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1 Introduction: An Example of a Family of Orthogonal
Polynomials

Univariate orthogonal polynomials (or orthogonal polynomials for short) are sys-
tems of polynomials (pn)n with deg(pn) = n, satisfying a certain orthogonality
relation. They are very useful in practice in various domains of mathematics,
physics, engineering and so on, because of the many properties and relations
they satisfy. As examples of areas where orthogonal polynomials play important
roles, I could list approximation theory (see [5, 23]) and also numerical analysis
(see for example [9, 10]). Among those relations, we can mention the following,
with the first seven valid for all families of orthogonal polynomials. The last three
are in general valid for some specific families of orthogonal polynomials, the so-
called classical orthogonal polynomials (see [1–3, 6, 7, 12, 14]) and the preliminary
training given by S. Mboutngam, M. Kenfack Nangho and P. Njionou Sadjang of
these proceedings):

– Orthogonality relation
– Matrix representation
– Three-term recurrence relation
– Christoffel-Darboux formula
– Separation of zeros
– Gauss quadrature
– Generating functions
– Second-order holonomic differential, difference or q-difference equation
– Rodrigues formula
– Expansion of functions which are continuous differentiable and square inte-

grable, in terms of Fourier series of OP.

Before going into details and for illustration purposes, let us give a concrete
example of a family of orthogonal polynomials, then state and prove some of its
properties most of which are common to any family of orthogonal polynomials.

Theorem 1.1 (Chebyshev Polynomials of the First Kind [17, 21]) The polyno-
mial family (Tn)n defined by (and called Chebyshev polynomials of the first kind or
Chebyshev polynomials for short as we will study only this family in this article)

Tn(x) = cos(nθ), x = cos θ, 0 < θ < π, n ∈ N, (1.1)

fulfills the following properties:

1. Tn is a polynomial of degree n in x with leading coefficient an = 2n−1, satisfying
the following recurrence relation (called three-term recurrence relation)

Tn+1(x) + Tn−1(x) = 2xTn(x), n ≥ 1, T0(x) = 1, T1(x) = x; (1.2)
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2. (Tn)n satisfies the following relation (called orthogonality relation)

∫ π

0
cos(nθ) cos(mθ)dθ = knδn,m =

∫ 1

−1
Tn(x) Tm(x)

dx√
1 − x2

, (1.3)

with k0 = π, kn = π
2 , n ≥ 1.

3. Tn satisfies the second-order holonomic differential equation:

(1 − x2) T ′′
n (x) − x T ′

n(x) + n2 Tn(x) = 0, n ≥ 0. (1.4)

4. For any n ≥ 1, Tn has exactly n zeros, all belonging to the interval of
orthogonality (−1, 1). Those zeros, ranked in increasing order, are given by:

xn,k = cos

(
2(n − k) + 1

2n
π

)
, 1 ≤ k ≤ n, n ≥ 1. (1.5)

5. The zeros xn,k of Tn satisfy

xn,j �= xn+1,k, ∀n ≥ 1, 1 ≤ j ≤ n, 1 ≤ k ≤ n + 1; (1.6)

xn+1,k < xn,k < xn+1,k+1, 1 ≤ k ≤ n. (1.7)

6. The monic Chebyshev polynomial of degree n ≥ 1 is the polynomial deviating
least from zero on [−1, 1] among all monic polynomials of degree n:

min

{
max−1≤x≤1

|qn(x)|, qn ∈ R[x], qn(x) = xn + . . .

}
= max−1≤x≤1

∣∣∣∣Tn(x)

2n−1

∣∣∣∣ = 1

2n−1 ,

(1.8)
where R[x] is the ring of polynomials with real coefficients.

7. The following property, which is called the Gauss quadrature formula for the
specific case of the Chebyshev polynomials, is valid

∫ 1

−1

f (x)√
1 − x2

dx = π

n

n∑
k=1

f (xn,k), ∀f ∈ R2n−1[x], n ≥ 1, (1.9)

R2n−1[x] is the ring of polynomials of degree at most 2n − 1, with real
coefficients. In addition, the integral of any function continuous on the compact
interval [−1, 1] can be approximated by the previous formula:

∫ 1

−1

f (x)√
1 − x2

dx = lim
n→∞

π

n

n∑
k=1

f (xn,k), ∀f ∈ C[−1, 1], (1.10)

where C[−1, 1] is the set of continuous functions on the interval [−1, 1].
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Proof Let us provide a quick proof of the first six above properties.

