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Abstract In this contribution, we present an overview of standard orthogonal
polynomials by using an algebraic approach. Discrete Darboux transformations
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1 Introduction

The aim of this contribution is to provide a self-contained presentation of the so
called Sobolev orthogonal polynomials, i.e., polynomials which are orthogonal with
respect to a bilinear form involving derivatives of its inputs, defined in the linear
space of polynomials with real coefficients. We start by focusing our attention on
an algebraic approach to the so called standard orthogonal polynomials, which are
polynomials orthogonal with respect to a linear functional, taking into account that
we can associate with such polynomials a structured matrix for their moments (a
Hankel matrix), a tridiagonal matrix (a Jacobi matrix reflecting the fact that the
multiplication operator is symmetric with respect to the above linear functional),
as well as an analytic function around infinity (the so called Stieltjes function, that
is the z-transform of the sequence of moments of the linear functional), such that
the denominators of the diagonal Padé approximants to such a function are the
corresponding orthogonal polynomials (we refer the reader to [17] and [70] for an
introduction to these topics). These three basic ingredients allow us to deal with a
theory that knows an increasing interest in the last decades (see [64], [37]).

The most useful standard orthogonal polynomials appear as polynomial eigen-
functions of second-order differential operators and constitute the so called classical
families—Hermite, Laguerre, Jacobi and Bessel—see [42] as well as [11]. All
of them can be written in terms of hypergeometric functions and they can be
characterized in several ways taking into account their hypergeometric character.
Beyond the above classical orthogonal polynomials, the so-called semiclassical
orthogonal polynomials constitute a wide class with an increasing interest for
researchers, taking into account their connections with Painlevé equations and
integrable systems [73]. They have been introduced in [69] from the point of view
of holonomic equations satisfied by orthogonal polynomials associated with weight
functions w(x) satisfying a Pearson differential equation (A(x)w(x))′ = B(x)w(x),
where A and B are polynomials. In the 80s, they have been intensively studied by P.
Maroni and co-workers (see [59] as an excellent and stimulating survey paper). The
role of semiclassical orthogonal polynomials in the study of orthogonal polynomials
with respect to univariate Sobolev inner products has been emphasized when the so
called coherent pairs of measures are introduced (see [63]) as well as some of their
generalizations (see [22]).

The structure of the paper is the following. In Sect. 2, a basic background
concerning linear functionals and the algebraic structure of the topological dual
space corresponding to the linear space of polynomials with real coefficients is
presented. Orthogonal polynomials with respect to linear functionals are defined and
the three-term recurrence relation they satisfy constitute a key point in the analysis
of their zeros. Discrete Darboux transformations for linear functionals are studied
in Sect. 3 in the framework of LU and UL factorizations of Jacobi matrices (see
[14]). The connection formulas between the corresponding sequences of orthogonal
polynomials are studied in the framework of the linear spectral transformations of
the Stieltjes functions associated with linear functionals. In Sect. 4, following [59],



From Standard Orthogonal Polynomials to Sobolev Orthogonal Polynomials:. . . 247

semiclassical linear functionals are introduced and some of their characterizations
are provided. The definition of class plays a key role in order to give a classification
of semiclassical orthogonal polynomials, mainly those of class zero (the classical
ones) and of class one (see [10]), which will play a central role in the sequel.
Thus, a constructive approach to describe families of semiclassical linear functionals
is presented. In particular, every linear spectral transformation of a semiclassical
linear functional is also semiclassical. On the other hand, the symmetrization
process of linear functionals is also studied and the invariance of the semiclassical
character of a linear functional by symmetrization is pointed out. This constitutes
the core of Sect. 5. In Sect. 6, orthogonal polynomials with respect to Sobolev
inner products associated with a vector of measures supported on the real line are
introduced. We emphasize the case where this vector of measures is coherent, i.e.,
their corresponding sequences of orthogonal polynomials satisfy a simple algebraic
relation. This fact allows to deal with an algorithm to generate Sobolev orthogonal
polynomials associated with coherent pairs of measures. Some analytic properties
of these polynomials are shown. Notice that the three-term recurrence relation that
constitutes a basic tool for the standard orthogonality is lost and, as a consequence,
new techniques for studying asymptotic properties of such orthogonal polynomials
are needed. In Sect. 7, multivariate Sobolev orthogonal polynomials are studied and
their representations in terms of semiclassical orthogonal polynomials and spherical
harmonics are given. A recent survey on Sobolev orthogonal polynomials can be
found in [56], both in the univariate and multivariate case. Finally, an updated list
of references provides a good guideline for the readers interested in these topics.

2 Background

Recall that a linear functional u defined on the linear space P of polynomials with
real coefficients is a mapping

u :P → R

p → 〈u, p〉

such that for every polynomials p, q, and every real numbers α, β,

〈u, α p + βq 〉 = α〈u, p〉 + β〈u, q〉.

In general, given a basis of polynomials {pn(x)}n≥0, and a sequence of real
numbers {μn}n≥0, a linear functional u is defined by means of its action on the
basis

〈u, pn〉 = μn, n ≥ 0,



248 J. C. García-Ardila et al.

and extended by linearity to all polynomials. If pn(x) = xn, n ≥ 0, then the
real numbers μn = 〈u, xn〉, n ≥ 0, are called moments with respect to the
canonical basis and we usually say that u is a moment functional. If pn(x) =
anx

n + lower degree terms, n ≥ 0,, an �= 0, the real numbers μ̃n = 〈u, pn〉, n ≥ 0,

are called the modified moments associated with the linear functional u.

For a linear functional u, we define its moment matrix as the semi-infinite Hankel
matrix M = (μi+j )

∞
i,j=0. If we denote

�n = det[(μj )
n
j=0] =

∣
∣
∣
∣
∣
∣
∣
∣
∣

μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
...

... · · · ...

μn μn+1 · · · μ2n

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

then u is said to be quasi-definite if �n �= 0 for n ≥ 0, and u is said to be positive-
definite if �n > 0 for n ≥ 0.

Definition 2.1 Given a linear functional u and a polynomial q(x) we define a new
linear functional q(x)u as

〈q(x)u, p〉 = 〈u, q(x) p(x)〉,

for every polynomial p ∈ P.

Definition 2.2 Given a linear functional u and a polynomial p(x) = ∑n
k=0 ak xk,

we define the polynomial (u ∗ p)(x) as

(u ∗ p)(x) :=
〈

uy,
xp(x) − yp(y)

x − y

〉

=
n
∑

k=0

(
n
∑

m=k

am μm−k

)

xk

= (1, x, . . . , xn)

⎛

⎜
⎝

μ0 . . . μn

. . .
...

μ0

⎞

⎟
⎠

⎛

⎜
⎝

a0
...

an

⎞

⎟
⎠ .

Definition 2.3 A sequence of polynomials {Pn(x)}n≥0 is said to be a sequence of
orthogonal polynomials with respect to u if

(i) deg(Pn) = n, and
(ii) 〈u, Pn Pm〉 = δn,m Kn with Kn �= 0,

where, as usual, δn,m denotes the Kronecker delta.

Theorem 2.4 (Existence and Uniqueness of Orthogonal Polynomials)

1. If u is a quasi-definite functional, then there exists a sequence of orthogonal
polynomials {Pn(x)}n≥0 associated with u.
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2. If {Qn(x)}n≥0 is another sequence of orthogonal polynomials associated with u,
then

Qn(x) = cn Pn(x), n ≥ 0,

where cn are non zero real numbers. That is, {Pn(x)}n≥0 is unique up to
multiplicative scalar factors.

Let u be a quasi-definite linear functional and {Pn(x)}n≥0 a sequence of
orthogonal polynomials associated with u. For each n ≥ 0, let kn denote the leading
coefficient of the polynomial Pn(x). The sequence of polynomials {P̂n(x)}n≥0 with

P̂n(x) := k−1
n Pn(x), n ≥ 0,

is called a sequence of monic orthogonal polynomials associated with u. In
particular, if u is positive-definite, then we can define a norm on P by

||p||u =
√

〈u, p2〉.

The sequence of polynomials {Qn(x)}n≥0 with

Qn(x) := Pn(x)

||Pn(x)||u , n ≥ 0,

is called the sequence of orthonormal polynomials with respect to u.
Using a matrix approach, we can rewrite the orthogonality as follows. If M is

the Hankel moment matrix associated with a quasi-definite linear functional, then
M has a unique Gauss-Borel factorization [35, p. 441] with

M = S−1D S−t , (2.1)

where, as usual, the superscript t denotes the transpose, S is a non-singular lower
triangular matrix with 1’s in the main diagonal, S−t := (S−1)t , and D is a diagonal
matrix. With this in mind, if χ(x) denotes the semi-infinite column vector χ(x) :=
(1, x, x2, · · · )t , then the sequence of monic orthogonal polynomials arranged in a
column vector as P := (P0(x), P1(x), P2(x), · · · )t can be written as P = Sχ(x). In
other words, S is the matrix of change of basis from the canonical basis to the basis
of monic orthogonal polynomials.

Notice also that if u is a positive-definite linear functional, then the entries of
D in (2.1) are positive and thus the factorization of the moment matrix M is the
standard Cholesky factorization. Moreover, if Q := (Q0(x),Q1(x),Q2(x), . . .)t

is the vector of orthonormal polynomials, then Q := S̃χ(x), where S̃ =
D−1/2S.
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Definition 2.5 The shift matrix is the semi-infinite matrix

� :=

⎛

⎜
⎜
⎜
⎝

0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...

⎞

⎟
⎟
⎟
⎠

.

The shift matrix satisfies the spectral property �χ(x) = x χ(x). Notice also that
from the symmetry of the Hankel moment matrix M , we have that �M = M�t.

Theorem 2.6 (Three-Term Recurrence Relation) Let u be a quasi-definite linear
functional and let {Pn(x)}n≥0 be the sequence of monic orthogonal polynomials
with respect to u. Then there exist two sequences of real numbers {an}n≥1 and
{bn}n≥0, with an �= 0 for n ≥ 1, such that

x Pn(x) = Pn+1(x) + bn Pn(x) + an Pn−1(x), n ≥ 0,

P−1(x) = 0, P0(x) = 1.
(2.2)

Moreover,

bn = 〈u, x P 2
n 〉

〈u, P 2
n 〉 , n ≥ 0, an = 〈u, P 2

n 〉
〈u, P 2

n−1〉
, n ≥ 1.

The above three-term recurrence relation can be written in matrix form as follows

x P = JmonP, where Jmon =

⎛

⎜
⎜
⎜
⎜
⎝

b0 1
a1 b1 1

a2 b2
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎠

.

The matrix Jmon is called a monic Jacobi tridiagonal matrix associated with the
sequence of monic orthogonal polynomials {Pn(x)}n≥0.

Similarly, if u is positive-definite, then the sequence of orthonormal polynomials
satisfies a three-term recurrence relation x Q = J Q, where J is a tridiagonal semi-
infinite symmetric matrix called a Jacobi matrix.

Theorem 2.7 If S is the semi-infinite upper triangular matrix obtained in the
Gauss-Borel factorization (2.1), then

Jmon = S �S−1.

Similarly, if u is a positive-definite linear functional and S̃ is the upper triangular
matrix obtained from the Cholesky factorization of the moment matrix, then J =
S̃ � S̃−1.
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Proof Let P = (P0(x), P1(x) · · · )t be the vector of monic orthogonal polynomials.
Using the shift matrix properties, we have

x P = x Sχ(x) = S �χ(x) = S �S−1 (S χ(x)) = S �S−1 P,

and the result follows.
If u is positive-definite, let Q = (Q0(x),Q1(x) · · · )t be the vector of orthonor-

mal polynomials.

x Q = x S̃χ(x) = S̃ �χ(x) = S̃ � S̃−1 (S̃ χ(x)) = S̃ � S̃−1 Q,

and we obtain the result ��
Theorem 2.8 (Favard’s Theorem) Let {bn}n≥0 and {an}n≥1 be arbitrary
sequences of real numbers with an �= 0 for n ≥ 1, and let {Pn(x)}n≥0 be a
sequence of monic polynomials defined by the recurrence formula

x Pn(x) = Pn+1(x) + bn Pn(x) + an Pn−1(x), n ≥ 0,

P−1(x) = 0, P0(x) = 1,

then there exists a quasi-definite linear functional u such that {Pn(x)}≥0 is the
sequence of monic orthogonal polynomials with respect to u. Furthermore, if
{an}n≥1 is a sequence such that an > 0 for n ≥ 1, then u is positive-definite.

