani ,Πi ⇒ D

{G | 〈Ani ,Πi〉, Γ ′ ⇒ Δ′,�D | D ⇒ C}C∈Πi

{G | 〈Ani ,Πi〉, Γ ′ ⇒ Δ′,�D | D ⇒ A}ni
1

...
�R

G | 〈Ani ,Πi〉, Γ ′ ⇒ Δ′,�D

The derivation is converted as follows. First we derive:
G | Σ ⇒ A

ew
G | Σ ⇒ A | Ani ,Πi ⇒ D

G | A ⇒ B{
ew

}

B∈ΣG | A ⇒ B | Ani ,Πi ⇒ D 1©
sub

G | 〈Σni ,Πi〉, Γ ′ ⇒ Δ′,�D | Ani ,Πi ⇒ D

Moreover, by applying ew to G | Σ ⇒ A we obtain G | 〈Σni ,Πi〉, Γ ′ ⇒ Δ′,�D |
Σ ⇒ A. By auxiliary applications of wk we can cut A and get G | 〈Σni ,Πi〉, Γ ′ ⇒
Δ′,�D | Σ,Ani−1,Πi ⇒ D. Then with further applications of cut (each time
with auxiliary applications of wk) we obtain G | 〈Σni ,Πi〉, Γ ′ ⇒ Δ′,�D |
Σni ,Πi ⇒ D. By doing the same with the other premisses of �R in the ini-
tial derivation we obtain also {G | 〈Σni ,Πi〉, Γ ′ ⇒ Δ′,�D | D ⇒ B}B∈Σ (1...n1)

and {G | 〈Σni ,Πi〉, Γ ′ ⇒ Δ′,�D | D ⇒ C}C∈Πi
. Then by �R we derive the

conclusion of sub G | 〈Σni ,Πi〉, Γ ′ ⇒ Δ′,�D.
(D) Assume ∀c′ < c. (Sub(c′) ∧ ∀h′. Cut(c′, h′)) and ∀h′′ < h.Cut(c, h′′). We

show that all applications of cut of height h on a cut formula of weight c can
be replaced by different applications of cut, either of smaller height or on a cut
formula of smaller weight. We can assume c, h > 0 as the cases c = 0 and h = 0
have been considered already in (B) and (A). We distinguish two cases.

(i) The cut formula is not principal in the last rule application in the deriva-
tion of at least one of the two premisses of cut. This case is analogous to (i) or
(ii) in (B).

(ii) The cut formula is principal in the last rule application in the derivation
of both premisses. Then the cut formula is either B → C, or B ∧ C, or �B.

— If the cut formula is B → C we have
1© G | B,Γ ⇒ Δ,B → C,C→R

2© G | Γ ⇒ Δ,B → C

3© G | B → C,Γ ⇒ Δ,B 4© G | C,B → C,Γ ⇒ Δ →L
5© G | B → C,Γ ⇒ Δ

cut
G | Γ ⇒ Δ
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The derivation is converted into the following one:
2©

wkR
G | Γ ⇒ Δ,B → C,B 3©

cut
G | Γ ⇒ Δ,B

wkR
G | Γ ⇒ Δ,B,C

1©

5©
wkL

G | B,B → C,Γ ⇒ Δ
wkR

G | B,B → C,Γ ⇒ Δ,C
cut

G | B,Γ ⇒ Δ,C
cut

G | Γ ⇒ Δ,C

2©
wkL

G | C,Γ ⇒ Δ,B → C 4©
cut

G | C,Γ ⇒ Δ
cut

G | Γ ⇒ Δ

— If the cut formula is B ∧ C the situation is similar.
— If the cut formula is �B we have
1© G | 〈Σ〉, Γ ⇒ Δ,�B | Σ ⇒ B

... {2C© G | 〈Σ〉, Γ ⇒ Δ,�B | B ⇒ C}C∈Σ�R
3© G | 〈Σ〉, Γ ⇒ Δ,�B

4© G | 〈B〉,�B, 〈Σ〉, Γ ⇒ Δ �L
5© G | �B, 〈Σ〉, Γ ⇒ Δ

cut
G | 〈Σ〉, Γ ⇒ Δ

The derivation is converted as follows, with several applications of cut of
smaller height.

3©
wk〈〉

G | 〈B〉, 〈Σ〉, Γ ⇒ Δ, �B 4©
cut

G | 〈B〉, 〈Σ〉, Γ ⇒ Δ
ew∗© G | 〈Σ〉, Γ ⇒ Δ | 〈B〉, 〈Σ〉, Γ ⇒ Δ

1©
5©

ew
G | �B, 〈Σ〉, Γ ⇒ Δ | Σ ⇒ B

cut
G | 〈Σ〉, Γ ⇒ Δ | Σ ⇒ B

2C©
5©

ew
G | �B, 〈Σ〉, Γ ⇒ Δ | B ⇒ C(

cut
)

C∈ΣG | 〈Σ〉, Γ ⇒ Δ | B ⇒ C ∗©
sub

G | 〈Σ〉, Γ ⇒ Δ | 〈Σ〉, 〈Σ〉, Γ ⇒ Δ
ctr〈〉

G | 〈Σ〉, Γ ⇒ Δ | 〈Σ〉, Γ ⇒ Δ
ec

G | 〈Σ〉, Γ ⇒ Δ

��
Theorem 8. If HE(T/P/D)� contains �R, then the rules cut and sub are admis-
sible in HE(T/P/D)� , otherwise cut and subM are admissible in HE(T/P/D)� .

Proof. We extend point (C) (ii) in the proof of Theorem 2 to the cases where
the last rule applied in the derivation of G | 〈An1 ,Π1〉, ..., 〈Ank ,Πk〉, Γ ⇒ Δ is
T, P, D, or Daux (resp. T, P, or DM in monotonic case). We consider as examples
the following two cases.

— The last rule is T:

G | Ani ,Πi, 〈Ani ,Πi〉, Γ ⇒ Δ
T

G | 〈Ani ,Πi〉, Γ ⇒ Δ

By applying the inductive hypothesis to the premiss we obtain G |
Ani ,Πi, 〈Σni ,Πi〉, Γ ⇒ Δ. Then, from this and G | Σ ⇒ A, by several
applications of cut (each time with auxiliary applications of wk) we obtain
G | Σni ,Πi, 〈Σni ,Πi〉, Γ ⇒ Δ. Finally, by T we derive G | 〈Σni ,Πi〉, Γ ⇒ Δ.

— The last rule is P:

G | 〈Ani ,Πi〉, Γ ⇒ Δ | Ani ,Πi ⇒
P

G | 〈Ani ,Πi〉, Γ ⇒ Δ
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By applying the inductive hypothesis to the premiss (aftar auxiliary applications
of ew to the other premisses of sub) we obtain G | 〈Σni ,Πi〉, Γ ⇒ Δ | Ani ,Πi ⇒.
Then, from this and G | Σ ⇒ A, by several applications of cut (each time with
auxiliary applications of wk) we obtain G | 〈Σni ,Πi〉, Γ ⇒ Δ | Σni ,Πi ⇒.
Finally, by P we derive G | 〈Σni ,Πi〉, Γ ⇒ Δ. ��
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Abstract. We study various formulations of the completeness of first-
order logic phrased in constructive type theory and mechanised in the
Coq proof assistant. Specifically, we examine the completeness of variants
of classical and intuitionistic natural deduction and sequent calculi with
respect to model-theoretic, algebraic, and game semantics. As complete-
ness with respect to standard model-theoretic semantics is not readily
constructive, we analyse the assumptions necessary for particular syntax
fragments and discuss non-standard semantics admitting assumption-
free completeness. We contribute a reusable Coq library for first-order
logic containing all results covered in this paper.

1 Introduction

Completeness theorems are central to the field of mathematical logic. Once com-
pleteness of a sound deduction system with respect to a semantic account of
the syntax is established, the typically infinitary notion of semantic validity
is reduced to the finitary, and hence algorithmically more tractable, notion of
syntactic deduction. In the case of first-order logic, being the formalism under-
lying traditional mathematics based on a set-theoretic foundation, completeness
enables the use of semantic techniques to study the deductive consequence of
axiomatic systems.

The seminal completeness theorem for first-order logic proven by Gödel [18]
and later refined by Henkin [21,20] yields a syntactic deduction of every formula
valid in the canonical Tarski semantics based on interpreting the non-logical
function and relation symbols in models providing the corresponding structure.
However, this result may not be understood as an effective procedure in the sense
that a formal deduction for a formula satisfied by all models can be computed by
an algorithm, since even for finite signatures the proof relies on non-constructive
assumptions. Specifically, when admitting all logical connectives, completeness is
equivalent to a weak form of König’s lemma [32]. Even restricted to the classically
sufficient →,∀,⊥-fragment, the classically vacuous but constructively contested1

assumption of Markov’s principle, asserting that every non-diverging computa-
tion terminates, is necessary [28]. We defer a more detailed overview of known
dependencies to the discussion of related work in Sect. 7.1.
1 Accepted in Russian constructivism while in conflict with Brouwer’s intuitionism.
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The aim of this paper is to coherently analyse the computational con-
tent of completeness theorems concerning various semantics and deduction sys-
tems. Naturally, such matters of constructive reverse mathematics [25] need
to be addressed in an intuitionistic meta-logic such as constructive type the-
ory. In fact, the results in this paper are formalised in the Coq proof assis-
tant [50] that implements the predicative calculus of cumulative inductive con-
structions (pCuIC) [51], yielding executable programs for all constructively given
completeness proofs. For ease of language, we reserve the term “constructive”
for statements provable in this specific system, hence excluding Markov’s princi-
ple [7,41]. In fact, coming with an internal notion of computation, constructive
type theory allows us to state Markov’s principle both internally (MP) as well
as for any concrete model of computation (MPL), whereby the former implies
the latter and both can be related to completeness statements. The two main
questions in focus are which specific assumptions are necessary for particular
formulations of completeness and how the statements can be modified such that
they hold constructively.

Applying this strategy to Tarski semantics, a first observation is that the
model existence theorem, central to Henkin’s completeness proof, holds con-
structively [22]. Model existence directly implies that valid formulas cannot be
unprovable. Thus, a single application of MP, rendering enumerable predicates
such as deduction stable under double negation, yields completeness. Similarly,
MPL yields the stability of deduction from finite contexts and hence the corre-
sponding form of completeness. Because MP is admissible in pCuIC [41], so are
MPL and the two completeness statements. Finally, we illustrate that complete-
ness for the minimal →,∀-fragment does not depend on additional assumptions
and, consequently, how the interpretation of ⊥ can be relaxed to exploding mod-
els [53,30] admitting a constructive completeness proof for the →,∀,⊥-fragment.

Turning to intuitionistic logic, we discuss analogous relationships for Kripke
semantics and a cut-free intuitionistic sequent calculus [23]. Again, complete-
ness for the →,∀,⊥-fragment is equivalent to Markov’s principle while being
constructive if restricted to the minimal →,∀-fragment or employing a relaxed
treatment of ⊥. The intuitionistically undefinable connectives ∨ and ∃ add fur-
ther complexity [24] and need to remain untreated in this paper. As a side note,
we explain how the constructivised completeness theorem for intuitionistic logic
can be used to implement a semantic cut-elimination procedure.

After considering such model-theoretic semantics, mainly based on embed-
ding the object-logic into the meta-logic, we exemplify two rather different
approaches to assigning meaning to formulas, namely algebraic semantics and
game semantics. Differing fundamentally from model-theoretic semantics, both
share a constructive rendering of completeness for the full syntax of first-order
logic, agnostic to the intuitionistic or classical flavour of the deduction system.

In algebraic semantics, the embedding of formulas into the meta-logic is gen-
eralised to an evaluation in algebras providing the structure of the logical connec-
tives. In this setting, completeness follows from the observation that provability
induces such an algebra on formulas. We discuss intuitionistic and classical logic
evaluated in complete Heyting and complete Boolean algebras (cf. [46]).



Completeness Theorems for FOL Analysed in Constructive Type Theory 49

Dialogue game semantics as introduced by Lorenzen [34,35], on the other
hand, completely disposes of interpreting logical connectives as operations and
instead understand logic as a dialectic game of assertion and argument. An
assertion is considered valid if every sceptic can be convinced through substan-
tive reasoning, i.e. if there is a strategy such that every argument about the
assertion can be won. Hence, game semantics are inherently closer to deduction
systems than the previous semantic accounts and in fact a very general isomor-
phism of winning strategies and formal deductions has been established [47]. We
instantiate this isomorphism to a first-order intuitionistic sequent calculus.
Contributions. We present a comprehensive analysis of the computational con-
tent of completeness theorems for first-order logic considering various seman-
tics and deduction systems. Concerning model-theoretic semantics, we refine the
well-known relation of completeness for →,∀,⊥-formulas to Markov’s principle
to constructive completeness up to double negation, hence entailing the admissi-
bility of completeness in pCuIC. Our elaboration of game semantics introduces
a streamlined representation of dialogues as state transition systems suitable
for mechanisation and translates the generic completeness result for classical
logic from [47] to the case of intuitionistic first-order logic. Finally, we pro-
vide a reusable Coq library2 for first-order logic including all results covered
in this paper. Notably, the development is based on a de Bruijn encoding of
binders [8,49] and is parametric in the signature of non-logical symbols and
thus adjustable to any particular first-order theory (see Appendix B for more
formalisation details).
Outline. In Sect. 2, we begin with some preliminary definitions concerning the
syntax of first-order logic, deduction systems, and synthetic computability. We
then analyse completeness for model-theoretic semantics (Sect. 3) and its con-
nection to Markov’s principle (Sect. 4). Subsequently, we give constructive com-
pleteness proofs for algebraic semantics (Sect. 5) and game semantics (Sect. 6).
We end with a discussion of related and future work in Sect. 7.

2 Syntax, Deduction, Computability

We work in a constructive type theory with a predicative hierarchy of type uni-
verses above a single impredicative universe P of propositions. Assumed type
formers are function spaces X → Y , products X × Y , sums X + Y , dependent
products ∀x : X.F x, and dependent sums Σ x : X.F x. The propositional ver-
sions of these connectives are denoted by the usual logical symbols (→, ∧, ∨, ∀,
and ∃) in addition to � : P and ⊥ : P denoting truth and falsity.

Basic inductive types are the Booleans B :: = tt | ff and the natural numbers
N :: = 0 | Sn for n : N. Given a type X, we further define options O(X) :: = ∅ |
�x� and lists L(X) :: = [] | x :: A for x : X and A : L(X). On lists we employ
the standard notation for membership x ∈ A, inclusion A ⊆ B, concatenation
A++B, and map f @A. These notations are shared with vectors x : Xn of fixed
length n : N. Possibly infinite collections are expressed by sets p : X → P with
set-theoretic notations like x ∈ p, p ⊆ q, and p ∩ q.
2 On www.ps.uni-saarland.de/extras/fol-completeness and hyperlinked with this pdf.

www.ps.uni-saarland.de/extras/fol-completeness
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2.1 Syntax of First-Order Logic

We represent the terms and formulas of first-order logic as inductive types over a
fixed signature Σ = (FΣ ,PΣ) specialising function symbols f : FΣ and predicate
symbols P : PΣ together with their arities |f | : N and |P | : N. Variable binding
is implemented using de Bruijn indices [8] well-suited for formalisation [49].

Definition 1. We define the terms and formulas of first-order logic by

t : T :: = x | f t ϕ, ψ : F :: = ⊥̇ | P t | ϕ→̇ψ | ϕ∧̇ψ | ϕ∨̇ψ | ∀̇ϕ | ∃̇ϕ x : N, f : FΣ , P : PΣ

where the vectors t are of the expected lengths |f | and |P |, respectively. We set
¬̇ϕ := ϕ→̇⊥̇ and isolate the type F

∗ of formulas in the →,∀,⊥-fragment.

A bound variable is encoded as the number of quantifiers shadowing its rel-
evant binder, e.g. P x y → ∀x.∃y. P x y may be represented by P 7 4→̇∀̇ ∃̇P 1 0.
The variables 7 and 4 in this example are called free and variables that do not
occur freely are called fresh. A formula with no free variables is called closed.

Definition 2. Instantiating with a substitution σ : N → T is defined by

x[σ] := σ x ⊥̇[σ] := ⊥̇ (ϕ � ψ)[σ] := ϕ[σ] � ψ[σ]
(f t )[σ] := f (t [σ]) (P t )[σ] := P (t [σ]) (�ϕ)[σ] := � ϕ[↑σ]

where t [σ] is short for (λt. t[σ])@ t, ↑σ denotes the substitution λn. σ (Sn), and
� is used as placeholder for the logical connectives and quantifiers, respectively.

Useful shorthands are ϕ[t;σ] for instantiating 0 with t and Sx with σ x,
ϕ[t] for ϕ[t;λx. x], and ↑ϕ for the shift ϕ[λx.Sx]. All terminology and notation
concerning formulas carries over to contexts Γ : L(F) and theories T : F → P.
For ease of notation we freely identify contexts Γ with their theory λϕ. ϕ ∈ Γ .

2.2 Deduction Systems

We represent deduction systems as inductive predicates of type L(F) → F → P

or similar. The archetypal system is natural deduction (ND), exemplified by an
intuitionistic version Γ � ϕ as defined in Definition 55 of Appendix A. Since
most rules are standard, we only discuss the quantifier rules in more detail as
they rely on the de Bruijn representation of formulas:

↑Γ � ϕ

Γ � ∀̇ϕ
AI

Γ � ∀̇ϕ

Γ � ϕ[t]
AE

Γ � ϕ[t]

Γ � ∃̇ϕ
EI

Γ � ∃̇ϕ ↑Γ, ϕ �↑ψ
Γ � ψ

EE

Note that ↑Γ, ϕ is notation for ϕ :: ↑Γ . In a shifted context ↑Γ there is no
reference to the variable 0 which hence plays the role of an arbitrary but fixed
individual. So if ↑Γ � ϕ then we can conclude Γ � ∀̇ϕ as expressed by the rule
(AI) for ∀-introduction. Similarly, the shifts in the rule (EE) for ∃-elimination
simulate that Γ together with ϕ instantiated to the witness provided by Γ � ∃̇ϕ
proves ψ and hence admits the conclusion that already Γ � ψ. For many proofs
it will be helpful to employ fresh variables explicitly as justified by Lemma 4,
which we state after observing weakening and substitutivity :

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullSyntax.html#form
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullSyntax.html#subst_form
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Lemma 3. If Γ � ϕ, then Δ � ϕ for all Δ ⊇ Γ and Γ [σ] � ϕ[σ] for all σ.

Lemma 4. Given Γ , ϕ, and ψ one can compute a fresh variable x such that

1. ↑Γ � ϕ iff Γ � ϕ[x] and 2. ↑Γ, ϕ �↑ψ iff Γ, ϕ[x] � ψ.

A classical variant Γ �c ϕ of the ND system can be obtained without refer-
ring to ⊥̇ by adding the axiom Γ �c ((ϕ→̇ψ)→̇ϕ)→̇ϕ expressing Peirce’s law
(Definition 56). Then the structural properties stated in the two lemmas above
are maintained while the typical classical proof rules become available.

Deduction systems such as intuitionistic ND introduced above naturally
extend to theories by writing T � ϕ if there is a finite context Γ ⊆ T with
Γ � ϕ. Then T � ϕ satisfies proof rules analogous to Γ � ϕ.

2.3 Synthetic Computability

Since every function definable in constructive type theory is computable, the
standard notions of computability theory can be synthesised by type-level oper-
ations [1,14], eliminating references to a concrete model of computation such as
Turing machines, μ-recursive functions, or the untyped lambda calculus.

Definition 5. Let X be a type and p : X → P be a predicate.

– p is decidable if there is f : X → B with ∀x. p x ↔ f x = tt.
– p is enumerable if there is f : N → O(X) with ∀x. p x ↔ ∃n. f n = �x�.

These two notions generalise to predicates of higher arity as expected.

– X is enumerable if there is f : N → O(X) with ∀x.∃n. f = �x�.
– X is discrete if equality λxy.x = y on X is decidable.
– X is a data type if it is both enumerable and discrete.

We assume that the components FΣ and PΣ of our fixed signature Σ are
data types. Then applying the terminology to the syntax and deductions systems
introduced in the previous sections leads to the following observations.

Fact 6. T and F are data types and Γ � ϕ and Γ �c ϕ are enumerable.

Proof. By the techniques discussed in [14], e.g. Fact 3.19. ��

The standard model-theoretic completeness proofs analysed in Sect. 3 require
the assumption of Markov’s principle. A proposition P : P is called stable if
¬¬P → P and, analogously, a predicate p : X → P is called stable if p x is stable
for all x. A synthetic version of Markov’s principle states that satisfiability of
Boolean sequences is stable (cf. [37]):

MP := ∀f : N → B.¬¬(∃n. f n = tt) → ∃n. f n = tt

Note that MP is trivially implied by excluded middle EM := ∀P : P. P ∨ ¬P .
Moreover, MP regulates the behaviour of computationally tractable predicates:

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullND.html#Weak
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullND.html#nameless_equiv_all'
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FOL.html#enumT_form
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Fact 7. MP implies that enumerable predicates on data types are stable.

Proof. This is Fact 2.18 in [14]. ��

As a consequence of Facts 6 and 7, MP implies that the deduction systems
Γ � ϕ and Γ �c ϕ are stable. In fact, only these stabilities are required for
the standard model-theoretic completeness proofs discussed in the next section
and they are equivalent to MPL, a version of Markov’s principle stated for the
call-by-value λ-calculus L [42,17] and its halting problem E :

MPL := ∀s. ¬¬Es → Es

We will prove the following in Sect. 4:

Lemma 8. MPL, stability of Γ � ϕand stability of Γ �c ϕ are all equivalent.

3 Model-Theoretic Semantics

The first variant of semantics we consider is based on the idea of interpreting
terms as objects in a model and embedding the logical connectives into the meta-
logic. A formula is considered valid if it is satisfied by all models. The simplest
case is Tarski semantics, coinciding with classical deduction via Henkin’s com-
pleteness proof factoring through a (constructive) model-existence theorem [21].
Kripke semantics, coinciding with intuitionistic deduction, add more structure
by connecting several models through an accessibility relation and admit a sim-
pler completeness proof using a universal model. In this section, we only consider
formulas ϕ : F∗ in the →,∀,⊥-fragment.

3.1 Tarski Semantics

Definition 9. A (Tarski) model M over a domain D is a pair of functions

M : ∀f : FΣ .D|f | → D M : ∀P : PΣ .D|P | → P.

Assignments ρ : N → D are extended to evaluations ρ̂ : T → D by ρ̂ x := ρ x
and ρ̂ (f t ) := fM (ρ̂ @ t ) and to formulas via the relation M �ρ ϕ defined by

M �ρ ⊥̇ := ⊥ M �ρ ϕ→̇ψ := M �ρ ϕ → M �ρ ψ

M �ρ P t := PM (ρ̂ @ t ) M �ρ ∀̇ ϕ := ∀a : D.M �a;ρ ϕ

where the assignment a; ρ maps 0 to a and Sx to ρ x. We write M � ϕ if
M �ρ ϕ for all ρ. M is called classical if it validates all instances of Peirce’s
law, i.e. M � ((ϕ→̇ψ)→̇ϕ)→̇ϕ for all ϕ,ψ : F∗. We write M �ρ T if Mρ � ϕ for
all ϕ ∈ T and T � ϕ if M �ρ ϕ for every classical M and ρ with M �ρ T .

We first show that the classical deduction system Γ �c ϕ (restricted to the
considered →,∀,⊥-fragment) is sound for Tarski semantics.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenTarski.html#interp
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Fact 10. Γ �c ϕ implies Γ � ϕ.

Proof. By induction on Γ �c ϕ similar to the soundness proof in [14; Fact 3.14].
The classical Peirce axioms Γ �c ((ϕ→̇ψ)→̇ϕ)→̇ϕ are sound given that we only
consider classical models. ��

Formally, completeness denotes the converse property, i.e. that Γ � ϕ implies
Γ �c ϕ. We now outline a Henkin-style completeness proof for Γ �c ϕ based on
the presentation by Herbelin and Ilik [22]. The main idea is to factor through
a model existence theorem, stating that every consistent context is satisfied by
a syntactic model. The model existence theorem in turn is based on a theory
extension lemma generalising the role of ⊥̇ to an arbitrary substitute ϕ⊥:

Lemma 11. For every closed formula ϕ⊥ and closed T there is T ′ ⊇ T with:

1. T ′ maintains ϕ⊥-consistency, i.e. T �c ϕ⊥ whenever T ′ �c ϕ⊥.
2. T ′ is deductively closed, i.e. ϕ ∈ T ′ whenever T ′ �c ϕ.
3. T ′ respects implication, i.e. ϕ→̇ψ ∈ T ′ iff ϕ ∈ T ′ → ψ ∈ T ′.
4. T ′ respects universal quantification, i.e. ∀̇ϕ ∈ T ′ iff ∀t. ϕ[t] ∈ T ′.

Proof. We fix an enumeration ϕn of F∗ such that x is fresh for ϕn if x ≥ n. The
extension can be separated into three steps, all maintaining ϕ⊥-consistency:

a. E ⊇ T which is exploding, i.e. (ϕ⊥→̇ϕ) ∈ E for all closed ϕ.
b. H ⊇ E which is Henkin, i.e. (ϕn[n]→̇∀̇ϕn) ∈ H for all n.
c. Ω ⊇ H which is maximal, i.e. ϕ ∈ Ω whenever Ω,ϕ �c ϕ⊥ implies Ω �c ϕ⊥.

Note that being exploding allows to use ϕ⊥ analogously to ⊥̇ and that being
Henkin ensures that there is no mismatch between the provability of a universal
formula and all its instances. We first argue why Ω satisfies the claims (1)–(4)
of the extension lemma.

1. Ω is a ϕ⊥-consistent extension of T since all steps maintain ϕ⊥-consistency.
2. Let Ω �c ϕ and assume Ω,ϕ �c ϕ⊥, so Ω �c ϕ⊥. Thus ϕ ∈ Ω per maximality.
3. The first direction is immediate as Ω is deductively closed. We prove the

converse using maximality, so assume Ω,ϕ→̇ψ �c ϕ⊥. It suffices to show that
Ω �c ϕ since then ϕ ∈ Ω, ψ ∈ Ω, and ultimately Ω �c ϕ⊥ follow. Ω �c ϕ can
be derived by proof rules for ϕ⊥ analogous to the ones for ⊥̇.

4. The first direction is again immediate by Ω being deductively closed and the
converse exploits that Ω is Henkin as follows. Suppose ∀t. ϕ[t] ∈ Ω and let ϕ
be ϕn in the given enumeration. Then in particular ϕn[n] ∈ Ω and since Ω is
Henkin also ϕn[n]→̇∀̇ϕn ∈ Ω which is enough to derive ∀̇ϕ ∈ Ω.

We now discuss the three extension steps separately:

a. Since the requirement is unconditional, we just add all needed formulas:

E := T ∪ {ϕ⊥→̇ϕ | ϕ closed}
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We only have to argue that E maintains ϕ⊥-consistency over T . So sup-
pose E �c ϕ⊥, meaning that Γ �c ϕ⊥ for some Γ ⊆ E . We show that
all added instances of explosion for ϕ⊥ in Γ can be eliminated. Indeed, for
Γ = Δ,ϕ⊥→̇ϕ we have Δ �c (ϕ⊥→̇ϕ)→̇ϕ⊥ and hence Δ �c ϕ⊥ by the Peirce
rule. Thus by iteration there is Γ ′ ⊆ T with Γ ′ �c ϕ⊥, justifying T �c ϕ⊥.

b. As above, to make E Henkin we just add all necessary Henkin-axioms

H := E ∪ {ϕn[n]→̇∀̇ϕn | n : N}

and justify that the extension maintains ϕ⊥-consistency. So let Γ �c ϕ⊥ for
some Γ ⊆ H, we again show that all added instances can be eliminated. Hence
suppose Γ = Δ,ϕn[n]→̇∀̇ϕn. Once can show that in a context Δ′ extending
Δ by suitable instances of ϕ⊥-explosion one can derive Δ′ �c ϕ⊥. In this
derivation one exploits that n is fresh for ϕn and that the input theory E is
closed. Thus ultimately E �c ϕ⊥.

c. The last step maximises H by adding all formulas maintaining ϕ⊥-
consistency:

Ω0 := H Ωn+1 := Ωn∪{ϕn | Ωn, ϕn �c ϕ⊥ implies Ωn �c ϕ⊥} Ω :=
⋃

n:N

Ωn

Note that Ω maintains ϕ⊥-consistency over all Ωn and hence H by construc-
tion so it remains to justify that Ω is maximal. So suppose Ω,ϕn �c ϕ⊥
implies Ω �c ϕ⊥, we have to show that ϕn ∈ Ω. This is the case if the condi-
tion in the definition of Ωn+1 is satisfied, so let Ωn, ϕn �c ϕ⊥. Then by the
assumed implication Ω �c ϕ⊥ and since Ω maintains ϕ⊥-consistency over Ωn

also Ωn �c ϕ⊥ as required. ��

Since the proof of this lemma relies on the input theory T to be closed, we
only consider completeness for closed formulas. This is in fact enough for usual
applications but we refer to the Coq development and [54] for a technically more
involved generalisation incorporating formulas with free variables.

The generalisation via the falsity substitute ϕ⊥ will become important later,
for now the instance ϕ⊥ := ⊥̇ suffices. Also note that in usual jargon the exten-
sion T ′ of a consistent theory T is called maximal consistent, as no further
formulas can be added to T ′ without breaking consistency.

Maximal consistent theories T give rise to equivalent syntactic models MT
over the domain T of terms by setting fT t := f t and P T t := (P t ∈ T ). We
then observe that MT �σ ϕ iff ϕ[σ] ∈ T for all substitutions σ by a straighfor-
ward induction on ϕ using the properties stated in Lemma 11. Hence in particular
MT �id ϕ iff ϕ ∈ T for the identity substitution id x := x. From this observation
we directly conclude the model existence theorem:

Theorem 12. Every closed consistent theory is satisfied in a classical model.

Proof. Let T be closed and consistent and let T ′ be its extension per Lemma
11 for ϕ⊥ := ⊥̇. To show MT ′ �id T , let ϕ ∈ T , hence ϕ ∈ T ′. Then since MT ′

is equivalent to T ′ we conclude MT ′ �id ϕ as desired. Finally, MT ′ is classical
due to (2) of Lemma 11. ��
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The model existence theorem yields completeness up to double negation:

Fact 13. T � ϕ implies ¬¬(T �c ϕ) for closed T and ϕ.

Proof. Suppose that T � ϕ for closed T and ϕ and assume T ��c ϕ which is
equivalent to T , ¬̇ϕ being consistent. But then there must be a model of T , ¬̇ϕ
in conflict to the assumption T � ϕ. ��

In fact, the remaining double negation elimination turns out to be necessary:

Fact 14. Completeness of Γ �c ϕ is equivalent to stability of Γ �c ϕ.

Proof. Assuming stability, Fact 13 directly yields the completeness of Γ �c ϕ.
Conversely, assume completeness and let ¬¬(Γ �c ϕ). Employing completeness,
to get Γ �c ϕ it suffices to show Γ, ¬̇ϕ � ⊥̇, so suppose M �ρ Γ, ¬̇ϕ for some M
and ρ. As we now aim at a contradiction, we can turn ¬¬(Γ �c ϕ) into Γ �c ϕ
and therefore obtain Γ �c ϕ by soundness, a conflict to M �ρ Γ, ¬̇ϕ. ��

Hence, we can characterise completeness of classical ND as follows.

Theorem 15. 1. Completeness of Γ �c ϕ is equivalent to MPL.
2. Completeness of T �c ϕ for enumerable T is equivalent to MP.
3. Completeness of T �c ϕ for arbitrary T is equivalent to EM.

Proof. 1. By Fact 14 completeness is equivalent to the stability of Γ �c ϕ which
is shown equivalent to MPL in Sect. 4.

2. T �c ϕ for enumerable T is enumerable, hence stable under MP and thus
complete per Fact 13. For the converse, assume a function f : N → B and
consider T := (λϕ. ϕ = ⊥̇∧∃n. f n = tt). Since T is enumerable, completeness
yields that T � ⊥̇ is equivalent to T �c ⊥̇ which in turn is equivalent to
∃n. f n = tt. Then since T � ⊥̇ is stable so must be ∃n. f n = tt.

3. EM particularly implies that T �c ϕ is stable and hence complete. Conversely
given a proposition P : P, completeness for T := (λϕ. ϕ = ⊥̇ ∧ P ) yields the
stability of P with an argument as in (2). ��

Having analysed the usual Henkin-style completeness proof, we now turn
to its constructivisation. The central observation is that completeness already
holds constructively for the minimal →,∀-fragment, by an elaboration of the
classical proof for the minimal fragment given in [45]. To this end, we further
restrict the deduction system and semantics to the minimal fragment and prove
completeness via a suitable form of model existence.

Lemma 16. In the →,∀-fragment, for closed T and ϕ there is a classical
model M and an assignment ρ s.t. (1) M �ρ T and (2) M �ρ ϕ implies T �c ϕ.

Proof. Let T ′ be the extension of T for ϕ⊥ := ϕ. As before, we have MT ′ �id T ′.
So now let MT ′ �id ϕ, then ϕ ∈ T ′ and T �c ϕ by (1) of Lemma 11. ��

Corollary 17. In the →,∀-fragment, Γ � ϕ implies Γ �c ϕ for closed Γ and ϕ.
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As opposed to completeness for fomulas incorporating ⊥̇, completeness in
the minimal fragment does not rely on consistency requirements. Consequently,
if these requirements are eliminated by allowing models treating inconsistency
more liberal, completeness for formulas with ⊥̇ can be established construc-
tively (cf. [53,30]).

So we now turn back to the →,∀,⊥-fragment and define a satisfaction rela-
tion M �A

ρ ϕ for arbitrary propositions A with the relaxed rule (M �A
ρ ⊥̇) := A.

A model M is A-exploding if M �A ⊥̇ → ϕ for all ϕ and exploding if it is A-
exploding for some choice of A. Note that A := � and PM t := � in particular
yields an exploding model satisfying all formulas, hence accommodating incon-
sistent theories. This leads to the following formulation of model existence.

Lemma 18. For every closed theory T there is an exploding classical model M
and an assignment ρ such that (1) M �A

ρ T and (2) M �A
ρ ⊥̇ implies T �c ⊥̇.

Proof. Let T be closed and let T ′ be its extension for ϕ⊥ := ⊥̇. We set A :=
⊥̇ ∈ T ′ and observe that the syntactic model MT ′ still coincides with T ′, i.e.
MT ′ �A

σ ϕ iff ϕ[σ] ∈ T ′. Hence we have (1) MT ′ �A
id T . Moreover, MT ′ is

A-exploding since proving MT ′ �A
σ ⊥̇ → ϕ in this case means to prove that

⊥̇→̇ϕ[σ] ∈ T ′, a straightforward consequence of T ′ being deductively closed.
Finally, (2) follows from (1) of Lemma 11 as seen before. ��

We write Γ �e ϕ if M �A
ρ ϕ for all A : P and A-exploding M and ρ with

M �A
ρ Γ and finally establish completeness with respect to exploding models:

Fact 19. Γ �e ϕ implies Γ �c ϕ for closed Γ and ϕ.

Proof. Let Γ �e ϕ, then Γ, ¬̇ϕ �c ⊥̇ follows by Lemma 18 for T := Γ, ¬̇ϕ. ��

3.2 Kripke Semantics

Turning to intuitionistic logic, we present Kripke semantics immediately gener-
alised to arbitrary interpretations of falsity.

Definition 20. A Kripke model K over a domain D is a preorder (W,�) with

K : ∀f : FΣ .D|f | → D K : ∀P : PΣ .W → D|P | → P ⊥K : W → P.

The interpretations of predicates and falsity are required to be monotone, i.e.
PK

v a → PK
w a and ⊥K

v → ⊥K
w whenever v � w. Assignments ρ and their term

evaluations ρ̂ are extended to formulas via the relation w �ρ ϕ defined by

w �ρ ⊥̇ := ⊥K
w w �ρ ϕ→̇ψ := ∀v � w. v �ρ ϕ → v �ρ ψ

w �ρ P t := PK
w (ρ̂ @ t ) w �ρ ∀̇ϕ := ∀a : D.w �a;ρ ϕ

We write K � ϕ if w �ρ ϕ for all ρ and w. K is standard if ⊥K
w implies ⊥ for

all w and exploding if K � ⊥̇→̇ϕ for all ϕ. We write T � ϕ if K �ρ ϕ for all
standard K and ρ with K �ρ T , and T �e ϕ when relaxing to exploding models.
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Note that standard models are exploding, hence T �e ϕ implies T � ϕ.
Moreover, the monotonicity required for the predicate and falsity interpreta-
tions lifts to all formulas, i.e. w �ρ ϕ implies v �ρ ϕ whenever w � v. This
property together with the usual facts about the interaction of assignments and
substitutions yields soundness:

Fact 21. Γ � ϕ implies Γ �e ϕ.

Proof. By induction on Γ � ϕ and analogous to [14; Fact 3.34]. ��

Turning to completeness, instead of showing that Γ �e ϕ implies Γ � ϕ
directly, we follow Herbelin and Lee [23] and reconstruct a formal derivation in
the normal sequent calculus LJT, hence implementing a cut-elimination proce-
dure. LJT is defined by judgements Γ ⇒ϕ and Γ ;ψ⇒ϕ for a focused formula ψ:

Γ ;ϕ⇒ϕ
A

Γ ;ϕ⇒ψ ϕ ∈ Γ

Γ ⇒ψ
C

Γ ⇒ϕ Γ ;ψ⇒θ

Γ ;ϕ→̇ψ⇒θ
IL

Γ, ϕ⇒ψ

Γ ⇒ϕ→̇ψ
IR

Γ ;ϕ[t]⇒ψ

Γ ; ∀̇ϕ⇒ψ
AL

↑Γ ⇒ϕ

Γ ⇒∀̇ϕ
AR Γ ⇒⊥̇

Γ ⇒ϕ
E

Fact 22. Every sequent Γ ⇒ϕ can be translated into a normal derivation Γ � ϕ.

Proof. By simultaneous induction on both forms of judgements, where every
sequent Γ ;ψ⇒ϕ is translated to an implication from Γ � ψ to Γ � ϕ. ��

By the previous fact, completeness for LJT implies completeness for intu-
itionistic ND. The technique to establish completeness for Kripke semantics is
based on universal models coinciding with intuitionistic provability. We in fact
construct two syntactic Kripke models over the domain T.

– An exploding model U on contexts s.t. Γ �U
σ ϕ iff Γ ⇒ϕ[σ].

– A standard model C on consistent contexts s.t. Γ �C
σ ϕ iff ¬¬(Γ ⇒ϕ[σ]).

These constructions are adaptions of those in [54], which in turn are based
on the proof and comments in [23]. We begin with the exploding model U .

Definition 23. The model U over the domain T of terms is defined on the
contexts Γ preordered by inclusion ⊆. Further, we set:

f U d := f d P U
Γ d := Γ ⇒P d ⊥U

Γ := Γ ⇒⊥̇

The desired properties of U can be derived from the next lemma, which takes
the shape of a normalisation-by-evaluation procedure [3,10].

Lemma 24. In the universal Kripke model U the following hold.

1. Γ �σ ϕ → Γ ⇒ϕ[σ]
2. (∀Γ ′ψ. Γ ⊆ Γ ′ → Γ ′ ;ϕ[σ]⇒ψ → Γ ′⇒ψ) → Γ �σ ϕ
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Proof. We prove (1) and (2) at once by induction on ϕ generalising Γ and σ.
We only discuss the case of implications ϕ→̇ψ in full detail.

1. Assuming ∀Γ ′. Γ ⊆ Γ ′ → Γ ′ �σ ϕ → Γ ′ �σ ψ, one has to derive that
Γ ⇒(ϕ→̇ψ)[σ]. Per (IR) and inductive hypothesis (2) for ψ it suffices to show
Γ, ϕ[σ] �σ ψ. Applying the inductive hypothesis (2) for ϕ and the assumption,
it suffices to show that Γ ′ ;ϕ[σ]⇒θ[σ] implies Γ ′ ⇒θ[σ] for any Γ, ϕ[σ] ⊆ Γ ′

and θ, which holds per (C).
2. Assuming ∀Γ ′ θ. Γ ⊆ Γ ′ → Γ ′ ; (ϕ→̇ψ)[σ] ⇒ θ → Γ ′ ⇒ θ one has to deduce

Γ ′ �σ ϕ entailing Γ ′ �σ ψ for any Γ ⊆ Γ ′. Because of the inductive hypothesis
(2) for ψ it suffices to show Δ ;ψ[σ] ⇒ θ implying Δ ⇒ θ for any Γ ′ ⊆ Δ. By
using the assumption, Δ⇒θ reduces to Δ ; (ϕ→̇ψ)[σ]⇒θ. This follows by (IL),
as the assumption Γ ′ �σ ϕ implies Δ⇒ϕ[σ] per inductive hypothesis (2). ��

Corollary 25. U is exploding and satisfies Γ �σ ϕ iff Γ ⇒ϕ[σ].

Proof. Suppose that Γ ⇒ ⊥̇, then (2) of Lemma 24 yields that Γ �σ ϕ for
arbitrary ϕ. Thus U is exploding. The claimed equivalence then follows by (1)
of Lemma 24 and soundness of LJT. ��

Being universal, U witnesses completeness for exploding Kripke models:

Fact 26. 1. Γ �e ϕ implies Γ ⇒ϕ.
2. In the →,∀-fragment, Γ � ϕ implies Γ ⇒ϕ.

Proof. 1. Since Γ �U
id Γ we have that Γ �e ϕ implies Γ �U

id ϕ and hence Γ ⇒ϕ.
2. In the minimal fragment, ⊥̇ remains uninterpreted and hence imposes no

condition on the models. Hence U yields the completeness in this case.

Before we move on to completeness for standard models, we illustrate how
the previous fact already establishes the cut rule for LJT.

Lemma 27. If Γ ⇒ϕ and Γ ;ϕ⇒ψ, then Γ ⇒ψ.

Proof. By the translation given in Fact 22, we obtain a derivation Γ � ψ from
the two assumptions. This can be turned into Γ ⇒ψ using soundness (Fact 21)
and completeness (Fact 26).

We now construct the universal standard model C as a refinement of U . As
standard models require that ⊥K

v implies ⊥ for any v, the model U has to be
restricted to the consistent contexts, those which do not prove ⊥̇.

Definition 28. The model C over the domain T of terms is defined on the
consistent contexts Γ �⇒⊥̇ preordered by inclusion ⊆. Further, we set:

f C d := f d P C
Γ d := ¬¬(Γ ⇒P d) ⊥ C

Γ := ⊥

Note that C is obviously standard and that we weakened the interpretation
of atoms to doubly negated provability. This admits the following normalisation-
by-evaluation procedure for doubly negated sequents:
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Lemma 29. In the universal Kripke model C the following hold.

1. Γ �σ ϕ → ¬¬(Γ ⇒ϕ[σ])
2. (∀Γ ′ψ. Γ ⊆ Γ ′ → Γ ′ ;ϕ[σ]⇒ψ → ¬¬(Γ ′⇒ψ)) → Γ �σ ϕ

Proof. We prove (1) and (2) at once by induction on ϕ generalising Γ and σ.
Most cases are completely analogous to those in Lemma 24. Therefore we only
discuss the crucial case (1) for implications ϕ→̇ψ.

1. Assuming Γ �σ ϕ→̇ψ we need to derive ¬¬(Γ ⇒ϕ[σ]→̇ψ[σ]). So we assume
¬(Γ ⇒ϕ[σ]→̇ψ[σ]) and derive a contradiction. Because of the negative goal,
we may assume that either Γ, ϕ[σ] is consistent or not. In the positive case,
we proceed as in Lemma 24 since the extended context is a node in C. On
the other hand, if Γ, ϕ[σ] ⇒ ⊥̇, then Γ, ϕ[σ] ⇒ ψ[σ] by (E) and hence Γ ⇒
ϕ[σ]→̇ψ[σ] by (IR), contradicting the assumption. ��

Corollary 30. C satisfies Γ �σ ϕ iff ¬¬(Γ ⇒ϕ[σ]).

Proof. The first direction is (1) of Lemma 29 and the converse follows with (2)
since ¬¬(Γ ⇒ϕ[σ]) and Γ ′ ;ϕ[σ]⇒ψ for Γ ′ ⊇ Γ together imply ¬¬(Γ ′⇒ψ) via
the cut rule established in Lemma 27. ��

The advantage of the additional double negations is that, in contrast to the
proof in [23], we only need a single application of stability to derive completeness.
Thus we can prove the completeness of Γ � ϕ admissible in Sect. 4.

Fact 31. 1. Γ � ϕ implies Γ ⇒ϕ, provided that Γ ⇒ϕ is stable.
2. Γ � ϕ implies Γ � ϕ, provided that Γ � ϕ is stable.

Proof. 1. Since Γ � ϕ implies ¬¬(Γ ⇒ϕ), we can conclude Γ ⇒ϕ per stability.
2. Since Γ ⇒ϕ iff Γ � ϕ per soundness and completeness (Facts 21 and 26). ��

Conversely, unrestricted completeness requires the stability of classical ND.

Fact 32. Completeness of Γ ⇒ϕ implies stability of Γ �c ϕ.

Proof. Assume completeness of Γ ⇒ ϕ and suppose ¬¬(Γ �c ϕ). We prove
Γ �c ϕ, so it suffices to show Γ, ¬̇ϕ �c ⊥̇. Employing a standard double nega-
tion translation ϕN on formulas ϕ, it is equivalent to establish (Γ, ¬̇ϕ)N ⇒ ⊥̇.
Applying completeness, however, we may assume a standard model K with
K �ρ (Γ, ¬̇ϕ)N and derive a contradiction. Hence we conclude Γ �c ϕ and
so ΓN � ϕN from ¬¬(Γ �c ϕ) and soundness, in conflict to K �ρ (Γ, ¬̇ϕ)N . ��

Thus, the completeness of intuitionistic ND is similar to the classical case.

Theorem 33. 1. Completeness of Γ � ϕ is equivalent to MPL.
2. Completeness of T � ϕ for enumerable T implies MP.
3. Completeness of T � ϕ for arbitrary T implies EM.
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4 On Markov’s Principle

We show that the stability of Γ �c ϕ and Γ � ϕ is equivalent to an object-
level version of Markov’s principle referencing procedures in a concrete model of
computation. For formalisation purposes, we will use the call-by-value λ-calculus
L [42,17] as model of computation. Since on paper the same proofs can be carried
out for any model of computation we will not go into details of L. We only
need two notions: first, L-enumerability [15; Definition 6], which is defined like
synthetic enumerability, but where the enumerator is an L-computable function.
Secondly, the halting problem for L, defined as Es := “the term s terminates”.

We define the object-level Markov’s principle MPL as stability of E :

MPL := ∀s. ¬¬Es → Es

MPL can also be phrased similarly to MP with a condition on the sequence:

Lemma 34 ([17; Theorem 45]). MPL is equivalent to

∀f : N → B. L-computable f → ¬¬(∃n. f n = tt) → ∃n. f n = tt.

Corollary 35. MP implies MPL.

We show Lemma 8, i.e. that MPL is equivalent to both the stability of �c and
� for finite contexts, thereby establishing that completeness of provability for
standard Tarski and Kripke semantics for finite theories is equivalent to MPL.

Lemma 36 ([14; Fact 2.16]). Let p and q be predicates. If p many-one reduces
to q (i.e. ∃f.∀x. px ↔ q(fx), written p � q) and q is stable, then p is stable.

Thus, in order to prove the equivalence of the stability of E , Γ � ϕ, and
Γ �c ϕ, it suffices to give many-one reductions between them. We start with the
two simpler reductions:

Lemma 37. �c � �, and thus stability of Γ � ϕ implies the stability of Γ �c ϕ.

Proof. Using a standard double-negation translation proof. ��

Lemma 38. E � �c, and thus stability of Γ �c ϕ implies MPL.

Proof. E reduces to the halting problem of Turing machines [55], which reduces
to the Post correspondence problem [13], which in turn reduces to �c by adapt-
ing [14; Corollary 3.49]. ��

Since p � E for all L-enumerable predicates p [15; Theorem 7], it suffices to
give an L-computable enumeration of type N → L(F) of provable formulas � ϕ.
Note that we continue to assume signatures to be (synthetically) enumerable
and do not have to restrict to L-enumerability, which is enabled by the following
signature extension lemma:

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#MP_MPL
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#cprv_iprv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#halt_cprv
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Lemma 39. Let ι be an invertible embedding from Σ to Σ′. Then � ϕ over Σ if
and only if � ιϕ over Σ′, where ιϕ is the recursive application of ι to formulas.

Proof. Γ � ϕ → ιΓ � ιϕ follows trivially by induction. For the inverse direction,
we show that Kripke models M over Σ can be extended to Kripke models ιM
over Σ s.t. ρ, u �M ϕ ↔ ρ, u �ιM ιϕ. Then ιΓ � ιϕ → Γ � ϕ follows from
soundness and completness w.r.t. exploding models. ��

Lemma 40. Γ � ϕ is L-enumerable for any enumerable signature Σ.

Proof. Since Σ is enumerable, it can be injectively embedded via ι into the
maximal signature Σmax := (N2,N2) where the arity functions are just the second
projections. Since N

2 is L-enumerable, terms and formulas over Σmax are also
L-enumerable, and thus provability over Σmax is L-enumerable. By Lemma 39
we obtain that provability over Σ is L-enumerable. ��

Corollary 41. �� E, and thus MPL implies the stability of Γ � ϕ.

We conclude the section with observations on independence and admissible of
several statements in Coq’s type theory pCuIC. By independence of a statement
P , we mean that neither P nor ¬P is provable in pCuIC without assumptions.
By admissibility of a statement ∀x. P (x) → Q(x) we mean that whenever P (t)
is provable in pCuIC for a concrete term t without assumptions, Q(t) is as well.
Pédrot and Tabareau [41] show MP independent (Corollary 41) and admissible
(Theorem 33). This transports to MPL as well as stability of deduction systems
and completeness with respect to model-theoretic semantics.

Theorem 42. The following are all independent and admissible in pCuIC:

1. MPL

2. Stability of both Γ �c ϕ and Γ � ϕ.
3. Completeness of T �c ϕ for enumerable T w.r.t. standard Tarski semantics.
4. Completeness of Γ �c ϕ w.r.t. standard Tarski semantics.
5. Completeness of Γ �c ϕ w.r.t. standard Tarski semantics.

Proof. We exemplarily show (1) and (4), the other proofs are similar.
For (1), MPL is consistent since it is a consequence of EM. Lemma 40 in [41]

shows that no theory conservative over the calculus of inductive constructions
(CIC) can prove both the independence of premise rule IP and MP, by turning
these assumptions into a decider for the halting problem of the untyped term
language of CIC. One can adapt the proof to show that pCuIC cannot prove
both IP and MPL, by constructing a decider for the L-halting problem instead,
which yields a contradiction as well. The admissibility of MPL follows from the
admissibility of MP since a single application of MP suffices to derive MPL.

For (4), independence follows directly from (1) and Theorem 15. For admis-
sibility, assume that Γ � ϕ is provable in pCuIC. By Fact 13, ¬¬(Γ �c ϕ) is
provable in pCuIC. Thus by (2), Γ �c ϕ is provable in pCuIC. ��

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Extend.html#prv_embed
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.LEnum.html#enum_sprvie
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#iprv_halt
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#MPL_independent
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5 Algebraic Semantics

In contrast to the model-theoretic semantics discussed in Sect. 3, algebraic
semantics are not based on models interpreting the non-logical symbols but
on algebras suitable for interpreting the logical connectives of the syntax. A for-
mula is valid if it is satisfied by all algebras and completeness follows from the
observation that deduction systems have the corresponding algebraic structure.
Following [46], we discuss complete Heyting and Boolean algebras coinciding
with intuitionistic and classical ND, respectively. We consider all formulas ϕ : F.

Definition 43. A Heyting algebra consists of a preorder (H,≤) and operations

0 : H, � : H → H → H, � : H → H → H, ⇒: H → H → H

for bottom, meet, join, and implication satisfying the following properties:
1. 0 ≤ x
2. z � x ≤ y ↔ z ≤ x ⇒ y

3. z ≤ x ∧ z ≤ y ↔ z ≤ x � y
4. x ≤ z ∧ y ≤ z ↔ x � y ≤ z

Moreover, H is complete if there is a constant
�

: (H → P) → H for arbitrary
meets satisfying (∀y ∈ P. x ≤ y) ↔ x ≤

�
P . Then H also has arbitrary joins⊔

P :=
�

(λx.∀y ∈ P. y ≤ x) satisfying (∀y ∈ P. y ≤ x) ↔
⊔

P ≤ x.

Arbitrary meets and joins indexed by a function F : I → H on a type I
are defined by

�

i F i :=
�

(λx.∃i. x = F i) and
⊔

i F i :=
⊔

(λx.∃i. x = F i),
respectively. As we do not require ≤ to be antisymmetric in order to avoid
quotient constructions, we establish equational facts about Heyting algebras only
up to equivalence x ≡ y := x ≤ y ∧ y ≤ x rather than actual equality.

Note that every Heyting algebra embeds into its down set algebra consisting
of the sets x⇓ := λy. y ≤ x. The MacNeille completion [36] adding arbitrary
meets and joins is a refinement of this embedding.

Fact 44. Every Heyting algebra H embeds into a complete Heyting algebra Hc,
i.e. there is a function f : H → Hc with x ≤ y ↔ f x ≤c f y and:

1. f 0 ≡ 0c

2. f (x ⇒ y) ≡ f x ⇒c f y
3. f (x � y) ≡ f x �c f y
4. f (x � y) ≡ f x �c f y

Proof. Given a set X : H → P, we define the sets LX := λx.∀y ∈ X.x ≤ y
of lower bounds and UX := λx.∀y ∈ X. y ≤ x of upper bounds of X. We say
that a set X is down-complete if L (UX) ⊆ X. Note that in particular down sets
x⇓ are down-complete and that down-complete sets are downwards closed, i.e.
satisfy x ∈ X whenever x ≤ y for some y ∈ X.

Now consider the type Hc := ΣX.L (UX) ⊆ X of down-complete sets pre-
ordered by set inclusion X ⊆ Y . It is immediate by construction that the oper-
ation

�

c P :=
⋂

P defines arbitrary meets in Hc. Moreover, it is easily verified
that further setting

0c := 0⇓ X�cY := X∩Y X�cY := L (U (X∪Y )) X ⇒c Y := λx. ∀y ∈ X. x�y ∈ Y

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Heyting.html#HeytingAlgebra
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Heyting.html#completion_calgebra
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turns Hc into a (hence complete) Heyting algebra. The only non-trivial case is
implication, where X ⇒c Y ≡

�

c(λZ.∃x ∈ X.Z ≡ (λy. y � x ∈ Y )) is a helpful
characterisation to show that X ⇒c Y is down-complete whenever Y is.

Finally, x⇓ clearly is a structure preserving embedding as specified. ��

We now define how formulas can be evaluated in a complete Heyting algebra.

Definition 45. Given a complete Heyting algebra H we extend interpretations
[[ ]] : ∀P : PΣ .T|P | → H of atoms to formulas using size recursion by

[[⊥̇]] := 0 [[ϕ∧̇ψ]] := [[ϕ]] � [[ψ]] [[∀̇ϕ]] :=
�

t[[ϕ[t]]]

[[ϕ→̇ψ]] := [[ϕ]] ⇒ [[ψ]] [[ϕ∨̇ψ]] := [[ϕ]] � [[ψ]] [[∃̇ϕ]] :=
⊔

t[[ϕ[t]]]

and to contexts by [[Γ ]] :=
�

λx.∃ϕ ∈ Γ. x = [[ϕ]]. A formula ϕ is valid in H
whenever x ≤ [[ϕ]] for all x : H.

We first show that intuitionistic ND is sound for this semantics.

Fact 46. Γ � ϕ implies ∀σ. [[Γ [σ]]] ≤ [[ϕ[σ]]] in every complete Heyting algebra.

Proof. By induction on Γ � ϕ, all cases but (DE) and (EE) are trivial. ��

Corollary 47. Γ � ϕ implies [[Γ ]] ≤ [[ϕ]] in every complete Heyting algebra.

Next turning to completeness, a strategy reminiscent to the case of Kripke
semantics can be employed by exhibiting a universal structure, the so-called
Lindenbaum algebra, that exactly coincides with provability.

Fact 48. The type F of formulas together with the preorder ϕ � ψ and the logical
connectives as corresponding algebraic operations forms a Heyting algebra.

We write L for the Lindenbaum algebra (Fact 48) and Lc for its MacNeille
completion (Fact 44). Formulas are evaluated in Lc according to Definition 45
using the syntactic atom interpretation [[P t]] := (P t )⇓ .

Lemma 49. Evaluating ϕ in Lc yields the set of all ψ with ψ � ϕ, i.e. [[ϕ]] ≡ ϕ⇓ .

Proof. By size induction on ϕ. The case for atoms is by construction and the
cases for all connectives but the quantifiers are immediate since ⇓ preserves the
structure of L as specified in Fact 44. ��

Theorem 50. If ϕ is valid in every complete Heyting algebra, then � ϕ.

Proof. If ϕ is valid, then Lemma 49 implies that ψ � ϕ forall ψ. By for instance
choosing ψ := ⊥̇→̇⊥̇ we can derive � ϕ since � ⊥̇→̇⊥̇. ��

A Heyting algebra is Boolean if it satisfies (x⇒y)⇒x ≤ x for all x and y.

Theorem 51. If ϕ is valid in every complete Boolean algebra, then �c ϕ.

Proof. Analogous to the intuitionistic case, using that the Lindenbaum algebra
over ϕ �c ψ and hence its MacNeille completion are Boolean. ��

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#hsat
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#Soundness'
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#Soundness
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#lb_alg
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#lindenbaum_hsat
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#hcompleteness
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#bcompleteness
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6 Game Semantics

Dialogues are games modeling a proponent defending the validity of a formula
against an opponent. In the terminology of Felscher [11], the dialogues we con-
sider in this section are the intuitionistic E-dialogues, generalised over their local
rules (F,Fa,A,�,D−). Given abstract types for formulas F and attacks A, the
relation a |ψ � ϕ states that a player may attack ϕ : F with a : A by possibly
admitting a unique ψ : O(F). If ψ = ∅, no admission is made. Each a : A has an
associated set Da of formulas that may be admitted to fend off a. Special rules
restrict when the proponent may admit atomic formulas, members of the set Fa.
We write a � ϕ for a | ∅ � ϕ. The local rules of first-order logic are given below
with atomic formulas F

a := {P t | P : PΣ}.

a∨̇ � ϕ∨̇ψ Da∨̇ = {ϕ, ψ} a→̇ | �ϕ� � ϕ→̇ψ Da→̇ = {ψ} aL � ϕ∧̇ψ DaL = {ϕ}
at � ∀̇ϕ Dat = {ϕ[t]} a⊥̇ � ⊥̇ Da⊥̇ = {} aR � ϕ∧̇ψ DaR = {ψ}
a∃̇ � ∃̇ϕ Da∃̇ = {ϕ[t] | t : T}

In contrast to their usual presentation as sequences of alternating moves, we
define dialogues as state transition systems over elements (Ao, c) of the type
L(F) × A containing the opponent’s admissions (Ao) and last attack (c). The
proponent opens each round by picking a move. She can defend against the
opponent’s attack c by admitting a justified defense formula ϕ ∈ Dc, meaning
ϕ ∈ F

a implies ϕ ∈ Ao. Alternatively, she can launch an attack a against any of
the opponent’s admissions if the admission resulting from a is justified.

ϕ ∈ Dc justified Ao ϕ

(Ao, c) �p ϕ
PD

ϕ ∈ Ao a |ψ � ϕ justified Ao ψ

(Ao, c) �p (a, ϕ)
PA

Given such a move m, the opponent reacts to it by transforming the state
s into s′ (written as s ; m �o s′). The opponent may attack the proponent’s
defense formula (OA), defend against her attack (OD) or counter her attack by
attacking her admission (OC). We define �ϕ� :: A := ϕ :: A and ∅ :: A := A.

c′ |ψ � ϕ

(Ao, c) ;ϕ �o (ψ :: Ao, c
′)

OA
ψ ∈ Da

(Ao, c) ; (a, ϕ) �o (ψ :: Ao, c)
OD

a | �ψ� � ϕ c′ | θ � ψ

(Ao, c) ; (a, ϕ) �o (θ :: Ao, c
′)

OC

A formula ϕ is then considered E-valid if it is non-atomic and for all c |ψ�ϕ,
there is a winning strategy Win ([ψ], c) as defined below.

s �p m ∀s′. s ;m �o s′ → Win s′

Win s

Following the strategy of [47], we first prove the soundness and completeness
of the sequent calculus LJD which is defined in terms of the same notions as
the dialogues. Indeed, as witnessed in the proofs of soundness and complete-
ness, derivations of LJD are isomorphic to winning strategies, the R- and L-rule
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corresponding to a proponent defense and attack, their premises matching the
possible opponent responses to each move. The statement Γ ⇒D S means that
the context Γ entails the disjunction of the formulas contained in the set S.

ϕ ∈ S justified Γ ϕ ∀a | ψ � ϕ. Γ, ψ ⇒D Da

Γ ⇒D S R

ϕ ∈ Γ justified Γ ψ a | ψ � ϕ ∀ θ ∈ Da. Γ, θ ⇒D S ∀a′ | τ � ψ. Γ, τ ⇒D Da′

Γ ⇒D S L

Theorem 52. Any formula ϕ is E-valid if and only if one can derive [] ⇒D {ϕ}.
Proof. Win (Ao, c) → Ao ⇒D Dc holds per induction on Win (Ao, c). From this,
completeness follows with an application of the R-rule, transforming Win ([ψ], c)
for any c |ψ � ϕ into [ψ] ⇒D Dc. Soundness can be proven symmetrically. ��

To arrive at a more traditional soundness and completeness result, we show
that one can translate between derivations in LJD and the intuitionistic sequent
calculus LJ deriving sequents Γ ⇒J ϕ as defined in Definition 58 of Appendix A.

Lemma 53. One can derive Γ ⇒D {ϕ} if and only if one can derive Γ ⇒J ϕ.

Proof. Completeness is generalised as below and shown per induction on Γ⇒DS:

Γ ⇒D S → ∀ϕ. (∀ψ, Γ ⊆ Γ ′. Γ ′ ⇒J ψ → Γ ′ ⇒J ϕ) → Γ ⇒J ϕ

Soundness follows analogously from Γ ⇒J ϕ → ∀σ. Γ [σ] ⇒D {ϕ[σ]}. ��
Corollary 54. Any formula ϕ is E-valid if and only if one can derive [] ⇒J ϕ.

7 Discussion

We have analysed the completeness of common deduction systems for first-order
logic with regards to various explanations of logical validity. Model-theoretic
semantics are the most direct implementation of the idea that terms represent
objects of a domain of discourse. Particularly in a formal meta-theory such as con-
structive type theory, model-theoretic completeness justifies the common practice
to verify consequences of a first-order axiomatisation by studying models satisfy-
ing corresponding meta-level axioms. However, model-theoretic semantics typi-
cally do not admit constructive completeness and, if not generalised to explod-
ing models, require Markov’s principle as soon as falsity is involved. Contrarily,
evidence for the validity of a first-order formula in algebraic semantics and game
semantics can be algorithmically transformed into syntactic derivations.

Of course, there are more semantics than the selection studied in this paper.
For instance, there are hybrid variants such as interpreting both terms in a
model and logical operations in an algebra, or dialogues with atomic formulas
represented as underlying games. More generally, there are entirely different
approaches like realisability semantics or proof-theoretic semantics, all coming
with interesting completeness problems worth analysing in constructive type
theory. Ideas for future work are outlined after a brief summary of related work.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Sorensen.html#esoundness
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.DialogFull.html#fprv_Dprv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.DialogFull.html#evalid_fprv
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7.1 Related Work

Our analysis of completeness in constructive type theory was motivated by pre-
vious work [14], carried out in Wehr’s bachelor’s thesis [54], and is directly influ-
enced by multiple prior works. In their analysis of Henkin’s proof, Herbelin and
Ilik [22] give a constructive model existence proof and the constructivisation
of completeness via exploding models. Herbelin and Lee [23] demonstrate the
constructive Kripke completeness proof for minimal models and mention how to
extend the approach to standard and exploding models. Scott [46] establishes
completeness of free logic interpreted in a hybrid semantics comprising model-
theoretic and algebraic components. Urzyczyn and Sørensen [47] give a proof of
dialogue completeness via generalised dialogues for classical propositional logic.

The first proof that the completeness of intuitionistic first-order logic entails
Markov’s principle was given by Kreisel [28], although he attributes the proof
idea to Gödel. The proof has since inspired a range of works deriving related
non-constructivity results for different kinds of completeness [29,33,38,40,39].
By almost exclusively focusing our analysis on the ∀,→,⊥-fragment, we did not
concern ourselves with the contributions of ∃ and ∨ to the non-constructivity of
completeness. Krivtsov’s [31,32] work has the exact opposite focus: His analysis
reveals that completeness with regards to exploding Tarski and Beth models,
for full classical and intuitionistic first-order logic, respectively, are equivalent
to the weak fan theorem. Another noteworthy work is that of Berardi [2], who
analyses which abstract notions of models admit constructive completeness.

The completeness of first-order logic has been formalised in many interac-
tive theorem provers such as Isabelle/HOL [4,43,44], NuPRL [6,52], Mizar [5],
Lean [19], and Coq [23,24]. Among them, [6] and [24] share our focus on the
constructivity of completeness. Constable and Bickford [6] give a constructive
proof of completeness for the BHK-realisers of full intuitionistic first-order logic
in NuPRL. Their proof is fully constructive when realisers are restricted to be
normal terms, requiring Brouwer’s fan theorem when lifting that restriction. In
his PhD thesis [24], Ilik formalises multiple constructive proofs of first-order
completeness in Coq. Especially noteworthy are the highly non-standard, con-
structivised Kripke models for full classical and intuitionistic first-order logic he
presents in Chapters 2 and 3.

7.2 Future Work

We plan to further extend our constructive analysis and Coq library to all log-
ical connectives and to uncountable signatures, both relying on additional logi-
cal assumptions. Subsequently, it would be interesting to study other aspects
of model theory in the setting of constructive type theory, for instance the
Löwenheim-Skolem theorems or first-order axiomatisations of arithmetic and
set theory. Another idea is to analyse the completeness of second-order logic
interpreted in Henkin semantics, as this formalism suffices to express the higher-
order axiomatisation of set theory studied in [27]. Lastly, we conjecture that
MPL is strictly weaker than MP, but are not aware of a proof.
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A Overview of Deduction Systems

Definition 55. Intuitionistic natural deduction is defined as follows:

ϕ ∈ Γ

Γ � ϕ
C

Γ � ⊥̇
Γ � ϕ

E
Γ, ϕ � ψ

Γ � ϕ→̇ψ
II

Γ � ϕ→̇ψ Γ � ϕ

Γ � ϕ
IE

Γ � ϕ Γ � ψ

Γ � ϕ∧̇ψ
CI

Γ � ϕ∧̇ψ

Γ � ϕ
CE1

Γ � ϕ∧̇ψ

Γ � ψ
CE2

Γ � ϕ

Γ � ϕ∨̇ψ
DI1

Γ � ψ

Γ � ϕ∨̇ψ
DI2

Γ � ϕ∨̇ψ Γ,ϕ � θ Γ, ψ � θ

Γ � θ
DE

↑Γ � ϕ

Γ � ∀̇ϕ
AI

Γ � ∀̇ϕ

Γ � ϕ[t]
AE

Γ � ϕ[t]

Γ � ∃̇ϕ
EI

Γ � ∃̇ϕ ↑Γ, ϕ �↑ψ
Γ � ψ

EE

We write � ϕ whenever ϕ is intuitionistically provable from the empty context.

Definition 56. Classical natural deduction is defined as follows:

ϕ ∈ Γ

Γ �c ϕ
C

Γ �c ⊥̇
Γ �c ϕ

E
Γ, ϕ �c ψ

Γ �c ϕ→̇ψ
II

Γ �c ϕ→̇ψ Γ �c ϕ

Γ �c ϕ
IE

Γ �c ϕ Γ �c ψ

Γ �c ϕ∧̇ψ
CI

Γ �c ϕ∧̇ψ

Γ �c ϕ
CE1

Γ �c ϕ∧̇ψ

Γ �c ψ
CE2

Γ �c ϕ

Γ �c ϕ∨̇ψ
DI1

Γ �c ψ

Γ �c ϕ∨̇ψ
DI2

Γ �c ϕ∨̇ψ Γ, ϕ �c θ Γ, ψ �c θ

Γ �c θ
DE

↑Γ �c ϕ

Γ �c ∀̇ϕ
AI

Γ �c ∀̇ϕ

Γ �c ϕ[t]
AE

Γ �c ϕ[t]

Γ �c ∃̇ϕ
EI

Γ �c ∃̇ϕ ↑Γ, ϕ �c↑ψ
Γ �c ψ

EE

Γ �c ((ϕ→̇ψ)→̇ϕ)→̇ϕ
P

We write �c ϕ whenever ϕ is classically provable from the empty context.