Proof of Property 1 Equation (1.2) is obtained by direct computation:

T0(x) = cos(0) = 1, T1(x) = cos θ = x,

and

Tn+1(x) + Tn−1(x) = cos(n + 1)θ + cos(n − 1)θ = 2 cos θ cos(nθ) = 2 x Tn(x),

using the cosine addition formula cos(a + b) = cos a cos b − sin a sin b.
Next, we now prove by induction that Tn is a polynomial of degree n in the

variable x with 2n−1 as leading coefficient, that is

Tn(x) = 2n−1 xn + lower degree terms, n ≥ 1. (1.11)

For n = 1, Eq. (1.11) is satisfied as T1(x) = x = 21−1 x and its degree is 1. By
assuming that Eq. (1.11) is satisfied for a fixed integer n ≥ 1, we can then write Tn

as Tn(x) = 2n−1 xn +An−1(x) where An−1 is a polynomial of degree at most n− 1
in the variable x. We complete the proof by using relation (1.2) to obtain that

Tn+1(x) = 2x Tn(x)−Tn−1(x) = 2x (2n−1 xn+An−1(x))−Tn−1(x) = 2n xn+1+Ãn(x),

where Ãn is a polynomial of degree at most n in x. Therefore, Tn is a polynomial of
degree n in the variable x with 2n−1 as leading coefficient.

From the three-term recurrence relation (1.2), one can generate any Tn; and in
particular, the first 10 Chebyshev polynomials are given by:

T0(x) = 1,

T1(x) = x;
T2(x) = 2 x2 − 1,

T3(x) = 4 x3 − 3 x,

T4(x) = 8 x4 − 8 x2 + 1,

T5(x) = 16 x5 − 20 x3 + 5 x, (1.12)

T6(x) = 32 x6 − 48 x4 + 18 x2 − 1,

T7(x) = 64 x7 − 112 x5 + 56 x3 − 7 x,

T8(x) = 128 x8 − 256 x6 + 160 x4 − 32 x2 + 1,

T9(x) = 256 x9 − 576 x7 + 432 x5 − 120 x3 + 9 x.
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Proof of Property 2 Relation (1.3) is proved by direct computation using again the
addition formula

2 cos(nθ) cos(mθ) = cos(n + m)θ + cos(n − m)θ,

and the fact that x = cos θ, 0 < θ < π �⇒ dx = − sin θ dθ = −√
1 − cos2 θdθ .

Proof of Property 3 Relation (1.4) is also proved by direct computation. In fact

T ′
n(x) = d

dx
Tn(x) = dθ

dx

d

dθ
Tn(x) = −1

sin θ

d

dθ
cos(nθ) = n sin(nθ)

sin θ
, n ≥ 1,

T ′′
n (x) = d

dx

d

dx
Tn(x)

= dθ

dx

d

dθ

(
dθ

dx

d

dθ
Tn(x)

)

= −1

sin θ

d

dθ

( −1

sin θ

d

dθ
cos(nθ)

)

= n cos θ sin(nθ)

sin θ sin2 θ
+ −n2 cos(nθ)

sin2 θ

= x T ′
n(x)

1 − x2 + −n2 Tn(x)

1 − x2 , n ≥ 1.

Proof of Property 4 To obtain the zeros of Tn, we solve the following equation for
a fixed n ≥ 1, x ∈ (−1, 1) and θ ∈ (−π π).

Tn(x) = 0 ⇐⇒ cos(nθ) = 0 ⇐⇒ nθ = π

2
+ kπ, k ∈ Z.

Since 0 < θ < π , then 0 ≤ k ≤ n − 1. Therefore, Tn has exactly n zeros which are

cos
(

(2k+1)π
2n

)
, 0 ≤ k ≤ n−1. But since those zeros are ranked by decreasing order

for the function θ → cos θ is decreasing on (−π, π) and the sequence k → (2k+1)π
2n

is increasing, there is a need to reverse the order. This is done by replacing k by n−k.
Therefore we obtain the following zeros ranked by increasing order

xn,k = cos θn,k, with θn,k = 2(n − k) + 1

2n
π, 1 ≤ k ≤ n.

The zeros also belong to the interval of orthogonality (−1, 1).
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Fig. 1 The first 10 Chebyshev polynomials

Proof of Property 5 Equation (1.6) is satisfied since the cosine function is a
bijection from (0, π) into (−1, 1) and

θn,j �= θn+1,k, ∀n ≥ 1, 1 ≤ j ≤ n, 1 ≤ k ≤ n + 1.

The inequalities (1.7) are deduced using the fact that the cosine function is strictly
decreasing in (−π, π) combined with the following inequalities which can be
obtained by a direct and quick computation

θn+1,k+1 < θn,k < θn+1,k, 1 ≤ k ≤ n.

The interlacing properties of the zeros of the Chebyshev polynomials can be
observed on the above graph of the first ten Chebyshev polynomials (Fig. 1).

Proof of Property 6 Let us first denote the monic Chebyshev polynomial of degree
n by tn: tn(x) = Tn(x)

2n−1 , n ≥ 1, t0(x) = T0(x) = 1. Next, we define the set of monic
polynomials of degree n, Pn, the sup-norm ||.||max and the subset I of the set of real
numbers R, respectively, by

Pn = {
qn ∈ Rn[x], qn(x) = xn + lower degree terms

}
||p||max = max−1≤x≤1

|p(x)|,
I = {||p||max, p ∈ Pn} .
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To prove that min I = ||tn||max = 1
2n−1 , for a fixed but arbitrary integer n ≥ 1, we

proceed as follows:

– In the first step, we derive the extrema for the function tn:

t ′n(x) = 0 ⇐⇒ n sin(nθ)

sin(θ)
= 0 ⇐⇒ sin(nθ) = 0, sin θ �= 0.

