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Foreword

In July 2015, following an invitation from the African Institute for Mathematical
Sciences (AIMS) Global Secretariat, the two authors of this foreword decided to
apply for funding to the Volkswagen Foundation’s Symposia and Summer Schools
initiative to support the organization of two workshops planned to take place in
Cameroon.

AIMS is a pan-African network of centres of excellence for post-graduate
training, research and public engagement in mathematical sciences. AIMS enables
Africa’s brightest students to become innovators that propel scientific, educational
and economic self-sufficiency.

AIMS-Cameroon is the fourth Center of Excellence of the AIMS Network
created in 2013 after AIMS South Africa, AIMS Senegal and AIMS Ghana,
followed by the creation of AIMS Tanzania and AIMS Rwanda. It is located in
Limbe in Cameroon, a country from the Central Africa sub-region, well known
as Africa in miniature due to its diverse landscapes that represent the continent’s
major climatic zones. Among these, we can mention that white and black beaches,
mountainous areas, tropical rain forests, savanna grasslands and sparse deserts are
found in this country. As illustration, the Mount Cameroon, located in Buea near
Limbe, is the highest point in central and west Africa while Debundscha also located
near Limbe is the sixth wettest place in the world.

Of course, it took quite a long time to develop this idea and make it concrete:
We had to propose programmes for the two planned meetings on Introduction to
Computer Algebra and Applications and on Introduction to Orthogonal Polynomials
and Applications. We had also to invite renowned international experts to present
plenary lectures on the current state of the art in their domains, and we were very
happy about their acceptance. We had to write the corresponding proposal and to get
approval from the reviewers and finally from Volkswagen Foundation. In the first
round, some reviewers of our proposal had recommended us to add some additional
actual major research fields in orthogonal polynomials which we did.

In March 2017, we fortunately received the positive grant letter from Volkswagen
Foundation and could start the final planning. The first workshop on Introduction to
Computer Algebra and Applications took place on October 6–13, 2017, whereas the
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vi Foreword

second workshop on Introduction to Orthogonal Polynomials and Applications was
scheduled for October 5–12, 2018, both taking place in the Hotel Prince de Galles
in Douala, the economic capital of Cameroon. They were hosted by the African
Institute for Mathematical Sciences, Cameroon (https://www.aims-cameroon.org/),
and were co-organized together with the University of Kassel in Germany (http://
www.mathematik.uni-kassel.de/~koepf/). All details about the two workshops can
be found on the web domain http://www.aims-volkswagen-workshops.org/ of the
meetings which is still active.

These Proceedings contain the results of the second workshop. This workshop
on Introduction to Orthogonal Polynomials and Applications was aimed globally at
promoting capacity building in terms of research and training in orthogonal poly-
nomials and applications, discussions and development of new ideas, development
and enhancement of networking including south–south cooperation.

The workshop brought together 60 participants from 18 African, 7 European and
2 North American countries including 19 plenary speakers and trainers who are all
experts in their various domains. In total, about 50 plenary talks, tutorials, training
sessions and contributed talks were delivered during the preliminary workshop
(October 5–7, 2018) and the workshop (October 8–12, 2018).

To announce the workshop, we designed a nice and informative web page at
http://www.aims-volkswagen-workshops.org/ and a link to the first workshop web
site was included. Also, a Facebook event page was installed. On this web page,
information about the objectives and expectations of the workshop, the organizers
and the funding partners, the plenary speakers (CV and photo), programme schedule
and abstracts of lectures and tutorials could be downloaded, also by those interested
researchers that we could not invite. Also, we have put on the web site and spread
by email all over Africa the call for application. Those interested to apply had to
fill in the online application form from our web site. As a result, we have received
130 applications within about 1 month. Many of these applications were excellent
so that we could finally invite 25 Africans from outside Cameroon from 18 different
countries and 16 Cameroonian researchers. 10 of our African participants were
female. The 6 African participants with the best proposals for a talk were selected
to present their research at the workshop.

The workshop evaluation by the participants was very positive, and the workshop
which enabled active interactions between the participants was a great success,
enabling the achievement of the stated objectives!

Since we did not expect prior knowledge about the workshop topic by the African
participants, the preliminary workshop was giving a formal introduction to the
field of orthogonal polynomials. This was possible through the great help of a
group of five former Cameroonian PhD students who all wrote their dissertations—
supervised by the two workshop organizers—in the field of Orthogonal Polynomials
and Special Functions and whom we are very grateful for their help: Maurice
Kenfack Nangho, Salifou Mboutngam, Merlin Mouafo Wouodjie, Patrick Njionou
Sadjang and Daniel D. Tcheutia. Finally, the talks given by the two organizers
and the one of Aletta Jooste from the University of Pretoria in South Africa (who
could not attend due to last minute health constraints) given by Daniel D. Tcheutia,

https://www.aims-cameroon.org/
http://www.mathematik.uni-kassel.de/~koepf/
http://www.mathematik.uni-kassel.de/~koepf/
http://www.aims-volkswagen-workshops.org/
http://www.aims-volkswagen-workshops.org/
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complemented the lecturers of the preliminary workshop. All those contributions
are contained in these Proceedings.

The main workshop was aimed at introducing concepts of modern and actual
research topics in orthogonal polynomials: Multiple Orthogonal Polynomials,
Orthogonal Polynomials and Painlevé Equations, Orthogonal Polynomials and
Random Matrices, Orthogonal Polynomials in Sobolev Spaces, Matrix Polynomials,
Zeros of Orthogonal Polynomials, Computer Algebra and Orthogonal Polynomials,
Multivariate Orthogonal Polynomials, Askey–Wilson Scheme.

Based on the concept of the workshop, we have divided these Proceedings into
two parts. Part I gives an Introduction to Orthogonal Polynomials based on the talks
given in the preliminary workshop. They are organized in their logical structure.
Part II presents the remaining lectures on Actual Research Topics in Orthogonal
Polynomials and Applications. They are organized in alphabetical order of their
authors. An ordering by their topics was not possible since some authors preferred
to write one article about several topics.

We hope that these Proceedings will not only give a very good introduction into
the state of the actual research in orthogonal polynomials and applications, but also
help those interested in orthogonal polynomials without prior knowledge to embark
into this interesting field of research.
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An Introduction to Orthogonal
Polynomials

Mama Foupouagnigni

Abstract In this introductory talk, we first revisit with proof for illustration
purposes some basic properties of a specific system of orthogonal polynomials,
namely the Chebyshev polynomials of the first kind. Then we define the notion
of orthogonal polynomials and provide with proof some basic properties such as:
The uniqueness of a family of orthogonal polynomials with respect to a weight
(up to a multiplicative factor), the matrix representation, the three-term recurrence
relation, the Christoffel-Darboux formula and some of its consequences such as the
separation of zeros and the Gauss quadrature rules.

Keywords Orthogonal polynomials · Differential equations · Chebyshev
polynomials · Zeros
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4 M. Foupouagnigni

1 Introduction: An Example of a Family of Orthogonal
Polynomials

Univariate orthogonal polynomials (or orthogonal polynomials for short) are sys-
tems of polynomials (pn)n with deg(pn) = n, satisfying a certain orthogonality
relation. They are very useful in practice in various domains of mathematics,
physics, engineering and so on, because of the many properties and relations
they satisfy. As examples of areas where orthogonal polynomials play important
roles, I could list approximation theory (see [5, 23]) and also numerical analysis
(see for example [9, 10]). Among those relations, we can mention the following,
with the first seven valid for all families of orthogonal polynomials. The last three
are in general valid for some specific families of orthogonal polynomials, the so-
called classical orthogonal polynomials (see [1–3, 6, 7, 12, 14]) and the preliminary
training given by S. Mboutngam, M. Kenfack Nangho and P. Njionou Sadjang of
these proceedings):

– Orthogonality relation
– Matrix representation
– Three-term recurrence relation
– Christoffel-Darboux formula
– Separation of zeros
– Gauss quadrature
– Generating functions
– Second-order holonomic differential, difference or q-difference equation
– Rodrigues formula
– Expansion of functions which are continuous differentiable and square inte-

grable, in terms of Fourier series of OP.

Before going into details and for illustration purposes, let us give a concrete
example of a family of orthogonal polynomials, then state and prove some of its
properties most of which are common to any family of orthogonal polynomials.

Theorem 1.1 (Chebyshev Polynomials of the First Kind [17, 21]) The polyno-
mial family (Tn)n defined by (and called Chebyshev polynomials of the first kind or
Chebyshev polynomials for short as we will study only this family in this article)

Tn(x) = cos(nθ), x = cos θ, 0 < θ < π, n ∈ N, (1.1)

fulfills the following properties:

1. Tn is a polynomial of degree n in x with leading coefficient an = 2n−1, satisfying
the following recurrence relation (called three-term recurrence relation)

Tn+1(x)+ Tn−1(x) = 2xTn(x), n ≥ 1, T0(x) = 1, T1(x) = x; (1.2)
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2. (Tn)n satisfies the following relation (called orthogonality relation)

∫ π

0
cos(nθ) cos(mθ)dθ = knδn,m =

∫ 1

−1
Tn(x) Tm(x)

dx√
1− x2

, (1.3)

with k0 = π, kn = π
2 , n ≥ 1.

3. Tn satisfies the second-order holonomic differential equation:

(1− x2) T ′′n (x)− x T ′n(x)+ n2 Tn(x) = 0, n ≥ 0. (1.4)

4. For any n ≥ 1, Tn has exactly n zeros, all belonging to the interval of
orthogonality (−1, 1). Those zeros, ranked in increasing order, are given by:

xn,k = cos

(
2(n− k)+ 1

2n
π

)
, 1 ≤ k ≤ n, n ≥ 1. (1.5)

5. The zeros xn,k of Tn satisfy

xn,j �= xn+1,k, ∀n ≥ 1, 1 ≤ j ≤ n, 1 ≤ k ≤ n+ 1; (1.6)

xn+1,k < xn,k < xn+1,k+1, 1 ≤ k ≤ n. (1.7)

6. The monic Chebyshev polynomial of degree n ≥ 1 is the polynomial deviating
least from zero on [−1, 1] among all monic polynomials of degree n:

min

{
max
−1≤x≤1

|qn(x)|, qn ∈ R[x], qn(x) = xn + . . .
}
= max
−1≤x≤1

∣∣∣∣Tn(x)2n−1

∣∣∣∣ = 1

2n−1
,

(1.8)
where R[x] is the ring of polynomials with real coefficients.

7. The following property, which is called the Gauss quadrature formula for the
specific case of the Chebyshev polynomials, is valid

∫ 1

−1

f (x)√
1− x2

dx = π
n

n∑
k=1

f (xn,k), ∀f ∈ R2n−1[x], n ≥ 1, (1.9)

R2n−1[x] is the ring of polynomials of degree at most 2n − 1, with real
coefficients. In addition, the integral of any function continuous on the compact
interval [−1, 1] can be approximated by the previous formula:

∫ 1

−1

f (x)√
1− x2

dx = lim
n→∞

π

n

n∑
k=1

f (xn,k), ∀f ∈ C[−1, 1], (1.10)

where C[−1, 1] is the set of continuous functions on the interval [−1, 1].
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Proof Let us provide a quick proof of the first six above properties.

Proof of Property 1 Equation (1.2) is obtained by direct computation:

T0(x) = cos(0) = 1, T1(x) = cos θ = x,

and

Tn+1(x)+ Tn−1(x) = cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cos(nθ) = 2 x Tn(x),

using the cosine addition formula cos(a + b) = cos a cos b − sin a sin b.
Next, we now prove by induction that Tn is a polynomial of degree n in the

variable x with 2n−1 as leading coefficient, that is

Tn(x) = 2n−1 xn + lower degree terms, n ≥ 1. (1.11)

For n = 1, Eq. (1.11) is satisfied as T1(x) = x = 21−1 x and its degree is 1. By
assuming that Eq. (1.11) is satisfied for a fixed integer n ≥ 1, we can then write Tn
as Tn(x) = 2n−1 xn+An−1(x) where An−1 is a polynomial of degree at most n− 1
in the variable x. We complete the proof by using relation (1.2) to obtain that

Tn+1(x) = 2x Tn(x)−Tn−1(x) = 2x (2n−1 xn+An−1(x))−Tn−1(x) = 2n xn+1+Ãn(x),

where Ãn is a polynomial of degree at most n in x. Therefore, Tn is a polynomial of
degree n in the variable x with 2n−1 as leading coefficient.

From the three-term recurrence relation (1.2), one can generate any Tn; and in
particular, the first 10 Chebyshev polynomials are given by:

T0(x) = 1,

T1(x) = x;
T2(x) = 2 x2 − 1,

T3(x) = 4 x3 − 3 x,

T4(x) = 8 x4 − 8 x2 + 1,

T5(x) = 16 x5 − 20 x3 + 5 x, (1.12)

T6(x) = 32 x6 − 48 x4 + 18 x2 − 1,

T7(x) = 64 x7 − 112 x5 + 56 x3 − 7 x,

T8(x) = 128 x8 − 256 x6 + 160 x4 − 32 x2 + 1,

T9(x) = 256 x9 − 576 x7 + 432 x5 − 120 x3 + 9 x.
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Proof of Property 2 Relation (1.3) is proved by direct computation using again the
addition formula

2 cos(nθ) cos(mθ) = cos(n+m)θ + cos(n−m)θ,

and the fact that x = cos θ, 0 < θ < π �⇒ dx = − sin θ dθ = −√1− cos2 θdθ .

Proof of Property 3 Relation (1.4) is also proved by direct computation. In fact

T ′n(x) =
d

dx
Tn(x) = dθ

dx

d

dθ
Tn(x) = −1

sin θ

d

dθ
cos(nθ) = n sin(nθ)

sin θ
, n ≥ 1,

T ′′n (x) =
d

dx

d

dx
Tn(x)

= dθ
dx

d

dθ

(
dθ

dx

d

dθ
Tn(x)

)

= −1

sin θ

d

dθ

( −1

sin θ

d

dθ
cos(nθ)

)

= n cos θ sin(nθ)

sin θ sin2 θ
+ −n

2 cos(nθ)

sin2 θ

= x T
′
n(x)

1− x2
+ −n

2 Tn(x)

1− x2
, n ≥ 1.

Proof of Property 4 To obtain the zeros of Tn, we solve the following equation for
a fixed n ≥ 1, x ∈ (−1, 1) and θ ∈ (−π π).

Tn(x) = 0⇐⇒ cos(nθ) = 0⇐⇒ nθ = π
2
+ kπ, k ∈ Z.

Since 0 < θ < π , then 0 ≤ k ≤ n− 1. Therefore, Tn has exactly n zeros which are

cos
(
(2k+1)π

2n

)
, 0 ≤ k ≤ n−1. But since those zeros are ranked by decreasing order

for the function θ → cos θ is decreasing on (−π, π) and the sequence k→ (2k+1)π
2n

is increasing, there is a need to reverse the order. This is done by replacing k by n−k.
Therefore we obtain the following zeros ranked by increasing order

xn,k = cos θn,k, with θn,k = 2(n− k)+ 1

2n
π, 1 ≤ k ≤ n.

The zeros also belong to the interval of orthogonality (−1, 1).
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Fig. 1 The first 10 Chebyshev polynomials

Proof of Property 5 Equation (1.6) is satisfied since the cosine function is a
bijection from (0, π) into (−1, 1) and

θn,j �= θn+1,k, ∀n ≥ 1, 1 ≤ j ≤ n, 1 ≤ k ≤ n+ 1.

The inequalities (1.7) are deduced using the fact that the cosine function is strictly
decreasing in (−π, π) combined with the following inequalities which can be
obtained by a direct and quick computation

θn+1,k+1 < θn,k < θn+1,k, 1 ≤ k ≤ n.

The interlacing properties of the zeros of the Chebyshev polynomials can be
observed on the above graph of the first ten Chebyshev polynomials (Fig. 1).

Proof of Property 6 Let us first denote the monic Chebyshev polynomial of degree
n by tn: tn(x) = Tn(x)

2n−1 , n ≥ 1, t0(x) = T0(x) = 1. Next, we define the set of monic
polynomials of degree n, Pn, the sup-norm ||.||max and the subset I of the set of real
numbers R, respectively, by

Pn =
{
qn ∈ Rn[x], qn(x) = xn + lower degree terms

}
||p||max = max−1≤x≤1

|p(x)|,
I = {||p||max, p ∈ Pn} .
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To prove that min I = ||tn||max = 1
2n−1 , for a fixed but arbitrary integer n ≥ 1, we

proceed as follows:

– In the first step, we derive the extrema for the function tn:

t ′n(x) = 0⇐⇒ n sin(nθ)

sin(θ)
= 0⇐⇒ sin(nθ) = 0, sin θ �= 0.

Since 0 ≤ θ ≤ π , we get θ = kπ
n
, 1 ≤ k ≤ n− 1. We have excluded k = 0 and

k = n to make sure that sin θ �= 0. The extrema for tn are therefore

zn,k = cos

(
kπ

n

)
, 1 ≤ k ≤ n− 1.

– In the second step, we study the sign of tn(x) on the extrema. Before this, we
remark that for θ = 0, x = 1 := zn,0 and for θ = π, x = −1 := zn,n, enabling
us to get the following information on the action of tn on zn,k:

tn(−1) = cos(n π)

2n−1
= (−1)n

2n−1
= tn(zn,n), (1.13)

tn(1) = cos(n 0)

2n−1 = 1

2n−1 = tn(zn,0), (1.14)

tn(zn,k) = (−1)k

2n−1 , 1 ≤ k ≤ n− 1. (1.15)

Equations (1.13) and (1.14) confirm that Eq. (1.15) which was initially valid for
1 ≤ k ≤ n− 1 is also valid for k = 0, n and can then be written as

tn(zn,k) = (−1)k

2n−1
, 0 ≤ k ≤ n.

The previous equation, combined with the fact that tn(x) = cos(nθ)
2n−1 , allows us to

deduce that

||tn||max = 1

2n−1
.

1. In the third step, we remark that the set I is not empty since it contains ||tn||max.
In addition, it has zero as a lower bound. Let us assume that ||tn||max is not the
minimum element of I . Then there exists a polynomial q belonging to Pn such
that

− 1

2n−1 < q(x) <
1

2n−1 , −1 ≤ x ≤ 1.
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We next set Pn−1(x) = tn(x)−q(x) and observe, taking into account the previous
inequalities, that Pn−1 which is a polynomial of degree at most n− 1 fulfills the
following properties:

Pn−1(zn,2j ) = tn(zn,2j )− q(zn,2j ) = 1

2n−1 − q(zn,2j ) > 0,

Pn−1(zn,2j+1) = tn(zn,2j+1)− q(zn,2j+1) = −1

2n−1 − q(zn,2j+1) < 0,

for any integer j such that 0 ≤ 2j + 1 ≤ n. We obtain a contradiction to the fact
that the polynomial Pn−1 which is of degree at most n − 1 will have n zeros for
it will change its sign n times in the intervals (zn,k, zn,k+1), k = 0 . . . n− 1. We
therefore conclude that ||tn||max = 1

2n−1 is the minimum of I .

Proof Illustration of Property 7 The Gauss formula (1.9) is given in the general
case in the paper by A. S. Jooste in these proceedings (see also [3, 6, 12, 22],
but one would need to proceed with additional careful computations to verify
that the Christoffel number λn,k in the general Gauss quadrature formula is given
by λn,k = π

n
for the specific case of the Chebyshev polynomials Tn (see also

[15], Theorem 8.4, where the Christoffel numbers have been given explicitly for
Chebyshev polynomials of the first, second, third and fourth kinds). We refer to
[6], page 33 and also to [3], page 252 for the proof of relation (1.10) and other
approximation formulas.

��

2 Construction of a System of Orthogonal Polynomials

In this section, after having provided a concrete example of a family of orthogonal
polynomials with proof of some of its nice properties—some of which are common
for any family of orthogonal polynomials—, we will now show how to construct a
family of orthogonal polynomials from a scalar product and then relate this with the
definition of orthogonal polynomials.

Let us consider a scalar product ( , ) defined on R[x]×R[x] in terms of a Stieltjes
integral as

(p, q) =
∫ b

a

p(x) q(x) dα(x), (2.1)

where R[x] is the ring of polynomials with a real variable and dα is a non-negative
Borel measure supported in the interval (a, b). As scalar product, it fulfills the
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following properties:

(p, p) ≥ 0, ∀p ∈ R[x], and (p, p) = 0 �⇒ p = 0,

(p, q) = (q, p), ∀p, q ∈ R[x],
(λ p, q) = λ (p, q), ∀λ ∈ R, ∀p, q ∈ R[x],

(p + q, r) = (p, r)+ (q, r), ∀p, q, r ∈ R[x].

As an example of scalar product on R[x] with connection to known systems of
orthogonal polynomials, we mention:

(p, q) =
∫ 1

−1
p(x) q(x)

dx√
1− x2

, (2.2)

which yields the Chebyshev orthogonal polynomials.
The following theorem provides a method for construction of a family of

polynomials, orthogonal with respect to a given scalar product. It is called Gram-
Schmidt orthogonalisation process.

Theorem 2.1 (Gram-Schmidt Orthogonalisation Process [6, 12, 22]) The poly-
nomial systems (qn)n and (pn)n defined recurrently by the relations

q0 = 1, qn = xn −
n−1∑
k=0

(xn, qk)

(qk, qk)
qk, n ≥ 1, pk = qk√

(qk, qk)
, k ≥ 0, (2.3)

satisfy the relations

deg(qn) = deg(pn) = n,∀n ≥ 0, (2.4)

(qn, qm) = 0, n �= m, (qn, qn) �= 0, ∀n ≥ 0, (2.5)

(pn, pm) = 0, n �= m, (pn, pn) = 1, ∀n ≥ 0. (2.6)

The polynomials (qn)n and (pn)n are said to be orthogonal or orthonormal
with respect to the scalar product ( , ), respectively. In fact, they represent the
same polynomial system with different normalisation: (qn)n is monic—to say the
coefficient of the leading monomial is equal to 1; while (pn)n is orthonormal—to
say (pn, pn) = 1 or the corresponding norm of pn is equal to 1.

Proof Equation (2.4) is obvious while Eq. (2.6) is a direct consequence of Eq. (2.5).
We will prove Eq. (2.5) by induction. Because of the properties of the scalar product,
we just need to prove the following:

(qn, qm) = 0, ∀n ≥ 1, 0 ≤ m ≤ n− 1. (2.7)
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For n = 1, we have, using relations (2.3)

(q1, q0) =
(
x − (x, q0)

(q0, q0)
q0, q0

)
= (x, q0)− (x, q0)

(q0, q0)
(q0, q0) = 0.

We now assume that relation (2.7) is satisfied up to a given n ≥ 1. Let m ∈ N,
0 ≤ m ≤ n.

(qn+1, qm) =
(
xn+1 −

n∑
k=0

(xn+1, qk)

(qk, qk)
qk, qm

)

= (xn+1, qm)−
n∑
k=0

(xn+1, qk)

(qk, qk)
(qk, qm)

= (xn+1, qm)− (x
n+1, qm)

(qm, qm)
(qm, qm) = 0,

since from the induction hypothesis (Eq. (2.7)) and the symmetry of the scalar
product, (qk, qm) = 0, 0 ≤ k �= m ≤ n− 1. ��
Definition 2.2 (Orthogonal Polynomials [6]) Any sequence of polynomials (pn)n
satisfying Eqs. (2.4) and (2.5) (rewritten as follows with qn replaced by pn)

deg(pn) = n, (2.8)
∫ b

a

pn(x) pm(x) dα(x) = 0, n �= m, (2.9)

∫ b

a

pn(x) pn(x) dα(x) �= 0, ∀n ≥ 0, (2.10)

is said to be orthogonal with respect to the measure dα, and called an orthogonal
polynomial system or an orthogonal polynomial for short.

Definition 2.3 (Orthogonal Polynomials w.r.t. to a Weight Function [3, 6, 12, 17,
18, 21]) When the measure dα is absolutely continuous, that is dα(x) = ρ(x) dx
where ρ is an appropriate function—called weight function, then relations (2.8)–
(2.10) read

deg(pn) = n, (2.11)
∫ b

a

pn(x) pm(x) ρ(x) dx = 0, n �= m, (2.12)

∫ b

a

pn(x) pn(x) ρ(x) dx �= 0, ∀n ≥ 0. (2.13)
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The polynomial system (pn)n is said to be orthogonal with respect to the weight
function ρ. Because of the form of the orthogonality relation, the variable here is
continuous. We therefore obtain orthogonal polynomials of a continuous variable.

Definition 2.4 (Orthogonal Polynomials of a Discrete Variable [12, 18]) When
the measure dα is discrete and supported in N, that is, α = ρ on N, then the
relations (2.8), (2.9) and (2.10) become

degpn = n, n ≥ 0,

N∑
k=0

ρ(k) pn(k) pm(k) = 0, ∀n, m ∈ N, n �= m,

N∑
k=0

ρ(k) pn(k) pn(k) �= 0, n ≥ 0,

where the parameter N belongs to N ∪ {∞}. (pn)n is said to be orthogonal
with respect to the discrete weight ρ. It is also called a sequence of orthogonal
polynomials of a discrete variable.

Notice that if N is finite, then there exist only a finite number of orthogonal
polynomials, this because the bilinear application defined in (2.1) is positive definite
not on the entire R[x] but rather on its linear subspace, Rl[x], for an appropriate
choice of the positive integer l.

Definition 2.5 (Orthogonal Polynomials of a q-Discrete Variable [8, 11, 13, 18])
When the measure dα is q-discrete and supported in qZ, that is, α = ρ on qZ, where
Z is the set of integers, then the relations (2.8), (2.9) and (2.10) become

degpn = n, n ≥ 0,

N∑
k=0

ρ(qk) pn(q
k) pm(q

k) = 0, ∀n, m ∈ N, n �= m,

N∑
k=0

ρ(qk) pn(q
k) pn(q

k) �= 0, n ≥ 0,

where the parameter N belongs to N ∪ {∞}. (pn)n is said to be orthogonal with
respect to the q-discrete weight ρ. It is also called a sequence of orthogonal
polynomials of a q-discrete variable.

Remark 2.6 When the measure dα is discrete or q-discrete supported on a quadratic
or a q-quadratic lattice, this gives the orthogonal polynomials of a quadratic or a q-
quadratic variable. As examples of such polynomials, we mention the Wilson and
the Askey-Wilson polynomials [4, 8, 12, 13].
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3 Basic Properties of Orthogonal Polynomials

3.1 The Uniqueness of a Family of Orthogonal Polynomials

Before stating the result about the uniqueness of a family of orthogonal polynomials,
let us start with the following remarks:

1. If (pn)n is a family of orthogonal polynomials, then due to the fact that the degree
of each pn is equal to n, any subset of {pn, n ∈ N} is a linearly independent subset
of the linear space R[x].

2. Moreover, for any n ≥ 1, the set {pk, 0 ≤ k ≤ n}, like the canonical basis of
monomials {xk, 0 ≤ k ≤ n}, constitutes a basis of the linear space Rn[x] of
polynomials of degree at most n.

The following result states an equivalent orthogonality relation.

Lemma 3.1 Let (pn)n be a sequence of polynomials with deg(pn) = n, n ≥ 0.
Then Eqs. (2.9) and (2.10) are equivalent to the two following equations

∫ b

a

pn(x) x
m dα(x) = 0, ∀n ≥ 1, 0 ≤ m ≤ n− 1, (3.1)

∫ b

a

pn(x) x
n dα(x) �= 0, ∀n ≥ 0. (3.2)

Proof The proof is obtained by combining the orthogonality relations (2.9)
and (2.10) or (respectively (3.1) and (3.2)) with the expansion of the polynomial pm
in the canonical basis of monomials (respectively the expansion of xm in the basis
{pk, 0 ≤ k ≤ n}). ��

The uniqueness of a family of polynomials orthogonal with respect to a measure
dα can then be stated as follows.

Theorem 3.2 (Uniqueness of a Family of Orthogonal Polynomials) To the mea-
sure dα corresponds a unique (up to a multiplicative factor) family of orthogonal
polynomials. Or equivalently, if (pn)n and (qn)n are two families of polynomials
satisfying relations (2.8)–(2.10), then they are proportional, to say that there exists
a sequence (bn)n such that pn = bn qn, n ≥ 0, with bn �= 0, n ≥ 0.

Proof The proof is obtained by expanding the polynomial qn in the basis {pk, 0 ≤
k ≤ n} of Rn[x] and using the orthogonality relations (2.9) and (2.10) to show that
the other coefficients, except the leading one, are equal to zero. ��
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3.2 The Matrix Representation

The following results give information about the Hankel determinant and a matrix
representation of a given family of orthogonal polynomials. Before that, let us
define what we mean by linear functional and orthogonality with respect to a linear
functional.

Definition 3.3 (Linear Functional) Linear functional here means any linear map-
ping from R[x] to R.

The sequence of polynomials (pn)n will be said to be orthogonal with respect to
the linear functional U if deg(pn) = n and

〈U, xmpn〉 = 0, n ≥ 0, 0 ≤ m ≤ n, (3.3)

〈U, xnpn〉 �= 0, ∀n ≥ 0. (3.4)

In this case, the linear functional U is said to be quasi-definite, to say that there
exists a family of polynomials orthogonal with respect to U .

As example, we define a linear functional L by

〈L, p〉 =
∫ 1

−1

p(x)√
1− x2

dx,

corresponding to the Chebyshev orthogonal polynomials (Tn)n. The definition of
orthogonality by means of a linear functional is very useful in practice because it
enables an elegant proof of equivalent properties of standard orthogonal polynomi-
als [6, 7, 12, 16] in addition to providing the proof of the so-called Favard Theorem
[6] stating that any sequence of polynomials satisfying a three-term recurrence
relation with some specific restriction on one of its coefficients is orthogonal with
respect to a quasi-definite functional.

Theorem 3.4 ([21]) Let (pn)n be a sequence of polynomials with deg(pn) =
n, n ≥ 0 and satisfying the orthogonality conditions (2.9) and (2.10).

1. Then for any integer n ≥ 0, the following relation holds

�n > 0, n ≥ 0, (3.5)

where �n is the Hankel determinant defined by

�n = det(μk+j )0≤k,j≤n =

μ0 μ1 · · · μn−1 μn

μ1 μ1 · · · μn−1 μn+1
...

...
...

...
...

μn−1 μn · · · μ2n−2 μ2n−1

μn μn+1 · · · μ2n−1 μ2n

, n ≥ 1, �0 := μ0.

(3.6)
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The number μn which is given by

μn =
∫ b

a

xn dα(x), n ≥ 0,

denotes the canonical moment with respect to the measure dα.
2. For any positive integer n, the polynomial pn has the following matrix represen-

tation

pn(x) = an,n

�n−1

μ0 μ1 · · · μn−1 μn

μ1 μ1 · · · μn−1 μn+1
...

...
...

...
...

μn−1 μn · · · μ2n−2 μ2n−1

1 x · · · xn−1 xn

, (3.7)

where an,n is the leading coefficient of pn.
3. Conversely, given any sequence of real numbers (μn)n satisfying relation (3.5),

then since �n �= 0, n ≥ 0, there exists a sequence of polynomials orthogonal
with respect to the quasi-definite linear functional U defined on the canonical
basis of monomials by

〈U, xn〉 = μn, n ≥ 0.

In addition, from (3.5) the linear functional U is positive-definite and as a
consequence (see [6]) there exists a positive Borel measure associated with it.

The corresponding family is given explicitly by (3.7).

Proof

1. For the proof of the first property, let (pn)n be a sequence of polynomials with
deg(pn) = n, n ≥ 0 and satisfying the orthogonality conditions (2.9) and (2.10)
which are equivalent to orthogonality conditions (3.1) and (3.2). Writing for a
fixed integer n ≥ 1

pn(x) =
n∑
k=0

an,k x
k,

in the orthogonality relation (3.1) for the integers m = 0 . . . n and then for
orthogonality relation (3.2), we obtain the following system of linear equations
for the unknowns (an,k)k whose matrix form is given by

⎛
⎜⎜⎜⎜⎜⎝

μ0 μ1 · · · μn−1 μn

μ1 μ1 · · · μn−1 μn+1
...

...
...

...
...

μn−1 μn · · · μ2n−2 μ2n−1

μn μn+1 · · · μ2n−1 μ2n

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

an,0

an,1
...

an,n−1

an,n

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
kn

⎞
⎟⎟⎟⎟⎟⎠
, (3.8)



Introduction to Orthogonal Polynomials 17

where kn =
∫ b
a pn(x) x

ndα �= 0. Since the polynomial sequence (pn)n not
only exists and is uniquely determined by fixing kn, then necessarily, the Hankel
determinant is different from zero. The positiveness of the Hankel’s determinant
will be deduced in the following paragraph.

2. To prove the second property, we first use (3.7) to obtain for 0 ≤ m ≤ n that

∫ b

a

pn(x) x
m dα(x) = an,n

�n−1

μ0 μ1 · · · μn−1 μn

μ1 μ1 · · · μn−1 μn+1
...

...
...

...
...

μn−1 μn · · · μ2n−2 μ2n−1

μm μm+1 · · · μm+n−1 μm+n

. (3.9)

The previous relation reads

∫ b

a

pn(x) x
m dα(x) = 0, 0 ≤ m ≤ n− 1 (3.10)

since them+1-th row and the last row of the determinant will be identical. Also,
use of (3.9) form = n taking combined with the following relation

∫ b

a

pn(x) x
n dα(x) = 1

an,n

∫ b

a

pn(x) pn(x) dα(x) = d2
n

an,n

obtained using orthogonality, leads to

∫ b

a

pn(x) x
n dα(x) = an,n �n

�n−1
= d2

n

an,n
�= 0, n ≥ 1. (3.11)

We then deduce from Eqs. (3.10) and (3.11) combined with (3.1) and (3.2) that
(pn)n is orthogonal with respect to dα(x).

The positiveness of �n is seen from the relation

�n = �0

n∏
k=1

d2
k

a2
k,k

= μ0

n∏
k=1

d2
k

a2
k,k

> 0,

deduced from (3.11).
3. The third property is proved by showing, in a similar way as done in the

proof of Property 2 above, that the polynomial sequence given by (3.7) satisfies
orthogonality relations (3.3) and (3.4).

��
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3.3 The Three-Term Recurrence Relation

Theorem 3.5 (Three-Term Recurrence Relation [6, 21, 24]) Any polynomial
sequence (pn)n, orthogonal with respect to the measure dα or fulfilling the
orthogonality relations (2.8)–(2.10), satisfies the following relation called three-
term recurrence relation

x pn(x) = an

an+1
pn+1 +

(
bn

an
− bn+1

an+1

)
pn + an−1

an

d2
n

d2
n−1

pn−1, p−1 = 0, p0 = 1,

(3.12)
with

pn = an xn + bn xn−1 + lower degree terms, and d2
n = (pn, pn). (3.13)

When (pn) is monic (i.e. an = 1) or orthonormal (ie. dn = 1), then Eq. (3.12) can
be written in the following forms, respectively:

pn+1 = (x − βn) pn − γn pn−1, p−1 = 0, p0 = 1, (3.14)

with βn = bn − bn+1, γn = d2
n

d2
n−1

, and

x pn = αn+1 pn+1 + ηn pn + αn pn−1, p−1 = 0, p0 = 1, (3.15)

with αn = an−1
an
, ηn = bn

an
− bn+1
an+1

.

Also, the recurrence coefficients of the monic and orthonormal forms of the
orthogonal polynomial system are connected by

ηn = βn, γn = α2
n. (3.16)

Proof For fixed n ≥ 0, we expand x pn in the basis {p0, p1, . . . , pn+1}

x pn =
n+1∑
k=0

ck,n pk,

and then use orthogonality to obtain

ck,n =
∫ b
a xpn(x) pk(x) dα(x)∫ b
a pk(x) pk(x) dα(x)

=
∫ b
a pn(x) xpk(x) dα(x)∫ b
a pk(x) pk(x) dα(x)

= 0, for 0 ≤ k ≤ n−2.

Hence

x pn = cn+1,n pn+1 + cn,n pn + cn−1,n pn−1. (3.17)
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Substituting (3.13) into (3.12) and identifying the leading coefficients of the
monomials xn+1 and xn yields

cn+1,n = an

an+1
, cn,n =

(
bn

an
− bn+1

an+1

)
. (3.18)

Using (3.17) twice combined with the orthogonality properties (2.9) and (2.10)
gives

cn−1,n d
2
n−1 =

∫ b

a

pn(x)(x) xpn−1(x) dα(x)

=
∫ b

a

pn(x)(x) [cn,n−1 pn + cn−1,n−1 pn−1 + cn−2,n−1 pn−2]dα(x)

= cn,n−1 d
2
n,

from which we deduce using (3.18) that

cn−1,n = cn,n−1
d2
n

d2
n−1

= an−1

an

d2
n

d2
n−1

.

Equations (3.16) are obtained by identifying the coefficients of Eq. (3.14) with those
of the monic form of Eq. (3.15). ��

3.4 The Christoffel-Darboux Formula

The following formulas are consequences of the three-term recurrence relation.

Theorem 3.6 (Christoffel-Darboux Formula [6, 21]) Any system of orthogonal
polynomials satisfying the three-term recurrence relation (3.12), satisfies also a so-
called Christoffel-Darboux formula given, respectively, in its initial and confluent
forms as

n∑
k=0

pk(x)pk(y)

d2
k

= an

an+1

1

d2
n

pn+1(x) pn(y)− pn+1(y) pn(x)

x − y , x �= y, (3.19)

n∑
k=0

pk(x)pk(x)

d2
k

= an

an+1

1

d2
n

(
p′n+1(x) pn(x)− pn+1(x) p

′
n(x)

)
. (3.20)



20 M. Foupouagnigni

Proof For the proof of Eq. (3.19), we multiply by pk(y), Eq. (3.17) in which n is
replaced by k, to obtain

x pk(x) pk(y) = ck+1,k pk+1(x) pk(y)+ ck,k pk(x) pk(y)+ ck−1,k pk−1(x) pk(y).

Interchanging the role of x and y in the previous equation, we obtain

y pk(x) pk(y) = ck+1,k pk+1(y) pk(x)+ ck,k pk(x) pk(y)+ ck−1,k pk−1(y) pk(x).

Subtracting the last two equations from each other, we obtain that

pk(x) pk(y)

d2
k

= Ak(x, y)− Ak−1(x, y)

x − y ,

where

Ak(x, y) = ck+1,k

d2
k

(pk+1(x) pk(y)− pk+1(y) pk(x)),

after taking into account the relation ck+1,k

d2
k

= ak
ak+1

1
d2
k

= ck,k+1

d2
k+1
. Equation (3.19) is

obtained by summing the previous equation for k from 0 to n, taking into account
that A−1(x, y) = 0 as p−1(x) = 0. Equation (3.20) is obtained by taking the limit
of (3.19) when y tends to x. ��

3.5 The Interlacing Properties of the Zeros

The following properties of the zeros of orthogonal polynomials are direct con-
sequences of the confluent form of the Christoffel-Darboux formula (3.20). Their
proof is given in the lecture notes of A. Jooste in these proceedings.

Theorem 3.7 (On the Zeros of Orthogonal Polynomials [3, 12, 21, 22]) If (pn)n
is a polynomial system, orthogonal with respect to the positive Borel measure dα
supported on the interval (a, b), then we have the following properties:

1. pn has n simple real zeros xn,k satisfying a < xn,k < b, 1 ≤ k ≤ n.
2. pn and pn+1 have no common zero. The same applies for Pn and P ′n;
3. if xn,1 < xn,2 < · · · < xn,n are the n zeros of pn, then

xn+1,k < xn,k < xn+1,k+1, 1 ≤ k ≤ n.

Remark 3.8 It should be noticed that the three-term recurrence relation in the
current section yields a matrix representation of the multiplication operator, called
the Jacobi matrix (see for instance [25]). From this fact one can deduce that the
zeros of the n-th orthogonal polynomials are the eigenvalues of the leading principal
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submatrix of size n × n of such a Jacobi matrix. This provides a method to find in
an efficient numerical way such zeros even in the quasi-definite case.

3.6 Solution to the L2(α) Extremal Problem

Theorem 3.9 (Minimal Property) Let (pn)n be a sequence of monic polynomials
orthogonal with respect to a positive Borel measure dα(x) supported on the real
line. For any fixed positive integer n, pn is the minimal polynomial with respect to
the L2-norm

||p||α =
√∫

p2(x) dα(x)

associated with the corresponding orthogonality measure:

min

{∫
q2
n(x) dα(x), qn ∈ R[x], qn(x) = xn + lower degree terms

}
=

∫
p2
n(x) dα(x)

(3.21)
where R[x] is the ring of polynomials with real coefficients.

Proof Let n ≥ 1 and qn be a monic polynomial of degree n. Combining the
expansion of qn in terms of the (pk)k

qn(x) =
n∑
k=0

an,k pk(x),

with the orthogonality give

∫
q2
n(x) dα(x) =

n∑
k=0

a2
n,k d

2
k .

Therefore,

∫
q2
n(x) dα(x) ≥ a2

n,n d
2
n = d2

n =
∫
p2
n(x) dα(x).

In addition, there is equality if and only if an,k = 0, 0 ≤ k ≤ n− 1. ��
It should be noticed that relation (3.21) which is valid for any sequence of poly-

nomial orthogonal to the positive Borel measure dα(x), is similar to relation (1.8),
given for the specific case of the Chebyshev polynomials of the first kind, with the
Sup-norm (instead of the corresponding L2-norm).
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3.7 Gauss Quadrature Formula

The following property, which is called the Gauss quadrature formula is valid for
any sequence of polynomials orthogonal with respect to the weight function ρ.

Theorem 3.10 ([3, 12, 21, 22]) Let (pn)n be a family of polynomials satisfying
orthogonality relations (2.11)–(2.13). Then there exists a sequence of positive real
numbers (λn,k)n, called Christoffel numbers, such that

∫ b

a

ρ(x) f (x)dx =
n∑
k=1

λn,k f (xn,k), ∀f ∈ R2n−1[x], n ≥ 1, (3.22)

where the xn,k, 1 ≤ k ≤ n are the zeros of pn ranked by increasing order. In
addition, the integral of any function continuous on the compact interval [a, b] can
be approximated by the previous formula:

∫ b

a

ρ(x) f (x)dx = lim
n→∞

n∑
k=1

λn,k f (xn,k), ∀f ∈ C[a, b]. (3.23)

Proof The proof of Eq. (3.22) which generalises property number 7 of the first
theorem, is given in the paper by A. Jooste. It can also be found in [3, 12, 21, 22].
The proof of Eq. (3.23) is given in [3, 6]. ��

3.8 Concluding Remarks

We would like to complete this paper with the following information and remark
which will help to connect this lecture notes with the forthcoming ones, especially
with those involved with classical and semi-classical orthogonal polynomials, as
well as orthogonal polynomials of the Sobolev type:

1. Among the classes of orthogonal polynomials, we mention the classical orthog-
onal polynomials and the semi-classical orthogonal polynomials. The first class
is contained in the second one.

2. Classical orthogonal polynomials of a continuous, discrete, q-discrete, quadratic
and q-quadratic variable, respectively, are those orthogonal with respect to a
weight function satisfying a so-called Pearson equation which is a first-order
linear homogeneous differential, difference, q-difference, divided-difference or
q-divided-difference equation with polynomial coefficients of degree one and at
most 2, respectively, with some boundary conditions at the ends of the interval.
Depending on the type of the variable, we get classical orthogonal polynomials
of continuous, a discrete, a q-discrete, a quadratic and a q-quadratic variable.

Semi-classical orthogonal polynomial are defined in the same way like
the classical ones, but with less restriction on the degree of the polynomial
coefficients of the Pearson equation which can take higher values.
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3. The properties such as the uniqueness of a family of polynomials orthogonal
with respect to a measure, the matrix representation, the three-term recurrence
relation, the Christoffel-Darboux formula and its confluent form, the interlacing
properties of the zeros and the Gauss quadrature formula are valid for any family
of orthogonal polynomials. In addition, it should also be noticed that Theo-
rems 3.4 (Matrix representation), 3.5 (Three-term recurrence relation), and 3.6
(Christoffel-Darboux formula) are also valid if we replace the positive Borel
measure by a quasi-definite linear functional. In this case and for Theorem 3.4,
the positiveness of the Hankel’s determinant is to be replaced by the fact that this
determinant does not vanish.

4. The Chebyshev polynomials of the first, second, third and fourth kinds are up
to now the only known families of orthogonal polynomials for which the zeros
are explicitly known. In addition to the Chebyshev polynomials of the first kind
which have been studied here, the three other families are, respectively, given for
z = cos θ, 0 < θ < π , by [15, 21]

Un(z) = sin((n+ 1)θ)

sin θ
, Vn(z) = cos((n+ 1

2 )θ)

cos( θ2 )
, Wn(z) = sin((n+ 1

2 )θ)

sin( θ2 )
.

The zeros of Un(z), Vn(z) and Wn(z) are given in increasing order, respec-
tively, by

zn,k = cos θn,k, with θn,k = n+ 1− k
n+ 1

π, k = 1, 2, . . . , n,

zn,k = cos θn,k, with θn,k = 2(n− k)+ 1

2n+ 1
π, k = 1, 2, . . . , n,

zn,k = cos θn,k, with θn,k = 2(n+ 1− k)
2n+ 1

π, k = 1, 2, . . . , n.

5. Additional information on general orthogonal polynomials can be found for
example in [5, 6, 12, 19–21].
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Classical Continuous Orthogonal
Polynomials

Salifou Mboutngam

Abstract Classical orthogonal polynomials (Hermite, Laguerre, Jacobi and Bessel)
constitute the most important families of orthogonal polynomials. They appear in
mathematical physics when Sturn-Liouville problems for hypergeometric differen-
tial equation are studied. These families of orthogonal polynomials have specific
properties. Our main aim is to:

1. recall the definition of classical continuous orthogonal polynomials;
2. prove the orthogonality of the sequence of the derivatives;
3. prove that each element of the classical orthogonal polynomial sequence satisfies

a second-order linear homogeneous differential equation;
4. give the Rodrigues formula.

Keywords Classical orthogonal polynomials · Rodrigues formula · Differential
equation · Pearson type equation

Mathematics Subject Classification (2000) 33C45, 33D45

1 Definitions

Activity 1.1 ([3]) Let n be a non-negative integer, x ∈ (−1, 1). We consider:

Tn(x) = cos(nArccosx). (1.1)
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1. Evaluate in terms of the integers n and m the quantity:

In,m =
∫ 1

−1
Tn(x)Tm(x)ρ(x)dx, with ρ(x) = 1√

1− x2
. (1.2)

2. Prove that

Tn+1(x)+ Tn−1(x) = 2xTn(x). (1.3)

3. Evaluate
(
(1− x2)ρ(x)

)′ + xρ(x).
Solution 1.2 (1.)

Tn(x) = cos(nArccosx)

1. By direct computation, we get

In,m =
⎧⎨
⎩
π if n = m = 0
π
2 if n = m �= 0

0 if n �= m.

2.

Tn+1(x) = cos((n+ 1)Arccosx)

= cos(Arccosx) cos(nArccosx)− sin(Arccosx) sin(nArccosx),

Tn−1(x) = cos((n− 1)Arccosx)

= cos(Arccosx) cos(nArccosx)+ sin(Arccosx) sin(nArccosx).

Then, we have

Tn+1(x)+ Tn−1(x) = 2 cos(Arccosx) cos(nArccosx)

= 2xTn(x).

Using this relation and the initial conditions T0(x) = 1, T1(x) = x, we can
prove that (Tn(x))n is a sequence of polynomials and for all non-negative integer
n, Tn is of degree exactly n.
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3.

(
(1− x2)ρ(x)

)′ + xρ(x) = (√1− x2)′ + x√
1− x2

= −2x

2
√

1− x2
+ x√

1− x2

= 0.

Definition 1.3 Let ρ be a positive continuous function defined on an interval (a, b).
ρ is called the weight function if there exists (μn)n a sequence of complex numbers
such that

∫ b

a

xnρ(x)dx = μn, ∀n ∈ N0.

μn is called the nth moment associated to the weight function ρ.

Definition 1.4 Let ρ be a weight function defined on an interval (a, b). A sequence
(Pn)n of polynomials is said to be an orthogonal polynomial sequence (OPS) with
respect to ρ if, for each non-negative integer n, deg(Pn) = n and

∫ b

a

Pn(x)Pm(x)ρ(x)dx = knδnm (kn �= 0), m, n = 0, 1 . . . .

Definition 1.5 ([7]) Let ρ be a weight function defined on an interval (a, b), (Pn)n
an OPS with respect to ρ. (Pn)n is said to be a classical orthogonal polynomial
sequence if there exist two polynomials φ of degree at most two and ψ of degree
exactly one such that the weight function ρ satisfies the following differential
equation called Pearson type equation:

(φ(x)ρ(x))′ = ψ(x)ρ(x) (1.4)

and the boundary condition

lim
x→a x

nφ(x)ρ(x) = 0 and lim
x→b x

nφ(x)ρ(x) = 0. (1.5)

2 Orthogonality of the Derivatives

Activity 2.1 Let n be a non-negative integer, x ∈ (−1, 1). We consider the sequence
(Tn)n defined by (1.1). Since (Tn)n is an OPS, T ′n+1 is a polynomial of degree
exactly n.
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Evaluate in terms of the integers n and m the quantity:

Jn,m=
∫ 1

−1
T ′n+1(x)T

′
m+1(x)φ(x)ρ(x)dx, with φ(x)=1− x2, ρ(x) = 1√

1− x2
.

(2.1)

Solution 2.2

Tn(x) = cos(nArccosx),

Jn,m =
∫ 1

−1
T ′n+1(x)T

′
m+1(x)φ(x)ρ(x)dx =

{
π
2 (n+ 1)2 if n = m,

0 if n �= m.

The sequence of the derivatives
(
T ′n+1

)
n

is an OPS with respect to the weight

function

ρ1(x) = φ(x)ρ(x).

Lemma 2.3 ([3]) Let ρ be a weight function on the interval (a, b) and let (Pn)n be
a sequence of polynomials. Then the following properties are equivalent:

1. (Pn)n is an orthogonal polynomial sequence with respect to the weight function
ρ.

2.
∫ b
a
π(x)Pn(x)ρ(x)dx = 0 for every polynomial πof degree m < n while∫ b

a π(x)Pn(x)ρ(x)dx �= 0 if m = n.

3.
∫ b
a
xmPn(x)ρ(x)dx = Knδmn where Kn �= 0, m = 0, 1, · · · , n.

Proposition 2.4 If (Pn)n is a classical orthogonal polynomial sequence such that
the corresponding weight function ρ satisfies the Pearson type equation (1.4),
the sequence (P ′n+1)n is orthogonal with respect to the weight function ρ1(x) =
φ(x)ρ(x).

Proof Let (Pn)n be a classical orthogonal polynomial sequence such that the
corresponding weight function ρ satisfy the Pearson type equation (1.4). Let n and
m be two non-negative integers such that m < n.

The fact that ψ is a polynomial of degree exactly one implies that xm−1ψ(x) is
of degreem and according to Lemma 2.3, we have

0 =
∫ b

a

Pn(x)x
m−1ψ(x)ρ(x)dx.
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Using the Pearson type equation, we have

0 =
∫ b

a

Pn(x)x
m−1ψ(x)ρ(x)dx =

∫ b

a

Pn(x)x
m−1 (φ(x)ρ(x))′ dx

= Pn(x)xm−1φ(x)ρ(x)

∣∣∣b
a
−

∫ b

a

(
Pn(x)x

m−1
)′
φ(x)ρ(x)dx.

The boundary condition (1.5) implies that Pn(x)xm−1φ(x)ρ(x)

∣∣∣b
a
= 0 and we have:

0 = −
∫ b

a

(
Pn(x)x

m−1
)′
φ(x)ρ(x)dx

= −
∫ b

a

P ′n(x)xm−1φ(x)ρ(x)dx − (m− 1)
∫ b

a

Pn(x)x
m−2φ(x)ρ(x)dx.

The fact that φ is a polynomial of degree at most two implies that xm−2φ(x) is of
degree at most m and according to Lemma 2.3, we have

∫ b

a

P ′n(x)xm−1φ(x)ρ(x)dx = 0, m < n.

ψ is a polynomial of degree exactly one and according to Lemma 2.3, we have

∫ b

a

Pn(x)x
n−1ψ(x)ρ(x)dx �= 0.

Using the Pearson type equation, we have

0 �=
∫ b

a

Pn(x)x
n−1ψ(x)ρ(x)dx =

∫ b

a

Pn(x)x
n−1 (φ(x)ρ(x))′ dx

= Pn(x)xn−1φ(x)ρ(x)

∣∣∣b
a
−

∫ b

a

(
Pn(x)x

n−1
)′
φ(x)ρ(x)dx.

The boundary condition (1.5) implies that Pn(x)xn−1φ(x)ρ(x)

∣∣∣b
a
= 0 and we have:

∫ b

a

(
Pn(x)x

n−1
)′
φ(x)ρ(x)dx =

∫ b

a

P ′n(x)xn−1φ(x)ρ(x)dx+(n−1)
∫ b

a

Pn(x)x
n−2φ(x)ρ(x)dx.

The fact that φ is a polynomial of degree at most two implies that xn−2φ(x) is of
degree at most n and according to Lemma 2.3, we have

∫ b

a

P ′n(x)xn−1φ(x)ρ(x)dx �= 0.
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Then according to Lemma 2.3, (P ′n+1)n is an orthogonal polynomial sequence with
respect to the weight function ρ1(x) = φ(x)ρ(x) in the interval (a, b). ��
In addition, we have

[φ(x)ρ1(x)]′ = φ′(x)ρ1(x)+ φ(x)ρ′1(x)
= φ′(x)ρ1(x)+ φ(x)(φ(x)ρ(x))′
= (φ′(x)+ ψ(x))ρ1(x).

ρ1 satisfies a differential equation of type (1.4). This implies that the sequence (P ′n)n
is also classical.

Theorem 2.3 ([3]) Let m be a fixed non-negative integer and (Pn)n be a classical
orthogonal polynomial sequence with respect to a weight function ρ which satisfies

the Pearson type equation (1.4).
(
dm

dxm
Pn+m

)
n

is a classical orthogonal polynomial

sequence with respect to the weight function

ρm(x) = (φ(x))mρ(x).

We have also

(φ(x)ρm(x))
′ = ψm(x)ρm(x),

where

ψm(x) = ψ(x)+mφ′(x).

3 Second-Order Differential Equation

Activity 3.1 Let n be a non-negative integer, x ∈ (−1, 1). We consider:

Tn(x) = cos(nArccosx).

Compute T ′n(x), T ′′n (x) and evaluate the expression

(1− x2)T ′′n (x)− xT ′′n (x).
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Solution 3.2

T ′n(x) =
n sin(nArccosx)√

1− x2
,

T ′′n (x) = −
n2 cos(nArccosx)

1− x2 + nx sin(nArccosx)

(1− x2)
√

1− x2
.

Therefore

(1− x2)T ′′n (x)− xT ′n(x) = −n2Tn(x),

that is,

(1− x2)T ′′n (x)− xT ′n(x)+ n2Tn(x) = 0. (3.1)

Each term of the sequence (Tn)n satisfies the second order differential equa-
tion (3.1).

Lemma 3.3 If (Pn)n is an OPS with respect to the weight function ρ on the interval
(a, b), each Pn is uniquely determined up to an arbitrary non-zero factor. That is, if
(Qn)n is also an OPS with respect to ρ, then there are constants cn �= 0 such that

Qn(x) = cnPn(x), n = 0, 1, 2, . . . .

Theorem 3.4 Let (Pn)n be a classical orthogonal polynomial sequence such that
the corresponding weight function ρ satisfies the Pearson type equation (1.4) in the
interval (a, b). For all non-negative integer n, we have

φ(x)P ′′n (x)+ ψ(x)P ′n(x)+ λnPn(x) = 0, (3.2)

with

λn = −nψ ′ − n(n− 1)

2
φ′′. (3.3)

Proof Let (Pn)n be a classical orthogonal polynomial sequence such that the
corresponding weight function ρ satisfies the Pearson type equation (1.4) in the
interval (a, b). (P ′n+1)n is an orthogonal polynomial sequence with respect to
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ρ1(x) = φ(x)ρ(x). Let n be a fixed non-negative integer. We have ∀m < n

0 =
∫ b

a

P ′n(x)(xm)′φ(x)ρ(x)dx

= P ′n(x)xmφ(x)ρ(x)
∣∣∣b
a
−

∫ b

a

[
φ(x)ρ(x)P ′n(x)

]′
xmdx

= −
∫ b

a

[
φ(x)P ′′n (x)+ ψ(x)P ′n(x)

]
xmρ(x)dx.

Then

∫ b

a

[
φ(x)P ′′n (x)+ ψ(x)P ′n(x)

]
xmρ(x)dx = 0, m < n.

Since deg(φP ′′n + ψP ′n) = n, then (φP ′′n + ψP ′n)n is an orthogonal polynomial
sequence with respect to the weight function ρ, and according to Lemma 3.3, there
exists a constant λn such that

φ(x)P ′′n (x)+ ψ(x)P ′n(x)+ λnPn(x) = 0. (3.4)

The coefficient of xn in (3.4) is

λnan + nψ ′an + n(n− 1)

2
φ′′an = 0

where an is the leading coefficient of Pn. Then, we conclude that if (Pn) is a classical
orthogonal polynomial sequence, then for all non-negative integer n, Pn satisfies a
second order differential equation of the form (3.2) where the constant λn is given
by (3.3). ��

4 Rodrigues’ Formula

Let (Pn)n be a classical orthogonal polynomial sequence such that the correspond-
ing weight function ρ satisfies the Pearson type equation (1.4) in an interval (a, b).
∀n ∈ N, Pn satisfies the second order differential equation (3.2). Multiplying (3.2)
by ρ(x) and using Pearson’s equation, we can rewrite (3.2) as

[
φ(x)ρ(x)P ′n(x)

]′ + λnρ(x)Pn(x) = 0.

Thus

− λnρ(x)Pn(x) =
[
φ(x)ρ(x)P ′n(x)

]′
. (4.1)
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Since (P ′n)n is also a classical orthogonal polynomial sequence with respect to
ρ1(x), we also get using the same process the equation

− μn,1ρ1(x)P
′
n(x) =

[
φ(x)ρ1(x)P

′′
n (x)

]′
, (4.2)

with μn,1 = ψ ′ + λn. (4.2) in (4.1) yields

ρ(x)Pn(x) = 1

λnμn,1

[
φ2(x)ρ(x)P ′′n (x)

]′′
.

Continuing the process, we obtain

ρ(x)Pn(x) = (−1)n

λnμn,1 · · ·μn,n−1

[
φn(x)ρ(x)

dn

dxn
Pn(x)

](n)
;

where

μn,k+1 = ψ ′k + μn,k, k ≥ 0, μn,0 = λn,

with

ψk+1(x) = φ′(x)+ ψk(x), ψ0(x) = ψ(x).

The fact that Pn is a polynomial of degree n implies that dn

dxn
Pn(x) = n!an where

an is the leading coefficient of Pn. Thus we have

Pn(x) = An

ρ(x)

[
φn(x)ρ(x)

](n)
.

5 Classification of Classical Orthogonal Polynomials
of a Continuous Variable

A classical orthogonal polynomial sequence is such that the corresponding weight
function ρ satisfies the Pearson type equation

(ρ(x)φ(x))′ = ψ(x)ρ(x), (5.1)

where φ is a polynomial of degree at most two andψ is a polynomial of degree one.
Equation (5.1) is equivalent to

ρ′(x)
ρ(x)

= ψ(x)+ φ
′(x)

φ(x)
.
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The solution of this differential equation is given by

ρ(x) = exp

(∫
ψ(x)+ φ′(x)

φ(x)
dx

)
. (5.2)

We will give the classification in terms of the degree of the polynomial φ.

5.1 Classical Orthogonal Polynomials Obtained if deg(φ) = 2

We suppose that deg(φ) = 2, φ has two distinct zeros x0 and x1 and the boundary
condition (1.5) is satisfied. We take x0 = a, x1 = b and then, there exist α and β
such that

ψ(x)+ φ′(x)
φ(x)

= α

b − x +
β

a − x .

Using the transformation t = 2x−a−b
b−a , φ(t) = (1− t2), the interval of orthogonality

(a, b) becomes (−1, 1), and from (5.2), we get ρ(t) = (1− t)α(1+ t)β . Using the
Pearson equation, we deduce that ψ(t) = −(α + β + 2)t + β − α. The fact that∫ 1
−1 t

nρ(t)dt converges for all non-negative integer n requires that α, β > −1.
The data φ(x) = 1− x2, x ∈ (−1, 1) and

ρ(x) = (1− x)α(1+ x)β, α > −1, β > −1,

correspond to the Jacobi polynomials denoted by (P (α,β)n (x))n.

Second-Order Differential Equation of the Jacobi Polynomials Since φ(x) =
1−x2, ψ(x) = β−α+ (α+β+2)x and λn = n(n+α+β+1), the second-order
differential equation satisfied by the Jacobi polynomials is given by [6, 7]

(1−x2)y′′(x)+(β − α + (α + β + 2)x) y′(x)+n(n+α+β+1)y(x) = 0, y(x) = P (α,β)n (x).

Rodrigues’ Formula It is given for the Jacobi polynomials by

Pα,βn (x) = (−1)n

2nn!(1− x)α(1+ x)β
(
(1− x)α+n(1+ x)β+n)(n) .
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5.2 Classical Orthogonal Polynomials Obtained if deg(φ) = 1

If deg(φ) = 1, there exist a, b and α such that

ψ(x)+ φ′(x)
φ(x)

= α

x − a + b.

If we use the change of variable t =
{−x + a
x − a , then φ(t) = t and the interval of

orthogonality becomes (0,+∞). From (5.2), we get ρ(t) = tαe−t , and we deduce
from the Pearson equation that ψ(t) = −t + α + 1. The fact that

∫ +∞
0 tnρ(t)dt

converges for all non-negative integer n requires that α > −1.
The data φ(x) = x, x ∈ (0,+∞) and

ρ(x) = xαe−x, α > −1,

correspond to the Laguerre polynomials denoted by (L(α)n (x))n.

Second-Order Differential Equation of the Laguerre Polynomials Since
φ(x) = x, ψ(x) = α + 1 − x and λn = n, the second-order differential equation
satisfied by the Laguerre polynomials is given by [6, 7]

xy ′′(x)+ (α + 1− x) y ′(x)+ ny(x) = 0, y(x) = L(α)n (x).

Rodrigues Formula

L(α)n (x) =
1

n!xαe−x
(
xα+ne−x

)(n)
.

5.3 Classical Orthogonal Polynomials Obtained if deg(φ) = 0

If deg(φ) = 0, then there exist a and b such that

ψ(x)+ φ′(x)
φ(x)

= ax + b.

If we use the change of variable t = −ψ(x), then φ(t) = 1 and the interval of
orthogonality becomes (−∞,+∞). From (5.2), we get ρ(t) = e−t2 , and we obtain
ψ(t) = −2t using Pearson’s equation.

The data φ(x) = 1, (a, b) = R and ρ(x) = e−x2
, correspond to the Hermite

polynomials denoted by (Hn(x))n.
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Second-Order Differential Equation of the Hermite Polynomials Since φ(x) =
1, ψ(x) = −2x and λn = 2n, the second-order differential equation satisfied by the
Hermite polynomials is given by [6, 7]

H ′′n (x)− 2xH ′n(x)+ 2nHn(x) = 0.

Rodrigues Formula For the Hermite polynomials, we have the formula

Hn(x) = (−1)n

e−x2

(
e−x2

)(n)
.

6 Characterization Theorem of Classical Orthogonal
Polynomials

The following theorem gives some characterization properties of classical continu-
ous orthogonal polynomials.

Theorem 6.1 ([1, 2, 4, 5, 7]) Let (Pn)n be a monic orthogonal polynomial sequence
with respect to a weight function ρ on an interval (a, b) and Qn,m the monic
polynomial of degree n defined by

Qn,m(x) = n!
(n+m)!

dm

dxm
Pn+m(x).

The following properties are equivalent:

1. There exist two polynomials, φ of degree at most two and ψ of degree one, such
that

(φ(x)ρ(x))′ = ψ(x)ρ(x).

2. There exist two polynomials, φ of degree at most two and ψ of degree one, such
that for any non-negative integerm,

[
(φ(x))m+1ρ(x)

]′ = (ψ(x)+mφ′(x))(φ(x))mρ(x),
∫ b

a

Qj,m(x)Qn,m(x)(φ(x))
mρ(x)dx = knδj,n, kn �= 0; ∀j, n ∈ N0.

3. There exist two polynomials, φ of degree at most two and ψ of degree one,
such that for any non-negative integerm, the following second-order differential
equation holds:

φ(x)Q′′n,m(x)+ (ψ(x)+mφ′(x))Q′n,m(x)+ μn,mQn,m(x) = 0,
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with the constant μn,m given by

μn,m = −n
[
ψ ′ + (2m+ n− 1)

φ′′

2

]
.

4. There exist two polynomials, φ of degree at most two and ψ of degree one, such
that for any non-negative integerm, the following relation holds

Qn,m(x) = An,m

(φ(x))mρ(x)

dn

dxn

(
(φ(x))m+nρ(x)

)
.

7 Tutorial

Exercise 7.1 We consider the sequence (Un) defined by

Un(x) = sin(n+ 1)θ

sin θ
, x = cos θ.

1. Compute U0(x), U1(x), U2(x).
2. Prove that for all integer n, we have

Un+1(x)+ Un−1(x) = 2xUn(x).

3. Deduce that Un is a polynomial of degree exactly n.
4. Evaluate

∫ π

0
sin(nθ) sin(mθ)dθ, m, n ∈ N.

5. Prove that

∫ 1

−1
Un(x)Um(x)(1− x2)

1
2 dx = knδn,m.

6. Deduce that (Un)n≥0 is an orthogonal polynomial sequence on (−1, 1) with
respect to a weight function ρ which is to determine.

7. Give the Rodrigues formula of (Un)n≥0.
8. Give a second-order differential equation satisfied by Un.
9. Give the Pearson type equation satisfied by ρ.
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Solution 7.2 We consider the sequence (Un)n≥0 defined by

Un(x) = sin(n+ 1)θ

sin θ
, x = cos θ.

1. Compute U0(x), U1(x), U2(x).
U0(x) = 1, U1(x) = sin(2θ)

sin θ = 2 cos θ = 2x.

U2(x) = sin(3θ)

sin θ
= sin(2θ + θ)

sin θ

= sin 2θ cos θ + cos 2θ sin θ

sin θ

= 2 cos2 θ + cos 2θ

= 2 cos2 θ + 2 cos2 θ − 1

= 4x2 − 1.

2. We prove that for all integer n, we have

Un+1(x)+ Un−1(x) = 2xUn(x).

From the expansion

Un+1(x) = sin(n+ 1)θ cos θ

sin θ
+ cos(n+ 1)θ sin θ

sin θ
,

and

Un−1(x) = sin(n+ 1)θ cos θ

sin θ
− cos(n+ 1)θ sin θ

sin θ
,

we get Un+1(x)+ Un−1(x) = 2x sin(n+1)θ
sin θ = 2xUn(x).

3. Deduce that Un is a polynomial of degree exactly n.
U1 is a polynomial of degree 1. Fixed n ∈ N and assume that Uk is a

polynomial of degree k, ∀k ∈ N, k ≤ n. We want to prove that Un+1 is a
polynomial of degree n+ 1.

Un+1(x) = 2xUn(x)− Un−1(x).

Since Un is a polynomial of degree n, 2xUn(x) is a polynomial of degree
n + 1. The addition of two polynomials A and B gives a polynomial of degree
max {deg(A), deg(B)}. It follows that Un+1 is a polynomial of degree n+ 1.
We conclude that Un is a polynomial of degree n, ∀n ∈ N.
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4. Evaluate
∫ π

0
sin(nθ) sin(mθ)dθ, m, n ∈ N.

From the expansions cos(a + b) = cos a cos b − sin a sin b; cos(a − b) =
cos a cos b + sin a sin b, we get
sin a sin b = 1

2 (cos(a − b)− cos(a + b)).

If m �= n,
∫ π

0
sin nθ sinmθdθ = 1

2

∫ π

0
cos(n−m)θdθ − 1

2

∫ π

0
cos(n+m)θdθ

= 0.

If n = m, sin2 nθ = 1
2 (1− cos(2nθ)) and then

∫ π
0 sin2(nθ)dθ = π

2 .

In conclusion,

∫ π

0
sin(nθ) sin(mθ)dθ =

⎧⎨
⎩

0 if n �= m
π
2 if n = m.

5. Let us compute

In,m =
∫ 1

−1
Un(x)Um(x)(1− x2)

1
2 dx.

In,m =
∫ 1
−1

sin[(n+1) arccosx] sin[(n+1) arccosx]
sin2(arccosx)

(1− x2)
1
2 dx.

x = cosθ, x = −1⇒ θ = π; x = 1⇒ θ = 0 , dx = − sin θdθ.

In,m =
∫ 0

π

sin(n+ 1)θ sin(m+ 1)θ(− sin2 θ)

sin2 θ
dθ

=
∫ π

0
sin(n+ 1)θ sin(m+ 1)θdθ

=
{

0 if n �= m
π
2 if n = m.

6. We deduce from the last question 5 that the family (Un)n≥0 is orthogonal on
(−1, 1) with respect to the weight function ρ(x) = √1− x2.

7. From the relation

U1(x) = A1

ρ(x)
[φ(x)ρ(x)]′,
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we get

φ(x) = 1

A1ρ(x)

∫
U1(x)ρ(x)dx = −2

3A1
(1− x2).

Taking A1 = − 3
2 yields φ(x) = 1 − x2 and the Rodrigues formula of (Un) is

given by

Un(x) = An√
1− x2

dn

dxn

[
(1− x2)n+

1
2

]
.

8. Give the second-order differential equation satisfied by Un.
We have

U1(x) = A1

ρ(x)
[φ(x)ρ(x)]′ = A1ψ(x),

then ψ(x) = −3x. Since φ(x) = 1 − x2, we get λn = −n
(
(n− 1)φ

′′
2 + ψ ′

)
=

n(n+ 2). Therefore, Un is solution of the second-order differential equation

(1− x2)y ′′ − 3xy ′ + n(n+ 2)y = 0.

9. The Pearson type equation satisfied by ρ is given by

((1− x2)ρ(x))′ = −3xρ(x).

Exercise 7.3 We consider (Pn)n≥0, an orthogonal polynomial sequence defined for
all integer n by the following Rodrigues formula:

Pn(x) = 1

2nn!
dn

dxn

[
(x2 − 1)n

]
.

1. Determine the weight function ρ associated to the family (Pn)n≥0.
2. Give a second-order differential equation satisfied by Pn.
3. Let S be a polynomial. We assume that for all integer n,

∫ 1

−1
S(x)Pn(x)dx = (−1)n

2nn!
∫ 1

−1

dnS(x)

dxn
(x2 − 1)ndx.

Prove that

∫ 1

−1
Pm(x)Pn(x)dx =

{
0 if n �= m,
(2n)!

22n(n!)2
∫ 1
−1(1− x2)ndx if n = m.
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4. We set

In =
∫ 1

−1
(1− x2)ndx.

Verify that

In = 22n+1
∫ 1

0
vn(1− v)ndv,

where 1− x = 2v.
5. Deduce that

∫ 1

−1
Pm(x)Pn(x)dx = knδn,m.

Solution 7.4

(1) We know that

Pn(x) = 1

2nn!
dn

dxn

[
(x2 − 1)n

]

= 1

2nn!
dn

dxn

[
(x2 − 1)n

]

= An

ρ(x)

dn

dxn

[
φn(x)ρ(x)

]
.

We deduce by identification

ρ(x) = 1, φ(x) = 1− x2.

(2) The second order differential equation satisfied by Pn.
Since φ(x) = 1− x2, ρ(x) = 1, it follows from the Pearson equation

(φ(x)ρ(x))′ = ψ(x)ρ(x)

that

ψ(x) = −2x.
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By definition,

λn = −n
[
ψ
′ + (n− 1)

2
φ
′′
]

= −n
[
−2+ (n− 1)

2
(−2)

]

= n(2+ n− 1)

= n(n+ 1).

The second order differential equation satisfied by Pn is:

(1− x2)P
′′
n − 2xP

′
n + n(n+ 1)Pn = 0.

(3) We know that

∫ 1

−1
S(x)Pn(x)dx = (−1)n

2nn!
∫ 1

−1

dn

dxn
S(x)(x2 − 1)ndx,

and we want to prove that:

∫ 1

−1
Pm(x)Pn(x)dx =

{
0 if n �= m
(2n)!
(2nn!)2

∫ 1
−1(x

2 − 1)ndx if n = m.

If m �= n, then without loss of generality, we assume that m < n.

∫ 1

−1
Pm(x)Pn(x)dx = (−1)n

2nn!
∫ 1

−1

dn

dxn
Pm(x)(x

2 − 1)ndx

= 0,

since deg(Pm) = m < n implies dn

dxn
Pm(x) = 0.

For m = n, (x2 − 1)n is a monic polynomial of degree 2n and therefore

∫ 1

−1
P 2
n (x)dx =

(−1)n

2nn!
∫ 1

−1

dn

dxn
Pn(x)(x

2 − 1)ndx

= (−1)n

22n(n!)2
∫ 1

−1

d2n

dx2n

[
(x2 − 1)n

]
(x2 − 1)ndx

= (−1)n

(2nn!)2 (2n)!
∫ 1

−1
(x2 − 1)ndx

= (2n)!
22n(n!)2

∫ 1

−1
(x2 − 1)ndx.
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(4) We rewrite In as

In =
∫ 1

−1
(1− x2)ndx =

∫ 1

−1
(1− x)n(1+ x)ndx.

By setting 1−x = v, we get dx = −2dv, x = −1⇒ v = 1 ; x = 1⇒ v = 0.
This yields

In =
∫ 0

1
22nvn(1− v)n(−2dv) = 22n+1

∫ 1

0
vn(1− v)ndv.

(5) Using questions (3) and (4), we get

∫ 1

−1
Pm(x)Pn(x)dx = 0 if m �= n,

and

∫ 1

−1
Pn(x)Pn(x)dx = 2

(2n)!
(n!)2

∫ 1

0
vn(1−v)ndv = 2(2n)!

(n!)2 B(n+1, n+1) = 2

2n+ 1
,

where

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt = (x − 1)!(y − 1)!

(x + y − 1)! , if x, y ∈ N.
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1 Introduction

Definition 1.1 ([6]) Let {pn(x)}∞n=0 be a sequence of polynomials. The bivariate
functionG(x, t) defined by

G(x, t) =
∞∑
n=0

cnpn(x)t
n, (1.1)

where {cn}∞n=0 is a sequence of real or complex numbers is a generating function of
{pn(x)}∞n=0.
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As example, the generating function of the sequence of polynomials {xn}∞n=0, with
cn = 1

n! is

exp(xt) =
∞∑
n=0

xn

n! t
n.

Generating functions appear as important tools in various domains of mathemat-
ics (Algebra, Statistics, Analysis,. . . ). For instance they can be used to [7]

1. Find recurrence relation satisfied by the sequence;
2. Find other statistical properties of a sequence;
3. Find asymptotic formulae of a sequence;
4. Find exact formulae for a sequence.

Various methods have been developed for obtaining generating functions. Among
them we have Rainville’s, Weisner’s, Truesdell’s Method (cf. [3, 6]) as well as the
one presented by Nikiforov et al. in their book [5] entitled “Classical Orthogonal
Polynomials of a Discrete Variable”. For a sequence of classical continuous
orthogonal polynomials {pn(x)}∞n=0, orthogonal with respect to a weight function
ρ on a real interval (a, b), Nikiforov et al. used the Rodrigues formula [1, 5]

pn(x) = An

ρ(x)

dn

dxn
[φ(x)nρ(x)],

where An depends on n and φ is a polynomial of degree at most two, to provide
a generating function of the sequence {pn(x)}∞n=0. This work aims to present this
method, where generating functions of classical orthogonal polynomials (Hermite,
Laguerre and Jacobi) will be obtained as applications. Using the generating
functions, the hypergeometric representations of continuous classical orthogonal
polynomials will be derived.

2 Generating Functions of Classical Continuous Orthogonal
Polynomials

We show how to obtain by means of Rodrigues formula, generating functions of
classical continuous orthogonal polynomials and give explicit formulae for the
Hermite, the Laguerre and the Jacobi polynomials.

Definition 2.1 ([1]) A sequence {pn(x)}∞n=0 of polynomials of a continuous vari-
able, orthogonal with respect to a weight function ρ on a real interval (a, b) is
classical if and only if there exists a polynomial φ of degree at most two and a
sequence {An}∞n=0 of numbers such that

pn(x) = An

ρ(x)

dn

dxn
[φ(x)nρ(x)]. (2.1)
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Definition 2.2 ([5]) A Generating function of a classical continuous orthogonal
polynomial family {pn(x)}∞n=0 is a function G(x, t) for which the series expansion
in a neighborhood of t = 0 is

G(x, t) =
∞∑
n=0

pn(x)

Ann! t
n, (2.2)

where An is the coefficient in the Rodrigues formula (2.1).

Theorem 2.3 ([5]) Let {pn(x)}∞n=0 be a sequence of classical continuous orthogo-
nal polynomials that satisfies the Rodrigues formula (2.1). The function

G(x, t) = ρ(z)
ρ(x)

1

1− φ′(z)t
∣∣∣∣
z=ζ(x,t)

(2.3)

is a generating function of {pn(x)}∞n=0, where ζ(x, t) is the zero of z − x − φ(z)t ,
satisfying lim

t→0
ζ(x, t) = x.

Proof Since pn, n = 0, 1, 2, . . ., is continuous and satisfies the Rodrigues formula

pn(x) = An

ρ(x)

dn

dxn
[φ(x)nρ(x)],

the function given by

G(x, t) =
∞∑
n=0

pn(x)

Ann! t
n

is a generating function of {pn(x)}∞n=0. Let x be in the interval of orthogonality of
pn(x) and let C be a circle surrounding x. We obtain from Cauchy’s formula

dn

dxn
[φ(x)nρ(x)] = n!

2iπ

∫
C
φ(z)nρ(z)dz

(z− x)n+1 .

So, the Rodrigues formula of pn(x) becomes

pn(x) = An

ρ(x)

n!
2iπ

∫
C
φ(z)nρ(z)dz

(z− x)n+1

and the generating function of {pn(x)}∞n=0 reads as

G(x, t) =
∞∑
n=0

1

2iπρ(x)

∫
C
(φ(z)t)nρ(z)dz

(z− x)n+1 .
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The function f : z �→ φ(z)
z−x is bounded on the compact set C, since it is continuous

on C. So, for |t| < 1
3M , where M is an upper bound of f on C,

∣∣∣φ(z)tz−x
∣∣∣n < 1

3n for

all z ∈ C. Since the series
∞∑
n=0

1

3n
converges, the series functions

{(
φ(z)t
z−x

)n}∞
n=0

converges uniformly. Therefore, we can interchange the summation and the integral
and then use the geometric series to obtain

G(x, t) = 1

2iπρ(x)

∫
C

∞∑
n=0

(φ(z)t)nρ(z)dz

(z− x)n+1

= 1

2iπρ(x)

∫
C

ρ(z)dz

z− x − φ(z)t . (2.4)

To end the proof, we evaluate the above integral by using the residue theorem.
If φ is a polynomial of degree two, one of the zeros of the denominator

p(z) = z− x − φ(z)t

in the integrand tends to∞ when t tends to 0 and the other one, ζ(x, t), tends to x
when t tends to 0.
If the polynomial φ is of degree at most one, the zero of p(z) tends to x when t tends
to 0. So, for |t| sufficiently small, the integrand in

G(x, t) = 1

2iπρ(x)

∫
C

ρ(z)dz

z − x − φ(z)t
has a single pole, ζ(x, t), inside the circle C. Therefore, using the residue formula
and the l’Hospital rule, we get

G(x, t) = 1

ρ(x)
lim

z→ζ(x,t)
(z− ζ(x, t))ρ(z)
z − x − φ(z)t ,

= ρ(z)
ρ(x)

1

1− φ′(z)t
∣∣∣∣
z=ζ(x,t)

.

Generating Function of Hermite Polynomials [2, p. 251][5, p. 29] The Hermite
polynomials {Hn(x)}∞n=0 are orthogonal polynomials associated with the weight
ρ(x) = exp(−x2) on the real line R = (−∞, +∞). They are known to satisfy
the Rodrigues formula

Hn(x) = (−1)n exp(x2)
dn

dxn

[
exp(−x2)

]
.
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Identifying with the Rodrigues formula (2.1), we obtain φ(x) = 1, ρ(x) =
exp(−x2) and An = (−1)n. Therefore z− x − φ(z)t = z− x − t has only one zero
z = x + t . Hence, from (2.2) and (2.3), we have

∞∑
n=0

Hn(x)

(−1)nn! t
n = ρ(z)

ρ(x)

∣∣∣∣
z=x+t

= exp(−2xt − t2).

Substituting t by −t , we obtain the generating function

exp(2xt − t2) =
∞∑
n=0

Hn(x)

n! tn. (2.5)

Generating Function of Laguerre Polynomials [2, p. 242][5, p. 28] The Laguerre
polynomials {Ln(x)}∞n=0 are orthogonal polynomials associated with the weight
ρ(x) = xα exp(−x) on the half-line R+ = (0, +∞) (α > −1). They are known to
satisfy the Rodrigues formula

L(α)n (x) =
1

n!x
−α exp(x)

dn

dxn
[xnxα exp(−x)],

which is of the form (2.1) with ρ(x) = xα exp(−x), φ(x) = x and An = 1
n! .

Therefore the polynomial p(z) = z − x − φ(z)t = z − x − zt has only one zero
ζ(x, t) = x

1−t . Hence, from (2.2) and (2.3)

∞∑
n=0

L(α)n (x)t
n = ρ(z)

ρ(x)

1

1− t
∣∣∣∣
z= x

1−t
= ρ( x1−t )
(1− t)ρ(x) .

Taking into account the fact that ρ(x) = xα exp(−x), we get the generating function

(1− t)−α−1 exp

(
xt

t − 1

)
=
∞∑
n=0

L(α)n (x)t
n. (2.6)

Generating Function of Jacobi Polynomials [2, p. 218] The Jacobi polynomials
{P (α,β)n (x)}∞n=0 (α > −1, β > −1) are orthogonal with respect to the weight
function ρ(x) = (1 − x)α(1 + x)β on the interval (−1, 1). These polynomials are
known to satisfy the Rodrigues formula

P (α,β)n (x) = (−1)n

n!2n (1− x)
−α(1+ x)−β d

n

dxn
[(1− x)α+n(1+ x)β+n], (2.7)
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which is of the form (2.1), with ρ(x) = (1 − x)α(1 + x)β , φ(x) = (1 − x2) and
An = (−1)n

n!2n . Therefore the polynomial p(z) = z − x − φ(z)t = z − x − (1 − z2)t

is of degree two with zeros

ζ1(x, t) = −1−√1+ 4tx + 4t2

2t
and ζ2(x, t) = −1+√1+ 4tx + 4t2

2t
.

Noting that lim
t→0

ζ1(x, t) =∞ and lim
t→0

ζ2(x, t) = x, we deduce from (2.2) and (2.3)

the following

∞∑
n=0

(−2)nP (α,β)n (x)tn = ρ(z)
ρ(x)

1

1+ 2zt

∣∣∣∣
z=ζ2(x,t)

,

= ρ(ζ2(x, t))
ρ(x)

1

1+ 2ζ2(x, t)t
.

Since ζ2(x, t) = −1+
√

1+4tx+4t2

2t , we obtain after simplification

ρ(ζ2(x, t)) = 2α+β(1− x)α(1+ x)β(
1+ 2t +√1+ 4tx + 4t2

)α (
1− 2t +√1+ 4tx + 4t2

)β ,

1

1+ 2tζ2(x, t)
= 1√

1+ 4tx + 4t2
.

Therefore

∞∑
n=0

(−2)nP (α,β)n (x)tn

= 2α+β(
1+2t+

√
1+4tx+4t2

)α(
1−2t+

√
1+4tx+4t2

)β√
1+4tx+4t2

.

Substituting t by − t2 , we obtain

G(x, t) =
∞∑
n=0

P (α,β)n (x)tn (2.8)

with

G(x, t) = 2α+β

(1− t + R)α (1+ t + R)β R , R =
√

1− 2tx + t2.
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3 Hypergeometric Representations of Classical Orthogonal
Polynomials

In this section, we define hypergeometric functions, recall some of their fundamental
properties and derive the hypergeometric representation of classical continuous
orthogonal polynomials using their generating functions.

Hypergeometric function pFq (also called generalized hypergeometric function)
is defined by the series [2, 6]

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k! , (3.1)

where (a)n is the shifted factorial or Pochhammer symbol defined as follows

(a)n = a(a + 1)(a + 2) · · · (a + n− 1), n ≥ 1,

and

(a)0 = 1.

The parameters must be such that the denominator factors (bi)k, i = 1, .., q are
never zero. When one of the numerator parameters, let us say a1, equals −n, where
n is a nonnegative integer, this hypergeometric function is a polynomial in z

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
=

n∑
k=0

(−n)k · · · (ap)k
(b1)k · · · (bq)k

zk

k! .

The radius of convergenceR of the hypergeometric series is given by

R =
⎧⎨
⎩
∞ if p < q + 1
1 if p = q + 1
0 if p > q + 1.

When p = 2 and q = 1 the function (3.1) becomes

2F1

(
a, b

c
; z

)
=
∞∑
k=0

(a)k(b)k

(c)k

zk

k! (3.2)

with |z| < 1 and c a complex number different from −1,−2, . . . . This function is
known to satisfy the second order differential equation [6, p. 53]

z(1− z)y ′′(z)+ [c − (a + b + 1)z]y ′ − aby = 0 (3.3)

with the initial conditions y(0) = 1 and y ′(0) = ab
c

.
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Proposition 3.1

(
2

1+√1− z
)α
= 2F1

(
α+1

2 ,
α
2

α + 1
; z

)
, (3.4)

(1− z)− 1
2

(
2

1+√1− z
)α
= 2F1

(
α+1

2 ,
α+2

2

α + 1
; z

)
(3.5)

with |z| < 1 and α �= −2,−3, . . . .

Proof Let us prove (3.4). Substitute y(z) by f (z) =
(

2
1+√1−z

)α
in this equation

(φ2z
2 + φ1z+ φ0)y

′′(z)+ (ψ1z+ ψ0)y
′(z)+ λ y(z) = 0.

Take z = 2, 3, 4, 5, 6, 7 to obtain six equations and solve the system with unknowns
φ2, φ1, φ0, ψ1, ψ0, λ to obtain φ2 = −1, φ1 = 1, φ0 = 0, ψ1 = − 2α+3

2 , ψ0 = α
and λ = −α(α+1)

4 . So, the function f (z) =
(

2
1+√1−z

)α
satisfies the second order

differential equation

z(1− z)y ′′(z)+ [α + 1− (α + 3

2
)z]y ′(z)− α(α + 1)

4
y(z) = 0.

Therefore, f (z) satisfies (3.3) with c = α+ 1, a+ b+ 1 = α+ 3
2 and ab = α(α+1)

4 .
That is (a, b) ∈ {(α+1

2 ,
α
2 ), (

α
2 ,
α+1

2 )} and c = α + 1. If (a, b) = (α+1
2 ,

α
2 ), then

f (z) is solution to (3.3) with the initial condition ab
c
= α

4 = f ′(0) and f (0) = 1.
Therefore

(
2

1+√1− z
)α
= 2F1

(
α+1

2 ,
α
2

α + 1
; z

)
.

When (a, b) = (α2 , α+1
2 ), we obtain the same result. (3.5) is obtained in a similar

way.

Hypergeometric Representation of Hermite Polynomials The generating func-
tion of Hermite polynomials is

exp(2xt − t2) = exp(2xt) exp(−t2) =
∞∑
n=0

(2xt)n

n!
∞∑
k=0

(−t2)k
k! .

By means of the Rainville relation [6, p. 58]

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

� n2 �∑
k=0

A(k, n− 2k), (3.6)
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where �n2 � denotes the greatest positive integer less than or equal to n
2 , we obtain

exp(2xt − t2) =
∞∑
n=0

� n2 �∑
k=0

(−1)k(2x)n−2k

(n− 2k)!k! t
n.

Comparing coefficients of tn in this result and in

exp(2xt − t2) =
∞∑
n=0

Hn(x)

n! tn, (3.7)

we obtain

Hn(x) = n!
� n2 �∑
k=0

(−1)k(2x)n−2k

(n− 2k)!k! .

Taking ak = n! (−1)k(2x)n−2k

(n−2k)!k! , we have ak+1
ak
= (−n2 + k

) (−n−1
2 + k

) (
− 1
x2

)
1
k+1 .

Iterating this relation and substituting k by k + 1 yields

ak =
(
−n

2

)
k

(
−n− 1

2

)
k

(
− 1

x2

)k 1

k!a0.

Since a0 = (2x)n, we get

Hn(x) = (2x)n
� n2 �∑
k=0

(
−n

2

)
k

(
−n− 1

2

)
k

(
− 1
x2

)k
k! ,

= (2x)n2F0

(
−n2 ,−n−1

2

− ;− 1

x2

)
.

Hypergeometric Representation of Laguerre Polynomials The shifted factorial
is an extension of the ordinary factorial since (1)n = n!, n = 0, 1, 2, . . .. It is
particularly convenient to use the shifted factorial or Pochhammer symbol in the
binomial expansion [2, 6]

(1− t)−a =
∞∑
n=0

(−a)(−a − 1) . . . (−a − n+ 1)

n! (−t)n,

=
∞∑
n=0

(a)n

n! t
n, |t| < 1. (3.8)
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The generating function (1− t)−α−1 exp
(
xt
t−1

)
of the Laguerre polynomials can be

written as follows

(1− t)−α−1 exp

(
xt

t − 1

)
=
∞∑
k=0

(−xt)k
k! (1− t)−1−k−α.

By means of the binomial expansion (3.8),

(1− t)−α−1 exp

(
xt

t − 1

)
=
∞∑
k=0

(−xt)k
k!

∞∑
n=0

(1+ k + α)n
n! tn.

Using the Rainville formula [6, Lemma 10, Eq.1]

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

n∑
k=0

A(k, n− k), (3.9)

we obtain

(1− t)−α−1 exp

(
xt

t − 1

)
=
∞∑
n=0

n∑
k=0

(−x)k(1+ k + α)n−k
k!(n− k)! tn.

Comparing coefficients of tn in this result and in (2.6), we obtain

L(α)n (x) =
n∑
k=0

(−x)k(1+ k + α)n−k
k!(n− k)! .

Taking ak = (−x)k(1+k+α)n−k
k!(n−k)! , we obtain ak+1

ak
= x(k−n)
(α+k+1)(k+1) . Iterating this relation

and substituting k + 1 by k yields

ak = (−n)k
(α + 1)k

xk

k! a0.

Since a0 = (α+1)n
n! , we get

L(α)n (x) =
(α + 1)n
n!

n∑
k=0

(−n)k
(α + 1)k

xk

k! =
(α + 1)n
n! 1F1

(
−n
α + 1

; x
)
.
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Hypergeometric Representation of Jacobi Polynomials The generating function
of the Jacobi polynomials is (see (2.8))

G(x, t) = 2α+β

(1− t + R)α(1+ t + R)βR =
∞∑
n=0

P (α, β)n (x)tn, R =
√

1− 2tx + t2.
(3.10)

Observing that

1− t + R = (1− t)
(

1+
√

1− 2t (x − 1)

(1− t)2
)
,

1+ t + R = (1+ t)
(

1+
√

1− 2t (x + 1)

(1+ t)2
)
,

R = (1+ t)
√

1− 2t (x + 1)

(1+ t)2 ,

we obtain

G(x, t) = 1
(1−t )α

⎛
⎝ 2

1+
√

1− 2t (x−1)
(1−t)2

⎞
⎠
α

1
(1+t )β+1

(
1− 2t (x+1)

(1+t )2
)− 1

2

⎛
⎝ 2

1+
√

1− 2t (x+1)
(1+t)2

⎞
⎠
β

.

Using the Eq. (3.5) with z = 2t (x+1)
(1+t )2 and α = β yields

(
1− 2t (x + 1)

(1+ t)2
)− 1

2

⎛
⎝ 2

1+
√

1− 2t (x+1)
(1+t )2

⎞
⎠
β

= 2F1

(
β+1

2 ,
β
2

β + 1
; 2t (x + 1)

(1+ t)2
)

=
∞∑
k=0

(
β+1

2

)
k

(
β
2

)
k

(β + 1)k

(2t (x + 1))k

(1+ t)2kk! .

Multiplying both sides by 1
(1+t )β+1 and using the binomial theorem (see (3.8)) with

β + 2k + 1 taken for α and −t taken for t , yields

1

(1+ t)β+1

(
1− 2t (x + 1)

(1+ t)2
)− 1

2

⎛
⎝ 2

1+
√

1− 2t (x+1)
(1+t )2

⎞
⎠
β

=
∞∑
n=0

∞∑
k=0

(
β+1

2

)
k

(
β
2

)
k

(β + 1)k

(2t (x + 1))k

k!
(β + 2k + 1)n(−t)n

n! .
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By means of the relation (3.9),

1

(1+ t)β+1

(
1− 2t (x + 1)

(1+ t)2
)− 1

2

⎛
⎝ 2

1+
√

1− 2t (x+1)
(1+t )2

⎞
⎠
β

=
∞∑
n=0

n∑
k=0

(
β+1

2

)
k

(
β
2

)
k

(β + 1)k

(2t (x + 1))k

k!
(β + 2k + 1)n−k(−t)n−k

(n− k)!

=
∞∑
n=0

(β + 1)n(−1)n

n! 2F1

(−n, β + n+ 1
β + 1

; x + 1

2

)
tn. (3.11)

In a similar way, we obtain by means of the relation (3.4) and the binomial
formula (3.8),

1

(1− t)α

⎛
⎝ 2

1+
√

1− 2t (x−1)
(1−t)2

⎞
⎠
α

=
∞∑
n=0

(α)n

n! 2F1

(
−n, α + n
α + 1

; 1− x
2

)
tn. (3.12)

Multiplying (3.11) and (3.12) we obtain, using (3.9) on the right hand side,

G(x, t) =
+∞∑
n=0

n∑
k=0

(α)n−k(β + 1)k(−1)k

(n− k)!k! 2F1

(
−n+ k, α + n− k

α + 1
; 1− x

2

)

×2F1

(
−k, β + k + 1

β + 1
; x + 1

2

)
tn.

Comparing coefficients of tn in this result and in (3.10), we get

P (α,β)n (x) =
n∑
k=0

(α)n−k(β + 1)k(−1)k

(n− k)!k! 2F1

(−n+ k, α + n− k
α + 1

; 1− x
2

)

×2F1

(−k, β + k + 1
β + 1

; x + 1

2

)
. (3.13)

Proposition 3.2 The Jacobi polynomials (3.13) have the following hypergeometric
representation

P (α,β)n (x) = (α + 1)n
n! 2F1

(
−n, α + β + 1+ n

α + 1
; 1− x

2

)
, n = 0, 1, 2, . . . .
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Proof Since P (α,β)n (x) is a polynomial of degree n we obtain by means of Taylor’s

Theorem, P (α,β)n (x) =
n∑
k=0

(−1)k

k!
dk

dxk
P (α,β)n (1)(1 − x)k. Substituting x = 1 into

(3.13), we obtain

P (α,β)n (1) =
n∑
k=0

(α)n−k(β + 1)k(−1)k

(n− k)!k! 2F1

(
−k, β + k + 1

β + 1
; 1

)
.

The use of the Vandermonde or Chu-Vandermonde summation formula

2F1

(
−n, b
c
; 1

)
= (c − b)n

(c)n

with n = k, b = β + k + 1 and c = β + 1 yields, after simplification,

P (α,β)n (1) =
n∑
k=0

(α)n−k(−k)k(−1)k

(n− k)!k! .

Using the simplify command of Maple (see [4]), we obtain

P (α,β)n (1) = (α + 1)n
n! . (3.14)

From the formula (3.13), we get after straightforward computation

d

dx
P (α,β)n (x) = n+ α + β + 1

2
P
(α+1,β+1)
n−1 (x).

Iterating this formula, we obtain

dk

dxk
P (α,β)n (x) = (n+ α + β + 1)k

2k
P
(α+k,β+k)
n−k (x).

Taking x = 1 and using formula (3.14) we get

dk

dxk
P (α,β)n (1) = (n+ α + β + 1)k

2k
(α + k + 1)n−k
(n− k)! .
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Therefore

P (α,β)n (x) =
n∑
k=0

(−1)k
(n+ α + β + 1)k

2k
(α + k + 1)n−k
(n− k)!k! (1− x)k

= (α + 1)n
n!

n∑
k=0

(−n)k(α + β + n+ 1)k
(α + 1)k

(
1− x

2

)k

= (α + 1)n
n! 2F1

(
−n, α + β + n+ 1

α + 1
; 1− x

2

)
.

4 Exercises

Exercise 4.1 Let

G(x, t) = exp(2xt − t2) =
∞∑
n=0

Hn(x)

n! tn

be a generating function of Hermite polynomials.

1. Prove that ∂G(x,t)
∂x
= 2tG(x, t) and derive the differential difference relation

dHn(x)

dx
= 2nHn−1(x).

2. Determine ∂G(x,t)
∂t

and derive the three-term recurrence relation

Hn+1(x)− 2xHn(x)+ 2nHn−1(x) = 0, H0(x) = 1.

3. Determine H1(x), H2(x) and H3(x).

Exercise 4.2 The Gegenbauer polynomials {C(ν)n (x)}∞n=0, ν > − 1
2 , ν �= 0, are

orthogonal with respect to the weight function ρ(x) = (1 − x2)ν− 1
2 on (−1; 1).

These polynomials satisfy the Rodrigues formula

C(ν)n (x) =
(2ν)n(−1)n

(ν + 1
2 )n2nn!ρ(x)

dn

dxn
[(1− x2)nρ(x)].
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1. Prove that

(1− 2xt + t2)−ν =
∞∑
n=0

C(ν)n (x)t
n.

2. Derive the hypergeometric representation of C(ν)n (x).

Exercise 4.3 Let

P (α,β)n (x) =
n∑
k=0

(α)n−k(β + 1)k(−1)k

(n− k)!k! 2F1

(
−n+ k, α + n− k

α + 1
; 1− x

2

)

×2F1

(
−k, β + k + 1

β + 1
; x + 1

2

)
, n = 0, 1, 2, . . .

be the Jacobi polynomials.

1. Prove that P (α,β)n (−x) = (−1)nP (β,α)n (x).
2. Prove that d

dx
P
(α,β)
n (x) = n+α+β+1

2 P
(α+1,β+1)
n−1 (x).
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Properties and Applications of the Zeros
of Classical Continuous Orthogonal
Polynomials

A. S. Jooste

Abstract Suppose {Pn}∞n=0 is a sequence of polynomials, orthogonal with respect
to the weight function w(x) on the interval [a, b]. In this lecture we will show that
the zeros of an orthogonal polynomial are simple, that they are located in the interval
of orthogonality and that the zeros of polynomials with adjacent degree, separate
each other. We will also discuss the main ingredients of the Gauss quadrature
formula, where the zeros of orthogonal polynomials are of decisive importance in
approximating integrals.

Keywords Zeros · Orthogonality · Interlacing of zeros · Gauss quadrature
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1 Introduction

We say the sequence of polynomials {Pn}∞n=0, where deg(Pn(x)) = n, is orthogonal
with respect to the weight function w(x) > 0 on the interval (a, b), if

∫ b

a

Pn(x)Pm(x)w(x)dx = hnδmn, hn > 0, (1.1)

where δmn is Kronecker’s symbol,

δmn =
{

0 if m �= n,
1 if m = n.

A. S. Jooste (�)
Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South
Africa
e-mail: alta.jooste@up.ac.za

© Springer Nature Switzerland AG 2020
M. Foupouagnigni, W. Koepf (eds.), Orthogonal Polynomials,
Tutorials, Schools, and Workshops in the Mathematical Sciences,
https://doi.org/10.1007/978-3-030-36744-2_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36744-2_4&domain=pdf
mailto:alta.jooste@up.ac.za
https://doi.org/10.1007/978-3-030-36744-2_4


62 A. S. Jooste

Consider the Chebyshev polynomials of the first kind, defined by

Tn(x) = cos(n arccos x).