Definition 57. The intuitionistic sequent calculus LJT is defined as follows:

Γ ;ϕ⇒ϕ
A

Γ ;ϕ⇒ψ ϕ ∈ Γ

Γ ⇒ψ
C

Γ ⇒ϕ Γ ;ψ⇒θ

Γ ;ϕ→̇ψ⇒θ
IL

Γ, ϕ⇒ψ

Γ ⇒ϕ→̇ψ
IR

Γ ;ϕ[t]⇒ψ

Γ ; ∀̇ϕ⇒ψ
AL

↑Γ ⇒ϕ

Γ ⇒∀̇ϕ
AR Γ ⇒⊥̇

Γ ⇒ϕ
E

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullND.html#prv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullND.html#prv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Gentzen.html#sprv
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Definition 58. The intuitionistic sequent calculus LJ is defined as follows:

Γ, ϕ ⇒J ϕ
A

Γ, ϕ, ϕ ⇒J ψ

Γ,ϕ ⇒J ψ
C

Γ ⇒J ψ

Γ,ϕ ⇒J ψ
W

Γ, ψ, ϕ, Γ ′ ⇒J θ

Γ, ϕ, ψ, Γ ′ ⇒J θ
P

Γ ⇒J ⊥̇
Γ ⇒J ϕ

E
Γ ⇒J ϕ Γ,ψ ⇒J θ

Γ, ϕ→̇ψ ⇒J θ
IL

Γ, ϕ ⇒J ψ

Γ ⇒J ϕ→̇ψ
IR

Γ, ϕ, ψ ⇒J θ

Γ, ϕ∧̇ψ ⇒J θ
CL

Γ ⇒J ϕ Γ ⇒J ψ

Γ ⇒J ϕ∧̇ψ
CR

Γ, ϕ ⇒J θ Γ, ψ ⇒J θ

Γ, ϕ∨̇ψ ⇒J θ
DL

Γ ⇒J ϕ

Γ ⇒J ϕ∨̇ψ
DR1

Γ ⇒J ψ

Γ ⇒J ϕ∨̇ψ
DR2

Γ, ϕ[t] ⇒J ψ

Γ, ∀̇ϕ ⇒J ψ
AL

↑Γ ⇒J ϕ

Γ ⇒J ∀̇ϕ
AR

↑Γ, ϕ ⇒J↑ψ

Γ, ∃̇ϕ ⇒J ψ
EL

Γ ⇒J ϕ[t]

Γ ⇒J ∃̇ϕ
ER

B Notes on the Coq Formalisation

Our formalisation consists of about 7500 lines of code, with an even split between
specification and proofs. The code is structured as follows.

Section Specification Proofs

Preliminaries Autosubst 169 53

Preliminaries for F∗ 680 599

Tarski Semantics 655 682

Kripke Semantics 342 255

On Markov’s Principle 593 978

Preliminaries for F 523 430

Heyting Semantics 297 456

Dialogue Semantics 312 488

Total 3571 3941

In general, we find that Coq provides the ideal grounds for formalising
projects like ours. It has external libraries supporting the formalisation of syn-
tax, enough automation to support the limited amounts we need and allows
constructive reverse mathematics due to its axiomatic minimality.

In the remainder of the section, we elaborate on noteworthy design choices
of the formalisation.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullSequent.html#fprv
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Formalisation of Binders. There are various competing techniques to formalise
binders in proof assistants. In first-order logic, binders occur in quantification.
The chosen technique especially affects the definition of deduction systems and
can considerably ease or impede proofs of standard properties like weakening.

We opted for a de Bruijn representation of variables and binders with parallel
substitutions. The Autosubst 2 tool [49] provides convenient automation for the
definition of and proofs about this representation of syntax.

Notably, our representation then results in very straightforward proofs for
weakening with only 5 lines. In contrast, using other representations for binders
results in considerably more complicated weakening proofs, e.g. 150 lines in an
approach using names [14] and 95 lines in an approach using traced syntax [23].

Also note that first-order logic has the simplest structure of binders possible:
Since quantifiers range over terms, but terms do not contain binders, we do not
need a prior notion of renaming, as usually standard in de Bruijn presentations
of syntax. This observation results in more compact code (because usually, every
statement on substitutions has to be proved for renamings first, with oftentimes
the same proof) and was incorporated into Autosubst 2, which now does not
generate renamings if they are not needed. Furthermore, we remark that the
HOAS encoding of such simple binding structures results in a strictly positive
inductive type and would thus be in principle definable in Coq.

Formalisation of Signatures. Our whole development is parametrised against a
signature, defined as a typeclass in Coq:

Class Signature := B_S { Funcs : Type; fun_ar : Funcs -> nat ;
Preds : Type; pred_ar : Preds -> nat }.

We implement term and predicate application using the dependent vector type.
While the vector type is known to cause issues in dependent programming, in
this instance it was the best choice. Recursion on terms is accepted by Coq’s
guardness checker, and while the generated induction principle (as is always
the case for nested inductives) is too weak, a sufficient version can easily be
implemented by hand:

Inductive vec_in (A : Type) (a : A) : forall n, vector A n -> Type :=

| vec_inB n (v : vector A n) : vec_in a (cons a v)

| vec_inS a’ n (v :vector A n) : vec_in a v -> vec_in a (cons a’ v).

Lemma strong_term_ind (p : term -> Type) :

(forall x, p (var_term x)) ->

(forall F v, (forall t, vec_in t v -> p t) -> p (Func F v)) ->

forall (t : term), p t.

Syntactic Fragments. There are essentially four ways to formalise the syntac-
tic fragment F

∗. First, we could parametrise the type of formulas with tags, as
done in [14] and second, we could use well-explored techniques for modular syn-
tax [26,9]. However, both of these approaches would not be compatible with the
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Autosubst tool. Additionally, modular syntax would force users of our developed
library for first-order logic to work on the peculiar representation of syntax using
containers or functors instead of regular inductive types.

The third option is to only define the type F, and then define a predicate
on this formulas characterising the fragment F∗. This approach introduces many
additional assumptions in almost all statements, decreasing their readability and
yielding many simple but repetitive proof obligations. Furthermore, we would
have to parameterise natural deduction over predicates as well, in order for the
(IE) rule to not introduce terms e.g. containing ∃̇ when only deductions over F∗

should be considered.
To make the formalisation as clear and reusable as possible, we chose the

fourth and most simple possible approach: We essentially duplicate the contents
of Sect. 2 for both F

∗ and F, resulting in two independent developments on top
of the two preliminary parts.

Parametrised Deduction Systems. When defining the minimal, intuitionistic, and
classical versions of natural deduction, a similar issue arises. Here, we chose to
use one single predicate definition, where the rules for explosion and Peirce can
be enabled or disabled using tags, which are parameters of the predicate.

Inductive peirce := class | intu.
Inductive bottom := expl | lconst.
Inductive prv : forall (p : peirce) (b : bottom),
list (form) -> form -> Prop := (* ... *).

We can then define all considered variants of ND by fixing those parameters:

Notation "A �CE phi" := (@prv class expl A phi) (at level 30).
Notation "A �CL phi" := (@prv class lconst A phi) (at level 30).
Notation "A �IE phi" := (@prv intu expl A phi) (at level 30).

This definition allows us to give for instance a general weakening proof,
which can then be instantiated to the different versions. Similarly, we can give
a parametrised soundness proof, and depending on the parameters fix required
properties on the models used in the definition of validity.

Object Tactics. At several parts of our developments we have to build concrete
ND derivations. This can always be done by explicitly applying the constructors
of the ND predicate, which however becomes tedious quickly. We thus developed
object tactics reminiscent of the tactics available in Coq. The tactic ointros for
instance applies the (II) rule, whereas the tactic oapply can apply hypotheses,
i.e. combine the rules (IE) and (C). All object tactics are in the file FullND.v.

Extraction to λ-Calculus. The proof that completeness of provability w.r.t. stan-
dard Tarski and Kripke semantics is equivalent to MPL crucially relies on an
L-enumeration of provable formulas. While giving a Coq enumeration is easy
using techniques described in [14], the translation of any function to a model of



Completeness Theorems for FOL Analysed in Constructive Type Theory 71

computation is considered notoriously hard. We use the framework by Forster
and Kunze [16] which allows the automated translation of Coq functions to L.

Using the framework was mostly easy and spared us considerable formal-
isation effort. However, the framework covers only simple types, whereas our
representation of both terms and formulas contains the dependent vector type.
We circumvent this problem by defining a non-dependent term type term’ and a
predicate wf characterising exactly the terms in correspondence with our original
type of terms.

Inductive term’ := var_term’ : nat -> term’ | Func’ (name : nat)
| App’ : term’ -> term’ -> term’.

Inductive varornot := isvar | novar.
Inductive wf : varornot -> term’ -> Prop :=
| wf_var n : wf isvar (var_term’ n)
| wf_fun f : wf novar (Func’ f)
| wf_app v s t : wf v s -> wf novar t -> wf novar (App’ s t).

We then define a formula type form’ based on term’ and a suitable deduc-
tion system. One can give a bijection between well-formed non-dependent terms
term’ and dependent terms term and prove the equivalence of the corresponding
deduction systems under this bijection.

Functions working on term’ and form’ were easily extracted to L using the
framework, yielding an L-enumerability proof for ND essentially with no manual
formalisation effort.

Library of Formalised Undecidable Problems in Coq. We take the formalisation
of synthetic undecidability from [14], which is part of the Coq library of for-
malised undecidable problems [12]. The reduction from L-halting to provability
is factored via Turing machines, Minsky machines, binary stack machines and
the Post correspondence problem (PCP), all part of the library as well.

Equations Package. Defining non-structurally recursive functions is sometimes
considered hard in Coq and other proof assistants based on dependent type the-
ory. One such example is the function [[ ]] used to embed formulas into Heyting
algebras (Definition 45). We use the Equations package [48] to define this func-
tion by recursion on the size of the formula, ignoring terms. The definition then
becomes entirely straightforward and the provided simp tactic, while sometimes
a bit premature, enables compact proofs.
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shefte für Mathematik und Physik 37, 349–360 (1930)

19. Han, J., van Doorn, F.: A formalization of forcing and the consistency of the failure
of the continuum hypothesis. In: International Conference on Interactive Theorem
Proving. Springer, Heidelberg (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.19

20. Hasenjaeger, G.: Eine Bemerkung zu Henkin’s Beweis für die Vollständigkeit des
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shop on Generic Programming, pp. 13–24. ACM (2013)

27. Kirst, D., Smolka, G.: Categoricity results and large model constructions for
second-order ZF in dependent type theory. J. Autom. Reasoning 63, 415–438
(2018)

28. Kreisel, G.: On weak completeness of intuitionistic predicate logic. J. Symbolic
Logic 27(2), 139–158 (1962)

29. Kreisel, G., Troelstra, A.S.: Formal systems for some branches of intuitionistic
analysis. Ann. Math. Logic 1(3), 229–387 (1970)

30. Krivine, J.-L.: Une preuve formelle et intuitionniste du théorème de complétude
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Abstract. Recently, Artemov [4] offered the notion of constructive truth
and falsity in the spirit of Brouwer-Heyting-Kolmogorov semantics and
its formalization, the Logic of Proofs. In this paper, we provide a com-
plete description of constructive truth and falsity for Friedman’s constant
fragment of Peano Arithmetic. For this purpose, we generalize the con-
structive falsity to n-constructive falsity where n is any positive natural
number. We also establish similar classification results for constructive
truth and n-constructive falsity of Friedman’s formulas. Then, we discuss
‘extremely’ independent sentences in the sense that they are classically
true but neither constructively true nor n-constructive false for any n.

Keywords: Peano arithmetic · Modal logic · Foundations of
mathematics

1 Introduction

In the second incompleteness theorem, Gödel proved the impossibility to prove
an arithmetical sentence, Con(PA) = ∀x¬Proof(x, 0 = 1), which is interpreted
to mean a formalization of consistency of Peano Arithmetic, PA: For all x, x
is not a code of a proof of 0 = 1. The formalization is concerned with arith-
metization of the universal quantifier in the statement and the arithmetization
cannot rule out the interpretability of the quantifier to range over both standard
and nonstandard numbers. In a recent paper [4], Artemov pointed out that it
is too strong to capture fairly Hilbert’s program on finitary consistency proof
for arithmetic; it asked for a finitary proof that in a formal arithmetic no finite
sequence of formulas is a derivation of a contradiction. Then, Artemov consid-
ered the notion of constructive consistency, CCon(PA), and demonstrated that
it is actually provable in PA

Moreover, the generalization of constructive consistency was offered in [4]
in the spirit of Brouwer-Heyting-Kolmogorov (BHK) semantics and its formal-
ization, the Logic of Proofs (LP): constructive falsity with its counterpart, the
constructive truth. (On the family of systems called Justification Logics includ-
ing the Logic of Proofs, we can refer to [2,3,6,7,14,15]). Constructive truth is
taken to be provability in a finitary system, PA, along with the motto of con-
structivism: truth is provability.
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Definition 1. An arithmetical sentence A is constructively false if PA proves:
for any x, there is a proof that ‘x is not a proof of A’.

This is also viewed as the result of a refinement of the interpretation of
negation and implication in the BHK semantics by the framework of the Logic
of Proofs, which is compliant with the Kreisel ‘second clause’ criticism. (Cf. [7])

On the other hand, the letterless fragment of the logic of provability GL has
been an object of modal logical study of Peano Arithmetic, PA, since Friedman’s
35th problem in [13]. A letterless sentence is one built up from a constant for
falsity ⊥, boolean connectives, and the modality �. Boolos [9] showed that there
is a specific normal form for these sentences and the fragment is decidable, which
was an answer to the Friedman’s question.

Following Boolos [11], we call the counterpart of letterless sentences in PA
constant sentences. Formally, they are built from the sentence 0 = 1, a suit-
able provability predicate ProvPA(∗) and boolean connectives. Any arithmetical
interpretations convert a letterless sentence to the same constant sentence in PA.
Here, for the sake of simplicity, we write ⊥ to mean 0 = 1 and �(∗) to mean a
fixed provability predicate of PA.

In this paper, we are primarily concerned with the constant sentences in PA;
in Sect. 2, we provide a complete delineation of the constant sentences in terms
of the notions of constructive truth and falsity. Then, it turns out natural to
generalize constructive falsity to n-constructive falsity, where n is any positive
natural number. Also, for each n, we provide classification results for constructive
truth and n-constructive falsity for constant sentences.

The ‘constructive’ liar sentence was introduced and discussed in [4] along
with the Rosser sentence. In Sect. 3, we generalize both of these two kinds of
arithmetical sentences, and specify the logical status of them on the basis of
generalized constructive falsity. Also, we clarify which constant sentences can be
the generalized Rosser sentences.

In Sect. 4, we offer the notion of ‘extreme’ independence from PA for arith-
metical sentences A: both they and their negation are neither provable in PA nor
belong to n-constructive falsity for any n. We show that there is an extremely
independent arithmetical sentence but no constant sentence is extremely inde-
pendent.

2 The Constant Sentences of Peano Arithmetic

In [4], Artemov clarified the status of some constant sentences on classical and
constructive truth and falsity: Con(PA) is classically true and constructively
false. 0 = 1 is classically false and constructively false. ¬Con(PA) is classically
false and neither constructively true nor constructively false. Then, it is natural
to ask a general question: under which condition a constant sentence is said to
be constructively true or constructively false.

First of all, we generalize the notion of constructive falsity to n-constructive

falsity (n ≥ 1). Put cfn(F ) = ∀x�n¬(x : F ) for each n ≥ 1, where �n =

n
︷ ︸︸ ︷

� · · · �
and (∗ : ∗) is a fixed proof predicate.
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Definition 2. An arithmetical sentence A is n-constructive false if and only if
PA proves the sentence cfn(A).

The original constructive falsehood is the special case with n = 1.

Theorem 1. (Normal Form Theorem) �PA cfn(F ) ↔ .�F → �n⊥.

Proof. Work in PA. Suppose �F , that is, ∃x(x : F ) holds. Then, for some y, we
have y : F . By applying Σ1-completeness n times, we obtain �n(y : F ).1 On the
other hand, suppose ∀x�n¬(x : F ). Then, �n¬(y : F ) holds. Hence, we obtain
�n⊥. Thus, ∀x�n¬(x : F ) → .�F → �n⊥. For the other direction, obviously,
�n⊥ → �n¬(x : F ). By generalization, �n⊥ → ∀x�n¬(x : F ). On the other
hand, by applying Σ1-completeness n times, for any x, ¬(x : F ) → �n¬(x : F ).
By predicate calculus, ¬∃x(x : F ) → ∀x�n¬(x : F ), that is, ¬�F → ∀x�n¬(x :
F ). Therefore, ¬�F ∨ �n⊥. → ∀x�n¬(x : F ). �

Here we observe some simple facts.

(F1) If A is n-constructively false and PA proves B → A, B is also n-
constructively false.
(F2) If A is n-constructively false and n ≤ m, A is m-constructively false.
(F3) If PA is n-consistent, that is, PA does not prove �n⊥, then no n-
constructively false sentence is constructively true.

We say that a sentence is n-constructively false at the smallest if and only if it
is n-constructively false but not m-constructively false sentence for any m < n.

We introduce the following three types of arithmetical sentences.

(α)-sentences: of the form �n⊥ → �m⊥ (0 ≤ n ≤ m)
(β, n)-sentences: of the form �m⊥ → �n−1⊥ (1 ≤ n ≤ m)
(γ, n)-sentences: of the form: �n−1⊥ (1 ≤ n)

Lemma 1. (1) (β, n)- and (γ, n)-sentences are n-constructively false at the
smallest.
(2) (α)-sentences are constructively true.

Proof. (2) is immediate. For (β, n)-sentences, consider the formula �(�m⊥ →
�n−1⊥) → �k⊥ with 0 ≤ n ≤ m. This is provably equivalent in PA to
�n⊥ → �k⊥. Therefore, PA proves it if and only if k ≥ n, in terms of Gödelean
incompleteness theorems. The proof is similar for (γ, n)-sentences. �

By (βγ, n)-sentence we mean a conjunction of (β, a)- and (γ, b)-sentences such
that n is the minimum of all such a’s and b’s. In particular, when it consists only
of (β, a)-sentences, it is called a (β+, n) sentence.

1 A detailed proof of the provable Σ1-completeness is found on pp. 46–49 of [11].
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Lemma 2. (βγ, n)-sentences are n-constructively false at the smallest.

Proof. Temporarily, let (β, ni) and (γ,mi) denote a (β, ni)- and a (γ,mi)-
sentence, respectively. Consider the following sentence.

(∗) �(
∧

i
(β, ni) ∧

∧

j
(γ,mj)) → �k⊥

where n = mini,j(ni,mj). By using derivability conditions on the provability
predicate �, this is provably equivalent in PA to the following.

∧

i
�(β, ni) ∧

∧

j
�(γ,mj) → �k⊥.

Furthermore, we can execute the following transformations, keeping equiva-
lence in PA.

∧

i �ni⊥ ∧ ∧

j �mj⊥ → �k⊥;
�n⊥ → �k⊥.

Thus, in terms of Gödelean incompleteness theorems, (∗) is provable in PA
if and only if k ≥ n. �

Lemma 3. Any constant sentence is provably in PA equivalent to an (α)-
sentence or a (βγ, n)-sentence for some n ≥ 1.

Proof. Boolos’ normal form theorem for constant sentences in [11] states that
any constant sentence is equivalent in PA to a boolean combination of �n⊥.
By propositional transformation, it is further equivalent to a conjunction of
sentences of the form of (α), (β, n) and (γ,m). If it contains only conjuncts
which are (α)-sentences, it is equivalent to an (α)-sentence. Suppose that it is
of the form X ∧ Y where X contains no (α)-sentence and Y contains only (α)-
sentences. As X ∧ Y is equivalent in PA to X, it is a (βγ, n) sentence with some
n. �

Theorem 2. Any constant sentence is provably in PA equivalent to a construc-
tively true sentence or an n-consistently false sentence for some n.

Proof. Derived by Lemmas 2, 3. �

Theorem 3. Let A be any constant sentence and n be any positive natural num-
ber. Suppose that PA is n-consistent. Then, we have the following.

(1) A is n-constructively false and classically true, if and only if, A is provably
in PA equivalent to a (β+,m)-sentence for some m ≤ n.

(2) A is n-constructively false and classically false, if and only if, A is provably
in PA equivalent to a (γ,m)-sentence for some m ≤ n.

(3) A is constructively true, if and only if, A is provably in PA equivalent to an
(α)-sentence.
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Proof. The ‘if’ directions in (1–3) are immediate by Lemma 2. For the ‘only if’
direction. (3) is obvious. We prove (1, 2). Suppose that A is m-constructively
false at the smallest for some m ≤ n. By (F3), A is not constructively true and
so, is not an (α)-sentence. Since A is constant, by Lemma 3, A is equivalent to
a (βγ, a)-sentence for some a ≥ 1. By Lemma 2, a = m.

Now, if it is classically true, A is equivalent to (β+,m)-sentence; if it is
classically false, A is equivalent to a conjunction of (γ,mi)-sentences where
mini(mi) = m, which is equivalent to a (γ,m)-sentence, that is, �m−1⊥. �

3 Generalized ‘Constructive’ Liar Sentences and Rosser
Sentences

In [4], Artemov offered a constructive version, L, of ’Liar Sentence’ by applying
the diagonal lemma:

�PA L ↔ ∀x�¬(x : L)
↔ (�L → �⊥)

And he pointed out that L is classically true but neither constructively true
nor constructively false. We show that L is 2-constructively false and ¬L is
(1-)constructively false.

We shall introduce a general version of ’Constructive Liar Sentence’. For each
n ≥ 1, Ln is provided by the following.

�PA Ln ↔ ∀x�n¬(x : Ln)
↔ (�Ln → �n⊥)

The existence of Ln, we call n-constructive liar, is guaranteed by the diagonal
lemma.

Theorem 4. (1) Ln is classically true and (n + 1)-constructively false at the
smallest.
(2) ¬Lk is classically false and 1-constructively false. (k ≥ 1)

Proof. For (1). Suppose that Ln is not true. Then, �Ln is not true and �Ln →
�n⊥ is true. This means Ln is true by definition of Ln. Hence, a contradiction.

Next, again by definition, PA proves �[Ln → (�Ln → �n⊥)] and so �Ln →
��n⊥. This means Ln is (n+1)-constructively false. To show that (n+1) is the
smallest, suppose that PA proves �Ln → �n⊥, that is, �(�Ln → �n⊥) → �n⊥.
Then, PA also proves ��n⊥ → �n⊥, which is impossible in terms of Gödelean
incompleteness theorems.

The proof for (2) is similar. �
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How about Gödelean Liar Sentence? It is considered to be Con(PA), that
is, ¬�⊥. We can generalize this as follows: n-Gödelean Liar Sentence, or n-Liar
Sentence is defined to be Con(PAn), which is well known to be equivalent to
¬�n⊥.2 About this, we already know its status from the result of the previous
section. Con(PAn) is a (β, 1)-sentence and, by Lemma 1, it is 1-constructively
false at the smallest. As to ¬Con(PAn), it is equivalent to �n⊥, which is a
(γ, n+1)-sentence and, by Lemma 1, (n+1)-constructively false at the smallest.

In [4], Artemov pointed out that the Rosser sentence, R, is classically true and
constructively false; ¬R is classically false and constructively false. Therefore,
the result of Rosser’s incompleteness theorem is said to have been the discovery
of such a sentence which is 1-constructively false and the negation of which is
also 1-constructively false.

Here again, we can make a generalization: an arithmetical sentence Rn is an
n-Rosser sentence if both Rn and ¬Rn are n-constructively false at the smallest
(n ≥ 1). This condition is equivalent to the following: PA proves

¬�k⊥ → (¬�Rn ∧ ¬�¬Rn)

for any k ≥ n and does not for any k < n. The original Rosser sentence R is
an instance of 1-Rosser sentence R1. It is well-konwn that such an Rn can be
constructed in PA.

Now, we can naturally ask: is it possible to construct constant n-Rosser
sentences?

Lemma 4. Let A be any constant sentence containing the provability predicate
�. If A is n-constructively false, ¬A is 1-constructively false.

Proof. If A is classically true, by Theorem 3, ¬A is equivalent to the form:
∨

i(�ki⊥ ∧ ¬�ai⊥) where for each i, ai < n and ai < ki. Note that in PA,
∨

i(�ki⊥ ∧ ¬�ai⊥) implies ¬�mini(ai)⊥. We have a derivation in PA:

�(
∨

i(�ki⊥ ∧ ¬�ai⊥)) → �(¬�mini(ai)⊥)
→ �(�mini(ai)⊥ → ⊥)
→ �(�⊥ → ⊥)
→ �⊥

If A is classically false, by Theorem 3, ¬A is equivalent to the form: ¬�a⊥
with a < n. By the hypothesis, a = 0. We have a derivation in PA:

�¬�a⊥ → �(�a⊥ → ⊥)
→ �(�⊥ → ⊥)
→ �⊥

Thus, in any case, ¬A is 1-constructively false. �

Theorem 5. Let A be any constant sentence containing the provability predicate
�. Then, the following are equivalent.
2 As usual, PAn is defined: PA1= PA; PAn+1 =PAn + Con(PAn).
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(1) A is an n-Rosser sentence for some n;
(2) A is a 1-Rosser sentence;
(3) A is 1-constructively false.

Proof. Proofs from (2) to (1) and from (2) to (3) are immediate.
From (1) to (2): If (1) holds, both A and ¬A are both n-constructively false

and, by Lemma 4, n = 1.
From (3) to (2): If (3) holds, by Lemma 4, ¬A is 1-constructively false. Then,

(2) holds. �

By Theorem 5, constant sentences can be n-Rosser sentences only when n =
1. Of course, we can weaken the definition of n-Rosser sentences: Rn is a weak
n-Rosser sentence if and only if both Rn and ¬Rn are n-constructively false (not
necessarily at the smallest).

Corollary 1. Any constant sentence containing the provability predicate � is a
weak n-Rosser sentence for some n, unless it is constructively true.

Proof. For any constant sentence A containing �, if A is not constructively true,
by Theorem 2, A is n-constructively false for some n ≥ 1. By Lemma 4, ¬A is
1-constructively, therefore, n-constructively false. �

Also, we obtain a relationship between n-constructive liar sentences and n-
Rosser sentences.

Corollary 2. (1) No one of constructive liar sentences and the negation of them
is an n-Rosser sentence for any n.
(2) For any n ≥ 1, any n-constructive liar sentence Ln is a weak (n+1)-Rosser

sentence.

Proof. Derived by Theorem 4. �

Here is a table to sum up some of the results from Sects. 2, 3.

Classically True Classically False
...

...
...

n-const. false Ln−1, Rn

�m⊥ → �n−1⊥ (m ≥ n) �n−1⊥
...

...
...

3-const. false L2, R3

�m⊥ → �2⊥ (m ≥ 3) �2⊥
2-const. false L1, R2

�m⊥ → �1⊥ (m ≥ 2) �⊥
R1 ¬Li, ¬Ri (1 ≤ i)

1-const. false ¬�m⊥ (m ≥ 1) �m⊥ ∧ ¬�n−1⊥ (m ≥ n ≥ 2)
⊥
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4 ‘Extremely’ Independent Sentences

We showed that any constant sentence is n-constructively false for some n, unless
it is constructively true (Theorem 2). This implies that well-known constant
Gödelean sentences such as Con(PAn) and ¬Con(PAn) are m-constructively
false for some m.

How about the ‘Reflection Principles’? For any sentence A, let Ref(A) denote
�A → A (what we call the local Reflection Principle for A). We claim the
following.

Theorem 6. For any sentence A, ¬Ref(A) is 2-constructively false.

Proof. In PA, we have the following derivation.

�(�A ∧ ¬A) → ��A ∧ �¬A

→ ��A ∧ ��¬A

→ ��⊥

This finishes the proof. �

We note that the above argument does not generally hold for what we call
the uniform Reflection Principle.

In addition, it is known that Ref(AΠ1) for Π1-sentences AΠ1 is provably
equivalent to Con(PA) in PA (cf. [17]). Hence, Ref(AΠ1) is 1-constructively
false and ¬Ref(AΠ1) is 2-constructive false.

These results raise the question of the status of independence of a kind of
Gödelean sentences (such as Con(PA), Ref(A), and other constant ones) from
PA. So, we can naturally ask if there is a ’truly’ independent arithmetical sentence
from PA or not. We consider stronger notions of independence.

Definition 3. 1. An arithmetical sentence A is strongly independent from PA if
and only if A is neither constructively true nor n-constructively false for any n.

2. An arithmetical sentence A is extremely independent from PA if and only if
both A and ¬A are strongly independent from PA.

Note that if a sentence A is extremely independent, so is ¬A.

Theorem 7. No instance of the local Reflection Principle is extremely indepen-
dent from PA.

Proof. Derived by Theorem 6. �



ConF 83

Theorem 8. No arithmetical constant sentence is strongly nor extremely inde-
pendent from PA.

Proof. Derived by Theorem 2. �

In [4], Artemov showed that there is an arithmetical sentence A such that
both A and ¬A are not 1-constructively false by using the uniform arithmetical
completeness for the modal logic GL. We extend this result to our general setting.

Proposition 1. (Uniform Arithmetical Completeness for GL) There is an
arithmetical interpretation ∗ such that for any formula A of modal logic, �GL A
iff �PA A∗.

This was established independently in [1,8,10,16,19].

Theorem 9. There is an extremely independent sentence.

Proof. Fix a propositional variable p. It is easily seen that for any positive natural
number n, �GL �p → �n⊥ and �GL �¬p → �n⊥. (This can be proved by
an argument of Kripke completemess or the arithmetical completeness for GL.)
Therefore, by the above proposition, there is an arithmetical sentence F such
that for any positive natural number n, �PA �F → �n⊥ and �PA �¬F → �n⊥.
This sentence F is extremely independent from PA. �

Corollary 3. There is an instance of the local Reflection Principle which is
strongly independent from PA.

Proof. In the proof of Theorem 9, we obtain the sentence F such that for any
positive natural number n, �PA �F → �n⊥. This sentence is equivalent to
�(�F → F ) → �n⊥. Therefore, Ref(F ) = �F → F is the desired instance. �

Theorem 8 could signify a limitation of the expressibility of arithmetical
constant sentences, as contrasted with Theorem 9.

5 Concluding Remark

In this paper, we reported some results on the notion of constructive truth and
falsity in PA, which was recently introduced in Artemov [4]. In particular, we
showed some theorems on the relationship of those notions and the ‘constant’
fragment of PA, which has been actively studied since Friedman [13].

As is easily observed, an arithmetical sentence is n-constructively false if and
only if its unprovability in PA is provable in PA extended with Con(PAn). As
an extension of the work of this paper, a natural research problem would be to
examine whether or not things change in an essential way, if we are permitted
to talk about extensions of PA in the well-known ‘transfinite progression’ since
Turing [18].
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Abstract. Subset models provide a new semantics for justifcation logic.
The main idea of subset models is that evidence terms are interpreted as
sets of possible worlds. A term then justifies a formula if that formula is
true in each world of the interpretation of the term.

In this paper, we introduce a belief expansion operator for subset
models. We study the main properties of the resulting logic as well as
the differences to a previous (symbolic) approach to belief expansion in
justification logic.

Keywords: Justification logic · Subset models · Belief expansion

1 Introduction

Justification logic is a variant of modal logic where the �-modality is replaced
with a family of so-called evidence terms, i.e. instead of formulas �F , justification
logic features formulas of the form t : F meaning F is known for reason t [7,8,19].

The first justification logic, the Logic of Proofs, has been developed by
Artemov [1,2] in order to provide intuitionistic logic with a classical provabil-
ity semantics. Thus evidence terms represent proofs in a formal system like
Peano arithmetic. By proof we mean a Hilbert-style proof, that is a sequence
of formulas

F1, . . . , Fn (1)

where each formula is either an axiom or follows by a rule application from
formulas that occur earlier in the sequence. A justification formula t : F holds
in this arithmetical semantics if F occurs in the proof represented by t. Observe
that F need not be the last formula in the sequence (1), but can be any formula
Fi in it, i.e. we think of proofs as multi-conclusion proofs [2,18].

After the Logic of Proofs has been introduced, it was observed that terms
can not only represent mathematical proofs but evidence in general. Using this
interpretation, justification logic provides a versatile framework for epistemic
logic [3,4,9,11,13,15]. In order to obtain a semantics of evidence terms that fits
this general reading, one has to ignore the order of the sequence (1). That is
evidence terms are interpreted simply as sets of formulas.

This is anticipated in both Mkrtychev models [22] as well as Fitting mod-
els [14]. The former are used to obtain a decision procedure for justification logic
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S. Artemov and A. Nerode (Eds.): LFCS 2020, LNCS 11972, pp. 85–97, 2020.
https://doi.org/10.1007/978-3-030-36755-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36755-8_6&domain=pdf
http://orcid.org/0000-0003-1003-7838
http://orcid.org/0000-0002-0949-3302
https://doi.org/10.1007/978-3-030-36755-8_6


86 E. Lehmann and T. Studer

where one of the main steps is to keep track of which (set of) formulas a term
justifies, see, e.g., [19,24]. The latter provide first epistemic models for justifica-
tion logic where each possible world is equipped with an evidence function that
specifies which terms serve as possible evidence for which (set of) formulas in
that world.

Artemov [5] conceptually addresses the problem of the logical type of justi-
fications. He claims that in the logical setting, justifications are naturally inter-
preted as sets of formulas. He introduces so-called modular models, which are
based on the basic interpretation of justifications as sets of propositions and the
convenience assumption of

justification yields belief. (JYB)

That means if a term justifies a formula (i.e., the formula belongs to the inter-
pretation of the term), then that formula is believed (i.e., true in all accessible
possible worlds) [16]. Note that (JYB) has been dropped again in more recent
versions of modular models [8].

So let us consider models for justification logic that interpret terms as sets
of formulas. A belief change operator on such a model will operate by changing
those sets of formulas (or introducing new sets, etc.). Dynamic epistemic justifi-
cation logics have been studied, e.g., in [12,13,17,23]. Kuznets and Studer [17],
in particular, introduce a justification logic with an operation for belief expan-
sion. Their system satisfies a Ramsey principle as well as minimal change. In
fact, their system meets all AGM postulates for belief expansion.

In their model, the belief expansion operation is monotone: belief sets can
only get larger, i.e.,

belief expansion always only adds new beliefs. (2)

This is fine for first-order beliefs. Indeed, one of the AGM postulates for expan-
sion requires that beliefs are persistent. However, as we will argue later, this
behavior is problematic for higher-order beliefs.

In this paper, we present an alternative approach that behaves better with
respect to higher-order beliefs. It uses subset models for justification logics. This
is a recently introduced semantics [20,21] that interprets terms not as sets of
formulas but as sets of possible worlds. There, a formula t:A is true if the inter-
pretation of t is a subset of the truth-set of A, i.e., A is true in each world of the
interpretation of t. Intuitively, we can read t:A as A is believed and t justifies
this belief. Subset models lead to new operations on terms (like intersection).
Moreover, they provide a natural framework for probabilistic evidence (since
the interpretation of a term is a set of possible worlds, we can easily measure
it). Hence they support aggregation of probabilistic evidence [6,20]. They also
naturally contain non-normal worlds and support paraconsistent reasoning.

It is the aim of this paper to equip subset models with an operation for belief
expansion similar to [17]. The main idea is to introduce justification terms up(A)
such that after a belief expansion with A, we have that A is believed and up(A)
(representing the expansion operation on the level of terms) justifies this belief.
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Semantically, the expansion A is dealt with by intersecting the interpretation of
up(A) with the truth-set of A. This provides a better approach to belief expansion
than [17] as (2) will hold for first-order beliefs but it will fail in general.

The paper is organized as follows. In the next section we introduce the lan-
guage and a deductive system for JUS, a justification logic with belief expansion
and subset models. Then we present its semantics and establish soundness of
JUS. Section 5 is concerned with persistence properties of first-order and higher-
order beliefs. Further we prove a Ramsey property for JUS. Finally, we conclude
the paper and mention some further work.

2 Syntax

Given a set of countably many constants ci, countably many variables xi, and
countably many atomic propositions Pi, terms and formulas of the language of
JUS are defined as follows:

– Evidence terms
• Every constant ci and every variable xi is an atomic term. If A is a

formula, then up(A) is an atomic term. Every atomic term is a term.
• If s and t are terms and A is a formula, then s ·A t is a term.

– Formulas
• Every atomic proposition Pi is a formula.
• If A, B, C are formulas, and t is a term, then ¬A, A → B, t : A and [C]A

are formulas.

The annotation of the application operator may seem a bit odd at first.
However, it is often used in dynamic epistemic justification logics, see, e.g. [17,
23].

The set of atomic terms is denoted by ATm, the set of all terms is denoted by
Tm. The set of atomic propositions is denoted by Prop and the set of all formulas
is denoted by LJUS. We define the remaining classical connectives, ⊥, ∧, ∨, and
↔, as usual making use of the law of double negation and de Morgan’s laws.

The intended meaning of the justification term up(A) is that after an update
with A, this act of updating serves as justification to believe A. Consequently,
the justification term up(A) has no specific meaning before the update with A
happens.

Definition 1 (Set of Atomic Subterms). The set of atomic subterms of a
term or formula is inductively defined as follows:

– atm(t) := {t} if t is a constant or a variable
– atm(up(C)) := {up(C)} ∪ atm(C)
– atm(s ·A t) := atm(s) ∪ atm(t) ∪ atm(A)
– atm(P ) := ∅ for P ∈ Prop
– atm(¬A) := atm(A)
– atm(A → B) := atm(A) ∪ atm(B)
– atm(t : A) := atm(t) ∪ atm(A)
– atm([C]A) := atm(A) ∪ atm(C).



88 E. Lehmann and T. Studer

Definition 2. We call a formula A up-independent if for each subformula [C]B
of A we have that up(C) /∈ atm(B).

Using Definition 1, we can control that updates and justifications are indepen-
dent. This is of importance to distinguish cases where updates change the mean-
ing of justifications and corresponding formulas from cases where the update
does not affect the meaning of a formula.

We will use the following notation: τ denotes a finite sequence of formulas and
ε denotes the empty sequence. Given a sequence τ = C1, . . . Cn and a formula
A, the formula [τ ]A is defined by

[τ ]A = [C1] . . . [Cn]A if n > 0 and [ε]A := A.

The logic JUS has the following axioms and rules where τ is a finite (possibly
empty) sequence of formulas:

1. [τ ]A for all propositional tautologiesA (Taut)
2. [τ ](t : (A → B) ∧ s : A ↔ t ·A s : B) (App)
3. [τ ]([C]A ↔ A) if[C]Ais up-independent (Indep)
4. [τ ]([C]¬A ↔ ¬[C]A) (Funct)
5. [τ ]([C](A → B) ↔ ([C]A → [C]B)) (Norm)
6. [τ ][A]up(A) : A (Up)
7. [τ ](up(A) : B → [A]up(A) : B) (Pers)

A constant specification CS for JUS is any subset

CS ⊆ {(c, [τ1]c1 : [τ2]c2 : . . . : [τn]cn : A) |
n ≥ 0, c, c1, . . . , cn are constants,
τ1, . . . , τn are sequences of formulas,
Ais an axiom of JUS}

JUSCS denotes the logic JUS with the constant specification CS. The rules of
JUSCS are Modus Ponens and Axiom Necessitation:

A A → B (MP)
B

(AN) if (c,A) ∈ CS
[τ ]c : A

Before establishing some basic properties of JUSCS, let us briefly discuss its
axioms. The direction from left to right in axiom (App) provides an internaliza-
tion of modus ponens. Because of the annotated application operator, we also
have the other direction, which is a minimality condition. It states that a jus-
tification represented by a complex term can only come from an application of
modus ponens.

Axiom (Indep) roughly states that an update with a formula C can only affect
the truth of formulas that contain certain update terms.
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Axiom (Funct) formalizes that updates are functional, i.e. the result of an
update is uniquely determined.

Axiom (Norm), together with Lemma 1, states that [C] is a normal modal
operator for each formula C.

Axiom (Up) states that after a belief expansion with A, the formula A is
indeed believed and up(A) justifies that belief.

Axiom (Pers) is a simple persistency property of update terms.

Definition 3. A constant specification CS is called axiomatically appropriate if

1. for each axiom A, there is a constant c with (c,A) ∈ CS and
2. for any formula A and any constant c, if (c,A) ∈ CS, then for each sequence

of formulas τ there exists a constant d with

(d, [τ ]c : A) ∈ CS.

The first clause in the previous definition is the usual condition for an
axiomatically appropriate constant specification (when the language includes
the !-operation). Here we also need the second clause in order to have the follow-
ing two lemmas, which establish that necessitation is admissible in JUSCS. Both
are proved by induction on the length of derivations.

Lemma 1. Let CS be an arbitrary constant specification. For all formulas A
and C we have that if A is provable in JUSCS, then [C]A is provable in JUSCS.

Lemma 2 (Constructive Necessitation). Let CS be an axiomatically appri-
opriate constant specification. For all formulas A we have that if A is provable
in JUSCS, then there exists a term t such that t : A is provable in JUSCS.

We will also need the following auxiliary lemma.

Lemma 3. Let CS be an arbitrary constant specification. For all terms s, t and
all formulas A,B,C, JUSCS proves:

[C]t : (A → B) ∧ [C]s : A ↔ [C]t ·A s : B

3 Semantics

Now we are going to introduce subset models for the logic JUSCS. In order to
define a valuation function on these models, we will need the following measure
for the length of formulas.

Definition 4 (Length). The length of a term or formula is inductively defined
by:

�(t) := 1 if t ∈ ATm �(s ·A t) := �(s) + �(t) + �(A) + 1
�(P ) := 1 if P ∈ Prop �(A → B) := �(A) + �(B) + 1
�(¬A) := �(A) + 1 �(t : A) := �(t) + �(A) + 1
�([B]A) := �(B) + �(A) + 1
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Definition 5 (Subset Model). We define a subset model

M = (W,W0, V1, V0, E)

for JUS by:

– W is a set of objects called worlds.
– W0 ⊆ W , W0 �= ∅.
– V1 : (W \ W0) × LJUS → {0, 1}.
– V0 : W0 × Prop → {0, 1}.
– E : W × Tm → P(W ) such that for ω ∈ W0 and all A ∈ LJUS:

E(ω, s ·A t) ⊆ E(ω, s) ∩ E(ω, t) ∩ WMP ,

where WMP is the set of all deductively closed worlds, formally given by

WMP := W0 ∪ W 1
MP where

W 1
MP := {ω ∈ W \ W0 |

∀A,B ∈ LJUS ((V1(ω,A) = 1 and V1(ω,A → B) = 1)
implies V1(ω,B) = 1)}.

We call W0 the set of normal worlds. The worlds in W \ W0 are called non-
normal worlds. WMP denotes the set of worlds where the valuation function
(see the following definition) is closed under modus ponens.

In normal worlds, the laws of classical logic hold, whereas non-normal worlds
may behave arbitrarily. In a non-normal world we may have that both P and ¬P
hold or we may have that neither P nor ¬P holds. We need non-normal worlds
to take care of the hyperintensional aspects of justification logic. In particular,
we must be able to model that constants do not justify all axioms. In normal
worlds, all axioms hold. Thus we need non-normal worlds to make axioms false.

Let M = (W,W0, V1, V0, E) be a subset model. We define the valuation func-
tion VM for M and the updated model MC for any formula C simultaneously.
For VM, we often drop the subscript M if it is clear from the context.

We define V : W × LJUS → {0, 1} as follows by induction on the length of
formulas:

1. Case ω ∈ W \ W0. We set V (ω, F ) := V1(ω, F );
2. Case ω ∈ W0. We define V inductively by:

(a) V (ω, P ) := V0(ω, P ) for P ∈ Prop;
(b) V (ω, t : F ) := 1 iff E(ω, t) ⊆ {υ ∈ W | V (ω, F ) = 1} for t ∈ ATm;
(c) V (ω, s ·F r : G) = 1 iff V (ω, s : (F → G)) = 1 and V (ω, r : F ) = 1;
(d) V (ω,¬F ) = 1 iff V (ω, F ) = 0;
(e) V (ω, F → G) = 1 iff V (ω, F ) = 0 or V (ω,G) = 1;
(f) V (ω, [C]F ) = 1 iff VMC (ω, F ) = 1 where VMC is the valuation function

for the updated model MC .
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The following notation for the truth set of F will be convenient:

[[F ]]M := {υ ∈ W | VM(υ, F ) = 1}.

The updated model MC = (WMC

,WMC

0 , V MC

1 , V MC

0 , EMC

) is given by:

WMC

:= W WMC

0 := W0 V MC

1 := V1 V MC

0 := V0

and

EMC

(ω, t) :=

{
EM(ω, t) ∩ [[C]]MC if ω ∈ W0 and t = up(C)
EM(ω, t) otherwise

The valuation function for complex terms is well-defined.

Lemma 4. For a subset model M with a world ω ∈ W0, s, t ∈ Tm, A,B ∈ LJUS,
we find that

V (ω, s ·A t : B) = 1 implies E(ω, s ·A t) ⊆ [[B]]M.

Proof. The proof is by induction on the structure of s and t:

– base case s, t ∈ ATm:
Suppose V (ω, s ·A t : B) = 1. Case 2c of the definition of V in Definition 5
for normal worlds yields that

V (ω, s : (A → B)) = 1 and V (ω, t : A) = 1.

With case 2b from the same definition we obtain

E(ω, s) ⊆ [[A → B]]M and E(ω, t) ⊆ [[A]]M.

Furthermore the definition of E for normal worlds guarantees that

E(ω, s ·A t) ⊆ E(ω, s) ∩ E(ω, t) ∩ WMP .

So for each υ ∈ E(ω, s ·A t) there is V (υ,A → B) = 1 and V (υ,A) = 1 and
υ ∈ WMP and hence either by the definition of W 1

MP or by case 2e of the
definition of V in normal worlds there is V (υ,B) = 1. Therefore E(ω, s ·A t) ⊆
[[B]]M.

– s, t ∈ Tm but at least one of them is not atomic: w.l.o.g. suppose s = r ·C q.
Suppose V (ω, s ·A t : B) = 1 then V (ω, s : (A → B)) = 1 and V (ω, t : A) = 1.
Since s = r ·C q and ω ∈ W0 we obtain

V (ω, r : (C → (A → B))) = 1 and V (ω, q : C) = 1

and by I.H. that

E(ω, r) ⊆ [[C → (A → B)]]M and E(ω, q) ⊆ [[C]]M.
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With the same reasoning as in the base case we obtain

E(ω, s) = E(ω, r ·C q) ⊆ [[A → B]]M.

If t is neither atomic, the argumentation works analoguously and since we
have then shown both E(ω, s) ⊆ [[A → B]]M and E(ω, t) ⊆ [[A]]M, the
conclusion is the same as in the base case. ��

Remark 1. The opposite direction to Lemma 4 need not hold. Consider a model
M and a formula s ·A t : B with atomic terms s and t such that

VM(ω, s ·A t : B) = 1

and thus also E(ω, s ·A t) ⊆ [[B]]M. Now consider a model M′ which is defined
like M except that

E′(ω, s) := E(ω, t) and E′(ω, t) := E(ω, s).

We observe the following:

1. We have E′(ω, s ·A t) = E(ω, s ·A t) as the condition

E′(ω, s ·A t) ⊆ E′(ω, s) ∩ E′(ω, t) ∩ WMP

still holds since intersection of sets is commutative. Therefore

E′(ω, s ·A t) ⊆ [[B]]M′

holds.
2. However, it need not be the case that

E′(ω, s) ⊆ [[A → B]]M′ and E′(ω, t) ⊆ [[A]]M′ .

Therefore VM′(ω, s : (A → B)) = 1 and VM′(ω, t : A) = 1 need not hold and
thus also VM′(ω, s ·A t : B) = 1 need not be the case anymore.

Definition 6 (CS-Model). Let CS be a constant specification. A subset model
M = (W,W0, V1, V0, E) is called a CS-subset model or a subset model for JUSCS
if for all ω ∈ W0 and for all (c,A) ∈ CS we have

E(ω, c) ⊆ [[A]]M.

We observe that updates respect CS-subset models.

Lemma 5. Let CS be an arbitrary constant specification and let M be a CS-
subset model. We find that MC is a CS-subset model for any formula C.
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4 Soundness

Definition 7 (Truth in Subset Models). Let

M = (W,W0, V1, V0, E)

be a subset model, ω ∈ W , and F ∈ LJUS. We define the relation � as follows:

M, ω � F iff VM(ω, F ) = 1.

Theorem 1 (Soundness). Let CS be an arbitrary constant specification. Let
M = (W,W0, V1, V0, E) be a CS-subset model and ω ∈ W0. For each formula
F ∈ LJUS we have that

JUSCS � F implies M, ω � F.

Proof. As usual by induction on the length of the derivation of F . We only show
the case where F is an instance of axiom (Indep).

By induction on [C]A we show that for all ω

MC , ω � A iff M, ω � A.

We distinguish the following cases.

1. A is an atomic proposition. Trivial.
2. A is ¬B. By I.H.
3. A is B → D. By I.H.
4. A is t : B. Subinduction on t:

(a) t is a variable or a constant. Easy using I.H. for B.
(b) t is a term up(D). By assumption, we have that C �= D. Hence this case

is similar to the previous case.
(c) t is a term r ·D s. We know that t : B is equivalent to

r : (D → B) ∧ s : D.

Using I.H. twice, we find that

MC , ω � r : (D → B) and MC , ω � s : D

if and only if

M, ω � r : (D → B) and M, ω � s : D.

Now the claim follows immediately.
5. A is [D]B. Making use of the fact that A is up-independent, this case also

follows using I.H. ��
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5 Basic Properties

We first show that first-order beliefs are persistent in JUS. Let F be a formula
that does not contain any justification operator. We have that if t is a justification
for F , then, after any update, this will still be the case. Formally, we have the
following lemma.

Lemma 6. For any term t and any formulas A and C we have that if A does
not contain a subformula of the form s : B, then

t : A → [C]t : A

is provable.

Proof. We proceed by induction on the complexity of t and distinguish the fol-
lowing cases:

1. Case t is atomic and t �= up(C). Since A does not contain any evidence terms,
the claim follows immediately from axiom (Indep).

2. Case t = up(C). This case is an instance of axiom (Pers).
3. Case t = r ·B s. From r ·B s : A we get by (App)

s : B and r : (B → A).

By I.H. we find
[C]s : B and [C]r : (B → A).

Using Lemma 3 we conclude [C]r ·B s : A. ��
Let us now investigate higher-order beliefs. We argue that persistence should

not hold in this context. Consider the following scenario. Suppose that you are
in a room together with other people. Further suppose that no announcement
has been made in that room. Therefore, it is not the case that P is believed
because of an announcement. Formally, this is expressed by

¬up(P ) : P. (3)

We find that
the fact that you are in that room (4)

justifies your belief in (3). Let the term r represent (4). Then we have

r : ¬up(P ) : P. (5)

Now suppose that P is publicly announced in that room. Thus we have in the
updated situation

up(P ) : P. (6)

Moreover, the fact that you are in that room justifies now your belief in (6).
Thus we have r : up(P ) : P and hence in the original situation we have

[P ]r : up(P ) : P (7)

and (5) does no longer hold after the announcement of P .
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The following lemma formally states that persistence fails for higher-oder
beliefs.

Lemma 7. There exist formulas r : B and A such that

r : B → [A]r : B

is not provable.

Proof. Let B be the formula ¬up(P ) : P and consider the subset model

M = (W,W0, V1, V0, E)

with
W := {ω, υ} W0 := {ω} V1(υ, P ) = 0 V0(ω, P ) = 1

and
E(ω, r) = {ω} E(ω, up(P )) = {ω, υ}.

Hence [[P ]]M = {ω} and thus E(ω, up(P )) �⊆ [[P ]]M. Since ω ∈ W0, this yields
V (ω, up(P ) : P ) = 0. Again by ω ∈ W0, this implies

V (ω,¬up(P ) : P ) = 1.

Therefore E(ω, r) ⊆ [[¬up(P ) : P ]]M and using ω ∈ W0, we get

M, ω � r : ¬up(P ) : P.

Now consider the updated model MP . We find that

EMP

(ω, up(P )) = {ω}

and thus EMP

((ω, up(P ))) ⊆ [[P ]]MP . Further, using ω ∈ WMP

0 we get

VMP (up(P ) : P ) = 1

and thus VMP (¬up(P ) : P ) = 0. That is ω /∈ [[(¬up(P ) : P ]]MP . We have
EMP

(ω, r) = {ω} and, therefore, EMP

(ω, r) �⊆ [[(¬up(P ) : P ]]MP .
With ω ∈ WMP

0 we get MP , ω �� r : ¬up(P ) : P . We conclude

M, ω �� [P ]r : ¬up(P ) : P.

��
Next, we show that JUSCS proves an explicit form of the Ramsey axiom

�(C → A) ↔ [C]�A

from Dynamic Doxastic Logic.
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Lemma 8. Let the formula [C]s : (C → A) be up-independent. Then JUSCS
proves

s : (C → A) ↔ [C]s ·C up(C) : A. (8)

Proof. First observe that by (Up), we have [C]up(C) : C.
Further, since [C]s : (C → A) is up-independent, we find by (Indep) that

s : (C → A) ↔ [C]s : (C → A).

Finally we obtain (8) using Lemma 3. ��
Often, completeness of public announcement logics is established by showing

that each formula with announcements is equivalent to an announcement-free
formula. Unfortunately, this approach cannot be employed for JUSCS although
(8) provides a reduction property for certain formulas of the form [C]t : A. The
reason is the hyperintensionality of justification logic [8,21], i.e. justification logic
is not closed under substitution of equivalent formulas. Because of this, the proof
by reduction cannot be carried through in JUSCS, see the discussion in [10].

6 Conclusion

We have introduced the justification logic JUS for subset models with belief
expansion. We have established basic properties of the deductive system and
shown its soundness. We have also investigated persitence properties for first-
order and higher-order beliefs.

The next step is, of course, to obtain a completeness result for subset models
with updates. We suspect, however, that the current axiomatization of JUS is
not strong enough. The proof of Lemma 7 shows that persistence of higher-
order beliefs fails in the presence of a negative occurence of an up-term. Thus we
believe that we need a more subtle version of axiom (Indep) that distinguishes
between positive and negative occurences of terms. Introducing polarities for
term occurences, like in Fitting’s realization procedure [14], may help to obtain
a complete axiomatization.
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Abstract. The finitistic philosophy of mathematics, critical of refer-
encing infinite totalities, has been associated from its inception with
primitive recursion. That kinship was not initially substantiated, but is
widely assumed, and is supported by Parson’s Theorem, which may be
construed as equating finitistic reasoning with finitistic computing.

In support of identifying PR with finitism we build on the generic
framework of [7] and articulate a finitistic theory of finite partial-
structures, and a generic imperative programming language for modify-
ing them, equally rooted in finitism. The theory is an abstract generaliza-
tion of Primitive Recursive Arithmetic, and the programming language
is a generic generalization of first-order recurrence (primitive recursion).
We then prove an abstract form of Parson’s Theorem that links the two.

Keywords: Finitism · Primitive recursive arithmetic · Finite partial
functions · Primitive recursive functions · Imperative programming ·
Loop variant · Parson’s theorem

1 Introduction

Primitive recursive arithmetic was invented in 1923 by Skolem, as a necessary
first proposal for a general notion of numeric algorithms rooted in finitism [14].
Hilbert’s Programme, striving to show that finitistic theorems are provable using
finitistic means [5], was dashed by Gödel’s First Incompleteness Theorem, but
the issue of delineating finitistic mathematics and relating it to finitistic forms
of programming has remained relevant, with the influential essay Finitism by
William Tait [15] proposing to identify finitistic mathematics with primitive
recursive arithmetic.

Our aim here is to offer a context for discussing finitism which is broader
than natural numbers, recurrence equations, and numeric induction. We use
the generic framework presented in [7] to propose finitistic restrictions to both
reasoning about data, and computing over it.

We take finite partial (fp) structures, built exclusively from fp-functions, as
a generic notion of basic data. This simply formalizes the intuition that com-
putational data in general, and in inductive data (e.g. N) in particular, is inter-
nally structured. In [7] we presented a second order theory for fp-structures,
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and proved that it is mutually interpretable with Peano’s Arithmetic. We mod-
ify that theory here by restricting the induction on fp-functions to finitistically
meaningful formulas. In [8] we proposed an imperative programming language
over fp-structures, providing a generic generalization of primitive recursion to
fp-structures. Here we show that the finitistic version of the theory presented in
[7] matches that programming language, by proving a generic form of Parson’s
Theorem: a mapping between fp-structure is finitistically provable iff it is defined
by a program.

2 A Finitistic Theory of Finite Partial Structures

2.1 Finite Partial Functions

Basic data objects come in two forms: bare “points”, such as nodes of a graph,
versus elements of inductive data, such as natural numbers and strings over
an alphabet. The former have no independent computational content, whereas
the computational nature of the latter is conveyed by the recursive definition
of the entire data type to which they belong, via the corresponding recurrence
operators. This dichotomy is antithetical, though, to an ancient alternative app-
roach that takes individual inductive data objects, such as natural numbers, to
be finite structures on their own, whose computational behavior is governed by
their internal makings [3,9]. Under this approach, computing over inductive data
is reduced to operating over finite structures, and functions over inductive data
are construed as mappings between finite structures.

Embracing this approach yields two benefits. First, we obtain a common
“hardware-based” platform for programming not only within finite structures,
but also for the transformation of inductive data. Moreover, inductive types are
just one way of aggregating finite structures, so focusing on finite structures
enhances genericity and generality.

Function finiteness is enforced by a principle of induction. Induction over
finite sets has been articulated repeatedly (for example [16] and [9]). However,
our interest in the kinship between reasoning and computing leads us to refer to
finite partial-functions as the basic aggregate entity, rather than to finite sets or
relations.

We posit a denumerable set A of atoms, i.e. unspecified and unstructured
objects. To accommodate in due course non-denoting terms we extend A to a
set A⊥ =df A ∪ {⊥}, where ⊥ is a fresh object intended to denote “undefined”.
The elements of A are the standard elements of A⊥.

A (k-ary) fp-function is a function F : Ak
⊥ → A⊥ for which there is a finite

DF ⊂ Ak, the support of F , such that F (�a) ∈ A for �a ∈ DF , and F (�a) = ⊥ for
�a ∈ Ak

⊥−DA. An entry of F is a tuple 〈a1 . . . ak, b〉 where b = F (a1, . . . , ak) 	= ⊥.
The image of F is the set {b ∈ A | b = F (�a) for some �a ∈ Ak }.

Function partiality provides a natural representation of finite relations over
A by partial functions, avoiding ad hoc constants. Namely, a finite k-ary relation
R over A (k > 0) is represented by the fp-function

ξR(a1, . . . , ak) = if R(a1, . . . , ak) then a1 else ⊥
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Conversely, any partial k-ary function F over A determines the k-ary relation

RF = {〈�a〉 ∈ Ak | F (�a) is defined }
Thus we write �a ∈ f for f�a 	= ω.

2.2 Finite Partial Structures

A vocabulary is a finite set V of function-identifiers, referred to as V -ids, where
each f ∈ V is assigned an arity r(f) � 0. We optionally right-superscript an
identifier by its arity, when convenient. We refer to nullary V -ids as tokens and
to identifiers of positive arities as pointers. Our default is to use type-writer
symbols for identifiers: a, b, e, ... for tokens and s, f, g, 0, 1... for pointers. The
distinction between tokens and pointers is computationally significant, because
(non-nullary) functions can serve as memory, whereas atoms cannot. For a vocab-
ulary V , we write V 0 for the set of tokens, V + for the pointers, and V k for the
pointers of arity k.

An fp-structure over V, or more concisely a V-structure, is a mapping σ that
to each f ∈ V k assigns a k-ary fp-function σ(f), said to be a component of σ.
The intention is to identify isomorphic fp-structures, but this intention may be
left implicit, sparing us perpetual references to equivalence classes. Note that
a tuple �σ = (σ1, . . . , σk) of fp-structures is representable as a single structure,
defined as the union

⋃
1�i�k σi over the disjoint union of the vocabularies Vi.

The support (respectively, range) of an fp-structure σ is the union of the
supports (ranges) of its components, and its scope is the union of its support
and its range.

2.3 Basic-Terms and Accessibility

Given a vocabulary V , the set TmV of basic V-terms is generated inductively
as follows. Note that no variables are used. ω ∈ TmV ; and if f ∈ V k (k � 0)
and t1, . . . , tk ∈ TmV , then ft1 · · · tk ∈ TmV . A term t without ωωω is standard.

We write function application in formal terms without parentheses and com-
mas, as in fxy or f�x. Also, we implicitly posit that the arity of a function matches
the number of arguments displayed; thus writing fk�a assumes that �a is a vector
of length k, and f�a (with no superscript) that the vector �a is as long as f ’s arity.

An atom a ∈ A is V-accessible in σ if a = σ(t) for some t ∈ TmV . A
V -structure σ is accessible if every atom in the range of σ is V -accessible.

Given a V -structure σ the value of terms t in σ, denoted σ(t), is defined by
recurrence:

– σ(ωωω) = ⊥
– σ(ft1 · · · tk) = σ(f)(σ(t1), . . . , σ(tk)) (f ∈ V k, k � 0)

An atom a ∈ A is V-accessible in σ if it is the value in σ of some V -term. A
V -structure σ is accessible if every atom in the domain of σ is V -accessible (and
therefore every atom in the range of σ is also accessible).
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2.4 A Formal Language

Fp-structures for a vocabulary V are intended to be the object of formal rea-
soning as well as computing. For both ends, vocabularies broader than V are
called for. We thus move on from a fixed vocabulary to a broader, generic, for-
mal language. Our language of reference, LA, is two-sorted with bound variables
and parameters (i.e. free variables) for atoms and bound variables and parame-
ters for finite partial-functions of arbitrary positive arity. We refer to the former
as A-variables, using u, v, . . . as syntactic-parameters for them, and to the lat-
ter as F-variables, with f, g, h, . . . as syntactic-parameters. A vocabulary can be
construed as finite set of reserved parameters.

The basic term-formation operator of LA is a form of value-assignment,
geared to reasoning about, and programming for, transformations of fp-
structures. We thus generate simultaneously A-terms, denoting atoms, and
F-terms, denoting fp-functions. Contrary to the basic V -terms defined above
for a fixed vocabulary V , we refer here to a function-extension operation.

– (Intial A-terms) ω and A-variables are A-terms.
– (Initial F-terms) For each k > 0, ∅∅∅k and k-ary function-variables are k-ary

F-terms.
– (Application) If F is a k-ary F-term and t1 . . . tk are A-terms, then Ft1 · · · tk

is an A-term.
– (Extension) If F is a k-ary F-term, �t a vector of k A-terms, and q an A-term,

then {�t �→ q}F is an F-term.

The formulas of LA are generated from formal equations t � q between A-
terms t,q using propositional connectives and quantifiers over A-variables and
F-variables. We say that a formula without F-quantifiers is elementary.

An fp-structure for a formula (or a term) is an fp-structure for a vocabulary
containing the parameters therein. If σ is a structure for the term t, then the
value of t in σ, denoted σ(t), is defined by recurrence on t, as above for V -terms,
with the following clause added for the Extension operation:

� σ({�t �→ q}F) is identical to σ(F), except that it maps σ(�t) to σ(q) IF
σ(F)(σ(�t)) is undefined and σ(�t) is defined.

Note that extensions are interpreted differently from tradition assignments,
in that they don’t replace one entry of F by another one.

The truth of a formula ϕ in structures σ for ϕ is defined by recurrence on
formulas:

σ |= t � q iff σ(t) = σ(q)
σ |= ∃u ϕ iff σ ∪ {u �→ a}〉 |= ϕ for some a ∈ A
σ |= ∃f ϕk iff σ ∪ {f �→ F} |= ϕ for some fp-function F : Ak ⇀ A

The cases for propositional connectives and ∀ are analogous.
From [7] it can be shown that the truth of LA formulas, without restriction

on quantifiers, is Turing-complete for hyp (the hyper-arithmetical subsets of N).
The situation is far simpler for elementary formulas:
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Proposition 1. The truth of an elementary V -formula in accessible V -
structures is decidable in time polynomial in the size of the structure.

Proof. For linearly ordered fp-structures one obtains for each fp-formula a
log-space decision algorithm, as for first-order formulas in Finite Model Theory
[6, Theorem 3.1]. The same proof-idea applies in the more general case, with
functions of varying arities, provided one uses non-deterministic and co-non-
deterministic scans for the A-quantifiers. For each formula such scan stays within
the logspace hierarchy, so within alternating log-space, i.e. P-Time.

We can proceed instead by expanding the accessible input structure with a
linear enumerator, an expansion that can be performed in PTime [8], and then
apply the log-space decision with respect to the linear order obtained. ��

2.5 Definable Classes of Fp-Structures

A class C of V -structures is defined by a V -formula ψ (with F-parameters �f) if
for every structure σ for ψ we have

σ ∈ C iff σ |= ψ

Recall that definability here is restricted to finite structures, so classical unde-
finability results for first-order logic do not apply.

We identify inductive data, such as elements of a free algebra, with finite
partial-structures. For example, binary strings are finite partial-structure over
the vocabulary with a constant e and unary function identifiers 0 and 1. Thus,
the string 011 is taken to be the following partial-structure with four atoms, and
where the partial-function denoted by 0 is defined for only one of the four:

e ◦ 0−→ ◦ 1−→ ◦ 1−→◦

A function over A can thus be construed as a mapping between such finite
structures.

The class of structures for an inductive data-type are, in fact, defined by ele-
mentary formulas. For example, the class of those structures for the vocabulary
{z0, s1} that represent natural numbers is defined by the elementary formula
that states that s is injective, and every atom in the support of s is in its range,
except z:

(∀u, v su � s v → u�v) ∧ ∀u (u � ω ∨ su � z ∨ ∃v sv � u)

The same idea can be extended, for any free algebra A, into an elementary
definition of the structures representing elements of A.

From [7, Theorem 4] one obtains a definition of the structures that are acces-
sible in a given vocabulary V , i.e. for which every element is denoted by a V -term.
That definition uses function-quantifiers to express inductive definability, and is
thus non-elementary.
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3 A Finitistic Theory of Fp-Structures

3.1 On Axiomatizing Finiteness

The set Fk of k-ary fp-functions is generated inductively by1

– The empty k-ary function is in Fk;
– If f ∈ Fk, �u, v ∈ A, and f(�u) = ⊥, then extending F with an entry F�u = v

yields an fp-function in Fk.

This definition yields an Induction Schema for fp-functions:

(∀fk, �u, v ϕ[f ] ∧ (f�u � ω) → ϕ[{�u �→ v} f ] )
→ ϕ[∅∅∅k] → ∀f ϕ[f ] (1)

Since the components of fp-structures are fp-functions, without constraints
that relate them, there is no need to articulate a separate induction principle
for fp-structures. Indeed, every fp-structure σ for a vocabulary V = {f1, . . . , fk}
is obtained by first generating the entries of σ(f1), then those for σ(f2), and so
on. This would no longer be the case for an inductive definition of the class A of
accessible structures, whose components must be generated in tandem.

3.2 The Theory FST0

In [7] we define a formal theory, ST, to reason about fp-structures and their trans-
formation. ST is mutually interpretable with Peano Arithmetic, and is indeed
not finitistic. We define now a finitistic sub-theory FST0 of FST.

We say that a formula of LA is F-existential if it is of the form ∃�f ψ, where
ψ is elementary. A formula is concrete if it has an F-existential prenex form. In
particular, any formula with no F-∀, and with no F-∃ in the positive scope of an
unbounded A-∀, is concrete. Here an A-∀ is bounded if it is of the form ∀a ∈ F · · · ,
where F is an F-term. Such formulas are provably concrete in the theory FST0

which we are about to describe, using the schema of Concrete-function-choice.
The axiom schemas of FST0 are the following templates, for all arities i, k,

terms t, and function-parameter (i.e. free variable) f . Recall that �u ∈ f stands
for f�u 	� ω.

[Strictness] ui �ω → fu1 · · · uk � ω (i = 1..k)

[Empty-function] ∅ku1 · · · uk � ω

[Function-extension]
f �u � ω → ({�u �→ v}f) �u � v
�w 	� �u → ({�u �→ v}f) �w � f �w

1 Note that we generate here all finite structures, not a special subset which is somehow
related to primitive recursion.
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[Explicit-definition] ∃g ∀�u ( �u ∈ f ∧ g�u � t ) ∨ ( �u 	∈ f ∧ g�u � ω )
This schema combines Zermelo’s Separation Schema with an Explicit Defini-
tion principle: g is defined by the term t, for arguments in the domain of f .
Note that t refers (in all interesting cases) to �u; so t cannot be replaced by a
variable w, since substitution of t for w would be illegal.

[Infinity] ∃�u fk�u � ω

Combined with the Function-extension schema Infinity implies that A is infi-
nite, but it says nothing about functions being finite or not. For that we’ll
need Induction.

[Concrete-induction-rule] For every concrete formula ϕ,

� ϕ[∅] � ϕ[f ] → ϕ[{�u �→ v}f ]
ϕ[g]

When ϕ is F-existential, say ∃�g ϕ0[f,�g], with ϕ0 elementary, the second
premise is concrete, since it can be rewritten, using fresh parameters �h, as

∃�g (ϕ0[f,�h] → ϕ0[f,�g]

[Concrete-function-choice] For every concrete formulas ϕ

� �x ∈ f → ∃g ϕ[�x, g]
∃h ∀�x∈f ϕ[�x, h�x]

where ϕ[�x, h�x] is ϕ[�x, g] with every A-term g�t replaced by h�x�t. As of this
writing we don’t know whether the schema of Concrete-function-choice is
provable from the other axioms and rules. The treatment of finite choice in
[12] suggests that it is not.