Since 0 ≤ θ ≤ π , we get θ = kπ
n

, 1 ≤ k ≤ n − 1. We have excluded k = 0 and
k = n to make sure that sin θ �= 0. The extrema for tn are therefore

zn,k = cos

(
kπ

n

)
, 1 ≤ k ≤ n − 1.

– In the second step, we study the sign of tn(x) on the extrema. Before this, we
remark that for θ = 0, x = 1 := zn,0 and for θ = π, x = −1 := zn,n, enabling
us to get the following information on the action of tn on zn,k:

tn(−1) = cos(n π)

2n−1
= (−1)n

2n−1
= tn(zn,n), (1.13)

tn(1) = cos(n 0)

2n−1 = 1

2n−1 = tn(zn,0), (1.14)

tn(zn,k) = (−1)k

2n−1
, 1 ≤ k ≤ n − 1. (1.15)

Equations (1.13) and (1.14) confirm that Eq. (1.15) which was initially valid for
1 ≤ k ≤ n − 1 is also valid for k = 0, n and can then be written as

tn(zn,k) = (−1)k

2n−1 , 0 ≤ k ≤ n.

The previous equation, combined with the fact that tn(x) = cos(nθ)

2n−1 , allows us to
deduce that

||tn||max = 1

2n−1
.

1. In the third step, we remark that the set I is not empty since it contains ||tn||max.
In addition, it has zero as a lower bound. Let us assume that ||tn||max is not the
minimum element of I . Then there exists a polynomial q belonging to Pn such
that

− 1

2n−1 < q(x) <
1

2n−1 , −1 ≤ x ≤ 1.
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We next set Pn−1(x) = tn(x)−q(x) and observe, taking into account the previous
inequalities, that Pn−1 which is a polynomial of degree at most n − 1 fulfills the
following properties:

Pn−1(zn,2j ) = tn(zn,2j ) − q(zn,2j ) = 1

2n−1 − q(zn,2j ) > 0,

Pn−1(zn,2j+1) = tn(zn,2j+1) − q(zn,2j+1) = −1

2n−1
− q(zn,2j+1) < 0,

for any integer j such that 0 ≤ 2j + 1 ≤ n. We obtain a contradiction to the fact
that the polynomial Pn−1 which is of degree at most n − 1 will have n zeros for
it will change its sign n times in the intervals (zn,k, zn,k+1), k = 0 . . . n − 1. We
therefore conclude that ||tn||max = 1

2n−1 is the minimum of I .

Proof Illustration of Property 7 The Gauss formula (1.9) is given in the general
case in the paper by A. S. Jooste in these proceedings (see also [3, 6, 12, 22],
but one would need to proceed with additional careful computations to verify
that the Christoffel number λn,k in the general Gauss quadrature formula is given
by λn,k = π

n
for the specific case of the Chebyshev polynomials Tn (see also

[15], Theorem 8.4, where the Christoffel numbers have been given explicitly for
Chebyshev polynomials of the first, second, third and fourth kinds). We refer to
[6], page 33 and also to [3], page 252 for the proof of relation (1.10) and other
approximation formulas.

��

2 Construction of a System of Orthogonal Polynomials

In this section, after having provided a concrete example of a family of orthogonal
polynomials with proof of some of its nice properties—some of which are common
for any family of orthogonal polynomials—, we will now show how to construct a
family of orthogonal polynomials from a scalar product and then relate this with the
definition of orthogonal polynomials.

Let us consider a scalar product ( , ) defined on R[x]×R[x] in terms of a Stieltjes
integral as

(p, q) =
∫ b

a

p(x) q(x) dα(x), (2.1)

where R[x] is the ring of polynomials with a real variable and dα is a non-negative
Borel measure supported in the interval (a, b). As scalar product, it fulfills the
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following properties:

(p, p) ≥ 0, ∀p ∈ R[x], and (p, p) = 0 �⇒ p = 0,

(p, q) = (q, p), ∀p, q ∈ R[x],
(λ p, q) = λ (p, q), ∀λ ∈ R, ∀p, q ∈ R[x],

(p + q, r) = (p, r) + (q, r), ∀p, q, r ∈ R[x].

As an example of scalar product on R[x] with connection to known systems of
orthogonal polynomials, we mention:

(p, q) =
∫ 1

−1
p(x) q(x)

dx√
1 − x2

, (2.2)

which yields the Chebyshev orthogonal polynomials.
The following theorem provides a method for construction of a family of

polynomials, orthogonal with respect to a given scalar product. It is called Gram-
Schmidt orthogonalisation process.