If {Pn(x)}n≥0 is a sequence of monic orthogonal polynomials satisfying a three-
term recurrence (2.2), we define the sequence of associated polynomials of the
first kind {P (1)

n (x)}n≥0 as the sequence of polynomials that satisfy the three-term
recurrence relation

xP (1)
n (x) = P

(1)
n+1(x) + bn+1P

(1)
n (x) + an+1P

(1)
n−1(x), n ≥ 0,

P
(1)
0 (x) = 1, P

(1)
−1 (x) = 0.

(2.3)

Proposition 2.9 Let u be a quasi-definite linear functional and {Pn(x)}n≥0 its cor-
responding sequence of monic orthogonal polynomials. The sequence of associated
polynomials of the first kind is given by

P
(1)
n−1(x) = 1

μ0

〈

uy,
Pn(x) − Pn(y)

x − y

〉

, n ≥ 1.

Notice that the families of polynomials {Pn(x)}n≥0 and {P (1)
n−1(x)}n≥0 are linearly

independent solutions of (2.2). Thus, any other solution can be written as a linear
combination of {Pn(x)}n≥0 and {P (1)

n−1(x)}n≥0 with polynomial coefficients.
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Definition 2.10 For each n ≥ 0, the nth kernel polynomial is defined by

Kn(x, y) =
n
∑

j=0

Pj (x) Pj (y)

‖Pj (x)‖2
u

. (2.4)

Definition 2.11 Let u be a quasi-definite functional with moments {μn}n≥0. We
define the Stieltjes function associated with u as the formal power series

S(z) =
∞
∑

n=0

μn

zn+1 .

By a linear spectral transformation of S(z) we mean the following transformation

S̃(z) = A(z)S(z) + B(z)

C(z)

where A(z), B(z), C(z) are polynomials in the variable z such that

S̃(z) =
∞
∑

n=0

μ̃n

zn+1
.

Definition 2.12 Let u be a linear functional and let {Pn(x)}n≥0 be a sequence of
polynomials with deg(Pn) = n. We say that {Pn(x)}n≥0 is quasi-orthogonal of order
m with respect to u if

〈u, Pk Pn〉 = 0, m + 1 ≤ |n − k|,
〈u, Pn−m Pn 〉 �= 0, for some n ≥ m.

The sequence of polynomials {Pn(x)}n≥0 is said to be strictly quasi-orthogonal of
order m with respect to u if

〈u, Pk Pn〉 = 0, m + 1 ≤ |n − k|,
〈u, Pn−m Pn 〉 �= 0, for every n ≥ m.

3 Discrete Darboux Transformations

Several examples of perturbations of a quasi-definite linear functional u have been
studied (see for example [14, 17, 18, 23, 31, 32, 71, 72, 76, 77]). In particular,
the following three canonical cases (see [14, 76]) have attracted the interest of
researchers. These transformations are known in the literature as discrete Darboux
transformations.
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3.1 Christoffel Transformation

Let u be a quasi-definite linear functional and {Pn(x)}n≥0 a sequence of monic
orthogonal polynomials associated with u. Suppose that the linear functional ũ
satisfies

ũ = (x − a)u, (3.1)

with a ∈ R. Then ũ is called a canonical Christoffel transformation of u (see [14]).
Necessary and sufficient conditions for the functional ũ to be quasi-definite are
given in [16, 76]. If ũ is also a quasi-definite functional, then its sequence of monic
orthogonal polynomials {P̃n(x)}n≥0 satisfies the following connection formulas.

Proposition 3.1 The sequences of monic orthogonal polynomial {Pn(x)}n≥0 and
{P̃n(x)}n≥0 are related by

(x − a) P̃n(x) = Pn+1(x) + λn Pn(x), n ≥ 0,

Pn(x) = P̃n(x) + νn P̃n−1(x), n ≥ 1,

(3.2)

with

λn = −Pn+1(a)

Pn(a)
, n ≥ 0, νn = 〈u, P 2

n 〉
λn−1〈u, P 2

n−1〉
, n ≥ 1.

Notice that (3.2) can be written in matrix form

⎛

⎜
⎜
⎜
⎝

P0(x)

P1(x)

P2(x)
...

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1
ν1 1

ν2 1
. . .

. . .

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

P̃0(x)

P̃1(x)

P̃2(x)
...

⎞

⎟
⎟
⎟
⎠

,

(x − a)

⎛

⎜
⎜
⎜
⎝

P̃0(x)

P̃1(x)

P̃2(x)
...

⎞

⎟
⎟
⎟
⎠

=
⎛

⎜
⎝

λ0 1
λ1 1

. . .
. . .

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎝

P0(x)

P1(x)

P2(x)
...

⎞

⎟
⎟
⎟
⎠

.

Theorem 3.2 ([14, 76]) Let Jmon and J̃mon be the Jacobi matrices associated with
u and ũ = (x − a) u, respectively. If Jmon − aI can be written as

Jmon − aI = LU,
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where L is a lower bidiagonal matrix with 1’s in the main diagonal and U is an
upper bidiagonal matrix, then

J̃mon − aI = UL.

Proof Recall that from (3.2),

(x − a) P̃ = U P and P = L P̃,

where P = (P0(x), P1(x) · · · )t , P̃ = (P̃0(x), P̃1(x) · · · )t , L is a lower bidiagonal
matrix with 1’s in the main diagonal, and U is an upper bidiagonal matrix. Thus,

(x − a) P = (x − a)L P̃ = L (x − a) P̃ = (LU) P,

and since (x − a) P = (Jmon − aI)P, it follows that

(Jmon − aI)P = (LU)P.

Since {Pn(x)}n≥0 constitutes a basis of the linear space of polynomials, then Jmon −
aI = LU. On the other hand,

(x − a) P̃ = U P = (UL) P̃,

but, as above, this implies that J̃mon − aI = UL. ��

3.2 Geronimus Transformation

Let u be a quasi-definite linear functional, and introduce the linear functional û

û = (x − a)−1u + Mδ(x − a), (3.3)

i.e., for every polynomial p(x),

〈û, p(x)〉 =
〈

u,
p(x) − p(a)

x − a

〉

+ Mp(a). (3.4)

We say that û is a canonical Geronimus transformation of u (see [31]). Necessary
and sufficient conditions for the functional û to be quasi-definite are given in [23,
32, 76]. If û is also a quasi-definite linear functional, then we denote by {P̂n(x)}n≥0
its sequence of monic orthogonal polynomials.
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Proposition 3.3 The sequences of monic orthogonal polynomials {Pn(x)}n≥0 and
{P̂n(x)}n≥0 are related by

P̂n(x) = Pn(x) + ςn Pn−1(x), n ≥ 1,

(x − a) Pn(x) = P̂n+1(x) + ρn P̂n(x), n ≥ 0,
(3.5)

where

ςn = − μ0P
(1)
n−1(a)+MPn(a)

μ0P
(1)
n−2(a)+MPn−1(a)

, n ≥ 1,

ρn =
(

μ0P
(1)
n−2(a) + MPn−1(a)

)

〈u, P 2
n (x)〉

(

μ0P
(1)
n−1(a) + MPn(a)

)

〈u, P 2
n−1(x)〉

, n ≥ 1,

ρ0 = μ0

μ̂0
,

and {P (1)
n (x)}n≥0 is the sequence of polynomials of the first kind (2.3).

Notice that (3.5) can be written in matrix form as

⎛

⎜
⎜
⎜
⎝

P̂0(x)

P̂1(x)

P̂2(x)
...

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1
ς1 1

ς2 1
. . .

. . .

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

P0(x)

P1(x)

P2(x)
...

⎞

⎟
⎟
⎟
⎠

,

(x − a)

⎛

⎜
⎜
⎜
⎝

P0(x)

P1(x)

P2(x)
...

⎞

⎟
⎟
⎟
⎠

=
⎛

⎜
⎝

ρ0 1
ρ1 1

. . .
. . .

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎝

P̂0(x)

P̂1(x)

P̂2(x)
...

⎞

⎟
⎟
⎟
⎠

.

Theorem 3.4 ([14, 76]) Let Jmon and Ĵmon be the Jacobi matrices associated with
u and û, respectively. If the semi-infinite matrix Jmon − aI can be written as

Jmon − aI = UL,

where L is a lower bidiagonal matrix and U is a upper bidiagonal matrix, then

Ĵmon − aI = LU.
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Proof From (3.5),

(x − a) P = U P̂, and P̂ = L P,

where, P = (P0(x), P1(x) · · · )t , P̂ = (P̂0(x), P̂1(x) · · · )t , L is a lower bidiagonal
matrix with 1’s in the main diagonal, and U is an upper bidiagonal matrix. Then,

(x − a) P = U P̂ = (UL) P.

But {Pn(x)}n≥0 is a basis for P, and (x − a) P = (Jmon − aI) P, we get

Jmon − aI = UL.

Notice that this factorization depends on the choice of the free parameter μ̂0 �= 0.
For a fixed μ̂0,

(x − a) P̂ = (x − a)L P = L (x − a) P = (LU) P̂.

As above, Ĵmon − aI = LU. ��

3.3 Uvarov Transformation

Let u be a quasi-definite linear functional and suppose that the linear functional ǔ is
defined by

ǔ = u + Mδ(x − a). (3.6)

The linear functional ǔ is said to be a canonical Uvarov transformation of u (see
[71, 72]). Necessary and sufficient conditions for the quasi-definiteness of the linear
functional ǔ are given in [49].

Proposition 3.5 Suppose that ǔ is quasi-definite, and let {P̌n(x)}n≥0 denote the
sequence of monic orthogonal polynomials associated with ǔ. The sequences of
polynomial {Pn(x)}n≥0, and {P̌n}n≥0 are related by

P̌n(x) = Pn(x) − MPn(a)

1 + MKn−1(a, a)
Kn−1(x, a), n ≥ 1,

where Kn(x, y) denotes the nth kernel polynomial defined in (2.4).

For any linear functional u, it is straightforward to verify that if a canonical
Christoffel transformation is applied to û in (3.3) with the same parameter a,
then we recover the original linear functional u, that is, the canonical Christoffel
transformation is the left inverse of the canonical Geronimus transformation.
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However, a canonical Geronimus transformation applied to the linear functional
ũ in (3.1) with the same parameter a, transforms ũ into a linear functional ǔ as in
(3.6), that is, a canonical Uvarov transformation. It is important to notice that the
following result holds.

Theorem 3.6 ([77]) Every linear spectral transform is a finite composition of
Christoffel and Geronimus transformations.

4 Semiclassical Linear Functionals

Let D denote the derivative operator. Given a linear functional u, we define Du as

〈Du, p〉 = −〈u, p′〉,

for every polynomial p ∈ P. Inductively, we define

〈Dnu, p〉 = (−1)n〈u, p(n)〉.

Notice that, for any polynomial q(x),

D(q(x) u) = q ′(x) u + q(x)Du.