Note that all formulas in the templates above (not only ϕ) are concrete.
We shall insist that all formulas used in FST0 are concrete. Alternatively, we
could allow non-concrete formulas, and prove a cut-elimination theorem for a
sequential calculus for FST0.

3.3 Some Derived Schemas

[Union] ∃g ∀�u �u ∈ g ↔ ( �u ∈ f1 ∨ �u ∈ f2 ).
The proof is by Induction on f2 and Extension.

[Composition]
∃hk ∀�u h�u � f i(g1�u) · · · (gi�u) (2)

This follows from Explicit-definition and Union.

[Branching] ∃hk ∀�u ( f�u 	� ω ∧ h�u � f�u ) ∨ ( f�u � ω ∧ h�u � g�u )

The proof is by Induction using Update.
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[Contraction]
∃g g�u � ω ∧ ∀�v �v 	� �u → g�v � f�v (3)

This is the dual of Extension. The proof of (3) is by induction on f for the
universal closure of (3) with respect to �u.

[Function-pairing]

∃hk+1 ∃u, v ∀�x f�x � hu�x ∧ g�x � hv�x (4)

Much of the expressive and proof theoretic power of arithmetic is due to the
representation of finite sequences and finite sets of numbers by numbers. The
Function-pairing schema provides a representation of two k-ary fp-functions
by a single (k+1)-ary fp-function. Namely, f, g are “tagged” withing h by the
tags a, b respectively. In other words, writing hu for λ�xhu�x, we have f = ha

and g = hb. (We might require, in addition, that hu�x = ⊥ for all atoms
u 	= a, b, but this is inessential if we include a, b explicitly in the representa-
tion.)

[Concrete-atomic-choice] A more interesting form of tagging is provided by
the following principles of Choice.2

For all concrete formulas ϕ,

(∀�u ∈ f ∃y ϕ[�x, y]) → ∃g ∀�u ∈ f ϕ[�u, g�u] (5)

This is analogous to [12, Lemma 2(e)], and is straightforward by induction
on f . Suppose the schema holds for f , yielding the function g. To show the
schema true for f ′ = {�u �→ v}f suppose it satisfies the premise

∀�x ∈ f ∃y ϕ[�x, y] (6)

Then f ′ satisfies (6) as well, yielding a g for the conclusion. Also, by (6) there
is an atom y such that ϕ[�u, y], and so the conclusion is satisfied by {�u �→ y}g
in place of g.
Note that the bounding condition in the choice schemas above is essential:
even the simplest case

(∀x0∃y0ϕ[x, y]) → ∃f1∀x ϕ[x, fx] (7)

is false already for ϕ ≡ x � y, since the identity function over A is not finite,
and so f cannot be finite.

2 It is a special case of Concrete-function-choice above, but one for which we have a
proof from the remaining axioms.
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4 Imperative Programs for Structure Transformation

We introduced in [8] the programming language STV for transformation of fp-
structures. STV is finitistic in that the iterative construct is bounded by the size
of the fp-structures present, generalizing the loop programs of [10] for primitive
recursive functions over N. We summarize here the definition of STV and its main
properties, and refer the reader to [8] for background, examples, and proofs.

4.1 Structure Revisions

We refer to the following three basic transformations of V -structures. In each
case we indicate how an input structure σ is transformed by the operation into
a structure σ′ that differs from σ only as indicated.

1. An extension is a command f t1 · · · tk ↓ q where the ti’s and q are all standard
terms. The intent is that σ′ is identical to σ, except that if σ(f t1 · · · tk) = ⊥
then σ′(f t1 · · · tk) = σ(q). Thus, σ′ is identical to σ if σ(f t1 · · · tk) is defined;

2. A contraction, the dual of an extension, is a command of the form ft1 · · · tk ↑.
The intent is that σ′(f)(σ(t1), . . . , σ(tk)) = ⊥, and if ft1 · · · tk is defined
then we say that the contraction is active. Note that this removes the entry
〈σ(t1), . . . , σ(tk), σ(ft1 · · · tk)〉 (if defined) from σ(f) but not from σ(g) for
other identifiers g.

3. An inception is a command of the form c ⇓, where c is a token. A common
alternative notation is c := new. The intent is that σ′ is identical to σ, except
that if σ(c) = ⊥, then σ′(c) is an atom not in the scope of σ.

An extension is active if it increases the number of entries, and a contraction
is active if it reduces it. We refer to extensions, contractions, and inceptions
as revisions. The identifiers c and f in the templates above are the revision’s
eigen-identifier.

4.2 Imperative Programs for Generic PR Computing

Recall that the schema of recurrence over a free algebra A = A(C), generated
from a finite set C of constructors, consists of one equation per each c ∈ C:

f(c(z1, · · · , zk), �x) = gc(�z, �x, f1, . . . , fk) (8)

where k is c’s arity, and fi = f(zi, �x). The set PR(A) of primitive recursive (PR)
functions over A is generated from the constructors of A by explicit definitions
and recurrence over A. The choice of A is immaterial, since for any non-trivial
free algebras A and B we have that PR(A) is interpretable in PR(B).

A recurrence over a free algebra terminates because the recurrence argument
is being consumed. A more generic rendition of the same idea is to adopt an iter-
ative construct whose termination is controlled not only by guards (a qualitative
condition), but also by data depletion (a quantitative condition). We define a
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V -variant to be a finite set T of identifiers in V , to which we refer as T ’s com-
ponents.fnThe phrase “variant” is borrowed from Dijkstra-style verification of
structured imperative programs.

The programs of the programming language STV are generated as follows.

1. A revision is a program.
2. If P and Q are programs, then so is P ; Q.
3. If G is a guard and P,Q are programs, then if [G] {P} {Q} is a program.
4. If G is a guard, T a variant, and Q a program, then do [G] [T ] {Q} is a

program.

The denotational semantics of STV-programs P is defined, as usual, via an
inductively generated binary yield relation ⇒P between an input V -structure
and the corresponding output structure. Note that the configurations of an exe-
cutions are simply fp-structures. The details are routine, except for the iteration
construct. A program do [G] [T ] {Q} is executed by iterating Q, and entering a
new pass only if two conditions are met: (a) G is true for the current configura-
tion (i.e. fp-structure); and (b) the last pass through Q has decreased the total
size of the variant.

Keeping track of the variant T along an execution of Q requires in general
unbounded memory. This unpleasantness is alleviated by slightly modifying the
syntax of the language and the semantic of do (see [8]).

The role of STV as a generic generalization of primitive recursion is eluci-
dated by the following theorems.

Theorem 2 [Soundness for PR] [8]. Every program of STV runs in time and
space that are primitive-recursive in the input’s size.

Turning to the completeness of STV for primitive recursion, we could prove
that STV is complete for PR(N), and invoke the numeric coding of any free
algebra. This, however, would fail to establish a direct representation of generic
recurrence by STV-programs, which is one of the raisons d’être of STV. The
following completeness theorems are proved in [8].

Theorem 3. For each free algebra A, the collection of STV-programs is com-
plete for PR(A).

Theorem 3 establishes, for any free algebra A a simple and direct mapping
from definitions in PR(A) to STV-programs, If we take ST-programs as the
Turing-complete computation model of reference, the question remains as to
whether every ST-program P running within primitive-recursive resources is
directly mapped to an equivalent STV-program Q.

Theorem 4. Every ST program that runs in PR time can be effectively mapped
into an STV program for the same function.
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5 An Abstract Form of Parson’s Theorem

Parson’s Theorem asserts that the Σ1 Induction Axiom is conservative over
Primitive Recursive Arithmetic for Π2 formulas. In a computational form, the
theorem states that the provablye recursive functions of Peano’s Arithmetic with
induction restricted to Σ1 formulas are precisely the primitive-recursive func-
tions. Since the proof that every PR function (over N) is provable using Σ1-
Induction is fairly straightforward, the thrust of Parson’s Theorem is in the con-
verse, which in fact combines two results of different natures. The first states that
the Σ1-Induction Axiom is conservative for Π2 formulas over the Σ1-Induction
Rule. This is a miniature form of Hilbert’s programme, as it establishes the finitis-
tic nature of Σ1-Induction. The second result states that every function provable
by the Σ1-Induction Rule is PR, thereby equating proof-theoretic finitism with
computational finitism. Indeed, PR is a quintessential form of finitistic comput-
ing [14,15], in contrast for example to recurrence in higher type, which refers to
actual infinity (thereby yielding, for example, Ackermann’s Function). We shall
focus on generalizing this second part.

Parson’s Theorem was proved independently by Charles Parsons [12,13] and
Grigori Mints [11].3 A number of proofs have been presented over the years,
mostly by proof theoretic methods, such as the Dialectica interpretation [12],
cut-free proofs [13], no-counterexample interpretations [11], and ordinal analysis
[17]. Additional insight has been gleaned from model theoretic proofs, such as
Herbrand saturated models [1], witness predicates [2], and Herbrand’s theorem
[4].

Defining function provability is unproblematic for computing over inductive
data, but is less obvious when referring to fp-structures. Given a vocabulary
V = {f1 . . . fk}, write �g V for a vector of function-variables g1 . . . gk with r(gi) =
r(fi). Let C be a class of fp-structures over a vocabulary V , defined by a concrete
formula ψ[�fV ]. We say that a mapping F with domain C is defined in FST0 by
a concrete formula ϕ[�f ;�g] if the formula

ψ → ∃�gW ϕ[�f,�g]

is provable in FST0.
Let Φ be a mapping from a class C to a class D, where C is a class of accessible

V -structures defined by a concrete formula ψC , and similarly for D. We say that
Φ is provable in FST0 if there is a concrete formula ϕ such that

ψC [�f ] → ∃�g ψD[�g] ∧ ϕ[�f,�g]

is provable in FST0 (with �f,�g as parameters for V -structures and W -structures,
respectively).

In [7, Theorem 5] we proved that if P is an STV-program with V -structures
as input and W -structures as output, where V is listed as �f , then there is an

3 Mints cites Parsons’ paper, but mentions his own earlier unpublished presentations.
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existential formula ϕ[�f,�g] such that

ϕ[�f ;�g] iff �f ⇒P �g (9)

The existentially quantified functions in ϕP define the computation trace of P
on input �f . By formalizing the proof of [7, Theorem 5] in FST0, crucially using
the rules of Concrete-induction and Concrete-function-choice, we obtain (details
in the full paper).

Proposition 5. If a mapping Φ as above is computed by an STV program then
it is provable in FST0.

For the converse implication, we use structural induction on cut-free sequen-
tial proofs for FST0 to prove (details in the full paper).

Lemma 6. If ∃�g ϕ[�f ;�g] is provable in FST0 from concrete assumptions ψi[�f ;�hi]
(i ∈ I), then there is an STV-program P that maps input (�f ;�hi)i∈I into an
output �g1; . . . ;�gm such that

∧

i∈I

ψi[�f ;�hi] →
∨

j=1..m

ϕ[�f ;�gj ] (10)

��
Since ϕ is elementary, we can invoke Proposition 1 and extend P with a

program that selects which of the disjuncts in (10) holds, yielding a generic form
of the main implication of Parson’s Theorem:

Theorem 7. If a mapping between fp-structures is provable in FST0, then it
is computed by a program in STV.
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Abstract. Programming with logic for sophisticated applications must
deal with recursion and negation, which have created significant chal-
lenges in logic, leading to many different, conflicting semantics of rules.
This paper describes a unified language, DA logic, for design and analysis
logic, based on the unifying founded semantics and constraint semantics,
that support the power and ease of programming with different intended
semantics. The key idea is to provide meta-constraints, support the use
of uncertain information in the form of either undefined values or possi-
ble combinations of values, and promote the use of knowledge units that
can be instantiated by any new predicates, including predicates with
additional arguments.

Keywords: Datalog · Unrestricted negation and quantification ·
Meta-constraints · Founded semantics · Constraint semantics ·
Knowledge unit

1 Introduction

Programming with logic has allowed many design and analysis problems to be
expressed more easily and clearly at a high level. Examples include problems in
program analysis, network management, security frameworks, and decision sup-
port. However, when sophisticated problems require reasoning with negation and
recursion, possibly causing contradiction in cyclic reasoning, programming with
logic has been a challenge. Many languages and semantics have been proposed,
but they have different, conflicting underlying assumptions that are subtle and
do not work for all problems.

This paper describes a unified language, DA logic, for design and analysis
logic, for programming with logic using logical constraints. It supports logic
rules with unrestricted negation in recursion, as well as unrestricted universal
and existential quantification. It is based on the unifying founded semantics and
constraint semantics, and it supports the power and ease of programming with
different intended semantics without causing contradictions in cyclic reasoning.

– The language provides meta-constraints on predicates. These meta-constraints
capture the different underlying assumptions of different logic language
semantics.
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– The language supports the use of uncertain information in the results of differ-
ent semantics, in the form of either undefined values or possible combinations
of values.

– The language further supports the use of knowledge units that can be instan-
tiated by any new predicates, including predicates with additional arguments.

Together, the language allows complex problems to be expressed clearly and
easily, where different assumptions can be easily used, combined, and compared
for expressing and solving a problem modularly, unit by unit.

We present examples from different games that show the power and ease of
programming with DA logic.

2 Need of Easier Programming with Logic

We discuss the challenges of understanding and programming with negation
and recursion. We use a small well-known example, the win-not-win game, for
illustration.

Consider the following rule, called the win rule. It says that x is a winning
position if there is a move from x to y and y is not a winning position.

win(x) ← move(x,y) ∧ ¬ win(y)

This seems to be a reasonable rule, because it captures the rule for winning for
many games, including in chess for the King to not be captured, giving winning,
losing, and draw positions. However, there could be potential problems. For
example if there is a move(1,1) for some position 1, then the win rule would
imply: win(1) if not win(1), and thus the truth value of win(1) becomes unclear.

Inductive Definitions. Instead of the single win rule, one could use the fol-
lowing three rules to determine the winning, losing, and draw positions.

win(x) ← ∃ y | move(x,y) ∧ lose(y)
lose(x) ← ∀ y | ¬ move(x,y) ∨ win(y)
draw(x) ← ¬ win(x) ∧ ¬ lose(x)

The first two rules form inductive definitions [6,14], avoiding the potential prob-
lems of the single win rule. The base case is the set of positions that have no
moves to any other position and thus are losing positions. With winning and
losing positions defined, the draw positions are those in cycles of moves that
have no moves to losing positions.

However, clearly, these rules are much more cumbersome than the single win
rule.

Well-Founded Semantics. Indeed, with well-founded semantics (WFS) [25],
which computes a 3-valued model, the single win rule above gives win(x) being
True, False, or Unknown for each x, corresponding to x being a winning, losing,
or draw position, respectively. However, win(x) being 3-valued does not allow the
three outcomes to be used as three predicates or sets for further computation;
the three predicates defined by the three rules do allow this.
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For example, there is no way to use the Unknown positions explicitly, say to
find all reachable nodes following another kind of moves from draw positions.
One might try to do it by adding two additional rules to the single win rule:

lose(x) ← ¬ win(x)
draw(x) ← ¬ win(x) ∧ ¬ lose(x)

However, the result is that draw(x) is False for all positions that win(x) is True
or False, and is Unknown for all draw positions.

Stable Model Semantics. Stable model semantics (SMS) [13] computes a set
of 2-valued models, instead of a single 3-valued model. It has been used for
solving many constraint problems in answer set programming (ASP), because
its set of 2-valued models can provide the set of satisfying solutions.

For example, for the single win rule, if besides winning and losing positions,
there is a separate cycle of even length, say move(1,2) and move(2,1), then instead
of win being Unknown for 1 and 2 as in WFS, SMS returns two models: one with
win being True for 1 and other winning positions but not 2, and one with win
being True for 2 and other winning positions but not 1. This is a very different
interpretation of the win-not-win rule.

However, for the single rule above, when there are draw positions, SMS may
also return just an empty set, that is, a set with no models at all. For example,
if besides winning and losing positions, there is a separate cycle of moves of odd
length, say simply move(1,1), then SMS returns simply the empty set. This is
clearly undesired for the win-not-win game.

Founded Semantics and Constraint Semantics. Founded semantics and
constraint semantics [18] unify different prior semantics. They allow different
underlying assumptions to be specified for each predicate, and compute the
desired semantics as a simple least fixed point to return a 3-valued model and,
if there are undefined values, as constraint solving to return a set of 2-valued
models.

For the win-not-win game, one can write the single win rule, with the default
assumption that win is complete, that is, the win rule is the only rule that infers
win, which is an implicit assumption underlying WFS and SMS.

– With founded semantics, the three rules that use inductive definitions can be
automatically derived, and True, False, and Undefined positions for win are
inferred, corresponding to the three predicates from inductive definitions and
the 3-valued results from WFS.

– Then constraint semantics, if desired, computes all combinations of True and
False values for the Undefined values for the draw positions, that satisfy all
the rules as constraints. It equals SMS for the single win rule.

Both WFS and SMS also assume that if nothing is said about some p, then
p is false. When this is not desired, some programming tricks are used to get
around it. For example, with SMS, to allow p to be possibly true in some models,
one can introduce some new q and two new rules as below, to make it possible
that, in some models, p is true and q is false.
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p ← ¬ q
q ← ¬ p

Founded semantics and constraint semantics allow p to be simply declared as
uncertain.

Both WFS and SMS also assume that if all ways that can infer p require
using p in the condition of some rule, then p is false. Founded semantics and
constraint semantics allow this reasoning to be used where desired, by applying
it if p is declared as closed.

Founded semantics and constraint semantics also allow unrestricted universal
and existential quantifications and unrestricted nesting of Boolean conditions;
these are not supported in WFS and SMS.

However, founded semantics and constraint semantics alone do not address
how to use different semantics seamlessly in a single logic program.

Programming with Logical Constraints. Because different assumptions and
semantics help solve different problems or different parts of a problem, easier
programming with logic requires supporting all assumptions and semantics in a
simple and integrated design.

This paper treats different assumptions as different meta-constraints for
expressing a problem or parts of a problem, and support results from differ-
ent semantics to be used easily and directly. For the win-not-win example:

– We name the positions for which win is true, false, and undefined in founded
semantics using three predicates, win.T, win.F, and win.U, corresponding
exactly to the inductively defined win, lose, and draw. These predicates can
be used explicitly and directly for further reasoning, unlike with the truth
values of WFS or founded semantics.

– We let CS be the constraint semantics of a set of rules and facts. For m∈ CS,
we use m.win(x) to denote the truth value of win(x) in model m. Predicate
CS(m) means exactly m ∈ CS and can be used directly for further reasoning,
unlike the set of models in SMS or constraint semantics.

Table 1 summarizes the meta-constraints that can be used to express differ-
ent assumptions, corresponding declarations and resulting predicates in founded
semantics and constraint semantics, and corresponding other prior semantics if
all predicates use the same meta-constraint. Columns 2 and 4 are presented and
proved in our prior work [18]. Columns 1 and 3 are introduced in DA logic.

More fundamentally, we must enable easy specification of problems with
reusable parts and where different parts may use different assumptions and
semantics. To that end, we support instantiation and re-use of existing parts,
and allow predicates in any existing parts to be bound to other given predicates,
including predicates with additional arguments.

Even with all this power, DA logic is decidable, because it does not include
function symbols and is over finite domains.
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Table 1. Meta-constraints and corresponding prior semantics.

Meta-constraint Founded/Constraint semantics Other prior semantics
on predicate P Declarations on P Resulting predicates

certain(P ) certain P.T, P.F Stratified (Perfect,
Inductive Definition)

open(P ) uncertain, P.T, P.F, P.U
not complete m.P for m ∈ K.CS First-Order Logic

complete(P ) uncertain, As above Fitting (Kripke-Kleene)
complete Supported

closed(P ) uncertain, As above WFS
complete, closed SMS

3 DA Logic

This section presents the syntax and informal meaning of DA logic, for design
and analysis logic. The constructs described in the paragraphs on “Conjunctive
rules with unrestricted negation”, “Disjunction”, and “Quantification” appear in
our prior work on founded semantics and constraint semantics [18]. The other
features are new.

Knowledge Unit. A program is a set of knowledge units. A knowledge unit,
abbreviated as kunit, is a set of rules, facts, and meta-constraints, defined below.
The definition of a kunit has the following form, where K is the name of the
kunit, and body is a set of rules, facts, meta-constraints, and instantiations of
other kunits:

kunit K:
body

The scope of a predicate is the kunit in which it appears. Predicates with the
same name, but appearing in different kunits, are distinct.

Example. A kunit for the single win rule is

kunit win_unit:
win(x) ← move(x,y) ∧ ¬ win(y)

�
Kunits provide structure and allow knowledge to be re-used in other contexts

by instantiation, as described below.

Conjunctive Rules with Unrestricted Negation. We first present a simple
core form of logic rules and then describe additional constructs that can appear
in rules. The core form of a rule is the following, where any Pi may be preceded
with¬:
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Q(X1, ...,Xa) ← P1(X11, ...,X1a1) ∧ ... ∧ Ph(Xh1, ...,Xhah
) (1)

Q and the Pi are predicates, each argument Xk and Xij is a constant or a
variable, and each variable in the arguments of Q must also be in the arguments
of some Pi. In arguments of predicates in example programs, we use numbers
for constants and letters for variables.

If h = 0, there is no Pi or Xij , and each Xk must be a constant, in which
case Q(X1, ...,Xa) is called a fact. For the rest of the paper, “rule” refers only to
the case where h ≥ 1, in which case the left side of the backward implication is
called the conclusion, the right side is called the body, and each conjunct in the
body is called a hypothesis.

These rules have the same syntax as in Datalog with negation, but are used
here in a more general setting, because variables can range over complex values,
such as constraint models, as described below.

Predicates as Sets. We use a syntactic sugar in which a predicate P is also
regarded as the set of x such that P (x) holds. For example, we may write
move = {(1,2), (1,3)} instead of the facts move(1,2) and move(1,3); to ensure
the equality holds, this shorthand is used only when there are no other facts or
rules defining the predicate.

Disjunction. The hypotheses of a rule may be combined using disjunction as
well as conjunction. Conjunction and disjunction may be nested arbitrarily.

Quantification. Existential and universal quantifications in the hypotheses of
rules are written using the following notations:

∃X1, ..., Xn |Y existential quantification
∀X1, ..., Xn |Y universal quantification (2)

In quantifications of this form, the domain of each quantified variable is the set of
all constants in the containing kunit. As syntactic sugar, a domain can be speci-
fied for a quantified variable, using a unary predicate regarded as a set. For exam-
ple, ∃ x ∈ win | move(x,x) is syntactic sugar for ∃ x | win(x) ∧ move(x,x),
and ∀ x in win | move(x,x) is syntactic sugar for ∀ x | ¬win(x) ∨ move(x,x).

Meta-constraints. Assumptions about predicates are indicated in programs
using the meta-constraints in the first column of Table 1. Each meta-constraint
specifies the declarations listed in the second column of Table 1. For example, if
a kunit contains open(P), we say that P is declared uncertain and incomplete
in that kunit. In each kunit, at most one meta-constraint may be given for each
predicate.

A predicate declared certain means that each assertion of the predicate has
a unique true (T ) or false (F ) value. A predicate declared uncertain means that
each assertion of the predicate has a unique true, false, or undefined (U) value.
A predicate declared complete means that all rules with that predicate in the
conclusion are given in the containing kunit. A predicate declared closed means
that an assertion of the predicate is made false, called self-false, if inferring it to
be true using the given rules and facts requires assuming itself to be true.
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A predicate in the conclusion of a rule is said to be defined using the predi-
cates or their negation in the hypotheses of the rule, and this defined-ness relation
is transitive. A predicate must be declared uncertain (using one of the corre-
sponding meta-constraints) if it is defined transitively using its own negation,
or is defined using an uncertain predicate; otherwise, it may be declared certain
or uncertain and is by default certain. A predicate may be declared complete or
not only if it is uncertain, and it is by default complete. If a meta-constraint is
not given for a predicate, these default declarations apply.

Using Kunits with Instantiation. The body of a kunit K1 can use another
kunit K using an instantiation of the form:

use K (P1 = Q1(Y1,1, ..., Y1,b1), ..., Pn = Qn(Yn,1, ..., Yn,bn)) (3)

This has the same effect as applying the following substitution to the body of
K and inlining the result in the body of K1: for each i in 1..n, replace each
occurrence Pi(X1, ...,Xa) of predicate Pi with Qi(X1, ...,Xa, Yi,1, ..., Yi,bi). Note
that arguments of Qi specified in the use construct are appended to the argument
list of each occurrence of Pi in K, hence the number of such arguments must
be arity(Qi) − arity(Pi). The check for having at most one meta-constraint per
predicate, and the determination of default declarations, are performed after
expansion of all use constructs. A kunit K1 has a use-dependency on kunit K if
K1 uses K. The use-dependency relation must be acyclic.

Example. For the example kunit win_unit given earlier in this section, the fol-
lowing kunit is an instantiation of the win-not-win game with different predicates
for moving and winning:

kunit win2_unit:
use win_unit (move = move2, win = win2)

�
In some logic programming languages, including our prior work on founded

semantics [18], a program is an unstructured set of rules and facts. The structure
and re-use provided by kunits is vital for development of larger programs for
practical applications.

Referencing Founded Semantics. The founded semantics of a predicate P
can be referenced using special predicates P .T, P .F, and P .U. For each of the
three truth values t, P.t(c1, ..., cn) is true if P (c1, ..., cn) has truth value t, and
is false otherwise. To ensure that the semantics of P is fully determined before
these predicates are used, these predicates cannot be used in rules defining P or
any predicate on which P depends. Predicates that reference founded semantics
are implicitly declared certain and can appear only in rule bodies.

When referencing the undefined part of a predicate, it is sometimes desirable
to prune uninteresting values. For example, consider the rule draw(x) ←win.U(x).
If the kunit contains constants representing players as well as positions, and
win(X) is undefined when X is a player, and the user wants draw to hold
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only for positions, then the user could add to the rule an additional hypoth-
esis position(x), defined to hold only for positions.

Referencing Constraint Semantics. The constraint semantics of a kunit K
can be referenced in another kunit K1 using the special predicate K.CS, where
K is the name of another kunit in the program. Using this special predicate in
any rule in K1 has the effect of adding all of the constraint models of K to the
domain (that is, set of constants) of K1. In other words, the possible values of
variables in K1 include the constraint models of K. The assertion K.CS(X) is
true when X is a constraint model of K and is false for all other constants. The
constraint models of a kunit K can be referenced using K.CS only if K does
not reference its own founded semantics (using predicates such as P .U). When
the value of a variable X is a constraint model of K, a predicate P of K can
be accessed using the notation X.P (...). If the value of X is not a constraint
model, or P is not a predicate defined in that constraint model, then X.P (...)
is undefined, regardless of the arguments. Predicates that reference constraint
semantics are implicitly declared certain and can appear only in rule bodies.
A kunit K1 has a CS-dependency on another kunit K if K1 uses K.CS. The
CS-dependency relation must be acyclic.

4 Formal Definition of Semantics of DA Logic

This section extends the definitions of founded semantics and constraint seman-
tics in [18] to handle the new features of DA logic.

Handling kunits is relatively straightforward. Since each kunit defines a dis-
tinct set of predicates, the founded semantics of the program is simply a col-
lection of the founded semantics of its kunits, and similarly for the constraint
semantics. All use constructs in a kunit are expanded, as described in Sect. 3,
before considering its semantics. Therefore, the constants, facts, rules, and meta-
constraints of a kunit include the corresponding elements (appropriately instan-
tiated) of the kunits it uses.

Handling references to founded semantics and constraint semantics requires
changes in the definitions of domain, literal, interpretation, and dependency
graph.

Handling disjunction, which is mentioned as an extension in [18] but not
considered in the detailed definitions, requires changes in the definition of com-
pletion rules and the handling of closed predicates.

The paragraphs “Founded semantics of DA logic without closed declarations”,
“Least fixed point”, and “Constraint semantics of DA logic” are essentially the
same as in [18]; they are included for completeness.

Atoms, Literals, and Projection. Let π be a program. Let K be a kunit in π.
A predicate is intensional in K if it appears in the conclusion of at least one rule
in K; otherwise, it is extensional in K. The domain of K is the set of constants in
K plus, for each kunit K1 such that K1.CS appears in K, the constraint models
of K1, computed as defined below. The requirement that the CS-dependency
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relation is acyclic ensures the constraint models of K1 are determined before the
semantics of K is considered.

An atom of K is a formula P (c1, ..., ca) formed by applying a predicate P in
K with arity a to a constants in the domain of K. A literal of K is a formula of
the form P (c1, ..., ca) or P .F(c1, ..., ca), for any atom P (c1, ..., ca) of K where P
is a predicate that does not reference founded semantics or constraint semantics.
These are called positive literals and negative literals for P (c1, ..., ca), respectively.
A set of literals is consistent if it does not contain positive and negative literals
for the same atom. The projection of a kunit K onto a set S of predicates,
denoted Proj (K,S), contains all facts of K for predicates in S and all rules of
K whose conclusions contain predicates in S.

Interpretations, Ground Instances, Models, and Derivability. An inter-
pretation I of K is a consistent set of literals of K. Interpretations are generally
3-valued. For predicates that do not reference founded or constraint semantics,
P (c1, ..., ca) is true (T ) in I if I contains P (c1, ..., ca), is false (F ) in I if I con-
tains P .F(c1, ..., ca), and is undefined (U) in I if I contains neither P (c1, ..., ca)
nor P .F(c1, ..., ca). For the predicates that reference founded semantics, for each
of the three truth values t, P.t(c1, ..., ca) is true in I if P (c1, ..., ca) has truth
value t in I, and is false otherwise. For the predicates that reference constraint
semantics, K1.CS(c) is true in I if c is a constraint model of K1, as defined
below, and is false otherwise; the requirement that the CS-dependency relation
is acyclic ensures that the constraint models of K1 are determined before the
semantics of K1.CS(c) is considered. If c is a constraint model that provides a
truth value for P (c1, ..., ca), then c.P (c1, ..., ca) has the same truth value in I
that P (c1, ..., ca) has in c, otherwise it is undefined. An interpretation I of K is
2-valued if every atom of K is true or false in I, that is, no atom is undefined.
Interpretations are ordered by set inclusion ⊆.

A ground instance of a rule R is any rule that can be obtained from R by
expanding universal quantifications into conjunctions over all constants in the
domain, instantiating existential quantifications with constants, and instantiat-
ing the remaining variables with constants. An interpretation is a model of a
kunit if it contains all facts in the kunit and satisfies all rules of the kunit, inter-
preted as formulas in 3-valued logic [10], that is, for each ground instance of each
rule, if the body is true, then so is the conclusion. A collection of interpretations,
one per kunit in a program π, is a model of π if each interpretation is a model
of the corresponding kunit.

The one-step derivability operator TK performs one step of inference using
rules of K, starting from a given interpretation. Formally, C ∈ TK(I) iff C is a
fact of K or there is a ground instance R of a rule in K with conclusion C such
that the body of R is true in I.

Dependency Graph. The dependency graph DG(K) of kunit K is a directed
graph with a node for each predicate of K that does not reference founded
semantics and constraint semantics (including these predicates is unnecessary,
because they cannot appear in conclusions), and an edge from Q to P labeled
+ (respectively, −) if a rule whose conclusion contains Q has a positive (respec-
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tively, negative) hypothesis that contains P . If the node for predicate P is in a
cycle containing only positive edges, then P has circular positive dependency in
K; if it is in a cycle containing a negative edge, then P has circular negative
dependency in K.

Founded Semantics of DA Logic Without Closed Declarations. We
first define a version of founded semantics, denoted Founded0, that does not
take declarations of predicates as closed into account; below we extend the def-
inition to handle those declarations. Intuitively, the founded model of a kunit
K ignoring closed declarations, denoted Founded0(K), is the least set of lit-
erals that are given as facts or can be inferred by repeated use of the rules.
We define Founded0(K) = LFPbySCC (NameNeg(Cmpl(K))), where functions
Cmpl , NameNeg , and LFPbySCC , are defined as follows.

Completion. The completion function, Cmpl(K), returns the completed version
of K. Formally, Cmpl(K) = AddInv(Combine(K)), where Combine and AddInv
are defined as follows.

The function Combine(K) returns the kunit obtained from K by replacing
the facts and rules defining each uncertain complete predicate Q with a single
combined rule for Q that is logically equivalent to those facts and rules. The
detailed definition of combined rule is the same as in [18], except generalized in
a straightforward way to allow rule bodies to contain disjunction and quantifiers.
Similar completion rules are used in [5,10].

The function AddInv(K) returns the kunit obtained from K by adding, for
each uncertain complete predicate Q, a completion rule that derives negative
literals for Q. The completion rule for Q is obtained from the inverse of the
combined rule defining Q (recall that the inverse of C ← B is ¬C ← ¬B), by
putting the body of the rule in negation normal form, that is, using equivalences
of predicate logic to move negation inwards and eliminate double negations, so
that negation is applied only to atoms.

Least Fixed Point. Explicit use of negation is eliminated before the least
fixed point is computed, by applying the function NameNeg . The function
NameNeg(K) returns the kunit obtained from K by replacing each ¬P (X1, ...,
Xa) with P .F(X1, ...,Xa).

The function LFPbySCC (K) uses a least fixed point to infer facts for each
strongly connected component (SCC) in the dependency graph of K, as follows.
Let S1, ..., Sn be a list of the SCCs in dependency order, so earlier SCCs do not
depend on later ones; it is easy to show that any linearization of the dependency
order leads to the same result for LFPbySCC . For convenience, we overload Si

to also denote the set of predicates in the SCC Si. Define LFPbySCC (K) =
In, where I0 = ∅ and Ii = AddNeg(LFP(TIi−1∪Proj (K,Si)), Si) for i ∈ 1..n.
LFP(f) is the least fixed point of function f . The least fixed point is well-defined,
because TIi−1∪Proj (K,Si) is monotonic, because the kunit K was transformed
by NameNeg and hence does not contain negation. The function AddNeg(I, S)
returns the interpretation obtained from interpretation I by adding completion
facts for certain predicates in S to I; specifically, for each such predicate P , for
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each combination of values v1, ..., va of arguments of P , if I does not contain
P (v1, ..., va), then add P .F(v1, ..., va).

Founded Semantics of DA Logic with Closed Declarations. Informally,
when an uncertain complete predicate of kunit K is declared closed, an atom A of
the predicate is false in an interpretation I, called self-false in I, if every ground
instance of rules that concludes A, or recursively concludes some hypothesis of
that rule instance, has a hypothesis that is false or, recursively, is self-false in I.
A formal definition of SelfFalseK(I), the set of self-false atoms of kunit K with
respect to interpretation I, appears in [18]; it is the same as the definition of
greatest unfounded set [25], except limited to closed predicates. The definition
does not take disjunction into account, so each rule containing disjunction is
put into disjunctive normal form (DNF) and then replaced with multiple rules
(one per disjunct of the DNF) not containing disjunction, before determining
the self-false atoms.

The founded semantics is defined by repeatedly computing the semantics
given by Founded0 (the founded semantics without closed declarations) and then
setting self-false atoms to false, until a least fixed point is reached. For a set S
of positive literals, let ¬ · S = {P .F(c1, ..., ca) |P (c1, ..., ca) ∈ S}. For a kunit
K and an interpretation I, let K ∪ I denote K with the literals in I added to
its body. Formally, the founded semantics is Founded(K) = LFP(FK), where
FK(I) = Founded(K ∪ I) ∪ ¬ · SelfFalseK(Founded(K ∪ I)).

Constraint Semantics of DA Logic. Constraint semantics is a set of 2-valued
models based on founded semantics. A constraint model of K is a consistent 2-
valued interpretation M of K such that M is a model of Cmpl(K) and such
that Founded(K) ⊆ M and ¬ · SelfFalseK(M) ⊆ M . Let Constraint(K) denote
the set of constraint models of K. Constraint models can be computed from
Founded(K) by iterating over all assignments of true and false to atoms that are
undefined in Founded(K), and checking which of the resulting interpretations
satisfy all rules in Cmpl(K) and satisfy ¬ · SelfFalseK(M) ⊆ M .

Properties of DA Logic Semantics. The following theorems express the most
important properties of the semantics.

Theorem 1. The founded model and constraint models of a program π are con-
sistent.

Proof: First we consider founded semantics. Each kunit in the program defines
a distinct set of predicates, so consistency can be established one kunit at a
time, considering them in CS-dependency order. For each kunit K, the proof of
consistency is a straightfoward extension of the proof of consistency of founded
semantics [17, Theorem 1]. The extension is needed to show that consistency
holds for the new predicates that reference founded semantics and constraint
semantics.

For predicates that reference founded semantics, we prove this for each SCC
Si in the dependency graph for K; the proof is by induction on i. The predicates
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used in SCC Si to reference founded semantics have the same truth values as
the referenced predicates in earlier SCCs, and by the induction hypothesis, the
interpretation computed for predicates in earlier SCCs is consistent.

For predicates that reference constraint semantics, the proof is by induction
on the kunits in CS-dependency order. The predicates used in kunit K to refer-
ence constraint semantics have the same truth values as the referenced predicates
in earlier kunits, and by the induction hypothesis, the interpretation computed
for predicates in earlier kunits is consistent.

For constraint semantics, note that constraint models are consistent by defi-
nition. �

Theorem 2. The founded model of a kunit K is a model of K and Cmpl(K).
The constraint models of K are 2-valued models of K and Cmpl(K).

Proof: The proof that Founded(K) is a model of Cmpl(K) is essentially the same
as the proof that Founded(π) is a model of Cmpl(π) [17, Theorem 2], because
the proof primarily depends on the behavior of Cmpl , AddNeg , and the one-
step derivability operator, and they handle atoms of predicates that reference
founded semantics and constraint semantics in exactly the same way as other
atoms. Constraint models are 2-valued models of Cmpl(K) by definition. Any
model of Cmpl(K) is also a model of K, because K is logically equivalent to the
subset of Cmpl(K) obtained by removing the completion rules added by AddInv .

�

Theorem 3. DA logic is decidable.

Proof: DA logic has a finite number of constants from given facts, and has sets
of finite nesting depths bounded by the depths of CS-dependencies. In particular,
it has no function symbols to build infinite domains in recursive rules. Thus, DA
logic is over finite domains and is decidable. �

5 Additional Examples

We present additional examples that show the power of our language. They
are challenging or impossible to express and solve using prior languages and
semantics. We use - - to prefix comments.

Same Different Games. The same win-not-win game can be over different
kinds of moves, forming different games, as introduced with kunit instantia-
tion. However, the fundamental winning, losing, or draw situations stay the
same, parameterized by the moves. The moves could also be defined easily using
another kunit instantiation.

Example. A new game can use winning, losing, draw positions defined by
win_unit in Sect. 2, whose moves use paths defined by path_unit, whose edges
use given links.
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kunit path_unit:
path(x,y) ← edge(x,y)
path(x,y) ← edge(x,z) ∧ path(z,y)

kunit win_path_unit:
link = {(1,2), (1,3), ...} -- shorthand for link(1,2), link(1,3), ...
use path_unit (edge = link) -- instantiate path_unit with edge replaced

-- by link
use win_unit (move = path) -- instantiate win_unit with move replaced

-- by path

One could also define edge in place of link above, and then path_unit can be
used without rebinding the name edge, as follows.

kunit win_path_unit: -- as above
edge = {(1,2), (1,3), ...} -- as above but use edge in place of link
use path_unit () -- as above but without replacing edge by

-- link
use win_unit (move = path) -- as above �

Defined from Undefined Positions. Sets and predicates can be defined using
the set of values of arguments for which a given predicate is undefined. This is
not possible in previous 3-valued logic like WFS, because anything depending
on undefined can only be undefined.

Example. Using the win-not-win game, the predicates move_to_draw and
reach_from_draw below define the set of positions that have a move to a draw
position, and the set of positions that have a special move from a draw position,
respectively.

kunit draw_unit:
move = {(1,1), (2,3), (3,1)}
use win_unit ()

move_to_draw(x) ← move(x,y) ∧ win.U(y)

special_move = {(1,4), (4,2)}
use path_unit (edge = special_move)

reach_from_draw(y) ← win.U(x) ∧ path(x,y)

In draw_unit, we have win.U(1), that is, 1 is a draw position. Then we have
move_to_draw(3), and we have reach_from_draw(4) and reach_from_draw(2).

Note that we could copy the single win rule here in place of use win_unit ()
and obtain an equivalent draw_unit. We avoid copying when possible because
this is a good principle, and in general, a kunit may contain many rules and
facts. �
Unique Undefined Positions. Among the most critical information is infor-
mation that is true in all possible ways of satisfying given constraints but can-
not be determined to be true by just following founded reasoning. Having both
founded semantics and constraint semantics at the same time allows one to find
such information.
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Example. Predicate unique in cmp_unit below finds positions in the game in
win_unit1 that are U in the founded model but, if a constraint model exists, are
winning in all possible models in constraint semantics.

kunit win_unit1:
prolog ← ¬ asp
asp ← ¬ prolog
move(1,0) ← prolog
move(1,0) ← asp
move(1,1)
use win_unit ()

kunit cmp_unit:
use win_unit1 ()

unique(x) ← win.U(x) ∧ ∃ m ∈ win_unit1.CS
∧ ∀ m ∈ win_unit1.CS | m.win(x)

In win_unit1, founded semantics gives move.T(1,1), move.U(1,0), win.U(0), and
win.U(1). win_unit1.CS = {{move(1,1), move(1,0), win(1)}}, that is, win(1) is
true, and win(0) is false. So win.U(1) and win.U(0) are imprecise, and unique(1)
is true in cmp_unit. �
Multiple Uncertain Worlds. Given multiple worlds with different models,
different uncertainties can arise from different worlds, yielding multiple uncertain
worlds. It is simple to represent this using predicates that are possibly 3-valued
and that are parameterized by a 2-valued model.

Example. The game in win_unit2 uses win_unit on a set of moves. The game in
win_set_unit has its own moves, but the moves are valid if and only if they start
from a position that is a winning position in a model in the constraint semantics
of win_unit2.

kunit win_unit2:
move = {(1,4),(4,1)}
use win_unit ()

kunit win_set_unit:
move = {(1,2),(2,3),(3,1),(4,4),(5,6)}
valid_move(x,y,m) ← move(x,y), win_unit2.CS(m), m.win(x)

use win_unit (move = valid_move(m), win = valid_win(m))

win_some(x) ← valid_win(x,m)
win_each(x) ← win_some(x) ∧ ∀ m ∈ win_unit2.CS | valid_win(x,m)

In win_unit2, there is a 2-edge cycle of moves, so win_unit2.CS = {m1,m2}, where
m1.win = {1} and m2.win = {4}. In win_set_unit, each m in win_unit2 leads to a
separately defined predicate valid_move under argument m, which is then used to
define a separate predicate valid_win under argument m by instantiating win_unit
with move and win parameterized by additional argument m. �
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6 Related Work and Conclusion

Many logic languages and semantics have been proposed. Several overview arti-
cles [2,11,20,21,24] give a good sense of the complications and challenges when
there is unrestricted negation. Notable different semantics include Clark com-
pletion [5] and similar additions, e.g., [4,12,15,19,22,23], Fitting semantics or
Kripke-Kleene semantics [10], supported model semantics [1], stratified seman-
tics [1], WFS [25], and SMS [13]. Note that these semantics disagree, in contrast
to different styles of semantics that agree [9].

There are also a variety of works on relating and unifying different semantics.
These include Dung’s study of relationships [8], partial stable models, also called
stationary models [20], Loop fomulas [16], FO(ID) [7], and founded semantics
and constraint semantics [18]. FO(ID) is more powerful than works prior to it, by
supporting both first-order logic and inductive definitions while also being sim-
ilar to SMS [3]. However, it does not support any 3-valued semantics. Founded
semantics and constraint semantics uniquely unify different semantics, by captur-
ing their different assumptions using predicates declared to be certain, complete,
and closed, or not.

However, founded semantics and constraint semantics by themselves do not
provide a way for different semantics to be used for solving different parts of
a problem or even the same part of the problem. DA logic supports these, and
supports everything completely declaratively, in a unified language.

Specifically, DA logic allows different assumptions under different semantics
to be specified easily as meta-constraints, and allows the results of different
semantics to be built upon, including defining predicates using undefined values
in a 3-valued model and using models in a set of 2-valued models, and parameter-
izing predicates by a set of 2-valued models. More fundamentally, DA logic allows
different parts of a problem to be solved with different knowledge units, where
every predicate is a parameter that can be instantiated with new predicates,
including new predicates with additional arguments. These are not supported in
prior languages.

Among many directions for future work, one particularly important and
intriguing problem is to study precise complexity guarantees for inference and
queries for DA logic.

Acknowledgments. This work was supported in part by NSF under grants CCF-
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Abstract. This paper presents a methodology to construct globally
sound but possibly locally unsound analytic calculi for partial theories of
Henkin quantifiers. It is demonstrated that locally sound analytic calculi
do not exist for any reasonable fragment of the full theory of Henkin
quantifiers. This is due to the combination of strong and weak quantifier
inferences in one quantifier rule.

Keywords: Henkin quantifiers · Sequent calculus · Cut-elimination

1 Introduction

Henkin introduced the general idea of dependent quantifiers extending classi-
cal first-order logic [3], cf. [4] for an overview. This leads to the notion of a
partially ordered quantifier with m universal quantifiers and n existential quan-
tifiers, where F is a function that determines for each existential quantifier on
which universal quantifiers it depends (m and n may be any finite number).
The simplest Henkin quantifier that is not definable in ordinary first-order logic
is the quantifier QH binding four variables in a formula. A formula A using

QH can be written as AH =
(∀x ∃u

∀y ∃v

)
A(x, y, u, v). This is to be read “For

every x there is a u and for every y there is a v (depending only on y)” s.t.
A(x, y, u, v). If the semantical meaning of this formula is given in second-order
notation, the above formula is semantically equivalent to the second-order for-
mula ∃f∃g∀x∀yA(x, y, f(x), g(y)), where f and g are function variables (the
investigation of this quantifier is generic for all Henkin quantifiers). Systems
of partially ordered quantification are intermediate in strength between first-
order logic and second-order logic. Similar to second-order logic, first-order logic
extended by QH is incomplete [6]. In proof theory incomplete logics are rep-
resented by partial proof systems, c.f. the wealth of approaches dealing with
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partial proof systems for second-order logic. In an analytic setting, these partial
systems allow the extraction of implicit information in proofs, i.e. proof mining.
However, in contrast to second-order logic only a few results deal with the proof
theoretic aspect of the use of branching quantifiers in partial systems.1

The first step is to establish an analytic function calculus with a suitable
partial Henkin semantics. In this paper we choose a multiplicative function cal-
culus based on pairs of multisets as sequents corresponding to term models. We
refer to this calculus as LF. Besides the usual propositional inference rules of
LK the quantifier inference rules of LF are

– ∀-introduction for second-order function variables

A(t(t∗1, . . . , t
∗
n))Γ → Δ ∀n

l∀f∗A(f∗(t∗1, . . . , t
∗
n)), Γ → Δ

t is a term and t∗1, . . . , t
∗
n are semi-terms.

Γ → Δ,A(f(t∗1, . . . , t
∗
n)) ∀n

rΓ → Δ,∀f∗A(f∗(t∗1, . . . , t
∗
n))

f is a free function variable (eigenvariable) of arity n which does not occur
in the lower sequent and t∗1, . . . , t

∗
n are semi-terms.

– ∃-introduction for second-order function variables

A(f(t∗1, . . . , t
∗
n)), Γ → Δ ∃n

l∃f∗A(f∗(t∗1, . . . , t
∗
n)), Γ → Δ

f is a free function variable (eigenvariable) of arity n which does not occur
in the lower sequent and t∗1, . . . , t

∗
n are semi-terms.

Γ → Δ,A(t(t∗1, . . . , t
∗
n)) ∃n

rΓ → Δ,∃f∗A(f∗(t∗1, . . . , t
∗
n))

t is a term and t∗1, . . . , t
∗
n are semi-terms.

LF is obviously cut-free complete w.r.t. term models by the usual Schütte
argument and admits effective cut-elimination.

The question arises why not to be content with the second-order representa-
tion of Henkin quantifiers. The answer is twofold: First of all, a lot of information
can be extracted from cut-free proofs but only on first-order level. This includes

– suitable variants of Herbrand’s theorem with or without Skolemization,
– the construction of term-minimal cut-free proofs,
– the development of suitable tableaux provers.

1 The most relevant paper is the work of Lopez-Escobar [5], describing a natural
deduction system for QH . The setting is of course intuitionistic logic. The formulation
of the introduction rule for QH corresponds to the introduction rule right in the
sequent calculus developed in this paper. The system lacks an elimination rule.
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The first item fails due to the failure of second-order Skolemization. The second
and third item fail because of the undecidability of second-order unification and
the impossibility to obtain most general solutions.

Moreover, this paper can be considered as a general study of the analytic
first-order representation of second-order calculi and the necessary weakening of
eigenvariable conditions.

2 The Derivation of First-Order Rules from Second-Order
Rule Macros: A First Approach

The language LH of the intended calculus LH is based on the usual language of
first-order logic with exception that the quantifiers are replaced by the quantifier
QH . With exception of the quantifier-rules, LH corresponds to the calculus LK
in a multiplicative setting based on pairs of multisets as sequents. The idea is to
abstract the eigenvariable conditions from the premises of the inference macros
in LF.

Definition 1 (LH). LH is LK, except that we replace the quantifier rules by:

Γ → Δ,A(a, b, t1, t2)
QHr

Γ → Δ,

(∀x ∃u
∀y ∃v

)
A(x, y, u, v)

a and b are eigenvariables (a �= b) not allowed to occur in the lower sequent and
t1 and t2 are terms s.t. t1 must not contain b and t2 must not contain a.2

A(t′1, t
′
2, a, b),Π → Γ

QHl1(∀x ∃u
∀y ∃v

)
A(x, y, u, v),Π → Γ

where a and b are eigenvariables (a �= b) not allowed to occur in the lower sequent
and t′1, t′2 are terms s.t. b does not occur in t′2 and a and b do not occur in t′1.

A(t′1, t
′
2, a, b),Π → Γ

QHl2(∀x ∃u
∀y ∃v

)
A(x, y, u, v),Π → Γ

where a and b are eigenvariables (a �= b) not allowed to occur in the lower sequent
and t′1, t′2 are terms s.t. a does not occur in t′1 and a and b do not occur in t′2.
The usual quantifier rules of LK (∀l,∀r and ∃l, ∃r) can be obtained by partial
dummy applications of QH :

– we define ∀ by QH , where
(∀x ∃u

∀y ∃v

)
A(x, y, u, v) binds only on x.

– we define ∃ by QH , where
(∀x ∃u

∀y ∃v

)
A(x, y, u, v) binds only on u.

2 Note that such a rule was already used by Lopez-Escobar in [5].



A Globally Sound Analytic Calculus for Henkin Quantifiers 131

The defined quantifiers ∀,∃ will be denoted as usual.

The rule QHr
originates from an analysis of a corresponding sequence of

inferences in a suitable partial second-order calculus for functions:

Γ → Δ,A(a, b, s(a), t(b)) ∀r
Γ → Δ,∀yA(a, y, s(a), t(y)) ∀r

Γ → Δ,∀x∀yA(x, y, s(x), t(y)) ∃r
Γ → Δ,∃g∀x∀yA(x, y, s(x), g(y)) ∃r

Γ → Δ,∃f∃g∀x∀yA(x, y, f(x), g(y))

The rules QHl1
and QHl2

originate from

A(t, t′, f ′(t), g′(t′)), Γ → Δ ∀l∀yA(t, y, f ′(t), g′(y)), Γ → Δ ∀l∀x∀yA(x, y, f ′(x), g′(y)), Γ → Δ ∃l∃g∀x∀yA(x, y, f ′(x), g(y)), Γ → Δ ∃l∃f∃g∀x∀yA(x, y, f(x), g(y)), Γ → Δ

f ′, g′ eigenvariables. f ′(t) can obviously not occur in t and g′(t′) can obviously
not occur in t′. f ′(t) either does not occur in t′ or g′(t′) does not occur in t.

Example 1. Consider the sequent
(∀x ∃u

∀y ∃v

)
A(x, y, u, v) → ∀x∀y∃u∃vA(x, y, u, v).

Its LH-proof is:

A(a, b, c, d) → A(a, b, c, d) ∃r
A(a, b, c, d) → ∃vA(a, b, c, v) ∃r

A(a, b, c, d) → ∃u∃vA(a, b, u, v)
QHl(∀x ∃u

∀y ∃v

)
A(x, y, u, v) → ∃u∃vA(a, b, u, v)

∀r(∀x ∃u
∀y ∃v

)
A(x, y, u, v) → ∀y∃u∃vA(a, y, u, v)

∀r(∀x ∃u
∀y ∃v

)
A(x, y, u, v) → ∀x∀y∃u∃vA(x, y, u, v)

Cuts in LH can be eliminated following Gentzen’s procedure.

Theorem 1. LH admits cut-elimination.

Proof. We follow Gentzen’s procedure and illustrate only the cases for the reduc-
tion of QH . There are two cases for the reduction of the quantifier QH , where(∀x ∃u

∀y ∃v

)
A(x, y, u, v) does not occur in Δ or Π.
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1.

Γ → Δ, A(a, b, s(a), t(b))
QHr

Γ → Δ,

(∀x ∃u
∀y ∃v

)
A(x, y, u, v)

A(s′, t′(u), u, v), Π → Λ
QHL1(∀x ∃u

∀y ∃v

)
A(x, y, u, v), Π → Λ

Γ, Π → Δ, Λ

(a �= b, u �= v, all occurrences of a, b, u, v are indicated). This is reduced to

Γ → Δ, F1 F1, Π → Λ

Γ, Π ′ → Δ′, Λ

where F1 = A(s′, t′(s(s′)), s(s′), t(t′(s(s′)))).
2.

Γ → Δ, A(a, b, s(a), t(b))
QHr

Γ → Δ,

(∀x ∃u
∀y ∃v

)
A(x, y, u, v)

A(s′(v), t′, u, v), Π → Λ
QHL1(∀x ∃u

∀y ∃v

)
A(x, y, u, v), Π → Λ

Γ, Π → Δ, Λ

(a �= b, u �= v, all occurrences of a, b, u, v are indicated). This is reduced to

Γ → Δ, F2 F2, Π → Λ

Γ, Π ′ → Δ′, Λ

where F2 = A(s′(t(t′)), t′, s(s′(t(t′))), t(t′)).

Corollary 1 (midsequent theorem). For every proof of a prenex sequent in
LH there is a cut-free proof with a midsequent s.t. every inference above the mid-
sequent is structural or propositional and every inference below the midsequent
is structural or QHr

, QHl1
, QHl2

.

Proof. As in LK all quantifier inferences can be postponed until all propositional
inferences are completed.

Corollary 2. LH admits interpolation. If the axioms contain QH only in the
dummy forms of ∀,∃ there is an interpolant in the usual first-order language.

Proof. We adapt Maehara’s lemma (c.f. [7]). For every partition (Γ1 → Δ1, Γ2 →
Δ2) of Γ → Δ an interpolant I is constructed s.t. Γ1 → Δ1, I and I, Γ2 → Δ2

are derivable. The relevant cases are:

1. case

Γ → Δ,A(a, b, t, t′)
QHr

Γ → Δ,

(∀x ∃u
∀y ∃v

)
A(x, y, u, v)
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The inference is in the right partition: Block a, b using ∀l in the interpolant
of the right partition. Infer ∀r dually in the left partition. The inference is in
the left partition: Block a, b using a ∃r in the left partition, infer ∃l dually in
the right partition.

2. case
A(t, t′, u, v), Γ → Δ

QHl1,2(∀x ∃u
∀y ∃v

)
A(x, y, u, v), Γ → Δ

The inference is in the right partition: Block a, b using ∃l in the interpolant
of the right partition. Infer ∃r dually in the left partition. The inference is in
the left partition: Block a, b using a ∀r in the left partition, infer ∀l dually in
the right partition.

Corollary 2 hints at the weakness of this calculus which turns out not to be
adequate for our aims.

Theorem 2. LH is incomplete for any reasonable partial semantics.

Proof. Assume towards a contradiction the sequent
(∀x ∃u

∀y ∃v

)
A(x, y, u, v) →(∀x ∃u

∀y ∃v

)
(A(x, y, u, v) ∨ C) is provable. Then it is provable without cuts. A

cut-free derivation after deletion of weakenings and contractions has the form:

A(a, b, c, d) → A(a, b, c, d)
A(a, b, c, d) → A(a, b, c, d) ∨ C

...
Due to the mixture of strong and weak positions3 in QH none of QHr

, QHl1
,

QHl2
can be applied.

Corollary 3. Compound axioms A → A cannot be reduced to atomic ones.

Remark 1. The provable sequents of LH are usually asymmetric w.r.t. QH if
QH does not originate in an axiom or a weakening.

3 LK++: A Globally Sound Calculus, Cf. [1]

The inherent incompleteness of LH even for trivial statements is a consequence
of the fact that QH represents a quantifier inference macro combining quantifiers
in a strong and a weak position. This phenomenon occurs already on the level
of usual first-order logic when quantifiers defined by macros of quantifiers such
as ∀x∃y are considered [2].

The solution is to consider sequent calculi with concepts of proof which are
globally but not locally sound. This means that all derived statements are true
but that not every sub-derivation is meaningful.
3 In LK strong quantifier inferences are ∀r and ∃l and weak quantifier inferences are

∀l and ∃r.
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Definition 2 (side variable relation <ϕ,LK). Let ϕ be an LK-derivation.
We say b is a side variable of a in ϕ (written a <ϕ,LK b) if ϕ contains a strong
quantifier inference of the form

Γ → Δ,A(a, b, c) ∀r
Γ → Δ,∀xA(x, b, c)

or of the form

A(a, b, c), Γ → Δ ∃l∃xA(x, b, c), Γ → Δ

In addition to strong and weak quantifier inferences we define LK++-suitable
quantifier inferences.

Definition 3 (LK++-suitable quantifier inferences). We say a quantifier
inference is suitable for a proof ϕ if either it is a weak quantifier inference, or
the following three conditions are satisfied:

– (substitutability) the eigenvariable does not appear in the conclusion of ϕ.
– (side variable condition) the relation <ϕ,LK is acyclic.
– (very weak regularity) the eigenvariable of an inference with main formula A

is different to the eigenvariable of an inference with main formula A′ whenever
A �= A′.

We obtain LK++ from LK by replacing the usual eigenvariable conditions by
LK++-suitable ones4.

Remark 2. Note that eigenvariables may occur outside of the scope of the
intended quantifier.

Theorem 3. If a sequent is LK++-derivable, then it is already LK-derivable.

Proof. (Sketch.) Let ϕ be an LK++-proof. Replace every unsound universal
quantifier inference by an ⊃l inference:

Γ → Δ,A(a) ∀xA(x) → ∀xA(x) ⊃l
Γ,A(a) ⊃ ∀xA(x) → Δ,∀xA(x)

Similarly replace every unsound existential quantifier by an ⊃l inference

∃xA(x) → ∃xA(x) A(a), Γ → Δ ⊃l
Γ,∃xA(x),∃xA(x) ⊃ A(a) → Δ

4 LK+ in [1] coincides with LK++ with exception to the notion of regularity, which
is the usual one.
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By doing this, we obtain a proof of the desired sequent, together with for-
mulae of the form

A(a) ⊃ ∀xA(x) or ∃xA(x) ⊃ A(a)

on the left-hand side. However, we can eliminate each of them by adding an
existential quantifier inference and cutting with formulae of the form

→ ∃y
(
A(y) ⊃ ∀xA(x)

)
or → ∃y

(∃xA(x) ⊃ A(y)
)
,

both of which are easily derivable. Note that the existential quantifier inferences
can be carried out using contractions in a way that is permissible by LK because
the <ϕ,LK does not loop.

Example 2. Consider the following locally unsound but globally sound LK++-
derivation ϕ:

A(a) → A(a) ∀r
A(a) → ∀yA(y) ⊃r→ A(a) ⊃ ∀yA(y) ∃r→ ∃x(A(x) ⊃ ∀yA(y))

As a is the only eigenvariable the side variable relation <ϕ,LK is empty.

In [1] the focus has been on the strongly reduced complexity of cut-free LK++

proofs (Theorem 2.6 and Corollary 2.7). The focus of this paper is to provide a
framework s.t. cut-free complete calculi for Henkin quantifiers can be established.

4 The Analytic Sequent Calculus LH++

From the example in the Sect. 2 it becomes obvious that there will be no analytic
calculus with local rules to represent any reasonable fragment of the full logic
with QH . The reason is that the inference rules for QH need eigenvariables in
both polarities. The solution is to keep global soundness but to give up local
soundness. To this aim, the eigenvariable conditions will be weakened.

The weakened eigenvariable conditions will be obtained from the weakened
eigenvariable conditions of the globally sound but possibly locally unsound
sequent calculus LF++ which corresponds to LF as LK++ corresponds to LK.

Definition 4 (side variable relation <ϕ,LF). Let f1, . . . , fk, g be all free vari-
ables occurring in the main formula of an inference of ∀n

r or ∃n
l with eigenvariable

g. Then f1, . . . , fk are side variables of g (g <ϕ,LF f1, . . . , g <ϕ,LF fk).

Definition 5 (LF++-suitable quantifier inferences). A quantifier inference
is LF++-suitable for a proof ϕ if the following three conditions are satisfied:

– (substitutability) the eigenvariable does not appear in the conclusion of ϕ.
– (side-variable condition) the relation <ϕ,LF is acyclic.
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– (very weak regularity) the eigenvariable of an inference with main formula A
is different to the eigenvariable of an inference with main formula A′ whenever
A �= A′.

The sequent calculus LF++ is LF, except that we replace quantifier inferences
with LF++-suitable quantifier inferences.

The calculus LF++ is possibly locally unsound, but globally sound:

Theorem 4. If a sequent is derivable in LF++, then it is derivable in LF.

Proof. The proof corresponds to the proof of Theorem3. Let ϕ be an LF++-
proof. Replace every unsound universal quantifier inference by a ⊃l inference

Γ → Δ,A(f(t∗1, . . . , t
∗
n)) ∀f∗A(f∗(t∗1, . . . , t

∗
n)) → ∀f∗A(f∗(t∗1, . . . , t

∗
n)) ⊃l

A(f(t∗1, . . . , t
∗
n)) ⊃ ∀f∗A(f∗(t∗1, . . . , t

∗
n)), Γ → Δ,∀f∗A(f∗(t∗1, . . . , t

∗
n))

Similarly, replace every unsound existential quantifier inference by

∃f∗A(f∗(t∗1, . . . , t
∗
n)) → ∃f∗A(f∗(t∗1, . . . , t

∗
n)) A(f(t∗1, . . . , t

∗
n)), Γ → Δ ⊃l∃f∗A(f∗(t∗1, . . . , t

∗
n)),∃f∗A(f∗(t∗1, . . . , t

∗
n)) ⊃ A(f(t∗1, . . . , t

∗
n)), Γ → Δ

We obtain a proof of the desired sequent together with formulae

A(f(t∗1, . . . , t
∗
n)) ⊃ ∀f∗A(f∗(t∗1, . . . , t

∗
n))

and
∃f∗A(f∗(t∗1, . . . , t

∗
n)) ⊃ A(f(t∗1, . . . , t

∗
n))

on the left-hand side. However, we can eliminate each of them: To each of these
formulae a corresponding free variable is associated which is covered by the
quantifier. We order the associated variables in a total ordering < extending
<ϕ,LF. Let f be the associated variable to

A(f(t∗1, . . . , t
∗
n)) ⊃ ∀fA(f(t∗1, . . . , t

∗
n)),

which is a <ϕ,LF-least variable for the formulae still present in the end-sequent

A(f(t∗1, . . . , t
∗
n)) ⊃ ∀fA(f(t∗1, . . . , t

∗
n)),Π → Δ.

The eigenvariable condition for f is fulfilled. Therefore we can introduce an exis-
tential quantifier to obtain ∃g∗(A(g∗(t∗1, . . . , t

∗
n)) ⊃ ∀f∗A(f∗(t∗1, . . . , t

∗
n))) and

cut with the derivation
A(f(t∗

1, . . . , t
∗
n)) → A(f(t∗

1, . . . , t
∗
n))

wr
A(f(t∗

1, . . . , t
∗
n)) → A(f(t∗

1, . . . , t
∗
n)), ∀fA(f(t∗

1, . . . , t
∗
n) ⊃r→ A(f(t∗

1, . . . , t
∗
n)), A(f(t∗

1, . . . , t
∗
n)) ⊃ ∀f∗A(f∗(t∗

1, . . . , t
∗
n) ∀n

r→ ∀f∗A(f∗(t∗
1, . . . , t

∗
n), A(f(t∗

1, . . . , t
∗
n)) ⊃ ∀f∗A(f∗(t∗

1, . . . , t
∗
n)

wl
A(f(t∗

1, . . . , t
∗
n)) → ∀f∗A(f∗(t∗

1, . . . , t
∗
n), A(f(t∗

1, . . . , t
∗
n)) ⊃ ∀f∗A(f∗(t∗

1, . . . , t
∗
n) ⊃r→ A(f(t∗

1, . . . , t
∗
n)) ⊃ ∀f∗A(f∗(t∗

1, . . . , t
∗
n), A ⊃ ∀f∗A(f∗(t∗

1, . . . , t
∗
n)

cr→ A(f(t∗
1, . . . , t

∗
n)) ⊃ ∀f∗A(f∗(t∗

1, . . . , t
∗
n) ∃n

r→ ∃g∗(A(g∗(t∗
1, . . . , t

∗
n)) ⊃ ∀f∗A(f∗(t∗

1, . . . , t
∗
n)))
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If f is the associated variable to ∃f∗A(f∗(t∗1, . . . , t
∗
n)) ⊃ A(f(t∗1, . . . , t

∗
n)), we

proceed analogously.

Note that every LF derivation is also an LF++ derivation.
In the construction of LH++ we use valuations of eigenvariables to guarantee

the eigenvariable conditions of LF++ on the first-order level.

Definition 6 (valuation of eigenvariables). We assign constants ca, cb, . . .
to all eigenvariables a, b, . . . occurring in rule applications QHr

, QHl1
, QHl2

in a
derivation ϕ. Let C = {ca, cb, . . .} and a an eigenvariable in ϕ. Then ν(a) ⊆
C is a valuation, assigning a subset of C to a. ν(t) =

⋃
ν(x) where x is an

eigenvariable in the term t.

The valuation of eigenvariables represents the generalized eigenvariable con-
ditions of a suitable second-order function calculus together with the form of the
premisses of quantifier inferences.

Definition 7 (side variable relation <ϕ,LH). The side variable conditions
are obtained from the inference rules QHr

and QHl1,2
. Consider the inferences

Γ → Δ,A(a, b, t1, t2, z1, . . . , zk)
QHr

Γ → Δ,

(∀x ∃u
∀y ∃v

)
A(x, y, u, v, z1, . . . , zk)

in an LH-derivation ϕ, where a does not occur in t2, b does not occur in t1 and
all eigenvariables of the derivation occurring in A are indicated. The variables
z1, . . . , zk are side variables. Let ca and cb be the corresponding constants:

ν(a) = {ca}, ν(b) = {cb}, ca �∈ ν(t2), cb �∈ ν(t1).

The the side variable condition is given by

{ca <ϕ,LH c, cb <ϕ,LH c | c ∈ (ν(t1) ∪ ν(t2))\{ca, cb} ∪ c ∈
k⋃

i=1

ν(zi)}

∪ {ca <ϕ,LH cb}.

Similarly, consider

A(t1, t2, a, b, z1, . . . , zk),Π → Γ
QHl1(∀x ∃u

∀y ∃v

)
A(x, y, u, v, z1, . . . , zk),Π → Γ

in an LH-derivation ϕ, where b does not occur in t2, a and b do not occur in t1
and all eigenvariables of the derivation occurring in A are indicated. The vari-
ables z1, . . . , zk are side variables. Let cf and cg be the corresponding constants:

ν(a) = ν(t1) ∪ {cf}, ν(b) = ν(t2) ∪ {cg},
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cf �∈ ν(t1), cg �∈ ν(t2), cg �∈ ν(t1),

cf ∈ ν(t2) ⇒ ν(t1) ⊆ ν(t2).

The the side variable condition is given by

{cf <ϕ,LH c, cg <ϕ,LH c | c ∈
k⋃

i=1

ν(zi)} ∪ {cg <ϕ,LH cf}.

For the second left inference

A(t1, t2, a, b, z1, . . . , zk),Π → Γ
QHl2(∀x ∃u

∀y ∃v

)
A(x, y, u, v, z1, . . . , zk),Π → Γ

where a does not occur in t1, a and b do not occur in t2 and all eigenvariables
of the derivation occurring in A are indicated. The variables z1, . . . , zk are side
variables. Let cf and cg be the corresponding constants.

ν(a) = ν(t1) ∪ {cf}, ν(b) = ν(t2) ∪ {cg},

cf �∈ ν(t1), cg �∈ ν(t2), cf �∈ ν(t2),

cg ∈ ν(t1) ⇒ ν(t2) ⊆ ν(t1).

The the side variable condition is given by

{cf <ϕ,LH c, cg <ϕ,LH c | c ∈
k⋃

i=1

ν(zi)} ∪ {cg <ϕ,LH cf}.

The aim of the valuations is to guarantee the embedding into LF++-derivations.

Definition 8 (LH++-suitable quantifier inferences). A quantifier inference
is LH++-suitable for a proof ϕ if the following three conditions are satisfied:

– (substitutability) the eigenvariable does not appear in the conclusion of ϕ.
– (side variable condition) the relation <ϕ,LH is acyclic.
– (very weak regularity) the eigenvariables of an inference with main formula

A are different to the eigenvariables of an inference with main formula A′

whenever A �= A′.