Theorem 2.1 (Gram-Schmidt Orthogonalisation Process [6, 12, 22]) The poly-
nomial systems (qn)n and (pn)n defined recurrently by the relations

q0 = 1, qn = xn −
n−1∑
k=0

(xn, qk)

(qk, qk)
qk, n ≥ 1, pk = qk√

(qk, qk)
, k ≥ 0, (2.3)

satisfy the relations

deg(qn) = deg(pn) = n,∀n ≥ 0, (2.4)

(qn, qm) = 0, n �= m, (qn, qn) �= 0, ∀n ≥ 0, (2.5)

(pn, pm) = 0, n �= m, (pn, pn) = 1, ∀n ≥ 0. (2.6)

The polynomials (qn)n and (pn)n are said to be orthogonal or orthonormal
with respect to the scalar product ( , ), respectively. In fact, they represent the
same polynomial system with different normalisation: (qn)n is monic—to say the
coefficient of the leading monomial is equal to 1; while (pn)n is orthonormal—to
say (pn, pn) = 1 or the corresponding norm of pn is equal to 1.

Proof Equation (2.4) is obvious while Eq. (2.6) is a direct consequence of Eq. (2.5).
We will prove Eq. (2.5) by induction. Because of the properties of the scalar product,
we just need to prove the following:

(qn, qm) = 0, ∀n ≥ 1, 0 ≤ m ≤ n − 1. (2.7)
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For n = 1, we have, using relations (2.3)

(q1, q0) =
(

x − (x, q0)

(q0, q0)
q0, q0

)
= (x, q0) − (x, q0)

(q0, q0)
(q0, q0) = 0.

We now assume that relation (2.7) is satisfied up to a given n ≥ 1. Let m ∈ N,
0 ≤ m ≤ n.

(qn+1, qm) =
(

xn+1 −
n∑

k=0

(xn+1, qk)

(qk, qk)
qk, qm

)

= (xn+1, qm) −
n∑

k=0

(xn+1, qk)

(qk, qk)
(qk, qm)

= (xn+1, qm) − (xn+1, qm)

(qm, qm)
(qm, qm) = 0,

since from the induction hypothesis (Eq. (2.7)) and the symmetry of the scalar
product, (qk, qm) = 0, 0 ≤ k �= m ≤ n − 1. ��
Definition 2.2 (Orthogonal Polynomials [6]) Any sequence of polynomials (pn)n
satisfying Eqs. (2.4) and (2.5) (rewritten as follows with qn replaced by pn)

deg(pn) = n, (2.8)
∫ b

a

pn(x) pm(x) dα(x) = 0, n �= m, (2.9)

∫ b

a

pn(x) pn(x) dα(x) �= 0, ∀n ≥ 0, (2.10)

is said to be orthogonal with respect to the measure dα, and called an orthogonal
polynomial system or an orthogonal polynomial for short.

Definition 2.3 (Orthogonal Polynomials w.r.t. to a Weight Function [3, 6, 12, 17,
18, 21]) When the measure dα is absolutely continuous, that is dα(x) = ρ(x) dx

where ρ is an appropriate function—called weight function, then relations (2.8)–
(2.10) read

deg(pn) = n, (2.11)
∫ b

a

pn(x) pm(x) ρ(x) dx = 0, n �= m, (2.12)

∫ b

a

pn(x) pn(x) ρ(x) dx �= 0, ∀n ≥ 0. (2.13)
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The polynomial system (pn)n is said to be orthogonal with respect to the weight
function ρ. Because of the form of the orthogonality relation, the variable here is
continuous. We therefore obtain orthogonal polynomials of a continuous variable.

Definition 2.4 (Orthogonal Polynomials of a Discrete Variable [12, 18]) When
the measure dα is discrete and supported in N, that is, α = ρ on N, then the
relations (2.8), (2.9) and (2.10) become

deg pn = n, n ≥ 0,

N∑
k=0

ρ(k) pn(k) pm(k) = 0, ∀n, m ∈ N, n �= m,

N∑
k=0

ρ(k) pn(k) pn(k) �= 0, n ≥ 0,

where the parameter N belongs to N ∪ {∞}. (pn)n is said to be orthogonal
with respect to the discrete weight ρ. It is also called a sequence of orthogonal
polynomials of a discrete variable.

Notice that if N is finite, then there exist only a finite number of orthogonal
polynomials, this because the bilinear application defined in (2.1) is positive definite
not on the entire R[x] but rather on its linear subspace, Rl[x], for an appropriate
choice of the positive integer l.

Definition 2.5 (Orthogonal Polynomials of a q-Discrete Variable [8, 11, 13, 18])
When the measure dα is q-discrete and supported in qZ, that is, α = ρ on qZ, where
Z is the set of integers, then the relations (2.8), (2.9) and (2.10) become

deg pn = n, n ≥ 0,

N∑
k=0

ρ(qk) pn(q
k) pm(qk) = 0, ∀n, m ∈ N, n �= m,

N∑
k=0

ρ(qk) pn(q
k) pn(q

k) �= 0, n ≥ 0,

where the parameter N belongs to N ∪ {∞}. (pn)n is said to be orthogonal with
respect to the q-discrete weight ρ. It is also called a sequence of orthogonal
polynomials of a q-discrete variable.