The sequence {Tn}n≥0 is orthogonal on (−1, 1) with respect to the weight function
w(x) = 1− x2 and the zeros of Tn(x) are

xn,k = cos
(2(n− k)+ 1

n

)π
2
, k = 1, 2, . . . , n,

and it is clear that

−1 < xn,1 < xn,2 < · · · < xn,n−1 < xn,n < 1,

i.e., Tn(x) has exactly n simple zeros in the interval (−1, 1). In this lecture our focus
is on the location and behavior of the zeros of the classical continuous orthogonal
polynomials and we will also discuss how these zeros can be applied to approximate
definite integrals. The work discussed here is known and is thoroughly discussed in,
e.g., [2, 3, 6–8]. We will refer to the following, proved in the introductory lecture:

(1) Every sequence of orthogonal polynomials satisfies a three term recurrence
equation of the form

Pn(x) = (Anx + Bn)Pn−1(x)− CnPn−2(x), n ≥ 1, (1.2)

P−1 ≡ 0, An,Bn and Cn are real constants. If the highest coefficient of Pn(x)
is kn > 0, then

An = kn

kn−1
, Cn = An

An−1
= knkn−2

k2
n−1

.

(2) A sequence of orthogonal polynomials satisfies the Christoffel-Darboux for-
mula:

n∑
k=0

Pk(x)Pk(y)

hk
= kn

hnkn+1

Pn+1(x)Pn(y)− Pn+1(y)Pn(x)

x − y , n = 0, 1, 2, . . . ,

(1.3)

and its confluent form

n∑
k=0

Pk(x)
2

hk
= kn

hnkn+1

(
P ′n+1(x)Pn(x)− Pn+1(x)P

′
n(x)

)
, n = 0, 1, 2, . . .

(1.4)
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2 The Location of Zeros of Orthogonal Polynomials

The zeros of every polynomial in an orthogonal sequence are real and simple and
they lie in the interval of orthogonality.

Theorem 2.1 If {Pn}∞n=0 is a sequence of polynomials orthogonal with respect to
the weight function w(x) on (a, b), then the polynomial Pn(x) has exactly n simple
zeros in (a, b).

Proof Since {Pn}∞n=0 is a sequence of orthogonal polynomials and deg(Pn(x)) = n,
we know that Pn has at most n real zeros and (1.1) holds. In particular, for n ≥ 1,
taking m = 0, we see that

∫ b

a

Pn(x)w(x)dx = 0,

since P0(x) is constant. Now, w(x) ≥ 0 for all x ∈ [a, b] and w(x) �= 0, so that,
for this integral to be zero, Pn(x) must have at least one zero of odd multiplicity
in (a, b), i.e., Pn(x) must change sign in (a, b). Let x1, x2, . . . , xl, l ≤ n, be the
distinct zeros (of odd multiplicity) of Pn(x) in (a, b). We have just shown that l ≥ 1.
Define

Q(x) = (x − x1)(x − x2) . . . (x − xl),

i.e., Q(x) is a polynomial of degree exactly l, having simple zeros (zeros with
multiplicity 1) at the zeros of Pn(x), which have odd multiplicity. The polynomial

Pn(x)Q(x) = Pn(x)(x − x1)(x − x2) . . . (x − xl)

does not change sign on (a, b), therefore

∫ b

a

Pn(x)Q(x)w(x)dx �= 0.

By orthogonality, this integral equals zero if l < n. Hence l = n, which implies that
Pn(x) has n real, distinct zeros of odd multiplicity in (a, b) and since deg(Pn(x)) =
n, the n zeros of Pn(x) are distinct and simple. ��

The zeros of different polynomials, e.g., Pn and Pm,m �= n, in the same
orthogonal sequence, are not just randomly positioned, but there is a specific order
associated to the location of these zeros. As a start, two polynomials of adjacent
degree cannot have any common zeros, and more-over, they separate each other.
This will be shown in the following exercise and theorem. Furthermore, one can
show that for m < n − 1, provided Pm and Pn have no common zeros, there exist
m open intervals, with endpoints at successive zeros of Pn, each of which contains
exactly one zero of Pm. This phenomenon is known as Stieltjes interlacing (cf. [8,
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Theorem 3.3.3] and [5]) and is discussed in detail in the lecture: Zeros of Orthogonal
Polynomials, by Kerstin Jordaan.

Exercise Show that the polynomials Pn and Pn+1 cannot have any zeros in
common.

Consider the confluent form of the Christoffel-Darboux formula (1.4), from which
we can deduce that

P ′n+1(x)Pn(x)− Pn+1(x)P
′
n(x) > 0.

Suppose x∗ is a common zero of Pn and Pn+1. By evaluating the above at x∗, we
obtain

P ′n+1(x
∗)Pn(x∗)− Pn+1(x

∗)P ′n(x∗) = 0

and we have a contradiction.

Theorem 2.2 If {Pn}∞n=0 is a sequence of polynomials orthogonal with respect to
the weight function w(x) on (a, b), then the zeros of Pn(x) and Pn+1(x) separate
each other.

Proof Note that, from (1.1),

∫ b

a

Pn(x)
2w(x)dx = hn > 0, n = 0, 1, 2, . . . ,

and it follows from (1.4), as well as our assumption that kn > 0, that

P ′n+1(x)Pn(x)− Pn+1(x)P
′
n(x) > 0, n = 0, 1, 2, . . . (2.1)

Consider any k ∈ {1, 2, . . . , n}. We now evaluate (2.1) at xn+1,k and xn+1,k+1,
two consecutive zeros of Pn+1(x), to obtain

P ′n+1(xn+1,k)Pn(xn+1,k) > 0 and P ′n+1(xn+1,k+1)Pn(xn+1,k+1) > 0,

respectively. Multiplying these two inequalities gives us

Pn(xn+1,k)Pn(xn+1,k+1)P
′
n+1(xn+1,k)P

′
n+1(xn+1,k+1) > 0

and since the zeros of Pn+1 are real and simple, it is clear that
P ′n+1(xn+1,k)P

′
n+1(xn+1,k+1) < 0. Therefore

Pn(xn+1,k)Pn(xn+1,k+1) < 0,

and this is true for each k ∈ {1, 2, . . . , n}. Pn thus differs in sign at consecutive
zeros of Pn+1, i.e., Pn has an odd number of zeros in each one of the n intervals
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(xn+1,k, xn+1,k+1), k ∈ {1, 2, . . . , n}. Since Pn has exactly n zeros, the result is
proved. ��
Exercise Consider the three term recurrence equation (1.2). What can we deduce
concerning common zeros for Pn and Pn−2?

Suppose x∗ is a common zero of Pn and Pn−2. We evaluate (1.2) at x∗ to obtain

0 = (Anx∗ + Bn)Pn−1(x
∗)

and since x∗ cannot be a zero of Pn−1, it follows that x∗ = −Bn
An

.

Remark 2.3 If Pn and Pn−2 do not have any common zeros, the n zeros of Pn
interlace (in the Stieltjes sense) with the (n − 2) zeros of Pn−2. There are (n − 1)
intervals (xn,k, xn,k+1), k = 1, 2, . . . , n − 1, with endpoints at the zeros of Pn and
Pn−2 has only (n − 2) zeros. In the single interval that does not contain a zero of
Pn−2 we will find the “extra-interlacing” point x∗ = −Bn

An
. See [4, 5] for interlacing

results for the zeros of different sequences of Laguerre and Jacobi polynomials.

Example Consider the Jacobi polynomials:

Pα,βn (x) = (α + 1)n
n! 2F1

(
−n, n+ α + β + 1

α + 1

∣∣∣∣∣
1− x

2

)
,

orthogonal with respect to the weight function w(x) = (1 − x)α(1 + x)β on the
interval [−1, 1] when α, β > −1. Use the program Mathematica to illustrate that
the zeros lie in the interval of orthogonality (i.e., the interval in which the weight
function is positive), as well as the result of Theorem 2.2. Note that restrictions
on the parameters are necessary to ensure orthogonality and that the zeros are
continuous functions of the parameters.

3 Gauss Quadrature

The Gauss quadrature formula is of use for the approximation of integrals in
numerical analysis. If f is a continuous function in (a, b) and x1 < x2 < · · · < xn
are n distinct points in (a, b), then there exists exactly one polynomial L, with
deg(L) ≤ n − 1 such that L(xj ) = f (xj ) for all j = 1, 2, . . . , n. This polynomial
L can easily be found by using Lagrange interpolation. Define

p(x) = (x − x1)(x − x2) . . . (x − xn)



66 A. S. Jooste

and consider the Lagrange interpolation polynomial

L(x) =
n∑
k=1

f (xk)
p(x)

(x − xk)p′(xk)

=
n∑
k=1

f (xk)
(x − x1) . . . (x − xk−1)(x − xk+1) . . . (x − xn)
(xk − x1) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn) .

Let {Pn}∞n=0 be a sequence of polynomials orthogonal on (a, b), with respect to
the weight function w(x), with n distinct real zeros x1 < x2 < · · · < xn.
(a) If f is a polynomial of degree at most 2n − 1, then f (x) − L(x) is of degree
≤ 2n− 1 with at least the zeros x1 < x2 < · · · < xn. Now define

f (x) = L(x)+ r(x)Pn(x),

where r(x) is a polynomial of degree ≤ n− 1. Then

f (x) =
n∑
k=1

f (xk)
Pn(x)

(x − xk)P ′n(xk)
+ r(x)Pn(x)

and

∫ b

a
f (x)w(x)dx =

n∑
k=1

f (xk)

∫ b

a

Pn(x)

(x − xk)P ′n(xk)w(x)dx +
∫ b

a
Pn(x)r(x)w(x)dx.

Since deg(r(x)) ≤ n − 1, the latter integral equals zero, due to orthogonality.
We thus have

∫ b

a

f (x)w(x)dx =
n∑
k=1

λn,kf (xk)

with

λn,k :=
∫ b

a

Pn(x)

(x − xk)P ′n(xk)
w(x)dx, k = 1, 2, . . . , n.

(b) If f is not a polynomial of degree ≤ 2n − 1, we can approximate the integral
by

∫ b

a

f (x)w(x)dx ≈
n∑
k=1

λn,kf (xk) (3.1)

with λn,k, k = 1, 2, . . . , n, defined as above.
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The coefficients {λn,k}nk=1 are called the Christoffel numbers and they don’t
depend on the function f .

Exercise Show that the Christoffel numbers are positive.

We have

λn,k =
∫ b

a

ln,k(x)w(x)dx, with ln,k = Pn(x)

(x − xk)P ′n(xk)
, k = 1, 2, . . . , n.

Then l2n,k − ln,k is a polynomial, deg(l2n,k − ln,k) ≤ 2n − 2 and it vanishes at the
zeros of Pn, namely x1, x2, . . . , xn. We can write

ln,k(x)
2 − ln,k(x) = Pn(x)q(x),

where q(x) is a polynomial of degree≤ n− 2. Then

∫ b

a

(
ln,k(x)

2 − ln,k(x)
)
w(x)dx =

∫ b

a

Pn(x)q(x)w(x)dx = 0,

since deg(q(x)) ≤ n− 2, consequently

∫ b

a

ln,k(x)
2w(x)dx =

∫ b

a

ln,k(x)w(x)dx > 0.

Example (cf. [9]) Consider the integral

∫ 1

−1

dx

x + 3
= ln2 = 0.69315.

Use the Gauss quadrature formula and a second degree Legendre polynomial to
estimate this integral.

Consider

∫ 1

−1

dx

x + 3
=

∫ b

a

f (x)w(x)dx,

where f (x) = 1
x+3 , a = −1, b = 1, w(x) = 1. We will use the zeros of

the second degree Legendre polynomial, orthogonal with respect to w(x) = 1 on
[−1, 1],

Ln(x) = 2F1

(
−n, n+ 1

1

∣∣∣∣∣
1− x

2

)
,
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i.e.,

L0(x) = 1, L1(x) = x,L2(x) = 1

2

(− 1+ 3x2)

and the zeros of L2(x) are x1 = 1√
3

and x2 = − 1√
3

.

Now, using (3.1), we have

∫ 1

−1

dx

x + 3
≈ λ2,1f (x1)+ λ2,2f (x2) = λ2,1

x1 + 3
+ λ2,2

x2 + 3
,

where

λ2,k =
∫ 1

−1

L2(x)

(x − xk)L′2(xk)
w(x)dx =

∫ 1

−1

1
2

(− 1+ 3x2
)

(x − xk)3xk dx, k = 1, 2,

i.e., λ2,1 = λ2,2 = 1 and

∫ 1

−1

dx

x + 3
= 1( 1√

3
+ 3

) + 1(− 1√
3
+ 3

) = 0.69231.

Remark 3.1 We use the Gauss quadrature rule to estimate integrals of the form∫ b
a f (x)w(x)dx. In the above example, i.e., for a = −1, b = 1 and w(x) = 1,

a specific case (Gauss-Legendre quadrature) was used. Other choices of a, b and
w(x) lead to other integration rules and we refer the reader to [1, §25.4] where a
summary of these rules is provided.
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Inversion, Multiplication and Connection
Formulae of Classical Continuous
Orthogonal Polynomials

Daniel Duviol Tcheutia

Abstract Our main objective is to establish the so-called connection formula,

pn(x) =
n∑
k=0

Ck(n)yk(x), (0.1)

which for pn(x) = xn is known as the inversion formula

xn =
n∑
k=0

Ik(n)yk(x),

for the family yk(x), where {pn(x)}n∈N0 and {yn(x)}n∈N0 are two polynomial
systems. If we substitute x by ax in the left hand side of (0.1) and yk by pk , we
get the multiplication formula

pn(ax) =
n∑
k=0

Dk(n, a)pk(x).

The coefficients Ck(n), Ik(n) and Dk(n, a) exist and are unique since degpn = n,
deg yk = k and the polynomials {pk(x), k = 0, 1, . . . , n} or {yk(x), k =
0, 1, . . . , n} are therefore linearly independent. In this session, we show how to use
generating functions or the structure relations to compute the coefficients Ck(n),
Ik(n) and Dk(n, a) for classical continuous orthogonal polynomials.
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1 The Classical Orthogonal Polynomials of a Continuous
Variable and Their Generating Functions

We consider the following classical orthogonal polynomials of a continuous variable
(see, e.g., [9, 16]):

1. The Jacobi polynomials

P
(α,β)
n (x) = (α + 1)n

n! 2F1

( −n, n+ α + β + 1

α + 1

∣∣∣∣∣
1− x

2

)

= (−1)n
(β + 1)n
n! 2F1

( −n, n+ α + β + 1

β + 1

∣∣∣∣∣
1+ x

2

)
, α > −1, β > −1,

2. The Laguerre polynomials

L(α)n (x) =
(α + 1)n
n! 1F1

(
−n
α + 1

∣∣∣∣∣ x
)
, α > −1,

3. The Hermite polynomials

Hn(x) = 2nxn2F0

(
−n/2,−n/2+ 1/2

−

∣∣∣∣∣−
1

x2

)
,

4. The Bessel polynomials

yn(x; α) = 2F0

(
−n, n+ α + 1

−

∣∣∣∣∣−
x

2

)
, n = 0, 1, . . . , N, α < −2N − 1.

P
(α,β)
n (x), L(α)n (x), Hn(x), or yn(x; α) is exactly a polynomial of degree n with

respect to the continuous variable x. Generating functions [16] for the above
polynomials are given for:

1. the Jacobi polynomials by

2α+β

R(1+ R − t)α(1+ R + t)β =
∞∑
n=0

P (α,β)n (x)tn, R =
√

1− 2xt + t2,
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2. the Laguerre polynomials by

(1− t)−α−1 exp

(
xt

t − 1

)
=
∞∑
n=0

L(α)n t
n,

3. the Hermite polynomials by

e2xt−t2 =
∞∑
n=0

Hn(x)

n! tn,

4. the Bessel polynomials by

(1− 2xt)−
1
2

(
2

1+√1− 2xt

)α
exp

2t

1+√1− 2xt
=
∞∑
n=0

yn(x; α) t
n

n! .

2 Inversion Problem Using Generating Functions

From the definition of the Laguerre polynomials, we have

L
(α)
0 (x) = 1⇒ x0 = 1 = L(α)0 (x);

L
(α)
1 (x) = −x + α + 1⇒ x = −L(α)1 (x)+ (α + 1)L(α)0 (x);

L
(α)
2 (x) = 1

2
x2 − (α + 2)x + 1

2
(α + 1)(α + 2)

⇒ x2 = 2L(α)2 (x)− (2α + 4)L(α)1 (x)+ (α + 1)(α + 2)L(α)0 (x).

In general, since degL(α)n (x) = n, the system {L(α)k (x), k = 0, 1, 2, . . . , n} is a
basis of polynomials of degree at most n. Therefore, there exist coefficients Ik(n)
such that the inversion formula

xn =
n∑
k=0

Ik(n)L
(α)
k (x)

is valid. How can we compute the inversion coefficients Ik(n)?
One option is by using a generating function of the given polynomials (see, e.g.,
[16]).
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A generating function of the Laguerre polynomials is given by

et0F1

(
−
α + 1

∣∣∣∣∣−xt
)
=
∞∑
n=0

L
(α)
n (x)

(α + 1)n
tn,

which is equivalent to

0F1

(
−
α + 1

∣∣∣∣∣−xt
)
= e−t

∞∑
n=0

L
(α)
n (x)

(α + 1)n
tn.

Using the series expansion of the exponential function, this yields

∞∑
n=0

(−xt)n
(α + 1)nn! =

( ∞∑
n=0

(−t)n
n!

)( ∞∑
k=0

L
(α)
k (x)

(α + 1)k
tk

)
.

From the relation (cf. [16])

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

n∑
k=0

A(k, n− k),

we get

∞∑
n=0

(−1)nxntn

(α + 1)nn! =
∞∑
n=0

n∑
k=0

(−1)n−ktn−k

(n− k)!
L
(α)
k (x)

(α + 1)k
tk

=
∞∑
n=0

(
n∑
k=0

(−1)n−kL(α)k (x)
(n− k)!(α + 1)k

)
tn.

Equating the coefficients of tn yields

xn =
n∑
k=0

(−1)kn!(α + 1)n
(n− k)!(α + 1)k

L
(α)
k (x).

Exercise Use the generating function of the Hermite polynomials and the relation
(cf. [16])

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

�n/2�∑
k=0

A(k, n− 2k),
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where �n/2� is the floor of n/2, to show that the inversion formula

xn =
�n/2�∑
k=0

n!Hn−2k(x)

2nk!(n− 2k)!

is valid for the Hermite polynomials.

3 Multiplication Formula Using Generating Functions (See
e.g. [4, 16, 20])

We consider the following generating function of the Laguerre polynomials

G(x, t) := et0F1

(
−
α + 1

∣∣∣∣∣−xt
)
=
∞∑
n=0

L
(α)
n (x)

(α + 1)n
tn.

From this definition, we getG(ax, t) = et(1−a)G(x, at) or equivalently

∞∑
n=0

L
(α)
n (ax)

(α + 1)n
tn =

( ∞∑
n=0

(1− a)ntn
n!

)( ∞∑
k=0

L
(α)
k (x)

(α + 1)k
aktk

)
.

It follows from the Cauchy product that

∞∑
n=0

L
(α)
n (ax)

(α + 1)n
tn =

∞∑
n=0

n∑
k=0

ak(1− a)n−kL(α)k (x)
(α + 1)k(n− k)! t

n.

Equating the coefficients of tn yields the multiplication formula of the laguerre
polynomials

L(α)n (ax) =
n∑
k=0

ak(α + 1)n(1− a)n−k
(α + 1)k(n− k)! L

(α)
k (x).

Exercise Show that for the Hermite polynomials, the generating function
G(t, x) = exp(2xt − t2) satisfies

G(t, ax) = e(a2−1)t2G(at, x).
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Deduce that the multiplication formula

Hn(ax) =
�n/2�∑
m=0

ann!(1− a−2)m

(n− 2m)!m! Hn−2m(x)

is valid.

4 Connection Formula Using Generating Functions
(See e.g. [16])

If we rather consider the generating function

G(α, t) := (1− t)−α−1 exp

(
xt

t − 1

)
=
∞∑
n=0

L(α)n (x)t
n

of the Laguerre polynomials, we have the relation G(α, t) = (1− t)α−βG(β, t).
This is equivalent to

∞∑
n=0

L(α)n (x)t
n =

( ∞∑
n=0

(α − β)n
n! tn

)( ∞∑
k=0

L
(β)
k (x)t

k

)

=
∞∑
n=0

(
n∑
m=0

(α − β)n−m
(n−m)! L

(β)
m (x)

)
tn.

Equating the coefficients of tn, we deduce the connection formula

L(α)n (x) =
n∑
m=0

(α − β)n−m
(n−m)! L

(β)
m (x),

of the Laguerre polynomials. One application of the latter formula is the so-called
parameter derivative of L(α)n (x) given by [11]

∂

∂α
L(α)n (x) =

n−1∑
m=0

1

n−mL
(α)
m (x).

To get this result knowing the connection relation

L(α)n (x) =
n∑
m=0

Cm(n; α, β)L(β)m (x),
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we build the difference quotient

L
(α)
n (x)− L(β)n (x)

α − β =
n∑
m=0

Cm(n; α, β)
α − β L(β)m (x)−

L
(β)
n (x)

α − β

= Cn(n; α, β)− 1

α − β L(β)n (x)+
n−1∑
m=0

Cm(n; α, β)
α − β L(β)m (x)

so that with β → α

∂

∂α
L(α)n (x) = lim

β→α
Cn(n; α, β)− 1

α − β L(β)n (x)+
n−1∑
m=0

lim
β→α

Cm(n; α, β)
α − β L(β)m (x)

since the systems L(α)n (x) are continuous with respect to α. This gives the results.

5 Structure Relations and Applications

Every classical orthogonal polynomial sequence {pn(x) = knx
n + . . .}n≥0 is

solution of a second-order differential equation of type

σ(x)y ′′(x)+ τ (x)y ′(x)+ λny(x) = 0,

where σ(x) = ax2 + bx + c, τ (x) = dx + e, d �= 0, λn = −n((n − 1)a + d).
Furthermore, a three-term recurrence relation of type

xpn(x) = anpn+1(x)+ bnpn(x)+ cnpn−1(x), (5.1)

is satisfied by pn(x), with [11]

an = kn

kn+1
,

bn = −2bn(an+ d − a)− e(2a − d)
(d + 2an)(d − 2a + 2an)

,

cn = −(n(an+ d − 2a)(4ac − b2)+ 4a2c − ab2 + ae2 − 4acd + db2 − bed + d2c)

× (an+ d − 2a)n

(d − 2a + 2an)2(2an− 3a + d)(2an − a + d)
kn

kn−1
.

Since the sequence of the derivatives {p′n(x)}n≥1 of {pn(x)}n≥0 is also an orthogonal
polynomial sequence, it also satisfies a three-term recurrence relation of type

xp′n(x) = αnp′n+1(x)+ βnp′n(x)+ γnp′n−1(x), (5.2)
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with [11]

αn = n

n+ 1

kn

kn+1
,

βn = −2bn(an+ d − a)+ d(b − e)
(d + 2an)(d − 2a + 2an)

,

γn = −n((n− 1)(an+ d − a)(4ac−b2)+ ae2 + d2c − bed)(an+ d − a)
(d − 2a + 2an)2(2an− 3a + d)(2an− a + d)

kn

kn−1
.

The data corresponding to each classical continuous family are given in the
following table:

System P
(α,β)
n (x) L

(α)
n (x) Hn(x) yn(x;α)

σ (x) 1− x2 x 1 x2

τ(x) β − α − (α + β + 2)x α + 1− x −2x 2+ (α + 2)x

kn
(α+β+n+1)n

2nn!
(−1)n

n! 2n (n+α+1)n
2n

We set xn = vn(x). Therefore, we have

xvn(x) = vn+1(x), xv
′
n(x) =

n

n+ 1
v′n+1(x).

We suppose that

xn = vn(x) =
n∑
m=0

Im(n)pm(x), (5.3)

which means that the coefficients Im(n) = 0 form �= 0, 1, . . . , n. The idea is to find
a recurrence equation satisfied by the inversion coefficients Im(n) [1, 11, 13, 19, 22]
and solve the obtained recurrence equation using Petkovšek-van-Hoeij algorithm to
get its hypergeometric term solutions.

We substitute (5.3) in xvn(x) = vn+1(x) to get

n∑
m=0

Im(n)xpm(x) =
n+1∑
m=0

Im(n+ 1)pm(x).

Using the three-term recurrence relation (5.1), it follows that

n∑
m=0

Im(n)
(
ampm+1(x)+ bmpm(x)+ cmpm−1(x)

)
=
n+1∑
m=0

Im(n+ 1)pm(x).
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After a shift of index we get

n+1∑
m=0

(
am−1Im−1(n)+ bmIm(n)+ cm+1Im+1(n)

)
pm(x) =

n+1∑
m=0

Im(n+ 1)pm(x).

Equating the coefficients of pm(x) yields a mixed recurrence relation with respect
to m and n

am−1Im−1(n)+ bmIm(n)+ cm+1Im+1(n) = Im(n+ 1). (5.4)

Similarly, we substitute (5.3) in xv′n(x) = n
n+1v

′
n+1(x) and use (5.2) to get, after a

shift of index,

n+1∑
m=0

(
αm−1Im−1(n)+βmIm(n)+γm+1Im+1(n)

)
p′m(x)=

n

n+ 1

n+1∑
m=0

Im(n+1)p′m(x).

By equating the coefficients of p′m(x), we get a mixed recurrence relation in the
variablesm and n

αm−1Im−1(n)+ βmIm(n)+ γm+1Im+1(n) = n

n+ 1
Im(n+ 1). (5.5)

Combining (5.4) and (5.5), we get out with a recurrence equation with respect to m

αm−1Im−1(n)+ βmIm(n)+ γm+1Im+1(n) =
n

n+ 1

(
am−1Im−1(n)+ bmIm(n)+ cm+1Im+1(n)

)
,

that is
(
αm−1 − n

n+ 1
am−1

)
Im−1(n)+

(
βm − n

n+ 1
bm

)
Im(n)

+
(
γm+1 − n

n+ 1
cm+1

)
Im+1(n) = 0. (5.6)

Exercise We consider the Jacobi polynomials bases vn(x) = (x + 1)n.

1. Show that

xvn(x) = vn+1(x)− vn(x), xv′n(x) =
n

n+ 1
v′n+1(x)− v′n(x).
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2. We suppose that

(x + 1)n = vn(x) =
n∑
m=0

Im(n)pm(x).

Show that Im(n) is solution of the recurrence relation

(
αm−1 − n

n+ 1
am−1

)
Im−1(n)+

(
βm − n

n+ 1
(bm + 1)+ 1

)
Im(n)

+
(
γm+1 − n

n+ 1
cm+1

)
Im+1(n) = 0.

The next step is to substitute a, b, c, d, e for each family and solve the recurrence
relation to get the inversion coefficients.

The coefficients Im(n) of the inversion formula

(1+ x)n =
n∑
m=0

Im(n)P
(α,β)
m (x) (5.7)

of the Jacobi polynomials are solutions of the recurrence equation

2 (m+ 1+ α + β) (α + β +m) (2m+ 3+ α + β) (2m + α + β + 2) (m− n− 1)

× Im−1(n)+ 2 (2m+ 3+ α + β) (m+ 1+ α + β) (α + β + 2m − 1)

×
(
α β + 2mα − nα + β2 + 2mβ + nβ + 2m2 + 2β + 2m

)
Im(n)

+ 2 (β +m+ 1) (1+m+ α) (α + β + 2m − 1) (2m + α + β)
× (α + β +m+ n+ 2) Im+1(n) = 0.

The coefficients Im(n) of the inversion formula

xn =
n∑
m=0

Im(n)L
(α)
m (x) (5.8)

of the Laguerre polynomials are solutions of the recurrence equation

(−m+ n+ 1) Im−1 (n)+ (α + 2m− n) Im (n)+ (−1−m− α) Im+1 (n) = 0.

The coefficients Im(n) of the inversion formula

xn =
n∑
m=0

Im(n)Hm(x) (5.9)
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of the Hermite polynomials are solutions of the recurrence equation

(m− n− 1) Im−1 (n)+ 2m(m+ 1) Im+1 (n) = 0.

The coefficients Im(n) of the inversion formula

xn =
n∑
m=0

Im(n)ym(x; α) (5.10)

of the Bessel polynomials are solutions of the recurrence equation

2 (m+ α) (2m+ 3+ α) (2+ 2m+ α) (1+m+ α) (m− n− 1) Im−1 (n)

− 2m(2m+ 3+ α) (2m− 1+ α) (1+m+ α) (α + 2+ 2 n) Im (n)

− 2m(m+ 1) (2m− 1+ α) (α + 2m) (α +m+ n+ 2) Im+1 (n) = 0.

To solve the above recurrence equations, we can use the Petkovšek-van-Hoeij algo-
rithm implemented in Maple by the command ‘LREtools/hypergeomsols‘
(rec, R(m), {}, output=basis) [5, 10, 14, 21]. The solution is given up
to a multiplicative constant:

• for the Jacobi polynomials by

Im(n) = (−1)m � (m+ 1+ α + β)� (m− n) (m+ 1/2+ β/2+ α/2)
� (α + β +m+ n+ 2) � (β +m+ 1)

,

• for the Laguerre polynomials by

Im(n) = � (m− n)
� (1+m+ α) ,

• for the Bessel polynomials by

Im(n) = � (m− n) � (1+m+ α) (α/2+m+ 1/2)

� (m+ 1) � (α +m+ n+ 2)
.

This means for example that for the Bessel polynomials

xn =
n∑
m=0

� (m− n) � (1+m+ α) (α/2+m+ 1/2)

� (m+ 1) � (α +m+ n+ 2)
× constant × ym(x; α).

To get the constant, we equate the coefficients of xn in both sides of (5.10) (noting
that yn(x; α) = (n+α+1)n

2n xn + . . . and �(m− n) = (−n)m�(−n)) to get

constant = 2(−2)n

�(−n) .
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This leads to the inversion formula

xn = (−2)n
n∑
m=0

(2m+ α + 1)
(−n)m�(α +m+ 1)

m!�(n+m+ α + 2)
ym(x; α).

Exercise Show that the following inversion formula is valid:
for the Jacobi polynomials

(1+ x)n = 2n�(β + n+ 1)
n∑
m=0

(−1)m(−n)m (α + β + 2m+ 1)�(α + β +m+ 1)

�(β +m+ 1)�(α + β + n+m+ 2)
P (α,β)m (x),

for the Laguerre polynomials

xn = (1+ α)n
n∑
m=0

(−n)m
(1+ α)mL

(α)
m (x),

for the Hermite polynomials

xn =
� n2 �∑
m=0

(−n2 )m(−n2 + 1
2 )m

m!2n−2m Hn−2m(x) = n!
2n

� n2 �∑
m=0

1

m!(n− 2m)!Hn−2m(x).

In general, to find the coefficients Cm(n) in the connection formula [1–3, 6–9, 11,
12, 16–19]

pn(x) =
n∑
m=0

Cm(n)qm(x),

we combine

pn(x) =
n∑
j=0

Aj(n)x
j and xj =

j∑
m=0

Im(j)qm(x),

which yields the representation

pn(x) =
n∑
j=0

j∑
m=0

Aj(n)Im(j)qm(x),

and then, interchanging the order of summation gives

Cm(n) =
n−m∑
j=0

Aj+m(n)Im(j +m),
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or

pn(x) =
n∑
m=0

Cn−m(n)qn−m(x).

For orthogonal polynomials with even weight such as the Hermite and Gegenbauer
polynomials, we have the relations

pn(x) =
� n2 �∑
j=0

Aj(n)x
n−2j and xj =

� j2 �∑
m=0

Im(j)qj−2m(x),

from which we deduce

xn−2j =
� n2 �−j∑
m=0

Im(n− 2j)qn−2j−2m(x).

Finally, we combine the above two expressions and substitute m by m− j to get

Cm(n) =
m∑
j=0

Aj(n)Im−j (n− 2j),

with

pn(x) =
n∑
m=0

Cm(n)qn−2m(x).

Since the summandF(j,m, n) := Aj(n)Im(j) of Cm(n) turns out to be a hypergeo-
metric term with respect to (j,m, n), i.e., the term ratios F(j+1,m, n)/F (j,m, n),
F(j,m + 1, n)/F (j,m, n), and F(j,m, n + 1)/F (j,m, n) are rational functions,
Zeilberger’s (combined with the Petkovšek-van-Hoeij) algorithm applies [5, 10,
14, 15, 21]. If a hypergeometric term solution exists, the representation of Cm(n)
follows then from the initial values Cn(n) = kn/k̄n, Cn+s (n) = 0, s = 1, 2, . . .,
where kn, k̄n are, respectively, the leading coefficients of pn(x) and qn(x).

The following connection relations between classical orthogonal polynomials are
valid:

P (α,β)n (x) =
n∑
m=0

(2m+ γ + β + 1)
�(n+ β + 1)�(n+m+ α + β + 1)

�(m+ β + 1)�(n+ α + β + 1)

× �(m+ γ + β + 1)(α − γ )n−m
�(n+m+ γ + β + 2)(n−m)!P

(γ,β)
m (x),
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P (α,β)n =
n∑
m=0

(−1)n−m(2m+ α + δ + 1)
�(n+ α + 1)�(n+m+ α + β + 1)

�(m+ α + 1)�(n+ α + β + 1)

× �(m+ α + δ + 1)(β − δ)n−m
�(n+m+ α + δ + 2)(n−m)!P

(α,δ)
m (x),

P (α,β)n (x) =
n∑
m=0

(m+ α + 1)n−m(n+ α + β + 1)m
(n−m)!(m+ γ + δ + 1)m

×3F2

(
m− n, n+m+ α + β + 1,m+ γ + 1

m+ α + 1, 2m+ γ + δ + 2

∣∣∣∣∣ 1

)
P
(γ,δ)
m (x),

L(α)n (x) =
n∑
m=0

(α − β)n−m
(n−m)! L

(β)
m (x),

yn(x; α) =
n∑
m=0

(−1)m(2m+ β + 1)

× (−n)m(n+ α + 1)m�(m+ β + 1)�(β − α + 1)

m!�(n+m+ β + 2)�(m− n+ β − α + 1)
ym(x; β).

The following multiplication formulas of orthogonal polynomials of a continuous
variable are valid:

P (α,β)n (ax) =
n∑
m=0

n−m∑
j=0

(−a)m(1− a)j (−n)m+j (α + 1)n(n+ α + β + 1)m+j
2jn!j !(α + 1)m+j (α + β +m+ 1)m

×2F1

(
α +m+ 1,−j
α + β + 2m+ 2

∣∣∣∣∣
2a

a − 1

)
P (α,β)m (x),

L(α)n (ax) =
n∑
m=0

(α + 1)nam(1− a)n−m
(n−m)!(α + 1)m

L(α)m (x),

Hn(ax) =
�n/2�∑
m=0

ann!(1 − a−2)m

(n− 2m)!m! Hn−2m(x),

yn(ax; α) =
n∑
m=0

(−a)m(−n)m(α + n+ 1)m
m!(α +m+ 1)m

× 2F1

(
m− n, α +m+ n+ 1

α + 2m+ 2

∣∣∣∣∣ a
)
ym(x; α).
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Classical Orthogonal Polynomials
of a Discrete and a q-Discrete Variable

Patrick Njionou Sadjang

Abstract The classical orthogonal polynomials of discrete and q-discrete orthogo-
nal polynomials are introduced from their difference and q-difference equations.
Some structure formulas are proved for the Charlier and the Al-Salam Carlitz
polynomials from their generating functions.

Keywords Orthogonal polynomials · Generating function · Inversion formula ·
Connection formula · Addition formula · Multiplication formula

Mathematics Subject Classification (2000) 33C45, 33D45, 33D15, 33F10,
68W30

1 Introduction

Let P be the linear space of polynomials with complex coefficients. A polynomial
sequence {Pn}n≥0 in P is called a polynomial set if and only if degPn = n for all
nonnegative integers n.
Let α denote a nondecreasing function with a finite or an infinite number of points
of increase in the interval (a; b). The latter interval may be infinite. We assume that
the numbers μn defined by

μn =
∫ b

a

xndα(x) (1.1)

exist for n = 0, 1, 2, . . . . These numbers are called canonical moments of the
measure dα(x). The integral (1.1) can be considered as a Riemann-Stieltjes integral
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(with nondecreasing α(x)) or equivalently as measure integral with measure dα(x).
In the continuous case, dα(x) = α′(x) dx. In the discrete case, the measure dα(x)
is a weighted sum of Dirac measures (point measures) εx at the points of increase
xk of α(x),

dα(x) =
N∑
k=0

αkεxk

where αk denotes the increment of α(x) at xk , N ∈ N or N = ∞. In this case, the
integral can be computed as the sum

∫ b

a

xndα(x) =
N∑
k=0

αk x
n
k .

Note that the Dirac measure εx at the point y is defined by

εx(y) =
{

1 if y = x
0 if y �= x.

In the q-discrete case, the measure dα(x) takes the form

dα(x) =
∑
k∈Z

(
ρ(qk)εqk + ρ(−qk)ε−qk

)
.

Definition 1 ([3, P. 244, Def. 5.2.1]) We say that a polynomial set {pn(x)}∞0 is
orthogonal with respect to the measure dα(x) if ∀n,m ∈ N

∫ b

a

pn(x)pm(x)dα(x) = hnδmn, hn �= 0, (1.2)

where δmn is the Kronecker delta notation defined by δmn =
{

1 n = m
0 n �= m .

2 Classical Orthogonal Polynomials of a Discrete Variable

2.1 Definitions and Preliminary Results

Definition 2 Let f be a function of the variable x. The forward and the backward
operators� and ∇ are, respectively, defined by:

�f (x) = f (x + 1)− f (x), ∇f (x) = f (x)− f (x − 1).
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For m ∈ N = {1, 2, 3, . . . }, one sets

�m+1f (x) = �(�mf (x)).

It should be noted that � and ∇ transform a polynomial of degree n (n ≥ 1) in x
into a polynomial of degree n − 1 in x and a polynomial of degree 0 into the zero
polynomial.

The operator� fulfils the following properties.

Proposition 3 Let f and g be two functions in the variable x, a and b be two
complex numbers. The following properties are valid.

1. �(af (x)+ bg(x)) = a�f (x)+ b�g(x) (linearity);
2. �[f (x)g(x)] = f (x+ 1)�g(x)+ g(x)�f(x) = f (x)�g(x)+ g(x+ 1)�f (x),

(product rule).

Definition 4 ([12, P. 4]) The Pochhammer symbol or shifted factorial is defined by

(a)0 := 1 and (a)n = a(a+1)(a+2) · · · (a+n−1), a �= 0 n = 1, 2, 3, . . . .

The following notation (falling factorial) will also be used:

a0 := 1 and an = a(a − 1)(a − 2) · · · (a − n+ 1), n = 1, 2, 3, . . . .

It should be noted that the Pochhammer symbol and the falling factorial are linked
as follows:

(−a)n = (−1)nan.

Definition 5 ([12, P. 5]) The hypergeometric series rFs is defined by

rFs

(
a1, · · · , ar
b1, · · · , bs

∣∣∣∣∣ z
)
:=

∞∑
n=0

(a1, · · · , ar )n
(b1, · · · , bs)n

zn

n! ,

where

(a1, . . . , ar)n = (a1)n · · · (ar)n.

An example of a summation formula for the hypergeometric series is given by the
binomial theorem ([12, P. 7])

1F0

(
−a
−

∣∣∣∣∣−z
)
=
∞∑
n=0

(
a

n

)
zn = (1+ z)a, |z| < 1, (2.1)
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where
(
a

n

)
= (−1)n

n! (−a)n.

The following proposition is obtained by simple computations.

Proposition 6 For all i ∈ N the following relations are valid.

• �xi = ixi−1;
• ∇xi = i(x − 1)i−1;
• xxi = xi+1 + ixi;
• �∇xi = i(i − 1)(x − 1)i−2;
• x�∇xi = i(i − 1)xi−1;
• x2�∇xi = i(i − 1)xi + i(i − 1)2xi−1;
• x�xi = ixi + i(i − 1)xi−1;
• x(x − 1)i = xi+1.

Definition 7 A polynomial set

y(x) = pn(x) = knxn + . . . (n ∈ N0 = {0, 1, 2, . . . }, kn �= 0) (2.2)

is a family of discrete classical orthogonal polynomials (also known as the Hahn
class) if it is the solution of a difference equation of the type

σ(x)�∇y(x)+ τ (x)�y(x)+ λny(x) = 0. (2.3)

They are known to satisfy the Pearson-type equation

�[σ(x)ρ(x)] = τ (x)ρ(x) (2.4)

where ρ(x) is the discrete weight function for which the pn’s are orthogonal.

Proposition 8 Let (pn(x))n be a family of classical discrete orthogonal poly-
nomials satisfying the Pearson-type difference equation (2.4), then the family
(�pn+1(x))n is orthogonal with respect to the weight function ρ1 defined by

ρ1(x) = σ(x + 1)ρ(x + 1).

More generally, we have the following proposition.

Proposition 9 Let (pn(x))n be a family of classical discrete orthogonal poly-
nomials satisfying the Pearson-type difference equation (2.4), then the family
(�kpn+k(x))n is orthogonal with respect to the weight function ρk defined by

ρk(x) = ρ(x + k)
k∏
j=1

σ(x + j).
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Theorem 10 (Rodrigues Formula) Let (Pn(x))n be a family of classical discrete
orthogonal polynomials. If we set Pm,n(x) = �mPn(x) (m ≤ n), then

Pm,n(x) = AmnBn
ρm(x)

∇n−m[ρn(x)] (2.5)

with

Amn = n!
(n−m)!

m−1∏
k=0

(
τ ′ + n+ k − 1

2
σ ′′

)
;

A0n = 1;
Bn = �

nPn(x)

Ann
= 1

Ann
P (n)n (x).

Corollary 11 For m = 0 in (2.5) it follows that

Pn = P0n = yn(x) = Bn

ρ(x)
∇n[ρ(x)]. (2.6)

2.2 General Polynomial Solutions of the Hypergeometric
Discrete Difference Equation

In this section we provide the hypergeometric representation of the classical discrete
orthogonal polynomials. More precisely, we find an explicit representation of the
polynomial solutions of the difference equation (2.3). First, we look for the solutions
of the difference equation

σ(x)�∇y(x)+ τ (x)�y(x)+ λy(x) = 0 (2.7)

where σ , τ and λ have the form

• σ(x) = ax2 + bx + c a, b, c ∈ R;
• τ (x) = dx + e d ∈ R

∗, e ∈ R.
• λ is a constant.

Next we choose λ such that we obtain a polynomial solution. Since the suitable
polynomial basis for the forward (or the backward) difference is the falling factorial,
we write the solution has

y(x) =
∞∑
k=0

αkx
k. (2.8)
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Theorem 12 The infinite series y(x) defined by (2.8) is solution of (2.7) if and only
if the αi ’s are solutions of the recurrence equation

R(a, b, c, d, e)αi+2 + S(a, b, c, d, e)αi+1 + T (a, b, c, d, e)αi = 0 (2.9)

where

R(a, b, c, d, e) = ai4 + (d + b + 5a)i3 + (4d + 9a + 4b + c + e)i2
+(3c+ 7a + 3e + 5d + 5b)i + 2d + 2e + 2b + 2

c + 2a;
S(a, b, c, d, e) = 2ai3 + (3a + b + 2d)i2 + (a + b + 3d + e + λ)i +

d + e + λ;
R(a, b, c, d, e) = ai2 + (−a + d)i + λ.

Proof The following relations are easily verified

σ(x)�∇y(x) =
+∞∑
i=2

αi

{
ax2�∇xi + bx�∇xi + c�∇xi

}

=
+∞∑
i=2

i(i − 1)αi
{
axi + ((i − 1)a + b)xi−1 + c(x − 1)i−2

}
;

τ (x)�y(x) =
+∞∑
i=1

αi

{
dx�xi + e�xi

}

=
+∞∑
i=1

iαi

{
dxi + ((i − 1)d + e)xi−1

}

λy(x) =
+∞∑
i=0

λαix
i.

In order the convert the term (x − 1)i−2 into a term of the form xi+j , with j ∈ Z,
we multiply all the previous expressions by x and use the relation

x(x − 1)i−2 = xi−1
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to deduce from Proposition 6 that

xσ(x)�∇y(x) =
+∞∑
i=2

{
Aix

i+1 + Bixi + Cixi−1
}

=
+∞∑
i=2

{
Ai + Bi+1 + Ci+2

}
xi+1 + B2x

2 + C2x
1 + C3x

2;

xτ(x)�y(x) =
+∞∑
i=1

{
A′ixi+1 + B ′ixi + C′ixi−1

}

=
+∞∑
i=1

{
A′i + B ′i+1 + C′i+2

}
xi+1 + B ′1x1 + C′2x1 + C′1x0;

xλy(x) =
+∞∑
i=0

{
A′′i + B ′′i+1

}
xi+1 + B ′′0x0.

with

Ai = ai(i − 1)αi;
Bi = i(i − 1)[(2i − 1)a + b]αi;
Ci = i(i − 1)[(i − 1)2a + (i − 1)b + c]αi;
A′i = diαi;
B ′i = i[(2i − 1)d + e]αi;
C′i = i[(i − 1)2d + (i − 1)e]αi;
A′′i = λαi;
B ′′i = λiαi.

Finally, using Eqs. (2.7) and (2.9) follows. ��
Remark 13 In the previous statement, the polynomial σ is of the form σ(x) =
ax2 + bx + c where c is any real number. For the classical discrete orthogonal
polynomials, σ is of the form σ(x) = ax2+ bx since their lattices are selected such
that they start with x = 0. The previous theorem reduces to

Theorem 14 If σ(x) = ax2 + bx, then the series y defined by (2.8) is solution of
(2.7) if and only if the αi’s verify the recurrence relation

(i + 1)[i(ai + b)+ (id + e)]αi+1 − [ai(i − 1)+ di + λ]αi = 0. (2.10)
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Equation (2.10) can be written as

αi+1 = − ai(i − 1)+ di + λ
(i + 1)[i(ai + b)+ (id + e)]αi. (2.11)

Note that for y to be a polynomial of degree n it necessary that αn �= 0 and αi = 0
for i > n. These conditions imply

λ = λn = −n[(n− 1)a + d].

Replacing λ by λn in (2.11), we get

αi+1 = (n− i)[a(n+ i − 1)+ d]
(i + 1)[i(ai + b)+ (id + e)]αi;

or otherwise stated

αi+1 = (n− i)[a(n+ i − 1)+ d]
(i + 1)[ai2 + (b + d)i + e)]αi; (2.12)

which gives

αi = (−1)nCi(a, b, d, e)
(−n)i
i! (2.13)

with

Ci(a, b, d, e) =
i∏
k=0

a(n+ k − 2)+ d
a(k − 1)2 + (b + d)(k − 1)+ eα0.

2.3 The Four Classical Discrete Orthogonal Polynomials

2.3.1 Charlier Polynomials

The Charlier polynomials satisfy the difference equation

x�∇y(x)+ (γ − x)�y(x)+ λy(x) = 0.

In this case we have

a = 0, b = 1, d = −1, and e = γ.
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Equation (2.12) becomes in this case

αi+1 = 1

γ

i − n
i + 1

αi .

Taking the normalization α0 = 1, we get:

αi =
( 1

γ

)i (−n)i
i! ,

and finally we obtain the hypergeometric representation

Cn(x, γ ) =
n∑
k=0

( 1

γ

)k (−n)k
k! x

k

=
n∑
k=1

(
− 1

γ

)k
(−n)k(−x)k

i!

= 2F0

(
−n,−x
−

∣∣∣∣∣−
1

γ

)
.

The weight function of the Charlier polynomials are solution of the Pearson equation

�(xρ(x)) = (γ − x)ρ(x),

which is equivalent to

ρ(x + 1)

ρ(x)
= γ

x + 1
,

and so

ρ(i) = γ
i

i! .

2.3.2 Meixner Polynomials

The Meixner polynomials satisfy the difference equation

x�∇y(x)+ ((μ− 1)x + γμ)�y(x)+ λy(x) = 0.

Therefore we have

a = 0, b = 1, d = μ− 1 et e = γμ.
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Equation (2.12) becomes

αi+1 = (n− i)(μ− 1)

(i + 1)μ(i + γ )αi =
(n− i)
(i + 1)

μ− 1

μ(i + γ )αi =
(

1− 1

μ

) (n− i)
(i + 1)

1

i + γ αi .

Taking the normalization α0 = 1 we get

αi = (−1)n
(

1− 1

μ

)i (−n)i
i!

1

(−γ )i .

and finally we get the hypergeometric representation

Mn(x, γ, μ) =
n∑
k=0

(−1)k
(

1− 1

μ

)k (−n)k
i!

1

(−γ )k (−x)k

= 2F1

(
−n,−x
γ

∣∣∣∣∣ 1− 1

μ

)
.

The weight function of the Meixner polynomials satisfies the Pearson equation

�(xρ(x)) = ((μ− 1)x + γμ)ρ(x).

which is equivalent to

ρ(x + 1)

ρ(x)
= μ(γ + x)

x + 1

and so

ρ(x) = Cμ
x�(γ + x)
�(x + 1)

.

2.3.3 Kravchuk Polynomials

The Kravchuk polynomials satisfy the difference equation

x�∇y(x)+
(
− 1

q
x + Np

q

)
�y(x)+ λy(x) = 0,

with p + q = 1, 0 < p < 1. Therefore we have

a = 0, b = 1, d = − 1

q
et e = Np

q
.
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Equation (2.12) becomes

αi+1 = − (n− i)(μ− 1)

p(i + 1)(i +N)αi = −
(n− i)
(i + 1)

1

p

1

i +N αi.

Taking the normalization α0 = 1, we get

αi = (−1)i
( 1

p

)i (−n)i
i!

1

(−N)i ,

and finally we get the hypergeometric representation

Kn(x, p,N) =
n∑
k=1

( 1

p

)i (−n)k
k!

1

(−N)k (−x)k

= 2F1

(
−n,−x
−N

∣∣∣∣∣−
1

p

)
.

Similarly to the previous families we get the weight function

ρ(x) = C N !pxqN−x
�(x + 1)�(N + 1− x) .

2.3.4 Hahn Polynomials

The Hahn polynomials satisfy the difference equation

(x2 + μx)�∇y(x)+ τ (x)�y(x)+ λy(x) = 0

with

τ (x) = −(2N + μ+ ν − 2)x + (N + ν + 1)(N − 1).

Doing as for the previous families, we get the hypergeometric representation

Qn(x,μ, ν,N) =
n∑
k=0

(−n)k(n+ ν + μ+ 1)k(−x)k
(α +N)k(−N)k

= 3F2

(
−n, n+ μ+ ν + 1,−x

α +N,−N

∣∣∣∣∣−
1

p

)
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and the weight function

ρ(x) = 1

�(x + 1)�(x + μ+ 1)�(N + ν − x)�(N − x) (ν > −1, μ > −1).

2.4 Some Structure Formulas for the Charlier Polynomials

It is not difficult to prove that the Charlier polynomials have the exponential
generating function [12, P. 248]

et
(

1− t
α

)x
=
∞∑
n=0

Cn(x; α) t
n

n! . (2.14)

Indeed

et
(

1− t
α

)x
=

( ∞∑
n=0

tn

n!

)( ∞∑
n=0

xn

(−α)n
tn

n! ,
)

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
xk

(−α)k
)
tn

n!

=
∞∑
n=0

(
n∑
k=0

(−n)k(−x)k
k!

1

(−α)k
)
tn

n!

=
∞∑
n=0

Cn(x; α) t
n

n! .

In what follows, we use only this generating function to prove some structure
relations for these polynomials.

2.4.1 The Inversion Formula

Proposition 15 The Charlier polynomials fulfil the following inversion formula.

xn =
n∑
k=0

(−1)k
(
n

k

)
αnCk(x; α). (2.15)
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Proof From the generating function (2.14), we get

(
1− t

α

)x
= e−t

∞∑
n=0

Cn(x; α) t
n

n! =
( ∞∑
n=0

(−1)n
tn

n!

)( ∞∑
n=0

Cn(x; α) t
n

n!

)

=
∞∑
n=0

(
n∑
k=0

(−1)n−k
(
n

k

)
Ck(x; α)

)
tn

n! .

Using the fact that

(
1− t

α

)x
=
∞∑
n=0

xn
(−t/α)n
n! =

∞∑
n=0

xn

(−α)n
tn

n! ,

the result follows. ��

2.4.2 A Connection Formula

Note that by doing the change of variable t = αt , the generating function (2.14) can
be written as

eαt (1− t)x =
∞∑
n=0

αnCn(x; α) t
n

n! . (2.16)

Theorem 16 The following connection formula holds true

Cn(x; β) = 1

βn

n∑
k=0

(
n

k

)
(β − α)n−kαkCk(x; α). (2.17)

Proof From the relation (2.16), we get

∞∑
n=0

βnCn(x; β) t
n

n! = e
βt (1− t)x = e(β−α)teαt (1− t)x

=
( ∞∑
n=0

(β − α)n t
n

n!

)( ∞∑
n=0

αnCn(x, α)
tn

n!

)

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
(β − α)n−kαkCk(x; α)

)
tn

n! .

The result follows by collecting the coefficients of tn on both sides. ��
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2.4.3 An Addition Formula

Theorem 17 The following addition formula holds true

Cn(x + y; α + β) =
n∑
k=0

(
n

k

)
αkβn−k

(α + β)nCk(x; α)Cn−k(y; β). (2.18)

Proof From the generating function (2.16), we get

∞∑
n=0

(α + β)nCn(x + y; α + β) t
n

n!
= eαt (1− t)x eβy (1− t)y

=
( ∞∑
n=0

αnCn(x; α) t
n

n!

)( ∞∑
n=0

βnCn(y; β) t
n

n!

)

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
αkβn−kCk(x; α)Cn−k(y; β)

)
tn

n! .

��
Remark 18 In particular, when α = β, (2.18) becomes

Cn(x + y; 2α) = 1

2n

n∑
k=0

(
n

k

)
Ck(x; α)Cn−k(y; α).

3 Classical Orthogonal Polynomials of a q-Discrete Variable

3.1 Definitions and Preliminary Results

This section contains some preliminary definitions and results that are useful for a
better reading of the manuscript. The q-Pochhammer symbol, the q-binomial coef-
ficients, the q-hypergeometric series, the q-derivative, the q-integral are defined.
The reader will consult the references [12, 17] for more informations about these
concepts.

Definition 19 The basic hypergeometric or q-hypergeometric series rφs is defined
by the series

rφs

(
a1, · · · , ar
b1, · · · , bs

∣∣∣∣∣ q; z
)
:=

∞∑
n=0

(a1, · · · , ar ; q)n
(b1, · · · , bs; q)n

(
(−1)nq(

k
2)
)1+s−r zn

(q; q)n ,
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where

(a1, · · · , ar )n := (a1; q)n · · · (ar; q)n,

with

(ai; q)n =

⎧⎪⎨
⎪⎩
n−1∏
j=0
(1− aiqj ) if n = 1, 2, 3, · · ·

1 if n = 0

.

For n = ∞ we set

(a; q)∞ =
∞∏
n=0

(1− aqn), |q| < 1.

The notation (a; q)n is the so-called q-Pochhammer symbol.

The following so-called q-binomial theorem if one of the most important identities
for basic hypergeometric series.

Proposition 20 ([12, Page 16]) The basic hypergeometric series fulfil the following
identity

1φ0

(
a

−

∣∣∣∣∣ q; z
)
=

∞∑
n=0

(a; q)n
(q; q)n z

n = (az; q)∞
(z; q)∞ , 0 < |q| < 1, |z| < 1.

(3.1)

From the definition of (a; q)∞, it follows that for 0 < |q| < 1, and for a nonnegative
integer n, we have

(a; q)n = (a; q)∞
(aqn; q)∞ .

Definition 21 For any complex number λ,

(a; q)λ = (a; q)∞
(aqλ; q)∞ , 0 < |q| < 1,

where the principal value of qλ is taken.

We will also use the following common notations

[a]q = 1− qa
1− q , a ∈ C, q �= 1,

[
n

m

]
q

= (q; q)n
(q; q)m(q; q)n−m , 0 ≤ m ≤ n,
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and

(x � y)nq = (x − y)(x − qy) · · · (x − qn−1y). (3.2)

called the q-bracket, the q-binomial coefficients and the q-power, respectively.

Remark 22 Note that in (3.2), for x = 1 we obtain the q-Pochhammer symbol and
for y = 0 we have the classical power. It is also straightforward to see that for x �= 0,
(x � y)nq = xn

( y
x
; q)

n
.

Remark 23 Notice that the q-factorial and the q-Pochhammer symbol are linked in
the following way

[n]q ! = (q; q)n
(1− q)n .

The natural extension of the q-power to the real numbers λ is

(a � b)λq = aλ
(b/a; q)∞
(qλb/a; q)∞ = a

λ(b/a; q)λ.

Definition 24 The q-derivative operator is defined by [10, 12]

Dqf (x) = f (x)− f (qx)
(1− q)x , x �= 0,

and

Dqf (0) = f ′(0)

provided that f is differentiable at x = 0.

The q-derivative operator satisfies the important product rule

Dq(f (x)g(x)) = f (x)Dqg(x)+ g(qx)Dqf (x). (3.3)

Definition 25 (See [10]) Suppose 0 < a < b. The definite q-integral is defined as

∫ b

0
f (x)dqx = (1− q)b

∞∑
n=0

qnf (qnb), (3.4)

and

∫ b

a

f (x)dqx =
∫ b

0
f (x)dqx −

∫ a

0
f (x)dqx. (3.5)
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Definition 26 The q-Gamma function is defined by

�q(x) := (q; q)∞
(qx; q)∞ (1− q)

1−x, 0 < q < 1. (3.6)

Remark 27 From Definition 21, the q-Gamma function is also represented by

�q(x) = (1− q)1−x(q; q)x−1.

Note also that the q-Gamma function satisfies the functional equation

�q(x + 1) = [x]q�q(x), with �q(1) = 1.

Note that for arbitrary complex α,

[
α

k

]
q

= (q
−α; q)k
(q; q)k (−1)kqαk−(

k
2) = �q(α + 1)

�q(k + 1)�q(α − 1)
. (3.7)

The exponential function has two different natural q-extensions, denoted by eq(z)
and Eq(z), which can be defined by

eq(z) :=
∞∑
n=0

zn

[n]q ! , 0 < |q| < 1, |z| < 1, (3.8)

and

Eq(z) :=
∞∑
n=0

q(
n
2)

[n]q !z
n, 0 < |q| < 1. (3.9)

Using the identity (3.1), it follows that

eq(z) = 1

((1− q)z; q)∞ ,

and

Eq(z) = (−(1− q)z; q)∞.

These q-analogues of the exponential function are clearly related by

eq(z)Eq(−z) = 1.

Definition 28 A polynomial set pn(x), given by (2.2), is a family of classical q-
discrete orthogonal polynomials (also known as the polynomials of the q-Hahn
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tableau) if it is the solution of a q-difference equation of the type

σ(x)DqDq−1y(x)+ τ (x)Dqy(x)+ λny(x) = 0. (3.10)

Here the polynomials σ(x) and τ (x) are involved in the Pearson type equation

Dq(σ(x)ρ(x)) = τ (x)ρ(x),
where the function ρ(x) is the q-discrete weight function associated to the family.

3.2 Polynomial Solutions of the q-Difference Equation

Theorem 29 (See [7]) Let Pn(x) be a polynomial system given by the q-differential
equation (3.10) with σ(x) = ax2 + bx + c, and τ (x) = dx + e. Then, the power
series coefficients Cm(n) given by

Pn(x) =
n∑
m=0

Cm(n)x
m (3.11)

satisfy the recurrence equation

(a[m] 1
q
[m− 1]q + d[m]q − λn)Cm(n)+ (b[m+ 1] 1

q
[m]q + e[m+ 1]q)Cm+1(n)

+c[m+ 2] 1
q
[m+ 1]qCm+2(n) = 0, (3.12)

with Cn(n) = 1, Cn+1(n) = 0. In particular, if c = 0, then the recurrence equation

(a[m]1/q[m− 1]q + d[m]q − λn)Cm(n)+ (b[m+ 1]1/q[m]q + e[m+ 1]q)Cm+1(n),

(3.13)

is valid, and therefore Pn(x) has the following q-hypergeometric representation up
to a constant Kn:

Pn(x) = Kn 2φ1

(
q−n, a−d+dq

a
qn−1

b−e+eq
b

∣∣∣∣∣ q; −
aq

b
x

)
, ab �= 0, (3.14)

Pn(x) = Kn 1φ1

(
q−n
b−e+eq
b

∣∣∣∣∣ q;
d(1− q)qn

b
x

)
a = 0, b �= 0, (3.15)

Pn(x) = Kn 1φ0

(
q−n

−

∣∣∣∣∣ q; −
dqn

e
x

)
, a = b = 0. (3.16)

Proof Substituting the power series (3.11) into the q-differential equation (3.10),
and equating the coefficients yields the recurrence equation (3.12).
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For c = 0 this recurrence equation degenerates to a two-term recurrence
equation, and hence establishes the q-hypergeometric representations (3.14)–(3.16),
using the initial value Cn(n) = 1, Cn+1(n) = 0. ��
We would like to mention that the recurrence equation (3.12) carries complete
information about the q-hypergeometric representations given in the theorem.

Theorem 30 (See [7]) Let Pn(x) be a polynomial system given by the q-differential
equation (3.10) with σ(x) = ax2 + bx + c, and τ (x) = dx + e. Then, the power
series coefficients Cm(n) given by

Pn(x) =
n∑
m=0

Cm(n)(x; q)m (3.17)

satisfy the recurrence equation

qn
(
qm+2 − 1

) (
qm+1 − 1

) (
a + qm+1b + cq2m+2

)
Cm+2(n)

−
(
qm+1 − 1

)
q
(
− qn+1a − aqn + qn+2m+1b − qm+1+nb

+q2m+2+ne − qn+2m+1e + qm+2na + qm+2n+1d − qm+2nd + qm+1a
)
Cm+1(n)

− (−qm + qn) (qn+ma + qm+1+nd − qn+md − aq
)
q2Cm(n) = 0, (3.18)

where m = −2,−1, 0, · · · , n and Cm(n) = 0 outside the set of (n,m) such that
0 ≤ m ≤ n,with Cn(n) = 1, Cn+1(n) = 0.

Proof We first remark the following relations:

Dq(x; q)m = − [m]q
1− x (x; q)m or Dq(x; q)m = −[m]q(qx; q)m−1,

D 1
q
(x; q)m = −[m]q(x; q)m−1,

x(qx; q)n = q−n−1(qx; q)n − q−n−1(qx; q)n+1.

From these relations, we obtain

(x; q)m = (1− q−m)(qx; q)m−1 + q−m(qx; q)m,
x(qx; q)m−1 = q−m(qx; q)m−1 − q−m(qx; q)m,
x(qx; q)m−2 = q−m+1(qx; q)m−2 − q−m+1(qx; q)m−1,

x2(qx; q)m−2 = q−2m+2(qx; q)m−2 − (q−2m+2 + q−2m+1)(qx; q)m−1

+q−2m+1(qx; q)m,
(qx; q)m = (x; q)m

1− x .
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Next, we substitute Pn(x) in the q-differential equation (3.10) and obtain (using the
preceding relations and simplification)

n∑
m=0

Cm(n)(x; q)m+1

(
a[m]q [m− 1]qq−2m+1 + d[m]qq−m + λnq−m

)

+
n−1∑
m=−1

Cm+1(n)(x; q)m+1

(
− a[m + 1]q [m]q(q−2m + q−2m−1)− b[m+ 1]q [m]qq−m

−d[m+ 1]qq−m−1 − e[m + 1]q + λn(1− q−m−1)
)
+

n−2∑
m=−2

Cm+2(n)(x; q)m+1×

(
a[m+ 2]q [m+ 1]qq−2m−2 + b[m + 2]q [m+ 1]qq−m−1 + c[m+ 2]q [m+ 1]q

)
= 0.

Since (x; q)m is a linearly independent family, equating the coefficients of (x; q)n
yields the constant

λn = −a[n] 1
q
[n− 1]q − d[n]q.

Equating the coefficients of (x; q)m+1, yields the desired recurrence equation
satisfied by the coefficients Cm(n). ��

The above computations show that in the general case, we get a q-holonomic
three-term recurrence equation for Cm(n). In order to find solutions which are q-
hypergeometric terms—hence satisfying a first-order q-holonomic recurrence—in
some specific situations, we can use a q-version of Petkovšek’s algorithm ([16], see
e. g. [13]) which was given by Abramov, Paule and Petkovšek [1] and by Böing and
Koepf [4]. This algorithm can be used utilizing the qrecsolve command of the
qsum package in Maple [4].

The q-Petkovšek algorithm can be successfully used for several instances in
this paper. However, this algorithm is rather inefficient and therefore not at all
suitable for many of our complicated questions posed. Fortunately Horn [8, 9]
published a refined version based on ideas by Mark Van Hoeij [5] which is much
more efficient. Sprenger [19] presented a Maple implementation of this refined
version qHypergeomSolveRE in his package qFPS which finds easily the q-
hypergeometric term solutions of all q-recurrence equations of this paper. It is due
to this algorithm that we can state all our results, especially in Corollary 31.

In particular, we can solve the recurrence equations of Theorems 29 and 30 for all
particular systems and therefore obtain the q-hypergeometric representations up to
a constantKn. Here, we consider the monic cases such that by equating the highest
coefficients of (3.11) and (3.17), we can recover the constantKn. This method yields
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Corollary 31 The following representations of monic orthogonal polynomials of
the q-Hahn class are valid:

• the Big q-Jacobi polynomials

P̃n(x, α, β, γ ; q) = (αq; q)n(γ q; q)n
(αβqn+1; q)n 3φ2

(
q−n, αβqn+1, x

αq, γ q

∣∣∣∣∣ q; q
)
,

• the q-Hahn polynomials

Q̃n(x, α, β,N, q) = (αq; q)n(q
−N ; q)n

(αβqn+1; q)n 3φ2

(
q−n, αβqn+1, x

αq, q−N

∣∣∣∣∣ q; q
)

• the Big q-Laguerre polynomials

tildePn(x, α, β, q) = (αq; q)n(βq; q)n3φ2

(
q−n, 0, x
αq, βq

∣∣∣∣∣ q; q
)

• the Little q-Jacobi polynomials

p̃n(x; α, β|q) = (−1)nq(
n
2)(αq; q)n

(αβqn+1; q)n 2φ1

(
q−n, αβqn+1

αq

∣∣∣∣∣ q; qx
)

• the Alternative q-Charlier polynomials

K̃n(x, α, q) = (−1)nq
n(n−1)

2

(−αqn; q)n 2φ1

(
q−n,−αqn

0

∣∣∣∣∣ q; qx
)

• the Little q-Laguerre/Wall polynomials

p̃n(x, α|q) = (−1)nq(
n
2)(αq; q)n2φ1

(
q−n, 0
αq

∣∣∣∣∣ q, qx
)

• the q-Meixner polynomials

M̃n(x, β, γ ; q) = (−γ )nqn2
(βq; q)n2φ1

(
q−n, x
βq

∣∣∣∣∣ q; −
qn+1

γ

)

• the q-Charlier polynomials

C̃n(x, α, q) = (−α)nq−n2

2φ1

(
q−n, x

0

∣∣∣∣∣ q; −
qn+1

α

)
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• the q-Laguerre polynomials

L̃(α)n (x; q) =
(−1)n(qα+1 : q)n

qn(n+α) 1φ1

(
q−n

qα+1

∣∣∣∣∣ q; −xqα+n+1

)

• the Stieltjes-Wigert polynomials

S̃n(x; q) = (−1)nq−n2
1φ1

(
q−n

0

∣∣∣∣∣ q; −xqn+1

)

• the Al Salam-Carlitz II polynomials

Ṽ (α)n (x, q) = (−α)nq−(n2)2φ0

(
q−n, x
−

∣∣∣∣∣ q;
qn

α

)

• the Discrete q-Hermite II polynomials

H̃n(x, q) = q− n(n−1)
2 2φ0

(
q−n, x
−

∣∣∣∣∣ q,−qn
)

Theorem 32 Let Pn(x) be a polynomial system given by the q-differential equation
(3.10) with σ(x) = (x − 1)(x − a), and τ (x) = dx + e. Then, the power series
coefficients Cm(n) given by

Pn(x) =
n∑
m=0

Cm(n)(x � 1)mq , (3.19)

satisfy the recurrence relation

(
qm+1 − 1

) (
q2m − qm − aqm + a + dq2m+1 − dq2m + eqm+1 − eqm

)
Cm+1 (n)

+
(
−qm+1 + q2m + q − qm + dq2m+1 − dq2m − dqm+1 + dqm + λn qm+2

−2 λn q
m+1 + λn qm

)
Cm (n) = 0. (3.20)

Proof First remark thatDqD 1
q
= 1
q
D 1
q
Dq and rewrite (3.10) as

(x − a)(x − 1)D 1
q
DqPn(x)+ q(dx + e)DqPn(x)+ qλnPn(x) = 0, (3.21)

Next, substituting (3.19) in (3.10), and collecting the coefficients of Cm+1(n) and
Cm(n), the desired recurrence relation in obtained. ��
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Corollary 33 The Al-Salam-Carlitz and the Discrete q-Hermite polynomials have
the following monic q-hypergeometric representation

U(a)n (x; q) = (−a)nq(
n
2)2φ0

(
q−n, x−1

0

∣∣∣∣∣
qx

a

)
,

hn(x; q) = U(−1)
n (x; q) = q(n2)2φ0

(
q−n, x−1

0

∣∣∣∣∣−qx
)
.

Proof For the Al-Salam-Carlitz I polynomials we have d = 1
1−q and e = a+1

q−1

and λn = qn−1
qn−1(q−1)2

. Substituting these data in (3.20), we obtain the following
recurrence relation

aqn
(
qm+1 − 1

)
C (m+ 1)− q (−qn + qm)C (m) = 0.

This yields the following

Cm(n) = Kn
(q
a

)m (q−n; q)m
(q; q)m .

In order to obtain the monic representation, we determine the leading coefficients
and get

Kn = (−a)nq(n2).

Finally, using the relation (x � 1)nq = xn
(

1

x
; q

)
n

, the desired q-hypergeometric

representation is obtained. ��

3.3 Some Structure Formulas for the Al-Salam Carlitz I
Polynomials

Note that the Al-Salam Carlitz I polynomials have the generating function [12]

eq(xt)

eq(t)eq(at)
=
∞∑
n=0

U(a)n (x; q) t
n

[n]q! , (3.22)

Using only this generating function, we prove
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3.3.1 The Inversion Formula

Proposition 34 (See [2, 15]) The following inversion formulas hold for the Al-
Salam Carlitz I polynomials U(a)n (x; q):

(x � 1)nq =
n∑
k=0

an−k
[
n

k

]
q

U
(a)
k (x; q). (3.23)

Proof We first remark that [14, (5.19)]

(x � y)nq =
n∑
k=0

(−y)n−kq(n−k2 )
[
n

k

]
q

xk.

Next, taking into account that eq(x)Eq(−x) = 1 and multiplying the generating
function (3.22) by eq(at), the left-hand side gives

eq(xt)

eq(t)
= eq(xt)Eq(−t)

=
( ∞∑
k=0

xntn

[n]q !

)( ∞∑
k=0

q(
n
2)

[n]q ! (−t)
n

)

=
∞∑
n=0

(
n∑
k=0

(−1)n−kq(
n−k

2 )
[
n

k

]
q

xk

)
tn

[n]q !

=
∞∑
n=0

(x � 1)nq
tn

[n]q ! ,

and the right-hand side gives

eq(at)

∞∑
n=0

U(a)n (x; q) t
n

[n]q! =
( ∞∑
n=0

an
tn

[n]q !

)( ∞∑
n=0

U(a)n (x; q) t
n

[n]q!

)

=
∞∑
n=0

(
n∑
k=0

an−k
[
n

k

]
q

U
(a)
k (x; q)

)
tn

[n]q ! .

Hence we have

∞∑
n=0

(x � 1)nq
tn

[n]q ! =
∞∑
n=0

(
n∑
k=0

an−k
[
n

k

]
q

U
(a)
k (x; q)

)
tn

[n]q ! .
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So (3.23) is proved. Note that this result is proved in [15] using Verma’s q-extension
[20] of the Fields and Wimp inversion formula [6]. ��

3.3.2 A Connection Formula

Before we state the connection formula, we prove the following proposition.

Proposition 35 The following expansion applies

eq(αz)

eq(βz)
=
∞∑
n=0

(α � β)nq
[n]q ! zn.

Proof Using the equation
eq(αz)

eq(βz)
= eq(αz)Eq(−βz) we get

eq(αz)

eq(βz)
=
∞∑
n=0

(αz)n

[n]q ! ×
∞∑
n=0

q(
n
2)(−βz)n
[n]q !

=
∞∑
n=0

(
n∑
k=0

[
n

k

]
q

q(
n−k

2 )αk(−β)n−k
)
zn

[n]q !

=
∞∑
n=0

(α � β)nq
[n]q ! zn.

��
Theorem 36 The following connection formula holds for the Al-Salam Carlitz I
polynomials

U(b)n (x; q) =
n∑
k=0

[
n

k

]
q

(a � b)kqU(a)k (x; q).

Proof From the generating function (3.22), we get

∞∑
n=0

U(b)n (x; q)
tn

[n]q! =
eq(xt)

eq(t)eq(bt)

= eq(at)
eq(bt)

eq(xt)

eq(t)eq(at)

= eq(at)
eq(bt)

∞∑
n=0

U(a)n (x; q) t
n

[n]q!
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=
( ∞∑
n=0

(a � b)nq
[n]q ! t

n

)( ∞∑
n=0

U(a)n (x; q) t
n

[n]q!

)

=
∞∑
n=0

(
n∑
k=0

[
n

k

]
q

(a � b)kqU(a)k (x; q)
)
tn

[n]q !

Hence the theorem is proved. ��

3.3.3 A q-Addition Formula

We first recall the following definition and result.

Definition 37 (See [18]) Let a and b two real or complex numbers. Then, the Ward
q-addition of a and b is given by

(a ⊕q b)n :=
n∑
k=0

[
n

k

]
q

akbn−k, n = 0, 1, 3, . . . . (3.24)

Proposition 38 (See [11]) For x, y ∈ R, the following formula applies

eq(x)eq(y) = eq(x ⊕q y). (3.25)

Theorem 39 The following q-addition formula holds for the Al-Salam Carlitz I
polynomials

U(a)n (x ⊕q y) =
n∑
k=0

[
n

k

]
q

yn−kU(a)k (x; q)

=
n∑
k=0

[
n

k

]
q

xn−kU(a)k (y; q).

Proof From the generating function (3.22), we get

∞∑
n=0

U(a)n (x ⊕q y) t
n

[n]q ! =
eq((x ⊕q y)t)
eq(t)eq(at)

= eq(xt)eq(yt)
eq(t)eq(at)

=
( ∞∑
n=0

yn
tn

[n]q !

)( ∞∑
n=0

U(a)n (x)
tn

[n]q !

)

=
∞∑
n=0

(
n∑
k=0

[
n

k

]
q

yn−kU(a)k (x; q)
)
tn

[n]q !

which proves the result. ��
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3.3.4 A Multiplication Formula

Theorem 40 The following multiplication formula holds true for any non-zero real
number α

U(a)n (αx; q) =
n∑
k=0

[
n

k

]
q

(α � 1)n−kq xn−kU(a)k (x; q). (3.26)

Proof From the generating function (3.22), we get

∞∑
n=0

U(a)n (αx; q)
tn

[n]q ! =
eq(αxt)

eq(t)eq(at)
= eq(αxt)
eq(xt)

eq(xt)

eq(t)eq(at)

=
( ∞∑
n=0

(αx � x)nq
tn

[n]q !

)( ∞∑
n=0

U(a)n (x; q) t
n

[n]q!

)

=
∞∑
n=0

(
n∑
k=0

[
n

k

]
q

(αx � x)n−kq U
(a)
k (x; q)

)
tn

[n]q ! .

The result follows from the relation (αx � x)n−kq = (α � 1)n−kq xn−k . ��
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Computer Algebra, Power Series
and Summation

Wolfram Koepf

Abstract Computer algebra systems can do many computations that are relevant
for orthogonal polynomials and their representations. In this preliminary training
we will introduce some of those important algorithms: the automatic computation
of differential equations and formal power series, hypergeometric representations,
and the algorithms by Fasenmyer, Gosper, Zeilberger and Petkovšek/van Hoeij.

Keywords Computer algebra · Algorithms for power series · Algorithms for
summation

Mathematics Subject Classification (2000) Primary 68W30, 33F10; Secondary
30B10, 33C20

1 Introduction

I will use the computer algebra system Maple to program and demonstrate the
methods considered. Of course one could also easily use any other general-purpose
system like Mathematica, Maxima, Reduce or Sage.

Such general-purpose computer algebra systems

• contain a high-level programming language,
• are dialog-oriented and not compiling,
• are able to plot functions,
• and can compute with symbols.
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The mostly used algorithms are:

• algorithms of linear algebra with many variables and coefficients that are rational
functions,

• multivariate polynomial factorization (over Q),

which can be treated algorithmically and are efficiently available in all general-
purpose computer algebra systems. High-end algorithms contain algorithms for
modular arithmetic, algebraic numbers, solving polynomial systems, differentiation
and integration, solving differential equations, as well as Taylor polynomials and
power series.

2 Taylor Polynomials

The coefficients Bk(x) of the power series

√√√√
(

1+z
1−z

)x − 1

2xz
=
∞∑
k=0

Bk(x) z
k

are polynomials of degree k. In a 1978 publication Malcolm S. Robertson [16]
conjectured that the coefficients of all these polynomialsBk(x) are non-negative. He
had computed Bk(x) for 1 � k � 6. This is reproduced by the Maple computation

> g:=sqrt((((1+z)/(1-z))^x-1)/(2*x*z));

g := 1/2
√

2

√
1

xz

((
1+ z
1− z

)x
− 1

)

> map(expand,series(g,z,7));

1+ 1/2 xz+
(

5 x2

24
+ 1/6

)
z2 +

(
1/16 x3 + x/4

)
z3 +

(
31

360
+ 25 x2

144
+ 79 x4

5760

)
z4

+
(

41 x

240
+ 7 x3

96
+ 3 x5

1280

)
z5 +

(
863

15120
+ 85 x2

576
+ 79 x4

3840
+ 71 x6

193536

)
z6 +O

(
z7
)

Robertson repeated his conjecture in the article [17] published in 1989. In this
publication Robertson further conjectured that the coefficients Ak of the univariate
power series

√
ex − 1

x
=
∞∑
k=0

Ak x
k
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are all positive. It turns out that both conjectures are false, as the following
computations show!1

> f:=sqrt((exp(x)-1)/x);

f :=
√

ex − 1

x
> series(f,x=0,14);

1+ x/4+ 5 x2

96
+ x3

128
+ 79 x4

92160
+ 3 x5

40960
+ 71 x6

12386304
+ 113 x7

247726080

+ 3053 x8

118908518400
+ x9

22649241600
+ 17 x10

930128855040
+ 19 x11

744103084032

+ 935917 x12

1218840851644416000
− 20287103 x13

43878270659198976000
+O

(
x14

)
> expand(coeff(series(g,z,14),z,13));

102672775873 x

1307674368000
+ 437 x11

2179989504
− 20287103 x13

5356234211328000

+ 2299 x9

15925248000
+ 3735911 x3

54743040
+ 2031271 x5

258048000
+ 2042249 x7

5852528640

By these computations both conjectures are disproved since the thirteenth
coefficient of f (x) is negative, and B13(x) also has a negative coefficient. The
falsification of these Robertson’s conjectures was published in 1991 [10]. Please
notice that the reviewing process of my article almost 30 years ago was still very
hard! The reviewers were complaining why we should believe in the output of a
computer? Nowadays computer algebra computations are so common, and we know
that they are safer than hand computations, that no reviewer will complain about
such computations any more.

3 Holonomic Power Series

Sometimes one is not only interested in a Taylor polynomial approximation, but in
the full Taylor series. Assume, given an expression f (x) depending on the variable
x, we would therefore like to compute a formula for the coefficient ak of the power
series

f (x) =
∞∑
k=0

ak x
k (3.1)

representing f (x). A well-known example of that type is given by

sin x =
∞∑
k=0

(−1)k

(2k + 1)!x
2k+1 .

1Please note that Maple regularly does not sort its output to save computation time so that the
Taylor coefficients might appear in wrong order.
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Here is an algorithm for this purpose [11].

Algorithm 3.1 (FPS (Koepf [11]))

• Input: expression f (x).
• HolonomicDE: Determine a holonomic differential equation DE (i.e. homoge-

neous and linear with polynomial coefficients) by computing the derivatives of
f (x) iteratively.

• DEtoRE: Convert DE to a holonomic recurrence equation RE for ak.
• RSolve: Solve RE for ak .

• Output: ak resp.
∞∑
k=0
akx

k.

Functions satisfying a holonomic DE and sequences satisfying a holonomic RE are
also called holonomic. A function is holonomic if and only if it is the generating
function of a holonomic sequence.

The above algorithm is embedded into the Maple system via the
convert(..., FormalPowerSeries) command, and we present some
examples:

> convert(sin(x),FPS);
∞∑
k=0

(−1)k x2 k+1

(2 k + 1)!
> convert(arcsin(x)^2,FPS);

∞∑
k=0

(k!)2 4kx2 k+2

(k + 1) (2 k + 1)!
How does this algorithm work? Here are the details:

Algorithm 3.2 (HolonomicDE (Koepf [11]))

• Input: expression f (x).
• Iterate for J = 1, 2, . . .:
• Compute c0f (x)+ c1f

′(x)+ · · · + f (J )(x) with still undetermined coefficients
cj .

• Sort this linear combination w.r.t. linearly independent functions over Q(x) and
determine their coefficients ∈ Q(x).2

• Set these coefficients zero, and solve the corresponding linear system for the
unknowns c0, c1, . . . , cJ−1.

• Output: DE := c0f (x)+ c1f
′(x)+ · · · + f (J )(x) = 0 (or else multiply by the

common denominator of the cj s).

Holonomic functions have interesting algebraic properties. The existence of a
holonomic differential equation shows that the dimension of the vector space

Vf = 〈f (x), f ′(x), f ′′(x), . . .〉

2For details how to select the linearly independent functions, see [8].
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over the field of rational functions Q(x) is finite. This argument yields

Algorithm 3.3 ((Stanley [19]), Maple (Salvy and Zimmermann [18]))

• Let a function f (x) be given by a holonomic differential equation DE1 of order
n, and let a function g(x) be given by a holonomic differential equation DE2 of
order m.

• Then there are linear algebra algorithms showing that f + g is holonomic of
degree � n+m, and f · g is holonomic of degree � n ·m.

• Similar statements are valid for holonomic sequences.

By these algebraic properties the ring of holonomic functions has a so-called normal
form which consists of the differential equation together with enough initial values.
The same is true for the ring of holonomic sequences whose normal form consists
of their recurrence equation together with enough initial values. Unfortunately,
holonomic functions are not closed under division, an example of which is given
by tan x = sin x

cos x (for details of the proof, see [12]).
The following computation computes the differential equation for f (x) :=

arcsin2(x) and converts it towards the corresponding recurrence equation for its
coefficients ak for f (x) given by (3.1):

> bind(FormalPowerSeries):

> DE:=HolonomicDE(arcsin(x)^2,F(x));

DE :=
{

d

dx
F (x)+ 3 x

d2

dx2 F (x)+
(
x2 − 1

) d3

dx3 F (x) , F (0) = 0,D (F ) (0) = 0,
(
D(2)

)
(F ) (0) = 2

}

> RE:=SimpleRE(arcsin(x)^2,x,a(k));

RE := (k + 1)3 a (k + 1)− (k + 1) (k + 2) (k + 3) a (k + 3) = 0

which can be easily solved for ak using the hypergeometric coefficient formula (3.3)
that we will consider soon.

By computing their normal forms two functions can be identified as identical!
The following computation shows, for example, the addition theorem of the sine
function, completely automatically.

> HolonomicDE(sin(x+y),F(x));{
d2

dx2
F (x)+ F (x) , F (0) = sin (y) ,D (F ) (0) = cos (y)

}

> HolonomicDE(sin(x)*cos(y)+cos(x)*sin(y),F(x));{
d2

dx2
F (x)+ F (x) , F (0) = sin (y) ,D (F ) (0) = cos (y)

}

A very rich class of holonomic functions are the hypergeometric functions/series.
The formal power series

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)
=
∞∑
k=0

Ak z
k =

∞∑
k=0

αk ,
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whose summands αk = Akz
k have a rational term ratio (factored over Q or, if

necessary, over C)

αk+1

αk
= Ak+1 z

k+1

Ak zk
= (k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

z

(k + 1)
,

is called the generalized hypergeometric series. For this reason, the summand αk =
Akz

k of a hypergeometric series is called a hypergeometric term.
For the coefficients of the generalized hypergeometric function one gets the

following formula using the shifted factorial (Pochhammer symbol) (a)k = a(a+1)
· · · (a + k − 1)

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)
=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k! .

Therefore every holonomic recurrence equation of first order defines a hypergeo-
metric term which can be determined by the hypergeometric coefficient formula.

If the recurrence is brought into the form

αk+1

αk
= (k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

z

(k + 1)
,

or, equivalently

(k + b1) · · · (k + bq)(k + 1) αk+1 − (k + a1) · · · (k + ap) z αk = 0 , (3.2)

then αk is given by

αk = (a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k! · α0 . (3.3)

The above method provides an algorithm to detect the hypergeometric representa-
tion for

S =
∞∑
k=0

αk .

Algorithm 3.4 (Sumtohyper (Koepf [13]))

• Input: αk , a hypergeometric term w.r.t. k.
• Compute

rk := αk+1

αk
∈ Q(k) .
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• Factorize rk .
• Output: Reading off upper and lower parameters and the argument z from

representation (3.2), and computing an initial value yields the corresponding
hypergeometric series.

As an example, for

sin x =
∞∑
k=0

αk =
∞∑
k=0

(−1)k

(2k + 1)!x
2k+1 ,

we get

rk = αk+1

αk
= − x2

2(k + 1)(2k + 3)
= 1

(k + 3/2)(k + 1)

(
−x

2

4

)
∈ Q(x, k)

and

α0 = x .

Therefore

sin x = x · 0F1

(
−

3/2

∣∣∣∣∣−
x2

4

)
.

After loading the hsum package [13]
> read "hsum17.mpl";

‘Package "Hypergeometric Summation", Maple V - Maple 17‘

‘Copyright 1998-2014, Wolfram Koepf, University of Kassel‘

this computation is done automatically by the Maple command
> Sumtohyper((-1)^k*x^(2*k+1)/(2*k+1)!,k);

xHypergeom
(
[], [3/2],−1/4 x2

)

4 Fasenmyer’s Algorithm

The sum evaluation

n∑
k=0

(
n

k

)
= 2n



120 W. Koepf

is well-known. However, the similar, but more advanced identities

n∑
k=0

k

(
n

k

)
= n 2n−1 and

n∑
k=0

(
n

k

)2

=
(

2n

n

)

might be less known. Our question is: How can we compute the right hand sides,
given the sums on the left?

In general, consider the sum

Sn :=
n∑
k=0

F(n, k) with
F(n+ 1, k)

F (n, k)
,
F (n, k + 1)

F (n, k)
∈ Q(n, k),

where F(n, k) therefore is a hypergeometric term w r. t. k and n. Fasenmyer’s idea
[5, 6] is to find first a k-free recurrence for the summand F(n, k):

J∑
j=0

I∑
i=0

aij F (n+ j, k + i) = 0 for some aij ∈ Q(n) .

This can be done by linear algebra!
If successful, since the recurrence is k-free, it can be summed from k =

−∞, . . . ,∞ to get a pure recurrence for the sum Sn.
For

F(n, k) =
(
n

k

)
and Sn =

n∑
k=0

(
n

k

)
=

∞∑
k=−∞

(
n

k

)

the first step yields the Pascal triangle identity

F(n+ 1, k + 1) = F(n, k + 1)+ F(n, k) .

If we sum this relation from k = −∞, . . . ,∞, we clearly get

Sn+1 = Sn + Sn = 2 Sn .

Since S0 = 1, we finally have Sn = 2n. The corresponding Maple command is
given by

> fasenmyer(binomial(n,k),k,S(n),1);

S (n+ 1)− 2 S (n) = 0

or—knowing the result—by
> fasenmyer(binomial(n,k)/2^n,k,S(n),1);

S (n+ 1)− S (n) = 0
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and other examples are
> fasenmyer(k*binomial(n,k),k,S(n),1);

nS (n+ 1)− 2 (n+ 1) S (n) = 0

> fasenmyer(k*binomial(n,k)/(n*2^(n-1)),k,S(n),1);

S (n+ 1)− S (n) = 0

> fasenmyer(binomial(n,k)^2,k,S(n),2);

(n+ 2) S (n+ 2)− 2 S (n+ 1) (2n+ 3) = 0

> fasenmyer(binomial(n,k)^2/binomial(2*n,n),k,S(n),2);

S (n+ 2)− S (n+ 1) = 0

Fore more details, see [13, Chapter 4].

5 Gosper’s Algorithm

Given ak , a sequence sk is called an antidifference of ak if

ak = sk+1 − sk .

Given such an antidifference, then by telescoping the sum can be computed with
arbitrary lower and upper bounds:

n∑
k=m

ak = (sn+1 − sn)+ (sn − sn−1)+ · · · + (sm+1 − sm)

= sn+1 − sm .

Gosper’s algorithm computes a hypergeometric term antidifference sk for a hyper-
geometric term ak, i.e.

ak+1

ak
∈ Q(k) .

Here are the computational steps: Given ak with

ak+1

ak
= uk
vk

with polynomials uk, vk ∈ Q[k], gcd(uk, vk) = 1, it is easy to show that

sk = gk
hk
ak

for certain polynomials gk, hk ∈ Q[k].
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Whereas the denominator hk can be written down explicitly, for gk one gets the
inhomogeneous recurrence equation

hk uk gk+1 − hk+1 vk gk = hk hk+1 vk .

To compute gk one first finds a degree bound for gk . The final step uses linear
algebra to compute the coefficients of gk by equating coefficients.

Gosper’s algorithm [13, Chapter 5] was maybe the first algorithm which would
not have been found without computer algebra. In his paper [7], Gosper stated:

Without the support of MACSYMA and its developers, I could not have collected the
experiences necessary to provoke the conjectures that led to this algorithm.

The next two examples for an application of Gosper’s algorithm
> gosper((-1)^k*binomial(n,k),k);

− k (−1)k
(
n
k

)
n

> gosper(1/(k+1),k);

Error, (in gosper) No hypergeometric term antidifference exists

show that

• An antidifference of ak = (−1)k
(
n
k

)
is sk = − kn ak.

• The harmonic numbersHn =∑n
k=1

1
k

cannot be written as hypergeometric term.

Fore more details, see [12, Chapter 11] and [13, Chapter 5].

6 Zeilberger’s Algorithm

Zeilberger’s algorithm deals again—like Fasenmyer’s—with definite sums of the
form

Sn :=
n∑
k=0

F(n, k) with
F(n+1, k)

F (n, k)
,
F (n, k+1)

F (n, k)
∈ Q(n, k).

Applying Gosper to F(n, k) w. r. t. k (by telescoping) always generates the identity
Sn = 0, if it is successful. Therefore this method generally cannot be applied.

Doron Zeilberger’s idea [13, Chapter 7]: Apply Gosper instead to

ak := F(n, k)+
J∑
j=1

σj F (n+ j, k) for some J � 1 .

Doron Zeilberger’s idea generates the following algorithm.
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Algorithm 6.1 (Zeilberger [21])

• Apply Gosper’s algorithm to

ak := F(n, k)+
J∑
j=1

σj F (n+ j, k) for some J � 1 .

• In the final linear algebra step, solve not only for the coefficients of gk , but also
for σj (j = 1, . . . , J ).

• If successful, then this algorithm generates the recurrence equation

Sn +
J∑
j=1

σj Sn+j = 0

with rational functions σj ∈ Q(n) (j = 1, . . . , J ) for Sn.
• Multiplication with the common denominator yields a holonomic recurrence

equation for Sn.

If the resulting recurrence equation is of first order, then an application of Algo-
rithm 3.4 yields the hypergeometric term solution.

Reprinted with kind permission of Tamar Legrange Zeilberger
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We give an example:
> sumrecursion(binomial(n,k)^2,k,S(n));

− (n+ 1) S (n+ 1)+ 2 (2 n+ 1) S (n) = 0

Since the resulting recurrence equation is of first order, we can solve it explicitly by
the command

> closedform(binomial(n,k)^2,k,n);

(2n)!
(n!)2

The next example solves the problem given on Doron Zeilberger’s T-shirt.
> closedform(binomial(n,k)^2*binomial(3*n+k,2*n),k,S(n));

( pochhammer (2/3, n))2 (pochhammer (1/3, n))2 (4n)2

((2n)!)2
(

729

16

)n

Of course this result looks rather different from the right hand side on Zeilberger’s
T-shirt although the results are equivalent. But since we know the desired result, we
can prove it easily by the computation

> closedform(binomial(n,k)^2*binomial(3*n+k,2*n)/

> binomial(3*n,n)^2,k,n);

1

Fore more details, see [13, Chapter 7].

7 CAOP

CAOP [4] is a web tool for calculating formulas for orthogonal polynomials
belonging to the Askey–Wilson scheme using Maple. The implementation of CAOP
was originally done by René Swarttouw as part of the Askey–Wilson Scheme
Project performed at RIACA in Eindhoven in 2004. The present site http://www.
caop.org/ is a completely revised version of this project which has been done by
Torsten Sprenger under my supervision in 2012 and is maintained at the University
of Kassel.

If we select, for example, the Laguerre polynomials, the CAOP system will let
us know that they are defined as

L(α)n (x) =
n∑
k=0

(
n+ α
n− k

)
(−x)k
k! =

(α + 1)n
n! 1F1

(
−n
α + 1

∣∣∣∣∣ x
)
,

both in binomial series and in hypergeometric notation. The system will imme-
diately start to compute both a recurrence equation for L(α)n (x) w.r.t. n and a
differential equation w.r.t. x using Zeilberger type algorithms. All computations are
done on a server at the University of Kassel. The complete Maple codes which are

http://www.caop.org/
http://www.caop.org/
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used can be displayed. In principle, one can even multiply Pn(x) = L(α)n (x) by an
arbitrary factor and redo the computations. For L(α)n (x), one gets

x P ′′n (x)+ (−x + α + 1) P ′n(x)+ nPn(x) = 0

and

(n+ 2) Pn+2(x)− (−x + 2 n+ α + 3) Pn+1(x)+ (n+ α + 1) Pn(x) = 0 .

8 Petkovšek’s and van Hoeij’s Algorithm

Assume, Sn is a hypergeometric term, however Zeilberger’s algorithm generates not
the recurrence of first order, but a holonomic recurrence of higher order

RE :
J∑
j=0

Pj (n) Sn+j = 0

with polynomial coefficients Pj ∈ Q[n].
Then Petkovšek’s algorithm ([15], see [13, Chapter 9])—which is quite similar

to Gosper’s—finds every solution which is a linear combination of hypergeometric
terms. Combining Zeilberger’s with Petkovšek’s algorithm leads to a decision
procedure for hypergeometric term summation.

We want to compute

Sn =
n∑
k=0

(3k+1
k

) (3n−3k
n−k

)
3k + 1

.

First we realize that the summation bounds k = 0, . . . , n are the natural ones
since−n is an upper parameter of the corresponding hypergeometric representation,
shown by the computation

> summand:=binomial(3*k+1,k)*binomial(3*n-3*k,n-k)/(3*k+1);

summand :=
(3 k+1
k

)(3 n−3 k
n−k

)
3 k + 1

> Sumtohyper(summand,k);

� (3 n+ 1)Hypergeom ([−n, 1/3, 2/3,−n+ 1/2], [−n+ 2/3,−n+ 1/3, 3/2], 1)
� (2n+ 1) � (n+ 1)

By
> RE:=sumrecursion(summand,k,S(n));

RE := 4 (2 n+ 5) (2 n+ 3) (n+ 2) S (n+ 2)− 12 (2n+ 3)
(

9 n2 + 27 n+ 22
)
S (n+ 1)

+ 81 (3n+ 2) (3n+ 4) (n+ 1) S (n) = 0
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we therefore have computed a recurrence equation for Sn. Applying Petkovšek’s
algorithm yields two linearly independent hypergeometric term solutions with term
ratios Sn+1/Sn given by

> rechyper(RE,S(n));{
27

n+ 1

4 n+ 6
, 3/2

(3 n+ 2) (3 n+ 4)

(2n+ 3) (n+ 1)

}

Therefore Sn must be a linear combination of the corresponding hypergeometric
terms

> result:=a*pochhammer(1,n)/pochhammer(3/2,n)*(27/4)^n

> +b*pochhammer(2/3,n)*pochhammer(4/3,n)/

> (pochhammer(1,n)*pochhammer(3/2,n))*(27/4)^n;

result := a pochhammer (1, n)

pochhammer (3/2, n)

(
27

4

)n
+ b pochhammer (2/3, n) pochhammer (4/3, n)

pochhammer (1, n) pochhammer (3/2, n)

(
27

4

)n

Using two initial values, we can compute a and b
> init0:=eval(add(subs(n=0,summand),k=0..0));

init0 := 1

> init1:=eval(add(subs(n=1,summand),k=0..1));

init1 := 4
> sol:=solve({eval(result,n=0)=init0,eval(result,n=1)
> =init1},{a,b});

sol := {a = 0, b = 1}
so that we finally get for Sn

> res1:=subs(sol,result);

res1 := pochhammer (2/3, n) pochhammer (4/3, n)

pochhammer (1, n) pochhammer (3/2, n)

(
27

4

)n

We claim that

Sn =
(

3n+ 1

n

)
,

which is proved by
> res2:=binomial(3*n+1,n);

res2 :=
(

3 n+ 1

n

)

> simplify(res1/res2);

1

However, Petkovšek’s algorithm is rather inefficient. Mark van Hoeij ([20], see
[13, Chapter 9]), gave a much faster algorithm for the same purpose, based on
the singularity behavior of the constituting � functions that occur in the solutions.
Details can be found in [13, Chapter 9].
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Mark van Hoeij implemented his algorithm in Maple. Applying this implemen-
tation to the same example as above, we get

> res:=LREtools[hypergeomsols](RE,S(n),{S(0)=1,S(1)=4});

res := 3/4

√
3� (4/3+ n) � (2/3+ n)√
π� (n+ 3/2) � (n+ 1)

(
27

4

)n

which gives—as announced—the result in terms of the Gamma function. We can
again show that the result constitutes the same term as above by

> simplify(res/res2);

1

9 Hypergeometric Identities

All examples from this section can be found in [13, Chapter 7].
Clausen’s formula gives the cases when a Clausen 3F2 function is the square of

a Gauss 2F1 function:

(
2F1

(
a, b

a + b + 1
2

∣∣∣∣∣ x
))2

= 3F2

(
2a, 2b, a + b

2a + 2b, a + b + 1
2

∣∣∣∣∣ x
)
.

The right hand side can be detected from the left hand side by Zeilberger’s
algorithm. Using the Cauchy product, we get for the coefficient of the left hand
square:

> sumrecursion(hyperterm([a,b],[a+b+1/2],x,k)*
> hyperterm([a,b],[a+b+1/2],x,n-k),k,S(n));

− (n+ 1) (n+ 2 b + 2 a) (2 a + 2 b+ 1+ 2n) S (n+ 1)
+ 2 x (n+ 2 b) (2 a + n) (a + b+ n) S (n) = 0

which is of first order so that we can easily convert the summand into the
corresponding hypergeometric term by the command

> Closedform(hyperterm([a,b],[a+b+1/2],x,k)*
> hyperterm([a,b],[a+b+1/2],x,n-k),k,n);

Hyperterm ([2 a, 2 b, a + b], [2 b + 2 a, a + b + 1/2], x, n)
This proves Clausen’s formula from left to right. The question remains, how we can
get the full identity without prior knowledge about the parameter choice? This can
be done using differential equations, by solving a non-linear system. The generic
function 2F1(a, b; c; x) satisfies the differential equation

> DE2F1:=sumdiffeq(hyperterm([a,b],[c],x,k),k,C(x));

DE2F1 :=
(

d2

dx2
C (x)

)
x (x − 1)+ (ax + bx − c + x) d

dx
C (x)+ abC (x) = 0
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and therefore its square satisfies3

> DE2F1square:=map(factor,gfun[‘diffeq*diffeq‘](DE2F1,
> DE2F1,C(x))):

On the other hand, the generic function 3F2(A,B,C;D,E; x) satisfies the differ-
ential equation

> DE3F2:=op(1,sumdiffeq(hyperterm([A,B,C],[D,E],x,k),k,C(x))):

Since the coefficient of the highest derivative in the left hand differential equation is
(x − 1) times the coefficient of the highest derivative in the right hand differential
equation, we multiply the right hand side by (x − 1) and subtract to get zero.