The sequent calculus LH++ is LH, except that we replace quantifier inferences
with LH++-suitable quantifier inferences.

Example 3. Consider the cut-free derivation ϕ =

A(a, b, c, d) → A(a, b, c, d)
wr

A(a, b, c, d) → A(a, b, c, d), C ∨r
A(a, b, c, d) → A(a, b, c, d) ∨ C

QHr

A(a, b, c, d) →
(∀x ∃u

∀y ∃v

)
(A(x, y, u, v) ∨ C)

QHl1(∀x ∃u
∀y ∃v

)
A(x, y, u, v) →

(∀x ∃u
∀y ∃v

)
(A(x, y, u, v) ∨ C)
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ϕ is regular and the eigenvariables a, b, c, d do not occur in the end-sequent. Let
ca, cb the corresponding constants for the eigenvariable in the right inference
and cf , cg the corresponding constants for the left inference. ν(a) = {ca}, ν(b) =
{cb}, ν(c) = {cf , ca} and ν(d) = {cg, cb}. Consequently we obtain ca <ϕ,LH cf ,
cb <ϕ,LH cg, ca <ϕ,LH cb, ca <ϕ,LH cg and cb <ϕ,LH cf .

It is essential that the side variable order is acyclic. Consider the following exam-
ple with an end-sequent which is already unsound in LK.

Example 4. Let ϕ be the following cut-free derivation

A(a, b) → A(a, b) ∀r
A(a, b) → ∀yA(a, y) ∃r

A(a, b) → ∃x∀yA(x, y) ∃l∃yA(y, b) → ∃x∀yA(x, y) ∀l∀x∃yA(y, x) → ∃x∀yA(x, y)

We obtain side variable conditions ca <ϕ,LH cb and cb <ϕ,LH ca, which loop.

5 Soundness, Completeness and Cut-Elimination
for LH++

It is impossible to embed LH++ into LH with additional cuts, similar to the
embedding of LK++ to LK, because LH admits cut-elimination, which demon-
strates that LH is strictly weaker than LH++. As usual cut-elimination methods
do not work for LH++, we will embed LH++ into LF++.

Theorem 5. There is no Gentzen-style cut-elimination for LH++.

Proof. Consider the following derivation ϕ =

A(a) → A(a) ∀r
A(a) → ∀xA(x)

A(f(a)) → A(f(a)) ∀l∀xA(x) → A(f(a))
cut

A(a) → A(f(a)) ⊃r→ A(a) ⊃ A(f(a))

ν(a) = {ca}. The side variable relation is empty, as there are no further eigenvari-
ables. If the cut on ∀xA(x) was eliminable according to the Gentzen procedure,
the proof would be in LJ. But the proven formula is not intuitionistically valid.

Remark 3. This example shows that there will be no analytic intuitionistic com-
panion of LH++ and, a fortiori, no usual natural deduction system with normal
forms.

Lemma 1. An LH++-derivation ϕ with cuts can be immediately transformed
into an LF++-derivation ϕ′ with cuts.
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Proof. By induction on the depth of ϕ. The proof in LH++ is step-wise trans-
formed into a proof in LF++. We also show that every function term replacing
an eigenvariable is compatible with the valuation ν(a) of this derivation. This
means that all functions h in the term f(t) are represented by constants ch in
ν(a). The constructed side variable order for the derivation in LF++ is given by
cf <ϕ,LH cg ⇔ f <ϕ,LF g. In

Γ → Δ,A(a, b, s, t)
QHr

Γ → Δ,

(∀x ∃u
∀y ∃v

)
A(x, y, u, v)

we take the premise and introduce the quantifiers to obtain

Γ → Δ,A(a, b, s, t) ∀n
rΓ → Δ,∀yA(a, y, s, t) ∀n

rΓ → Δ,∀x∀yA(x, y, s, t) ∃n
rΓ → Δ,∃g∀x∀yA(x, y, s, g(y)) ∃n

rΓ → Δ,∃f∃g∀x∀yA(x, y, f(x), g(y))

In

A(s, t, a, b),Π → Γ
QHl1(∀x ∃u

∀y ∃v

)
A(x, y, u, v),Π → Γ

we replace A(s, t, a, b) in the premise with A(s, t′, f(s), g(t′)), where t′ = t{a ←
f(s)} to obtain

A(s, t′, f(s), g(t′)), Γ → Δ ∀n
l∀yA(s, y, f(s), g(y)), Γ → Δ ∀n

l∀x∀yA(x, y, f(x), g(y)), Γ → Δ ∃n
l∃g∗∀x∀yA(x, y, f(x), g∗(y)), Γ → Δ ∃n

rl∃f∗∃g∗∀x∀yA(x, y, f∗(x), g∗(y)), Γ → Δ

And in

A(s, t, a, b),Π → Γ
QHl2(∀x ∃u

∀y ∃v

)
A(x, y, u, v),Π → Γ

we replace A(s, t, a, b) in the premise with A(s′, t, f(s′), g(t)), where s′ = s{b ←
g(t)} to obtain

A(s′, t, f(s′), g(t)), Γ → Δ ∀n
l∀yA(s′, y, f(s′), g(y)), Γ → Δ ∀n
l∀x∀yA(x, y, f(x), g(y)), Γ → Δ ∃n

l∃g∗∀x∀yA(x, y, f(x), g∗(y)), Γ → Δ ∃n
rl∃f∗∃g∗∀x∀yA(x, y, f∗(x), g∗(y)), Γ → Δ
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Note that by the suitability of the LH++-derivation the eigenvariable conditions
for the constructed LF++-derivation are guaranteed.

Lemma 2. An LF++-derivation ϕ where the end-sequent contains only quan-
tifiers in blocked distinct sequences ∃f∃g∀x∀y can be transformed into a cut-free
LF++-derivation ϕ′ where the quantifiers in the sequence ∃f∃g∀x∀y belonging
to a block in the end-sequent are inferred immediately one after the other.

Proof. We transform the LF++-proof ϕ in an LF-proof with cuts by Theorem4
and eliminate the cuts to obtain an LF-proof without cuts, where we replace
compound axioms with atomic ones. Then we use the weakened eigenvariable
condition of LF++ to infer the quantifier in the block one after the other to
obtain ϕ′. The eigenvariable conditions are fulfilled, as the proof is regular the
eigenvariables do not occur in the end-sequent and the side variable conditions
are respected.

Lemma 3. A cut-free LF++-proof ϕ with blocked quantifier inferences ∃f∃g∀x
∀y from atomic axioms and only such blocks of quantifiers in the end-sequent can
be transformed into a cut-free LH++-proof ϕ′ from atomic axioms. Whenever
cf <ϕ′,LF cg then f <ϕ,LH g.

Proof. By induction on the proof-depth of ϕ. We step-wise replace function terms
f(t) by variables xf(t), where ν(xf(t)) = {ch | h is a function occurring in f(t)}.
For eigenvariables a (free 0-placed functions) ν(a) = {ca}. Every sequence of
quantifier introductions in ϕ of the form

Γ → Δ,A(a, b, s, t) ∀n
rΓ → Δ,∀yA(a, y, s, t) ∀n

rΓ → Δ,∀x∀yA(x, y, s, t) ∃n
rΓ → Δ,∃g∀x∀yA(x, y, s, g(y)) ∃n

rΓ → Δ,∃f∃g∀x∀yA(x, y, f(x), g(y))

is replaced by the quantifier introduction for QH :

Γ → Δ,A(a, b, s, t)
QHr

Γ → Δ,

(∀x ∃u
∀y ∃v

)
A(x, y, u, v)

If a occurred in t or b occurred in s an inference of this form would be impos-
sible (the eigenvariable conditions are fulfilled). In case we have a sequence of
quantifier introductions in ϕ of the form

A(s, t, f(s), g(t)), Γ → Δ ∀n
l∀yA(s, y, f(s), g(y)), Γ → Δ ∀n

l∀x∀yA(x, y, f(x), g(y)), Γ → Δ ∃n
l∃g∗∀x∀yA(x, y, f(x), g∗(y)), Γ → Δ ∃n

rl∃f∗∃g∗∀x∀yA(x, y, f∗(x), g∗(y)), Γ → Δ
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we replace f(s) everywhere in the proof with af(s) and g(t) with bg(t). This
replacement is possible because the original LF++-derivation inferred only these
blocks of quantifiers one after the other. f(s) can obviously not be contained in
s and g(t) can obviously not be contained in t. However, it is impossible that
both f(s) is contained in t and g(t) is contained in s. Therefore the eigenvariable
conditions for one variant of the left rule for QH are fulfilled.

Now we are ready to state the main result of this section.

Theorem 6. LH++ is sound, cut-free complete w.r.t. the intended semantics
and admits an effective cut-elimination5.

Proof. Follows immediately by Lemmas 1, 2 and 3.

Corollary 4 (midsequent theorem). For every proof of a prenex sequent in
LH++ there is a cut-free proof with a midsequent s.t. every inference above the
midsequent is structural or propositional and every inference below the midse-
quent is structural or a quantifier inference.

Proof. All quantifier inferences can be postponed until all propositional infer-
ences are completed.

Corollary 5. Assume the language contains constants c, d, e. If LH++ derives

→
(∀x ∃u

∀y ∃v

)
A(x, y, u, v), where A is quantifier-free and does not contain free

variables, then

→
n∨

i=1

A(ci, di, si(ci, hi), ti(di, ji)),

where hi, ji ⊆ {ck, . . . , cn | k = i + 1} ∪ {e}.
Proof. From the midsequent theorem, the argument is similar to the derivation
of Σ2 forms of the theorem of Herbrand in classical logic: the order of components
of the disjunctions is induced by the side variable order ≤ϕ.LH.

Corollary 6. If LH++ derives

→
(∀x ∃u

∀y ∃v

)
A(x, y, u, v),

where A is quantifier-free and does not contain free variables, then LH derives

→
(∀x ∃u

∀y ∃v

)
A(x, y, u, v).

Remark 4. Note that it is easy to construct an automated deduction calculus in
tableaux-format from LH++ as contrary to LF or LF++ the usual unification
algorithm is applicable.
5 Note that usual regularity is not sufficient as the formation of quantifier blocks of

inferences in Lemma 2 in cut-free LF-derivations might distribute ∃f∃g inferences
by contractions to more than one branch of the proof.



A Globally Sound Analytic Calculus for Henkin Quantifiers 143

6 Conclusion

It is obvious that the methodology developed in this paper can be extended
to arbitrary Henkin quantifiers, it is however an open question whether this
approach can be extended to arbitrary macros of function quantifiers.

The most important question is however which types of quantifiers in general
can be represented with such global conditions on eigenvariables whose order is
recorded as external information.
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Abstract. Feedback is oracle computability when the oracle consists
exactly of the con- and divergence information about computability rel-
ative to that same oracle. Here we study the feedback version of the
hyperjump.

Keywords: Hyperjump · Feedback · Kleene’s O

1 Introduction

Imagine a notion of computability which allows for an oracle. A natural choice of
oracle is the halting problem, the set of halting programs. What if the programs
in the oracle were exactly the halting programs relative to that same oracle?

That is the essence of feedback. There is not (yet) a general definition of
feedback, one which is based on an unspecified notion of computation, perhaps a
notion with some properties given axiomatically. What we do have are particular
examples of feedback, including feedback Turing machines [1,2], feedback infinite
time Turing machines [8], and feedback primitive recursion [1,2]. Experience has
shown that the way feedback is defined has to be adapted to each different
setting. Hence it is useful and interesting to examine more instances of feedback.
The purpose of this work is to introduce feedback hyperjump.

There are several aspects of this that could be of interest. There are naturally
not one but two different kinds of feedback for the hyperjump. Called below strict
and loose, the difference between them is that the loose version has a kind of
built-in parallelism. If there were a general definition of feedback then there
should be only one kind of feedback hyperjump, but as it turns out we see no
prima facie reason to choose one of strict and loose over the other. Another
aspect that bears mention is that, in both cases, the central concept is arguably
that of well-foundedness, but it plays a two-faced role. In some more detail, with
feedback the escape from paradox threatened by diagonalization is provided by
the possibility of computations freezing. For instance, if a computation asks the
oracle about itself, then, in deciding what to answer, that same computation
must be run, which will eventually ask the oracle about itself, ad infinitum.
More generally, if a computation involves an infinite nested chain of oracle calls,
then the oracle (depending on the setting) may not have a good answer and
the computation could freeze. So the ill-foundedness of the tree of oracle calls
c© Springer Nature Switzerland AG 2020
S. Artemov and A. Nerode (Eds.): LFCS 2020, LNCS 11972, pp. 144–155, 2020.
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(typically) leads to the computation freezing. On the other hand, considering
O as a simple example of a hyperjump (the hyperjump of ∅), membership of
n in O is given by the well-foundedness of the tree of ordinal notations less
than n (less than in the sense of <O). Conversely, non-membership in O (in
the interesting cases) is witnessed by the ill-foundedness of the induced tree of
potential ordinal notations. With feedback, this is just the kind of information we
want to capture. So ill-foundedness here will give us positive information. In the
end, we will need to distinguish between two different kinds of trees, the tree of
sub-computations and the tree of ordinal notations, the well- or ill-foundedness
of each having very different consequences. Actually, this description is clean
only for strict feedback hyperjump; for the loose version, as a kind of parallelism,
even an ill-founded subcomputation tree can lead to a non-freezing computation.
Ultimately the point for the moment is that we will be taking a very close look
at the well-foundedness of trees associated with these computations. Finally, the
results themselves might be of interest, as providing alternate descriptions of
some ordinals which have already appeared in the literature.

To simplify the exposition, instead of defining the feedback hyperjump of
an arbitrary real X, this will be done for only the empty set; the relativization
to an arbitrary X is straightforward. The next section will review some of the
basics of the regular hyperjump of 0, a.k.a. O; all of this material is standard for
the field, and serves only as a refresher and to introduce some of the notation
and terminology we will use. The sections after that will study strict and loose
feedback hyperjumps respectively.

To provide some historical context, feedback was clearly identified in [12] (pp.
406–407), although the topic was not pursued at that time. It was re-introduced
in [8]. For an overview, see [2].

It should be mentioned that, as of this writing, not all of the proofs are
complete. That notwithstanding, the author believes that they are far enough
along to be convincing, and that the notions introduced are interesting enough
to warrant public exposition.

2 Background on O
For a much more thorough introduction to admissibility, O, and such like, we
refer the reader to [4] or [13]. Recall the mutual inductive definitions of Kleene’s
O and of the partial order <O on O. Regarding the former, O is the least set
such that

1. 1 ∈ O,
2. if n ∈ O then 2n ∈ O, and
3. if {e} is total, and ∀n {e}(n) <O {e}(n + 1), then 3 · 5e ∈ O.

For the latter, <O is the least transitive relation on O such that n <O 2n and
{e}(n) <O 3 · 5e. (Notice that this is finer than the ordering on the ordinals
represented by the members of O.) Numbers not in O are incomparable with
everything.
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Given n ∈ O, {k | k <O n} is naturally ordered as a tree, with root n.
The children of n are given by the primitive relations just mentioned, i.e. n
is the unique child of 2n, and if n = 3 · 5e then the numbers {e}(k) are the
children of n. This tree is well-founded. In fact, that essentially characterizes
the members of O. That is, every n ∈ N, whether in O or not, induces such a
tree Tn, defined recursively, the well-foundedness of which, or not, determines
membership in O. We think of Tn, and related trees to be defined later, as the
tree of ordinal notations, although it would be more accurate to call it the tree
of potential ordinal notations, since some entries may not actually be ordinal
notations (making of course n also not an ordinal notation); the latter name
being more cumbersome, we stick with the former.

Definition 1. 1. T1 is the tree consisting of the single node 1.
2. For n �= 0, T2n has root 2n, which has a unique child n, which is the root of

the subtree Tn.
3. T3·5e has root 3 · 5e, with children each {e}(k) which is defined, which is the

root of the subtree T{e}(k).
4. In all other cases, Tn consists of the single node n.

We say that the tree Tn is ill-formed if

1. either Tn contains a node not of the form 2m or 3 · 5e,
2. or Tn contains a node 3 ·5e, and either {e} is partial, or, for some k, {e}(k) �∈

T{e}(k+1).

If Tn is not ill-formed then we say it is well-formed.

Proposition 1. n ∈ O iff Tn is well-formed and well-founded.

It is easy to see that there are n’s with Tn well-formed and ill-founded: work
in some non-standard model of some kind of set theory (say KP or anything
stronger) with standard part ωCK

1 , and let n be a notation (as interpreted in
that model) for some non-standard ordinal.

3 Strict Feedback Hyperjump

We will ultimately define the feedback oracle SO, or strict feedback O. With
regular (as opposed to feedback) oracle computation, an oracle can be taken to
be a set, and an oracle query returns YES or NO depending upon whether the
number queried is in the oracle or not. With feedback oracle computation, this
will not work. One cannot avoid freezing, the possibility that the oracle just
doesn’t answer; this is how diagonalization is avoided. So a feedback oracle is
taken to be a partial function, which on its domain returns either Y or N. A query
which is not in the domain of an oracle is said to be a freezing query (relative to
that oracle); if during the course of a computation the oracle is asked a freezing
oracle query, it does not answer, and that computation freezes. In addition, our
oracle will have to answer two different types of questions: not only “n ∈ SO?”,
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but also “m <SO n?”. So a feedback oracle is a partial function from the set
of queries of the form “n ∈ SO?” and “m <SO n?” to {Y,N}.

Let P be a feedback oracle. By way of notation, {e}P is Turing computability
relative to P .

The trees Tn defined in the previous section are sufficient to witness mem-
bership in O; more crucially, they are necessary to witness non-membership in
O. Since non-membership in SO needs to be witnessed positively, we have need
of the analogue Un of Tn, also called the tree of ordinal notations, appropriate
for the current setting. The definition of Un is identical to that of Tn, except
that the computations involved are feedback computations, with notation 〈e〉
and 〈e〉(k), depending on whether the program e calls for an input. (Whether
angle brackets 〈〉 are meant as feedback computation, as in 〈e〉(k), or as forming
a tuple, as in the ordered pair 〈a, b〉, should be clear from the context. Typically
one argument 〈e〉 means feedback, and more than one a tuple.) Since we are in
the midst of defining these very computations, in order to avoid circularity we
must first define UP

n , where P is a feedback oracle. We will then use this to define
a one-step procedure from the set of feedback oracles to itself, and observe that
this procedure is positive in P (i.e. P ⊆ Q implies UP

n ⊆ UQ
n ). Then on general

principles there will be a least fixed point of that procedure, which we will call
SO. With SO in hand, the ultimate tree of interest Un can be taken to be USO

n .

Terminology. When building a tree Ta recursively from a parameter a, we will
typically give the children b of the root, and then want to continue defining the
descendants of b in Ta as essentially the members of Tb. We will give some precise
definitions here, to fall back on as need be, although we may abuse notation for
convenience (for instance sometimes identifying a piece of code, when convergent,
with its output, or identifying a tuple of length 1 with its only entry). A tree is a
set of tuples of natural numbers of positive length, closed under truncation. The
label of a node of a tree is the last entry of the node as a tuple. For instance, the
tree Ta will have root 〈a〉, which is labeled a. If σ is a node in T , to append
a tree U beneath σ in T means to include in T all tuples of the form σ�τ ,
where τ is a node in U (and � is concatenation).

Definition 2. 1. UP
1 is the tree consisting of only the root, labeled 1.

2. For m �= 0, UP
2m has root labeled 2m, which has a unique child labeled m, and

UP
m is appended to UP

2m beneath the root.
3. UP

3·5e has root labeled 3 · 5e, with a child labeled by the pair 〈e, k〉 for each
k ∈ N

1; if {e}P (k) is defined, then append UP
{e}P (k) beneath the root, by abuse

of notation identifying the label 〈e, k〉 with the label {e}P (k) of the root of
UP

{e}P (k); if {e}P (k) is not defined (either freezing or divergent) then the node
labeled 〈e, k〉 has no children.

4. In all other cases, UP
n consists of a single node labeled n.

We say that UP
n freezes if there is a node in UP

n labeled 〈e, k〉 such that
{e}P (k) freezes.
1 This child is to be thought of as a piece of syntax acting as a placeholder, and not,

for instance, as feedback computation, for which angle brackets 〈〉 are also used.
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UP
n is ill-formed if

1. either UP
n contains a node not of the form 2m or 3 · 5e,

2. or UP
n contains a node 3 · 5e, and either {e}P is partial, or, for some k, the

oracle call “{e}P (k) <P {e}P (k + 1)?” returns N.

If UP
n does not freeze and is not ill-formed then we say it is well-formed.

Proposition 2. If UP
n does not freeze and Q ⊇ P , then UQ

n = UP
n .

Viewing a feedback oracle P as giving partial information about a fixed point
feedback oracle, P induces its own version of answers to oracle queries, which
we want to view as the successor feedback oracle to P , hence the notation P+.

Definition 3. 1. P+(n ∈ SO?) = Y if UP
n is well-formed and well-founded.

2. P+(n ∈ SO?) = N if UP
n either is not freezing and ill-formed, or is well-

formed and ill-founded.
3. P+(m <SO n?) = Y if P+(n ∈ SO?) = Y and m �= n is a node in UP

n .
4. P+(m <SO n?) = N if P+(n ∈ SO?) = N , or if P+(n ∈ SO?) = Y and

either m = n or m is not a node in UP
n .

Proposition 3. P+(m <SO n?) returns a value iff P+(n ∈ SO?) returns a
value. Also, P+(n ∈ SO?) returns a value iff UP

n does not freeze.

Proposition 4. The definition of P+ is positive in P . Hence if P ⊆ Q then
P+ ⊆ Q+.

The preceding proposition justifies the following.

Definition 4. SO or strict O is the least fixed point of the operation P 
→ P+.
Un is USO

n .

Sometimes we think of SO not as a feedback oracle but rather as a partial set
of numbers, as captured by the following convention; which way to think about
SO should always be clear from the context.
Notation:

– “n ∈ SO” is an abbreviation for SO(n ∈ SO?) = Y .
– “n �∈ SO” is an abbreviation for SO(n ∈ SO?) = N .
– “n ? SO” is an abbreviation for n ∈ SO? not being in the domain of SO.
– “m <SO n” is an abbreviation for SO(m <SO n?) = Y .
– “m �<SO n” is an abbreviation for SO(m <SO n?) = N .
– “m ?SO n” is an abbreviation for m <SO n? not being in the domain of SO.
– 〈e〉 is the computation {e}SO.
– Q is said to be a freezing query if it is freezing relative to SO, i.e. not in the

domain of SO.

Theorem 1. SO is a system of notation for ordinals through the least recur-
sively inaccessible ordinal α, and is a complete Σ1 set over Lα.
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In order to prove this, we will need witnesses within Lα for assertions like
n ∈ SO and n �∈ SO. Of course this will involve the trees of ordinal notation
Un. (Whether they are well- or ill-founded will determine whether n is in or
out of SO.) It will also involve the definition of SO as a least fixed point.
Least fixed points of positive inductive definitions can be viewed as developed
in stages indexed by the ordinals. In our case, elements enter SO at later stages
because of computations based on fragments of SO from earlier stages, which
are themselves based on sub-computations from yet earlier stages. It turns out
to be useful to organize these sub-computations into a tree, the well-foundedness
of which, or not, will be crucial. Please note that the trees of sub-computations
are not to be confused with the trees of ordinal notations.

Definition 5. For e a natural number and Q an oracle query, the trees Se and
SQ (S for sub-computations) are defined recursively.

For Se, the root is e. Start running the oracle Turing computation {e}2. If it
makes an oracle query Q, then append SQ beneath the root in Se. If the oracle
SO returns an answer to Q, then the computation {e} continues. Similarly if at
any time the run of {e} makes an oracle call R, then SR is appended beneath
the root in Se, with the root of SR being a child of e to the right of all earlier
oracle calls Q.

For SQ, the root is Q. Whether Q is n ∈ SO? or m <SO n?, let nQ be
n. To answer Q one would need to consider UnQ

. The only nodes in UnQ
that

require any computation are nodes labeled 〈e, k〉. Append S〈e,k〉 for each such
〈e, k〉 beneath the root in SQ.

Proposition 5. 〈e〉 is non-freezing iff Se is well-founded, and Q is non-freezing
iff SQ is well-founded.

Proof. First we show inductively on ranks that if Se resp. SQ is well-founded
then 〈e〉 resp. Q is non-freezing.

The immediate sub-trees of Se are the SQ’s, where the Q’s are e’s oracle
queries. If Se is well-founded then each such SQ has smaller rank, so Q is non-
freezing, hence the run of 〈e〉 does not freeze.

To say that Q is non-freezing means that Q is in the domain of SO. Since
SO is a fixed point of the operation P 
→ P+, it suffices to show that Q is in the
domain of SO+. By an earlier proposition, that holds iff USO

nQ
does not freeze.

Toward that end, we must consider only nodes of USO
nQ

labeled 〈e, k〉. For any
such e and k, S〈e,k〉 is an immediate sub-tree of SQ. Hence it has lower rank, so
inductively 〈e〉(k) is non-freezing.

The converse hinges on SO being the least fixed point: there is no need to
go beyond the realm in which the trees of sub-computations are well-founded.
Toward this end, let P be SO � {Q | SQ is well-founded}. We will show that P
is a fixed point, which suffices.

2 Sometimes we will have occasion to consider the computation {ē}(k) instead. Then
implicity e = 〈ē, k〉.
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Let Q be a query. We need to show that if P+(Q) returns an answer then so
does P (Q). Because P ⊆ SO and SO is a fixed point, P+ ⊆ SO. That means
that Q is in the domain of SO. To get Q to be in the domain of P , we need
only show that SQ is well-founded. The immediate sub-trees of SQ are all of the
form S〈e,k〉, for a node labeled 〈e, k〉 from UnQ

. Because P+(Q) is defined, by the
proposition UP

nQ
does not freeze. Because SO ⊇ P , UnQ

= USO
nQ

= UP
nQ

. Hence
all of the nodes 〈e, k〉 we must consider from UnQ

are already in UP
nQ

. Because
UP

nQ
does not freeze, every such {e}P (k) does not freeze. That means that when

running {e}(k), every time an oracle query R is made, the oracle P responds. By
the definition of P , SR is well-founded. Since the immediate sub-trees of S〈e,k〉
are all of that form, S〈e,k〉 is well-founded. Hence SQ is well-founded.

Corollary 1. Un is not freezing iff Sn∈SO? is well-founded.

We are now ready to prove the main theorem, that SO is a complete Σ1 set
over the least recursively inaccessible Lα.

Proof. Sketch of proof: Let P be SO restricted to those queries Q with SQ ∈ Lα.
We will show that P is a fixed point. It is then immediate that SO is Σ1 definable
over Lα, as SO(Q) = Y resp. N iff there are a tree SQ which is well-founded
and a computation witnessing the answer Y resp. N .

All of the statements of interest, when true, have witnesses. For instance, that
n ∈ SO is witnessed by Sn∈SO (as well as a ranking function to the ordinals), to
show that Un is not freezing, and Un itself (as well as witnesses that Un is well-
formed and well-founded). That 〈e〉 does not freeze is witnessed by Se (along
with its ranking function). Of course, the constructions of the objects Un, Se, SQ

serve at witnesses that those objects are what they are purported to be. Hence
we can think of these objects as being generated as we ascend the L-hierarchy.
This justifies the notation Uβ

n , Sβ
e , etc., as Un resp. Se as defined over Lβ , using

only the witnesses within Lβ . We will show that over Lα no new computations
are defined over Lα, and that Un = Uα

n , Se = Sα
e , SQ = Sα

Q.
If 〈e〉 converges then that is witnessed by a finite run of a Turing machine,

along with the witnesses to finitely many oracle calls. If all of the oracle call
witnesses are in Lα, so is this finite sequence.

If 〈e〉 diverges then that is witnessed by an ω-sequence which is the divergent
run of 〈e〉, along with a sequence of witnesses to oracle calls of length at most ω.
If each such witness is in Lα, then by the admissibility of Lα so is the ω-sequence.
Then the run of 〈e〉 is definable over that latter sequence.

In building Un, work on one level at a time. (The root is level 0, its children
level 1, etc.) It is immediate to determine if a node has any children and what
those children are, except for nodes labeled 3·5e. Since Un is (by assumption) not
freezing, each child 〈e, k〉 has a witness as to whether 〈e〉(k) converges or diverges.
Since each level can be arranged in an ω-sequence, this induces a total function
from ω to these witnesses. By admissibility this function is in Lα. Furthermore,
we have to repeat this construction on all ω-many levels of Un, which again by
admissibility is in Lα.
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Se is essentially the witnesses to the oracle calls from above that 〈e〉 does not
freeze.

For SQ well-founded, UnQ
was already seen to be in Lα. The immediate sub-

trees of SQ are the S〈e,k〉’s for 〈e, k〉 a node in UnQ
. In Lα there is a sequence

of such nodes of length at most ω. If each S〈e,k〉 were in Lα, then again by
admissibility the sequence of such is in Lα, which puts SQ into Lα.

Finally, in order to answer an oracle question Q, the only time Q has an
answer is when UnQ

is not freezing. So then UnQ
is in Lα, as above. Whether it

is ill-formed or not is witnessed within Lα, again using the admissibility of Lα.
When UnQ

is well-formed, whether it is well-founded is also witnessed within
Lα, this time using the fact that α is a limit of admissibles: if a tree is in Lα,
then a ranking function for the tree’s well-founded part is definable over the least
admissible set containing the tree, and hence is in Lα.

The harder direction is to show that Lα is a lower bound, in that every
real in Lα is SO-computable and moreover that Σ1 questions about Lα can be
converted uniformly to questions about membership in SO. It should be clear
from the presence of the oracle calls that the SO-computable reals are closed
under hyperjump. For instance, O is computable: for n to be a candidate for
membership in O, when building Un no computations along the way may consult
with an oracle, so there is no possibility for Un to freeze. Hence the oracle answer
to n ∈ SO? is the correct information for whether n is in O. Since this argument
relativizes, the computable reals are closed under the hyperjump. In particular,
O exists, as do O′,O′′, etc. It is not hard to define the join of the O(n)’s: split
the work tape up into ω-many infinite tapes, and dedicate the nth tape to O(n).
So the computable reals go beyond the first limit of admissibles.

To show however that we can go past any inadmissible limit of admissibles,
this needs in some form the Gandy Selection Theorem, that the computable
predicates are closed under a search through ω. This turns a fact of inadmis-
sibility – ∀i ∈ ω ∃Ai φ(i, Ai) – into a computable sequence 〈Ai〉i∈ω. Gandy
Selection can be proved via a Stage Comparison Theorem.

4 Loose Feedback Hyperjump

In the inductive generation of O and SO, there is really no difference in the
ways numbers get put into those sets, the ways numbers get accepted as ordinal
notations. The difference between them is that SO contains negative information
too, that SO will tell you when something is not a member of SO. This negative
information is essentially the ill-foundedness of a certain tree (Tn resp. Un).
For O, there was no possibility of Tn being freezing, whereas some Un’s most
certainly are. It is part of the definition of SO that for an oracle call “n ∈ SO?”
to be non-freezing the tree Un must be non-freezing. The requirement that all
nodes in Un be non-freezing can be explained or justified by thinking of Un being
generated by a (transfinite) breadth-first search. That is, first evaluate all the
computations on the first level of Un, then all those on the second level, and so
on. After all ω-many levels, one can see whether the tree is well-founded. If any
of those computations freezes, then this procedure cannot be completed.
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This outcome, that a single freezing node in Un freezes the question n ∈ SO?,
is necessary if the answer is to be “yes”, because a “yes” answer is to be taken as
a guarantor of Un’s well-foundedness. Imagine by way of contrast that some node
of an otherwise well-founded tree were freezing. That freezing happens when a
particular oracle call is made. You can think of the machine at that point as
waiting for a response. This waiting can be taken to be measured along the
ordinals as indexing L, but it does not have to be. As an alternative, while we
are studying in this paper the semantics of the least fixed point, we don’t have to.
Perhaps a larger fixed point is generated by some random (albeit appropriate)
computation all of a sudden no longer freezing. Perhaps such sudden removal of
blockages can be organized in a partial order, like a kind of (or actual!) Kripke
model. Then time could be taken as movement along this partial order. There
could be other interpretations of time. A conservative way of thinking about
freezing is that one should use no information about a freezing node, not even
that it is freezing. So back to our pseudo well-founded tree with one freezing
node. If that node ever gets unstuck, depending on what happens after that,
the tree could become ill-founded. This issue does not come up if instead Un is
not freezing: Un cannot change at all, even as or if the oracle changes; hence a
well-founded Un will remain well-founded.

In contrast, such prudence is not necessary for ill-foundedness. Once a tree
is ill-founded, even as the tree grows it will remain ill-founded. Allowing an
ill-founded tree, even when freezing, to qualify as a witness that a number is
not ordinal notation is what we are calling loose feedback O, or LO. This
allowance can be explained or justified by thinking of Un as being generated
while ascending through L. As one climbs through the Lα’s, α increasing, more
computations become completed (i.e. converge or diverge), so more nodes get
placed into Un. If at any stage Un is seen to be ill-founded, even if it still contains
freezing nodes, then we can take that as a witness that n �∈ LO.

In comparing the negative information in LO with that of SO, it comes
down to a kind of parallelism. Normally in mathematical logic parallelism plays
no role, since it can be simulated by sequential computation via dovetailing.
This does not work with feedback around: once a freezing oracle call is made,
the entire computation stops. This was used in [9] to define parallel feedback
(Turing) computability, by which an ω-sequence of machines was run in parallel,
which was shown to be stronger than (sequential) feedback Turing computability.
Parallelism was also defined for infinite time Turing machines [8] (and ultimately
analyzed in [16], even if the framework there is Kleene’s higher types [6], as the
results are translatable to feedback ITTMs). In the current setting, it’s as though
we’re searching for an infinite branch in a tree, even if another part of the tree
is freezing. Instead of running ω-many machines in parallel, what we have here
can be called tree parallelism.

We will make use of the same trees UP
n as in the previous section. Given an

oracle, there is no change from before about the induced tree of ordinal notations.
The difference from before is the inductive step on feedback oracles, there called
P+, here P&.
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Definition 6. 1. P&(n ∈ SO?) = Y if UP
n is well-formed and well-founded.

2. P&(n ∈ SO?) = N if UP
n is either ill-formed or ill-founded.

3. P&(m <SO n?) = Y if P&(n ∈ SO?) = Y and m �= n is a node in UP
n .

4. P&(m <SO n?) = N if P&(n ∈ SO?) = N , or if P&(n ∈ SO?) = Y and
either m = n or m is not a node in UP

n .

Note that the only difference between P+ and P& is in clause 2.3

Proposition 6. The definition of P& is positive in P . Hence if P ⊆ Q then
P& ⊆ Q&.

The preceding proposition justifies the following.

Definition 7. LO or loose O is the least fixed point of the operation P 
→ P&.
Vn is ULO

n .

While we’re at it, we will also define the trees of sub-computations S&
e and

S&
Q . Formally speaking, they are defined the same way Se and SQ were in the

previous section, only with reference to SO replaced by LO. This affects S&
e

directly: if {e} makes an oracle call, it is more likely to get an answer from LO
than SO. Then this affects S&

Q , which is defined in terms of S&
e the way SQ is

defined in terms of Se.

Definition 8. Let Γ be a collection of formulas, X a class of ordinals, and ν+X

the least member of X greater than ν. We say that α is Γ -reflecting on X if,
for all φ ∈ Γ , if Lα+X |= φ(α), then for some β < α, Lβ+X |= φ(β).

We are interested in the case Γ = Π1 and X = the collection of admissible
ordinals. For this choice of X, we abbreviate ν+X by ν+, which is standard
notation for the next admissible anyway. This is called Π1 gap-reflection on
admissibles. Let γ be the least such ordinal.

It may seem like a strange notion. But this is not the first time it has come
up. Extending work in [11], it was shown in [7] that such ordinals are exactly
the Σ1

1 reflecting ordinals. (In this context, the superscript 1 refers not to reals

3 It bears mention that there are several options for dealing with this clause. In all
cases, the evidence that n is not an ordinal notation is that its tree UP

n of smaller
ordinal notations is bad somehow, either ill-formed or ill-founded. For P+, we took
this in the strictest possible sense: UP

n had to be non-freezing in order to qualify
as evidence. For P&, there is no such requirement on UP

n ever; once we have any
evidence that UP

n will not be acceptable, we take it. In contrast with both of these,
one could work in the middle. That is, the reasons that UP

n activate clause 2 are that
it has a node not of the right form, or that the function named by a node is partial,
or that the function named by a node is not increasing (in the sense of <P ), or that
the tree has an infinite descending path; the requirement that UP

n be non-freezing
could, in principle, be levied on some and not all of these conditions. We find the
two extreme cases isolated here to be the most natural ones; we believe that the only
condition of any real importance is the well-foundedness of UP

n , and that varying
the others will make no difference; determining this is left for future work.
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but to subsets of the structure over which the formula is being evaluated.) The
reason this topic came up in the latter paper is that a particular case of its
main theorem is that γ is the closure point of Σ2-definable sets of integers in the
μ-calculus. (The μ-calculus is first-order logic augmented with least and greatest
fixed-point operators; see [3]. In this context, Σ2 refers to the complexity of the
fixed points in the formula, namely, in normal form, a least fixed point in front,
followed by a greatest fixed point, followed by a fixed-point-free matrix.) In [11]
it was also shown that the least Σ1

1 reflecting ordinal is also the closure point
of Σ1

1 monotone inductive definitions. (Here the superscript does refer to reals.)
Furthermore, that is the same least ordinal which provides winning strategies
for all Σ0

2 games (Solovay, see [10] 7C.10 or [15]). (If Player I has a winning
strategy, then there is one in Lγ ; if II does, then there is one in Lγ+ .) As though
that weren’t enough, [14] shows the equivalence of closure under Σ1

1 monotone
inductive definitions with the Σ1

1 Ramsey property. (For all Σ1
1 partitions P of

ω there is an infinite set H ⊆ ω such that the infinite subsets of H are either
all in P or all not in P .) An ordinal α is Gandy if the α-computable well-
orderings are cofinal through α+; γ is the least non-Gandy ordinal [5]. Closest
of all to the work being discussed here, γ is also the closure ordinal of context-
dependent deterministic parallel feedback Turing computability [2,9]. With all
of these applications, this definition counts as natural.

Theorem 2. LO is a system of notation for ordinals through the least ordinal
γ which is Π1 gap-reflecting on admissibles, and is a complete Σ1 set over Lγ .

Proof. It is easier to show that γ is an upper bound. The notations V β
n , S&β

e , S&β
Q

mean Vn, S&
e , S&

Q as interpreted in Lβ . In the definition of P&, clauses 1, 3,
and 4 are the same as for P+. So by the arguments for the previous section
LOγ is closed under those clauses by the admissibility of γ. Similarly for the
ill-formedness condition of clause 2: if V γ

n is ill-formed, then so is some V β
n

(β < γ). Now suppose V γ
n were ill-founded. Because V γ

n is definable over Lγ , its
ill-foundedness is a Π1 statement over Lγ+ with parameter γ. Therefore, by the
choice of γ, there is a smaller β with Lβ+ |= “V β

n is ill-founded.” So there is
already a witness to n not being in LO in Lγ .

To show that γ is a lower bound, we will interpret, or simulate, parallel
feedback Turing computability [2,9] within (computability relative to) LO. Since
the former has already been shown to compute everything in Lγ , this suffices.
The reason this reduction would hold is that the same structures are involved
with both of them. In more detail, the LO computations are run by the trees
Vn of ordinal notations and S&

e , S&
Q of sub-computations. For a computation not

to freeze, it is not necessary that Vn not freeze (as opposed to Un), much less
be well-founded. For S&

e and S&
Q , it is not necessary that they be well-founded

(as opposed to Se and SQ), just well-founded in the right way: an infinite path
through Vn determines infinitely many sub-trees (rooted on the first level) of
SQ, where Q is n ∈ LO?, and they all must be well-founded. Now consider the
trees that come up in parallel feedback. Most prominent is C(e,n), the tree of
runs. In order for the parallel feedback computation 〈e〉(n) not to freeze, it is
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not necessary that C(e,n) not freeze; rather, C(e,n) could have a terminal node,
which is the uninteresting case in all the proofs, or it is ill-founded. This is the
same behavior as the Vn’s. The work on parallel feedback did not discuss the
tree of sub-computations, because it no longer had to be well-founded; in fact,
the only well-foundedness that matters is that of an infinite set of sub-trees as
determined by some infinite path through C(e,n). The stopping conditions are
the same in both cases. That is why ultimately each can code the other.
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Abstract. This paper employs the linear nested sequent framework to
design a new cut-free calculus (LNIF) for intuitionistic fuzzy logic—the
first-order Gödel logic characterized by linear relational frames with
constant domains. Linear nested sequents—which are nested sequents
restricted to linear structures—prove to be a well-suited proof-theoretic
formalism for intuitionistic fuzzy logic. We show that the calculus LNIF
possesses highly desirable proof-theoretic properties such as invertibil-
ity of all rules, admissibility of structural rules, and syntactic cut-
elimination.

Keywords: Cut-elimination · Fuzzy logic · Gödel logic · Intermediate
logic · Intuitionistic logic · Linear nested sequents · Proof theory

1 Introduction

Intuitionistic fuzzy logic (IF) has attracted considerable attention due to its
unique nature as a logic blending fuzzy reasoning and constructive reason-
ing [1,3,4,13,25]. The logic, which was initially defined by Takeuti and Titani
in [25], has its roots in the work of Kurt Gödel. Gödel introduced extensions of
propositional intuitionistic logic (now called, “Gödel logics”) in order to prove
that propositional intuitionistic logic does not possess a finite characteristic
matrix [11]. These logics were later studied by Dummett who extended Gödel’s
finite-valued semantics to include an infinite number of truth-values [7]. Dum-
mett additionally provided an axiomatization for the propositional fragment of
IF [7]. The first-order logic IF also admits a finite axiomatization, obtained by
extending an axiomatization of first-order intuitionistic logic with the linearity
axiom (A ⊃ B) ∨ (B ⊃ A) and the quantifier shift axiom (∀x)(A(x) ∨ C) ⊃
∀xA(x) ∨ C (where x does not occur free in C) [14].

Over the last few decades, propositional and first-order Gödel logics (includ-
ing the prominent logic IF) have been applied in various areas of logic and com-
puter science [3,4,6,13,17,18,27]. For example, Visser [27] applied the proposi-
tional fragment of IF while analyzing the provability logic of Heyting arithmetic,
c© Springer Nature Switzerland AG 2020
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Lifschitz et al. [18] employed a Gödel logic to model the strong equivalence of
logic programs, and Borgwardt et al. [6] studied standard reasoning problems of
first-order Gödel logics in the context of fuzzy description logics. Additionally—
and quite significantly—the logic IF has been recognized as one of the funda-
mental formalizations of fuzzy logic [13].

The question of whether or not a logic possesses an analytic proof calculus—
that is, a calculus which stepwise (de)composes the formula to be proved—is
of critical importance. Such calculi are effective tools for designing automated
reasoning procedures and for proving certain (meta-)logical properties of a logic.
For example, analytic calculi have been leveraged to provide decidability pro-
cedures for logics [10], to prove that logics interpolate [17], for counter-model
extraction [20], and to understand the computational content of proofs [23].

In his seminal work [10], Gentzen proposed the sequent calculus framework for
classical and intuitionistic logic, and subsequently, proved his celebrated Haupt-
satz (i.e. cut-elimination theorem), which ultimately provided analytic calculi
for the two logics. Gentzen’s sequent calculus formalism has become one of the
preferred proof-theoretic frameworks for providing analytic calculi, and indeed,
many logics of interest have been equipped with such calculi. Nevertheless, one of
the alluring features of the formalism—namely, its simplicity—has also proven to
be one of the formalism’s drawbacks; there remain many logics for which no cut-
free, or analytic, sequent calculus (à la Gentzen) is known [12,24]. In response
to this, the sequent calculus formalism has been extended in various ways over
the last 30 years to include additional structure, allowing for numerous logics to
be supplied with cut-free, analytic calculi. Some of the most prominent exten-
sions of Gentzen’s formalism include display calculi [5], labelled calculi [20,26],
hypersequent calculi [24], and nested calculi [8,12].

In this paper, we employ the linear nested sequent formalism, introduced by
Lellmann in [15]. Linear nested sequents fall within the nested calculus paradigm,
but where sequents are restricted to linear, instead of treelike, structures. Linear
nested sequents are based off of Masini’s 2-sequent framework [22,23] that was
used to provide cut-free calculi for the modal logic KD as well as various other
constructive logics. The linear nested formalism proves to be highly compatible
with the well-known first-order Gödel logic IF (i.e. intuitionistic fuzzy logic), due
to the fact that IF can be semantically characterized by linear relational frames
(see Sect. 2). The present work provides the linear nested calculus LNIF for IF,
which enjoys a variety of fruitful properties, such as:1

� Separation: Each logical rule exhibits no other logical connectives than the
one to be introduced.
� Symmetry : Each logical connective has a left and right introduction rule.
� Internality : Each sequent translates into a formula of the logical language.
� Cut-eliminability : There exists an algorithm allowing the permutation of a
(cut) rule (encoding reasoning with lemmata) upwards in a derivation until
the rule is completely eliminated from the derivation.

1 We refer to [28] for a detailed discussion of fundamental proof-theoretic properties.
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� Subformula property : Every formula occurring in a derivation is a subfor-
mula of some formula in the end sequent.
� Admissibility of structural rules: Everything derivable with a structural
rule (cf. (iw) and (mrg) in Sect. 4) is derivable without the structural rule.
� Invertibility of rules: If the conclusion of an inference rule is derivable, then
so is the premise.

In [4], a cut-free hypersequent calculus HIF for IF was introduced to over-
come the shortcomings of previously introduced systems [14,25] that violated
fundamental proof-theoretic properties such as cut-elimination. In contrast to
HIF, the current approach of exploiting linear nested sequents has two main
benefits. First, the admissibility of structural rules has not been shown in HIF,
and as such, the calculus does not offer a purely formula-driven approach to
proof search. Therefore, the calculus LNIF serves as a better basis for automated
reasoning in IF—bottom-up applications of the rules in LNIF simply decompose
or propagate formulae, and so, the question of if/when structural rules need to
be applied does not arise. Second, the calculus HIF cannot be leveraged to prove
interpolation for the logic IF (see [17]) via the so-called proof-theoretic method
(cf. [17,21]) due to the presence of the communication structural rule [1]. In [17],
it was shown that the propositional fragment of LNIF can be harnessed to prove
Lyndon interpolation for the propositional fragment of IF. This result suggests
that LNIF, in conjunction with the aforementioned proof-theoretic method, may
potentially be harnessed to study and determine interpolable fragments of IF, or
to solve the longstanding open problem of if the entire logic IF interpolates or
not.

The contributions and organization of this paper can be summarized as fol-
lows: In Sect. 2, we introduce the semantics and axiomatization for intuitionistic
fuzzy logic (IF). Section 3 introduces linear nested sequents and the calculus
LNIF, as well as proves the calculus sound and complete relative to IF. In Sect. 4,
we provide invertibility, structural rule admissibility, and cut-elimination results.
Last, Sect. 5 concludes and discusses future work.

2 Logical Preliminaries

Our language consists of denumerably many variables {x, y, z, . . .}, denumerably
many n-ary predicates {p, q, r, . . .} (with n ∈ N), the connectives ⊥, ∧, ∨, ⊃, the
quantifiers ∀, ∃, and parentheses ‘(’ and ‘)’. We define the language L via the
BNF grammar below, and will use A,B,C, etc. to represent formulae from L.

A ::= p(x1, . . . , xn) | ⊥ | (A ∨ A) | (A ∧ A) | (A ⊃ A) | (∀x)A | (∃x)A

In the above grammar, p is any n-ary predicate symbol and x1, . . . , xn, x are
variables. We refer to formulae of the form p(x1, . . . , xn) as atomic formulae,
and (more specifically) refer to formulae of the form p as propositional variables
(i.e. a 0-ary predicate p is a propositional variable). The free variables of a
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formula A are defined in the usual way as variables unbound by a quantifier,
and bound variables as those bounded by a quantifier.

We opt for the relational semantics of IF—as opposed to the fuzzy semantics
(cf. [4])—since the structure of linear nested sequents is well-suited for interpre-
tation via linear relational frames.

Definition 1 (Relational Frames, Models [9]). A relational frame is a triple
F = (W,R,D) such that: (i) W is a non-empty set of worlds w, u, v, . . ., (ii) R is
a reflexive, transitive, antisymmetric, and connected binary relation on W , and
(iii) D is a function that maps a world w ∈ W to a non-empty set of parameters
Dw called the domain of w such that the following condition is met:

(CD) If Rwu, then Dw = Du.

A model M is a tuple (F, V ) where F is a relational frame and V is a valuation
function such that V (p,w) ⊆ (Dw)n for each n-ary predicate p and

(TP) If Rwu, then V (p,w) ⊆ V (p, u) (if p is of arity n > 0);
If Rwu and w ∈ V (p,w), then u ∈ V (p, v) (if p is of arity 0).

We uphold the convention in [9] and assume that for each world w ∈ W ,
(Dw)0 = {w}, so V (p,w) = {w} or V (p,w) = ∅, for a propositional variable p.

The distinctive feature of relational frames for IF is the connected property,
which states that for any w, u, v ∈ W of a frame F = (W,R,D), if Rwu and
Rwv, then either Ruv or Rvu. Imposing this property on reflexive, transitive,
and antisymmetric (i.e. intuitionistic) frames causes the set of worlds to become
linearly ordered, thus validating the linearity axiom (A ⊃ B) ∨ (B ⊃ A) (shown
in Fig. 1). Furthermore, the constant domain condition (CD) validates the quan-
tifier shift axiom ∀x(A(x) ∨ B) ⊃ ∀xA(x) ∨ B (also shown in Fig. 1).

Rather than interpret formulae from L in relational models, we follow [9] and
introduce Dw-sentences to be interpreted in relational models. This gives rise to
a notion of validity for formulae in L (see Definition 3). The definition of validity
also depends on the universal closure of a formula: if a formula A contains only
x0, . . . , xm as free variables, then the universal closure ∀A is taken to be the
formula ∀x0 . . . ∀xmA.

Definition 2 (Dw-Sentence). Let M be a relational model with w ∈ W of M .
We define LDw

to be the language L expanded with parameters from the set Dw.
We define a Dw-formula to be a formula in LDw

, and we define a Dw-sentence to
be a Dw-formula that does not contain any free variables. Last, we use a, b, c, . . .
to denote parameters in a set Dw.

Definition 3 (Semantic Clauses [9]). Let M = (W,R,D, V ) be a relational
model with w ∈ W and R(w) := {v ∈ W | (w, v) ∈ R}. The satisfaction relation
M,w � A between w ∈ W and a Dw-sentence A is inductively defined as follows:

– M,w �� ⊥
– If p is a propositional variable, then M,w � p iff w ∈ V (p,w);
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– If p is an n-ary predicate symbol (with n > 0), then M,w � p(a1, · · · , an) iff
(a1, · · · , an) ∈ V (p,w);

– M,w � A ∨ B iff M,w � A or M,w � B;
– M,w � A ∧ B iff M,w � A and M,w � B;
– M,w � A ⊃ B iff for all u ∈ R(w), if M,u � A, then M,u � B;
– M,w � ∀xA(x) iff for all u ∈ R(w) and all a ∈ Du, M,u � A(a);
– M,w � ∃xA(x) iff there exists an a ∈ Dw such that M,w � A(a).

We say that a formula A is globally true on M , written M � A, iff M,u � ∀A
for all worlds u ∈ W . A formula A is valid, written � A, iff it is globally true
on all relational models.

Lemma 1 (Persistence). Let M be a relational model with w, u ∈ W of M .
For any Dw-sentence A, if M,w � A and Rwu, then M,u � A.

Proof. See [9, Lem. 3.2.16] for details. �
A sound and complete axiomatization for the logic IF is provided in Fig. 1.

We define the substitution [y/x] of the variable y for the free variable x on a
formula A in the standard way as the replacement of all free occurrences of x
in A with y. The substitution [a/x] of the parameter a for the free variable x is
defined similarly. Last, the side condition y is free for x (see Fig. 1) is taken to
mean that y does not become bound by a quantifier if substituted for x.

Fig. 1. Axiomatization for the logic IF [9]. The logic IF is the smallest set of formulae
from L closed under substitutions of the axioms and applications of the inference rules
mp and gen. We write �IF A to denote that A is an element, or theorem, of IF.

Theorem 1 (Adequacy of IF). For any A ∈ L, � A iff �IF A.

Proof. The forward direction follows from [9, Prop. 7.2.9] and [9, Prop. 7.3.6],
and the backwards direction follows from [9, Lem. 3.2.31]. �
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3 Soundness and Completeness of LNIF

Let us define linear nested sequents (which we will refer to as sequents) to be
syntactic objects G given by the BNF grammar shown below:

G ::= Γ � Γ | G � G where Γ ::= A | Γ, Γ with A ∈ L.

Each sequent G is of the form Γ1 � Δ1 � · · · � Γn � Δn with n ∈ N. We refer to
each Γi � Δi (for 1 ≤ i ≤ n) as a component of G and use ||G|| to denote the
number of components in G.

We often use G, H, F , and K to denote sequents, and will use Γ and Δ to
denote antecedents and consequents of components. Last, we take the comma
operator to be commutative and associative; for example, we identify the sequent
p(x) � q(x), r(y), p(x) with p(x) � r(y), p(x), q(x). This interpretation lets us
view an antecedent Γ or consequent Δ as a multiset of formulae.

To ease the proof of cut-elimination (Theorem 4), we follow [8] and syn-
tactically distinguish between bound variables {x, y, z, . . .} and parameters
{a, b, c, . . .}, which will take the place of free variables occurring in formulae.
Thus, our sequents make use of formulae from L where each free variable has
been replaced by a unique parameter. For example, we would use the sequent
p(a) � ∀xq(x, b) � ⊥ � r(a) instead of the sequent p(x) � ∀xq(x, y) � ⊥ � r(x) in
a derivation (where the parameter a has been substituted for the free variable
x and b has been substituted for y). We also use the notation A(a0, . . . , an) to
denote that the parameters a0, . . . , an occur in the formula A, and write A(�a) as
shorthand for A(a0, . . . , an). This notation extends straightforwardly to sequents
as well.

The linear nested calculus LNIF for IF is given in Fig. 2. (NB. The linear
nested calculus LNG introduced in [17] is the propositional fragment of LNIF, i.e.
LNG is the calculus LNIF without the quantifier rules and where propositional
variables are used in place of atomic formulae.) The (⊃r2) and (∀r2) rules in
LNIF are particularly noteworthy; as will be seen in the next section, the rules
play a vital role in ensuring the invertibility and admissibility of certain rules,
ultimately permitting the elimination of (cut) (see Theorem 4).

To obtain soundness, we interpret each sequent as a formula in L and utilize
the notion of validity in Definition 3. The following definition specifies how each
sequent is interpreted.

Definition 4 (Interpretation ι). The interpretation of a sequent is defined
inductively as follows:

ι(Γ � Δ) :=
∧

Γ ⊃
∨

Δ ι(Γ � Δ � G) :=
∧

Γ ⊃
( ∨

Δ ∨ ι(G)
)

We interpret a sequent G as a formula in L by taking the universal closure ∀ι(G)
of ι(G) and we say that G is valid if and only if � ∀ι(G).
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Fig. 2. The Calculus LNIF. The side condition † stipulates that the parameter a is an
eigenvariable, i.e. it does not occur in the conclusion. Occasionally, we write �LNIF G to
mean that the sequent G is derivable in LNIF.

Theorem 2 (Soundness of LNIF). For any linear nested sequent G, if G is
provable in LNIF, then � ∀ι(G).

Proof. We prove the result by induction on the height of the derivation of

G = Γ1 � Δ1 � · · · � Γn � Δn � Γn+1 � Δn+1 � · · · � Γm � Δm

and only present the more interesting ∀ quantifier cases in the inductive step. All
remaining cases can be found in the online appended version [19]. Each inference
rule considered is of one of the following two forms.

G′
(r1)G

G1 G2 (r2)G
We argue by contraposition and prove that if G is invalid, then at least one

premise is invalid. Assuming G is invalid (i.e. �� ∀ι(G)) implies the existence of
a model M = (W,R,D, V ) with world v ∈ W such that Rvw0, �a ∈ Dw0 , and
M,w0 �� ι(G)(�a), where �a represents all parameters in ι(G). Hence, there is a
sequence of worlds w1, · · · , wm ∈ W such that Rwjwj+1 (for 0 ≤ j ≤ m − 1),
M,wi �

∧
Γi, and M,wi �� ∨

Δi, for each 1 ≤ i ≤ m. We assume all parameters
in

∧
Γi and

∨
Δi are interpreted as elements of the associated domain Dwi

(for
1 ≤ i ≤ m).

(∀r1)-rule: By our assumption M,wm �
∧

Γm and M,wm �� ∨
Δm ∨ ∀xA.

The latter implies that M,wm �� ∀xA, meaning there exists a world wm+1 ∈ W
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such that Rwmwm+1 and M,wm+1 �� A[b/x] for some b ∈ Dwm+1 . If we interpret
the eigenvariable of the premise as b, then the premise is shown invalid.

(∀r2)-rule: It follows from our assumption that M,wn �
∧

Γn, M,wn ��∨
Δn∨∀xA, M,wn+1 �

∧
Γn+1, and M,wn+1 �� ∨

Δn+1. The fact that M,wn ��∨
Δn ∨ ∀xA implies that there exists a world w ∈ W such that Rwnw and for

some b ∈ Dw, M,w �� A[b/x]. Since our frames are connected, there are two
cases to consider: (i) Rwwn+1, or (ii) Rwn+1w. Case (i) falsifies the left premise,
and case (ii) falsifies the right premise.

(∀l)-rule: We know that M,wn �
∧

Γn∧∀xA and M,wn �� ∨
Δn. Hence, for

any world w ∈ W , if Rwnw, then M,w � A[b/x] for all b ∈ Dw. Since Rwnwn,
it follows that M,wn � A[b/x] for any b ∈ Dwn

. If a occurs in the conclusion
G, then by the constant domain condition (CD), we know that a ∈ Dwn

, so
we may falsify the premise of the rule. If a does not occur in G, then it is an
eigenvariable, and assigning a to any element of Dwn

will falsify the premise. �
Theorem 3 (Completeness of LNIF). If �IF A, then A is provable in LNIF.

Proof. It is not difficult to show that LNIF can derive each axiom of IF and can
simulate each inference rule. We refer the reader to the online appended version
for details [19]. �

4 Proof-Theoretic Properties of LNIF

In this section, we present the fundamental proof-theoretic properties of LNIF,
thus extending the results in [17] from the propositional setting to the first-order
setting. (NB. We often leverage results from [17] to simplify our proofs.) Most
results are proved by induction on the height of a given derivation Π, i.e. on
the length (number of sequents) of the longest branch from the end sequent
to an initial sequent in Π. Proofs of Lemmas 14, 16, and Theorem 4 are given
by induction on the lexicographic ordering of pairs (|A|, h), where |A| is the
complexity of a certain formula A (defined in the usual way as the number of
logical operators in A) and h is the height of the derivation. Lemmata whose
proofs are omitted can be found in the online appended version [19].

Fig. 3. Admissible rules in LNIF.
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We say that a rule is admissible in LNIF iff derivability of the premise(s)
implies derivability of the conclusion in LNIF. Additionally, a rule is height pre-
serving (hp-)admissible in LNIF iff if the premise of the rule has a derivation of
a certain height in LNIF, then the conclusion of the rule has a derivation of the
same height or less in LNIF. Last, a rule is invertible (hp-invertible) iff derivabil-
ity of the conclusion implies derivability of the premise(s) (with a derivation of
the same height or less). Admissible rules of LNIF are given in Fig. 3.

Lemma 2. For any A, Γ , Δ, G, and H, �LNIF G � Γ,A � A,Δ � H.

Lemma 3. The (⊥r) rule is hp-admissible in LNIF.

Proof. By induction on the height of the given derivation. In the base case,
applying (⊥r) to (id1), (id2), or (⊥l) gives an initial sequent, and for each case
of the inductive step we apply IH followed by the corresponding rule. �
Lemma 4. The (sub) rule is hp-admissible in LNIF.

Lemma 5. The (iw) rule is hp-admissible in LNIF.

Lemma 6. The (ew) rule is admissible in LNIF.

Proof. By [17, Lem. 5.6] we know that (ew) is admissible in LNG, thus leaving
us to prove the (∀r1), (∃l), (∀r2), (∀l), and (∃r) cases. The (∃l), (∀l), and (∃r)
cases are easily shown by applying IH and then the rule. We therefore prove
the (∀r1) and (∀r2) cases, beginning with the former, which is split into the two
subcases, shown below:

G � Γ � Δ� � A[a/x]
(∀r1)G � Γ � Δ,∀xA

(ew)G′ � Γ � Δ,∀xA

G � Γ � Δ� � A[a/x]
(∀r1)G � Γ � Δ,∀xA

(ew)G � Γ � Δ,∀xA� �
In the top left case, where we weaken in a component prior to the component

Γ � Δ,∀xA, we may freely permute the two rule instances. The top right case
is resolved as shown below.

IHG � Γ � Δ� � A[a/x]� �
IHG � Γ � Δ� � � � A[a/x]
(∀r1)G � Γ � Δ� � ∀xA

(∀r2)G � Γ � Δ,∀xA� �
Suppose now that we have an (∀r2) inference (as in Fig. 2) followed by an (ew)

inference. The only nontrivial case (which is resolved as shown below) occurs
when a component is weakened in directly after the component Γ1 � Δ1,∀xA.
All other cases follow by an application of IH followed by an application of the
(∀r2) rule.

IHG � Γ1 � Δ1� � A[a/x]� � �Γ2 � Δ2 � H Π
(∀r2)G � Γ1 � Δ1,∀xA� � �Γ2 � Δ2 � H



Syntactic Cut-Elimination for Intuitionistic Fuzzy Logic 165

Π =

{
IHG � Γ1 � Δ1� � � � A[a/x] � Γ2 � Δ2 � H IHG � Γ1 � Δ1� � �Γ2 � Δ2,∀xA � H

(∀r2)G � Γ1 � Δ1� � ∀xA � Γ2 � Δ2 � H

�
Lemma 7. The rule (lwr) is hp-admissible in LNIF.

Proof. By [17, Lem. 5.7] we know that (lwr) is admissible in LNG, and so, we
may prove the claim by extending it to include the quantifier rules. We have two
cases to consider: either (i) the lower-formula is a side formula in the quantifier
inference, or (ii) it is principal. In case (i), the (∀r1), (∀l), (∃l), and (∃r) cases can
be resolved by applying IH followed by an application of the rule. Concerning the
(∀r2) rule, all cases follow by applying IH and then the rule, with the exception
of the following:

G � Γ1 � Δ1, A� � B[a/x] � Γ2 � Δ2 � H G � Γ1 � Δ1, A � Γ2 � Δ2,∀xB � H
G � Γ1 � Δ1, A,∀xB � Γ2 � Δ2 � H (∀r2)

G � Γ1 � Δ1,∀xB � Γ2 � Δ2, A � H (lwr)

In the above case, we apply IH twice to the top left premise and apply IH once
to the top right premise. A single application of (∀r2) gives the desired result.

Let us now consider case (ii). Observe that the principal formulae in (∀r1),
(∀l), and (∃l) cannot be principal in the use of (lwr), so we need only consider
the (∃r) and (∀r2) cases. The (∃r) case is shown below top-left and the case is
resolved as shown below top-right. In the (∀r2) case (shown below bottom), we
take the derivation of the top right premise as the proof of the desired conclusion.

G � Γ1 � Δ1, A[a/x],∃xA � Γ2 � Δ2 � H
(∃r)G � Γ1 � Δ1,∃xA � Γ2 � Δ2 � H

(lwr)G � Γ1 � Δ1 � Γ2 � Δ2,∃xA � H

IH ×2G � Γ1 � Δ1 � Γ2 � Δ2, A[a/x],∃xA � H
(∃r)G � Γ1 � Δ1 � Γ2 � Δ2,∃xA � H

G � Γ1 � Δ1� � A[a/x] � Γ2 � Δ2 � H G � Γ1 � Δ1 � Γ2 � Δ2,∀xA � H
(∀r2)G � Γ1 � Δ1,∀xA � Γ2 � Δ2 � H

(lwr)G � Γ1 � Δ1 � Γ2 � Δ2,∀xA � H
�

Our version of the (lift) rule necessitates a stronger form of invertibility,
called m-invertibility, for the (∧l), (∨l), (⊃l), (∀l), and (∃l) rules (cf. [17]). We
use Aki to represent ki copies of a formula A, with i ∈ N.

Lemma 8. If
∑n

i=1 kn ≥ 1, then

(i) (1) implies (2)

(ii) (3) implies (4) and (5)

(iii) (6) implies (7) and (8)

(iv) (9) implies (10)

(v) (11) implies (12)
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�LNIF Γ1, (A ∧ B)k1 � Δ1 � · · · � Γn, (A ∧ B)kn � Δn (1)

�LNIF Γ1, A
k1 , Bk1 � Δ1 � · · · � Γn, Akn , Bkn � Δn (2)

�LNIF Γ1, (A ∨ B)k1 � Δ1 � · · · � Γn, (A ∨ B)kn � Δn (3)

�LNIF Γ1, A
k1 � Δ1 � · · · � Γn, Akn � Δn (4)

�LNIF Γ1, B
k1 � Δ1 � · · · � Γn, Bkn � Δn (5)

�LNIF Γ1, (A ⊃ B)k1 � Δ1 � · · · � Γn, (A ⊃ B)kn � Δn (6)

�LNIF Γ1, B
k1 � Δ1 � · · · � Γn, Bkn � Δn (7)

�LNIF Γ1, (A ⊃ B)k1 � Δ1, A
k1 � · · · � Γn, (A ⊃ B)kn � Δn, Akn (8)

�LNIF Γ1, (∀xA)k1 � Δ1 � · · · � Γn, (∀xA)kn � Δn (9)

�LNIF Γ1, A[a/x]k1 , (∀xA)k1 � Δ1 � · · · � Γn, A[a/x]kn , (∀xA)kn � Δn (10)

�LNIF Γ1, (∃xA)k1 � Δ1 � · · · � Γn, (∃xA)kn � Δn (11)

�LNIF Γ1, A[a/x]k1 � Δ1 � · · · � Γn, A[a/x]kn � Δn (12)

Lemma 9. The (∧r), (∨r), and (∃r) rules are hp-invertible in LNIF.

Proof. By [17, Lem. 5.8] we know that the claim holds for the (∧r) and (∨r)
rules relative to LNG. The proof may be extended to LNIF by considering the
quantifier rules in the inductive step; however, it is quick to verify the claim for
the quantifier rules by applying IH and then the corresponding rule. Proving
invertibility of the (∃r) rule is straightforward, and is shown by induction on the
height of the given derivation. �
Lemma 10. The (⊃r2) rule is invertible in LNIF.

Proof. We extend the proof of [17, Lem. 5.10] to include the quantifier rules, and
prove the result by induction on the height of the given derivation of G � Γ1 �
Δ1, A ⊃ B � Γ2 � Δ2 � H. Derivability of the right premise G � Γ1 � Δ1 � Γ2 �
Δ2, A ⊃ B � H follows from Lemma 7, so we focus on showing that the left
premise G � Γ1 � Δ1 � A � B � Γ2 � Δ2 � H is derivable. For the (∀r1), (∀l),
(∃l), and (∃r) rules the desired conclusion is obtained by applying IH, followed
by an application of the corresponding rule. The nontrivial (∀r2) case is shown
below top and is resolved as shown below bottom. In all other (∀r2) cases, we
apply IH followed by the (∀r2) rule.

G � Γ1 � Δ1, A ⊃ B� � C[a/x] � Γ2 � Δ2 � H G � Γ1 � Δ1, A ⊃ B � Γ2 � Δ2,∀xC � H
(∀r2)G � Γ1 � Δ1,∀xC,A ⊃ B � Γ2 � Δ2 � H
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Π1 Π2 (∀r2)G � Γ1 � Δ1,∀xC � A � B � Γ2 � Δ2 � H Π1 =

{ G � Γ1 � Δ1, A ⊃ B� � C[a/x] � Γ2 � Δ2 � H
Lem. 7G � Γ1 � Δ1� � C[a/x], A ⊃ B � Γ2 � Δ2 � H
IHG � Γ1 � Δ1� � C[a/x] � A � B � Γ2 � Δ2 � H

Π2 =

{ G � Γ1 � Δ1, A ⊃ B� � C[a/x] � Γ2 � Δ2 � H
IHG � Γ1 � Δ1 � A � B� � C[a/x] � Γ2 � Δ2 � H

G � Γ1 � Δ1, A ⊃ B � Γ2 � Δ2,∀xC � H
IHG � Γ1 � Δ1 � A � B � Γ2 � Δ2,∀xC � H
(∀r2)G � Γ1 � Δ1 � A � B,∀xC � Γ2 � Δ2 � H

�
Lemma 11. The (∀r2) rule is invertible in LNIF.

Proof. Let the sequent G � Γ1 � Δ1,∀xA � Γ2 � Δ2 � H be derivable in LNIF.
Derivability of the right premise G � Γ1 � Δ1 � Γ2 � Δ2,∀xA � H follows from
the hp-admissibility of (lwr) (Lemma 7). We prove that the left premise G �Γ1 �
Δ1� � A[a/x]�Γ2 � Δ2 �H is derivable by induction on the height of the given
derivation.