Remark 2.6 When the measure dα is discrete or q-discrete supported on a quadratic
or a q-quadratic lattice, this gives the orthogonal polynomials of a quadratic or a q-
quadratic variable. As examples of such polynomials, we mention the Wilson and
the Askey-Wilson polynomials [4, 8, 12, 13].
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3 Basic Properties of Orthogonal Polynomials

3.1 The Uniqueness of a Family of Orthogonal Polynomials

Before stating the result about the uniqueness of a family of orthogonal polynomials,
let us start with the following remarks:

1. If (pn)n is a family of orthogonal polynomials, then due to the fact that the degree
of each pn is equal to n, any subset of {pn, n ∈ N} is a linearly independent subset
of the linear space R[x].

2. Moreover, for any n ≥ 1, the set {pk, 0 ≤ k ≤ n}, like the canonical basis of
monomials {xk, 0 ≤ k ≤ n}, constitutes a basis of the linear space Rn[x] of
polynomials of degree at most n.

The following result states an equivalent orthogonality relation.

Lemma 3.1 Let (pn)n be a sequence of polynomials with deg(pn) = n, n ≥ 0.
Then Eqs. (2.9) and (2.10) are equivalent to the two following equations

∫ b

a

pn(x) xm dα(x) = 0, ∀n ≥ 1, 0 ≤ m ≤ n − 1, (3.1)

∫ b

a

pn(x) xn dα(x) �= 0, ∀n ≥ 0. (3.2)

Proof The proof is obtained by combining the orthogonality relations (2.9)
and (2.10) or (respectively (3.1) and (3.2)) with the expansion of the polynomial pm

in the canonical basis of monomials (respectively the expansion of xm in the basis
{pk, 0 ≤ k ≤ n}). ��

The uniqueness of a family of polynomials orthogonal with respect to a measure
dα can then be stated as follows.

Theorem 3.2 (Uniqueness of a Family of Orthogonal Polynomials) To the mea-
sure dα corresponds a unique (up to a multiplicative factor) family of orthogonal
polynomials. Or equivalently, if (pn)n and (qn)n are two families of polynomials
satisfying relations (2.8)–(2.10), then they are proportional, to say that there exists
a sequence (bn)n such that pn = bn qn, n ≥ 0, with bn �= 0, n ≥ 0.

Proof The proof is obtained by expanding the polynomial qn in the basis {pk, 0 ≤
k ≤ n} of Rn[x] and using the orthogonality relations (2.9) and (2.10) to show that
the other coefficients, except the leading one, are equal to zero. ��
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3.2 The Matrix Representation

The following results give information about the Hankel determinant and a matrix
representation of a given family of orthogonal polynomials. Before that, let us
define what we mean by linear functional and orthogonality with respect to a linear
functional.

Definition 3.3 (Linear Functional) Linear functional here means any linear map-
ping from R[x] to R.

The sequence of polynomials (pn)n will be said to be orthogonal with respect to
the linear functional U if deg(pn) = n and

〈U , xmpn〉 = 0, n ≥ 0, 0 ≤ m ≤ n, (3.3)

〈U , xnpn〉 �= 0, ∀n ≥ 0. (3.4)

In this case, the linear functional U is said to be quasi-definite, to say that there
exists a family of polynomials orthogonal with respect to U .

As example, we define a linear functional L by

〈L, p〉 =
∫ 1

−1

p(x)√
1 − x2

dx,

corresponding to the Chebyshev orthogonal polynomials (Tn)n. The definition of
orthogonality by means of a linear functional is very useful in practice because it
enables an elegant proof of equivalent properties of standard orthogonal polynomi-
als [6, 7, 12, 16] in addition to providing the proof of the so-called Favard Theorem
[6] stating that any sequence of polynomials satisfying a three-term recurrence
relation with some specific restriction on one of its coefficients is orthogonal with
respect to a quasi-definite functional.

Theorem 3.4 ([21]) Let (pn)n be a sequence of polynomials with deg(pn) =
n, n ≥ 0 and satisfying the orthogonality conditions (2.9) and (2.10).

1. Then for any integer n ≥ 0, the following relation holds

�n > 0, n ≥ 0, (3.5)

where �n is the Hankel determinant defined by

�n = det(μk+j )0≤k,j≤n =

μ0 μ1 · · · μn−1 μn

μ1 μ1 · · · μn−1 μn+1
...

...
...

...
...

μn−1 μn · · · μ2n−2 μ2n−1

μn μn+1 · · · μ2n−1 μ2n

, n ≥ 1, �0 := μ0.

(3.6)
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The number μn which is given by

μn =
∫ b

a

xn dα(x), n ≥ 0,

denotes the canonical moment with respect to the measure dα.
2. For any positive integer n, the polynomial pn has the following matrix represen-

tation

pn(x) = an,n

�n−1

μ0 μ1 · · · μn−1 μn

μ1 μ1 · · · μn−1 μn+1
...

...
...

...
...