Definition 4.1 A quasi-definite linear functional u is said to be semiclassical if
there exist non-zero polynomials φ and ψ with deg(φ) =: r ≥ 0 and deg(ψ) =:
t ≥ 1, such that u satisfies the Pearson equation

D(φ(x)u) + ψ(x)u = 0. (4.1)

In general, if u satisfies (4.1), then it satisfies an infinite number of Pearson
equations. Indeed, for any non-zero polynomial q(x), u satisfies

D(φ̃ u) + ψ̃ u = 0,

where φ̃(x) = q(x) φ(x) and ψ̃(x) = q ′(x) φ(x) + q(x)ψ(x).

Remark 4.2 In order to avoid any incompatibility with the quasi-definite character
of the semiclassical functional u, it will be required from now on that, if

φ(x) = ar xr + · · · and ψ(x) = bt xt + · · · ,

then, for any n = 0, 1, 2, . . ., if t = r − 1, then n ar − bt �= 0. In such a case, every
moment of the linear functional u is well defined.

This motivates the following definition.
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Definition 4.3 The class of a semiclassical linear functional u is defined as

s(u) := min max{deg(φ) − 2, deg(ψ) − 1},

where the minimum is taken among all pairs of polynomials φ and ψ such that u
satisfies (4.1).

Lemma 4.4 Let u be a semiclassical functional such that

D(φ1u) + ψ1u = 0, s1 := max{deg(φ1) − 2, deg(ψ1) − 1}, (4.2)

D(φ2u) + ψ2u = 0, s2 := max{deg(φ2) − 2, deg(ψ)2 − 1}, (4.3)

where φi(x) and ψi(x), i = 1, 2, are non-zero polynomials with deg(φi) ≥ 0 and
deg(ψi) ≥ 1. Let φ(x) be the greatest common divisor of φ1(x) and φ2(x).

Then there exists a polynomial ψ(x) such that

D(φ u) + ψ u = 0, s := max{deg(φ) − 2, deg(ψ) − 1}.

Moreover, s − deg(φ) = s1 − deg(φ1) = s2 − deg(φ2).

Proof From the hypothesis, there exist polynomials φ̃1 and φ̃2 such that φ1 = φ φ̃1
and φ2 = φ φ̃2. If φ1 and φ2 are coprime, then set φ = 1. From (4.2) and (4.3), we
obtain

φ̃2D(φ1u) − φ̃1D(φ2u) + (φ̃2 ψ1 − φ̃1 ψ2)u = 0. (4.4)

Observe that, for any polynomial p ∈ P,

〈φ̃2D(φ1u) − φ̃1D(φ2u), p〉 = −〈u, φ1(φ̃2 p)′〉 + 〈u, φ2 (φ̃1 p)′〉
= 〈u, (φ2 φ̃′

1 − φ1 φ̃′
2) p + (φ̃1 φ2 − φ̃2 φ1) p′〉

= 〈u, (φ2 φ̃′
1 − φ1 φ̃′

2) p + φ (φ̃1 φ̃2 − φ̃2 φ̃1) p′〉
= 〈u, (φ2 φ̃′

1 − φ1 φ̃′
2) p〉

= 〈(φ2 φ̃′
1 − φ1 φ̃′

2) u, p〉.

Therefore, (4.4) becomes (φ2 φ̃′
1 − φ1 φ̃′

2 + φ̃2 ψ1 − φ̃1 ψ2) u = 0. Since u is quasi-
definite, then

φ2 φ̃′
1 − φ1 φ̃′

2 + φ̃2 ψ1 − φ̃1 ψ2 = 0,

or, equivalently, (φ̃′
1 φ + ψ1)φ̃2 = (φ̃′

2 φ + ψ2)φ̃1.
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But φ̃1 and φ̃2 are coprime polynomials. Hence, there exists a polynomial ψ such
that

φ̃′
1 φ + ψ1 = ψ φ̃1, φ̃′

2 φ + ψ2 = ψ φ̃2. (4.5)

Since φ1 = φ φ̃1 and φ2 = φ φ̃2, (4.2) and (4.3) can be written as

φ̃1 D(φ u) + (φ̃′
1 φ + ψ1) u = 0, φ̃2 D(φ u) + (φ̃2 φ + ψ2) u = 0.

Using (4.5), we write

φ̃1 (D(φu) + ψu) = 0, φ̃2 (D(φu) + ψu) = 0,

and the result follows from the Bézout identity for coprime polynomials. ��
Theorem 4.5 ([59]) For any semiclassical linear functional u, the polynomials φ

and ψ in (4.1) such that

s(u) = max{deg(φ) − 2, deg(ψ) − 1}

are unique up to a constant factor.

Proof Suppose that u satisfies (4.1) with φi and ψi , i = 1, 2, and suppose that
s(u) = max{deg(φi) − 2, deg(ψi) − 1}, i = 1, 2. If in Lemma 4.4 we take s1 =
s2, then s = s1 = s2. But this implies that deg(φ) = deg(φ1) = deg(φ2), or,
equivalently, φ = φ1 = φ2. Notice also that ψ is unique up to a constant factor. ��

The polynomials φ and ψ such that s(u) = max{deg(φ) − 2, deg(ψ) − 1} are
characterized in the following result.

Proposition 4.6 ([57]) Let u be a semi-classical linear functional and let φ(x) and
ψ(x) be non-zero polynomials with deg(φ) =: r and deg(ψ) =: t , such that (4.1)
holds. Let s := max(r − 2, t − 1). Then s = s(u) if and only if

∏

c:φ(c)=0

(

|ψ(c) + φ′(c)| + |〈u, θcψ + θ2
c φ〉|

)

> 0. (4.6)

Here, (θcf )(x) = f (x) − f (c)

x − c
.

Proof Let c be a zero of φ, then there exists a polynomial φc(x) of degree r − 1
such that φ(x) = (x − c)φc(x). On the other hand, since

θ2
c φ(x) = φ(x) − φ(c)

(x − c)2 − φ′(c)
x − c

,
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then

ψ(x) + φc(x) = (x − c)ψc(x) + rc,

where

ψc(x) = θcψ(x) + θ2
c φ(x), rc = ψ(c) + φ′(c).

With this in mind, (4.1) can be written as (x − c)(D(φc u)+ψc u)+ rcu = 0. From
here, we obtain

D(φcu) + ψcu = − rc

(x − c)
u + 〈u, ψc〉 δ(x − c)

= −ψ(c) + φ′(c)
(x − c)

u + 〈u, θcψ + θ2
c φ〉 δ(x − c).

Next, we proceed to the proof of the proposition.
Suppose that s(u) = s, rc = 0 and 〈u, ψc〉 = 0 for some c such that φ(c) = 0.

Then D(φcu) + ψcu = 0. But deg(φc) = r − 1 and deg(ψc) = t − 1. This means
that s(u) = s − 1, which is a contradiction.

Now, suppose that (4.6) holds and that u is of class s̃ ≤ s, with D(φ̃ u)+ψ̃ u = 0.
From Lemma 4.4, there exists a polynomial ρ(x) such that

φ(x) = ρ(x)φ̃(x), ψ(x) = ρ(x)ψ̃(x) − ρ′(x)φ̃(x).

If s̃ < s, then necessarily deg(ρ) ≥ 1. Let c be a zero of ρ(x) and let ρc(x) be the
polynomial such that ρ(x) = (x − c) ρc(x). Then,

ψ(x) + φc(x) = (x − c)
(

ρc(x) ψ̃(x) − ρ′
c(x) φ̃(x)

)

.

It follows that

rc = 0, ψc(x) = ρc(x) ψ̃(x) − ρ′
c(x) φ̃(x).

Hence,

〈u, ψc〉 = 〈u, ψ̃ ρc〉 − 〈u, ρ′
c φ̃〉 = 〈D(φ̃ u) + ψ̃ u, ρc〉 = 0.

But this means that φ(c) = 0 and

|ψ(c) + φ′(c)| + |〈u, θcψ + θ2
c φ〉| = 0,

which contradicts (4.6). Thus, s = s̃ and, by Theorem 4.5, φ̃ and ψ̃ are multiple of
φ and ψ , respectively, up to a constant factor. ��
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Proposition 4.7 ([34, 58]) Let u be a linear functional. The following statements
are equivalent.

(1) u is semiclassical.
(2) There exist two non-zero polynomials φ and ψ with deg(φ) =: r ≥ 0 and

deg(ψ) =: t ≥ 1, such that the Stieltjes function S(z) associated with u satisfies

φ(z)S ′(z) + (ψ(z) + φ′(z))S(z) = C(z), (4.7)

where

C(z) = (u ∗ θ0
(

ψ + φ′))(z) − (Du ∗ θ0φ)(z).

Proof (1)⇒(2) Let u be a semiclassical functional of class s satisfying (4.1).

φ(z) =
r
∑

k=0

φ(k)(0)

k! zk, ψ(z) =
t
∑

m=0

ψ(m)(0)

m! zm,

we have

0 = 〈D(φu) + ψu, xn〉 = −〈u, nxn−1φ(x)〉 + 〈u, xnψ(x)〉

= −n

r
∑

k=0

φ(k)(0)

k! μn+k−1 +
t
∑

m=0

ψ(m)(0)

m! μn+m.

Multiplying the above relation by 1/zn+1 and taking the infinite sum over n, we
obtain

0 = −
∞
∑

n=0

n

r
∑

k=0

φ(k)(0)

k!
μn+k−1

zn+1 +
∞
∑

n=0

t
∑

m=0

ψ(m)(0)

m!
μn+m

zn+1 . (4.8)

It is straightforward to verify that

∞
∑

n=0

t
∑

m=0

ψ(m)(0)

m!
μn+m

zn+1 = ψ(z)S(z) −
t
∑

m=1

m−1
∑

n=0

ψ(m)(0)

m! μnz
m−1−n

= ψ(z)S(z) − (u ∗ θ0ψ)(z).

On the other hand,

S ′(z) = −
∞
∑

n=0

(n + 1)
μn

zn+2 .
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Thus,

∞
∑

n=0

r
∑

k=0

n
φ(k)(0)

k!
μn+k−1

zn+1
= −φ(z)S ′(z) − φ′(z)S(z) +

r
∑

k=2

k−2
∑

n=0

φ(k)(0)

(k − 1)!
μn

zn−k+2

−
r
∑

k=2

k−2
∑

n=0

(n + 1)
φ(k)(0)

k!
μn

zn−k+2

= −φ(z)S ′(z) − φ′(z)S(z) + (u ∗ θ0φ
′)(z) − (Du ∗ θ0φ)(z).

Hence, (4.7) follows from (4.8).
(2)⇒(1) Suppose that (4.7) holds for some non-zero polynomials φ and ψ . Since
each step above is also true in the reverse direction, then (4.7) is equivalently to
(4.8). But this implies that, for every n ≥ 0,

0 = −〈u, n xn−1 φ〉 + 〈u, xn ψ〉 = 〈D(φ u) + ψ u, xn〉.

Therefore, u is semiclassical. ��
Proposition 4.8 ([59]) Let u be a linear functional, and let {Pn(x)}n≥0 be its
sequence of monic orthogonal polynomials. The following statements are equiva-
lent.

(1) The linear functional u is semiclassical of class s.

(2) For n ≥ 0, let Rn(x) = P ′
n+1(x)

n + 1
. There exists a non-zero polynomial φ(x)

with deg(φ) = r , such that the sequence of monic polynomials {Rn(x)}n≥0 is
quasi-orthogonal of order s with respect to the linear functional φ(x) u.

Proof (1)⇒(2) Let φ and ψ be non-zero polynomials with deg(φ) =: r ≥ 0 and
deg(ψ) =: t ≥ 1 such that u satisfies D(φ u)+ψ u = 0 and s := max{r − 2, t − 1}
is the class of u. Note that

〈φ u, xmP ′
n+1〉 = 〈φ u, (xmPn+1)

′〉 − 〈φ u,m xm−1Pn+1〉
= 〈u,

(

xmψ − m xm−1φ
)

Pn+1〉.