> pol:=expand(subs(diff(C(x),x$3)=y^3,diff(C(x),x$2)=y^2,

> diff(C(x),x)=y,C(x)=1,DE3F2*(x-1)-DE2F1square)):

Next, by equating the coefficients we can set all coefficients zero, assuming that a
and b are arbitrary. Therefore we solve for the remaining variables c,A,B,C,D,
and E and get

> solve({coeffs(expand(pol),[x,y])},{c,A,B,C,D,E});

{A = 2 b, B = a + b, C = 2 a,D = 2 b + 2 a,E = a + b + 1/2, c = a + b + 1/2} ,
{A = 2 a, B = a + b, C = 2 b,D = 2 b + 2 a,E = a + b + 1/2, c = a + b + 1/2} ,
{A = 2 b, B = a + b, C = 2 a,D = a + b + 1/2, E = 2 b+ 2 a, c = a + b + 1/2} ,
{A = 2 a, B = a + b, C = 2 b,D = a + b + 1/2, E = 2 b+ 2 a, c = a + b + 1/2} ,
{A = 2 b, B = 2 a, C = a + b,D = 2 b + 2 a,E = a + b + 1/2, c = a + b + 1/2} ,
{A = a + b, B = 2 a, C = 2 b,D = 2 b + 2 a,E = a + b + 1/2, c = a + b + 1/2} ,
{A = 2 b, B = 2 a, C = a + b,D = a + b + 1/2, E = 2 b+ 2 a, c = a + b + 1/2} ,
{A = a + b, B = 2 a, C = 2 b,D = a + b + 1/2, E = 2 b+ 2 a, c = a + b + 1/2} ,
{A = a + b, B = 2 b, C = 2 a,D = 2 b + 2 a,E = a + b + 1/2, c = a + b + 1/2} ,
{A = 2 a, B = 2 b, C = a + b,D = 2 b + 2 a,E = a + b + 1/2, c = a + b + 1/2} ,
{A = a + b, B = 2 b, C = 2 a,D = a + b + 1/2, E = 2 b+ 2 a, c = a + b + 1/2} ,
{A = 2 a, B = 2 b, C = a + b,D = a + b + 1/2, E = 2 b+ 2 a, c = a + b + 1/2}

Please notice that all twelve solutions are equivalent since the upper parameters
A,B,C as well as the lower parametersD,E can be permuted arbitrarily.

Dougall (1907) found the following astonishing identity (see [12], Table 6.1,
p. 108)

7F6

(
a, 1+ a

2 , b, c, d, 1+ 2a − b − c − d + n,−n
a
2 , 1+a−b, 1+a−c, 1+a−d, b+c+d−a−n, 1+a+n

∣∣∣∣∣ 1

)

= (1+ a)n(a + 1− b − c)n(a + 1− b − d)n(a + 1− c − d)n
(1+ a − b)n(1+ a − c)n(1+ a − d)n(1+ a − b − c − d)n .

3We don’t print the lengthy outputs.
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Again, if one knows the left-hand side, Zeilberger’s algorithm generates the right-
hand side immediately.

> Closedform(hyperterm([a,1+a/2,b,c,d,1+2*a-b-c-d+n,-n],

> [a/2,1+a-b,1+a-c,1+a-d,b+c+d-a-n,1+a+n],1,k),k,n);

Hyperterm([a + 1,−c + 1+ a − b, 1+ a − d − b, 1+ a − d − c, 1],
[1+ a − d,−b + 1+ a,−c + 1+ a,−b − c − d + a + 1], 1, n)

Apéry [2] proved that

ζ(3) =
∞∑
j=1

1

j3

is irrational. In his proof, he used a holonomic recurrence equation for the so-called
Apéry numbers

An :=
n∑
k=0

(
n

k

)2 (
n+ k
k

)2

.

Again, Zeilberger’s algorithm detects their recurrence equation immediately.
> sumrecursion(binomial(n,k)^2*binomial(n+k,k)^2,k,A(n));

(n+ 2)3 A (n+ 2)− (2n+ 3)
(

17n2 + 51 n+ 39
)
A(n+ 1) + (n+ 1)3 A(n) = 0

Shortly before Zeilberger’s algorithm came up, Perlstadt [14] was able to publish
a paper deriving recurrence equations for

S(r)n :=
n∑
k=0

(
n

k

)r

for r = 5 and 6. Using Zeilberger’s algorithm, this is now “trivial”.
> TIME:=time():
> sumrecursion(binomial(n,k)^5,k,S(n));
> time()-TIME;(

55 n2 + 143 n+ 94
)
(n+ 3)4 S (n+ 3)

−
(

1155 n6 + 14553 n5 + 75498 n4 + 205949 n3 + 310827 n2 + 245586 n+ 79320
)
S (n+ 2)

−
(

19415 n6 + 205799 n5 + 900543 n4 + 2082073 n3 + 2682770 n2 + 1827064+ 514048
)
S(n+ 1)

+ 32
(

55n2 + 253 n+ 292
)
(n+ 1)4 S (n) = 0

0.140

For the next examples, we omit again the lengthy outputs.
> TIME:=time():
> sumrecursion(binomial(n,k)^6,k,S(n)):
> time()-TIME;

0.125
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> TIME:=time():
> sumrecursion(binomial(n,k)^10,k,S(n)):
> time()-TIME;

3.016

Even for power 10, our computation needs only few seconds although the resulting
recurrence equation of order 5 has very complicated coefficients.

10 Generating Functions

Assume, we want to compute the generating function of the Legendre polynomials

Pn(x) =
n∑
k=0

(
n

k

)(−n− 1

k

)(
1− x

2

)k
,

namely

F(z) :=
∞∑
n=0

Pn(x) z
n .

How can we approach this question?
The recurrence equation for the coefficients (the Legendre polynomials) can be

converted into a differential equation for the generating function. In certain cases,
this differential equation can be solved.

> RE:=sumrecursion(binomial(n,k)*binomial(-n-1,k)*((1-x)/2)^k,
> k,P(n));

RE := (n+ 2) P (n+ 2)− x (2 n+ 3) P (n+ 1)+ (n+ 1) P (n) = 0

> DE:=gfun[rectodiffeq]({RE,P(0)=1,P(1)=x},P(n),F(z));

DE :=
{
(−x + z)F (z)+

(
−2 xz+ z2 + 1

) d

dz
F (z) , F (0) = 1

}

> dsolve(DE,F(z));

F (z) =
(√
−2 xz+ z2 + 1

)−1

Assume, we want to compute the exponential generating function of the Legendre
polynomials

G(z) :=
∞∑
n=0

Pn(x)

n! zn .

How can we approach this question?
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Although, in principle, one can use the same method here (since Maple’s
dsolve is really very powerful!), in this case, we apply a different approach. For
this purpose, we use one particular hypergeometric representation

Pn(x) = xn 2F1

(
−n2 ,−n−1

2

1

∣∣∣∣∣ 1− 1

x2

)

of the Legendre polynomials. Then after interchanging the order of summation,
Zeilberger’s algorithm yields the generating function:

G(z) = exz 0F1

(
−
1

∣∣∣∣∣
z2 (x − 1)2

4

)
= exz I0(z

√
1− x2) ,

In(z) denoting the modified Bessel function, by the computations
> summand:=x^n*hyperterm([-n/2,(1-n)/2],[1],1-1/x^2,k)/n!*z^n;

summand := xnpochhammer (−n/2, k) pochhammer (1/2− n/2, k) zn
(k!)2 n!

(
1− x−2

)k

After interchanging the order of summation, we get for the summand of the
outer sum the first order recurrence

> RE:=sumrecursion(summand,n,S(k));

RE := −4 (k + 1)2 S (k + 1)+ (x − 1) (x + 1) z2S (k) = 0

and the initial value
> init:=sum(subs(k=0,summand),n=0..infinity);

init := exz

> outersummand:=rsolve({RE,S(0)=init},S(k));

outersummand :=
(
1/4

(
x2 − 1

)
z2
)k

exz

(� (k + 1))2

> hyper:=Sumtohyper(outersummand,k);

hyper := exzHypergeom
(
[], [1], 1/4 (x − 1) (x + 1) z2

)
> convert(subs(Hypergeom=hypergeom,hyper),StandardFunctions);

exzI0

(√
x − 1

√
x + 1z

)

11 Almkvist–Zeilberger Algorithm

Similarly to definite summation, Almkvist and Zeilberger [1] generated algorithms
to compute holonomic recurrence and differential equations for definite integrals
instead of series. In this case

Sn =
∫ b

a

F (n, t) dt



132 W. Koepf

or

S(x) =
∫ b

a

F (x, t) dt

with F , hyperexponential w. r. t. the continuous variables x and t and hypergeomet-
ric w. r. t. the discrete variable n, for suitably chosen bounds a and b.

As an example, we would like to compute the definite integral

J (x) :=
∫ ∞

0
exp

(
−x

2

t2
− t2

)
dt .

Almkvist–Zeilberger’s algorithm shows that J (x) satisfies the holonomic differen-
tial equation

J ′′(x)− 4 J (x) = 0 .

From this differential equation, using two initial values, we can deduce

J (x) =
√
π

2
e−2x .

By the Cauchy integral formula

f (n)(x) = n!
2πi

∫
γ

f (t)

(t − x)n+1 dt , (11.1)

a Rodrigues formula concerning the nth derivative can be written in terms of a
definite integral.

Therefore, using the Almkvist–Zeilberger algorithm, one can deduce from the
following Rodrigues representation

Pn(x) = 1

2n n!
dn

dxn

(
(x2 − 1)n

)
(11.2)

again the recurrence and differential equations of the Legendre polynomials by the
computations4

> rodriguesrecursion(1/(2^n*n!),(x^2-1)^n,x,P(n));

(n+ 2) P (n+ 2)− x (2 n+ 3) P (n+ 1)+ (n+ 1) P (n) = 0

> rodriguesdiffeq(1/(2^n*n!),(x^2-1)^n,n,P(x));(
d2

dx2
P (x)

)
(x − 1) (x + 1)+ 2 x

d

dx
P (x)− n (n+ 1) P (x) = 0

4The commands rodriguesrecursion and rodriguesdiffequ take representation
(11.1) into consideration and invoke the Almkvist–Zeilberger algorithms. For details, see [13,
Chapter 13].
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therefore identifying those polynomials given by (11.2) as the Legendre polynomi-
als.

If F(z) is the generating function of the sequence an fn(x), i.e.

F(z) =
∞∑
n=0

an fn(x) z
n ,

then by Cauchy’s integral formula and Taylor’s theorem, we have

fn(x) = 1

an
· F

(n)(0)

n! = 1

an
· 1

2πi

∫
γ

F (t)

tn+1 dt .

Therefore, if the generating function is hyperexponential, we can again apply the
Almkvist–Zeilberger algorithm to deduce recurrence and differential equations.
Starting from the generating function

F(z) = 1√
1− 2xz+ z2

we can therefore compute the recurrence and differential equations for the Legendre
polynomials

> F:=1/sqrt(1-2*x*z+z^2);

F :=
(√
−2 xz+ z2 + 1

)−1

> RE:=GFrecursion(F,1,z,P(n));

RE := (n+ 2) P (n+ 2)− x (2 n+ 3) P (n+ 1)+ (n+ 1) P (n) = 0

> DE:=GFdiffeq(F,1,z,n,P(x));

DE :=
(

d2

dx2
P (x)

)
(x − 1) (x + 1)+ 2 x

d

dx
P (x)− n (n+ 1) P (x) = 0

from their generating function.
These and many more examples are given in detail in [13, Chapter 13].

12 Basic Hypergeometric Series

As can be seen on the CAOP web site, the Askey–Wilson scheme consists of

1. the classical continuous orthogonal polynomial systems (OPS),
2. the classical discrete OPS on the lattice Z (or N�0),
3. the Askey–Wilson polynomials on a quadratic lattice,
4. the OPS of the Hahn class on the basic lattice qZ,
5. and the Askey–Wilson polynomials on a q-quadratic lattice.
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All details can be found in [9]. The first three types are all represented by hyperge-
ometric series, whereas the last two have basic hypergeometric representations. For
this purpose, one defines the basic hypergeometric series by

rφs

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣∣ q ; x
)
:=

∞∑
k=0

(a1, a2, . . . , ar ; q)k
(b1, b2, . . . , bs ; q)k

xk

(q; q)k
(
(−1)k q(

k
2)
)1+s−r

where (a1, a2, . . . , ar ; q)k is a short form for the product
r∏
j=1

(
aj ; q

)
k
, and

(a; q)k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k−1∏
j=0

(
1− a qj) if k > 0

1 if k = 0
|k|∏
j=1

(
1− a q−j)−1

if k < 0

∞∏
j=0

(
1− a qj) if k = ∞ (if |q| < 1)

denotes the q-Pochhammer symbol. The relation

2φ1

(
q−n, b
c

∣∣∣∣∣ q ;
c qn

b

)
= (c/b; q)n

(c; q)n

is a q-variant of the Chu–Vandermonde Identity

N∑
k=0

(
m

k

)(
n

N − k
)
=

(
n

N

)
2F1

(
−m,−N
n+ 1−N

∣∣∣∣∣ 1

)
=

(
m+ n
N

)
.

Applying Zeilberger’s algorithm to the latter and its q-variant to the former yields
these results from left to right.

> result1:=closedform(binomial(m,k)*binomial(n,N-k),k,N);

result1 := pochhammer (−n−m,N) (−1)N

N !
> result2:=closedform(binomial(m,k)*binomial(n,N-k)/
> binomial(m+n,N),k,N);

result2 := 1

> convert(Sumtohyper(binomial(m,k)*binomial(n,N-k),k),binomial);

Hypergeom ([−N,−m], [n+ 1− N], 1)
(
n

N

)
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We load the qsum package (see [3] and [13])
> read "qsum17.mpl";

‘Package "q-Hypergeometric Summation", Maple V-17‘

‘Copyright 1998-2013, Harald Boeing,
Wolfram Koepf & Torsten Sprenger, University of Kassel‘

and get using the q-variant of Zeilberger’s algorithm ([13, Chapter 7])
> RE:=qsumrecursion(qphihyperterm([q^(-n),b],[c],q,c*q^n/b,k),
> q,k,CV(n));

RE := −b (cqn − q)CV (n)+ (
cqn − bq)CV (n− 1) = 0

> qsumrecursion(qphihyperterm([q^(-n),b],[c],q,c*q^n/b,k),q,k,
> CV(n),rec2qhyper=true);

[CV (n) = 1

qpochhammer (c, q, n)
qpochhammer

( c
b
, q, n

)
, 0 ≤ n]

> qsumrecursion(qphihyperterm([q^(-n),b],[c],q,c*q^n/b,k)/
> (qpochhammer(c/b,q,n)/qpochhammer(c,q,n)),q,k,CV(n),
> rec2qhyper=true);

[CV (n) = 1, 0 ≤ n]
As examples of OPS of the q-Hahn class, we consider the Little and Big q-

Legendre polynomials:

pn(x|q) = 2φ1

(
q−n, qn+1

q

∣∣∣∣∣ q ; q x
)

and

Pn(x; c; q) = 3φ2

(
q−n, qn+1, x

q, c q

∣∣∣∣∣ q ; q
)
.

Using again the q-variant of Zeilberger’s algorithm, we get for these OPS
> LqL:=qphihyperterm([q^(-n),q^(n+1)],[q],q,q*x,k);

LqL := qpochhammer
(
q−n, q, k

)
qpochhammer

(
qn+1, q, k

)
(qx)k

(qpochhammer (q, q, k) )2

> qsumrecursion(LqL,q,k,p(n));

qn
(
qn − 1

) (
qn + q)p (n)+

(
q2 n − q

) (
q2 nx + qn+1x + qnx + qx − 2 qn

)
p (n− 1)

+ (
qn + 1

) (
qn − q) qnp (n− 2) = 0

> BqL:=qphihyperterm([q^(-n),q^(n+1),x],[q,c*q],q,q,k);

BqL := qpochhammer
(
q−n, q, k

)
qpochhammer

(
qn+1, q, k

)
qpochhammer (x, q, k) qk

(qpochhammer (q, q, k))2 qpochhammer (cq, q, k)
> qsumrecursion(BqL,q,k,P(n));(

qn + q) q (qn − 1
) (
cqn − 1

)
P (n)

+
(
q2 n − q

)(
q2 nx − 2 cqn+1 + qn+1x − 2 qn+1 + qnx + qx

)
P (n− 1)

− (
qn + 1

) (
qn − q) (−cq + qn) qnP (n− 2) = 0
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On the Solutions of Holonomic
Third-Order Linear Irreducible
Differential Equations in Terms
of Hypergeometric Functions

Merlin Mouafo Wouodjié

Abstract We present here an algorithm that combines change of variables, exp-
product and gauge transformation to represent solutions of a given irreducible third-
order linear differential operator L, with rational function coefficients and without
Liouvillian solutions, in terms of functions S ∈ {

1F1
2, 0F2, 1F2, 2F2

}
where pFq

with p ∈ {0, 1, 2}, q ∈ {1, 2}, is the generalized hypergeometric function. That
means we find rational functions r, r0, r1, r2, f such that the solution of L will be of
the form

y = exp

(∫
r dx

)(
r0S(f (x))+ r1(S(f (x)))′ + r2(S(f (x)))′′

)
.

An implementation of this algorithm in Maple is available.

Keywords Hypergeometric functions · Operators · Transformations · Change of
variables · Exp-product · Gauge transformation · Singularities · Generalized
exponents · Exponent differences · Rational functions · Zeroes · Poles

Mathematics Subject Classification (2000) 34-XX, 33C10, 33C2, 34B30, 34Lxx

1 Introduction

We consider a differential equation of type

an(x) y
(n)(x)+ an−1(x) y

(n−1)(x)+ . . .+ a0(x) y(x) = 0, n ∈ N>0.
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When the coefficients ai(x), i = 0, . . . , n are polynomials of the variable x, the
differential equation is said to be holonomic.

Remark 1.1 For a given homogeneous linear differential equation with rational
function coefficients, one can multiply by their common denominator and get a
holonomic differential equation with the same space of solutions.

Every holonomic differential equation

an(x) y
(n)(x)+ an−1(x) y

(n−1)(x)+ . . .+ a0(x) y(x) = 0, (1.1)

with ai(x) ∈ Q[x], corresponds to a differential operator L given by

L =
n∑
i=0

ai(x)D
i
x,

and vice versa. Hence, by the solutions of a differential operator L we mean the
solutions y of the holonomic differential equation Ly = 0.

Definition 1.2 Let

L =
n∑
i=0

ai(x)D
i
x,

and n0 = max {i = 0, 1, . . . , n | ai(x) �= 0}. n0 is called the order of L, and an0(x)

its leading coefficient.

The ring of differential operators with coefficients in K = Q[x] is denoted by
K[Dx]. In our context,Dx := d

dx
.

2 Previous Works

2.1 First-Order Holonomic Differential Equations

First-order holonomic differential equations are of type

a1(x) y
′ + a0(x) y = 0 with a0(x), a1(x) ∈ Q[x], a1(x) �= 0. (2.1)

That means, non-zero solutions satisfy

y ′

y
= −a0(x)

a1(x)
,
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and they can be easily computed in the form

y(x) = c · exp

(∫
−a0(x)

a1(x)
dx

)
with c ∈ R.

Those solutions are called hyperexponential functions.

Example Let us consider the following differential equation

(x2 + 1)y ′ − xy = 0.

Non-zero solutions are

y(x) = c · exp

(∫
− −x
x2 + 1

dx

)
= c · exp

(
1

2
ln

(
x2 + 1

))

= c ·
√
x2 + 1 with c ∈ R.

2.2 Second-Order Holonomic Differential Equations

Second-order holonomic differential equations are of the form

a2(x) y
′′ + a1(x) y

′ + a0(x) y = 0 (2.2)

with a0(x), a1(x), a2(x) ∈ Q[x], a2(x) �= 0. Let L be the associated differential
operator of (2.2). In comparison with the first-order holonomic differential equa-
tions, the situation here is quite different. Either L is reducible or irreducible.

2.2.1 L Is Reducible

Here L has a nontrivial (non-commutative) factorization. In this case the right factor
is of first order leading to a hyperexponential solution of L(y) = 0, again. To check
the reducibility of an operator, we can use some known algorithms like Beke’s
algorithm or the algorithm in [9]. Beke’s algorithm was extended by Mark van Hoeij
(see [12]) in his PhD thesis on factorization of linear differential operators.

Example Let us consider the following differential equation

(x + 7)y ′′ − x(x + 7)y ′ + xy = 0. (2.3)
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Its associated operator can be factorized as follows:

(x + 7)D2
x − x(x + 7)Dx + x = (Dx − x) · ((x + 7)Dx − 1)

Hence, solving (x + 7)y ′ − y = 0, we get a solution of (2.3) given by

y(x) = exp

(∫
1

x + 7
dx

)
= exp (ln (x + 7)) = x + 7.

2.2.2 L Is Irreducible

In this case it is more difficult to find solutions of L(y) = 0. There are some
algorithms which try to find them in some particular forms. Kovacic’s algorithm [5]
(which finds Liouvillian solutions) is an example. Some complete algorithms which
solve L(y) = 0 in terms of special functions are given by Mark van Hoeij, Wolfram
Koepf, Ruben Debeerst and Quan Yuan [1, 2, 13, 14]. This complete algorithm tries
to find all solutions of the type

exp

(∫
r dx

)(
r0S(f (x))+ r1 (S(f (x)))′

)
(2.4)

where S is the special function that we want to solve in terms of it, and r, r0, r1, f ∈
Q(x) are parameters of the three following transformations which preserve the order
of the operator:

1. change of variables
f−→C : y(x)→ y(f (x)),

2. exp-product
r−→E : y → exp

(∫
r dx

)
y, and

3. gauge transformation
r0,r1−→G: y → r0y + r1y ′.

Example Let us consider the following differential equation

4(x − 2)2y ′′+ (4x − 8)y ′+ (−144x4 + 1152x3 − 3456x2+ 4608x−2305)y = 0.
(2.5)

Its associated operator cannot be factorized. By using Ruben Debeerst’s code, we
see that a solution of (2.5) is given by

y(x) = B 1
4

(
3(x − 2)2

)
,

where Bν(x) is the Bessel function of parameter ν.

Remark 2.1 Bessel functions belong to the class of special functions since they are
expressed in terms of the most prominent special function solutions of holonomic
differential equations called generalized hypergeometric functions.
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2.2.3 Generalized Hypergeometric Functions

The generalized hypergeometric series pFq are defined by

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣∣ x
)
=
+∞∑
k=0

(a1)k · (a2)k · · · (aP )k
(b1)k · (b2)k · · · (bq)k · k!x

k, (2.6)

where (a)k denotes the Pochhammer symbol

(a)k :=
{

1 if k = 0,
a · (a + 1) · · · (a + k − 1) if k > 0 .

It satisfies the following holonomic differential equation

δ(δ + b1 − 1) · · · (δ + bq − 1)y(x) = x(δ + a1) · · · (δ + ap)y(x) (2.7)

where δ denotes the differential operator δ = x d
dx

. This equation has order
max(p, q + 1). For p ≤ q the series pFq is convergent for all x. For p > q + 1
the radius of convergence is zero, and for p = q + 1 the series converges for
|x| < 1. For p ≤ q + 1 the series and its analytic continuation is called generalized
hypergeometric function. We are interested here in the case p < q + 1 for which
the radius of convergence is infinity.

2.3 Third-Order Holonomic Differential Equations

Third-order holonomic differential equations are of type

a3(x) y
′′′ + a2(x) y

′′ + a1(x) y
′ + a0(x) y = 0 (2.8)

with a0(x), a1(x), a2(x), a3(x) ∈ Q[x], a3(x) �= 0. Let L be the associated
differential operator of (2.8).

2.3.1 L Is Reducible

Here, solutions of L(y) = 0 can be in some case easily computed, since we know
how to solve first-order holonomic differential equations and also, in some particular
cases, second-order holonomic differential equations. Michael Singer described (see
[8]) in which situation L has so-called Eulerian solutions (solutions which can
be expressed as products of second-order operators using sums, products, field
operations, algebraic extensions, integrals, differentiations, exponentials, logarithms
and change of variables). He showed that solving such an operator L can be reduced
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to solving second-order operators through factoring operators (see [3, 10–12]), or
reducing operators to tensor products of lower order operators.

Example Let us consider the following differential equation

9x6(x + 7)2y ′′′ + 9x4(x + 7)(8x2 + 47x + 84)y ′′

+ x2(2954x2 − 882x + 90x4 + 972x3 − 21609)y ′

+ (−74088x − 259308− 1274x3 − 13818x2)y = 0. (2.9)

The operator associated to (2.9) can be factorized in the following form

(
x2Dx + 12

)
·
(

9x4(x + 7)2D2
x + 9(7+ 2x)x3(x + 7)Dx

−21609− 637x2 − 6174x
)
. (2.10)

Hence, solving

9x4(x+7)2y ′′ +9(7+2x)x3(x+7)y− (21609+637x2+6174x)y = 0 (2.11)

gives us a solution of (2.9). By using Ruben Debeerst’s code, we see that a solution
of (2.11) is given in terms of Bessel functions:

y(x) = B 2
3
((x + 7)/x)

which is therefore a solution of (2.9).

2.3.2 L Is Irreducible

If the differential operator L associated to (2.8) is irreducible, it is difficult
to solve the Eq. (2.8). In addition to being irreducible, if Liouvillian or Eulerian
solutions of L are not allowed, then the first algorithm was published in my PhD
thesis [6] and also in [7]. For L of order three for example, that is the case where this
operator comes from certain special and useful functions such as hypergeometric
functions. That is why we focus on those operators here and specially those of order
three.

Example Let us consider the following third-order irreducible holonomic differen-
tial equation satisfied by the square of the Hermite polynomial:

y ′′′ − 6xy ′′ + (8x2 + 8n− 2)y ′ − 16xny = 0. (2.12)

If we assume that we don’t know where (2.12) is coming from, it will be
difficult to solve it. But, by using one of my codes which I have implemented



Hypergeometric Type Solutions 143

in a Maple package called Solver3 that can be downloaded from http://www.
mathematik.uni-kassel.de/~merlin/, we get some solutions. The Maple function is
called Hyp1F1sqSolutions and takes as input any irreducible third-order linear
differential operator L and returns, if they exist, all the parameters of transformations
(r, r2, r1, r0, f ∈ k(x)) and the parameters of the function 1F1

2 in terms of which
we are solving (2.12).

> read "Solver3.mpl":

> L:= Dx^3-6*x*Dx^2+(8*x^2+8*n-2)*Dx-16*n*x;

L := Dx3 − 6 xDx2 +
(

8 x2 + 8n− 2
)

Dx − 16 nx

Using my code called Hyp1F1sqSolutionswe get:
> Hyp1F1sqSolutions(L);{[

[[[−n/2] , 1/2, [0] , [1]]] , x2
]
,

[[[
[n/2] , 1/2, [4 x] ,

[
Dx2 − 6 xDx + 8 x2 + 4 n− 4

]]]
,−x2

]}

Hence, (2.12) has 1F1
2 type solutions. One of them has a = −n/2 and b =

1/2 as upper and lower parameters of 1F1, respectively, and the transformation
parameters are: r = 0, r0 = 1, r1 = 0, r2 = 0 and f = x2. This solution is

> y:=expand(exp(int(r,x))*(r0*(hypergeom([a], [b], x^2))^2
+r1*normal(diff((hypergeom([a], [b], x^2))^2,x))
+r2*normal(diff((hypergeom([a], [b], x^2))^2,x$2))));

y :=
(

1F1(−n/2; 1/2; x2)
)2

3 My Work

3.1 Our Main Objective

We develop a complete algorithm to detect the solutions of any third-order irre-
ducible holonomic differential equation which are related to the following special
functions: 1F1

2, 0F2, 1F2, 2F2.

Remark 3.1 If y a is solution of a second-order holonomic differential equation,
then y2 is a solution of a holonomic differential equation of order three. That is
the case for the function y = 1F1. This is a rich source for third-order holonomic
differential equations whose solutions are sought.

All our special functions 1F1
2, 0F2, 1F2, 2F2 satisfy third-order holonomic

irreducible differential equations. For example, the differential operator associated
to the 1F

2
1 function is

L2
11 = x2D3

x+3x (−x + b)D2
x−

(
−2x2 + 4x(a + b)− b(2b − 1)

)
Dx−2a (−2x + 2b − 1)

where a and b are the upper and lower parameters of 1F1, respectively.

http://www.mathematik.uni-kassel.de/~merlin/
http://www.mathematik.uni-kassel.de/~merlin/
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3.2 The Method

To solve our differential equations, we use the three transformations

1. change of variables
f−→C : y(x)→ y(f (x)),

2. exp-product
r−→E : y → exp

(∫
r dx

)
y, and

3. gauge transformation
r0,r1,r2−→ G: y → r0y + r1y ′ + r2y ′′.

where r, r0, r1, f ∈ Q(x). Our goal is to find all solutions which can be written in
the form:

exp

(∫
r dx

)(
r0S(f (x))+ r1(S(f (x)))′ + r2(S(f (x)))′′

)

where S(x) ∈ {1F1
2, 0F2, 1F2, 2F2} and r, r0, r1, r2, f ∈ Q(x). That means

for a given third-order irreducible holonomic differential equation, to find (if they
exist) the transformation parameters r, r0, r1, r2 and f , and also the parameter(s)
associated to our chosen special function S(x) ∈ {1F1

2, 0F2, 1F2, 2F2}.
Remark 3.2 The only case which is not covered since it requires different methods,
is where the special function has finite radius of convergence: 2F1

2 and 3F2 are the
only examples.

3.3 Our Inputs

As input, we consider a third-order irreducible holonomic differential equation with
coefficients in Q[x]

(eq) : a3(x) y
′′′ + a2(x) y

′′ + a1(x) y
′ + a0(x) y = 0

that we want to solve in term of S(x) ∈ {1F1
2, 0F2, 1F2, 2F2}. Let us call L the

differential operator associated to (eq).
LS is always the operator associated to the differential equation satisfied by

S(x) ∈ {1F1
2, 0F2, 1F2, 2F2}.

3.4 Steps of the Resolution

1. Find the singularities of the differential operator L
2. Find the generalized exponents of L
3. Find the transformation parameter(s) which are:
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(a) the change of variable parameter f
(b) the parameter(s) of our chosen special function S ∈ {1F1

2, 0F2, 1F2, 2F2}
(c) the exp-product parameter r
(d) the gauge parameters r0, r1 and r2

3.5 Singularities

Definition 3.3 A point p ∈ C ∪ {∞} is called a singularity of a holonomic
differential operator L, if p is a zero of the leading coefficient of L. All the other
points are called regular points.

Remark 3.4

– To understand the singularity at x = ∞, one can always use the change of
variables x → 1

x
and deal with 0.

– At all regular points of L we can find a fundamental system of power series
solutions.

If p ∈ C ∪ {∞}, we define the local parameter tp as

tp =
{
x − p if p �= ∞,

1
x

if p = ∞ .

Let L 1
x

denote the operator coming from L by the change of variables x → 1
x

.

Definition 3.5 A singularity p of L is called

(i) apparent singularity if all solutions of L are regular at p,

(ii) regular singular (p �= ∞) if t ip
a3−i(x)
a3(x)

is regular at p for 1 ≤ i ≤ 3,

(iii) regular singular (p =∞) if L 1
x

has a regular singularity at x = 0, and

(iv) irregular singular otherwise.

The operators coming from our functions 1F1
2, 0F2, 1F2, 2F2 have two singulari-

ties: one regular at x = 0 and the other irregular at x = ∞.

3.6 Generalized Exponents

Let us consider the following differential equation

(E7) : x2(x + 1)y ′′ − (6x + 7x2)y ′ + (12+ 16x)y = 0.
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By searching a solution of (E7) in a neighborhood of x = 0 of the form xc ·G with
c ∈ Q, G ∈ Q[x][ln(x)] such thatG has a non-zero constant coefficient, we get

y(x) = x3 (1+ x − x ln(x)) ,

and therefore, c = 3.What happens if we want solutions of the same form but with
c which is not a constant? The answer to this question leads us to the definition of
the generalized exponent.

Definition 3.6 Let p be a point with local parameter tp. An element e ∈ Q[tp−1/n],
n ∈ N>0 is called a generalized exponent of L at the point p if there exists a formal
solution of L of the form

y(x) = exp

(∫
e

tp
dtp

)
G, G ∈ Q((tp

1/n))[ln(tp)], (3.1)

where the constant term of the Puiseux series G is non-zero. For a given solution
this representation is unique and n ∈ N is called the ramification index of e.

The set of generalized exponents at a point p is denoted by gexp(L, p).
Similarly, we call e a generalized exponent of the solution y at the point p if

y = y(x) has a representation (3.1) for some G ∈ Q((tp
1/n))[ln(tp)].

There is an algorithm called gen_exp given by Mark van Hoeij which computes
the generalized exponents of L at a given point.

3.6.1 Generalized Exponents and Singularities

• p is an irregular singularity of L if L has at p at least one non-constant
generalized exponent.

• p is a regular point of L if the three generalized exponents of L at p are 0, 1, 2.
• If p is an apparent singularity of L, then all the generalized exponents of L at p

are non-negative integers.
• If p is a regular singularity of L, then all the generalized exponents of L at p are

constants.

The operator L2
11 coming from the function 1F1

2 with parameters a and b has as
generalized exponents:

1. at its regular singularity x = 0: [0, 1− b1, 2(1− b2)] ,
2. at its irregular singularity x = ∞:

[
2a1, − 2t−1 + 2(b1 − a1), − t−1 + b1

]
with t = 1

x
.

3.6.2 Generalized Exponents and Exp-Product Transformation

Lemma 3.7 Let L1,L2 ∈ Q[x][∂] be two irreducible third-order holonomic
differential operators such that L1

r−→E L2 and let e be a generalized exponent
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of L1 at the point p ∈ C ∪ {∞} with the ramification index ne ∈ N
∗. Furthermore,

let r has at p the series representation

r =
+∞∑
i=mp

ri t
i
p, mp ∈ Z with ri ∈ Q and rmp �= 0.

where tp is the local parameter of p.

1. If p is not a pole of r then mp ≥ 0 and the generalized exponent of L2 at p is

e =
{
e if p �= ∞,
e − r0t−1∞ − r1 otherwise.

2. If p is a pole of r then mp ≤ −1, where −mp is the multiplicity order of r at p,
and the generalized exponent of L2 at p is given by

e =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e +
−1∑
i=mp

ri t
i+1
p if p �= ∞,

e −
1∑

i=m∞
ri t
i−1∞ otherwise.

Proof The proof can be found in my PhD thesis [6, Lemma 3.32] and also in [7].
��

3.6.3 Generalized Exponents and Gauge Transformation

Lemma 3.8 Let L1,L2 ∈ Q[x][∂] be two irreducible third-order holonomic
differential operators such that L1 −→G L2 and let e be a generalized exponent
of L1 at some point p. The operator L2 has at p a generalized exponent e such that
e = e mod 1

ne
Z, where ne ∈ N

∗ is the ramification index of e.

Proof The proof can be found in my PhD thesis [6, Lemma 3.32] and also in [7].
��

3.6.4 Generalized Exponents and Change of Variable Transformation

Let us consider the case LS
f−→C M with S(x) ∈ {1F1

2, 0F2, 1F2, 2F2} and
f ∈ Q(x)\Q. Since LS has singularities at 0 and∞,we will see how the generalized
exponents of M look like at the points p such that f (p) = 0 and f (p) = ∞ (i.e. at
the zeroes and poles of f ).
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Theorem 3.9 Let M ∈ Q[x][∂] be an irreducible third-order linear differential

operator such that LS
f−→C M, with S(x) ∈ {1F1

2, 0F2, 1F2, 2F2} and f ∈
Q(x) \Q.
1. Let p be a zero of f with multiplicity mp ∈ N

∗ and e a generalized exponent of
LS at x = 0 with ramification index ne ∈ N

∗. Then p is a regular singularity of
M and the generalized exponent of M at p related to e is

mp · e0 −
n∑
i=1

−1∑
j=−i·mp

j · ei · σ−i
i

f i,j+i·mp t
j/ne
p (3.2)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = tmpp
+∞∑
j=0
fj t

j
p, with fi ∈ k and f0 �= 0,

e =
n∑
i=0
ei t
−i with btne = x, b ∈ k \ {0}, n ∈ N and ei ∈ k,

(
+∞∑
j=0
fj t

j
p

)−i/ne
=
+∞∑
j=0
f i,j t

j/ne
p with f i,j ∈ k, i = 1, . . . , n

and σ is solution of Xne − b−1 = 0 with unknown X.

2. Let p be a pole of f with multiplicity mp ∈ N
∗ and e a generalized exponent of

LS at x = 0 with ramification index ne ∈ N
∗. Then p is an irregular singularity

of M and the generalized exponent of M at p related to e is

mp · e0 −
n∑
i=1

−1∑
j=−i·mp

j · ei · σ−i
i

f i,j+i·mp t
j/ne
p (3.3)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = t−mpp

+∞∑
j=0
fj−mpt

j
p, with fj−mp ∈ k and f−mp �= 0,

e =
n∑
i=0
ei t
−i with btne = t∞, b ∈ k \ {0}, n ∈ N and ei ∈ k,

(
+∞∑
j=0
fj−mpt

j
p

)i/ne
=
+∞∑
j=0
f i,j t

j/ne
p with f i,j ∈ k, i = 1, . . . , n

and σ is solution of Xne − b−1 = 0 with unknown X.

Proof The proof can be found in my PhD thesis [6, Theorem 2.11] and also in [7].
��
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Let us apply this theorem where LS is the operator L2
11 coming from the function

1F1
2 with parameters a and b.

1. If p is a zero of f with multiplicity mp ∈ N
∗, then the generalized exponents of

M at p are

[
0, mp (1− b1) , 2mp (1− b1)

]
.

2. If p is a pole of f with multiplicity mp ∈ N
∗, then the generalized exponents of

M at p are

⎡
⎣2mpa1, − 2mp(a1 − b1)+ 2

−1∑
j=−mp

jfj t
j
p, mpb1 +

−1∑
j=−mp

jfj t
j
p

⎤
⎦ ,

where f = t−mpp

+∞∑
j=0
fj−mp t

j
p with fj−mp ∈ Q and f−mp �= 0.

3.7 How to Find the Transformation Parameter(s)

The task now is to find our three transformations such that

LS
f−→C M

r−→E L1
r0,r1,r2−→ G L

with r, r0, r1, r2, f ∈ Q(x), f �∈ Q and M,L1 ∈ Q[x][∂]. A solution y of L in
terms of S will be

y = exp

(∫
r dx

)(
r0S(f (x))+ r1(S(f (x)))′ + r2(S(f (x)))′′

)
.

Finding these transformations is equivalent to find their parameter(s). We proceed
as follows:

1. in the first step, we find the change of variable parameter f and the parameter(s)
associated to the function S,

2. in the second step, we find the parameters r, r0, r1 and r2 for the exp-product and
gauge transformations.

I will now show how to get these parameters in each of these steps, and refer for
more details to my PhD thesis (see [6]) which can be downloaded from http://www.
mathematik.uni-kassel.de/~merlin/ and also in [7].

http://www.mathematik.uni-kassel.de/~merlin/
http://www.mathematik.uni-kassel.de/~merlin/
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3.7.1 How to Find the Change of Variable Parameter f

Let S ∈ {1F1
2, 0F2, 1F2, 2F2}.

1. If the ramification index of LS at ∞ is 1 we compute the polar part of f from
the generalized exponents of L at its irregular singularities. Then we get f by
using the regular singularities of L or some information related to the degree of
the numerator that f can have.

2. If the ramification index of LS at ∞ is greater than 1, we put f in the form

f = A

B
with A,B ∈ k[x], B monic and gcd(A,B) = 1. Using the generalized

exponents at the irregular singularities of L, we can compute B and a bound for
the degree of A. Hence, using also the fact that the ramification index of LS is
greater than 1, we can get the truncated series for f and some linear equations
for the coefficients of A. By comparing the number of linear equations for the
coefficients of A and the degree of A, we will deal with some cases which will
help us to find A.

3.7.2 How to Find the Parameter(s) of Our Chosen Special Function
S ∈ {1F1

2, 0F2, 1F2, 2F2}

Let us assume that we know f. By observing the forms of the generalized exponents
of L at the zeroes and poles of f with their corresponding multiplicity orders, we
find the parameter(s) of our special function S. Therefore, we obtain the differential
operator LS associated to S. That means we get the operator M coming from LS by
the change of variable transformation with parameter f

LS
f−→C M.

3.7.3 How to Find the Exp-Product Parameter r

Let us assume that we know the operator M such that

LS
f−→C M−→EGL.

This theorem finds the exp-product parameter in the projective equivalence
(−→EG).

Theorem 3.10 Let M,L ∈ k(x)[∂] be two irreducible third-order linear differential
operators such that M −→EG L and r the parameter of the exp-product transfor-
mation. Let NS be the set of all non-apparent singularities of L and P0 the set of all
the poles of r. For p ∈ P0 ∪ NS, let us set

eip = eip(L)− eip(M), i = 1, 2, 3
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where eip(M) and eip(L) are the i-th generalized exponent of M and L at p,
respectively, and r has series representation

r =
+∞∑
i=−mp

rp,i t
i
p, mp ∈ N with rp,i ∈ k and rp,−mp �= 0.

If we assume that

1. P11
0 = {p ∈ P0| {e1

p (L) , e
2
p (L) , e

3
p (L)} ⊆ Z and rp,−1 /∈ Z

}
= ∅,

2. M is not the image of an exp-product transformation with rational function
−r + apt−1

p with ap ∈ k and p ∈ P0 such that mp ≥ 2 if p �= ∞,
then

∑
p∈NS\{∞}

eip

tp
− t∞ · ei∞ = r +

∑
p∈S\{∞}

bp

np
t−1
p −

∑
p∈P12

0 \(NS∪{∞})
rp,−1t

−1
p (3.4)

where ei∞ = ei∞ − const(ei∞) with const(ei∞) the constant term of ei∞, bp ∈ Z,

np = max
{
neip(L2)

, i = 1, 2, 3
}

with neip(L2)
the ramification index of eip (L2) , and

P
12
0 = {p ∈ P0| {e1

p (L2) , e
2
p (L2) , e

3
p (L2) , rp,−1} ⊆ Z

}
.

Proof The proof can be found in my PhD thesis [6, Lemma 3.32] and also in [7].
��

Lemma 3.11 Let us consider the hypothesis and notations of Theorem 3.10, and
assume that all the conditions of Theorem 3.10 are satisfied. Then the parameter r
of the exp-product transformation is given by

r =
∑

p∈S\{∞}

eip

tp
− t∞ · ei∞ +

∑
p∈S\{∞}

cp

np
t−1
p (3.5)

with cp ∈ Z and
∣∣cp∣∣ < np.

Proof The proof can be found in my PhD thesis [6, Lemma 3.32] and also in [7].
��

3.7.4 How to Find the Gauge Parameters r0, r1 and r2

Let us assume that we know our exp-product parameter r . Therefore, we have the
operator L1 such that

LS
f−→C M

r−→E L1
r0,r1,r2−→ G L.
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To find the gauge parameters r0, . . . , rn−1 (gauge equivalence problem) between
two operators L1 and L we use Mark van Hoeij’s gauge equivalence test (see
[11]) which gives us those parameters as the coefficients of a second-order linear
differential operator. There already exists in Maple an algorithm for that called
Homomorphisms, implemented by Mark van Hoeij (see [11]), which takes as
input two linear differential operators Li and Lj of order n and returns a basis of
all the operators of order n − 1 satisfying the equation Li = LjX if the first input
is Li , and Lj = LiX if the first input is Lj (X is the unknown of this equation).
Otherwise it returns an empty list. Let n = 3 and X = a2(x)∂

2 + a1(x)∂ + a0(x),
we deduce the gauge parameters r0, r1 and r2 by taking

⎧⎨
⎩
r0 = a0(x),

r1 = a1(x),

r2 = a2(x).

(3.6)

3.7.5 Example

We have implemented the methods of this work in a Maple package called
Solver3 which can be downloaded from http://www.mathematik.uni-kassel.de/~
merlin/. My PhD thesis [6] and also [7] explain the algorithms in more detail.
We will take here just one example and show how our package can be used. Let
us consider the following third-order irreducible holonomic differential equation
satisfied by the square of the Laguerre polynomial1:

x2y ′′′ + (−3x2+ 3x)y ′′ + (4nx+ 2x2− 4x + 1)y ′ + (−4nx+ 2n)y = 0. (3.7)

Let our input operator L be the operator associated to this differential equation and
see if we can solve it using our codes. That means if we can find the function S ∈
{1F1

2, 0F2, 1F2, 2F2} and the transformation parameters such that

LS
f−→C M −→EG L.

We upload first our Maple package called Solver3 which can be downloaded
from http://www.mathematik.uni-kassel.de/~merlin/.

> read "Solver3.mpl":
> L:= x^2*Dx^3+(-3*x^2+3*x)*Dx^2+(4*n*x+2*x^2-4*x+1)*Dx
-4*n*x+2*n;

L := x2Dx3 −
(
−3 x2 + 3 x

)
Dx2 +

(
4 n x + 2 x2 − 4 x + 1

)
Dx − 4 n x + 2n

1To generate this differential equation, we use the hsum package from Wolfram Koepf (see [4]).

http://www.mathematik.uni-kassel.de/~merlin/
http://www.mathematik.uni-kassel.de/~merlin/
http://www.mathematik.uni-kassel.de/~merlin/
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Using one of our codes called Hyp1F1sqSolutionswe get:
> Hyp1F1sqSolutions(L);{[[[

[n] , 2, [2] ,
[(
x2n2 − 2 nx3 + x4

)
Dx2 +

(
−5 x2n2 + 8 nx3 − 3 x4 + 4n2x

−6nx2 + 2 x3
)

Dx + 2n3x + 4 x2n2 − 6 nx3 + 2 x4 − 12 n2x + 12 nx2 − 4 x3

+2 n2
]]]
,−x

]
,
[[[

[−n] , 2,
[
x−1

]
,
[
xDx2 + (−x + 2)Dx + 2n+ 1

]]]
, x

]}

Hence, (3.7) has 1F1
2 type solutions. One of them has a = −n and b = 2 as

upper and lower parameters of 1F1, respectively, and the transformation parameters
are: r = 1/x, r0 = 2n+ 1, r1 = −x + 2, r2 = x and f = x. This solution is

> y:=expand(exp(int(r,x))*(r0*(hypergeom([a], [b],
x^2))^2+ r1*normal(diff((hypergeom([a], [b], x^2))^2,
x))+r2*normal(diff((hypergeom([-n/2], [1/2], x^2))^2,
x$2))));

y := 2 x
(

1F1(−n; 2; x2)
)2
n+ x

(
1F1(−n; 2; x2)

)2 + 2 1F1(−n; 2; x2)n

×1F1(−n + 1; 3; x2)x3 − 4 1F1(−n; 2; x2)n1F1(−n+ 1; 3; x2)x2

+8 n2
(

1F1(−n/2 + 1; 3/2; x2)
)2
x4 + 8/3 1F1(−n/2; 1/2; x2)n2

×1F1(−n/2+ 2; 5/2; x2)x4 − 16/3 1F1(−n/2; 1/2; x2)n

×1F1(−n/2+ 2; 5/2; x2)x4 − 4 1F1(−n/2; 1/2; x2)

×1F1(−n/2 + 1; 3/2; x2)nx2

All explanations of the functioning of this algorithm are available in my PhD
thesis [6] and also in [7].

4 Conclusion

We gave an algorithm to find S ∈ {1F1
2, 0F2, 1F2, 2F2} type solutions of an

irreducible third-order linear differential operator without Liouvillian solutions and
with rational function coefficients. We have also implemented this algorithm in
Maple (available from http://www.mathematik.uni-kassel.de/~merlin/).
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The Gamma Function

Daniel Duviol Tcheutia

Abstract After the so-called elementary functions as the exponential and the
trigonometric functions and their inverses, the Gamma function is the most impor-
tant special function of classical analysis. In this note, we present the definition and
properties of the Gamma and the Beta functions.

Keyword Gamma function

Mathematics Subject Classification (2000) 33E50

1 Definition

The Gamma function �(z) developed by Euler (1707–1783) is defined by

�(z) =
∫ ∞

0
tz−1e−t dt, Re(z) > 0. (1.1)

If we consider the integral (1.1), it is known that at infinity the behaviour of
the exponential function dominates the behaviour of any power function, so that
tz−1e−t → 0 as t →∞ for any value of z, and hence no problem is expected from
the upper limit of the integral. When t → 0, we have e−t � 1 and then for c > 0
very small and z = x ∈ R, we may write (1.1) as

�(x) �
∫ c

0
tx−1dt +

∫ ∞
c

e−t tx−1dt

=
[

1

x
tx
]c

0
+

∫ ∞
c

e−t tx−1dt.
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For the first term to remain finite as t → 0, we must have x > 0. The main
references are [1–5].

2 Properties of the Gamma and Beta Functions

�(x) > 0 for all x ∈ (0,∞) and for x = 1, we have

�(1) =
∫ ∞

0
e−t dt = [−e−t]∞0 = 1.

Using integration by parts, it follows that for all z ∈ C with Re(z) > 0,

�(z + 1) =
∫ ∞

0
tze−t dt = [−e−t tz]∞0 + z

∫ ∞
0
tz−1e−t dt = z�(z).

Using the latter recurrence relation �(z + 1) = z�(z) and the initial condition
�(1) = 1, it follows that for z = n ∈ N0 := {0, 1, 2, . . .}, one gets

�(n+ 1) = n�(n) = n(n− 1)�(n− 1) = · · · = n(n− 1) · · · 2 · 1 · �(1) = n!.

The Gamma function therefore can be seen as an extension of the factorial function
to real and complex arguments.

From the recurrence relation �(z + 1) = z�(z) we have

�(z) = 1

z
�(z + 1). (2.1)

Since �(1) = 1, we deduce from (2.1) that �(0) = ∞. With this result, we get

�(−1) = 1

−1
�(0) = ∞, �(−2) = 1

−2
�(−1) = ∞, etc.

That means �(n) = ∞ if n is zero or a negative integer.
The right-hand side of (2.1) is defined for Re(z + 1) > 0, i.e., for Re(z) > −1.

By iteration, we get

�(z) = 1

z(z+ 1) · · · (z+ n− 1)
�(z+ n) (n ∈ N). (2.2)

Equation (2.2) enables us to define �(z) for Re(z) > −n as an analytic function
except for z = 0,−1,−2, . . . ,−n+ 1. Thus, �(z) can be continued analytically to
the whole complex z-plane except for simple poles at z = 0,−1,−2, . . .. It is now
possible to draw a graph of �(x) (x ∈ R) as shown in Fig. 1.
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Fig. 1 The Gamma function on the real axis

The shifted factorial

(z)n := z(z+ 1) · · · (z+ n− 1) = �(z + n)
�(z)

(n ∈ N0), (2.3)

which occurs in (2.2), is called the Pochhammer symbol.
At the poles −n (n ∈ N0) of the Gamma function, we get

lim
z→−n(z+ n)�(z) = lim

z→−n
(z+ n)�(z + n)

z(z+ 1) · · · (z+ n− 1)

= lim
z→−n

�(z + n+ 1)

z(z+ 1) · · · (z+ n− 1)
= (−1)n

n! .

This result may be interpreted as the residue of �(z) at the simple poles z = −n.
We have the identity

(z)n = z(z+ 1) · · · (z+ n− 2)(z+ n− 1)

= (−1)n(−z)(−z− 1) · · · (1− z − n+ 1)(1− z− n)
= (−1)n(1− z− n)(1− z − n+ 1) · · · (1−z−n+ n− 2)(1− z−n+ n− 1)

= (−1)n(1− z− n)n.

Using the definition (2.3), we can rewrite this as

�(z + n)
�(z)

= (−1)n
�(1 − z)

�(1− z− n)
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or equivalently

�(z)�(1 − z) = (−1)n�(z + n)�(1 − (z+ n)).

Since z = 0,−1,−2, . . . are the poles of �(z), we deduce that 1/�(z) is analytic
in the entire complex plane with zeros 0,−1,−2, . . .. It follows that the zeros of
1/�(1− z) are 1, 2, . . .. This means that

1

�(z)�(1 − z)
is analytic in the entire complex plane with zeros . . . ,−2,−1, 0, 1, 2, . . . similar as
the function sin(πz). It can be shown that the following relationship between the
Gamma and circular functions is valid, where the last statement is the Euler product
for the sine function:

1

�(z)�(1 − z) =
sin(πz)

π
= z

∞∏
n=1

(
1− z

2

n2

)
. (2.4)

One similarly has

�(z) = lim
n→∞

n!nz
(z)n+1

= e
−γ z

z

∞∏
n=1

(
1+ z

n

)−1
e
z
n ,

where

γ := lim
n→∞

(
n∑
k=1

1

k
− lnn

)
≈ 0.57721 56649 01532 86060 65120 90082

denotes the Euler–Mascheroni constant. Equation (2.4) is called the reflection
formula of the Gamma function.

Equation (2.4) with z = 1
2 yields immediately

�

(
1

2

)
= √π, (2.5)

which, in view of (1.1), implies

∫ ∞
0

e−t√
t
dt = √π.

Equation (2.2) combined with (2.5) yields

�

(
n+ 1

2

)
= (2n)!

√
π

22nn! , �
(
−n+ 1

2

)
= (−1)n

√
π

22nn!
(2n)! , n ∈ N0.



The Gamma Function 159

If we set t = u2 in the definition (1.1) so that dt = 2udu, we get

�(z) = 2
∫ ∞

0
e−u2

(u2)z−1udu = 2
∫ ∞

0
e−u2

u2z−1du.

This means that

�(z) = 2
∫ ∞

0
e−t2 t2z−1dt, (2.6)

and for z = 1
2 , we derive the following result

∫ ∞
0
e−t2dt = 1

2

√
π.

The binomial coefficients can be expressed as

(
z

n

)
= z(z− 1) · · · (z− n+ 1)

n! = (−1)n
(−z)n
n! ,

or, equivalently, as

(
z

n

)
= �(z + 1)

n!�(z − n+ 1)
,

for arbitrary z ∈ C, z+ 1 �= 0,−1, . . . , and z−n+ 1 �= 0,−1, . . .. Since �(−k) =
∞ for k ∈ N0, we may set 1/�(−k) = 0 which reads again as 1/k! = 0 for
k = −1,−2, . . . .We deduce that for k, n ∈ N0, we have

(
n

k

)
= 0 for k < 0 and k > n.

3 The Beta Function

The Beta function is defined by the integral

B(z,w) =
∫ 1

0
tz−1(1− t)w−1dt, Re(z) > 0, Re(w) > 0. (3.1)

The substitution t = 1− u shows that

B(z,w) =
∫ 1

0
uw−1(1− u)z−1du = B(w, z). (3.2)
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By setting t = cos2 θ so that dt = −2 cos θ sin θdθ , we get

B(z,w) =
∫ 0

π/2
(cos2 θ)z−1(sin2 θ)w−1(−2 cos θ sin θ)dθ

= 2
∫ π/2

0
cos2z−1 θ sin2w−1 θdθ. (3.3)

Now we want to show that

B(z,w) = �(z)�(w)
�(z +w) . (3.4)

We first consider the product

�(z) �(w) =
∞∫

0

tz−1 e−t dt ·
∞∫

0

uw−1 e−u du

and use the substitutions t = x2 and u = y2 to obtain

�(z) �(w) = 4

∞∫

0

e−x2
x2z−1 dx

∞∫

0

e−y2
y2w−1 dy

= 4

∞∫

0

∞∫

0

e−x2−y2
x2z−1 y2w−1 dx dy.

Applying polar coordinates x = r cos θ, y = r sin θ to this double integral, we get

�(z) �(w) = 4

π/2∫

0

∞∫

0

e−r2
r2z+2w−2 cos2z−1 θ · sin2w−1 θ · r dr dθ

= 2

∞∫

0

e−r2
r2z+2w−1 dr · 2

π/2∫

0

cos2z−1 θ · sin2w−1 θ dθ

= �(z +w)B(w, z) = �(z +w)B(z,w)

where Eqs. (2.6) and (3.3) are utilized. This proves (3.4).
Relation (3.4) not only confirms the symmetry property in (3.2), but also

continues the Beta function analytically for all complex values of z and w, except
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when z,w ∈ {0,−1,−2, . . .}. Thus we may write

B(z,w) =

⎧⎪⎪⎨
⎪⎪⎩

∫ 1
0 t
z−1(1− t)w−1dt (Re(z) > 0, Re(w) > 0)

�(z)�(w)
�(z+w) (Re(z) < 0, Re(w) < 0, z, w /∈ {0,−1,−2, . . .}).

The following relations are valid:

B(z + 1, w) = z

z+wB(z,w),

B(z,w + 1) = w

z+wB(z,w).

Indeed, we have

B(z + 1, w) = �(z + 1)�(w)

�(z +w + 1)

= z�(z)�(w)

(z+w)�(z + w)
= z

z+wB(z,w).

For further reading on the Gamma and Beta functions, one might go through the
following books. This article presents the most important part of [3, Chap. 1].
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Abstract In this lecture a comparison between univariate and multivariate orthog-
onal polynomials is presented. The first step is to review classical univariate
orthogonal polynomials, including classical continuous, classical discrete, their q-
analogues and also classical orthogonal polynomials on nonuniform lattices. In all
these cases, the orthogonal polynomials are solution of a second-order differential,
difference, q-difference, or divided-difference equation of hypergeometric type.
Next, a review multivariate orthogonal polynomials is presented. In the approach
we have considered, the main tool is the partial differential, difference, q-difference
or divided-difference equation of hypergeometric type the polynomial sequences
satisfy. From these equations satisfied, the equation satisfied by any derivative
(difference, q-difference or divided-difference) of the polynomials is obtained.
A big difference appears for nonuniform lattices, where bivariate Racah and for
bivariate q-Racah polynomials satisfy a fourth-order divided-difference equation of
hypergeometric type. From this analysis, we propose a definition of multivariate
classical orthogonal polynomials. Finally, some open problems are stated.
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1 Classical Univariate Case: From Hermite to q-Racah
Polynomials

The class of classical univariate orthogonal polynomials with respect to a positive
weight function contains the well-known families of Jacobi, Laguerre and Hermite
polynomials. They are orthogonal with respect to the beta distribution, the normal
distribution and the gaussian distribution, respectively. As for the Hermite polyno-
mials, they have been studied since the works of P.S. Laplace in 1810, and later in
detail by P. Chebyshev in 1859. As in many other branches of science, the works of
Chebyshev were overlooked and the family was named after a work of Hermite in
1864; now, we can ensure that they were not new. Nevertheless, Hermite published
some other works in 1865 introducing for the first time multidimensional orthogonal
polynomials [22].

For each family of classical univariate orthogonal polynomials with respect to
a positive weight function, a number of properties were proved. For instance, for
monic Hermite polynomials we have

1. Orthogonality relation

∫ ∞
−∞
Hn(x)Hm(x)e

−x2
dx = d2

nδn,m =
{√
π2−nn!, n = m,

0, n �= m.

2. Rodrigues’ representation

Hn(x) = (−1)n2−n

e−x2

dn

dxn
e−x2

.

3. Recurrence relation

Hn+1(x) = xHn(x)− n
2
Hn−1(x).

4. Explicit representation

Hn(x) = n! 2−n
n/2∑
m=0

(−1)m

m!(n− 2m)!(2x)
n−2m.

5. Generating function

exp(2xt − t2) =
∞∑
n=0

Hn(x)
(2t)n

n! .
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6. Second-order linear differential equation

y ′′(x)− 2xy ′(x)+ 2ny(x) = 0.

There exist many other algebraic properties such as structure relation or derivative
representation, just to cite some of them.

Following a historical approach, the next step was to prove that many of the above
properties are indeed characterizations of the class of classical univariate orthogonal
polynomials with respect to a positive weight function. Among many important
contributions, the following ones might be cited [1, 9, 38]. In particular, classical
univariate orthogonal polynomials with respect to a positive weight function are
solution of a second order linear differential equation of hypergeometric type

σ(x)y ′′(x)+ τ (x)y ′(x)+ λny(x) = 0, (1.1)

where σ and τ are polynomials of at most degree 2 and 1, respectively, and λn =
−nτ ′ − 1/2n(n − 1)σ ′′ is a constant. Therefore, if y(x) is solution of the above
equation then its derivatives of any order vn(x) = y(n)(x) are solution of an equation
of the same type, namely

σ(x)v′′n(x)+ (τ (x)+ nσ ′(x))v′n(x)+ (λn + nτ ′ +
1

2
n(n− 1)σ ′′)vn = 0.

One of the advantages of the approach from the second order differential equation
(1.1) is the ease of explicitly computing the coefficients of the three term recurrence
relation satisfied by the family of orthogonal polynomials, which in the monic case
reads as

xpn(x) = pn+1(x)+ Bnpn(x)+ Cnpn−1(x), n ≥ 1, (1.2)

with p0(x) = 1 and p1(x) = x − B0. If

yn(x) = xn +Knxn−1 +�nxn−2 + · · · ,

then, after substituting into (1.1) it is found upon equating the coefficients of xn−1

and xn−2 that

Kn = n(b(n− 1)+ q)
2a(n− 1)+ p , �n = (n− 1)(Kn(b(n− 2)+ q)+ cn)

2(a(2n− 3)+ p) ,

where σ(x) = ax2 + bx + c, and τ (x) = px + q . From the three term recurrence
relation by equating again the coefficients,

Bn = Kn −Kn+1,

Cn = −BnKn +�n −�n+1.
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As a consequence, the coefficients of the three term recurrence are completely
identified from the coefficients of the second order differential equation (1.1). Some
important historical references about the characterization of classical orthogonal
polynomials by means of the three term recurrence relation they satisfy can be found
e.g. in [9, p. 182]. It is also important to recall that the orthogonality weight function
�(x) satisfies the Pearson differential equation

(σ (x)�(x))′ = τ (x)�(x).

It is also important to recall that already in 1929 Bochner [10] posed the problem of
finding all linear second order differential equations of Sturm–Liouville type with
polynomial coefficients having orthogonal polynomial solutions.

The so-called classical orthogonal polynomials of a discrete variable [44]
can be introduced as solutions of a second order linear difference equation of
hypergeometric type

σ(x)�∇y(x)+ τ (x)y(x)+ λny(x) = 0, (1.3)

where the forward and backward difference operators are respectively defined as

�y(x) = y(x + 1)− y(x), ∇y(x) = y(x)− y(x − 1).

The above equation appears if we discretize (1.1) up to the second order in e.g. h and
later set h = 1. These polynomials yn, as stated in [1, p. 10], share with the classical
continuous families a number of properties that indeed are characterizations: they all
satisfy a second order linear difference equation as (1.3), their differences �yn are
again a sequence of orthogonal polynomials, they possess a Rodrigues-type formula,
the orthogonality weight function satisfies a Pearson-type difference equation

�(σ(x)�(x)) = τ (x)�(x),

and e.g. they all satisfy a structure relation. Essentially, these are the Charlier,
Meixner, Kravchuk, and Hahn orthogonal polynomials. The first two families are
infinite, while the third and fourth families are just orthogonal up to a certain
positive integer N which gives the orthogonality domain [0, N]. As in the classical
continuous case, it is possible to identify the orthogonality weight functions with
well-known weights in Statistics [23]: Charlier ↔ Poisson, Meixner ↔ Pascal,
Kravchuk ↔ binomial, Hahn ↔ hypergeometric —or Pólya. Moreover, in [44,
p. 34] another family of polynomials appear as an analytic continuation of Hahn
polynomials with respect to the parameters α and β from the domain α > −1,
β > −1 into the domain α < 1 − N , β < 1 − N . This fifth family of classical
orthogonal polynomials of a discrete variable has been shown to be very useful in
certain connection problems related with Bernstein bases [50]. In this framework
the orthogonal polynomials are defined in the real line but the orthogonality relation
is evaluated on a set of finite or infinite positive integers —linear lattice x(s) = s.
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As it happens in the univariate continuous situation, if yn(x) is a solution to (1.3)
and if vm(x) = �my(x) then vm(x) is solution of an equation of the same type:

σ(x)�∇vm(x)+ τm(x)�vm(x)+ μmvm(x) = 0,

where τm(x) = τm−1(x + 1) + �σ(x), with τ0(x) = τ (x), and μm = μm−1 +
�τm−1(x), with μ0 = λn. If we denote again σ(x) = ax2 + bx + c and τ (x) =
px+q , then τm(x) = (2ma+p)x+m(ma+b+p)+q . A similar approach can be
followed to obtain the coefficients of the three term recurrence relation (1.2) from
the coefficients of the polynomials in the second-order difference equation (1.3).

Equation (1.1) can be also discretized by using a q-linear lattice, x(s) = qs; in
doing so, the q-difference operator appears in a natural way

Dqy(x) = y(qx)− q(x)
(q − 1)x

, (q �= 1, x �= 0).

Then we get following second-order q-difference equation

σ(x)DqDq−1y(x)+ τ (x)Dqy(x)+ λny(x) = 0. (1.4)

Detailed analysis of the polynomial solutions of the above equation was done in
the original works Hahn and Lesky (see e.g. [21] or [33]), and are nicely compiled
in [27]. For this class of univariate orthogonal polynomials (those belonging to the
so-called q-Hahn class) there exist also a number of properties that characterize
them [1]. It is important to mention here that in [1, p. 11] five of these properties
are stated, but the last one is not completely correct: The moments of q-classical
orthogonal polynomials are hypergeometric if the moments are either the power
moments (moments against xk), the q-shifted factorial moments (moments against
(x; q)k) or moments against (xq; q)k—which is the case of Al-Salam-Carlitz I
orthogonal polynomials [4, 43].

As happens in the univariate continuous situation and also for a linear lattice
x(s) = s, if yn(x) is a solution to (1.4) then vm(x) = Dmq yn(x) is solution to an
equation of the same type. Again, the same idea can be used to obtain the coefficients
of the three term recurrence relation (1.2) from the coefficients of the polynomials
in the second-order q-difference equation (1.4).

The final class of univariate orthogonal polynomials to be presented in this review
appears if we discretize (1.1) by using a nonuniform lattice x(s) [44], giving rise to
[44, Eq. (3.1.3)]

σ(x(s))
1

x(s + h/2)− x(s − h/2)
[
y(s + h)− y(s)
x(s + h)− x(s) −

y(s)− y(s − h)
x(s)− x(s − h)

]

+ τ (x(s))
2

[
y(s + h)− y(s)
x(s + h)− x(s) +

y(s)− y(s − h)
x(s)− x(s − h)

]
+ λy(s) = 0. (1.5)



170 I. Area

The above equation approximates (1.1) to second order in h and it can be rewritten
in many ways by using appropriate divided-difference operators. For our purposes,
we shall consider the following divided-difference operators D and S [14, 36, 37]
defined by

Df (s) = f (s + 1/2)− f (s − 1/2)

x(s + 1/2)− x(s − 1/2)
, Sf (s) = f (s + 1/2)+ f (s − 1/2)

2
.

(1.6)
Notice that the above operators transform polynomials of degree n in the lattice
x(s) into polynomials of respectively degree n − 1 and n in the same variable
x(s). With these notations, classical orthogonal polynomials on a nonuniform lattice
x(s) are solution of the following second-order divided-difference equation of
hypergeometric type

φ(x(s))D2yn(s)+ τ (x(s))SDyn(s)+ λnyn(s) = 0, (1.7)

where φ and τ are polynomials of at most degree 2 and 1, respectively, and λn
is a constant. In [9] the classical orthogonal polynomials on nonuniform lattices
are analyzed in detail, including e.g. the Pearson-type divided-difference equation,
the Rodrigues-type formula, integral representations, orthogonality property and the
moment property against appropriate generalized bases. Some other recent works on
characterizations of classical orthogonal polynomials on nonuniform lattices can be
found in e.g. [15, 42] and references therein. In that case [44] it is also possible to
obtain the coefficients of the three term recurrence relation

x(s)pn(x(s)) = pn+1(x(s))+ B̃npn(x(s))+ C̃npn−1(x(s))

from the coefficients of the polynomials appearing in the second-order divided-
difference equation (1.7). Moreover, in [16] suitable bases that enable the direct
series representation of orthogonal polynomial systems on nonuniform lattices are
presented that allow to derive solutions of holonomic divided-difference equations
on nonuniform lattices. The q-Racah polynomials and the Askey–Wilson polyno-
mials are solution of a divided-difference equation as (1.7) in a q-quadratic lattice
and in a quadratic lattice, respectively.

The limit transitions between classical univariate orthogonal polynomials is
well-known and can be read as the limits of univariate distributions [23]. All the
limit relations have been presented in [27], and they include limits inside the
same class (continuous, discrete, q-analogues and non-uniform lattices) or between
polynomials in different classes. The remainders in the limits have been analyzed
eg. in [13, 19, 49]. Also, a interesting presentation of the Askey scheme has been
given in [29].

As recalled in [9, p. 189], in [2] the following definition of univariate classical
orthogonal polynomials was suggested:

An orthogonal polynomial sequence is classical if it is a special case or a limiting case of
the 4φ3 polynomials given by the q-Racah polynomials or the Askey–Wilson polynomials.
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Let us recall some of the aforementioned special cases and limiting cases. Let us
introduce univariate Racah polynomials in terms of hypergeometric series as [27,
page 190]

rn(α, β, γ, δ; s) = rn(s) = (α + 1)n (β + δ + 1)n (γ + 1)n

× 4F3

( −n, n+ α + β + 1,−s, s + γ + δ + 1
α + 1, β + δ + 1, γ + 1

1

)
, n = 0, 1, . . . , N,

(1.8)

where rn(α, β, γ, δ; s) is a polynomial of degree 2n in s and of degree n in the
quadratic lattice [9, 44]

x(s) = s(s + γ + δ + 1), (1.9)

Univariate Racah polynomials are solution of the second-order linear divided-
difference equation [14]

φ(x(s))D2rn(s)+ τ (x(s))SDrn(s)+ λnrn(s) = 0, (1.10)

where φ is a polynomial of degree 2 in the lattice x(s) given by

φ(x(s)) = −(x(s))2+1

2
(−α(2β+δ+γ+3)+β(δ−γ−3)−2(δγ+δ+γ+2))x(s)

− 1

2
(α + 1)(γ + 1)(β + δ + 1)(δ + γ + 1),

τ is a polynomial of degree 1 in the lattice x(s) given by

τ (x(s)) = −(α + β + 2)x(s)− (α + 1)(γ + 1)(β + δ + 1),

the eigenvalues λn are given by

λn = n(α + β + n+ 1),

and the difference operators D and S are defined in (1.6). The second-order divided-
difference equation (1.10) can be written in terms of rational functions as [27, Eq.
(9.2.5)]

n(n+ α + β + 1)rn(s) = B(s)rn(s + 1)− (B(s)+D(s))rn(s)+D(s)rn(s − 1),
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where

B(s) = (α + s + 1)(γ + s + 1)(β + δ + s + 1)(δ + γ + s + 1)

(δ + γ + 2s + 1)(δ + γ + 2s + 2)
,

D(s) = s(δ + s)(−β + γ + s)(−α + δ + γ + s)
(δ + γ + 2s)(δ + γ + 2s + 1)

.

If we set α = a+b−1, β = c+d−1, γ = a+d−1, δ = a−d , x →−a+ix, then
the Racah polynomials become the Wilson polynomials. The Wilson polynomials
can be also introduced in terms of hypergeometric series as

wn(s
2; a, b, c, d) = (a + b)n(a + c)n(a + d)n

× 4F3

( −n, a + b + c + d + n− 1, a − is, a + is
a + b, a + c, a + d 1

)
, (1.11)

where i2 = −1, and (A)n = A(A + 1) · · · (A + n − 1) denotes the Pochhammer
symbol. These polynomials are solution of a second-order linear divided-difference
equation of hypergeometric type in the lattice x(s) = s2, which can be obtained
from the equation for Racah polynomials by introducing the aforementioned
changes:

(x(s)2 + (cd − b(c + d)− a(b + c + d))x(s) + abcd)D2y(s)

+((a+b+c+d)x(s)−bcd−a(cd+b(c+d)))SDy(s)−n(n+a+b+c+d−1)y(s) = 0,
(1.12)

where the divided-difference operators in the lattice x(s) = s2 are given by

Df (x) = f (x + i/2)− f (x − i/2)
2ix

, Sf (x) = f (x + i/2)+ f (x − i/2)
2

.

This equation for Wilson polynomials can be also written in expanded form as
[27, Eq. (9.1.6)]

n(n+ a + b + c+ d − 1)y(s) = Bw(s)y(s + i) − (Bw(s)+Dw(s))y(s)+Dw(s)y(s − i),
(1.13)

where

Bw(s) = (a − is)(b − is)(c − is)(d − is)
2is(2is − 1)

,

Dw(s) = (a + is)(b + is)(c + is)(d + is)
2is(1+ 2is)

.
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The continuous dual Hahn polynomials are also polynomials in the lattice x(s) =
s2, which can be introduced in terms of hypergeometric series as

dn(a, b, c|s2) = (a + b)n(a + c)n 3F2

( −n, a + is, a − is
a + b, a + c 1

)
. (1.14)

The continuous dual Hahn polynomials are the limit of Wilson polynomials as

lim
d→∞

wn(s
2; a, b, c, d)
(a + d)n = dn(a, b, c|s2).

If we consider the limit in the divided-difference equation (1.12) or in the difference
equation (1.13) as d →∞ we obtain the difference equation(s) for continuous dual
Hahn polynomials

(−(a + b + c)x(s)+ abc)D2y(s)+ (x(s)− ab − ac − bc)SDy(s)− ny(s) = 0,

and

ny(s) = BC(s)y(s + i)− (BC(s)+DC(s))y(s)+DC(s)y(s − i),

where

BC(s) = (a − is)(s + ib)(s + ic)
2s(2s + i) , DC(s) = (a + is)(s − ib)(s − ic)

2s(2s − i) .

2 Hypergeometric Multivariate Orthogonal Polynomials

As it has been shown in the previous section, in the univariate case “classical” is
used for families that are solution of a second-order linear differential (difference,
q-difference, or divided-difference) equation of hypergeometric type. From that
property it is simple to deduce that the derivative (difference, q-difference, or
divided-difference) of a classical orthogonal polynomial sequence is again an
orthogonal polynomial sequence (Hahn’s characterization). Also, the orthogonality
weight function appears in a natural way as the symmetrization factor of the
differential equation. Moreover, the Rodrigues formula can be also deduced from the
differential equation. In the multivariate case, as it will be shown in this section, this
is essentially the situation in the continuous, discrete and q-analogues situations;
nevertheless, the multivariate orthogonal polynomials on nonuniform lattices are
solution of a fourth-order divided difference equation, which turns out to be of
hypergeometric type.

The basic techniques will be shown for bivariate continuous orthogonal poly-
nomials, solutions to a class of partial differential equations. Similar ideas can
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be followed for partial difference or q-difference equations. Bivariate orthogonal
polynomials on nonuniform lattices will be analyzed in a different section.

Once this analysis has been done, as in the univariate case one can suggest in the
multivariate setting that:

A multivariate orthogonal polynomial sequence is classical if it is a special case or a limiting
case of the multivariate Racah polynomials or the multivariate Askey–Wilson polynomials.

Before entering in the details, a brief summary of multivariate orthogonal
polynomials will be presented. In 1926 it appeared the basic reference [3] which
contains a number of properties about generalizations of Hermite polynomials to
several variables. The domain of orthogonality in the bidimensional case, for these
generalizations is the full plane R2. Orthogonal polynomials on a triangular region
(simplex) were introduced by Proriol [45] which were applied to the problem of
solving the Schrödinger equation for the Helium atom [40, 41]. The same class was
independently obtained by Karlin and McGregor a few years later [25, 26] in view
of applications to genetics, as indicated by Koornwinder [28], which is probably the
first systematic study on bivariate orthogonal polynomials. In the latter reference it
appears a general method of generating orthogonal polynomials of two variables
from orthogonal polynomials of one variable. This method was also discussed
by Dunkl and Xu in their monograph [11]. As for the analysis of multivariate
orthogonal polynomials starting from second-order partial differential equations we
might refer to Krall and Sheffer [32] and Engelis [12]. Later, Krall and Sheffer
introduced the multivariable Hahn polynomials, i.e. an extension of orthogonal
polynomials of a discrete variable to the multidimensional situation. Griffiths [20]
introduced a generalization of Kravchuk polynomials by considering orthogonal
polynomials on the multinomial distribution. In 1989 Tratnik [55] presented a
multivariable biorthogonal generalization for Meixner, Kravchuk and Meixner–
Pollaczek. Tratnik showed that these families of polynomials are orthogonal with
respect to subspaces of lower degree and biorthogonal within a given subspace.
Moreover, in [56, 57] extensions of the remaining families of the Askey scheme
were given.

If we focus on the partial differential equation, Krall and Sheffer [32] studied the
problem of finding all polynomial eigenfunctions of second-order linear differential
operators in two variables having polynomial coefficients of degree equal to the
order of derivative under certain further restrictions relating to its symmetrizability
and the orthogonality of their eigenfunctions. They classified all possible normal
forms of the operators satisfying the required properties. Engelis [12] gave a detailed
list of second-order linear partial differential equations for which orthogonal
polynomial in two variables are solutions. This question was afterwards studied
and systematically described by Suetin in his book [52] (first published in 1988 and
translated into English in 1999). A second-order linear partial differential equation
is said to be admissible if there exists a sequence {λn} (n = 0, 1, . . . ) such that
for λ = λn, there are precisely n + 1 linearly independent solutions in the form
of polynomials of total degree n and has no non-trivial solutions in the set of
polynomials whose total degree is less than n. This concept was introduced by Krall
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and Sheffer in the case of second-order partial differential equations and also by Xu
in the case of second-order partial difference equations [58]. As a generalization
of the concept of differential equation of hypergeometric type Lyskova [34, 35]
considered a special class of linear partial differential equations, called basic class,

n∑
i,j=1

ãij (x)
∂2u

∂xi∂xj
+

n∑
i=1

b̃i(x)
∂u

∂xi
+ λu = 0,

where ãij (x) = ãj i(x) and the coefficients ãij (x) and b̃i(x) are chosen so that the
derivatives of any order of the solutions of the equation are also solutions of an
equation of the same type.

2.1 Bivariate Orthogonal Polynomials: Continuous, Discrete
and q-Analogues

The class of admissible potentially self-adjoint linear second-order partial differen-
tial equations of hypergeometric type has been analyzed in [6]. Later, the discrete
and q-analogues have been studied in [7, 8, 46–48].

We shall consider monomials of the form xn−kyk of total degree n, and the
column vector of all these monomials will be denoted by

xn = (xn−kyk), 0 ≤ k ≤ n, n ∈ N0.

A polynomial of total degree n can contain many monomials of the form xn−kyk; it
is said to be monic if it contains only one monomial of total degree n.

Let us consider the following second-order linear partial differential equation

ã11(x, y)
∂2u(x, y)

∂2x
+ ã12(x, y)

∂2u(x, y)

∂x∂y
+ ã22(x, y)

∂2u(x, y)

∂2y

+ b̃1(x, y)
∂u(x, y)

∂x
+ b̃2(x, y)

∂u(x, y)

∂y
+ λu(x, y) = 0,

which is assumed to be of hypergeometric type (basic class following [34, 35]) and
admissible. Then, the equation has the form

(ax2 + b1x + c1)∂xxu(x, y)+ 2(axy + b3x + c3y + d3)∂xyu(x, y)

+ (ay2 + b2y + c2)∂yyu(x, y)

+ (ex + f1)∂xu(x, y)+ (ey + f2)∂yu(x, y)+ λnu(x, y) = 0, (2.1)
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where λn = −n((n− 1)a + e) and the coefficients a, bj , cj , dj , e, fj are arbitrary
fixed real numbers, but the numbers a and e are such that the condition

�k := ak + e �= 0 (2.2)

holds true for any non-negative integer k. Then, it is possible to follow the ideas
in [52, Chapter 5] to define an orthogonality weight function �(x, y) over a certain
domain D ⊂ R2. Since the equation is admissible, then for each n it has n + 1
linearly independent solutions which are polynomials of total degree n; following
Kowalski [30, 31] Pn will denote the (column) polynomial vector

Pn = (P nn,0(x, y), P nn−1,1(x, y), . . . , P
n
1,n−1(x, y), P

n
0,n(x, y))

T. (2.3)

Then, the orthogonality condition reads as

∫∫
D

xmPT
n�(x, y)dxdy =

{
0 ∈M(m+1,n+1), n > m,

Hn ∈M(n+1,n+1), n = m,

where M(m+1,n+1) denotes a matrix of size (m + 1) × (n + 1) and Hn is a non
singular matrix of size (n + 1)× (n + 1). Following [52] it is possible to compute
the orthogonality weight function from the polynomials in the partial differential
equation. Moreover, since the equation is assumed to be of hypergeometric type,
[6] it is possible to obtain the orthogonality weight for the partial derivatives of the
orthogonal polynomial solutions, as well as to derive a Rodrigues-type formula [6,
Eq. (36)]. These conditions lead to

Theorem 2.1 For n ≥ 0, there exist unique matrices An,j of size (n+ 1)× (n+ 2),
Bn,j of size (n+ 1)× (n+ 1),and Cn,j of size (n+ 1)× n, such that

xjPn = An,jPn+1 + Bn,jPn + Cn,jPn−1, j = 1, 2, (2.4)

with the initial conditions P−1 = 0 and P0 = 1. Here the notation x1 = x, x2 = y
is used.

As it was mentioned in the univariate situation, the next step is to obtain explicitly
these matrices. If we expand

Pn = Gn,nxn +Gn,n−1xn−1 + · · · +Gn,0x0,

then we have [6]

Theorem 2.2 The explicit expressions of the matrices An,j , Bn,j and Cn,j (j =
1, 2) appearing in (2.4) in terms of the values of the leading coefficients Gn,n,
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Gn,n−1 andGn,n−2 are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

An,j = Gn,nLn,jG−1
n+1,n+1, n ≥ 0,

B0,j = −A0,jG1,0,

Bn,j = (Gn,n−1Ln−1,j − An,jGn+1,n)G
−1
n,n, n ≥ 1,

C1,j = −(A1,jG2,0 + B1,jG1,0),

Cn,j = (Gn,n−2Ln−2,j − An,jGn+1,n−1 − Bn,jGn,n−1)G
−1
n−1,n−1, n ≥ 2 .

(2.5)

Finally, the last step is to compute the matrices Gn,n, Gn,n−1 and Gn,n−2 in terms
of the coefficients of the partial differential equation. We shall show the results in
the specific case of monic polynomial solutions

P̂n = xn + Ĝn,n−1xn−1 + Ĝn,n−2xn−2 + · · · . (2.6)

In order to substitute the latter expression in the partial differential equation, some
basic properties of the monomials xn are needed. The multiplication by x and y can
be done as

{
x xn = Ln,1xn+1,

y xn = Ln,2xn+1,
(2.7)

where the matrices Ln,j of size (n+ 1)× (n+ 2) are defined by

Ln,1 =
⎛
⎜⎝

1 � 0
. . .

...

� 1 0

⎞
⎟⎠ and Ln,2 =

⎛
⎜⎝

0 1 �
...

. . .

0 � 1

⎞
⎟⎠ . (2.8)

Notice that for j = 1, 2 we have Ln,j LT
n,j = In+1, where In+1 denotes the identity

matrix of size n+ 1.
Moreover, for n ≥ 1,

{
∂xxn = En,1 xn−1,

∂yxn = En,2 xn−1,
(2.9)

where the matrices En,j of size (n+ 1)× n are given by

En,1 =

⎛
⎜⎜⎜⎜⎜⎝

n �

n− 1
. . .

� 1
0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠

and En,2 =

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 0
1 �

2
. . .

� n

⎞
⎟⎟⎟⎟⎟⎠
. (2.10)
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If we substitute the monic expansion (2.6) into the partial differential equation
(2.1) then equating coefficients we obtain

Ĝn,n−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g̃1,1 �

g̃2,1 g̃2,2
. . .

. . .

g̃n−1,n−2 g̃n−1,n−1

g̃n,n−1 g̃n,n

� 0 g̃n+1,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (n ≥ 1) , (2.11)

where, for 1 ≤ i ≤ n,

g̃i,i = (n+ 1− i)((n− i)b1 + 2(i − 1)c3 + f1)

�2n−2
,

g̃i+1,i = i((i − 1)b2 + 2(n− i)b3 + f2)

�2n−2
,

and

Ĝn,n−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,1 �

g2,1 g2,2

g3,1 g3,2 g3,3
. . .

. . .
. . .

. . .
. . .

. . .

gn−1,n−3 gn−1,n−2 gn−1,n−1

� gn,n−2 gn,n−1

0 gn+1,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (n ≥ 2) , (2.12)

where, for 1 ≤ i ≤ n− 1,

gi,i = (n− i)(n+ 1− i)
2�2n−2�2n−3

× (�2n−2c1 + ((n− i)b1 + 2(i − 1)c3 + f1)((n − i − 1)b1 + 2(i − 1)c3 + f1)),

gi+1,i = i(n− i)
�2n−2�2n−3

(f1f2 + d3�2n−2 + b3(2(n − 2+ 2(i − 2)(n − i − 1))c3

+ (2n− 2i − 1)f1)+ (2i − 1)c3f2 + (i − 1)b2((2i − 1)c3 + f1)

+ (n− 1− i)((i − 1)b2 + (2n− 2i − 1)b3 + f2)),
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gi+2,i = i(i + 1)

2�2n−2�2n−3

× (�2n−2c2 + ((i − 1)b2 + 2(n − i − 1)b3 + f2)(ib2 + 2(n− i − 1)b3 + f2)),

where�n = na + e �= 0—see (2.2).
As an example of the bivariate continuous case, let us consider the following

potentially self-adjoint second order partial differential equation of hypergeometric
type —tiny variation of [52, Chapter III]

x(x − 1)
∂2

∂x2 f (x, y)+ y(y − 1)
∂2

∂y2 f (x, y)+ 2xy
∂2

∂x∂y
f (x, y)

+ ((3+ α+ β+ γ )x− 1− α) ∂
∂x
f (x, y)+ ((3+ α+ β+ γ )y− 1− β) ∂

∂y
f (x, y)

− n(n+ α + β + γ + 2)f (x, y) = 0. (2.13)

Following the approach described in this section, in the monic case, the recursion
coefficients B̂n,j are given by

B̂n,1 =

⎛
⎜⎜⎜⎜⎜⎝

b0,0 0 �

b1,0 b1,1 0
. . .

. . .
. . .

bn−1,n−2 bn−1,n−1 0
� bn,n−1 bn,n

⎞
⎟⎟⎟⎟⎟⎠
, (2.14)

where

bi,i = (i − n)(α − i + n)
α + β + γ + 2n+ 1

+ (n− i + 1)(α − i + n+ 1)

α + β + γ + 2n+ 3
, 0 ≤ i ≤ n,

bi+1,i = − 2(i + 1)(β + i + 1)

(α + β + γ + 2n+ 1)(α + β + γ + 2n+ 3)
, 0 ≤ i ≤ n− 1,

and

B̂n,2 =

⎛
⎜⎜⎜⎜⎜⎝

b̃0,0 b̃0,1 �

0 b̃1,1 b̃1,2
. . .

. . .
. . .

b̃n−1,n−1 b̃n−1,n

� 0 b̃n,n

⎞
⎟⎟⎟⎟⎟⎠
, (2.15)
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with

b̃i,i = (i + 1)(β + i + 1)

α + β + γ + 2n+ 3
− i(β + i)
α + β + γ + 2n+ 1

, 0 ≤ i ≤ n,

b̃i,i+1 = 2(i − n)(α − i + n)
(α + β + γ + 2n+ 1)(α + β + γ + 2n+ 3)

, 0 ≤ i ≤ n− 1.

Moreover, the recursion coefficients Cn,i are given by

Ĉn,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0,0 �

c1,0 c1,1

c2,0 c2,1 c2,2
. . .

. . .
. . .

� cn−1,n−3 cn−1,n−2 cn−1,n−1

cn,n−2 cn,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.16)

where for 0 ≤ i ≤ n− 1 we have

ci,i = (n − i)(α − i + n)(β + γ + i + n+ 1)(α + β + γ + i + n+ 1)

(α + β + γ + 2n)(α + β + γ + 2n+ 1)2(α + β + γ + 2n+ 2)
,

ci+1,i = − (i + 1)(β + i + 1)

(α + β + γ + 2n)(α + β + γ + 2n+ 1)2(α + β + γ + 2n+ 2)
,

×
(
α2 + α(β + γ + 2n+ 1)− 2(i − n)(β + γ + i + n)− β − γ − 4i + 2n− 2

)

and for 0 ≤ i ≤ n− 2,

ci+2,i = (i + 1)(i + 2)(β + i + 1)(β + i + 2)

(α + β + γ + 2n)(α + β + γ + 2n+ 1)2(α + β + γ + 2n+ 2)
;

and

Ĉn,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c̃0,0 c̃0,1 �

c̃1,0 c̃1,1 c̃1,2
. . .

. . .
. . .

c̃n−2,n−3 c̃n−2,n−2 c̃n−2,n−1

c̃n−1,n−2 c̃n−1,n−1

� c̃n,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.17)
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with

c̃i,i = (i − n)(α − i + n)
(α + β + γ + 2n)(α + β + γ + 2n+ 1)2(α + β + γ + 2n+ 2)

,

×
(
α(β + 2i + 1)+ β2 + βγ + 2n(β + 2i + 1)+ β + 2γ i + γ − 2i2

)
,

c̃i+1,i = (i + 1)(β + i + 1)(α + γ − i + 2n)(α + β + γ − i + 2n)

(α + β + γ + 2n)(α + β + γ + 2n+ 1)2(α + β + γ + 2n+ 2)
,

for 0 ≤ i ≤ n− 1 and

c̃i,i+1 = (n− i − 1)(n− i)(α − i + n− 1)(α − i + n)
(α + β + γ + 2n)(α + β + γ + 2n+ 1)2(α + β + γ + 2n+ 2)

,

for 0 ≤ i ≤ n− 2. Moreover, the monic polynomials can be expressed as

P̂
(α,β,γ )
n,m (x, y) = (−1)m+n(α + 1)n(β + 1)m

(α + β + γ +m+ n+ 2)m+n

× F 1:1;1
0:1;1

(
α + β + γ +m+ n+ 2 : −n; −m

− : α + 1; β + 1
x, y

)
, (2.18)

so that

P̂n =
(
P̂
(α,β,γ )
n−m,m (x, y)

)n
m=0

.

These polynomials are orthogonal in

A = {(x, y) ∈ R2 | 0 ≤ y ≤ 1− x, 0 ≤ x ≤ 1}

with respect to �(x, y) = xαyβ(1− x − y)γ .
One disadvantage of this approach is that it is too restrictive and many families of

orthogonal polynomials are not considered here (see [52] for a number of partial dif-
ferential equations that are not of hypergeometric type or admissible or potentially
self-adjoint). On the other hand, this method allows to give a general approach to this
class of orthogonal polynomials and to extend it to the discrete and q-analogues. As
a byproduct, we can easily obtain the relations between “different” solutions of the
same partial differential (difference or q-difference equation). In order to show this
last property, we shall consider the following second-order admissible potentially
self-adjoint partial difference equation of hypergeometric type [7]

(p1−1)x�1∇1u(x, y)+p1y�1∇2u(x, y)+p2x�2∇1u(x, y)+(p2−1)y�2∇2u(x, y)

+ (x −Np1)�1u(x, y) + (y −Np2)�2u(x, y)− (n1 + n2)u(x, y) = 0 , (2.19)
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where the forward and backward difference operators are defined by

�1u(x, y) = u(x + 1, y)− u(x, y), �2u(x, y) = u(x, y + 1)− u(x, y),
∇1u(x, y) = u(x, y)− u(x − 1, y), ∇2u(x, y) = u(x, y)− u(x, y − 1).

There exist at least four polynomial solutions of (2.19):

1. The monic bivariate Kravchuk polynomials [55, 57], defined as a generalized
Kampé de Fériet series [51] by means of

K̂
p1,p2
n1,n2 (x, y;N) = (−1)n1+n2p

n1
1 p

n2
2 (N − n1 − n2 + 1)n1+n2

× F 0:2;2
1:0;0

(− : −n1,−x; −n2,−y
−N : −;−

1

p1
,

1

p2

)
; (2.20)

2. the non-monic bivariate Kravchuk polynomials [55, 57], defined also as a
generalized Kampé de Fériet series,

K
p1,p2
n1,n2 (x, y;N) = (x + y −N)n1+n2

× F 0:2;2
1:0;0

( − : −n1,−x; −n2,−y
−n1 − n2 − x − y + N + 1 : −;−

p1 + p2 − 1

p1
,
p1 + p2 − 1

p2

)
;

(2.21)

These polynomials are exactly the same obtained from the Rodrigues-type
formula [47, Eq. (60)].

3. the non-monic bivariate Kravchuk polynomials [46] defined as a product of
univariate Kravchuk polynomials

K̃
p1,p2
n1,n2 (x, y;N) =

(N − n1)!
N ! (n1 −N)n2

×Kn1(x;p1/(p1 + p2), x + y)Kn2(x + y − n1;p1 + p2, N − n1) ,

(2.22)

where for 0 < p < 1 and n = 0, 1, . . . , N , the univariate Kravchuk polynomials
are normalized as [44]

Kn(x;p,N) = (−N)n 2F1

( −n,−x
−N

1

p

)
; (2.23)
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4. and the non-monic bivariate Kravchuk polynomials [17, Eq. (5.19)] defined also
as a product of univariate Kravchuk polynomials

K2(n1, n2; x, y;p1, p2;N)

= 1

(−N)n1+n2

Kn1(x;p1, N − n2)Kn2(y;p2/(1− p1),N − x). (2.24)

The above polynomials have been analyzed in [39, Eq. (44)] for specific values
of p1 and p2 as eigenfunctions of a certain isotropic Hamiltonian.

From the hypergeometric approach [7] applied to (2.19) we obtain that these four
families of polynomials are orthogonal with respect to the trinomial distribution [24]

�N,p1,p2(x, y) = N !
x! y! (N − x − y)!p

x
1 p

y
2 (1− p1 − p2)

N−x−y, (2.25)

in the triangular domain G defined by x ≥ 0, y ≥ 0, and 0 ≤ x + y ≤ N , where
N is a positive integer and p1 and p2 are real numbers satisfying p1 > 0, p2 > 0,
0 < p1 + p2 < 1.

Let P̂n be the column vector of the monic bivariate Kravchuk polynomials (2.20).
Let Pin and P

j
n be any two other families. Then, we have

P
i
n = Gin,n P̂n, P

j
n = Gjn,n P̂n.

As a consequence, we obtain the following formula relating the two families of
bivariate Kravchuk polynomials

P
i
n = Gin,n(Gjn,n)−1

P
j
n, n ≥ 0.

The latter expression can also be written as

Pn−j,j (x, y) =
n∑
l=0

bj,lP̃n−l,l (x, y), j = 0, 1, . . . , n,

where Pn−j,j (x, y) and P̃n−l,l (x, y) stand for the elements of the ith and j th family

respectively, and (bj,0, bj,1, . . . , bj,n) is the j th row of the matrix Gin,n(G
j
n,n)
−1.

For instance, for the fourth family we have

G4
n,n =

(
(−1)n

(
r

s

)
(1− p1)

sp−s2 p
r−n
1

(N − n+ 1)n

)n
r,s=0

.
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Therefore,

(G4
n,n)
−1 =

((
r

s

)
(−1)n−r−s(1− p1)

−rpr2(N − n+ 1)np
n−s
1

)n
r,s=0

.

As an example, for n = 3, the link between the third family (2.22) and the fourth
family (2.24) is given by

P
3
3 =

⎛
⎜⎜⎝

p3
2K

3 −3p3
2K

3 3p3
2K

3 −p3
2K

3

p1p
2
2�K

2 −p2
2K

2 (p2 + 2p1�) p2
2K

2 (2p2 + p1�) −p3
2K

2

p2
1p2�

2K −p1p2�K (2p2 + p1�) p
2
2K (p2 + 2p1�) −p3

2K

p3
1�

3 −3p2
1p2�

2 3p1p
2
2� −p3

2

⎞
⎟⎟⎠P

4
3,

where� = p1 + p2 − 1 andK = p1 + p2.
Limit relations from bivariate Kravchuk polynomials to bivariate Hermite poly-

nomials have been studied in [5], as well as some limit relations between bivariate
Hahn to bivariate Appell polynomials.

2.2 Bivariate Orthogonal Polynomials on Nonuniform Lattices

As we have seen in the univariate case all “classical” orthogonal polynomials
are solution of a second-order differential (difference, q-difference, or divided-
difference) equation of hypergeometric type. In the multivariate situation we
have analyzed admissible potentially self-adjoint second-order partial differential
(difference or q-difference) equations of hypergeometric type having orthogonal
polynomial solutions. But, if we try to analyze the equation in nonuniform lattices
this is no longer true.