μn−1 μn · · · μ2n−2 μ2n−1

1 x · · · xn−1 xn

, (3.7)

where an,n is the leading coefficient of pn.
3. Conversely, given any sequence of real numbers (μn)n satisfying relation (3.5),

then since �n �= 0, n ≥ 0, there exists a sequence of polynomials orthogonal
with respect to the quasi-definite linear functional U defined on the canonical
basis of monomials by

〈U , xn〉 = μn, n ≥ 0.

In addition, from (3.5) the linear functional U is positive-definite and as a
consequence (see [6]) there exists a positive Borel measure associated with it.

The corresponding family is given explicitly by (3.7).

Proof

1. For the proof of the first property, let (pn)n be a sequence of polynomials with
deg(pn) = n, n ≥ 0 and satisfying the orthogonality conditions (2.9) and (2.10)
which are equivalent to orthogonality conditions (3.1) and (3.2). Writing for a
fixed integer n ≥ 1

pn(x) =
n∑

k=0

an,k xk,

in the orthogonality relation (3.1) for the integers m = 0 . . . n and then for
orthogonality relation (3.2), we obtain the following system of linear equations
for the unknowns (an,k)k whose matrix form is given by

⎛
⎜⎜⎜⎜⎜⎝

μ0 μ1 · · · μn−1 μn

μ1 μ1 · · · μn−1 μn+1
...

...
...

...
...

μn−1 μn · · · μ2n−2 μ2n−1

μn μn+1 · · · μ2n−1 μ2n

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

an,0

an,1
...

an,n−1

an,n

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
kn

⎞
⎟⎟⎟⎟⎟⎠

, (3.8)
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where kn = ∫ b

a
pn(x) xndα �= 0. Since the polynomial sequence (pn)n not

only exists and is uniquely determined by fixing kn, then necessarily, the Hankel
determinant is different from zero. The positiveness of the Hankel’s determinant
will be deduced in the following paragraph.

2. To prove the second property, we first use (3.7) to obtain for 0 ≤ m ≤ n that

∫ b

a

pn(x) xm dα(x) = an,n

�n−1

μ0 μ1 · · · μn−1 μn

μ1 μ1 · · · μn−1 μn+1
...

...
...

...
...

μn−1 μn · · · μ2n−2 μ2n−1

μm μm+1 · · · μm+n−1 μm+n

. (3.9)

The previous relation reads

∫ b

a

pn(x) xm dα(x) = 0, 0 ≤ m ≤ n − 1 (3.10)

since the m+1-th row and the last row of the determinant will be identical. Also,
use of (3.9) for m = n taking combined with the following relation

∫ b

a

pn(x) xn dα(x) = 1

an,n

∫ b

a

pn(x) pn(x) dα(x) = d2
n

an,n

obtained using orthogonality, leads to

∫ b

a

pn(x) xn dα(x) = an,n

�n

�n−1
= d2

n

an,n

�= 0, n ≥ 1. (3.11)

We then deduce from Eqs. (3.10) and (3.11) combined with (3.1) and (3.2) that
(pn)n is orthogonal with respect to dα(x).

The positiveness of �n is seen from the relation

�n = �0

n∏
k=1

d2
k

a2
k,k

= μ0

n∏
k=1

d2
k

a2
k,k

> 0,

deduced from (3.11).
3. The third property is proved by showing, in a similar way as done in the

proof of Property 2 above, that the polynomial sequence given by (3.7) satisfies
orthogonality relations (3.3) and (3.4).

��
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3.3 The Three-Term Recurrence Relation

Theorem 3.5 (Three-Term Recurrence Relation [6, 21, 24]) Any polynomial
sequence (pn)n, orthogonal with respect to the measure dα or fulfilling the
orthogonality relations (2.8)–(2.10), satisfies the following relation called three-
term recurrence relation

x pn(x) = an

an+1
pn+1 +

(
bn

an

− bn+1

an+1

)
pn + an−1

an

d2
n

d2
n−1

pn−1, p−1 = 0, p0 = 1,

(3.12)
with

pn = an xn + bn xn−1 + lower degree terms, and d2
n = (pn, pn). (3.13)

When (pn) is monic (i.e. an = 1) or orthonormal (ie. dn = 1), then Eq. (3.12) can
be written in the following forms, respectively:

pn+1 = (x − βn) pn − γn pn−1, p−1 = 0, p0 = 1, (3.14)

with βn = bn − bn+1, γn = d2
n

d2
n−1

, and

x pn = αn+1 pn+1 + ηn pn + αn pn−1, p−1 = 0, p0 = 1, (3.15)

with αn = an−1
an

, ηn = bn

an
− bn+1

an+1
.

Also, the recurrence coefficients of the monic and orthonormal forms of the
orthogonal polynomial system are connected by

ηn = βn, γn = α2
n. (3.16)

Proof For fixed n ≥ 0, we expand x pn in the basis {p0, p1, . . . , pn+1}

x pn =
n+1∑
k=0

ck,n pk,

and then use orthogonality to obtain

ck,n =
∫ b

a
xpn(x) pk(x) dα(x)∫ b

a
pk(x) pk(x) dα(x)

=
∫ b

a
pn(x) xpk(x) dα(x)∫ b

a
pk(x) pk(x) dα(x)

= 0, for 0 ≤ k ≤ n−2.