Base Case. Regardless of if G � Γ1 � Δ1,∀xA � Γ2 � Δ2 � H is derived by an
application of (id1), (id2), or (⊥l), G � Γ1 � Δ1� � A[a/x] � Γ2 � Δ2 � H is an
initial sequent as well.

Inductive Step. For all rules, with the exception of (lift), (⊃r2), (∀r1), (∃l),
and (∀r2), we apply IH to the premise(s) followed by the corresponding rule. We
consider the aforementioned nontrivial cases below.

If the (lift) rule is applied as shown below left, then the desired conclusion
may be derived as shown below right. In all other cases, we apply IH and then
(lift) to achieve the desired result.

G � Γ1, B � Δ1,∀xA � Γ2, B � Δ2 � H
(lift)G � Γ1, B � Δ1,∀xA � Γ2 � Δ2 � H

G � Γ1, B � Δ1,∀xA � Γ2, B � Δ2 � H
IHG � Γ1, B � Δ1� � A[a/x] � Γ2, B � Δ2 � H
Lem. 5G � Γ1, B � Δ1 � B � A[a/x] � Γ2, B � Δ2 � H
(lift)G � Γ1, B � Δ1 � B � A[a/x] � Γ2 � Δ2 � H

(lift)G � Γ1, B � Δ1� � A[a/x] � Γ2 � Δ2 � H

If the (⊃r2) rule is applied as shown below top, then the desired conclusion
may be derived as shown below bottom. In all other cases, we apply IH and then
the (⊃r2) rule to obtain the desired result.

G � Γ1 � Δ1,∀xA � B � C � Γ2 � Δ2 � H G � Γ1 � Δ1,∀xA � Γ2 � Δ2, B ⊃ C � H
(⊃r2)G � Γ1 � Δ1,∀xA,B ⊃ C � Γ2 � Δ2 � H

Π1 Π2 (⊃r2)G � Γ1 � Δ1, B ⊃ C� � A[a/x] � Γ2 � Δ2 � H Π1 =

{ G � Γ1 � Δ1,∀xA � B � C � Γ2 � Δ2 � H
Lem. 7G � Γ1 � Δ1 � B � C,∀xA � Γ2 � Δ2 � H

IHG � Γ1 � Δ1 � B � C� � A[a/x] � Γ2 � Δ2 � H

Π2 =

{ G � Γ1 � Δ1,∀xA � B � C � Γ2 � Δ2 � H
IHG � Γ1 � Δ1� � A[a/x] � B � C � Γ2 � Δ2 � H

G � Γ1 � Δ1,∀xA � Γ2 � Δ2, B ⊃ C � H
IHG � Γ1 � Δ1� � A[a/x] � Γ2 � Δ2, B ⊃ C � H
(⊃r2)G � Γ1 � Δ1� � A[a/x], B ⊃ C � Γ2 � Δ2 � H
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In the (∀r1) and (∃l) cases, we must ensure that the eigenvariable of the
inference is not identical to the parameter a in A[a/x] introduced by IH. How-
ever, this can always be ensured by Lemma 4. Therefore, we move onto the last
nontrivial case, which concerns the (∀r2) rule. The only nontrivial case occurs
as shown below top and is resolved as shown below bottom. In all other cases,
we apply IH followed by the (∀r2) rule (invoking Lemma4 if necessary).

G � Γ1 � Δ1, A ⊃ B� � C[a/x] � Γ2 � Δ2 � H G � Γ1 � Δ1, A ⊃ B � Γ2 � Δ2,∀xC � H
(∀r2)G � Γ1 � Δ1,∀xC,A ⊃ B � Γ2 � Δ2 � H

Π1 Π2 (∀r2)G � Γ1 � Δ1,∀xC � A � B � Γ2 � Δ2 � H Π1 =

{ G � Γ1 � Δ1, A ⊃ B� � C[a/x] � Γ2 � Δ2 � H
Lem. 4G � Γ1 � Δ1� � C[a/x], A ⊃ B � Γ2 � Δ2 � H
IHG � Γ1 � Δ1� � C[a/x] � A � B � Γ2 � Δ2 � H

Π2 =

{ G � Γ1 � Δ1, A ⊃ B� � C[a/x] � Γ2 � Δ2 � H
IHG � Γ1 � Δ1 � A � B� � C[a/x] � Γ2 � Δ2 � H

G � Γ1 � Δ1, A ⊃ B � Γ2 � Δ2,∀xC � H
IHG � Γ1 � Δ1 � A � B � Γ2 � Δ2,∀xC � H
(∀r2)G � Γ1 � Δ1 � A � B,∀xC � Γ2 � Δ2 � H

�
Lemma 12. The (⊃r1) rule is invertible in LNIF.

Proof. We extend the proof of [17, Lem. 5.11] to include the quantifier cases.
The claim is shown by induction on the height of the given derivation. When
the last rule of the derivation is (∀l), (∃l), (∃r), or (∀r2) in the inductive step,
we apply IH to the premise(s) of the inference followed by an application of the
corresponding rule. If the last inference of the derivation is an application of the
(∀r1) rule (as shown below left), then the case is resolved as shown below right.

G � Γ � Δ,A ⊃ B� � C[a/x]
(∀r1)G � Γ � Δ,A ⊃ B,∀xC

G � Γ � Δ,A ⊃ B� � C[a/x]
Lem. 7G � Γ � Δ� � C[a/x], A ⊃ B
IHG � Γ � Δ� � C[a/x] � A � B

G � Γ � Δ,A ⊃ B� � C[a/x]
Lem. 10G � Γ � Δ � A � B� � C[a/x]
(∀r1)G � Γ � Δ � A � B,∀xC

(∀r2)G � Γ � Δ,∀xC � A � B

�
Lemma 13. The (∀r1) rule is invertible in LNIF.

Proof. We prove the result by induction on the height of the given derivation of
G � Γ � Δ,∀xA and show that G � Γ � Δ� � A[a/x] is derivable.

Base case. If G � Γ � Δ,∀xA is obtained via (id1), (id2), or (⊥l), then
G � Γ � Δ� � A[a/x] is an instance of the corresponding rule as well.

Inductive Step. All cases, with the exception of the (⊃r1), (∀r1), (∃l), and
(∀r2) rules, are resolved by applying IH to the premise(s) and then applying the
relevant rule. Let us consider each of the additional cases in turn.

The (⊃r1) case is shown below left and is resolved as shown below right.

G � Γ � Δ,∀xA � B � C
(⊃r1)G � Γ � Δ,∀xA,B ⊃ C

G � Γ � Δ,∀xA � B � C
Lem. 7G � Γ � Δ � B � C,∀xA

IHG � Γ � Δ � B � C� � A[a/x]

G � Γ � Δ,∀xA � B � C
Lem. 10G � Γ � Δ� � A[a/x] � B � C
(⊃r1)G � Γ � Δ� � A[a/x], B ⊃ C
(⊃r2)G � Γ � Δ,B ⊃ C� � A[a/x]
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In the (∀r1) case where the relevant formula ∀xA is principal, the premise
of the inference is the desired conclusion. If the relevant formula ∀xA is not
principal, then the (∀r1) inference is of the form shown below left and is resolved
as shown below right.

G � Γ � Δ,∀xA � B[b/y]
(∀r1)G � Γ � Δ,∀xA,∀yB

G � Γ � Δ,∀xA� � B[b/y]
Lem. 7G � Γ � Δ � B[b/y],∀xA

IHG � Γ � Δ� � B[b/y]� � A[a/x]

G � Γ � Δ,∀xA� � B[b/y]
Lem. 10G � Γ � Δ� � A[a/x]� � B[b/y]
(∀r1)G � Γ � Δ� � A[a/x],∀yB

(∀r2)G � Γ � Δ,∀yB� � A[a/x]

If the last inference is an instance of the (∃l) or (∀r2) rule, then we must
ensure that the eigenvariable of the inference is not identical to the parameter a
in A[a/x] introduced by IH, but this can always be ensured due to Lemma4. �
Lemma 14. The (icl) rule is admissible in LNIF.

Proof. We extend the proof of [17, Lem. 5.12] and prove the result by induction
on the lexicographic ordering of pairs (|A|, h), where |A| is the complexity of the
contraction formula A and h is the height of the derivation. We know the result
holds for LNG, and so, we argue the inductive step for the quantifier rules.

With the exception of the (∃l) case shown below left, all quantifier cases
are settled by applying IH followed by an application of the corresponding rule.
The only nontrivial case occurs when a contraction is performed on a formula
∃xA with one of the contraction formulae principal in the (icl) inference. The
situation is resolved as shown below right.

G � Γ,A[a/x],∃xA � Δ � H
(∃l)G � Γ,∃xA,∃xA � Δ � H

(icl)G � Γ,∃xA � Δ � H

G � Γ,A[a/x],∃xA � Δ � H
Lem. 8G � Γ,A[a/x], A[a/x] � Δ � H
IHG � Γ,A[a/x] � Δ � H

(∃l)G � Γ,∃xA � Δ � H
Notice that IH is applicable since we are contracting on a formula of smaller
complexity. �
Lemma 15. The (mrg) rule is admissible in LNIF.

Proof. We extend the proof of [17, Lem. 5.13], which proves that (mrg) is admis-
sible in LNG, and prove the admissibility of (mrg) in LNIF by induction on the
height of the given derivation. We need only consider the quantifier rules due to
[17, Lem. 5.13]. The (∀r1), (∀l), (∃l), and (∃r) cases are all resolved by applying
IH to the premise of the rule followed by an application of the rule. If (mrg) is
applied to the principal components of the (∀r2) rule as follows:

G � Γ1 � Δ1� � A[a/x] � Γ2 � Δ2 � H G � Γ1 � Δ1 � Γ2 � Δ2,∀xA � H
G � Γ1 � Δ1,∀xA � Γ2 � Δ2 � H (∀r2)

G � Γ1, Γ2 � Δ1,Δ2,∀xA � H (mrg)

then the desired conclusion is obtained by applying IH to the top right premise.
In all other cases, we apply IH to the premises of (∀r2) followed by an application
of the rule. �
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Lemma 16. The (icr) rule is admissible in LNIF.

Proof. We extend the proof of [17, Lem. 5.14] to include the quantifier rules
and argue the claim by induction on the lexicographic ordering of pairs (|A|, h),
where |A| is the complexity of the contraction formula A and h is the height of the
derivation. The (∀l) and (∃l) cases are settled by applying IH to the premise of
the inference followed by an application of the rule. For the (∃r) case, we invoke
Lemma 9, apply IH, and then apply the corresponding rule. The nontrivial case
(occurring when the principal formula is contracted) for the (∀r1) rule is shown
below left, and the desired conclusion is derived as shown below right (where IH
is applicable due to the decreased complexity of the contraction formula).

G � Γ � Δ,∀xA� � A[a/x]
(∀r1)G � Γ � Δ,∀xA,∀xA

(icr)G � Γ � Δ,∀xA

G � Γ � Δ,∀xA� � A[a/x]
Lem. 11G � Γ � Δ� � A[a/x]� � A[a/x]
Lem. 15G � Γ � Δ� � A[a/x], A[a/x]

IHG � Γ � Δ� � A[a/x]
(∀r1)G � Γ � Δ,∀xA

When the contracted formulae are both non-principal in an (∀r1) inference, we
apply IH to the premise followed by an application of the (∀r1) rule. If the
contracted formulae are both non-principal in an (∀r2) inference, then we apply
IH to the premises followed by an application of the rule. If one of the contracted
formulae is principal in an (∀r2) inference (as shown below top), then the case
is settled as shown below bottom.

G � Γ1 � Δ1,∀xA� � A[a/x] � Γ2 � Δ2 � H G � Γ1 � Δ1,∀xA � Γ2 � Δ2,∀xA � H
(∀r2)G � Γ1 � Δ1,∀xA,∀xA � Γ2 � Δ2 � H

G � Γ1 � Δ1,∀xA� � A[a/x] � Γ2 � Δ2 � H
Lem. 11G � Γ1 � Δ1� � A[a/x]� � A[a/x] � Γ2 � Δ2 � H
Lem. 15G � Γ1 � Δ1� � A[a/x], A[a/x] � Γ2 � Δ2 � H

IHG � Γ1 � Δ1� � A[a/x] � Γ2 � Δ2 � H

G � Γ1 � Δ1,∀xA � Γ2 � Δ2,∀xA � H
Lem. 7G � Γ1 � Δ1 � Γ2 � Δ2,∀xA,∀xA � H
IHG � Γ1 � Δ1 � Γ2 � Δ2,∀xA � H

(∀r2)G � Γ1 � Δ1,∀xA � Γ2 � Δ2 � H

Note that we may apply IH in the left branch of the derivation since the com-
plexity of the contraction formula is less than ∀xA, and we may apply IH in the
right branch since the height of the derivation is less than the original. �

Before moving on to the cut-elimination theorem, we present the definition
of the splice operation [17,22]. The operation is used to formulate the (cut) rule.

Definition 5 (Splice [17]). The splice G ⊕ H of two linear nested sequents G
and H is defined as follows:

(Γ1 � Δ1) ⊕ (Γ2 � Δ2) := Γ1, Γ2 � Δ1,Δ2

(Γ1 � Δ1) ⊕ (Γ2 � Δ2 � F) := Γ1, Γ2 � Δ1,Δ2 � F
(Γ1 � Δ1 � F) ⊕ (Γ2 � Δ2) := Γ1, Γ2 � Δ1,Δ2 � F

(Γ1 � Δ1 � F) ⊕ (Γ2 � Δ2 � K) := Γ1, Γ2 � Δ1,Δ2 � (F ⊕ K)
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Theorem 4 (Cut-Elimination). The rule

G � Γ � Δ,A � H F � Ak1 , Γ1 � Δ1 � · · · � Akn , Γn � Δn (cut)
(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �

(H ⊕ (Γ2 � Δ2 � · · · � Γn � Δn)
)

where ‖ G ‖ = ‖ F ‖, ‖ H ‖ = n − 1, and
∑n

i=1 ki ≥ 1, is eliminable in LNIF.

Proof. We extend the proof of [17, Thm. 5.16] and prove the result by induction
on the lexicographic ordering of pairs (|A|, h), where |A| is the complexity of
the cut formula A and h is the height of the derivation of the right premise
of the (cut) rule. Moreover, we assume w.l.o.g. that (cut) is used once as the
last inference of the derivation (given a derivation with multiple applications of
(cut), we may repeatedly apply the elimination algorithm described here to the
topmost occurrence of (cut), ultimately resulting in a cut-free derivation). By
[17, Thm. 5.16], we know that (cut) is eliminable from any derivation in LNG,
and therefore, we need only consider cases which incorporate quantifier rules.

If h = 0, then the right premise of (cut) is an instance of (id1), (id2), or
(⊥l). If none of the cut formulae A are principal in the right premise, then the
conclusion of (cut) is an instance of (id1), (id2), or (⊥l). If, however, one of the
cut formulae A is principal in the right premise and is an atomic formula p(�a),
then the top right premise of (cut) is of the form

F � p(�a)k1 , Γ1 � Δ1 � · · · � p(�a)ki , Γi � p(�a),Δ′
i � · · · � p(�a)kn , Γn � Δn

where Δi = p(�a),Δ′
i. Observe that since Δi occurs in the conclusion of (cut),

so does p(�a). To construct a cut-free derivation of the conclusion of (cut), we
apply (lwr) to the left premise G � Γ � Δ, p(�a) � H until p(�a) is in the ith

component, and then apply hp-admissibility of (iw) (Lemma 5) to add in the
missing formulae. Last, if the cut formula A is principal in the right premise and
is equal to ⊥, then the left premise of (cut) is of the form G � Γ � Δ,⊥ � H.
We obtain a cut-free derivation of the conclusion of (cut) by first applying hp-
admissibility of (⊥r) (Lemma 3), followed by hp-admissibility of (iw) (Lemma 5)
to add in the missing formulae.

Suppose that h > 0. If none of the cut formulae A are principal in the
inference (r) of the right premise of (cut), then for all cases (with the exception
of the (∀r1), (⊃r1), (∃l), (∀r2), and (⊃r2) cases) we apply IH to the premise(s) of
(r), followed by an application of (r). Let us now consider the (∀r1), (∃l), (∀r2),
(⊃r1), and (⊃r2) cases when none of the cut formulae A are principal. First,
assume that (∀r1) is the rule used to derive the right premise of (cut):

G � Γ � Δ,A � H
F � Ak1 , Γ1 � Δ1 � · · · � Akn , Γn � Δn� � B[a/x]

(∀r1)F � Ak1 , Γ1 � Δ1 � · · · � Akn , Γn � Δn,∀xB
(cut)

(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �
(H ⊕ (Γ2 � Δ2 � · · · � Γn � Δn,∀xB)

)

We invoke hp-admissibility of (sub) (Lemma 4) to substitute the eigenvariable a
of (∀r1) with a fresh variable b that does not occur in either premise of (cut). We
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then apply admissibility of (ew) (Lemma 6) to the left premise of (cut), apply
IH to the resulting derivations, and last apply the (∀r1) rule, as shown below:

G � Γ � Δ,A � H
Lem. 6G � Γ � Δ,A � H� �

F � Ak1 , Γ1 � Δ1 � · · · � Akn , Γn � Δn� � B[a/x]
Lem. 4F � Ak1 , Γ1 � Δ1 � · · · � Akn , Γn � Δn� � B[b/x]
IH

(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �
(H ⊕ (Γ2 � Δ2 � · · · � Γn � Δn)

)
� � B[b/x]

(∀r1)
(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �

(H ⊕ (Γ2 � Δ2 � · · · � Γn � Δn,∀xB)
)

In the (∃l) case below

G � Γ � Δ,A � H
F � Ak1 , Γ1 � Δ1 � · · · � Aki , B[a/x], Γi � Δi � · · · � Akn , Γn � Δn (∃l)F � Ak1 , Γ1 � Δ1 � · · · � Aki ,∃xB, Γi � Δi � · · · � Akn , Γn � Δn (cut)

(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �
(H ⊕ (Γ2 � Δ2 � · · · � ∃xB, Γi � Δi � · · · � Γn � Δn)

)

we also make use of the hp-admissibility of (sub) to ensure that the (∃l) rule can
be applied after invoking the inductive hypothesis:

G � Γ � Δ,A � H
F � Ak1 , Γ1 � Δ1 � · · · � Aki , B[a/x], Γi � Δi � · · · � Akn , Γn � Δn

Lem. 4F � Ak1 , Γ1 � Δ1 � · · · � Aki , B[b/x], Γi � Δi � · · · � Akn , Γn � Δn
IH

(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �
(H ⊕ (Γ2 � Δ2 � · · · � Aki , B[b/x], Γi � Δi � · · · � Γn � Δn)

)
(∃l)

(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �
(H ⊕ (Γ2 � Δ2 � · · · � ∃xB, Γi � Δi � · · · � Γn � Δn)

)

Let us consider the (∀r2) case

(1)

(2) (3)
(∀r2)F � Ak1 , Γ1 � Δ1 � · · · � Aki , Γi � Δi,∀xB � Aki+1 , Γi+1 � Δi+1 � · · · � Akn , Γn � Δn (cut)

(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �
(H ⊕ (Γ2 � Δ2 � · · · � Γi � Δi,∀xB � Γi+1 � Δi+1 � · · · � Γn � Δn)

)

(1) G � Γ � Δ, A � H1 � Γ
′
i � Δ

′
i � Γ

′
i+1 � Δ

′
i+1 � H2

(2) F � A
k1 , Γ1 � Δ1 � · · · � A

ki , Γi � Δi� � B[a/x] � A
ki+1 , Γi+1 � Δi+1 � · · · � A

kn , Γn � Δn

(3) F � A
k1 , Γ1 � Δ1 � · · · � A

ki , Γi � Δi � A
ki+1 , Γi+1 � Δi+1, ∀xB � · · · � A

kn , Γn � Δn

where H = H1 � Γ ′
i � Δ′

i � Γ ′
i+1 � Δ′

i+1 � H2. To resolve the case we invoke
admissibility of (ew) (Lemma 6) on (1) to obtain a derivation of

(1)′ G � Γ � Δ,A � H1 � Γ ′
i � Δ′

i� � �Γ ′
i+1 � Δ′

i+1 � H2

Moreover, to ensure that the eigenvariable a in (2) does not occur in (1), we apply
hp-admissibility of (sub) (Lemma 4) to obtain (2)′ where a has been replaced by
a fresh parameter b. Applying IH between (1)′ and (2)′, and (1) and (3), followed
by an application of (∀r2), gives the desired result. Last, note that the (⊃r1) and
(⊃r2) cases are resolved as explained in the proof of [17, Thm. 5.16].

We assume now that one of the cut formulae A is principal in the inference
yielding the right premise of (cut). The cases where A is an atomic formula p(�a)
or is identical to ⊥ are resolved as explained above (when h = 0). For the case
when A is principal in an application of (lift), we simply apply IH between the
left premise of (cut) and the premise of the (lift) rule. Also, if A is of the form
B ∧ C, B ∨ C, or B ⊃ C, then all such cases can be resolved as explained in the
proof of [17, Thm. 5.16]. Thus, we only consider the cases where A is of the form
∃xB and ∀xB; we begin with the former and assume our derivation ends with:
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G � Γ � Δ,∃xB � H
F � ∃xBk1 , Γ1 � Δ1 � · · · � ∃xBki , B[a/x], Γi � Δi � · · · � ∃xBkn , Γn � Δn (∃l)F � ∃xBk1 , Γ1 � Δ1 � · · · � ∃xBki+1 , Γi � Δi � · · · � ∃xBkn , Γn � Δn (cut)

(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �
(H ⊕ (Γ2 � Δ2 � · · · � Γi � Δi � · · · � Γn � Δn)

)

Invoking IH with the left premise of (cut) and the premise of (∃l) gives a cut-free
derivation of:

(G ⊕F)�Γ, Γ1 � Δ,Δ1 �
(H⊕ (Γ2 � Δ2 � · · ·�B[a/x], Γi � Δi � · · ·�Γn � Δn)

)

By invertibility of (∃r) (Lemma 9), there exists a cut-free derivation of G � Γ �
Δ,B[a/x] � H. Since |B[a/x]| < |∃xB|, we can apply IH to this sequent as well
as the sequent above to obtain a cut-free derivation of:

(G⊕G⊕F)�Γ, Γ, Γ1 � Δ,Δ,Δ1�
(H⊕H⊕(Γ2 � Δ2�· · ·�Γi � Δi�· · ·�Γn � Δn)

)

Applying admissibility of (icl) and (icr) (Lemmas 14 and 16), we obtain the
desired conclusion.

Last, let us consider the case where A is of the form ∀xB:

G � Γ � Δ,∀xB � H
F � ∀xBk1 , Γ1 � Δ1 � · · · � ∀xBki , B[a/x], Γi � Δi � · · · � ∀xBkn , Γn � Δn (∀l)F � ∀xBk1 , Γ1 � Δ1 � · · · � ∀xBki , Γi � Δi � · · · � ∀xBkn , Γn � Δn (cut)

(G ⊕ F) � Γ, Γ1 � Δ,Δ1 �
(H ⊕ (Γ2 � Δ2 � · · · � Γi � Δi � · · · � Γn � Δn)

)

Applying IH between the left premise of (cut) and the premise of the (∀l) rule,
we obtain

(G ⊕F)�Γ, Γ1 � Δ,Δ1 �
(H⊕ (Γ2 � Δ2 � · · ·�B[a/x], Γi � Δi � · · ·�Γn � Δn)

)

Depending on if H is empty or not, we invoke the invertibility of (∀r1) or (∀r2)
(Lemmas 13 and 11), admissibility of (mrg) (Lemma 15), and hp-admissibility
of (sub) (Lemma 4) to obtain a derivation of the sequent G �Γ � Δ,B[a/x]�H.
Since |B[a/x]| < |∀xB| we can apply IH between this sequent and the one above
to obtain a cut-free derivation of:

(G⊕G⊕F)�Γ, Γ, Γ1 � Δ,Δ,Δ1�
(H⊕H⊕(Γ2 � Δ2�· · ·�Γi � Δi�· · ·�Γn � Δn)

)

Admissibility of (icl) and (icr) (Lemmas 14 and 16) give the desired conclusion.
�

5 Conclusion

This paper presented the cut-free calculus LNIF for intuitionistic fuzzy logic
within the relatively new paradigm of linear nested sequents. The calculus pos-
sesses highly fundamental proof-theoretic properties such as (m-)invertibility of
all logical rules, admissibility of structural rules, and syntactic cut-elimination.
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In future work the author aims to investigate corollaries of the cut-elimination
theorem, such as a midsequent theorem [4]. In our context, such a theorem states
that every derivable sequent containing only prenex formulae is derivable with
a proof containing quantifier-free sequents, called midsequents, which have only
propositional inferences (and potentially (lift)) above them in the derivation,
and only quantifier inferences (and potentially (lift)) below them. Moreover, the
present formalism could offer insight regarding which fragments interpolate (or if
all of IF interpolates) by applying the so-called proof-theoretic method of interpo-
lation [17,21]. Additionally, it could be fruitful to adapt linear nested sequents
to other first-order Gödel logics and to investigate decidable fragments [2] by
providing proof-search algorithms with implementations (e.g. [16] provides an
implementation of proof-search in Prolog for a class of modal logics within the
linear nested sequent framework).

Last, [8] introduced both a nested calculus for first-order intuitionistic logic
with constant domains, and a nested calculus for first-order intuitionistic logic
with non-constant domains. The fundamental difference between the two calculi
involves the imposition of a side condition on the left ∀ and right ∃ rules. The
author aims to investigate whether such a condition can be imposed on quantifier
rules in LNIF in order to readily convert the calculus into a sound and cut-free
complete calculus for first-order Gödel logic with non-constant domains. This
would be a further strength of LNIF since switching between the calculi for the
constant domain and non-constant domain versions of first-order Gödel logic
would result by simply imposing a side condition on a subset of the quantifier
rules.
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Abstract. This paper shows how to derive nested calculi from labelled
calculi for propositional intuitionistic logic and first-order intuitionis-
tic logic with constant domains, thus connecting the general results for
labelled calculi with the more refined formalism of nested sequents. The
extraction of nested calculi from labelled calculi obtains via considera-
tions pertaining to the elimination of structural rules in labelled deriva-
tions. Each aspect of the extraction process is motivated and detailed,
showing that each nested calculus inherits favorable proof-theoretic prop-
erties from its associated labelled calculus.
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1 Introduction

Numerous fruitful consequences and applications obtain through the supple-
mentation of a logic with an analytic calculus. Such calculi are characterized
on the basis of their inference rules, which stepwise (de)compose the formula
to be proven. One of the most prominent realizations of this idea dates back to
Gentzen [12], who proposed the sequent calculus framework for classical and intu-
itionistic logic. Since then, countless extensions and reformulations of Gentzen’s
framework have been supplied for many logics of interest. Examples of extensions
include display calculi [2,23], hypersequent calculi [21], labelled calculi [7,24],
and nested calculi [10,23]. Such calculi have been exploited to prove meaningful
results; e.g. decidability [21,23], interpolation [18], and automated counter-model
extraction [17,23]. We focus on the labelled and nested formalisms in this paper.

The labelled approach of constructing calculi may be qualified as semantic
due to the fact that calculi are obtained through the transformation of seman-
tic clauses and Kripke-frame properties into inference rules for a logic [7,24].
Although the approach has been criticized by some [1], it has also proven to
be quite successful relative to certain criteria. For example, the labelled for-
malism is surprisingly modular and allows for the automated construction of
c© Springer Nature Switzerland AG 2020
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analytic calculi for many intermediate and modal logics [6,7,19]. Furthermore,
calculi constructed in the labelled paradigm often possess fruitful properties (e.g.
contraction-admissibility, invertibility of rules, cut-elimination, etc.) that follow
from general results [7,19].

In 2009, Brünnler introduced nested sequent calculi [3] and Poggiolesi intro-
duced tree hypersequent calculi [22] for a set of modal logics. Both formalisms
are essentially notational variants of one another and make use of an idea due to
Bull [4] and Kashima [15] to organize sequents into treelike structures called
nested sequents. Although nested sequents can be seen as a distinct proof-
theoretic formalism, it was shown in 2012 [9] that nested sequent calculi can
be viewed as ‘upside-down’ versions of prefixed tableaux, introduced much ear-
lier in 1972 [8]. In contrast to labelled sequents, nested sequents are often given
in a language as expressive as the language of the logic; thus, nested calculi
have the advantage that they minimize the bureaucracy sufficient to prove the-
orems. The nested formalism continues to receive much attention, proving itself
suitable for constructing analytic calculi [3], developing automated reasoning
algorithms [13], and verifying interpolation [18], among other applications.

Despite the many advantages of nested calculi, constructing such calculi for
logics as well as proving that they possess favorable proof-theoretic properties
(admissibility of structural rules, cut-elimination, etc.) is often done on a case by
case basis; i.e. the nested formalism does not—to date—offer the same generality
of results that hold in the labelled paradigm (cf. [7,19]). Therefore, a significant
advantage of the labelled paradigm over the nested paradigm is that labelled
calculi are easily constructed on the basis of a logic’s semantics and one often
obtains highly favorable proof-theoretic properties of the calculi (essentially)
for free via general theorems [7,19]. Nevertheless, the labelled formalism has
its drawbacks: the calculi involve a complicated syntax, and labelled structural
rules typically delete vital formulae from premise to conclusion, which can cause
associated proof-search algorithms to be less efficient or rely on backtracking.

Since the labelled formalism is well-suited for constructing calculi and con-
firming properties, and the nested formalism is well-suited for applications, a
general method of extracting nested calculi from labelled calculi (with proper-
ties preserved) is highly desirable. One could generate labelled calculi for a class
of logics and confirm favorable proof-theoretic properties via existing general
results; if such properties were preserved during an extraction procedure, then
the ensuing nested calculi would possess the properties as well, yielding prac-
tical, cut-free nested calculi. Similar ideas and results have been discussed in
the literature [5,14,17,20], where refined calculi (which can be viewed as nested
calculi) were extracted from labelled calculi for various logics. (NB. The author
has recently been made aware of [20], which mentions results strongly related
to Sect. 4. Although the results presented here were discovered independently,
the work of Sect. 4 can be seen as a detailed explication and expansion of the
work presented in [20].). In this paper, we advance our understanding of this
method, and show how to derive Fitting’s nested calculi (see [10]) from labelled
calculi for intuitionistic logics. The results of this paper are also worthwhile in
that they clarify the connection between the intuitionistic labelled calculi and
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nested calculi considered, thus shedding light on the semantic roles played by
certain inference rules and syntactic structures in Fitting’s formalism.

This paper is organized as follows: Sect. 2 introduces the labelled and nested
calculi for the intuitionistic logics considered, and Sect. 3 shows how to translate
labelled sequents into nested sequents. Sections 4 and 5 show how to extract
the nested calculi from the labelled calculi for propositional and first-order intu-
itionistic logic with constant domains, respectively. Last, Sect. 6 concludes and
discusses future work.

2 Proof Calculi for Intuitionistic Logics

The language L for propositional intuitionistic logic (Int) is defined via the BNF
grammar shown below top, and the language LQ for constant domain first-order
intuitionistic logic (IntQC) is defined via the BNF grammar shown below bottom:

A :: = p | ⊥ | (A ∨ A) | (A ∧ A) | (A ⊃ A)

A :: = p(x1, . . . , xn) | ⊥ | (A ∨ A) | (A ∧ A) | (A ⊃ A) | (∀x)A | (∃x)A

In the language L, p is among a denumerable set of propositional variables
{p, q, r, . . .}. In the language LQ, p is an n-ary predicate symbol with x1, . . . , xn, x
variables (n ∈ N), and when n = 0, p is assumed to be a propositional variable.
As usual, we define ¬A := A ⊃ ⊥.

We assume the reader is familiar with intuitionistic logics; for a comprehen-
sive overview, see [11].

2.1 The Labelled Calculi G3Int and G3IntQC

We define propositional (first-order) labelled sequents to be syntactic objects of
the form L1 ⇒ L2 (L′

1 ⇒ L′
2, resp.), where L1 and L2 (L′

1 and L′
2, resp.) are

formulae defined via the BNF grammar below top (below bottom, resp.).

L1 ::= w : A | w ≤ v | L1, L1 L2 ::= w : A | L2, L2

L′
1 ::= w : A | a ∈ Dw | w ≤ v | L′

1, L
′
1 L′

2 ::= w : A | L′
2, L

′
2

In the propositional case, A is in the language L and w is among a denumerable
set of labels {w, v, u, . . .}. In the first-order case, A is in the language LQ, a is
among a denumerable set of parameters {a, b, c, . . .}, and w is among a denu-
merable set of labels {w, v, u, . . .}. We refer to formulae of the forms w ≤ u
and a ∈ Dw as relational atoms (with formulae of the form a ∈ Dw sometimes
referred to as domain atoms, more specifically) and refer to formulae of the
form w : A as labelled formulae. Due to the two types of formulae occurring
in a labelled sequent, we often use R to denote relational atoms, and Γ and
Δ to denote labelled formulae, thus distinguishing between the two. Labelled
sequents are therefore written in a general form as R, Γ ⇒ Δ. Moreover, we
take the comma operator to be commutative and associative; for example, we
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identify the formula w : A,w ≤ u, u : B with w ≤ u, u : B,w : A. This interpre-
tation of comma lets us view R, Γ and Δ as multisets. Also, we allow for empty
antecedents and succedents in both our labelled and nested sequents.

In the first-order setting, we syntactically distinguish between bound variables
{x, y, z, . . .} and free variables, which are replaced with parameters {a, b, c, . . .},
to avoid clashes between the two categories (cf. [10, Sect. 8]). Therefore, instead
of using formulae directly from the first-order language, we use formulae from
the first-order language where each freely occurring variable x has been replaced
by a distinct parameter a. For example, we would make use of the labelled
formula w : (∀x)p(a, x) ∨ q(a, b) instead of w : (∀x)p(y, x) ∨ q(y, z) in a first-
order sequent of G3IntQC. For a formula A ∈ LQ, we write A[a/x] to mean the
formula that results from substituting the parameter a for all occurrences of

Fig. 1. The labelled calculus G3Int for propositional intuitionistic logic consists of (id),
(⊃r), (∧l), (∧r), (∨l), (∨r), (⊃l), (ref), (tra), and (⊥l) (see [7]), and all rules give the
calculus G3IntQC. The side condition †1 states that the variable v does not occur in the
conclusion, †2 states that neither a nor v occur in the conclusion, and †3 states that a
does not occur in the conclusion. Labels and parameters restricted from occurring in
the conclusion of an inference are called eigenvariables. (Note that (id) is an instance
of (idq); the same holds in the nested setting).
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the free variable x in A. Last, we use the notation A(a0, . . . , an), with n ∈ N, to
denote that the parameters a0, . . . , an are all parameters occurring in the formula
A. We write A( #»a ) as shorthand for A(a0, . . . , an) and #»a ∈ Dw as shorthand for
a0 ∈ Dw, . . . , an ∈ Dw. The labelled calculi are given in Fig. 1.

We define a label substitution [w/v] on a labelled sequent in the usual way
as the replacement of all labels v occurring in the sequent with the label w.
Similarly, we define a parameter substitution [a/b] on a labelled sequent as the
replacement of all parameters b occurring in the sequent with the parameter a.

Theorem 1. The calculi G3Int and G3IntQC have the following properties:

(i) (a) For all A ∈ L, �G3Int R, w ≤ v, w : A,Γ ⇒ v : A,Δ;
(b) For all A ∈ L, �G3Int R, w : A,Γ ⇒ Δ,w : A;
(c) For all A ∈ LQ, �G3IntQC R, w ≤ v, #»a ∈ Dw, w : A( #»a ), Γ ⇒ v : A( #»a ),Δ;
(d) For all A ∈ LQ, �G3IntQC R, #»a ∈ Dw, w : A( #»a ), Γ ⇒ Δ,w : A( #»a );

(ii) The (lsub) and (psub) rules are height-preserving (i.e. ‘hp-’) admissible;

R, Γ ⇒ Δ
(lsub)R[w/v], Γ [w/v] ⇒ Δ[w/v]

R, Γ ⇒ Δ
(psub)R[a/b], Γ [a/b] ⇒ Δ[a/b]

(iii) All rules are hp-invertible;
(iv) The (wk) and {(ctrR), (ctrFl

), (ctrFr
)} rules (below) are hp-admissible;

R, Γ ⇒ Δ
(wk)R′,R, Γ ′, Γ ⇒ Δ′,Δ

R,R′,R′, Γ ⇒ Δ
(ctrR)R,R′, Γ ⇒ Δ

R, Γ ′, Γ ′, Γ ⇒ Δ
(ctrFl

)R, Γ ′, Γ ⇒ Δ

R, Γ ⇒ Δ,Δ′,Δ′
(ctrFr

)R, Γ ⇒ Δ,Δ′

(v) The (cut) rule (below) is admissible;

R, Γ ⇒ Δ,w : A R, w : A,Γ ⇒ Δ
(cut)R, Γ ⇒ Δ

(vi) G3Int (G3IntQC) is sound and complete for Int (IntQC, resp.).

Proof. We refer the reader to [7] for proofs of properties (i)–(vi) for G3Int; note
that hp-admissibility of (psub) is trivial in the propositional setting since formu-
lae do not contain parameters. The proofs of properties (i)–(vi) can be found in
the online appended version [16] for G3IntQC. �

2.2 The Nested Calculi NInt and NIntQC

We define a propositional (or, first-order) nested sequent Σ to be a syntactic
object defined via the following BNF grammars:

X ::= A | X,X Σ ::= X → X | X → X, [Σ], . . . , [Σ]



182 T. Lyon

where A is in the propositional language L (first-order language LQ, resp.). As
in the previous section, we take the comma operator to be commutative and
associative, allowing us to view (for example) syntactic entities X as multisets.

In the first-order setting, we syntactically distinguish between bound vari-
ables and free variables in first-order formulae, using {x, y, z, . . .} for bound vari-
ables and replacing the occurrence of free variables in formulae with parameters
{a, b, c, . . .}. For example, we would use p(a) → p(b), [⊥ → ∀xq(x, b)] instead of
the sequent p(x) → p(y), [⊥ → ∀xq(x, y)] in a nested derivation (where the free
variable x has been replaced by the parameter a and y has been replaced by b).

Nested sequents are often written as Σ{X → Y, [Σ0], . . . , [Σn]}, which indi-
cates that X → Y, [Σ0], . . . , [Σn] occurs at some depth in the nestings of the
sequent Σ; e.g. if Σ is taken to be p(a) → [⊥ → ∀xq(x, b), [→ �]], then both
Σ{⊥ → ∀xq(x, b)} and Σ{→ �} are correct representations of Σ in our notation.
The nested calculi are given in Fig. 2.

Fig. 2. Fitting’s nested calculus NInt for propositional intuitionistic logic consists of
(id), (∧l), (∨r), (∨l), (∧r), (¬r), (¬l), (lift), (⊃r), and (⊃l). All rules taken together
give the nested calculus NIntQC [10]. The side condition † states that a does not occur
in the conclusion.

Theorem 2 (Soundness and Completeness [10]). The calculus NInt
(NIntQC) is sound and complete for Int (IntQC, resp.).

3 Translating Notation: Labelled and Nested

It is instructive to observe that both nested and labelled sequents can be viewed
as graphs (with the former restricted to trees and the latter more general).
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Graphs of sequents are significant for two reasons: the first (technical) reason is
that graphs can be leveraged to switch from labelled to nested notation; thus,
graphs will play a role in deriving our nested calculi from our labelled calculi. The
second reason is that graphs offer insight into why structural rule elimination
yields nested systems, which will be discussed in the next section.

It is straightforward to define the graph of each type of sequent. To do this, we
first introduce a bit of notation and define the multiset Γ � w := {A | w : A ∈ Γ}.
For a labelled sequent Λ = R, Γ ⇒ Δ, the graph G(Λ) is the tuple (V,E, λ),
where (i) V = {w | w is a label in Λ.}, (ii) (w, v) ∈ E iff w ≤ v ∈ R, and

(iii) λ = {(w,Γ ′ ⇒ Δ′) | Γ ′ = Γ � w, Δ′ = Δ � w, and w ∈ V }.

For a nested sequent, the graph is defined inductively on the structure of the
nestings; we use strings σ of natural numbers to denote vertices in the graph,
similar to the prefixes used in prefixed tableaux [8–10].

Base Case. Let our nested sequent be of the form X → Y with X and Y
multisets of formulae. Then, Gσ(X → Y ) := (Vσ, Eσ, λσ), where (i) Vσ := {σ},
(ii) Eσ := ∅, and (iii) λσ := {(σ,X → Y )}.

Inductive Step. Suppose our nested sequent is of the form X → Y, [Σ0], . . . , [Σn].
We assume that each Gσi(Σi) = (Vσi, Eσi, λσi) (with i ∈ {0, . . . , n}) is already
defined, and define Gσ(X → Y, [Σ0], . . . , [Σn]) := (Vσ, Eσ, λσ) as follows:

(i) Vσ := {σ} ∪
⋃

0≤i≤n

Vσi (ii) Eσ := {(σ, σi) | 0 ≤ i ≤ n} ∪
⋃

0≤i≤n

Eσi

(iii) λσ := {(σ,X → Y )} ∪
⋃

0≤i≤n

λσi

Definition 1. Let G0 = (V0, E0, λ0) and G1 = (V1, E1, λ1) be two graphs. We
define an isomorphism f : V0 �→ V1 between G0 and G1 to be a function such
that: (i) f is bijective, (ii) (x, y) ∈ E0 iff (fx, fy) ∈ E1, (iii) λ0(x) = λ1(fx).
We say G0 and G1 are isomorphic iff there exists an isomorphism between them.

Although the formal definitions above may appear somewhat cumbersome,
the example below shows that transforming a sequent into its graph—or con-
versely, obtaining the sequent from its graph—is relatively straightforward.

Example 1. The nested sequent Σ is given below with its corresponding graph
G0(Σ) shown on the left, and the labelled sequent Λ is given below with its cor-
responding graph G(Λ) on the right. Regarding the labelled sequent, we assume
that Γi and Δi consist solely of formulae labelled with wi (for i ∈ {0, 1, 2, 3}).

Σ = X0 → Y0, [X1 → Y1, [X2 → Y2]], [X3 → Y3]
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X0 → Y0

0

��

��

X3 → Y3

01

X1 → Y1

00

�� X2 → Y2

000

Γ0 � w0 ⇒ Δ0 � w0

w0

��

��

��

����
���

���
���

Γ3 � w3 ⇒ Δ3 � w3

w3

Γ1 � w1 ⇒ Δ1 � w1

w1

�� Γ2 � w2 ⇒ Δ2 � w2

w2

Λ = w0 ≤ w0, w0 ≤ w1, w1 ≤ w2, w0 ≤ w2, w0 ≤ w3, Γ0, Γ1, Γ2, Γ3 ⇒ Δ0, Δ1, Δ2, Δ3

In the above example there is a loop from w0 to itself in the graph of the
labelled sequent; furthermore, there is an undirected cycle occurring between w0,
w1, and w2. As will be explained in the next section (specifically, Theorem 4), the
(ref) and (tra) rules allow for such structures to appear in labelled derivations
of theorems; however, the elimination of these rules in the labelled calculus has
the effect that such structures can no longer occur in the labelled derivation of a
theorem. Consequently, it will be seen that eliminating such rules yields a labelled
derivation where every sequent has a purely treelike structure (see Definition 2).
This implies that each labelled sequent in the derivation has a graph isomorphic
to the graph of a nested sequent. It is this idea which ultimately permits the
extraction of our nested calculi from our labelled calculi.

Definition 2. Let Λ be a labelled sequent and G(Λ) = (V,E, λ). We say that Λ
is treelike iff there exists a unique vertex w ∈ V , called the root, such that there
exists a unique path from w to every other vertex v ∈ V .1

If we take the graph of a treelike labelled sequent, then it can be viewed as
the graph of a nested sequent, as the example below demonstrates.

Example 2. The treelike labelled sequent Λ′ and its graph are given below. We
assume that Γi and Δi contain only formulae labelled with wi (for i ∈ {0, 1, 2, 3}).

Λ′ = w0 ≤ w1, w1 ≤ w2, w0 ≤ w3, Γ0, Γ1, Γ2, Γ3 ⇒ Δ0,Δ1,Δ2,Δ3

Γ ′
2 ⇒ Δ′

2

w2

Γ ′
1 ⇒ Δ′

1

w1

�� Γ ′
0 ⇒ Δ′

0

w0

���� Γ ′
3 ⇒ Δ′

3

w3

Also, we assume Γ ′
i = Γi � wi = Xi and Δ′

i = Δi � wi = Yi (for i ∈ {0, 1, 2, 3}).
Therefore, the above graph is isomorphic to the graph of the nested sequent in
Example 1, meaning that Λ can be translated as that nested sequent.

Definition 3 (The Translation N). Let Λ be a treelike labelled sequent. We
define N(Λ) to be the nested sequent obtained from the graph G(Λ).
1 Treelike sequents are equivalently characterized as sequents with graphs that are: (i)

connected, (ii) acyclic, and (iii) contain no backwards branching.
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4 Deriving NInt from G3Int

We begin by presenting two useful lemmata that will be referenced in the current
and next section while deriving NInt from G3Int and NIntQC from G3IntQC. All
rules mentioned in the lemmata can be found in Fig. 3 below. The proofs of both
lemmata can be found in the online appended version [16].

Lemma 1. The calculus G3Int + {(id∗), (¬l), (¬r), (⊃∗
l ), (lift)} and the calcu-

lus G3IntQC + {(id∗
q), (¬l), (¬r), (⊃∗

l ), (∀∗
l ), (∀∗

r), (∃∗
r), (lift)} have the following

properties:

(i) All sequents of the form R, w ≤ v, #»a ∈ Dw, w : A( #»a ), Γ ⇒ v : A( #»a ),Δ and
R, #»a ∈ Dw, w : A( #»a ), Γ ⇒ Δ,w : A( #»a ) are derivable;2

(ii) The rules {(lsub), (psub), (wk), (ctrR), (ctrFr
)} are hp-admissible;

(iii) With the exception of {(∧l), (∃l)}, all rules are hp-invertible;
(iv) The rules {(∧l), (∃l)} are invertible;
(v) The rule (ctrFl

) is admissible.

Lemma 2. (i) (ref) and (tra) can be permuted above each rule in
the set {(⊥l), (∧l), (∧r), (∨l), (∨r), (⊃r), (¬l), (¬r), (∃l), (∃r), (∀r)}. (ii) (nd)
and (cd) can be permuted above {(⊥l), (∧l), (∧r), (∨l), (∨r), (⊃l), (⊃r), (¬l),
(¬r), (∃l), (∀r)}.
Proof. Claim (i) follows from the fact that none of the rules mentioned have
active relational atoms of the form w ≤ u in the conclusion, and so, (ref) and
(tra) may be freely permuted above each rule. Claim (ii) follows from the fact
that none of the rules mentioned contain active domain atoms in the conclusion,
allowing for (nd) and (cd) to be permuted above each rule. �

Deriving the calculus NInt from G3Int depends on a crucial observation made
in [5] concerning labelled derivations: rules such as (ref) and (tra) allow for
theorems to be derived in proofs containing non-treelike labelled sequents. To
demonstrate this fact, observe the following derivation in G3Int:

w ≤ v, v ≤ v, v : p ⇒ v : p
(ref)

w ≤ v, v : p ⇒ v : p
(⊃r)⇒ w : p ⊃ p

The initial sequent is non-treelike due to the presence of the v ≤ v relational
atom; however, the application of (ref) deletes this structure from the initial
sequent and produces a treelike sequent as the conclusion.

In fact, it is true in general that every labelled derivation of a theorem (i.e.,
a derivation whose end sequent is of the form ⇒ w : A) can be partitioned into
a top derivation consisting of non-treelike sequents, and a bottom derivation
consisting of treelike sequents. Note that if a derivation ends with a sequent of
the form ⇒ w : A, then the derivation must necessarily contain a bottom treelike
2 In the propositional setting, these sequents become R, w ≤ v, w : A, Γ ⇒ v : A, Δ

and R, w : A, Γ ⇒ Δ, w : A, respectively.
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Fig. 3. Rules used to derive NInt and NIntQC from G3Int and G3IntQC, respectively.
The side condition †1 states that there exists a path of relational atoms (not necessarily
directed) from vi to w for each i ∈ {0, . . . , n} in R; †2 states that v does not occur in
the conclusion; †3 stipulates that there exists a path of relational atoms (not necessarily
directed) from v to w occurring in R; †4 states that a does not occur in the conclusion.
(Let u ∼ v ∈ {u ≤ v, v ≤ u}. A path of relational atoms (not necessarily directed)
from a label w to v occurs in a sequent Λ if and only if w = v, w ∼ v, or there exist
labels zi (i ∈ {0, . . . , n}) such that w ∼ z0, . . . , zn ∼ v occurs in Λ).

fragment since G(⇒ w : A) is a tree. By contrast, the top non-treelike fragment
of the derivation may be empty (e.g. the derivation of ⇒ w : ⊥ ⊃ A).

To demonstrate why the aforementioned partition always exists, suppose you
are given a labelled derivation of a theorem w : A and consider the derivation in a
bottom-up manner. The graph of the end sequent ⇒ w : A is evidently treelike by
Definition 2, and observe the each bottom-up application of a rule in G3Int—with
the exception of (ref) and (tra)—will produce a treelike sequent (see Theorem 4
for auxiliary details). If, however, at some point in the derivation (ref) or (tra) is
applied, then all sequents above the inference will inherit the (un)directed cycle
produced by the rule, thus producing the non-treelike fragment of the proof.

One can therefore imagine that permuting instances of the (ref) and (tra)
rules upwards in a given derivation would potentially increase the bottom tree-
like fragment of the derivation and decrease the top non-treelike fragment. As
it so happens, this intuition is correct so long as we choose adequate rules—
that bottom-up preserve the treelike structure of sequents—to replace certain
instances of the (ref) and (tra) rules in a derivation, when necessary. We will
first examine permuting instances of the (ref) rule, and motivate which ade-
quate rules we ought to add to our calculus in order to achieve the complete
elimination of (ref). After, we will turn our attention towards eliminating the
(tra) rule, and conclude the section by leveraging our results to extract NInt.
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Let us first observe an application of (ref) to an initial sequent obtained via
the (id) rule. There are two possible cases to consider: either the relational atom
principal in the initial sequent is active in the (ref) inference (shown below left),
or it is not (shown below right):

(id)R, w ≤ w, w : p, Γ ⇒ Δ, w : p
(ref)R, w : p, Γ ⇒ Δ, w : p

(id)R, u ≤ u, w ≤ v, w : p, Γ ⇒ Δ, v : p
(ref)R, w ≤ v, w : p, Γ ⇒ Δ, v : p

In the case shown above right, the end sequent is an instance of the (id) rule,
regardless of if u = w, u = v, or u is distinct from w and v. The case shown
above left, however, indicates that we ought to add the (id∗) rule (see Fig. 3) to
our calculus if we aim to eliminate (ref) from any given derivation.

Additionally, notice that an application of (ref) to (id∗) or (⊥l) produces
another instance of (id∗) or (⊥l), regardless of if v = w or v �= w.

(id∗)R, v ≤ v, w : p, Γ ⇒ Δ,w : p
(ref)R, w : p, Γ ⇒ Δ,w : p

(⊥l)R, v ≤ v, w : ⊥, Γ ⇒ Δ
(ref)R, w : ⊥, Γ ⇒ Δ

The above facts, coupled with Lemma 2, imply that any application of (ref) to
an initial sequent, produces an initial sequent.

Concerning the remaining rules of G3Int, we need only investigate the per-
mutation of (ref) above the (⊃l) rule, if we rely on Lemma 2. There are two
cases: either the relational atom principal in the (⊃l) inference is active in the
(ref) inference, or it is not. The latter case is easily resolved, so we observe the
former:

R, w ≤ w,w : A ⊃ B,Γ ⇒ Δ,w : A R, w ≤ w,w : A ⊃ B,w : B,Γ ⇒ Δ
(⊃l)R, w ≤ w,w : A ⊃ B,Γ ⇒ Δ

(ref)R, w : A ⊃ B,Γ ⇒ Δ

Applying (ref) to each premise of the (⊃l) inference yields the following:

R, w ≤ w,w : A ⊃ B,Γ ⇒ Δ,w : A
(ref)R, w : A ⊃ B,Γ ⇒ Δ,w : A

R, w ≤ w,w : A ⊃ B,w : B,Γ ⇒ Δ
(ref)R, w : A ⊃ B,w : B,Γ ⇒ Δ

The above observation suggests that we ought to add the (⊃∗
l ) rule (see Fig. 3) to

our calculus if we wish to permute (ref) above the (⊃l) rule; a single application
of the (⊃∗

l ) rule to the end sequents above gives the desired conclusion.
With the (⊃∗

l ) rule added to our calculus, we may freely permute the (ref)
rule above any (⊃l) inference. Still, we must confirm that the (ref) rule is
permutable with the newly introduced (⊃∗

l ) rule, but this is easily verifiable.
On the basis of our investigation, we may conclude the following lemma:

Lemma 3. The (ref) rule is eliminable in G3Int + {(id∗), (⊃∗
l )} − (tra).

Let us turn our attention towards eliminating the (tra) rule from a labelled
derivation. Since our aim is to eliminate both (ref) and (tra) from any derivation,
we assume that the rules {(id∗), (⊃∗

l )} have been added to our calculus.
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It is rather simple to verify that (tra) permutes with (⊥l) and (id∗), so we
only consider the (id) case. As with the (ref) rule, there are two cases to consider
when permuting (tra) above an (id) inference: either, the active formula of (tra)
is principal in (id), or it is not. In the latter case, the result of the (tra) rule
is an initial sequent, implying that the (tra) rule may be eliminated from the
derivation. The former case proves trickier and is explicitly given below:

(id)R, w ≤ u, u ≤ v, w ≤ v, w : p, Γ ⇒ Δ, v : p
(tra)R, w ≤ u, u ≤ v, w : p, Γ ⇒ Δ, v : p

Observe that the end sequent is not an initial sequent as it is not obtainable
from an (id), (id∗), or (⊥l) rule. The issue is solved by considering the (lift)
rule (see Fig. 3), which allows us to obtain the desired end sequent without the
use of (tra), as the following derivation demonstrates:

(id∗)R, w ≤ u, u ≤ v, w : p, u : p, v : p, Γ ⇒ v : p,Δ
(lift)R, w ≤ u, u ≤ v, w : p, u : p, Γ ⇒ v : p,Δ

(lift)R, w ≤ u, u ≤ v, w : p, Γ ⇒ v : p,Δ

Thus, the addition of (lift) to our calculus resolves the issue of permuting (tra)
above any initial sequent. Nevertheless, by Lemma2, we still need to consider
the permutation of (tra) above the (⊃l), (⊃∗

l ), and (lift) rules. The (tra) rule
and (⊃∗

l ) are freely permutable due to the fact that (tra) solely affects rela-
tional atoms, and (⊃∗

l ) solely affects labelled formulae. Also, the following lemma
entails that we may omit analyzing the permutation of (tra) above the (⊃l) rule.

Lemma 4. The rule (⊃l) is admissible in G3Int + {(id∗), (⊃∗
l ), (lift)}.

Proof. We derive the rule as shown below:

R, x ≤ y, x : A ⊃ B,Γ ⇒ Δ, y : A
Lem. 1R, x ≤ y, x : A ⊃ B, y : A ⊃ B,Γ ⇒ Δ, y : A

R, x ≤ y, x : A ⊃ B, y : B,Γ ⇒ Δ
Lem. 1R, x ≤ y, x : A ⊃ B, y : A ⊃ B, y : B,Γ ⇒ Δ
(⊃∗

l )R, x ≤ y, x : A ⊃ B, y : A ⊃ B,Γ ⇒ Δ
(lift)R, x ≤ y, x : A ⊃ B,Γ ⇒ Δ

�
Last, the (tra) rule is permutable with the (lift) rule. In the case where the

principal relational atom of (lift) is not active in the ensuing (tra) application,
the two rules freely permute. The alternative case is resolved as shown below:

R, w ≤ u, u ≤ v, w ≤ v, w : A, v : A,Γ ⇒ Δ
(lift)R, w ≤ u, u ≤ v, w ≤ v, w : A,Γ ⇒ Δ

(tra)R, w ≤ u, u ≤ v, w : A,Γ ⇒ Δ

R, w ≤ u, u ≤ v, w ≤ v, w : A, v : A,Γ ⇒ Δ
(tra)R, w ≤ u, u ≤ v, w : A, v : A,Γ ⇒ Δ
Lem. 1R, w ≤ u, u ≤ v, w : A, u : A, v : A,Γ ⇒ Δ
(lift)R, w ≤ u, u ≤ v, w : A, u : A,Γ ⇒ Δ

(lift)R, w ≤ u, u ≤ v, w : A,Γ ⇒ Δ

Hence, we obtain the following:

Lemma 5. The (tra) rule is eliminable in G3Int+ {(id∗), (⊃∗
l ), (lift)} − (ref).

Enough groundwork has been laid to state our main lemma:
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Lemma 6. The (ref) and (tra) rules are admissible in the calculus G3Int +
{(id∗), (⊃∗

l ), (lift)}.
Proof. Suppose we are given a proof Π in G3Int+ {(id∗), (⊃∗

l ), (lift)}, and con-
sider the topmost occurrence of either (ref) or (tra). If we can show that the
(ref) rule permutes above the (lift) rule, then we can invoke Lemmas 3 and 5
to conclude that each topmost occurrence of (ref) and (tra) can be eliminated
from Π in succession. This yields a (ref) and (tra) free proof of the end sequent
and establishes the claim. Thus, we prove that the (ref) rule permutes above
the (lift) rule.

In the case where the relational atom active in (ref) is not principal in the
(lift) inference, the two rules may be permuted; the alternative case is resolved
as shown below:

R, w ≤ w,w : A,w : A,Γ ⇒ Δ
(lift)R, w ≤ w,w : A,Γ ⇒ Δ

(ref)R, w : A,Γ ⇒ Δ

IHR, w : A,w : A,Γ ⇒ Δ
Lem. 1-(v)R, w : A,Γ ⇒ Δ

�
The addition of the rules {(id∗), (⊃∗

l ), (lift)} to our calculus and the above
admissibility results demonstrate that we are readily advancing towards our goal
of deriving NInt. Howbeit, our labelled calculus is still distinct since it makes use
of the logical signature {⊥,∧,∨,⊃}, whereas NInt uses the signature {¬,∧,∨,⊃}.
Therefore, we need to show that (⊥l) (we define ⊥ := p ∧ ¬p) is admissible in
the presence of (labelled versions of) the (¬r) and (¬l) rules (see Fig. 3). This
admissibility result is explained in the main theorem below.

Theorem 3. The rules {(id), (⊥l), (⊃l), (ref), (tra)} are admissible in the cal-
culus G3Int + {(id∗), (¬l), (¬r), (⊃∗

l ), (lift)}.
Proof. Follows from Lemmas 2, and 6, the fact that (id) is derivable using (id∗)
and (lift), the fact that (⊥l) is derivable from (¬l) and (∧l), and admissibility
of (⊃l) is shown as in Lemma 4. �
Theorem 4. Every derivation Π in G3Int + {(id∗), (¬l), (¬r), (⊃∗

l ), (lift)} −
{(id), (⊥l), (⊃l), (ref), (tra)} of a labelled formula w : A contains solely treelike
sequents with w the root of each sequent in the derivation.

Proof. To prove the claim we have to show that the graph of every sequent is
(i) connected, (ii) free of directed cycles, and (iii) free of backwards branching.
(NB. properties (i)–(iii) are equivalent to being treelike.) We assume that we are
given a derivation Π with end sequent ⇒ w : A and argue that every sequent in
Π has properties (i)–(iii):

(i) Assume there exists a sequent Λ in Π whose graph G(Λ) is disconnected.
Then, there exist at least two distinct regions in G(Λ) such that there does
not exist an edge from a node v in one region to a node u in the other
region. In other words, Λ does not contain a relational atom v ≤ u for some
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v in one region and some u in the other region. If one observes the rules
of our calculus, they will find that all rules either preserve the relational
atoms R of a sequent or decrease it by one relation atom (as in the case
of the (¬r) and (⊃r) rules). Hence, the end sequent ⇒ w : A will have a
disconnected graph since the property will be preserved downwards, but
this is a contradiction.

(ii) Assume that a sequent occurs in Π containing a relational cycle u ≤
v1, . . . , vn ≤ u (for n ∈ N). Observe that the (¬r) and (⊃r) rules are never
applicable to any of the relational atoms in the cycle, since no label occur-
ring in a relational cycle is an eigenvariable. This implies that the relational
cycle will be preserved downwards into the end sequent ⇒ w : A due to the
fact that the (¬r) and (⊃r) rules are the only rules that delete relational
atoms, giving a contradiction.

(iii) Assume that a sequent occurs in Π with backwards branching it is graph,
i.e. it contains relational atoms of the form v ≤ z, u ≤ z. By reasoning
similar to case (ii), we obtain a contradiction.

To see that w is the root of each treelike sequent in Π, observe that applying
inference rules from the calculus bottom-up to ⇒ w : A either preserve rela-
tional structure, or add forward relational structure (e.g. (⊃r) and (¬r)), thus
constructing a tree emanating from w. �

We refer to the labelled calculus G3Int + {(id∗), (¬l), (¬r), (⊃∗
l ), (lift)} −

{(id), (⊥l), (⊃l), (ref), (tra)} (restricted to the use of treelike sequents) under
the N translation as NInt∗. Up to copies of principal formulae in the premise(s)
of some rules, NInt∗ is identical to the calculus NInt (cf. [16]).

5 Deriving NIntQC from G3IntQC

To simplify notation, G3IntQC + {(id∗
q), (¬l), (¬r), (⊃∗

l ), (∀∗
r), (∀∗

l ), (∃∗
r), (lift)}

will be referred to as IntQCL. We begin the section by showing two lemmata that
confirm the admissibility of structural rules in IntQCL, and permit the extraction
of NIntQC from G3IntQC. After, we list a number of significant proof-theoretic
properties inherited by our nested calculi through the extraction process.

Lemma 7. The (ref) and (tra) rules are admissible in the calculus IntQCL.

Proof. We consider the topmost occurrence of a (ref) or (tra) inference and elim-
inate each topmost occurrence in succession until we obtain a proof free of (ref)
and (tra) inferences. By Lemma 2, we need only show that (ref) and (tra) per-
mute above rules {(idq), (id∗

q), (⊃l), (⊃∗
l ), (∀l), (∀∗

l ), (∀∗
r), (∃∗

r), (lift), (nd), (cd)}.
The cases of permuting (ref) and (tra) above (⊃∗

l ) and (lift) are similar to Lem-
mas 3, 5, and Theorem 3. Also, (⊃l) is admissible in the presence of (⊃∗

l ) (similar
to Lemma 4), so the case may be omitted. Permuting (ref) and (tra) above (id∗

q)
and (∀∗

r) is straightforward, so we exclude the cases. Hence, we focus only on
the nontrivial cases involving the (idq), (∀l), (∀∗

l ), (∃∗
r), (nd), and (cd) rules.

We prove the elimination of (ref) and refer to reader to the online appended
version [16] for the proof of (tra) elimination.
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(idq)R, w ≤ w, #»a ∈ Dw, w : p( #»a ), Γ ⇒ w : p( #»a ),Δ
(ref)R, #»a ∈ Dw, w : p( #»a ), Γ ⇒ w : p( #»a ),Δ

(id∗
q)R, #»a ∈ Dw, w : p( #»a ), Γ ⇒ w : p( #»a ),Δ

R, w ≤ w, a ∈ Dw, w : A[a/x], w : ∀xA, Γ ⇒ Δ
(∀l)R, w ≤ w, a ∈ Dw, w : ∀xA, Γ ⇒ Δ

(ref)R, a ∈ Dw, w : ∀xA, Γ ⇒ Δ

IHR, a ∈ Dw, w : A[a/x], w : ∀xA, Γ ⇒ Δ
(∀∗

l )R, a ∈ Dw, w : ∀xA, Γ ⇒ Δ

R, u ≤ u, a ∈ Dv, w : A[a/x], w : ∀xA, Γ ⇒ Δ
(∀∗

l )R, u ≤ u, a ∈ Dv, w : ∀xA, Γ ⇒ Δ
(ref)R, a ∈ Dv, w : ∀xA, Γ ⇒ Δ

IHR, a ∈ Dv, w : A[a/x], w : ∀xA, Γ ⇒ Δ
(∀∗

l )R, a ∈ Dv, w : ∀xA, Γ ⇒ Δ

R, u ≤ u, a ∈ Dv, Γ ⇒ w : A[a/x], w : ∃xA,Δ
(∃∗

r)R, u ≤ u, a ∈ Dv, Γ ⇒ w : ∃xA,Δ
(ref)R, a ∈ Dv, Γ ⇒ w : ∃xA,Δ

IHR, a ∈ Dv, Γ ⇒ w : A[a/x], w : ∃xA,Δ
(∃∗

l )R, a ∈ Dv, Γ ⇒ w : ∃xA,Δ

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ Δ
(nd)R, w ≤ w, a ∈ Dw, Γ ⇒ Δ

(ref)R, a ∈ Dw, Γ ⇒ Δ

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ Δ
Lem. 1-(iv)R, w ≤ w, a ∈ Dw, Γ ⇒ Δ

IHR, a ∈ Dw, Γ ⇒ Δ

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ Δ
(cd)R, w ≤ w, a ∈ Dw, Γ ⇒ Δ

(ref)R, a ∈ Dw, Γ ⇒ Δ

R, w ≤ w, a ∈ Dw, a ∈ Dw, Γ ⇒ Δ
Lem. 1-(iv)R, w ≤ w, a ∈ Dw, Γ ⇒ Δ

IHR, a ∈ Dw, Γ ⇒ Δ

In the (∀∗
l ) and (∃∗

r) cases, observe that the side condition continues to hold
after IH is applied. If the path from w to v does not go through u, then the
side condition trivially holds, and if it does go through u, then there must exist
relational atoms in R occurring along the path from w to v, which continue to
be present after the evocation of IH. �
Lemma 8. The rules (nd) and (cd) are admissible in the calculus IntQCL −
{(ref), (tra)}.
Proof. The result is shown by induction on the height of the given derivation
by permuting all instances of (nd) and (cd) upwards until all such instances are
removed from the derivation. See the online appended version [16] for details. �
Theorem 5. The rules {(idq), (⊥l), (⊃l), (∀l), (∀r), (∃r), (ref), (tra), (nd), (cd)}
are admissible in IntQCL.

Proof. Admissibility of (idq), (⊃l), and (⊥l) is shown similarly to Lemma 4 and
Theorem 3. Also, the rule (∃r) is an instance of (∃∗

r), and the admissibility of
(∀r) and (∀l) are witnessed by the derivations below:

R, w ≤ v, a ∈ Dv, Γ ⇒ v : A[a/x],Δ
Lem. 1R, w ≤ w, a ∈ Dw, Γ ⇒ w : A[a/x],Δ
Lem. 7R, a ∈ Dw, Γ ⇒ w : A[a/x],Δ

(∀∗
r)R, Γ ⇒ w : ∀xA,Δ

R, w ≤ v, a ∈ Dv, v : A[a/x], w : ∀xA, Γ ⇒ Δ
Lem. 1R, w ≤ w, a ∈ Dw, w : A[a/x], w : ∀xA, Γ ⇒ Δ
Lem. 7R, a ∈ Dw, w : A[a/x], w : ∀xA, Γ ⇒ Δ

(∀∗
l )R, a ∈ Dw, w : ∀xA, Γ ⇒ Δ

Hence, our result follows by Lemmas 7 and 8. �
Theorem 6. Every derivation Π of a labelled formula w : A in the calculus
IntQCL−{(idq), (⊥l), (⊃l), (∀l), (∀r), (∃r), (ref), (tra), (nd), (cd)} contains solely
treelike sequents with w the root of each sequent in the derivation.
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Proof. Similar to Theorem 4. �
We refer to IntQCL − {(idq), (⊃l), (∀l), (∀r), (∃r), (ref), (tra), (nd), (cd)}

(restricted to using treelike sequents) under the N translation as NIntQC∗. It
is crucial to point out that by the definition of N (Definition 3) and the defini-
tion of the graph of a labelled sequent, domain atoms a ∈ Dw are omitted when
translating from labelled to nested (and the {(id∗

q), (∀∗
l ), (∃∗

r)} side conditions
become unnecessary). Hence, up to copies of principal formulae in the premises
of some rules, NIntQC∗ is identical to NIntQC (cf. [16]). In fact, through addi-
tional work, one can eliminate such copies of principal formulae, begetting the
complete extraction of NInt and NIntQC from NInt∗ and NIntQC∗ (and therefore,
from G3Int and G3IntQC).

An interesting consequence of our work is that NInt∗ and NIntQC∗ inherited
favorable proof-theoretic properties as a consequence of their extraction. Such
properties are listed in Corollary 1 below with admissible rules found in Fig. 4.

Fig. 4. Examples of admissible structural rules in NInt∗ and NIntQC∗.

Corollary 1. The calculi NInt∗ and NIntQC∗ have inherited: (i) cut-free com-
pleteness, (ii) invertibility of all rules, and (iii) admissibility of all rules in Fig. 4.