The above implies that 〈φ u, xmP ′
n+1〉 = 0 for 0 ≤ m ≤ n − s − 1. Moreover,

from Remark 4.2, xmψ(x) − m xm−1φ(x) has degree s + m + 1 and, thus,
〈φ u, xn−sP ′

n+1〉 �= 0. Hence, Rn(x) is quasi-orthogonal of order s.
(2)⇒(1) Suppose that there exists some non-zero polynomial φ with deg(φ) =:

r ≥ 0, such that the sequence of polynomials {Rn(x)}n≥0 is quasi-orthogonal of

order s with respect to the linear functional φ(x)u. Since
{

Pn(x)

‖Pn‖2 u
}

n≥0
is a basis of
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the dual space of P, then

D(φ u) =
∞
∑

n=0

αn

Pn(x)

‖Pn‖2 u,

where αn = 〈D(φ u), Pn〉 = −〈φ u, P ′
n〉 = −n〈u, φ Rn−1〉, n ≥ 1, α0 = 0.

From the quasi-orthogonality of {Rn(x)}n≥0, αn = 0 when s + 2 ≤ n. Thus,

D(φu) + ψu = 0, where ψ(x) = −
s+1
∑

n=1

αn

Pn(x)

‖Pn‖2 .

��
Corollary 4.9 A linear functional u with associated sequence of monic orthogonal
polynomials {Pn(x)}n≥0 is semiclassical of class s if and only if there is a non-zero
polynomial φ such that sequence of monic polynomials {Fn(x)}n≥0, where Fn(x) =
P

(m)
n+m(x)

(n + 1)m
, is quasi-orthogonal of order s with respect to the linear functional φm u.

Proposition 4.10 ([59]) Let u be a linear functional and {Pn(x)}n≥0 its sequence
of monic orthogonal polynomials. The following statements are equivalent.

(1) u is semiclassical of class s.
(2) There exist a nonnegative integer number s and a monic polynomial φ(x) of

degree r with 0 ≤ r ≤ s + 2, such that

φ(x) P ′
n+1(x) =

n+r
∑

k=n−s

λn,k Pk(x), n ≥ s, λn,n−s �= 0. (4.9)

If s ≥ 1, r ≥ 1 and λs,0 �= 0, then s is the class of u.

Proof (1)⇒(2) Suppose that u is of class s satisfying D(φ u) + ψ u = 0 with
deg(φ) = r . Since {Pn(x)}n≥0 is a basis of P, for each n ≥ 0, there exists a set of
real numbers (λn,k)

n+r
k=0 such that

φ(x) P ′
n+1(x) =

r+n
∑

k=0

λn,k Pk(x).

Using orthogonality,

λn,k = 〈φ u, P ′
n+1 Pk〉

〈u, P 2
k 〉 = (n + 1)〈φ u, Rn Pk〉

〈u, P 2
k 〉 ,

where, for each n ≥ 0, Rn(x) = P ′
n+1(x)

n+1 . But u is semiclassical of class s, then, from
Proposition 4.8, Rn(x) is quasi-orthogonal of order s with respect to φ u. Therefore,
λn,k = 0, when s + 1 < n − k, and λn,n−s �= 0.



264 J. C. García-Ardila et al.

(2)⇒(1) Assume that {Pn(x)}n≥0 satisfies (4.9). Since
{

Pn(x)

‖Pn(x)‖2 u
}

n≥0
is a basis of

the dual space of P, then

D(φu) =
∞
∑

n=0

αn

Pn(x)

‖Pn(x)‖2
u.

Using (4.9),

αn = 〈u, φP ′
n(x)〉 =

n+r
∑

k=n−s

λn,k〈u, Pk(x)〉 =
{

0, n > s,

λn,0〈u, P0〉, n ≤ s.

Therefore, u satisfies D(φ u) + ψ u = 0 with

ψ(x) = −
s+1
∑

n=0

αn

Pn(x)

‖Pn‖2 ,

hence, u is semiclassical. Observe that if in particular λs,0 �= 0, u is of class s. ��
Using the three-term recurrence relation (2.2), (4.9) can be written in a compact

form as shown in the following result.

Theorem 4.11 ([59]) Let u be a semiclassical functional of class s, and {Pn(x)}n≥0
its associated sequence of monic orthogonal polynomials. Then there exists a non-
zero polynomial φ with deg(φ) =: r ≥ 0, such that

φ(x)P ′
n+1(x) = Cn+1(x) − C0(x)

2
Pn+1(x) − Dn+1(x)Pn(x), n ≥ 0, (4.10)

where {Cn(x)}n≥0 and {Dn(x)}n≥0 are polynomials satisfying

Cn+1(x) = −Cn(x) + 2Dn(x)

an

(x − bn), n ≥ 0,

C0(x) = −ψ(x) − φ′(x)

(4.11)

and

Dn+1(x) = −φ(x) + an

an−1
Dn−1(x) + Dn(x)

an

(x − bn)
2 − Cn(x)(x − bn), n ≥ 0,

D0(x) = −(u ∗ θ0φ)′(x) − (u ∗ θ0ψ)(x), D−1(x) = 0.

The above expression leads to the so-called ladder operators associated with the
linear functional u. Using (4.11) and the three-term recurrence relation (2.2), we can
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deduce from (4.10) that, for n ≥ 0,

φ(x)P ′
n+1(x) = −

(
Cn+2(x) + C0(x)

2

)

Pn+1(x) + Dn+1(x)

an+1
Pn+2(x). (4.12)

The relations (4.10) and (4.12) are essential to deduce a second-order linear
differential equation satisfied by the polynomials {Pn(x)}n≥0 (see [34, 37, 59]),
which reads

J (x, n)P ′′
n+1(x) + K(x, n)P ′

n+1(x) + L(x, n)Pn+1(x) = 0, n ≥ 0,

where, for n ≥ 0,

J (x, n) = φ(x)Dn+1(x),

K(x; n) = (φ′(x) + C0(x))D′
n+1(x) − φ(x)D′

n+1(x),

and

L(x, n) =
(

Cn+1(x) − C0(x)

2

)

D′
n+1(x)−

(
C′

n+1(x) − C′
0(x)

2

)

Dn+1(x) − Dn+1(x)

n
∑

k=0

Dk(x)

ak

.

Notice that the degrees of the polynomials J,K,L are at most 2s + 2, 2s + 1, and
2s, respectively.

Theorem 4.12 ([9, 10]) Let u be a quasi-definite linear functional and {Pn(x)}n≥0
the sequence of monic orthogonal polynomials associated with u. The following
statements are equivalent.

(1) u is semiclassical.
(2) {Pn(x)}n≥0 satisfies the following nonlinear differential equation.

φ(x)[Pn+1(x) Pn(x)]′ = Dn(x)

an

P 2
n+1(x)

− C0(x)Pn+1(x)Pn(x) − Dn+1(x)P 2
n (x), (4.13)

where Dn(x), C0(x) and an are the same as in (4.10).
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Proof (1)⇒(2) Suppose that u is semiclassical. From (4.10), we have

φ(x)[Pn+1 (x)Pn(x)]′ = Pn(x)

(
Cn+1(x) − C0(x)

2
Pn+1(x) − Dn+1(x)Pn(x)

)

+ Pn+1(x)

(
Cn(x) − C0(x)

2
Pn(x) − Dn(x)Pn−1(x)

)

= −Dn+1(x)P 2
n (x) +

(
Cn+1(x) + Cn(x) − 2C0(x)

2

)

Pn+1(x)Pn(x)

− Dn(x)Pn+1(x)Pn−1(x).

Now, taking into account that Pn−1(x) = (x−bn)
an

Pn(x) − 1
an

Pn+1(x) the above
relation becomes

φ[Pn+1 (x)Pn(x)]′ = −Dn+1P
2
n (x) + Dn

an

P 2
n+1(x)

+
(

Cn+1(x) + Cn(x) − 2C0(x)

2
− (x − bn)

an

Dn

)

Pn+1(x)Pn(x).

Using the relation (4.11), we get the result.
(2)⇒(1) Let u be a quasi-definite linear functional, and let {Pn(x)}n≥0 be the

sequence of monic orthogonal polynomials associated with u.
Suppose that {Pn(x)}n≥0 satisfies (4.13). Using the three-term recurrence relation

Pn+1(x) = (x − bn) Pn(x) − an Pn−1(x) and (4.11), we can write (4.13) as

φ(x) P ′
n+1(x)Pn(x) =

(
Cn+1(x) + Cn(x) − 2C0(x)

2

)

Pn+1(x)Pn(x)

− Dn+1(x)P 2
n (x) − Dn(x)Pn+1(x)Pn−1(x) − φ(x)Pn+1(x)P ′

n(x). (4.14)

Multiplying the above relation by Pn−1(x), and replacing φ(x) P ′
n(x) Pn−1(x)

with (4.14) for n − 1, we obtain

φ(x) P ′
n+1(x) Pn−1(x) =

(
Cn+1(x) − Cn−1(x)

2

)

Pn+1(x) Pn−1(x)

− Dn+1(x) Pn(x) Pn−1(x) + Pn+1(x) (Dn−1(x) Pn−2(x) + φ(x) P ′
n−1(x)).
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Similarly, multiplying the above relation by Pn−2(x), and then replacing
φ(x) P ′

n−1(x) Pn−2(x) by (4.14) for n − 2, we get

φ(x) P ′
n+1(x) Pn−2(x) =

(
Cn+1(x) + Cn−2(x) − 2C0(x)

2

)

Pn+1(x) Pn−2(x)

−Dn+1(x) Pn(x) Pn−2(x)−Pn+1(x)
(

Dn−2(x) Pn−3(x) + φ(x) P ′
n−2(x)

)

.

Iterating this process, we obtain that for odd k ≤ n,

φ(x) P ′
n+1(x) Pn−k(x) =

(
Cn+1(x) − Cn−k(x)

2

)

Pn+1(x)Pn−k(x)

−Dn+1(x) Pn(x) Pn−k(x)+Pn+1(x)(Dn−k(x) Pn−(k+1)(x)+φ(x) P ′
n−k(x)),

and for even k ≤ n,

φ(x) P ′
n+1(x) Pn−k(x) =

(
Cn+1(x) + Cn−k(x) − 2C0(x)

2

)

Pn+1(x) Pn−k(x)

− Dn+1(x) Pn(x) Pn−k(x) − Pn+1(x)
(

Dn−k(x) Pn−(k+1)(x) + φ(x) P ′
n−k(x)

)

.

In either case, for n either odd or even, when k = n we obtain (4.9), but this
implies that u is semiclassical. ��

Before dealing with the next result, we fix some notation. Let {Qn(x)}n≥0 be a
basis of P. We define the vector Q := (Q0(x),Q1(x),Q2(x), . . .)t . Let N be the
semi-infinite matrix such that χ ′(x) = N χ(x). Therefore,

N =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 . . .

1 0 0 0 . . .

0 2 0 0 . . .

0 0 3 0 . . .
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

We denote by Ñ the semi-infinite matrix such that Q′ = Ñ Q. Observe that if S is a
matrix of change of basis from the monomials χ(x) to Q, that is, Q = S χ(x), then
Ñ = S N S−1.

If Q is semiclassical, we write (4.9) in matrix form as φ(x) Q′ = F Q, where F

is a semi-infinite band matrix. Finally, for square matrices A and B of size n, we
define its commutator as [A,B] = AB − BA.
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Proposition 4.13 Let u be a positive-definite semiclassical functional satisfying
the Pearson equation D(φ u) + ψ u = 0, and let {Qn(x)}n≥0 be the sequence of
orthonormal polynomials associated with u. Then,

1. [J, F ] = φ(J ),
2. Ñ φ(J )t + φ(J ) Ñ t = ψ(J ),
3. F + F t = ψ(J ),

where J is the Jacobi matrix associated with {Qn(x)}n≥0.