Hence

x pn = cn+1,n pn+1 + cn,n pn + cn−1,n pn−1. (3.17)
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Substituting (3.13) into (3.12) and identifying the leading coefficients of the
monomials xn+1 and xn yields

cn+1,n = an

an+1
, cn,n =

(
bn

an

− bn+1

an+1

)
. (3.18)

Using (3.17) twice combined with the orthogonality properties (2.9) and (2.10)
gives

cn−1,n d2
n−1 =

∫ b

a

pn(x)(x) xpn−1(x) dα(x)

=
∫ b

a

pn(x)(x) [cn,n−1 pn + cn−1,n−1 pn−1 + cn−2,n−1 pn−2]dα(x)

= cn,n−1 d2
n,

from which we deduce using (3.18) that

cn−1,n = cn,n−1
d2
n

d2
n−1

= an−1

an

d2
n

d2
n−1

.

Equations (3.16) are obtained by identifying the coefficients of Eq. (3.14) with those
of the monic form of Eq. (3.15). ��

3.4 The Christoffel-Darboux Formula

The following formulas are consequences of the three-term recurrence relation.

Theorem 3.6 (Christoffel-Darboux Formula [6, 21]) Any system of orthogonal
polynomials satisfying the three-term recurrence relation (3.12), satisfies also a so-
called Christoffel-Darboux formula given, respectively, in its initial and confluent
forms as

n∑
k=0

pk(x)pk(y)

d2
k

= an

an+1

1

d2
n

pn+1(x) pn(y) − pn+1(y) pn(x)

x − y
, x �= y, (3.19)

n∑
k=0

pk(x)pk(x)

d2
k

= an

an+1

1

d2
n

(
p′

n+1(x) pn(x) − pn+1(x) p′
n(x)

)
. (3.20)
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Proof For the proof of Eq. (3.19), we multiply by pk(y), Eq. (3.17) in which n is
replaced by k, to obtain

x pk(x) pk(y) = ck+1,k pk+1(x) pk(y) + ck,k pk(x) pk(y) + ck−1,k pk−1(x) pk(y).

Interchanging the role of x and y in the previous equation, we obtain

y pk(x) pk(y) = ck+1,k pk+1(y) pk(x) + ck,k pk(x) pk(y) + ck−1,k pk−1(y) pk(x).

Subtracting the last two equations from each other, we obtain that

pk(x) pk(y)

d2
k

= Ak(x, y) − Ak−1(x, y)

x − y
,

where

Ak(x, y) = ck+1,k

d2
k

(pk+1(x) pk(y) − pk+1(y) pk(x)),

after taking into account the relation ck+1,k

d2
k

= ak

ak+1

1
d2
k

= ck,k+1

d2
k+1

. Equation (3.19) is

obtained by summing the previous equation for k from 0 to n, taking into account
that A−1(x, y) = 0 as p−1(x) = 0. Equation (3.20) is obtained by taking the limit
of (3.19) when y tends to x. ��

3.5 The Interlacing Properties of the Zeros

The following properties of the zeros of orthogonal polynomials are direct con-
sequences of the confluent form of the Christoffel-Darboux formula (3.20). Their
proof is given in the lecture notes of A. Jooste in these proceedings.

Theorem 3.7 (On the Zeros of Orthogonal Polynomials [3, 12, 21, 22]) If (pn)n
is a polynomial system, orthogonal with respect to the positive Borel measure dα

supported on the interval (a, b), then we have the following properties:

1. pn has n simple real zeros xn,k satisfying a < xn,k < b, 1 ≤ k ≤ n.
2. pn and pn+1 have no common zero. The same applies for Pn and P ′

n;
3. if xn,1 < xn,2 < · · · < xn,n are the n zeros of pn, then

xn+1,k < xn,k < xn+1,k+1, 1 ≤ k ≤ n.

Remark 3.8 It should be noticed that the three-term recurrence relation in the
current section yields a matrix representation of the multiplication operator, called
the Jacobi matrix (see for instance [25]). From this fact one can deduce that the
zeros of the n-th orthogonal polynomials are the eigenvalues of the leading principal
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submatrix of size n × n of such a Jacobi matrix. This provides a method to find in
an efficient numerical way such zeros even in the quasi-definite case.

3.6 Solution to the L2(α) Extremal Problem

Theorem 3.9 (Minimal Property) Let (pn)n be a sequence of monic polynomials
orthogonal with respect to a positive Borel measure dα(x) supported on the real
line. For any fixed positive integer n, pn is the minimal polynomial with respect to
the L2-norm

||p||α =
√∫

p2(x) dα(x)

associated with the corresponding orthogonality measure:

min

{∫
q2
n(x) dα(x), qn ∈ R[x], qn(x) = xn + lower degree terms

}
=

∫
p2

n(x) dα(x)

(3.21)
where R[x] is the ring of polynomials with real coefficients.