Proof. All properties follow from Lemma 1 and Theorems 1, 3, 4, 5, and 6.
The admissibility of (ctr1) follows from the admissibility of the rules in the
set {(lsub), (ctrR), (ctrFl

), (ctrFr
)}, the admissibility of (ctr2) follows from the

admissibility of (ctrFl
), the admissibility of (ctr3) follows from the admissibil-

ity of (ctrFr
), and the admissibility of {(wk1), (wk2), (wk3)} follows from the

admissibility of (wk) in the labelled variants of NInt∗ and NIntQC∗. �

6 Conclusion

In this paper, we showed how to extract Fitting’s nested calculi (up to copies
of principal formulae in premises) from the labelled calculi G3Int and G3IntQC.
The extraction is obtained via the elimination of structural rules and through
the addition of special rules to G3Int and G3IntQC, necessitating the use of only
treelike sequents in proofs of theorems. Consequently, the extraction of the nested
calculi from the labelled calculi demonstrated that the former inherited favorable
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proof-theoretic properties from the latter (cut-free completeness, invertibility of
rules, etc.).

Regarding future work, the author aims to investigate modal and interme-
diate logics that allow for the extraction of cut-free nested calculi from their
labelled calculi, as well as provide new nested calculi for logics lacking one. These
results could also prove beneficial in the explication of a general methodology for
obtaining nested calculi well-suited for automated reasoning methods and other
applications (by exploiting general results from the labelled paradigm [6,7,19]).
Such results have the added benefit that they expose interesting connections
between the different proof-theoretic formalisms involved.

Acknowledgments. The author would like to express his gratitude to his PhD super-
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13. Goré, R., Postniece, L., Tiu, A.: On the correspondence between display postulates
and deep inference in nested sequent calculi for tense logics. Log. Methods Comput.
Sci. 7(2), 2:8, 38 (2011)

https://doi.org/10.1007/978-3-319-72056-2_8
https://doi.org/10.1007/978-3-642-40537-2_9
https://doi.org/10.1007/978-3-642-40537-2_9
https://doi.org/10.1305/ndjfl/1093894722
https://doi.org/10.1016/j.apal.2011.09.004
http://www.sciencedirect.com/science/article/pii/S0168007211001266


194 T. Lyon
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Abstract. Abductive reasoning is a non-monotonic formalism stem-
ming from the work of Peirce. It describes the process of deriving the
most plausible explanations of known facts. Considering the positive ver-
sion asking for sets of variables as explanations, we study, besides asking
for existence of the set of explanations, two explanation size limited vari-
ants of this reasoning problem (less than or equal to, and equal to). In
this paper, we present a thorough two-dimensional classification of these
problems. The first dimension is regarding the parameterised complex-
ity under a wealth of different parameterisations. The second dimen-
sion spans through all possible Boolean fragments of these problems
in Schaefer’s constraint satisfaction framework with co-clones (STOC
1978). Thereby, we almost complete the parameterised picture started
by Fellows et al. (AAAI 2012), partially building on results of Nordh and
Zanuttini (Artif. Intell. 2008). In this process, we outline a fine-grained
analysis of the inherent parameterised intractability of these problems
and pinpoint their FPT parts. As the standard algebraic approach is
not applicable to our problems, we develop an alternative method that
makes the algebraic tools partially available again.

Keywords: Parameterised complexity · Abduction · Schaefer’s
framework · Co-clones

1 Introduction

The framework of parameterised complexity theory yields a more fine-grained
complexity analysis of problems than the classical worst-case complexity may
achieve. Introduced by Downey and Fellows [14,15], one associates problems
with a specific parameterisation, that is, one studies the complexity of parame-
terised problems. Here, one aims to find parameters relevant for practice allowing
to solve the problem by algorithms running in time f(k) · nO(1), where f is a
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computable function, k is the value of the parameter and n is the input length.
Problems with such a running time are called fixed-parameter tractable (FPT)
and correspond to efficient computation in the parameterised setting. This is jus-
tified by the fact that parameters are usually slowly growing or even of constant
value. Despite that, a different quality of runtimes is of the form nf(k) which are
obeyed by algorithms solving problems in the class XP. Comparing both classes
with respect to the runtimes their problems allow to be solved in, of course,
both runtimes are polynomial. However, for the first type, the degree of the
polynomial is independent of the parameter’s value which is notable to observe.
As a result, the second kind of runtimes is undesirable and usually tried to cir-
cumvented by locating different parameters. It is known that FPT � XP by
diagonalisation and also that a (presumably infinite) hierarchy of parameterised
intractability in between these two classes exist: the so-called W-hierarchy which
is contained also in the class W[P] ⊆ XP. These W-classes are regarded as a
measure of intractability in the parameterised sense. Intuitively, showing W[1]-
lower bounds corresponds to NP-lower bounds in the classical setting. The limit
of this hierarchy, the class W[P] is defined via nondeterministic machines that
have at most h(k) · log n many nondeterministic steps, where h is a computable
function, k the parameter’s value, and n is the input length.

Clearly, the process of human common-sense reasoning is non-monotonic, as
adding further knowledge might decrease the number of deducible facts. As a
result, non-monotonic logics became a well-established approach to investigate
this kind of reasoning. One of the popular formalism in this area of research is
abductive reasoning which is an important concept in artificial intelligence as
emphasised by Morgan [27] and Poole [33]. In particular, abduction is used in
the process of medical diagnosis [21,32] and thereby relevant for practice. Intu-
itively, abductive reasoning describes the process of deriving the most plausible
explanations of known facts and originated from the work of Peirce [31]. For-
mally, one uses propositional formulas to model known facts in a knowledge base
KB together with a set of manifestations M and a set of hypotheses H. In this
paper, H and M are sets of propositions as studied by Fellows et al. [18] as well
as Eiter and Gottlob [17]. Formally, one tries to find a preferably small set of
propositions E ⊆ H such that E ∧ KB is satisfiable and E ∧ KB |= M . E is
then called an explanation for M . In this context, we distinguish three kinds of
problems: the first just asks for such a very set E that fulfils these properties
(ABD), the second tries to find a set of size less than or equal to a specific size
(ABD≤), and the third one wants to spot a set of exactly a given size (ABD=).
Classically, ABD is complete for the second level of the polynomial hierarchy
ΣP

2 [17] and its difficulty is very well understood [9,13,28,39]. As a result, under
reasonable complexity-theoretic assumptions, the problem is highly intractable
posing the question in turn for sources of this complexity. In this direction, there
exists research that aims to better understand the structure and difficulty of this
problem, that is, in the context of parameterised complexity. Here, Fellows et al.
[18] initiated an investigation of possible parameters and classified CNF-induced
fragments of the reasoning problems with respect to a multitude of parameters.
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The authors study the CNF-fragments Horn, Krom, and DefHorn. They
studied the parameterisations |M | (number of manifestations), |H| (number of
hypotheses), |V | (number of variables), |E| (number of explanations which is
equivalent to their solution size k) directly stemming from problem components,
as well as the tree-width [36], and the size of the smallest vertex cover. In their
classification, besides showing several para-NP-/W[P]-complete/FPT cases,
they also focus on the existence of polynomial kernels and present a complete
picture regarding their CNF-classes.

Universal algebra yields a systematic way to rigorously classify fragments of
a problem induced by restricting its Boolean connectives. This technique is built
around Post’s lattice [34] which bases on the notion of (co-)clones. Intuitively,
given a set of Boolean functions B, the clone of B is the set of functions that are
expressible by compositions of functions from B (plus introducing fictive vari-
ables). The most prominent result under this approach is the dichotomy theo-
rem of Lewis [22] which classifies propositional satisfiability into polynomial-time
solvable cases and intractable ones depending merely on the existence of specific
Boolean operators. This approach has been followed many times in a wealth
of different contexts [2,3,7,12,25,26,35] as well as in the context of abduction
itself [10,28]. Interestingly, in the scope of constraint satisfaction problems, the
investigation of co-clones (or relational clones) allows one to proceed a similar
kind of classification (see, e.g., the work of Nordh and Zanuttini [28]). The rea-
son for that lies in the concept of invariance of relations under some function
f (one defines this property via polymorphisms where f is applied component-
wisely to the columns of the relation). In view of this, Post’s lattice supplies a
similar lattice, now for sets of relations which are invariant under respective func-
tions. With respect to constraint satisfaction, the most prominent classification
is due to Schaefer [37] who similarly divides the constraint satisfaction problem
restricted to co-clones into polynomial-time solvable and NP-complete cases.
The algebraic approach has been successfully applied to abduction by Nord and
Zanuttini [28]. For the problems that we consider, it is less obvious how to use
the algebraic tools: the standard trick to obtain reductions preserves the exis-
tence of explanations, but not their size. Due to this, we develop an alternative
method that makes the algebraic tools partially available again (see Sect. 2.1).

Much in the vein of Schaefer’s classification, we present a thorough study
directly pinpointing those restrictions of the abductive reasoning problem which
yield efficiency under the parameterised approach. In a sense, we present an
almost complete picture which has been initiated by Fellows et al. [18] except
for some minor cases around the affine co-clones. Their classification is cov-
ered by our study now, as Horn cases correspond to the co-clones below IE2,
DefHorn conforms IE1, and Krom matches with ID2. The motivation of our
research is to draw a finer line than Fellow et al. did and to present complete
picture with respect to all possible constraint languages now. From this clas-
sification, we draw some surprising results. Regarding the essentially negative
cases for the parameter |M |, ABD= is para-NP-complete whereas ABD≤ is
FPT. Also for this parameter, IE1 and IE are hard for ABD= and ABD≤ (both
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para-NP-complete) but ABD is FPT. Regarding |E| as parameterisation, the
behaviour is similarly unexpected for the essentially negative cases: FPT for
ABD≤ versus W[1]-hardness for ABD=. For the parameters |V | as well as |H|
the classifications for all three problems are the same. Figure 1 shows our results
for all problems and parameterisations in a single picture. Due to space con-
straints, proof details symbolised by ‘�’ can be found in the full version of the
paper [23].

2 Preliminaries

We require standard notions from classical complexity theory [30]. We encounter
the classical complexity classes P, NP, DP = {A \ B | A,B ∈ NP}, coNP,
ΣP

2 = NPNP and their respective completeness notions, employing polynomial
time many-one reductions (≤P

m).

Parameterised Complexity Theory. A parameterised problem (PP) P ⊆ Σ∗ × N

is a subset of the crossproduct of an alphabet and the natural numbers. For an
instance (x, k) ∈ Σ∗ × N, k is called the (value of the) parameter. A param-
eterisation is a polynomial-time computable function that maps a value from
x ∈ Σ∗ to its corresponding k ∈ N. The problem P is said to be fixed-parameter
tractable (or in the class FPT) if there exists a deterministic algorithm A and a
computable function f such that for all (x, k) ∈ Σ∗ × N, algorithm A correctly
decides the membership of (x, k) ∈ P and runs in time f(k)·|x|O(1). The problem
P belongs to the class XP if A runs in time |x|f(k). There exists a hierarchy of
complexity classes in between FPT and XP which is called W-hierarchy (for
details see the textbook of Flum and Grohe [19]). We will make use of the classes
W[1] and W[2]. Complete problems characterising these classes are introduced
later in Proposition 4. Also, we work with classes that can be defined via a
precomputation on the parameter.

Definition 1. Let C be any complexity class. Then para-C is the class of all
PPs P ⊆ Σ∗ × N such that there exists a computable function π : N → Δ∗ and
a language L ∈ C with L ⊆ Σ∗ × Δ∗ such that for all (x, k) ∈ Σ∗ × N we have
that (x, k) ∈ P ⇔ (x, π(k)) ∈ L.

Notice that para-P = FPT. The complexity classes C ∈ {NP, coNP,DP,ΣP
2 }

are used in the para-C context by us.
Let c ∈ N and P ⊆ Σ∗ × N be a PP, then the c-slice of P , written as Pc

is defined as Pc := {(x, k) ∈ Σ∗ × N | k = c}. Notice that Pc is a classical
problem then. Observe that, regarding our studied complexity classes, showing
membership of a PP P in the complexity class para-C, it suffices to show that
each slice Pc ∈ C.

Definition 2. Let P ⊆ Σ∗ × N, Q ⊆ Γ ∗ be two PPs. One says that P is fpt-
reducible to Q, P ≤FPT Q, if there exists an fpt-computable function f : Σ∗ ×
N → Γ ∗ × N such that
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Fig. 1. Complexity landscape of abductive reasoning with respect to the studied
parameters |M |, |H|, |V |, |E|. Notice, that due to presentation reasons, some complete-
ness results are just mentioned with their lower bound, e.g., case ABD≤(IS2

11, |E|) is
W[2]-complete (Theorem 22). White colouring means unclassified. ABD� means same
result for all three variants.

– for all (x, k) ∈ Σ∗ × N we have that (x, k) ∈ P ⇔ f(x, k) ∈ Q,
– there exists a computable function g : N → N such that for all (x, k) ∈ Σ∗ ×N

and f(x, k) = (x′, k′) we have that k′ ≤ g(k).

Propositional Logic. We assume familiarity with propositional logic. A literal is
a variable x or its negation ¬x. A clause is a disjunction of literals and a term
is a conjunction of literals. We denote by var(ϕ) the variables of a formula ϕ.
Analogously, for a set of formulas F , var(F ) denotes

⋃
ϕ∈F var(ϕ). We identify
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finite F with the conjunction of all formulas from F , that is,
∧

ϕ∈F ϕ. A mapping
σ : var(ϕ) �→ {0, 1} is called an assignment to the variables of ϕ. A model of a
formula ϕ is an assignment to var(ϕ) that satisfies ϕ. The weight of an assignment
σ is the number of variables x such that σ(x) = 1. For two formulas ψ,ϕ we write
ψ |= ϕ if every model of ψ also satisfies ϕ. A formula is positive (resp. negative)
if every literal appears positively (negatively) and a negation symbol appears
only in front of a variable. The class of all propositional formulas is denoted
by PROP. Occasionally, in this paper, we will consider special subclasses of
formulas, namely

Γ0,d = {
1 ∧ . . . ∧ 
c | 
1, . . . , 
c are literals and c ≤ d},

Δ0,d = {
1 ∨ . . . ∨ 
c | 
1, . . . , 
c are literals and c ≤ d},

Γt,d =

{
∧

i∈I

αi

∣
∣
∣
∣
∣
αi ∈ Δt−1,d for i ∈ I

}

,Δt,d =

{
∨

i∈I

αi

∣
∣
∣
∣
∣
αi ∈ Γt−1,d, i ∈ I

}

.

Finally, Γ+
t,d (resp. Γ−

t,d) denote the class of all positive (negative) formulas in
Γt,d.

Example 3. Let φ =
∧

i≤m(¬xi,1∨· · ·∨¬xi,ni
) for 1 ≤ ni ≤ d and d,m ∈ N. That

is, φ is a conjunction of the clauses containing negative literals. Then φ ∈ Γ1,d,
the so-called d-CNF. Note also that φ is an ISd

1-formula using only negative
clauses.

We will often reduce a problem instance to (and from) a parameterised
weighted satisfiability problem for propositional formulas. This problem is
defined below.

Problem: p-WSAT(Γt,d)

Input: A Γt,d-formula α over variables V with t, d ≥ 1 and k ∈ N.
Parameter: k.
Question: Is there a satisfying assignment for α of weight k?

Two similarly defined problems are p-WSAT(Γ+
t,1) and p-WSAT(Γ−

t,1) where an
instance α comes from classes Γ+

t,1 (resp. Γ−
t,1). The classes of the W-hierarchy

can be defined in terms of these problems as proved by Downey and Fellows [19].

Proposition 4 ([19]). The following problems are W[t]-complete for each t ≥ 1,
under ≤FPT-reductions:

– p-WSAT(Γ+
t,1) if t is even,

– p-WSAT(Γ−
t,1) if t is odd,

– p-WSAT(Γt,d) for every t and d ≥ 1.
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Table 1. Overview of bases [4] and clause descriptions [28] for co-clones, where EVEN4

= x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ 1.

Constraints and S-Formulas. A logical relation of arity k is a relation R ⊆
{0, 1}k. A constraint is a formula R(x1, . . . , xk), where R is a logical relation
of arity k and the xi’s are (not necessarily distinct) variables. An assignment
σ to the xi’s satisfies the constraint if (σ(x1), . . . , σ(xk)) ∈ R. A constraint
language S is a finite set of logical relations. An S-formula ϕ is a conjunction
of constraints built upon logical relations only from S, and accordingly can be
seen as a quantifier-free first-order formula. An assignment σ is called a model
of ϕ if σ satisfies all constraints in ϕ simultaneously. Whenever an S-formula or
constraint is logically equivalent to a single clause or term, we treat it as such.

Definition 5. 1. The set 〈S〉 is the smallest set of relations that contains S,
the equality constraint, =, and which is closed under primitive positive first
order definitions, that is, if φ is an S ∪ {=}-formula and R(x1, . . . , xn) ≡
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∃y1 . . . ∃ylφ(x1, . . . , xn, y1, . . . , yl), then R ∈ 〈S〉. In other words, 〈S〉 is the
set of relations that can be expressed as an S ∪{=}-formula with existentially
quantified variables.

2. The set 〈S〉�= is the set of relations that can be expressed as an S-formula
with existentially quantified variables (no equality relation is allowed).

The set 〈S〉 is called a relational clone or co-clone with base S [4]. Throughout
the text, we refer to different types of Boolean relations and corresponding co-
clones following Schaefer’s terminology [37]. For an overview of co-clones and
bases, see Table 1. Note that 〈S〉�= ⊆ 〈S〉 by definition. The other direction does
not hold in general. However, if (x = y) ∈ 〈S〉�=, then 〈S〉�= = 〈S〉.

Abduction. An instance of the abduction problem for S-formulas is given by
〈V,H,M,KB〉, where V is the set of variables, H is the set of hypotheses, M is
the set of manifestations, and KB is the knowledge base (or theory) built upon
variables from V . A knowledge base KB is a set of S-formulas that we assim-
ilate with the conjunction of all formulas it contains. We define the following
abduction problems for S-formulas.

Problem: ABD(S, k)—the abductive reasoning problem for S-
formulas parameterised by k

Input: 〈V,H,M,KB, k〉, where KB is a set of S-formulas, H,M
are each set of propositions, and V = var(H) ∪ var(M) ∪
var(KB).

Parameter: k.
Question: Is there a set E ⊆ H such that E ∧ KB is satisfiable and

E ∧ KB |= M?

Similarly, the problem ABD(S) is the classical pendant of ABD(S, k). Addition-
ally, we consider size restrictions for a solution and define the following problems.

Problem: ABD≤(S, k)

Input: 〈V,H,M,KB, s, k〉, where KB is a set of S-formulas, H,M
are each set of propositions, and V = var(H) ∪ var(M) ∪
var(KB), and s ∈ N.

Parameter: k.
Question: Is there a set E ⊆ H with |E| ≤ s such that E ∧ KB is

satisfiable and E ∧ KB |= M?

Analogously, ABD=(S, k) requires the size of E to be exactly s and
ABD=(S),ABD≤(S) are the classical counterparts. Notice that, for instance,
in cases where the parameter is the size of solutions, then s = k.

Example 6. Sitting in a train you realise that it is still not moving even though
the clock suggests it should be. You start reasoning about it. Either some door is
open, the train has delayed, or that engine has failed. This form of reasoning is
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called abductive reasoning. Having some additional information that the opera-
tor of train usually announces in case the train is delayed or engine has failed,
you deduce that some door must be opened and that train will start moving
soon when all the doors are closed. Formally, one is interested in an explana-
tion for the observed event (manifestation) {stop}. The knowledge base includes
following statements:

– ¬moving ↔ stop
– ¬announcement,
– moving → time,
– engineFailed → announcement,

– trainDelayed → newTime,

– (engineFailed ∨ trainDelayed ∨
doorOpen) → stop.

Then the set of hypotheses {time, doorOpen, announcement} has an expla-
nation, namely, {doorOpen}. On the other hand, {time} does not explain the
event {stop}, whereas, {announcement} is not consistent with the knowledge
base. Consequently, an explanation of size 1 exists. There also exists an expla-
nation of size 2 since {time, doorOpen} is consistent with KB and explains M .
Note that having the set of hypotheses {engineFailed, doorOpen} facilitates
only one explanation of size 1, namely, {doorOpen}, even though the hypotheses
set has size 2.

2.1 Base Independence

We present now a number of technical expressivity results (Lemma 7). They allow
us in the sequel to prove a crucial property for the whole classification endeavour
(Lemma 8). To prove the following lemma, we need to express equality by some
other construction.

Lemma 7 (�). Let S be a constraint language. If S is not essentially negative
and not essentially positive, then (x = y) ∈ 〈S〉�=, and 〈S〉 = 〈S〉�=.

The following property is crucial for presented results in the course of this
paper. It supplies generalised upper as well as lower bounds (independence of the
base of a co-clone), as long as the constraint language is not essentially negative
and not essentially positive. The proof idea is to implement the previous lemma.

Lemma 8 (�). Let S, S′ be two constraint languages such that S′ is neither
essentially positive nor essentially negative. Let ABD∗ ∈ {ABD,ABD=,ABD≤}.
If S ⊆ 〈S′〉, then ABD∗(S) ≤P

m ABD∗(S′).

The last lemma in this section takes care of the essentially positive cases.
The proof idea is to remove the equality clauses maintaining the size counts and
the satisfiability property.

Lemma 9 (�). Let S, S′ be two constraint languages such that S′ is essentially
positive. Let ABD∗ ∈ {ABD,ABD=,ABD≤}. If S ⊆ 〈S′〉, then ABD∗(S) ≤P

m

ABD∗(S′).
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Remark 10. Notice that Lemmas 8 and 9 are stated with respect to the classical
and unparameterised decision problems. However, these reductions can be gen-
eralised to ≤FPT-reductions whenever the parameters are bound as required by
Definition 2. That is, in our case, for any parameterisation k ∈ {|H|, |E|, |M |}
the reductions are valid. Even more, the values of the parameters stay the same
as in the reduction the sizes of H, E, and M remain unchanged.

Remark 11. It is rather cumbersome to mention the base independence results in
almost every single proof. As a result, we omit this reference and show the results
only for concrete bases, thereby, implicitly using the above lemmas. In cases
where we deal with essentially negative constraint languages, we do not have a
general base independence result, but direct constructions showing hardness in
our cases for all bases (e.g., [23, Lem. 32]).

Let SAT and IMP denote the classical satisfiability and implication problems.
Given a constraint language S then an instance of SAT(S) is an S-formula ϕ and
the question is whether there exists a satisfying assignment for ϕ. On the other
hand, an instance of IMP(S) is (φ, ψ) such that φ, ψ are two S-formulas and the
question is whether φ |= ψ. We have the following observation regarding the
classical SAT and IMP problems.

Proposition 12 ([37,38]). Let S be a constraint language such that 〈S〉 ⊆ C
where C ∈ {ID2, IV2, IE2, IL2}. Then SAT(S) and IMP(S) are both in P.

3 Complexity Results for Abductive Reasoning

In this section, we start with general observations and reductions between the
defined problems. Then we prove some immediate (parameterised) complexity
results. We provide two results which help us to consider fewer cases to solve.

Lemma 13. For every constraint language S we have ABD(S) ≤P
m ABD≤(S).

Proof. Clearly, (V,H,M,KB) ∈ ABD(S) ⇔ (V,H,M,KB, s) ∈ ABD≤(S),
where s = |H|. That is, there is an explanation for an abduction instance if
and only if there is one with size at most that of the hypotheses set. ��
Lemma 14. ABD≤(S) = ABD=(S) for any S such that IBF ⊆ 〈S〉 ⊆ IV2.

Proof. “⊆”: Every positive instance (V,H,M,KB, s) ∈ ABD≤(S) has a solution
E of size exactly s. We show that a solution of size < s can always be extended
to a size s solution. Given a solution of size ≤ s then a solution of size = s can be
constructed from it (in even polynomial time) w.r.t. |H| by adding one element
h at a time from H to E and checking that ¬h �∈ KB.

“⊇”: Every solution of size exactly s is a solution of size ≤ s. ��
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Intractable Cases. It turns out that for 0-valid, 1-valid and complementive
languages, all three problems remain hard under any parametrisation except the
case |V |.
Lemma 15. The problems ABD(S, k), ABD≤(S, k), ABD=(S, k) are

1. para-coNP-hard if IN ⊆ 〈S〉 ⊆ II1 and k ∈ {|H|, |E|, |M |},
2. para-DP-hard if C ⊆ 〈S〉 ⊆ BR and C ∈ {IN2, II0} and k ∈ {|H|, |E|}.
3. para-ΣP

2 -hard if C ⊆ 〈S〉 ⊆ BR and k = |M | for C ∈ {IN2, II0}.
Proof. (1) We prove the case for IN regarding all three parameters simulta-
neously. Notice that IMP(II1) is coNP-hard [28, Thm. 34] even if the right
side contains only a single variable. We describe in the following a modified
proof from [28, Prop. 48]. Since 〈IN ∪ {T}〉 = II1 (define T (x) ≡ x) we have
that IMP(IN ∪ {T}) is coNP-hard, even if the right side contains only a single
variable. We reduce IMP(IN ∪ {T}) to our abduction problems with |H| = 1,
|M | = 1, and |E| = 1. Let (KBT , q) be an instance of IMP(IN ∪ {T}), where
KBT = KB ∧ ∧

x∈VT
T (x) with KB being an IN-formula. We map (KBT , q)

to (V, {h}, {q},KB′), where V = var(KB) ∪ {h}, h is a fresh variable, and
KB′ is obtained from KB by replacing any variable from VT by h. Note that
KBT ≡ KB′ ∧ h. Since KB and KB′ are 1-valid, clearly, KB′ ∧ h is always
satisfiable and there exists an explanation iff KB′ ∧ h |= q, iff KBT |= q.
Furthermore, observe that KBT |= q if and only if (V, {h}, {q},KB′, |H|) ∈
ABD(IN, |H|) if and only if (V, {h}, {q},KB′, 1, |H|) ∈ ABD≤(IN, |H|) if and
only if (V, {h}, {q},KB′, 1, |H|) ∈ ABD=(IN, |H|). The latter is true also when
replacing |H| by |E| or |M |. This proves the claimed para-coNP-hardnesses.

(2) From Fellows et al. [18, Prop. 4] we know that all three problems for BR
are DP-complete for |H| = 0 even if |M | = 1. We argue that the hardness can
be extended to IN2. Note that 〈IN2 ∪ {F}〉 = BR where F (x) ≡ ¬x. Creignou
& Zanuttini [13] prove that ABD(S ∪ {F}) ≤P

m ABD(S ∪ {SymOR2,1}) where
SymOR2,1(x, y, z) = ((x → y)∧T (z))∨((y → x)∧F (z)). Moreover, they also prove
that SymOR2,1 ∈ 〈S〉 such that IN2 ⊆ 〈S〉 [13, Lem. 21/27]. Finally, having |M | =
1 allows us to use their proof and, as a consequence, ABD(BR) ≤P

m ABD(S) such
that IN2 ⊆ 〈S〉. This gives the desired lower bound for IN2. Regarding II0, the
proof follows by similar arguments using the observations that 〈II0 ∪ {T}〉 = BR
and OR2,1 ∈ 〈S〉 such that II0 ⊆ 〈S〉 where OR2,1(x, y) = x → y [13, Lem. 19/27].

(3) Nordh and Zanuttini [28, Prop. 46/47] prove ΣP
2 -hardness for both IN2

as well as II0 with positive literal manifestations. This implies that the 1-slice of
each of ABD(IN2, |M |) and ABD(II0, |M |) is ΣP

2 -hard, which gives the desired
result. For ABD≤(S, |M |) and ABD=(S, |M |), the results follow from Lemma 13.

��

Fixed-Parameter Tractable Cases. The following corollary is immediate
because the classical questions corresponding to these cases are in P due to
Nordh and Zanuttini [28].
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Corollary 16. The problem ABD(S, k) is FPT for any parameterisation k and
〈S〉 ⊆ C with C ∈ {IV2, ID1, IE1, IS12}.
The next result is already due to Fellows et al. [18, Prop. 13].

Corollary 17. The problems ABD(S, |V |), ABD≤(S, |V |), ABD=(S, |V |) are
all FPT for all Boolean constraint languages S.

Now, we prove P-membership for some cases of the classical problems and
start with the essentially positive cases. The proof idea is to start with unit
propagation. The positive clauses do not explain anything and one just only
checks whether the elements of M appear either in KB or H. Then, we need to
adjust the size accordingly.

Lemma 18 (�). The classical problems ABD=(S) and ABD≤(S) are in P for
〈S〉 ⊆ IS02.

The following lemma proves that essentially negative languages for ABD≤
also remain tractable.

Lemma 19. The classical problem ABD≤(S) is in P if 〈S〉 ⊆ IS12.

Proof. First, we prove the result with respect to 〈S〉�= ⊆ IS12. Let P denote the
set of positive unit clauses from KB and denote EMP = M \ P . Now, we have
the following two observations.

Observation 1. There exists an explanation iff EMP ⊆ H and M is consistent
with KB. That is, what is not yet explained by P must be explainable
directly by H because negative clauses can not contribute to explaining
anything, they can only contribute to ‘rule out’ certain subsets of H as
possible explanations.

Observation 2. If there exists an explanation, then any explanation contains
EMP .

As a result, EMP represents a cardinality-minimal and a subset-minimal expla-
nation. We conclude that there exists an explanation E with |E| ≤ s iff EMP

constitutes an explanation and |EMP | ≤ s. Now, we proceed with base indepen-
dence for this case.

Claim. ABD≤(S ∪ {=}) ≤P
m ABD≤(S) for 〈S〉 ⊆ IS12.

Proof of Claim. The reduction gets rid of the equality clauses by removing them
and deleting the duplicating occurrences of variables. This decreases only the size
of H and might also the size of an explanation E. Notice that x = y ∈ KB does
not enforce both x and y into E. �

This completes the proof to lemma. ��
Finally, the 2-affine cases are also tractable as we prove in the following

lemma. The idea is, similarly to Creignou et al. [8, Prop. 1], to change the
representation of the knowledge base.

Lemma 20 (�). The classical problems ABD=(S) and ABD≤(S) are in P if
〈S〉 ⊆ ID1.
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3.1 Parameter ‘Number of Hypotheses’ |H|
For this parameter, it turns out that the only intractable cases are those pointed
out in Lemma 15.

Theorem 21. ABD(S, |H|), ABD≤(S, |H|) and ABD=(S, |H|) are

1. para-DP-hard if C ⊆ 〈S〉 ⊆ BR
and C ∈ {IN2, II0},

2. para-coNP-hard if IN ⊆ 〈S〉 ⊆ BR,

3. FPT if 〈S〉 ⊆ C ∈
{IE2, IV2, ID2, IL2}.

Proof. 1.+2. We proved these cases in Lemma 15.
3. Recall that SAT(S) and IMP(S) are both in P for every S in the question

(Proposition 12). By |H| ≥ |E|, we have that
(|H|

|E|
)

= |H||E| ∈ O(kk), where
k = |H|. Consequently, we brute-force the candidates for E and verify them
in polynomial time. This yields FPT membership.

��

3.2 Parameter ‘Number of Explanations’ |E|
In this subsection, we consider the solution size as a parameter. Notice that,
because of the parameter |E|, the problem ABD is not meaningful anymore.
As a result, we only consider the size limited variants ABD= and ABD≤. The
following theorem provides a classification into six different complexity degrees.

Theorem 22. The problems ABD≤(S, |E|) and ABD=(S, |E|) are

1. para-DP-hard if C ⊆ 〈S〉 ⊆ BR
and C ∈ {IN2, II0}

2. para-coNP-hard if IN ⊆ 〈S〉 ⊆ II1,
3. W[P]-complete if IE ⊆ 〈S〉 ⊆ IE2,

4. W[2]-complete if IM ⊆ 〈S〉 ⊆ C
for C ∈ {ID2, IV2} and W[2]-hard
if IM ⊆ 〈S〉 ⊆ IS10,

5. FPT if 〈S〉 ⊆ ID1 or 〈S〉 ⊆ IS02,

Moreover, if IS21 ⊆ 〈S〉 ⊆ IS12, then ABD≤(S, |E|) ∈ FPT and ABD=(S, |E|) is
W[1]-complete.

Proof Ideas. 1.+2. This is a corollary to Theorem 21.
3. Upper bound for IE2 follows from the fact that SAT(IE2) and IMP(IE2) are in

P (cf. Proposition 12). Guessing E takes k · log n non-deterministic steps and
verification can be done in polynomial time. For the lower bound, we argue
that the proof in [18, Thm. 8] can be extended. Details are presented in [23,
Lem. 29].

4. Note that the difficult part of the abduction problem for 〈S〉 such that
IM ⊆ 〈S〉 is the case when a solution of size larger than k is found. This solu-
tion must be reduced to one of size ≤ k (resp. = k). For W[2]-membership
of ABD=(IM, |E|), we reduce our problem to p-WSAT(Γ2,1) which is W[2]-
complete. For hardness, we reduce from p-WSAT(Γ+

2,1) which is again W[2]-
complete. Details of the completeness proof for ABD=(IM, E) can be found
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in [23, Lem. 30]. The W[2]-membership for IV2 uses a little modification of
the same reduction. Proof details can be found in [23, Lem. 33]. For these two
cases, ABD≤(S, |E|) follow from the monotone argument from Lemma 14. For
ID2, the result follows from [18, Thm. 21]. Finally, the hardness for IS10 is a
consequence of the W[2]-hardness for IM. However, [23, Lem. 31] strengthens
this results to W[2]-completeness by showing membership in W[2] for ABD=.
Regarding ABD≤(IS10, |E|), we also believe in W[2]-completeness but have
not proved it yet.

5. This follows from the fact that the classical problems are in P (Lem-
mas 18/20).
Finally, FPT membership for ABD≤(IS12, |E|) follows from Lemma 19. Note

that this is the only case with |E| when the two problems ABD≤ and ABD=

have different complexity. We prove W[1]-hardness for the languages S, such
that ¬x ∨ ¬y ∈ 〈S〉�=. The membership for ABD=(S, |E|) with 〈S〉 ⊆ IS12, this
means also arbitrary bases, then follows as a corollary (for details see [23, Lem.
34/35]). ��

3.3 Parameter ‘Number of Manifestations’ |M |
The complexity landscape regarding the parameter |M | is more diverse. The
classification differs for each of the investigated problem variants. Consequently,
we treat each case separately and start with the general abduction problem
which provides a hexachotomy.

Theorem 23. The problem ABD(S, |M |) is

1. para-ΣP
2 -hard if C ⊆ 〈S〉 ⊆ BR

and C ∈ {IN2, II0},
2. para-coNP-hard if IN ⊆ 〈S〉 ⊆ II1,
3. para-NP-complete if 〈S〉 = IE2,

4. W[1]-complete if IS211 ⊆ 〈S〉 ⊆ ID2,
5. W[1]-hard if IS311 ⊆ 〈S〉,
6. FPT if 〈S〉 ⊆ C ∈

{ID1, IS12, IE1, IV2}.

Proof. 1.+2. We proved this in Lemma 15 using the fact that 1-slice of each
problem is hard for respective classes.

3. Membership is easy to see since the classical problem is NP-complete. For
hardness, notice that the 1-slice of the problem is NP-complete [17].

4.+5. The first result follows from Fellows et al. [18, Thm. 26]. Notice that
they prove this for ID2, but using the fact that the formulas (or clauses) in
their reduction are IS211-formulas, we derive the hardness for IS211. The second
statement is then a consequence.

6. Follows from classical problems being in P (Corollary 16).
��

For ABD≤, definite Horn cases surprisingly behave different and are much
harder than for the general case.
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Theorem 24. The problem ABD≤(S, |M |) is

1. para-ΣP
2 -hard if C ⊆ 〈S〉 ⊆ BR

and C ∈ {IN2, II0},

2. para-coNP-hard if IN ⊆ 〈S〉 ⊆
II1,

3. para-NP-complete if IE ⊆ 〈S〉 ⊆
IE2,

4. W[1]-complete if IS211 ⊆ 〈S〉 ⊆ ID2,
5. W[1]-hard if IS311 ⊆ 〈S〉,
6. FPT if 〈S〉 ⊆ C ∈ {ID1, IS12, IV2}.

Proof Ideas. 1.+2. Follows from Theorem 23 in conjunction with Lemma 13.
3. We reduce VertexCover to our problem similar to the approach of Fel-

lows et al. [18, Thm. 5]. The problem can be translated into an abduction
instance with IE knowledge base, consequently giving the desired hardness
result.

4.+5. The first result follows from [18, Thm. 25]. Notice that they prove this
for ID2, but using the fact that the formulas (or clauses) in their reduction
are IS211-formulas, we derive a hardness result for IS211. The second statement
is then a consequence.

6. We prove this for IM by reducing our problem to the MaxSATs problem
which asks, given m clauses, is it possible to set at most s variables to true
so that at least k clauses are satisfied (details are presented in [23, Lem. 36]).
This problem when parametrised by k, the number of clauses to be satisfied,
is FPT. Moreover, this reduction can be extended to the languages in IV2.
The problematic part is the presence of positive and unit negative clauses
which need to be taken care of (for details, see [23, Lem. 37]). Accordingly,
the result for IV2 follows. The remaining cases are due to Lemmas 19 and 20.

��
Now, we end by stating results for ABD=. Interestingly to observe, the

majority of the intractable cases is already much harder with large parts being
para-NP-complete. Even the case of the essentially negative co-clones which
are FPT for ABD≤ yield para-NP-completeness in this situation. Merely the
2-affine and dualHorn cases are FPT.

Theorem 25. The problem ABD=(S, |M |) is

1. para-ΣP
2 -hard if C ⊆ 〈S〉 ⊆ BR

and C ∈ {IN2, II0},
2. para-coNP-hard if IN ⊆ 〈S〉 ⊆ II1,

3. para-NP-complete if IS21 ⊆ 〈S〉 and
〈S〉 ⊆ C ∈ {IE2, ID2},

4. FPT if 〈S〉 ⊆ C ∈ {ID1, IV2}.

Proof Ideas. 1.+2. Follows from Theorem 23 in conjunction with Lemma 13.
3. In [23, Lem. 39], we prove that the problem ABD=(S, |M |) is para-NP-hard

as long as ¬x ∨ ¬y ∈ 〈S〉�=. The case for ABD=(IS21, |M |), so also arbitrary
bases, then follows as a corollary. The hardness for IE ⊆ 〈S〉 follows from
arguments used in the proof of Theorem 24 for the IE case. The upper bounds
for IE2 and ID2 follow trivially since the classical problems are in NP.

4. The proof for IV2 is due to the monotone argument of Lemma 14 and Theo-
rem 24. For ID1, we proved in Lemma 20 that the classical problem is in P.

��
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4 Conclusion

In this paper, we presented a two-dimensional classification of three central
abductive reasoning problems (unrestricted explanation size, =, and ≤). In one
dimension, we consider the different parameterisations |H|, |M |, |V |, |E|, and in
the other dimension we consider all possible constraint languages defined by
corresponding co-clones except the affine co-clones. Often in the past, problems
regarding the affine co-clones (resp., clones) resisted a complete classification
[1,2,9,11,20,24,35,40]. Also the result of Durand and Hermann [16] underlines
how restive problems around affine functions are. It is difficult to explain why
exactly these cases are so problematic but the notion of the Fourier expansion
[29] of Boolean functions gives a nice and fitting view on that. Informally, the
Fourier expansion of a Boolean function is a probability measure mimicking how
likely a flip of a variable changes the function value. For instance, disjunctions
have a very low Fourier expansion value whereas the exclusive-or function has
the maximum. Affine functions can though be seen as rather counterintuitive as
every variable influences the function value dramatically.

For all three studied problems, we exhibit the same trichotomy for the param-
eter |H| (IN is para-coNP-hard, IN2 is para-DP-hard, and the remaining are
FPT). The parameter |V | always allows for FPT algorithms independent of
the co-clone. Regarding |E|, only the two size restricted variants are mean-
ingful. For ‘≤’ we achieve a pentachotomy between FPT, W[2]-hard, W[P]-
complete, para-coNP-, and para-DP-hard. Whereas, for ‘=’, we achieve a hex-
achotomy additionally having W[1]-hardness for the essentially negative cases.
These W[1]-hard cases are also surprising in the sense that for ‘≤’ they are
easy and FPT. Similarly, the same easy/hard-difference has been observed as
well for |M | as the studied parameter. However, here, we distinguish between
para-NP-complete for ‘=’ and FPT for ‘≤’. The complete picture for ‘=’ and
|M | is a tetrachotomy ranging through FPT, para-NP-complete, para-coNP-
hard, and para-ΣP

2 -complete. With respect to ‘≤’ and the unrestrictied cases,
we also have some W[1]-hard cases which lack a precise classification.

Additionally, we already started a bit to study the parameterised enumer-
ation complexity [6] of these problems yielding FPT-enum algorithms for |V |
and BR as well as for |H| and IE2, IV2, ID2, and IL2. Furthermore, IL1 even allows
FPT algorithms for any parameterisation (so it extends Corollary 16 in that
way).

Notice that in this paper, we did not require H ∩ M to be empty. However,
one can require this (as, for instance, Fellows et al. [18] did). All our proofs (e.g.,
Lemma 18) can easily be adapted in that direction. Furthermore, we believe
that the para-DP-hardness for |H| and IN2 should be extendable to para-ΣP

2 -
hardness but do not have a full proof yet.

Finally, we want to attack the affine co-clones as well as present matching
upper and lower bounds for all cases. Also, parameterised enumeration complex-
ity [5,6] is the next object of our investigations.
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Abstract. Analog computation attempts to capture any type of com-
putation, that can be realized by any type of physical system or physical
process, including but not limited to computation over continuous mea-
surable quantities. A pioneering model is the General Purpose Analog
Computer (GPAC), initially presented by Shannon in 1941. The GPAC
is capable of manipulating real-valued data streams; however, it has been
shown to be strictly less powerful than other models of computation on
the reals, such as computable analysis.

In previous work, we proposed an extension of the Shannon GPAC,
denoted LGPAC, designed to overcome its limitations. Not only is the
LGPAC model capable of expressing computation over general data
spaces X , it also directly incorporates approximating computations by
means of a limit module. In this paper, we compare the LGPAC with a
digital model of computation based on effective representations (tracking
computability). We establish general conditions under which LGPAC-
generable functions are tracking computable.

Keywords: Generalized computability · Generalized recursion
theory · Computation on the reals · Analog computation · Shannon
GPAC · Tracking computability

1 Introduction

A central goal in computability theory is to establish equivalences between dis-
parate notions of computation; such equivalence results serve as strong indica-
tions of the validity of the theory as a whole, as they suggest robustness (or
perhaps, indifference) against the choice of a particular model of computation.

In the framework of digital computation, such considerations have led to
the celebrated Church-Turing thesis that asserts that any realizable method of
computation has the same computational power as the Turing machine. However,
the picture is not so clear in the case of computation over more general data
spaces, or analog computation. Analog computation, as conceived by Kelvin
[18], Bush [2], and Hartree [6], is a form of experimental computation with
physical systems called analog devices or analog computers. Historically, data are
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represented by measurable physical quantities, including lengths, shaft rotation,
voltage, current, resistance, etc.

The General Purpose Analog Computer (GPAC) was introduced by Shannon
[15] as a model of Bush’s Differential Analyzer [2]. Shannon discovered that a
function can be generated by a GPAC if, and only if, it is differentially algebraic.
In particular, this implies that non-differentially algebraic functions, such as the
gamma function, cannot be generated by the Shannon GPAC.

In previous work [11,12], we proposed different extensions of the Shannon
GPAC, attempting to overcome its limitations. In particular, our models express
computation over general data spaces X beyond real numbers, and directly incor-
porate approximating computations by means of a limit module. The goal of this
paper is to connect the LGPAC (GPAC + limits) with other such models of
computation. Specifically, we shall consider the notion of tracking computabil-
ity [16,19], which we take as a paradigm for digital computation. The idea of
tracking computability comes from Mal’cev [9], and it has been found to be
equivalent (under reasonable conditions) to a number of other well-known digi-
tal computation models [16,17,19,21]. In this work, we find suitable conditions
that guarantee that a function generated by an LGPAC is also tracking com-
putable.

We begin by introducing both notions of computability: for the GPAC model,
we describe the channels, modules, input-output operator and fixed point seman-
tics; for tracking computability, we study computable structures and effective
representations. In the most technical part of the paper, we prove tracking
computability of the functions associated with the LGPAC modules and of the
input-output operator of an LGPAC. Finally, we attempt to prove tracking com-
putability of LGPAC-generable functions; in order to achieve this, we assume an
additional condition, which we call effective well-posedness.

This research is part of a project to compare the strengths of various models
of analog and digital computation. In the present case (LGPAC and tracking
computability) we have been successful in one direction, while the other direction
remains an open problem.

In regard to the original content of this paper, we remark that the paper
[1] already shows an equivalence between a GPAC-like model for real computa-
tion (which includes approximability) and computable analysis (which is closely
related to tracking computability; papers [19] and [20] have some equivalence
results). However, our model differs from the model in that paper in two criti-
cal ways: computation on general data spaces is allowed, and approximability is
directly incorporated by means of limit modules. Hence, the two models are not
obviously comparable. The technical notion of effective well-posedness (Defini-
tion 8) is also an original idea.

2 Preliminaries

Our model of computation is built over a data space X which represents the
space of possible data points. Typical spaces of interest are R (the real num-
bers), C(R) (continuous real functions of one real variable), C1(R) (continuously
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differentiable real functions) and so on. The results in this paper will be stated
for separable Fréchet spaces, which satisfy the following assumptions.

1. X is a Fréchet space with respect to a family of pseudonorms ‖ ·‖n (indexed
by n ∈ N); in particular, it is equipped with the vector space operations
of addition and scalar multiplication, as well as a zero element 0 ∈ X . We
recall the pseudonorm axioms:

1a. each pseudonorm ‖ · ‖n : X → R≥0 is positive semidefinite (‖x‖n ≥ 0),
scalable (‖rx‖n = |r|‖x‖n for r ∈ R) and subadditive (‖x + y‖n ≤ ‖x‖n +
‖y‖n);

1b. the family of pseudonorms separates points: if ‖x − y‖n = 0 for all n, then
x = y;

1c. X is complete, that is, Cauchy sequences are convergent: for any sequence
(xm) ∈ XN, if lim

s,t→∞ ‖xs − xt‖n = 0 for all n, then there exists x ∈ X such

that lim
s→∞ ‖xs − x‖n = 0;

1d. for convenience, we additionally assume without loss of generality that the
pseudonorms are nondecreasing: if n ≤ m then ‖x‖n ≤ ‖x‖m.

2. Finally, X is separable, i.e. it has a countable dense subset. We fix an enu-
meration αX : N → Xc of a countable dense subset Xc = αX (N) ⊆ X . We
also assume for convenience that αX (0) = 0.

The main reason for considering Fréchet spaces instead of Banach or Hilbert
spaces is that the data spaces we wish to consider, such as C(R) or C(T, C(R)),
are generally not equipped with norms. We refer the reader to [13, Ch. V], where
a detailed exposition of Fréchet spaces can be found. Finally, we note that the
family of pseudonorms induces a metric on the Fréchet space as follows.

Definition 1 (Metric from pseudonorms). Let X be a Fréchet space with
pseudonorms ‖ · ‖n, n ∈ N. We define the metric

d(x, y) = sup
n∈N

2−n min (‖x − y‖n, 1) , x, y ∈ X . (1)

Proposition 1 (Bounds on the pseudonorms and bounds on the met-
ric). Let X be a Fréchet space with pseudonorms ‖ · ‖n, n ∈ N. Then for the
metric defined by (1), the following hold for any x, y ∈ X and n,m ∈ N:

if d(x, y) < 2−n−m, then ‖x − y‖n < 2−m;
if ‖x − y‖n < 2−m, then d(x, y) < 2−min(n,m).

3 The LGPAC

We give a formal definition of the LGPAC model1. The main objects of our study
are analog networks or analog systems, whose main components can be viewed
as follows:
1 More details can be found in [11,12].
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Analog network = data + time + channels + modules.

As already mentioned, we model data as elements of a separable Fréchet
space X . We will use the nonnegative real numbers as a continuous model of
time T = [0,∞). We consider two types of channels: scalar channels carry
constant values in X , whereas stream channels carry continuously differentiable
streams in C1(T,X ).

We also remark that if X is a Fréchet space, so is C1(T,X ); this however
does not hold in general for Banach spaces, which again explains our choice for
Fréchet spaces. In particular, we can define the following family of nondecreasing
pseudonorms on C1(T,X ),2

‖u‖n = ‖u(0)‖n + sup
0≤t≤n

‖u′(t)‖n. (2)

Note that many useful properties of integration can be extended to C1(T,X );
in particular, for u ∈ C1(T,X ), ν ∈ N, and t ∈ [0, ν], we have the bound (which
we will use later)

‖u(t)‖ν ≤ ‖u(0)‖ν +
∫ t

0

‖u′(s)‖νds ≤ ‖u(0)‖ν + t sup
t≤ν

‖u′(t)‖ν ≤ ν‖u‖ν . (3)

Each module M has zero, one or more input channels, and must have a single
output channel; thus it can be specified by a (possibly partially defined) stream
function

FM : A1 × . . . × Ak ⇀ Ak+1 (k ≥ 0),

where each of Ai, i = 1 . . . k+1 is either Xi or C1(T,Xi) for some data space Xi;
and we use the symbol ⇀ to mean that FM may be partial-valued. The Shannon
GPAC is obtained if all Xi = R, and the following four types of modules are
considered.

Definition 2 (Shannon modules). The Shannon modules are defined as fol-
lows:

– for each c ∈ R, there is a constant module with zero inputs and one output
v(t) = c;

– the adder module has two inputs u, v and one output w, given by w(t) =
u(t) + v(t);

– the multiplier module has two inputs u, v and one output w, given by w(t) =
u(t)v(t);

– the integrator module has a scalar input c (also called the initial setting), two
stream inputs u, v and one output w, given by the Riemann-Stieltjes integral
w(t) = c +

∫ t

0
u(s)v′(s)ds;

2 Here, assumption (1d), that the original family of pseudonorms on X is nondecreas-
ing, is required; alternatively, one could introduce a double-indexing family such as
‖u‖n,m = ‖u(0)‖n + sup0≤t≤m ‖u′(t)‖n.
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We have previously extended the Shannon GPAC in two different ways.
1. General data spaces. In [11] we defined the X -GPAC, allowing the study

of functions of more than one variable. The main idea present in that paper is to
extend the output space, that is, replacing C1(T,R) with C1(T,X ), where X is a
metric vector space. For example, we can think of X as the space of continuous
real-valued functions on R

n, that is, X = C(Rn,R). In this way, our channels will
now carry X -valued streams of data u : T → X , which correspond to functions
of n + 1 real variables, under the “uncurrying” T → (Rn → R) 	 T × R

n → R.
Evidently, one of the independent variables, namely “time”, plays a different role
from the others - it can be used as a variable for integration and taking limits.

This leads us to consider a multityped GPAC, which means that different
channels may carry values over different data spaces. In particular, we shall fix
one separable Fréchet space X and allow four channel types: R-variables, X -
variables, R-streams and X -streams, which carry values in R, X , C1(T,R) and
C1(T,X ), respectively.

We generalize the Shannon modules to C1(T,X ), obtaining the four basic
modules depicted in Fig. 1 as box diagrams.3 We also introduce the symbol ‘ ’
to denote the operator associated with the integrator module; we can then write

(c, u, r) = c +
∫

udr.

Fig. 1. The four basic modules.

Observe that we are using scalar multiplication (of type R× X → X ) as the
basis for the multiplication and integrator modules. At this level of generality, we
cannot use multiplication (of type X × X → X ) because such an operation does
not arise from the Fréchet space axioms. One can extend our model, assuming
X is equipped with a multiplication operator, under suitable additional assump-
tions: of course, multiplication should be bilinear (i.e. distributive with respect
3 By assumption, addition and scalar multiplication are defined on X . The integral

can be generalized to C1(T, X ) via Riemann sums: see, for example, [14, p. 89].
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to addition, and compatible with scalar multiplication), but more importantly,
it should be bounded (for example, one could assume ‖u × v‖ν ≤ ‖u‖ν‖v‖ν for
each pseudonorm ν). In Sect. 7, we will consider the case X = C(R) and extend
the GPAC with a function multiplication module.

2. Limit modules. We introduced in [12] a limit module in order to
incorporate approximating computations by means of effective convergence. If
M : N → N is nondecreasing and (gn) ∈ XN, we say that (gn) is an M -convergent
Cauchy sequence if for all ν ∈ N and m,n ≥ M(ν) one has d(gm, gn) < 2−ν .
Similarly, if T ∈ C1(T,R) is nondecreasing and u ∈ C1(T,X ), we say that
u is a T -convergent Cauchy stream if for all τ ∈ T and s, t ≥ T (τ) one has
d(u(s), u(t)) < 2−τ .

We call such a non-decreasing function M (resp. T ) a discrete (resp. con-
tinuous) modulus of convergence. A typical example is the identity function,
either discrete (id : N → N) or continuous (id ∈ C1(T,R)). We note that any
M -convergent Cauchy sequence may be replaced by an id-convergent Cauchy
sequence via a composition with its modulus of convergence. Similarly, a T -
convergent Cauchy stream may be replaced by an id-convergent Cauchy stream.
This brings us to the notion of a limit operator.

Definition 3 (Limit modules). For the data type X , there is a continuous
limit module with one input of type C1(T,X ) and one output of type X . For
input u, it outputs the id-convergent limit lim

t→∞ u(t) (if it exists).

Fig. 2. The limit module.

The limit module is depicted in Fig. 2. Observe that it defines a partial-
valued operator; it is only defined for those functions in C1(T,X ) that have an
id-convergent limit.

Definition 4 (LGPAC). Let X be a separable Fréchet space. A limit general
purpose analog computer (LGPAC) is a network built with R-channels, X -
channels (carrying either constants or streams), the basic modules (constants,
adders, multipliers, integrators) and the continuous limit module. Moreover,
the channels connect the inputs and outputs of the modules, with the following
restrictions: the only connections allowed are between an output and an input;
each input may be connected to either zero or one output.

Thus, a GPAC channel may appear as an unconnected input (proper input),
unconnected output (proper output), or connect an input with an output (mixed
input/output).
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Definition 5 (LGPAC semantics [11]). Any LGPAC G induces an input-
output operator Φ : I × M ⇀ M × O, where I, M, O denote the spaces of
proper input, mixed input/output, and proper output channels respectively;

1. for variables uI ∈ I, uM ∈ M, uO ∈ O, the fixed point equation is given by

Φ(uI ,uM ) = (uM ,uO); (4)

2. G is well-posed on an open subset U ⊆ I if for all uI ∈ U there is a unique
(uM ,uO) such that (4) holds; and moreover, the solution map uI 
→ (uM ,uO)
describes a continuous function F : U → M × O with domain U ; we further
say that G generates F , or that F is LGPAC-generable.

Although Definitions 4 and 5 refer to networks built with the LGPAC mod-
ules, it is not hard to see how they generalize to any choice of arbitrary modules,
which would define a more abstract notion of multityped GPAC. Some of our
results (namely Lemma 1) can be stated in this more general form.

4 Tracking Computability

The procedure for defining tracking computability in general spaces has been
extensively documented by many authors (see, e.g. [16,17,20,21]). The basic
construction consists of taking an enumeration of a countable dense subset,
defining computable elements as those given by effective Cauchy sequences, and
considering tracking functions. We assume that we have fixed an enumeration
αX : N → Xc of a (countable) dense subset Xc ⊆ X .

Let us also fix a family of computable bijections 〈·, · · · , ·〉 : N
k → N, for

k ∈ N
+ (say, the Cantor pairing function 〈·, ·〉 for k = 2 and its generalizations

to higher dimensions), as well as an enumeration {·} : N → (N ⇀ N) of the
recursive functions (say, for T ∈ N the encoding of a one-input, one-output
Turing machine, {T} is the corresponding recursive function).

Definition 6 (Computability structure). Let X be a complete metric space
and (Xc, α) an enumerated countable dense subset. A computability structure
(Ωᾱ, Cᾱ, ᾱ) is defined as follows.

1. The set of valid codes, Ωᾱ, is the subset of N given by encodings of pairs of
numbers c = 〈T,M〉 such that T is the index for a total recursive function
{T}, M is the index for a total recursive discrete modulus of convergence
{M} and (α{T}(n)) is an {M}-convergent Cauchy sequence.4

2. The partial enumeration ᾱ : N ⇀ X is the function with domain Ωᾱ such
that for any c = 〈T,M〉 ∈ Ωᾱ, ᾱ(c) = limn→∞ α{T}(n).

3. The set of computable elements Cᾱ ⊆ X is the range of ᾱ, i.e. Cᾱ = ᾱ(N).

Example 1 (Computability on R). To construct a computability structure on
the space X = R, we can take Xc = Q, and α = αR as any standard enumeration
of the rationals. This gives the set Cᾱ of computable reals.
4 For ease of notation we write α{T}(n) instead of α({T}(n)).
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Example 2 (Computability on C(R)). We define a computability structure on
X = C(R), which is a Fréchet space with pseudonorms ‖f‖n = sup−n≤x≤n |f(x)|.
We take Xc to be a countable subset of piecewise linear rational functions, defined
as follows. For each N ∈ N and each tuple (p−N2 , . . . , p−1, p0, p1, . . . , pN2) of
2N2 + 1 rational numbers, we can consider a function f : R → R such that:
f(x) = p−N2 for x ≤ −N ; f(x) = pN2 for x ≥ N ; f(j/N) = pj for j ∈
{−N2, . . . , 0, . . . , N2}; and f is piecewise linear on each interval [j/N, (j +1)/N ]
for j ∈ {−N2, . . . , 0, . . . , N2 − 1}.

Fig. 3. A piecewise linear rational function.

In this way, the role of N is both to increase the ‘window size’ and decrease
the ‘step size’ of our approximation (see Fig. 3). By using the bijections of type
N

2 → N and N
2N2+1 → N, and the enumeration αR from the previous example,

we can define an enumeration αX : N → Xc. Specifically, the enumeration is
as follows: for e = 〈N, 〈m−N2 , . . . ,mN2〉〉, we define αX (e) to be the stream
u built from N and the tuple (p−N2 , . . . , pN2) where pj = αR(mj) for each
j ∈ {−N2, . . . , 0, . . . , N2}. Finally, we can apply the construction of Definition 6
and consider the set of computable elements Cᾱ. In this case, this set coincides
with the familiar set of computable real functions, as seen in [10,22], among
others.

Example 3 (Computability on C1(T,X )). Given a computability structure on
a separable Fréchet space X , say with an enumeration (αX ,Xc), we shall con-
struct a computability structure on the space of X -streams Z = C1(T,X ). We
apply the same idea as in Example 2, but now we need to account for continu-
ous differentiability. The idea is to construct an interpolant from a finite amount
of ‘data points’. If u ∈ C1(T,X ) then its derivative u′ ∈ C(T,X ). Therefore,
we can approximate u′ by a piecewise linear function and then integrate the
approximation with respect to the time variable.

Formally, for each N ∈ N and each tuple (x0, y0, . . . , yN2) of N2 +2 elements
in Xc, we consider the functions u, v : T → X such that: v(t) = yN2 for t ≥ N ;
v(j/N) = yj for j ∈ {0, . . . , N2}; v is piecewise linear (as a function of t) and
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given by v(t) = yj + (yj+1 − yj)(Nt − j) on each interval [j/N, (j + 1)/N ], for
j ∈ {0, . . . , N2 − 1}; finally, u(t) = x0 +

∫ t

0
v(s)ds.

Fig. 4. A continuous piecewise linear function v (left) and its integral, a C1 piecewise
quadratic function u (right). The data consist of an initial value x0 and derivative
values y0, . . . , yN2 at equispaced points.

By construction, each u is continuously differentiable and piecewise quadratic
(Fig. 4). Now let Zc ⊆ Z be the space of functions u considered above. Using
the bijections of type N

2 → N and N
N2+2 → N, and the enumeration αX , we

can define an enumeration αZ : N → Zc. Specifically: for e = 〈N, 〈m0,m
′
0,

. . . ,m′
N2〉〉, we define αZ(e) to be the stream u built from N and the tuple

(x0, y0, . . . , yN2) where x0 = αX (m0) and yj = αX (m′
j) for each j = 0, . . . N2.

Zc is easily seen to be countable and dense in Z. Thus, we can apply the con-
struction of Definition 6 and obtain the computability structure (ΩᾱZ , CᾱZ , ᾱZ).

Example 4 (Computability on X × Y). Given computability structures on
spaces X ,Y, one can define a computability structure on the product X × Y
using the enumeration αX×Y(〈�, r〉) = (αX (�), αY(r)). Note that pseudonorms
(and a metric) on X × Y can be easily induced from X and Y as, for example,
‖(x1, y1) − (x2, y2)‖n = ‖x1 − x2‖n + ‖y1 − y2‖n. It is also not hard to see that
CᾱX×Y = CᾱX × CᾱY , and that this construction can be generalized to finite
products of the form X1 × . . . × XN and to XN .

Definition 7 (Tracking computability). Let X and Y be complete metric
spaces with enumerated countable dense subsets (Xc, αX ), (Yc, αY) and com-
putability structures (ΩᾱX , CᾱX , ᾱX ), (ΩᾱY , CᾱY , ᾱY). Let f : X ⇀ Y, and con-
sider a function ϕ : N ⇀ N (see Fig. 5 for a graphical depiction).

We say that ϕ is a tracking function with respect to (αX , αY), or an (αX , αY)-
tracking function, for f , if for all c ∈ ΩᾱX with ᾱX (c) ∈ dom f , we have that
c ∈ dom ϕ and ϕ(c) ∈ ΩᾱY and ᾱY(ϕ(c)) = f(ᾱX (c)). When a function f has a
recursive tracking function ϕ, we say that f is tracking computable with respect
to (αX , αY), or (αX , αY)-computable.
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Fig. 5. Tracking function.

5 Computability of the Input-Output Operator

The goal of this section is to demonstrate that the input-output operator of an
LGPAC is tracking computable. We first show that this follows directly from the
tracking computability of the basic modules.

Lemma 1 (Tracking computability of the input-output operator). Let
G be a multityped GPAC with input-output operator Φ : I × M ⇀ M × O.
Suppose that each of the modules occuring in G defines a tracking computable
function. Then Φ is tracking computable.

Proof. Let M1, . . . ,M� be the modules appearing in G, each defining a cor-
responding function F1, . . . , F�, and having a corresponding tracking function
ϕ1, . . . , ϕ�. Note that Φ can be obtained from F1, . . . , F� via composition, projec-
tion and pairing. More formally, we can write Φ(x1, . . . , xk) = (y1, . . . , y�) where
each yj = Fj(xj), and xj is a subset of the inputs x1, . . . , xk. Since composition,
projection and pairing preserve tracking computability,5 we obtain a recursive
tracking function ϕ for Φ from ϕ1, . . . , ϕ�. Thus, Φ is tracking computable. �

Hence, we only need to prove that each of the basic modules considered in
Sect. 3 is tracking computable, which can be done under suitable assumptions.

Lemma 2 (Tracking computability of the LGPAC modules). Let X
be a separable Fréchet space. Suppose that addition, scalar multiplication and
pseudonorm evaluation are all tracking computable on X . Let Z = C1(T,X )
be the space of X -streams with the computable structure induced by αX , as in
Example 3. Then (1) for each computable element x ∈ X , the constant stream
u(t) = x is a computable element in C1(T,X ); and (2) each of the nonconstant
modules from Sect. 3 (adder, multiplier, integrator and continuous limit) defines
a tracking computable function.

5 The computability of basic algebraic operations is usually one of the first results to
be proved for a model of computation. For example, in the framework of computable
analysis, this is proved in [10, Sect. 0.4]; and in the framework of type-2 theory of
effectivity, this is proved in [22, Sect. 2.1]. The techniques carry over to the tracking
computability framework in this paper.
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Proof. We sketch the proof outline; additional technical details are given in
the Appendix. Recall that an element u ∈ Zc is described by a data tuple
(x0, y0, . . . , yN2) and can be encoded by e = 〈N, 〈m0,m

′
0, . . . ,m

′
N2〉〉, where m0,

m′
0, . . ., m′

N2 encode elements in Xc.
Constants: given an element x ∈ Xc, the constant stream u(t) = x is

in Zc; in particular, it is encoded by N = 1 and the tuple (x, 0, 0). Recall
that, by assumption, we have αX (0) = 0. Thus, given a code c = 〈T,M〉
for a computable x ∈ X , we can consider the code c′ = 〈T ′,M〉 in which
{T ′}(j) = 〈1, 〈{T}(j), 0, 0〉〉. To verify that the same modulus of convergence
works, let xj = αX {T}(j) and uj = αZ{T ′}(j). Then uj(t) ≡ xj , so that
u′

j(t) ≡ 0 and

‖ui − uj‖n = ‖ui(0) − uj(0)‖n + sup
0≤t≤n

‖u′
i(t) − u′

j(t)‖n = ‖xi − xj‖n.

Hence c′ is a code for the desired constant stream, so that u is a computable
element in Z.

Addition: essentially, we need to approximately compute addition at “two
levels”. At the “first level”, we create a procedure that receives codes e1 and
e2 for computable X -streams u1 = α(e1) and u2 = α(e2), as well as a natural
number �; it produces a code e+ of some element u+ = α(e+) that approximates
u1+u2 to precision 2−�. This is done by building a large common refinement, i.e.
codes for approximations ũ1, ũ2 of u1, u2 on a finer common grid. Each value in
the new discretization can be seen as a convex combination of two consecutive
values in the old discretization. Since addition and scalar multiplication are
tracking computable in X , these convex combinations can be approximated to
arbitrarily high precision. Then, in order to compute the addition on the common
refinement, we can simply compute the pointwise addition with sufficiently high
precision.

At the “second level”, assume we have codes c1 = 〈T1,M1〉, c2 = 〈T2,M2〉
for computable elements u and v respectively; we wish to find a code c+ =
〈T+,M+〉 for their sum w = u + v. If we write ui = α{T1}(i), vi = α{T2}(i),
wi = α{T+}(i), then the main idea is to define wj as a (sufficiently good)
approximation of uk1(j) + vk2(j), for some choice of k1 and k2 (depending on
the moduli of convergence {M1} and {M2}) that ensures wj is id-convergent to
u + v.

Scalar multiplication: compared to addition, there are two additional
sources of error that we have to control. At the “first level”, we recall the product
rule for derivatives, (ru)′(t) = r(t)u′(t) + r′(t)u(t). After finding approximate
r̃, ũ on a large common refinement, we can approximately evaluate the above
expression at equispaced points, as long as we are able to compute r̃(j/N) and
ũ(j/N). Since r̃ and ũ are piecewise quadratic, these can be retrieved by integra-
tion using the trapezoid rule x̃j+1 ≈ x̃j + 1

2N (ỹj + ỹj+1), and hence computed
to arbitrary precision. Yet another source of error appears in the analysis, since
any approximation of ru is piecewise quadratic whereas ru itself is piecewise
quartic (as functions of t). This additional error can be controlled by first find-
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ing an upper bound K� on ‖r‖� and ‖u‖� and then choosing a suitable large
discretization N̄ .

At the “second level”, assume we have codes c1 = 〈T1,M1〉, c2 = 〈T2,M2〉
for sequences ri = α{T1}(i), ui = α{T2}(i) converging to computable elements
r and u respectively; we wish to find a code c× = 〈T×,M×〉 for a sequence
vi = α{T×}(i) converging to their product v = ru. Again, we define vj to
be an approximation of the product rk1(j)uk2(j) to sufficiently high precision,
computed at the “first level”. By choosing a suitable k1(j), k2(j) we can ensure
(vj) is id-convergent to ru.

Integration: the case of integration is quite similar to multiplication: if
x ∈ X and r ∈ C1(T,R), u ∈ C1(T,X ) are represented by the tuples of data
(p10, q

1
0 , . . . , q

1
N2) and (x2

0, y
2
0 , . . . , y

2
N2), respectively, then the integral w(t) = x+∫ t

0
u(s)dr(s) is a function with w(0) = x and w′(t) = u(t)r′(t). Since the values of

u(t) at equispaced points can be approximated by the trapezoid rule, this again
yields a natural way to approximately compute a data tuple representation for
w.

Continuous limit: if un ∈ C1(T,X ) is an effective Cauchy sequence con-
verging to a stream u ∈ C1(T,X ) which in turn has an id-convergent limit x ∈ X ,
then x equals limt→∞ limn→∞ un(t). Thus, a candidate for an approximation of
x is ukn

(tn), where tn and kn are large enough integers. By effectivizing this line
of thought, we produce a tracking function for the continuous limit module as
well. �

6 Computability of LGPAC-Generable Functions

In this section we prove the main result of this paper. The goal is to find out under
which conditions the function generated by an LGPAC is tracking computable.
We recall that, in our terminology, an LGPAC induces an operator and fixed
point problem

Φ : I × M ⇀ M × O, Φ(uI ,uM ) = (uM ,uO); (5)

for the LGPAC to generate a valid function, we require the fixed point problem
to be well-posed, that is, (5) has a unique, continuous, solution map F : uI 
→
(uM ,uO).

Our goal is to find conditions on Φ that imply that F is tracking computable.
The idea is to find F by solving an approximate fixed point problem

Given uI and ε > 0, find (uM ,uO) such that d(Φ(uI ,uM ), (uM ,uO)) < ε.

Moreover, from the point of view of tracking computability, we look for
desired uM ,uO in the enumerated, countable dense subset. Then, by using a
sequence of ε converging to 0, and under additional assumptions on F (namely,
we will require a notion of effective well-posedness), this yields a sequence of
uM ,uO converging to the desired F (uI).