Remark 4.14 This is the matrix representation of the Laguerre-Freud equations
satisfied by the parameters of the three-term recurrence relation of semiclassical
orthonormal polynomials. As a direct consequence, you can deduce nonlinear
difference equations that the coefficients of the three-term recurrence relation
satisfy. They are relate to discrete Painlevé equations. Some illustrative examples
appear in [73].

Proof

1. Differentiating x Q = J Q and then multiplying by φ(x), we get

Jφ(x) Q′ = φ(x) Q + x φ(x) Q′.

But φ(x) Q′ = FQ and φ(x)Q = φ(J )Q. Hence,

JFQ = φ(J )Q + x F Q = (φ(J ) + FJ)Q,

and, since Q is a basis, the result follows.
2. From the Pearson equation

0 = 〈D(φu), Q Qt 〉 + 〈ψ u, Q Qt 〉 = −〈φ u, Q′ Qt + Q (Q′)t 〉 + 〈ψ u, Q Qt 〉
= −Ñ〈u, φ(x) Q Qt 〉 − 〈u, Q Qt φ(x)〉Ñ t + 〈u, ψ(x) Q Qt 〉
= −Ñφ(J )〈u, Q Qt 〉 − 〈u, Q Qt 〉φ(J )t Ñ t + ψ(J )〈u, Q Qt 〉.

But 〈u, Q Qt 〉 is equal to the identity matrix since {Qn(x)}n≥0 are orthonormal,
and the result follows.

3. Similarly, from the Pearson equation

0 = 〈D(φu), Q Qt 〉 + 〈ψ u, Q Qt 〉 = −〈φ u, Q′ Qt + Q (Q′)t 〉 + 〈ψ u, Q Qt 〉
= −〈u, φ(x) Q′ Qt 〉 − 〈u, Q (Q′)tφ(x)〉 + 〈u, ψ(x) Q Qt 〉
= −F 〈u, Q Qt 〉 − 〈u, Q Qt 〉F t + ψ(J )〈u, Q Qt 〉,

and the result follows. ��
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5 Examples of Semiclassical Orthogonal Polynomials

It is well know that the semiclassical functionals of class s = 0 are the classical
linear functionals (Hermite, Laguerre, Jacobi, and Bessel) defined by an expression
of the form

〈u, p〉 =
∫

E

p(x)w(x)dx, ∀p ∈ P,

where

Family φ(x) ψ(x) w(x) E

Hermite 1 2x e−x2
R

Laguerre x x − α − 1 xα e−x (0,+∞)

Jacobi x2 − 1 −(α + β + 2)x + β − α (1 − x)α(1 + x)β (−1, 1)

Bessel x2 −2(αx + 1) xα e−2/x Unit circle

The Hermite, Laguerre, and Jacobi functionals are positive-definite when α, β >

−1, and the Bessel functional is a quasi-definite linear functional that is not positive-
definite.

If u is a semiclassical functional of class s = 1, we can distinguish two situations

(A) deg(ψ) = 2, 0 ≤ deg(φ) ≤ 3; (B) deg(ψ) = 1, deg(φ) = 3.

S. Belmehdi [10] exposed the canonical forms of the functionals of the class 1, up to
linear changes of the variable, according to the degree of φ(x) and the multiplicity
of its zeros.

(A) deg(ψ) = 2

deg(φ) = 0 1

deg(φ) = 1 x

deg(φ) = 2
x2

x2 − 1

deg(φ) = 3

x3

x2(x − 1)

(x2 − 1)(x − c)

(B) deg(ψ) = 1

deg(φ) = 3

x3

x2(x − 1)

(x2 − 1)(x − c)

Example Let u be the linear functional defined by (see [40])

〈u, p〉 =
∫ ∞

0
p(x) xαe−xdx + Mp(0), ∀p ∈ P,
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with α > −1 and M > 0. Then u is a semiclassical functional of class s = 1
satisfying D(φ u) + ψ u = 0 with φ(x) = x2 and ψ(x) = x(x − α − 2).

The sequence of polynomials orthogonal with respect to the above functional
is known in the literature as Laguerre-type orthogonal polynomials (see [39, 49],
among others).

Example Let u be the linear functional defined by (see [10])

〈u, p〉 =
∫ 1

−1
p(x) (x − 1)(a+b−2)/2(x + 1)(b−a−2)/2eaxdx, ∀p ∈ P,

with b > a. Then u satisfies D(φ u) + ψ u = 0 with φ(x) = x2 − 1 and ψ(x) =
−ax2 − bx. The functional is semiclassical of class s = 1.

Example Let u be the linear functional defined by (see [12, 73])

〈u, p〉 =
∫ ∞

0
p(x) xαe−x2+txdx, ∀p ∈ P,

with α > −1 and t ∈ R. In [12], it is shown that u is a semiclassical functional of
class s = 1 satisfying D(φ u)+ψ u = 0 with φ(x) = x and ψ(x) = 2x2−tx−α−1.

Example Let u be the functional defined by (see [10])

〈u, p〉 =
∫ N

0
p(x) xαe−xdx, ∀p ∈ P,

with α > −1 and N > 0. The functional u is semiclassical of class s = 1 satisfying
D(φ u) + ψ u = 0 with φ(x) = (x − N)x and ψ(x) = (x − α)(x − N) + N − 2x.

This functional is known in the literature as truncated gamma functional and the
corresponding sequences of orthogonal polynomials are called truncated Laguerre
orthogonal polynomials.

Semiclassical functionals can be constructed via discrete Darboux transforma-
tions. First, we need to prove the following theorem.

Theorem 5.1 Let u and v be two linear functionals related by

A(x)u = B(x)v,

where A(x) and B(x) are non-zero polynomials. Then u is semiclassical if and only
if v is semiclassical.

Proof Suppose that u is semiclassical satisfying D(φ0u) + ψ0u = 0. Let φ1(x) =
A(x)B(x)φ0(x). Then,

〈D(φ1 v), xn〉 =〈D(AB φ0 v), xn〉 = 〈D(A2 φ0 u), xn〉 = −〈φ0 u, nA2 xn−1〉
= − 〈φ0u, (A2 xn)′〉 + 〈φ0 u, (A2)′xn〉
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=〈A2 ψ0 u, xn〉 − 〈2φ0 A′ Au, xn〉
=〈(Aψ0 − 2A′ φ0

)

B v, xn〉.

Therefore, v is semiclassical with ψ1(x) = (

A(x)ψ0(x) − 2φ0(x)A′(x)
)

B(x).
Similarly, if v is semiclassical, by interchanging the role of the functionals above,

it follows that u is semiclassical. ��
Corollary 5.2 Any linear spectral transformation of a semiclassical functional is
also a semiclassical functional.

Remark 5.3

• For canonical Christoffel (3.1) and Geronimus (3.3) transformations, the class of
the new functional depends on the location of the point a in terms of the zeros of
φ(x).

• Uvarov transformations (3.6) of classical orthogonal polynomials generate semi-
classical linear functionals. The so called Krall-type linear functionals appear
when a Dirac measure, or mass point, is located at a zero of φ(x). The
corresponding sequences of orthogonal polynomials satisfy, for some choices
of the parameters (in the Laguerre case, for α a non negative integer number)
higher order linear differential equations with order depending on α. It is an
open problem to describe the sequences of orthogonal polynomials which are
eigenfunctions of higher order differential operators. For order two (S. Bochner
[11]) and four (H. L. Krall [43]), the problem has been completely solved.

Example The linear functional obtained from a Uvarov transformation of the
Laguerre functional will be of class 1 if a mass point is located at a = 0, and
will be of class 2 if a mass point is located at a �= 0. See [49].

Other examples of semiclassical functionals of class 2 are also known.

Example Let u be the functional defined by

〈u, p〉 =
∫

R

p(x) e− x4
4 −tx2

dx, ∀p ∈ P,

where t ∈ R. In this case, u is a semi-classical functional of class s = 2, with
φ(x) = 1 and ψ(x) = 2tx + x3.

This is a particular case of the so called generalized Freud linear functionals
[19, 20].

New semiclassical functionals can also be constructed through symmetrized
functionals [17].

Definition 5.4 Let u be a linear functional. Its symmetrized functional v is
defined by

〈v, x2n〉 = μn, 〈v, x2n+1〉 = 0, n ≥ 0.
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Given a functional with Stieltjes function S(z), the Stieltjes function S̃(z) of
its symmetrized functional satisfies S̃(z) = zS(z2). The following holds for the
semiclassical case.

Theorem 5.5 ([5]) Let u be a semiclassical functional satisfying D(φu)+ψu = 0,
and let S(z) be its Stieltjes function, which satisfies (4.7)

φ(z)S ′(z) + (ψ(z) + φ′(z))S(z) = C(z).

The Stieltjes function S̃(z) associated with the symmetrized linear functional v
satisfies

zφ(z2)S̃ ′(z) + [2z2(ψ(z2) + φ′(z2)) + φ(z2)]S̃(z) = 2z3C(z2).

Thus, the symmetrized functional of a semiclassical linear functional is semiclassi-
cal. The class of v is either 2s, 2s + 1, or 2s + 3, according to the coprimality of
the polynomial coefficients in the ordinary linear differential equation satisfied by
S̃(z).

6 Analytic Properties of Orthogonal Polynomials in Sobolev
Spaces

An inner product is said to be a Sobolev inner product if

〈f, g〉S :=
∫

E0

f (x) g(x) dμ0 +
m
∑

k=1

∫

Ek

f (k)(x) g(k)(x) dμk,

where (dμ0, . . . , dμm) is a vector of positive Borel measures and Ek = supp dμk ,
k = 0, 1, . . . , m.

Using the Gram-Schmidt orthogonalization method for the canonical basis
{xn}n≥0, one gets a sequence of monic orthogonal polynomials. Thus, the nth
orthogonal polynomial is a minimal polynomial in terms of the Sobolev norm

||f ||S := √〈f, f 〉S
among all monic polynomials of degree n.

Taking into account that 〈x f, g〉S �= 〈f, x g〉S , these polynomials do not satisfy
a three-term recurrence relation. Thus, a basic property of standard orthogonal
polynomials is lost. A natural question is to compare analytic properties of these
polynomials and the standard ones.

In 1947, D. C. Lewis [45] dealt with the following problem in the framework
of polynomial least square approximation. Let α0, . . . , αp be monotonic, non-
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decreasing functions defined on [a, b] and let f be a function on [a, b] that satisfies
certain regularity conditions. Determine a polynomial Pn(x) of degree at most n

that minimizes

p
∑

k=0

∫ b

a

|f (k)(x) − P (k)
n (x)|2dαk(x).

Lewis did not use Sobolev orthogonal polynomials and gave a formula for the
remainder term of the approximation as an integral of the Peano kernel. The first
paper on Sobolev orthogonal polynomials was published by Althammer [3] in
1962, who attributed his motivation to Lewis’s paper. These Sobolev orthogonal
polynomials are orthogonal with respect to the inner product

〈f, g〉S =
∫ 1

−1
f (x) g(x) dx + λ

∫ 1

−1
f ′(x) g′(x) dx, λ > 0.

Observe that the first and second integral of this inner product involve the Lebesgue
measure dx on [−1, 1], which means that every point in [−1, 1] is equally weighted.

Let Sn(x; λ) denote the orthogonal polynomial of degree n with respect to the
inner product 〈·, ·〉S , normalized by Sn(1; λ) = 1, and let Pn(x) denote the n-th
Legendre polynomial. The following properties hold for Sn(x; λ):

1. 〈Sn(x; λ)}n≥0 satisfies a differential equation

λ S′′
n(x; λ) − Sn(x; λ) = An P ′

n+1(x) + Bn P ′
n−1(x),

where An and Bn are real numbers which are explicitly given.
2. {Sn(x; λ)}n≥0 satisfies a recursive relation

Sn(x; λ) − Sn−2(x; λ) = an (Pn(x) − Pn−2(x)), n = 1, 2, . . .