Proof Let n ≥ 1 and qn be a monic polynomial of degree n. Combining the
expansion of qn in terms of the (pk)k

qn(x) =
n∑

k=0

an,k pk(x),

with the orthogonality give

∫
q2
n(x) dα(x) =

n∑
k=0

a2
n,k d2

k .

Therefore,

∫
q2
n(x) dα(x) ≥ a2

n,n d2
n = d2

n =
∫

p2
n(x) dα(x).

In addition, there is equality if and only if an,k = 0, 0 ≤ k ≤ n − 1. ��
It should be noticed that relation (3.21) which is valid for any sequence of poly-

nomial orthogonal to the positive Borel measure dα(x), is similar to relation (1.8),
given for the specific case of the Chebyshev polynomials of the first kind, with the
Sup-norm (instead of the corresponding L2-norm).
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3.7 Gauss Quadrature Formula

The following property, which is called the Gauss quadrature formula is valid for
any sequence of polynomials orthogonal with respect to the weight function ρ.

Theorem 3.10 ([3, 12, 21, 22]) Let (pn)n be a family of polynomials satisfying
orthogonality relations (2.11)–(2.13). Then there exists a sequence of positive real
numbers (λn,k)n, called Christoffel numbers, such that

∫ b

a

ρ(x) f (x)dx =
n∑

k=1

λn,k f (xn,k), ∀f ∈ R2n−1[x], n ≥ 1, (3.22)

where the xn,k, 1 ≤ k ≤ n are the zeros of pn ranked by increasing order. In
addition, the integral of any function continuous on the compact interval [a, b] can
be approximated by the previous formula:

∫ b

a

ρ(x) f (x)dx = lim
n→∞

n∑
k=1

λn,k f (xn,k), ∀f ∈ C[a, b]. (3.23)

Proof The proof of Eq. (3.22) which generalises property number 7 of the first
theorem, is given in the paper by A. Jooste. It can also be found in [3, 12, 21, 22].
The proof of Eq. (3.23) is given in [3, 6]. ��

3.8 Concluding Remarks

We would like to complete this paper with the following information and remark
which will help to connect this lecture notes with the forthcoming ones, especially
with those involved with classical and semi-classical orthogonal polynomials, as
well as orthogonal polynomials of the Sobolev type:

1. Among the classes of orthogonal polynomials, we mention the classical orthog-
onal polynomials and the semi-classical orthogonal polynomials. The first class
is contained in the second one.

2. Classical orthogonal polynomials of a continuous, discrete, q-discrete, quadratic
and q-quadratic variable, respectively, are those orthogonal with respect to a
weight function satisfying a so-called Pearson equation which is a first-order
linear homogeneous differential, difference, q-difference, divided-difference or
q-divided-difference equation with polynomial coefficients of degree one and at
most 2, respectively, with some boundary conditions at the ends of the interval.
Depending on the type of the variable, we get classical orthogonal polynomials
of continuous, a discrete, a q-discrete, a quadratic and a q-quadratic variable.

Semi-classical orthogonal polynomial are defined in the same way like
the classical ones, but with less restriction on the degree of the polynomial
coefficients of the Pearson equation which can take higher values.
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3. The properties such as the uniqueness of a family of polynomials orthogonal
with respect to a measure, the matrix representation, the three-term recurrence
relation, the Christoffel-Darboux formula and its confluent form, the interlacing
properties of the zeros and the Gauss quadrature formula are valid for any family
of orthogonal polynomials. In addition, it should also be noticed that Theo-
rems 3.4 (Matrix representation), 3.5 (Three-term recurrence relation), and 3.6
(Christoffel-Darboux formula) are also valid if we replace the positive Borel
measure by a quasi-definite linear functional. In this case and for Theorem 3.4,
the positiveness of the Hankel’s determinant is to be replaced by the fact that this
determinant does not vanish.

4. The Chebyshev polynomials of the first, second, third and fourth kinds are up
to now the only known families of orthogonal polynomials for which the zeros
are explicitly known. In addition to the Chebyshev polynomials of the first kind
which have been studied here, the three other families are, respectively, given for
z = cos θ, 0 < θ < π , by [15, 21]

Un(z) = sin((n + 1)θ)

sin θ
, Vn(z) = cos((n + 1

2 )θ)

cos( θ
2 )

, Wn(z) = sin((n + 1
2 )θ)

sin( θ
2 )

.

The zeros of Un(z), Vn(z) and Wn(z) are given in increasing order, respec-
tively, by

zn,k = cos θn,k, with θn,k = n + 1 − k

n + 1
π, k = 1, 2, . . . , n,

zn,k = cos θn,k, with θn,k = 2(n − k) + 1

2n + 1
π, k = 1, 2, . . . , n,

zn,k = cos θn,k, with θn,k = 2(n + 1 − k)

2n + 1
π, k = 1, 2, . . . , n.

5. Additional information on general orthogonal polynomials can be found for
example in [5, 6, 12, 19–21].
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