Let us now focus on the first step of this construction. Namely, we prove that
it is possible to construct approximate fixed points.
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Lemma 3. Let G be an LGPAC with input-output operator Φ : I×M ⇀ M×O.
Assume that Φ is tracking computable, and that G is well-posed on an open subset
U ⊆ I. Then there exists a computable procedure FixPt : (n, �) 
→ m such that,
if n is the code for an element uI = ᾱI(n) ∈ U and � ∈ N, then m is the
code for an enumerated element (uM ,uO) = αM×O(m) ∈ M × O; and also
d(Φ(uI ,uM ), (uM ,uO)) < 2−�.

Proof. The procedure works as follows. For a given input n, �, let us write uI =
ᾱI(n). We perform the following dovetailing loop. First, guess an index m ∈
N for an element in (M × O)c. Second, find m1,m2 such that αM×O(m) =
(αM(m1), αO(m2)), via the pairing bijections. For clarity, let us write uM =
αM(m1), uO = αO(m2). Third, find n′ such that ᾱI×M(n′) = (uI ,uM ), using
the code n for uI and a code for the constant function {T1}(n) = m1. Fourth,
find m′ = ϕ(n′) = 〈T ′,M ′〉, where ϕ is a tracking function for Φ. Notice that

ᾱM×O(m′) = ᾱM×O(ϕ(n′)) = Φ(ᾱI×M(n′)) = Φ(uI ,uM ).

Fifth, find m′′ = {T ′}({M ′}(� + 2)). Since {M ′} is a module of convergence,
it follows that for k ≥ {M ′}(� + 2), one has

d(αM×O(m′′), αM×O({T ′}(k))) < 2−�−2.

In particular, since ᾱM×O(m′) is the limit of αM×O({T ′}(n)), then

d(ᾱM×O(m′), αM×O(m′′)) ≤ 2−�−2.

For clarity, let us write (ũM , ũO) = αM×O(m′′).
Finally, check if d(αM×O(m′′), αM×O(m)) < 2−�−1; if yes, then break the

loop and return m. Observe that the distance function is tracking computable
(to get a close enough approximation, it is enough to evaluate sufficiently but
finitely many pseudonorms).

Observe that, for some values of m, the corresponding execution of the loop
may not terminate. This may happen if ᾱI×M(n′) is not an element in the
domain of Φ, so that ϕ(n′) may be a divergent computation, or if the value of
d(αM×O(m′′), αM×O(m)) is exactly 2−�−1 (equality may not be a computable
predicate). However, if a certain value of m happens to pass our test, then that
value satisfies the desired property: indeed,

d(Φ(uI ,uM ), (uM ,uO)) ≤ d(Φ(uI ,uM ), (ũM , ũO)) + d((ũM , ũO), (uM ,uO))
= d(ᾱM×O(m′), αM×O(m′′)) + d(αM×O(m′′), αM×O(m))

< 2−�−2 + 2−�−1 = 2−�.

Moreover, such a value of m can always be found by our algorithm, due
to our assumption that G is well-posed. To see this, let uI = ᾱI(n) ∈ U . By
well-posedness, there exists (a unique) (uM

∗ ,uO
∗ ) ∈ M × O with Φ(uI ,uM

∗ ) =
(uM

∗ ,uO
∗ ), and thus d(Φ(uI ,uM

∗ ), (uM
∗ ,uO

∗ )) = 0. Now the left hand side of this
equality is a continuous expression in uM

∗ ,uO
∗ (the continuity of Φ follows from
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the continuity the module functions, and every metric d is continuous over its
topology); thus there exists δ > 0 such that for any uM ,uO ∈ M × O one has

if d((uM
∗ ,uO

∗ ), (uM ,uO)) < δ then d(Φ(uI ,uM ), (uM ,uO)) < 2−�−2.

By density of the enumerated subset, there exists m ∈ N such that αM×O
(m) = (uM ,uO) with d((uM

∗ ,uO
∗ ), (uM ,uO)) < δ, and thus d(Φ(uI ,uM ), (uM ,

uO)) < 2−�−2, or in other words,

d(ᾱM×O(m′), αM×O(m)) < 2−�−2.

Moreover, the value of m′′, computed on step 4, will be such that

d(ᾱM×O(m′), αM×O(m′′)) ≤ 2−�−2,

and a simple application of the triangle inequality yields that

d(αM×O(m′′), αM×O(m)) < 2−�−1,

so the condition on step 5 is met. Thus the dovetailing loop will effectively
succeed in finding a valid m. �

Fig. 6. Approximate fixed points vs approximations of the fixed point. Intuitively,
assume that the fixed point equation Φ(x, y) = y has a continuous solution operator
y = F (x). Then, in a neighborhood of x, approximate fixed points are ‘near’ the exact
fixed point.

We have shown that it is possible to find approximate fixed points of the
input-output operator. In the next step, we would like to argue that approx-
imate fixed points are in fact ‘near’ exact fixed points, which is by no means
a trivial statement (rather, there is extensive research on this problem; see for
example [7,8]). Intuitively, we want to establish conditions on the input-output
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operator Φ (and the corresponding solution functional F ) that effectively ensure
the following: for each ε there is δ such that if d(Φ(uI ,uM ), (uM ,uO)) < δ,
then d(F (uI), (uM ,uO)) < ε (see Fig. 6 for an intuition). This is captured in
the following notion, that we use as an assumption towards proving our main
theorem.

Definition 8 (Effective well-posedness). Let G, Φ, U be as in Definition
5, with G well-posed on U and generating some function F . We say that G is
effectively well-posed if there is a computable modulus of convergence M : N → N

such that for all ν ∈ N and all uI ∈ U , uM ∈ M, uO ∈ O,

d(Φ(uI ,uM ), (uM ,uO)) < 2−M(ν) ⇒ d(F (uI), (uM ,uO)) < 2−ν . (6)

Remark 1 (Well-posedness and effective well-posedness). The well-posed-
ness of G implies that, for any uI ∈ U , uM ∈ M, uO ∈ O,

d(Φ(uI ,uM ), (uM ,uO)) = 0 iff d(F (uI), (uM ,uO)) = 0.

Thus effective well-posedness can be understood as an effective strengthening of
this equivalence.

Theorem 1 (Tracking computability of LGPAC generable functions).
Let G be an effectively well-posed LGPAC generating some function F on domain
U . Suppose also that each of the modules in G are tracking computable. Then F
is tracking computable.

Proof. By Lemma 1, the input-output operator Φ : I × M ⇀ M × O of G is
tracking computable. By Lemma 3, there exists a procedure FixPt : (eI , �) 
→
eM×O that maps codes of computable elements uI ∈ U to 2−�-approximate
fixed points. Let MW be a computable modulus of convergence witnessing the
effective well-posedness of G. Then, given a code c = 〈T,M〉 of an element
uI ∈ U , we can construct a code ϕ(c) = 〈T ′,M ′〉 for F (uI) by letting T ′ be
a code for the function {T ′}(j) = FixPt(c,MW (j + 1)) and M ′ be a code
for the identity function. Indeed, the above procedure is effective and, letting
(uM

j ,uO
j ) = α{T ′}(j), we have by construction that d(Φ(uI ,uM

j ), (uM
j ,uO

j )) <

2−MW (j+1), so that d(F (uI), (uM
j ,uO

j )) < 2−j−1. In particular, (uM
j ,uO

j ) is an
id-convergent Cauchy sequence that converges to F (uI). �

7 Some Applications of Theorem 1

We proceed to give two applications of our main result.
1. Computability over continuous real functions. Let us consider the

data space X = C(R) of continuous real functions. This can be considered
a basic example of how the Shannon GPAC can be generalized beyond real-
valued computation. Moreover, C(R) is equipped with a multiplication operation
(fg)(x) = f(x)g(x), which naturally induces multiplication and integration over
C(R)-streams, ×(u, v)(t) = u(t)v(t) and (c, u, v) = c +

∫
udv. As one would

expect, all these operations are tracking computable.
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Lemma 4. Let X = C(R) be the class of continuous real functions with the
computability structure defined in Example 2. Then addition, scalar multiplica-
tion, multiplication, and pseudonorm evaluation are tracking computable opera-
tions on X . Moreover, multiplication and integration over C1(T,X ), defined as
×(u, v)(t) = u(t)v(t) and (c, u, v) = c +

∫
udv are also tracking computable

operations.

Proof. For addition, multiplication and integration, we can adapt the proof from
Lemma 2. Note that, due to our choice of computability structure on R (Exam-
ple 1), addition and multiplications by rationals can be performed exactly (on
their codes), so a lot of the error analysis disappears. Moreover, functions in C(R)
are approximated by piecewise linear functions instead of the more complicated
piecewise quadratic functions that we used in C1(T,X ). Thus, the proofs become
much simpler and we omit the details.

Now consider pseudonorm evaluation. Given a function f ∈ Xc via its code
e1 = 〈N, 〈m−N2 , . . . ,m0, . . . ,mN2〉〉, and an integer n, note that ‖f‖n can be
computed exactly: it simply corresponds to the maximum of the rational numbers
αR(mj), where j ranges either: between −N2 and N2 (if N ≤ n); or between
−Nn and Nn (if N ≥ n).

Next, let c = 〈T,M〉 be a code for a function in X and n be an integer.
Let fj = αX {T}(j). Define a code 〈Tn,Mn〉 where {Tn}(j) is a code for the
value ‖fj‖n (which can be computed exactly) and {Mn}(ν) = {M}(ν + n).
Note that for i, j ≥ {Mn}(ν) we have that dX (fi, fj) < 2−(ν+n) and hence
‖fi − fj‖n < 2−ν (by Proposition 1). By the triangular inequality we conclude
that |‖fi‖n − ‖fj‖n| < 2−ν as desired. �

Combining Lemmas 2 and 4, we conclude that each nonconstant module on a
multityped GPAC over C(R) is tracking computable. Together with Theorem1,
we obtain:

Corollary 1. Let G be a multityped GPAC with channels over R and X = C(R),
constructed with the following types of modules: constants (over R and X ), adders
(over R-streams and X -streams), multipliers ×(u, v) and integrators (c, u, v),
(where each of u, v is either an R-stream or an X -stream), and continuous limits
(over R-streams and X -streams). Suppose that each of the constant modules
appearing in G is tracking computable, and that G is effectively well-posed on
domain U , generating a function F . Then F is tracking computable.

2. Contracting operators. We show that the condition of effective well-
posedness (Definition 8) is automatically achieved for contracting operators,
which form an important class in fixed point theory. Formally, an input-output
operator Φ is contracting if there is a constant λ ∈ [0, 1) such that

d(Φ(uI ,uM ), Φ(uI , ũM )) ≤ λd(uM , ũM ).

Lemma 5. Let G be a multityped GPAC and assume that its input-output oper-
ator Φ is contracting. Then G is well-posed iff it is effectively well-posed.
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Proof. Clearly, effective well-posedness implies well-posedness. For the converse
direction, assume G is well-posed and let F be the function generated by G. For
each uI ∈ I define Φ̂ : M×O → M×O as Φ̂(uM ,uO) = Φ(uI ,uM ). In this way,
Φ̂ is a contracting self-map on M×O with the same constant λ. As a consequence
of the Banach fixed point theorem [13, Th. V.18], for any (uM ,uO) ∈ M × O
we have that d(F (uI), (uM ,uO)) ≤ 1

1−λd(Φ̂(uM ,uO), (uM ,uO)). Let us take
M(ν) = ν + C as a modulus of convergence, where C is any natural such
that 2−C ≤ 1 − λ. Then for any uI ∈ I,uM ∈ M,uO ∈ O such that
d(Φ(uI ,uM ), (uM ,uO)) < 2−M(ν), we get

d(F (uI), (uM ,uO)) ≤ 1
1 − λ

d(Φ̂(uM ,uO), (uM ,uO)) <
2−ν−C

1 − λ
< 2−ν .

�

The following corollary is immediate from Theorem1 and Lemma 5.

Corollary 2. Let G be a well-posed LGPAC generating some function F on
domain U . Suppose that each of the modules in G are tracking computable, and
that the input-output operator Φ is contracting. Then F is tracking computable.

8 Discussion

In this paper we presented partial results towards a comparison between the
GPAC model of computation and tracking computability on separable Fréchet
spaces X . Two important questions are left for further research.

1. Effective well-posedness. Our main result hinges on this extra assump-
tion, allowing us to use approximate fixed points to obtain approximations of the
exact fixed point. The question of whether this condition can be relaxed remains
an open problem. Our difficulty stems from the usage of arbitrary data spaces
X , which in particular can be infinite-dimensional. In the case of X = R

k, i.e.
finite-dimensional spaces, standard results in analysis (e.g. the Picard-Lindelöf
Theorem [4]) allow us to consider iterative methods to obtain such fixed points.
Related to this observation, we have argued that effective well-posedness comes
‘for free’ when the input-output operator is contracting. It would be interest-
ing to extend this argument to a larger class of ‘typical’ operators appearing in
Analysis.

2. Converse of Theorem 1. Investigating under which conditions tracking
computable functions are LGPAC-generable remains a major open problem. The
most likely approach to answer this question is to first simulate the behavior of
a Turing machine (or any other discrete model of computation) in an analog
network. As relevant literature, papers [1,3,5] provide a way to embed states,
transitions, and the discrete evolution of a Turing machine into real numbers,
continuous real functions, and the continuous evolution of a dynamical system
respectively. With some care, their techniques may be adaptable to our frame-
work.
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We hope that in tackling these problems new insights can be acquired about
the power of analog networks, and in particular the GPAC, as a model for analog
computation.
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Appendix: Technical Details in the Proof of Lemma2

Addition: let e1, e2, � be natural numbers, where e1 and e2 encode computable
X -streams u1 = α(e1) and u2 = α(e2). We need to show how to effectively
compute a code e+ of some element u+ = α(e+) that approximates u1 + u2 to
precision 2−�, that is, such that ‖u+ − (u1 + u2)‖� < 2−�−2.

We know that u1 and u2 are given by some data tuples (x1
0, y

1
0 , . . . , y

1
N2

1
) and

(x2
0, y

2
0 , . . . , y

2
N2

2
) respectively. First, we build a large common refinement, that

is, a large discretization parameter N̄ which is a multiple of both N1 and N2,
and data tuples (x̃1

0, ỹ
1
0 , . . . , ỹ

2
N̄2), (x̃2

0, ỹ
2
0 , . . . , ỹ

2
N̄2) that correspond to approxi-

mations ũ1, ũ2 of u1, u2 on a finer grid. For example, if N̄ = k × N1, ũ1 can be
obtained by setting ỹ1

ki+� ≈ k − �
k y1

i + �
ky1

i+1; each value in the new discretization
is a convex combination of two consecutive values in the old discretization. Since
addition and scalar multiplication are tracking computable in X , these convex
combinations can be approximated to arbitrarily high precision.

To compute the addition on the common refinement, we can simply add the
pointwise values, that is, set x+

0 ≈ x̃1
0 + x̃2

0 and y+
j ≈ ỹ1

j + ỹ2
j . By computing

these sums with sufficiently high precision, we have indeed produced the desired
code e+.

By the previous discussion, we have a procedure add : (e1, e2, �) 
→ e+ such
that, for u1 = α(e1), u2 = α(e2), u+ = α(e+), we have ‖u+ − (u1 + u2)‖� <
2−�−2. Next, assume we have codes c1 = 〈T1,M1〉, c2 = 〈T2,M2〉 for computable
elements u and v respectively; we wish to find a code c+ = 〈T+,M+〉 for their
sum w = u + v. Let us introduce the notation ui = α{T1}(i), vi = α{T2}(i),
wi = α{T+}(i).

We shall set {T+}(j) = add({T1}(k1(j)), {T2}(k2(j)), j), where k1(j) =
{M1}(2j + 2) and k2(j) = {M2}(2j + 2). Intuitively, wj is a (sufficiently good)
approximation of uk1(j) + vk2(j). Furthermore, we set M+ as a code for the iden-
tity function. To show that (wj) is id-convergent, fix ν and suppose that i, j ≥ ν.
Observe that

‖wi − wj‖ν ≤ ‖wi − (uk1(i) + vk2(i))‖ν + ‖uk1(i) − uk1(j)‖ν

+ ‖vk2(i) − vk2(j)‖ν + ‖wj − (uk1(j) + vk2(j))‖ν .

To bound the first term above, we observe that ‖wi − (uk1(i) + vk2(i))‖ν ≤
‖wi − (uk1(i) + vk2(i))‖i < 2−i−2 ≤ 2−ν−2; a similar argument holds for the



232 D. Poças and J. Zucker

fourth term. For the second term, note that by our choice of k1(ν) we have
d(uk1(i), uk1(j)) < 2−2ν−2, and by Proposition 1 this implies ‖uk1(i) − uk1(j)‖ν <
2−ν−2; similarly for the third term. Putting all this together yields ‖wi −wj‖ν <
2−ν , which again by Proposition 1 implies d(wi, wj) < 2−ν , as desired. A similar
reasoning also proves that wi converges to u + v. Hence addition is tracking
computable.

Scalar multiplication: in the same way as for addition, we show how to
approximately compute the scalar multiplication at “two levels”. At the “first
level”, let e1, e2, � be natural numbers encoding a computable R-stream r = α(e1)
and X -stream u = α(e2) respectively. We need to show that we can compute
the scalar multiplication ru to an arbitrary precision. In particular, we will show
how to effectively compute a code e× of some element u× = α(e×) such that
‖u× − ru‖� < 2−�−2.

We know that r and u are given by some data tuples (p0, q0, . . . , qN2
1
) and

(x0, y0, . . . , yN2
2
) respectively. First, we effectively find an upper bound K� on

the pseudonorms ‖r‖� and ‖u‖� by (approximately) computing the maximum of
|p0|, |qj |, ‖x0‖�, ‖y0‖� (by assumption, pseudonorm evaluation is tracking com-
putable on X ).

Next, we construct a large common refinement, say (p̃0, q̃0, . . . , q̃N̄2) and
(x̃0, ỹ0, . . . , ỹN̄2), corresponding to approximations r̃, ũ of r, u on a finer grid,
as we did for addition. To compute the multiplication on the common refine-
ment, we recall the product rule for derivatives, (ru)′(t) = r(t)u′(t) + r′(t)u(t).
To compute this expression at equispaced values of t, we must first find the values
of r̃(j/N), ũ(j/N). Since r̃, ũ are piecewise quadratic, these can be recursively
obtained by integration using the trapezoid rule,

p̃j+1 ≈ p̃j +
1

2N
(q̃j + q̃j+1), x̃j+1 ≈ x̃j +

1
2N

(ỹj + ỹj+1). (7)

Again, p̃j , x̃j can be approximated to arbitrarily high precision. Therefore, r̃ũ
can be approximated by the function u× given by (x×

0 , y×
0 , . . . , y×

N̄2), where x×
0

is (the approximating computation of) p̃0x̃0; and each y×
j is (the approximating

computation of) p̃j ỹj + q̃j x̃j .
There is one more error term appearing in our analysis, since u× is piecewise

quadratic whereas ru is piecewise quartic (as functions of t). To describe an
effective bound on the approximation error ‖u× − ru‖�, we need to take into
account: the approximation errors for the refinement and the multiplications
over Xc, the upper bound K� on ‖r‖� and ‖u‖�; the consecutive differences
max ‖q̃j+1 − q̃j‖n,max ‖ỹj+1 − ỹj‖n; and the discretization N̄ . Ultimately, we
can bound this error in an effective way by choosing N̄ large enough.

By the previous discussion, we have a procedure mult : (e1, e2, �) 
→ e×
such that, for r = α(e1), u = α(e2), u× = α(e×), we have ‖u× − ru‖� < 2−�−2.
At the “second level”, assume we have codes c1 = 〈T1,M1〉, c2 = 〈T2,M2〉 for
computable elements r and u respectively; we wish to find a code c× = 〈T×,M×〉
for their product v = ru. Let us introduce the notation ri = α{T1}(i), ui =
α{T2}(i), vi = α{T×}(i).
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First, for any ν ∈ N, we can effectively find a uniform bound K(ν) such that
‖ri‖ν , ‖ui‖ν < K(ν) independently of i. This is because, letting μ = {M1}(ν),
we know that for i > μ one has d(ri, rμ) < 2−ν and hence ‖ri − rμ‖ν < 1 by
Proposition 1, so that ‖ri‖ν < ‖rμ‖ν + 1. On the other hand, we can approx-
imately compute ‖ri‖ν for each of the finitely many i ≤ μ. A similar analysis
holds for ‖ui‖ν . Taking (a sufficiently close approximation of) the maximum of
these values gives the desired uniform bound.

Next, observe that for any r, r̃ ∈ R, x, x̃ ∈ X , ν ∈ N, we have ‖rx − r̃x̃‖ν ≤
|r|‖x − x̃‖ν + |r − r̃|‖x̃‖n; together with (3), we can derive the useful bound

‖ri1uj1 − ri2uj2‖ν ≤ (ν + 1)K(ν) (‖ri1 − ri2‖ν + ‖uj1 − uj2‖ν) . (8)

We are now in condition to describe how to compute {T×}(ν) for a given ν.
First, find a uniform bound K(ν) as described above. Second, find an integer C
such that 2C > K(ν)(ν + 1). Third, compute k1(ν) = {M1}(2ν + C + 2) and
k2(ν) = {M2}(2ν + C + 2). Finally, return

{T×}(ν) = mult({T1}(k1(ν)), {T2}(k2(ν)), ν).

Intuitively, this means that vi is a (sufficiently good) approximation of
rk1(i)uk2(i). We show that the sequence vi constructed in this way is id-
convergent. Fix ν and suppose that i, j ≥ ν. Observe that

‖vi − vj‖ν ≤ ‖vi − rk1(i)uk2(i)‖ν + ‖rk1(i)uk2(i) − rk1(j)uk2(j)‖ν + ‖rk1(j)uk2(j) − vj‖ν .

The first term above, by construction, can be bounded as ‖vi−rk1(i)uk2(i)‖ν ≤
‖vi − rk1(i)uk2(i)‖i < 2−i−2 ≤ 2−ν−2, and similarly for the third term. In
order to bound the second term, note that by our choice of k1(ν) we have that
d(rk1(i), rk1(j)) < 2−2ν−2−C . By Proposition 1, this implies ‖rk1(i) − rk1(j)‖ν <

2−ν−2−C < 2−ν−1

2K(ν)(ν +1) . A similar bound holds for ‖uk2(i) − uk2(j)‖ν . Putting
these in (8) yields ‖rk1(i)uk2(i) − rk1(j)uk2(j)‖ν < 2−ν−1. Thus we conclude that
‖vi − vj‖ν < 2−ν−2 + 2−ν−1 + 2−ν−2 = 2−ν , and hence d(vi, vj) < 2−ν , i.e. vi

is id-convergent. A similar reasoning proves that vi converges to ru. Hence the
above describes a tracking function for scalar multiplication.

Continuous limit: let u ∈ Zc be represented by the tuple (x0, y0, . . . yN2),
where each x0, yj ∈ Xc. We first observe that, for any natural number n ∈ N,
the value of u(n) can be approximated as

u(n) ≈
{

xnN if n ≤ N ;
xN2 + (N − n)yN2 if n ≥ N,

where the xj are again recursively obtained via the trapezoid rule. Consequently,
one can devise a computable procedure eval : (e, n, �) 
→ eeval such that, given a
code e of some element u = αZ(e) and natural numbers n, �, it produces a code
eeval of some element x = αX (eeval) with d(x, u(n)) < 2−�; i.e. x approximates
u(n) within an error of 2−�.

Now let c = 〈T,M〉 be a code for an effective Cauchy sequence uj = αZ{T}(j)
in Zc converging to a computable element u ∈ C1(T,X ). We want to compute a
code c∞ = 〈T∞,M∞〉 for an effective Cauchy sequence xj = αX {T∞}(j) in Xc

converging to the limit x = Lu = limt→∞ u(t) ∈ X .
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The idea is to define {T∞}(j) = eval({T}(kj), tj , �j), for a suitable choice
of �j = j + 3, tj = j + 2 and kj = {M}(3j + 5). To prove that (xj) is an id-
convergent Cauchy sequence, let ν ∈ N be given, and suppose that i, j ≥ ν. By
applying the triangular inequality, dX (xi, xj) is upper bounded as

dX (xi, xj) ≤dX (xi, uki
(ti)) + dX (uki

(ti), u(ti)) + dX (u(ti), u(tj))
+ dX (u(tj), ukj

(tj)) + dX (ukj
(tj), xj).

By our choice of �j = j + 3 we immediately get that dX (xi, uki
(ti)) < 2−ν−3

and dX (ukj
(tj), xj) < 2−ν−3. Since u is an id-convergent Cauchy stream, and by

our choice of tj = j + 2, we can also bound dX (u(ti), u(tj)) < 2−ν−2. Next we
need to handle the terms dX (uki

(ti), u(ti)) and dX (ukj
(tj), u(tj)), which amounts

to show that kj = {M}(3j + 5) is suitably large.
Indeed, observe that dZ(ukj

, u) ≤ 2−3j−5 = 2−3tj+1. Using Proposition 1
then yields ‖ukj

− u‖tj
≤ 2−2tj+1, and using (3) we have6

‖ukj
(tj) − u(tj)‖tj

≤ tj
2tj−1

2−tj ≤ 2−tj .

Once more by Proposition 1 we get dX (ukj
(tj), u(tj)) ≤ 2−tj ≤ 2−ν−2. The

same reasoning also gives the bound dX (uki
(ti), u(ti)) ≤ 2−ν−2. Combining all

these bounds yields dX (xi, xj) < 2−ν , so that (xj) is an id-convergent Cauchy
sequence. In particular, we can take M∞ to be a code for the identity function.

This construction shows that c = 〈T,M〉 
→ c∞ = 〈T∞,M∞〉 is an effective
procedure. We also proved that, for all j ∈ N, dX (xj , u(tj)) < 2−j−3 + 2−j−2,
implying that limj xj = limt u(t); hence c∞ encodes an effective Cauchy sequence
converging to Lu as desired. �
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Abstract. The modal intuitionistic epistemic logic IEL− was proposed
by Artemov and Protopopescu as the intuitionistic version of belief logic.
We construct the modal lambda calculus which is Curry-Howard iso-
morphic to IEL− as the type-theoretical representation of applicative
computation widely known in functional programming.
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1 Introduction

The intuitionistic modal logic IEL− was proposed by Artemov and Protopopescu
[1]. IEL− provides the logic of beliefs agreed with BHK-semantics of intuitionis-
tic logic. The logic IEL− is a weaker version of the intuitionistic epistemic logic
IEL, the logic of intuitionistic knowledge and intuitionistic beliefs, which are
provably consistent.

The logic IEL− is defined by following axioms and derivation rules:

Definition 1. Intuitionistic epistemic logic IEL−:

1. IPC axioms
2. �(A → B) → (�A → �B)
3. A → �A
4. Rule: Modus Ponens.

The last modal axiom is also called co-reflection. One may consider this axiom
as the principle which connects intuitionistic truth and intuitionistic knowledge.

From a Kripkean point of view, the logic IEL− is the logic of all frames
〈W,R,E〉 [1]. Here 〈W,R〉 is a partial order and E is a binary ‘knowledge‘relation,
a subrelation of �. The relation E should satisfy the following conditions:

1. E(w) ⊆ R(w) for each w ∈ W
2. E(u) ⊆ E(w), if wRu

c© Springer Nature Switzerland AG 2020
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A model for IEL− is a quadruple M = 〈W,R,E, ϑ〉, an extended intuitionis-
tic Kripke model with the additional forcing relation for modal formulas defined
via the relation E.

M, x � �A ⇔ ∀y ∈ E(x) M, y � A.

Thus, one has the following theorem proved by Artemov and Protopopescu:

Theorem 1. Let F be a class of IEL− frames defined as above, then Log(F) =
IEL−.

Krupski and Yatmanov investigated proof-theoretical and algorithmic
aspects of the stronger logic IEL. In this paper [7], they provided the sequent
calculus for IEL and proved that the derivability problem of this calculus is
PSPACE-complete.

2 Motivation

Let us discuss the motivation of our research briefly.
Functional programming languages such as Haskell, Idris or Purescript have

special type classes1 for computation with computational environment.
By computational context (or, environment), we mean some, roughly speak-

ing, type-level map f , where f is a “function” from ∗ to ∗: such a type-level map
takes a simple type which has kind ∗ and yields another simple type of kind
∗. For more detailed description of the type system with kinds implemented in
Haskell see [12].

Here, the underlying type class is Functor which is defined as follows:

class Functor f where
fmap : : ( a −> b) −> f a −> f b

In Haskell, Functor is a generalisation of such higher-order function as map.
This function passes some unary function and the list of elements and yields
another one list applying that function to each element of an input list. In other
words, map returns an image of a list by a given function. Let us take a look at
its implementation briefly:

map : : ( a −> b) −> [ a ] −> [ b ]
map f [ ] = [ ]
map f ( x : xs ) = f x : (map f xs )

The first line declares that map is a binary function. The arguments of map
are a unary function of type a → b and a list of elements from type a. The output
is a list of elements from type b. This line of the piece of code is the so-called
type-signature. Type-signature describes the behaviour of the function in terms
of input and output types.

1 In Haskell, type class is a general interface for some special group of datatypes.
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The next two lines describe a recursive implementation of map. At first, we tell
that an image of the empty list is empty. This part is the termination condition
of a recursion. After that, we consider the case with a non-empty list. A non-
empty list is a list obtained by adding an element to the top of the list. Suppose
one has a list xs and x is an element of type a. It is obvious that x : xs is a
non-empty list. Then, in the case of non-empty list x : xs, one needs to call
map recursively on the tail xs. We also apply a given function f to the head x.
Finally, we add f x to the top of the list map f xs which is an image of the tail
xs.

A list is one of the simplest examples of a functor in such languages as
Haskell. Generally, Functor provides a uniform method to carry unary functions
through parametrised type such as a list. In other words, the notion of a functor
in functional programming is similar to the functor from category theory.

One may extend a functor to the so-called monad which is a functional pro-
gramming counterpart of Kleisli triples. In Haskell-like languages, one also has
the type class called Monad, a type class of an abstract data type of action in
some computational environment. Here we define the Monad type class as follows:

class Functor m => Monad m where
return : : a −> m a
(>>=) : : m a −> ( a −> m b) −> m b

Monad is a type class that extends Functor with two methods called return
and (>>=) (a monadic bind).

Monads provide a uniform tool to describe some sequence of actions, where
the result of each step depends on the previous ones somehow. In other words,
one has so-called monadic binding by which such a sequence of actions with
dependencies performs.

In Haskell, one has a parametrised data type called Maybe. The main use of
Maybe is redefining some partial function as the total one. Here is the definition:

data Maybe a = Nothing | Just a

The data type consists of two constructors. Suppose we deal with some com-
putation that might terminate with some failure. Nothing is a flag that claims
this failure arose. The second constructor Just stores some value of type a, a
successful result of a considered computation.

For example, one needs to extract the first element of some list, but there
might be a failure, if the list is empty. This problem could solved with the Maybe
data type:

safeHead : : [ a ] −> Maybe a
safeHead [ ] = Nothing
safeHead (x : xs ) = Just x

The Maybe instance of Monad is the following one:

instance Monad Maybe where
return = Just
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(Just x ) >>= f = f x
Nothing >>= f = Nothing

Here, the return method merely embeds any value of type a into the type
Maybe a via the Just constructor. The implementation of a monadic bind for
Maybe is also quite simple. Suppose one has a function f of type a → Maybe b
and some value x of type Maybe a. Here we match on x. If x is Nothing, then
the monadic bind yields Nothing. Otherwise, we extract the value of type a and
apply a given function to the extracted value.

The monad interface for Maybe allows one to perform sequences of actions,
where some value on some step of execution might be undefined. If all values
are well defined on each step, then the result of an execution is a term of the
form Just n. Otherwise, if something went wrong and we have no required value
somewhere, then the computation halts with Nothing.

The other examples of Monad instances have more or less the same explana-
tion since the monadic interface was proposed for a side-effect processing.

Let us discuss why Applicative class was introduced since this class is rel-
atively recent. This class was described by Paterson and McBride to describe
effectful programming in an applicative style [8].

One may consider the Applicative type class as the intermediate one
between Functor and Monad.

The main aim of an applicative functor is a generalisation the action of a
functor for functions of arbitrary arity, for instance:

l i f tA2
: : App l i ca t i v e f
=> ( a −> b −> c )
−> f a −> f b −> f c

l i f tA2 f x y = ( ( pure f ) <∗> x ) <∗> y

liftA2 is a version of fmap for arbitrary two-argument function. It is clear that
one may implement liftA3, liftA4, and liftAn for each n ∈ N. In the case of
lists, liftA2 passes two-argument function, two lists, and yields the list obtained
by applying to every possible pair the first element of which is an element of the
first list and the second element belongs to the second list.

The case of monadic computation was introduced by Moggi [9] who pro-
vided so-called monadic metalanguage, the modal lambda calculus that describe
a computation with an abstract monad. From a proof-theoretical point of view,
this modal extension of the simply-typed lambda calculus is Curry-Howard iso-
morphic to the lax logic considered by Goldblatt in the context of Grothendieck
topology [3], where a modal operator is understood as a so-called geometric
modality.

In this paper, we consider applicative computation type-theoretically, which
is weaker than the monadic one.

It is not difficult to see that the modal axioms of IEL− and types of the
Applicative methods in Haskell-like languages are syntactically similar to each
other. We investigate the relationship between intuitionistic epistemic logic
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IEL− and applicative computation by constructing the type system which is
Curry-Howard isomorphic to IEL−.

This type system consists of the rules for simply-typed lambda-calculus
extended via the special modal rules. We assume that our type system will
axiomatise the simplest case of an applicative computation. We provide a proof-
theoretical view of this kind of computation in functional programming and
prove such metatheoretical properties as strong normalisation and confluence.

The initial idea to consider applicative functors type-theoretically belongs to
Krishnaswami [6] and we are going to develop his ideas.

3 Typed Lambda-Calculus Based on IEL−

The first is to define the natural deduction calculus for NIEL−. For simplicity,
we restrict our language to →, ∧, and �.

Definition 2. The natural deduction calculus NIEL− for IEL− is an extension
of the intuitionistic natural deduction calculus with the additional inference rules
for modality:

ax
Γ,A � A

Γ,A � B →I
Γ � A → B

Γ � A Γ � B ∧I
Γ � A ∧ B

Γ � A �I1Γ � �A

Γ � A → B Γ � A →E
Γ � B

Γ � A1 ∧ A2 ∧E , i = 1, 2
Γ � Ai

Γ � �−→
A

−→
A � B �I2Γ � �B

The first modal rule allows one to derive co-reflection and its consequences.
The second modal rule is a counterpart of �I rule in natural deduction calcu-
lus for constructive K (see [5]). We will denote Γ � �A1, . . . , Γ � �An and
A1, . . . , An � B as Γ � �−→

A and
−→
A � B for brevity.

It is straightforward to check that the second modal rule is equivalent to the
�-rule à la K:

Γ � A
�Γ � �A

Let us show that one may translate NIEL− into IEL− as follows:

Lemma 1. Γ �NIEL− A ⇒ IEL− � ∧
Γ → A.

Proof. Induction on the derivation. Let us consider the modal cases.
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1. If Γ �NIEL− A, then IEL− � ∧
Γ → �A.

(1)
∧

Γ → A assumption
(2) A → �A co-reflection
(3) (

∧
Γ → A) → ((A → �A) → (

∧
Γ → �A)) IPC theorem

(4) (A → �A) → (
∧

Γ → �A) from (1), (3) and MP
(5)

∧
Γ → �A from (2), (4) and MP

2. If Γ �NIEL− �−→
A and

−→
A � B, then IEL− � ∧

Γ → �B.
(1)

∧
Γ → �A1, . . . ,

∧
Γ → �An assumption

(2)
∧

Γ →
n∧

i=1

�Ai IEL− theorem

(3)
n∧

i=1

�Ai → �
n∧

i=1

Ai IEL− theorem

(4)
∧

Γ → �
n∧

i=1

Ai from (2), (3) and transitivity

(5)
n∧

i=1

Ai → B assumption

(6) (
n∧

i=1

Ai → B) → �(
n∧

i=1

Ai → B) co-reflection

(7) �(
n∧

i=1

Ai → B) from (5), (6) and MP

(8) �
n∧

i=1

Ai → �B from (7) and normality

(9)
∧

Γ → �B from (4), (8) and transitivity

��
Lemma 2. If IEL− � A, then NIEL− � A.

Proof. By straightforward derivation of modal axioms in NIEL−. We will con-
sider those derivations via terms below. ��

On the next step, we build the typed lambda-calculus based on the NIEL−

by proof-assignment in inference rules. Let us define terms and types for this
modal lambda calculus.

Definition 3. The set of terms:
Let V be the set of variables. The set Λ� of terms is defined by the grammar:
Λ� :: = V | (λV.Λ�) | (Λ�Λ�) | (〈Λ�, Λ�〉) | (π1Λ�) | (π2Λ�) |

(box Λ�) | (let box V
∗ = Λ∗

� in Λ�)

where V
∗ and Λ∗

� denote the set of finite sequences of variables ∪∞
i=0V

i and the
set of finite sequences of terms ∪∞

i=0Λ
i
�. In the term (let box−→x =

−→
M in N),

the sequence of variables −→x and the sequence of terms
−→
M should have the same

length. Otherwise, the term is not well-formed.
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As we discuss below, the terms of the form let box−→x =
−→
M in N correspond

to the special local binding.

Definition 4. The set of types:
Let T be the set of atomic types. The set T� of types is generated by the

grammar:
T� ::=T | (T� → T�) | (T� × T�) | (�T�) (1)

A context is defined standardly [10,12] as a sequence of type declarations
Γ = {x1 : A1, . . . , xn : An}, where xi is a variable and Ai is a type for each
i ∈ {1, . . . , n}.
Definition 5. The modal lambda calculus λIEL− based on NIEL−

∧,→:

ax
Γ, x : A � x : A

Γ, x : A � M : B →i
Γ � λx.M : A → B

Γ � M : A Γ � N : B ×i
Γ � 〈M,N〉 : A × B

Γ � M : A �I
Γ � box M : �A

Γ � M : A → B Γ � N : A →e
Γ � MN : B

Γ � M : A1 × A2 ×e, i = 1, 2
Γ � πiM : Ai

Γ � −→
M : �−→

A −→x :
−→
A � N : B let�

Γ � let box−→x =
−→
M in N : �B

Γ � −→
M : �−→

A is a short form for the sequence Γ � M1 : �A1, . . . , Γ � Mn :
�An and −→x :

−→
A � N : B is a short form for x1 : A1, . . . , xn : An � N : B. We

use this short form instead of let box x1, . . . , xn = M1, . . . , Mn in N .
The �I -typing rule is the same as ©-introduction in monadic metalanguage

[11]. �I injects an object of type A into �. According to this rule, it is clear
that the type constructor box reflects the Haskell method pure in Applicative
class.

The rule let� is similar to the �-rule in typed lambda calculus for intuition-
istic normal modal logic IK, which is introduced in [4]. Informally, one may
read let box−→x =

−→
M in N as a simultaneous local binding in N , where each free

variable of a term N should be binded with term of modalised type from
−→
M . In

other words, we modalise all free variables of term N and ‘substitute‘ them to
terms from the sequence

−→
M .

Our calculus extends the typed lambda calculus for IK with �I -rule with the
co-reflection rule which allows one to modalise any type in an arbitrary context.

Here are some examples:



Modal Type Theory Based on the Intuitionistic Modal Logic IEL− 243

x : A � x : A �I
x : A � box x : �A →I� (λx.box x) : A → �A

f : �(A → B)� f : �(A → B) x : �A � x : �A

g : A → B � g : A → B y : A � y : A →e
g : A → B, y : A � gy : B

let�
f : �(A → B), x : �A � let box g, y = f, x in gy : �B →I

f : �(A → B) � λx.let box g, y = f, x in gy : �A → �B →I� λf.λx.let box g, y = f, x in gy : �(A → B) → �A → �B

Here we provided the derivations for modal axioms of IEL−. In fact, we
proved Lemma 2 using proof-assignment via terms.

Now we define free variables and substitutions:

Definition 6. The set FV (M) of free variables for a term M :

1. FV (x) = {x};
2. FV (λx.M) = FV (M) \ {x};
3. FV (MN) = FV (M) ∪ FV (N);
4. FV (〈M,N〉) = FV (M) ∪ FV (N);
5. FV (πiM) = FV (M), i = 1, 2;
6. FV (box M) = FV (M);
7. FV (let box−→x =

−→
M in N) = ∪n

i=1FV (M),where n = |−→M |.
Definition 7. Substitution:

1. x[x := N ] = N , x[y := N ] = x;
2. (MN)[x := N ] = M [x := N ]N [x := N ];
3. (λx.M)[y := N ] = λx.M [y := N ], y ∈ FV (M);
4. (M,N)[x := P ] = (M [x := P ], N [x := P ]);
5. (πiM)[x := P ] = πi(M [x := P ]), i = 1, 2;
6. (box M)[x := P ] = box (M [x := P ]);
7. (let box−→x =

−→
M in N)[y := P ] = let box−→x = (

−→
M [y := P ]) in N .

Substitutions and free variable for terms of kind let box−→x =
−→
M in N are

defined similarly to [4]. That is, we do not take into account free variables of N
because those variables occur in the list −→x and are eliminated by the assignment
−→x =

−→
M .

Now we define the reduction rules:

Definition 8. β-reduction rules for λIEL− .

1. (λx.M)N →β M [x := N ]
2. π1〈M,N〉 →β M
3. π2〈M,N〉 →β N

4. let box−→x , y,−→z =
−→
M, let box−→w =

−→
N in Q,

−→
P in R →β

let box−→x ,−→w ,−→z =
−→
M,

−→
N,

−→
P in R[y := Q]

5. let box−→x = box
−→
M in N →β box N [−→x :=

−→
M ]
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6. let box = in M →β box M , where is an empty sequence of terms

If M reduces to N by one of these rules, then we will write M →r N . A
multistep reduction �r is a reflexive transitive closure of →r.

Now we formulate the standard lemmas for contexts.

Lemma 3. Generation for �I .
Let Γ � box M : �A, then Γ � M : A.

Proof. Straightforwardly. ��
Lemma 4. Basic lemmas.

1. If Γ � M : A and Γ ⊆ Δ, then Δ � M : A
2. If Γ � M : A, then Δ � M : A, where Δ = {x : A |(x : A) ∈ Γ & x ∈ FV (M)}
3. If Γ, x : A � M : B and Γ � N : A, then Γ � M [x := N ] : B

Proof. The items 1–2 are proved by induction on the derivation of Γ � M : A.
The item 3 is proved by induction on the derivation of Γ � N : A. ��
Theorem 2. Subject reduction

If Γ � M : A and M �r N , then Γ � N : A.

Proof. Induction on the derivation Γ � M : A and on the generation of →β .
The general statement follows from transitivity of �β . ��
Theorem 3. �β is strongly normalising;

Proof. Follows from Theorem 5 below, so far as reduction in monadic meta-
language is strongly normalising [2] and λIEL− is sound with respect to this
system. ��
Theorem 4. �r is confluent.

Proof. By Newman’s lemma [12], if the relation is strongly normalising and
locally confluent, then this relation is confluent.

It is sufficient to show that a multistep reduction �r is locally confluent.

Lemma 5. Local confluence
If M →r N and M →r Q, then there exists some term P , such that N �r P

and Q �r P .

Proof. Let us consider the following critical pairs and show that they are joinable:

1. let box x = (let box −→y = box
−→
N in P ) in M

β

��

β

������
�����

�����
�����

���

let box −→y = box
−→
N in M [x := P ] let box x = box P [−→y :=

−→
N ] in M
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let box−→y = box
−→
N in M [x := P ] →β

box M [x := P ][−→y :=
−→
N ]

let box x = box P [−→y :=
−→
N ] in M →β

box M [x := P [−→y :=
−→
N ]] ≡

Since x /∈ −→y
box M [x := P ][−→y :=

−→
N ]

2. let box x = (let box = in N) in M

β

��

β

������
�����

�����
�����

���

let box = in M [x := N ] let box x = box N in M

let box = in M [x := N ] →β let box (M [x := N ])
let box x = box N in M →β box (M [x := N ])

��
Also one may consider four critical pairs which are considered in confluence

proof for lambda-calculus based on the intuitionistic normal modal logic IK [4].
It is clear that those critical pairs are joinable too. ��

4 Relation with the Monadic Metalanguage

The monadic metalanguage is the modal lambda calculus calculus based on the
categorical interpretation of computation proposed by Moggi [9]. As we told
above, the monadic metalanguage might be considered as the type-theoretical
representation of computation with an abstract data type of action. In fact, the
monadic metalanguage is a type-theoretical formulation for monadic computa-
tion implemented in Haskell.

Let us show that λIEL− is sound with respect to the monadic metalanguage.

Definition 9. The monadic metalanguage
The monadic metalanguage is an extension of the simply typed lambda cal-

culus with the additional typing rules:

Γ � M : A ©I
Γ � val M : ©A

Γ � M : ©A Γ, x : A � N : ©B
let©

Γ � let val x = M in N : ©B

The reduction rules are the following ones (in addition to the standard rule
for abstraction and application):

1. let val x = val M in N →β N [x := M ];
2. let val x = (let val y = N in P ) in M →β let val y = N in (let val x =

P in M);
3. let val x = M in x →η M .

Let us define the translation x.y from λIEL− to the monadic metalanguage:
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1. xpiy = pi, where pi is atomic;
2. xA → By = xAy → xBy;
3. x�Ay = ©xAy.

1. xxy = x, x is a variable;
2. xλx.M y = λx.xM y;
3. xM N y = �M yxN y;
4. xbox M y = val xM y;
5. xlet box−→x =

−→
M in N y = let val−→x = x

−→
M y in xN y.

where let val−→x = x
−→
M y in N denotes let val x1 = xM1y in (. . . in (let val xn =

xMny in N) . . . )
It is clear that, if Γ = {x1 : A1, . . . , xn : An} is a context, then xΓ y = {x1 :

xA1y, . . . , xn : xAny}
Let us denote �λIEL− as the derivability relation in λIEL− in order to distin-

guish from the derivability in the monadic metalanguage.

Lemma 6. If Γ �λIEL− M : A, then xΓ y � xM y : xAy in the monadic metalan-
guage.

Proof. By induction on Γ �λIEL− M : A. One may prove the cases of �I and
let� as follows:

xΓ y � xM y : xAy
xΓ y � val xM y : ©xAy

xΓ y � x
−→
M y : ©x

−→
A y

−→x : x
−→
A y � xN y : xBy

−→x : x
−→
A y � val xN y : ©xBy

xΓ y � let val−→x = x
−→
M y in val xN y : ©xBy

��
Now one may formulate the following lemma:

Lemma 7. 1. xM [x := N ]y = xM y[x := xN y];
2. M �r N ⇒ xM y �β xN y;

Proof. 1. Induction on the structure of M .
2. By the induction on →r:

(a) For simplicity, we will consider the case with only one variable in let box
local binding, that can be easily extended to an arbitrary number of
valiables in local binding:
xlet box x = (let box−→y =

−→
N in P ) in M y =

let val x = (let val−→y = x
−→
N y in val xP y) in val xM y →β

let val−→y = x
−→
N y in (let val x = xP y in val xM y) →β

let val−→y = x
−→
N y in val xM y[x := xP y] =

xlet box−→y =
−→
N in M [x := P ]y
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(b)

xlet box−→x = box
−→
N in M y =

let val−→x = val x
−→
N y in valxM y →β

val xM y[−→x := x
−→
N y] =

xbox M [−→x :=
−→
N ]y

(c)
xlet box x = M in xy =
let val x = xM y in val x →η

xM y
��

Theorem 5. IEL− is sound with respect to the monadic metalanguage.

Proof. Follows from the lemmas above. ��

5 Summary

In this paper, we built the modal lambda-calculus based on the intuitionistic
epistemic logic IEL− and proved such metatheoretical properties as confluence
and strong normalisation. We investigated the connection between applicative
computation and IEL− in order to consider this kind of computation widely
used in functional programming type-theoretically.

Also, we proved that the obtained system has such properties as subject
reduction, confluence, and strong normalisation.
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Abstract. In classical computability theory, a recursive counterexam-
ple to a theorem shows that the latter does not hold when restricted
to computable objects. These counterexamples are highly useful in the
Reverse Mathematics program, where the aim of the latter is to deter-
mine the minimal axioms needed to prove a given theorem of ordinary
mathematics. Indeed, recursive counterexamples often (help) establish
the ‘reverse’ implication in the typical equivalence between said mini-
mal axioms and the theorem at hand. The aforementioned is generally
formulated in the language of second-order arithmetic and we show in
this paper that recursive counterexamples are readily modified to provide
similar implications in higher-order arithmetic. For instance, the higher-
order analogue of ‘sequence’ is the topological notion of ‘net’, also known
as ‘Moore-Smith sequence’. Our results on metric spaces suggest that the
latter can only be reasonably studied in weak systems via representations
(aka codes) in the language of second-order arithmetic.

Keywords: Recursive counterexamples · Higher-order arithmetic ·
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1 Introduction

Computability theory has its roots in the seminal work of Turing, providing an
intuitive notion of computation based on what we nowadays call Turing machines
([34]). Now, classical (resp. higher-order) computability theory deals with the
computability of sets of natural numbers (resp. higher-order objects). In classical
computability theory, a recursive counterexample to a theorem (formulated in
an appropriate language) shows that the latter does not hold when restricted to
computable sets. An historical overview may be found in the introduction of [7].

Recursive counterexamples are also highly useful in the Reverse Mathematics
program (RM hereafter; see Sect. 2.1). Indeed, the aim of RM is to determine
the minimal axioms needed to prove a given theorem of ordinary mathematics,
often resulting in an equivalence between these axioms and the theorem; recursive
counterexamples often (help) establish the ‘reverse’ implication from the theorem
at hand to the minimal axioms (see e.g. [29, p. 1368] for this opinion).
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S. Artemov and A. Nerode (Eds.): LFCS 2020, LNCS 11972, pp. 249–267, 2020.
https://doi.org/10.1007/978-3-030-36755-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36755-8_16&domain=pdf
http://orcid.org/0000-0001-8256-0009
https://doi.org/10.1007/978-3-030-36755-8_16


250 S. Sanders

As is well-known, both (classical) RM and classical recursion theory are
(essentially) restricted to the language of second-order arithmetic, i.e. natural
numbers and sets thereof. It is then a natural, if somewhat outlandish, question
whether recursive counterexamples (and the associated implications in classical
RM) yield any interesting results in higher-order RM and computability the-
ory. In this paper, we show that recursive counterexamples are readily modified
to provide interesting implications in higher-order arithmetic. We shall treat the
following theorems: montone convergence theorem/Specker sequences (Sect. 3.1),
compactness of metric spaces (Sect. 3.2), the Rado selection lemma (Sect. 3.3),
and the ordering of fields (Sect. 3.4).

We shall work in Kohlenbach’s higher-order RM ([16]; see Sect. 2.1). We do
not claim that the above results are always optimal or new; we even provide
a counterexample in Sect. 3.1. Our aim is to show that with little modification
recursive counterexamples, second-order as they may be, also establish results
in higher-order arithmetic. As a bonus, our results pertaining to metric spaces
suggest that the latter can only be reasonably studied in weak systems via rep-
resentations (aka codes) in the language of second-order arithmetic.

Finally, the reader is welcome to their own interpretation of the aforemen-
tioned results, as long it accords with all the facts. In our opinion, one reasonable
interpretation is that second- and higher-order arithmetic are not as different
as sometimes claimed, and that recursive counterexamples and reversals pro-
vide a bridge of sorts between the two. However, the results in this paper do
not support the argument that higher-order arithmetic contains ‘nothing new’
compared to second-order arithmetic, as discussed in detail in Sect. 4.2.

2 Preliminaries

We introduce Reverse Mathematics in Sect. 2.1, as well as its generalisation to
higher-order arithmetic, and the associated base theory RCAω

0 . We introduce
some essential axioms in Sect. 2.2.

2.1 Reverse Mathematics

Reverse Mathematics is a program in the foundations of mathematics initiated
around 1975 by Friedman ([8,9]) and developed extensively by Simpson ([28]).
The aim of RM is to identify the minimal axioms needed to prove theorems of
ordinary, i.e. non-set theoretical, mathematics. In almost all cases, these minimal
axioms are also equivalent to the theorem at hand (over a weak logical system).
The reversal, i.e. the derivation of the minimal axioms from the theorem, is often
proved based on recursive counterexample to the latter (see [29, p. 1368]).

We refer to [32] for an introduction to RM and to [28] for an overview of RM.
We expect basic familiarity with RM, but do sketch some aspects of Kohlenbach’s
higher-order RM ([16]) essential to this paper, including the base theory RCAω

0

(Definition 1). As will become clear, the latter is officially a type theory but can
accommodate (enough) set theory via Definition 4.



Lifting Recursive Counterexamples 251

First of all, in contrast to ‘classical’ RM based on second-order arithmetic
Z2, higher-order RM uses Lω, the richer language of higher-order arithmetic.
Indeed, while L2, the language of Z2, is restricted to natural numbers and sets
of natural numbers, higher-order arithmetic can accommodate sets of sets of
natural numbers, sets of sets of sets of natural numbers, et cetera. To formalise
this idea, define the collection of all finite types T by the two clauses:

(i) 0 ∈ T and (ii) if σ, τ ∈ T then (σ → τ) ∈ T,

where 0 is the type of natural numbers, and σ → τ is the type of mappings from
objects of type σ to objects of type τ . In this way, 1 ≡ 0 → 0 is the type of
functions from numbers to numbers, and n + 1 ≡ n → 0 maps type n objects to
numbers. Viewing sets as characteristic functions, we note that Z2 only includes
objects of type 0 and 1.

Secondly, the language Lω includes variables xρ, yρ, zρ, . . . of any finite type
ρ ∈ T. Types may be omitted when they can be inferred from context. The
constants of Lω include the type 0 objects 0, 1 and <0,+0,×0,=0 which are
intended to have their usual meaning as operations on N. Equality at higher
types is defined in terms of ‘=0’ as follows: for any objects xτ , yτ , we have

[x =τ y] ≡ (∀zτ1
1 . . . zτk

k )[xz1 . . . zk =0 yz1 . . . zk], (1)

if the type τ is composed as τ ≡ (τ1 → . . . → τk → 0). Furthermore, Lω includes
the recursor constant Rσ for any σ ∈ T, which allows for iteration on type
σ-objects as in the special case (2). Formulas and terms are defined as usual.

Definition 1. The base theory RCAω
0 consists of the following axioms.

a. Basic axioms expressing that 0, 1, <0,+0,×0 form an ordered semi-ring with
equality =0.

b. Basic axioms defining the well-known Π and Σ combinators (aka K and S
in [1]), which allow for the definition of λ-abstraction.

c. The defining axiom of the recursor constant R0: For m0 and f1:

R0(f,m, 0) := m and R0(f,m, n + 1) := f(n,R0(f,m, n)). (2)

d. The axiom of extensionality : for all ρ, τ ∈ T, we have:

(∀xρ, yρ, ϕρ→τ )
[
x =ρ y → ϕ(x) =τ ϕ(y)

]
. (Eρ,τ )

e. The induction axiom for quantifier-free1 formulas of Lω.
f. QF-AC1,0: The quantifier-free Axiom of Choice as in Definition 2.

Definition 2. The axiom QF-AC consists of the following for all σ, τ ∈ T:

(∀xσ)(∃yτ )A(x, y) → (∃Y σ→τ )(∀xσ)A(x, Y (x)), (QF-ACσ,τ )

for any quantifier-free formula A in the language of Lω.
1 To be absolutely clear, variables (of any finite type) are allowed in quantifier-free

formulas of the language Lω: only quantifiers are banned.
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We let IND be the induction axiom for all formulas in Lω.
As discussed in [16, §2], RCAω

0 and RCA0 prove the same sentences ‘up to
language’ as the latter is set-based and the former function-based. Recursion as
in (2) is called primitive recursion; the class obtained from Rρ for all ρ ∈ T is
called Gödel’s system T of all (higher-order) primitive recursive functionals.

We use the usual notations for natural, rational, and real numbers, and the
associated functions, as introduced in [16, pp. 288–289].

Definition 3 (Real numbers and related notions in RCAω
0 )

a. Natural numbers correspond to type zero objects, and we use ‘n0’ and ‘n ∈ N’
interchangeably. Rational numbers are defined as signed quotients of natural
numbers, and ‘q ∈ Q’ and ‘<Q’ have their usual meaning.

b. Real numbers are coded by fast-converging Cauchy sequences q(·) : N → Q,
i.e. such that (∀n0, i0)(|qn−qn+i| <Q

1
2n ). We use Kohlenbach’s ‘hat function’

from [16, p. 289] to guarantee that every q1 defines a real number.
c. We write ‘x ∈ R’ to express that x1 := (q1(·)) represents a real as in the

previous item and write [x](k) := qk for the k-th approximation of x.
d. Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if

(∀n0)(|qn − rn| ≤ 2−n+1). Inequality ‘<R’ is defined similarly. We sometimes
omit the subscript ‘R’ if it is clear from context.

e. Functions F : R → R are represented by Φ1→1 mapping equal reals to equal
reals, i.e. satisfying (∀x, y ∈ R)(x =R y → Φ(x) =R Φ(y)).

f. The relation ‘x ≤τ y’ is defined as in (1) but with ‘≤0’ instead of ‘=0’. Binary
sequences are denoted ‘f1, g1 ≤1 1’, but also ‘f, g ∈ C’ or ‘f, g ∈ 2N’. Elements
of Baire space are given by f1, g1, but also denoted ‘f, g ∈ NN’.

g. For a binary sequence f1, the associated real in [0, 1] is r(f) :=
∑∞

n=0
f(n)
2n+1 .

h. Sets of type ρ objects Xρ→0, Y ρ→0, . . . are given by their characteristic func-
tions F ρ→0

X ≤ρ→0 1, i.e. we write ‘x ∈ X’ for FX(x) =0 1.

The following special case of item (h) is singled out, as it will be used frequently.

Definition 4 [RCAω
0 ]. A ‘subset D of NN’ is given by its characteristic function

F 2
D ≤2 1, i.e. we write ‘f ∈ D’ for FD(f) = 1 for any f ∈ NN. A ‘binary relation

� on a subset D of NN’ is given by some functional G
(1×1)→0
� , namely we write

‘f � g’ for G�(f, g) = 1 and any f, g ∈ D. Assuming extensionality on the reals
as in item (e), we obtain characteristic functions that represent subsets of R and
relations thereon. Using pairing functions, it is clear we can also represent sets
of finite sequences (of reals), and relations thereon.

Next, we mention the highly useful ECF-interpretation.

Remark 5 (The ECF-interpretation). The (rather) technical definition of
ECF may be found in [33, p. 138, §2.6]. Intuitively, the ECF-interpretation [A]ECF
of a formula A ∈ Lω is just A with all variables of type two and higher replaced
by countable representations of continuous functionals. Such representations are
also (equivalently) called ‘associates’ or ‘RM-codes’ (see [15, §4]). The ECF-
interpretation connects RCAω

0 and RCA0 (see [16, Prop. 3.1]) in that if RCAω
0
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proves A, then RCA0 proves [A]ECF, again ‘up to language’, as RCA0 is formulated
using sets, and [A]ECF is formulated using types, namely only using type zero
and one objects.

In light of the widespread use of codes in RM and the common practise of
identifying codes with the objects being coded, it is no exaggeration to refer
to ECF as the canonical embedding of higher-order into second-order RM. For
completeness, we also list the following notational convention for finite sequences.

Notation 6 (Finite sequences). We assume a dedicated type for ‘finite
sequences of objects of type ρ’, namely ρ∗. Since the usual coding of pairs of
numbers goes through in RCAω

0 , we shall not always distinguish between 0 and
0∗. Similarly, we do not always distinguish between ‘sρ’ and ‘〈sρ〉’, where the
former is ‘the object s of type ρ’, and the latter is ‘the sequence of type ρ∗ with
only element sρ’. The empty sequence for the type ρ∗ is denoted by ‘〈〉ρ’, usually
with the typing omitted.

Furthermore, we denote by ‘|s| = n’ the length of the finite sequence sρ∗
=

〈sρ
0, s

ρ
1, . . . , s

ρ
n−1〉, where |〈〉| = 0, i.e. the empty sequence has length zero. For

sequences sρ∗
, tρ

∗
, we denote by ‘s∗t’ the concatenation of s and t, i.e. (s∗t)(i) =

s(i) for i < |s| and (s ∗ t)(j) = t(|s| − j) for |s| ≤ j < |s| + |t|. For a sequence
sρ∗

, we define sN := 〈s(0), s(1), . . . , s(N − 1)〉 for N0 < |s|. For a sequence
α0→ρ, we also write αN = 〈α(0), α(1), . . . , α(N − 1)〉 for any N0. By way of
shorthand, (∀qρ ∈ Qρ∗

)A(q) abbreviates (∀i0 < |Q|)A(Q(i)), which is (equivalent
to) quantifier-free if A is.

2.2 Some Axioms of Higher-Order RM

We introduce some functionals which constitute the counterparts of some of the
Big Five systems, in higher-order RM. We use the formulation from [16] and
[19]. First of all, ACA0 is readily derived from:

(∃μ2)(∀f1)
[
(∃n)(f(n) = 0) → [(f(μ(f)) = 0) ∧ (∀i < μ(f))f(i) = 0] (μ2)

∧ [(∀n)(f(n) = 0) → μ(f) = 0]
]
,

and ACAω
0 ≡ RCAω

0 + (μ2) proves the same sentences as ACA0 by [13, Theo-
rem 2.5]. The (unique) functional μ2 in (μ2) is called Feferman’s μ ([1]), and is
clearly discontinuous at f =1 11 . . . ; in fact, (μ2) is equivalent to the existence
of F : R → R such that F (x) = 1 if x >R 0, and 0 otherwise ([16, §3]), and to

(∃ϕ2 ≤2 1)(∀f1)
[
(∃n)(f(n) = 0) ↔ ϕ(f) = 0

]
. (∃2)

Finally, we list the following comprehension axiom, first introduced in [24].

Definition 7 [BOOT]. (∀Y 2)(∃X1)(∀n0)
[
n ∈ X ↔ (∃f1)(Y (f, n) = 0)

]
.

Clearly, BOOT is inspired by the following axiom:

(∃E3 ≤3 1)(∀Y 2)
[
(∃f1)(Y (f) = 0) ↔ E(Y ) = 0

]
, (∃3)
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yielding full second-order arithmetic Z2, while ZΩ
2 ≡ RCAω

0 +(∃3) is a conservative
extension of the latter (see [13]). No comprehension axiom weaker than (∃3) can
prove BOOT by the results in [19], [20], [25]. Nonetheless, one readily shows that
[BOOT]ECF is equivalent to ACA0 and we finish this section with a conceptual
remark on how ECF connects second- and higher-order arithmetic.

Remark 8 (The nature of ECF). We discuss the meaning of the words ‘A is
converted into B by the ECF-translation’. Such statement is obviously not to be
taken literally, as e.g. [BOOT]ECF is not verbatim ACA0. Nonetheless, [BOOT]ECF
follows from ACA0 by noting that (∃f1)(Y (f, n) = 0) ↔ (∃σ0∗

)(Y (σ∗00, n) = 0)
for continuous Y 2 (see [24, §3]). Similarly, let HBU be the Heine-Borel theorem
for uncountable covers of Cantor space as studied in [19]. Then [HBU]ECF is not
verbatim the Heine-Borel theorem for countable covers, but the latter does imply
the former by noting that for continuous functions, the associated canonical cover
has a trivial countable sub-cover enumerated by the rationals in [0, 1].

In general, that continuous objects have countable representations is the very
foundation of the formalisation of mathematics in L2, and identifying continuous
objects and their countable representations is routinely done. Thus, when we say
that A is converted into B by the ECF-translation, we mean that [A]ECF is about
a class of continuous objects to which B is immediately seen to apply, with
a possible intermediate step involving representations. Since this kind of step
forms the bedrock of classical RM, it is therefore harmless in this context.

3 Main Results

We establish the results sketched in Sect. 1. In each section, we study a known
recursive counterexample and show that it lifts to higher-order arithmetic with
minimal effort.

3.1 Specker Nets

In Sect. 3.1, we lift the implication involving the monotone convergence theorem
for sequences and arithmetical comprehension to higher-order arithmetic. This
results in an implication involving the monotone convergence theorem for nets
indexed by Baire space and the comprehension axiom BOOT from Sect. 2.2. Nets
and associated concepts are introduced in Sect. 3.1.

In more detail, the proof that the monotone convergence theorem implies
ACA0 from [28, III.2] is based on a recursive counterexample by Specker ([31]),
who proved the existence of a computable increasing sequence of rationals in
the unit interval that does not converge to any computable real number. We
show that these results lift to the higher-order setting in that essentially the
same proof yields that the monotone convergence theorem for nets indexed by
Baire space implies BOOT. In particular, the notion of Specker sequence readily
generalises to Specker net. We provide full details for this case, going as far as
comparing the original and ‘lifted’ proof side-by-side. A much less detailed proof
was first published in [24].
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Nets: Basics and Definitions. We introduce the notion of net and associated
concepts. Intuitively speaking, nets are the generalisation of sequences to (pos-
sibly) uncountable index sets; nets are essential for convergence in topology and
domain theory. On a historical note, Moore-Smith and Vietoris independently
introduced these notions about a century ago in [18] and [35], which is why nets
are also called Moore-Smith sequences. Nets and filters yield the same conver-
gence theory, but e.g. third-order nets are represented by fourth-order filters, i.e.
nets are more economical in terms of type complexity (see [2]).

We use the following definition from [14, Ch. 2].

Definition 9 [Nets]. A set D = ∅ with a binary relation ‘�’ is directed if

a. The relation � is transitive, i.e. (∀x, y, z ∈ D)([x � y ∧ y � z] → x � z).
b. For x, y ∈ D, there is z ∈ D such that x � z ∧ y � z.
c. The relation � is reflexive, i.e. (∀x ∈ D)(x � x).

For such (D,�) and topological space X, any mapping x : D → X is a net in
X. We denote λd.x(d) as ‘xd’ or ‘xd : D → X’ to suggest the connection to
sequences. The directed set (D,�) is not always explicitly mentioned together
with a net xd.

We only use directed sets that are subsets of NN, i.e. as given by Definition 4.
Similarly, we only study nets xd : D → R where D is a subset of NN. Thus, a
net xd in R is just a type 1 → 1 functional with extra structure on its domain
D provided by ‘�’ as in Definition 4, i.e. part of third-order arithmetic.

The definitions of convergence and increasing net are of course familiar.

Definition 10 [Convergence of nets]. If xd is a net in X, we say that xd con-
verges to the limit limd xd = y ∈ X if for every neighbourhood U of y, there is
d0 ∈ D such that for all e � d0, xe ∈ U .

Definition 11 [Increasing nets]. A net xd : D → R is increasing if a � b implies
xa ≤R xb for all a, b ∈ D.

Many (convergence) notions concerning sequences carry over to nets mutatis
mutandis. A rather general RM study of nets may be found in [26], [27], [24],
[25]. We shall study the monotone convergence theorem for nets as follows.

Definition 12 [MCT
[0,1]
net ]. Any increasing net in [0, 1] indexed by NN converges.

The ‘original’ monotone convergence theorem for sequences as in [28, III.2]
is denoted MCT[0,1]

seq . Following Remark 8, we say that MCT[0,1]
seq is the ECF-

interpretation of MCT
[0,1]
net . The implications MCT[0,1]

seq ← ACA0 and MCT
[0,1]
net ←

BOOT are in fact proved in exactly the same way.
Finally, sequences are nets with index set (N,≤N) and theorems pertaining

to nets therefore apply to sequences. However, some care is advised as e.g. a
sub-net of a sequence is not necessarily a sub-sequence (see [25, §3]).
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Specker Nets and Comprehension. In this section, we show that MCT
[0,1]
net →

BOOT using a minor variation of the well-known proof MCT[0,1]
seq → ACA0 from

[28, III.2.2] involving Specker sequences.
First of all, we distill the essence of the latter proof, as follows.

i. We prove MCT[0,1]
seq → range, where the latter states that the range exists for

any function, i.e. (∀f1)(∃X ⊂ N)(∀k ∈ N)
(
k ∈ X ↔ (∃m0)(f(m) = k)

)
.

ii. Fix f1 and define the Specker sequence cn :=
∑n

i=0 2−f(i).
iii. Note that MCT[0,1]

seq applies and let c be limn→∞ cn.
iv. Establish the following equivalence:

(∃m0)(f(m) = k) ↔ (∀n0)
(|cn − c| < 2−k → (∃i ≤ n)(f(i) = k)

)
, (3)

v. Apply Δ0
1-comprehension to (3), yielding the set X needed for range.

We now show how to lift the previous steps to higher-order arithmetic, resulting
in a proof of MCT

[0,1]
net → BOOT in Theorem 15.

Regarding item (v), to lift proofs involving Δ0
1-comprehension to the higher-

order framework, we introduce the following comprehension axiom:

(∀Y 2, Z2)
[
(∀n0)

(
(∃f1)(Y (f, n) = 0) ↔ (∀g1)(Z(g, n) = 0)

)
(Δ-CA)

→ (∃X1)(∀n0)(n ∈ X ↔ (∃f1)(Y (f, n) = 0)
]
.

A snippet of countable choice suffices to prove Δ-comprehension and we observe
that the ECF-translation converts Δ-comprehension into Δ0

1-comprehension
while QF-AC0,1 becomes QF-AC0,0, all following Remark 8.

Theorem 13. The system RCAω
0 + QF-AC0,1 proves Δ-CA.