3. Sn(x; λ) has n real simple zeros in (−1, 1).

For a more detailed account on the development of these results, we refer to [45,
62, 67]. The Sobolev-Legendre polynomials were also studied by Gröbner, who
established a version of the Rodrigues formula in [33]. Indeed, he states that, up to
a constant factor cn,

Sn(x; λ) = cn

Dn

1 − λD2

(

(x2 − x)n − αn(x
2 − x)n−1

)

where αn are real numbers explicitly given in terms of λ and n.
In [3], Althammer also gave an example in which he replaced dx in the second

integral in 〈·, ·〉S by w(x)dx with w(x) = 10 for −1 ≤ x < 0 and w(x) = 1 for
0 ≤ x ≤ 1, and made the observation that S2(x; λ) for this new inner product has
one real zero outside of (−1, 1).
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In [13], Brenner considered the inner product

〈f, g〉 :=
∫ ∞

0
f (x) g(x) e−xdx + λ

∫ ∞

0
f ′(x) g′(x) e−xdx, λ > 0,

and obtained results in a direction very similar to those of Althammer. Sobolev inner
products when you replace the above weight by xαe−x, α ≥ −1 has been studied in
[51].

An important contribution in the early development of the Sobolev polynomials
was made in 1972 by Schäfke and Wolf in [68], where they considered a family of
inner products

〈f, g〉S =
∞
∑

j,k=0

∫ b

a

f (j)(x) g(k)(x) vj,k(x)w(x) dx, (6.1)

where w and (a, b) are one of the three classical cases (Hermite, Laguerre, and
Jacobi) and the functions vj,k are polynomials that satisfy vj,k = vk,j , k =
0, 1, 2, . . ., and allow to write the inner product (6.1) as

〈f, g〉S =
∫ b

a

f (x)Bg(x)w(x) dx, with Bg := w−1
∞
∑

j,k=0

(−1)jDj (w vj,k Dk)g

by using an integration by parts. Under further restrictions on vj,k , they are narrowed
down to eight classes of Sobolev orthogonal polynomials, which they call simple
generalizations of classical orthogonal polynomials.

The primary tool in the early study of Sobolev orthogonal polynomials is
integration by parts. Schäfke and Wolf [68] explored when this tool is applicable and
outlined potential Sobolev inner products. It is remarkable that their work appeared
in such an early stage of the development of Sobolev orthogonal polynomials.

The study of Sobolev orthogonal polynomials unexpectedly became largely
dormant for nearly two decades, from which it reemerged only when a new
ingredient, coherent pairs, was introduced in [36].

6.1 Coherent Pairs of Measures and Sobolev Orthogonal
Polynomials

The concept of coherent pair of measures was introduced in [36] in the framework
of the study of the inner product

〈f, g〉λ =
∫ b

a

f (x) g(x) dμ0(x) + λ

∫ b

a

f ′(x) g′(x) dμ1(x), (6.2)
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where −∞ ≤ a < b ≤ ∞, λ ≥ 0, μ0 and μ1 are positive Borel measures on the real
line with finite moments of all orders. Let Pn(x; dμi) denote the monic orthogonal
polynomial of degree n with respect to dμi , i = 0, 1.

Definition 6.1 The pair {dμ0, dμ1} is called coherent if there exists a sequence of
nonzero real numbers {αn}n≥1 such that

Pn(x; dμ1) = P ′
n+1(x; dμ0)

n + 1
+ αn

P ′
n(x; dμ0)

n
, n ≥ 1. (6.3)

If [a, b] = [−c, c] and dμ0 and dμ1 are both symmetric, then {dμ0, dμ1} is called
a symmetrically coherent pair if

Pn(x; dμ1) = P ′
n+1(x; dμ0)

n + 1
+ αn

P ′
n−1(x; dμ0)

n − 1
, n ≥ 2.

If dμ1 = dμ0, the measure dμ0 is said to be self-coherent (resp. symmetrically
self-coherent).

For n = 0, 1, 2, . . ., let

Mn(λ) =

⎛

⎜
⎜
⎜
⎝

〈1, 1〉λ 〈1, x〉λ · · · 〈1, xn〉λ
〈x, 1〉λ 〈x, x〉λ · · · 〈x, xn〉λ

· · · · · · . . . · · ·
〈xn, 1〉λ 〈xn, x〉λ · · · 〈xn, xn〉λ

⎞

⎟
⎟
⎟
⎠

.

Since det Mn(λ) > 0 for all n ≥ 0, then a sequence of monic orthogonal
polynomials with respect to 〈·, ·〉λ exists. Let {Sn(x; λ)}n≥0 denote the sequence
of monic Sobolev orthogonal polynomials with respect to 〈·, ·〉λ. In fact, the monic
orthogonal polynomials are S0(x; λ) = 1 and, for n ≥ 1,

Sn(x; λ) = 1

det Mn−1(λ)
det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈1, xn〉λ
〈x, xn〉λ

Mn−1(λ)
...

〈xn−1, xn〉λ
1 x · · · xn−1 xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is easy to see that

Tn(x) := lim
λ→∞ Sn(x; λ)
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is a monic polynomial of degree n which satisfies

T ′
n(x) = nPn−1(x; dμ1) and

∫

R

Tn(x) dμ0 = 0 n ≥ 1. (6.4)

Theorem 6.2 ([36]) If {dμ0, dμ1} is a coherent pair, then

Sn(x; λ) + βn−1(λ) Sn−1(x; λ) = Pn(x; dμ0) + α̂n−1Pn−1(x; dμ0), n ≥ 2,

(6.5)

where α̂n−1= nαn/(n−1) and βn−1(λ)= α̂n−1||Pn−1(x; dμ0)||2dμ0
/||Sn−1(x; λ)||2λ.

Proof According to (6.3) and (6.4), we see that

Tn(x) = Pn(x; dμ0) + α̂n−1Pn−1(x; dμ0).

For 0 ≤ j ≤ n − 2, it follows from (6.4) that

〈Tn(x), Sj (x; λ)〉λ = 〈Tn(x), Sj (x; λ)〉dμ0 + nλ〈Pn−1(x; dμ1), S
′
j (x; λ)〉dμ1 = 0.

Considering the expansion of Tn(x) in terms of the polynomials Sj (x; λ), we see
that

Tn(x)= Sn(x; λ)+βn−1(λ) Sn−1(x; λ), where βn−1(λ)= 〈Tn(x), Sn−1(x; λ)〉λ
||Sn−1(x; λ)||2λ

.

The expresion for βn−1(λ) follows from 〈T ′
n(x), S′

n−1(x; λ)〉dμ1 = 0 as well as from
the fact that both Pn−1(x; dμ0) and Sn−1(x; λ) are monic. ��

The notion of coherent pairs can be extended to linear functionals {u0, u1}, if the
relation (6.3) holds with Pn(x; dμi) replaced by Pn(x; ui ).

The following theorem was established in [63].

Theorem 6.3 If {dμ0, dμ1} is a coherent pair of measures, then at least one of
them has to be classical (Laguerre, Jacobi).

Together, [52, 63] give a complete list of coherent pairs. In the case when u0 and
u1 are positive-definite linear functionals associated with measures dμ0 and dμ1,
the coherent pairs are given as follows:

Laguerre Case
(1) dμ0(x) = (x − ξ)xα−1e−xdx and dμ1(x) = xαe−xdx, where if ξ < 0, then

α > 0, and if ξ = 0 then α > −1.
(2) dμ0(x) = xαe−xdx and dμ1(x) = (x − ξ)−1xα+1e−xdx +M δ(x − ξ), where

if ξ < 0, α > −1 and M ≥ 0.
(3) dμ0(x) = e−xdx + Mδ(x) and dμ1(x) = e−xdx, where M ≥ 0.
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Jacobi Case

(1) dμ0(x) = |x − ξ |(1 − x)α−1(1 + x)β−1dx and dμ1(x) = (1 − x)α(1 + x)βdx,
where if |ξ | > 1 then α > 0 and β > 0, if ξ = 1 then α > −1 and β > 0, and
if ξ = −1 then α > 0 and β > −1.

(2) dμ0(x) = (1−x)α(1+x)βdx and dμ1(x) = |x−ξ |−1(1−x)α+1(1+x)β+1dx+
Mδ(x − ξ), where |ξ | > 1, α > −1 and β > −1 and M ≥ 0.

(3) dμ0(x) = (1+x)β−1dx +Mδ(x −1) and dμ1(x) = (1+x)βdx, where β > 0
and M ≥ 0.

(4) dμ0(x) = (1−x)α−1dx +Mδ(x +1) and dμ1(x) = (1−x)αdx, where α > 0
and M ≥ 0.

A similar analysis was also carried out for symmetrically coherent pairs in the
work cited above. It lead to the following list of symmetrically coherent pairs.

Hermite Case

(1) dμ0(x) = e−x2
dx and dμ1(x) = (x2 + ξ2)−1e−x2

dx, where ξ �= 0.
(2) dμ0(x) = (x2 + ξ2)e−x2

dx and dμ1(x) = e−x2
dx, where ξ �= 0.

Gegenbauer Case

(1) dμ0(x) = (1−x2)α−1dx and dμ1(x) = (x2 +ξ2)−1(1−x2)αdx, where ξ �= 0
and α > 0.

(2) dμ0(x) = (1 − x2)α−1dx and dμ1(x) = (ξ2 − x2)−1(1 − x2)αdx + Mδ(x −
ξ) + Mδ(x + ξ), where |ξ | > 1, α > 0 and M ≥ 0.

(3) dμ0(x) = (x2 + ξ2)(1 − x2)α−1dx and dμ1(x) = (1 − x2)αdx, where α > 0.
(4) dμ0(x) = (ξ2 − x2)(1 − x2)α−1dx and dμ1(x) = (1 − x2)αdx, where |ξ | ≥ 1

and α > 0.
(5) dμ0(x) = dx + Mδ(x − 1) + Mδ(x + 1) and dμ1(x) = dx, where M ≥ 0.

6.1.1 Generalized Coherent Pairs

Identity (6.5) was deduced from definition (6.3) of coherent pairs. In the reverse
direction, however, (6.3) does not follow from the identity (6.5), as observed in
[38].

Let Sn(x) denote the left hand side of (6.5). Clearly S′
n can be expanded in terms

of {Pk(x; dμ1)}k≥0,

S′
n(x) = n Pn−1(x; dμ1) +

n−2
∑

k=0

dk,nPk(x; dμ1), dk,n = 〈S′
n(x), Pk(x; dμ1)〉dμ1

||Pk(x; dμ1)||2dμ1

, n ≥ 1.

For 0 ≤ j ≤ n − 2, it follows directly from the definition of Sn that

〈Sn(x), Pj (x; dμ1)〉λ = 0,
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and it follows from (6.5) that 〈Sn(x), Pj (x; dμ1)〉dμ0 = 0. Consequently, by the
definition of 〈·, ·〉λ we must have 〈S′

n, Pj (x; dμ1)〉dμ1 = 0 for 0 ≤ j ≤ n − 2,
which implies that dk,n = 0 if 0 ≤ k ≤ n − 2. Hence,

S′
n(x) = P ′

n(x; dμ0) + ân−1P ′
n−1(x; dμ0) = n Pn−1(x; dμ1) + dn−2,nPn−2(x; dμ1).

Recall that α̂n = (n + 1)αn/n. Setting βn−2 = dn−2,n/n and shifting the index
from n to n + 1, we conclude the following relation between {Pn(x; dμ0)}n≥0 and
{Pn(x; dμ1)}n≥0,

Pn(x; dμ1) + βn−1 Pn−1(x; dμ1) = P ′
n+1(x; dμ0)

n + 1
+ αn

P ′
n(x; dμ0)

n
, n ≥ 1.

(6.6)

Thus, in the reverse direction, (6.5) leads to (6.6) instead of (6.3).
Evidently, (6.6) is a more general relation than (6.3).