Let us consider the bivariate Racah polynomials considered introduced by
Tratnik in [57] and deeply analyzed by Geronimo and Iliev in [17], where they
construct a commutative algebra Ax of difference operators in R2, depending
on 5 parameters, which is diagonalized by the multivariable Racah polynomials
considered by Tratnik. The bivariate Racah polynomials are defined in terms of
univariate Racah polynomials (1.8) as

Rn,m(s, t; β0, β1, β2, β3, N) = rn(β1 − β0 − 1, β2 − β1 − 1,−t − 1, β1 + t; s)
× rm(2n+ β2 − β0 − 1, β3 − β2 − 1, n−N − 1, n+ β2 +N; t − n), (2.26)

which are polynomials in the lattices x(s) = s(s + β1) and y(t) = t (t + β2). These
polynomials coincide with the bivariate Racah polynomials of parameters a1, a2,
a3, γ , and η introduced by Tratnik [57, Eq. (2.1)] after the substitutions

β0 = a1−η−1, β1 = a1, β2 = a1+a2, β3 = a1+a2+a3, and N = −γ−1.
(2.27)
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The equation for bivariate Racah polynomials given in [18] has 9 rational coef-
ficients, compared to 6 polynomial coefficients for the operator corresponding to
bivariate big q-Jacobi polynomials. After some manipulations the equation obtained
by Geronimo and Iliev can be expressed as [53]

f1(x(s), y(t))D
2
xD

2
yRn,m(s, t) + f2(x(s), y(t))SxDxD

2
yRn,m(s, t)

+ f3(x(s), y(t))SyDyD
2
xRn,m(s, t) + f4(x(s), y(t))SxDxSyDyRn,m(s, t)

+ f5(x(s))D
2
xRn,m(s, t) + f6(y(t))D

2
yRn,m(s, t)

+ f7(x(s))SxDxRn,m(s, t) + f8(y(t))SyDyRn,m(s, t)

+ (m+ n)(β3 − β0 +m+ n− 1)Rn,m(s, t) = 0, (2.28)

where Rn,m(s, t) := Rn,m(s, t; β0, β1, β2, β3, N), and the coefficients fi , i =
1, . . . , 8 are polynomials in the lattices x(s) and y(t) given by

f8(y(t)) = (β0 − β3)y(t)−N(β0 − β2)(β3 +N),
f7(x(s)) = (β0 − β3)x(s)−N(β0 − β1)(β3 +N),

f6(y(t)) = −(y(t))2 + 1

2
(2N2 + 2β3(β0 + N)− β2(β3 + β0))y(t)

− 1

2
Nβ2(β0 − β2)(β3 +N),

f5(x(s)) = −(x(s))2 + 1

2
(2β3(N + β0)+ 2N2 − β1(β3 + β0))x(s)

− 1

2
Nβ1(β0 − β1)(β3 +N),

f4(x(s), y(t)) = −2x(s)y(t)+ (2N2 + β2(1− β0)+ β3(β0 − 1+ 2N))x(s)

+ (β0 − β1)(β3 + 1)y(t)−N(β0 − β1)(β2 + 1)(β3 +N),
f3(x(s), y(t)) = (β2 − β3)(x(s))

2

+ x(s)
(
− (1+ β1 + β3 − 2β0)y(t)+ (1+ β1 − 2β0 + β2)N

2

− β3 (−β1 − β2 − 1+ 2β0) N + 1

2
(β2 − β3) (β1β0 − 2 β0 + β1)

)

+ 1

2
β1 (β3 + 1) (β0 − β1) y(t)− 1

2
β1N (β2 + 1) (β3 + N) (β0 − β1) ,

f2(x(s), y(t)) = (β0 − β1)(y(t))
2

+ x(s)
(
(β0 + β2 − 2β3 − 1)y(t)+ (1− β0 + β2) N

2
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− β3 (−1+ β0 − β2) N + 1

2
β2 (β2 − β3) (β0 − 1)

)

− 1

2
(β0 − β1)

(
2 β3N − β3β2 + 2N2 − 2β3 + β2

)
y(t)

− 1

2
(β0 − β1) Nβ2 (β2 + 1) (β3 +N) ,

f1(x(s), y(t)) = −(x(s))2y(t)− x(s)(y(t))2 + (N2 + β3N − 1

2
β2 (β2 − β3))(x(s))

2

+ 1

2
β1 (β0 − β1) (y(t))

2 +
((

1

2
β1 + 1

2
− 1

2
β3 − β0

)
β2 − β3

− 1

2
β1 + 2β0β3 + β0 +N2 − β1β3 + β3N − 1

2
β1β0

)
x(s)y(t)

+
((

1

2
β1β0 + 1

2
β2

2 + 1

2
β1β2 + 1

2
β2 − β0β2 + 1

2
β1 − β0

)
N2

+ 1

2
β3

(
β1β0 + β2

2 + β1β2 + β2 − 2β0β2 + β1 − 2β0

)
N

− 1

4
β2 (β2 − β3) (β1β0 + β1 − 2 β0))x(s)

− 1

4
β1

(
β2 − 2β3 + 2β3N + 2N2 − β2β3

)
(β0 − β1) y(t)

− 1

4
Nβ1β2 (β2 + 1) (β0 − β1) (β3 +N) .

From the above presentation of the equation obtained by Geronimo and Iliev it is
possible to prove that the divided-difference(s) of bivariate Racah polynomials are
solution of an equation of the same type and hence [53]

DxRn,m(s, t; β0, β1, β2, β3, N) = n(n− β0 + β2 − 1)

× Rn−1,m(s − 1/2, t − 1; β0, β1 + 1, β2 + 2, β3 + 2, N − 1).

Similarly, if we consider the following second family of the bivariate Racah
polynomials obtained from [57, Equation (2.12)] using the transformations (2.27)

R̄n,m(s, t; β0, β1, β2, β3, N)

= rn(2m− β1 + β3 − 1, β1 − β0 − 1,m−N − 1,m− N − β1, N −m− s)
× rm(β3 − β2 − 1, β2 − β1 − 1, s − N − 1,−β2 −N − s,N − t), (2.29)



Hypergeometric Multivariate Orthogonal Polynomials 187

it follows that

DyR̄n,m(s, t; β0, β1, β2, β3, N)

= m(m+ β3 − β1 − 1)R̄n,m−1(s, t − 1/2; β0, β1, β2 + 1, β3 + 2, N − 1).

As it happens in the bivariate Kravchuk case, both families of bivariate Racah poly-
nomials Rn,m(s, t; β0, β1, β2, β3, N) and R̄n,m(s, t; β0, β1, β2, β3, N) are solution
of the same divided-difference equation (2.28).

Another advantage of presenting the equation for bivariate Racah polynomials
in the form (2.28) is that it is possible to compute explicitly the matrices of the
three-term recurrence relation satisfied by a “monic” family of bivariate Racah
polynomials, as they has been obtained in [54].

A similar approach has been followed for bivariate q-Racah and bivariate Askey–
Wilson polynomials. For these families of bivariate orthogonal polynomials the
difference equation(s) were also obtained by Geronimo and Iliev [18] and later
presented in a different form in [54] which have allowed to obtain some properties of
the bivariate orthogonal polynomials, as well as to explicitly compute the matrices
of the three-term recurrence relation satisfied by a family of monic polynomials.

In the bivariate situation, it is possible to consider appropriate limit relations (or
choice of the parameters) between the families of orthogonal polynomials. Some of
them have been already mentioned as the limit from bivariate Kravchuk to bivariate
Hermite polynomials. This is also valid if we consider orthogonal polynomials on
nonuniform lattices. For instance, if we consider the change of variables [18, p. 443]

{
β0 = a − b, β1 = 2a, β2 = 2a + 2e2, β3 = 2a + 2e2 + c + d,
s = −a + ix, t = −a − e2 + iy, N = −a − d − e2,

(2.30)

the bivariate Racah polynomials (2.26) become the bivariate Wilson polynomials
(similarly to the univariate case [27, p. 196])

Wn,m(x, y; a, b, c, d; e2)

= wn(x2; a, b, e2 + iy, e2 − iy)wm(y2; n+ a + e2, n+ b + e2, c, d), (2.31)

wherewn(x2; a, b, c, d) are the Wilson polynomials defined by (1.11). As indicated
in [53], the change of variable (2.30) transforms the fourth-order linear partial
divided-difference equation satisfied by bivariate Racah polynomials (2.28) into
another fourth-order linear partial divided-difference equation satisfied by the
bivariate Wilson polynomials (2.31):

f1(x, y)D2
xD2
yWn,m(x, y)+ f2(x, y)SxDxD2

yWn,m(x, y)

+ f3(x, y)SyDyD2
xWn,m(x, y)+ f4(x, y)SxDxSyDyWn,m(x, y)
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+ f5(x)D2
xWn,m(x, y)+ f6(y)D2

yWn,m(x, y)

+ f7(x)SxDxWn,m(x, y)+ f8(y)SyDyWn,m(x, y)

+ (m+ n)(2e2 + a + b + c + d +m+ n− 1)Wn,m(x, y) = 0, (2.32)

where

f8(y) = (−a − b − 2e2 − c − d) y2 + (c + d) e2
2 + (ad + ca + db + bc+ 2 dc) e2

+ adc + dba + bac+ dbc,
f7(x) = (−a − b − 2 e2 − c − d) x2 + (a + b) e2

2 + (bc+ db+ ad + 2 ba + ca) e2

+ bac + dbc+ adc+ dba,
f6(y) = −y4 +

(
be2 + ba + 2 ce2 + ca + ae2 + e2

2 + bc + dc + db + 2e2d + ad
)
y2

− dc (e2 + b) (e2 + a) ,
f5(x) = −x4 +

(
e2

2 + 2 ae2 + e2 d + ad + 2 be2 + ba + bc+ ce2 + dc+ db+ ca
)
x2

− ba (e2 + d) (e2 + c) ,
f4(x, y) = −2x2y2 + (d + c+ 2 ce2 + ca + bc+ 2 dc + db + 2 e2 d + ad) x2

+
(

2 ae2 + ca + ad + a + 2 be2 + 2 ba + bc+ db + b
)
y2

− (c + d) (a + b) e2
2 + (−2 dba − 2 adc − ad − 2 dbc− ca − db

−bc− 2 bac) e2 − 2 dbac− adc− dba − bac − dbc,
f3(x, y) = (c + d)x4 − ba (2 e2 + d + c + 1) y2 + (1+ 2 a + 2 e2 + c + d + 2 b)x2y2

+ ba
(
(c + d) e2

2 + (d + c + 2 dc) e2 + dc
)

+
(
(−c − d) e2

2 + (−2 ad − 2 bc− 2 ca − 2 db− c − d − 2 dc) e2

− db − ca − bc − 2 adc− dc− dba − bac − ad − 2 dbc
)
x2,

f2(x, y) = (a + b)y4 − dc (1+ a + b + 2 e2) x
2 + (a + b + 2 e2 + 2 c + 2 d + 1)x2y2

+ dc
(
(a + b) e2

2 + (2 ba + a + b) e2 + ba
)

+
(
(−a − b) e2

2 + (−a − 2 ba − 2 ad − 2 bc− b − 2 ca − 2 db) e2

− dbc− ba − ca − ad − 2 dba − bc − adc − 2 bac− db
)
y2,
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f1(x, y) = x4y2 + x2y4 − cdx4 − aby4 +
(
(−2 c− 2 b − 2 d − 1− 2 a) e2

− e2
2 − a − b − d − c − dc − ba − 2 ca − 2 db − 2 bc− 2 ad

)
x2y2

+ dc
(
e2

2 + (2 b + 2 a + 1) e2 + b + ba + a
)
x2

+ ba
(
e2

2 + (2 c+ 2 d + 1) e2 + c + d + dc
)
y2 − adbe2 c (1+ e2) .

Moreover, if we divide (2.31) by bn+m and take the limit as b → ∞ we obtain
(after redefining c→ b and d → c) the bivariate continuous dual Hahn polynomials
[56]

Dn,m(a, b, c, e2; x, y) = dn(a, e2+ix, e2−iy|x2)dm(n+a+e2, b, c|y2), (2.33)

where the univariate continuous dual Hahn polynomials are defined in (1.14). As in
the univariate case for the second-order divided-difference equation for univariate
continuous dual Hahn polynomials, the fourth-order divided-difference equation for
bivariate continuous dual Hahn polynomials can be obtained by taking the limit
as b → ∞ from the fourth-order divided-difference equation for bivariate Wilson
polynomials—and redefining c→ b and d → c—namely

f1(x, y)D2
xD2
yDn,m(x, y)+ f2(x, y)SxDxD2

yDn,m(x, y)

+ f3(x, y)SyDyD2
xDn,m(x, y)+ f4(x, y)SxDxSyDyDn,m(x, y)

+ f5(x)D2
xDn,m(x, y)+ f6(y)D2

yDn,m(x, y)

+ f7(x)SxDxDn,m(x, y)+ f8(y)SyDyDn,m(x, y)+ (m+ n)Dn,m(x, y) = 0,
(2.34)

where

f8(y) = −y2 + (c + b) e2 + cb+ ab + ca,
f7(x) = −x2 + e2

2 + (c + 2 a + b) e2 + ca + cb+ ab,
f6(y) = −cb (a + e2)+ (c + b + e2 + a) y2,

f5(x) = −a (e2 + c) (e2 + b)+ (2 e2 + a + b + c) x2,

f4(x, y) = (−b − c) e2
2 + (−2 ca − 2 ab − b − 2 cb− c) e2 − ca − 2 bac

− cb− ab + (1+ 2 e2 + 2 a + b + c) y2 + (c + b) x2,

f3(x, y) = a
(
e2 b + 2 be2 c + ce2 + cb+ ce2

2 + be2
2
)
+ 2 x2y2

− a (2 e2 + c + 1+ b) y2 + (−b − ab − 2 e2 b − 2 cb − c − 2 ce2 − ca) x2,
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f2(x, y) = cb
(

2 ae2 + a + e2 + e2
2
)
+ x2y2 − x2cb+ y4 + (−e2 − a − b

−e2
2 − 2 e2 b − 2 ae2 − 2 ca − c − 2 ce2 − cb− 2 ab

)
y2,

f1(x, y) = −be2 ca (1+ e2)+ (−1− 2 c − 2 e2 − 2 b − a) x2y2 + cb (1+ 2 e2 + a) x2

− ay4 + a
(
cb+ e2 + b + 2 e2 b + e2

2 + 2 ce2 + c
)
y2.

Hence, as mentioned at the beginning of this section, we suggest:

Definition 2.3 A multivariate orthogonal polynomial sequence is classical if it is
a special case or a limiting case of the multivariate Racah polynomials or the
multivariate Askey–Wilson polynomials.

Finally, the following questions arise in a natural way. How to:

1. State a general fourth-order divided-difference equation of hypergeometric type
and study its polynomial solutions, both for quadratic and q-quadratic lattices?

2. Study if the fourth-order divided-difference equation is admissible?
3. Study if the fourth-order divided-difference equation is potentially self-adjoint?
4. Obtain a Pearson-type system from the fourth-order divided difference equation,

as it has been done for second-order partial differential (difference, or q-
difference) equations of hypergeometric type?

5. Obtain a Rodrigues-type representation for orthogonal polynomial solutions of
the fourth-order divided-difference equation?

6. Obtain a hypergeometric representation of monic bivariate Racah and monic
bivariate Askey–Wilson polynomials? It might be interesting to notice that e.g.
both (2.20) and (2.22) are orthogonal polynomial solutions of (2.19); so, we have
bivariate Kravchuk polynomials in terms of one hypergeometric series (2.20) and
also as product of two univariate hypergeometric functions (2.22). The question
is related with giving another orthogonal polynomial solution to (2.28) in terms
of one hypergeometric series.

The above open problems are now under consideration and will be submitted
elsewhere.
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Abstract A survey of recents advances in the theory of Heun operators is offered.
Some of the topics covered include: quadratic algebras and orthogonal polynomials,
differential and difference Heun operators associated to Jacobi and Hahn polynomi-
als, connections with time and band limiting problems in signal processing.
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1 Introduction

This lecture aims to present an introduction to the algebraic approach to Heun
equation. To offer some motivation, we shall start with an overview of a central
problem in signal treatment, namely that of time and band limiting. Our stepping
stone will be the fact that Heun type operators play a central role in this analysis
thanks to the work of Landau, Pollack and Slepian [19], see also the nice overview
in [6]. After reminding ourselves of the standard Heun equation, we shall launch
into our forays. We shall recall that all polynomials of the Askey scheme are
solutions to bispectral problems and we shall indicate that all their properties can
be encoded into quadratic algebras that bear the name of these families. We shall
use the Jacobi polynomials as example. We shall then discuss the tridiagonalization
procedure designed to move from lower to higher families of polynomials in the
Askey hierarchy. This will be illustrated by obtaining the Wilson/Racah polynomials
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from the Jacobi ones or equivalently by embedding the Racah algebra in the Jacobi
algebra. We shall then show that the standard Heun operator can be obtained from
the most general tridiagonalization of the hypergeometric (the Jacobi) operator. This
will lead us to recognize that an algebraic Heun operator can be associated to each
entry of the Askey tableau. We shall then proceed to identify the Heun operator
associated to the Hahn polynomials. It will be seen to provide a difference version
of the standard Heun operator. We shall have a look at the algebra this operator
forms with the Hahn operator and of its relation to the Racah algebra. We shall then
loop the loop by discussing the finite version of the time and band limiting problem
and by indicating how the Heun-Hahn operator naturally provides a tridiagonal
operator commuting with the non-local limiting operators. We shall conclude with
a summary of the lessons we will have learned.

2 Motivation and Background

2.1 Time and Band Limiting

A central problem in signal processing is that of the optimal reconstruction of
a signal from limited observational data. Several physical constraints arise when
sampling a signal. We will here focus on those corresponding to a limited time
window and to a cap on the detection of frequencies. Consider a signal represented
as a function of time by

f : R −→ R,

and suppose f can only be observed for a finite time interval

W = [−T , T ] ⊂ R.

This time limiting can be expressed as multiplication by a step function χ
W

defined
by

χ
W
(t) =

{
1, if − T ≤ t ≤ T ,
0, otherwise.

Now, suppose the measurements are limited in their bandwidth. This corresponds
to an upper bound on accessible frequencies. Let us express this band limiting as
multiplication by a step function χ

N
of the Fourier transform of the signal f , where

χ
N
(n) =

{
1, if 0 ≤ n ≤ N,
0, otherwise.
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This defines the time limiting operator χ
W

χW : C(R) −→ C(R),

acting by multiplication on functions of time and the band limiting operator χ
N

χN : C(R) −→ C(R),

acting by multiplication on functions of frequencies. Thus, the available data on
f is limited to χN F χW f , where F denotes the Fourier transform. The time and
band limiting problem consists in the optimal reconstruction of f from the limited
available data χN F χW f .

In this context, the best approximation of f requires finding the singular vectors
of the operator

E = χ
N
F χ

W
,

which amounts to the eigenvalue problems for the following operators

E∗E = χ
W
F−1χ

N
Fχ

W
, and EE∗ = χ

N
Fχ

W
F−1χ

N
.

For F the standard Fourier transform, one has

[
EE∗ f̃

]
(l) = χ

N

T∫

−T
eilt

⎛
⎝
N∫

0

f̃ (k)e−ikt dk

⎞
⎠ dt

= χ
N

N∫

0

f̃ (k)

⎛
⎝

T∫

−T
ei(l−k)tdt

⎞
⎠ dk,

=
∫
KT (l, k)f̃ (k)dk, (2.1)

where

KT (l, k) =
T∫

−T
ei(l−k)T dt = sin(l − k)T

(l − k) ,

which is the integral operator with the well-known sinc kernel. It is known, that
non local operators such as E∗E have spectra that are not well-suited to numerical
analysis. This makes difficult obtaining solutions to the time and band limiting
problem. However, a remarkable observation of Landau, Pollak and Slepian [12–
14, 18, 20] is that there is a differential operator D with a well-behaved spectrum
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that commutes with the integral operator E∗E. This reduces the time and band
limiting problem to the numerically tractable eigenvalue problem for D. In the
above example, this operatorD is a special case of the Heun operator. The algebraic
approach presented here will give indications (in the discrete-discrete case in
particular) as to why this “miracle” happens.

2.2 The Heun Operator

Let us first remind ourselves of basic facts regarding the usual Heun operator
[9]. The Heun equation is the Fuchsian differential equation with four regular
singularities. The standard form is obtained through homographic transformations
by placing the singularities at x = 0, 1, d and∞ and is given by

d2

dx2ψ(x)+
(
γ

x
+ δ

x − 1
+ ε

x − d
)
d

dx
ψ(x)+ αβx − q

x(x − 1)(x − d)ψ(x) = 0,

where

α + β − γ − δ + 1 = 0,

to ensure regularity of the singular point at x = ∞. This Heun equation can be
written in the form

Mψ(x) = λψ(x)

withM the Heun operator given by

M = x(x − 1)(x − d) d
2

dx2 + (ρ2x
2 + ρ1x + ρ0)

d

dx
+ r1x + r0, (2.2)

with

ρ2 = −(γ + δ + ε), ρ1 = (γ + δ)d + γ + ε,
ρ0 = −γ d,
r1 = −αβ, r0 = q + λ.

One can observe thatM sends any polynomial of degree n to a polynomial of degree
n + 1. Indeed, the Heun operator can be defined as the most general second order
differential operator with this property.
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3 The Askey Scheme and Bispectral Problems

A pair of linear operatorsX and Y is said to be bispectral if there is a two-parameter
family of common eigenvectors ψ(x, n) such that one has

Xψ(x, n) = ω(x)ψ(x, n)
Yψ(x, n) = λ(n)ψ(x, n),

where, X acts on the variable n and Y , on the variable x. These relations define
two representations for the operators X and Y , the “x” and the “n” representations
depending on which side of the equations is adopted (see below). It is understood
that the same representation is used when computing products of operators. For the
band-time limiting problem associated the sinc kernel, one has the two-parameter
family of eigenfunctions given by ψ(t, n) = eitn with the bispectral pair identified
as

X = − d
2

dn2
, ω(t) = t2,

Y = − d
2

dt2
, λ(n) = n2.

In this case, in each of the representation, one of the operator is differential.
In general, bispectral pairs can be realized in terms of continuous and discrete
operators.

A key observation is that each family of hypergeometric polynomials of the
Askey scheme defines a bispectral problem. Indeed, these polynomials are the
solution to both a recurrence relation and a differential or difference equation. By
associating X with the recurrence relation and Y with the differential or difference
equation, one forms a bispectral problem as follows. In the x-representation,X acts
a multiplication by the variable and Y as the differential or difference operator while
in the n-representation, X acts as a three-term difference operator over n and Y
as multiplication by the eigenvalue. The family of common eigenvectors are the
orthogonal polynomials.

As a relevant example, consider the (monic) Jacobi polynomials P̂ (α,β)n (x)

defined as follows [10]

P̂ (α,β)n (x) = (−1)n(α + 1)n
(α + β + n+ 1)n

2F1

(−n, n+ α + β + 1
α + 1

; x
)
.

These polynomials are the eigenvectors of the hypergeometric operatorDx given by

Dx ≡ x(x − 1)
d2

dx2 + (α + 1− (α + β + 2)x)
d

dx
, (3.1)
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such that

Dx P̂
(α,β)
n (x) = λn P̂ (α,β)n (x),

with eigenvalues given by λn = −n(n+ α + β + 1). They form an orthogonal set:

1∫

0

P̂ (α,β)n (x)P̂ (α,β)m (x)xα(1− x)βdx = hnδn,m, (3.2)

where

hn = �(α + 1)�(β + 1)

�(α + β2)
u1u2 · · · un.

The Jacobi polynomials also satisfy the three-term recurrence relation given by

xP̂ (α,β)n (x) = P̂ (α,β)n+1 (x)+ bnP̂ (α,β)n (x)+ unP̂ (α,β)n−1 (x), (3.3)

where

un = n(n+ α)(n+ β)(n+ α + β)
(2n+ α + β − 1)(2n+ α + β)2(2n+ α + β + 1)

,

bn = 1

2
+ α

2 − β2

4

(
1

2n+ α + β −
1

2n+ α + β + 2

)
.

Taking

X = x, Y = Dx,

for the x-representation and

X = T +n + bn · 1+ unT −n , Y = λn, where T ±n fn = fn±1,

for the n-representation, the Jacobi polynomials provide a two-parameter set of
common eigenvectors of X and Y and hence of the bispectral problem they define.
This construction arises similarly for all the orthogonal polynomials in the Askey
scheme.

3.1 An Algebraic Description

The properties of the orthogonal polynomials of the Askey scheme can be encoded
in an algebra as follows. For any such polynomials, take the X operator to be the
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multiplication by the variable and the Y operator as the differential or difference
equation they satisfy. Consider then the associative algebra generated by K1, K2
andK3 where

K1 ≡ X, K2 ≡ Y, K3 ≡ [K1,K2]. (3.4)

Upon using these definitions for the generators, one can derive explicitly the com-
mutation relations to obtain that [K2,K3] and [K3,K1] are quadratic expressions
in K1 and K2. Once these relations have been identified, the algebra can be
posited abstractly and the properties of the corresponding polynomials follow from
representation theory.

Sitting at the top of the Askey scheme, the Wilson and Racah polynomials [10]
are the most general ones and the algebra encoding their properties encompasses the
others. As the algebraic description is insensitive to truncation, both the Wilson and
Racah polynomials are associated to the same algebra. This algebra is known as the
Racah-Wilson or Racah algebra and is defined [4] as the associative algebra over C
generated by {K1,K2,K3} with relations

[K1,K2] = K3 (3.5)

[K2,K3] = a1{K1,K2} + a2K
2
2 + bK2 + c1K1 + d1I (3.6)

[K3,K1] = a1K
2
1 + a2{K1,K2} + bK1 + c2K2 + d2I, (3.7)

where a1, a2, b, c1, c2, d1 and d2 are structure parameters and where {A,B} =
AB + BA denotes the anti-commutator. One can show that the Jacobi identity is
satisfied. The Racah algebra naturally arises in the study of classical orthogonal
polynomials but has proved useful in the construction of integrable models and in
representation theory [3, 4].

Other polynomials of the Askey scheme can be obtained from the Racah or
Wilson polynomials by limits and specializations. The associated algebras can be
obtained from the Racah algebra in the same way. In particular, the Jacobi algebra
[5] constitutes one such specialization where a1, c1, d1, d2 → 0. Indeed, taking

A1 = Y = Dx ≡ x(x − 1)
d2

dx2
+ (α + 1− (α + β + 2)x)

d

dx
,

A2 = X = x, A3 ≡ [A1, A2] = 2x(x − 1)
d

dx
− (α + β + 2)x + α + 1,

(3.8)

one finds the following relations for the Jacobi algebra

[A1, A2] = A3 (3.9)

[A2, A3] = a2A
2
2 + dA2 (3.10)
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[A3, A1] = a2{A1, A2} + dA1 + c2A2 + e2, (3.11)

where a2 = 2, d = −2, c2 = −(α + β)(α + β + 2) and e2 = (α + 1)(α + β).

3.2 Duality

The bispectrality of the polynomials in the Askey scheme is related to a notion
of duality where the variable and the degree are exchanged. In the algebraic
description, this corresponds to exchanging the X and Y operator. Let us make
details explicit in the finite-dimensional case where the polynomials satisfy both
a second order difference equation and a three-term recurrence relation [8].

In finite dimension, both the X and Y operator will admit a finite eigenbasis.
Let us denote the eigenbasis of X by {en} and the one of Y by {dn} for n =
0, 1, 2, . . . , N . One first notices that Y will be tridiagonal in the X eigenbasis and
likewise for X in the Y eigenbasis. Explicitly, one has

Xen = λnen, Ydn = μndn, (3.12)

Xdn = an+1dn+1 + bndn + andn−1, Y en = ξn+1en+1 + ηnen + ξnen−1,

n = 0, 1, . . . , N

where {an}, {bn}, {ξn} and {ηn} for n = 0, 1, . . . , N are scalar coefficients. As both
the X and Y eigenbases span the same space, one can expand one basis onto the
other as follows

es =
N∑
n=0

√
wsφn(λs)dn, (3.13)

where φn(x) are the polynomials associated to the algebra defined by the following
recurrence relation

an+1φn+1(x)+ bnφn(x)+ anφn−1(x) = xφn(x), φ−1 = 0, φ0 = 1,

which verify the orthogonality relation

N∑
s=0

wsφn(λs)φm(λs) = δn,m,

so that the reverse expansion is easily seen to be

dn =
N∑
s=0

√
wsφn(λs)es.
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Consider now the dual set of polynomials χn(x) defined by the following
recurrence relation

ξn+1χn+1(x)+ ηnχn(x)+ ξnχn−1(x) = xχn(x), χ−1 = 0, χ0 = 1,

which are orthogonal with respect to the dual weights w̃s :
N∑
s=0

w̃sχn(μs)χm(μs) = δn,m. (3.14)

These dual polynomials provide an alternative expansion of one basis onto the other.
One has

ds =
N∑
n=0

√
w̃sχn(μs)en. (3.15)

One readily verifies this expansion by applying Y to obtain

Yds =
N∑
n=0

√
w̃sχn(μs)Y en =

N∑
n=0

√
w̃sχn(μs)[ξn+1en+1 + ηnen + ξnen−1]

=
N∑
n=0

√
w̃s[ξn+1χn+1(μs)+ ηnχn(μs)+ ξnχn−1(μs)]en = μsds.

Using the orthogonality of the polynomials {χn(μs)} given by (3.14), the expansion
(3.15) is inverted as

en =
N∑
s=0

√
w̃sχN (μs)ds.

Comparing the above with the first expansion in (3.13), knowing the {dn} to be
orthogonal, one obtains

√
wsφn(λs) =

√
w̃nχs (μn), (3.16)

a property known as Leonard duality [15], see also [21] for an introduction to
Leonard pairs.
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4 Tridiagonalization of the Hypergeometric Operator

Tridiagonalization enables one to construct orthogonal polynomials with more
parameters from simpler ones and thus to build a bottom-up characterization of
the families of the Askey scheme from this bootstrapping. In particular, properties
of the Wilson and Racah polynomials can be found from the tridiagonalization
of the hypergeometric operator [5]. Moreover, by considering the most general
tridiagonalization, one recovers the complete Heun operator [7].

4.1 The Wilson and Racah Polynomials from the Jacobi
Polynomials

In the canonical realization of the Jacobi algebra in terms of differential operators
presented in (3.8), one of the generators is the hypergeometric operator (3.1) and
the other is the difference operator in the degree corresponding to the recurrence
relation (3.3). We consider the construction of an operator in the algebra which is
tridiagonal in the eigenbases of both operators.

Let Y = Dx be the hypergeometric operator and X = x be multiplication by the
variable. DefineM in the Jacobi algebra as follows

M = τ1XY + τ2YX + τ3X + τ0, (4.1)

where τi , i = 0, 1, 2, 3 are scalar parameters. Knowing that X leads to the three-
term recurrence relation of the Jacobi polynomials P̂ (α,β)n (x):

X P̂ (α,β)n (x) = xP̂ (α,β)n (x) = P̂ (α,β)n+1 (x)+ bnP̂ (α,β)n (x)+ unP̂ (α,β)n−1 (x),

and is obviously tridiagonal, it is clear from (4.1) thatM will also be tridiagonal in
the eigenbasis of Y that the Jacobi polynomials form. One has

MP̂ (α,β)n (x) = ξn+1P̂
(α,β)
n+1 (x)+ ηnP̂ (α,β)n (x)+ bnunP̂ (α,β)n−1 (x), (4.2)

where

ξn = τ1λn−1 + τ2λn + τ3,
ηn = (τ1 + τ2)λnbn + τ3bn,
bn = τ1λn + τ2λn−1 + τ3.

If τ1 + τ2 = 0, then M simplifies to M = τ1[X,Y ] + τ3X, which is a first order
differential operator. In order forM to remain a second order operator, one demands
that τ1 + τ2 �= 0. In this case, normalizing M so that τ1 + τ2 = 1, one obtains
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explicitly

M = x2(x − 1)
d2

dx2
+ x[α + 1− 2τ2 − (α + β − 2τ2)x] d

dx

− [τ2(α + β + 2)− τ3]x + (α + 1)τ2 + τ0. (4.3)

We now construct a basis in whichM is diagonal. In the realization (3.8), where the
algebra acts on functions of x, X is multiplication by x and its inverse is defined by

X−1 : f (x) �−→ 1

x
f (x).

With this definition, one can invert the expression forM given by (4.1) to obtain

Y = τ1X−1M + τ2MX−1 + (2τ1τ2 − τ0)X−1 − (2τ1τ2 + τ3). (4.4)

Observing that (4.4) has the same structure as (4.1) under the transformation X �→
X−1, the eigenfunctions ofM can be constructed as follows. Introduce the variable
y = 1/x and conjugateM and Y by a monomial in y to obtain

Ỹ = yν−1Yy1−ν, M̃ = yν−1My1−ν.

Then, by demanding that

τ3 = (4+ α + β − ν)(τ2 + ν − 1)− ντ2,

the conjugated operators take the following form,

−Ỹ = y2(y − 1)
d2

dy2 + y(a1y + b1)
d

dy
+ c1y + d1,

−M̃ = y(y − 1)
d2

dy2 + (a2y + b2)
d

dy
+ d2,

with all the new parameters being simple expressions in terms of α, β, τ0, τ2 and ν.
Up to a global sign, one recognizes M̃ as the hypergeometric operator in terms of
the variable y, while Ỹ is similar toM . As the Jacobi polynomials diagonalizes the
hypergeometric operator, the eigenvectors satisfying

Mψn(x) = λ̃nψn(x) (4.5)
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are easily found to be

ψn(x) = xν−1P̂ (α̃,β̃)n (1/x) , λ̃n = n(n+ α̃ + β̃ + 1),

β̃ = β, α̃ = 2(τ2 + ν)− α − β − 7.

It follows from the recurrence relation of the Jacobi polynomials (3.3) that X−1 is
tridiagonal in the basis ψn(x) as it corresponds to multiplication by the variable.
Thus, a glance at (4.4) confirms that Y is tridiagonal in the ψn(x) basis.

In order to relate this result with the Wilson and Racah orthogonal polynomials,
consider the expansion of ψn(x) in terms of P̂ (α,β)k (x). One has

ψn(x) =
∞∑
k=0

Gk(n)P̂
(α,β)
k (x). (4.6)

By factoring the expansion coefficients asGk(n) = G0(n)�kQk(n), one finds using
(4.2) and (4.5) that, for a unique choice of �k ,Qk satisfies the following three-term
recurrence relation

λ̃nQk(n) = BkQk+1(n)+ UkQk(n)+ FkQk−1(n),

where

Bk = uk+1(τ1λk+1 + τ2λk + τ3),
Uk = λkbk + τ3bk, (4.7)

Fk = τ1λk−1 + τ2λk + τ3.

The recurrence relation allows to identify the factor Qk(n) of the expansion coef-
ficient in (4.6) as the four-parameter Wilson polynomials Wn(x; k1, k2, k3, k4). In
this construction, two of these parameters are inherited from the Jacobi polynomials
while, after scaling, the tridiagonalisation introduced two free parameters.

The Racah polynomials occur in this setting when a supplementary restriction
is introduced. Indeed, a glance at (4.3) shows that the generic M operator maps
polynomials of degree n into polynomials of degree n + 1. However, one can see
from (4.2) that if

ξN+1 = τ1λN + τ2λN+1 + τ3 = 0,

both Y andM preserve the space of polynomials of degree less than or equal to N .
This truncation condition is satisfied when ν = N + 1 = 2 − 2τ2. In this case, the
eigenvectors ofM are

ψn(x) = xN P̂ (N−α−β−4,β)
n (1/x),
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which are manifestly polynomials of degree N − n. One then considers again the
expansion of the basis element ψn(x) into P̂ (α,β)k (x) to obtain

ψn(x) =
N∑
k=0

Rn,kP̂
(α,β)
k (x),

where the expansion coefficients Rn,k can be shown to be given in terms of the
Racah polynomials. Using the orthogonality of the Jacobi polynomials given in
(3.2), one obtains

Rn,khk =
1∫

0

ψn(x)P̂
(α,β)
k (x) xα(1− x)βdx,

an analog of the Jacobi-Fourier transform of Koornwinder [11], giving an integral
representation of the Racah polynomials.

It was stated earlier that the properties of the orthogonal polynomials in the
Askey scheme are encoded in their associated algebras. This can be seen from the
construction of the Wilson and Racah polynomials from the Jacobi polynomials by
the tridiagonalization procedure which corresponds algebraically to an embedding
of the Racah algebra in the Jacobi algebra. This is explicitly given by

K1 = A1, K2 = τ1A2A1 + τ2A1A2 + τ3A2, (4.8)

where A1, A2 are the Jacobi algebra generators as in (3.8). One shows that K1 and
K2 as defined in (4.8) verify the relations (3.5) of the Racah algebra assuming that
A1 and A2 verify the Jacobi relations as given in (3.9). Thus, the embedding (4.8)
encodes the tridiagonalization result abstractly.

The tridiagonalisation (4.1) used to derive higher polynomials from the Jacobi
polynomials is not the most general tridiagonal operator that can be constructed
from the Jacobi algebra generators. Indeed, consider the addition in (4.1) of a linear
term in Y , given by (3.1):

M = τ1XY + τ2YX + τ3X + τ4Y + τ0. (4.9)

It is straightforward to see that M as given by (4.9) is equal to the Heun operator
(2.2). Expressed as in (4.9), the Heun operator is manifestly tridiagonal on the Jacobi
polynomials, which offers a simple derivation of a classical result. For the finite
dimensional situation see [16].
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5 The Algebraic Heun Operator

The emergence of the standard Heun operator from the tridiagonalization of the
hypergeometric operator suggests that Heun-type operators can be associated to
bispectral problems. In particular, knowing all polynomials in the Askey scheme
to define bispectral problems, there should be Heun-like operators associated to
each of these families of polynomials. Guided by this observation, consider a set of
polynomials in the Askey scheme and letX and Y be the generators of the associated
algebra as in (3.4). As before, X is the recurrence operator and Y , the difference or
differential operator. The corresponding Heun-type operatorW is defined as

W = τ1XY + τ2YX + τ3X + τ4Y + τ0, (5.1)

and will be referred to as an algebraic Heun operator [8]. The operatorW associated
to a polynomial family will have features similar to those of the standard Heun
operator which arises in the context of the Jacobi polynomials. To illustrate this,
a construction that parallels the one made for the Jacobi polynomials is presented
next.

5.1 A Discrete Analog of the Heun Operator

The standard Heun operator can be defined as the most general degree increasing
second order differential operator. In analogy with this, one defines the difference
Heun operator as:

Definition (Difference Heun Operator) The difference Heun operator is the most
general second order difference operator on a uniform grid which sends polynomials
of degree n to polynomials of degree n+ 1.

We now obtain an explicit expression for the difference Heun operator on the
finite grid G = {0, 1, . . . , N}. Let T ± be shift operators defined by

T ±f (x) = f (x ± 1), (5.2)

and takeW to be a generic second order difference operator with

W = A1(x)T
+ + A2(x)T

− + A0(x)I. (5.3)

By demanding thatW acting on 1, x and x2 yields polynomials of one degree higher,
one obtains that

A0(x) = π̃1(x) − π̃3(x), A1(x) = π̃3(x) − π̃2(x)

2
, A2(x) = π̃3(x)+ π̃2(x)

2
,

(5.4)
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where the π̃i(x) are arbitrary polynomials of degree i for i = 1, 2, 3. Thus, in
general, Ai(x) for i = 0, 1, 2 are third degree polynomials with A1(x) and A2(x)

having the same leading coefficient. Moreover, the restriction of the action ofW to
the finite grid G implies that A1 has (x − N) as a factor and A2 has x as a factor.
Hence, one has

A1(x) = (x −N)(κx2 + μ1x + μ0),

A2(x) = x(κx2 + ν1x + ν0),

A0(x) = −A1(x)− A2(x)+ r1x + r0,

for μ0, μ1, ν0, ν1, r0, r1 and κ arbitrary parameters. Then, it is easy to see that

W [xn] = σn xn+1 +O(xn),

for a certain σn depending on the parameters. We shall see next that this difference
Heun operator coincides with the algebraic Heun operator associated to the Hahn
algebra.

5.2 The Algebraic Heun Operator of the Hahn Type

The Hahn polynomials Pn are orthogonal polynomials belonging to the Askey
scheme. As such, an algebra encoding their properties is obtained as a specialization
of the Racah algebra (3.5) by taking a2 → 0. One obtains the Hahn algebra,
generated by {K1,K2,K3} with the following relations

[K1,K2] = K3,

[K2,K3] = a{K1, k2} + bK2 + c1K1 + d1I,

[K3,K1] = aK2
1 + bK1 + c2K2 + d2I. (5.5)

A natural realization of the Hahn algebra is given in terms of the bispectral operators
associated to the Hahn polynomials Pn, namely,

X = K1 = x, (5.6)

Y = K2 = B(x)T + +D(x)T − − (B(x)−D(x))I,

with

B(x) = (x −N)(x + α + 1), D(x) = x(x − β −N − 1),
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and where T ± is as in (5.2). The action of Y is diagonal in the basis given by the
Hahn polynomial Pn and is

YPn(x) = λPn(x), λn = n(n+ α + β + 1).

One checks that X and Y satisfy the Hahn algebra relations (5.5) with the structure
constants expressed in terms of α, β and N .

Upon identifying the algebra associated to the Hahn polynomials, one can
introduce the algebraic Heun operator W of the Hahn type [22] using the generic
definition (5.1). In this realization, one finds thatW can be written as

W = A1(x)T
+ + A2(x)T

− + A0(x)I,

where

A1(x) = (x −N)(x + α + 1)((τ1 + τ2)x + τ2 + τ4),
A2(x) = x(x − β −N − 1)((τ1 + τ2)x + τ4 − τ2),
A0(x) = −A1(x)− A2(x)+ ((α + β + 2)τ2 + τ3)x + τ0 −N(α + 1)τ2.

As announced, the operator defined above coincides, upon identification of param-
eters, with the difference Heun operator W given in (5.3) and (5.4) and defined
through its degree raising action on polynomials. That the difference Heun operator
is tridiagonal on the Hahn polynomials then follows as a direct result. This parallels
the construction in the Jacobi algebra that led to a simple proof of the standard
Heun operator being tridiagonal on the Jacobi polynomials. Moreover, in the limit
N →∞, the difference Heun operatorW goes to the standard Heun operator, which
further supports the appropriateness of the abstract definition (5.1) for the algebraic
Heun operator.

To conclude this algebraic analysis, let us consider the algebra generated by Y
andW in the context of the Hahn algebra. By introducing a third generator given by
[W,Y ] and using the relation of the Hahn algebra in (5.5), one finds that the algebra
thus generated closes as a cubic algebra with relations given by

[Y, [W,Y ]] = g1Y
2 + g2{Y,W } + g3Y + g4W + g5I,

[[W,Y ],W ] = e1Y
2 + e2Y

3 + g2W
2 + g1{Y,W } + g3W + g6Y + g7I,

where the structure constants depend on the parameters of the Hahn polynomials
and the parameters of the tridiagonalization (5.1). One can recognize the above as a
generalization of the Racah algebra (3.5) with the following two additional terms:

e1Y
2 + e2Y

3.
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The conditions for these terms to vanish are given by

τ1 + τ2 = 0, τ2 ± τ4 = 0.

When these equalities are satisfied, the operatorW simplifies toW+ orW− with

W± = ±1

2
[X,Y ] ± γX − Y

2
± εI.

Moreover, any pair from the set {Y,W+,W−} satisfies the Racah algebra relations
given by (3.5). Thus, the choice of a pair of operators specifies an embedding
of the Racah algebra in the Hahn algebra, which is analogous to the embedding
given in (4.8). These embeddings encode abstractly the construction of the Racah
polynomials starting from the Hahn polynomials and provide another example
where higher polynomials are constructed from simpler ones.

6 Application to Time and Band Limiting

We now return to the problem of time and band limiting. Consider a finite
dimensional bispectral problem as the one associated to the Hahn polynomials.
Denote by {en} and {dn} for n = 1, 2, . . . , N the two eigenbases of this bispectral
problem such that

X : {en} → {en}, Xen = λnen,
Y : {dn} → {dn}, Y dn = μndn.

In this context, X can be thought of being associated to discrete time and Y to
frequencies. Suppose now that the spectrum of both X and Y are restricted. These
restrictions can be modelled as limiting operators in the form of two projections π1
and π2 given by

π1en =
{
en if n ≤ J1,

0 if n > J1,
π2dn =

{
dn if n ≤ J2,

0 if n > J2,
(6.1)

π2
1 = π1, π2

2 = π2.

Simultaneous restrictions on the eigensubspaces of X and Y accessible to sampling
lead to the two limiting operators

V1 = π1π2π1 = E1E2, V2 = π2π1π2 = E2E1,
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with

E1 = π1π2, E2 = π2π1.

Here, the limiting operator V1 and V2 are symmetric and are diagonalizable. A few
limit cases are simple. When there are no restriction, J1 = J2 = N , in which case
V1 = V2 = I . If the restriction is on only one of the spectra, for instance if J2 = N ,
then V1 = V2 = π1 having J1 + 1 unit eigenvalues and the other N − J1 equal to
zero. However, the case where J1 and J2 are arbitrary is much more complicated.

In the generic case, the eigenbasis expansions (3.13) and (3.15) can be used to
evaluate the action of π2 on an eigenvector of X. One has,

π2en =
J2∑
s=0

√
wnφs(λn)ds =

J2∑
s=0

N∑
t=0

√
wnw̃sφs(λn)χt (μs)et .

Similarly, one can evaluate the action of π1 on eigenvectors of Y and obtain

V1en = π1π2π1en =
J1∑
t=0

J2∑
s=0

√
wnw̃sφs(λn)χt (μs)et =

J1∑
t=0

Kt,net , (6.2)

with

Kt,n =
J2∑
s=0

√
wnw̃sφs(λn)χt (μs)

=
J2∑
s=0

√
wnwtφs(λn)φs(λt ) (6.3)

=
J2∑
s=0

√
w̃sχn(μs)χt (μs),

where the Leonard duality relation (3.16) has been used to obtain the last two
equalities. The operator V1 in (6.2) is the discrete analog of the integral operator
(2.1) that restricts both in time and frequency, with (6.3) being the discrete kernel. As
in the continuous case, V1 and V2 are non-local operator and the problem of finding
their eigenvectors is numerically difficult. However, if there exists a tridiagonal
matrix M that commutes with both V1 and V2, then M would admit eigenvectors
that are shared with V1 and V2. This renders the discrete time and band limiting
problem well controlled. In this context, the tridiagonal matrix M is the discrete
analog of a second order differential operator and plays the role of the differential
operator found by Landau, Pollak and Slepian for the continuous time and band
limiting problems.
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Tridiagonal matrices that commute with the limiting operators π1 and π2 in (6.1)
will also commute with V1 and V2. One then wants to find forM such that

[M,π1] = [M,π2] = 0. (6.4)

TakingM to be an algebraic Heun operator with

M = τ1XY + τ2YX + τ3X + τ4Y,

and using (6.4), one finds the following conditions

τ2 = τ1, τ1(λJ1 + λJ1+1)+ τ4 = 0, τ1(μJ2 + μJ2+1)+ τ3 = 0.

Except for the Bannai-Ito spectrum, it is always possible to find τ3 and τ4 satisfying
the above [8], see also [17]. Hence, the algebraic Heun operator provides the
commuting operator that enables efficient solutions to the time and band limiting.

7 Conclusion

This lecture has offered an introduction to the concept of algebraic Heun operators
and their applications. This construct stems from the observation that the standard
Heun operator can be obtained from the tridiagonalization of the hypergeometric
operator.The key idea is to focus on operators that are bilinear in the generators
of the quadratic algebras associated to orthogonal polynomials. The Heun type
operators obtained in this algebraic fashion, coincide with those arising from the
definition that has Heun operators raising by one the degree of arbitrary polyno-
mials. This has been illustrated for the discrete Heun operator in its connection to
the Hahn polynomials. This notion of algebraic Heun operators tied to bispectral
problems has moreover been seen to shed light on the occurence of commuting
operators in band and time limiting analyses. The exploration of these algebraic
Heun operators and the associated algebras has just begun [1, 2, 22] but the results
found so far let us believe that it could lead to significant new advances.
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Some Characterization Problems Related
to Sheffer Polynomial Sets

Hamza Chaggara, Radhouan Mbarki, and Salma Boussorra

Abstract In this work, we show some properties of Sheffer polynomials arising
from quasi-monomiality. We survey characterization problems dealing with d-
orthogonal polynomial sets of Sheffer type. We revisit some families in the literature
and we state an explicit formula giving the exact number of Sheffer type d-
orthogonal sets. We investigate, in detail, the (d + 1)-fold symmetric case as well
as the particular cases d = 1, 2, 3.

Keywords Sheffer polynomials · d-orthogonal polynomials · Generating
functions · (d + 1)-fold symmetric polynomials · Quasi-monomiality
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1 Introduction

Let P be the vector space of polynomials with coefficients in C and let P ′ be its
algebraic dual. A polynomial sequence {Pn}n≥0 in P is called a polynomial set (PS,
for short) if and only if degPn = n, n = 0, 1, 2, . . .. we denote by 〈u, f 〉 the effect
of the functional u ∈ P ′ on the polynomial f ∈ P .
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A set of polynomials {Pn}n≥0 is monic if the leading coefficient of each Pn is
unitary.

A PS is said to be of Sheffer type (or of Sheffer A-type zero [22, 26]) if it has a
generating function of the form:

G(x, t) = A(t) exp(xC(t)) =
∞∑
n=0

Pn(x)

n! t
n, (1.1)

where A and C are given by

A(t) =
∞∑
k=0

akt
k, a0 �= 0, (1.2)

C(t) =
∞∑
k=0

ckt
k+1, c0 �= 0. (1.3)

This means that A(t) is invertible and C(t) has a compositional inverse.
We note that the Sheffer polynomials have many applications and have been

extensively investigated. They contain a large class of polynomial sequences
that include Laguerre polynomials, Meixner polynomials, Bernoulli polynomials,
Stirling polynomials and many others. For C(t) = t , we meet the definition of
Appell polynomial sets.

In [29], Sheffer wrote a remarkable paper on some properties of polynomials of
type zero. Rainville, based on the manipulation of formal series, found important
properties of Sheffer type polynomials. These properties are reported in his book
[26].

One of the most successful languages commonly used for handling Sheffer
sequences is the so-called Umbral Calculus [22, 27].

We are interested, in this work, in studying Sheffer sequences when they
are d-orthogonal. We will give the general properties of these sequences and a
classification in some particular cases.

An important generalization of the notion of orthogonality was introduced by Van
Iseghem [31] and Maroni [24], that is the d-orthogonality (d being a non-negative
integer):

A PS {Pn}n≥0 is said to be a d-orthogonal polynomial set (d-OPS) if there exists
a functional vector, U = t (u0, u1, . . . , ud−1) such that

⎧⎨
⎩
〈uk, PmPn〉 = 0, if m > nd + k,

〈uk, PnPnd+k〉 �= 0, n ≥ 0, k ∈ {0, 1, . . . , d − 1}.
(1.4)

The notions of d-dimensional orthogonality for polynomials [24], vectorial orthog-
onality as defined and studied in [30] or simultaneous orthogonality as in [1, 14] and
even more generally the multiple orthogonality [22] are obviously generalizations
of the notion of ordinary orthogonality for polynomials.
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The d-orthogonality has been the subject of numerous investigations and appli-
cations. In particular, it is related to the study of vector Padé approximants [30, 31],
simultaneous Padé approximants [14], vectorial continued fractions, polynomial
solutions of higher-order differential equations, spectral study of multidiagonal
nonsymmetric operators [2] and infinite dynamical systems [13].

A generalized spectral theorem characterizing d-orthogonal polynomials by a
recurrence relation which was given by Van Iseghem and Maroni in [24, 30].

A monic PS {Pn}n≥0 is a d-OPS if and only if it fulfils a (d+1)-order recurrence
relation, that is, a relation between d + 2 consecutive polynomials of the form:

Pn+1(x) = (x + αn+1)Pn(x)+
d∑
k=1

(
n

k

)
β
(n+1)
k Pn−k(x) ; β

(n+1)
d �= 0, ∀n ≥ 0,

(1.5)

with P−n = 0 for n ≥ 1 and
(
n
k

) = 0 if k > n.
In [20], Maroni extended the notion of symmetric polynomials (Pn(−x) =

(−1)nPn(x)) into (d + 1)-fold symmetric ones as follows:
A PS {Pn}n≥0 is called (d + 1)-fold symmetric (d-SOPS) if it fulfils:

Pn(ωx) = ωnPn(x), ω = exp
( 2iπ

d + 1

)
. (1.6)

Douak and Maroni characterized (d + 1)-fold symmetric d-orthogonal polynomials
by means of a specific recurrence relation [20]:

A monic d-OPS {Pn}n≥0 is (d + 1)-fold symmetric if and only if it satisfies a
(d + 1)-order recurrence relation of the form:

{
Pn+1(x) = xPn(x)+

(
n
d

)
β
(n+1)
d Pn−d (x), n ≥ d, β(n+1)

d �= 0,

Pn(x) = xn, 0 ≤ n < d. (1.7)

Most of the known d-orthogonal families were introduced as solutions of charac-
terization problems. Such problems consist in finding all d-OPSs having a given
property: with a particular generating function [10], (d+1)-fold symmetry property
[5], classical and semi-classical character [11, 28], Appell type property [6, 18],
specific hypergeometric form [8], etc.

Characterization problems related to Sheffer PSs have a deep history. Many
authors have worked on solving the following problem:

Find all d-orthogonal polynomials of Sheffer type.

In a classical paper [25], Meixner considered the case d = 1 (orthogonal PS
of Sheffer type) and determined all orthogonal polynomials including Hermite,
Charlier, Laguerre, Meixner, and Meixner-Pollaczek polynomials. It is the so-called
classical Meixner class. Kubo [23] reconsidered Meixner’s classification from the
viewpoint of multiplicative renormalization method and concerned the effects of
affine transforms and multipliers.
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The case d = 2 has been treated by Boukhemis and Maroni [12]. The general
case was recently studied by Ben Cheikh and Gam [7], by Chaggara and Mbarki
[16] and also by Varma [32].

The organization of this lecture will be as follows. In Sect. 2, we collect the basic
results used in the rest of this work, namely, the quasi-monomiality principle. In
Sect. 3, we show how to derive some corresponding properties of Sheffer Sequences
using the quasi-monomiality principle (operational rules related to appropriate
operators). We recover some well known results which characterize the polynomial
sets of the Sheffer type. In Sect. 4, we survey characterization theorems dealing
with polynomial sets which are d-OPS and, as a particular case, the d-SOPS
families [16]. We treat in detail the cases d = 1, 2, 3.

2 Preliminary Results

For j ∈ Z, we denote by �(j) the space of operators acting on analytic functions
that augment (respectively reduce) the degree of every polynomial by exactly j
if j ≥ 0 (respectively j ≤ 0). That includes the fact that if λ ∈ �(−1), λ(1) = 0. We
present, in this part, some basic definitions and results which we need in the rest of
this work.

2.1 Operators

Definition 2.1 ([4]) A PS {Pn}n≥0 is called quasi-monomial if it is possible to
define two operators λ and ρ, independent of n, such that:

λPn = nPn−1, (2.1)

ρPn = Pn+1. (2.2)

Here λ and ρ play the roles analogous, respectively, to the derivative and multipli-
cation (by x) operators on monomials {xn}n≥0.

Definition 2.2 Let λ ∈ �(−1). A PS {Bn}n≥0 is called a sequence of basic
polynomials for λ if

1. Bn(0) = δn,0, ∀n ∈ N, where δn,0 the Kronecker symbol.
2. λBn = nBn−1, ∀n ∈ N

∗.

In [3], it was shown that every λ ∈ �(−1) has a unique sequence of basic
polynomials.
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Theorem 2.3 ([4]) Let {Pn}n≥0 be a PS, then there exists an unique triplet (λ, ρ, τ )
∈ �(−1) ×�(1) ×�(0) of operators on P such that:

⎧⎪⎪⎨
⎪⎪⎩
λPn = nPn−1,

ρPn = Pn+1,

τBn = Pn,

where {Bn}n≥0 is the sequence of basic polynomials for λ.

We refer to the λ, ρ and τ operators as, respectively, the lowering, the raising
and the transfer operators associated with the PS {Pn}n≥0.

Some properties of {Pn}n≥0 can be deduced from the structure of these operators.
Namely,

1. The two operators λ and ρ, satisfy the commutation relation

[λ, ρ] = λρ − ρλ = 1.

and thus display a Weyl group structure.
2. Pn is an eigenfunction of the operators λρ and ρλ associated, respectively, to n

and n+ 1 as eigenvalues.
That is to say:

ρλPn = nPn and λρPn = (n+ 1)Pn. (2.3)

which can be viewed, if λ and ρ have a differential or a difference realization, as
a differential or a difference equation satisfied by Pn.

3. If P0 is given, then the polynomial Pn(x) can be explicitly constructed as:

Pn = ρnP0. (2.4)

4. The point 3 implies that a generating function of {Pn}n≥0 can always be brought
in the form:

eρtP0(x) =
∞∑
n=0

Pn(x)

n! t
n. (2.5)

In our investigation, we need the following technical lemma which is a special case
for a more general formula known as Crofton type operational rule [15].

Lemma 2.4 ([15, Lemma 3.1]) Let h be a formal power series, then, for all f ∈ P ,
we have:

h(D)(xf ) =
(
xh(D)+ h′(D)

)
(f ), (2.6)

where D = d
dx

designates the derivative operator.
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Proof We write h(t) =∑∞
n=0 αnt

n and according to Leibniz’ formula, we get:

h(D)(xf ) =
∞∑
n=0

αnD
n(xf ) =

∞∑
n=0

αn

(
n∑
k=0

(
n

k

)
x(k)f (n−k)

)

= x
∞∑
n=0

αnD
n(f )+

∞∑
n=1

nαnD
n−1(f ) = xh(D)(f )+ h′(D)(f ).

��
Proposition 2.5 ([4]) Let {Pn}n≥0 be a PS generated by:

G(x, t) =
∞∑
n=0

Pn(x)

n! t
n. (2.7)

Then we have the equivalences:

λG(x, t) = tG(x, t)⇔ λPn = nPn−1, ∀n ∈ N
∗, (2.8)

ρG(x, t) = ∂

∂t
G(x, t)⇔ ρPn = Pn+1, ∀n ∈ N. (2.9)

3 Properties of Sheffer Polynomials

The Sheffer polynomial sets generated by (1.1) have been shown to be quasi-
monomials under the action of the operators [4]

λ = C−1(D), ρ = A
′

A
(λ)+ xC′(λ) and τ = A(λ). (3.1)

If C(t) = t , we have λ = D. That corresponds to Appell polynomial sets.
If A(t) = 1, we obtain the basic sets of Sheffer type.

Proposition 3.1 (Sheffer Identity [27]) A PS {Sn}n≥0 is of Sheffer type if and only
if it satisfies the identity:

Sn(x + y) =
n∑
k=0

(
n

k

)
Sk(x)Bn−k(y), (3.2)

where {Bn}n≥0 is a given sequence of basic Sheffer polynomials.
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Proof We have

G(x, t) =
∞∑
n=0

Sn(x)

n! t
n = A(t) exp(xC(t)).

Then

G(x + y, t) = A(t) exp((x + y)C(t)) =
∞∑
n=0

Sn(x)

n! t
n
∞∑
n=0

Bn(y)

n! t
n

=
∞∑
n=0

n∑
k=0

Sk(x)

k! t
k Bn−k(y)
(n− k)! t

n−k =
∞∑
n=0

n∑
k=0

(
n

k

)
Sk(x)Bn−k(y)

tn

n! ,

which establishes the formula. ��
Definition 3.2 (PS of Binomial Type [27]) A PS {Bn}n≥0 is of binomial type if it
satisfies the relation:

Bn(x + y) =
n∑
k=0

(
n

k

)
Bk(x)Bn−k(y). (3.3)

It follows immediately that the PSs of binomial type are exactly the basic Sheffer
PSs.

Theorem 3.3 ([26]) Let {Pn}n≥0 be a Sheffer PS, generated by (1.1). Then there
exist two sequences (αk)k and (βk)k , independent of x and n, such that for n ≥ 1,

xP ′n(x)− nPn(x) = −n!
[
n−1∑
k=0

αk
Pn−k−1(x)

(n− k − 1)! + x
n−1∑
k=0

βk
P ′n−k−1(x)

(n− k − 1)! (x)
]
,

(3.4)

where

∞∑
n=0

αnt
n+1 = tA

′(t)
A(t)

and 1+
∞∑
n=0

βnt
n+1 = tC

′(t)
C(t)

. (3.5)

Proof

ρG(x, t) = ∂

∂t
G(x, t)⇐⇒

[
A′(t)
A(t)

+ xC′(t)
]
G(x, t) = ∂

∂t
G(x, t)

⇐⇒ xt
C′(t)
C(t)

∂

∂x
G(x, t)− t ∂

∂t
G(x, t) = −t A

′(t)
A(t)

G(x, t)
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Substituting the expansions (3.5), we get:

[
1+

∞∑
n=0

βnt
n+1

][ ∞∑
n=0

xP ′n(x)
n! tn

]
−
∞∑
n=0

nPn(x)

n! tn = −
[ ∞∑
n=0

αnt
n+1

][ ∞∑
n=0

Pn(x)

n! t
n

]
.

Therefore

∞∑
n=1

xP ′n(x)− nPn(x)
n! tn = −

[ ∞∑
n=0

αnt
n+1

][ ∞∑
n=0

Pn(x)

n! t
n

]
−

[ ∞∑
n=0

βnt
n+1

][ ∞∑
n=0

xP ′n(x)
n! tn

]

=
∞∑
n=0

(
n∑
k=0

(
−αk Pn−k(x)

(n− k)! − βk
xP ′n−k(x)
(n− k)!

))
tn+1

=
∞∑
n=1

(
n−1∑
k=0

(
−αk Pn−k−1(x)

(n− k − 1)! − βk
xP ′n−k−1(x)

(n− k − 1)!
))
tn.

By identification, we get the desired result. ��
Theorem 3.4 ([26]) Let {Pn}n≥0 be a PS of Sheffer type, generated by (1.1). There
exist two sequences (αk)k≥0 and (ck)k≥0, independent of x and n, such that for
n ≥ 1,

n−1∑
k=0

(αk + x(k + 1)ck)
n!

(n− k − 1)!Pn−1−k(x) = nPn(x), (3.6)

where

∞∑
k=0

αkt
k = A

′(t)
A(t)

, and
∞∑
k=0

ckt
k = C(t). (3.7)

Proof We have, by virtue of (2.3),

nPn = ρλPn =
[
A′

A
(λ)+ xC′(λ)

]
λPn = A

′

A
(λ)λPn + xC′(λ)λPn,

therefore

nPn =
∞∑
k=0

αkλ
k+1Pn+x

∞∑
k=0

(k+1)ckλ
k+1Pn =

n−1∑
k=0

(αk+x(k+1)ck)
n!

(n− k − 1)!Pn−1−k .

��
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Theorem 3.5 ([26]) Under the assumptions of Theorem 3.4, there exist two
sequences (μk)k≥0 and (νk)k≥0, independent of x and n, such that for n ≥ 1,

n−1∑
k=0

(μk + xνk)Dk+1Pn(x) = nPn(x), (3.8)

where

∞∑
k=0

μkt
k+1 = C−1(t)

A′

A
(C−1(t)), and

∞∑
k=0

νkt
k+1 = C−1(t)(

C−1
)′
(t)

. (3.9)

Proof We have:

(n+ 1)Pn = λρPn = λ
[
A′

A
(λ)+ xC′(λ)

]
= λA

′

A
(λ)Pn + λxC′(λ)Pn.

Since, C′(t) =∑∞
k=0(k + 1)cktk , so

xC′(λ)Pn = x
∞∑
k=0

(k + 1)ckλkPn =
∞∑
k=0

(k + 1)ck
n!

(n− k)!xPn−k. (3.10)

According to (2.6), with h = C−1,

λ(xPn−k) = xC−1(D)Pn−k +
(
C−1

)′
(D)Pn−k. (3.11)

Then, by (3.10) and (3.11), we obtain

λ(xC′(λ)Pn) = xλC′(λ)Pn +
(
C−1

)′
(D)C′(C−1(D))Pn = xλC′(λ)Pn + Pn,

since
(
C−1

)′
(t)C′(C−1(t)) = (C ◦ C−1)′(t) = 1. Therefore

nPn =
(
λ
A′

A
(λ)

)
Pn + xλC′(λ)Pn.

Hence by (3.9), we get (3.8). ��
Theorem 3.6 ([26]) A PS {Pn}n≥0 is of Sheffer type, if and only if there exists a
sequence (ck)k≥0, independent of x and n, such that for n ≥ 1,

P ′n =
n−1∑
k=0

ck
n!

(n− k − 1)!Pn−1−k. (3.12)
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Proof

λPn = C−1(D)Pn ⇔ C(λ)Pn = P ′n ⇔
∞∑
k=0

ckλ
k+1Pn = P ′n

⇔
n−1∑
k=0

ck
n!

(n− k − 1)!Pn−1−k = P ′n.

��

4 Characterization Problems for Sheffer Sets

4.1 Characterization Theorem

The following theorem characterizes the d-OPSs of Sheffer type. The proof is based
on recurrence relations and lowering operators. An alternative proof of a similar
result based on suitable transform operators was already given firstly in [7] and then
in [32].

Theorem 4.1 ([16, Theorem 2.1]) Let {Pn}n≥0 be a monic PS generated by (1.1).
Then the following statements are equivalent:

(a) {Pn}n≥0 is a d-OPS.
(b) A and C satisfy two equations of the form:

C′(t) = 1

1+∑d
k=0 θkt

k+1
, (4.1)

and

A′(t)
A(t)

=
∑d
k=0 σkt

k

1+∑d
k=0 θkt

k+1
=

( d∑
k=0

σkt
k

)
C′(t), (4.2)

with the regularity conditions:

σd �= 0 and
θd

σd
/∈ {1
n
, n ∈ N

∗}. (4.3)

Proof (a) ⇒ (b) By the hypothesis {Pn}n≥0 is a d-OPS, therefore it satisfies the
recurrence relation (1.5).
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The proof of the necessary condition will be divided into two steps:

Step 1
Applying λ = C−1(D) to (1.5), with β̂(n+1)

k := (
n
k

)
β
(n+1)
k and according to (2.6),

we obtain ∀n ∈ N,

(n+ 1)Pn(x) = n(x + αn+1)Pn−1(x)+
(
C−1

)′
(D)Pn(x)+

d∑
k=1

(n− k)β̂(n+1)
k Pn−k−1(x).

(4.4)

By shifting the index n↔ n− 1 in (1.5) and by multiplication by n, we get:

nPn(x) = n(x + αn)Pn−1(x)+ n
d∑
k=1

β̂
(n)
k Pn−k−1(x). (4.5)

The difference (4.4)–(4.5) gives:

Pn(x) = n(αn+1 − αn)Pn−1(x)+
(
C−1

)′
(D)Pn(x)+

d∑
k=1

(
(n− k)β̂(n+1)

k − nβ̂(n)k
)
Pn−k−1(x).

(4.6)

Therefore

(
1−

(
C−1

)′
(D)

)
Pn(x) = n(αn+1 − αn)Pn−1(x)+

d∑
k=1

n!
(n− k − 1)!

(
γ
(n+1)
k − γ (n)k

)
Pn−k−1(x),

(4.7)

where γ (n+1)
k = (n−k)!

n! β̂
(n+1)
k = β

(n+1)
k

k! , 1 ≤ k ≤ d, n ≥ 0.
In (4.4), we replace n by n+ 1 and apply C−1(D). This gives

(n+ 2)Pn = n(x + αn+2)Pn−1 + 2
(
C−1

)′
(D)Pn +

d∑
k=1

(n− k)(n+ 1− k)
n+ 1

β̂
(n+2)
k Pn−k−1.

(4.8)

Subtracting (4.8) from (4.4) yields:

(
1−

(
C−1

)′)
(D)Pn = n(αn+2 − αn+1)Pn−1 +

d∑
k=1

n!(γ (n+2)
k − γ (n+1)

k )

(n− k − 1)! Pn−k−1.

(4.9)
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By identification of (4.7) and (4.9), we obtain for k = 1, 2, . . . , d and n ∈ N,

αn+2 − αn+1 = αn+1 − αn and γ
(n+2)
k − γ (n+1)

k = γ (n+1)
k − γ (n)k ,

It follows that the two sequences (αn+1)n and (γ (n+1)
k )n are arithmetic progressions.

Let θ0 = αn − αn+1 and θk = γ (n)k − γ (n+1)
k , 1 ≤ k ≤ d, n ≥ 0.

Then (4.7) becomes:

(
1−

(
C−1

)′
(D)

)
Pn(x) = −

(
θ0C

−1(D)Pn(x)+
d∑
k=1

n!
(n− k − 1)!θkPn−k−1(x)

)

= −
(
θ0C

−1(D)+
d∑
k=1

θk[C−1(D)]k+1
)
Pn(x),

which means that
(
C−1

)′
(D) = 1+∑d

k=0 θk[C−1(D)]k+1. So

(
C−1

)′
(t) = 1+

d∑
k=0

θk[C−1(t)]k+1.

This is equivalent to:

C′(t) = 1

1+∑d
k=0 θkt

k+1
.

Step 2
From the above, we can write:

αn+1 − α1 = −nθ0; γ
(n+1)
k − γ (k+1)

k = −(n− k)θk;

then

αn+1 = −nθ0 + α1 and β̂
(n+1)
k = − n!

(n− k − 1)! θk +
(
n

k

)
β̂
(k+1)
k , 1 ≤ k ≤ d, n ≥ 0.

(4.10)

Substituting x by 0 in (1.5):

Pn+1(0) = (−θ0n+α1)Pn(0)+
d∑
k=1

(
− n!
(n− k − 1)!θk+

n!
(n− k)!

β̂
(k+1)
k

k!
)
Pn−k(0).
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We have A(t) =∑∞
n=0

Pn(0)
n! t

n, then

A′(t) =
∞∑
n=0

Pn+1(0)

n! tn

= −θ0

∞∑
n=1

Pn(0)

(n− 1)! t
n + α1

∞∑
n=0

Pn(0)

n! t
n −

d∑
k=1

θk

∞∑
n=k+1

Pn−k(0)
(n− k − 1)! t

n

+
d∑
k=1

β
(k+1)
k

k!
∞∑
n=k

Pn−k(0)
(n− k)! t

n

= −θ0tA
′(t)+ α1A(t)−

( d∑
k=1

θkt
k+1

)
A′(t)+

( d∑
k=1

β̂k
(k+1)

k! tk
)
A(t).

Putting σ0 = α1 and σk = β̂
(k+1)
k

k! , we deduce:

A′(t)
A(t)

=
∑d
k=0 σkt

k

1+∑d
k=0 θkt

k+1
; σd = β̂

(d+1)
d

d! �= 0. (4.11)

According to (4.10), β̂(n+1)
d = − n!

(n−d−1)!θd +
(
n

d

)
β̂
(d+1)
d �= 0, then θd

σd
�= 1

k
,

k ∈ N
∗.

(b)⇒ (a)We have:

ρ = A
′

A
(λ)+ xC′(λ) =

(
d∑
k=0

σkλ
k

)
C′(λ)+ xC′(λ), σd �= 0,

then

ρ

(
1+

d∑
k=0

θkλ
k+1

)
Pn = ρPn +

d∑
k=0

θkρλ
k+1Pn =

d∑
k=0

σkλ
kPn + xPn.

with

σd �= 0,
θd

σd
/∈
{

1

k
, k ∈ N

∗
}
.
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Therefore

Pn+1 = −
d∑
k=0

θk
n!

(n− k − 1)!Pn−k +
d∑
k=0

σk
n!

(n− k)!Pn−k + xPn

= (x − nθ0 + σ0) Pn +
d∑
k=1

n!
(

σk

(n− k)! −
θk

(n− k − 1)!
)
Pn−k,

with n!
(

σd
(n−d)! − θd

(n−d−1)!
)
= n!
(n−d−1)!

(
σd
n−d − θd

)
�= 0, n > d , according to the

regularity conditions (4.3). Therefore {Pn}n≥0 is a d-OPS.
Hence, the converse statement of the theorem is established. ��

In [16], the authors characterized (d + 1)-fold symmetric d-OPS of Sheffer type as
follows:

Corollary 4.2 A Sheffer type PS {Pn}n≥0 generated by (1.1) is a d-SOPS if and
only if A and C satisfy the following equations:

C′(t) = 1

1+ θdtd+1
(4.12)

and

A′(t)
A(t)

= σdt
d

1+ θdtd+1 , (4.13)

with the regularity conditions (4.3).

Proof If {Pn}n≥0 is a d-SOPS of Sheffer type then by (4.10) and (4.11) we get:

⎧⎨
⎩
σd = β̂

(d+1)
d

d ! �= 0,

β̂
(n+1)
d = n!

(n−d−1)!
(
σd
n−d − θd

)
�= 0, n > d.

Using (1.6)–(1.7), we obtain that (αn+1)n and (β̂(n+1)
k )n vanish for all 1 ≤ k ≤ d−1.

Hence θk = 0 and σk = 0 for all 0 ≤ k ≤ d − 1, which gives (4.12) and (4.13). ��

4.2 Examples

Some particular cases of d-OPSs represented in Theorem 4.1 and generalizing some
classical families are worthy to note:
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Hermite Type d-OPS In the case θk = 0 ∀k ∈ {0, 1, . . . , d}, we have:

C(t) = t and A(t) = exp (Hd+1(t)) where Hd+1(t) =
d∑
k=0

σk

k + 1
tk+1, σd �= 0.

It follows that

∞∑
n=0

Pn(x, d)

n! tn = exp (Hd+1(t)) exp(xt). (4.14)

Here, note that {Pn(·, d)}n≥0 was considered by Douak as the only d-OPS of Appell
type [18, Theorem 3.1] for σ0 = 0, σd = − 1

(d+1)! and σ1, σ2, . . . , σd−1 d − 1
arbitrary constants. Among such polynomials, the d-symmetric ones are singled
out. They are named d-orthogonal Hermite polynomials {Hn(·, d)}n≥0.

The Gould–Hopper PS [21] corresponds to the case Hd+1(t) = σdtd+1. That
reduces to Hermite PS if d = 1.

Charlier Type d-OPS For θk = 0 ∀k ∈ {1, . . . , d}, and θ0 �= 0, we obtain

C(t) = 1

θ0
ln(1+ θ0t) and A(t) = exp(Qd(t))(1 + θ0t)

a0,

whereQd designates a polynomial of degree d and leading coefficient σd
θ0d

,Qd(0) =
0 and a0 =∑d

k=0 σk
(−1)k

θk+1
0

.

G

(
θ0(x − a0),

1

θ0
t

)
=
∞∑
n=0

Cn(x, d)

n! tn = exp
(
Q̃d(t)

)
(1+ t)x ; (4.15)

where Q̃d(t) = Qd

(
1
θ0
t
)

. This family was characterized by Ben Cheikh and

Zaghouani as the only d-OPS and �-Appell family [9, Theorem 1.1], where �
designates the difference operator: �f (x) = f (x + 1) − f (x). The Charlier type
d-OPS represents one of the first examples of discrete d-OPSs. The case d = 1
corresponds to Charlier PS.

Laguerre Type d-OPS Consider the case θk = 0 ∀k ∈ {2, . . . , d} and suppose
that 1+ θ0t + θ1t

2 = (1− αt)2; α �= 0, then

C(t) = t

1− αt and A(t) = exp

(
Rd−1(t)+

(
d∑
k=0

σk

αk

)
t

1− αt

)
(1− αt)

∑d
k=1 k

σk

αk+1 ,

where Rd−1 is a polynomial of degree d − 1 and leading coefficient σd
α2(d−1)

satisfying Rd−1(0) = 0.
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If we choose the parameters in such a way that
∑d
k=0

σk
αk
= 0, we get:

G

(
x,

1

α
t

)
=
∞∑
n=0

L
(a)
n (x, d)

n! tn = exp
(
R̃d−1(t)

)
(1− t)a exp

(
xt

1− t
)
,

(4.16)

where R̃d−1(t) = Rd−1(
t
α
) and a =∑d

k=1
k σk
αk+1 .

This family was already studied by Douak [19] in the special case d = 2 and
then by Ben Cheikh and Zaghouani in the general case [10]. It was also investigated
in the multiple orthogonality context by Coussement and Van Assche [17].

Meixner Type d-OPS If θk = 0, ∀k ∈ {2, . . . , d} and 1 + θ0t + θ1t
2 = (1 −

αt)(1 − βt); α �= β �= 0, we obtain:

C(t) = 1

β − α ln

(
1− αt
1− βt

)
and A(t) = exp(Sd−1(t))

⎡
⎣ (1− αt)

∑d
k=0

σk

αk

(1− βt)
∑d
k=0

σk

βk

⎤
⎦

1
β−α

,

where Sd−1 is a polynomial of degree d − 1 and leading coefficient σd
αβ(d−1) with

Sd−1(0) = 0.

G

(
(β − α)(x − a), t

β

)
=
∞∑
n=0

M
λ,μ
n (x, d)

n! tn = exp
(
S̃d−1(t)

)
(1− t)−x+λ

(
1− t

μ

)x
,

(4.17)

where

S̃d−1(t) = Sd−1(
t

β
), a = 1

β − α
d∑
k=0

σk

αk
, λ = 1

β − α
d∑
k=0

σk

(
1

αk
− 1

βk

)
and μ = β

α
.

The Meixner type d-OPS are, in fact, introduced in [10] as an example of d-OPS
family with suitable generating function. The corresponding functional vector was
derived when d = 2 [10, Theorem 4.3].

4.3 Counting d-OPSs of Sheffer Type

Next, we give an explicit formula of the number of d-OPSs of Sheffer type.

Definition 4.3 A partition of a positive integer n is a non-increasing sequence of
positive integers p1, p2, . . . , pk whose sum is n.
p(n) denotes the number of partitions of the integer n, p(0) is defined to be 1.
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Examples

1 = 1⇒ p(1) = 1;
2 = 1+ 1⇒ p(2) = 2;
3 = 1+ 2 = 1+ 1+ 1⇒ p(3) = 3;
4 = 1+ 3 = 2+ 2 = 1+ 1+ 2 = 1+ 1+ 1+ 1⇒ p(4) = 5;
5 = 1+ 4 = 2+ 3 = 2+ 2+ 1 = 1+ 1+ 1+ 2

= 1+ 1+ 3 = 1+ 1+ 1+ 1+ 1⇒ p(5) = 7;
6 = 5+ 1 = 4+ 2 = 3+ 3 = 2+ 3+ 1 = 2+ 2+ 2 = 4+ 1+ 1 = 3+ 1+ 1+ 1

= 2+ 2+ 1+ 1 = 2+ 1+ 1+ 1+ 1 = 1+ 1+ 1+ 1+ 1+ 1⇒ p(6) = 11.

To compute the number Nd of Sheffer type d-OPSs generated by (1.1), we need
to determine the number of solutions of the Eq. (4.1) which depends on θ0, . . . , θd .
More precisely, this corresponds to the number of ways that the polynomial function

1
C ′(t) = 1+∑d

k=0 θkt
k+1 can be factorized according to the degree, and depending

on whether the roots are real or complex.

A given formal power series C ′ corresponds to exactly one formal series C(t)
because C(0) = 0.

For fixed power series C(t), and for a given polynomial of degree d ,
Fd(t) = ∑d

k=0 σkt
k with regularity conditions (4.3), we get exactly one series

A(t) as solution of the differential system
{
A ′(t)− Fd(t)C′(t)A(t) = 0,
A(0) = 1.

The pair (A(t), C(t)) generates one solution of the problem.
Two d-orthogonal Sheffer type polynomials obtainable from each other by a

linear change of variable or scaling factor cannot be associated to different pairs
(A(t), C(t)). This is justified by the fact they both are monic (and thereforeA(0) =
C′(0) = 1), and satisfy (1.1).

Proposition 4.4 ([16]) The numberNd of d-OPS generated by (1.1) is given by:

Nd = Nd−1 +
[ d+1

2 ]∑
k=0

p(d + 1− 2k)p(k), ∀d ∈ N
∗,with N0 = 2 (4.18)

or, equivalently,

Nd = 2+
d∑
r=1

[ r+1
2 ]∑
k=0

p(r + 1− 2k)p(k), (4.19)

where p(n) denotes the number of partitions of n.
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Proof We write

1

C′(t)
= 1+

d∑
k=0

θkt
k+1 =

d∏
k=0

(1− vkt) (4.20)

• We can extend the number Nd for d = 0, by setting N0 = 2, this is natural
because if we return to Eqs. (4.1)–(4.2) with d = 0, we find two families of
polynomials depending on whether θ0 = 0 or θ0 �= 0.
These two polynomials are, in fact, the only ones which satisfy the relation
Pn+1(x) = (x + αn+1)Pn(x) with αn+1 �= 0.

– If αn+1 is not depending on n (equal to α) then Pn(x) = (x + α)n and(
A(t), C(t)

)
=

(
eαt , t

)
.

– Otherwise, we have Pn(x) = ∏n
k=1(x + αk). According to the proof of

Theorem 4.1, αn+1 − αn = −θ0 and C′(t) = 1
1+θ0t .

It follows that
(
A(t), C(t)

)
=

(∑∞
n=0

∏n
k=1 αk
n! tn, 1

θ0
ln(1+ θ0t)

)
.

Next, we suppose that d ≥ 1.

• If there exists k ∈ {0, 1, . . . , d} such that vk = 0, we obtain the number Nd−1 of
(d − 1)-OPSs.

• If vk �= 0, ∀ k ∈ {0, 1, . . . , d}, we count according to the real roots in (4.20).

– If (4.20) has d + 1 real roots, then there are p(d + 1) possibilities depending
on multiplicities.

– If (4.20) has exactly 2 conjugate complex roots, then there are p(d+1−2)p(1)
possibilities.

– If (4.20) has exactly 4 two by two conjugate complex roots, then there are
p(d + 1− 4)p(2).

– Step by step, if (4.20) has exactly 2k two by two conjugate complex roots,
then there are p(d + 1 − 2k)p(k) possibilities, where p(d + 1 − 2k) is the
number of partitions of (d + 1 − 2k) real roots and p(k) is the number of
partitions of k complex roots with their conjugates.

This gives (4.18).
By iteration, we deduce the overall numberNd and (4.19) follows. ��

Examples
1. N1 = 5 (Table 1 p. 235), N2 = 9 (Table 2 p. 236), N3 = 18 (Table 3 p. 238).
2. We will concretely treat the case d = 4:

1

C′(t)
= 1+

4∑
k=0

θkt
k+1 = (1−v0t)(1−v1t)(1−v2t)(1−v3t)(1−v4t). (4.21)
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• If there exists k ∈ {0, 1, . . . , 4} such that vk = 0, we obtain the number
N3 = 18 of 3-OPS (see Table 3).

• If vk �= 0, ∀ k ∈ {0, 1, . . . , 4}, we count according to the real roots in
(4.21).

– If (4.21) has 5 real roots, then there are p(5) = 7 possibilities:

(1− v0t)
5;

(1− v0t)
4(1− v1t); (1− v0t)

3(1− v1t)
2;

(1− v0t)
3(1− v1t)(1− v2t); (1− v0t)

2(1− v1t)
2(1− v2t);

(1− v0t)
2(1− v1t)(1− v2t)(1 − v3t);

(1− v0t)(1 − v1t)(1 − v2t)(1− v3t)(1− v4t).

– If (4.21) has exactly 2 conjugate complex roots, then there are p(5 −
2)p(1) = p(3)p(1) = 3 possibilities:

(1− v0t)
3(1+ at + bt2), a2 − 4b < 0;

(1− v0t)
2(1− v1t)(1 + at + bt2), a2 − 4b < 0;

(1− v0t)(1 − v1t)(1− v2t)(1+ at + bt2), a2 − 4b < 0.

– If (4.21) has exactly 4 two by two conjugate complex roots, then there are
p(5− 4)p(2) = p(1)p(2) = 2 possibilities:

(1− v0t)(1+ at + bt2)2, a2 − 4b < 0;
(1− v0t)(1+ at + bt2)(1+ a′t + b′t2), a2 − 4b < 0, a′2 − 4b′ < 0.

Hence, we getN4 = N3+p(5)+p(5−2)p(1)+p(5−4)p(2) = 18+7+3+2 =
30.

Computation of Nd with Maple The computation of Nd can be implemented
using the package combinat of Maple system, and by virtue of Eq. (4.19):
>with(combinat):
> p (n) := numbpart (n) :
> N (d) := 2+ sum

(
sum

(
p (r + 1− 2 · k) · p (k) , k = 0..floor

(
r + 1

2

))
, r = 1..d

)
:

> seq([d,N(d)], d = 1..20);
[1, 5], [2, 9], [3, 18], [4, 30], [5, 53], [6, 84], [7, 138], [8, 211], [9, 329], [10, 488],
[11, 734], [12, 1063], [13, 1552], [14, 2203], [15, 3143], [16, 4385], [17, 6136],
[18, 8434], [19, 11611], [20, 15753].
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4.4 Classification of d-OPSs of Sheffer Type

4.4.1 Case d = 1

Both Meixner [25] and Sheffer [29] were interested in the same problem: what
are all possible forms of PSs which are at the same time orthogonal and Sheffer
polynomials?

The recurrence relation satisfied by an OPS {Pn}n≥0 has the following form:

Pn+1(x) = (x + αn+1)Pn(x)+ β̂(n+1)
1 Pn−1(x). (4.22)

From Theorem 4.1, the functions C and A verify the following equations:

C′(t) = 1

1+ θ0t + θ1t2
and

A′(t)
A(t)

= σ0 + σ1t

1+ θ0t + θ1t2
.

However the parameters in the recurrence relation (1.5) are

αn+1 = −nθ0+σ0 and β̂
(n+1)
1 = −n(n−1)θ1+nσ1; σ1 �= 0,

θ1

σ1
�= 1

k
, k ∈ N

∗.

If we discuss all possible cases in view of these two conditions, then we face with
the known orthogonal PSs listed below:

• (A): α = β = 0 (θ0 = θ1 = 0).
• (B): α �= 0 and β = 0 (θ0 = −α, θ1 = 0).
• (C): α = β �= 0 (θ1 �= 0, θ2

0 = 4θ1).
• (D1): α �= β, two non-zero real roots (θ1 �= 0, θ2

0 > 4θ1).
• (D2): α �= β, two non-zero conjugate roots (θ1 �= 0, θ2

0 < 4θ1).

There exist exactly five Sheffer orthogonal families: Hermite polynomials, Laguerre
polynomials, Charlier polynomials, Meixner polynomials (or Meixner I) and
Meixner-Pollaczek polynomials (or Meixner II).

This class of polynomials is known in the literature as the Meixner’s Class.
After affine transformations on x and t in the generating function G(x, t), one

obtains Table 1.

4.4.2 Case d = 2

In [11], Boukhemis investigated the 2-orthogonal polynomials of Sheffer type.
General properties of the nine obtained families are given. Those which are classical
were studied in greater detail. In some cases, an integral representation of the 2-
dimensional vector assuring the 2-orthogonality was exhibited.



Some Characterization Problems Related to Sheffer PSs 235

Table 1 OPSs of Sheffer type (Meixner [25])

Polynomial set Generating function: G(x, t)

A: Hermite G(x, t) = eat
2
ext ; a = σ1

2 �= 0, σ0 = 0

B: Charlier G
(−αx − σ0 − σ1

α
, t
α

) = ebt (1+ t)x; b = σ1
α2 �= 0

C: Laguerre G
(
x, t
α

) = (1− t)c e xt
1−t ; c = σ1

α2 �= 0, σ0 = − σ1
α

D1: Meixner I G
(
(β − α)(x − σ0 − σ1

α
), t
β

)
=

(
1− t

η

)x
(1− t)−x+d1 ;

μ = β
α
�= 0, λ = σ1

αβ
�= 0

D2f: Meixner II G
(
'(α)x − σ0'(α) ,

t
'(α)

)
=

((
1+ δt

)2 + t2
)d2
e
x arctan

(
t

1+δt
)
;

δ = −((α)'(α) , d2 = σ1
|α|2

Let {Pn}n≥0 be a 2-OPS. Due to (1.5), the corresponding recurrence relation is:

Pn+1(x) = (x+αn+1)Pn(x)+ β̂(n+1)
1 Pn−1(x)+ β̂(n+1)

2 Pn−2(x), n ∈ N. (4.23)

If {Pn}n≥0 is also generated by (1.1), then according to Theorem 4.1, the functions
C and A satisfy, respectively, the equations:

C′(t) = 1

(1− αt)(1 − βt)(1 − γ t) and
A′(t)
A(t)

= σ0 + σ1t + σ2t
2

(1− αt)(1 − βt)(1− γ t) .
(4.24)

The coefficients of the recurrence relation are given by:
αn+1 = −nθ0 + σ0, β̂

(n+1)
1 = −n(n− 1)θ1 + nσ1, and

β̂
(n+1)
2 = −n(n−1)(n−2)θ2+n(n−1)σ2, with σ2 �= 0, θ2

σ2
= −αβδ

σ2
�= 1
k
, k ∈ N

∗.
By considering all possibilities, we list below the different cases:

• (A): α = β = γ = 0 ; (θ0 = θ1 = θ2 = 0).
• (B): α �= 0, β = γ = 0; (θ0 �= 0, θ1 = θ2 = 0)
• (C): α = β �= 0 ; (γ = θ2 = 0).
• (D): α �= β, α · β �= 0, γ = 0; (θ0 �= 0, θ1 �= 0, θ2 = 0)

– (D1): α and β are two real roots.
– (D2): α and β are two conjugate roots.

• (E): α = β = γ �= 0; (θ2 �= 0)
• (F): α = β �= γ ; (θ2 �= 0)
• (G): α �= β, α �= γ, β �= γ ; (θ2 �= 0)

– (G1): α, β, and γ are real roots.
– (G2): α, β are two conjugate roots and γ is a real root.
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Table 2 2-OPS of Sheffer
type

Case Generating function: G(x, t)

A ea1t
2+a2t

3
ext

B eb1t+b2t
2
(1+ t)x

C (1− t)c1ec2 t e
xt

1−t

D1 ed
′
1t
(

1− t
η

)x
(1− t)−x+d1

D2

((
1+ δt

)2 + t2
)d2
ed
′
2t e

x arctan
(

t
1+δt

)

E (1− t)ε1 e
ε2

t
(1−t ) e

x
t (2−t )
(1−t )2

F e(f1x+f2)
t

1−t
(

1− t
μ

)x
(1− t)−x+f3

G1 (1− t)x
(

1− t
λ1

)g1x+g′1(
1− t

λ2

)g2x+g′2

G2

(
1− t

ν

)g3x+g′3 ((
1+ δt

)2 + t2
)g4x+g′4

e
x arctan

(
t

1+δt
)

After some affine transformations, the corresponding nine sequences are quoted in
Table 2 (see page 236), among which we find 5 families that generalize, respectively,
the Hermite polynomials, the Laguerre polynomials, the Charlier polynomials, the
Meixner polynomials and the Meixner-Pollaczek polynomials.

4.4.3 Case d = 3

The case d = 3 was recently studied by Chaggara and Mbarki [16]. According to
(1.5), any 3-OPS {Pn}n≥0 satisfies a five-term recurrence relation as follows:

Pn+1(x) = (x + αn+1)Pn(x)+ β̂(n+1)
1 Pn−1(x)+ β̂(n+1)

2 Pn−2(x)+ β̂(n+1)
3 Pn−3(x),

(4.25)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αn+1 = −nθ0 + σ0,

β̂
(n+1)
1 = −n(n− 1)θ1 + nσ1,

β̂
(n+1)
2 = −n(n− 1)(n− 2)θ2 + n(n− 1)σ2,

β̂
(n+1)
3 = −n(n− 1)(n− 2)(n− 3)θ3 + n(n− 1)(n− 2)σ3.

with σ3 �= 0, θ3
σ3
�= 1
k
, k ∈ N

∗. By Theorem 4.1, the relationships (4.1) and (4.2)
are:

C ′(t) = 1

1+ θ0t + θ1t2 + θ2t3 + θ3t4
, and

A′(t)
A(t)

= σ0 + σ1t + σ2t
2 + σ3t

3

1+ θ0t + θ1t2 + θ2t3 + θ3t4
.

(4.26)
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By writing:

1+ θ0t + θ1t
2 + θ2t

3 + θ3t
4 = (1− αt)(1 − βt)(1− γ t)(1 − δt);

with σ3 �= 0, θ3
σ3
= αβγ δ

σ3
�= 1
k
, k ∈ N

∗, we get the following cases:

• (A): α = β = γ = δ = 0; (θ0 = θ1 = θ2 = θ3 = 0).
• (B): α �= 0, β = γ = δ = 0; (θ0 �= 0, θ1 = θ2 = θ3 = 0).
• (C): α = β �= 0 ; (γ = δ = θ2 = θ3 = 0).
• (D): α �= β, α · β �= 0, γ = δ = 0; (θ0 �= 0, θ1 �= 0, θ2 = θ3 = 0).

– (D1): α and β are two real roots.
– (D2): α and β are two conjugate roots.

• (E): α = β = γ �= 0; (δ = θ3 = 0)
• (F): α = β �= γ ; (θ2 �= 0, δ = θ3 = 0)
• (G): α �= β, α �= γ, γ �= β; (θ2 �= 0, δ = θ3 = 0).

– (G1): α, β, and γ are real roots.
– (G2): α, β are two conjugate roots and γ is real root.

• (H): α = β = γ = δ �= 0; (θ3 �= 0).
• (I): α = β = γ �= δ; (θ3 �= 0).
• (J): α = β �= γ, γ �= δ, β �= δ; (θ3 �= 0).

– (J1): γ and δ are two real roots.
– (J2): γ and δ are two conjugate roots.

• (K): α = β �= γ = δ; (θ3 �= 0).

– (K1): α, β, γ and δ are real roots.
– (K2): α and γ are two conjugate roots.

• (L): α, β, γ, δ pairwise distinct, (θ3 �= 0)

– (L1): α, β, γ and δ are real roots.
– (L2): α, β are two real roots and γ , δ are two conjugate roots.
– (L3): α, β, γ and δ are conjugate roots in two.

We have exactly 18 Sheffer type 3-OPSs.
After affine transformations similar to the changes made in Tables 1 and 2, one

obtains Table 3 (see page 238).
Note here that some slight modifications have been made in Tables 1, 2, and 3 in

the expressions of the obtained generating functions in order to simplify the given
forms. So, in some cases, new constants, depending of course on σi, θi, . . ., were
introduced. In some cases, the considered families are not monic.
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Table 3 3-OPS of Sheffer type (Chaggara and Mbarki [16])

Case Generating function: G(x, t)

A ea1 t
2+a2t

3+a3t
4
ext

B eb1 t+b2t
2+b3t

3
(1 + t)x

C (1− t)c1 ec2 t
2+c3t e

xt
1−t

D1 ed
′
1 t+d ′′1 t2

(
1− t

η

)x
(1− t)−x+d1

D2

((
1+ δt

)2 + t2
)d2
ed
′
2 t+d ′′2 t2 ex arctan

(
t

1+δt
)

E eε0 t (1− t)ε1 e
ε2

t
(1−t ) e

x
t (2−t )
(1−t )2

F ef0 t e

(
f1x+f2

)
t

1−t
(

1− t
μ

)x(
1− t

)−x+f3

G1 eg0 t (1 − t)x
(

1− t
λ1

)g1x+g′1(
1− t

λ2

)g2x+g′2

G2 eg
′
0 t
(

1− t
ν

)g3x+g′3 ((
1+ δt

)2 + t2
)g4x+g′4

e
x arctan

(
t

1+δt
)

H (1− t)h1 eh2
t

1−t e
h3

t (2−t )
(1−t )2 e

x

t

(
3−3t+t2

)
(1−t )3

I e

(
i1x+i ′1

)
t

1−t
e

(
i2x+i ′2

)
t (2−t )
(1−t )2 (1 − t

υ
)x
(

1− t
)x+i3

J1 (1− t)x (1− t
ω1
)j1x+j ′1 (1 − t

ω2
)j2x+j ′2 ex

t
1−t

J2

(
1− t

ς

)j3x+j ′3 ((
1+ δ′t

)2 + t2
)j4x+j ′4

e

(
j5x+j ′5

)
t

1− tς e
x arctan

(
t

1+δ′ t
)

K1 (1− t
κ
)x
(

1− t
)−x+k1

e

(
k2x+k′2

)
t

1−t
e

(
k3x+k′3

)
t

1− tκ

K2

((
1+ δt

)2 + t2
)k4
e

k5 t+k′5
((1+δt)2+t2) t e

(k6x+k′6)
[

k7t+k′7
((1+δt)2+t2) t

]
e
x arctan

(
t

1+δt
)

L1

(
1− t

)x (
1− t

η1

)l1x+l′1 (
1− t

η2

)l2x+l′2 (
1− t

η3

)l3x+l′3

L2

(
1− t

τ1

)l4x+l′4 (
1− t

τ2

)l5x+l′5 (
(1+ δ′t)2 + t2

)l6x+l′6
e
x arctan

(
t

1+δ′ t
)

L3

((
1+ δt

)2 + t2
)l′′1x+l′′2

e
x arctan

(
t

1+δt
) (
rt2 + st + 1

)l′′3 x+l′′4
e

(
l′′5x+l′′6

)
arctan

(
t

r′ t+s′
)

Differential and Difference Equations By the expression of λ and ρ given in (3.1)
and Theorem 4.1, it is obvious that if {Pn}n≥0 is generated by (1.1), then we have:

ρλ = A
′

A
(C−1(D))C−1(D)+ xC′(C−1(D))C−1(D)

d∑
k=0

σk
(C−1(D))k+1

(C−1)′(D) + x
C−1(D)

(C−1)′(D) .

(4.27)
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According to Relation (2.3) and Equation (4.27), any Sheffer d-OPS satisfies the
equation:

( d∑
k=0

σk(C
−1(D))k+1 + xC−1(D)+ C

−1(D)(C−1)′′(D)
(C−1)′(D)

)
Pn = n(C−1)′(D)Pn.

(4.28)

Next, we consider some particular cases among Table 3.

• Case [A]: For this case, we have:

C(t) = t and ρλ = σ3D
4 + σ2D

3 + σ1D
2 + σ0D + xD.

By virtue of (4.28), we obtain the forth-order differential equation:

σ3P
(4)
n (x)+ σ2P

(3)
n (x)+ σ1P

′′
n (x)+ (x + σ0)P

′
n(x)− nPn(x) = 0. (4.29)

• Case [B]: In that event C(t) = ln(1+ t) then C−1(D) = eD − 1 = �. Hence,

ρλ =
3∑
k=0

σk
�k+1

�+ 1
+ x �

�+ 1
.

We use (4.28) to get the forth-order finite difference equation,

σ3�
4Pn(x)+ σ2�

3Pn(x)+ σ1�
2Pn(x)+ [x + σ0 − (n− 1)]�Pn(x)− nPn(x) = 0.

(4.30)

• Case [C]: In this case C(t) = t
1−t and λ = D

1+D . The Eq. (4.28) reduces to

ρλ =
3∑
k=0

σkD
k+1(1+D)1−k + xD(1 +D).

Thus, we obtain a forth-order differential equation verified by the family (C).

[σ3 + σ2 + σ1 + (x + σ0)]P (4)n (x)+ [σ2 + 2σ1 + 3(x + σ0)+ 2]P (3)n (x)
+[σ1 + 3(x + σ0)+ (4− n)]P ′′n (x)+ [x + σ0 + 2(1− n)]P ′n(x)− nPn(x) = 0.

(4.31)

• Case [D1]: In that event C(t) = ln
( 1− tη

1−t
)

then λ = �
�+δ , δ = η−1

η
, which gives,

by virtue of (4.27),

ρλ =
3∑
k=0

σk
�k+1(�+ δ)1−k
δ(�+ 1)

+ x�(�+ δ)
δ(�+ 1)

.
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We find that any element of the sequence (D1) in Table 3 satisfies the forth-order
finite difference equation:

1

δ3

[
σ3 + σ2 + σ1 + (x + σ0)+ 3

]
�4Pn(x)

+ 1

δ2

[
σ2 + 2σ1 + 3(x + σ0)+

(
7− n− 2

δ

)]
�3Pn(x)

+1

δ

[
σ1 + 3(x + σ0)+

(
5− 2n− 4+ n

δ

)]
�2Pn(x)

+
[
(x + σ0)+

(
1− n− 1+ 2n

δ

)]
�Pn(x)− nPn(x) = 0. (4.32)

4.4.4 (d + 1)-Fold Symmetric d-OPS of Sheffer Type

In the sequel, we will be interested by d-SOPSs families among the Sheffer type
PSs. We discuss the corresponding form of the generating function according to the
sign of θd given by (4.12).

From (4.13), we conclude that:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(t) = exp
(
σd
d+1 t

d+1
)

if θd = 0,

A(t) =
(

1+ θdtd+1
) σd
(d+1)θd if θd �= 0.

(4.33)

Firstly, we consider the cases d = 1 and d = 2 and then we study the general case.
Without loss of generality, we will discuss the cases θd = 0, θd = 1 and θd = −1.

Case d = 1 We have in this case, C′(t) = 1
1+θ1t2 .

• θ1 = 0: In this case, C(t) = t , and then {Pn}n≥0 reduces to the Hermite PS which
corresponds to Case (A) in Table 1.

• θ1 = −1: We have

C(t) = 1

2
ln
(1+ t

1− t
)
.

This solution corresponds to Meixner PS is Case (D1) in Table 1 (with η = −1).
• θ1 = 1: C′(t) = 1

1+t2 , then

C(t) = arctan(t).

The obtained sequence corresponding to Meixner PS in Case (D2) in Table 1.
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Case d = 2 we have C′(t) = 1
1+θ2t3 .

• θ2 = 0: This is similar to the case θ1 = 0 when d = 1, {Pn}n≥0 corresponding to
2-Hermite PS (case (A) in Table 2.

• θ2 = ±1: 1 ± t3 admits one real root ±1 and two conjugate complex roots
±j, ±j . Thus C(t) has the following form:

C(t) = ±1

3

[
ln
(

1± t
)
− 1

2
ln
(
t2 ∓ t + 1

)
±√3 arctan

( √3t

t ∓ 2

)]
,

which corresponds to case (G2) in Table 2.

General Case This classification depends on the parity of d and the values of θd .

Case 1: d is Odd (d ≥ 3)

• If θd = 0, then C(t) = t, {Pn}n≥0 is the Gould–Hopper PS [21] or Hermite-type
d-SOPS already mentioned in Sect. 4.