Proof. The antecedent of Δ-comprehension implies the following

(∀n0)(∃g1, f1)(Z(g, n) = 0 → Y (f, n) = 0). (4)

Applying QF-AC0,1 to (4) yields Φ0→1 such that

(∀n0)
(
(∀g1)(Z(g, n) = 0) → Y (Φ(n), n) = 0

)
, (5)

and by assumption an equivalence holds in (5), and we are done. ��
The previous is not spielerei : the crux of numerous reversals T → ACA0 is
that the theorem T somehow allows for the reduction of Σ0

1 -formulas to Δ0
1-

formulas, while Δ0
1-comprehension -included in RCA0- then yields the required

Σ0
1 -comprehension, and ACA0 follows. Additional motivation for Δ-CA is pro-

vided by Theorem 30.
Regarding item (i), lifting range to the higher-order framework is fairly basic:

we just consider the existence of the range of type two functionals (rather than
type one functions), as in RANGE below.
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Theorem 14. The system RCAω
0 proves that BOOT is equivalent to

(∀G2)(∃X1)(∀n0)
[
n ∈ X ↔ (∃f1)(G(f) = n)]. (RANGE)

Proof. The forward direction is immediate. For the reverse direction, define G2

as follows for n0 and g1: put G(〈n〉 ∗ g) = n + 1 if Y (g, n) = 0, and 0 otherwise.
Let X ⊆ N be as in RANGE and note that

(∀m0 ≥ 1)(m ∈ X ↔ (∃f1)(G(f) = m) ↔ (∃g1)(Y (g,m − 1) = 0)). (6)

which is as required for BOOT after trivial modification. ��
This theorem was first proved as [24, Theorem 3.19]. Again, the previous is not
a gimmick: reversals involving ACA0 are often established using range, and those
yield implications involving RANGE, for instance as follows.

Theorem 15. The system RCAω
0 + Δ-CA proves MCT

[0,1]
net → BOOT.

Proof. In case ¬(∃2), note that MCT
[0,1]
net implies MCT[0,1]

seq as sequences are nets
with directed set (N,≤N). By [28, III.2], ACA0 is available, which readily implies
BOOT for continuous Y 2, but all functions on NN are continuous by [16, §3].

In case (∃2), we shall establish RANGE and obtain BOOT by Theorem 14,
which mimics the above item (i). We let (D,�D) be a directed set with D consist-
ing of the finite sequences in NN and v �D w if (∀i < |v|)(∃j < |w|)(v(i) =1 w(j))
for any v1∗

, w1∗
. Note that (∃2) is necessary for this definition.

Following item (ii), fix some Y 2 and define the ‘Specker net’ cw : D → [0, 1]
as cw :=

∑|w|−1
i=0 2−Y (w(i)). Clearly, cw is increasing as in Definition 11 and let

c be the limit provided by MCT
[0,1]
net , following item (iii). Following item (iv),

consider the following generalisation of (3), for any k ∈ N:

(∃f1)(Y (f) = k) ↔ (∀w1∗
)
(|cw − c| < 2−k → (∃g ∈ w)(Y (g) = k)

)
, (7)

for which the reverse direction is trivial thanks to limw cw = c. For the forward
direction in (7), assume the left-hand side holds for f = f1

1 and fix some w1∗
0

such that |c − cw0 | < 1
2k

. Since cw is increasing, we also have |c − cw| < 1
2k

for w �D w0. Now there must be f0 in w0 such that Y (f0) = k, as otherwise
w1 = w0 ∗ 〈f1〉 satisfies w1 �D w0 but also cw1 > c, which is impossible.

Note that (7) has the right form to apply Δ-CA (modulo obvious coding),
and the latter provides the set required by RANGE, following item (v). ��

We refer to the net cw from the proof as a Specker net following the concept
of Specker sequence pioneered in [31]. We hope that the reader agrees that the
previous proof is exactly the final part of the proof of [28, III.2.2] as in items (i)–
(v), save for the replacement of sequences by nets and functions by functionals.
The aforementioned ‘reuse’ comes at a cost however: the proof of MCT

[0,1]
net ↔

BOOT in [24, §3.2] does not make use of countable choice or Δ-CA. Moreover,
from the proof of this equivalence, once can essentially ‘read off’ that a realiser
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for MCT
[0,1]
net computes ∃3 in the sense of Kleene’s S1-S9, and vice versa (see also

[25, §3.1]). It seems one cannot obtain this S1-S9 result from the above proof
because of Δ-CA.

Finally, Theorem 15 readily generalises by increasing the size of the index
sets to any set of objects of finite type. The case of nets indexed by N ≡ NN → N
may be found in [24, Theorem 3.38]. In particular, the monotone convergence
theorem for nets indexed by N in [0, 1] implies the following axiom:

(∀G3)(∃X1)(∀n0)
[
n ∈ X ↔ (∃Y 2)(G(Y ) = n)], (RANGE1)

which states the existence of the range of type three functionals.

3.2 Compactness of Metric Spaces

Complete separable metric spaces are represented (or: coded) in second-order
arithmetic by countable dense subsets with a pseudo-metric (see e.g. [4,28]).
Various notions of compactness can then be formulated and their relations have
been analysed in detail (see e.g. [4]). In this section, we lift some of these results
to higher-order arithmetic; in doing so, we shall observe that the development of
metric spaces in weak systems must proceed via codes, lest strong comprehen-
sions or countable choice be needed in basic cases.

Our starting point is [4, Theorem 3.13], which establishes the equivalence
between ACA0 and every (countable) Heine-Borel compact complete metric space
is totally bounded. The reverse implication is established via range and we lift
this result to higher-order arithmetic. We make use of the standard definition of
metric spaces, which does not use coding and can be found verbatim in [22,23].

Definition 16. A complete metric space D̃ over NN consists of D ⊆ NN, an
equivalence2 relation =D, and d : (D × D) → R such that for all e, f, g ∈ D:

a. d(e, f) =R 0 ↔ e =D f ,
b. 0 ≤R d(e, f) =R d(f, e),
c. d(f, e) ≤R d(f, g) + d(g, e),

and such that every Cauchy sequence in D converges to some element in D.

To be absolutely clear, the final condition regarding D̃ in the definition means
that if λn.fn is a sequence in D such that (∀k0)(∃N )(∀m0, n0 ≥ N)(d(fn, fm) <R
1
2k

), then there is g ∈ D such that (∀k0)(∃n0)(∀m ≥ n)(d(fm, g) < 1
2k

). A point
in D̃ is just any element in D. Two points e, f ∈ D̃ are said to be equal if e =D f .
Note that the ‘hat function’ from [16] readily yields R as a metric space over NN.

We use standard notation like B(e, r) for the open ball {f ∈ D : d(f, e) <R r}.
The first item in Definition (16) expresses a kind of extensionality property and
we tacitly assume that every mapping with domain D respects ‘=D’.

2 An equivalence relation is a binary, reflexive, transitive, and symmetric relation.



Lifting Recursive Counterexamples 259

Definition 17 [Heine-Borel]. A complete metric space D̃ over NN is Heine-Borel
compact if for any Y : D → R+, the cover ∪e∈DB(e, Y (e)) has a finite sub-cover.

We define countable Heine-Bore compactness as the previous definition restricted
to countable covers of D.

Definition 18 [Totally bounded]. A complete metric space D̃ over NN is totally
bounded if there is a sequence of finite sequences λn.x0→1

∗

n of points in D̃ such
that for any x ∈ D there is n ∈ N such that d(x, xn(i)) < 2−n for some i < |xn|.
We now obtain the following theorem by lifting the proof of [4, Theorem 3.13].

Theorem 19. RCAω
0 + IND proves that either of the following items:

a. a Heine-Borel compact complete metric space over NN is totally bounded,
b. item (a) restricted to countable Heine-Borel compactness,
c. item (a) with sequential compactness instead of Heine-Borel compactness,

implies the comprehension axiom BOOT.

Proof. We derive RANGE from item (a), and BOOT is therefore immediate;
the implication involving item (b) is then immediate. Fix some Y 2 and define
D = NN∪{0D} where 0D is some special element. Define f =D e as Y (f) =0 Y (e)
for any e, f ∈ D\{0D}, while 0D = 0D is defined as true and f =D 0D is defined
as false for d ∈ D \ {0D}.

Define d : D2 → R as follows: d(f, g) = |2−Y (f) − 2−Y (g)| if f, g =D 0,
d(0D, 0D) = 0, and d(0D, f) = d(f, 0D) = 2−Y (f) for f =D 0. Clearly, this is
a metric space in the sense of Definition 16 and the ‘zero element’ 0D satisfies
limn→∞ d(0D, fn) =R 0, assuming Y is unbounded on NN and λn.fn is a sequence
in D witnessing this, i.e. Y (fn) ≥ n for any n ∈ N.

Now, given a Cauchy sequence λn.fn in D, either it converges to 0D or
d(0D, fn) is eventually constant, i.e. the completeness property of D̃ is satisfied.
Moreover, the Heine-Borel property as in Definition 17 is also straightforward,
as any neighbourhood of 0D covers all but finitely many 2−Y (f) for f ∈ NN by
definition. One seems to need IND to form the finite sub-cover. Let λn.xn be the
sequence provided by item (a) that witnesses that D̃ is totally bounded. Now
define X ⊆ N as:

n ∈ X ↔ (∃i < |xn+1|)
[
2−n =R d(0D, xn+1(i))], (8)

and one readily shows that n ∈ X ↔ (∃f1)(Y (f) = n), i.e. RANGE follows. Note
that one can remove ‘=R’ from (8) in favour of a decidable equality.

Regarding item (c), if a sequence λn.fn is ‘unbounded’ as in
(∀m0)(∃n0)(Y (fn) > m), then there is an obvious sub-sequence that converges
to 0D. In case we have (∃m0)(∀n0)(Y (fn) ≤ m), there is a constant sub-sequence,
and the space D̃ is clearly sequentially compact. ��

In light of the considerable logical hardness of BOOT, it is clear that for devel-
oping mathematics in weak systems, one must avoid items (a)–(c) and therefore
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Definition 16, i.e. the use of codes for metric spaces would seem to be essential for
this development. This is particularly true since item (b) only deals with count-
able covers, i.e. the only higher-order object is the metric space, and the same
for item (c). For those still not entirely convinced, Corollary 20 below shows that
countable choice can be derived from item (a), i.e. the non-constructive nature
of the latter is rampant compared to the version involving codes, namely [4,
Theorem 3.13.ii].

Now, Definition 18 is used in RM (see e.g. [4,28]) and is sometimes referred to
as effective total boundedness as there is a sequence that enumerates the finite
sequences of approximating points. As it turns out, this extra information yields
countable choice in the higher-order setting. Note that the monotone convergence
theorem for nets with a modulus of convergence similarly yields BOOT+QF-AC0,1

by [24, §3.3]; obtaining countable choice in this context therefore seems normal.

Corollary 20. The system RCAω
0 proves the implication [item (a) → QF-AC0,1].

Proof. In light of n ∈ X ↔ (∃f1)(Y (f) = n) and (8), one of the xn+1(i) for
i < |xn+1| provides a witness to (∃f1)(Y (f) = n) if such there is. ��

One can show that item (b) implies the associated second-order statement
in case ¬(∃2); the usual proof of [4, Theorem 3.13] can then be used. Thus,
the ECF-translation (more or less) converts item (a) to the original second-order
theorem. Intuitively speaking, assuming D ⊆ NN has a continuous characteristic
function, it can be replaced with an enumeration of all finite sequences σ0∗

such
that σ ∗ 00 ∈ D.

Finally, one can generalise the previous to higher types. For instance, Defini-
tion 16 obviously generalises mutatis mutandis to yield the definition of complete
metric spaces D̃ over N ≡ NN → N, and the same for any finite type. As opposed
to nets indexed by function spaces like N , a metric space based on the latter is
quite standard. The proof of Theorem 19 can then be relativised with ease.

Corollary 21. RCAω
0 + IND proves that the following:

(d) a countable Heine-Borel compact complete metric space over N is totally
bounded,

implies the comprehension axiom RANGE1.

Note that RANGE1 was first introduced in [24, §3.7] and follows from the mono-
tone convergence theorem for nets indexed by N . In fact, the usual proof of the
monotone convergence theorem involving Specker sequences immediately gener-
alises to Specker nets indexed by N , as discussed in Sect. 3.1.

In conclusion, it seems the development of metric spaces in weak systems
must proceed via codes, lest strong comprehensions or countable choice be
needed in basic cases. Indeed, BOOT is not provable from any comprehension
axiom weaker than (∃3), and ‘larger’ metric spaces require even stronger compre-
hension axioms (see Corollary 21). Moreover, countable choice is also lurking
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around the corner by Corollary 20, implying codes are the only way we can
reasonably study general metric spaces in weak logical systems.

3.3 Rado Selection Lemma

We study the Rado selection lemma, introduced in [21]. The countable version
of this lemma is equivalent to ACA0 by [28, III.7.8], while a proof based on range
can be found in [12, §3]. We shall lift the reversal to higher-order arithmetic,
making use of RANGE. We first need some definitions.

Definition 22. A choice function f for a collection of non-empty Ai indexed
by I, is such that f(i) ∈ Ai for all i ∈ I.

A collection of finite subsets of N indexed by NN is of course given by a mapping
Y 1→0∗

. In case the latter is continuous, the index set is actually countable.

Definition 23 [(Rado(NN)]. Let Ai be a collection of finite sets indexed by NN

and let F 2
J be a choice function for the collection Aj for j ∈ J , for any finite set

J ⊂ NN. Then there is a choice function F 2 for the entire collection Aj such that
for all finite J ⊂ NN, there is a finite K ⊇ J such that for j ∈ J , F (j) =0 FK(j).

The following theorem is obtained by lifting the proof of [12, Theorem 3.30] to
higher-order arithmetic.

Theorem 24. The system RCAω
0 proves Rado(NN) → BOOT.

Proof. We assume that finite sequences in NN are coded by elements of NN in
the usual way. We will prove RANGE, i.e. fix some G2. For any w1∗

, define Aw :=
{0, 1} and the associated choice function F 2

w(h1) := 1 if (∃g ∈ w)(G(g) = h(0)),
and zero otherwise. For F 2 as in Rado(NN), we have the following implications
for any n ∈ N and where ñ := 〈n〉 ∗ 〈n〉 ∗ . . . is a sequence:

(∃g1)(G(g) = n) → (∃w1∗
0 )(Fw0(ñ) = 1) → F (ñ) = 1 → (∃g1)(G(g) = n). (9)

The first implication in (9) follows by definition, while the others follow by the
properties of F 2. Hence, RANGE follows, yielding BOOT. ��

The previous proof, does not make use of countable choice or Δ-CA. Thus,
for larger collections indexed by subsets of type n objects, one readily obtains
e.g. RANGE1 as in Corollary 21, but without extra choice or comprehension.
Finally, a reversal in Theorem24 seems to need BOOT plus choice.

Hirst introduces a version of the Rado selection lemma in [12, §3] involving a
bounding function, resulting in a reversal to WKL0. A similar bounding function
could be introduced, restricting NN to some compact sub-space while obtaining
(only) the Heine-Borel theorem for uncountable covers as in HBU from [19].
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3.4 Fields and Order

We lift the following implication to higher-order arithmetic: that any countable
formally real field is orderable implies weak König’s lemma (see [28, IV.4.5]). This
result is based on a recursive counterexample by Ershov from [6], as (cheerfully)
acknowledged in [10, p. 145].

First of all, the aforementioned implication is obtained via an intermedi-
ate principle involving the separation of disjoint ranges of functions (see [28,
IV.4.4]). The generalisation of the latter to higher-order arithmetic and type
two functionals is SEP1 as follows:

(∀Y 2, Z2)
[
(∀f1, g1)(Y (f) = Z(g)) → (∃X1)(∀g1)(Y (g) ∈ X ∧ Z(g) ∈ X)

]
.

Modulo QF-AC0,1, SEP1 is equivalent to the Heine-Borel theorem for uncountable
covers of [0, 1] as in HBU from [19]. We need the following standard definitions.

Definition 25 [Field over Baire space]. A field K over Baire space consists of
a set |K| ⊆ NN with distinguished elements 0K and 1K , an equivalence relation
=K , and operations +K , −K and ×K on |K| satisfying the usual field axioms.

Definition 26. A field K is formally real if there is no sequence c0, . . . , cn ∈ |K|
such that 0 =K

∑n
i=0 c2i .

Definition 27. A field K over NN is orderable if there exists an binary relation
‘<K ’ on |K| satisfying the usual axioms of ordered field.

As in [28], we sometimes identify K and |K|. With these definitions, the following
theorem is a generalisation of [28, IV.4.5.2].

Definition 28. [ORD] A formally real field over NN is orderable.

We have the following theorem where the proof is obtained by lifting the proof
of [28, IV.4.5] to higher-order arithmetic.

Theorem 29. The system RCAω
0 + Δ-CA proves that ORD → SEP1.

Proof. Let pk be an enumeration of the primes and fix some Y 2, Z2 as in the
antecedent of SEP1. By [28, II.9.7], the algebraic closure of Q, denoted Q, is
available in RCA0. For w1∗

, define Kw as the sub-field of Q(
√−1) generated by:

{ 4
√

pY (w(i)) : i < |w|} ∪ {√−√
pZ(w(j)) : j < |w|} ∪ {√pk : k < |w|}.

Note that one can define such a sub-field from a finite set of generators in RCA0

(see [28, IV.4]). Unfortunately, this is not possible for infinite sets and we need a
different approach, as follows. By the proof of Theorem 14 (and (6) in particular),
there is a functional G2 such that:

(∀b ∈ Q(
√−1)

)[
(∃w1∗

)(b ∈ Kw) ↔ (∃v1∗
)(G(v) = b)

]
. (10)
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Intuitively, we now want to define the field ∪f∈NNK〈f〉, but the latter cannot
be (directly) defined as a set in weak systems. We therefore take the following
approach: we define a field K over Baire space using G from (10), as follows:
for w1∗

, v1∗
, define w +K v as that u1∗

such that G(u) = G(v) +Q(
√−1) G(w).

This u1∗
is found by removing from v ∗ w all elements from G(v) and G(w)

that sum to 0 in G(v) +Q(
√−1) G(w). Multiplication ×K is defined similarly,

while −Kw1∗
provides an extra label such that G(−Kw) = −b if G(w) = b and

the ‘inverse function’ of ×K is defined similarly. Using (10) for w = 〈〉, 0K and
1K are given by those finite sequences v0 and v1 such that G(v0) = 0Q(√−1)

and G(v1) = 1Q(√−1). Finally, v1∗
=K w1∗

is defined as the decidable equality
G(w) =Q(

√−1) G(v).
We call the resulting field K and proceed to show that it is formally real.

To this end, note that Kw can be embedded into Q by mapping √
pY (w(i)) to√

pY (w(i)) and
√

pk to −√
pk for k = Y (w(i)) for i < |w|. Hence, Kw is formally

real for every w1∗
. As a result, K is also formally real because a counterexample

to this property would live in Kv for some v1∗
. Applying ORD, K now has an

order <K . Since √
pY (f) has a square root in K〈f〉, namely 4

√
pY (f), we have

u1∗
>K 0K if G(u) = √

pY (f), using the basic properties of the ordered field
K. One similarly obtains v1∗

<K 0K if G(v) = √
pZ(g). Intuitively speaking, the

order <K thus allows us to separate the ranges of Y and Z. To this end, consider
the following equivalence, for every k0:

(∃u1∗
)(u >K 0K ∧ G(u) =

√
pk) ↔ (∀v1∗

)
(
G(v) =

√
pk → v >K 0K

)
. (11)

The forward direction in (11) is immediate in light of the properties of =K and
<K . For the reverse direction in (11), fix k0 and find w1∗

0 such that |w0| > k0.
Since √

pk0 ∈ Kw0 , (10) yields v1∗
0 such that G(v0) = √

pk0 . The right-hand side
of (11) implies v0 >K 0K , and the left-hand side of (11) follows.

Finally, apply Δ-comprehension to (11) and note that the resulting set X
satisfies (∀f1)(Y (f) ∈ X ∧ Z(f) ∈ X). Indeed, fix f1

1 and put k1 := Y (f1).
Clearly, √

pk1 ∈ K〈f1〉, yielding v1 such that G(v1) = √
pk1 by (10). As noted

above, the latter number has a square root, implying v1 >K 0, and Y (f1) = k1 ∈
X by definition. Similarly, k2 := Z(f1) satisfies √

pk2 ∈ K〈f1〉 and (10) yields v2
such that G(v2) = √

pk2 . Since −√
pk2 has a square root in K, v2 <K 0K follows,

and k2 ∈ X, again by the definition of X. ��
Next, the following theorem yield further motivation for Δ-CA.

Theorem 30. The system RCAω
0 proves SEP1 → Δ-CA.

Proof. To establish this implication, let G2,H2 be such that

(∀k0)
[
(∃f1)(G(f) = k) ↔ (∀g1)(H(g) = k)

]
. (12)

By definition, G,H satisfy the antecedent of SEP1. Let X be the set obtained
by applying the latter and consider:

(∃f1)(G(f) = k) → k ∈ X → (∀g1)(H(g) = k) → (∃f1)(G(f) = k),
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where the final implication follows from (12); for the special case (12), X is now
the set required by Δ-CA. For Y (1×0)→0, define G2 as follows for n0 and g1: put
G(〈n〉 ∗ g) = n + 1 if Y (g, n) = 0, and 0 otherwise. Note that for k ≥ 1, we have

(∃f1)(Y (f, k) = 0) ↔ (∃g1)(G(g) = k).

Hence, (12) is ‘general enough’ to obtain full Δ-CA, and we are done. ��

4 Concluding Remarks

We finish this paper with some conceptual remarks.

4.1 Future Work and Alternative Approaches

In this section, we discuss future work and alternative approaches.
First of all, we list some topics that can be lifted to higher-order arithmetic

in the same way as in the previous sections.

a. Algebraic closures of countable fields (see [28, III.3 and IV.4]).
b. Maximal ideals of countable fields (see [28, III.3] or [11]).
c. Ordering countable groups (see [30]).
d. Persistence of real numbers (see [5]).
e. Closed and separably closed sets in R (see [3, §2]).

In each case, the theorem at hand allows one to define the range of functions, or
separate the disjoint ranges of functions. The proofs in the indicated references
then generalise as in the previous sections.

Secondly, we discuss possible alternative approaches, and why they are not
fruitful. Now, recursive counterexamples often give rise to Brouwerian coun-
terexamples, and vice versa (see [7, p. xii] for this opinion). A Brouwerian coun-
terexample to a theorem shows that the latter is rejected in (a certain strand
of) constructive mathematics (see [17] for details). We choose to use recursive
counterexamples (and the associated RM results) because those are formulated
in a formal system, which enables us to lift the associated proofs without too
much trouble. The same would not be possible for Brouwerian counterexamples,
due to the lack of an explicit/unified choice of formal system for e.g. Bishop’s
constructive mathematics. To be absolutely clear, there is nothing wrong with
constructive mathematics in general; however, the lack of an explicit/unified for-
mal system for constructive mathematics means that we cannot ‘lift’ Brouwerian
counterexamples with the same ease (or at all).

4.2 Implications and Interpretations

While we initially had no intention of discussing the implications of the above
results in this paper, at least two colleagues have provided interpretations that
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do not do the justice to the bigger picture provided by [19] and [24]. This section
is an attempt at avoiding further misconceptions.

In our opinion, one reasonable interpretation of the results in this paper
is that second- and higher-order arithmetic are not as different as sometimes
claimed, and that recursive counterexamples and reversals provide a bridge of
sorts between the two. However, the results in this paper do not support the argu-
ment that higher-order arithmetic contains ‘nothing new’ compared to second-
order arithmetic. The exact opposite is the case, as follows; associated results
may be found in [19] and [24].

In a nutshell, Kohlenbach’s higher-order RM (see Sect. 2.1) is based on com-
prehension and discontinuity, while the aforementioned principles BOOT, HBU,
and SEP1 cannot be captured well in this hierarchy, necessitating a new ‘con-
tinuity’ hierarchy based on the neighbourhood function principle NFP, as first
developed in [24]. Let us discuss the previous sentence in a lot more detail.

First of all, as noted in Sect. 2.2, Kohlenbach’s counterpart of arithmetical
comprehension ACA0 is given by (∃2), and the functional in the latter is clearly
discontinuous. As shown in [16, §3], this axiom is also equivalent to e.g. the
existence of a discontinuous function on R. As expected, ECF converts (∃2) to
‘0 = 1’, as a discontinuous function does not have a continuous representation
by an RM-code. The same holds for the higher-order versions of Π1

k -CA0 mutatis
mutandis; the higher-order version of Π1

1 -CA0 is given by the Suslin functional. In
a nutshell, Kohlenbach’s higher-order comprehension is based on discontinuity.

Secondly, one of the main (conceptual) results of [19] is that higher-order
comprehension does not capture e.g. Heine-Borel compactness well at all. Indeed,
while ZΩ

2 proves HBU, the system Zω
2 ≡ ∪kΠ1

k -CAω
0 does not; note that Π1

k -CAω
0 is

RCAω
0 plus the existence of a type two functional deciding Π1

k -formulas (allowing
for type zero and one parameters only). The same holds for BOOT and related
theorems like the Lindelöf lemma for Baire space (see [19] for the latter). Since
all the aforementioned axioms have relatively weak first-order strength (at most
ACA0) in isolation, higher-order comprehension seems unsuitable for capturing
them. By contrast, we show in [24] that these axioms are equivalent to natural
fragments of the neighbourhood function principle NFP, which is as follows:

(∀f1)(∃n0)A(fn) → (∃γ ∈ K0)(∀f1)A(fγ(f)), (13)

for any formula A ∈ Lω and where ‘γ ∈ K0’ means that γ1 is a total asso-
ciate/RM code on NN. Thus, (13) expresses the existence of a continuous choice
function. In a nutshell, NFP is based on continuity and ECF converts NFP, BOOT,
and HBU to resp. Z2, ACA0, and WKL0.

In conclusion, while comprehension is generally a great axiom schema for
classifying theorems in RM (of any order), principles like BOOT and HBU do
not have a nice classification based on Kohlenbach’s higher-order comprehension.
By contrast, the latter do have a nice classification based on NFP. Now, higher-
order comprehension amounts to discontinuity, while NFP is a continuity schema,
stating as it does the existence of a continuous choice function. In this light,
higher-order arithmetic includes (at least) two ‘orthogonal’ scales (one based on
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continuity, one based on discontinuity) for classifying theorems. The ‘liftings’ in
this paper generalise second-order theorems to higher-order theorems from the
NFP-scale with little modification. One disadvantage is that the ‘lifted’ proofs
from this paper often use more comprehension or countable choice than the
known proofs, as discussed in Sect. 3.1.
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Abstract. Our previous research has studied the semantic tableaux
deductive methodology, of Fitting and Smullyan, and observed that it
permits boundary-case exceptions to the Second Incompleteness Theo-
rem, when multiplication is viewed as a 3-way relation (rather than as
a total function). It is known that tableaux methodologies do prove a
schema of theorems, verifying all instances of the Law of the Excluded
Middle. But yet we show that if one promotes this schema of theorems
into formalized logical axioms, then the meaning of the pronoun “I” in
our self-referencing engine changes, and our partial evasions of the Sec-
ond Incompleteness Theorem come to a complete halt.
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1 Introduction

The existence of a significant chasm separating the goals of Hilbert’s consistency
program from the implications of the Second Incompleteness Theorem was evi-
dent immediately after Gödel published [20]’s seminal result. We exhibited in
[45–47,49–53] a large number of articles about generalizations and boundary
case exceptions to the Second Incompleteness Theorem, starting with our 1993
article [45]. These papers, which included six papers published in the JSL and
APAL, showed that every extension α of Peano Arithmetic can be mapped onto
an axiom system α∗ that can recognize its own consistency and prove analogs
of all α’s Π1 theorems (in a slightly different language, called L∗).

These formalisms were called “Self-Justifying” systems. They were able to
verify their own consistency by containing a built-in self-referencing axiom
which declared “I am consistent” (as will be explained later). In particular,
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our axiom systems α∗ used the Fixed-Point Theorem to assure α∗ ’s self-
referencing analogs of the pronoun “I” would enable it to refer to itself in the
context of its “I am consistent” axiomatic declaration.

It turns out that such a self-referencing mechanism will produce unaccept-
able Gödel-style diagonalizing contradictions, when either α∗ or its particular
employed definition of consistency are too strong. This is because our method-
ologies only become contradiction-free when α∗ uses sufficiently weak underlying
structures.

These weak structures obviously have significant disadvantages. Their virtue
is that their formalisms α∗ can be arranged to prove more Π1 like theorems than
Peano Arithmetic, while offering some type of partial knowledge about their own
consistency. We will call such formalisms “Declarative Exceptions” to the
Second Incompleteness Theorem.

An alternative type of exception to the Second Incompleteness Theorem,
which we will call an “Infinite-Ranged Exception”, was recently developed
by Sergei Artemov [4] (It is related to the works of Beklemishev [6] and Artemov-
Beklemishev [5].) Artemov has observed Peano Arithmetic can verify its own
consistency, from a special infinite-ranging perspective. This means PA will gen-
erate an infinite set of theorems T1, T2, T3 ... where each Ti shows some subset
Si of PA is unable to prove 0 = 1 and where PA equals the formal union of these
special selected Si satisfying the inclusion property of S1 ⊂ S2 ⊂ S3 ⊂ ....

This perspective is also not a panacea. Thus, the abstract in [4] cautiously
used the adjective of “somewhat” to describe how it sought to partially achieve
the goals sought by Hilbert’s Consistency Program (with an infinite collection of
theorems T1, T2, T3 ... replacing Hilbert’s intended goal of finding one unifying
formal consistency theorem).

Our “Declarative”’ exceptions to the Second Incompleteness Theorem and
Artemov’s “Infinite Ranging” exceptions are rigorous results that are nicely com-
patible with each other. This is because each acknowledged that the Second
Incompleteness Theorem is a strong result, that will admit no full-scale excep-
tions. Also, these results are of interest because Gödel conjectured that Hilbert’s
Consistency Program would ultimately, reach, some levels of partial success (see
next section). We will explain, herein, how Gödel’s conjecture can be partially
justified, due to an unusual consequence of the Law of the Excluded Middle.

More specifically, we shall focus on the semantic tableaux deductive mecha-
nisms of Fitting and Smullyan [15,39] and their special properties from the per-
spective of our JSL-2005 article [49]. Each instance of the Law of the Excluded
Middle has been treated by most tableaux mechanisms as a provable theorem,
rather than as a built-in logical axiom. This may, at first, appear to be an
insignificant distraction because most deductive methodologies do not have their
consistency reversed when a theorem is promoted into becoming a logical axiom.

Our self-justifying axiom systems are different, however, because their built-
in self-referencing “I am consistent” axioms have their meanings change, funda-
mentally, when their self-referencing concept of “I” involves promoting a schema
of theorems verifying the Law of Excluded Middle into formal logical axioms.
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This effect is counterintuitive because similar distinctions exist almost
nowhere else in Logic. However some confusion, that has surrounded our prior
work, can be clarified when one realizes that an interaction between the self-
referencing concept of “I” with the Law of Excluded Middle causes the Sec-
ond Incompleteness Theorem to become activated precisely when the Law of
Excluded Middle is promoted into becoming a schema of logical axioms.

The intuitive reason for this unusual effect is that the transforming of derived
theorems into logical axioms can shorten proofs under the Fitting-Smullyan
semantic tableaux formalism. In a context where our special axiom systems in
Sect. 3 use a self-referencing “I am consistent” axiom and view multiplication as
a 3-way relation (rather than as a total function), this compression will be capa-
ble of enacting the power of the Second Incompleteness Theorem. Moreover, the
next chapter will explain how this issue is germane to central questions raised
by Gödel and Hilbert about feasible boundary-case exceptions to the Second
Incompleteness Effect.

2 Revisiting Some Intuitions of Gödel and Hilbert

Interestingly, neither Gödel (unequivocally) nor Hilbert (after learning about
Gödel’s work) would dismiss the possibility of a compromise solution, whereby
a fragment of the goals of Hilbert’s Consistency Program would remain intact.
Thus, Hilbert never withdrew [26]’s statement ∗ for justifying this program:

∗ “Let us admit that the situation in which we presently find ourselves with
respect to paradoxes is in the long run intolerable. Just think: in mathematics,
this paragon of reliability and truth, the very notions and inferences, as every-
one learns, teaches, and uses them, lead to absurdities. And where else would
reliability and truth be found if even mathematical thinking fails?”

Gödel was, also, cautious (especially during the early 1930’s) not to speculate
whether all facets of Hilbert’s Consistency program would come to a termination.
He thus inserted the following hesitant caveat into his famous 1931 paper [20]:

∗∗ “It must be expressly noted that Theorem XI” (e.g. the Second Incom-
pleteness Theorem) “represents no contradiction of the formalistic standpoint
of Hilbert. For this standpoint presupposes only the existence of a consistency
proof by finite means, and there might conceivably be finite proofs which cannot
be stated in P or in ...”

Several biographies of Gödel [11,22,55] have noted that Gödel’s intention (prior
to 1930) was to establish Hilbert’s proposed objectives, before he formalized
his famous result that led in the opposite direction. Moreover, Yourgrau’s biog-
raphy [55] of Gödel records how von Neumann found it necessary during the
early 1930’s to “argue against Gödel himself” about the definitive termination
of Hilbert’s consistency program, which “for several years” after [20]’s publica-
tion, Gödel “was cautious not to prejudge”. It is known that Gödel had hinted
that the Second Incompleteness Theorem was more significant during a 1933
Vienna lecture [21].
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Yet despite this endorsement, a YouTube talk by Gerald Sacks [38] explicitly
recalled Gödel telling Sacks, during 1961–1962, that some type of revival of
Hilbert’s Consistency Program would eventually become feasible (as explained
in detail by footnote1). This recent Year-2014 YouTube lecture by Gerald Sacks
had caught many scholars by surprise because Gödel published fewer than 85
pages in his life. Thus, Gödel never explicitly recorded, during the second half of
his life, his partial reluctance about the relevance of the Second Incompleteness
Theorem, as Sacks did recall in [38].

The research that has followed Gödel’s seminal 1931 discovery has mainly
focused on studying generalizations of the Second Incompleteness Theorem
(instead of also examining its boundary-case exceptions). Many of these gener-
alizations of the Second Incompleteness Theorem [2,3,7–10,13,16,23–25,29,32–
36,40–44,46–48,50] are quite beautiful. The author of this paper is especially
impressed by a generalization of the Second Incompleteness Effect, arrived at
by the combined work of Pudlák and Solovay together with added research by
Nelson and Wilkie-Paris [31,35,41,44]. These results, which also have been more
recently discussed in [10,23,42,46], have noted the Second Incompleteness The-
orem does not require the presence of the Principle of Induction to apply to
most formalisms that use a Hilbert-Frege type of deduction. (The Remark 1 of
the next chapter will offer a detailed summary of this helpful generalization of
the Second Incompleteness Theorem.)

3 Main Notation and Background Literature

Let us call an ordered pair (α,D) a Generalized Arithmetic Configuration
(abbreviated as a “GenAC”) when its first and second components are defined
as follows:

1. The Axiom Basis “α” for a GenAC is defined as its set of proper axioms.
2. The second component “D” of a GenAC, called its Deductive Apparatus,

is defined as the union of its logical axioms “LD” with its rules for obtaining
inferences.

Example 1. This notation allows us to separate the logical axioms LD, asso-
ciated with (α,D), from its “basis axioms” α. It also allows us to compare
different deductive apparatuses from the literature. Thus, the DE apparatus,
from Enderton’s textbook [12], uses only modus ponens as a rule of inference,
but it deploys a complicated 4-part schema of logical axioms. This differs from
the DM and DH apparatuses of the Mendelson [30] and Hájek-Pudlák [25] text-
books, which use a more reduced set of logical axioms but require two rules of
inference (modus ponens and generalization). The DF apparatus, from Fit-
ting’s and Smullyan’s textbooks [15,39], actually uses no logical axioms, but
1 Some quotes from Sacks’s YouTube talk [38] are that Gödel “did not think” the

objectives of Hilbert’s Consistency Program “were erased” by the Incompleteness
Theorem, and Gödel believed (according to Sacks) it left Hilbert’s program “very
much alive and even more interesting than it initially was”.



272 D. E. Willard

it instead employs a broader “tableaux style” rule of inference. AN IMPOR-
TANT POINT is that while proofs have different lengths under different appa-
ratuses, all the common apparatuses will produce the same set of final theorems
from an initial common “axiom basis” of α (as explained in footnote2).

Definition 1. Let α again denote an axiom basis, D designate a deduction
apparatus, and (α,D) denote their GenAC. Henceforth, (α,D)’s will be called
Self Justifying when

i. one of (α,D)’s theorems (or possibly one of α’s axioms) states that the
deduction method D, applied to the basis system α, produces a consistent
set of theorems, and

ii. the GenAC formalism (α,D) is actually, in fact, consistent.

Example 2. Using Definition 1’s notation, our prior research [45,46,49,50,53]
constructed GenAC pairs (α,D) that were “Self Justifying”. We also proved that
the Incompleteness Theorem implies specific limits beyond which self-justifying
formalisms simply cannot transgress. For any (α,D), all our articles observed it
was easy to construct a system αD ⊇ α that satisfies the Part-i condition (in
an isolated context where the Part-ii condition is not also satisfied). In essence,
αD could consist of all of α’s axioms plus the added “SelfRef(α,D)” sentence,
defined below:

⊕ There is no proof (using D’s deduction method) of 0 = 1 from the
union of the axiom system α with this sentence “SelfRef(α,D)” (looking
at itself).

Kleene [28] was the first to show how to encode analogs of SelfRef(α,D)’s above
statement, which we often call an “I AM CONSISTENT” axiom. Each
of Kleene, Rogers and Jeroslow [27,28,37] emphasized αD may be inconsis-
tent (e.g. violate Part-ii of self-justification’s definition despite the assertion in
SelfRef(α,D)’s particular statement). This is because if the pair (α,D) is too
strong then a quite conventional Gödel-style diagonalization argument can be
applied to the axiom basis of αD = α+ SelfRef(α,D), where the added presence
of the statement SelfRef(α,D) will cause this extended version of α, ironically,
to become automatically inconsistent. Thus, an encoding for “SelfRef(α,D)” is
relatively easy, via an application of the Fixed Point Theorem, but this sentence
is potentially devastating.

Definition 2. Let Add(x, y, z) and Mult(x, y, z) denote two 3-way predicates,
specifying x + y = z and x ∗ y = z, for which the associative, commutative,
identity and distributive properties have Π1 style encodings provable under an
axiom system of α. Then we will say that α recognizes successor, addition and
multiplication as Total Functions iff it can prove all of (1)–(3) as theorems:

2 This is because all the common apparatuses satisfy the requirement of Gödel’s Com-
pleteness Theorem.
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∀x∃z Add(x, 1, z) (1)
∀x ∀y ∃z Add(x, y, z) (2)
∀x ∀y ∃z Mult(x, y, z) (3)

We will call the GenAC system (α,D) a Type-M formalism iff it includes (1)–
(3) as theorems, Type-A if it includes only (1) and (2) as theorems, and it will
be called Type-S if it contains only (1) as a theorem. Also, (α,D) will be called
Type-NS iff it can prove none of (1)–(3).

Remark 1. The separation of GenAC systems into the categories of Type−NS,
Type-S, Type-A and Type-M systems helps summarize the prior literature about
generalizations and boundary-case exceptions for the Second Incompleteness
Theorem. This is because:

i. The combined research of Pudlák, Solovay, Nelson and Wilkie-Paris [31,35,
41,44], as formalized by Theorem ++, implies that no natural Type−S sys-
tem (α,D) can recognize its own consistency (and thereby be self-justifying)
when D is one of Example 1’s three examples of Hilbert-Frege style deduction
operators of DE , DH or DM . It thus establishes the following result:

++ (Solovay’s modification [41] of Pudlák [35]’s formalism using
some of Nelson and Wilkie-Paris [31,44]’s methods): Let (α,D)
denote a Type-S GenAC system which assures the successor oper-
ation will provably satisfy both x′ �= 0 and x′ = y′ ⇔ x = y. Then
(α,D) cannot verify its own consistency whenever simultaneously D
is some type of a Frege-Hilbert deductive apparatus and α treats
addition and multiplication as 3-way relations, satisfying their usual
associative, commutative distributive and identity axioms.

Essentially, Solovay [41] privately communicated to us in 1994 an analog
of theorem ++. Many authors have noted Solovay has been reluctant to
publish his nice privately communicated results on many occasions [10,25,
31,33,35,44]. Thus, approximate analogs of ++ were explored subsequently
by Buss-Ignjatović, Hájek and Švejdar in [10,23,42], as well as in Appendix A
of our paper [46] and in [48] Also, Pudlák’s initial 1985 article [35] captured
the majority of ++’s essence, chronologically before Solovay’s observations,
Also, Friedman did some closely related work in [16].

ii. Part of what makes ++ interesting is that [46,49,50] presented two cases
of self-justifying GenAC systems, whose natural hybrid is precluded by ++.
Specifically, these results involve using Example 2’s self-referencing “I am
consistent” axiom (from statement ⊕). Thus, they established that some
(not all) Type-NS systems [46,50] can verify their own consistency under
a Hilbert-Frege style deductive apparatus3, and some (not all) Type-A sys-
tems [45,46,49,51] can, likewise, corroborate their consistency under a more

3 The Example 1 had provided three examples of Hilbert-Frege style deduction opera-
tors, called DE , DH and DM . It explained how these deductive operators differ from
a tableaux-style deductive apparatus by containing a modus ponens rule.
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restrictive semantic tableaux apparatus. Also, we observed in [47,52] how
one could refine ++ with Adamowicz-Zbierski’s methods [2] to show most
Type-M systems cannot recognize their semantic tableaux consistency.

Remark 2. Several of our papers, starting with our 1993 article [45], have used
Example 2’s “I am consistent” axiomatic declaration ⊕ for evading the Sec-
ond Incompleteness Effect. Other possible types of evasions rest on the cut-free
methods of Gentzen and Kreisel-Takeuti [19,29], an interpretational approach
(such as what Adamowicz, Bigorajska, Friedman, Nelson, Pudlák and Visser had
applied in [1,17,31,35,43]), or Artemov’s Infinite-Range perspective [4] (where
an infinite schema of theorems replaces one single unified consistency theorem).
We encourage the reader to examine all these articles, each of which has their
own separate virtues. Our focus, in this paper, will be primarily on the next
section’s Theorems 1 and 2. They will show that some types of partial (and not
full) evasions of the Second Incompleteness Effect are possible under a semantic
tableaux deductive apparatus.

4 Main Theorems and Related Notation

A function F is called Non-Growth when F (a1, . . . , aj) ≤ Maximum(a1, . . .
aj) does hold. Six examples of non-growth functions are Integer Subtraction
(where x − y is defined to equal zero when x ≤ y), Integer Division (where
x ÷ y equals x when y = 0, and it equals 	 x/y 
 otherwise), Maximum(x, y),
Logarithm(x), Root(x, y) = �x1/y� and Count(x, j) (which designates the num-
ber of physical “1” bits that are stored among x’s rightmost j bits). The term
U-Grounding Function will refer to either one of one of these six functions or
the growth-oriented Addition and Double(x) = x + x operations. Our language
L∗, introduced in [49], was built out of these eight functions plus the primitives
of “0”, “1”, “=” and “≤”.

This language L∗ differs from a conventional arithmetic by EXCLUDING
a formal multiplication function symbol. It CAN VIEW multiplication as a 3-
way relation (via the use of its Division primitive.) This revised notation will
lead us to a surprisingly strong evasion of the Second Incompleteness Effect.

Let t be any term. The v-based quantifiers used by the wffs ∀v ≤ t Ψ(v) and
∃ v ≤ t Ψ (v) will be called bounded quantifiers. Any formula in our language L∗,
all of whose quantifiers are similarly bounded, will be called a Δ∗

0 formula. The
Π∗

n and Σ∗
n formulae are defined by usual rules except they DO NOT contain

multiplication function symbols. These rules are that:

1. Every Δ∗
0 formula will also be a “Π∗

0” and “Σ∗
0” formula.

2. A wff will be called Π∗
n when it is encoded as ∀v1 ... ∀vk Φ with Φ being

Σ∗
n−1.

3. A wff will be called Σ∗
n when it is encoded as ∃v1..∃vk Φ, with Φ being Π∗

n−1.

Also, the sentence Ψ will be called a Rank-1* statement iff it can be encoded in
either a Π∗

1 or Σ∗
1 format. (The reader is reminded that our definitions for Π∗

1 or
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Σ∗
1 formulae differ from Arithmetic’s counterparts by excluding multiplication

function symbols.)
There will be three variants of formal deductive apparatus methods, which we

will now compare. The first is semantic tableaux. It will receive the abbreviated
name of “Tab” and correspond to Fitting’s textbook formalism from [15]. (It
is also summarized by us in the attached AppendixA.) Thus, a Tab-proof for
a theorem Ψ , from an axiom basis α is a tree-like structure that begins with
the sentence ¬Ψ stored inside the tree’s root and whose every root−to−leaf
path establishes a contradiction by containing some pair of contradictory nodes
that will “close” its path. The rules for generating internal nodes, along each
root−to−leaf path, are that each node must be either a proper axiom of α
or a deduction from an ancestor node via one of the AppendixA’s six stated
“elimination” rules for the ∧, ∨, →, ¬, ∀, and ∃ symbols.

Our second explored deductive apparatus is called Extended Tableaux, and
shall be abbreviated as “Xtab”. Its definition is identical to Tab-deduction,
except that for any sentence φ in our language L∗, the sentence φ ∨ ¬φ is allowed
as an internal node in an Xtab proof tree. (In other words, Xtab-deduction differs
from Tab-deduction by allowing all instances of the Law of Excluded Middle to
appear as permitted logical axioms. In contrast, Tab-deduction will view these
instances only as derived theorems.)

Our third deductive apparatus was called Tab-1 in [49]. It is, essentially, a
compromise between Tab and Xtab, where a “Tab-1” proof for Ψ from an axiom
basis α corresponds to a set of ordered pairs (p1, φ1), (p2, φ2), ..(pk, φk) where

1. φk = Ψ
2. Each pj is a Tab-proof of what we have called a Rank-1* sentence φj from

the union of α with the preceding Rank-1* sentences of φ1, φ2, .. φj−1 .

We emphasize Tab-1 deduction can be substantially less efficient than Xtab
because the former requires φj be a Rank-1* sentence, while Xtab does not
impose a similar Rank-1* constraint upon φ , when it invokes its permitted
axiom of φ ∨ ¬φ.

Let us say that an axiom system α owns a Level-1 appreciation of its own
self-consistency (under a deductive apparatus D) iff it can verify that D pro-
duces no two simultaneous proofs for a Π∗

1 sentence and its negation. Within
this context, where β denotes any basis axiom system using L∗ ’s U-Grounding
language, ISD(β) was defined in [49] to be an axiomatic formalism capable of
recognizing all of β’s Π∗

1 theorems and corroborating its own Level-1 consis-
tency under D’s deductive apparatus. It consisted of the following four groups
of axioms:

Group-Zero: Two of the Group-zero axioms will define the constant-symbols,
c̄0 and c̄1, designating the integers of 0 and 1. The Group-zero axioms will
also define the growth functions of Addition and Double(x) = x + x. (They
will enable our formalism to define any integer n ≥ 2 using fewer than
3 · � Logn � logic symbols.)
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Group-1: This axiom group will consist of a finite set of Π∗
1 sentences, denoted

as F , which can prove any Δ∗
0 sentence that holds true under the standard

model of the natural numbers. (Any finite set of Π∗
1 sentences F , with this

property, may be used to define Group-1, as [49] had noted.)
Group-2: Let �Φ� denote Φ’s Gödel Number, and HilbPrfβ(�Φ�, p) denote a Δ∗

0

formula indicating that p is a Hilbert-Frege styled proof of theorem Φ from
axiom system β. For each Π∗

1 sentence Φ, the Group-2 schema will contain
the below axiom (4). (Thus ISD(β) can trivially prove all β’s Π∗

1 theorems.)

∀ p {HilbPrfβ(�Φ�, p) ⇒ Φ} (4)

Group-3: The final part of ISD(β) will be a self-referencing Π∗
1 axiom, that

indicates ISD(β) is “Level-1 consistent” under D’s deductive apparatus. It
thus amounts to the following declaration:

# No two proofs exist for a Π∗
1 sentence and its negation, when D’s

deductive apparatus is applied to an axiom system, consisting of the
union of Groups 0, 1 and 2 with this sentence (looking at itself).

One encoding for # as a self-referencing Π∗
1 axiom, had appeared in [49].

Thus, (5) is a Π∗
1 representation for # where: (1) Prf ISD(β)(a, b) is a Δ∗

0

formula indicating that b is a proof of a theorem a from the axiom basis
ISD(β) under D’s deductive apparatus, and (2) Pair(x, y) is a Δ∗

0 formula
indicating that x is a Π∗

1 sentence and y represents x ’s negation.

∀ x ∀ y ∀ p ∀ q ¬ [ Pair(x, y) ∧ Prf ISD(β)(x, p) ∧ Prf ISD(β)(y, q)] (5)

For the sake of brevity, we will not provide the exact details, here, about how (5)
can be encoded via the Fixed Point Theorem. Adequate details were provided
by us in [46,49].

Definition 3. Let “D” denote any one of the Tab, Xtab or Tab-1 deductive
apparatus. Then we will say that the resulting mapping of ISD(•) is Con-
sistency Preserving iff ISD(β) is automatically consistent whenever all the
axioms of β hold true under the standard model of the natural numbers.

The preceding definition raises questions about whether the mappings of
ISTab(•), ISTab−1 (•), and ISXtab(•) are consistency preserving. It turns out that
Theorem 1 will show the first two of these mappings are consistency preserving,
while Theorem 2 explores how the Law of the Excluded Middle conflicts with
ISXtab(•)’s Group-3 axiom.

Theorem 1. The ISTab−1 (•) and ISTab(•) mapping are consistency preserving.
(I.e. the axiom systems ISTab−1 (β) and ISTab(β) are automatically consistent
whenever all β’s axioms hold true under the standard model of the Natural Num-
bers.)
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Theorem 2. In contrast, ISXtab(•) fails to be consistency-preserving mappings.
(More specifically, ISXtab(β) is automatically inconsistent whenever β proves
some conventional Π∗

1 theorems stating that addition and multiplication satisfy
their usual associative, commutative, distributive and identity properties.)

The proofs of Theorems 1 and 2 would be quite lengthy, if they were derived
from first principles. Fortunately, it is unnecessary for us to do so here because
we gave a detailed justification of Theorem1’s result for ISTab−1 (•) in [49], and
one can incrementally modify the Remark 1’s special Invariant of ++ to justify
Theorem 2. Thus, it will be possible for the next two sections of this paper to
adequately summarize the intuition behind Theorems 1 and 2, without delving
into all the formal details.

Part of the reason Theorems 1 and 2 are of interest is because of their surpris-
ing contrast. Thus, some historians have wondered whether Hilbert and Gödel
were entirely incorrect when their statements ∗ and ∗∗ suggested some form
of the Consistency Program should likely be viable. Moreover Gerald Sacks’s
Year-2014 YouTube lecture [38] has reinforced this question by recording how
Gödel had repeated analogs of ∗∗’s speculation during 1961–1962. The contrast
between Theorems 1 and 2 will thus provide a plausible suggestion that some
portion of what Hilbert and Gödel advocated may be part-way feasible.

This extended abstract will not have the page space to go into all the details.
However, the next three sections will, be sufficient to communicate the main gist
behind the proofs of Theorems 1 and 2,

5 Intuition Behind Theorem 1

Let us recall the acronym “Tab” stands for semantic tableaux deduction. This
was defined by Fitting [14,15] to be a tree-like proof of a theorem Ψ from an
axiom basis α , whose root consists of the temporary negated assumption of ¬ Ψ
and whose every root−to−leaf path establishes a contradiction by containing
some pair of contradictory nodes that “closes” its path. Each internal node
along these paths must either be a proper axiom of α or be a deduction from
an ancestor node via one of the “elimination” rules associated with the logic
symbols of ∧, ∨, →, ¬, ∀, or ∃ (that are itemized in the attached AppendixA).

Example 3. Let ISM
Tab(•) denote a mapping transformation identical to Theo-

rem 1’s formalism of ISTab(•), except that ISM
Tab shall contain a further multipli-

cation function operation and, accordingly, have its Group-3 “I am consistent”
axiom statements updated to recognize multiplication as a total function. It turns
out this change will cause ISM

Tab(•) to stop satisfying the consistency-preservation
property, which Theorem 1 attributed to ISTab(•).

The intuition behind this change can be roughly summarized if we let
x0, x1, x2, ... and y0, y1, y2, ... denote the sequences defined by:

x0 = 2 = y0 (6)
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xi = xi−1 + xi−1 (7)

yi = yi−1 ∗ yi−1 (8)

For i > 0 , let φi and ψi denote the sentences in (7) and (8) respectively. Also,
let φ0 and ψ0 denote (6)’s sentence. Then φ0, φ1, ... φn imply xn = 2n+1 ,
and ψ0, ψ1, ... ψn imply yn = 22

n

. Thus, the latter sequence shall grow at an
exponentially faster rate than the former. It turns out that this change in growth
speed will cause the ISM

Tab(•), and ISTab(•) to have opposite self-justification
properties.

In particular, let the quantities Log(yn) = 2n and Log(xn) = n + 1 represent
the lengths for the binary codings for yn and xn. Thus, yn’s coding will have a
length 2n, which is much larger than the n + 1 steps that ψ0, ψ1, ...ψn uses to
define yn’s existence. In contrast, xn’s binary encoding will have a smaller length
of n + 1. These observations are helpful because every proof of the Incomplete-
ness Theorem involves a Gödel number z encoding a capacity to self-reference
its own definition.

The faster growing series y0, y1, ... yn should, intuitively, have this self-
referencing capacity because yn ’s binary encoding has a 2n+1 length that
greatly exceeds the size of the O(n) steps used to define its value. Leaving aside
many of [47,52]’s further details, this fast growth explains roughly why a Type-
M logic, such as ISM

Tab , satisfies the semantic tableaux version of the Second
Incompleteness Theorem, unlike ISTab .

Our paradigm also explains why ISTab ’s Type-A formalisms produce
boundary-case exceptions to the semantic tableaux version of the Second Incom-
pleteness Theorem. This is because [49] showed that it was unable to construct
numbers z that can self-reference their own definitions (when only the more
slowly growing addition primitive is available). In particular assuming only two
bits are needed to encode each sentence in the sequence φ0, φ1, ...φn, the length
n + 1 for xn’s binary encoding is insufficient for encoding this sequence.

Leaving aside many of [49]’s details, this short length for xn explains the
core intuition behind [49]’s evasion of the Second Incompleteness Theorem under
ISTab . It arises essentially because of the difference between the growth rates of
the sequences x1, x2, x3... and y1, y2, y3....

There is obviously insufficient space for this extended abstract to provide
more details, here. A full detailed proof of Theorem1 can be found in [49].
It establishes (see4) that Peano Arithmetic can prove β’s consistency implies
both the consistency and also the self-justifying properties for ISTab−1 (β). Our
more modest goal, within the present abbreviated paper, has been merely to
summarize the intuition behind Theorem1’s surprising evasion of the Second
Incompleteness effect.

4 The exact meaning of this implication is subtle. This is because Peano Arithmetic
(PA) cannot know whether β is consistent when β = PA. Thus, unlike the quite
different formalism of ISTab−1 (PA) , the system of PA shall linger in a state of
self-doubt, about whether both PA and ISTab−1 (PA) are consistent.
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It arises, intuitively, because of the difference in growth rates between the
x1, x2, x3... and y1, y2, y3... series.

6 Summary of the Justification For Theorem 2

The proof of Theorem 2 is complex, but it can be nicely summarized because
it is related to the justification for Invariant ++, which Remark 1 had credited
to the combined work of Pudlák, Solovay, Nelson and Wilkie-Paris. The crucial
aspect of the Frege-Hilbert methodologies, explored by ++, is that modus ponens
assures that a proof of a theorem ψ from an axiom system α has a length no
greater than the sum of the proof-lengths needed to derive φ and φ → ψ from
α. This “Linear-Sum Effect” does not apply, actually, also to Tab-deduction
because it owns no analog of a modus ponens rule (for assuring that ψ’s proof
length is bounded by the sum of the proof lengths for φ and φ → ψ ).

The Xtab methodology, however, differs from Tab-deduction by allowing any
node of its proof-tree to store a sentence of the form φ ∨ ¬ φ , as an application
of its allowed use of the Law of Excluded Middle. This added feature will allow
an Xtab proof for ψ to have a length proportional to the sum of the proof lengths
for φ and φ → ψ (i.e. it can roughly simulate the actions of modus ponens). In
particular, the relevant Xtab proof for ψ will consist of the following four steps:

1. The root of an Xtab proof for ψ will be the usual temporary negated hypoth-
esis of ¬ψ (which the remainder of the proof tree will show is impossible to
hold).

2. The child of this root node will be an allowed invocation of the Law of the
Excluded Middle of the particular form φ ∨ ¬φ.

3. The relevant Xtab proof tree will next employ the AppendixA’s branching
rule for allowing the two sibling nodes of φ and ¬φ to descend from Item
2’s node.

4. Finally, our Xtab proof will insert below (3)’s left sibling node of φ a subtree
that is no longer than a proof for φ → ψ, and likewise insert a proof for φ
below (3)’s right sibling of ¬φ.

The point is that the last step of the above 4-part proof has a length no
greater than the sum of the two proof lengths for φ and φ → ψ (similar to
the proof compressions resulting from a modus ponens operation). Its first three
steps shall produce inconsequential effects that increase the overall proof length
by no more than a very tiny amount proportional to the length of the particular
sentence “φ → ψ”.

We can apply the preceeding “Linear-Sum Effect” to construct an analog
of Remark 1’s earlier Theorem ++ that now applies to Xtab deduction. Saving
several details for a longer article, the intuition behind this analog is that modus
ponens is the only rule of inference used by [12]’s classic textbook-style first-
order logic system, and Xtab can apply its Linear-Sum Effect to essentially
simulate modus ponens. Our natural analog of ++ will, thus, assure that any
axiom system A , using Xtab deduction, is automatically inconsistent when:
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I. A can verify Successor is a total function (as is formalized by Line (1)).
II. A can prove addition and multiplication (viewed as 3-way relations) sat-

isfy their usual associative, commutative, distributive and identity-operator
properties.

III. A proves an added theorem (which turns out to be false) affirming its own
consistency when the Xtab deductive apparatus is used.

The preceding paragraph has nicely captured the essence of Theorem 2’s
proof. It has noted ISXtab(β) is automatically inconsistent when it satisfies
analogs of the above three requirements (see footnote5). This is intuitively
because ISXtab(β) can roughly simulate the power of modus ponens, whose cru-
cial Linear-Sum Effect from modus ponens will be imitated by ISXtab(β) (when
the latter views the Law of Excluded Middle as a schema of logical axioms). Thus,
an analog of Remark 1’s invariant ++ shall apply, consequently, to ISXtab(β).

From a pedagogical perspective, one obvious drawback to this type of justi-
fication for Theorem 2 is that it assumes the reader is familiar with either the
combined work of Pudlák, Solovay, Nelson and Wilkie-Paris in [31,35,41,44], or
related work (also mentioned in Remark 1) by Buss-Ignjatović, Friedman, Hájek,
Švejdar [10,16,23,42] and in AppendixA of [46] (or in Willard’s closely related
paper of [48]).

Many readers will, of course be unfamiliar with any of this material because
it relies upon a much more sophisticated version of the Second Incompleteness
Theorem than does appear in most introductory logic textbooks. We have there-
fore inserted a brief AppendixB into this article. It explains the main idea behind
the Theorem ++, which the Remark 1 credited to a recurring theme appearing
in [10,16,23,25,31,35,41,42,44,46,48].

This appendix will not be sufficiently detailed to formulate the precise nature
of our reductionistic argument for justifying Theorem2. (The latter will be saved
for a longer version of this article.) Our AppendixB will, however be adequate
to provide the reader with a rough intuitive grasp of the type of extension of
Theorem ++, which is needed to establish Theorem 2’s generalization of the
Second Incompleteness Effect.

7 On the Significance of Theorems 1 and 2

The main topic of this paper is surprising because it is quite unusual for an
initially consistent formalism α to become inconsistent when its initial schema of
theorems (establishing the universal validity of the Law of the Excluded Middle)
is essentially transformed into becoming a formal schema of logical axioms.

The reason for this unusual effect is that the meaning of a Group-3 “I am
consistent” axiom changes, quite substantially, when theorems are transformed
into logical axioms. This is because unacceptable diagonalizing contradictions

5 ISXtab(β) actually satisfies a requirement stronger than Item I because it recognizes
addition as total.
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can occur (as summarized by footnote6 ) when such a transition significantly
alters the meaning of an “I am consistent” axiom.

The resulting contrast between Theorems 1 and 2 is helpful in explaining how
Hilbert and Gödel could simultaneously fully appreciate the significance of the
Second Incompleteness Theorem, but yet also allow their statements ∗ and ∗∗
to question whether its paradigm could be partially evaded. Moreover, Gödel’s
remark ∗∗ should not be ignored when Gerald Sacks’s year-2014 YouTube lecture
[38] has recalled how a middle-aged 55-year-old Kurt Gödel had repeated analogs
of his 1931 remark ∗∗ during the 1961–1962 period. (It is also noteworthy that
Harvey Friedman recorded a You-Tube lecture [18] in 2014 where he indicated he
was tentatively open to the possibility that the Second Incompleteness Theorems
might permit some type of limited forms of partial exceptions to it.)

Thus, while there is no doubt that the Second Incompleteness Theorem will,
certainly, always be remembered for its seminal impact on 20th century Logic, its
part-way exceptions should also be seen as significant. This is because futuristic
high-tech computers will better understand their self-capacities if they own some
partial awareness about their own consistency.

There is no page space to go into all the details here. However, the distinction
between the initial “IS(A)” system from our 1993 and 2001 papers [45,46] with
the more sophisticated ISTab−1 (β) formalism in our year-2005 article [49] should,
also, be briefly mentioned. Our older “IS(A)” formalism was actually simpler,
but it was substantially weaker because it only recognized the non-existence
of a proof of 0 = 1 from itself. In contrast, ISTab−1 (β)’s Group-3 axiom can
corroborate that no two simultaneous proofs exist for a Rank-1* sentence and
its negation. This is an important distinction, because the First Incompleteness
Theorem indicates no decision procedure can exist for separating all true from
false Rank-1* sentences. (See also [50,51,53,54] for other particular refinements
for our “IS(A)” formalism.)

In summary, the main purpose of this article has been to explore the con-
trast between the opposing Theorems 1 and 2. The latter theorem, thus, provides
another helpful reminder about the millenial importance of Gödel’s seminal Sec-
ond Incompleteness Theorem. Yet at the same time, Theorem 1 illustrates how
some partial exceptions to Gödel’s result do arise, as Hilbert and Gödel had pre-
dicted both in their statements ∗ and ∗∗ and in Gödel’s private communications
with Gerald Sacks [38].

The 2-way contrast between Theorems 1 and 2 may be as significant as their
individual actual results. This is because the Second Incompleteness Theorem is
fundamental to Logic. Many historians have, thus, been quite perplexed by the
partial reluctance that Hilbert and Gödel had expressed about it in ∗ and ∗∗. A
partial reason for this reluctance is, perhaps, significantly related to the contrast
between these two opposing theorems.

6 The point is that proofs are compressed when theorems are transformed into logical
axioms, and such compressions can produce diagonalizing contradictions under some
Type-A logics using “I am consistent” axioms.
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Appendix A: Formal Definition of a Tableaux Proof

Our definition of a semantic tableaux proof is similar to analogs in the textbooks
by Fitting and Smullyan [15,39]. A tableaux proof of a theorem Ψ from a set of
proper axioms, denoted as α , will be a tree structure whose root contains the
temporary contradictory assumption of ¬Ψ and whose every descending root-
to-leaf branch affirms a contradiction by containing both some sentence φ and
its negation ¬φ. Each internal node in this tree will be either a proper axiom of
α or a deduction from a higher ancestor in this tree using one of the following
six elimination rules for the logical connective symbols of ∧, ∨, →, ¬, ∀ and ∃.
These rules use a notation where “A=⇒B” is an abbreviation for a sentence B
being an allowed deduction from its ancestor of A.

1. Υ ∧ Γ =⇒ Υ and Υ ∧ Γ =⇒ Γ .
2. ¬¬Υ =⇒ Υ. Other rules for the “¬ ” symbol are: ¬(Υ ∨ Γ ) =⇒ ¬Υ ∧ ¬Γ ,

¬(Υ → Γ ) =⇒ Υ ∧¬Γ , ¬(Υ ∧Γ ) =⇒ ¬Υ ∨¬Γ , ¬∃v Υ (v) =⇒ ∀v¬Υ (v) and
¬∀v Υ (v) =⇒ ∃v ¬Υ (v)

3. A pair of sibling nodes Υ and Γ is allowed when their ancestor is Υ ∨ Γ.
4. A pair of sibling nodes ¬Υ and Γ is allowed when their ancestor is Υ → Γ .
5. ∀v Υ (v) =⇒ Υ (t) where t may denote any term.
6. ∃v Υ (v) =⇒ Υ (p) where p is a newly introduced parameter symbol.

A minor additional comment about our notation is that we treat “∀ v ≤ s Φ(v)”
as an abbreviation for ∀v {v ≤ s → Φ(v)} and likewise “∃ v ≤ s Φ(v)” as an
abbreviation for ∃v { v ≤ s ∧ Φ(v) }. In our year-2005 article [49], we thus
applied Rules 5 and 6 to derive the following further hybrid rules for processing
the bounded universal and also the bounded existential quantifiers:

a. ∀v ≤ s Υ (v) =⇒ t ≤ s → Υ (t) where t may be any arithmetic term.
b. ∃v ≤ s Υ (v) =⇒ p ≤ s ∧ Υ (p) where p is a new parameter symbol.

Appendix B: More Details About Theorem 2’s Proof

The most surprising aspect of Theorem 2 is the sharp contrast between its result
with the opposing property of Theorem1. Our goal in this appendix will be to
intuitively explain why the Invariant ++ (from Remark 1) ushers in a machinery
that applies only to Theorem2.

During our discussion, we will employ our U-Grounding language L∗ that
treats multiplication as a 3-way relation (rather than as a functional operation).
Its 3-way predicate Mult(x,y,z), for formalizing multiplication, is defined as fol-
lows:

[(x = 0 ∨ y = 0) ⇒ z = 0] ∧ [(x �= 0 ∧ y �= 0) ⇒ (
z

x
= y ∧ z − 1

x
< y)] (9)
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We will say that an axiom basis α is Regular iff

1. It presumes all the U-Grounding operations are total functions (including the
Addition and Doubling primitives).

2. It can prove all true Δ∗
0 sentences, and α is also consistent.

3. It can prove a Π∗
1 theorem showing addition and multiplication, viewed as

3-way relations, satisfy their usual associative, commutative, distributive and
identity-operator properties.

Also in this appendix, we will employ a notation where for any j ≥ 0, the
symbol ωj(x) will be recursively defined by the following rules:

1. ω0(x) = x2.
2. ωj+1(x) = 2ωj(2 · Log2(x+1))

These two rules imply that ωj+1(x) > ωj(x) and ω1(x) ≥ xx.

Clarification About Notation: Since our U-Grounding language L∗ does not
permit using any function symbols to grow as fast as multiplication, it does not
technically allow us to use any of the ωj primitive symbols. One can, however,
use techniques from [25]’s textbook to construct a Δ∗

0 formula ψj(x, y) that
satisfies (10)’s invariant for all standard numbers. It will, thus, capture most of
ωj ’s salient features.

∀ x ∀ y ψj(x, y) ⇔ ωj(x) = y (10)

Definition 4. A formula Φ(x) will be called Locally-J-Closed relative to the
axiom basis α iff α can prove the following three assertions about Φ(x) :

A. All of Φ(0), Φ(1) and Φ(2) are true.
B. The predicate Φ(x) is operationally closed under the growth operation ωj .

(Line (11) formally encodes this closure condition, using the preceding para-
graph’s notation.)

∀x ∀ y {[ψj(x, y) ∧ Φ(x)] ⇒ Φ(y)} (11)

C. The predicate Φ(x) is also closed under (12)’s decrement operation.

∀ x ∀ y < x {Φ(x) ⇒ Φ(y)} (12)

Theorem 3. For each regular axiom basis α (that is consistent) and for each
fixed integer J ≥ 1, there exists a corresponding formula Φ(x) where α can prove
that Φ(x) is Locally-J-Closed.

Due to a lack of page space, a formal proof of Theorem3 will be postponed
until a longer version of this article. Theorem 3 is related to various intermediate
results that were used to establish Remark 1’s Invariant ++ and [10,16,23,25,
31,35,41,42,44,46,48]’s closely related results.
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The fascinating feature of Theorem3 is that it can explain why Theorems 1
and 2 display nearly opposite effects with regards to Hilbert’s Second Open Ques-
tion. This is because the needed diagonalization for producing Theorem2’s varia-
tions of the Second Incompleteness Effect become feasible only7 when ISXtab(β)’s
Linear-Sum Effect is applied to the intermediate results produced by its possible
derived theorems (which include the formalisms that are illustrated by lines (11)
and (12)). On the other hand, no such similar types of nicely compressed con-
structed proofs are available under Theorem 1’s ISTab−1(β) formalism (because
all instances of the Law of Excluded Middle are excluded by it from becoming
logical axioms). This is the intuitive reason that Theorems 1 and 2 display such
sharply contrasting results.
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