Definition 6.4 The pair {dμ0, dμ1} is called a generalized coherent pair if (6.6)
holds for n ≥ 1, and this definition extends to linear functionals {u0, u1}.

Semiclassical orthogonal polynomials of class 1 (see Sect. 5) are involved in the
analysis of generalized coherent pairs. The following theorem is established in [22].

Theorem 6.5 If {u0, u1} is a generalized coherent pair, then at least one of them
must be semiclassical of class at most 1.

All generalized coherent pairs of linear functionals are listed in [22].
On the other hand, given two sequences of monic orthogonal polynomials

{Pn(x; dμ0)}n≥0 and {Pn(x; dμ1)}n≥0, where dμ0 and dμ1 are symmetric mea-
sures, such that the following relation holds

Pn+1(x; dμ1) + βn−1 Pn−1(x; dμ1) = P ′
n+2(x; dμ0)

n + 1
+ αn

P ′
n(x; dμ0)

n
, n ≥ 1.

(6.7)

We introduce the following

Definition 6.6 The pair {dμ0, dμ1} is called a symmetrically generalized coherent
pair if (6.7) holds for n ≥ 1, and this definition extends to linear functionals
{u0, u1}.

Some examples of symmetrically generalized coherent pairs have been studied
in [21], where u0 is associated with the Gegenbauer weight and

u1 = 1 − x2

1 + qx2
u1 + Mq

[

δ(x + 1/
√−q) + δ(x − 1/

√−q)
]

, q ≥ −1,

where Mq ≥ 0 if −1 ≤ q < 0 and Mq = 0 if q ≥ 0.
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More recently, in [24] the authors obtain analytic properties of Sobolev orthogo-
nal polynomials with respect to a symmetrically generalized coherent pair {u0, u1},
where u0 is the linear functional associated with the Hermite weight and u1 =
x2+a2

x2+b2 u0.

6.2 Sobolev-Type Orthogonal Polynomials

An inner product is said to be a Sobolev-type inner product if the derivatives appear
only as function evaluations on a finite discrete set. More precisely, such an inner
product takes the form

〈f, g〉S :=
∫

R

f (x) g(x) dμ0 +
m
∑

k=1

∫

R

f (k)(x) g(k)(x) dμk, (6.8)

where dμ0 is a positive Borel measure on an infinite subset of the real line
and dμk , k = 1, 2, . . . , m, are positive Borel measures supported on finite
subsets of the real line. In most cases considered below, dμk = Akδ(x − c)

or dμk = Akδ(x − a) + Bkδ(x − b), where Ak and Bk are nonnegative real
numbers. Orthogonal polynomials for such an inner product are called Sobolev-type
orthogonal polynomials.

The first study was carried out for the classical weight functions. The Laguerre
case was studied in [40, 41] with dμ0 = xαe−xdx, α > −1, and

dμk = Mkδ(x), k = 1, 2, . . . , m,

the nth Sobolev orthogonal polynomial, Sn, is given by

Sn(x) =
min{n,m+1}

∑

k=0

(−1)k An,k Lα+k
n−k (x), n ≥ 1,

where An,k are real numbers determined by a linear system of equations. The
Gegenbauer case was studied in [7, 8] with dμ0 = (1 − x2)λ−1/2dx + A(δ(x −
1) + δ(x + 1)), λ > −1/2, and m = 1, dμ1 = B(δ(x − 1) + δ(x + 1)); the nth
Sobolev orthogonal polynomial is given by

Sn(x) = a0,nC
λ
n(x) + a1,nx Cλ+1

n−1(x) + a2,nx
2 Cλ+2

n−2(x), n ≥ 2,

where a0,n, a1,n, and a2,n are appropriate real numbers. In both cases, the Sobolev
orthogonal polynomials satisfy higher order (greater than three) recurrence rela-
tions.
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When Mk = 0 for k = 1, 2, . . . , m − 1, and dμm = Mm δ(x − c), the inner
product (6.8) becomes

〈f, g〉m :=
∫

R

f (x) g(x) dμ0 + Mm f (m)(c) g(m)(c),

where c ∈ R and Mm ≥ 0.
For i, j ∈ N0, define

K(i,j)

n−1 (x, y) :=
n−1
∑

l=0

P
(i)
l (x) P

(j)
l (y)

||Pl ||2dμ0

, n ≥ 1.

It was shown in [53] that

Sn(x) = Pn(x) − Mm P
(m)
n (c)

1 + Mm K(m,m)
n−1 (c, c)

K(0,m)
n−1 (x, c), n ≥ 1,

which extends the expression for m = 0 by A. M. Krall in [44]. From this relation,
one deduces immediately that

Sn+1(x) + αnSn(x) = Pn+1(x) + βnPn(x), n ≥ 0,

where αn and βn are constants that can be easily determined. This shows a similar
structure to (6.5) derived for the Sobolev orthogonal polynomials in the case of
coherent pairs.

The Sobolev polynomials Sn(x) also satisfy a higher order recurrence relation

(x − c)m+1Sn(x) =
n+m+1
∑

j=n−m−1

cn,j Sj (x), n ≥ 0, (6.9)

where cn,n+m+1 = 1 and cn,n−m−1 �= 0.
If a sequence of polynomials satisfies a three-term recurrence relation, then it is

orthogonal. The precise statement is known as Favard’s theorem. For higher order
recurrence relations, there are two types of results in this direction, both related to
Sobolev orthogonal polynomials.

The first one gives a characterization of an inner product 〈·, ·〉 for which the
corresponding sequence of orthogonal polynomials satisfy a recurrence relation
(6.9), which holds if the operation of multiplication by Mm,c := (x − c)m+1 is
symmetric, that is, 〈Mm,c p, q〉 = 〈p,Mm,c q〉. It was proved in [26] that if 〈·, ·〉 is
an inner product such that Mm,c is symmetric and it communtes with the operator
M0,c, that is, 〈Mm,c p,M0,c q〉 = 〈M0,c p,Mm,c q〉, then there exists a nontrivial
positive Borel measure dμ0 and a real, positive semi-definite matrix A of size m+1,



From Standard Orthogonal Polynomials to Sobolev Orthogonal Polynomials:. . . 281

such that the inner product is of the form

〈p, q〉 =
∫

R

p(x) q(x) dμ0

+
(

p(c), p′(c), . . . , p(m)(c)
)

A
(

q(c), q ′(c), . . . , q(m)(c)
)t

. (6.10)

A connection between such Sobolev orthogonal polynomials and matrix orthogonal
polynomials was established in [27], by representing the higher order recurrence
relation as a three-term recurrence relation with matrix coefficients for a family
of matrix orthogonal polynomials defined in terms of the Sobolev orthogonal
polynomials.

The second type of Favard type theorem was given in [28], where it was proved
that the operator of multiplication by a polynomial h is symmetric with respect to
the inner product (6.8) if and only if dμk , k = 1, 2, . . . , m, are discrete measures
whose supports are related to the zeros of h and its derivatives. Consequently, higher
order recurrence relations for Sobolev inner products appear only in Sobolev inner
products of the second type.

6.3 Asymptotics of Sobolev Orthogonal Polynomials

For standard orthogonal polynomials, three different types of asymptotics are
considered: strong asymptotics, outer ratio asymptotics, and nth root asymptotics.
All three have been considered in the Sobolev setting and we summarize the most
relevant results in this section.

The first work on asymptotics for Sobolev orthogonal polynomials is [54] where
the authors deal with the inner product

〈f, g〉S =
∫ 1

−1
f (x) g(x) dμ0(x) + M1 f ′(c) g′(c),

where c ∈ R, M1 > 0, and the measure dμ0 belongs to the Nevai class
M(0, 1). Using the outer ratio asymptotics for the ordinary orthogonal polynomials
Pn(x; dμ0) and the connection formula between Pn(x; dμ0) and the Sobolev
orthogonal polynomials Sn(x), it was shown that, if c ∈ R \ supp μ0, then

lim
n→∞

Sn(z)

Pn(z, dμ0)
= (�(z) − �(c))2

2 �(z) (z − c)
, �(z) := z +

√

z2 − 1,
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locally uniformly outside the support of the measure, where
√

z2 − 1 > 0 when
z > 1. If c ∈ supp μ0, then

lim
n→∞

Sn(z)

Pn(z; dμ0)
= 1

outside the support of the measure.
The first extension of the above results was carried out in [1] for the Sobolev inner

product (6.10) with a 2 × 2 matrix A. Under the same conditions on the measure, it
was proved that

lim
n→∞

Sn(z)

Pn(z; dμ0)
=
(

(�(z) − �(c))2

2 �(z) (z − c)

)r

, r := rank A,

locally uniformly outside the support of the measure.
The second extension was given in [48] for the inner product

〈f, g〉 =
∫

R

f (x) g(x) dμ0(x) +
N
∑

j=1

Nj
∑

k=0

f (k)(cj ) Lj,k(g; cj ),

where dμ0 ∈ M(0, 1), {ck}Nk=1 ∈ R\supp μ0, j = 1, . . . , N , and Lj,k is an ordinary
linear differential operator acting on g such that Lj,Nj

is not identically zero for
j = 1, . . . , N . Assuming that the inner product is quasi-definite so that a sequence
of orthogonal polynomials exists, then on every compact subset in C \ supp dμ0,

lim
n→∞

S
(ν)
n (z)

P
(ν)
n (z, dμ0)

=
m
∏

j=1

(
(�(z) − �(c))2

2 �(z) (z − c)

)Ij

,

where Ij is the dimension of the square matrix obtained from the matrix of
coefficients of Lj,Nj

after deleting all zero rows and columns.
On the other hand, if both the measure dμ0 and its support � are regular, then

techniques from potential theory can be used (see [47]) to derive the nth root
asymptotics of the Sobolev orthogonal polynomials,

lim sup
n→∞

||S(j)
n ||1/n

� = C(�), j ≥ 0,

where || · ||� denotes the uniform norm on the support of the measure and C(�) is
its logarithmic capacity.

When the support of the measure in the inner product (6.10) is unbounded, the
analysis has been focused on the case of the Laguerre weight function. A first study
[4] considered the case when c = 0 and A is a 2 × 2 diagonal matrix (see also [50]
for a survey of the unbounded case). Assuming that the leading coefficients of Sn
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are standardized to be (−1)n/n!, the following results on the asymptotic behavior
of Sn were established:

(1) (Outer relative asymptotics) lim
n→∞

Sn(z)

L
(α)
n (z)

= 1 uniformly on compact subsets

of the exterior of the positive real semiaxis.

(2) (Outer relative asymptotics for scaled polynomials) lim
n→∞

Sn(nz)

L
(α)
n (nz)

= 1

uniformly on compact subsets of the exterior of [0, 4].
(3) (Mehler-Heine formula) lim

n→∞ n−α Sn(z/n) = z−α/2Jα+4(2
√

z) uniformly on

compact subsets of the complex plane, assuming that rank A = 2.
(4) (Inner strong asymptotics)

Sn(x)

nα/2 = c3(n)ex/2x−α/2Jα+4

(

2
√

(n − 2)x
)

+ O
(

n− min{α+5,3/4})

on compact subsets of the positive real semiaxis, where limn→∞ c3(n) = 1.

If the point c is a negative real number, then the following outer relative
asymptotics was established in [55],

lim
n→∞

Sn(z)

L
(α)
n (z)

=
(√−z − √−c√−z + √−c

)r

, r = rank A,

uniformly on compact subsets of the exterior of the real positive semiaxis.
When c = 0 and A is a non-singular diagonal matrix of size m+1, the following

asymptotic properties of the Sobolev orthogonal polynomials with respect to the
inner product (6.10) were obtained in [2]:

(1) (Outer relative asymptotics) For every ν ∈ N, lim
n→∞

S
(ν)
n (z)

(L
(α)
n )(ν)(z)

= 1 uniformly

on compact subsets of the exterior of the positive real semiaxis.
(2) (Mehler-Heine formula)

lim
n→∞

(−1)n

n!
Sn(z/n)

nα
= (−1)m+1z−α/2Jα+2m+2(2

√
z)

uniformly on compact subsets of the complex plane.