∞∑
n=0

Pn(x)

n! t
n = exp

( σd

d + 1
td+1

)
exp(xt).

• If θd = −1, then C′(t) = 1
1−t d+1 .

The polynomial 1− td+1 admits two real roots:±1 and (d − 1) complex two by

two conjugate roots ξ1, . . . , ξ d−1
2

and ξ1, . . . , ξ d−1
2
, ξk = e 2ikπ

d+1 .

It follows:

C′(t) = 1

d + 1

( 1

1+ t +
1

1− t
)
+

d−1
2∑
k=1

αkt + βk
t2 − 2 cos

(
2kπ
d+1

)
t + 1

.

Then C(t) takes the form:

C(t) = 1

d + 1
ln
(1+ t

1− t
)
+

d−1
2∑
k=1

rk ln
(
t2−2 cos

( 2kπ

d + 1

)
t+1

)
+

d−1
2∑
k=1

sk arctan
( akt

t + bk
)
.

So, the generating function of {Pn}n≥0 becomes:

(
1− td+1

)−σd
d+1

(1+ t
1− t

) x
d+1

d−1
2∏
k=1

(
t2−2 cos

( 2kπ

d + 1

)
t+1

)rkx d−1
2∏
k=1

e
skx arctan

(
ak t

t+bk

)
.
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• If θd = 1: Similarly to the above case,

1+ td+1 =
d∏
k=0

(
t − ζk

)
; ζk = e

(2k+1)iπ
d+1 .

Then 1+ td+1 admits (d + 1) two by two conjugate roots: ζ0, . . . , ζ d−1
2
, ζ 0, . . . ,

ζ d−1
2
.

Thus,

C(t) =
d−1

2∑
k=0

rk ln
(
t2 − 2 cos

( (2k + 1)π

d + 1

)
t + 1

)
+

d−1
2∑
k=0

sk arctan
( akt

t + bk
)
.

Hence

∞∑
n=0

Pn(x)

n! t
n =

(
1+ t d+1

) σd
d+1

d−1
2∏
k=0

(
t2− 2 cos

( (2k + 1)π

d + 1

)
t + 1

)rkx d−1
2∏
k=0

e
skx arctan

(
ak t

t+bk

)
.

Case 2: d Is Even

• If θd = 0, similar to the Case I (d is odd).
• If θd �= 0 for both cases (θd = 1 and θd = −1), 1 ± td+1 has a single real root
±1 and d two by two conjugate complex roots. Then, for θd = 1, C(t) is given
by:

C(t) = 1

d + 1
ln(1+t)+

d
2∑
k=1

rk ln
(
t2−2 cos

( (2k − 1)π

d + 1

)
t+1

)
+

d
2∑
k=1

sk arctan
( akt

t + bk
)
.

Thus {Pn}n≥0 is generated by:

(
1+ td+1

) σd
d+1
(1+ t) x

d+1

d
2∏
k=1

(
t2−2 cos

( (2k − 1)π

d + 1

)
t+1

)rkx d
2∏
k=1

e
skx arctan

(
ak t

t+bk

)
.

From the above inquiry, we conclude that there are exactly three families of d-
SOPSs of Sheffer type if d is odd and exactly two in the even case (Table 4).
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Table 4 d-SOPS of Sheffer type (Chaggara and Mbarki [16])

d θd C(t) A(t)

Odd θd = 0 t exp
(
σd
d+1 t

d+1
)
; σd �= 0

θd = −1 1
d+1 ln

(
1+t
1−t

)

+∑ d−1
2
k=1 rk ln

(
t2 − 2 cos

(
2kπ
d+1

)
t + 1

)

+∑ d−1
2
k=1 sk arctan

(
akt
t+bk

)

(
1− td+1

) −σd
d+1 ; −σd /∈ N

θd = 1
∑ d−1

2
k=0 rk ln

(
t2 − 2 cos

(
(2k+1)π
d+1

)
t + 1

)

+∑ d−1
2
k=0 sk arctan

(
akt
t+bk

)
(

1+ td+1
) σd
d+1 ; σd /∈ N

Even θd = 0 t exp
(
σd
d+1 t

d+1
)
; σd �= 0

θd = ±1 ±1
d+1 ln(1+ t)
+∑ d

2
k=1 rk ln

(
t2 − 2 cos

( (
2k−

(
1±1

2

))
π

d+1

)
t + 1

)

+∑ d
2
k=1 sk arctan

(
akt
t+bk

)

(
1+ td+1

) σd
(d+1) ; σd /∈ N
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1 Introduction

The aim of this contribution is to provide a self-contained presentation of the so
called Sobolev orthogonal polynomials, i.e., polynomials which are orthogonal with
respect to a bilinear form involving derivatives of its inputs, defined in the linear
space of polynomials with real coefficients. We start by focusing our attention on
an algebraic approach to the so called standard orthogonal polynomials, which are
polynomials orthogonal with respect to a linear functional, taking into account that
we can associate with such polynomials a structured matrix for their moments (a
Hankel matrix), a tridiagonal matrix (a Jacobi matrix reflecting the fact that the
multiplication operator is symmetric with respect to the above linear functional),
as well as an analytic function around infinity (the so called Stieltjes function, that
is the z-transform of the sequence of moments of the linear functional), such that
the denominators of the diagonal Padé approximants to such a function are the
corresponding orthogonal polynomials (we refer the reader to [17] and [70] for an
introduction to these topics). These three basic ingredients allow us to deal with a
theory that knows an increasing interest in the last decades (see [64], [37]).

The most useful standard orthogonal polynomials appear as polynomial eigen-
functions of second-order differential operators and constitute the so called classical
families—Hermite, Laguerre, Jacobi and Bessel—see [42] as well as [11]. All
of them can be written in terms of hypergeometric functions and they can be
characterized in several ways taking into account their hypergeometric character.
Beyond the above classical orthogonal polynomials, the so-called semiclassical
orthogonal polynomials constitute a wide class with an increasing interest for
researchers, taking into account their connections with Painlevé equations and
integrable systems [73]. They have been introduced in [69] from the point of view
of holonomic equations satisfied by orthogonal polynomials associated with weight
functionsw(x) satisfying a Pearson differential equation (A(x)w(x))′ = B(x)w(x),
where A and B are polynomials. In the 80s, they have been intensively studied by P.
Maroni and co-workers (see [59] as an excellent and stimulating survey paper). The
role of semiclassical orthogonal polynomials in the study of orthogonal polynomials
with respect to univariate Sobolev inner products has been emphasized when the so
called coherent pairs of measures are introduced (see [63]) as well as some of their
generalizations (see [22]).

The structure of the paper is the following. In Sect. 2, a basic background
concerning linear functionals and the algebraic structure of the topological dual
space corresponding to the linear space of polynomials with real coefficients is
presented. Orthogonal polynomials with respect to linear functionals are defined and
the three-term recurrence relation they satisfy constitute a key point in the analysis
of their zeros. Discrete Darboux transformations for linear functionals are studied
in Sect. 3 in the framework of LU and UL factorizations of Jacobi matrices (see
[14]). The connection formulas between the corresponding sequences of orthogonal
polynomials are studied in the framework of the linear spectral transformations of
the Stieltjes functions associated with linear functionals. In Sect. 4, following [59],
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semiclassical linear functionals are introduced and some of their characterizations
are provided. The definition of class plays a key role in order to give a classification
of semiclassical orthogonal polynomials, mainly those of class zero (the classical
ones) and of class one (see [10]), which will play a central role in the sequel.
Thus, a constructive approach to describe families of semiclassical linear functionals
is presented. In particular, every linear spectral transformation of a semiclassical
linear functional is also semiclassical. On the other hand, the symmetrization
process of linear functionals is also studied and the invariance of the semiclassical
character of a linear functional by symmetrization is pointed out. This constitutes
the core of Sect. 5. In Sect. 6, orthogonal polynomials with respect to Sobolev
inner products associated with a vector of measures supported on the real line are
introduced. We emphasize the case where this vector of measures is coherent, i.e.,
their corresponding sequences of orthogonal polynomials satisfy a simple algebraic
relation. This fact allows to deal with an algorithm to generate Sobolev orthogonal
polynomials associated with coherent pairs of measures. Some analytic properties
of these polynomials are shown. Notice that the three-term recurrence relation that
constitutes a basic tool for the standard orthogonality is lost and, as a consequence,
new techniques for studying asymptotic properties of such orthogonal polynomials
are needed. In Sect. 7, multivariate Sobolev orthogonal polynomials are studied and
their representations in terms of semiclassical orthogonal polynomials and spherical
harmonics are given. A recent survey on Sobolev orthogonal polynomials can be
found in [56], both in the univariate and multivariate case. Finally, an updated list
of references provides a good guideline for the readers interested in these topics.

2 Background

Recall that a linear functional u defined on the linear space P of polynomials with
real coefficients is a mapping

u :P→ R

p→ 〈u, p〉

such that for every polynomials p, q , and every real numbers α, β,

〈u, α p + βq 〉 = α〈u, p〉 + β〈u, q〉.

In general, given a basis of polynomials {pn(x)}n≥0, and a sequence of real
numbers {μn}n≥0, a linear functional u is defined by means of its action on the
basis

〈u, pn〉 = μn, n ≥ 0,
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and extended by linearity to all polynomials. If pn(x) = xn, n ≥ 0, then the
real numbers μn = 〈u, xn〉, n ≥ 0, are called moments with respect to the
canonical basis and we usually say that u is a moment functional. If pn(x) =
anx

n + lower degree terms, n ≥ 0,, an �= 0, the real numbers μ̃n = 〈u, pn〉, n ≥ 0,
are called the modified moments associated with the linear functional u.

For a linear functional u, we define its moment matrix as the semi-infinite Hankel
matrixM = (μi+j )∞i,j=0. If we denote

�n = det[(μj )nj=0] =

∣∣∣∣∣∣∣∣∣

μ0 μ1 · · · μn
μ1 μ2 · · · μn+1
...

... · · · ...

μn μn+1 · · · μ2n

∣∣∣∣∣∣∣∣∣
,

then u is said to be quasi-definite if �n �= 0 for n ≥ 0, and u is said to be positive-
definite if �n > 0 for n ≥ 0.

Definition 2.1 Given a linear functional u and a polynomial q(x) we define a new
linear functional q(x)u as

〈q(x)u, p〉 = 〈u, q(x) p(x)〉,

for every polynomial p ∈ P.

Definition 2.2 Given a linear functional u and a polynomial p(x) = ∑n
k=0 ak x

k,

we define the polynomial (u ∗ p)(x) as

(u ∗ p)(x) :=
〈
uy,

xp(x)− yp(y)
x − y

〉
=

n∑
k=0

(
n∑
m=k

am μm−k

)
xk

= (1, x, . . . , xn)
⎛
⎜⎝
μ0 . . . μn
. . .

...

μ0

⎞
⎟⎠

⎛
⎜⎝
a0
...

an

⎞
⎟⎠ .

Definition 2.3 A sequence of polynomials {Pn(x)}n≥0 is said to be a sequence of
orthogonal polynomials with respect to u if

(i) deg(Pn) = n, and
(ii) 〈u, Pn Pm〉 = δn,m Kn with Kn �= 0,

where, as usual, δn,m denotes the Kronecker delta.

Theorem 2.4 (Existence and Uniqueness of Orthogonal Polynomials)

1. If u is a quasi-definite functional, then there exists a sequence of orthogonal
polynomials {Pn(x)}n≥0 associated with u.
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2. If {Qn(x)}n≥0 is another sequence of orthogonal polynomials associated with u,
then

Qn(x) = cn Pn(x), n ≥ 0,

where cn are non zero real numbers. That is, {Pn(x)}n≥0 is unique up to
multiplicative scalar factors.

Let u be a quasi-definite linear functional and {Pn(x)}n≥0 a sequence of
orthogonal polynomials associated with u. For each n ≥ 0, let kn denote the leading
coefficient of the polynomial Pn(x). The sequence of polynomials {P̂n(x)}n≥0 with

P̂n(x) := k−1
n Pn(x), n ≥ 0,

is called a sequence of monic orthogonal polynomials associated with u. In
particular, if u is positive-definite, then we can define a norm on P by

||p||u =
√
〈u, p2〉.

The sequence of polynomials {Qn(x)}n≥0 with

Qn(x) := Pn(x)

||Pn(x)||u , n ≥ 0,

is called the sequence of orthonormal polynomials with respect to u.
Using a matrix approach, we can rewrite the orthogonality as follows. If M is

the Hankel moment matrix associated with a quasi-definite linear functional, then
M has a unique Gauss-Borel factorization [35, p. 441] with

M = S−1DS−t , (2.1)

where, as usual, the superscript t denotes the transpose, S is a non-singular lower
triangular matrix with 1’s in the main diagonal, S−t := (S−1)t , and D is a diagonal
matrix. With this in mind, if χ(x) denotes the semi-infinite column vector χ(x) :=
(1, x, x2, · · · )t , then the sequence of monic orthogonal polynomials arranged in a
column vector as P := (P0(x), P1(x), P2(x), · · · )t can be written as P = Sχ(x). In
other words, S is the matrix of change of basis from the canonical basis to the basis
of monic orthogonal polynomials.

Notice also that if u is a positive-definite linear functional, then the entries of
D in (2.1) are positive and thus the factorization of the moment matrix M is the
standard Cholesky factorization. Moreover, if Q := (Q0(x),Q1(x),Q2(x), . . .)

t

is the vector of orthonormal polynomials, then Q := S̃χ(x), where S̃ =
D−1/2S.
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Definition 2.5 The shift matrix is the semi-infinite matrix

� :=

⎛
⎜⎜⎜⎝

0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...
...
...
...

⎞
⎟⎟⎟⎠ .

The shift matrix satisfies the spectral property�χ(x) = x χ(x). Notice also that
from the symmetry of the Hankel moment matrixM , we have that �M = M�t.
Theorem 2.6 (Three-Term Recurrence Relation) Let u be a quasi-definite linear
functional and let {Pn(x)}n≥0 be the sequence of monic orthogonal polynomials
with respect to u. Then there exist two sequences of real numbers {an}n≥1 and
{bn}n≥0, with an �= 0 for n ≥ 1, such that

x Pn(x) = Pn+1(x)+ bn Pn(x)+ an Pn−1(x), n ≥ 0,

P−1(x) = 0, P0(x) = 1.
(2.2)

Moreover,

bn = 〈u, x P
2
n 〉

〈u, P 2
n 〉
, n ≥ 0, an = 〈u, P 2

n 〉
〈u, P 2

n−1〉
, n ≥ 1.

The above three-term recurrence relation can be written in matrix form as follows

x P = JmonP, where Jmon =

⎛
⎜⎜⎜⎜⎝

b0 1
a1 b1 1

a2 b2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ .

The matrix Jmon is called a monic Jacobi tridiagonal matrix associated with the
sequence of monic orthogonal polynomials {Pn(x)}n≥0.

Similarly, if u is positive-definite, then the sequence of orthonormal polynomials
satisfies a three-term recurrence relation xQ = J Q, where J is a tridiagonal semi-
infinite symmetric matrix called a Jacobi matrix.

Theorem 2.7 If S is the semi-infinite upper triangular matrix obtained in the
Gauss-Borel factorization (2.1), then

Jmon = S �S−1.

Similarly, if u is a positive-definite linear functional and S̃ is the upper triangular
matrix obtained from the Cholesky factorization of the moment matrix, then J =
S̃ � S̃−1.
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Proof Let P = (P0(x), P1(x) · · · )t be the vector of monic orthogonal polynomials.
Using the shift matrix properties, we have

x P = x Sχ(x) = S �χ(x) = S �S−1 (S χ(x)) = S �S−1 P,

and the result follows.
If u is positive-definite, let Q = (Q0(x),Q1(x) · · · )t be the vector of orthonor-

mal polynomials.

xQ = x S̃χ(x) = S̃ �χ(x) = S̃ � S̃−1 (S̃ χ(x)) = S̃ � S̃−1 Q,

and we obtain the result ��
Theorem 2.8 (Favard’s Theorem) Let {bn}n≥0 and {an}n≥1 be arbitrary
sequences of real numbers with an �= 0 for n ≥ 1, and let {Pn(x)}n≥0 be a
sequence of monic polynomials defined by the recurrence formula

x Pn(x) = Pn+1(x)+ bn Pn(x)+ an Pn−1(x), n ≥ 0,

P−1(x) = 0, P0(x) = 1,

then there exists a quasi-definite linear functional u such that {Pn(x)}≥0 is the
sequence of monic orthogonal polynomials with respect to u. Furthermore, if
{an}n≥1 is a sequence such that an > 0 for n ≥ 1, then u is positive-definite.

If {Pn(x)}n≥0 is a sequence of monic orthogonal polynomials satisfying a three-
term recurrence (2.2), we define the sequence of associated polynomials of the
first kind {P (1)n (x)}n≥0 as the sequence of polynomials that satisfy the three-term
recurrence relation

xP (1)n (x) = P (1)n+1(x)+ bn+1P
(1)
n (x)+ an+1P

(1)
n−1(x), n ≥ 0,

P
(1)
0 (x) = 1, P

(1)
−1 (x) = 0.

(2.3)

Proposition 2.9 Let u be a quasi-definite linear functional and {Pn(x)}n≥0 its cor-
responding sequence of monic orthogonal polynomials. The sequence of associated
polynomials of the first kind is given by

P
(1)
n−1(x) =

1

μ0

〈
uy,

Pn(x)− Pn(y)
x − y

〉
, n ≥ 1.

Notice that the families of polynomials {Pn(x)}n≥0 and {P (1)n−1(x)}n≥0 are linearly
independent solutions of (2.2). Thus, any other solution can be written as a linear
combination of {Pn(x)}n≥0 and {P (1)n−1(x)}n≥0 with polynomial coefficients.
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Definition 2.10 For each n ≥ 0, the nth kernel polynomial is defined by

Kn(x, y) =
n∑
j=0

Pj (x) Pj (y)

‖Pj (x)‖2u
. (2.4)

Definition 2.11 Let u be a quasi-definite functional with moments {μn}n≥0. We
define the Stieltjes function associated with u as the formal power series

S(z) =
∞∑
n=0

μn

zn+1 .

By a linear spectral transformation of S(z) we mean the following transformation

S̃(z) = A(z)S(z)+ B(z)
C(z)

where A(z), B(z), C(z) are polynomials in the variable z such that

S̃(z) =
∞∑
n=0

μ̃n

zn+1 .

Definition 2.12 Let u be a linear functional and let {Pn(x)}n≥0 be a sequence of
polynomials with deg(Pn) = n. We say that {Pn(x)}n≥0 is quasi-orthogonal of order
m with respect to u if

〈u, Pk Pn〉 = 0, m+ 1 ≤ |n− k|,
〈u, Pn−m Pn 〉 �= 0, for some n ≥ m.

The sequence of polynomials {Pn(x)}n≥0 is said to be strictly quasi-orthogonal of
orderm with respect to u if

〈u, Pk Pn〉 = 0, m+ 1 ≤ |n− k|,
〈u, Pn−m Pn 〉 �= 0, for every n ≥ m.

3 Discrete Darboux Transformations

Several examples of perturbations of a quasi-definite linear functional u have been
studied (see for example [14, 17, 18, 23, 31, 32, 71, 72, 76, 77]). In particular,
the following three canonical cases (see [14, 76]) have attracted the interest of
researchers. These transformations are known in the literature as discrete Darboux
transformations.
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3.1 Christoffel Transformation

Let u be a quasi-definite linear functional and {Pn(x)}n≥0 a sequence of monic
orthogonal polynomials associated with u. Suppose that the linear functional ũ
satisfies

ũ = (x − a)u, (3.1)

with a ∈ R. Then ũ is called a canonical Christoffel transformation of u (see [14]).
Necessary and sufficient conditions for the functional ũ to be quasi-definite are
given in [16, 76]. If ũ is also a quasi-definite functional, then its sequence of monic
orthogonal polynomials {P̃n(x)}n≥0 satisfies the following connection formulas.

Proposition 3.1 The sequences of monic orthogonal polynomial {Pn(x)}n≥0 and
{P̃n(x)}n≥0 are related by

(x − a) P̃n(x) = Pn+1(x)+ λn Pn(x), n ≥ 0,

Pn(x) = P̃n(x)+ νn P̃n−1(x), n ≥ 1,
(3.2)

with

λn = −Pn+1(a)

Pn(a)
, n ≥ 0, νn = 〈u, P 2

n 〉
λn−1〈u, P 2

n−1〉
, n ≥ 1.

Notice that (3.2) can be written in matrix form

⎛
⎜⎜⎜⎝

P0(x)

P1(x)

P2(x)
...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
ν1 1
ν2 1
. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

P̃0(x)

P̃1(x)

P̃2(x)
...

⎞
⎟⎟⎟⎠ ,

(x − a)

⎛
⎜⎜⎜⎝

P̃0(x)

P̃1(x)

P̃2(x)
...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝
λ0 1
λ1 1
. . .
. . .

⎞
⎟⎠

⎛
⎜⎜⎜⎝

P0(x)

P1(x)

P2(x)
...

⎞
⎟⎟⎟⎠ .

Theorem 3.2 ([14, 76]) Let Jmon and J̃mon be the Jacobi matrices associated with
u and ũ = (x − a) u, respectively. If Jmon − aI can be written as

Jmon − aI = LU,
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where L is a lower bidiagonal matrix with 1’s in the main diagonal and U is an
upper bidiagonal matrix, then

J̃mon − aI = UL.

Proof Recall that from (3.2),

(x − a) P̃ = U P and P = L P̃,

where P = (P0(x), P1(x) · · · )t , P̃ = (P̃0(x), P̃1(x) · · · )t , L is a lower bidiagonal
matrix with 1’s in the main diagonal, and U is an upper bidiagonal matrix. Thus,

(x − a)P = (x − a) L P̃ = L (x − a) P̃ = (LU)P,

and since (x − a)P = (Jmon − aI)P, it follows that

(Jmon − aI)P = (LU)P.

Since {Pn(x)}n≥0 constitutes a basis of the linear space of polynomials, then Jmon−
aI = LU. On the other hand,

(x − a) P̃ = U P = (UL) P̃,

but, as above, this implies that J̃mon − aI = UL. ��

3.2 Geronimus Transformation

Let u be a quasi-definite linear functional, and introduce the linear functional û

û = (x − a)−1u+Mδ(x − a), (3.3)

i.e., for every polynomial p(x),

〈û, p(x)〉 =
〈
u,
p(x)− p(a)
x − a

〉
+Mp(a). (3.4)

We say that û is a canonical Geronimus transformation of u (see [31]). Necessary
and sufficient conditions for the functional û to be quasi-definite are given in [23,
32, 76]. If û is also a quasi-definite linear functional, then we denote by {P̂n(x)}n≥0
its sequence of monic orthogonal polynomials.
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Proposition 3.3 The sequences of monic orthogonal polynomials {Pn(x)}n≥0 and
{P̂n(x)}n≥0 are related by

P̂n(x) = Pn(x)+ ςn Pn−1(x), n ≥ 1,

(x − a) Pn(x) = P̂n+1(x)+ ρn P̂n(x), n ≥ 0,
(3.5)

where

ςn = − μ0P
(1)
n−1(a)+MPn(a)

μ0P
(1)
n−2(a)+MPn−1(a)

, n ≥ 1,

ρn =
(
μ0P

(1)
n−2(a)+MPn−1(a)

)
〈u, P 2

n (x)〉(
μ0P

(1)
n−1(a)+MPn(a)

)
〈u, P 2

n−1(x)〉
, n ≥ 1,

ρ0 = μ0

μ̂0
,

and {P (1)n (x)}n≥0 is the sequence of polynomials of the first kind (2.3).

Notice that (3.5) can be written in matrix form as

⎛
⎜⎜⎜⎝

P̂0(x)

P̂1(x)

P̂2(x)
...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
ς1 1
ς2 1
. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

P0(x)

P1(x)

P2(x)
...

⎞
⎟⎟⎟⎠ ,

(x − a)

⎛
⎜⎜⎜⎝

P0(x)

P1(x)

P2(x)
...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝
ρ0 1
ρ1 1
. . .
. . .

⎞
⎟⎠

⎛
⎜⎜⎜⎝

P̂0(x)

P̂1(x)

P̂2(x)
...

⎞
⎟⎟⎟⎠ .

Theorem 3.4 ([14, 76]) Let Jmon and Ĵmon be the Jacobi matrices associated with
u and û, respectively. If the semi-infinite matrix Jmon − aI can be written as

Jmon − aI = UL,

where L is a lower bidiagonal matrix and U is a upper bidiagonal matrix, then

Ĵmon − aI = LU.
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Proof From (3.5),

(x − a)P = U P̂, and P̂ = LP,

where, P = (P0(x), P1(x) · · · )t , P̂ = (P̂0(x), P̂1(x) · · · )t , L is a lower bidiagonal
matrix with 1’s in the main diagonal, and U is an upper bidiagonal matrix. Then,

(x − a)P = U P̂ = (UL)P.

But {Pn(x)}n≥0 is a basis for P, and (x − a)P = (Jmon − aI)P, we get

Jmon − aI = UL.

Notice that this factorization depends on the choice of the free parameter μ̂0 �= 0.
For a fixed μ̂0,

(x − a) P̂ = (x − a) LP = L (x − a)P = (LU) P̂.

As above, Ĵmon − aI = LU. ��

3.3 Uvarov Transformation

Let u be a quasi-definite linear functional and suppose that the linear functional ǔ is
defined by

ǔ = u+Mδ(x − a). (3.6)

The linear functional ǔ is said to be a canonical Uvarov transformation of u (see
[71, 72]). Necessary and sufficient conditions for the quasi-definiteness of the linear
functional ǔ are given in [49].

Proposition 3.5 Suppose that ǔ is quasi-definite, and let {P̌n(x)}n≥0 denote the
sequence of monic orthogonal polynomials associated with ǔ. The sequences of
polynomial {Pn(x)}n≥0, and {P̌n}n≥0 are related by

P̌n(x) = Pn(x)− MPn(a)

1+MKn−1(a, a)
Kn−1(x, a), n ≥ 1,

where Kn(x, y) denotes the nth kernel polynomial defined in (2.4).

For any linear functional u, it is straightforward to verify that if a canonical
Christoffel transformation is applied to û in (3.3) with the same parameter a,
then we recover the original linear functional u, that is, the canonical Christoffel
transformation is the left inverse of the canonical Geronimus transformation.
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However, a canonical Geronimus transformation applied to the linear functional
ũ in (3.1) with the same parameter a, transforms ũ into a linear functional ǔ as in
(3.6), that is, a canonical Uvarov transformation. It is important to notice that the
following result holds.

Theorem 3.6 ([77]) Every linear spectral transform is a finite composition of
Christoffel and Geronimus transformations.

4 Semiclassical Linear Functionals

LetD denote the derivative operator. Given a linear functional u, we define Du as

〈Du, p〉 = −〈u, p′〉,

for every polynomial p ∈ P. Inductively, we define

〈Dnu, p〉 = (−1)n〈u, p(n)〉.

Notice that, for any polynomial q(x),

D(q(x) u) = q ′(x) u+ q(x)Du.

Definition 4.1 A quasi-definite linear functional u is said to be semiclassical if
there exist non-zero polynomials φ and ψ with deg(φ) =: r ≥ 0 and deg(ψ) =:
t ≥ 1, such that u satisfies the Pearson equation

D(φ(x)u)+ ψ(x)u = 0. (4.1)

In general, if u satisfies (4.1), then it satisfies an infinite number of Pearson
equations. Indeed, for any non-zero polynomial q(x), u satisfies

D(φ̃ u)+ ψ̃ u = 0,

where φ̃(x) = q(x) φ(x) and ψ̃(x) = q ′(x) φ(x)+ q(x) ψ(x).
Remark 4.2 In order to avoid any incompatibility with the quasi-definite character
of the semiclassical functional u, it will be required from now on that, if

φ(x) = ar xr + · · · and ψ(x) = bt xt + · · · ,

then, for any n = 0, 1, 2, . . ., if t = r − 1, then n ar − bt �= 0. In such a case, every
moment of the linear functional u is well defined.

This motivates the following definition.
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Definition 4.3 The class of a semiclassical linear functional u is defined as

s(u) := min max{deg(φ)− 2, deg(ψ)− 1},

where the minimum is taken among all pairs of polynomials φ and ψ such that u
satisfies (4.1).

Lemma 4.4 Let u be a semiclassical functional such that

D(φ1u)+ ψ1u = 0, s1 := max{deg(φ1)− 2, deg(ψ1)− 1}, (4.2)

D(φ2u)+ ψ2u = 0, s2 := max{deg(φ2)− 2, deg(ψ)2 − 1}, (4.3)

where φi(x) and ψi(x), i = 1, 2, are non-zero polynomials with deg(φi) ≥ 0 and
deg(ψi) ≥ 1. Let φ(x) be the greatest common divisor of φ1(x) and φ2(x).

Then there exists a polynomial ψ(x) such that

D(φ u)+ ψ u = 0, s := max{deg(φ)− 2, deg(ψ) − 1}.

Moreover, s − deg(φ) = s1 − deg(φ1) = s2 − deg(φ2).

Proof From the hypothesis, there exist polynomials φ̃1 and φ̃2 such that φ1 = φ φ̃1
and φ2 = φ φ̃2. If φ1 and φ2 are coprime, then set φ = 1. From (4.2) and (4.3), we
obtain

φ̃2D(φ1u)− φ̃1D(φ2u)+ (φ̃2 ψ1 − φ̃1ψ2)u = 0. (4.4)

Observe that, for any polynomial p ∈ P,

〈φ̃2D(φ1u)− φ̃1D(φ2u), p〉 = −〈u, φ1(φ̃2 p)
′〉 + 〈u, φ2 (φ̃1 p)

′〉
= 〈u, (φ2 φ̃

′
1 − φ1 φ̃

′
2) p + (φ̃1 φ2 − φ̃2 φ1) p

′〉
= 〈u, (φ2 φ̃

′
1 − φ1 φ̃

′
2) p + φ (φ̃1 φ̃2 − φ̃2 φ̃1) p

′〉
= 〈u, (φ2 φ̃

′
1 − φ1 φ̃

′
2) p〉

= 〈(φ2 φ̃
′
1 − φ1 φ̃

′
2) u, p〉.

Therefore, (4.4) becomes (φ2 φ̃
′
1 − φ1 φ̃

′
2 + φ̃2ψ1 − φ̃1ψ2) u = 0. Since u is quasi-

definite, then

φ2 φ̃
′
1 − φ1 φ̃

′
2 + φ̃2ψ1 − φ̃1 ψ2 = 0,

or, equivalently, (φ̃′1 φ + ψ1)φ̃2 = (φ̃′2 φ + ψ2)φ̃1.
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But φ̃1 and φ̃2 are coprime polynomials. Hence, there exists a polynomialψ such
that

φ̃′1 φ + ψ1 = ψ φ̃1, φ̃′2 φ + ψ2 = ψ φ̃2. (4.5)

Since φ1 = φ φ̃1 and φ2 = φ φ̃2, (4.2) and (4.3) can be written as

φ̃1D(φ u)+ (φ̃′1 φ + ψ1) u = 0, φ̃2D(φ u)+ (φ̃2 φ + ψ2) u = 0.

Using (4.5), we write

φ̃1 (D(φu)+ ψu) = 0, φ̃2 (D(φu)+ ψu) = 0,

and the result follows from the Bézout identity for coprime polynomials. ��
Theorem 4.5 ([59]) For any semiclassical linear functional u, the polynomials φ
and ψ in (4.1) such that

s(u) = max{deg(φ)− 2, deg(ψ) − 1}

are unique up to a constant factor.

Proof Suppose that u satisfies (4.1) with φi and ψi , i = 1, 2, and suppose that
s(u) = max{deg(φi) − 2, deg(ψi) − 1}, i = 1, 2. If in Lemma 4.4 we take s1 =
s2, then s = s1 = s2. But this implies that deg(φ) = deg(φ1) = deg(φ2), or,
equivalently, φ = φ1 = φ2. Notice also that ψ is unique up to a constant factor. ��

The polynomials φ and ψ such that s(u) = max{deg(φ) − 2, deg(ψ) − 1} are
characterized in the following result.

Proposition 4.6 ([57]) Let u be a semi-classical linear functional and let φ(x) and
ψ(x) be non-zero polynomials with deg(φ) =: r and deg(ψ) =: t , such that (4.1)
holds. Let s := max(r − 2, t − 1). Then s = s(u) if and only if

∏
c:φ(c)=0

(
|ψ(c)+ φ′(c)| + |〈u, θcψ + θ2

c φ〉|
)
> 0. (4.6)

Here, (θcf )(x) = f (x)− f (c)
x − c .

Proof Let c be a zero of φ, then there exists a polynomial φc(x) of degree r − 1
such that φ(x) = (x − c)φc(x). On the other hand, since

θ2
c φ(x) =

φ(x)− φ(c)
(x − c)2 − φ

′(c)
x − c ,
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then

ψ(x)+ φc(x) = (x − c)ψc(x)+ rc,

where

ψc(x) = θcψ(x)+ θ2
c φ(x), rc = ψ(c)+ φ′(c).

With this in mind, (4.1) can be written as (x− c)(D(φc u)+ψc u)+ rcu = 0. From
here, we obtain

D(φcu)+ ψcu = − rc

(x − c)u+ 〈u, ψc〉 δ(x − c)

= −ψ(c)+ φ
′(c)

(x − c) u+ 〈u, θcψ + θ2
c φ〉 δ(x − c).

Next, we proceed to the proof of the proposition.
Suppose that s(u) = s, rc = 0 and 〈u, ψc〉 = 0 for some c such that φ(c) = 0.

Then D(φcu) + ψcu = 0. But deg(φc) = r − 1 and deg(ψc) = t − 1. This means
that s(u) = s − 1, which is a contradiction.

Now, suppose that (4.6) holds and that u is of class s̃ ≤ s,withD(φ̃ u)+ψ̃ u = 0.
From Lemma 4.4, there exists a polynomial ρ(x) such that

φ(x) = ρ(x)φ̃(x), ψ(x) = ρ(x)ψ̃(x)− ρ′(x)φ̃(x).

If s̃ < s, then necessarily deg(ρ) ≥ 1. Let c be a zero of ρ(x) and let ρc(x) be the
polynomial such that ρ(x) = (x − c) ρc(x). Then,

ψ(x)+ φc(x) = (x − c)
(
ρc(x) ψ̃(x)− ρ′c(x) φ̃(x)

)
.

It follows that

rc = 0, ψc(x) = ρc(x) ψ̃(x)− ρ′c(x) φ̃(x).

Hence,

〈u, ψc〉 = 〈u, ψ̃ ρc〉 − 〈u, ρ′c φ̃〉 = 〈D(φ̃ u)+ ψ̃ u, ρc〉 = 0.

But this means that φ(c) = 0 and

|ψ(c)+ φ′(c)| + |〈u, θcψ + θ2
c φ〉| = 0,

which contradicts (4.6). Thus, s = s̃ and, by Theorem 4.5, φ̃ and ψ̃ are multiple of
φ and ψ , respectively, up to a constant factor. ��
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Proposition 4.7 ([34, 58]) Let u be a linear functional. The following statements
are equivalent.

(1) u is semiclassical.
(2) There exist two non-zero polynomials φ and ψ with deg(φ) =: r ≥ 0 and

deg(ψ) =: t ≥ 1, such that the Stieltjes functionS(z) associated with u satisfies

φ(z)S ′(z)+ (ψ(z)+ φ′(z))S(z) = C(z), (4.7)

where

C(z) = (u ∗ θ0
(
ψ + φ′))(z)− (Du ∗ θ0φ)(z).

Proof (1)⇒(2) Let u be a semiclassical functional of class s satisfying (4.1).

φ(z) =
r∑
k=0

φ(k)(0)

k! zk, ψ(z) =
t∑

m=0

ψ(m)(0)

m! zm,

we have

0 = 〈D(φu)+ ψu, xn〉 = −〈u, nxn−1φ(x)〉 + 〈u, xnψ(x)〉

= −n
r∑
k=0

φ(k)(0)

k! μn+k−1 +
t∑

m=0

ψ(m)(0)

m! μn+m.

Multiplying the above relation by 1/zn+1 and taking the infinite sum over n, we
obtain

0 = −
∞∑
n=0

n

r∑
k=0

φ(k)(0)

k!
μn+k−1

zn+1 +
∞∑
n=0

t∑
m=0

ψ(m)(0)

m!
μn+m
zn+1 . (4.8)

It is straightforward to verify that

∞∑
n=0

t∑
m=0

ψ(m)(0)

m!
μn+m
zn+1

= ψ(z)S(z)−
t∑

m=1

m−1∑
n=0

ψ(m)(0)

m! μnz
m−1−n

= ψ(z)S(z)− (u ∗ θ0ψ)(z).

On the other hand,

S ′(z) = −
∞∑
n=0

(n+ 1)
μn

zn+2 .
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Thus,

∞∑
n=0

r∑
k=0

n
φ(k)(0)

k!
μn+k−1

zn+1
= −φ(z)S ′(z)− φ′(z)S(z)+

r∑
k=2

k−2∑
n=0

φ(k)(0)

(k − 1)!
μn

zn−k+2

−
r∑
k=2

k−2∑
n=0

(n+ 1)
φ(k)(0)

k!
μn

zn−k+2

= −φ(z)S ′(z)− φ′(z)S(z)+ (u ∗ θ0φ
′)(z)− (Du ∗ θ0φ)(z).

Hence, (4.7) follows from (4.8).
(2)⇒(1) Suppose that (4.7) holds for some non-zero polynomials φ and ψ . Since
each step above is also true in the reverse direction, then (4.7) is equivalently to
(4.8). But this implies that, for every n ≥ 0,

0 = −〈u, n xn−1 φ〉 + 〈u, xn ψ〉 = 〈D(φ u)+ ψ u, xn〉.

Therefore, u is semiclassical. ��
Proposition 4.8 ([59]) Let u be a linear functional, and let {Pn(x)}n≥0 be its
sequence of monic orthogonal polynomials. The following statements are equiva-
lent.

(1) The linear functional u is semiclassical of class s.

(2) For n ≥ 0, let Rn(x) =
P ′n+1(x)

n+ 1
. There exists a non-zero polynomial φ(x)

with deg(φ) = r , such that the sequence of monic polynomials {Rn(x)}n≥0 is
quasi-orthogonal of order s with respect to the linear functional φ(x) u.

Proof (1)⇒(2) Let φ and ψ be non-zero polynomials with deg(φ) =: r ≥ 0 and
deg(ψ) =: t ≥ 1 such that u satisfiesD(φ u)+ψ u = 0 and s := max{r− 2, t − 1}
is the class of u. Note that

〈φ u, xmP ′n+1〉 = 〈φ u, (xmPn+1)
′〉 − 〈φ u,m xm−1Pn+1〉

= 〈u,
(
xmψ −mxm−1φ

)
Pn+1〉.

The above implies that 〈φ u, xmP ′n+1〉 = 0 for 0 ≤ m ≤ n − s − 1. Moreover,
from Remark 4.2, xmψ(x) − mxm−1φ(x) has degree s + m + 1 and, thus,
〈φ u, xn−sP ′n+1〉 �= 0. Hence, Rn(x) is quasi-orthogonal of order s.

(2)⇒(1) Suppose that there exists some non-zero polynomial φ with deg(φ) =:
r ≥ 0, such that the sequence of polynomials {Rn(x)}n≥0 is quasi-orthogonal of

order s with respect to the linear functional φ(x)u. Since
{
Pn(x)

‖Pn‖2 u
}
n≥0

is a basis of
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the dual space of P, then

D(φ u) =
∞∑
n=0

αn
Pn(x)

‖Pn‖2 u,

where αn = 〈D(φ u), Pn〉 = −〈φ u, P ′n〉 = −n〈u, φ Rn−1〉, n ≥ 1, α0 = 0.
From the quasi-orthogonality of {Rn(x)}n≥0, αn = 0 when s + 2 ≤ n. Thus,

D(φu)+ ψu = 0, where ψ(x) = −
s+1∑
n=1

αn
Pn(x)

‖Pn‖2 .

��
Corollary 4.9 A linear functional u with associated sequence of monic orthogonal
polynomials {Pn(x)}n≥0 is semiclassical of class s if and only if there is a non-zero
polynomial φ such that sequence of monic polynomials {Fn(x)}n≥0, where Fn(x) =
P
(m)
n+m(x)
(n+ 1)m

, is quasi-orthogonal of order s with respect to the linear functional φm u.

Proposition 4.10 ([59]) Let u be a linear functional and {Pn(x)}n≥0 its sequence
of monic orthogonal polynomials. The following statements are equivalent.

(1) u is semiclassical of class s.
(2) There exist a nonnegative integer number s and a monic polynomial φ(x) of

degree r with 0 ≤ r ≤ s + 2, such that

φ(x) P ′n+1(x) =
n+r∑
k=n−s

λn,k Pk(x), n ≥ s, λn,n−s �= 0. (4.9)

If s ≥ 1, r ≥ 1 and λs,0 �= 0, then s is the class of u.

Proof (1)⇒(2) Suppose that u is of class s satisfying D(φ u) + ψ u = 0 with
deg(φ) = r . Since {Pn(x)}n≥0 is a basis of P, for each n ≥ 0, there exists a set of
real numbers (λn,k)

n+r
k=0 such that

φ(x) P ′n+1(x) =
r+n∑
k=0

λn,k Pk(x).

Using orthogonality,

λn,k =
〈φ u, P ′n+1 Pk〉
〈u, P 2

k 〉
= (n+ 1)〈φ u, Rn Pk〉

〈u, P 2
k 〉

,

where, for each n ≥ 0,Rn(x) = P ′n+1(x)

n+1 . But u is semiclassical of class s, then, from
Proposition 4.8,Rn(x) is quasi-orthogonal of order s with respect to φ u. Therefore,
λn,k = 0, when s + 1 < n− k, and λn,n−s �= 0.
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(2)⇒(1) Assume that {Pn(x)}n≥0 satisfies (4.9). Since
{

Pn(x)

‖Pn(x)‖2 u
}
n≥0

is a basis of

the dual space of P, then

D(φu) =
∞∑
n=0

αn
Pn(x)

‖Pn(x)‖2 u.

Using (4.9),

αn = 〈u, φP ′n(x)〉 =
n+r∑
k=n−s

λn,k〈u, Pk(x)〉 =
{

0, n > s,

λn,0〈u, P0〉, n ≤ s.

Therefore, u satisfies D(φ u)+ ψ u = 0 with

ψ(x) = −
s+1∑
n=0

αn
Pn(x)

‖Pn‖2 ,

hence, u is semiclassical. Observe that if in particular λs,0 �= 0, u is of class s. ��
Using the three-term recurrence relation (2.2), (4.9) can be written in a compact

form as shown in the following result.

Theorem 4.11 ([59]) Let u be a semiclassical functional of class s, and {Pn(x)}n≥0
its associated sequence of monic orthogonal polynomials. Then there exists a non-
zero polynomial φ with deg(φ) =: r ≥ 0, such that

φ(x)P ′n+1(x) =
Cn+1(x)− C0(x)

2
Pn+1(x)−Dn+1(x)Pn(x), n ≥ 0, (4.10)

where {Cn(x)}n≥0 and {Dn(x)}n≥0 are polynomials satisfying

Cn+1(x) = −Cn(x)+ 2Dn(x)

an
(x − bn), n ≥ 0,

C0(x) = −ψ(x)− φ′(x)
(4.11)

and

Dn+1(x) = −φ(x)+ an

an−1
Dn−1(x)+ Dn(x)

an
(x − bn)2 − Cn(x)(x − bn), n ≥ 0,

D0(x) = −(u ∗ θ0φ)
′(x)− (u ∗ θ0ψ)(x), D−1(x) = 0.

The above expression leads to the so-called ladder operators associated with the
linear functional u. Using (4.11) and the three-term recurrence relation (2.2), we can
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deduce from (4.10) that, for n ≥ 0,

φ(x)P ′n+1(x) = −
(
Cn+2(x)+ C0(x)

2

)
Pn+1(x)+ Dn+1(x)

an+1
Pn+2(x). (4.12)

The relations (4.10) and (4.12) are essential to deduce a second-order linear
differential equation satisfied by the polynomials {Pn(x)}n≥0 (see [34, 37, 59]),
which reads

J (x, n)P ′′n+1(x)+K(x, n)P ′n+1(x)+ L(x, n)Pn+1(x) = 0, n ≥ 0,

where, for n ≥ 0,

J (x, n) = φ(x)Dn+1(x),

K(x; n) = (φ′(x)+ C0(x))D
′
n+1(x)− φ(x)D′n+1(x),

and

L(x, n) =
(
Cn+1(x)− C0(x)

2

)
D′n+1(x)−

(
C′n+1(x)− C′0(x)

2

)
Dn+1(x)−Dn+1(x)

n∑
k=0

Dk(x)

ak
.

Notice that the degrees of the polynomials J,K,L are at most 2s + 2, 2s + 1, and
2s, respectively.

Theorem 4.12 ([9, 10]) Let u be a quasi-definite linear functional and {Pn(x)}n≥0
the sequence of monic orthogonal polynomials associated with u. The following
statements are equivalent.

(1) u is semiclassical.
(2) {Pn(x)}n≥0 satisfies the following nonlinear differential equation.

φ(x)[Pn+1(x) Pn(x)]′ = Dn(x)
an

P 2
n+1(x)

− C0(x)Pn+1(x)Pn(x)−Dn+1(x)P
2
n (x), (4.13)

where Dn(x), C0(x) and an are the same as in (4.10).
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Proof (1)⇒(2) Suppose that u is semiclassical. From (4.10), we have

φ(x)[Pn+1 (x)Pn(x)]′ = Pn(x)
(
Cn+1(x)− C0(x)

2
Pn+1(x)−Dn+1(x)Pn(x)

)

+ Pn+1(x)

(
Cn(x)− C0(x)

2
Pn(x)−Dn(x)Pn−1(x)

)

= −Dn+1(x)P
2
n (x)+

(
Cn+1(x)+ Cn(x)− 2C0(x)

2

)
Pn+1(x)Pn(x)

−Dn(x)Pn+1(x)Pn−1(x).

Now, taking into account that Pn−1(x) = (x−bn)
an

Pn(x) − 1
an
Pn+1(x) the above

relation becomes

φ[Pn+1 (x)Pn(x)]′ = −Dn+1P
2
n (x)+

Dn

an
P 2
n+1(x)

+
(
Cn+1(x)+ Cn(x)− 2C0(x)

2
− (x − bn)

an
Dn

)
Pn+1(x)Pn(x).

Using the relation (4.11), we get the result.
(2)⇒(1) Let u be a quasi-definite linear functional, and let {Pn(x)}n≥0 be the

sequence of monic orthogonal polynomials associated with u.
Suppose that {Pn(x)}n≥0 satisfies (4.13). Using the three-term recurrence relation

Pn+1(x) = (x − bn) Pn(x)− an Pn−1(x) and (4.11), we can write (4.13) as

φ(x) P ′n+1(x)Pn(x) =
(
Cn+1(x)+ Cn(x)− 2C0(x)

2

)
Pn+1(x)Pn(x)

−Dn+1(x)P
2
n (x)−Dn(x)Pn+1(x)Pn−1(x)− φ(x)Pn+1(x)P

′
n(x). (4.14)

Multiplying the above relation by Pn−1(x), and replacing φ(x) P ′n(x) Pn−1(x)

with (4.14) for n− 1, we obtain

φ(x) P ′n+1(x) Pn−1(x) =
(
Cn+1(x)− Cn−1(x)

2

)
Pn+1(x) Pn−1(x)

−Dn+1(x) Pn(x) Pn−1(x)+ Pn+1(x) (Dn−1(x) Pn−2(x)+ φ(x) P ′n−1(x)).
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Similarly, multiplying the above relation by Pn−2(x), and then replacing
φ(x) P ′n−1(x) Pn−2(x) by (4.14) for n− 2, we get

φ(x) P ′n+1(x) Pn−2(x) =
(
Cn+1(x)+ Cn−2(x)− 2C0(x)

2

)
Pn+1(x) Pn−2(x)

−Dn+1(x) Pn(x) Pn−2(x)−Pn+1(x)
(
Dn−2(x) Pn−3(x)+ φ(x) P ′n−2(x)

)
.

Iterating this process, we obtain that for odd k ≤ n,

φ(x) P ′n+1(x) Pn−k(x) =
(
Cn+1(x)− Cn−k(x)

2

)
Pn+1(x)Pn−k(x)

−Dn+1(x) Pn(x) Pn−k(x)+Pn+1(x)(Dn−k(x) Pn−(k+1)(x)+φ(x) P ′n−k(x)),

and for even k ≤ n,

φ(x) P ′n+1(x) Pn−k(x) =
(
Cn+1(x)+ Cn−k(x)− 2C0(x)

2

)
Pn+1(x) Pn−k(x)

−Dn+1(x) Pn(x) Pn−k(x)−Pn+1(x)
(
Dn−k(x) Pn−(k+1)(x)+ φ(x) P ′n−k(x)

)
.

In either case, for n either odd or even, when k = n we obtain (4.9), but this
implies that u is semiclassical. ��

Before dealing with the next result, we fix some notation. Let {Qn(x)}n≥0 be a
basis of P. We define the vector Q := (Q0(x),Q1(x),Q2(x), . . .)

t . Let N be the
semi-infinite matrix such that χ ′(x) = N χ(x). Therefore,

N =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .
1 0 0 0 . . .
0 2 0 0 . . .
0 0 3 0 . . .
...
...
...
...

⎞
⎟⎟⎟⎟⎟⎠

We denote by Ñ the semi-infinite matrix such that Q′ = Ñ Q. Observe that if S is a
matrix of change of basis from the monomials χ(x) to Q, that is, Q = S χ(x), then
Ñ = S N S−1.

If Q is semiclassical, we write (4.9) in matrix form as φ(x)Q′ = F Q, where F
is a semi-infinite band matrix. Finally, for square matrices A and B of size n, we
define its commutator as [A,B] = AB − BA.
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Proposition 4.13 Let u be a positive-definite semiclassical functional satisfying
the Pearson equation D(φ u) + ψ u = 0, and let {Qn(x)}n≥0 be the sequence of
orthonormal polynomials associated with u. Then,

1. [J, F ] = φ(J ),
2. Ñ φ(J )t + φ(J ) Ñt = ψ(J ),
3. F + F t = ψ(J ),
where J is the Jacobi matrix associated with {Qn(x)}n≥0.

Remark 4.14 This is the matrix representation of the Laguerre-Freud equations
satisfied by the parameters of the three-term recurrence relation of semiclassical
orthonormal polynomials. As a direct consequence, you can deduce nonlinear
difference equations that the coefficients of the three-term recurrence relation
satisfy. They are relate to discrete Painlevé equations. Some illustrative examples
appear in [73].

Proof

1. Differentiating xQ = J Q and then multiplying by φ(x), we get

Jφ(x)Q′ = φ(x)Q+ x φ(x)Q′.

But φ(x)Q′ = FQ and φ(x)Q = φ(J )Q. Hence,

JFQ = φ(J )Q+ x F Q = (φ(J )+ FJ )Q,

and, since Q is a basis, the result follows.
2. From the Pearson equation

0 = 〈D(φu),Q Qt 〉 + 〈ψ u,Q Qt 〉 = −〈φ u,Q′Qt +Q (Q′)t 〉 + 〈ψ u,Q Qt 〉
= −Ñ〈u, φ(x)Q Qt 〉 − 〈u,Q Qt φ(x)〉Ñ t + 〈u, ψ(x)Q Qt 〉
= −Ñφ(J )〈u,Q Qt 〉 − 〈u,Q Qt 〉φ(J )t Ñ t + ψ(J )〈u,Q Qt 〉.

But 〈u,Q Qt 〉 is equal to the identity matrix since {Qn(x)}n≥0 are orthonormal,
and the result follows.

3. Similarly, from the Pearson equation

0 = 〈D(φu),Q Qt 〉 + 〈ψ u,Q Qt 〉 = −〈φ u,Q′Qt +Q (Q′)t 〉 + 〈ψ u,Q Qt 〉
= −〈u, φ(x)Q′Qt 〉 − 〈u,Q (Q′)tφ(x)〉 + 〈u, ψ(x)Q Qt 〉
= −F 〈u,Q Qt 〉 − 〈u,Q Qt 〉F t + ψ(J )〈u,Q Qt 〉,

and the result follows. ��
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5 Examples of Semiclassical Orthogonal Polynomials

It is well know that the semiclassical functionals of class s = 0 are the classical
linear functionals (Hermite, Laguerre, Jacobi, and Bessel) defined by an expression
of the form

〈u, p〉 =
∫
E

p(x)w(x)dx, ∀p ∈ P,

where

Family φ(x) ψ(x) w(x) E

Hermite 1 2x e−x2
R

Laguerre x x − α − 1 xα e−x (0,+∞)
Jacobi x2 − 1 −(α + β + 2)x + β − α (1 − x)α(1+ x)β (−1, 1)

Bessel x2 −2(αx + 1) xα e−2/x Unit circle

The Hermite, Laguerre, and Jacobi functionals are positive-definite when α, β >
−1, and the Bessel functional is a quasi-definite linear functional that is not positive-
definite.

If u is a semiclassical functional of class s = 1, we can distinguish two situations

(A) deg(ψ) = 2, 0 ≤ deg(φ) ≤ 3; (B) deg(ψ) = 1, deg(φ) = 3.

S. Belmehdi [10] exposed the canonical forms of the functionals of the class 1, up to
linear changes of the variable, according to the degree of φ(x) and the multiplicity
of its zeros.

(A) deg(ψ) = 2

deg(φ) = 0 1

deg(φ) = 1 x

deg(φ) = 2
x2

x2 − 1

deg(φ) = 3

x3

x2(x − 1)

(x2 − 1)(x − c)

(B) deg(ψ) = 1

deg(φ) = 3

x3

x2(x − 1)

(x2 − 1)(x − c)

Example Let u be the linear functional defined by (see [40])

〈u, p〉 =
∫ ∞

0
p(x) xαe−xdx +Mp(0), ∀p ∈ P,
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with α > −1 and M > 0. Then u is a semiclassical functional of class s = 1
satisfyingD(φ u)+ ψ u = 0 with φ(x) = x2 and ψ(x) = x(x − α − 2).

The sequence of polynomials orthogonal with respect to the above functional
is known in the literature as Laguerre-type orthogonal polynomials (see [39, 49],
among others).

Example Let u be the linear functional defined by (see [10])

〈u, p〉 =
∫ 1

−1
p(x) (x − 1)(a+b−2)/2(x + 1)(b−a−2)/2eaxdx, ∀p ∈ P,

with b > a. Then u satisfies D(φ u) + ψ u = 0 with φ(x) = x2 − 1 and ψ(x) =
−ax2 − bx. The functional is semiclassical of class s = 1.

Example Let u be the linear functional defined by (see [12, 73])

〈u, p〉 =
∫ ∞

0
p(x) xαe−x2+txdx, ∀p ∈ P,

with α > −1 and t ∈ R. In [12], it is shown that u is a semiclassical functional of
class s = 1 satisfyingD(φ u)+ψ u = 0 with φ(x) = x andψ(x) = 2x2−tx−α−1.

Example Let u be the functional defined by (see [10])

〈u, p〉 =
∫ N

0
p(x) xαe−xdx, ∀p ∈ P,

with α > −1 andN > 0. The functional u is semiclassical of class s = 1 satisfying
D(φ u)+ψ u = 0 with φ(x) = (x −N)x and ψ(x) = (x − α)(x −N)+N − 2x.

This functional is known in the literature as truncated gamma functional and the
corresponding sequences of orthogonal polynomials are called truncated Laguerre
orthogonal polynomials.

Semiclassical functionals can be constructed via discrete Darboux transforma-
tions. First, we need to prove the following theorem.

Theorem 5.1 Let u and v be two linear functionals related by

A(x)u = B(x)v,
where A(x) and B(x) are non-zero polynomials. Then u is semiclassical if and only
if v is semiclassical.

Proof Suppose that u is semiclassical satisfying D(φ0u) + ψ0u = 0. Let φ1(x) =
A(x)B(x)φ0(x). Then,

〈D(φ1 v), xn〉 =〈D(AB φ0 v), xn〉 = 〈D(A2 φ0 u), xn〉 = −〈φ0 u, nA2 xn−1〉
= − 〈φ0u, (A2 xn)′〉 + 〈φ0 u, (A2)′xn〉
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=〈A2 ψ0 u, xn〉 − 〈2φ0A
′Au, xn〉

=〈(Aψ0 − 2A′ φ0
)
B v, xn〉.

Therefore, v is semiclassical with ψ1(x) =
(
A(x)ψ0(x)− 2φ0(x)A

′(x)
)
B(x).

Similarly, if v is semiclassical, by interchanging the role of the functionals above,
it follows that u is semiclassical. ��
Corollary 5.2 Any linear spectral transformation of a semiclassical functional is
also a semiclassical functional.

Remark 5.3

• For canonical Christoffel (3.1) and Geronimus (3.3) transformations, the class of
the new functional depends on the location of the point a in terms of the zeros of
φ(x).

• Uvarov transformations (3.6) of classical orthogonal polynomials generate semi-
classical linear functionals. The so called Krall-type linear functionals appear
when a Dirac measure, or mass point, is located at a zero of φ(x). The
corresponding sequences of orthogonal polynomials satisfy, for some choices
of the parameters (in the Laguerre case, for α a non negative integer number)
higher order linear differential equations with order depending on α. It is an
open problem to describe the sequences of orthogonal polynomials which are
eigenfunctions of higher order differential operators. For order two (S. Bochner
[11]) and four (H. L. Krall [43]), the problem has been completely solved.

Example The linear functional obtained from a Uvarov transformation of the
Laguerre functional will be of class 1 if a mass point is located at a = 0, and
will be of class 2 if a mass point is located at a �= 0. See [49].

Other examples of semiclassical functionals of class 2 are also known.

Example Let u be the functional defined by

〈u, p〉 =
∫
R

p(x) e−
x4
4 −tx2

dx, ∀p ∈ P,

where t ∈ R. In this case, u is a semi-classical functional of class s = 2, with
φ(x) = 1 and ψ(x) = 2tx + x3.

This is a particular case of the so called generalized Freud linear functionals
[19, 20].

New semiclassical functionals can also be constructed through symmetrized
functionals [17].

Definition 5.4 Let u be a linear functional. Its symmetrized functional v is
defined by

〈v, x2n〉 = μn, 〈v, x2n+1〉 = 0, n ≥ 0.
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Given a functional with Stieltjes function S(z), the Stieltjes function S̃(z) of
its symmetrized functional satisfies S̃(z) = zS(z2). The following holds for the
semiclassical case.

Theorem 5.5 ([5]) Let u be a semiclassical functional satisfyingD(φu)+ψu = 0,
and let S(z) be its Stieltjes function, which satisfies (4.7)

φ(z)S ′(z)+ (ψ(z)+ φ′(z))S(z) = C(z).

The Stieltjes function S̃(z) associated with the symmetrized linear functional v
satisfies

zφ(z2)S̃ ′(z)+ [2z2(ψ(z2)+ φ′(z2))+ φ(z2)]S̃(z) = 2z3C(z2).

Thus, the symmetrized functional of a semiclassical linear functional is semiclassi-
cal. The class of v is either 2s, 2s + 1, or 2s + 3, according to the coprimality of
the polynomial coefficients in the ordinary linear differential equation satisfied by
S̃(z).

6 Analytic Properties of Orthogonal Polynomials in Sobolev
Spaces

An inner product is said to be a Sobolev inner product if

〈f, g〉S :=
∫
E0

f (x) g(x) dμ0 +
m∑
k=1

∫
Ek

f (k)(x) g(k)(x) dμk,

where (dμ0, . . . , dμm) is a vector of positive Borel measures and Ek = supp dμk ,
k = 0, 1, . . . ,m.

Using the Gram-Schmidt orthogonalization method for the canonical basis
{xn}n≥0, one gets a sequence of monic orthogonal polynomials. Thus, the nth
orthogonal polynomial is a minimal polynomial in terms of the Sobolev norm

||f ||S :=
√〈f, f 〉S

among all monic polynomials of degree n.
Taking into account that 〈x f, g〉S �= 〈f, x g〉S , these polynomials do not satisfy

a three-term recurrence relation. Thus, a basic property of standard orthogonal
polynomials is lost. A natural question is to compare analytic properties of these
polynomials and the standard ones.

In 1947, D. C. Lewis [45] dealt with the following problem in the framework
of polynomial least square approximation. Let α0, . . . , αp be monotonic, non-
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decreasing functions defined on [a, b] and let f be a function on [a, b] that satisfies
certain regularity conditions. Determine a polynomial Pn(x) of degree at most n
that minimizes

p∑
k=0

∫ b

a

|f (k)(x)− P (k)n (x)|2dαk(x).

Lewis did not use Sobolev orthogonal polynomials and gave a formula for the
remainder term of the approximation as an integral of the Peano kernel. The first
paper on Sobolev orthogonal polynomials was published by Althammer [3] in
1962, who attributed his motivation to Lewis’s paper. These Sobolev orthogonal
polynomials are orthogonal with respect to the inner product

〈f, g〉S =
∫ 1

−1
f (x) g(x) dx + λ

∫ 1

−1
f ′(x) g′(x) dx, λ > 0.

Observe that the first and second integral of this inner product involve the Lebesgue
measure dx on [−1, 1], which means that every point in [−1, 1] is equally weighted.

Let Sn(x; λ) denote the orthogonal polynomial of degree n with respect to the
inner product 〈·, ·〉S , normalized by Sn(1; λ) = 1, and let Pn(x) denote the n-th
Legendre polynomial. The following properties hold for Sn(x; λ):
1. 〈Sn(x; λ)}n≥0 satisfies a differential equation

λ S′′n(x; λ)− Sn(x; λ) = An P ′n+1(x)+ Bn P ′n−1(x),

where An and Bn are real numbers which are explicitly given.
2. {Sn(x; λ)}n≥0 satisfies a recursive relation

Sn(x; λ)− Sn−2(x; λ) = an (Pn(x)− Pn−2(x)), n = 1, 2, . . .

3. Sn(x; λ) has n real simple zeros in (−1, 1).

For a more detailed account on the development of these results, we refer to [45,
62, 67]. The Sobolev-Legendre polynomials were also studied by Gröbner, who
established a version of the Rodrigues formula in [33]. Indeed, he states that, up to
a constant factor cn,

Sn(x; λ) = cn Dn

1− λD2

(
(x2 − x)n − αn(x2 − x)n−1

)

where αn are real numbers explicitly given in terms of λ and n.
In [3], Althammer also gave an example in which he replaced dx in the second

integral in 〈·, ·〉S by w(x)dx with w(x) = 10 for −1 ≤ x < 0 and w(x) = 1 for
0 ≤ x ≤ 1, and made the observation that S2(x; λ) for this new inner product has
one real zero outside of (−1, 1).
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In [13], Brenner considered the inner product

〈f, g〉 :=
∫ ∞

0
f (x) g(x) e−xdx + λ

∫ ∞
0
f ′(x) g′(x) e−xdx, λ > 0,

and obtained results in a direction very similar to those of Althammer. Sobolev inner
products when you replace the above weight by xαe−x, α ≥ −1 has been studied in
[51].

An important contribution in the early development of the Sobolev polynomials
was made in 1972 by Schäfke and Wolf in [68], where they considered a family of
inner products

〈f, g〉S =
∞∑
j,k=0

∫ b

a

f (j)(x) g(k)(x) vj,k(x)w(x) dx, (6.1)

where w and (a, b) are one of the three classical cases (Hermite, Laguerre, and
Jacobi) and the functions vj,k are polynomials that satisfy vj,k = vk,j , k =
0, 1, 2, . . ., and allow to write the inner product (6.1) as

〈f, g〉S =
∫ b

a

f (x)Bg(x)w(x) dx, with Bg := w−1
∞∑
j,k=0

(−1)jDj (w vj,k D
k)g

by using an integration by parts. Under further restrictions on vj,k , they are narrowed
down to eight classes of Sobolev orthogonal polynomials, which they call simple
generalizations of classical orthogonal polynomials.

The primary tool in the early study of Sobolev orthogonal polynomials is
integration by parts. Schäfke and Wolf [68] explored when this tool is applicable and
outlined potential Sobolev inner products. It is remarkable that their work appeared
in such an early stage of the development of Sobolev orthogonal polynomials.

The study of Sobolev orthogonal polynomials unexpectedly became largely
dormant for nearly two decades, from which it reemerged only when a new
ingredient, coherent pairs, was introduced in [36].

6.1 Coherent Pairs of Measures and Sobolev Orthogonal
Polynomials

The concept of coherent pair of measures was introduced in [36] in the framework
of the study of the inner product

〈f, g〉λ =
∫ b

a

f (x) g(x) dμ0(x)+ λ
∫ b

a

f ′(x) g′(x) dμ1(x), (6.2)
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where−∞ ≤ a < b ≤ ∞, λ ≥ 0,μ0 andμ1 are positive Borel measures on the real
line with finite moments of all orders. Let Pn(x; dμi) denote the monic orthogonal
polynomial of degree n with respect to dμi , i = 0, 1.

Definition 6.1 The pair {dμ0, dμ1} is called coherent if there exists a sequence of
nonzero real numbers {αn}n≥1 such that

Pn(x; dμ1) =
P ′n+1(x; dμ0)

n+ 1
+ αn P

′
n(x; dμ0)

n
, n ≥ 1. (6.3)

If [a, b] = [−c, c] and dμ0 and dμ1 are both symmetric, then {dμ0, dμ1} is called
a symmetrically coherent pair if

Pn(x; dμ1) =
P ′n+1(x; dμ0)

n+ 1
+ αn

P ′n−1(x; dμ0)

n− 1
, n ≥ 2.

If dμ1 = dμ0, the measure dμ0 is said to be self-coherent (resp. symmetrically
self-coherent).

For n = 0, 1, 2, . . ., let

Mn(λ) =

⎛
⎜⎜⎜⎝

〈1, 1〉λ 〈1, x〉λ · · · 〈1, xn〉λ
〈x, 1〉λ 〈x, x〉λ · · · 〈x, xn〉λ
· · · · · · . . . · · ·
〈xn, 1〉λ 〈xn, x〉λ · · · 〈xn, xn〉λ

⎞
⎟⎟⎟⎠ .

Since detMn(λ) > 0 for all n ≥ 0, then a sequence of monic orthogonal
polynomials with respect to 〈·, ·〉λ exists. Let {Sn(x; λ)}n≥0 denote the sequence
of monic Sobolev orthogonal polynomials with respect to 〈·, ·〉λ. In fact, the monic
orthogonal polynomials are S0(x; λ) = 1 and, for n ≥ 1,

Sn(x; λ) = 1

detMn−1(λ)
det

⎛
⎜⎜⎜⎜⎜⎜⎝

〈1, xn〉λ
〈x, xn〉λ

Mn−1(λ)
...

〈xn−1, xn〉λ
1 x · · · xn−1 xn

⎞
⎟⎟⎟⎟⎟⎟⎠
.

It is easy to see that

Tn(x) := lim
λ→∞ Sn(x; λ)
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is a monic polynomial of degree n which satisfies

T ′n(x) = nPn−1(x; dμ1) and
∫
R

Tn(x) dμ0 = 0 n ≥ 1. (6.4)

Theorem 6.2 ([36]) If {dμ0, dμ1} is a coherent pair, then

Sn(x; λ)+ βn−1(λ) Sn−1(x; λ) = Pn(x; dμ0)+ α̂n−1Pn−1(x; dμ0), n ≥ 2,
(6.5)

where α̂n−1= nαn/(n−1) and βn−1(λ)= α̂n−1||Pn−1(x; dμ0)||2dμ0
/||Sn−1(x; λ)||2λ.

Proof According to (6.3) and (6.4), we see that

Tn(x) = Pn(x; dμ0)+ α̂n−1Pn−1(x; dμ0).

For 0 ≤ j ≤ n− 2, it follows from (6.4) that

〈Tn(x), Sj (x; λ)〉λ = 〈Tn(x), Sj (x; λ)〉dμ0 + nλ〈Pn−1(x; dμ1), S
′
j (x; λ)〉dμ1 = 0.

Considering the expansion of Tn(x) in terms of the polynomials Sj (x; λ), we see
that

Tn(x)=Sn(x; λ)+βn−1(λ) Sn−1(x; λ), where βn−1(λ)= 〈Tn(x), Sn−1(x; λ)〉λ
||Sn−1(x; λ)||2λ

.

The expresion for βn−1(λ) follows from 〈T ′n(x), S′n−1(x; λ)〉dμ1 = 0 as well as from
the fact that both Pn−1(x; dμ0) and Sn−1(x; λ) are monic. ��

The notion of coherent pairs can be extended to linear functionals {u0, u1}, if the
relation (6.3) holds with Pn(x; dμi) replaced by Pn(x; ui ).

The following theorem was established in [63].

Theorem 6.3 If {dμ0, dμ1} is a coherent pair of measures, then at least one of
them has to be classical (Laguerre, Jacobi).

Together, [52, 63] give a complete list of coherent pairs. In the case when u0 and
u1 are positive-definite linear functionals associated with measures dμ0 and dμ1,
the coherent pairs are given as follows:

Laguerre Case
(1) dμ0(x) = (x − ξ)xα−1e−xdx and dμ1(x) = xαe−xdx, where if ξ < 0, then

α > 0, and if ξ = 0 then α > −1.
(2) dμ0(x) = xαe−xdx and dμ1(x) = (x− ξ)−1xα+1e−xdx+M δ(x− ξ), where

if ξ < 0, α > −1 andM ≥ 0.
(3) dμ0(x) = e−xdx +Mδ(x) and dμ1(x) = e−xdx, whereM ≥ 0.
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Jacobi Case

(1) dμ0(x) = |x− ξ |(1− x)α−1(1+ x)β−1dx and dμ1(x) = (1− x)α(1+ x)βdx,
where if |ξ | > 1 then α > 0 and β > 0, if ξ = 1 then α > −1 and β > 0, and
if ξ = −1 then α > 0 and β > −1.

(2) dμ0(x) = (1−x)α(1+x)βdx and dμ1(x) = |x−ξ |−1(1−x)α+1(1+x)β+1dx+
Mδ(x − ξ), where |ξ | > 1, α > −1 and β > −1 andM ≥ 0.

(3) dμ0(x) = (1+x)β−1dx+Mδ(x−1) and dμ1(x) = (1+x)βdx, where β > 0
andM ≥ 0.

(4) dμ0(x) = (1−x)α−1dx+Mδ(x+1) and dμ1(x) = (1−x)αdx, where α > 0
andM ≥ 0.

A similar analysis was also carried out for symmetrically coherent pairs in the
work cited above. It lead to the following list of symmetrically coherent pairs.

Hermite Case

(1) dμ0(x) = e−x2
dx and dμ1(x) = (x2 + ξ2)−1e−x2

dx, where ξ �= 0.
(2) dμ0(x) = (x2 + ξ2)e−x2

dx and dμ1(x) = e−x2
dx, where ξ �= 0.

Gegenbauer Case

(1) dμ0(x) = (1−x2)α−1dx and dμ1(x) = (x2+ξ2)−1(1−x2)αdx, where ξ �= 0
and α > 0.

(2) dμ0(x) = (1− x2)α−1dx and dμ1(x) = (ξ2 − x2)−1(1 − x2)αdx +Mδ(x −
ξ)+Mδ(x + ξ), where |ξ | > 1, α > 0 andM ≥ 0.

(3) dμ0(x) = (x2 + ξ2)(1− x2)α−1dx and dμ1(x) = (1− x2)αdx, where α > 0.
(4) dμ0(x) = (ξ2 − x2)(1− x2)α−1dx and dμ1(x) = (1− x2)αdx, where |ξ | ≥ 1

and α > 0.
(5) dμ0(x) = dx +Mδ(x − 1)+Mδ(x + 1) and dμ1(x) = dx, whereM ≥ 0.

6.1.1 Generalized Coherent Pairs

Identity (6.5) was deduced from definition (6.3) of coherent pairs. In the reverse
direction, however, (6.3) does not follow from the identity (6.5), as observed in
[38].

Let Sn(x) denote the left hand side of (6.5). Clearly S′n can be expanded in terms
of {Pk(x; dμ1)}k≥0,

S′n(x) = nPn−1(x; dμ1)+
n−2∑
k=0

dk,nPk(x; dμ1), dk,n = 〈S
′
n(x), Pk(x; dμ1)〉dμ1

||Pk(x; dμ1)||2dμ1

, n ≥ 1.

For 0 ≤ j ≤ n− 2, it follows directly from the definition of Sn that

〈Sn(x), Pj (x; dμ1)〉λ = 0,
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and it follows from (6.5) that 〈Sn(x), Pj (x; dμ1)〉dμ0 = 0. Consequently, by the
definition of 〈·, ·〉λ we must have 〈S′n, Pj (x; dμ1)〉dμ1 = 0 for 0 ≤ j ≤ n − 2,
which implies that dk,n = 0 if 0 ≤ k ≤ n− 2. Hence,

S′n(x) = P ′n(x; dμ0)+ ân−1P
′
n−1(x; dμ0) = nPn−1(x; dμ1)+ dn−2,nPn−2(x; dμ1).

Recall that α̂n = (n + 1)αn/n. Setting βn−2 = dn−2,n/n and shifting the index
from n to n + 1, we conclude the following relation between {Pn(x; dμ0)}n≥0 and
{Pn(x; dμ1)}n≥0,

Pn(x; dμ1)+ βn−1 Pn−1(x; dμ1) =
P ′n+1(x; dμ0)

n+ 1
+ αn P

′
n(x; dμ0)

n
, n ≥ 1.

(6.6)

Thus, in the reverse direction, (6.5) leads to (6.6) instead of (6.3).
Evidently, (6.6) is a more general relation than (6.3).

Definition 6.4 The pair {dμ0, dμ1} is called a generalized coherent pair if (6.6)
holds for n ≥ 1, and this definition extends to linear functionals {u0, u1}.

Semiclassical orthogonal polynomials of class 1 (see Sect. 5) are involved in the
analysis of generalized coherent pairs. The following theorem is established in [22].

Theorem 6.5 If {u0, u1} is a generalized coherent pair, then at least one of them
must be semiclassical of class at most 1.

All generalized coherent pairs of linear functionals are listed in [22].
On the other hand, given two sequences of monic orthogonal polynomials

{Pn(x; dμ0)}n≥0 and {Pn(x; dμ1)}n≥0, where dμ0 and dμ1 are symmetric mea-
sures, such that the following relation holds

Pn+1(x; dμ1)+ βn−1 Pn−1(x; dμ1) =
P ′n+2(x; dμ0)

n+ 1
+ αn P

′
n(x; dμ0)

n
, n ≥ 1.

(6.7)

We introduce the following

Definition 6.6 The pair {dμ0, dμ1} is called a symmetrically generalized coherent
pair if (6.7) holds for n ≥ 1, and this definition extends to linear functionals
{u0, u1}.

Some examples of symmetrically generalized coherent pairs have been studied
in [21], where u0 is associated with the Gegenbauer weight and

u1 = 1− x2

1+ qx2 u1 +Mq
[
δ(x + 1/

√−q)+ δ(x − 1/
√−q)] , q ≥ −1,

whereMq ≥ 0 if −1 ≤ q < 0 andMq = 0 if q ≥ 0.
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More recently, in [24] the authors obtain analytic properties of Sobolev orthogo-
nal polynomials with respect to a symmetrically generalized coherent pair {u0, u1},
where u0 is the linear functional associated with the Hermite weight and u1 =
x2+a2

x2+b2 u0.

6.2 Sobolev-Type Orthogonal Polynomials

An inner product is said to be a Sobolev-type inner product if the derivatives appear
only as function evaluations on a finite discrete set. More precisely, such an inner
product takes the form

〈f, g〉S :=
∫
R

f (x) g(x) dμ0 +
m∑
k=1

∫
R

f (k)(x) g(k)(x) dμk, (6.8)

where dμ0 is a positive Borel measure on an infinite subset of the real line
and dμk , k = 1, 2, . . . ,m, are positive Borel measures supported on finite
subsets of the real line. In most cases considered below, dμk = Akδ(x − c)
or dμk = Akδ(x − a) + Bkδ(x − b), where Ak and Bk are nonnegative real
numbers. Orthogonal polynomials for such an inner product are called Sobolev-type
orthogonal polynomials.

The first study was carried out for the classical weight functions. The Laguerre
case was studied in [40, 41] with dμ0 = xαe−xdx, α > −1, and

dμk =Mkδ(x), k = 1, 2, . . . ,m,

the nth Sobolev orthogonal polynomial, Sn, is given by

Sn(x) =
min{n,m+1}∑

k=0

(−1)k An,k L
α+k
n−k (x), n ≥ 1,

where An,k are real numbers determined by a linear system of equations. The
Gegenbauer case was studied in [7, 8] with dμ0 = (1 − x2)λ−1/2dx + A(δ(x −
1) + δ(x + 1)), λ > −1/2, and m = 1, dμ1 = B(δ(x − 1) + δ(x + 1)); the nth
Sobolev orthogonal polynomial is given by

Sn(x) = a0,nC
λ
n(x)+ a1,nx C

λ+1
n−1 (x)+ a2,nx

2 Cλ+2
n−2 (x), n ≥ 2,

where a0,n, a1,n, and a2,n are appropriate real numbers. In both cases, the Sobolev
orthogonal polynomials satisfy higher order (greater than three) recurrence rela-
tions.
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When Mk = 0 for k = 1, 2, . . . ,m − 1, and dμm = Mm δ(x − c), the inner
product (6.8) becomes

〈f, g〉m :=
∫
R

f (x) g(x) dμ0 +Mm f (m)(c) g(m)(c),

where c ∈ R andMm ≥ 0.
For i, j ∈ N0, define

K(i,j)n−1 (x, y) :=
n−1∑
l=0

P
(i)
l (x) P

(j)
l (y)

||Pl ||2dμ0

, n ≥ 1.

It was shown in [53] that

Sn(x) = Pn(x)− Mm P
(m)
n (c)

1+MmK(m,m)n−1 (c, c)
K(0,m)n−1 (x, c), n ≥ 1,

which extends the expression for m = 0 by A. M. Krall in [44]. From this relation,
one deduces immediately that

Sn+1(x)+ αnSn(x) = Pn+1(x)+ βnPn(x), n ≥ 0,

where αn and βn are constants that can be easily determined. This shows a similar
structure to (6.5) derived for the Sobolev orthogonal polynomials in the case of
coherent pairs.

The Sobolev polynomials Sn(x) also satisfy a higher order recurrence relation

(x − c)m+1Sn(x) =
n+m+1∑
j=n−m−1

cn,j Sj (x), n ≥ 0, (6.9)

where cn,n+m+1 = 1 and cn,n−m−1 �= 0.
If a sequence of polynomials satisfies a three-term recurrence relation, then it is

orthogonal. The precise statement is known as Favard’s theorem. For higher order
recurrence relations, there are two types of results in this direction, both related to
Sobolev orthogonal polynomials.

The first one gives a characterization of an inner product 〈·, ·〉 for which the
corresponding sequence of orthogonal polynomials satisfy a recurrence relation
(6.9), which holds if the operation of multiplication by Mm,c := (x − c)m+1 is
symmetric, that is, 〈Mm,c p, q〉 = 〈p,Mm,c q〉. It was proved in [26] that if 〈·, ·〉 is
an inner product such that Mm,c is symmetric and it communtes with the operator
M0,c, that is, 〈Mm,c p,M0,c q〉 = 〈M0,c p,Mm,c q〉, then there exists a nontrivial
positive Borel measure dμ0 and a real, positive semi-definite matrixA of sizem+1,
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such that the inner product is of the form

〈p, q〉 =
∫
R

p(x) q(x) dμ0

+
(
p(c), p′(c), . . . , p(m)(c)

)
A
(
q(c), q ′(c), . . . , q(m)(c)

)t
. (6.10)

A connection between such Sobolev orthogonal polynomials and matrix orthogonal
polynomials was established in [27], by representing the higher order recurrence
relation as a three-term recurrence relation with matrix coefficients for a family
of matrix orthogonal polynomials defined in terms of the Sobolev orthogonal
polynomials.

The second type of Favard type theorem was given in [28], where it was proved
that the operator of multiplication by a polynomial h is symmetric with respect to
the inner product (6.8) if and only if dμk , k = 1, 2, . . . ,m, are discrete measures
whose supports are related to the zeros of h and its derivatives. Consequently, higher
order recurrence relations for Sobolev inner products appear only in Sobolev inner
products of the second type.

6.3 Asymptotics of Sobolev Orthogonal Polynomials

For standard orthogonal polynomials, three different types of asymptotics are
considered: strong asymptotics, outer ratio asymptotics, and nth root asymptotics.
All three have been considered in the Sobolev setting and we summarize the most
relevant results in this section.

The first work on asymptotics for Sobolev orthogonal polynomials is [54] where
the authors deal with the inner product

〈f, g〉S =
∫ 1

−1
f (x) g(x) dμ0(x)+M1 f

′(c) g′(c),

where c ∈ R, M1 > 0, and the measure dμ0 belongs to the Nevai class
M(0, 1). Using the outer ratio asymptotics for the ordinary orthogonal polynomials
Pn(x; dμ0) and the connection formula between Pn(x; dμ0) and the Sobolev
orthogonal polynomials Sn(x), it was shown that, if c ∈ R \ suppμ0, then

lim
n→∞

Sn(z)

Pn(z, dμ0)
= ( (z)− (c))

2

2 (z) (z− c) ,  (z) := z+
√
z2 − 1,
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locally uniformly outside the support of the measure, where
√
z2 − 1 > 0 when

z > 1. If c ∈ suppμ0, then

lim
n→∞

Sn(z)

Pn(z; dμ0)
= 1

outside the support of the measure.
The first extension of the above results was carried out in [1] for the Sobolev inner

product (6.10) with a 2× 2 matrix A. Under the same conditions on the measure, it
was proved that

lim
n→∞

Sn(z)

Pn(z; dμ0)
=

(
( (z)− (c))2
2 (z) (z− c)

)r
, r := rankA,

locally uniformly outside the support of the measure.
The second extension was given in [48] for the inner product

〈f, g〉 =
∫
R

f (x) g(x) dμ0(x)+
N∑
j=1

Nj∑
k=0

f (k)(cj ) Lj,k(g; cj ),

where dμ0 ∈ M(0, 1), {ck}Nk=1 ∈ R\suppμ0, j = 1, . . . , N , andLj,k is an ordinary
linear differential operator acting on g such that Lj,Nj is not identically zero for
j = 1, . . . , N . Assuming that the inner product is quasi-definite so that a sequence
of orthogonal polynomials exists, then on every compact subset in C \ supp dμ0,

lim
n→∞

S
(ν)
n (z)

P
(ν)
n (z, dμ0)

=
m∏
j=1

(
( (z)− (c))2
2 (z) (z− c)

)Ij
,

where Ij is the dimension of the square matrix obtained from the matrix of
coefficients of Lj,Nj after deleting all zero rows and columns.

On the other hand, if both the measure dμ0 and its support � are regular, then
techniques from potential theory can be used (see [47]) to derive the nth root
asymptotics of the Sobolev orthogonal polynomials,

lim sup
n→∞

||S(j)n ||1/n� = C(�), j ≥ 0,

where || · ||� denotes the uniform norm on the support of the measure and C(�) is
its logarithmic capacity.

When the support of the measure in the inner product (6.10) is unbounded, the
analysis has been focused on the case of the Laguerre weight function. A first study
[4] considered the case when c = 0 and A is a 2× 2 diagonal matrix (see also [50]
for a survey of the unbounded case). Assuming that the leading coefficients of Sn
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are standardized to be (−1)n/n!, the following results on the asymptotic behavior
of Sn were established:

(1) (Outer relative asymptotics) lim
n→∞

Sn(z)

L
(α)
n (z)

= 1 uniformly on compact subsets

of the exterior of the positive real semiaxis.

(2) (Outer relative asymptotics for scaled polynomials) lim
n→∞

Sn(nz)

L
(α)
n (nz)

= 1

uniformly on compact subsets of the exterior of [0, 4].
(3) (Mehler-Heine formula) lim

n→∞ n
−α Sn(z/n) = z−α/2Jα+4(2

√
z) uniformly on

compact subsets of the complex plane, assuming that rankA = 2.
(4) (Inner strong asymptotics)

Sn(x)

nα/2
= c3(n)e

x/2x−α/2Jα+4

(
2
√
(n− 2)x

)
+O

(
n−min{α+5,3/4})

on compact subsets of the positive real semiaxis, where limn→∞ c3(n) = 1.

If the point c is a negative real number, then the following outer relative
asymptotics was established in [55],

lim
n→∞

Sn(z)

L
(α)
n (z)

=
(√−z−√−c√−z+√−c

)r
, r = rankA,

uniformly on compact subsets of the exterior of the real positive semiaxis.
When c = 0 and A is a non-singular diagonal matrix of sizem+1, the following

asymptotic properties of the Sobolev orthogonal polynomials with respect to the
inner product (6.10) were obtained in [2]:

(1) (Outer relative asymptotics) For every ν ∈ N, lim
n→∞

S
(ν)
n (z)

(L
(α)
n )

(ν)(z)
= 1 uniformly

on compact subsets of the exterior of the positive real semiaxis.
(2) (Mehler-Heine formula)

lim
n→∞

(−1)n

n!
Sn(z/n)

nα
= (−1)m+1z−α/2Jα+2m+2(2

√
z)

uniformly on compact subsets of the complex plane.

6.3.1 Continuous Sobolev Inner Products

Let {μ0, μ1} be a coherent pair of measures and suppμ0 = [−1, 1]. Then the outer
relative asymptotic relation for the Sobolev orthogonal polynomials with respect to
(6.10) in terms of the orthogonal polynomials Pn(x; dμ1) is (see [61])

lim
n→∞

Sn(z)

Pn(z; dμ1)
= 2

 ′(z)
,  (z) := z+

√
z2 − 1,
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where
√
z2 − 1 > 0 when z > 1, uniformly on compact subsets of the exterior of

the interval [−1, 1].
When the measuresμ0 and μ1 are absolutely continuous and belong to the Szegő

class, the above result is also true [60].
For measures of coherent pairs that have unbounded support, asymptotic prop-

erties of the corresponding Sobolev orthogonal polynomials have been extensively
studied in the literature (see [50] for an overview). The outer relative asymptotics,
the scaled outer asymptotics, as well as the inner strong asymptotics of such poly-
nomials have been considered for all families of coherent pairs and symmetrically
coherent pairs.

The case where both measures in (6.2) correspond to the Freud weight, that is,
dμ0 = dμ1 = e−x4

dx, was studied in [15] (see also [30]), where the connection
between Sobolev and standard orthogonal polynomials is given by

Pn(x; dμ) = Sn(x; λ)+ cn−2(λ)Sn−2(x; λ), n ≥ 2.

7 Sobolev Orthogonal Polynomials of Several Variables

In contrast with the univariate case, Sobolev orthogonal polynomials of several
variables have been studied only recently. In this section, we collect some results
in this direction.

7.1 Orthogonal Polynomials of Several Variables

For x = (x1, x2, . . . , xd) ∈ R
d and α = (α1, α2, . . . , αd) ∈ N

d
0 , the (total) degree

of the monomial

xα := xα1
1 x

α2
2 · · · xαdd

is, by definition, |α| := α1 + α2 + · · · + αd . Let !dn denote the linear space of
polynomials in d variables of total degree at most n. It is known that dim !dn =(
n+d
n

)
. Let !d :=⋃

n≥0!
d
n denote the space of all polynomials in d variables.

Let 〈·, ·〉 be an inner product defined on !d × !d . A polynomial P ∈ !dn is
orthogonal if

〈P, q〉 = 0, ∀q ∈ !dn−1.

For n ∈ N0, let Vdn denote the space of orthogonal polynomials of total degree n.
Then dimVdn =

(
n+d−1
n

)
. In contrast with the univariate case, the space Vdn can
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have many different bases when d ≥ 2. Moreover, the elements of Vdn may not be
mutually orthogonal.

For the structure and properties of orthogonal polynomials of several variables,
we refer to [25]. We describe briefly a family of orthogonal polynomials as
example.

A polynomial Y is said to be a spherical harmonic of degree n if it is a
homogeneous polynomial such that �Y = 0, where � is the Laplacian opera-
tor,

� = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

.

Let Hdn denote the space of spherical harmonics of degree n. It is known
that

adn := dimHdn =
(
n+ d − 1

n

)
−

(
n+ d − 3

n− 2

)
.

The elements of Hdn are orthogonal with respect to polynomials of degree at most
n− 1 with respect to the inner product

〈f, g〉Sd−1 :=
∫
Sd−1

f (ξ) g(ξ) dσ(ξ),

where dσ denotes the surface measure on S
d−1.

For μ > −1, let wμ(x) = (1 − ||x||2)μ−1/2 be the weight function defined on
the unit ball Bd = {x ∈ R

d : ||x|| ≤ 1}, where || · || denotes the Euclidean
norm in R

d . Orthogonal polynomials with respect to wμ can be given in several
different formulations. We give one basis of Vdn (wμ) in terms of the classical Jacobi
polynomials and spherical harmonics in the spherical coordinates x = rξ , where
0 < r ≤ 1 and ξ ∈ S

d−1 = {x ∈ R
d : ||x|| = 1}.

For 0 ≤ j ≤ n/2 and 1 ≤ ν ≤ adn−2j , define

Pnj,ν (x) := P (μ,n−2j+(d−2)/2)
j (2||x||2 − 1) Y n−2j

ν (x),

where {Yn−2j
ν : 1 ≤ ν ≤ adn−2j } is an orthonormal basis of Hdn−2j . Then the

set {Pnj,"(x) : 0 ≤ j ≤ n/2, 1 ≤ " ≤ adn−2j } is a mutually orthogonal basis

of Vdn (wμ). The elements of Vdn (wμ) are eigenfunctions of a second-order linear
partial differential operator Dμ. More precisely, we have

DμP = −(n+ d)(n+ 2μ)P, ∀P ∈ Vdn (wμ), (7.1)
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where

Dμ := �−
d∑
j=1

∂

∂xj
xj

[
2μ+

d∑
i=1

xi
∂

∂xi

]
. (7.2)

7.1.1 Sobolev Orthogonal Polynomials on the Unit Ball

The first work in this direction is [74] and deals with the inner product

〈f, g〉� :=
∫
Bd

�
[
(1− ||x||2) f (x)

]
�

[
(1− ||x||2) g(x)

]
dx,

which arises from the numerical solution of the Poisson equation studied in [6]. The
geometry of the ball and (7.3) suggest that one can look for a mutually orthogonal
basis of the form

qj (2||x||2 − 1) Y n−2j
ν (x), Y n−2j

ν ∈ Hdn−2j , (7.3)

where qj (x) is a polynomial of degree j in one variable. Such a basis was
constructed in [74] for the space

Vdn (�) = Hdn
⊕
(1− ||x||2)Vn−2(w2).

The next inner product considered on the ball is defined by

〈f, g〉−1 := λ
∫
Bd

∇f (x) · ∇g(x) dx +
∫
Sd−1

f (ξ) g(ξ) dσ(ξ),

where ∇f = (∂xf, ∂yf ) and λ > 0. An alternative way is to replace the integral
over Sd−1 by f (0) g(0). A basis of the form (7.3) was constructed explicitly in [75]
for the space Vdn (�) with respect to 〈·, ·〉−1, from which it follows that

Vdn (w−1) = Hdn
⊕
(1− ||x||2)Vn−2(w1). (7.4)

The elements in (1 − ||x||2)Vn−2(w1) can be given in terms of the Jacobi poly-
nomials P (−1,b)

n (x) of negative index, which explains the notation w−1. Another
interesting aspect of this case is that the polynomials in Vdn (w−1) are eigenfunctions
of the differential operator D−1, the limit case of (7.1).

For k ∈ N, the operator D−k in (7.2) makes perfect sense. The equation
D−kY = λnY was studied in [66], where a complete system of polynomial solutions
was determined explicitly. For k ≥ 2, however, it is not known if the solutions are
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Sobolev orthogonal polynomials. Closely related to the case when k = 2 is the
following inner product

〈f, g〉−2 := λ
∫
Bd

�f (x)�g(x) dx +
∫
Sd−1

f (ξ) g(ξ) dσ(ξ), λ > 0.

An explicit basis for the space Vdd (w−2) of the Sobolev polynomials with respect to
〈·, ·〉−2 was constructed in [66], from which it follows that

Vdd (w−2) = Hdn
⊕
(1− ||x||2)Hdn−2

⊕
(1− ||x||2)2Vdn−4(w2). (7.5)

The elements in (1 − ||x||2)2Vdn−4(w2) can be given in terms of the Jacobi

polynomials P (−2,b)
n of negative index.

It turns out that the Sobolev orthogonal polynomials for the last two cases can be
used to study the spectral method for the numerical solutions of partial differential
equations. This connection was established in [46], where, for s ∈ N, the following
inner product in the Sobolev spaceWs

p(B
d ) is defined

〈f, g〉−s := 〈∇sf,∇sg〉Bd +
-�/2.−1∑
k=0

λk〈�kf,�kg〉Sd−1 .

Here λk , k = 0, 1, . . . , -�/2. − 1, are positive real numbers, and

∇2m := �m and ∇2m+1 := ∇�m, m = 1, 2, . . .

For s > 2, the space Vdn (w−s ) associated with 〈·, ·〉−s cannot be decomposed as in
(7.4) and (7.5). Nevertheless, an explicit mutually orthogonal basis was constructed
in [46]. It requires considerable effort, and the basis uses a generalization of the
Jacobi polynomials P (α,β)n for α, β ∈ R that avoids the degree reduction when
−α − β − n ∈ {0, 1, . . . , n}. The main result in [46] establishes an estimate for the
polynomial approximation in the Sobolev space Ws

p(B
d ). The proof relies on the

Fourier expansion with respect to the Sobolev orthogonal polynomials associated
with 〈·, ·〉−s .

Another Sobolev inner product considered on the unit ball is defined by

〈f, g〉 :=
∫
Bd

∇f (x) · ∇g(x)Wμ(x) dx + λ
∫
Bd

f (x) g(x)Wμ(x) dx,

which is an extension of the Sobolev inner product (6.2) of coherent pairs where
dμ1 = dμ2 correspond to the Gegenbauer weight in one variable. A mutually
orthogonal basis was constructed in [65], which has the form (7.3) where the
corresponding qj is orthogonal with respect to a rather involved Sobolev product
in one variable.
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7.1.2 Sobolev Orthogonal Polynomials on Product Domains

On the product domain [a1, b1] × [a2, b2] ⊂ R
2, we define the weight function

�(x, y) = w1(x)w2(y),

where wi, i = 1, 2, is a weight function on [ai, bi], i = 1, 2. With respect to � ,
we consider the Sobolev inner product

〈f, g〉S :=
∫
[a,b]2

∇f (x, y) · ∇g(x, y)�(x, y) dxdy + λ f (c1, c2) g(c1, c2),

where λ > 0, and (c1, c2) is a fixed point in R
2.

Two cases are considered in [29]. The first one is the product of Laguerre weights
for which

〈f, g〉S :=
∫ ∞

0

∫ ∞
0
∇f (x, y) · ∇g(x, y)wα(x)wβ(y)dxdy + λkf (0, 0) g(0, 0),

where wα(x) = xαe−x , α > −1. The Sobolev orthogonal polynomials are related
to the polynomialsQα,βj,m(x, y) defined by

Q
α,β
j,m(x, y) := Qαm−j (x)Qβj (y) with Qαn(x) := L̂(α)n (x)+ n L̂(α)n−1(x),

where L̂(α)n (x) denotes the nth monic Laguerre polynomial. The polynomialQαn(x)

is monic and satisfies d
dx
Qαn(x) = n L̂(α)n−1(x). For 0 ≤ k ≤ n, let Sα,βn−k,k(x, y) =

xn−kyk + · · · be the monic Sobolev orthogonal polynomial of degree n. Define the
column vectors

Q
α,β
n := (Qα,β0,n , . . . ,Q

α,β
n,n )

t and S
α,β
n := (Sα,β0,n , . . . , S

α,β
n,n )

t .

It was shown in [29] that there is a matrix Bn−1 such that

Q
α,β
n = S

α,β
n + Bn−1S

α,β
n−1.

Notice that the matrix Bn−1 and the norm 〈Sα,βn ,S
α,β
n 〉S can both be computed by

one recursive algorithm.
The above construction of orthogonal bases for the product domain works if w1

and w2 are self-coherent, that is, are classical weights (Jacobi, Laguerre, Hermite).
The case when both are Gegenbauer weight functions was given as a second
example in [29].
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Abstract We consider bivariate polynomials orthogonal on the bicircle with respect
to a positive nondegenerate measure. The theory of scalar and matrix orthogonal
polynomials is reviewed with an eye toward applying it to the bivariate case.
The lexicographical and reverse lexicographical orderings are used to order the
monomials for the Gram–Schmidt procedues and recurrence formulas are derived
between the polynomials of different degrees. These formulas link the orthogonal
polynomials constructed using the lexicographical ordering with those constructed
using the reverse lexicographical ordering. Relations between the coefficients in the
recurrence formulas are derived and used to give necessary and sufficient conditions
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1 Introduction

I had the good fortune to have been invited to the AIMS-Volkswagen Foundation
Workshop on “An Introduction to orthogonal polynomials and applications” in
Douala, Cameroon to give lectures based on recent results in the theory of
orthogonal polynomials on the bicircle. The notes below are based on these lectures.
The theory as developed here has its roots in the work of Delsarte et al. [5] and
the extension of the Fejér-Riesz theorem to the bivariate case by Geronimo and
Woerdeman [8]. Development of the theory of bivariate orthogonal polynomials was
presented in Geronimo and Woerdeman [9]. Further developments and extensions
were made in the works by Bakonyi and Woerdeman [1], Geronimo and Iliev [7],
Geronimo, Iliev, and Knese [10, 11], Knese [15, 16], and Landau and Landau [17].

The notes are organized as follows: In Sect. 2 the one variable Fejér-Riesz
theorem is presented and then the theory of orthogonal polynomials on the unit
circle is developed in order to give a proof of the Fejér-Riesz theorem that does
not use the Fundamental Theorem of Algebra. Also proved in this section is
Verblunsky’s theorem. Little is new in this section and the results can be found
in the books by Geronimus [12], Szegő [19], and Simon [18]. The main reason
for this section is to review for the student the theory of orthogonal polynomials
on the unit circle and develop a proof of the Fejér-Riesz theorem whose main
elements will be extended to the bivariate case. The use of the Cauchy–Schwarz
inequality in the proof of the Fejér-Riesz theorem seems to be due to Knese [16].
In Sect. 3 the theory of matrix orthogonal polynomials on the unit circle will be
developed as initiated by Delsarte et al. [4]. As above little is new in this section.
The normalization used here is different from the one imposed in [4] and Damanik
et al. [3] and is chosen in order to make contact with the two variable theory. This
complicates slightly the recurrence formulas in that the “recurrence coefficients”
in the ascending recurrence formulas are different from those in the descending
recurrence formulas. However these coefficients have their counterparts in the two
variable theory. Here we also prove a matrix Fejér-Riesz theorem and a matrix
Verblunsky theorem. Finally in Sect. 4 we consider the extension of the one variable
theory of orthogonal polynomials to the bivariate case. An immediate problem
is which ordering to use for the bivariate monomials and following [5] we use
the lexicographical and reverse lexicographical orderings. In these orderings the
moment matrix has a doubly Toeplitz structure which allows us to make contact
with the theory of matrix orthogonal polynomials and develop more recurrences.
The results in this section can be found in [7–10], and [11]. Using these recurrences
a set of parameters is discussed and then an extension of the Fejér-Riesz theorem is
presented.
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2 Scalar Orthogonal Polynomials on the Unit Circle

In 1915–1918 the following theorem now known as the Fejér-Riesz theorem was
proved,

Theorem 2.1 Suppose qn is a trigonometric polynomial of degree n. Then qn(θ) >
0 if and only if

qn(θ) = |pn(z)|2, z = eiθ ,

where pn is a polynomial of degree n in z which can be chosen nonzero for |z| ≤ 1.

The most general statement of the Fejér-Riesz theorem only requires that qn be
nonnegative and follows from the one above by continuity. We will be content with
the theorem as stated since it has a two variable analog which will be discussed
below.

This theorem has many applications especially in signal processing, the trigono-
metric moment problem, and in the construction of wavelets. The proofs of the
theorem typically use strongly the fundamental theorem of algebra so straightfor-
ward extensions to more than one variable are not obvious. Another proof based on
the theory of polynomials orthogonal on the unit circle can be extended at least to
the two variable case so it is this proof that will be developed.

Let μ be a positive Borel measure on [−π, π] and let its Fourier coefficients ck
be given by

ck =
∫ π

−π
e−ikθ dμ(θ).

The complex conjugate of the above coefficient is given by c̄n = c−n since μ is real.
The Toeplitz matrix Cn constructed from these Fourier coefficients is the (n+ 1)×
(n+ 1) matrix

Cn =

⎡
⎢⎢⎢⎢⎣

c0 c−1 · · · c−n
c1 c0

. . . c−n+1
...
. . .

. . .
...

cn cn−1 · · · c0

⎤
⎥⎥⎥⎥⎦ (2.1)

and it will be assumed that Cn > 0 (i.e. positive definite) for all n ≥ 0 which is
equivalent to

∫ π

−π
|p(z)|2dμ > 0, z = eiθ , (2.2)
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for every nonzero polynomial with complex coefficients. This can be seen
by writing any polynomial of degree n, p(z) = pnz

n + . . . p0 as p(z) =
[pn, . . . , p0][zn, . . . , 1]T then substitute this into (2.2) to obtain

∫ π

−π
|p(z)|2dμ = [pn, . . . , p0]Cn[pn, . . . , p0]†.

Here † means complex conjugate transpose. The inner product

〈p, q〉μ =
∫ π

−π
p(z)q(z)dμ = 〈q, p〉μ, z = eiθ ,

can be used to construct a unique sequence of orthonormal polynomials φn, n =
0, 1, 2 . . . satisfying

• φn(z) = φn,nzn + . . .+ φn,0 with φn,n > 0,
• 〈φn, φk〉μ = δn,k .
Here δn,k is the Kronecker delta. The unique solution which can easily be checked
to satisfy the above conditions is given by

φn(z) = 1√
detCn detCn−1

∣∣∣∣∣∣∣∣∣∣∣∣

c0 c−1 · · · c−n
c1 c0

. . . c−n+1
...

. . .
. . .

...

cn−1 cn−2 · · · c−1

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣∣
.

Important in the study of orthogonal polynomials on the unit circle is the so called
reverse polynomial φn(z)∗ = znφ̄n(1/z). From the fact that

〈φn, zi〉μ = 0, i = 0, . . . , n− 1, (2.3)

we find

〈φ∗n, zi〉μ = 0, i = 1, . . . , n. (2.4)

The above equations characterize φn, respectively φ∗n , up to multiplication by a
constant.

The above conditions allow the orthogonal polynomials and their reverses to
satisfy the following recurrence formulas for k ≥ 1:

φk(z) = ak(zφk−1 − αkφ∗k−1(z)), (2.5)



Two Variable Orthogonal Polynomials and Fejér-Riesz Factorization 297

and

φ∗k (z) = ak(φ∗k−1 − ᾱkzφk−1(z)). (2.6)

The second equation is just the reverse of the first. To obtain the first note that if
ak = φk,k

φk−1,k−1
then φk(z) − akzφk−1(z) is a polynomial of degree k − 1 satisfying

the orthogonality relations

〈φk − akzφk−1, z
i〉μ = 0 , i = 1, . . . , k − 1.

Thus Eq. (2.4) shows φk−akzφk−1 is a constant times φ∗k and we choose the constant
to be equal to −akαk to obtain Eq. (2.5). Since 〈φk(z), φ∗k−1(z)〉μ = 0 Eq. (2.5)
shows that

αk = 〈zφk−1, φ
∗
k−1〉μ. (2.7)

The orthonormality of φk gives

1 = 〈φk, φk〉μ = a2
k 〈zφk−1 − αkφ∗k−1, zφk−1 − αkφ∗k−1〉μ

= a2
k (1− ᾱk〈zφk−1, φ

∗
k−1〉μ − αk〈zφk−1, φ

∗
k−1〉μ + |αk|2)

= a2
k (1− |αk|2). (2.8)

This shows that the αk which we call recurrence coefficients must have magnitude
less than one. In the literature the parameters αk go by other names such as reflection
coefficients or Verblunsky coefficients. If φ∗k−1 is eliminated in Eq. (2.5) using (2.6)
and (2.8) the result is,

ak(φk(z)+ αkφ∗k (z)) = zφk−1, (2.9)

and its reverse

ak(φ
∗
k (z)+ ᾱkφk(z)) = φ∗k−1, (2.10)

The polynomial φ∗n has some remarkable properties:

(i) It is stable, i.e., φ∗n(z) �= 0, |z| ≤ 1.
(ii) It has spectral matching i.e., cnj = 1

2π

∫ π
−π e

−ijθ dθ

|φ∗n(z)|2 = cj for |j | ≤ n.

The stability can be proved through the Christoffel–Darboux formula which is,

φ∗n(z)φ∗n(z1)− zz̄1φn(z)φn(z1)

1− zz̄1
=

n∑
k=0

φk(z)φk(z1). (2.11)
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This follows in a straightforward manner by multiplying (2.6) by it complex
conjugate and setting z = z1 then subtracting (2.5) multiplied by its complex
conjugate at z = z1. The use of (2.8) gives

φ∗n(z)φ∗n(z1)− φn(z)φn(z1) = φ∗n−1(z)φ
∗
n−1(z1)− φn−1(z)φn−1(z1)

+ (1− zz̄1)φn−1(z)φn−1(z1).

Iteration of this equation yields

φ∗n(z)φ∗n(z1)− φn(z)φn(z1) = φ0(z)
∗φ∗0 (z1)− φ0(z)φ0(z1)

+ (1− zz̄1)

n−1∑
k=0

φk(z)φk(z1).

adding (1 − zz̄1)φn(z)φn(z1) to both sides of the above equation gives the result
since φ0(z) = 1√

c0
= φ∗0 (z) which is a positive constant.

We now prove property (i) above,

Proof Set z1 = z with |z| < 1 then Eq. (2.11) implies

|φ∗n(z)|2 ≥ (1− |z|2)
n∑
k=0

|φk(z)|2 > (1− |z|2)|φ0(z)|2 > 0,

because φ0 = 1/
√
c0. If φ∗n(z0) = 0 with |z0| = 1 then φn(z0) = 0 so from (2.11),

0 = ∑n−1
k=0 φk(z0)φ̄k(z1) where z1 is free. But this violates the linear independence

of φk, k = 0, . . . , n− 1. Thus φ∗n(z) is stable.
We now prove (ii) spectral matching. This will be accomplished by showing that

φk, k = 0, . . . n and orthonormal with respect to the weight dμn = 1
2π

dθ
|φ∗n(eiθ )|2 .

Observe that

1

2π

∫ π

−π
| φn(z)|

2

|φ∗n(z)|2
dθ = 1

2π

∫ π

−π
dθ = 1,

and

1

2π

∫ π

−π
φn(z)z

−i

|φ∗n(z)|2
dθ = 1

2πi

∫
|z|=1

zn−i−1

φ∗n(z)
dz,

where the above contour integration is taken in the counterclockwise direction.
Since φ∗n is nonzero for |z| ≤ 1, 1

φ∗n(z)
is analytic inside and on the unit circle

Cauchy’s theorem shows that the above integral is equal to zero for i < n. Thus



Two Variable Orthogonal Polynomials and Fejér-Riesz Factorization 299

φn is an orthonormal polynomial associated with μn. Set z = 0 in (2.9) with k = n
then

αn = φn(0)
φ∗n(0)

. (2.12)

Thus (2.8), (2.9), and (2.12) show we can construct φn−1 just from φn. The use
of (2.9) gives

∫ π

−π
φn−1(z)z

−idμn = an
(∫ π

−π
φn(z)z

−i−1dμn + αn
∫ π

−π
φ∗n(z)z−i−1dμn

)
.

From the orthogonality properties of φn and φ∗n (see (2.3) and (2.4) using μn) the
above integral is equation to zero for 0 ≤ i < n − 1. Again using (2.9) in the
equation below and expanding yields

∫ π

−π
|φn−1(z)|2dμn = a2

n

∫ π

−π
|φ2
n(z)|dμn + ᾱnan

∫ π

−π
φn(z)φ∗n(z)dμn

+ αnan
∫ π

−π
φ̄n(z)φ

∗
n(z)dμn + |αn|2a2

n

∫ π

−π
|φ∗n(z)|2dμn.

From (2.9) we find αn = −〈φn, φ∗n〉 which with (2.8) shows the above integral
is equal to 1. We now proceed to φn−2 etc. which shows that {φk}nk=0 is a set of
orthonormal polynomials associated with μ and μn. Since eijθ = zj can be written
in terms of φk with 0 ≤ k ≤ j and e−ijθ can be obtained by complex conjugation
of the above equation we see that the integrals in (ii) must be the same for |j | ≤ n
which gives the result. ��

With the above results a Proof of Theorem 2.1 can be given,

Proof of Theorem 2.1 Suppose that qn is a strictly positive trigonometric polyno-
mial and let dμ = 1

2π
dθ
qn

. Construct the orthonormal polynomials associated with
μ and let φn be the nth orthonormal polynomial. Now use the Cauchy–Schwarz
inequality to obtain,

1 = 1

2π

∫ π

−π
|φ∗n(z)|√
qn

√
qn

|φ∗n(z)|
dθ

≤
(

1

2π

∫ π

−π
|φ∗n(z)|2
qn

dθ

)1/2 (
1

2π

∫ π

−π
qn

|φ∗n(z)|2
dθ

)1/2

. (2.13)

The first integral in the inequality is equal to 1 since |φ∗n| = |φn| and φn is an
orthonormal polynomial. Also since 1

|φ∗n |2 and 1
qn

have the same first n moments we

can replace |φ∗n|2 in the second integral with qn and so it too is equal to one. Thus

we have equality which implies that c |φ
∗
n(z)|√
qn
=

√
qn

|φ∗n(z)| or c|φ∗n|2 = qn. But since
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φn is an orthonormal polynomial with respect to 1
2π

1
qn
, c = 1 which completes the

proof when qn is strictly positive. ��
We finish this section with Verblunsky’s theorem which shows that there is a

one-to-one correspondence between probability measures supported on the unit
circle and sequences of recurrence coefficients and thus gives a parameterization of
positive Borel measures on [−π, π] satisfying (2.2). We first introduce the concept
of weak convergence. A sequence of probability measures {μn} supported on the
interval [−π, π] is said to converge weakly to μ if

∫ π

−π
f dμn→

∫ π

−π
f dμ,

for every complex continuous function on [−π, π].
If two measures μ and μ1 with support on [−π, π] are such that

∫ π
−π f dμ =∫ π

−π f dμ1 for every complex continuous function on [−π, π] then μ1 = μ.
With this we prove Verblunsky’s theorem.

Theorem 2.2 There is a one-to-one correspondence between infinite sequences
{αi}∞i=1 with |αi | < 1 and Borel probability measures on the unit circle satisfy-
ing (2.2).

Proof Let μ be a positive Borel probability measure on [−π, π] such that (2.2)
holds and let {φn} be its associated orthonormal polynomials. If dμn = 1

2π
dθ

|φ∗n(z)|2
then the recurrence coefficients {αk}∞k=1 are constructed using (2.7) and the
orthonormality of φk shows that the recurrence coefficients must satisfy (2.8) so
|αk| < 1. Now given the recurrence coefficients {αk}∞k=1 with |αk| < 1 we construct
a set of polynomials {φn}∞n=0 using (2.5) and (2.6) with φ0 = 1 = φ∗0 . Since these
polynomials satisfy (2.11) φ∗n is stable for each n. Define dμn = 1

2π
dθ
|φ∗n |2 then the

first |k| trigonometric moments of μk are the same as μn for n ≥ k. Thus we define
μ on the set of trigonometric polynomials on [−π, π] with complex coefficients by

∫ π

−π
p(eiθ )dμ = lim

n→∞

∫ π

−π
p(eiθ )dμn.

The above limit in fact does not change once n ≥ degp so that μ is given on
this set of polynomials. But by the Weierstrass theorem these polynomials are
dense in the set of complex continuous functions on [−π, π]. Thus integration with
respect to μ can be extended to any complex continuous function f on [−π, π] by
limn→∞

∫ π
−π f dμn =

∫ π
−π f dμ which determines μ. Since each μn is a positive

measure the integral of μ over any positive continuous function on [−π, π] is
positive and this gives the result. ��
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3 Matrix Orthogonal Polynomials on the Unit Circle

We now extend the theory discussed earlier to matrix orthogonal polynomials which
will be important for our discussion of polynomials orthogonal on the bicircle and
the extension of the Fejér-Riesz theorem to two variables.

Let # be an (m + 1) × (m + 1) positive hermitian matrix valued measure on
[−π, π]. That is the entries in# are complex measures such thatX†

∫
o d#(θ)X ≥ 0

for any X ∈ C
m+1 and o any open set in [−π, π]. Let

Cj =
∫ π

−π
e−ijθ d#(θ) (3.1)

be the j th (m + 1) × (m + 1) matrix Fourier coefficient associated with # and
construct the block Toeplitz matrix

Cn,m =

⎡
⎢⎢⎢⎢⎣

C0 C−1 · · · C−n
C1 C0

. . . C−n+1
...
. . .

. . .
...

Cn Cn−1 · · · C0

⎤
⎥⎥⎥⎥⎦ , (3.2)

so Cn,m is an (n + 1)(m + 1) × (n + 1)(m + 1) matrix. Note that C−j = C†
j . We

will assume that Cn,m > 0 for all n. This is equivalent to

∫ π

−π
X(z)d#X(z)† > 0, z = eiθ , (3.3)

for X(z) any nonzero polynomial in z with coefficients in C
m+1 that is not

identically zero. To see this supposeX is of at most degree n so X(z) = X0+ · · · +
Xnz

n with Xi ∈ C
m+1. Write X(z) = X̂U(z) where U(z) = [znI, zn−1I, · · · , I ]T

and X̂ = [Xn,Xn−1, . . . , X0], then

∫ π

−π
X(z)d#X†(z) = X̂Cn,mX̂†

which shows the equivalence of (3.2) being positive and (3.3). We now construct
the orthonormal polynomials associated with #. Because of noncommutativity it
is necessary to introduce two sets of polynomials. Let {Rmi }∞i=0 and {Lmi }∞i=0 be
sequences of (m+ 1)× (m+ 1) complex valued matrix polynomials

Rmi (z) = Rmi,izi + Rmi,i−1z
i−1 + · · · , i = 0, . . . , n, (3.4)
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and

Lmi (z) = Lmi,i zi + Lmi,i−1z
i−1 + · · · , i = 0, . . . , n, (3.5)

satisfying

∫ π

−π
Rmi (z)

†
d#(θ)Rmj (z) = δij Im+1, z = eiθ (3.6)

and
∫ π

−π
Lmi (z)d#(θ)L

m
j (z)

† = δij Im+1, z = eiθ (3.7)

respectively, where Im+1 denotes the (m + 1) × (m + 1) identity matrix. The
{Rmn }n≥0 and {Lmn }n≥0 are respectively right and left matrix orthogonal polynomials
associated with #. The above relations uniquely determine the sequences {Rmi }ni=0
and {Lmi }ni=0 up to a unitary factor and this factor will be fixed by requiring Rmi,i
and Lmi,i to be upper triangular matrices with positive diagonal entries. This is not
the usual way to normalize the polynomials as it complicates slightly the theory
below but it has the advantage of being related to the Cholesky factorization of
Cn,m which is discussed next and also being connected with the bivariate problem
discussed later. For n ≥ i write

Lmi (z) = [0 · · · 0 Lmi,i L
m
i,i−1 · · · Lmi,0]

⎡
⎢⎢⎢⎣

znIm+1

zn−1Im+1
...

Im+1

⎤
⎥⎥⎥⎦ , (3.8)

and

L̂mn (z) =

⎡
⎢⎢⎢⎣

Lmn (z)

Lmn−1(z)
...

Lm0 (z)

⎤
⎥⎥⎥⎦ = L

⎡
⎢⎢⎢⎣

znIm+1

zn−1Im+1
...

Im+1

⎤
⎥⎥⎥⎦ , (3.9)

where

L =

⎡
⎢⎢⎢⎢⎣

Lmn,n Lmn,n−1 · · · Lmn,0
0 Lmn−1,n−1 · · · Lmn−1,0
...

. . .

0 0 · · · Lm0,0

⎤
⎥⎥⎥⎥⎦ . (3.10)



Two Variable Orthogonal Polynomials and Fejér-Riesz Factorization 303

In an analogous fashion write,

R̂mn (z) =

⎡
⎢⎢⎢⎣

Rm0 (z)

Rm1 (z)
...

Rmn (z)

⎤
⎥⎥⎥⎦ =

[
Im+1 . . . z

nIm+1
]
R, (3.11)

where

R =

⎡
⎢⎢⎢⎢⎣

Rm0,0 R
m
1,0 · · · Rmn,0

0 Rm1,1 · · · Rmn,1
...

. . .

0 0 · · · Rmn,n

⎤
⎥⎥⎥⎥⎦ . (3.12)

By lower (respectively upper) Cholesky factor A (respectively B) of a positive
definite matrixM we mean

M = AA† = BB†, (3.13)

where A is a lower triangular matrix with positive diagonal elements and B is an
upper triangular matrix with positive diagonal elements. With the above we have the
following well known lemma

Lemma 3.1 Let Cn,m be a positive definite block Toeplitz matrix given by (3.2) then
L† is the lower Cholesky factor and R is the upper Cholesky factor of C−1

n,m.

Proof To obtain (3.13) note that (3.7) gives

I =
∫ π

−π
L̂mn (z)d#(θ)L̂

m
n (z)

† = L
∫ π

−π

⎡
⎢⎢⎢⎣

znIm+1

zn−1Im+1
...

Im+1

⎤
⎥⎥⎥⎦ d#L†

⎡
⎢⎢⎢⎣

znIm+1

zn−1Im+1
...

Im+1

⎤
⎥⎥⎥⎦

†

L†

= L
∫ π

−π

⎡
⎢⎢⎢⎣

Im+1 zIm+1 · · · znIm+1

z−1Im+1 Im+1 · · · zn−1Im+1
...

... · · · ...

z−nIm+1 z
−n+1Im+1 · · · Im+1

⎤
⎥⎥⎥⎦ d# = LCn,mL†,

where I is the (n + 1)(m + 1) × (n + 1)(m + 1) identity matrix. Since Cn,m is
invertible we find,

C−1
n,m = L†L.
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The result for R follows in an analogous manner. ��
From this formula and (3.10) we find,

Lmn (z) =
[
(Lmn,n

†
)−1, 0, 0, . . . 0

]
C−1
n,m[znIm+1, z

n−1Im+1, . . . , Im+1]T , (3.14)

and

Rmn (z) =
[
Im+1, zIm+1, . . . , z

nIm+1
]
C−1
n,m

[
0, 0, . . . , 0, (R̄mn,n)

−1
]T
. (3.15)

A consequence of (3.14) and (3.15) is that Lmn,n
† is the lower Cholesky factor of

[Im+1, 0, · · · , 0]C−1
n,m [Im+1, 0, · · · , 0]T while Rmn,n is the upper Cholesky factor of

[0, · · · , Im+1]C−1
n,m [0, · · · , Im+1]T .

Define a matrix inner product as

〈F,G〉# =
∫ π

−π
F (θ)d#(θ)G(θ)† = 〈G,F 〉†#, (3.16)

whenever the above product is well defined and finite for example for F and
G (m + 1) × (m + 1) complex matrix continuous functions. If Bn(z) is an
(m + 1) × (m + 1) matrix polynomial of degree n the reverse polynomial is
given by B∗n(z) = znB†

n(1/z). Similar to the scalar case Lmn (R
m
n ) and L∗mn (R∗mn )

are characterized up to a multiplication of an (m + 1) × (m + 1) matrix by the
orthogonality relations

〈Lmn , zi〉# = 0 = 〈z−i , (Rmn )†〉#, z = eiθ , 0 ≤ i ≤ n− 1, (3.17)

and

〈z−i , (L∗mn )†〉# = 0 = 〈R∗mn , zi〉#, z = eiθ , 1 ≤ i ≤ n, (3.18)

The above equation now allow recurrence formulas to be computed. If we write

! = An,mLmn (z)− zLmn−1(z),

with

An,m = Lmn−1,n−1(L
m
n,n)
−1 (3.19)

it follows that ! is an (m + 1) × (m + 1) matrix polynomial of degree n − 1 in z
satisfying

〈!, zi〉# = An,m〈Lmn , zi〉# − 〈Lmn−1, z
i−1〉# = 0, 1 ≤ i ≤ n− 1.
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Thus from (3.18)! is equal to an (m + 1)× (m+ 1) matrix B times Rmn
∗ and we

write B = −En,m which gives

An,mL
m
n (z) = zLmn−1(z)− En,mR∗mn−1(z), (3.20)

so that the right matrix orthogonal polynomials are needed to obtain a recurrence
formula. A similar argument gives

Rmn (z)Ân,m = zRmn−1(z)− L∗mn−1(z)En,m. (3.21)

That En,m can be chosen in both formulas follows since (3.20) gives

En,m = 〈zLmn−1, R
∗m
n−1〉# = 〈(L∗mn−1)

†, (zRmn−1)
†〉#. (3.22)

which is what (3.21) yields. The second equality follows from zLmn−1 =
zn(L∗mn−1(z))

† and (R∗mn−1(z))
† = z−n+1Rmn−1(z). As in the scalar case it follows

from orthogonality that,

An,mA
†
n,m = Im+1 − En,mE†

n,m and Â†
n,mÂn,m = Im+1 − E†

n,mEn,m. (3.23)

The above equations and the properties ofAn,m and Ân,m show thatEn,m is a strictly
contractive matrix and that An,m is the upper Cholesky factor of Im+1 −En,mE†

n,m.
Similarly Â†

n,m is the lower Cholesky factor of Im+1 − E†
n,mEn,m.

The recurrence formulas (3.20) and (3.21) can be inverted in the following
manner. Multiply the reverse of (3.21) on the right by En,m to obtain

En,mÂ
†
n,mR

∗m
n (z) = En,mR∗mn−1(z)− zEn,mE†

n,mL
m
n−1(z).

Add this equation to (3.20) then use (3.23) and eliminate An,m to find,

Lmn (z)+ Ẽn,mR∗mn (z) = zA†
n,mL

m
n−1(z), (3.24)

where

Ẽn,m = A−1
n,mEn,mÂ

†
n,m. (3.25)

In a similar manner we find

Rmn (z)+ L∗mn (z)Ẽn,m = zRmn−1(z)Â
†
n,m, (3.26)

where we have the remarkable formula

Ẽn,m = A†
n,mEn,mÂ

−1
n,m. (3.27)
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To show that it is indeed Ẽn,m in Eq. (3.27) integrate (3.24) against (R∗mn (z))† to
obtain

Ẽn,m = −〈Lmn ,R∗mn 〉#. (3.28)

SinceLmn (z) = z−n(L∗mn (z))† and from the definition ofR∗mn we find that the above
equation equals

Ẽn,m = −〈(L∗mn )†, (Rmn )†〉#, (3.29)

which gives the result. Note that using the orthogonality properties of the orthonor-
mal matrix polynomials and the above integral for Ẽn,m show that

A†
n,mAn,m = Im+1 − Ẽn,mẼ†

n,m and Ân,mÂ†
n,m = Im+1 − Ẽ†

n,mẼn,m. (3.30)

From the structure of Amn and Âmn we see that A†
n,m is the lower Cholesky factor of

Im+1 − Ẽn,mẼ†
n,m while Ân,m is the upper Cholesky factor of Im+1 − Ẽ†

n,mẼn,m
The recurrences (3.20) and (3.21) and Eq. (3.23) give a matrix Christoffel–

Darboux formula. From the reverse of (3.20) it follows that

L∗mn (z)L∗
m
n (z1)

†

=L∗mn−1(z)(A
†
n,m)

−1(An,m)
−1L∗mn−1(z1)

† − z̄1L
∗m
n−1(z)(A

†
n,m)

−1(An,m)
−1En,mR

∗m
n−1(z1)

†

−zRmn−1(z)E
†
n,m(A

†
n,m)

−1(An,m)
−1Lmn (z1)

† + zz̄1R
m
n−1(z)E

†
n,m(A

†
n,m)

−1(An,m)
−1E†

n,mR
m
n−1(z1)

†.

Likewise

Rmn (z)R
m
n (z1)

†

= zz̄1R
m
n−1(z)Â

−1
n,m(Â

†
n,m)

−1Rmn−1(z1)
† − zRmn−1(z)Â

−1
n,m(Â

†
n,m)

−1E†
n,mL

∗m
n−1(z1)

†

− z̄1L
∗m
n−1(z)En,mÂ

−1
n,m(Â

†
n,m)

−1Lmn−1(z)
† + L∗mn−1(z)En,mÂ

−1
n,m(Â

†
n,m)

−1E†
n,mL

m
n−1(z1)

†.

The subtraction of the second equation from the first equation yields

L∗mn (z)L∗
m
n (z1)

† − Rmn (z)Rmn (z1)
†

= L∗mn−1(z)((A
†
n,m)

−1(An,m)
−1 − En,mÂ−1

n,m(Â
†
n,m)

−1E†
n,m)L

∗m
n−1(z1)

†

− z̄1L
∗m
n−1(z)((A

†
n,m)

−1(An,m)
−1En,m − En,mÂ−1

n,m(Â
†
n,m)

−1)R∗mn−1(z1)
†

− zRmn−1(z)(E
†
n,m(A

†
n,m)

−1(An,m)
−1 − Â−1

n,m(Â
†
n,m)

−1E†
n,m)L

m
n (z1)

†

+ zz̄1R
m
n−1(z)(E

†
n,m(A

†
n,m)

−1(An,m)
−1E†

n,m − Â−1
n,m(Â

†
n,m)

−1)Rmn−1(z1)
†.
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Observe that (3.23) implies

En,mÂ
−1
n,m(Â

†
n,m)

−1E†
n,m = En,m(Im+1 − E†

n,mEn,m)
−1E†

n,m

= (Im+1 − En,mE†
n,m)

−1En,mE
†
n,m = (A†

n,m)
−1(An,m)

−1En,mE
†
n,m,

so that

(A†
n,m)

−1(An,m)
−1 − En,mÂ−1

n,m(Â
†
n,m)

−1E†
n,m = Im+1.

Also

En,mÂ
−1
n,m(Â

†
n,m)

−1 = (A†
n,m)

−1(An,m)
−1En,m

so the second term on the right hand side is equal to zero. Applying similar
manipulations to the remaining terms yields

L∗mn (z)L∗
m
n (z1)

† − Rmn (z)Rmn (z1)
† = L∗mn−1(z)L

∗m
n−1(z1)

† − Rmn−1(z)R
m
n−1(z1)

†

+ (1− zz̄1)R
m
n−1(z)R

m
n−1(z1)

†.

Iteration of this equation to zero then adding (1 − zz̄1)R
m
n (z)R

m
n (z1)

† to both sides
of the above equation and using the fact that L∗m0 (z)L∗m0 (z1)

† − Rm0 (z)Rm0 (z1)
† =

C−1
0 − C−1

0 = 0 gives the first Christoffel–Darboux formula

L∗mn (z)L∗
m
n (z1)

† − zz̄1R
m
n (z)R

m
n (z1)

† = (1− zz̄1)

n∑
i=0

Rmi (z)R
m
i (z1)

†
. (3.31)

Likewise the second Christoffel–Darboux formula is given by,

R∗mn (z)
†
R∗mn (z1)− z̄z1L

m
n (z)

†
Lmn (z1) = (1− z̄z1)

n∑
i=0

Lmi (z)
†
Lmi (z1). (3.32)

We say A ≥ B for (m+ 1)× (m+ 1)matrices if A−B is positive semidefinite. We
say that a square matrix polynomialA(z) has a zero at z0 if there is a nonzero vector
u ∈ C

m+1 such that A(z0)u0 = 0. This is equivalent to det(A(z0)) = 0 which
is equivalent to ker(A(z0)) being nontrivial. As in the case of scalar orthogonal
polynomials on the unit circle L∗mn and R∗mn have the following remarkable
properties.

Theorem 3.2 Given Lmn and Rmn as above then for n ≥ 0

det(R∗mn (z)) �= 0 �= det(L∗mn (z)), |z| ≤ 1. (3.33)
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If

Wn(z) =
[
L∗mn (z)L∗

m
n (z)

†
]−1

, (3.34)

and

Cnj =
1

2π

∫ π

−π
e−ijθWn(eiθ )dθ,

then

Cnj = Cj , |j | ≤ n. (3.35)

Furthermore from (3.37)

Wn(z) =
[
R∗mn (z)

†
R∗mn (z)

]−1
, |z| = 1. (3.36)

We say that L∗mn (z) and R∗mn (z) are stable and have spectral matching.

Proof With z1 = z Eq. (3.31) implies

L∗mn (z)L∗
m
n (z)

† ≥ (1− z̄z1)

n∑
i=0

Rmi (z)R
m
i (z1)

† ≥ (1− z̄z1)R
0
i (z1)R

0
i (z)

†
> 0.

Thus det(Lmn (z)) �= 0 for |z| < 1. For |z| = 1 (3.31) shows that

L∗mn (z)L∗
m
n (z)

† = Rmn (z)Rmn (z)†, (3.37)

so if there is a nonzero row vector so that u0L
∗m
n (z0) = 0 then it follows that

u0R
m
n (z0) = 0. Suppose now that det(L∗mn (z0)) = 0 for |z0| = 1 then there is a

nonzero row vector u0 so that u0L
∗m
n (z0) = 0. Therefore from the above discussion

it follows

u0L
∗m
n (z0)(L

∗m
n (z1))

† − z0z̄1u0R
m
n (z0)R

m
n (z1)

† = 0,

hence

n−1∑
i=0

u0R
m
i (z0)R

m
i (z1)

† = 0, z1 �= z0.
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Multiplying by d# and integrating, the continuity of the polynomials in the sum,
yields,

0 =
n−1∑
i=0

u0R
m
i (z0)

∫ π

−π
Rmi (z1)

†
d#(θ1) = u0R

m
0 (z0)

∫ π

−π
Rm0 (z1)

†
d#(θ1) = u0Im+1,

where (3.6) has been used. This is a contradiction so det(L∗mn (z)) �= 0 for |z| ≤ 1
which gives the stability of L∗mn (z). The stability of R∗mn (z) follows in a similar
manner from Eq. (3.32).

To show the spectral matching note that on the unit circle Wn(z) =
Lmn (z)

−1((Lmn (z))
†)−1 so

1

2π

∫ π

−π
Lmn (z)Wn(z)(L

m
n (z))

†dθ = 1.

Also

1

2π

∫ π

−π
Lmn (z)z

−iWn(z)dθ = 1

2π

∫ π

−π
zn−i (L∗mn (z))−1dθ.

Writing the above as a contour integral counterclockwise around the unit circle and
using the fact that (L∗mn (z))−1 is an analytic matrix function for |z| ≤ 1 gives that
the above integral is equal to zero for 0 ≤ i ≤ n − 1 so Lmn is an orthonormal
polynomial associated with Wn dθ2π . Likewise with the use of (3.37) it is seen that
Rmn is an orthonormal polynomial with respect toWn dθ2π . From (3.26) with z = 0 we

find that Ẽn,m = −L∗mn (0)−1Rmn (0). Furthermore An,m can be obtained uniquely
from (3.30). Thus Lmn−1 can be written in terms of Lmn and Rmn . Likewise the same
holds true for Rmn−1 using (3.26) and (3.30). Thus it follows that

〈Lmn−1, z
i〉# = (A†

n,m)
−1(〈Lmn , zi+1〉# + Ẽn,m〈R∗mn , zi+1〉#) = 0,

for i = 0, . . . n − 2. Substituting (3.24) into 〈Lmn−1, L
m
n−1〉 then using (3.28)

and (3.30) yields

〈Lmn−1, L
m
n−1〉# = (A†

n,m)
−1(Im+1 − Ẽn,mẼ†

n,m)A
−1
n,m = Im+1.

This shows that Lmn−1 is an orthonormal matrix polynomial associated with Wn dθ2π .
Similarly Rmn−1 can be shown to be an orthonormal matrix polynomial associated

withWn dθ2π using (3.26), (3.29), (3.30), and (3.36). Continuing in this manner shows
that {Lmi }ni=0 and {Rmi }ni=0 are orthonormal matrix polynomials associated with
Wn

dθ
2π . Since ziIm+1 can be expanded in terms of Lmk , k = 0, . . . , i the above

argument shows that Cn−j = C−j for j = 0, . . . n. Taking the complex conjugate
transpose gives the result for j = 0, . . . ,−n and the result follows. ��
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Since we are dealing with a matrix measure it is not easy to use the Cauchy–
Schwarz inequality as in the scalar case. In order to overcome this we will make use
of an entropy principle. We begin with the following simple equality,

Theorem 3.3 Let Lmn (z) be the left orthonormal polynomial discussed above and
Wn be given by (3.34). Then

log(det((Lmn,n)
†Lmn,n)) = −

1

2π

∫ π

−π
log(det(Wn(θ)))dθ. (3.38)

Proof From Eq. (3.34) it follows that

− 1

2π

∫ π

−π
log(det(Wn(θ)))dθ = 1

2π

∫ π

−π
log(| det(L∗mn (z))|2)dθ.

Since L∗mn (z) is nonzero inside and on the unit circle and is also analytic there so
is det(L∗mn (z)), hence log(det(L∗mn (z))) is analytic for |z| < 1 and we can write
log(| det(L∗mn (z))|2) = ( log(det(L∗mn (z))) which is the real part of an analytic
function and therefore a harmonic function. Thus by the mean value theorem for
harmonic functions.

1

2π

∫ π

−π
log(| det(L∗mn (z))|2)dθ = ( log(det(L∗mn (0))) = log(det((Lmn,n)

†Lmn,n)),

which gives the result. ��
From Eq. (3.23) and the definition of An,m we have

det((Lmn,n)
†Lmn,n) = det(I − En,mE†

n,m)
−1 det((Lmn−1,n−1)

†Lmn−1,n−1)

≥ det((Lmn−1,n−1)
†Lmn−1,n−1),

since En,m is a contraction. The use of the above theorem yields

1

2π

∫ π

−π
log(det(Wn(θ)))dθ ≤ 1

2π

∫ π

−π
log(det(Wn−1(θ))). (3.39)

There is an important result, Szegő’s theorem for matrix measures, that can be
developed from the above results. Write# = #ac+#s where#ac is the absolutely
continuous part of # and #s is its singular part. Write d#ac

dθ
= W(θ) then Szegő’s

theorem says that

Theorem 3.4 With the notation above

lim
n→∞ log(det((Lmn,n)

†Lmn,n)) = −
1

2π

∫ π

−π
log(det(W(θ)))dθ. (3.40)
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This gives rise to a maximum entropy principle (see [2]). Let Smn be the class
of (m + 1) × (m + 1) matrix Borel measures # on the unit circle with∫ π
−π log(det(W(θ)))dθ > −∞ and such that each # ∈ Smn has the same Fourier

coefficients Ci, |i| ≤ n. With E(#) = 1
2π

∫ π
−π log det(W)dθ we have,

Theorem 3.5 There is a unique measure #0 ∈ Snm that satisfies

E(#0) = sup
#∈Smn

E(#)

and this measure is absolutely continuous with respect to Lebesgue measure and
is given by d#0 = W(θ) dθ2π with W(θ) = Qmn (θ)−1 where Qmn (θ) is a positive
(m+ 1)× (m+ 1) matrix trigonometric polynomial of degree n.

Proof Any measure# in the class Smn has the same momentsCj , |j | ≤ n and there-
fore the same left orthonormal matrix polynomials Lmi for 0 ≤ i ≤ n. With d#ac

dθ
=

W(θ) it follows from Theorem 3.4 and Eq. (3.39) that
∫ π
−π log det(W(θ))dθ ≤∫ π

−π log det(Wn(θ))dθ where Wn is given by (3.34). Thus # such that d#
dθ
= Wn

maximizes E on Smn and from (3.34)W−1 is a strictly positive (m + 1) × (m + 1)
matrix trigonometric polynomial of degree n. Hence the result is proved. ��

With the above it is now possible to prove the matrix analog of Verblunsky’s
theorem and a restricted Fejér-Riesz theorem. We begin with the Fejér-Riesz
theorem.

Theorem 3.6 LetQmn (θ) be an (m+1)× (m+1) matrix trigonometric polynomial
of degree n. ThenQn(θ) > 0 if and only if there is a stable (m+1)×(m+1)matrix
polynomial Pn(z) of degree n in z such that

Qn(θ) = Pn(z)Pn(z)†, z = eiθ .

Proof Since Qn is strictly positive let # be the positive Borel measure such that
d# = Q−1

n
dθ
2π . Let Lmn be the nth degree left orthonormal polynomial. Then #

has the same Fourier coefficients as #n where d#n(θ) = [L∗mn (z)L∗mn (z)†]−1 dθ
2π .

So by the maximum entropy principle (Theorem 3.4) it follows that Qn(θ) =
L∗mn (z)L∗mn (z)†. ��

A measure# is said to be an (m+1)×(m+1)positive matrix probability measure
if it is a positive (m+ 1)× (m+ 1) matrix measure such that

∫ π
−π d# = Im+1.

We finish with the matrix version of Verblunsky’s theorem.

Theorem 3.7 There is a one-to-one correspondence between infinite sequences
{Emi }∞i=1 with each Emi an (m + 1) × (m + 1) strictly contractive matrix and
(m + 1) × (m + 1) matrix Borel probability measures # on the unit circle such
that (3.3) holds.

Proof Starting with # we see that if (3.3) holds then the left and right orthonormal
polynomials {Lmn } and {Rmn } can be constructed. Matrix recurrence coefficients are
now found via (3.22) and the orthogonality properties of Lmn , L

m
n−1 and R∗mn−1



312 J. S. Geronimo

give Eq. (3.23) which shows that Emn is a strict contraction for 1 ≤ n < ∞.
Now suppose that the {Emn } are given, where Emn is a strict contraction for all
n ≥ 1. Beginning with Lm0 = Im+1 = Rm0 use Eqs. (3.20) and (3.21) to construct
{Lmn }∞n=0 and {Rmn }∞n=0. The Christoffel–Darboux equations (3.31) and (3.32) show
that L∗mn and R∗mn are stable for all n and have spectral matching. Define #n as
d#n(θ) = Wn(θ) dθ2π whereWn is given by Eq. (3.34). By the weak compactness of
the (m+1)×(m+1)matrix valued probability measures (i.e. the Helly theorems) the
#n have a weak limit # which is a probability measure which satisfies (3.3). From
the spectral matching of {#n} the left and right matrix orthonormal polynomials
associated with # are {Lmn }∞n=0 and {Rmn }∞n=0 respectively. Thus its recurrence
coefficients are given by {Emn }∞n=0 and the result follows. ��

4 Orthogonal Polynomials on the Bicircle

We now examine polynomials orthogonal on the bicircle. The first problem
encountered is what ordering is to be used to order the monomials for the Gram–
Schmidt procedure. Each ordering gives a different set of orthonormal polynomials
and unlike the univariate case there does not appear to be a preferred ordering.
Jackson suggested using the total degree ordering and this indeed may be the most
preferable ordering to use to study the asymptotics of orthonormal polynomials.
However the structure of the moment matrix makes it difficult to find recurrences
among the polynomials. Delsarte et. al. [5] in their study of the planar least squares
problem considered the lexicographical ordering. This ordering is also implicitly
used in the work of Helson and Lowdenslager [13] in their study of the two
dimensional prediction problem. In this lecture we will order the moments using the
lexicographical (lex) or reverse lexicographical (revlex) orderings. Given a subset
of Z2 the lexicographical ordering is defined by

(k, l) <lex (k1, l1)⇐⇒ k < k1 or (k = k1, and l < l1).

The reverse lexicographical ordering is defined by

(k, l) <revlex (k1, l1)⇐⇒ l < l1 or (l = l1, and k < k1).

Given a positive bivariate Borel measure μ supported on [−π, π] × [π, π] or T2

let cj,k be defined as

cj,k =
∫
T2
e−ijθ e−ikφdμ(θ, φ), (4.1)

and

c̄j,k = c−j,−k.
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If we start with the monomials {ziwj }, 0 ≤ i ≤ n, 0 ≤ j ≤ m, z = eiθ , w = eiφ ,
then the monomials lexicographically ordered are 1, w, . . . , wm, z, zw, . . . , znwm

and the moment matrix Cn,m =
∫
T2 [1, w, . . . , znwm]†[1, w, . . . , znwm]dμ(θ, φ) is

given by

Cn,m =

⎡
⎢⎢⎢⎣

C0 C−1 · · · C−n
C1 C0 · · · C−n+1
...

. . .
...

Cn Cn−1 · · · C0

⎤
⎥⎥⎥⎦ , (4.2)

where each Ci is an (m+ 1)× (m+ 1) Toeplitz matrix as follows

Ci =

⎡
⎢⎢⎢⎣

ci,0 ci,−1 · · · ci,−m
ci,1 ci,0 · · · ci,−m+1
...

. . .
...

ci,m · · · ci,0

⎤
⎥⎥⎥⎦ , i = −n, . . . , n. (4.3)

Thus Cn,m in the lexicographical ordering has a doubly Toeplitz structure. It is
shown in Lemma 2.2 of [9], see also [5], that

JCn,mJ = CTn,m (4.4)

where AT denotes the transpose of the matrix A and J is an (n + 1)(m + 1) ×
(n+ 1)(m+ 1) matrix with ones along the antidiagonal and zeros elsewhere. If the
reverse lexicographical ordering is used in place of the lexicographical ordering we
obtain another moment matrix C̃n,m where the roles of n and m are interchanged.
We will assume that Cn,m > 0 for all n ≥ 0, m ≥ 0 which is equivalent to

∫
T2
|p(z,w)|2dμ(θ, φ) > 0, z = eiθ , w = eiφ (4.5)

for any nonzero polynomial in z and w with complex coefficients. As in the scalar
case this can be seen by writing a polynomial of degree n in z and m in w as

p(z,w) = pn,mznwm + pn,m−1z
nwm−1 + . . .+ p0,0

= [pn,m, pn,m−1, . . . , p0,0][znwm, znwm−1, . . . , 0]T ,

in which case
∫
T2
|p(z,w)|2dμ(θ, φ) = [pn,m, pn,m−1, . . . , p0,0]Cn,m[pn,m, pn,m−1, . . . , p0,0]†.
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As in the scalar case define an inner product as

〈f, g〉μ =
∫
T2
f (θ, φ)ḡ(θ, φ)dμ(θ, φ) = 〈g, f 〉μ. (4.6)

We now construct the orthonormal polynomials by performing the Gram–
Schmidt procedure on the lexicographically ordered monomials and define the
orthonormal polynomials {φln,m(z,w)}n≥0,0≤l≤m, by the equations,

〈φln,mziwj 〉μ = 0, 0 ≤ i < n and 0 ≤ j ≤ m or i = n and 0 ≤ j < l,
〈φln,mφln,m〉μ = 1,

(4.7)

and

φln,m(z,w) = kn,ln,m,lznwl +
∑

(i,j)<lex(n,l)

k
i,j
n,m,lz

iwj . (4.8)

With the convention kn,ln,m,l > 0, the above equations uniquely specify φln,m. The

following equation is a formula for φln,m,

φln,m(z,w) =
1√

detCln,m det Ĉln,m

∣∣∣∣∣∣∣∣∣∣∣

c0,0 c0,−1 · · · c−n,−l
c0,1 c0,0 · · · c−n,−l+1
...

. . .
...

cn,l−1 · · · cn,−1

1 · · · znwl

∣∣∣∣∣∣∣∣∣∣∣
,

where Cln,m is the matrix in the above determinant except the last row is

cn,l, . . . , c0,0 and Ĉln,m is obtained from Cln,m by removing its last row and column.
Polynomials orthonormal with respect to μ but using the reverse lexicographical
ordering will be denoted by φ̃ln,m. They are uniquely determined by the above
relations with the roles of n and m interchanged.

Set

 n,m =

⎡
⎢⎢⎢⎣

φmn,m
φm−1
n,m
...

φ0
n,m

⎤
⎥⎥⎥⎦ = Kn,m

⎡
⎢⎢⎢⎣

znwm

znwm−1

...

1

⎤
⎥⎥⎥⎦ , (4.9)
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where the (m+ 1)× (n+ 1)(m+ 1) matrixKn,m is given by

Kn,m =

⎡
⎢⎢⎢⎢⎣

k
n,m
n,m,m k

n,m−1
n,m,m · · · · · · · · · k0,0

n,m,m

0 k
n,m−1
n,m,m−1 · · · · · · · · · kn,0n,m,m−1

...
. . .

. . .
. . .

. . .
. . .

0 · · · k
n,0
n,m,0 k

n−1,m
n,m,0 · · · k0,0

n,m,0

⎤
⎥⎥⎥⎥⎦ . (4.10)

Similar as above denote

 ̃n,m =

⎡
⎢⎢⎢⎣

φ̃nn,m
φ̃n−1
n,m
...

φ̃0
n,m

⎤
⎥⎥⎥⎦ . (4.11)

For the bivariate polynomials φln,m(z,w) above we define the reverse polynomials
φln,m(z,w) by the relation

φ∗ln,m(z,w) = znwmφ̄ln,m(1/z, 1/w). (4.12)

With this definition φ∗ln,m(z,w) is again a polynomial in z and w, and furthermore

 ∗n,m(z,w) := znwm †
n,m(1/z, 1/w) =

⎡
⎢⎢⎢⎣

φ∗mn,m
φ∗m−1
n,m
...

φ∗0
n,m

⎤
⎥⎥⎥⎦ . (4.13)

An analogous procedure is used to define φ̃∗ln,m.

Let
∏̂n,m

be the linear span of ziwj , 0 ≤ i ≤ n, 0 ≤ j ≤ m,
∏̂n,m

k be the vector

space of k dimensional vectors with entries in
∏̂n,m

, and
∏̂m

m+1 =
∏̂∞,m
m+1 .

The orthogonality relations (4.7) allow us to characterize n,m.

Lemma 4.1 Suppose ∈ ∏̂n,m

k . If  satisfies the orthogonality relations,

〈 , ziwj 〉μ = 0, 0 ≤ i < n, 0 ≤ j ≤ m, (4.14)

then  = T n,m, where T is a k × (m + 1) matrix. If k = m + 1, T is upper
triangular with positive diagonal entries, and if 〈 , 〉μ = Im+1, then T = Im+1.
Likewise  ∗n,m(z,w) is characterized up to multiplication by a constant matrix by
the relations

〈 ∗, ziwj 〉μ = 0, 0 < i ≤ n, 0 ≤ j ≤ m. (4.15)
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Proof Let φ be a nonzero element of , then (4.14) implies that φ is in the subspace
spanned by linear combinations of the elements of  n,m so that the first part of the
Lemma follows. To see the second part note that the orthonormality of  and  n,m
imply that T T † = Im+1. That T is upper triangular with positive diagonal entries
implies that T = Im+1. Equation (4.15) is obtained by use of the definition of ∗n,m
and the first part of the Lemma. ��
Lemma 4.2 Suppose  ̃ ∈ ∏̂n,m

k . If  ̃ satisfies the orthogonality relations,

〈 ̃, ziwj 〉μ = 0, 0 ≤ i ≤ n, 0 ≤ j < m, (4.16)

then  ̃ = T  ̃n,m, where T is an k × (n + 1) matrix. If k = n + 1, T is upper
triangular with positive diagonal entries, and if 〈 ̃,  ̃〉μ = In+1, then T = In+1.
Likewise ( ̃∗n.m)T (z,w) is characterized up to multiplication by a constant matrix
by the relations

〈 ̃∗, ziwj 〉μ = 0, 0 ≤ i ≤ n, 0 < j ≤ m. (4.17)

With the above we can make contact with matrix orthogonal polynomials.

Lemma 4.3 Let  n,m be given by (4.9). Then

 n,m(z,w) = Lmn (z)[wm,wm−1, . . . , 1]T , (4.18)

 ∗n,m(z,w) = [1, w, . . . , wm]JmR∗mn (z)T Jm, (4.19)

where Jm is the (m+ 1)× (m+ 1) matrix with ones on the antidiagonal and zeros
everywhere else. Here Lmn (z) and Rmn (z) are respectively the left and right matrix
polynomials defined in Eqs. (3.4)–(3.7) orthonormal with respect to the matrix
measure

d#(θ) =
∫ π

−π
[wm, · · · , 1]T [w−m, · · · , 1]dμ(θ, φ) w = eiφ. (4.20)

Furthermore

⎡
⎢⎢⎢⎣

 n,m(z,w)

 n−1,m(z,w)
...

 0,m(z,w)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Lmn (z)

Lmn−1(z)
...

Lm0 (z)

⎤
⎥⎥⎥⎦ [wm,wm−1, . . . , 1]T

= L

⎡
⎢⎢⎢⎣

znIm+1

zn−1Im+1
...

Im+1

⎤
⎥⎥⎥⎦ [wm,wm−1, . . . , 1]T , (4.21)
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where L† is the lower Cholesky factor of C−1
n,m.

Note that the matrix measure d# has the structure of a Toeplitz matrix.

Proof If we substitute the equation

 n,m = L̂n(z)[wm · · · 1]T

into (4.14), where L̂n(z) is an (m + 1) × (m + 1) matrix polynomial of degree n,
we find, for j = 0, . . . , n− 1,

0 =
〈
 n,m, z

j

⎡
⎢⎣
wm

...

1

⎤
⎥⎦
〉

μ

=
∫ π

−π
L̂mn (z)z

−j d#(θ), z = eiθ

and

Im+1 =
〈
 n,m, n,m

〉
μ
=

∫ π

−π
L̂mn (z)d#(θ)L̂

m
n (z)

†, z = eiθ .

Since L̂mn,n is upper triangular with positive diagonal entries (see Eq. (4.10))

Eqs. (3.17) and (3.7) show that L̂mn (z) = Lmn (z). Equation (4.19) follows from the
fact that the double Toeplitz structure of Cn,m implies that

Lmn (z)
T = JmRmn Jm (4.22)

(see equation (2.36) in [9] also [5]) where Jm is the (m + 1) × (m + 1) matrix
with ones on the antidiagonal and zeros everywhere else. Equation (4.21) follows
from (4.18) and the final assertion from Lemma 3.1. ��

Since the left and right matrix orthonormal polynomials satisfy recurrences so
will  n,m and  ̃n,m. However there is more structure in these polynomials giving
rise to more recurrences which we now discuss.

Theorem 4.4 Given { n,m} and { ̃n,m}, 0 ≤ n ≤ N , 0 ≤ m ≤ M , the following
recurrence formulas hold

An,m n,m = z n−1,m − Ên,m ∗Tn−1,m, (4.23)

 n,m + A†
n,mÊn,m(A

T
n,m)

−1 ∗Tn,m = A†
n,mz n−1,m, (4.24)

�n,m n,m =  n,m−1 −Kn,m ̃n−1,m, (4.25)

�1
n,m n,m = w n,m−1 − K1

n,m( ̃
∗
n−1,m)

T , (4.26)

 n,m = In,m ̃n,m + �†
n,m n,m−1, (4.27)

 ∗Tn,m = I 1
n,m ̃n,m + (�1

n,m)
T  ∗Tn,m−1, (4.28)
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where

Ên,m = 〈z n−1,m, 
∗T
n−1,m〉 = ÊTn,m ∈ Mm+1,m+1, (4.29)

An,m = 〈z n−1,m, 
T
n,m〉 ∈ Mm+1,m+1, (4.30)

Kn,m = 〈 n,m−1,  ̃n−1,m〉 ∈ Mm,n, (4.31)

�n,m = 〈 n,m−1, n,m〉 ∈ Mm,m+1, (4.32)

K1
n,m = 〈w n,m−1, ( ̃

∗
n−1,m)

T 〉 ∈ Mm,n, (4.33)

�1
n,m = 〈w n,m−1, n,m〉 ∈ Mm,m+1, (4.34)

In,m = 〈 n,m,  ̃n,m〉 ∈ Mm+1,n+1, (4.35)

I 1
n,m = 〈 ∗Tn,m,  ̃n,m〉 ∈ Mm+1,n+1. (4.36)

Remark 4.5 Formulas similar to (4.23)–(4.28) hold for  ̃n,m and will be denoted
by (4.23)–(4.28). In the rest of the lecture we use the same notation to denote the
extension to  ̃n,m of existing formulas stated for  n,m.

Proof To prove Eq. (4.23) use the representation of n,m given in (4.18) and choose
An,m as in Eq. (3.19). Then An,m n,m − z n−1,m is an (m + 1) column vector
polynomial of degree n− 1 in z and satisfies

〈An,m n,m − z n−1,m, z
iwj 〉 = 0, 0 < i ≤ n, 0 ≤ j ≤ m,

and the result follows from (4.15)
To prove (4.25) note that, because of the linear independence of the entries of

 n,m, there is anm×(m+1)matrix �n,m such that �n,m n,m− n,m−1 ∈ ∏̂n−1,m
m .

Furthermore

〈�n,m n,m − n,m−1, z
iwj 〉 = 0, 0 ≤ i ≤ n− 1 0 ≤ j ≤ m− 1.

Thus (4.16) implies that

�n,m n,m − n,m−1 = Hn,m ̃n−1,m,

and we set Hn,m = −Kn,m. The remaining recurrence formulas follow in a similar
manner. ��
Remark 4.6 Formulas (4.23) and (4.24) follow from the theory of matrix orthogonal
polynomials and so allow us to compute in the n direction along a strip of size
m+1. This formula does not mix the polynomials in the two orderings. However, to
increase m by one for polynomials constructed in the lexicographical ordering, the
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remaining relations show that orthogonal polynomials in the reverse lexicographical
ordering must be used.

Using the orthogonality relations from Lemmas 4.1, 4.2 and Eq. (4.7) we find the
following relations.

Lemma 4.7 The following relations hold between the coefficients in the equations
for  ̃ and ,

K̃n,m = K†
n,m, Ĩn,m = I †

n,m, (4.37)

Ĩ 1
n,m = (I 1

n,m)
T , K̃1

n,m = (K1
n,m)

T , (4.38)

Also

An,mA
†
n,m = Im+1 − Ên,mÊ†

n,m, (4.39)

�n,m�
†
n,m = Im −Kn,mK†

n,m, (4.40)

�1
n,m(�

1
n,m)

† = Im −K1
n,m(K1

n,m)
†, (4.41)

In,mI
†
n,m + �†

n,m�n,m = Im+1, (4.42)

I 1
n,m(I

1
n,m)

† + (�1
n,m)

†�1
n,m = Im+1. (4.43)

Remark 4.8 The matrix �n,m has a zero in the entries (i, j), i ≥ j and has positive
(i, i + 1) entries. Since �n,m�

†
n,m = �n,mU†

mUm�
†
n,m where Um is the m × m + 1

matrix given by

Um =
[
0, Im

]
, (4.44)

we see that �n,mU
†
m is the upper Cholesky factorization of the right hand side

of (4.40). From this it is easy to obtain �n,m. The matrix �1
n,m has zeroes in the

entries (i, j), i > j with positive (i, i) entries. The matrix In,m has first row and
column equal to zero except for a 1 in the (1, 1) entry.

In the one variable case there is a one-to-one correspondence between the number
of new Fourier coefficients Cn and the size of the recurrence coefficients En,m
in going from level n − 1 to level n each being an (m + 1) × (m + 1) matrix.
Unfortunately in the bivariate case this does not hold. More precisely given all the
Fourier coefficients ci,j , 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m and for i = n, 0 ≤ j ≤ m− 1
only two new Fourier coefficients cn,m and cn,−m are needed to go to the (n,m)
level. However the coefficients in the recurrence formulas above are typically much
larger. Thus there must be relations between the recurrence coefficients on the (n,m)
level and those at the (n,m−1) or (n−1,m) level that determine most of the entries.
This is indeed the case, for example,
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Lemma 4.9 (Relations for K1
n,m) For 0 < n,m,

�n,m−1K1
n,m = K1

n,m−1(Ã
−1
n−1,m)

T −Kn,m−1
ˆ̃
En−1,m(Ã

−1
n−1,m)

T , (4.45)

K1
n,m(�̃n−1,m)

T = A−1
n,m−1K1

n−1,m − A−1
n,m−1Ên,m−1K̄n−1,m. (4.46)

Proof To show (4.45) multiply (4.33) on the left by �n,m−1 then use (4.25) to obtain

�n,m−1K1
n,m = 〈w n,m−2, ( ̃

∗
n−1,m)

T 〉.

Now use (4.23) with n reduced by one and then Eqs. (4.33) and (4.31) yields (4.45).
Equation (4.46) follows in a similar manner. ��

It is shown in [9] that the above relations determine all the entries in K1
n,m except

for the (1, 1) entry which we will denote as ūn,m. Likewise we have,

Lemma 4.10 (Relations for Kn,m) For 0 < n,m,

�1
n,m−1Kn,m = Kn,m−1(Ã

−1
n−1,m)

† −K1
n,m−1

ˆ̃
E

†
n−1,m(Ã

−1
n−1,m)

†, (4.47)

Kn,m(�̃1
n−1,m)

† = A−1
n,m−1Kn−1,m − A−1

n,m−1Ên,m−1K̄1
n−1,m. (4.48)

Proof To show Eq. (4.47) multiply (4.31) on the left by �1
n,m−1 then use (4.26) with

m reduced by one to obtain,

�1
n,m−1Kn,m = 〈w n,m−2,  ̃n−1,m〉.

Eliminating  ̃n−1,m using (4.23) then applying (4.31) and (4.33) gives (4.47).
Equation (4.48) follows in a analogous manner. ��

The above relations determine all of ( m−1
n,n )

−1Kn,m(( ̃n−1
m,m)

†)−1 except for
the (n,m) entry which we will denote as ūn,−m. Here  m−1

n,n is the coefficient

of zn[wm−1, . . . 1]T in  n,m−1 and  ̃n−1
m,m is the coefficient of wm[zn−1, . . . 1]T

in  ̃n−1,m which are assumed to be known. The complex conjugates of un,m
and un,−m are chosen since it is the complex conjugate of cn,m and cn,−m that
appear in the Fourier expansion of the entries discussed above. Since Kn,m and
K1
n,m are contractions, un,m and un,−m must be in magnitude less than one and

once they are fixed all the other recurrence coefficients on the (n,m) level may be
computed. This gives an alternate parameterization of the two variable trigonometric
moment problem other than the Fourier coefficients. A full list of equations giving
the redundancies and an algorithm to compute the recurrence coefficients, taking
into account the constraints imposed by Eqs. (4.39)–(4.43), is given in [9]. In the
one variable matrix or scalar case there are constraints that the entries in the
recurrence coefficients must satisfy. But from level n−1 to level n the constraints are
independent so it is always possible to choose new parameters consistent with the
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constraints imposed. This is not the case for two variables. It may happen that all the
constraints on the (n− 1,m) and (m, n− 1) level are satisfied but there is no choice
of parameters that will satisfy the constraints on the (n,m) level. Theorem 6.2 in [9]
gives a parameterization and conditions the parameters must satisfy in order for a
positive measure on the bicircle to exist and is therefore a two variable Verblunsky
type theorem.

As in the one variable case  n,m satisfies a Christoffel–Darboux type formula.

Lemma 4.11 Given { n,m} and { ̃n,m},

 ∗n,m(z,w) ∗†
n,m(z1, w1)− z̄1z 

T
n,m(z,w) 

†
n,m(z1, w1)

T (4.49a)

= (1− z̄1z) n,m(z,w)
T  †

n,m(z1, w1)
T

+ ∗n−1,m(z,w) 
∗†
n−1,m(z1, w1)− z̄1z 

T
n−1,m(z,w) 

†
n−1,m(z1, w1)

T

(4.49b)

= (1− z̄1z) ̃n,m(z,w)
T  ̃†

n,m(z1, w1)
T

+ ∗n,m−1(z,w) 
∗
n,m−1(z1, w1)

T − z̄1z n,m−1(z,w)
T  

†
n,m−1(z1, w1)

T .

(4.49c)

Proof To obtain the first equality (4.49a) = (4.49b) follows by subtracting (3.31)
with n reduced by one from the original equation to obtain

L∗mn (z)L∗
m
n (z1)

† − zz̄1R
m
n (z)R

m
n (z1)

† =(1− zz̄1)R
m
n (z)R

m
n (z1)

†

L∗mn−1(z)L
∗m
n−1(z1)

† − zz̄1R
m
n−1(z)R

m
n−1(z1)

†
.

Multiply the above equation on the left by [1, . . . , wm] and on the right by
[1, . . . , wm]†. Equation (4.22) shows (Lmn (z1)

†Lmn (z))
T = JmR

m
n (z)R

m
n (z1)

†Jm.
Then using Eq. (4.18) and that [1, . . . , wm]Jm = [wm, . . . , 1] gives the stated
equality. The equality (4.49a) = (4.49c) can be obtained in the following manner.
Let

Zn,m(z,w) = [1, w, . . . , wm][Im+1, zIm+1, . . . , z
nIm+1],

and Z̃n,m(z,w) be given by a similar formula with the roles of z and w, and n and
m interchanged. Multiply Eq. (3.31) on the left by [1, w, . . . , wm] and on the right
by its complex conjugate transpose. Then performing the manipulations mentioned
above give

 ∗n,m(z,w) ∗†
n,m(z1, w1)− z̄1z 

T
n,m(z,w) 

†
n,m(z1, w1)

T

1− z̄1z

= Zn,m(z,w)J (L†L)T JZn,m(z1, w1)
†
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= Zn,m(z,w)C−1
n,mZn,m(z1, w1)

† = Z̃n,m(z,w)C̃−1
n,mZ̃n,m(z1, w1)

†

=  ̃Tn,m(z,w) ̃†
n,m(z1, w1)

T + Z̃n,m−1(z,w)C̃
−1
n,m−1Z̃n,m−1(z1, w1)

†,

where Lemma 4.3 and Eq. (4.4) have been used to obtain the first equality above.
Switching back to the lexicographical ordering in the second term in the last
equation then using Lemma 3.1 yields the result. ��

The above formula has important consequences for φmn,m
We say that a polynomial p(z,w) is stable if p(z,w) �= 0, |z| ≤ 1, |w| ≤ 1. A

polynomial p is of degree (n,m) if

p(z,w) =
n∑
i=0

m∑
j=0

ki,j z
iwj ,

with kn,m �= 0. Finally we say that the polynomial pn,m of degree (n,m) has the
spectral matching property (up to (n,m) with respect to μ) if

∫
T2
zkwj dμ(θ, φ) = 1

(2π)2

∫
T2

zkwj

|pn,m(z,w)|2 dθdφ, z = eiθ , w = eiφ,

for |k| ≤ n, |j | ≤ m.

Lemma 4.12 Suppose that Kn,m = 0, then,

φ∗mn,m(z,w)φ∗mn,m(z1, w1)− φmn,m(z,w)φmn,m(z1, w1)

= (1−ww̄1) 
∗
n,m−1(z,w) 

∗†
n,m−1(z1, w1)

+ (1− zz̄1) ̃n−1,m(z,w)
T  ̃

†
n−1,m(z1, w1). (4.50)

Proof If Kn,m = 0 then (4.25) shows that �n,m n,m(z,w) =  n,m−1(z,w). Thus
 ∗n,m(z,w)�†

n,m = w ∗n,m−1(z,w). Also (4.40) implies that (�n,m)(i,i+1) =
1, i = 1, . . . ,m with all other entries zero. Thus we find

 ∗n,m(z,w) ∗n,m(z1, w1)
†

= φ∗mn,m(z,w)φ∗mn,m(z1, w1)+ ∗n,m(z,w)�†
n,m�n,m 

∗
n,m(z1, w1)

†

= φ∗mn,m(z,w)φ∗mn,m(z1, w1)+ww̄1 
∗
n,m−1(z,w) 

∗
n,m−1(z1, w1)

†. (4.51)

From (4.49c) we find

φ∗mn,m(z,w)φ∗mn,m(z1, w1)− zz̄1φ
m
n,m(z,w)φ

m
n,m(z1, w1)

= (1−ww̄1) 
∗
n,m−1(z,w) 

∗†
n,m−1(z1, w1)

+ (1− zz̄1) ̃n,m(z,w)
T  ̃†

n,m(z1, w1).
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Using (4.25) and the fact that φ̃nn,m(z,w) = φmn,m gives the result. ��
There are many criteria used to prove the stability of a bivariate polynomial. The

one we will use was formulated by Strintzis (see [6]):
A polynomialp(z,w) is nonzero for |z| ≤ 1 and |w| ≤ 1 if and only if p(z,w) �=

0 for all |z| = 1 and all |w| ≤ 1 and p(z,w0) �= 0 for all |z| ≤ 1 and some |w0| ≤ 1.
We now prove,

Theorem 4.13 If Kn,m = 0 then φ∗n,m is a stable polynomial.

Proof Set z1 = z and w1 = w, |z| = 1 in Eq. (4.50) to obtain

|φ∗n,m(z,w)|2 ≥ (1− |w|2) ∗n−1,m(z,w) 
∗
n−1,m(z,w)

†

= (1− |w|2)[1, . . . , wm]L∗mn (w)L∗mn (w)†[1, . . . , wm]†.

Thus if φn,m(z0, w0) = 0 in the region |z| = 1 and |w| < 1 then det(L∗mn (z0)) = 0
with |z0| = 1 which cannot happen from Theorem 3.2. In a similar fashion the roles
of z and w can be interchanged and  ̃n,m can be used to show that φ∗n,m(z,w) �= 0
for |z| < 1 and |w| = 1. Suppose that φ∗n,m(z0, w0) = 0 with |z0| = 1 = |w0|.
Then φn,m(z0, w0) = 0 also and with z1 = z0 (4.50) gives

0 = (1−w0w̄1) 
∗
n,m(z0, w0) 

∗†
n,m(z0, w1)

for all |w1| ≤ 1 with w1 �= w0. Again this says that det(L∗mn (z0)) = 0 which
contradicts Theorem 3.2. ��

We now examine the orthogonality properties of stable polynomials (see [11]).
Let pn,m ∈ C[z,w] be stable with degree n in z and m in w. We will use the
following partial order on pairs of integers:

(k, l) ≤ (i, j) iff k ≤ i and l ≤ j.

The notations �,� refer to the negations of the above partial order.
The polynomial pn,m is orthogonal to more monomials than the one variable

theory might initially suggest. More precisely with

dμn,m = 1

4π2

dθdφ

|pn,m|2 ,

we have:

Lemma 4.14 In L2(μn,m), pn,m is orthogonal to the set

{ziwj : (i, j) � (0, 0)}
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and p∗n,m is orthogonal to the set

{ziwj : (i, j) � (n,m)}.

Proof Observe that since 1/pn,m is holomorphic in D2

〈ziwj , pn,m〉μn,m =
∫
T2
ziwjpn,m(z,w)

dσ

|pn,m(z,w)|2

=
∫
T2

ziwj

pn,m(z,w)
dσ = 0 if (i, j) � (0, 0)

by the mean value property (either integrating first with respect to z or w depending
on whether i > 0 or j > 0). The claim about p∗n,m follows from the observation

〈ziwj , p∗n,m〉μn,m = 〈pn,m, zn−iwm−j 〉μn,m .

��
Write pn,m(z,w) =∑m

i=0 pi(z)w
i . Then a straightforward computation gives

p(z,w)p(z,w1)− ww̄1p
∗(z,w)p ∗ (z,w1)

1−ww̄1
= [

1 w · · · wm]Tp(z)

⎡
⎢⎢⎢⎣

1
w̄1
...

w̄m1

⎤
⎥⎥⎥⎦ ,

(4.52)

where

Tp(z) =

⎡
⎢⎢⎢⎢⎣

p0(z) ©
p1(z)

. . .

...

pm(z) · · · p0(z)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

p̄0(1/z) p̄1(1/z) . . . p̄m(1/z)
. . .

© p̄0(1/z)

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

0 ©
p̄m(1/z)

. . .

...

p̄1(1/z) · · · p̄m(1/z) 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 pm(z) . . . p1(z)

. . .
...

pm(z)

© 0

⎤
⎥⎥⎥⎦ .

(4.53)

Since pn,m is stable it follows from the one variable Christoffel–Darboux formula
or alternatively the Schur-Cohn test [8, p. 850] for stability that the m+ 1×m+ 1
matrix Tp(z) is positive definite for |z| = 1.
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Define the following parametrized version of a one variable Christoffel–Darboux
kernel

L(z,w; η) = zn pn,m(z,w)pn,m(1/z̄, η)− p
∗
n,m(z,w)p

∗
n,m(1/z̄, η)

1−wη̄ (4.54)

= zn[1, . . . , wm−1]Tp(z)[1, . . . , ηm−1]†

=
m−1∑
j=0

aj (z,w)η̄
j ,

where aj (z,w), j = 0, . . . ,m − 1 are polynomials in (z,w), as the following
lemma shows in addition to several other important observations.

Lemma 4.15 Let pn,m(z,w) be a stable polynomial of degree (n,m). Then,

(1) L is a polynomial of degree (2n,m − 1) in (z,w) and a polynomial of degree
m− 1 in η̄.

(2) L(·, ·; η) spans a subspace of dimensionm as η varies over C.
(3) L is symmetric in the sense that

L(z,w; η) = z2n(wη̄)m−1L(1/z̄, 1/w̄; 1/η̄),

so ak = a∗m−k−1.
(4) L can be written as

L(z,w; η) = pn,m(z,w)A(z,w; η)+ p∗n,m(z,w)B(z,w; η)

where A,B are polynomials of degree (n,m− 1,m− 1) in (z,w, η̄).

Proof The numerator of L vanishes when w = 1/η̄, so the factor (1−wη̄) divides
the numerator. This gives (1).

For (2), when |z| = 1 use Eq. (4.54). Since Tp(z) > 0 for |z| = 1, L(z,w; η)
spans a set of polynomials of dimensionm.

For (3), this is just a computation.
For (4), observe that (suppressing the dependence of p on n and m),

zn
p(z,w)p(1/z̄, η)− p∗(z,w)p∗(1/z̄, η)

1− wη̄

= p(z,w)
(
η̄mp∗(z, 1/η̄)− η̄mp∗(z,w)

1− wη̄
)

︸ ︷︷ ︸
A(z,w;η)

+ p∗(z,w)
(
η̄mp(z,w) − η̄mp(z, 1/η̄)

1− wη̄
)

︸ ︷︷ ︸
B(z,w;η)

.

(4.55)

��
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We now show that L and a0, . . . , am−1 possess a great many orthogonality
relations in L2(μn,m).

Theorem 4.16 In L2(μn,m), each ak is orthogonal to the set

Ok ={ziwj : i > n, j < 0}
∪ {ziwj : 0 ≤ j < m, j �= k}
∪ {ziwj : i < n, j ≥ m}
∪ {ziwk : i �= n}.

In L2(μn,m), L(·, ·; η) is orthogonal to the set

O ={ziwj : i > n, j < 0}
∪ {ziwj : i �= n, 0 ≤ j < m} (4.56)

∪ {ziwj : i < n, j ≥ m}.

Write

A(z,w; η) =
m−1∑
j=0

Aj(z,w)η̄
j B(z,w; η) =

m−1∑
j=0

Bj (z,w)η̄
j .

Recall Eq. (4.54) and Lemma 4.15 item (4). By examining coefficients of η̄j in L

aj = pn,mAj + p∗n,mBj .

Also, Aj and Bj have at most degree j in w. To see this, recall Eq. (4.55) and
observe that

A(z,w; η) =
∑
j

p∗j (z)η̄j
1− (wη̄)m−j

1− wη̄

which shows that Aj(z,w) has degree at most j in w (i.e., powers of w only occur
next to greater powers of η). The same holds for B.

Proof By Lemma 4.14, pn,m is orthogonal to

{ziwj : (i, j) � (0, 0)}

and since Ak has degree at most n in z and k in w,

pn,mAk is orthogonal to {ziwj : (i, j) � (n, k)}.
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Also,

p∗n,mBk is orthogonal to {ziwj : (i, j) � (n,m)}

since the orthogonality relation for p∗n,m (also from Lemma 4.14) is unaffected by
multiplication by holomorphic monomials.

Hence, ak = pn,mAk + p∗n,mBk is orthogonal to the intersection of these sets;
namely,

{ziwj : (i, j) � (n, k) and (i, j) � (n,m)}. (4.57)

Since

am−k−1 ⊥ {ziwj : (i, j) � (n,m− k − 1) and (i, j) � (n,m)}

and since ak = a∗m−k−1 = z2nwm−1am−k−1(1/z̄, 1/w̄),

ak ⊥{z2n−iwm−j−1 : (i, j) � (n,m− k − 1) and (i, j) � (n,m)}
= {ziwj : (n, k) � (i, j) and (n,−1) � (i, j)}. (4.58)

Hence, ak is orthogonal to the union of the sets in (4.57) and (4.58). The set
in (4.58) contains {ziwj : i < n, j ≥ 0} and the set in (4.57) contains {ziwj : i >
n, j ≤ m− 1}. Also, the set in (4.57) contains {znwj : k < j ≤ m − 1} while the
set in (4.58) contains {znwj : 0 ≤ j < k}. Combining all of this we get ak ⊥ Ok .

Finally, L is orthogonal to the intersection of O0, . . . ,Om−1. ��
With the above we have the important Corollary

Corollary 4.17 In L2(1/|pn,m|2dσ), the polynomial ak is uniquely determined (up
to unimodular multiples) by the conditions:

ak ∈ span{ziwj : (0, 0) ≤ (i, j) ≤ (2n,m− 1)},

ak ⊥{ziwj : (0, 0) ≤ (i, j) ≤ (2n,m− 1), j �= k}
∪ {ziwk : 0 ≤ i ≤ 2n, i �= n},

and

||ak||2 =
∫ π

−π
Tk,k(e

iθ , eiθ )
dθ

2π
.

Only the last equation has not been proved (see [10]). The previous results imply
the useful,
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Remark 4.18 (1) each ak is explicitly given from the coefficients of pn,m, (2)
each ak is determined by the orthogonality relations in Corollary 4.17 and (3)
each satisfies the additional orthogonality relations from Theorem 4.16. One useful
consequence of this is that the set

{zjak(z,w) : j ∈ Z, 0 ≤ k < m}

is dual to the monomials

{zj+nwk : j ∈ Z, 0 ≤ k < m}

within the subspace

S = span{zjwk : j ∈ Z, 0 ≤ k < m}.

Namely,

〈zj1+nwk1 , zj2ak2〉un,m = 0

unless j1 = j2 and k1 = k2. In particular, if f ∈ S, then

f ⊥ zjak implies f̂ (j + n, k) = 0. (4.59)

We now look at the space generated by shifting the ak’s by powers of z.

Theorem 4.19 With respect to L2(μn,m),

span{ziaj (z,w) : 0 ≤ i, 0 ≤ j < m}
= span{ziwj : 0 ≤ i, 0 ≤ j < m} � span{ziwj : 0 ≤ i < n, 0 ≤ j < m}

(4.60)

and this is orthogonal to the larger set

span{ziwj : i < n, j ≥ 0}.

Proof Since the ak are polynomials of degree at most m− 1 in w, it is clear that

span{ziaj (z,w) : 0 ≤ i, 0 ≤ j < m} ⊂ span{ziwj : 0 ≤ i, 0 ≤ j < m}.

By Theorem 4.16, the ak are orthogonal to the spaces

span{ziwj : i < n, j ≥ 0} ⊃ span{ziwj : i < n, 0 ≤ j < m},



Two Variable Orthogonal Polynomials and Fejér-Riesz Factorization 329

and since these spaces are invariant under multiplication by z̄, the polynomials ziak
are also orthogonal to these spaces for all i ≥ 0. So,

span{ziaj (z,w) : 0 ≤ i, 0 ≤ j < m} ⊥ span{ziwj : i < n, j ≥ 0}.

Therefore,

span{zkaj (z,w) : 0 ≤ k, 0 ≤ j < m}
⊂ span{ziwj : 0 ≤ i, 0 ≤ j < m} � span{ziwj : 0 ≤ i < n, 0 ≤ j < m}

(4.61)

and this containment must in fact be an equality. Indeed, any f in

span{ziwj : 0 ≤ i, 0 ≤ j < m}

which is orthogonal to {zkaj (z,w) : 0 ≤ k, 0 ≤ j < m} satisfies f̂ (i, j) = 0
for i ≥ n and 0 ≤ j < m by Remark 4.18 and Eq. (4.59). Such an f cannot also
be orthogonal to the space span{ziwj : 0 ≤ i < n, 0 ≤ j < m} without being
identically zero. ��

Define

H =span{ziwj : (0, 0) ≤ (i, j) ≤ (n,m− 1)}
� span{ziwj : (0, 0) ≤ (i, j) ≤ (n− 1,m− 1)}.

From above H is an m dimensional space of polynomials contained in the
space (4.60) of the previous theorem. In particular,

Corollary 4.20

H ⊥ span{ziwj : i < n, j ≥ 0}. (4.62)

With the above we now prove,

Theorem 4.21 Let μ be a positive measure on the bicircle and φmn,m its associated
orthonormal polynomial of degree (n,m). If Kn,m = 0 then φ∗mn,m(z,w) is stable
and has spectral matching i.e.

∫
T2
eikθeilφdμ(θ, φ) = ( 1

2π
)2

∫
T2

e−ikθ e−ilφ

|φ∗mn,m(eiθ , eiφ)|2
dθdφ, |k| ≤ n, |l| ≤ m.

(4.63)
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Conversely if φ∗mn,m is stable and

∫
T2
e−ikθ e−ilφdμ(θ, φ) = ( 1

2π
)2

∫
T2

e−ikθ e−ilφ

|φ∗n,m(eiθ , eiφ)|2
dθdφ, |k| ≤ n, |l| ≤ m,

then Kn,m = 0.

Proof If Kn,m = 0 then Theorem 4.13 says that φ∗n,m(z,w) is stable. So it remains
to show the spectral matching. Let us denote by φ∗l (z) the coefficient of wl in
φ∗n,m(z,w), i.e. we set

φ∗n,m(z,w) =
m∑
l=0

φ∗l(z)wl . (4.64)

From (4.52) we have

φ∗n,m(z,w)φ∗n,m(z,w1)− ww̄1φn,m(z,w)φn,m(z,w1)

1−ww̄1

= [
1 w · · · wm] Tφ∗(z)

⎡
⎢⎢⎢⎣

1
w̄1
...

w̄m1

⎤
⎥⎥⎥⎦ . (4.65)

Equation (4.18) shows that

 ∗n,m(z,w) ∗n,m(z,w1)
† = [

1 w · · · wm]L∗mn (z)L∗mn (z)†
⎡
⎢⎢⎢⎣

1
w̄1
...

w̄m1

⎤
⎥⎥⎥⎦ . (4.66)

Thus from Eq. (4.50) it follows that for |z| = 1 we have

Tφ∗(z) = L∗mn (z)L∗mn (z)†, (4.67)

where Lmn (z) is the left orthonormal matrix polynomial associated with μ. Let

cθl =
1

2π

∫ pi

−π
e−ilφ dφ

|φ∗n,m(z,w)|2
, z = eiθ , w = eiφ. (4.68)

Then cθl is the lth parametric moment associated with the (parametric) measure

dμθm(φ) = 1
2π

dφ

|φn,m(eiθ ,w)|2 , w = eiφ. Since φ∗n,m(z,w) is nonzero for |z| = 1 and
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|w| ≤ 1 we see that for fixed z = eiθ on the unit circle, φθm(w) = wmp(eiθ , 1/w̄)
is an orthonormal polynomial of degreem with respect to the (parametric) measure
above. From the Gohberg-Semencul formula [14]

Cθm =

⎡
⎢⎢⎢⎣

cθ0 cθ−1 · · · cθ−m
cθ1 cθ0 · · · cθ−m+1
...

. . .
...

cθm c
θ
m−1 · · · cθ0

⎤
⎥⎥⎥⎦ .

Equation (4.67) gives

Cθm = [L∗mn (z) L∗mn (z)†]−1, z = eiθ . (4.69)

The spectral matching part of theorem (3.2) shows that the matrix weight
on the right-hand side of (4.69) generates the same left and right matrix-valued
orthonormal polynomials {Lmk (z)}0≤k≤n and {Rmk (z)}0≤k≤n as # given in Eq. (4.20)
and therefore

∫ π

−π
zkd#(θ) = 1

2π

π∫

−π
eikθCθmdθ, z = eiθ .

From the first row of the last matrix equation we find

∫
T2
eikθ eilφdμ(θ, φ) = 1

2π

π∫

−π
eikθ cθ−ldθ, (4.70)

which gives the first part of the theorem. To prove the second part notice that in
order for Kn,m = 0,  n,m−1 ⊥  ̃n−1,m so these polynomials must have more
orthogonalities than those following from their definitions and Corollary 4.20 with
p(z,w) = φ∗mn,m shows this is so. ��

We can now prove an extension of the Fejér-Riesz theorem to two variables.

Theorem 4.22 Let qn,m(θ, φ) be a strictly positive bivariate trigonometric poly-
nomial of degree n in θ and m in φ. Then qn,m(θ, ϕ) = |p(z,w)|2 where p(z,w)
with z = eiθ , w = eiϕ is of degree n in z and m in w and p(z,w) �= 0 for
|z| ≤ 1, |w| ≤ 1 if and only if the coefficient Kn,m associated with the measure

dθ dϕ

4π2qn,m(θ,ϕ)
on [−π, π]2 satisfy

Kn,m = 0.
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Proof If the measure μ in the previous theorem is taken as

dμ = 1

4π2

dθdφ

qn,m(θ, φ)

then all of the assertions of the theorem follow except for the equality qn,m =
|φ∗mn,m|2. But this follows from the Cauchy–Schwarz inequality as in the one
variable case (see Eq. (2.13)). ��

Measures or the form dμ = 1
4π2

dθdφ
qn,m(θ,φ)

where qn,m is a trigonometric
polynomial have come to be called Bernstein-Szegő measures see [15].

Note that there are recent extensions of the above theorems to cases where p
is just stable for |z| ≤ 1 and |w| = 1 or vice versa. Again for these cases the
representation and factorization theorems hold if two polynomial subspaces become
orthogonal to each other. The exact statement of the results can be found in the
references below.
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1 Introduction

The past 10 years have witnessed an intense activity of several research groups
around the concept of exceptional orthogonal polynomials. Although some isolated
examples in the physics literature existed before [11], the systematic study of
exceptional polynomials started in 2009, with the publication of two papers [23, 24].
The original approach to the problem was via a complete classification of excep-
tional operators by increasing codimension, which proved to be computationally
untractable (and moreover, much later it was shown that codimension is not a very
well defined concept). The term exceptional was originally intended to evoque very
rare, almost exotic cases, as for low codimension exceptional families are almost
unique [24]. Yet, shortly after the publication of these results, Quesne showed [56]
that the exceptional families in [23] could be obtained by Darboux transformations,
and Odake and Sasaki showed the way to generalize these examples to arbitrary
codimension [49, 50]. New families emerged later associated to multiple Darboux
transformations [25, 28, 31, 32, 51], and nowadays it is clear that exceptional
polynomials are certainly not rare, as we are starting to understand the whole theory
behind their construction and classification.

The role of Darboux transformations in the construction of exceptional poly-
nomial families is an essential ingredient. It was conjectured in [27] that every
exceptional polynomial system can be obtained from a classical one via a sequence
of Darboux transformations, which has been recently proved in [20]. Explaining
these results lies beyond the scope of these lectures, and the interested reader is
advised to read [20] for an updated account on the structure theorems underlying
the theory of exceptional polynomials and operators. We will limit ourselves in the
following pages to introduce the main ideas and constructions, as a sort of primer to
the subject.

For those interested in gaining deeper knowledge in the properties of exceptional
orthogonal polynomials, there are a large number of references in the bibliography
section that cover the main results published in the past 10 years, by authors
like Durán [12–16], Sasaki and Odake [49–53], Marquette and Quesne [38–40],
Kuijlaars and Bonneux [7, 37], etc. that cover aspects like recurrence relations,
symmetries, asymptotics, admissibility and regularity of the weights, properties of
their zeros and electrostatic interpretation, and applications in solvable quantum
mechanical models, among others.

The connection between sequences of Darboux transformations and Painlevé
type equations has been known for more than 20 years, since the works of Adler [2],
and Veselov and Shabat, [62]. However, the Russian school of integrable systems
was more concerned with uncovering relations between different structures rather
than providing complete classifications of solutions to Painlevé equations. The
Japanese school pioneered by Sato developed a scheme to understand integrable
equations as reductions from the KP equations. Noumi and Yamada [46], and their
collaborators developed the geometric theory of Painlevé equations, by studying
the group of Bäcklund transformations that map solutions to solutions (albeit for
different values of the parameters). Using this transformations to dress some very
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simple seed solutions they managed to build and classify large classes of rational
solutions to PIV and PV [9, 41, 42, 54, 60], and to extend this symmetry approach
to higher order equations, that now bear their name. It was later realised that
determinantal representations of these rational solutions exist [34, 35, 42] and that
they involve classical orthogonal polynomial entries. For an updated account of
the relation between orthogonal polynomials and Painlevé equations, the reader is
advised to read the recent book by van Assche [61].

Our aim is to merge these two approaches: the strength of the Darboux dressing
chain formulation with a convenient representation and indexing to describe the
whole set of rational solutions to PIV and its higher order generalizations belonging
to the A2N -Painlevé hierarchy. This is achieved by indexing iterated Darboux
transformations with Maya diagrams, originally introduced by Sato, and exploring
conditions that ensure cyclicity after an odd number of steps. We tackle this problem
by introducing the concepts of genus and interlacing of Maya diagrams, which
allow us to classify and describe cyclic Maya diagrams. For every such cycle, we
show how to build a rational solution to the A2N -Painlevé system, by a suitable
choice of Wronskian determinants whose entries are Hermite polynomials. This
approach generalizes the solutions for PIV (A2-Painlevé) known in the literature
as Okamoto and generalized Hermite polynomials. We illustrate the construction by
providing the complete set of rational solutions to A4-Painlevé, the next system in
the hierarchy.

2 Darboux Transformations

In this section we describe Darboux transformations on Schrödinger operators
and their iterations at a purely formal level (i.e. with no interest on the spectral
properties).

Let L = −Dxx + U(x) be a Schrödinger operator, and ϕ = ϕ(x) a formal
eigenfunction of L with eigenvalue λ, so that

L[ϕ] = −ϕ′′ + Uϕ = λϕ

Note that we are not assuming any condition of ϕ at this stage, we do not care at this
formal level whether ϕ is square integrable or not. The function ϕ is usually called
the seed function for the transformation, and λ the factorization energy. For every
choice of ϕ and λ, we can factorize L in the following manner

L− λ = (Dx + w)(−Dx +w) = BA, w = (logϕ)′

where B = Dx + w and A = −Dx + w are first order differential operators. The
Darboux transform of L, that we call L̃, is defined by commuting the two factors:

L̃− λ = AB = (−Dx +w)(Dx +w)
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Expanding the two factors, we can find the relation between U and its transform Ũ :

U = w2 + w′ − λ, Ũ = w2 −w′ − λ⇒ Ũ = U − 2w′ (2.1)

or in terms of the seed function we have

Ũ = U − 2(logϕ)′′

Note that kerA = 〈ϕ〉, i.e. A[ϕ] = −ϕ′ + wϕ = 0,and also that kerB =
〈

1
ϕ

〉
, i.e.

B
[

1
ϕ

]
= 0. The main reason to introduce this transformation is that we have the

following intertwining relations between L and L̃:

LB = BL̃, AL = L̃A (2.2)

These relations mean that we can connect the eigenfunctions of L and L̃.

Exercise 1 Show that if ψ is an eigenfunction of L with eigenvalue E, then
ψ̃ = A[ψ] is an eigenfunction of L̃ with the same eigenvalue. Likewise, if ϕ̃
is an eigenfunction of L̃with eigenvalueμ, then ϕ = B[ϕ̃] is an eigenfunction
of L with the same eigenvalue.

By hypothesis, we have that L[ψ] = Eψ . Let ψ̃ = A[ψ]. We see that

L̃[ψ̃] = L̃A[ψ] = AL[ψ] = A[Eψ] = μA[ψ] = Eψ̃

The converse transformation is proved in a similar way.
Note that if we try to apply the Darboux transformation A on ϕ we do not get

any eigenfunction of L̃, because A[ϕ] = 0. However, the reciprocal of ϕ is a new
eigenfunction of L̃, with eigenvalue λ, as

B

[
1

ϕ

]
= 0⇒ L̃

[
1

ϕ

]
= (AB + λ)

[
1

ϕ

]
= λ

(
1

ϕ

)

2.1 Exact Solvability by Polynomials

The above transformation is purely formal and its main purpose is to connect the
eigenfunctions and eigenvalues of two different Schrödinger operators L and L̃.
Now, this would be of very little purpose if we cannot say anything about the
spectrum and eigenfunctions of at least one of the operators. Typically, we use
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Darboux transformations to generate new solvable operators from ones that we
know to be solvable. But what do we mean by solvable?

In general, solvable means that we can describe the spectrum and eigenfunctions
in a more or less explicit form, and in terms of known functions. It is still not clear
what a known function is. . . so we’d rather narrow down the definition and define
exact solvability by polynomials in the following manner.

Definition 2.1 A Schrödinger operator

L = −Dxx + U(x) (2.3)

is said to be exactly solvable by polynomials if there exist functions μ(x), z(x) such
that for all but finitely many k ∈ N, L has eigenfunctions (in the L2 sense) of the
form

ψk(x) = μ(x)yk(z(x))

where yk(z) is degree k polynomial in z.

This definition captures many of the Schrödinger operators that we know to be
exactly solvable: those in which the eigenfunctions have a common prefactor μ(x)
times a polynomial in a suitable variable z(x). The prefactor μ(x) is responsible for
ensuring the right asymptotic behaviour at the endpoints for all bound states, while
the polynomials yk represent a modulation that describes the excited states.

From the purpose of orthogonal polynomials, this kind of Schrödinger operators
are directly related to classical orthogonal polynomials, since polynomials yk
are automatically orthogonal if L is a self-adjoint operator, i.e. with appropriate
regularity and boundary conditions.

More specifically, classical orthogonal polynomials are related to the following
Schrödinger operators:

1. Hermite polynomials to the harmonic oscillator
2. Laguerre polynomials to the isotonic oscillator
3. Jacobi polynomials to the Darboux-Pöschl-Teller potential.

We would like to apply Darboux transformations to these three families of
Schrödinger operators that are exactly solvable by polynomials, in order to generate
new operators, but we would like these new operators to also be exactly solvable by
polynomials. This means that we have to impose certain restrictions on the type of
seed functions of L that we are free to choose for the Darboux transformations.
In general, the class of rational Darboux transformation is the subset of all
possible Darboux transformations that preserve exact solvability by polynomials.
Fortunately, there is a simple way to characterize seed functions for this subclass,
which we describe below. But before we do so, let us introduce some jargon between
differential operators.
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2.2 Schrödinger and Algebraic Operators

If we are dealing with Schrödinger operators that are exactly solvable by polyno-
mials, there are two operators that we will work with: on one hand, we have the
Schrödinger operator L = −Dxx + U(x), on the other hand, we have the algebraic
operator T = p(z)Dzz + q(z)Dz + r(z) which is the one that has polynomial
eigenfunctions

T [yk] = p(z)y ′′k + q(z)y ′k + r(z)yk = λkyk.

There is a connection between these two operators, which is not entirely bidirec-
tional in general, but it is bidirectional if L is exactly solvable by polynomials.

Proposition 2.2 Every second order linear differential operator T = p(z)Dzz +
q(z)Dz + r(z) can be transformed into a Schrödinger operator L = −Dxx +U(x)
by the following change of variables and similarity transformation:

x = −
∫ z

(−p)−1/2 (2.4)

L = μ ◦ T ◦
(

1

μ

) ∣∣∣
z=z(x), μ = exp

∫ z q − p′
2

2p
(2.5)

where z(x) is defined by inverting (2.4)

Exercise 2 Prove that if T = p(z)Dzz + q(z)Dz + r(z), then the operator L
defined by (2.4) and (2.5) is a Schrödinger operator L = −Dxx + U(x), and
find an expression for the potential U in terms of p, q and r .

Let us denote

μ(z) = exp
∫ z

σ, σ = q −
p′
2

2p
.

This, by applying the product rule for composition of differential operators, we have

μ ◦Dz ◦
(

1

μ

)
= Dz +

(
log

1

μ

)′
= Dz − σ

μ ◦Dzz ◦
(

1

μ

)
= Dzz + 2

(
log

1

μ

)′
Dz + μ

(
1

μ

)′′
= Dzz − 2σDz − σ ′ + σ 2
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So collecting terms we have

μ ◦ T ◦
(

1

μ

)
= pDzz + 1

2
p′Dz + r − qσ − pσ ′ + pσ 2

Finally, the chain rule for differentiation leads to

d

dz
= dx
dz

d

dx
⇒ Dz = −(−p)1/2Dx

d2

dz2 =
(
dx

dz

)2
d2

dx2 +
d2x

dz2

d

dx
⇒ Dzz = − 1

p
Dxx + 1

2
(−p)1/2p′Dx

which inserted into the previous equation becomes

μ ◦ T ◦
(

1

μ

)
= −Dxx + r + pσ 2 − pσ ′ − qσ

which is a Schrödinger operator. We identify the potential U(x) to be

U(x) = r + pσ 2 − pσ ′ − qσ
∣∣∣
z=z(x), σ = q −

p′
2

2p
(2.6)

Note that we can always go from T to L, but in general there is no prescribed way
to go fromL to T . This means that given a Schrödinger operator with some potential
L = −Dxx + U(x) it is a difficult question to know whether we can perform a
change of variables and conjugation by a factor μ as in (2.4) and (2.5) such that
T has polynomial eigenfunctions yk(z) (this is sometimes known as algebraizing a
Schrödinger operator). Otherwise speaking, given a potential U it is hard to know
whether it is exactly solvable by polynomials.1

2.3 Rational Darboux Transformations

Now we start from a givenL which we know to be exactly solvable by polynomials,
and we would like to perform a Darboux transformation in such a way that L̃ is still
exactly solvable by polynomials. What conditions must the seed function ϕ satisfy
for this to hold?

This question is not easy to answer in general. Let us look at one example.

Example 2.3 Consider the harmonic oscillator L = −Dxx + x2. One possible
choice for seed functions for rational Darboux transformations comes from choosing

1Solving this question is equivalent to classifying exceptional polynomials and operators, a
question that we shall mention below.
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ϕ among the bound states of L, i.e.

ϕk = e−x2/2Hk(x), k ≥ 0

where Hn(x) is the n-th Hermite polynomial. We see that L is exactly solvable by
polynomials, with z(x) = x and μ(x) = e−x2/2. This implies that p(z) = 1 from
(2.4), and from (2.5) we see that q(z) = 2z, so that T = Dzz − 2zDz

We thus have

L = −Dxx + x2, L[ϕk] = (2k + 1)ϕk, k = 0, 1, 2, . . .

T = Dzz − 2zDz, T [Hk] = 2kHk, k = 0, 1, 2, . . .

But this is not the only possible choice [21, 22]. Note that the Schrödinger operator
L = −Dxx + x2 is not only invariant under the transformation x → −x but it only
picks a sign when we perform the transformation x → ix, so there is another set of
eigenfunctions

ϕ̃k = ex
2/2H̃k(x), k ≥ 1

where H̃k(x) = i−k Hk(ix) is called the conjugate Hermite polynomial. Note that
these eigenfunctions are obtained by exploiting a discrete symmetry of the equation,
and their eigenvalues are negative:

L[ϕ̃k] = −(2k + 1)ϕ̃k, k = 1, 2, . . .

Because the pre-factor is now a positive gaussian, the functions blow up at ±∞ and
they are not square integrable (in the physics literature they are sometimes called
virtual states). But for the purposes of using them as seed functions for Darboux
transformations, they are perfectly valid. These two sets of eigenfunctions exhaust
all possible seed functions for rational Darboux transformations of the harmonic
oscillator. Rather than two families of functions, each of them indexed by natural
numbers, it will be useful to consider them as one single family indexed by integers:

ϕn(x) =
{

e−x2/2Hn(x), if n ≥ 0

ex
2/2H̃−n−1(x), if n < 0

(2.7)

2.4 Iterated or Darboux-Crum Transformations

Now that we know how to apply Darboux transformations to pass from L to L̃
there is no reason why we should stop there. . . we can apply the transformation once
again, and in general as many times as we want. Let’s do it once more. Suppose that
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ϕ1 and ϕ2 are two formal eigenfunctions of L:

L[ϕ1] = λ1ϕ1, L[ϕ2] = λ2ϕ2

We first use seed function ϕ1 to transform L into L̃, so that

Ũ = U − 2(logϕ1)
′′

and the eigenfunctions are related by

ψ̃ = A[ψ] = −ψ ′ + ϕ
′
1

ϕ1
ψ = Wr[ϕ1, ψ]

ϕ1
.

But now we observe that ϕ̃2 given by

ϕ̃2 = A[ϕ2] = Wr[ϕ1, ϕ2]
ϕ1

is a formal eigenfunction of L̃, so we can use it to Darboux transform L̃ into
≈
L, so

≈
U = Ũ − 2(log ϕ̃2)

′′ = U − 2(log Wr[ϕ1, ϕ2])′′

If ψ are the eigenfunctions of L and ψ̃ = Wr[ϕ1, ψ]/ϕ1 are the eigenfunctions of

L̃, the eigenfunctions of
≈
L are given by

≈
ψ =A[ψ̃] =Wr[ϕ̃2, ψ̃]

ϕ̃2
=

Wr
[
ϕ−1

1 Wr[ϕ1, ϕ2], ϕ−1
1 Wr[ϕ1, ψ]

]

ϕ−1
1 Wr[ϕ1, ϕ2]

= Wr[ϕ1, ϕ2, ψ]
Wr[ϕ1, ϕ2]

where we have used two identities satisfied by Wronskian determinants, namely

Wr[gf1, . . . , gfn] = gn Wr[f1, . . . , fn]

and

Wr[f1, . . . , fn, g, h] = Wr
[

Wr[f1, . . . , fn, g],Wr[f1, . . . , fn, h]
]

Wr[f1, . . . , fn] .

It is not hard to iterate this argument and prove by induction the following result,
known as Darboux-Crum formula.

Proposition 2.4 Let ϕ1, . . . , ϕn be a set of n formal eigenfunctions of a Schrödinger
operator L. We can perform an n-step Darboux transformation with these seed
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eigenfunctions, to obtain a chain of Schrödinger operators

L = L0 → L1 → · · · → Ln.

The Schrödinger operator of Ln is given by

Ln = −Dxx + Un = −Dxx + U − 2 (log Wr[ϕ1, . . . , ϕn])′′ .

If ψ is a formal eigenfunction of L with eigenvalue E, then

ψ(n) = Wr[ϕ1, . . . , ϕn, ψ]
Wr[ϕ1, . . . ϕn] (2.8)

is a formal eigenfunction of Ln with the same eigenvalue.

Example 2.5 Coming back to the harmonic oscillator of Example 2.3, we saw that
seed functions for rational Darboux transformations are in one-to-one correspon-
dence with the integers. If we want to perform a multi-step Darboux transformation,
we need to fix a multi-index that specifies the set of seed functions to be used. For
instance, corresponding to the multi-index (−3,−2, 1, 4)we would have, according
to (2.7) the Darboux-Crum transformation acting on a function ψ would be

ψ(4) =
Wr

[
ex

2/2H̃2, ex
2/2H̃1, e−x

2/2H1, e−x
2/2H4, ψ

]

Wr
[
ex2/2H̃2, ex

2/2H̃1, e−x2/2H1, e−x2/2H4

]

In the following sections we will see how the polynomial part of these functions
essentially defines exceptional Hermite polynomials, and how these Wronskians
enjoy very particular symmetry properties that admit an elegant combinatorial
description in terms of Maya diagrams.