6.3.1 Continuous Sobolev Inner Products

Let {μ0, μ1} be a coherent pair of measures and supp μ0 = [−1, 1]. Then the outer
relative asymptotic relation for the Sobolev orthogonal polynomials with respect to
(6.10) in terms of the orthogonal polynomials Pn(x; dμ1) is (see [61])

lim
n→∞

Sn(z)

Pn(z; dμ1)
= 2

�′(z)
, �(z) := z +

√

z2 − 1,
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where
√

z2 − 1 > 0 when z > 1, uniformly on compact subsets of the exterior of
the interval [−1, 1].

When the measures μ0 and μ1 are absolutely continuous and belong to the Szegő
class, the above result is also true [60].

For measures of coherent pairs that have unbounded support, asymptotic prop-
erties of the corresponding Sobolev orthogonal polynomials have been extensively
studied in the literature (see [50] for an overview). The outer relative asymptotics,
the scaled outer asymptotics, as well as the inner strong asymptotics of such poly-
nomials have been considered for all families of coherent pairs and symmetrically
coherent pairs.

The case where both measures in (6.2) correspond to the Freud weight, that is,
dμ0 = dμ1 = e−x4

dx, was studied in [15] (see also [30]), where the connection
between Sobolev and standard orthogonal polynomials is given by

Pn(x; dμ) = Sn(x; λ) + cn−2(λ)Sn−2(x; λ), n ≥ 2.

7 Sobolev Orthogonal Polynomials of Several Variables

In contrast with the univariate case, Sobolev orthogonal polynomials of several
variables have been studied only recently. In this section, we collect some results
in this direction.

7.1 Orthogonal Polynomials of Several Variables

For x = (x1, x2, . . . , xd) ∈ R
d and α = (α1, α2, . . . , αd) ∈ N

d
0 , the (total) degree

of the monomial

xα := x
α1
1 x

α2
2 · · · xαd

d

is, by definition, |α| := α1 + α2 + · · · + αd . Let �d
n denote the linear space of

polynomials in d variables of total degree at most n. It is known that dim �d
n =

(
n+d

n

)

. Let �d := ⋃

n≥0 �d
n denote the space of all polynomials in d variables.

Let 〈·, ·〉 be an inner product defined on �d × �d . A polynomial P ∈ �d
n is

orthogonal if

〈P, q〉 = 0, ∀q ∈ �d
n−1.

For n ∈ N0, let Vd
n denote the space of orthogonal polynomials of total degree n.

Then dimVd
n = (

n+d−1
n

)

. In contrast with the univariate case, the space Vd
n can
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have many different bases when d ≥ 2. Moreover, the elements of Vd
n may not be

mutually orthogonal.
For the structure and properties of orthogonal polynomials of several variables,

we refer to [25]. We describe briefly a family of orthogonal polynomials as
example.

A polynomial Y is said to be a spherical harmonic of degree n if it is a
homogeneous polynomial such that �Y = 0, where � is the Laplacian opera-
tor,

� = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

.

Let Hd
n denote the space of spherical harmonics of degree n. It is known

that

ad
n := dimHd

n =
(

n + d − 1

n

)

−
(

n + d − 3

n − 2

)

.

The elements of Hd
n are orthogonal with respect to polynomials of degree at most

n − 1 with respect to the inner product

〈f, g〉Sd−1 :=
∫

Sd−1
f (ξ) g(ξ) dσ (ξ),

where dσ denotes the surface measure on S
d−1.

For μ > −1, let wμ(x) = (1 − ||x||2)μ−1/2 be the weight function defined on
the unit ball Bd = {x ∈ R

d : ||x|| ≤ 1}, where || · || denotes the Euclidean
norm in R

d . Orthogonal polynomials with respect to wμ can be given in several
different formulations. We give one basis of Vd

n (wμ) in terms of the classical Jacobi
polynomials and spherical harmonics in the spherical coordinates x = rξ , where
0 < r ≤ 1 and ξ ∈ S

d−1 = {x ∈ R
d : ||x|| = 1}.

For 0 ≤ j ≤ n/2 and 1 ≤ ν ≤ ad
n−2j , define

P n
j,ν(x) := P

(μ,n−2j+(d−2)/2)
j (2||x||2 − 1) Y n−2j

ν (x),

where {Yn−2j
ν : 1 ≤ ν ≤ ad

n−2j } is an orthonormal basis of Hd
n−2j . Then the

set {P n
j,�(x) : 0 ≤ j ≤ n/2, 1 ≤ � ≤ ad

n−2j } is a mutually orthogonal basis

of Vd
n (wμ). The elements of Vd

n (wμ) are eigenfunctions of a second-order linear
partial differential operator Dμ. More precisely, we have

DμP = −(n + d)(n + 2μ)P, ∀P ∈ Vd
n (wμ), (7.1)
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where

Dμ := � −
d
∑

j=1

∂

∂xj

xj

[

2μ +
d
∑

i=1

xi

∂

∂xi

]

. (7.2)

7.1.1 Sobolev Orthogonal Polynomials on the Unit Ball

The first work in this direction is [74] and deals with the inner product

〈f, g〉� :=
∫

Bd

�
[

(1 − ||x||2) f (x)
]

�
[

(1 − ||x||2) g(x)
]

dx,

which arises from the numerical solution of the Poisson equation studied in [6]. The
geometry of the ball and (7.3) suggest that one can look for a mutually orthogonal
basis of the form

qj (2||x||2 − 1) Y n−2j
ν (x), Y n−2j

ν ∈ Hd
n−2j , (7.3)

where qj (x) is a polynomial of degree j in one variable. Such a basis was
constructed in [74] for the space

Vd
n (�) = Hd

n

⊕

(1 − ||x||2)Vn−2(w2).

The next inner product considered on the ball is defined by

〈f, g〉−1 := λ

∫

Bd

∇f (x) · ∇g(x) dx +
∫

Sd−1
f (ξ) g(ξ) dσ (ξ),

where ∇f = (∂xf, ∂yf ) and λ > 0. An alternative way is to replace the integral
over Sd−1 by f (0) g(0). A basis of the form (7.3) was constructed explicitly in [75]
for the space Vd

n (�) with respect to 〈·, ·〉−1, from which it follows that

Vd
n (w−1) = Hd

n

⊕

(1 − ||x||2)Vn−2(w1). (7.4)

The elements in (1 − ||x||2)Vn−2(w1) can be given in terms of the Jacobi poly-
nomials P

(−1,b)
n (x) of negative index, which explains the notation w−1. Another

interesting aspect of this case is that the polynomials in Vd
n (w−1) are eigenfunctions

of the differential operator D−1, the limit case of (7.1).
For k ∈ N, the operator D−k in (7.2) makes perfect sense. The equation

D−kY = λnY was studied in [66], where a complete system of polynomial solutions
was determined explicitly. For k ≥ 2, however, it is not known if the solutions are
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Sobolev orthogonal polynomials. Closely related to the case when k = 2 is the
following inner product

〈f, g〉−2 := λ

∫

Bd

�f (x)�g(x) dx +
∫

Sd−1
f (ξ) g(ξ) dσ (ξ), λ > 0.

An explicit basis for the space Vd
d (w−2) of the Sobolev polynomials with respect to

〈·, ·〉−2 was constructed in [66], from which it follows that

Vd
d (w−2) = Hd

n

⊕

(1 − ||x||2)Hd
n−2

⊕

(1 − ||x||2)2Vd
n−4(w2). (7.5)

The elements in (1 − ||x||2)2Vd
n−4(w2) can be given in terms of the Jacobi

polynomials P
(−2,b)
n of negative index.

It turns out that the Sobolev orthogonal polynomials for the last two cases can be
used to study the spectral method for the numerical solutions of partial differential
equations. This connection was established in [46], where, for s ∈ N, the following
inner product in the Sobolev space Ws

p(Bd) is defined

〈f, g〉−s := 〈∇sf,∇sg〉Bd +
��/2�−1
∑

k=0

λk〈�kf,�kg〉Sd−1 .

Here λk , k = 0, 1, . . . , ��/2� − 1, are positive real numbers, and

∇2m := �m and ∇2m+1 := ∇�m, m = 1, 2, . . .

For s > 2, the space Vd
n (w−s) associated with 〈·, ·〉−s cannot be decomposed as in

(7.4) and (7.5). Nevertheless, an explicit mutually orthogonal basis was constructed
in [46]. It requires considerable effort, and the basis uses a generalization of the
Jacobi polynomials P

(α,β)
n for α, β ∈ R that avoids the degree reduction when

−α − β − n ∈ {0, 1, . . . , n}. The main result in [46] establishes an estimate for the
polynomial approximation in the Sobolev space Ws

p(Bd). The proof relies on the
Fourier expansion with respect to the Sobolev orthogonal polynomials associated
with 〈·, ·〉−s .

Another Sobolev inner product considered on the unit ball is defined by

〈f, g〉 :=
∫

Bd

∇f (x) · ∇g(x)Wμ(x) dx + λ

∫

Bd

f (x) g(x)Wμ(x) dx,

which is an extension of the Sobolev inner product (6.2) of coherent pairs where
dμ1 = dμ2 correspond to the Gegenbauer weight in one variable. A mutually
orthogonal basis was constructed in [65], which has the form (7.3) where the
corresponding qj is orthogonal with respect to a rather involved Sobolev product
in one variable.
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7.1.2 Sobolev Orthogonal Polynomials on Product Domains

On the product domain [a1, b1] × [a2, b2] ⊂ R
2, we define the weight function

�(x, y) = w1(x)w2(y),

where wi, i = 1, 2, is a weight function on [ai, bi], i = 1, 2. With respect to � ,
we consider the Sobolev inner product

〈f, g〉S :=
∫

[a,b]2
∇f (x, y) · ∇g(x, y)�(x, y) dxdy + λ f (c1, c2) g(c1, c2),

where λ > 0, and (c1, c2) is a fixed point in R
2.

Two cases are considered in [29]. The first one is the product of Laguerre weights
for which

〈f, g〉S :=
∫ ∞

0

∫ ∞

0
∇f (x, y) · ∇g(x, y)wα(x)wβ(y)dxdy + λkf (0, 0) g(0, 0),

where wα(x) = xαe−x , α > −1. The Sobolev orthogonal polynomials are related
to the polynomials Q

α,β
j,m(x, y) defined by

Q
α,β
j,m(x, y) := Qα

m−j (x)Q
β
j (y) with Qα

n(x) := L̂(α)
n (x) + n L̂

(α)
n−1(x),

where L̂
(α)
n (x) denotes the nth monic Laguerre polynomial. The polynomial Qα

n(x)

is monic and satisfies d
dx

Qα
n(x) = n L̂

(α)
n−1(x). For 0 ≤ k ≤ n, let S

α,β
n−k,k(x, y) =

xn−kyk + · · · be the monic Sobolev orthogonal polynomial of degree n. Define the
column vectors

Q
α,β
n := (Q

α,β
0,n , . . . ,Qα,β

n,n )t and S
α,β
n := (S

α,β
0,n , . . . , Sα,β

n,n )t .

It was shown in [29] that there is a matrix Bn−1 such that

Q
α,β
n = S

α,β
n + Bn−1S

α,β
n−1.

Notice that the matrix Bn−1 and the norm 〈Sα,β
n ,S

α,β
n 〉S can both be computed by

one recursive algorithm.
The above construction of orthogonal bases for the product domain works if w1

and w2 are self-coherent, that is, are classical weights (Jacobi, Laguerre, Hermite).
The case when both are Gegenbauer weight functions was given as a second
example in [29].
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