3 The Bochner Problem: Classical and Exceptional
Polynomials

After having reviewed the notion of Darboux-Crum transformations, in this section
we will introduce the concept of exceptional orthogonal polynomials, as orthogonal
polynomial systems that arise from Sturm-Liouville problems with exceptional
degrees, i.e. gaps in their degree sequence. But before we do so, we need to review
some basic facts about Sturm-Liouville problems, and introduce Bochner’s theorem,
that characterizes the classical orthogonal polynomial systems of Hermite, Laguerre
and Jacobi as polynomial eigenfunctions (with no missing degrees) of a Sturm-
Liouville problem.
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3.1 Sturm-Liouville Problems

A Sturm-Liouville problem is a second-order boundary value problem of the form

−(P (z)y ′)′ + R(z)y = λW(z)y, y = y(z), (3.1)

α0y(a)+ α1y
′(a) = 0

β0y(b)+ β1y
′(b) = 0

(3.2)

where I = (a, b) is an interval, where λ is a spectral parameter, where
P(z),W(z), R(z) are suitably smooth real-valued functions with P(z),W(z) > 0
for z ∈ I .2

Dividing (3.1) by W(z) re-expresses the underlying differential equation in an
operator form:

− T [y] = λy, (3.3)

where

T [y] = p(z)y ′′ + q(z)y ′ + r(z)y, (3.4)

and where

p(z) = P(z)

W(z)
P (z) = exp

∫
q(z)

p(z)
dz

q(z) = P
′(z)
W(z)

W(z) = P(z)
p(z)

,

r(z) = − R(z)
W(z)

R(z) = −r(z)W(z)

(3.5)

If y1(z), y2(z) are two sufficiently smooth real-valued functions, then integration
by parts gives Lagrange’s identity:

∫
(T [y1]y2 − T [y2]y1)(z)W(z)dz = P(z)(y ′1(z)y2(z)− y ′2(z)y1(z)). (3.6)

2In the case of an unbounded interval with a = −∞ and/or b = +∞, or if solutions y(z) of (3.1)
have no defined value at the endpoints, one has to consider the asymptotics of the corresponding
solutions and impose boundary conditions of a more general form:

α0(z)y(z)+ α1(z)y
′(z)→ 0 as z→ a−

β0(z)y(z)+ β1(z)y
′(z)→ 0 as z→ b+

where α0(z), α1(z), β0(z), β1(z) are continuous functions defined on I .
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Suppose that the boundary conditions entail (1) the square integrability of eigen-
functions with respect to W(z)dz over the interval I ; and (2) the vanishing of the
right side of (3.6) at the endpoints of the interval. With some suitable regularity
assumptions on P(z),W(z), R(z) one can then show that the eigenvalues of −T
can be ordered so that λ1 < λ2 < · · · < λn < · · · → ∞.

If yi, yj , i �= j are two eigenfunctions corresponding to eigenvalues λi, λj ,
respectively, then (3.6) reduces to

(λi −λj )
∫
I

yi(z)yj (z)W(z)dz = P(z)(y ′i (z)yj (z)−y ′j (z)yi(z))
∣∣∣b
−

a+
= 0. (3.7)

Therefore, the eigenfunctions are orthogonal with respect to the inner product

〈f, g〉W =
∫
I

f (z)g(z)W(z)dz.

Example 3.1 Let’s work out the weight and boundary conditions for the Hermite
differential equation

y ′′ − 2zy + λy, y = y(z). (3.8)

We apply (3.5) and rewrite the above in Sturm-Liouville form

− (W(z)y ′)′ = λW(z)y, y ∈ L2(R,Wdz) (3.9)

where the weight has the form

W(z) = exp

(∫ z

(−2z)

)
= e−z2

In this case, the boundary conditions are that e−z2
y(z)2 be integrable near ±∞.

A basis of solutions to (3.8) are

φ0(z; λ) =  
(
−λ

4
,

1

2
, z2

)
(3.10)

φ1(z; λ) = z 
(

1

2
− λ

4
,

3

2
, z2

)
(3.11)

where

 (a, c, x) =
∞∑
n=0

(a)n

(c)nn!x
n,
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is the confluent hypergeometric function. This function has the asymptotic
behaviour

 (a, c, x) = �(c)
�(a)

exxa−c
(

1+O(|x|−1)
)
, x → +∞,

This implies that

e−z2
φ0(z; λ)2 = πe

z2
z−2−λ

�(−λ/4)2
(

1+O(z−2)
)
, z→±∞,

e−z2
φ1(z; λ)2 = πez

2
z−2−λ

4�(1/2− λ/4)2
(

1+O(z−2)
)
, z→ ±∞.

are not integrable for generic values of λ near z = ±∞. We now introduce two
other solutions of (3.8),

ψR(z; λ) = %
(
−λ

4
,

1

2
, z2

)
, z > 0 (3.12)

ψL(z; λ) = %
(
−λ

4
,

1

2
, z2

)
, z < 0 (3.13)

where

%(a, c; x) = �(1− c)
�(a − c + 1)

 (a, c; x)+ �(c − 1)

�(a)
 (a− c+ 1, 2− c; x), x > 0.

(3.14)

Note that ψR(z) andψL(z) are different functions, because% is a branch of a multi-
valued function defined by taking a branch cut over the negative real axis. However,
ψL,ψR may be continued to solutions of (3.8) over all of R by means of connection
formulae (3.15), below.

We have the asymptotics

xa%(a, c; x) = 1+O(x−1), x → +∞
e−z2

ψR(z; λ)2 = e−z2
zλ

(
1+O(z−2)

)
, z→ +∞

e−z2
ψL(z; λ)2 = e−z2

zλ
(

1+O(z−2)
)
, z→ −∞

Hence, ψR,ψL each satisfy a one-sided boundary conditions at ±∞.
From (3.14) we get the connection formulae

ψR(z; λ) =
√
π

�(1/2− λ/4)φ0(z; λ)− 2
√
π

�(−λ/4)φ1(z; λ),

ψL(z; λ) =
√
π

�(1/2− λ/4)φ0(z; λ)+ 2
√
π

�(−λ/4)φ1(z; λ).
(3.15)
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Therefore, our boundary conditions amount to imposing the condition that ψL be
proportional to ψR . By inspection of (3.15), this can happen in exactly two ways:
ψL = ψR and ψL = −ψR . The first case occurs when �(−λ/4)→∞ that is when
λ/2 = 2n, n = 1, 2, . . .. The second possibility occurs when �(1/2− λ/4)→∞
which occurs when λ/2 = 2n + 1, n = 1, 2, . . .. In the first case, we recover the
even Hermite polynomials; in the second the odd Hermite polynomials. This last
observation can be restated as the following identity

2−nHn(z) = √π
(

φ0(z; 2n)
�(1/2− n/2) −

2φ1(z; 2n)
�(−n/2)

)
, n = 0, 1, 2, . . . .

Therefore the Hermite polynomials are precisely the solutions of (3.8) that satisfy
the boundary conditions of (3.9), namely they are the only solutions of (3.8) that are
square-integrable with respect to e−z2

over all of R.

3.2 Classical Orthogonal Polynomials

The notion of a Sturm-Liouville system with polynomial eigenfunctions is the
cornerstone idea in the theory of classical orthogonal polynomials. The reason is
simple: if the eigenfunctions of a Sturm-Liouville problem (3.1) are polynomials,
then they will be orthogonal with respect to the corresponding weightW(z).

The following three types of polynomials—bearing the names of Hermite,
Laguerre, and Jacobi—are known as the classical orthogonal polynomials.

• Hermite polynomials obey the following 3-term recurrence relation:

2zHn = Hn+1 + 2nHn−1, H−1 = 0, H0 = 1. (3.16)

They are orthogonal with respect to

WH(z) = e−z2
, z ∈ (−∞,∞),

and satisfy the following differential equation

y ′′ − 2zy ′ + 2ny = 0, y = Hn(z), n ∈ N, (3.17)

• Laguerre polynomials Ln = L
(α)
n (z) have one parameter α, and satisfy the

following 3-term recurrence relation:

2zLn = (n+ 1)Ln+1 − (2n+ α + 1)Ln + (n+ α)Ln−1, L−1 = 0, L0 = 1.
(3.18)
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For α > −1, Laguerre polynomials are orthogonal with respect to

WL = e−zzα, z ∈ (0,∞).

They satisfy the following differential equation

zy ′′ + (α + 1− z)y ′ + ny = 0, y = L(α)n (z), n ∈ N, (3.19)

• Jacobi polynomials Pn = P (α,β)n (z) have two parameters, α, β and are defined
by:

zPn = 2(n+ 1)(n + α + β + 1)

(2n+ α + β + 1)(2n + α + β + 2)
Pn+1 (3.20)

+
(
β2 − α2

)
(2n + α + β)(2n + α + β + 2)

Pn

+ 2(n + α)(n + β)
(2n + α + β)(2n + α + β + 1)

Pn−1, P−1 = 0, P0 = 1

These polynomials obey the differential equation

(1− z2)P ′′n + (β − α − z(α + β + 2))P ′n + n(α + β + n+ 1)Pn = 0 (3.21)

For α, β > −1 they are orthogonal with respect to

WH = (1− z)α(1+ z)β, z ∈ (−1, 1).

Exercise 3 Rewrite the above differential equations in Sturm-Liouville form.
In each case, work out the boundary conditions that pick out the polynomial
solutions.

The class of Sturm-Liouville problems with polynomial eigenfunctions was
studied and classified by Solomon Bochner in the following fundamental result.
Bochner’s Theorem was subsequently refined by Lesky to show that the three
classical families of Hermite, Laguerre, and Jacobi give a full classification of such
Sturm-Liouville problem.

Theorem 3.2 (Bochner) Suppose that an operator

T [y] = p(z)y ′′ + q(z)y ′ + r(z)y (3.22)

admits eigenpolynomials of every degree; that is, there exist polynomials yk(z) with
deg yk = k and constants λk such that

− T [yk] = λkyk, k = 0, 1, 2, . . . . (3.23)
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Then, necessarily p, q, r are polynomials with

degp ≤ 2, deg q ≤ 1, deg r = 0.

Moreover, if these polynomials are the orthogonal eigenfunctions of a Sturm-
Liouville system, then up to an affine transformation of the independent variable
z, they are the classical polynomials of Hermite, Laguerre, and Jacobi.

Proof Applying (3.23) to k = 0, 1, 2, we obtain

−λ0y0 = r
−λ1y1 = qy ′1 + ry1

−λ2y2 = py ′′2 + qy ′2 + ry2.

By inspection, r is a constant, while q, p are polynomials with degq ≤ 1 and
degp ≤ 2.

Up to an affine transformation z �→ sz + t , the leading coefficient p(z) can
assume one of the following normal forms:

1, z, z2, 1− z2, 1+ z2.

Write q(z) = az+ b. Applying (3.5), the corresponding weights have the form

(i) W(z) = e b
2

2a e
a
2 (z+b/a)2

(ii) W(z) = eazzb−1

(iii) W(z) = e− bz za−2,

(iv) W(z) = (1− z)−(a+b)/2−1(1+ z)(b−a)/2−1

(v) W(z) = eb arctan(z)(1+ z2)a/2−1.

• For normal form (i), the case a = 0 is excluded. If not, the resulting
operator would be strictly degree lowering, which would preclude the existence
eigenpolynomials of degrees ≥ 2. Since p(z) = 1 is invariant with respect to
scaling and translation, no generality is lost by setting b = 0, a = ±2. The case
of a = −2 corresponds to the classical Hermite polynomials. The case a = 2
can be excluded because there is no choice of boundary conditions that result in
the vanishing of the right side of (3.7).

• For the normal form (ii), note that p(z) = z is preserved by scaling transfor-
mations. Hence, without loss of generality we can take a = −1. This case
corresponds to the classical Laguerre polynomials.

• Normal form (iii) is a bit tricky. The case b = 0 can be ruled out because of the
absence of suitable boundary conditions. The analysis of b < 0 and b > 0 is the
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same, so suppose that b > 0. Here the only possible boundary conditions are at
the endpoints of the interval (0,∞). If a < 0 then a finite number of polynomials
can be made to be square integrable with respect to the weight in question.
These constitute the so-called Bessel orthogonal polynomials, which however fall
outside the range of our definition—we require that all yk are square-integrable
with respect toW(z).

• Normal form (iv) corresponds to the Jacobi orthogonal polynomials.
• Normal form (v) corresponds to the so-called twisted Jacobi (also called

Romanovsky) polynomials. If a < 0 then a finite number of initial degrees
are square-integrable with respect to the indicated weight over the interval
(−∞,∞). As above, this violates our requirement that all the yk be square-
integrable with respect toW(z)dz. ��

3.3 Exceptional Polynomials and Operators

We now modify the assumption of Bochner’s Theorem 3.2 to arrive at the following.

Definition 3.3 We say that T [y] = p(z)y ′′ + q(z)y ′ + r(z)y is an exceptional
operator if it admits polynomial eigenfunctions for a cofinite number of degrees;
that is, there exist polynomials yk(z), k /∈ N \ {d1, . . . , dm} with deg yk = k and
with d1, . . . , dm ∈ N a finite number of exceptional degrees, and constants λk such
that

−T [yk] = λkyk, k ∈ N \ {d1, . . . , dm}.

Moreover, if it is possible to impose boundary conditions so that the polynomials yk
become eigenfunctions of the corresponding Sturm-Liouville problem, then we call
the {yk}k/∈{d1,...,dm} exceptional orthogonal polynomials.

The relaxed assumption that permits for a finite number of missing degrees
allows to escape the constraints of Bochner’s theorem and characterizes a large and
interesting new class of operators and polynomials.

Example 3.4 We next show an example of codimension 2 exceptional Hermite
polynomials. Recall the classical Hermite polynomials defined by (3.16). Introduce
a family of exceptional Hermite polynomials defined by

Ĥn = Wr[H1,H2,Hn]
8(n− 1)(n− 2)

= Hn + 4nHn−2 + 4n(n− 3)Hn−4, n �= 1, 2 (3.24)

where the Hi(z) are classical Hermite polynomials and where Wr denotes the usual
Wronskian determinant:

Wr[H1,H2,Hn] =
∣∣∣∣∣∣
H1 H

′
1 H

′′
1

H2 H
′
2 H

′′
2

Hn H
′
n H

′′
n

∣∣∣∣∣∣ .
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Exercise 4 Using the following identity for the classical Hermite polynomi-
als:

H ′n = 2nHn−1

and the 3-term recurrence relation (3.16) reduce the Wronskian expression

Ĥn = Wr[H1,H2,Hn]
8(n− 1)(n− 2)

, n �= 1, 2

to the right-hand side expression shown in (5.7).

Observe that deg Ĥn = n. We call the resulting sequence of polynomials
exceptional because the degree sequence deg Ĥn is missing two the degrees—the
exceptional degrees n = 1 and n = 2. We call the Ĥn(z) exceptional Hermite
polynomials because they furnish polynomial solutions of the following modified
version of the Hermite differential equation:

y ′′ −
(

2z+ 8z

1+ 2z2

)
y ′ + 2ny = 0, y = Ĥn(z), n �= 1, 2. (3.25)

At first glance, the exceptional modification of Hermite’s differential equation
(3.25) has a rather peculiar form; indeed it is slightly paradoxical that a differential
equation with rational coefficients admits polynomial solutions. However, some of
the underlying structure of the equation comes to light once we “clear denomina-
tors” and re-express (3.25) using the following, bilinear formulation:

(
ηy ′′ − 2η′y ′ + η′′y)− 2z

(
ηy ′ − η′y)+ 2(n− 2) ηy = 0 (3.26)

where

η =Wr[H1,H2] = 4+ 8z2

Now the equation is bilinear in η, which is fixed and y = y(z) the dependent
variable, and nearly symmetric with respect to the two variables.

We can also rewrite expression (3.25) using Sturm-Liouville form, as
(
Ŵy ′

)′ = λŴy, (3.27)

where

Ŵ (z) = e−z2

η(z)2
, λ = −2n.
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Table 1 Degrees in the exceptional recurrence relations

n RHS degrees in relation (3.28) RHS degrees in relation (3.29)

0 3 4,0

3 6,4,0 7,5,3

4 7,5,3 8,6,4,0

5 8,6,4 9,7,5,3

6 9,7,5,3 10,8,6,4

7 10,8,6,4 11,9,7,5,3
.
.
.

.

.

.
.
.
.

n ≥ 7 n+ 3, n + 1, n − 1, n− 3 n + 4, n + 2, n, n − 2, n − 4

As before, the Sturm-Liouville form implies the orthogonality of the eigenpolyno-
mials: ∫ ∞

−∞
Ĥm(z)Ĥn(z)Ŵ (z)dz = 0, m �= n, m, n �= 1, 2

It is also possible to show that the exceptional polynomials satisfy recurrence
relations. However, now there are multiple relations of higher order:

4z(3+ 2z2)Ĥn= Ĥn+3+ 6n Ĥn+1+ 12n(n− 3) Ĥn−1+ 8n(n− 4)(n− 5) Ĥn−3,

(3.28)

16z2(1+ z2)Ĥn= Ĥn+4+ 8nĤn+2+ 4(6n2 − 14n+ 1)Ĥn+ (3.29)

+ 32n(n− 3)(n− 4)Ĥn−2+ 16n(n− 3)(n− 5)(n− 6)Ĥn−4

Table 1 lists the degrees of the exceptional polynomials involved in the above
recurrence at the values of n = 0, 3, 4, . . .. By inspection, Ĥ0 determines
Ĥ3, Ĥ4, Ĥ6, . . . , Ĥ2k, k ≥ 2. Relation (3.28) with n = 5 then determines Ĥ5. After
that the Ĥ2k+1, k ≥ 3 are established. Observe that Ĥn(z), n ≥ 7 are determined
by both relations (3.28) and (3.29). Remarkably, the relations are coherent, in the
sense that both relations give the same value of Ĥn(z), n ≥ 7. This may be
explained by the fact that the finite-order difference operators that describe the RHS
of (3.28) and (3.29) commute with one another.

Exercise 5 Verify the recurrence relations (3.28) and (3.29) using a computer
algebra system and show that the finite-difference operators that define their
right-hand sides commute.

Finally, many of the properties of exceptional polynomials are explained by the
fact that there is a hidden relation between them and their classical counterparts. Let
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us define second order operators

T [y] = y ′′ − 2zy ′,

T̂ [y] = y ′′ −
(

2z+ 8z

1+ 2z2

)
y ′

and re-express the classical and exceptional Hermite differential equations in
operator form, respectively, as

−T [Hn] = 2nHn, n ∈ N − T̂ [Ĥn] = 2nĤn, n �= 1, 2.

Let us also introduce the second order operator

A[y] =Wr[H1,H2, y] = 4(1+ 2z2)y ′′ − 16zy ′ + 16y.

Exercise 6 Verify that the three differential operators T , T̂ and A satisfy the
following (second-order) intertwining relation:

T̂ A = AT. (3.30)

Note that in the intertwining relations (2.2), operator A is first order, corre-
sponding to a single-step Darboux transformation. In this case, A is a second-order
differential operator that comes from a two-step Darboux-Crum transformation with
seed functionsH1 andH2. In general, up to a normalization constant, the exceptional
polynomials are given by applying the intertwiner A to the classical polynomials:

Ĥn ∝ A[Hn].
If we take the intertwining relation as proven, we obtain that

T̂ [A[Hn]] = (T̂ A)[Hn] = (AT )[Hn] = −2nA[Hn].
Thus, the intertwining relation “explains” why the Ĥn are eigenpolynomials of the
exceptional operator T̂ . This is essentially the same argument as the one used in
Exercise 1, albeit with a higher-order intertwiner A.

4 Symmetric Painlevé Equations and Darboux
Dressing Chains

And now for something completely different [45], or maybe not? The set of six
nonlinear second order Painlevé equations PI, . . . ,PVI have attracted considerable
interest in the past 100 years [8, 33, 60]. They have the defining property that their
solutions have no movable branch points. The Painlevé equations, whose solutions
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are called Painlevé transcendents, are now considered to be the nonlinear analogues
of special functions, cf. [8]. These functions, in general, are transcendental in
the sense that they cannot be expressed in terms of previously known functions.
However, the Painlevé equations, except PI, also possess special families of
solutions that can be expressed via rational functions, algebraic functions or the
classical special functions, such as Airy, Bessel, parabolic cylinder, Whittaker or
hypergeometric functions, for special values of the parameters.

However, rather than studying the Painlevé second order scalar equations, we
will follow Noumi and Yamada since it will prove to be more useful to rewrite
these equations as a system of first order equations, which will allow us not only
to understand the symmetry properties better, but also to generalize these system to
higher order equations with the same desired properties.

Definition 4.1 We define the A2-Painlevé system as the following system of three
coupled nonlinear ODEs

f ′0 + f0(f1 − f2) = α0,

f ′1 + f1(f2 − f0) = α1, (4.1)

f ′2 + f2(f0 − f1) = α2,

subject to the condition

(f0 + f1 + f2)
′ = α0 + α1 + α2 = 1. (4.2)

where α0, α1, α2 ∈ C are complex parameters and fi = fi(z) are complex
functions.

If the parameters take on arbitrary values, the general solution of this equation is
transcendental. We are interested in this lecture to find solutions to (4.1) where the
functions fi = fi(z) are rational functions of z. A solution of (4.1) will be a tuple
of the form (f0, f1, f2|α0, α1, α2).

The reason why this system is relevant is that by eliminating two of the functions,
we can reduce system (4.1) to a single second order nonlinear ODE, that we will call
PIV because it is the fourth equation in the list of six Painlevé equations, namely:

y ′′ = 1

2y
(y ′)2 + 3

2
y3 + 4ty2 + 2(t2 − a)y + b

y
(4.3)

Exercise 7 Show that if the tuple (f0, f1, f2|α0, α1, α2) is a solution to (4.1),
then y = y(t) is a solution to (4.3), where:

f0 = −cy, z = − t
c
, c =

√−1

2
, a = 2(α1 − α2), b = −2α2

0

(4.4)
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We first take the derivative of the first equation in (4.1):

f ′′0 + f ′0(f1 − f2)+ f0(f
′
1 − f ′2) = 0 (4.5)

Next subtract the third from the second equation to obtain

f ′1 − f ′2 = α1 − α2 − 2f1f2 + f0(f1 + f2)

and insert it into the previous equation, to get

f ′′0 + f ′0(f1 − f2)+ (α1 − α2)f0 − 2f1f2f0 + (f1 + f2)f
2
0 = 0. (4.6)

From the first equation in (4.1) and the normalization f0 + f1 + f2 = z, we have

f1 − f2 = α0 − f ′0
f0

(4.7)

f1 + f2 = z− f0 (4.8)

Now bearing in mind that 4f1f2 = (f1 + f2)
2 − (f1 − f2)

2 we have also

4f1f2 = (z − f0)
2 −

(
α0 − f ′0
f0

)2

(4.9)

Inserting (4.7), (4.8) and (4.9) into (4.6), and after some cancellations and grouping
terms we arrive at

f ′′0 =
f ′20

2f0
+ 3

2
f 3

0 − 2zf 2
0 +

(
z2

2
+ α2 − α1

)
f0 − α2

0

2f0
(4.10)

which after the rescaling of variable, function and parameters shown in (4.4) leads
finally to (4.3).

Now that we know the equivalence between solutions of (4.1), that we will
call sPIV, the symmetric form of PIV, it will be easier to work with the system
than with the equation. In particular, Noumi and Yamada showed [47] that system
(4.1) in invariant under a symmetry group, which acts by Bäcklund transformations
on a tuple of functions and parameters. This symmetry group is the affine Weyl
group A(1)2 , generated by the operators {π, s0, s1, s2} whose action on the tuple
(f0, f1, f2|α0, α1, α2) is given by:

sk(fj ) = fj − αkδk+1,j

fk
+ αkδk−1,j

fk
,

sk(αj ) = αj − 2αj δk,j + αk(δk+1,j + δk−1,j ), (4.11)

π(fj ) = fj+1, π(αj ) = αj+1

where δk,j is the Kronecker delta and j, k = 0, 1, 2 mod (3).
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The technique to generate rational solutions is to first identify a number of
very simple rational seed solutions, and then successively apply the Bäcklund
transformations (4.11) to generate families of rational solutions.

Exercise 8 Check that the tuple (z, 0, 0|1, 0, 0) satisfies (4.1). This is one
possible seed solution. Now use the Bäcklund transformations s0 and s1s0 to
generate two solution tuples, and check explicitly that the obtained solutions
solves (4.1)

It is obvious that (z, 0, 0|1, 0, 0) satisfies (4.1). From (4.11), the action of s0 on
the generic tuple (f0, f1, f2|α0, α1, α2) is given by

s0(f0) = f0, s0(α0) = −α0 (4.12)

s0(f1) = f1 − α0

f0
, s0(α1) = α1 + α0 (4.13)

s0(f2) = f2 + α0

f0
, s0(α0) = α2 + α0 (4.14)

So we have then that s0(z, 0, 0|1, 0, 0) =
(
z, −1

z
, 1
z
| − 1, 1, 1

)
, and we can readily

verify that this tuple satisfies (4.1). In a similar manner, we see that

s1s0(z, 0, 0|1, 0, 0) = s1

(
z,
−1

z
,

1

z

∣∣∣− 1, 1, 1

)
=

(
0,−1

z
, z+ 1

z

∣∣∣ 0,−1, 2

)

which is also seen to satisfy (4.1).
In this way we can iteratively apply Bäcklund transformations on a small set

of seed solutions and generate many rational solutions to (4.1). This is a beautiful
approach, pioneered by the Japanese school, and the transformations (4.11) have
a nice geometric interpretation in terms of reflection groups acting on the space
of parameters (α0, α1, α2). Note however that the solutions obtained by dressing
a given seed solution are hard to write in closed form, and in general the whole
procedure is more an algorithm to generate solutions than an explicit enumeration of
them. If we ask ourselves how many poles the rational solution s6

1 s3
0(z, 0, 0|1, 0, 0)

has, this might be a difficult question to answer with this representation.
For this reason, we will not pursue this approach henceforth in these notes, and

we refer the interested reader to Noumi’s book [46] to learn the geometric theory
of Painlevé equations, and their connections with other topics in integrable systems
(τ -functions, Hirota bilinear equations, Jacobi-Trudi formulas, reductions from KP
equation, etc.).

We will concentrate in these lectures on alternative representations of the rational
solutions, most notably the determinantal representations [34, 35].
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Once we are aware of the symmetry structure of (4.1), the system admits a
natural generalization to any number of equations, known as the A(1)N -Painlevé
or the Noumi-Yamada system. The even case (N = 2n) is considerably simpler
(for reasons that will be explained later), and it is the one we will focus on this
notes.

Definition 4.2 We define the A(1)2n -Painlevé system (or Noumi-Yamada system) as
the following system of 2n+ 1 coupled nonlinear ODEs

f ′i + fi
⎛
⎝ n∑
j=1

fi+2j−1 −
n∑
j=1

fi+2j

⎞
⎠ = αi, i = 0, . . . , 2n mod (2n+ 1)

(4.15)
subject to the normalization condition

(f0 + · · · + f2n)
′ = α0 + · · · + α2n = 1. (4.16)

The symmetry group of this higher order system is the affine Weyl group A(1)2n ,
acting by Bäcklund transformations as in (4.11). The system has the Painlevé
property, and thus can be considered a proper higher order generalization of sPIV
(4.1), which corresponds to n = 1.

The goal of this lecture is to develop a systematic procedure to describe rational
solutions to system (4.11), providing an explicit representation of the solutions in
terms of Wronskian determinants whose entries are Hermite polynomials. This is an
alternative approach to the dressing of seed solutions by Bäcklund transformations
described above.

4.1 Darboux Dressing Chains

The theory of dressing chains, or sequences of Schrödinger operators connected by
Darboux transformations was developed by Adler [2], and Veselov and Shabat [62].
The connection between dressing chains and Painlevé equations was already shown
in [2] and it has been exploited by some authors [5, 6, 38–40, 43, 57–59, 63]. This
section follows mostly the early works of Adler, Veselov and Shabat.

Consider the following sequence of Schrödinger operators

Li = −D2
z + Ui, Dz = d

dz
, Ui = Ui(z), i ∈ Z (4.17)

where each operator is related to the next by a Darboux transformation, i.e. by the
following factorization

Li = (Dz +wi)(−Dz +wi)+ λi, wi = wi(z),
Li+1 = (−Dz +wi)(Dz +wi)+ λi .

(4.18)
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It follows that the functionswi satisfy the Riccati equations

w′i + w2
i = Ui − λi, −w′i + w2

i = Ui+1 − λi . (4.19)

Equivalently, wi are the log-derivatives of ψi , the seed function of the Darboux
transformation that maps Łi to Łi+1

Liψi = λiψi, where wi = ψ
′
i

ψi
. (4.20)

Using (4.17) and (4.18), the potentials of the dressing chain are related by

Ui+1 = Ui − 2w′i , (4.21)

Ui+n = Ui − 2
(
w′i + · · · +w′i+n−1

)
, n ≥ 2 (4.22)

If we eliminate the potentials in (4.19) and set

ai = λi − λi+1 (4.23)

the following chain of coupled equations is obtained

(wi + wi+1)
′ + w2

i+1 −w2
i = ai, i ∈ Z

Before continuing, note that this infinite chain of equations has the evident reversal
symmetry

wi �→ −w−i , ai �→ −a−i . (4.24)

This infinite chain of equations closes and becomes a finite dimensional system
of ODEs if a cyclic condition is imposed on the potentials of the chain

Ui+p = Ui +�, i ∈ Z (4.25)

for some p ∈ N and � ∈ C. If this holds, then necessarily wi+p = wi , ai+p = ai ,
and

� = −(a0 + · · · + ap−1). (4.26)

Definition 4.3 A p-cyclic Darboux dressing chain (or factorization chain) with
shift � is a sequence of p functions w0, . . . , wp−1 and complex numbers
a0, . . . , ap−1 that satisfy the following coupled system of p Riccati-like ODEs

(wi + wi+1)
′ + w2

i+1 −w2
i = ai, i = 0, 1, . . . , p − 1 mod (p) (4.27)

subject to the condition (4.26).
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Note that transformation

wi �→ −w−i , ai �→ −a−i , � �→ −� (4.28)

projects the reversal symmetry to the finite-dimensional system (4.27). Moreover,
for j = 0, 1 . . . , p − 1 we also have the cyclic symmetry

wi �→ wi+j , ai �→ ai+j , � �→ � i = 0, . . . p − 1 mod (p)

In the classification of solutions to (4.27) it will be convenient to regard two
solutions related by a reversal symmetry or by a cyclic permutation as being
equivalent.

Adding the p equations (4.27) we immediately obtain a first integral of the
system

p−1∑
j=0

wj = 1
2z

p−1∑
j=0

aj = − 1
2�z.

The equivalence between the A2n-Painlevé system (4.15) and the cyclic dressing
chain (4.27) is given by the following proposition.

Proposition 4.4 If the tuple of functions and complex numbers (w0, . . . , w2n|a0,

. . . , a2n) satisfies a (2n + 1)-cyclic Darboux dressing chain with shift � as per
Definition 4.3, then the tuple

(
f0, . . . , f2n

∣∣α0, . . . , α2n
)

with

fi(z) = c (wi + wi+1) (cz) , i = 0, . . . , 2n mod (2n+ 1), (4.29)

αi = c2ai, (4.30)

c2 = − 1

�
(4.31)

solves the A2n-Painlevé system (4.15) with normalization (4.16).

Proof The linear transformation

fi = wi + wi+1, i = 0, . . . , 2n mod (2n+ 1) (4.32)

is invertible (only in the odd case p = 2n+ 1), the inverse transformation being

wi = 1
2

2n∑
j=0

(−1)jfi+j , i = 0, . . . , 2n mod (2n+ 1) (4.33)

They imply the relations

wi+1 − wi =
2n−1∑
j=0

(−1)jfi+j+1, i = 0, . . . , 2n mod (2n+ 1). (4.34)
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Inserting (4.32) and (4.34) into the equations of the cyclic dressing chain (4.27)
leads to the A2n-Painlevé system (4.15). For any constant c ∈ C, the scaling
transformation

fi �→ cfi, z �→ cz, αi �→ c2αi

preserves the form of the equations (4.15). The choice c2 = − 1
�

ensures that the
normalization (4.16) always holds, for dressing chains with different shifts �. ��
Remark 4.5 (2n)-cyclic dressing chains and A2n−1-Painlevé systems are also
related, but the mapping is given by a rational rather than a linear function. A full
treatment of this even cyclic case (which includes PV and its higher order hierarchy)
is considerably harder and shall be treated elsewhere.

The problem now becomes that of finding and classifying cyclic dressing chains,
i.e. Schrödinger operators and sequences of Darboux transformations that reproduce
the initial potential up to an additive shift � after a fixed given number of
transformations.

The theory of exceptional polynomials is intimately related with families of
Schrödinger operators connected by Darboux transformations [20, 27]. Constructing
cyclic dressing chains on this class of potentials becomes a feasible task, and
knowledge of the effect of rational Darboux transformations on the potentials
suggests that the only family of potentials to be considered in the case of odd
cyclic dressing chains are the rational extensions of the harmonic oscillator [26],
which are exactly solvable potentials whose eigenfunctions are expressible in terms
of exceptional Hermite polynomials.

Each potential in this class can be indexed by a finite set of integers (specifying
the sequence of Darboux transformations applied on the harmonic oscillator that
lead to the potential), or equivalently by a Maya diagram, which becomes very
useful representation to capture a notion of equivalence and relations of the type
(4.25).

As mentioned before, the fact that all rational odd cyclic dressing chains (and
equivalently rational solutions to the A2n-Painlevé system) must necessarily belong
to this class remains an open question. We conjecture that this is indeed the case, and
no rational solutions other than the ones described in the following sections exist.

5 Rational Extensions of the Harmonic Oscillator

5.1 Maya Diagrams

In this section we construct odd cyclic dressing chains on potentials belonging to
the class of rational extensions of the harmonic oscillator. Every such potential
is represented by a Maya diagram, a rational Darboux transformation acting on
this class will be a flip operation on a Maya diagram and cyclic Darboux chains
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correspond to cyclic Maya diagrams. With this representation, the main problem
of constructing rational cyclic Darboux chains becomes purely algebraic and
combinatorial.

Following Noumi [46], we define a Maya diagram in the following manner.

Definition 5.1 A Maya diagram is a set of integers M ⊂ Z that contains a finite
number of positive integers, and excludes a finite number of negative integers. We
will use M to denote the set of all Maya diagrams.

Definition 5.2 Letm1 > m2 > · · · be the elements of a Maya diagramM arranged
in decreasing order. By assumption, there exists a unique integer sM ∈ Z such that
mi = −i + sM for all i sufficiently large. We define sM to be the index ofM .

We visualize a Maya diagram as a horizontally extended sequence of •� and �
symbols with the filled symbol •� in position i indicating membership i ∈ M . The
defining assumption now manifests as the condition that a Maya diagram begins
with an infinite filled •�segment and terminates with an infinite empty � segment.

Definition 5.3 LetM be a Maya diagram, and

M− = {−m− 1 : m /∈ M,m < 0}, M+ = {m : m ∈ M ,m ≥ 0}.

Let s1 > s2 > · · · > sp and t1 > t2 > · · · > tq be the elements of M− and M+
arranged in descending order.

We define the Frobenius symbol of M to be the double list (s1, . . . , sp | tq ,
. . . , t1).

It is not hard to show that sM = q−p is the index ofM . The classical Frobenius
symbol [3, 4, 55] corresponds to the zero index case where q = p. If M is a Maya
diagram, then for any k ∈ Z so is

M + k = {m+ k : m ∈ M}.

The behaviour of the index sM under translation of k is given by

M ′ = M + k ⇒ sM ′ = sM + k. (5.1)

We will refer to an equivalence class of Maya diagrams related by such shifts as an
unlabelled Maya diagram. One can visualize the passage from an unlabelled to a
labelled Maya diagram as the choice of placement of the origin.

A Maya diagram M ⊂ Z is said to be in standard form if p = 0 and tq > 0.
Visually, a Maya diagram in standard form has only filled boxes •� to the left of the
origin and one empty box � just to the right of the origin. Every unlabelled Maya
diagram permits a unique placement of the origin so as to obtain a Maya diagram in
standard form.
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Fig. 1 Three equivalent Maya diagrams corresponding to the partition λ = (4, 4, 3, 1, 1), together
with their Frobenius representation

Exercise 9 Draw the box-and-ball representation of the Maya diagram

M = {. . . ,−9,−8,−7,−5,−4,−1, 1, 2}.

Find the Frobenius symbol and the index ofM . Find a translation k such that
M ′ = M + k is in standard form, and write the Frobenius symbol, index and
box-and-ball representation ofM ′.

The solution to the previous exercise can be found in Fig. 1.
Observe that the third diagram is in standard form, so k = 6 is the necessary

shift.

5.2 Hermite Pseudo-Wronskians

We can interpret a Maya diagram with Frobenius symbol (s1, . . . , sr |tq , . . . , t1) as
the multi-index that specifies a multi-step rational Darboux transformation on the
harmonic oscillator, i.e. L �→ LM , where

LM = −Dxx + x2 − 2
(
Wr[ϕ−s1, . . . , ϕ−sr , ϕt1, . . . , ϕtq ]

)
xx

where ϕk are the seed functions for rational Darboux transformations of the
harmonic oscillator described in (2.7). The first tuple in the Frobenius symbol
specifies seed functions with conjugate Hermite polynomials in (2.7) (virtual states)
while the second tuple specifies the bound states in (2.7). Getting rid of an overall
exponential factor, we can associate to every Maya diagram a polynomial called a
Hermite pseudo-Wronskian.

Definition 5.4 LetM be a Maya diagram and (s1, . . . , sr |tq , . . . , t1) its correspond-
ing Frobenius symbol. Define the polynomial

HM = e−rx2
Wr[ex2

H̃s1, . . . , e
x2
H̃sr ,Htq , . . . Ht1], (5.2)
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where Wr denotes the Wronskian determinant of the indicated functions, and

H̃n(x) = i−nHn(ix) (5.3)

is the nth degree conjugate Hermite polynomial.

It is not evident thatHM in (5.2) is a polynomial, but this becomes clear once we
represent it using a slightly different determinant.

Proposition 5.5 The Wronskian HM admits the following alternative determinan-
tal representation

HM =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H̃s1 H̃s1+1 . . . H̃s1+r+q−1
...

...
. . .

...

H̃sr H̃sr+1 . . . H̃sr+r+q−1

Htq DxHtq . . . D
r+q−1
x Htq

...
...

. . .
...

Ht1 DxHt1 . . . D
r+q−1
x Ht1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.4)

The term Hermite pseudo-Wronskian was coined in [29] because (5.4) is a mix of a
Casoratian and a Wronskian determinant.

Exercise 10 Prove Proposition 5.5, i.e. prove the relation

HM = e−rx2
Wr[ex2

H̃s1 , . . . , e
x2
H̃sr , Htq , . . . Ht1 ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H̃s1 H̃s1+1 . . . H̃s1+r+q−1

.

.

.
.
.
.

. . .
.
.
.

H̃sr H̃sr+1 . . . H̃sr+r+q−1

Htq DxHtq . . . D
r+q−1
x Htq

.

.

.
.
.
.

. . .
.
.
.

Ht1 DxHt1 . . . D
r+q−1
x Ht1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

The desired identity follows by the fundamental relations satisfied by Hermite
polynomials

DxHn(x) = 2nHn−1(x), n ≥ 0,

DxH̃n(x) = 2nH̃n−1(x), n ≥ 0,

2xHn(x) = Hn+1(x)+ 2nHn−1(x),

2xH̃n(x) = H̃n+1(x)− 2nH̃n−1(x),

Dx(e
x2
H̃n(x)) = ex2

H̃n+1(x),

Dx(e
−x2
hn(x)) = −e−x2

hn+1(x).

(5.5)



Exceptional Orthogonal Polynomials and Painlevé Equations 365

together with the Wronskian identity

Wr[gf1, . . . , gfs ] = gs Wr[f1, . . . , fs ], (5.6)

One remarkable property satisfied by all Maya diagrams in the same equivalence
class, is that their associated Hermite pseudo-Wronskians enjoy a very simple
relation: with an appropriate scaling, the Hermite pseudo-Wronskian of a given
Maya diagram is invariant under translations.

Proposition 5.6 Let ĤM be the normalized pseudo-Wronskian

ĤM = (−1)rqHM∏
1≤i<j≤r(2sj − 2si)

∏
1≤i<j≤q(2ti − 2tj )

. (5.7)

Then for any Maya diagramM and k ∈ Z we have

ĤM = ĤM+k. (5.8)

The proof of this Proposition is not too hard and proceeds by induction: it is
enough to prove the equality by a shift of k = 1. We leave it as an exercise for the
interested reader. The proof can be seen in [29]. At least, to gain some practice and
convince ourselves of this result, we propose the following exercise.

Exercise 11 Let M be the Maya diagram with Frobenius symbol (3, 2|2, 4).
Write down ĤM , ĤM+3 and ĤM−4. Compute the determinants and check that
(5.8) is verified.

The remarkable aspect of Eq. (5.8) is that the identity involves determinants
of different sizes. As mentioned above, every unlabelled Maya diagram contains
a Maya diagram in standard form, and its associated Hermite pseudo-Wronskian
(5.2) is just an ordinary Wronskian determinant whose entries are Hermite poly-
nomials.An interesting problem is to determine the smallest determinant in a given
equivalence class, i.e. the minimum number of Darboux transformations to reach a
given potential. The details on how to solve this problem are given in [29].

Due to Proposition 5.6, we could restrict the analysis without loss of generality
to Maya diagrams in standard form and Wronskians of Hermite polynomials, but
we will employ the general notation as it brings conceptual clarity to the description
of Maya cycles.

We will now introduce and study a class of potentials for Schrödinger operators
that will be used as building blocks for cyclic dressing chains: the set of rational
extensions of the harmonic oscillator, which, as we will see, amounts to the set of
potentials that one can obtain from U(x) = x2 by applying rational Darboux-Crum
transformations.
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5.3 Rational Extensions of the Harmonic Oscillator

Definition 5.7 A rational extension of the harmonic oscillator is a potential of the
form

U(x) = x2 + a(x)
b(x)

, a, b polynomials, deg a ≤ deg b,

that is exactly solvable by polynomials, in the sense of Definition 2.1.

If b(x) has no real zeros, then L is a Sturm-Liouville operator on R with quasi-
polynomial eigenfunctions. The next Proposition proved in [26] states that rational
extensions of the harmonic oscillator can be put in one to one correspondence
with Maya diagrams. The details of this result are based on the theory of trivial
monodromy potentials and they exceed the scope of these lecture notes. The
interested reader is referred to [26] and [48] for further details.

Proposition 5.8 LetM ⊂ Z be a Maya diagram. Define

UM(x) = x2 − 2D2
x logHM + 2sM, (5.9)

where HM is the corresponding pseudo-Wronskian (5.2)–(5.4), and sM ∈ Z is the
index of M . Up to an additive constant, every rational extension of the harmonic
oscillator takes the form (5.9).

The class of Schrödinger operators with potentials that are rational extensions
of the harmonic oscillator is invariant under a rational Darboux transformations.
Otherwise speaking, if we perform a rational Darboux transformation on a rational
extension of the harmonic oscillator, indexed by a Maya diagramM , we will obtain
another potential in the same class, indexed by M ′. Both M and M ′ differ only in
one element, as we show next.

Definition 5.9 We define the flip at positionm ∈ Z to be the involution φm :M→
M defined by

φm : M �→
{
M ∪ {m} if m /∈ M
M \ {m} if m ∈ M , M ∈M. (5.10)

In the first case, we say that φm acts on M by a state-deleting transformation
(�→ •�). In the second case, we say that φm acts by a state-adding transformation
(•�→ �).

Using Crum’s formula for iterated Darboux transformations (2.8), and the seed
functions for rational DTs of the harmonic oscillator (2.7), it can be shown that
every quasi-rational eigenfunction of L = −D2

x + UM(x) has the form

ψM,m = eεx2/2Hφm(M)

HM
, m ∈ Z, (5.11)



Exceptional Orthogonal Polynomials and Painlevé Equations 367

with

ε =
{
−1 if m /∈ M
+1 if m ∈ M .

Explicitly, we have

LψM,m = (2m+ 1)ψM,m, m ∈ Z. (5.12)

Remark 5.10 The seed eigenfunctions (5.11) include the true eigenfunctions of L
plus other set of formal non square-integrable eigenfunctions, sometimes known
in the physics literature as virtual states,[51, 53]. For a correct spectral theoretic
interpretation one needs to ensure that the potential UM is regular, i.e. that HM
has no zeros in R. The set of Maya diagrams for which HM has no real zeros was
characterized (in a more general setting) independently by Krein [36] and Adler [1],
while the number of real zeros for HM was given in [19]. However, for the purpose
of this paper it is convenient stay within a purely formal setting and keep the whole
class of potentials UM , regardless of whether they have real poles or not.

The relation between dressing chains of Darboux transformations for the class
of operators (5.9) and flip operations on Maya diagrams is made explicit by the
following proposition.

Proposition 5.11 Two Maya diagrams M,M ′ are related by a flip (5.10) if and
only if their associated rational extensions UM,UM ′ are connected by a Darboux
transformation (4.21).

Proof Suppose that m /∈ M and that M ′ = M ∪ {m} is a state-deleting flip
transformation of M . The seed function for the factorization is ψM,m defined in
(5.11). Set

wM,m =
ψ ′M,m
ψM,m

= −x + H
′
M ′
HM ′

− H
′
M

HM
. (5.13)

Since

sM ′ = sM + 1,

by (5.9), we have

1

2
(UM ′ − UM) = 1+Dx

(
H ′M
HM
− H

′
M ′
HM ′

)
= −w′M,m, (5.14)

so that (4.21) holds. Conversely, suppose that M and M ′ are such that (5.14) holds
for some w = w(x). If we define

w = ψ
′

ψ
, ψ = e−x2/2HM ′

HM
,
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then ψ must be a quasi-rational seed function for UM and it follows by (5.11) of
Proposition 5.8 that thatM ′ = M ∪ {m} for somem /∈ M . The corresponding result
for state-adding Darboux transformations is done in a similar way. ��

We see thus that the class of rational extensions of the harmonic oscillator is
indexed by Maya diagrams, and that the Darboux transformations that preserve this
class can be described by flip operations on Maya diagrams. Now we are ready to
introduce the concept of cyclic Maya diagrams, and use them later to build Darboux
dressing chains on these potentials, and solutions to A(1)N -Painlevé.

5.4 Cyclic Maya Diagrams

Cyclic Maya diagrams are just the ones such that we can perform a number of flip
operations on them, and recover the same Maya diagram up to a shift, [30]. We
introduce the necessary notation and precise definitions below.

Definition 5.12 For p ∈ N let Zp denote the set of all subsets of Z having
cardinality p. For μ = {μ1, . . . , μp} ∈ Zp we now define φμ to be the multi-flip

φμ = φμ1 ◦ · · · ◦ φμp . (5.15)

Definition 5.13 We say that M is p-cyclic with shift k, or (p, k) cyclic, if there
exists a μ ∈ Zp such that

φμ(M) = M + k. (5.16)

We will say thatM is p-cyclic if it is (p, k) cyclic for some k ∈ Z.

Proposition 5.14 For Maya diagramsM,M ′ ∈M, define the set

ϒ(M,M ′) = (M \M ′) ∪ (M ′ \M) (5.17)

Then the multi-flip φμ where μ = ϒ(M,M ′) is the unique multi-flip such that
M ′ = φμ(M) and ϒ(M,M ′) M = φμ(M

′).

Intuitively, is the set of sites at whichM andM ′ differ, so it is evident that a multi-
flip on these sites will turnM intoM ′ and viceversa. As an immediate corollary, we
have the following.

Proposition 5.15 Let k be a non-zero integer. Every Maya diagram M ∈ M is
(p, k) cyclic where p is the cardinality of μ = ϒ(M,M + k).
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Exercise 12 For the following Maya diagrams, find the sequence of flip
transformations μ = {μ0, μ1, μ2} such thatM ′ = φμ(M) =M + k

k = 1 M = (∅|3, 4, 5, 6) = (−∞,−1] ∪ {3, 4, 5, 6}
k = 3 M = (3|1, 2, 4, 5, 8) = (−∞,−4] ∪ {−2,−1} ∪ {1, 2, 4, 5, 8}

In the first case, we see thatM ′ =M + 1 = (∅|0, 4, 5, 6, 7), so μ = ϒ(M,M +
1) = (0, 3, 7). The first and third flips correspond to state-deleting transformations
(�→ •�), while the second is a state-adding transformation (•�→ �). In the second
case, we have

M ′ = M + 3 = (∅|1, 2, 4, 5, 7, 8, 11) = (−∞,−1] ∪ {1, 2, 4, 5, 7, 8, 11}

so μ = ϒ(M,M + 3) = (−3, 7, 11). In this case, all three transformations are
state-deleting (�→ •�).

Now we are able to establish the link between Maya cycles and cyclic dressing
chains composed of rational extensions of the harmonic oscillator.

Theorem 5.16 Let M ∈ M be a Maya diagram, k a non-zero integer, and p
the cardinality of μ = ϒ(M,M + k). Let μ = {μ0, . . . , μp−1} be an arbitrary
enumeration of μ and set

M0 = M, Mi+1 = φμi (Mi), i = 0, 1, . . . , p − 1 (5.18)

so thatMp = M0 + k by construction. Set

wi = si x +
H ′Mi+1

HMi+1

− H
′
Mi

HMi
, i = 0, . . . , p − 1. (5.19)

αi = 2(μi − μi+1), (5.20)

where

si =
{
−1 if μi /∈ M
+1 if μi ∈ M

, (5.21)

and

μp = μ0 + k.

Then, (w0, . . . , wp−1; α0, . . . , αp−1) constitutes a rational solution to the p-cyclic
dressing chain (4.27) with shift � = 2k.



370 D. Gómez-Ullate and R. Milson

Proof The result follows from the structure of the seed eigenfunctions (5.11) with
eigenvalues given by (5.12), after applying (4.20) and (4.23). The sign of si indicates
whether the (i + 1)-th step of the chain that takes Li to Li+1 is a state-adding (+1)
or state-deleting (−1) transformation. ��

So now we know that given a Maya n-cycle, we can build an n-cyclic dressing
chain and a rational solution to the Noumi-Yamada system. But we would like to
go further and classify cyclic Maya diagrams for any given (odd) period, which we
tackle next.

Remark 5.17 Under the correspondence described by Proposition 5.16, the reversal
symmetry (4.28) manifests as the transformation

(M0, . . . ,Mp) �→ (Mp, . . . ,M0), (μ1, . . . , μp) �→ (μp, . . . , μ1), k �→ −k.

In light of the above remark, there is no loss of generality if we restrict our attention
to cyclic Maya diagrams with a positive shift k > 0.

6 Classification of Cyclic Maya Diagrams

In this section we introduce two new concepts on Maya diagrams: genus and
interlacing, which become a key ingredient in the characterization of cyclic Maya
diagrams. But before we do so, let us introduce another way to specify a Maya
diagram, which becomes more convenient for the task that we now face.

For β ∈ Z2g+1 define the Maya diagram

�(β) = (−∞, β0) ∪ [β1, β2) ∪ · · · ∪ [β2g−1, β2g) (6.1)

where

[m,n) = {j ∈ Z : m ≤ j < n}

and where β0 < β1 < · · · < β2g is the strictly increasing enumeration of β.

Proposition 6.1 Every Maya diagramM ∈M has a unique representation of the
formM = �(β) where β is a set of integers of odd cardinality 2g + 1.

Definition 6.2 We call the integer g ≥ 0 the genus of M = �(β) and
(β0, β1, . . . , β2g) the block coordinates ofM .

Remark 6.3 To motivate Definition 6.2, it is perhaps more illustrative to understand
the visual meaning of the genus of M , see the Maya diagram below. After removal
of the initial infinite •�segment and the trailing infinite � segment, a Maya diagram
consists of alternating empty � and filled •�segments of variable length. The genus g
counts the number of such pairs. The even block coordinates β2i indicate the starting
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positions of the empty segments, and the odd block coordinates β2i+1 indicated the
starting positions of the filled segments. Also, note thatM is in standard form if and
only if β0 = 0.

Exercise 13 Draw the box-ball diagram corresponding to the genus-2 Maya
diagram with block coordinates (β0, . . . , β4) = (2, 3, 5, 7, 10) and give its
Frobenius symbol.

Since β0 = 2, to the left of 2 all sites are filled and site 2 is empty. Next we have
filled block [β1, β2) = [3, 5) of size 2 and another filled block at [β3, β3) = [7, 10)
of size 3. All sites are empty to the right of β4 = 10.

......
−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11

β0 β1 β2 β3 β4

M = (−∞, β0) ∪ [β1, β2) ∪ [β3, β4)

Note that the genus is both the number of finite-size empty blocks and the number
of finite-size filled blocks.

Exercise 14 Let M = �(β) be a Maya diagram specified by its block
coordinates . Prove that

β = ϒ(M,M + 1).

Proof Observe that

M + 1 = (−∞, β0] ∪ (β1, β2] ∪ · · · ∪ (β2g−1, β2g],

where

(m, n] = {j ∈ Z : m < j ≤ n}.

It follows that

(M + 1) \M = {β0, . . . , β2g}
M \ (M + 1) = {β1, . . . , β2g−1}.

The desired conclusion follows immediately. ��
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Let Mg denote the set of Maya diagrams of genus g. The above discussion
may be summarized by saying that the mapping (14) defines a bijection � :
Z2g+1 → Mg, and that the block coordinates are precisely the flip sites required
for a translationM �→ M + 1.

The next concept we need to introduce is the interlacing and modular decompo-
sition.

Definition 6.4 Fix a k ∈ N and letM(0),M(1), . . .M(k−1) ⊂ Z be sets of integers.
We define the interlacing of these to be the set

'
(
M(0),M(1), . . .M(k−1)

)
=
k−1⋃
i=0

(kM(i) + i), (6.2)

where

kM + j = {km+ j : m ∈ M}, M ⊂ Z.

Dually, given a set of integersM ⊂ Z and a k ∈ N define the sets

M(i) = {m ∈ Z : km+ i ∈ M}, i = 0, 1, . . . , k − 1.

We will call the k-tuple of sets
(
M(0),M(1), . . .M(k−1)

)
the k-modular decomposi-

tion ofM .

The following result follows directly from the above definitions.

Proposition 6.5 We have M = '
(
M(0),M(1), . . .M(k−1)

)
if and only if(

M(0),M(1), . . .M(k−1)
)

is the k-modular decomposition ofM .

Even though the above operations of interlacing and modular decomposition
apply to general sets, they have a well defined restriction to Maya diagrams. Indeed,
it is not hard to check that if M = ' (

M(0),M(1), . . .M(k−1)
)

and M is a Maya
diagram, then M(0),M(1), . . .M(k−1) are also Maya diagrams. Conversely, if the
latter are all Maya diagrams, then so is M . Another important case concerns the
interlacing of finite sets. The definition (6.2) implies directly that if μ(i) ∈ Zpi , i =
0, 1, . . . , k − 1 then

μ = '
(
μ(0), . . . ,μ(k−1)

)

is a finite set of cardinality p = p0 + · · · + pk−1.
Visually, each of the k Maya diagrams is dilated by a factor of k, shifted by

one unit with respect to the previous one and superimposed, so the interlaced Maya
diagram incorporates the information fromM(0), . . .M(k−1) in k different modular
classes. In other words, the interlaced Maya diagram is built by copying sequentially
a filled or empty box as determined by each of the k Maya diagrams.
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Exercise 15 For the following three Maya diagrams, given by their block
coordinates:

M0 = �(0, 1, 4), M1 = �(−1, 1, 3, 5, 6), M2 = �(4)

Draw the box-square diagram of the interlaced diagramM = '(M0,M1,M2)

and give the block coordinates and the 3-block coordinates ofM .

Equipped with these notions of genus and interlacing, we are now ready to state
the main result for the classification of cyclic Maya diagrams.

M0 = 0, 1, 4), g0 = 1

−4 −3 −2 −1 0 1 2 3 4 5 6

M1 = −1, 1, 3, 5, 6), g1 = 2

M2 = 4), g2 = 0

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M 0,M1,M2) 3(0, 1, 4 1, 1, 3, 5, 6 4) 2, 1, 0, 2, 10, 11, 12, 16, 17)

Theorem 6.6 Let M = ' (
M(0),M(1), . . .M(k−1)

)
be the k-modular decomposi-

tion of a given Maya diagramM . Let gi be the genus ofM(i), i = 0, 1, . . . , k − 1.
Then,M is (p, k)-cyclic where

p = p0 + p1 + · · · + pk−1, pi = 2gi + 1. (6.3)

Proof Let β(i) = ϒ (
M(i),M(i+1)

) ∈ Zpi be the block coordinates of M(i), i =
0, 1, . . . , k − 1. Consider the interlacing μ = '

(
β(0), . . . ,β(k−1)

)
. From Exer-

cise 14 we have that,

φβ(i)

(
M(i)

)
= M(i) + 1.

so it follows that

φμ(M) = φ
'
(
β(0),...,β(k−1)

)'
(
M(0), . . . ,M(k−1)

)

= '
(
φβ(0)(M

(0)), . . . , φβ(k−1) (M
(k−1))

)
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= '
(
M(0) + 1, . . . ,M(k−1) + 1

)

= '
(
M(0), . . . ,M(k−1)

)
+ k

= M + k.

Therefore,M is (p, k) cyclic where the value of p agrees with (6.3). ��
Normally we will have a bound on the period p, and the classification problem

is to describe all possible (p, k)-cyclic Maya diagrams for all values of k > 0.
Theorem 6.6 sets the way to do this.

Corollary 6.7 For a fixed period p ∈ N, there exist p-cyclic Maya diagrams with
shifts k = p,p − 2, . . . , �p/2�, and no other positive shifts are possible.

Remark 6.8 The highest shift k = p corresponds to the interlacing of p trivial
(genus 0) Maya diagrams.

6.1 Indexing Maya p-Cycles

We now introduce a combinatorial system for describing rational solutions of
p-cyclic factorization chains. First, we require a generalized notion of block
coordinates suitable for describing p-cyclic Maya diagrams.

Definition 6.9 Let M = ' (
M(0), . . .M(k−1)

)
be a k-modular decomposition of a

(p, k) cyclic Maya diagram. For i = 0, 1, . . . , k − 1 let β(i) =
(
β
(i)
0 , . . . , β

(i)
pi−1

)
be the block coordinates ofM(i) enumerated in increasing order. In light of the fact
that

M = '
(
�(β(0)), . . . , �(β(k−1))

)
,

we will refer to the concatenated sequence

(β0, β1, . . . , βp−1) = (β(0)|β(1)| . . . |β(k−1))

=
(
β
(0)
0 , . . . , β

(0)
p0−1|β(1)0 , . . . , β

(1)
p1−1| . . . |β(k−1)

0 , . . . , β
(k−1)
pk−1−1

)

as the k-block coordinates of M . Formally, the correspondence between k-block
coordinates and Maya diagram is described by the mapping

�k : Z2g0+1 × · · · ×Z2gk−1+1 →M



Exceptional Orthogonal Polynomials and Painlevé Equations 375

with action

�k : (β(0)|β(1)| . . . |β(k−1)) �→ '
(
�(β(0)), . . . , �(β(k−1))

)

Definition 6.10 Fix a k ∈ N. For m ∈ Z let [m]k ∈ {0, 1, . . . , k − 1} denote the
residue class ofmmodulo division by k. Form,n ∈ Z say thatm �k n if and only if

[m]k < [n]k, or [m]k = [n]k and m ≤ n.

In this way, the transitive, reflexive relation �k forms a total order on Z.

Proposition 6.11 Let M be a (p, k) cyclic Maya diagram. There exists a unique
p-tuple of integers (μ0, . . . , μp−1) strictly ordered relative to �k such that

φμ(M) = M + k (6.4)

Proof Let (β0, . . . , βp−1) = (β(0)|β(1)| . . . |β(k−1)) be the k-block coordinates
ofM . Set

μ = '
(
β(0), . . . ,β(k−1)

)

so that (6.4) holds by the proof to Theorem 6.6. The desired enumeration of μ is
given by

(kβ0, . . . , kβp−1)+ (0p0, 1p1, . . . , (k − 1)pk−1)

where the exponents indicate repetition. Explicitly, (μ0, . . . , μp−1) is given by

(
kβ
(0)
0 , . . . , kβ

(0)
p0−1, kβ

(1)
0 + 1, . . . , kβ(1)p1−1 + 1, . . . , kβ(k−1)

0 + k − 1, . . . , kβ(k−1)
pk−1−1 + k − 1

)
.

��
Definition 6.12 In light of (6.4) we will refer to the just defined tuple
(μ0, μ1, . . . , μp−1) as the k-canonical flip sequence of M and refer to the tuple
(p0, p1, . . . , pk−1) as the k-signature ofM .

By Proposition 5.16 a rational solution of the p-cyclic dressing chain requires a
(p, k) cyclic Maya diagram, and an additional item data, namely a fixed ordering of
the canonical flip sequence. We will specify such ordering as

μπ = (μπ0, . . . , μπp−1)

where π = (π0, . . . , πp−1) is a permutation of (0, 1, . . . , p−1). With this notation,
the chain of Maya diagrams described in Proposition 5.16 is generated as

M0 = M, Mi+1 = φμπi (Mi), i = 0, 1, . . . , p − 1. (6.5)
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Remark 6.13 Using a translation it is possible to normalize M so that μ0 = 0.
Using a cyclic permutation and it is possible to normalize π so that πp = 0. The
net effect of these two normalizations is to ensure that M0,M1, . . . ,Mp−1 have
standard form.

Remark 6.14 In the discussion so far we have imposed the hypothesis that the
sequence of flips that produces a translation M �→ M + k does not contain any
repetitions. However, in order to obtain a full classification of rational solutions, it
will be necessary to account for degenerate chains which include multiple flips at
the same site.

To that end it is necessary to modify Definition 5.12 to allow μ to be a multi-set,3

and to allowμ0, μ1, . . . , μp−1 in (14) to be merely a non-decreasing sequence. This
has the effect of permitting � and •� segments of zero length wherever μi+1 = μi .
The �-image of such a non-decreasing sequence is not necessarily a Maya diagram
of genus g, but rather a Maya diagram whose genus is bounded above by g.

It is no longer possible to assert that there is a unique μ such that φμ(M) =
M + k, because it is possible to augment the non-degenerate μ = ϒ(M,M + k)
with an arbitrary number of pairs of flips at the same site to arrive at a degenerate
μ′ such that φμ′(M) = M + k also. The rest of the theory remains unchanged.

6.2 Rational Solutions of A4-Painlevé

In this section we will put together all the results derived above in order to describe
an effective way of labelling and constructing all the rational solutions to the
A2k-Painlevé system based on cyclic dressing chains of rational extensions of the
harmonic oscillator [10]. We conjecture that the construction described below covers
all rational solutions to such systems. As an illustrative example, we describe all
rational solutions to the A4-Painlevé system, and we furnish examples in each
signature class.

For odd p, in order to specify a Maya p-cycle, or equivalently a rational solution
of a p-cyclic dressing chain, we need to specify three items of data:

1. a signature sequence (p0, . . . , pk−1) consisting of odd positive integers that sum
to p. This sequence determines the genus of the k interlaced Maya diagrams that
give rise to a (p, k)-cyclic Maya diagramM . The possible values of k are given
by Corollary 6.7.

2. Once the signature is fixed, we need to specify the k-block coordinates

(β0, . . . , βp−1) = (β(0)| . . . |β(k−1))

3A multi-set is generalization of the concept of a set that allows for multiple instances for each of
its elements.
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where β(i) = (β
(i)
0 , . . . , β

(i)
pi ) are the block coordinates that define each

of the interlaced Maya diagrams M(i). These two items of data specify
uniquely a (p, k)-cyclic Maya diagram M , and a canonical flip sequence
μ = (β0, . . . , βp−1). The next item specifies a given p-cycle that containsM .

3. Once the k-block coordinates and canonical flip sequence μ are fixed, we still
have the freedom to choose a permutation π ∈ Sp of (0, 1, . . . , p − 1) that
specifies the actual flip sequence μπ , i.e. the order in which the flips in the
canonical flip sequence are applied to build the Maya p-cycle.

For any signature of a Maya p-cycle, we need to specify the p integers in the
canonical flip sequence, but following Remark 6.13, we can get rid of translation
invariance by setting μ0 = β(0)0 = 0, leaving only p − 1 free integers. Moreover,
we can restrict ourselves to permutations such that πp = 0 in order to remove the
invariance under cyclic permutations. The remaining number of degrees of freedom
is p − 1, which (perhaps not surprisingly) coincides with the number of generators
of the symmetry group A(1)p−1. This is a strong indication that the class described
above captures a generic orbit of a seed solution under the action of the symmetry
group.

We now illustrate the general theory by describing the rational solutions of the
A
(1)
4 - Painlevé system [17, 44], whose equations are given by

f ′0 + f0(f1 − f2 + f3 − f4) = α0,

f ′1 + f1(f2 − f3 + f4 − f0) = α1,

f ′2 + f2(f3 − f4 + f0 − f1) = α2, (6.6)

f ′3 + f3(f4 − f0 + f1 − f2) = α3,

f ′4 + f4(f0 − f1 + f2 − f3) = α4,

with normalization

f0 + f1 + f2 + f3 + f4 = z.

Theorem 6.15 Rational solutions of the A(1)4 -Painlevé system (6.6) correspond
to chains of 5-cyclic Maya diagrams belonging to one of the following signature
classes:

(5), (3, 1, 1), (1, 3, 1), (1, 1, 3), (1, 1, 1, 1, 1).

With the normalization π4 = 0 and μ0 = 0, each rational solution may be uniquely
labeled by one of the above signatures, a 4-tuple of arbitrary non-negative integers
(n1, n2, n3, n4), and a permutation (π0, π1, π2, π3) of (1, 2, 3, 4). For each of the
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above signatures, the corresponding k-block coordinates of the initial 5-cyclic Maya
diagram are then given by

k = 1 (5) (0, n1, n1 + n2, n1 + n2 + n3, n1 + n2 + n3 + n4)

k = 3 (3, 1, 1) (0, n1, n1 + n2|n3|n4)

k = 3 (1, 3, 1) (0|n1, n1 + n2, n1 + n2 + n3|n4)

k = 3 (1, 1, 3) (0|n1|n2, n2 + n3, n2 + n3 + n4)

k = 5 (1, 1, 1, 1, 1) (0|n1|n2|n3|n4)

We show specific examples with shifts k = 1, 3 and 5 and signatures (5), (1, 1, 3)
and (1, 1, 1, 1, 1).

Exercise 16 Construct a (5, 1)-cyclic Maya diagram in the signature class
(5) with (n1, n2, n3, n4) = (2, 3, 1, 1) and permutation (34210). Build the
corresponding set of rational solutions to A4-Painlevé.

The first Maya diagram in the cycle is M0 = �(0, 2, 5, 6, 7), depicted in
the first row of Fig. 2. The canonical flip sequence is μ = (0, 2, 5, 6, 7). The
permutation (34210) gives the chain of Maya diagrams shown in Fig. 2. Note that
the permutation specifies the sequence of block coordinates that get shifted by one
at each step of the cycle. This type of solutions with signature (5) were already
studied in [17], and they are based on a genus 2 generalization of the generalized
Hermite polynomials that appear in the solution of PIV (A2-Painlevé).

We shall now provide the explicit construction of the rational solution to the A4-
Painlevé system (6.6), by using Propositions 5.16 and 4.4. The permutation π =
(34210) on the canonical sequence μ = (0, 2, 5, 6, 7) produces the flip sequence
μπ = (6, 7, 5, 2, 0), so that the values of the αi parameters given by (5.20) become
(α0, α1, α2, α3, α4) = (−2, 4, 6, 4,−14). The pseudo-Wronskians corresponding

M0 = Ξ(0, 2, 5, 6, 7)
M1 = Ξ(0, 2, 5, 7, 7)
M2 = Ξ(0, 2, 5, 7, 8)
M3 = Ξ(0, 2, 6, 7, 8)
M4 = Ξ(0, 3, 6, 7, 8)
M5 = Ξ(1, 3, 6, 7, 8) = M0 + 1

1 0 1 2 3 4 5 6 7 8−

Fig. 2 A Maya 5-cycle with shift k = 1 for the choice (n1, n2, n3, n4) = (2, 3, 1, 1) and
permutation π = (34210)
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to each Maya diagram in the cycle are ordinary Wronskians, which will always be
the case with the normalization imposed in Remark 6.13. They read (see Fig. 2):

HM0(z) = Wr(H2,H3,H4,H6)

HM1(z) = Wr(H2,H3,H4)

HM2(z) = Wr(H2,H3,H4,H7)

HM3(z) = Wr(H2,H3,H4,H5,H7)

HM4(z) = Wr(H3,H4,H5,H7)

where Hn = Hn(z) is the n-th Hermite polynomial. The rational solution to the
dressing chain is given by the tuple (w0, w1, w2, w3, w4|α0, α1, α2, α3, α4), where
αi and wi are given by (5.19) and (5.20) as:

w0(z) = z+ d

dz

[
logHM1(z)− logHM0(z)

]
, a0 = −2,

w1(z) = −z+ d

dz

[
logHM2(z)− logHM1(z)

]
, a1 = 4,

w2(z) = −z+ d

dz

[
logHM3(z)− logHM2(z)

]
, a2 = 6,

w3(z) = z+ d

dz

[
logHM4(z)− logHM3(z)

]
, a3 = 4,

w4(z) = −z+ d

dz

[
logHM0(z)− logHM4(z)

]
, a4 = −14.

Finally, Proposition 5.16 implies that the corresponding rational solution to the A4-
Painlevé system (4.15) is given by the tuple (f0, f1, f2, f3, f4|α0, α1, α2, α3, α4),
where

f0(z) = d

dz

[
logHM2(c1z)− logHM0(c1z)

]
, α0 = 1,

f1(z) = z+ d

dz

[
logHM3(c1z)− logHM1(c1z)

]
, α1 = −2,

f2(z) = d

dz

[
logHM4(c1z)− logHM2(c1z)

]
, α2 = −3,

f3(z) = d

dz

[
logHM0(c1z)− logHM3(c1z)

]
, α3 = −2,

f4(z) = d

dz

[
logHM1(c1z)− logHM4(c1z)

]
, α4 = 7.

with c2
1 = − 1

2 .
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Fig. 3 A degenerate Maya
5-cycle with k = 1 for the
choice
(n1, n2, n3, n4) = (1, 1, 2, 0)
and permutation π = (42130)

M0 = Ξ(0, 1, 2, 4, 4)
M1 = Ξ(0, 1, 2, 4, 5)
M2 = Ξ(0, 1, 3, 4, 5)
M3 = Ξ(0, 2, 3, 4, 5)
M4 = Ξ(0, 2, 3, 5, 5)
M5 = Ξ(1, 2, 3, 5, 5) = M0 + 1

1 0 1 2 3 4 5−

Example 6.16 To illustrate the existence of degenerate Maya cycles, we construct
one such degenerate example belonging to the (5) signature class, by choosing
(n1, n2, n3, n4) = (1, 1, 2, 0). The presence of n4 = 0 means that the first Maya
diagram has genus 1 instead of the generic genus 2, with block coordinates given
by M0 = �(0, 1, 2, 4, 4). The canonical flip sequence μ = (0, 1, 2, 4, 4) contains
two flips at the same site, so it is not unique. Choosing the permutation (42130)
produces the chain of Maya diagrams shown in Fig. 3. The explicit construction of
the rational solutions follows the same steps as in the previous example, and we
shall omit it here. It is worth noting, however, that due to the degenerate character
of the chain, three linear combinations of f0, . . . , f4 will provide a solution to the
lower rankA2-Painlevé. If the two flips at the same site are performed consecutively
in the cycle, the embedding ofA(1)2 intoA(1)4 is trivial and corresponds to setting two
consecutive fi to zero. This is not the case in this example, as the flip sequence is
μπ = (4, 2, 1, 4, 0), which produces a non-trivial embedding.

Exercise 17 Construct a (5, 3)-cyclic Maya diagram in the signature class
(1, 1, 3) with (n1, n2, n3, n4) = (3, 1, 1, 2) and permutation (41230). Show
the explicit form of the rational solutions to the dressing chain and A4-
Painlevé.

The first Maya diagram has 3-block coordinates (0|3|1, 2, 4) and the canonical
flip sequence is given by μ = '(0|3|1, 2, 4) = (0, 10, 5, 8, 14). The permutation
(41230) gives the chain of Maya diagrams shown in Fig. 4. Note that, as in
Example 16, the permutation specifies the order in which the 3-block coordinates
are shifted by +1 in the subsequent steps of the cycle. This type of solutions in the
signature class (1, 1, 3) were not given in [17], and they are new to the best of our
knowledge.

We proceed to build the explicit rational solution to the A4-Painlevé system
(6.6). In this case, the permutation π = (41230) on the canonical sequence
μ = (0, 10, 5, 8, 14) produces the flip sequence μπ = (14, 10, 5, 8, 0), so that
the values of the αi parameters given by (5.20) become (α0, α1, α2, α3, α4) =
(8, 10,−6, 16,−34). The pseudo-Wronskians corresponding to each Maya diagram
in the cycle are ordinary Wronskians, which will always be the case with the
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M0 = Ξ3 (0|3|1, 2, 4)
M1 = Ξ3 (0|3|1, 2, 5)
M2 = Ξ3 (0|4|1, 2, 5)
M3 = Ξ3 (0|4|2, 2, 5)
M4 = Ξ3 (0|4|2, 3, 5)
M5 = Ξ3 (1|4|2, 3, 5) = M0 + 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 4 A Maya 5-cycle with shift k = 3 for the choice (n1, n2, n3, n4) = (3, 1, 1, 2) and
permutation π = (41230)

normalization imposed in Remark 6.13. They read (see Fig. 4):

HM0(z) = Wr(H1,H2,H4,H7,H8,H11)

HM1(z) = Wr(H1,H2,H4,H7,H8,H11,H14)

HM2(z) = Wr(H1,H2,H4,H7,H8,H10,H11,H14)

HM3(z) = Wr(H1,H2,H4,H5,H7,H8,H10,H11,H14)

HM4(z) = Wr(H1,H2,H4,H5,H7,H10,H11,H14)

where Hn = Hn(z) is the n-th Hermite polynomial. The rational solution to the
dressing chain is given by the tuple (w0, w1, w2, w3, w4|α0, α1, α2, α3, α4), where
αi and wi are given by (5.19) and (5.20) as:

w0(z) = −z+ d

dz

[
logHM1(z)− logHM0(z)

]
, a0 = 8,

w1(z) = −z+ d

dz

[
logHM2(z)− logHM1(z)

]
, a1 = 10,

w2(z) = −z+ d

dz

[
logHM3(z)− logHM2(z)

]
, a2 = −6,

w3(z) = z+ d

dz

[
logHM4(z)− logHM3(z)

]
, a3 = 16,

w4(z) = −z+ d

dz

[
logHM0(z)− logHM4(z)

]
, a4 = −34.

Finally, Proposition 4.4 implies that the corresponding rational solution to the A4-
Painlevé system (4.15) is given by the tuple (f0, f1, f2, f3, f4|α0, α1, α2, α3, α4),
where

f0(z) = 1
3z+

d

dz

[
logHM2(c2z)− logHM0(c2z)

]
, α0 = − 4

3 ,

f1(z) = 1
3z+

d

dz

[
logHM3(c2z)− logHM1(c2z)

]
, α1 = − 5

3 ,
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f2(z) = d

dz

[
logHM4(c2z)− logHM2(c2z)

]
, α2 = 1,

f3(z) = d

dz

[
logHM0(c2z)− logHM3(c2z)

]
, α3 = − 8

3 ,

f4(z) = 1
3z+

d

dz

[
logHM1(c2z)− logHM4(c2z)

]
, α4 = 17

3 .

with c2
2 = − 1

6 .

Exercise 18 Construct a (5, 5)-cyclic Maya diagram in the signature class
(1, 1, 1, 1, 1) with (n1, n2, n3, n4) = (2, 3, 0, 1) and permutation (32410).
Show the explicit form of the rational solutions to the dressing chain and A4-
Painlevé.

With the above choice, the first Maya diagram o the cycle has 5-block coordinates
(0|2|3|0|1), and the canonical flip sequence is given by μ = '(0|2|3|0|1) =
(0, 11, 17, 3, 9). The permutation (32410) gives the chain of Maya diagrams shown
in Fig. 5. Note that, as it happens in the previous examples, the permutation specifies
the order in which the 5-block coordinates are shifted by +1 in the subsequent steps
of the cycle. This type of solutions with signature (1, 1, 1, 1, 1)were already studied
in [17], and they are based on a generalization of the Okamoto polynomials that
appear in the solution of PIV (A2-Painlevé).

We proceed to build the explicit rational solution to the A4-Painlevé system
(6.6). In this case, the permutation π = (32410) on the canonical sequence
μ = (0, 11, 17, 3, 9) produces the flip sequence μπ = (3, 17, 9, 11, 0), so that
the values of the αi parameters given by (5.20) become (α0, α1, α2, α3, α4) =
(−28, 16,−4, 22,−16). The pseudo-Wronskians corresponding to each Maya
diagram in the cycle are ordinary Wronskians, which will always be the case with

Fig. 5 A Maya 5-cycle with shift k = 5 for the choice (n1, n2, n3, n4) = (2, 3, 0, 1) and
permutation π = (32410)
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the normalization imposed in Remark 6.13. They read:

HM0(z) = Wr(H1,H2,H4,H6,H7,H12)

HM1(z) = Wr(H1,H2,H3,H4,H6,H7,H12)

HM2(z) = Wr(H1,H2,H3,H4,H6,H7,H12,H17)

HM3(z) = Wr(H1,H2,H3,H4,H6,H7,H9,H12,H17)

HM4(z) = Wr(H1,H2,H3,H4,H6,H7,H9,H11,H12,H17)

where Hn = Hn(z) is the n-th Hermite polynomial. The rational solution to the
dressing chain is given by the tuple (w0, w1, w2, w3, w4|α0, α1, α2, α3, α4), where
αi and wi are given by (5.19) and (5.20) as:

w0(z) = −z+ d

dz

[
logHM1(z)− logHM0(z)

]
, a0 = −28

w1(z) = −z+ d

dz

[
logHM2(z)− logHM1(z)

]
, a1 = 16,

w2(z) = −z+ d

dz

[
logHM3(z)− logHM2(z)

]
, a2 = −4,

w3(z) = −z+ d

dz

[
logHM4(z)− logHM3(z)

]
, a3 = 22

w4(z) = −z+ d

dz

[
logHM0(z)− logHM4(z)

]
, a4 = −16.

Finally, Proposition 5.16 implies that the corresponding rational solution to the A4-
Painlevé system (4.15) is given by the tuple (f0, f1, f2, f3, f4|α0, α1, α2, α3, α4),
where

f0(z) = 1
5z+

d

dz

[
logHM2(c3z)− logHM0(c3z)

]
, α0 = 14

5 ,

f1(z) = 1
5z+

d

dz

[
logHM3(c3z)− logHM1(c3z)

]
, α1 = − 8

5 ,

f2(z) = 1
5z+

d

dz

[
logHM4(c3z)− logHM2(c3z)

]
, α2 = 2

5 ,

f3(z) = 1
5z+

d

dz

[
logHM0(c3z)− logHM3(c3z)

]
, α3 = − 11

5 ,

f4(z) = 1
5z+

d

dz

[
logHM1(c3z)− logHM4(c3z)

]
, α4 = 8

5 .

with c2
3 = − 1

10 .
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(R, p, q)-Rogers–Szegö and Hermite
Polynomials, and Induced Deformed
Quantum Algebras
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Abstract Deformed quantum algebras, namely the q-deformed algebras and their
extensions to (p, q)-deformed algebras, continue to attract much attention. One of
the main reasons is that these topics represent a meeting point of nowadays fast
developing areas in mathematics and physics like the theory of quantum orthogonal
polynomials and special functions, quantum groups, integrable systems, quantum
and conformal field theories and statistics.

This contribution paper aims at characterizing the (R, p, q)-Rogers–Szegö
polynomials, and the (R, p, q)-deformed difference equation giving rise to raising
and lowering operators. These polynomials induce some realizations of generalized
deformed quantum algebras, (called (R, p, q)-deformed quantum algebras), which
are here explicitly constructed. The study of continuous (R, p, q)-Hermite polyno-
mials is also performed. Known particular cases are recovered.
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1 Introduction

Rogers–Szegö polynomials and their generalizations have been attracted a great
attention since the end of the nineteenth century, motivated by their importance in
the description of physical phenomena. Indeed, they appear as possible solutions of
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the q-harmonic oscillator, and can be used as different bases states for describing
physical systems for which the free parameter (the deformation parameter of the
algebra), ranging from 0 to 1, can account, for instance, for squeezing effects.
Furthermore, these polynomials are orthonormalized on the circle, and can therefore
be used in connection with angular representations of the harmonic oscillator.
Moreover, the q-oscillator algebra plays a central role in the physical applications
of quantum groups. Deformed quantum algebras, namely the q-deformed algebras
[21, 24, 25] and their extensions to (p, q)-deformed algebras [5, 6], also continue
to attract much attention. One of the main reasons is that these topics represent
a meeting point of nowadays fast developing areas in mathematics and physics
like the theory of quantum orthogonal polynomials and special functions, quantum
groups, integrable systems and quantum and conformal field theories and statistics.
Indeed, since the work of Jimbo [21], these fields have known profound interesting
developments which can be partially found, for instance, in the books by Chari and
Pressley [7], Klimyk and Schumudgen [22], Ismail Mourad [16] and in references
therein.

The two-parameter quantum algebra, Up, q(gl(2)), was first introduced in Ref.
[6] in view to generalize or/and unify a series of q-oscillator algebra variants,
known in the earlier physics and mathematics literature on the representation
theory of single-parameter quantum algebras. Then flourish investigations in the
same direction, among which the work of Burban and Klimyk [5] on represen-
tations of two-parameter quantum groups and models of two parameter quantum
algebra Up,q(su1,1) and (p, q)-deformed oscillator algebra. Almost simultane-
ously, Gelfand et al.[12] introduced the (r, s)-hypergeometric series satisfying two
parameter difference equation, including r-and s-shift operators. These new series
reproduces the Burban and Klimyk’s P,Q-hypergeometric functions. The (p, q)-
deformation rapidly found applications in physics and mathematical physics as
described for instance in [9, 13, 15].

Upon recalling a technique of constructing explicit realizations of raising and
lowering operators that satisfy an algebra akin to the usual harmonic oscillator
algebra, through the use of the three-term recursion relation and the differentiation
expression of Hermite polynomials, Galetti [10] has shown that a similar procedure
can be carried out in the case of the three-term recursion relation for Rogers–
Szegö and Stieltjes–Wigert polynomials and the Jackson q-derivative [19, 20]. This
technique furnished new realizations of the q-deformed algebra associated with
the q-deformed harmonic oscillator, which obey, well known and spread in the
literature, commutation relations.

In the same vein, after recalling the connection between the Rogers–Szegö
polynomials and the q-oscillator, Jagannathan and Sridhar [17] have defined a
(p, q)-Rogers–Szegö polynomials, shown that they are connected with the (p, q)-
deformed oscillator associated with the Jagannathan-Srinavasa (p, q)-numbers [18]
and proposed a new realization of this algebra. In a previous paper [14], we have
proposed a theoretical framework for the (p, q)-deformed states’ generalization and
provided a generalized deformed quantum algebra, based on a work by Odzijewicz
[24] on a generalization of q-deformed states in which the realizations of creation
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and annihilation operators are given by multiplication by z and the action of the
deformed derivative ∂R,p,q on the space of analytic functions defined on the disc.

The present contribution, after recalling the known main results, published in
the literature, on classical Rogers–Szegö and Hermite polynomials, resumes the
works on their generalizations performed in our group during the recent years
[4]. Specifically, we develop a realization of our generalized deformed quantum
algebras, and give an explicit definition of the (R, p, q)-Rogers–Szegö and Hermite
polynomials, together with their three-term recursion relation and the deformed
difference equation giving rise to the creation and annihilation operators.

The paper is organized as follows. In Sect. 2, we present a brief review of
known results on deformed numbers, deformed binomial coefficients, Hermite
polynomials and Rogers-Szegö. The calculus pertaining to the definition and the
computation of the three-term recursion relation of polynomials are exposed. In
Sect. 3, after recalling the procedure of constructing realizations of the harmonic and
q-deformed harmonic oscillators, we proceed to realizations of (R, p, q)-deformed
quantum algebras through the (R, p, q)-difference equation and the three-term
recursion relation between (R, p, q)-Rogers–Szegö polynomials. The key result of
this section is Theorem 3.3 giving the method of computation of relevant quantities.
Section 4 is devoted to the study of the particular cases. Section 5 is dedicated
to the study of the continuous (R, p, q)-Hermite polynomials. We then give their
definition and recursion relation. Finally, Sect. 6 ends with the concluding remarks.

2 Preliminaries

Let us recall some concepts related to the theory of q-series.

Definition 2.1 Let q ∈ [0, 1). Then, for a non negative integer n, the q-deformed
number is defined as follows:

[n]q := 1− qn
1− q = 1+ q + . . .+ qn−1, with [0]q := 0,

which is called a q-number, or basic number.

Proposition 2.2 Let n and m be two nonnegative integers. Then, the following
relations hold:

[−n]q = −q−n[n]q
and

[n+m]q = [n]q + qn[m]q
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Proof In fact

[−n]q := 1− q−n
1− q =

qn−1
qn

1− q = −q
n[n]q,

[n+m]q := 1− qn+m
1− q

= 1− qn + qn − qn+m
1− q

= 1− qn
1− q + q

n

(
1− qm
1− q

)

= [n]q + qn[m]q.

��
Definition 2.3 The q-deformed factorial number is defined as

[n]q ! :=
n∏
κ=1

[n]q,

where n is an integer.

Definition 2.4 The q-Pochhammer symbol, also called q-shifted factorial, is
defined by

(z; q)n :=
n−1∏
j=0

(
1− zqj

)
, n = 1, 2, . . . (2.1)

and

(z; q)∞ :=
∞∏
j=0

(
1− zqj

)
.

with

(z; q)0 := 1.

Furthermore,

(z; q)n =
(z; q)∞
(zqn; q)∞

.
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The multiple q-shifted factorial is expressed as:

(z1, z2, . . . , zm; q)n :=
m∏
j=1

(
zj ; q

)
n
, n = 1, 2, . . .

and

(z1, z2, . . . , zm; q)∞ :=
m∏
j=1

(
zj ; q

)
∞ .

Definition 2.5 The q-binomial coefficients are defined by

[
n

k

]
q

=
[
n

n− k
]
q

= (q; q)n
(q; q)k(q; q)n−k =

∏k−1
j=0

(
1− qn−j )∏k−1

j=0

(
1− qk−j) .

The q-Pochhammer symbol can also be defined as follows:

(z, q)n :=
n∑
j=0

(−1)j
[
n

j

]
q

q
j(j−1)

2 zj . (2.2)

It is worth mentioning some useful formulas for the q-shifted factorials, given in
the following relations. The reader can refer to [11, 23] for more details.

(z; q)n+k = (z; q)n(zqn; q)k,
(zqn; q)k
(zqk; q)n =

(z; q)k
(z; q)n ,

(zqk; q)n−k = (z; q)n
(z; q)k , k = 0, 1, 2, · · · , n,

(z; q)n = (z−1q1−n; q)n(−z)nq(n2), q �= 0,

(zq−n; q)n = (z−1q; q)n(−z)nq−n−(n2), z �= 0,

(z; q)n−k = (z; q)n
(z−1q1−n; q)k

(
−q
z

)k
q(
k
2)−nk, z �= 0, k ∈ N,

(q−n; q)k = (q; q)n
(q; q)n−k (−1)kq(

k
2)−nk, k ∈ N

(z; q)2n = (z, q2)n(zq; q2)n,

(z2; q2)2n = (z, q)n(−z; q)n,
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(z; q)∞ = (z, q2)∞(zq; q2)∞, 0 < |q| < 1,

(z2; q2)∞ = (z, q)∞(−z; q)∞, 0 < |q| < 1.

Proposition 2.6 We have

[
n

k

]
q

= 1− qn
1− qk

[
n− 1
k − 1

]
q

.

Proof Indeed,

[
n

k

]
q

= [n]q !
[k]q ![n− k]q ! =

[n]q [n− 1]q !
[k]q[k − 1]q ![n− k]q ! ⇔ [k]q

[
n

k

]
q

= [n]q
[
n− 1
k − 1

]
q

⇔(1− qk)
[
n

k

]
q

= (1 − qn)
[
n− 1
k − 1

]
q

⇔
[
n

k

]
q

= 1− qn
1− qk

[
n− 1
k − 1

]
q

.

��
Definition 2.7 Let n and q be real numbers such that 0 < q < 1. Then, the q-
factorial of n of order k is defined by

[n]k,q = [n]q [n− 1]q · · · [n− k + 1]q, k ∈ N\{0}. (2.3)

Proposition 2.8 The q-binomial coefficients satisfy the following two recursion
relations:

[
n

k

]
q

=
[
n− 1
k

]
q

+ qn−k
[
n− 1
k − 1

]
q

(2.4)

and

[
n

k

]
q

= qk
[
n− 1
k

]
q

+
[
n− 1
k − 1

]
q

(2.5)

Proof From the relation (2.3), we get

[n]k,q = [n]q [n− 1]k−1,q

and using [n]q = [n− k]q + qn−k[k], we obtain the recurrence relation

[n]k,q = [n− 1]k,q + qn−k[k]q[n− 1]k−1,q
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with initial condition [n]0,q = 1. Dividing both members of the above equation by
[k]q ! and using

[
n

k

]
q

= [n]k,q[k]q !

the relation (2.4) is deduced. Similarly, using

[n]q = [k]q + qk [n− k]q
we obtain Eq. (2.5). ��
Proposition 2.9 ([26]) If A and B are two q-commuting linear operators on
C[x, s], i.e. satisfying BA = qAB, then

(A+ B)n =
n∑
k=0

[
n

k

]
q

Ak Bn−k. (2.6)

Proof By induction on n. For n = 1, we get

(A+ B)1 = A+ B

=
[

1
0

]
q

A0 B1 +
[

1
1

]
q

A1 B0

=
1∑
k=0

[
1
k

]
q

Ak B1−k.

Thus, the relation (2.6) holds for n = 1.
We assume that the relation (2.6) holds for n ≤ m, and let us prove it for n =

m+ 1.We have

(A+ B)m+1 = (A+ B) (A+ B)m

= (A+ B)
∑
k

[
m

k

]
q

AkBm−k

=
∑
k

([
m

k − 1

]
q

+ qk
[
m

k

]
q

)
AkBm−k

=
∑
k

[
m+ 1
k

]
q

AkBm+1−k.

��
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The q-exponential series can be expressed as

expq (z) :=
∑
n≥0

zn

[n]q ! .

Definition 2.10 The q-Jackson derivative ∂q is defined by:

(∂qf )(z) := f (z)− f (qz)
(1− q)z , z �= 0

and

(∂qf )(0) = f ′(0)

provided that f is differentiable at 0.

Similarly, we define the q−1-derivative as

(∂q−1f )(z) := f (z)− f (q
−1z)

(1− q−1)z
.

The limit as q approaches 1 is the usual derivative

lim
q→1

(∂qf )(z) = df (z)
dz

if f is differentiable at z.
For f (z) = zn, we have

∂qz
n = z

n − qnzn
(1− q)z = [n]q z

n−1.

The formulae for the q-difference of a sum, a product and a quotient of functions f
and g are given by

∂q(f (z)+ g(z)) = ∂qf (z)+ ∂qg(z),

∂q(f (z)g(z)) = g(z)∂qf (z)+ f (qz)∂qg(z),

and

∂q

(
f (z)

g(z)

)
= g(z)∂qf (z)− f (z)∂qg(z)

g(z)g(qz)
, g(z)g(qz) �= 0.
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2.1 Hermite Polynomials

Let us briefly recall the properties of the Hermite polynomials. From the theory
of classical polynomials, the Hermite polynomials Hn obey a three-term recursion
relation:

Hn+1(z) = 2zHn(z)− 2nHn−1(z), H0(z) := 1, (2.7)

with a differentiation relation

∂zHn(z) = 2nHn−1(z). (2.8)

Introducing the relation (2.8) into (2.7), we get

Hn+1(z) =
(

2z− ∂z
)
Hn(z)

from which we deduce the raising operator

R = 2z− ∂z
such that the set of Hermite polynomials can be generated by successive application
of this operator to the first polynomial, viz., H0(z) = 1,

RnH0(z) = Hn(z),

which can immediately be checked by induction. Indeed, we consider

RHp(z) = Hp+1(z).

For p = 0,

RH0(z) = H1(z)

For p = 1,

RH1(z) = H2(z).

For p = 2,

RH2(z) = H3(z).

For p = n− 1,

RHn−1(z) = Hn(z).
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Multiplying member by member, we get

RnH0(z) = Hn(z).

From the relation (2.8), we derive the lowering operator L acting as

1

2
∂zHn(z) := LHn(z) = nHn−1(z).

These operators satisfy the canonical commutation relation

[L,R] = 1.

In fact,

[L,R]Hn(z) = LRHn(z)−RLHn(z) = 1

2
∂zHn+1(z)−RnHn−1(z)

= (n+ 1)Hn(z)− nHn(z) = Hn(z).

The number operator is expressed under the form

N = RL

such that

N Hn(z) = RLHn(z) = nHn(z).

From the above equation, we deduce

[
(2z− ∂z)(1

2
∂z)− n

]
Hn(z) = 0,

or, equivalently,

[
∂2
z − 2z ∂z + 2n

]
Hn(z) = 0,

which is the form of the second order differential equation for the Hermite
polynomials. The operatorsN, R and L obey the standard commutation relations

[N,R] = R

and

[N,L] = −L.
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In fact,

[N,R] = [RL,R] = R[L,R] = R

and

[N,L] = [RL,L] = −[R,L]L = −L.
Thus, we obtained the raising, lowering and number operators from the two basic
relations, (namely, the three-term recursion relation and the differentiation relation),
satisfied by the Hermite polynomials, such that these operators satisfy the above
commutation relations.

On the other hand, if one considers the usual Fock Hilbert space spanned by the
vectors |n〉, generated from the vacuum state |0〉 by the raising operator R, then
together with the lowering operator L, the following relations hold:

LR−RL = 1, 〈0|0〉 = 1, |n〉 = Rn|0〉, L|0〉 = 0.

In particular, the next expressions, established using the previous equations, are in
order:

R|n〉 = |n+ 1〉, L|n〉 = |n− 1〉, 〈m|n〉 = n!δmn.

Let us now mention another relevant construction of the above operators for the
harmonic oscillator, very popular in the literature [17], which is also useful for our
development in the sequel. We consider the sequence of polynomials {ϕn(z) |n =
0, 1, 2, · · · },

ϕn(z) = 1√
n!hn(z),

where

hn(z) = (1+ z)n =
n∑
k=0

(
n

k

)
zk,

obeying the relations

d

dz
ϕn(z) = √nϕn−1(z),

(1+ z)ϕn(z) =
√
n+ 1ϕn+1(z), (2.9)

(1+ z) d
dz
ϕn(z) = nϕn(z), (2.10)

d

dz
((1+ z)ϕn(z)) = (n+ 1)ϕn(z).
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Here Eqs. (2.9) and (2.10) are the recursion relation and the differential equation
for polynomials ϕn(z), respectively. Thus, the set {ϕn(z) |n = 0, 1, 2, · · · } forms a
basis for the following Bargman–Fock realization of the harmonic oscillator:

R = (1+ z), L = d

dz
, N = (1+ z) d

dz
.

2.2 The Rogers–Szegö Polynomials

The Rogers–Szegö polynomials are defined as [1, 27]

Hn(z; q) =
n∑
k=0

[
n

k

]
q

zk n = 0, 1, 2, . . . (2.11)

Mutltiplying this by tn/(q; q)n, and summing over n lead to the generating function

∞∑
n=1

Hn(z; q) tn

(q; q)n =
1

(t, tz; q)∞
.

The Rogers–Szegö polynomials satisfy a three-term recursion relation

Hn+1(z; q) = (1+ z)Hn(z; q)− z(1− qn)Hn−1(z; q) (2.12)

as well as the q-difference equation

∂qHn(z; q) = Hn(z; q)−Hn(qz; q)
(1− q)z = �Hn(z; q)

(1− q)z = [n]qHn−1(z; q), (2.13)

since the operator ∂q acts nicely on the H ′ns. This shows that ∂q acts as a lowering
operator.

In the limit case q → 1, the Rogers–Szegö polynomial of degree n (n =
0, 1, 2, . . .) well converges to

hn(z) =
n∑
k=0

(
n

k

)
zn

as required.
Another important property of the Rogers–Szegö polynomials is their orthogo-

nality on the circle [10], when the Jacobi ω(y; q) function is taken as the measure
function [28]. In order to explicitly verify this, we should perform a proper choice
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for the variable y, y = −q− 1
2 eiθ such that

Hn(y; q) = Hn
(
−q− 1

2 eiθ ; q
)
.

In this form, the orthonormalization integral is written as

Imn(q) =
∫ π

−π
Hm

(
−q− 1

2 eiθ ; q
)
Hn

(
−q− 1

2 e−iθ ; q
)
ω(θ; q) dθ

2π

with

ω(θ; q) =
∞∑
−∞
q
m2
2 eimθ =

∞∑
−∞
e−μm2+imθ ,

where μ = −ln(q)/2, which is the measure function. Using the definition of the
Rogers–Szegö polynomials, we see that

Imn(q) =
m∑
r=0

n∑
s=0

(−1)r+s
[
m

r

]
q

[
n

s

]
q

q
r(r+1)

2 q
s(s+1)

2 q−rs.

Exploiting (2.1) and (2.2), this becomes

Imn(q) =
m∑
r=0

(−1)r
[
m

r

]
q

q
r(r+1)

2

n−1∏
s=0

(
1− qs−r) . (2.14)

Now, without any loss of generality, we can assume that m ≤ n (the inverse could
also be considered). There are two situations to be discussed:

1. For m < n, it is evident that the product on the rhs of (2.14) will vanish for all r
(the rhs is constituted of a sum of products. Each summand has a product of terms
where one of them will give (1 − qr−r ) = 0, since, as m < n, s will necessarily
assume the value r). Therefore, the sum only has vanishing summands, since
there will always be a zero factor in the products.

Thus

Imn = 0 f or m < n. (2.15)

2. For m = n, there will be only one term to be considered, namely r = m, that
will give

Inn(q) = (−1)nq
n(n+1)

2

n−1∏
s=0

(
1− qs−n) .
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To calculate this expression, let us explicitly write the product

Inn(q) = (−1)nq
n(n+1)

2

(
1− 1

qn

)(
1− 1

qn−1

)
. . .

(
1− 1

q

)

= (1− q
n)(1− qn−1) . . . (1− q)

qn

which, upon identifying the numerator, gives

Inn(q) = (q; q)n
qn

.

This contribution together with (2.15) gives the final result

Imn = q−n(q; q)nδnm.

2.3 Second Order q-Differential Equation for Rogers–Szegö
Polynomials

Let us derived the second order q-differential equation obeyed by the Rogers–Szegö
polynomials [10].

The q-generalization of the harmonic oscillator algebra is introduced in [2, 3].
Let us consider the Fock-Hilbert space Hq, where q-is a parameter. This space is
spanned by the vectors |n〉, which are generated from the vacuum |0〉 by the action
of the raising operator R.

We have the relation

LR− qRL = 1. (2.16)

Feinsilver [8] gave an equivalent of the relation (2.16),

LR−RL = qN,

where N is a usual number operator. The following relations hold:

〈0|0〉 = 1, |n〉 = Rn|0〉, L|0〉.

R|n〉 = |n+ 1〉, L|n〉 = [n]|n− 1〉, 〈m|n〉 = [n]δmn.
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The vectors 1
[n]! |n − 1〉 form an orthonormal basis set, and the Fock-Hilbert space

Hq consists of all vectors |n〉 =∑∞
n=0 un|n〉, where un is complex such that

〈m|n〉 =
∞∑
n=0

|un|2[n]!

is finite.
Let us now obtain the corresponding raising, lowering and q-number operators,

and look for the corresponding commutation relations. Define the difference
operator by

�Hn(z, q) = Hn(z, q)−Hn(qz, q).

From the direct use of the relation (2.11), we obtain

�Hn(z, q) = (1− qn) z�Hn−1(z, q). (2.17)

In fact, since the q-derivative is given by

∂qHn(z, q) = [n]q Hn−1(z, q),

or, equivalently, by

�Hn(z, q)

z(1− q) = [n]q Hn−1(z, q),

hence, one can deduce

�Hn(z, q) = (1− qn) z�Hn−1(z, q).

If we substitute the above expression forHn−1(z; q) in (2.12), we end up with

Hn+1(z, q) =
[
(1+ z)−�]

Hn(z, q). (2.18)

Indeed

Hn+1(z; q) = (1+ z)Hn(z; q)− z(1− qn)Hn−1(z; q)
= (1+ z)Hn(z; q)−�Hn(z, q)
= [
(1+ z)−�]

Hn(z, q).
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The above relation can be understood as the action of a raising operator R for the
Rogers–Szegö polynomials. Setting

A+ := (1+ z)−�,

the relation (2.18) becomes

Hn+1(z, q) = A+Hn(z, q).

From (2.17), we get

1

z
�Hn(z, q) = (1− qn)�Hn−1(z, q).

Setting the lowering operator

A− := 1

z
,

we get

A−�Hn(z, q) = (1− qn)�Hn−1(z, q).

The operator defined as A+A− gives

A+A−Hn(z, q) = (1− qn)Hn(z, q).

In fact,

A+A−Hn(z, q) = A+
(z(1− qn)

z
Hn−1(z, q)

)

= (1− qn)A+Hn−1(z, q)

= (1− qn)Hn(z, q).

The raising and lowering operators may be written as

S+ = (1+ xz)− (1− q)z ∂q
and

S− = ∂q
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such that

S−Hn(z, q) := ∂qHn(z, q) =
n∑
k=0

(
n

k

)
∂qz

k =
n∑
k=1

(
n

k

)
[k]qzk−1

=
n∑

t+1=0

(
n

t + 1

)
[t + 1]qzt =

n−1∑
t=0

(
n

t + 1

)
[t + 1]qzt

=
n−1∑
t=0

[n]q ![t + 1]q
[t + 1]q[t]q ![n− (t + 1)]q !z

t

=
n−1∑
t=0

[n]!
[t]q ![n− (t + 1)]q !z

t

= [n]qHn−1(z, q),

and, using the same method, we also get

S+Hn(z, q) = Hn+1(z, q).

Indeed,

S+Hn(z, q) :=
[
(1+ z)− (1− q)z∂q

]
Hn(z, q)

= (1+ z)Hn(z, q)− (1− q)z[n]qHn−1(z, q)

= (1+ z)Hn(z, q)− (1− qn)zHn−1(z, q)

= Hn+1(z, q).

Defining Nq := S+S−, we see that

NqHn(y; q) = S+ ([n]Hn−1(y; q))
= [n]qHn(z; q)

which plays the role of the q-number operator. In fact,

Nq Hn(z; q) := S+S−Hn(z; q) = S+ [n]q Hn−1(z, q)

= [n]q S+Hn−1(z, q) = [n]q Hn(z, q)

= 1− qn
1− q Hn(z, q).
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The commutation relation between these operators can be obtained by direct
computation:

[S−,S+]Hn(z, q) = [S−S+ −S+S−]Hn(z, q)
= S−S+Hn(z, q)−S+S−Hn(z, q)

= S−Hn+1(z, q)−Nq Hn(z, q)
= [n+ 1]qHn(z, q)−Nq Hn(z, q)
= q Nq Hn(z, q)+Hn(z, q)−Nq Hn(z, q)
=

(
1− (1− q)Nq

)
Hn(z, q),

yielding

[S+,S−] = 1− (1− q)Nq.

On the other hand, since we know (2.13), we further observe that, making use of the
standard number operator N

NHn(y; q) = nHn(y; q),

we may write

Nq = 1− qN
1− q

such that

[S−,S+] = qN

which is the particular case of the commutation relation for the q-deformed
harmonic oscillator we have presented above. In the same form we can also obtain

[Nq,S−] = [S+S−,S−] = −[S+,S−]S− = −qNS−,

[Nq,S+] = [S+S−,S+] = S+[S+,S−] = S+qN

while

[N,S−] = −S−, [N,S+] = S+.
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It is also immediate to see that the q-commutation relation of these operators is
given by

S−S+ − qS+S− = 1+ qNq − qNq = [N + 1] − q[N] = 1,

which is the equivalent form of the commutation relation of the q-deformed
harmonic oscillator. Now, from (2.13), and using the explicit realization of the
raising and lowering operators, we can write

NqHn(z, q) = S+S−Hn(z, q) = [1− (1− q)z∂q]∂q
= [(1+ z)∂q − (1− q)z∂2

q ]Hn(z, q) = [n]Hn(z, q)

from which we get the second order q-differential equation obeyed by the Rogers–
Szegö polynomials

[
z∂2
q +

1+ z
1− q ∂q +

[n]q
1− q

]
Hn(z, q) = 0.

3 (R, p, q)-Generalized Rogers–Szegö Polynomials
and Quantum Algebras

We start this section by some notions concerning the (R, p, q)-calculus. Let us
now consider two positive real numbers p and q , such that 0 < q < p, and a
meromorphic function R, defined on C×C by:

R(x, y) =
∞∑

k,l=−L
rklx

kyl

with an eventual isolated singularity at the zero, where rkl are complex numbers,
L ∈ N ∪ {0}, R(pn, qn) > 0 ∀n ∈ N, and R(1, 1) = 0. Denote by DR ={z ∈ C :
|z| < R} a complex disc and by O(DR) the set of holomorphic functions defined on
DR .

Definition 3.1 ([14]) The (R, p, q)-deformed numbers is given by:

[n]R,p,q := R(pn, qn), n = 0, 1, 2, · · ·

leading to define (R, p, q)-deformed factorials as

[n]!R,p,q :=
{

1 for n = 0
R(p, q) · · ·R(pn, qn) for n ≥ 1,
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and the (R, p, q)-deformed binomial coefficients

[
m

n

]
R,p,q

:= [m]!R,p,q
[n]!R,p,q[m− n]!R,p,q , m, n = 0, 1, 2, · · · ; m ≥ n.

The relation

[
m

n

]
R,p,q

=
[

m

m− n
]
R,p,q

, m, n = 0, 1, 2, · · · ; m ≥ n

holds.
Indeed, form,n = 0, 1, 2, · · · , and m ≥ n, we get

[
m

n

]
R,p,q

= [m]!R,p,q
[n]!R,p,q [m− n]!R,p,q

= [m]!R,p,q
[m− n]!R,p,q [m−m+ n]!R,p,q

=
[
m

m− n
]
R,p,q

.

We recall also the following linear operators defined on O(DR) by (see [14] and
references therein for more details):

Q : ϕ �−→ Qϕ(z) := ϕ(qz)
P : ϕ �−→ Pϕ(z) := ϕ(pz)

∂p,q : ϕ �−→ ∂p,qϕ(z) := ϕ(pz)− ϕ(qz)
z(p − q) ,

and the (R, p, q)-deformed derivative given as follows:

∂R,p,q := ∂p,q p − q
P −QR(P,Q) = p − q

pP − qQR(pP, qQ)∂p,q .

Proposition 3.2 If there exist two functions 1 and 2 : C×C such that

 s(p, q) > 0, for s = 1, 2

[
n+ 1
k

]
R,p,q

=  k1(p, q)
[
n

k

]
R,p,q

+ n+1−k
2 (p, q)

[
n

k − 1

]
R,p,q
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and

ba =  1(p, q)ab, xy =  2(p, q)yx, and [s, t] = 0 for s ∈ {a, b}, t ∈ {x, y}
for some algebra elements a, b, x, y, then

(a x + b y)n =
n∑
k=0

[
n

k

]
R,p,q

an−k bk yk xn−k. (3.1)

Proof By induction on n. In fact, for n = 1, we get

(a x + b y)1 = a x + b y

=
[

1
0

]
R,p,q

a1 b0 y0 x1 +
[

1
1

]
R,p,q

a0 b1 y1 x0

=
1∑
k=0

[
1
k

]
R,p,q

a1−k bk yk x1−k.

Thus, the relation (3.1) holds for n = 1.
We assume that the relation (3.1) holds for n ≤ m, this means in particular for

n = m,

(a x + b y)m =
m∑
k=0

[
m

k

]
R,p,q

am−k bk yk xm−k.

Let us prove that it is also valid for n = m+ 1. In fact,

(a x + b y)m+1 = (a x + b y)m(a x + b y)

=
m∑
k=0

[
m

k

]
R,p,q

am−k bk yk xm−k(a x + b y)

=
m∑
k=0

[
m

k

]
R,p,q

am−k bk yk xm−ka x

+
m∑
k=0

[
m

k

]
R,p,q

am−k bk yk xm−kb y

=
m∑
k=0

[
m

k

]
R,p,q

 k1(p, q)a
m+1−k bk yk xm+1−k

+
m∑
k=0

[
m

k

]
R,p,q

 m−k2 (p, q)am−k bk+1 yk+1 xm−k
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= am+1xm+1 + bm+1ym+1

+
m∑
k=1

[
m

k

]
R,p,q

 k1(p, q)a
m+1−kbkykxm+1−k

+
m∑
k=1

[
m

k − 1

]
R,p,q

 m+1−k
2 (p, q)am+1−k

× bk yk xm+1−k

= am+1xm+1 + bm+1ym+1

+
m∑
k=1

[
m

k

]
R,p,q

am+1−k bk yk xm+1−k

=
m+1∑
k=0

[
m+ 1
k

]
R,p,q

am+1−k bk yk xm+1−k.

��
In [14], we introduced the quantum algebra associated with the (R, p, q)-

deformation. It is a quantum algebra, AR,p,q , generated by the set of operators
{1, A,A†, N} satisfying the following commutation relations:

AA† = [N + 1]R,p,q, A†A = [N]R,p,q .
[N, A] = −A,

[
N, A†

]
= A†

(3.2)

with its realization on O(DR) given by:

A† := z, A := ∂R,p,q , N := z∂z,

where ∂z := ∂
∂z

is the usual derivative on C.
The second part of this section is dedicated to the general procedure for

constructing the recursion relation for the (R, p, q)-Rogers–Szegö polynomials
and the related (R, p, q)-difference equation that allow to define the creation,
annihilation and number operators for a given (R, p, q)-deformed quantum algebra.
This is summarized as follows.

Theorem 3.3 If φi(x, y) (i = 1, 2, 3) are functions satisfying the following:

φi(p, q) �= 0 for i = 1, 2, 3, (3.3)

φi(P,Q)z
k = φki (p, q)zk for z ∈ C, k = 0, 1, 2, · · · i = 1, 2 (3.4)
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and if moreover the following relation between (R, p, q)-binomial coefficients
holds

[
n+ 1
k

]
R,p,q

= φk1(p, q)
[
n

k

]
R,p,q

+ φn+1−k
2 (p, q)

[
n

k − 1

]
R,p,q

−φ3(p, q)[n]R,p,q
[
n− 1
k − 1

]
R,p,q

(3.5)

for 1 ≤ k ≤ n, then the (R, p, q)-Rogers–Szegö polynomials defined as

Hn(z;R, p, q) =
n∑
k=0

[
n

k

]
R,p,q

zk, n = 0, 1, 2 · · ·

satisfy the three-term recursion relation

Hn+1(z;R, p, q) = Hn (φ1(p, q)z : R, p, q)
+zφn2 (p, q)Hn

(
zφ−1

2 (p, q);R, p, q
)

−zφ3(p, q)[n]R,p,qHn−1 (z;R, p, q) (3.6)

and (R, p, q)-difference equation

∂R,p,qHn(z;R, p, q) = [n]R,p,qHn−1(z;R, p, q). (3.7)

Proof Multiplying the two sides of the relation (3.5) by zk, and adding for k = 1 to
n, we get

n∑
k=1

[
n+ 1
k

]
R,p,q

zk =
n∑
k=1

φk1(p, q)

[
n

k

]
R,p,q

zk

+
n∑
k=1

φn+1−k
2 (p, q)

[
n

k − 1

]
R,p,q

zk

−φ3(p, q)[n]R,p,q
n∑
k=1

[
n− 1
k − 1

]
R,p,q

zk.

After a short computation, and using the condition (3.5), we get the relation (3.6).
Moreover,

∂R,p,qHn(z;R, p, q) = ∂R,p,q
n∑
k=0

[
n

k

]
R,p,q

zk

=
n∑
k=0

[
n

k

]
R,p,q

∂R,p,qzk
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=
n∑
k=1

[
n

k

]
R,p,q

[n]R,p,q zk−1

= [n]R,p,q
n−1∑
k=0

[
n− 1
k

]
R,p,q

zk.

��
Setting

ψn(z;R, p, q) = 1√[n]!R,p,q Hn(z;R, p, q), (3.8)

and using Eqs. (3.6) and (3.7) yield the three-term recursion relation

(
φ1(P,Q) + zφn2 (p, q)φ−1

2 (P,Q)− zφ3(p, q)∂R,p,q
)
ψn(z;R, p, q) =

√
[n+ 1]R,p,qψn+1(z;R, p, q)

and the (R, p, q)-difference equation

∂R,p,qψn(z;R, p, q) =
√
[n]R,p,qψn−1(z;R, p, q)

for the polynomials ψn(z;R, p, q) with the virtue that for n = 0, 1, 2, · · ·

∂n+1
R,p,qψn(z;R, p, q) = 0 and ∂mR,p,qψn(z;R, p, q) �= 0 for any m < n+ 1.

Indeed, from the relations (3.6) and (3.7), we get

Hn+1(z;R, p, q) = Hn (φ1(p, q)z : R, p, q)
+ zφn2 (p, q)Hn

(
zφ−1

2 (p, q);R, p, q
)

− zφ3(p, q)∂R,p,qHn(z;R, p, q),

and using the relation (3.8) yields

√
[n+ 1]R,p,q ψn+1(z;R, p, q) = ψn (φ1(p, q)z : R, p, q)

+ zφn2 (p, q)ψn
(
zφ−1

2 (p, q);R, p, q
)

− zφ3(p, q)∂R,p,qψn (z;R, p, q) .
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From the assumption (3.4), we get

(
φ1(P,Q) + zφn2 (p, q)φ−1

2 (P,Q)− zφ3(p, q)∂R,p,q
)
ψn(z;R, p, q) =

√
[n+ 1]R,p,qψn+1(z;R, p, q).

Furthermore,

∂R,p,qψn(z;R, p, q) := ∂R,p,q 1√[n]!R,p,q Hn(z;R, p, q)

= 1√[n]!R,p,q ∂R,p,qHn(z;R, p, q)

= 1√[n]!R,p,q [n]R,p,qHn−1(z;R, p, q)

=
√
[n]R,p,qψn−1(z;R, p, q).

Now, formally defining the number operator N as

Nψn(z;R, p, q) := nψn(z;R, p, q),

and the raising and lowering operators by

A† :=
(
φ1(P,Q)+ zφN2 (p, q)φ−1

2 (P,Q) − zφ3(p, q)∂R,p,q
)

and A := ∂R,p,q

respectively, the set of polynomials {ψn(z;R, p, q) | n = 0, 1, 2, · · · } provides a
basis for a realization of (R, p, q)-deformed quantum algebra AR,p,q , satisfying
the commutation relations (3.2). Provided the above formulated theorem, we can
recover realizations in terms of Rogers–Szegö polynomials for different known
deformations simply by determining the functions φi (i = 1, 2, 3) that satisfy the
relations (3.3)–(3.5).

4 Particulars Cases

4.1 (p, q)-Rogers–Szegö Polynomials and (p, q)-Oscillator
from Jagannathan-Srinivasa Deformation [17]

Let us recall the definitions and notations used in the sequel.
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Taking R(x, y) = x−y
p−q , we obtain the Jagannathan-Srinivasa (p, q)-numbers

and (p, q)-factorials

[n]p,q = p
n − qn
p − q ,

and

[n]!p,q =
{

1 for n = 0
((p,q);(p,q))n
(p−q)n for n ≥ 1,

respectively.
There result the following relevant properties.

Proposition 4.1 If n, m are nonnegative integers, then

[n]p,q =
n−1∑
k=0

pn−1−kqk,
[n+m]p,q = qm[n]p,q + pn[m]p,q = pm[n]p,q + qn[m]p,q,

[−m]p,q = −q−mp−m[m]p,q,
[n−m]p,q = q−m[n]p,q − q−mpn−m[m]p,q = p−m[n]p,q − qn−mp−m[m]p,q,

[n]p,q = [2]p,q[n− 1]p,q − pq[n− 2]p,q.

Proposition 4.2 The (p, q)-binomial coefficients

[
n

k

]
p,q

= ((p, q); (p, q))n
((p, q); (p, q))k((p, q); (p, q))n−k , 0 ≤ k ≤ n; n ∈ N,

where ((p, q); (p, q))m = (p − q)(p2 − q2) · · · (pm − qm), m ∈ N, satisfy the
following identities:

[
n

k

]
p,q

=
[
n

n− k
]
p,q

= pk(n−k)
[
n

k

]
q/p

= pk(n−k)
[
n

n− k
]
q/p

,

[
n+ 1
k

]
p,q

= pk
[
n

k

]
p,q

+ qn+1−k
[
n

k − 1

]
p,q

,

[
n+ 1
k

]
p,q

= pk
[
n

k

]
p,q

+ pn+1−k
[
n

k − 1

]
p,q

−(pn − qn)
[
n− 1
k − 1

]
p,q

(4.1)
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with
[
n

k

]
q/p

= (q/p; q/p)n
(q/p; q/p)k(q/p; q/p)n−k ,

where (q/p; q/p)n = (1−q/p)(1−q2/p2) · · · (1−qn/pn); and the (p, q)-shifted
factorial

((a, b); (p, q))n := (a − b)(ap − bq) · · · (apn−1 − bqn−1)

or

((a, b); (p, q))n =
n∑
k=0

[
n

k

]
p,q

(−1)kp(n−k)(n−k−1)/2qk(k−1)/2an−kbk.

Finally, the algebra Ap,q , generated by {1, A, A†, N}, associated with (p, q)-
Janagathan-Srinivasa deformation, satisfies the following commutation relations:

A A† − pA†A = qN, A A† − qA†A = pN
[N, A†] = A†, [N, A] = −A. (4.2)

The (p, q)-Rogers–Szegö polynomials studied in [17] appear as a particular case
obtained by choosing φ1(x, y) = φ2(x, y) = φ(x, y) = x and φ3(x, y) = x − y.
Indeed, φ(p, q) = p �= 0, φ3(p, q) = p − q �= 0, φ(P,Q)zk = φk1(p, q)zk and
Eq. (4.1) shows that

[
n+ 1
k

]
p,q

= pk
[
n

k

]
p,q

+ pn+1−k
[
n

k − 1

]
p,q

−(p − q)[n]p,q
[
n− 1
k − 1

]
p,q

.

Hence, the hypotheses of the above theorem are satisfied and, therefore, the (p, q)-
Rogers–Szegö polynomials

Hn(z;p, q) =
n∑
k=0

[
n

k

]
p,q

zk n = 0, 1, 2, · · ·

satisfy the three-term recursion relation

Hn+1(z;p, q) = Hn(pz;p, q)+ zpnHn(p−1z;p, q)− z(pn − qn)Hn−1(z;p, q)
(4.3)
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and the (p, q)-difference equation

∂p,qHn(z;p, q) = [n]p,qHn−1(z;p, q).

Finally, the set of polynomials

ψn(z;p, q) = 1√[n]!p,q Hn(z;p, q), n = 0, 1, 2, · · ·

forms a basis for a realization of the (p, q)-deformed harmonic oscillator and
quantum algebra Ap,q satisfying the commutation relations (4.2) with the number
operatorN defined as

Nψn(z;p, q) := nψn(z;p, q),

relating the annihilation and creation operators given by

A = ∂p,q and A† = P + zpNP−1 − z(p − q)∂p,q
respectively.

Let us compute the first three (p, q)-Rogers–Szegö polynomials using the
three-term recursion relation (4.3) with the initial one H0(z;p, q) = 1 and
H−1(z;p, q) = 0.We get,

•

H1(z;p, q) = H0(pz;p, q)+ zp0H0(p
−1z;p, q)− z(p0 − q0)H−1(z;p, q)

which gives

H1(z;p, q) = z+ 1.

•

H2(z;p, q) = H1(pz;p, q)+ zpH1(p
−1z;p, q)− z(p − q)H0(z;p, q)

= 1+ pz + zp(1 + p−1z)− z(p − q)
= 1+ pz + zp + zpp−1z− zp + zq
= z2 + (p + q)z+ 1

•

H3(z;p, q) = H2(pz;p, q)+ zp2H2(p
−1z;p, q)− z(p2 − q2)H1(z;p, q).
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Since

H2(pz;p, q) = (pz)2 + (p + q)pz+ 1

= p2 z2 + p2 z+ q p z+ 1

= p2 z2 + (p2 + q p)z+ 1

zp2H2(p
−1z;p, q) = zp2((p−1z)2 + (p + q)p−1z + 1

)

= zp2(p−2z2 + z + qp−1z+ 1
)

= z3 + z2p2 + qpz2 + zp2

= z3 + (p2 + qp)z2 + zp2

and

z(p2 − q2)H1(z;p, q) = z(p2 − q2)(1+ z)
= z(p2 − q2)+ z2(p2 − q2),

therefore,

H3(z;p, q) = z3 + (p2 + qp + q2)z2 + (p2 + qp + q2)z+ 1.

4.2 Rogers–Szegö Polynomial Associated to the
Chakrabarty-Jagannathan Deformation [6]

We start this section by recalling some notions concerning the Chakrabarty
- Jagannathan deformation. We recover the deformation of Chakrabarty and
Jagannathan [6] by taking R(x, y) = 1−xy

(p−1−q)x . Indeed, the (R, p, q)-numbers

and (R, p, q)-factorials are reduced to (p−1, q)-numbers and (p−1, q)-factorials,
namely,

[n]p−1,q =
p−n − qn
p−1 − q ,

and

[n]!p−1,q =
{

1 for n = 0
((p−1,q);(p−1,q))n

(p−1−q)n for n ≥ 1,
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respectively. The deformation properties can be recovered in the following
propositions.

Proposition 4.3 If n, m are nonnegative integers, then

[n]p−1,q =
n−1∑
k=0

p−n+1+kqk,

[n+m]p−1,q = qm[n]p−1,q + p−n[m]p−1,q = p−m[n]p−1,q + qn[m]p−1,q ,

[−m]p−1,q = −q−mpm[m]p−1,q ,

[n−m]p−1,q = q−m[n]p−1,q − q−mp−n+m[m]p,q
= pm[n]p−1,q − qn−mpm[m]p−1,q ,

[n]p−1,q = [2]p−1,q [n− 1]p−1,q − p−1q[n− 2]p−1,q .

Proposition 4.4 The (p−1, q)-binomial coefficients

[
n

k

]
p−1,q

= ((p−1, q); (p−1, q))n

((p−1, q); (p−1, q))k((p−1, q); (p−1, q))n−k
, 0 ≤ k ≤ n; n ∈ N,

where ((p, q); (p, q))m = (p−1 − q)(p−2 − q2) · · · (p−m − qm), m ∈ N, satisfy
the following identities:

[
n

k

]
p−1,q

=
[
n

n− k
]
p−1,q

= p−k(n−k)
[
n

k

]
q/p−1

,

[
n+ 1
k

]
p−1,q

= pk
[
n

k

]
p−1,q

+ qn+1−k
[
n

k − 1

]
p−1,q

,

[
n+ 1
k

]
p−1,q

= p−k
[
n

k

]
p−1,q

+ p−n−1+k
[
n

k − 1

]
p−1,q

−(p−n − qn)
[
n− 1
k − 1

]
p−1,q

.

with

[
n

k

]
q/p−1

= (q/p−1; q/p−1)n

(q/p−1; q/p−1)k(q/p−1; q/p−1)n−k
,
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where (q/p−1; q/p−1)n = (1 − q/p−1)(1 − q2/p−2) · · · (1 − qn/p−n); and the
(p−1, q)-shifted factorial

((a, b); (p−1, q))n =
n∑
k=0

[
n

k

]
p−1,q

(−1)kp−(n−k)(n−k−1)/2qk(k−1)/2an−kbk

or

((a, b); (p−1, q))n := (a − b)(ap−1 − bq) · · · (ap−n+1 − bqn−1).

The (R, p, q)-derivative is also reduced to (p−1, q)-derivative. Indeed,

∂R,p,q = ∂p,q p − q
P −Q

1− PQ
(p−1 − q)P

= 1

(p−1 − q)z(P
−1 −Q) := ∂p−1,q

The algebra Ap−1,q , induced by {1, A, A†, N}, related to the (p, q)-Chakrabarty
and Jagannathan deformation satisfies the following commutation relations:

A A† − p−1A†A = qN, A A† − qA†A = p−N
[N, A†] = A† [N, A] = −A. (4.4)

As previously shown, the Chakrabarty-Jagannathan deformation [6] can be
obtained from the (p, q) deformation by replacing the parameter p by p−1 and the
operator of dilatation P by P−1. Hence, the (p−1, q)-Rogers–Szegö polynomials

Hn(z;p−1, q) =
n∑
k=0

[
n

k

]
p−1,q

zk, n = 0, 1, 2, · · ·

satisfy the three-term recursion relation

Hn+1(z;p−1, q) = Hn(p−1z;p−1, q)+ zp−nHn(pz;p−1, q)

−z(p−n − qn)Hn−1(z;p−1, q) (4.5)

and the (p−1, q)-difference equation

∂p−1,qHn(z;p, q) = [n]p−1,qHn−1(z;p, q).
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Finally, the set of polynomials

ψn(z;p−1, q) = 1√
[n]!p−1,q

Hn(z;p−1, q), n = 0, 1, 2, · · ·

forms a basis for a realization of the (p−1, q)-deformed harmonic oscillator and
quantum algebra Ap−1,q satisfying the commutation relations (4.4) with the number
operatorN formally defined as

Nψn(z;p−1, q) := nψn(z;p−1, q),

the annihilation and creation operators given by

A := ∂p−1,q and A† := P−1 + zp−NP − z(p−1 − q)∂p−1,q ,

respectively.
Now, we compute the first three (p−1, q)-Rogers–Szegö polynomials using the

three-term recursion relation (4.5) with the initial one H0(z;p−1, q) = 1 and
H−1(z;p−1, q) = 0.We get,

•

H1(z;p−1, q) = H0(p
−1z;p−1, q)+ zp0H0(pz;p−1, q)

−z(p0 − q0)H−1(z;p−1, q)

which gives

H1(z;p−1, q) = z + 1.

•

H2(z;p−1, q) = H1(p
−1z;p−1, q)+ zpH1(pz;p−1, q)

− z(p−1 − q)H0(z;p−1, q)

= 1+ p−1z+ zp−1(1+ pz)− z(p−1 − q)
= 1+ p−1z+ zp−1 + zpp−1z− zp−1 + zq
= z2 + (p−1 + q)z+ 1

•

H3(z;p−1, q) = H2(p
−1z;p−1, q)+ zp−2H2(pz;p−1, q)

−z(p−2 − q2)H1(z;p−1, q).
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Since

H2(p
−1z;p−1, q) = (p−1z)2 + (p−1 + q)p−1z+ 1

= p−2 z2 + p−2 z+ q p−1 z+ 1

= p−2 z2 + (p−2 + q p−1)z + 1

zp−2H2(pz;p−1, q) = zp−2((pz)2 + (p−1 + q)pz+ 1
)

= zp−2(p2z2 + z+ qpz + 1
)

= z3 + z2p−2 + qp−1z2 + zp−2

= z3 + (p−2 + qp−1)z2 + zp−2

and

z(p−2 − q2)H1(z;p−1, q) = z(p−2 − q2)(1+ z)
= z(p−2 − q2)+ z2(p−2 − q2),

therefore,

H3(z;p−1, q) = z3 + (p−2 + qp−1 + q2)z2 + (p−2 + qp−1 + q2)z+ 1.

4.3 (p, q)-Rogers–Szegö Polynomials Associated
with the Quesne’s Deformed Quantum Algebra [13]

In [13], we investigated a generalization of q-Quesne algebra [25] and defined
the (p, q)-numbers and a generalized (p, q)-Quesne algebra. Our results can be
recovered from the previous general theory by taking R(x, y) = xy−1

(q−p−1)y
. Indeed,

the (p, q)-Quesne numbers and (p, q)-Quesne factorials are given by

[n]Qp,q =
pn − q−n
q − p−1 ,

and

[n]!Qp,q =
{

1 for n = 0
((p,q−1);(p,q−1))n

(q−p−1)n
for n ≥ 1,

respectively. Then follow some remarkable properties.
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Proposition 4.5 If n, m are nonnegative integers, then

[−m]Qp,q = −p−mqm[m]Qp,q, (4.6)

[n+m]Qp,q = q−m[n]Qp,q + pn[m]Qp,q = pm[n]Qp,q + q−n[m]Qp,q, (4.7)

[n−m]Qp,q = qm[n]Qp,q − pn−mqm[m]Qp,q = p−m[n]Qp,q + p−mqm−n[m]Qp,q,
(4.8)

[n]Qp,q =
q − p−1

p − q−1
[2]Qp,q[n− 1]Qp,q − pq−1[n− 2]Qp,q. (4.9)

Proof Equations (4.6) and (4.7) are immediate by the application of the relations
p−m − qm = −p−mqm(pm − q−m) and pn+m − q−n−m = q−m(pn − q−n) +
pn(pm − q−m) = pm(pn − q−n)+ q−n(pm − q−m), respectively, while Eq. (4.8)
results from the combination of Eqs. (4.6) and (4.7). Finally, the relation

[n]p,q−1 = p
n − q−n
p − q−1 =

q − p−1

p − q−1

pn − q−n
q − p−1 =

q − p−1

p − q−1 [n]Qp,q, n = 1, 2, · · ·

cumulatively taken with the identity

[n]p,q−1 = [2]p,q−1[n− 1]p,q−1 − pq−1[n− 2]p,q−1

gives Eq. (4.9). ��
Proposition 4.6 The (p, q)-Quesne binomial coefficients

[
n

k

]Q
p,q

= ((p, q−1); (p, q−1))n

((p, q−1); (p, q−1))k((p, q−1); (p, q−1))n−k
, 0 ≤ k ≤ n; n ∈ N,

satisfy the following properties

[
n

k

]Q
p,q

=
[
n

n− k
]Q
p,q

= pk(n−k)
[
n

k

]
1/qp

= pk(n−k)
[
n

n− k
]

1/qp

,

[
n+ 1
k

]Q
p,q

= pk
[
n

k

]Q
p,q

+ q−n−1+k
[
n

k − 1

]Q
p,q

,
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[
n+ 1
k

]Q
p,q

= pk
[
n

k

]Q
p,q

+ pn+1−k
[
n

k − 1

]Q
p,q

−(pn − q−n)
[
n− 1
k − 1

]Q
p,q

. (4.10)

Proof It is straightforward, using Proposition 4.3 and

[
n

k

]Q
p,q

=
[
n

k

]
p,q−1

.

��
Finally, the algebra AQp,q , generated by {1, A, A†, N}, associated with (p, q)-
Quesne deformation satisfies the following commutation relations:

p−1A A† − A†A = q−N−1, qA A† − A†A = pN+1

[N, A†] = A†, [N, A] = −A. (4.11)

The (p, q)-Rogers–Szegö polynomials corresponding to the Quesne deformation
are deduced from our generalization by choosing φ1(x, y) = φ2(x, y) = φ(x, y) =
x and φ3(x, y) = y − x−1. Indeed, it is worthy of attention that we get in this case
φ(p, q) = p �= 0, φ3(p, q) = q − p−1 �= 0, φ(P,Q)zk = φk1(p, q)zk and from
Eq. (4.10)

[
n+ 1
k

]Q
p,q

= pk
[
n

k

]Q
p,q

+ pn+1−k
[
n

k − 1

]Q
p,q

−(q − p−1)[n]p,q
[
n− 1
k − 1

]Q
p,q

.

Hence, the hypotheses of the theorem are satisfied and, therefore, the (p, q)-Rogers–
Szegö polynomials

HQn (z;p, q) =
n∑
k=0

[
n

k

]Q
p,q

zk n = 0, 1, 2, · · ·

satisfy the three-term recursion relation

H
Q
n+1(z;p, q) = HQn (pz;p, q)+ zpnHQn (p−1z;p, q)

−z(pn − q−n)HQn−1(z;p, q) (4.12)
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and the (p, q)-difference equation

∂Qp,qH
Q
n (z;p, q) = [n]Qp,qHQn−1(z;p, q).

Thus, the set of polynomials

ψQn (z;p, q) =
1√
[n]!Qp,q

HQn (z;p, q), n = 0, 1, 2, · · ·

forms a basis for a realization of the (p, q)-Quesne deformed harmonic oscillator
and quantum algebra AQp,q engendering the commutation relations (4.11) with the
number operator N formally defined as

NψQn (z;p, q) := nψQn (z;p, q),

the annihilation and creation operators given by

A := ∂Qp,q and A† := P + zpNP−1 − z(q − p−1)∂p,q,

respectively. Naturally, setting p = 1 gives the Rogers–Szegö polynomials associ-
ated with the q-Quesne deformation [25].

Let us compute the first three (p, q)-Rogers–Szegö polynomials associated with
the q-Quesne quantum algebra using the three-term recursion relation (4.12) with
the initial oneH0(z;p, q−1) = 1 and H−1(z;p, q−1) = 0.We get,

•

H1(z;p, q−1) = H0(pz;p, q−1)+ zp0H0(p
−1z;p, q−1)

−z(p0 − q0)H−1(z;p, q−1)

which gives

H1(z;p, q−1) = z + 1.

•

H2(z;p, q−1) = H1(pz;p, q−1)+ zpH1(p
−1z;p, q−1)

−z(p − q−1)H0(z;p, q−1)

= 1+ pz + zp(1 + p−1z)− z(p − q−1)

= 1+ pz + zp + zpp−1z − zp + zq−1

= z2 + (p + q−1)z+ 1
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•

H3(z;p, q−1) = H2(pz;p, q−1)+ zp2H2(p
−1z;p, q−1)

−z(p2 − q−2)H1(z;p, q−1).

Since

H2(pz;p, q−1) = (pz)2 + (p + q−1)pz + 1

= p2 z2 + p2 z+ q−1 p z+ 1

= p2 z2 + (p2 + q−1 p)z+ 1

zp2H2(p
−1z;p, q−1) = zp2((p−1z)2 + (p + q−1)p−1z + 1

)

= zp2(p−2z2 + z + q−1p−1z+ 1
)

= z3 + z2p2 + q−1pz2 + zp2

= z3 + (p2 + q−1p)z2 + zp2

and

z(p2 − q−2)H1(z;p, q−1) = z(p2 − q−2)(1+ z)
= z(p2 − q−2)+ z2(p2 − q−2),

therefore,

H3(z;p, q−1) = z3 + (p2 + q−1p + q−2)z2 + (p2 + q−1p + q−2)z+ 1.

4.4 (p, q,μ, ν, h)-Rogers–Szegö Polynomials Associated
to Hounkonnou-Ngompe Quantum Algebra [15]

The (p, q;μ, ν, h)-deformation studied in [15] can be recovered by taking
R(x, y) = h(p, q)yν/xμ[ xy−1

(q−p−1)y
] with 0 < pq < 1 , pμ < qν−1, p > 1,

h being a well behaved real and non-negative function of deformation parameters
p and q such that h(p, q) → 1 as (p, q) → (1, 1). Here the (R, p, q)-numbers
become (p, q;μ, ν, h)-numbers defined by

[n]μ,νp,q,h := h(p, q)
qνn

pμn

pn − q−n
q − p−1 .
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Proposition 4.7 The (p, q;μ, ν, h)-numbers verify the following properties, for
m,n ∈ N:

[−m]μ,νp,q,h = −
q−2νm+m

p−2μm+m [m]
μ,ν
p,q,h,

[n+m]μ,νp,q,h =
qνm−m

pμm
[n]μ,νp,q,h +

qνn

pμn−n
[m]μ,νp,q,h

= qνm

pμm−m
[n]μ,νp,q,h +

qνn−n

pμn
[m]μ,νp,q,h ,

[n−m]μ,νp,q,h =
q−νm+m

p−μm
[n]μ,νp,q,h −

qν(n−2m)+m

pμ(n−2m)−n+m [m]
μ,ν
p,q,h

= q−νm

p−μm+m
[n]μ,νp,q,h −

qν(n−2m)−n+m

pμ(n−2m)+m [m]
μ,ν
p,q,h,

[n]μ,νp,q,h =
q − p−1

p − q−1

q−ν

p−μ
1

h(p, q)
[2]μ,νp,q,h[n− 1]μ,νp,q,h

− q
2ν−1

p2ν−1 [n− 2]μ,νp,q,h.

Proof This is direct using Proposition 4.5 and the fact that

[n]μ,νp,q,h = h(p, q)
qνn

pμn
[n]Qp,q,h. (4.13)

��
Proposition 4.8 The (p, q, μ, ν, h)-binomial coefficients

[
n

k

]μ,ν
p,q,h

:= [n]!μ,νp,q,h
[k]!μ,νp,q,h[n− k]!μ,νp,q,h

= qνk(n−k)

pμk(n−k)

[
n

k

]Q
p,q

, 0 ≤ k ≤ n; n ∈ N,

satisfy the following properties

[
n

k

]μ,ν
p,q,h

=
[
n

n− k
]μ,ν
p,q,h

,

[
n+ 1
k

]μ,ν
p,q,h

= qνk

p(μ−1)k

[
n

k

]μ,ν
p,q,h

+ q
(ν−1)(n+1−k)

pμ(n+1−k)

[
n

k − 1

]μ,ν
p,q,h

,
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[
n+ 1
k

]μ,ν
p,q,h

= qνk

p(μ−1)k

[
n

k

]μ,ν
p,q,h

+ qν(n+1−k)

p(μ−1)(n+1−k)

[
n

k − 1

]μ,ν
p,q,h

−(pn − q−n) q
νn

pμn

[
n− 1
k − 1

]μ,ν
p,q,h

. (4.14)

Proof This follows from Proposition 4.6 and the fact that

[n]!μ,νp,q,h = hn(p, q)
qn(n+1)/2

pn(n+1)/2
[n]!Qp,q,

where use of Eq. (4.13) has been made. ��
The algebra Aμ,νp,q,h, generated by {1, A, A†, N}, associated with (p, q, μ, ν, h)-
deformation satisfies the following commutation relations:

p−1A A† − q
ν

pμ
A†A = h(p, q)

(
qν−1

pμ

)N+1

,

qA A† − q
ν

pμ
A†A = h(p, q)

(
qν

pμ−1

)N+1

[N, A†] = A†, [N, A] = −A. (4.15)

The (p, q, μ, ν, h)-Rogers–Szegö polynomials are deduced from our general

case by setting φ1(x, y) = x1−μyν , φ2(x, y) = x−μyν−1 and φ3(x, y) = y−x−1

h(p,q)
.

Indeed, φi(p, q) �= 0 for i = 1, 2, 3; φi(P,Q)zk = φi(p, q)kzk for i = 1, 2 and
the property (4.14) furnishes

[
n+ 1
k

]μ,ν
p,q,h

= qνk

p(μ−1)k

[
n

k

]μ,ν
p,q,h

− q − p
−1

h(p, q)
[n]μ,νp,q,h

[
n− 1
k − 1

]μ,ν
p,q,h

+ qν(n+1−k)

p(μ−1)(n+1−k)

[
n

k − 1

]μ,ν
p,q,h

.

Therefore, the (p, q, μ, ν, h)-Rogers–Szegö polynomials are defined as follows

Hn(z;p, q,μ, ν, h) =
n∑
k=0

[
n

k

]μ,ν
p,q,h

zk, n = 0, 1, 2 · · ·
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with the three-term recursion relation

Hn+1(z;p, q,μ, ν, h) = Hn
(
qν

pμ−1 z : p, q,μ, ν, h
)

+zq
(ν−1)n

pμn
Hn

(
pν

qν−1 z;p, q,μ, ν, h
)

−z q
νn

pμn
(pn − q−n)Hn−1(z;p, q,μ, ν, h)

and the (p, q, μ, ν, h)-difference equation

∂
μ,ν
p,q,hHn(z;p, q,μ, ν, h) = [n]μ,νp,q,hHn−1(z;p, q,μ, ν, h).

Hence, the set of polynomials

ψn(z;p, q,μ, ν, h) = 1√
[n]!μ,νp,q,h

Hn(z;p, q,μ, ν, h), n = 0, 1, 2, · · ·

forms a basis for a realization of the (p, q, μ, ν, h)-deformed algebra Ap,q,μ,ν,h
satisfying the commutation relations (4.15) with the number operator N formally
defined as

NψQn (z;p, q,μ, ν, h) := nψn(z;p, q,μ, ν, h),

together with the annihilation and the creation operators given by

A := ∂μ,νp,q,h and A† := Qν

Pμ−1 + z
(
qν−1

pμ

)N
Pμ

Qν−1 − z
(q − p−1)

h(p, q)
∂
μ,ν
p,q,h,

respectively.
The first three (p, q, μ, ν, h)-Rogers–Szegö polynomials are given as follows:

•

H1(z;p, q,μ, ν, h) = H0

(
qν

pμ−1 z : p, q,μ, ν, h
)

+zq
(ν−1)0

pμ0
H0

(
pν

qν−1
z;p, q,μ, ν, h

)

−z q
νn

pμ0
(p0 − q−0)H−1(z;p, q,μ, ν, h).



(R, p, q)-Rogers–Szegö and Hermite Polynomials, and Induced Deformed. . . 427

which gives

H1(z;p, q,μ, ν, h) = z+ 1.

•

H2(z;p, q,μ, ν, h) = H1

(
qν

pμ−1 z : p, q,μ, ν, h
)

+zq
(ν−1)

pμ
H1

(
pμ

qν−1 z;p, q,μ, ν, h
)

−z q
ν

pμ
(p − q−1)H0(z;p, q,μ, ν, h).

Since

H1

(
qν

pμ−1 z : p, q,μ, ν, h
)
= 1+ qν

pμ−1 z

z
q(ν−1)

pμ
H1

(
pμ

qν−1 z;p, q,μ, ν, h
)
= zq

(ν−1)

pμ

(
1+ pμ

qν−1

)

= zq
(ν−1)

pμ
+ z2

and

−z q
ν

pμ
(p − q−1)H0(z;p, q,μ, ν, h) = −z q

ν

pμ
(p − q−1)

therefore,

H2(z;p, q,μ, ν, h) = z2 +
( qν

pμ−1 +
q(ν−1)

pμ
− q

ν

pμ
(p − q−1)

)
z+ 1.

•

H3(z;p, q,μ, ν, h) = H2

(
qν

pμ−1 z : p, q,μ, ν, h
)

+zq
2(ν−1)

p2μ H2

(
pμ

qν−1 z;p, q,μ, ν, h
)

−z q
2ν

p2μ (p
2 − q−2)H1(z;p, q,μ, ν, h).
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But

H2

(
qν

pμ−1 z : p, q,μ, ν, h
)
= q2ν

p2(μ−1)
+

( q2ν

p2(μ−1)
+ q

2ν−1

p2μ−1

− q2ν

p2μ−1 (p − q−1)
)
z+ 1

z
q2(ν−1)

p2μ
H2

(
pμ

qν−1
z;p, q,μ, ν, h

)
= z3 + 2

q2(ν−1)

p2μ
z2 + q

2(ν−1)

p2μ
z

and

−z q
2ν

p2μ (p
2 − q−2)H1(z;p, q,μ, ν, h) = −z q

2ν

p2μ (p
2 − q−2)

−z2 q
2ν

p2μ (p
2 − q−2),

therefore,

H3(z;p, q,μ, ν, h) = z3 +
( q2ν

p2(μ−1)
+ 2

q2(ν−1)

p2μ

− q
2ν

p2μ (p
2 − q−2)

)
z2 +

( q2ν

p2(μ−1)

+ q
2ν−1

p2μ−1 −
q2ν

p2μ−1 (p − q−1)

− q
2ν

p2μ (p
2 − q−2)+ q

2(ν−1)

p2μ

)
z+ 1.

5 Continuous (R, p, q)-Hermite Polynomials

We exploit here the peculiar relation established in the theory of q-deformation
between Rogers–Szegö polynomials and Hermite polynomials [16, 18, 22, 23] and
given by

Hn(cos θ; q) = ein θHn(e−2i θ ; q) =
n∑
k=0

[
n

k

]
q

ei(n−2k)θ , n = 0, 1, 2, · · · ,

where Hn and Hn stand for the Hermite and Rogers–Szegö polynomials, respec-
tively. Is also of interest the property that all the q-Hermite polynomials can be
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explicitly recovered from the initial one H0(cos θ; q) = 1, using the three-term
recursion relation

Hn+1(cos θ; q) = 2 cos θHn(cos θ; q)− (1− qn)Hn−1(cos θ; q) (5.1)

with H−1(cos θ; q) = 0.

5.1 Generalization

In the same way we define the (R, p, q)-Hermite polynomials through the
(R, p, q)- Rogers–Szegö polynomials as

Hn(cos θ;R, p, q) = ein θHn(e−2i θ ;R, p, q), n = 0, 1, 2, · · · .

Then the next statement is true.

Proposition 5.1 Under the hypotheses of Theorem 3.3, the continuous (R, p, q)-
Hermite polynomials satisfy the following three-term recursion relation

Hn+1(cos θ;R, p, q) = ei θφ
n
2
1 (p, q)φ1(P,Q)Hn(cos θ;R, p, q)

+ e−i θφ
n
2
2 (p, q)φ

−1
2 (P,Q)Hn(cos θ;R, p, q)

− φ3(p, q)[n]R,p,qHn−1(cos θ;R, p, q).

Proof Multiplying the two sides of the three-term recursion relation (3.6) by
ei(n+1)θ , we obtain, for z = e−2iθ ,

ei(n+1)θHn+1(e
−2iθ ;R, p, q) = ei(n+1)θHn

(
φ1(p, q)e

−2iθ ;R,p, q)

+ ei(n−1)θ φn2 (p, q)Hn
(
φ−1

2 (p, q)e−2iθ ;R, p, q)

− ei(n−1)θ φ3(p, q)[n]R,p,qHn−1
(
e−2iθ ;R, p, q)

= eiθ einθ φ1(P ,Q)Hn

(
e−2iθ ;R, p, q

)

+ e−iθ φn2 (p, q)einθ φ−1
2 (P ,Q)Hn

(
e−2iθ ;R, p, q)

− φ3(p, q)[n]R,p,q ei(n−1)θHn−1
(
e−2iθ ;R, p, q)
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The required result follows from the use of the equalities

einθφ1(P,Q)Hn

(
e−2iθ ;R, p, q

)
= φ

n
2
1 (p, q)φ1(P,Q)e

inθHn

(
e−2iθ ;R, p, q

)
,

einθφ−1
2 (P,Q)Hn

(
e−2iθ ;R, p, q

)
= φ−

n
2

2 (P,Q)φ−1
2 (P,Q)

× einθHn
(
e−2iθ ;R, p, q

)

with

φj (P,Q)e
−2ikθ = φkj (p, q)e−2ikθ , j = 1, 2, k = 0, 1, 2, · · · .

��

5.2 Particular Cases

5.2.1 Continuous (p, q)-Hermite Polynomials

The continuous (p, q)-Hermite polynomials have been already suggested in [18]
without any further details. In the above achieved generalization, these polynomials
are given by

Hn(cos θ;p, q) = einθHn(e−2iθ ;p, q) =
n∑
k=0

[
n

k

]
p,q

ei(n−2k)θ ,

where n = 0, 1, 2, · · · Since for the (p, q)-deformation φ1(x, y) = φ2(x, y) = x
and φ(x, y) = x − y, from Proposition 5.1 we deduce that the corresponding
sequence of continuous (p, q)-polynomials satisfies the three-term recursion rela-
tion

Hn+1(cos θ;p, q) = p n2 (eiθP + e−iθP−1)Hn(cos θ;p, q)
− (pn − qn)Hn−1(cos θ;p, q), (5.2)

withPeiθ = p−1/2eiθ . This relation turns to be the well-known three-term recursion
relation (5.1) of continuous q-Hermite polynomials in the limit p → 1. As matter
of illustration, let us explicitly compute the first three polynomials using the relation
(5.2), with H−1(cos θ;p, q) = 0 and H0(cos θ;p, q) = 1:

H1(cos θ;p, q) = p0(eiθP + e−iθP−1)− (p0 − q0)0

= eiθ + e−iθ = 2 cos θ
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=
[

1
0

]
p,q

eiθ +
[

1
1

]
p,q

e−iθ .

H2(cos θ;p, q) = p 1
2 (eiθP + e−iθP−1)(eiθ + e−iθ )− p + q

= e2iθ + e−2iθ + p + q
= 2 cos 2θ + p + q

=
[

2
0

]
p,q

e2iθ +
[

2
1

]
p,q

e0iθ +
[

2
2

]
p,q

e−iθ ..

H3(cos θ;p, q) = p(eiθP + e−iθP−1)(e2iθ + e−2iθ + p + q)
− (p2 − q2)(eiθ + e−iθ )
= e3iθ + e−3iθ + (p2 + pq + q2)(eiθ + e−iθ )
= 2 cos 3θ + 2(p2 + pq + q2) cos θ

=
[

3
0

]
p,q

e3iθ +
[

3
1

]
p,q

eiθ

+
[

3
2

]
p,q

e−iθ +
[

3
3

]
p,q

e−3iθ .

We compute the first three (p, q)-Rogers–Szegö polynomials using the relation
(5.2). We get,

•

H1(e
−2iθ ;p, q) = e−iθH1(cos θ;p, q)

= 2 cos θ e−iθ

= (eiθ + e−iθ ) e−iθ
= e−2iθ + 1.

•

H2(e
−2iθ ;p, q) = e−2iθ

H2(cos θ;p, q)
= e−2iθ (2 cos 2θ + p + q)

= e−2iθ (e2iθ + e−2iθ + p + q)

= e−4iθ + (p + q)e−2iθ + 1.



432 M. N. Hounkonnou

•

H3(e
−2iθ ;p, q) = e−3iθ

H3(cos θ;p, q)
= e−3iθ (2 cos 3θ + 2(p2 + pq + q2) cos θ

)
= e−3iθ (e−3iθ + e3iθ + (p2 + pq + q2)(e−iθ + eiθ ))

= e−6iθ + (p2 + pq + q2)e−4iθ

+(p2 + pq + q2)e−2iθ + 1.

5.2.2 Continuous (p−1, q)-Hermite Polynomials

The continuous (p−1, q)-Hermite polynomials is obtained by putting p = p−1 and
P = P−1 in Sect. 5.2.1. In the generalization, these polynomials are given by

Hn(cos θ;p−1, q) = einθHn(e−2iθ ;p−1, q) =
n∑
k=0

[
n

k

]
p−1,q

ei(n−2k)θ ,

where n = 0, 1, 2, · · ·
Since for the (p−1, q)-deformation φ1(x, y) = φ2(x, y) = x and φ(x, y) =

x−1 − y, from Proposition 5.1 we deduce that the corresponding sequence of
continuous (p−1, q)-polynomials satisfies the three-term recursion relation

Hn+1(cos θ;p−1, q) = p− n2 (eiθP−1 + e−iθP )Hn(cos θ;p−1, q)

− (p−n − qn)Hn−1(cos θ;p−1, q), (5.3)

with P−1eiθ = p1/2eiθ . This relation turns to be the well-known three-term
recursion relation (5.1) of continuous q-Hermite polynomials in the limit p−1 → 1.
As matter of illustration, let us explicitly compute the first three polynomials using
the relation (5.3), with H−1(cos θ;p−1, q) = 0 and H0(cos θ;p−1, q) = 1:

H1(cos θ;p−1, q) = p0(eiθP−1 + e−iθP − (p0 − q0)0

= eiθ + e−iθ = 2 cos θ

=
[

1
0

]
p−1,q

eiθ +
[

1
1

]
p−1,q

e−iθ .

H2(cos θ;p−1, q) = p− 1
2 (eiθP−1 + e−iθP )(eiθ + e−iθ )− p−1 + q

= e2iθ + e−2iθ + p−1 + q
= 2 cos 2θ + p−1 + q
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=
[

2
0

]
p−1,q

e2iθ +
[

2
1

]
p−1,q

e0iθ

+
[

2
2

]
p−1,q

e−iθ ..

H3(cos θ;p−1, q) = p−1(eiθP−1 + e−iθP )(e2iθ + e−2iθ + p−1 + q)
− (p−2 − q2)(eiθ + e−iθ )
= e3iθ + e−3iθ + (p−2 + p−1q + q2)(eiθ + e−iθ )
= 2 cos 3θ + 2(p−2 + p−1q + q2) cos θ

=
[

3
0

]
p−1,q

e3iθ +
[

3
1

]
p−1,q

eiθ

+
[

3
2

]
p−1,q

e−iθ +
[

3
3

]
p−1,q

e−3iθ .

From the relation (5.2), we compute the first three (p−1, q)-Rogers–Szegö polyno-
mials. We get,

•

H1(e
−2iθ ;p−1, q) = e−iθH1(cos θ;p−1, q)

= 2 cos θ e−iθ

= (eiθ + e−iθ ) e−iθ
= e−2iθ + 1.

•

H2(e
−2iθ ;p−1, q) = e−2iθ

H2(cos θ;p−1, q)

= e−2iθ (2 cos 2θ + p−1 + q)

= e−2iθ (e2iθ + e−2iθ + p−1 + q)

= e−4iθ + (p−1 + q)e−2iθ + 1.

•

H3(e
−2iθ ;p−1, q) = e−3iθ

H3(cos θ;p−1, q)

= e−3iθ (2 cos 3θ + 2(p−2 + p−1q + q2) cos θ
)

= e−3iθ (e−3iθ + e3iθ + (p−2 + p−1q + q2)(e−iθ + eiθ ))
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= e−6iθ + (p−2 + p−1q + q2)e−4iθ

+(p−2 + p−1q + q2)e−2iθ + 1.

5.2.3 Continuous (p, q)-Hermite Polynomials Related
to (p, q)-Generalization of Quesne Deformation [13]

We define the continuous (p, q)-Hermite polynomials corresponding to the (p, q)-
generalization of Quesne deformation as follows:

H
Q
n (cos θ;p, q) = einθHQn (e−2iθ ;p, q) =

n∑
k=0

[
n

k

]Q
p,q

ei(n−2k)θ

where n = 0, 1, 2, · · · Since for the (p, q)-generalization of Quesne deformation
[13] φ1(x, y) = φ2(x, y) = y and φ(x, y) = y − x−1, from Proposition 5.1 we
deduce that the corresponding sequence of continuous (p, q)-Hermite polynomials
satisfies the three-term recursion relation

H
Q
n+1(cos θ;p, q) = p n2 (eiθP + e−iθP−1)HQn (cos θ;p, q)

− (pn − q−n)HQn−1(cos θ;p, q) (5.4)

withPeiθ = p−1/2eiθ . This relation turns to be the well-known three-term recursion
relation (5.1) of continuous q-Hermite polynomials in the limit p → 1. As matter
of illustration, let us explicitly compute the first three polynomials using the relation
(5.4), with H

Q
−1(cos θ;p, q) = 0 and H

Q
0 (cos θ;p, q) = 1:

H
Q
1 (cos θ;p, q) = p0(eiθP + e−iθP−1)− (p0 − q0)0

= eiθ + e−iθ = 2 cos θ

=
[

1
0

]Q
p,q

eiθ +
[

1
1

]Q
p,q

e−iθ .

H
Q
2 (cos θ;p, q) = p 1

2 (eiθP + e−iθP−1)(eiθ + e−iθ )− p + q−1

= e2iθ + e−2iθ + p + q−1

= 2 cos 2θ + p + q−1

=
[

2
0

]Q
p,q

e2iθ +
[

2
1

]Q
p,q

e0iθ +
[

2
2

]Q
p,q

e−iθ ..

H
Q
3 (cos θ;p, q) = p(eiθP + e−iθP−1)(e2iθ + e−2iθ + p + q−1)
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− (p2 − q−2)(eiθ + e−iθ )
= e3iθ + e−3iθ + (p2 + pq−1 + q−2)(eiθ + e−iθ )
= 2 cos 3θ + 2(p2 + pq−1 + q−2) cos θ

=
[

3
0

]Q
p,q

e3iθ +
[

3
1

]Q
p,q

eiθ

+
[

3
2

]Q
p,q

e−iθ +
[

3
3

]Q
p,q

e−3iθ .

Let us compute the first three (p, q)-Rogers–Szegö polynomials associated with the
q-Quesne quantum algebra using the relation (5.2). We get,

•

H
Q
1 (e

−2iθ ;p, q) = e−iθHQ1 (cos θ;p, q)
= 2 cos θ e−iθ

= (eiθ + e−iθ ) e−iθ
= e−2iθ + 1.

•

H
Q
2 (e

−2iθ ;p, q) = e−2iθ
H
Q
2 (cos θ;p, q)

= e−2iθ (2 cos 2θ + p + q−1)

= e−2iθ (e2iθ + e−2iθ + p + q−1)

= e−4iθ + (p + q−1)e−2iθ + 1.

•

H
Q
3 (e

−2iθ ;p, q) = e−3iθ
H
Q
3 (cos θ;p, q)

= e−3iθ (2 cos 3θ + 2(p2 + pq−1 + q−2) cos θ
)

= e−3iθ (e−3iθ + e3iθ + e−iθ (p2 + pq−1 + q−2)

+eiθ (p2 + pq−1 + q−2))
)

= e−6iθ + (p2 + pq−1 + q−2)e−4iθ

+(p2 + pq−1 + q−2)e−2iθ + 1.
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5.2.4 Continuous (p, q, μ, ν, h)-Hermite Polynomials Related
to the Hounkonnou-Ngompe Deformation [15]

The continuous (p, q, μ, ν, h)-Hermite polynomials are defined by:

Hn(cos θ;p, q,μ, ν, h) = einθHn(e−2iθ ;p, q,μ, ν, h)

=
n∑
k=0

[
n

k

]μ,ν
p,q,h

ei(n−2k)θ , n = 0, 1, 2, · · · .

Since for the (p, q, μ, ν, h)-deformation φ1(x, y) = x1−μyν , φ2(x, y) = x−μyν−1

and φ3(x, y) = y−x−1

h(p,q)
, from Proposition 5.1 the corresponding sequence of

continuous (p, q, μ, ν, h)-Hermite polynomials satisfies the three-term recursion
relation

Hn+1(cos θ;p, q,μ, ν, h) = eiθ qν
n
2

p(μ−1) n2

Qν

Pμ−1 Hn(cos θ;p, q,μ, ν, h)

+ e−iθ q
(ν−1) n2

pμ
n
2

Q−(ν−1)

P−μ
Hn(cos θ;p, q,μ, ν, h)

− (pn − q−n) q
νn

pμn
Hn−1(cos θ;p, q,μ, ν, h) (5.5)

where Peiθ = p−1/2eiθ . This relation turns to be the well-known three-term recur-
sion relation (5.1) of continuous q-Hermite polynomials in the limit p→ 1. As mat-
ter of illustration, let us explicitly compute the first two polynomials using the rela-
tion (5.5), with H−1(cos θ;p, q,μ, ν, h) = 0 and H0(cos θ;p, q,μ, ν, h)= 1:

•

H1(e
iθ ;p, q,μ, ν, h) = eiθ Q

ν

Pμ−1 + e−iθ
Q−(ν−1)

P−μ

•

H2(e
iθ ;p, q,μ, ν, h) = (

eiθ
qν

1
2

p(μ−1) 1
2

Qν

Pμ−1 + e−iθ
q(ν−1) 1

2

pμ
1
2

Q−(ν−1)

P−μ
)

× (
eiθ

Qν

Pμ−1 + e−iθ
Q−(ν−1)

P−μ
)− (p − q−1)

qν

pμ
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= e2iθ q
ν
2

p
μ−1

2

Q2ν

P 2(μ−1)
+ e−2iθ Q

−2(ν−1)

P−2μ

q
ν−1

2

p
μ
2

+ QP q
ν
2

p
μ
2
(p

1
2 + q −1

2 )− (p − q−1)
qν

pμ
.

The first two (p, q, μ, ν, h)-Rogers–Szegö polynomials related to the Hounkonnou-
Ngompe deformation. We get,

•

H1(e
−2iθ ;p, q,μ, ν, h) = e−iθH1(cos θ;p, q,μ, ν, h)

= e−iθ
(
eiθ

Qν

Pμ−1 + e−iθ
Q−(ν−1)

P−μ
)

= e−2iθ Q
−(ν−1)

P−μ
+ Qν

Pμ−1 .

•

H2(e
−2iθ ;p, q,μ, ν, h) = e−2iθ

H2(cos θ;p, q,μ, ν, h)

= e−4iθ Q
−2(ν−1)

P−2μ

q
ν−1

2

p
μ
2
+ e−2iθ

(
− (p − q−1)

qν

pμ

+QP q
ν
2

p
μ
2
(p

1
2 + q −1

2 )
)
+ q

ν
2

p
μ−1

2

Q2ν

P 2(μ−1)
.

6 Concluding Remarks

In this contribution paper, we have presented the construction of Rogers–Szegö
polynomials, resulting from the works existing in the literature, and recently intro-
duced (R, p, q)-deformed Rogers–Szegö polynomials, which generalize known
usual and deformed Rogers–Szegö polynomials. Their three-term recursion relation
and difference equation have been provided, together with the induced (R, p, q)-
deformed quantum algebras. Relevant particular cases and examples have been
given. Finally, the associated continuous (R, p, q)-Hermite polynomials have also
been characterized.
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Zeros of Orthogonal Polynomials

Kerstin Jordaan

Abstract In this lecture we discuss properties of zeros of orthogonal polynomials.
We review properties that have been used to derive bounds for the zeros of orthogo-
nal polynomials. Topics to be covered include Markov’s theorem on monotonicity of
zeros and its generalisations, the proof of a conjecture by Askey and its extensions,
interlacing properties of zeros, Sturm’s comparison theorem and convexity of zeros.

Keywords Orthogonal polynomials · Zeros · Jacobi polynomials · Monotonicity
of zeros · Interlacing of zeros · Stieltjes interlacing · Bounds for zeros

Mathematics Subject Classification (2000) Primary 33C45; Secondary 42C05

1 Zeros as Eigenvalues

Let {pn(x)}∞n=0 be a sequence of monic orthogonal polynomials satisfying

pn+1(x) = (x − αn)pn(x)− βn pn−1(x), n = 0, 1, 2, . . . ,

with p−1 = 0 and p0 = 1.
The recurrence coefficients may be collected in a tridiagonal matrix of the form

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

α0
√
β1√

β1 α1
√
β2√

β2 α2
√
β3

√
β3 α3

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
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known as the Jacobi matrix or Jacobi operator. One can write

pn(x) = det (xIn − Jn)

where In is the identity matrix and Jn is the tridiagonal matrix

Jn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0
√
β1√

β1 α1
√
β2√

β2 α2
√
β3

√
β3 α3

. . .

. . .
. . . √

βn−1√
βn−1 αn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It follows that zeros of pn(x) are the same as the eigenvalues of Jn.

2 Monotonicity of the Zeros

The manner in which the zeros of a polynomial change as the parameter changes
can be used to study interlacing properties of zeros [8, 32].

In 1886, A. Markov established an important result about the monotonicity
properties of zeros of orthogonal polynomials with respect to a parameter (cf. [33],
[43, Thm 6.12.1].

Markov’s theorem can be used to show that the zeros of classical orthogonal
polynomials like Laguerre and Jacobi polynomials are monotone functions of the
parameter(s) involved by using the derivative of the weight function with respect to
the parameter(s). A slightly generalised version of Markov’s theorem, stated as an
exercise in [16, Chap. 3, ex. 15] and proved in [23, Thm 7.1.1] (see also [7, Thm 1])
can also be applied to discrete orthogonal polynomials such as Meixner and Hahn
polynomials.

Theorem 2.1 (cf. [23]) Let {pn(x, τ )}∞n=0 be orthogonal with respect to
dα(x, τ ) = w(x, τ )dα(x) on the interval [a, b] depending on a parameter τ ,
such that w(x, τ ) is positive and continuous for a < x < b, τ1 < τ < τ2. Also,
suppose that the partial derivative wτ (x, τ ) for a < x < b, τ1 < τ < τ2 exists and
is continuous, and the integrals

∫ b

a

xνwτ (x, τ )dα(x), ν = 0, 1, 2, . . . , 2n− 1,

converge uniformly in every closed interval [τ ′, τ ′′ ] ⊂ (τ1, τ2). If the zeros of
pn(x, τ ) are denoted by b > x1(τ ) > x2(τ ) > · · · > xn(τ) > a, then the νth zero
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xν(τ ) (for a fixed value of ν) is an increasing (decreasing) function of τ provided
that wτ/w is an increasing (decreasing) function of x, a < x < b.

Proof The mechanical quadrature formula (cf. [23, (2.4.1)])

∫ b

a

ρ(x)dα(x, τ ) =
n∑
ν=1

λν(τ )ρ(xν(τ )), (2.1)

holds for polynomials ρ(x) of degree at most 2n − 1. Differentiating (2.1) with
respect to τ , we obtain

∫ b

a

ρ(x)wτ (x, τ )dα(x) =
n∑
ν=1

λν(τ )ρ
′
(xν)x

′
ν(τ )+

n∑
ν=1

λ
′
ν(τ )ρ(xν).

Now we choose

ρ(x) = {pn(x, τ )}
2

x − xν ,

then, since xν is a removable singularity, ρ
′
(xν) = {p′n(xν, τ )}2 while ρ

′
(xμ) = 0

if μ �= ν and hence

∫ b

a

wτ (x, τ )
{pn(x, τ )}2
x − xν dα(x) = λν(τ ){p′n(xν, τ )}2x

′
ν(τ ). (2.2)

In view of the orthogonality the integral

∫ b

a

{pn(x, τ )}2
x − xν w(x, τ )dα(x) = 0,

so (2.2) can be rewritten as

∫ b

a

{
wτ (x, τ )− wτ (xν, τ )

w(xν, τ )
w(x, τ )

} {pn(x, τ )}2
x − xν dα(x) = λν(τ ){p′n(xν, τ )}2x

′
ν(τ ).

and we obtain

∫ b

a

{wτ (x, τ )
w(x, τ )

− wτ (xν, τ )
w(xν, τ )

} {pn(x, τ )}2
x − xν dα(x, τ ) = λν(τ ){p′n(xν, τ )}2x ′ν(τ ).

(2.3)

The integrand in (2.3) has a constant sign, so the positivity of the so-called
Christoffel numbers λν(τ ) [43, p. 48] establishes the result. ��
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Example (cf. [23, Thm. 7.1.2])

(i) For Jacobi polynomials Pn(α, β), the weight function is w(x, α, β) = (1 −
x)α(1+ x)β and α(x) = x, hence

∂ lnω(x, α, β)

∂β
= ∂ ln(1+ x)β

∂β
= ln(1+ x)

which is an increasing function of x.
(ii) For the Hahn polynomials, α is a step function with unit jumps at 0, 1, . . . , N

and

w(x, α, β) = �(α + 1+ x)�(β + 1+N − x)
�(α + 1)�(b + 1)

and, using properties of the Gamma function, we deduce that

∂ lnω(x, α, β)

∂α
=
∞∑
n=0

[
1

α + n+ 1
− 1

α + n+ x + 1

]

which is a decreasing function of x.

The variation of the zeros of a Jacobi polynomial with the parameter can be
summarised as follows.

Lemma 2.2 (cf. [43], Thm 6.21.1, p.121) Let α > −1 and β > −1 and let xk ,

k = 1, 2, . . . , n denote the zeros of P (α,β)n in increasing order. Then
dxk

dα
< 0 and

dxk

dβ
> 0 for each k = 1, . . . , n.

This implies that the zeros of P (α,β)n (x) increase as β increases and decrease as α
increases.

The application of Markov’s Theorem to a specific orthogonal sequence requires
the calculation of the derivative of the weight function. Weight functions of
orthogonal polynomials are not always simple and do not necessarily satisfy the
conditions of Markov’s theorem and its generalisations, hence alternative tools are
required. Such alternative techniques for deriving monotonicity properties of zeros
include the analysis of zeros of polynomial solutions of second-order ordinary linear
differential equations (cf. [34] and [23]). The monotonicity of all the zeros as well as
the extreme zeros of polynomials satisfying recursion formulas, referred to as birth
and death processes, were considered in [20, 26] using a finite dimensional version
of the Hellman–Feynman Theorem while Ismail and Muldoon [24] used tridiagonal
matrices arising from the three term recurrence relation to study monotonicity
properties of various special functions and orthogonal polynomials. Dimitrov and
Rodrigues [6] applied the Routh–Hurwitz stability criterion to obtain monotonicity
results for the zeros of Jacobi polynomials.
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3 Interlacing of Zeros from Different Sequences

The interlacing property of zeros of polynomials is important in applications to
numerical quadrature. In [31], Lubinsky generalises a quadrature formula proved
by Simon [39] for orthonormal polynomials P of degree ≤ n − 2 by applying
Wendroff’s Theorem [47] to two real polynomials R and S of consecutive degree
with interlacing zeros. He observes that other analytical methods can be used to
prove the quadrature results obtained, but that the proofs are substantially simplified
when interlacing properties of zeros are used.

Levit [30] was the first to study interlacing properties of zeros of different
orthogonal polynomials when he considered the zeros of Hahn polynomials in 1967.

3.1 Jacobi Polynomials

In 1990, Askey [2] proved that the zeros of Jacobi polynomialsP (α,β)n and P (α+t,β)n ,
t ∈ (0, 1] interlace for α, β > −1 and conjectured that the zeros of P (α,β)n and
P
(α+2,β)
n are interlacing for each n ∈ N, α, β > −1.

In [38], Segura proved that interlacing of zeros holds, under certain assumptions,
within sequences of classical orthogonal polynomials even when the parameter(s)
on which they depend lie outside the value(s) required to ensure orthogonality.

It was proved in [11] that the zeros of P (α,β)n interlace with the zeros of
polynomials from different Jacobi sequences, including those of P (α−t,β+k)n and
P
(α+t,β+k)
n−1 for 0 ≤ t, k ≤ 2, thereby confirming and extending the Askey conjecture

[2]. Numerical examples were given to illustrate that, in general, if t or k is greater
than 2, interlacing of zeros need not necessarily occur.

The proofs make use of the Markov monotonicity theorem as applied to
Jacobi polynomials (see Lemma 2.2) as well as the contiguous relations for 2F1
hypergeometric polynomials. Note that various algorithms have been developed
for computing such contiguous relations (cf. [36, 37, 44]). In addition, an efficient
algorithm for large shifts of the parameters is available as a Maple program (cf.
[45]).

In [9], Dimitrov, Ismail and Rafaeli used a general approach to the Askey
conjecture by considering interlacing properties of zeros of orthogonal Jacobi
polynomials P (α,β)n of the same degree and different parameter values α and β in
the context of perturbation of the weight function of orthogonality.

The first result shows that interlacing of the zeros occurs for Jacobi polynomials
of adjacent degree when both the parameters α and β are increased by t and k
respectively for any t, k ∈ (0, 2].
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Theorem 3.1 (cf. [11]) Let α, β > −1 and let t, k ∈ [0, 2]. Let

−1 < x1 < x2 < · · · < xn < 1 be the zeros of P (α,β)n and

−1 < t1 < t2 < · · · < tn−1 < 1 be the zeros of P (α+t,β+k)n−1 .

Then

−1 < x1 < t1 < x2 < · · · < xn−1 < tn−1 < xn < 1.

The result is illustrated in Fig. 1 where it is shown that, for a fixed α > −1 and

β > −1, the zeros of P (α,β)n and P (α
′,β ′)

n−1 interlace when α′ and β ′ are any of the
values in the shaded region.

Next we consider Jacobi polynomials of the same degree with different parame-
ters, where one or both parameters α and β increase or decrease by t ∈ (0, 2].
Theorem 3.2 (cf. [11]) Let α > 1, β > −1 and t, k ∈ (0, 2).

Let− 1 < x1 < x2 < · · · < xn < 1, be the zeros of P (α,β)n ,

−1 < t1 < t2 < · · · < tn < 1, be the zeros of P (α−k,β+t )n ,

and − 1 < y1 < y2 < · · · < yn < 1, be those of P (α−2,β+2)
n .

αα

β

β

-1
-1

β + 2

α + 2

Fig. 1 Values of α′ and β ′ for which the zeros of P (α,β)n and P (α
′,β ′)

n−1 interlace when α, β > −1
are fixed
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Then

−1 < x1 < t1 < y1 < x2 < t2 < y2 < · · · < xn < tn < yn < 1.

It follows from the symmetry property for Jacobi polynomials (cf. [23, p.82,
(4.1.1)])

P (α,β)n (x) = (−1)nP (β,α)n (−x),

that an analogous result holds for the zeros of P (α,β)n and P (α+k,β−t )n with t, k ∈
(0, 2].

The interlacing property for the zeros of P (α,β)n and P (α
′,β ′)

n , for a fixed α and β
with (α, β) �= (α′, β ′); α, α′, β and β ′ > −1 holds, is illustrated by the shaded area
in the αβ-plane in Fig. 2.

Remark 3.3 Restrictions on the ranges of t and k are required in the theorems
since the interlacing property is not retained, in general, when one or both of
the parameters α, β are increased by more than 2. Examples illustrating this are
provided in [11]. These restrictions on the parameters seem reasonable considering
the electrostatic interpretation of the zeros as described in the next section.

αα + 2

β − 2

β + 2

α

β

β

α − 2-1

-1

Fig. 2 Values of α′, β ′ > −1 for which the zeros of P (α,β)n and P (α
′,β ′)

n interlace when α, β > −1
are fixed
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3.2 A One-Dimensional Electrostatic Model for Zeros of
Different Jacobi Polynomials

The electrostatic interpretation of the zeros of Jacobi polynomials, originally given
by Stieltjes (cf. [40]), was generalised by Ismail (cf. [21, 22]) to polynomials
orthogonal with respect to a weight w(x) = e−v(x). For n fixed, the zeros of the
Jacobi polynomial of degree n may be interpreted as the equilibrium positions of
n movable positive unit charges that are able to move freely between two positive
charges, placed at −1 and 1, with magnitude β+1

2 and α+1
2 respectively where it is

assumed that the interaction force between two charges ei and ej with a distance s

apart is
2eiej
s

. Therefore, increasing a parameter corresponds to increasing a charge
at one of the endpoints of orthogonality which explains the monotonicity of the
zeros. To evaluate the energy at equilibrium one needs to compute the discriminant
of Jacobi polynomials P (α,β)n (x) as was done by Stieltjes in [41]. An alternative
proof was provided by Hilbert in [18]. For a more detailed exposition of these
results, see [23, Chapter 3] or [43, Section 6.7].

Let n ∈ N, α > 1 and β > −1 be fixed and consider the n fixed equilibrium
positions of charges qi , i ∈ {1, ..., n} coinciding with the zeros of the Jacobi
polynomial P (α,β)n (x). Replacing the charge at 1 by α+1

2 − k
2 and the charge at

−1 by β+1
2 + t

2 , the positive charge at 1 decreases while the charge at −1 increases.
Since positive charges repel each other, the new equilibrium positions of each of the
unit charges, denoted by q(t,k)i , i ∈ {1, 2 . . . , n}, will shift to the right as both t and
k increase. It also follows from Theorem 3.2 that the positions of the positive unit
charges qi and q(t,k)i , i ∈ {1, 2 . . . , n} interlace provided that 0 < t, k ≤ 2.However,
if the positive charge at −1 is increased by more than one unit charge (k > 2) or
the charge at 1 decreased by more than one unit charge (t > 2), it is to be expected
that the interlacing properties of the unit charges qi and q(t,k)i , i ∈ {1, . . . , n} will
break down. Therefore the restrictions t, k ≤ 2 in Theorem 3.2 make sense from
electrostatic considerations.

4 Stieltjes Interlacing of Zeros

A classical result due to Stieltjes (cf. [43]) concerns interlacing of the zeros of
polynomials of non-consecutive degree in a sequence of orthogonal polynomials;
a property called Stieltjes interlacing.

Theorem 4.1 (cf. [43, Thm 3.3.3]) Let {pn}∞n=0 be a sequence of orthogonal
polynomials on the interval (a, b) with respect to w(x) > 0 and suppose m < n.
Then, between any two zeros of pm, there is at least one zero of pn.
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Fig. 3 of Lα7 (x) (blue) and Lα3 (x) (red) for α = 3.4

Proof Suppose that xm,k and xm,k+1 are two consecutive zeros of pm(x) and that
there is no zero of pn(x) in (xm,k, xm,k+1). Consider

g(x) = pm(x)

(x − xm,k)(x − xm,k+1)
.

Then g(x)pm(x) ≥ 0 for x /∈ (xm,k, xm,k+1).

If {xn,i}ni=1 are the zeros of pn(x), Gauss quadrature gives

∫ b

a

g(x)pm(x)w(x)dx =
n∑
i=1

λn,ig(xn,i )pm(xn,i).

Since there are no zeros of pn(x) in (xm,k, xm,k+1) we conclude that
g(xn,i)pm(xn,i) ≥ 0 for all i = 1, 2, . . . , n. Further we have λn,i > 0 for all
i = 1, 2, . . . , n which implies that the sum on the right-hand side cannot vanish.
However, the integral on the left-hand side is zero by orthogonality and we have a
contradiction. ��

Stieltjes interlacing of the zeros of two Laguerre polynomials is illustrated in
Fig. 3.

5 Bounds for the Zeros of Orthogonal Polynomials

Classical methods to obtain bounds for zeros of orthogonal polynomials include the
use of monotonicity properties (cf. [5]), known properties of zeros of polynomials in
the Laguerre–Polya class (cf. [4, 15, 28, 29, 35]), Sturmian methods for differential
equation (cf. [13, 14, 43]), Obrechkov’s theorem (cf. [1]) as well as chain sequences
and the Wall-Wetzel theorem (cf. [25, 46]).

5.1 Bounds for Zeros from Stieltjes Interlacing

Mixed recurrence relations used to prove Stieltjes interlacing of the zeros of two
polynomials from different sequences provide a set of points that can be applied as
inner bounds for the extreme zeros of polynomials.
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Theorem 5.1 (cf. [10]) Let {pn}∞n=0 be a sequence of polynomials orthogonal on
the interval (c, d). Fix k, n ∈ N with k < n−1 and suppose deg(gn−k−1)= n−k−1
with

f (x)gn−k−1(x) = Gk(x)pn−1(x)+H(x)pn(x) (5.1)

where f (x) �= 0 for x ∈ (c, d) and deg(Gk) = k. Then the n− 1 real, simple zeros
ofGkgn−k−1 interlace with the zeros of pn if gn−k−1 and pn are co-prime.

Proof Let w1 < · · · < wn denote the zeros of pn. Since pn−1 and pn are always
co-prime while pn and gn−k−1 are co-prime by assumption, it follows from (5.1)
thatGk(wj ) �= 0 for every j. From (5.1), provided pn(x) �= 0, we have

f (x)gn−k−1(x)

pn(x)
= H(x)+ Gk(x)pn−1(x)

pn(x)
.

The decomposition into partial fractions (cf. [43, Thm 3.3.5]

pn−1(x)

pn(x)
=

n∑
j=1

Aj

x −wj ,

where Aj > 0 for every j ∈ {1, . . . , n}, implies that we can write

f (x)gn−k−1(x)

pn(x)
= H(x)+

n∑
j=1

Gk(x)Aj

x −wj , x �= wj .

Suppose that Gk does not change sign in an interval (wj ,wj+1) where j ∈
{1, 2, . . . , n − 1}. Since Aj > 0 and the polynomial H is bounded on Ij while the
right hand side takes arbitrarily large positive and negative values on (wj ,wj+1), it
follows that gn−k−1 must have an odd number of zeros in every interval in whichGk
does not change sign. SinceGk is of degree k, there are at least n− k − 1 intervals
(wj ,wj+1), j ∈ {1, . . . , n − 1} in which Gk does not change sign and so each of
these intervals must contain exactly one of the n− k− 1 real, simple zeros of gn−k .
We deduce that the k zeros ofGk are real and simple and, together with the n−k−1
zeros of gn−k−1, interlace with the n zeros of pn. ��
Corollary 5.2 (cf. [10]) Suppose (5.1) holds for k, n ∈ N fixed and k < n− 1. The
largest (smallest) zero ofGk is a strict lower (upper) bound for the largest (smallest)
zero of pn.

Example For Laguerre polynomials one can show that, when n > 1, n ∈ N, (5.1)
holds for k = 1 and t ∈ (0, 1) with

gn−2 = Lα+tn−2

G1(x) = x − (α − 1+ (2− t)n).
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Fig. 4 Zeros of Lαn(x) (blue), Lα+t
n−2 (red) and α − 1+ (2− t)n (green) for n = 9, α = 1.34 and

t = 0.9

It follows that for all α > −1, n ∈ N, t ∈ (0, 1), α− 1+ (2− t)n is an inner bound
for the extreme zeros of Lαn(x) as illustrated in Fig. 4 for t = 0.9.

Example For Jacobi polynomials P (α,β)n , α, β > −1, it was proved in [12, Thm
2.1(i)(c)] that, when n > 1, n ∈ N, (5.1) holds for k = 1 with

gn−2 = P (α+4,β)
n−2

G1(x) = x − 2(n− 1)(n+ α + β + 2)+ (α + 3)(β − α)
2(n− 1)(n+ α + β + 2)+ (α + 3)(α + β + 2)

.

It follows that for all α, β > −1, n ∈ N,

wn > 1− 2(α + 1)(α + 3)

2(n− 1)(n+ α + β + 2)+ (α + 3)(α + β + 2)

= 1−O( 1

n2 ).

This bound is sharper than the lower bound for largest zero [43, (6.2.11)]

1− 2(α + 1)

2n+ α + β = 1−O(1

n
).
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6 Distance Between the Consecutive Zeros

Sturm’s convexity theorem (cf. [42]) states that for

y ′′(t)+ F(t)y(t) = 0,

a second-order differential equation in normal form, whereF is continuous in (a, b)
and y(t) is a nontrivial solution in (a, b), the distance between the zeros of y(t)
is decreasing (zeros are concave) if F(t) is strictly increasing in (a, b), and the
distance between the zeros of y(t) is increasing (zeros are convex) if F(t) is strictly
decreasing in (a, b).

Problem The second-order differential equations for orthogonal polynomials and
many special functions are not in normal form!

Solutions were found by Szegő [43, Thm 6.3.3] for convexity of the zeros

θ0, θ1, θ2, . . . , θ[n/2]+1

of Jacobi polynomials P (α, α)n (cos θ) when −1/2 < α = β < 1/2 and by Deano et
al. (cf. [3]) for the convexity of the transformed zeros for hypergeometric functions
when using the Liouville transformation.

Consider the more general differential equation

x ′′ + g(t)x ′ + f (t)x = 0

which can be changed to normal form

y ′′ + F(t)y = 0, (6.1)

with the transformation

y = x exp

(
1

2

∫ t

0
g(s)ds

)

where F(t) = f (t)− 1

4
g2(t)− 1

2
g′(t).

The huge advantage of this transformation is that the zeros of x and y are the
same! This transformation was used by Sturm (cf. [42]) for Bessel functions and
Hille (cf. [19]) for Hermite polynomials.

Laguerre polynomials satisfy the differential equation

tx ′′ + (α + 1− t)x ′ + nx = 0
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which can be transformed to normal form (6.1) where

F(t) = −t
2 + 2αt + 2t + 4nt − α2 + 1

4t2

and changes monotonicity at

t0 := α2 − 1

α + 2n+ 1
.

Theorem 6.1 (cf. [27]) The zeros of Lαn(t) on (0, ∞) are

(a) all convex if n > 0 and −1 < α ≤ 3;
(b) all convex if α > 3 and 0 < n < α+1

α−3 ;

(c) concave for t < t0 and convex for t > t0 when α > 3 and n > α+1
α−3 .

Moreover, for the distance between consecutive zeros we have

�xk >
π
√

2√
2αn+ α + 2n2 + 2n+ 1

, k = 1, . . . , n− 1,

and also if xk > t0 then

π√
F(xk)

< �xk <
π√

F(xk+1)
, k = 1, . . . , n− 2.

The convexity of the zeros of Laguerre polynomials for the case in Theorem 6.1(a)
is illustrated in Fig. 5.

Question Is it possible to find α and n values so that the first several zeros of the
Laguerre polynomial are concave?

By Theorem 6.1(c), the answer to this question requires, at the very least, that the

smallest zero, x1, satisfies x1 < t0 = α2 − 1

α + 2n+ 1
and this would be so if one could

find an upper bound for x1 which lies between x1 and t0. The known upper bound

for x1, namely (α+1)(α+2)
α+n+1 , due to Hahn [17], satisfies t0 <

(α + 1)(α + 2)

α + n+ 1
while

the bound (α+1)(α+3)
α+2n+1 , due to Szegő [43], satisfies t0 <

(α + 1)(α + 3)

α + 2n+ 1
.

5 10 15 20 25 30

-1

-0.5

0.5

1

Fig. 5 Zeros of the Laguerre polynomial for α = 0.98887 and n = 10
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Whether a more recent and better upper bound for x1, for example,

An −√(α + 2)(α + 1)Bn
2(α + n+ 1)(α + n)

where

An = (α + 2)(α + 1)(2α + 3n+ 2) and

Bn = −4(α + 1)(α + 2)+
(

5α2 + 25α + 38
)
n2 + 4(α + 1)

(
α2 + 4α + 6

)
n,

due to Driver and Jordaan (cf. [10]), answers this question, remains an open
problem.
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Properties of Certain Classes
of Semiclassical Orthogonal Polynomials

Kerstin Jordaan

Abstract In this lecture we discuss properties of orthogonal polynomials for
weights which are semiclassical perturbations of classical orthogonality weights.
We use the moments, together with the connection between orthogonal polynomials
and Painlevé equations to obtain explicit expressions for the recurrence coefficients
of polynomials associated with a semiclassical Laguerre and a generalized Freud
weight. We analyze the asymptotic behavior of generalized Freud polynomials in
two different contexts. We show that unique, positive solutions of the nonlinear
difference equation satisfied by the recurrence coefficients exist for all real values
of the parameter involved in the semiclassical perturbation but that these solutions
are very sensitive to the initial conditions. We prove properties of the zeros
of semiclassical Laguerre and generalized Freud polynomials and determine the
coefficients an,n+j in the differential-difference equation

x
d

dx
Pn(x) =

0∑
k=−1

an,n+kPn+k(x),

where Pn(x) are the generalized Freud polynomials. Finally, we show that the only
monic orthogonal polynomials {Pn}∞n=0 that satisfy

π(x)D2
qPn(x) =

2∑
j=−2

an,n+jPn+j (x), x = cos θ, an,n−2 �= 0, n = 2, 3, . . . ,

where π(x) is a polynomial of degree at most 4 and Dq is the Askey–Wilson
operator, are Askey–Wilson polynomials and their special or limiting cases, using
this relation to derive bounds for the extreme zeros of Askey–Wilson polynomials.
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1 Introduction

Let {pn(x)}∞n=0, deg(pn) = n be the monic orthogonal polynomials with respect to
the positive measure μ with support [a, b] where we assume that all the moments,

μk =
∫ b

a

xkdμ,

exist. By orthogonality, we have the three-term recurrence relation

pn+1 = (x − αn)pn − βnpn−1, n = 0, 1, 2, . . .

with initial conditions

p−1 ≡ 0, p0 ≡ 1

and recurrence coefficients

αn ∈ R, n = 0, 1, 2 . . . , βn > 0, n = 1, 2, . . . .

The coefficients in the three-term recurrence relation can also be expressed in terms
of determinants whose entries are the moments associated with measure μ.

αn = �̃n+1

�n+1
− �̃n
�n
, βn = �n+1�n−1

�2
n

,

where�n is the Hankel determinant

�n = det
[
μj+k

]n−1

j,k=0
=

∣∣∣∣∣∣∣∣∣

μ0 μ1 . . . μn−1

μ1 μ2 . . . μn
...

...
. . .

...

μn−1 μn . . . μ2n−2

∣∣∣∣∣∣∣∣∣
, n ≥ 1,

with �0 = 1, �−1 = 0, and �̃n is the determinant

�̃n =

∣∣∣∣∣∣∣∣∣

μ0 μ1 . . . μn−2 μn

μ1 μ2 . . . μn−1 μn+1
...

...
. . .

...
...

μn−1 μn . . . μ2n−3 μ2n−1

∣∣∣∣∣∣∣∣∣
, n ≥ 1,
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with �̃0 = 0 and μk is the kth moment.
The converse statement, known as the spectral theorem for orthogonal polyno-

mials, is often attributed to Favard [16] but was probably discovered independently,
around 1935, by both Natanson [32] and Shohat [35, 36]. The result can in fact be
traced back to earlier work on continued fractions with a rudimentary form given
by Stieltjes [38] in 1894, see [9], also [31, 39]. The result also appears in books by
Wintner [42] and Stone [37], see [23]. A modern proof can be found in [4].

Theorem 1.1 Consider a family of monic polynomials {pn(x)}∞n=0 that satisfies a
three-term recurrence relation

pn+1 = (x − αn)pn − βnpn−1

with initial conditions p0 = 1 and p−1 = 0 where αn−1 ∈ R and βn > 0, n ∈ N.
Then there exists a measureμ on the real line such that these polynomials are monic
orthogonal polynomials satisfying

∫
R

pn(x)pm(x) dμ(x) =
{

0, n �= m
hn �= 0, n = m, m, n = 0, 1, 2, . . .

Note that the proof of this result does not give explicit information about the
measure or support of the measure. Indeed, the measure need not be unique since
this depends on the solution of the Hamburger moment problem.

The above results give rise to two interesting problems in the theory of orthogonal
polynomials.

1. Given an orthogonality measure μ(x), what can be deduced about characterising
properties of the orthogonal polynomials, such as the recurrence coefficients
{αn, βn}, n ∈ N or the differential equation and the differential-difference
equation satisfied by the polynomials? This is known as the direct problem of
orthogonal polynomials.

2. Given recurrence coefficients {αn, βn}, n ∈ N, what can be deduced about
the uniqueness, nature and support of the orthogonality measure? This is often
referred to as the inverse problem of orthogonal polynomials.

For most classical orthogonality measures, the properties satisfied by the orthogonal
polynomials are known. In the case of semiclassical measures there are some inter-
esting recent results solving the direct problem and some of these are discussed in
Sect. 2 in the context of semiclassical Laguerre and generalized Freud polynomials.
In Sect. 3 we consider a new characterisation of Askey–Wilson polynomials.
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2 Semiclassical Orthogonal Polynomials

Semiclassical orthogonal polynomials are defined as orthogonal polynomials for
which the weight function satisfies a Pearson equation

d

dx
[σ(x)w(x)] = τ (x)w(x),

with deg(σ ) ≥ 2 or deg(τ ) �= 1; see Hendriksen and van Rossum [21].

2.1 Semiclassical Laguerre Polynomials

Consider monic orthogonal polynomials with respect to the semiclassical Laguerre
weight

w(x; t) = xλ exp(−x2 + tx), x ∈ R
+, λ > −1, t ∈ R (2.1)

which satisfy the three-term recurrence relation

xLn(x; t) = Ln+1(x; t)+ α̃n(t)Ln(x; t)+ β̃n(t)Ln−1(x; t), (2.2)

Theorem 2.1 ([6]) The coefficients α̃n(t) and β̃n(t) in the recurrence relation (2.2)
associated with the semiclassical Laguerre weight (2.1) satisfy the discrete system

(2α̃n − t)(2α̃n−1 − t) = (2β̃n − n)(2β̃n − n− λ)
β̃n

,

2β̃n + 2β̃n+1 + α̃n(2α̃n − t) = 2n+ λ+ 1.

Theorem 2.2 ([17]) The coefficients α̃n(t) in the recurrence relation (2.2) associ-
ated with the semiclassical Laguerre weight (2.1) are given by

α̃n(t) = 1
2qn(z)+ 1

2 t,

with z = 1
2 t where qn(z) satisfies

d2qn

dz2
= 1

2qn

(
dqn

dz

)2

+ 3
2q

3
n + 4zq2

n + 2(z2 − 2n− λ− 1)qn − 2λ2

qn
,

which is PIV, with parameters (A,B) = (2n+ λ+ 1,−2λ2).

Remark 2.3 The parameters (A,B) satisfy the condition for PIV to have solutions
expressible in terms of parabolic cylinder functions.
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The following lemma confirms the existence of the first moment of the semi-
classical Laguerre weight in (2.1).

Lemma 2.4 Let x ∈ R
+, λ > −1, t ∈ R, then the first moment μ0(t; λ) of the

semi-classical Laguerre weight w(x; t) = xλ exp(−x2 + tx) is finite.

Proof The first moment μ0(t; λ) takes the form

μ0(t; λ) =
∫ ∞

0
xλ exp(−x2 + tx) dx

and, since for λ > 0 the integrand w(x; t) = xλ exp(−x2 + tx) is continuous
on [0,∞), it is integrable on the compact set [0,K] for any K > 0 when λ >
0. Note that lim

x→∞ x
2w(x; t) = 0, hence, by definition, there exists N > 0 such

that x2w(x; t) < 1 whenever x > N . Since
∫ ∞
N

dx

x2 < ∞, it follows from the

Comparison Theorem that
∫ ∞
N

w(x; t) dx <∞ for N > 0 and, in particular, N =
K . Hence μ0(t; λ) <∞ for λ > 0. When −1 < λ < 0, the improper integral

∫ 1

0
xλ exp(−x2 + tx) dx = lim

b→0+

∫ 1

b

xλ exp(−x2 + tx) dx

= exp

(
t2

4

)
lim
b→0+

∫ 1

b

xλ exp

(
−

(
x − t

2

)2
)
dx

≤ exp

(
t2

4

)
lim
b→0+

∫ 1

b

xλ dx

= lim
b→0+

[
xλ+1

λ+ 1

]1

b

<∞

by the comparison theorem since e−(x− t2)
2
< 1 for x ∈ R. Furthermore, for −1 <

λ < 0, we have that
∫ ∞

1
xλ exp(−x2 + tx) dx ≤

∫ ∞
1

exp(−x2 + tx) <∞

since xλ < 1 for x > 1 and λ < 0. Finally, for λ = 0, we have that

∫ ∞
0
xλ exp(−x2 + tx) dx = lim

b→0+

∫ ∞
b

xλ exp(−x2 + tx) dx

= lim
b→0+

∫ ∞
b

exp(−x2 + tx)dx

which is finite. ��
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Next we derive an explicit expression for the moment μ0(t; λ) associated with
the semiclassical Laguerre weight (2.1).

Theorem 2.5 ([11]) For the weight (2.1), the moment μ0(t; λ) is given by

μ0(t; λ) =

⎧⎪⎪⎨
⎪⎪⎩

�(λ + 1) exp
(

1
8 t

2
)

2(λ+1)/2
D−λ−1

(− 1
2

√
2 t

)
, if λ �∈ N,

1
2

√
π
dm

dtm

{
exp

( 1
4 t

2) [1+ erf( 1
2 t)

]}
, if λ = m ∈ N,

with Dν(ζ ) the parabolic cylinder function and erf(z) the error function. Further
μ0(t; λ) satisfies the equation

d2μ0

dt2
− 1

2 t
dμ0

dt
− 1

2 (λ+ 1)μ0 = 0.

Note that the semiclassical Laguerre weight has the form

w(x; t) = ω0(x) exp(xt), x ∈ [a, b], (2.3)

where ω0(x) = xλ exp(−x2) and hence

μk =
∫ b

a

xkω0(x) exp(xt) dx =
∫ b

a

∂k

∂tk
(ω0(x) exp(xt)) dx.

Since the function ∂k−1

∂tk−1 (ω0(x) exp(xt)), k > 0, satisfies the necessary consitions
for reversing the order of integration and differentiation for functions of two
variables (cf. [25, Thm 16.11]), we obtain

∫ b

a

∂k

∂tk
(ω0(x) exp(xt)) dx = d

dt

∫ b

a

∂k−1

∂tk−1 (ω0(x) exp(xt)) dx

Iterating this, we can write the n-th moment as a derivative of the first moment as
follows

μk =
∫ b

a

xkω0(x) exp(xt) dx = dk

dtk

(∫ b

a

ω0(x) exp(xt) dx

)
= d

kμ0

dtk
.

It follows that, if the weight has the form (2.3), then the Hankel determi-

nant is given by�n(t) =W
(
μ0,

dμ0

dt
, . . . ,

dn−1

dtn−1μ0

)
, �0 = 1, �−1 = 0 where
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W(ϕ1, ϕ2, . . . , ϕn) is the Wronskian given by

W(ϕ1, ϕ2, . . . , ϕn) =

∣∣∣∣∣∣∣∣∣∣

ϕ1 ϕ2 . . . ϕn

ϕ
(1)
1 ϕ

(1)
2 . . . ϕ

(1)
n

...
...

. . .
...

ϕ
(n−1)
1 ϕ

(n−1)
2 . . . ϕ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
, ϕ

(k)
j =

dkϕj

dtk

and this gives rise to the following result.

Theorem 2.6 ([11]) The recurrence coefficients α̃n(t) and β̃n(t) associated with
the weight (2.1) are

α̃n(t) = 1
2qn(z)+ 1

2 t,

β̃n(t) = − 1
8
dqn

dz
− 1

8q
2
n(z)− 1

4zqn(z)+ 1
4λ+ 1

2n,

with z = 1
2 t , where

qn(z) = −2z+ d

dz
ln
%n+1,λ(z)

%n,λ(z)

%n,λ(z) =W
(
ψλ,

dψλ

dz
, . . . ,

dn−1ψλ

dn−1z

)
, %0,λ(z) = 1,

and

ψλ(z) =

⎧⎪⎨
⎪⎩
D−λ−1

(−√2 z
)

exp
( 1

2z
2
)
, if λ �∈ N,

dm

dzm

{[
1+ erf(z)

]
exp(z2)

}
, if λ = m ∈ N.

The zeros of semiclassical Laguerre polynomials satisfy the following properties.

Theorem 2.7 ([12]) Let Ln(x; t) denote the monic semiclassical Laguerre polyno-
mials orthogonal with respect to

w(x; t) = xλ exp(−x2 + tx), x ∈ R
+.

Then, for λ > −1 and t ∈ R, the zeros x1,n < x2,n < · · · < xn,n of Ln(x; t)
(i) are real, distinct and interlacing with

0 < x1,n < x1,n−1 < x2,n < · · · < xn−1,n < xn−1,n−1 < xn,n; (2.4)

(ii) strictly increase with both t and λ;
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(iii) satisfy

an < x1,n < α̃n−1 < xn,n < bn,

where

an = min
1≤k≤n−1

{
1
2 (̃αk + α̃k−1)− 1

2

√
(̃αk + α̃k−1)2 + 4cnβ̃k

}
,

bn = max
1≤k≤n−1

{
1
2 (̃αk + α̃k−1)+ 1

2

√
(̃αk + α̃k−1)2 + 4cnβ̃k

}
,

with cn = 4 cos2
(
π
n+1

)
+ ε, ε > 0.

Proof

(i) The proof for classical orthogonal polynomials, where t = 0, work without
change.

(ii) For the semiclassical Laguerre weight

w(x; t) = xλ exp(−x2 + tx), x ∈ R
+,

we have

∂

∂λ
lnw(x; t) = ln x,

an increasing function of x. It follows from Markov’s monotonicity theorem
that the zeros of L(λ)n (x; t) increase as λ increases.

Similarly, since

∂

∂t
lnw(x; t) = x,

increases with x, it follows that the zeros of L(λ)n (x; t) increase as t increases.
(iii) The inner bound α̃n−1 for the extreme zeros follows from [15, Cor. 2.2]

together with the three-term recurrence

β̃n−1(t)L
(λ)
n−2(x; t) = [x − α̃n−1(t)]L(λ)n−1(x; t)− L(λ)n (x; t)

and (2.4) since β̃n−1(t) does not depend on x. The outer bounds an and bn for
the extreme zeros x1,n and xn,n respectively, follow from the approach based
on the Wall–Wetzel Theorem, introduced by Ismail and Li [24] that uses finite
chain sequences, applying their results to the three term recurrence relation.

��
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2.2 Generalized Freud Polynomials

Polynomials orthogonal with respect to a symmetric moment functional can be
generated via quadratic transformation from the classical orthogonal polynomi-
als. For example, Laguerre polynomials generate a class of generalized Hermite
polynomials while Jacobi polynomials give rise to a class of generalized Ultras-
pherical polynomials. Symmetrizing the semiclassical Laguerre weight (2.1) yields
a sequence {Sn(x; t)}∞n=0 of polynomials orthogonal with respect to the even weight

w(x; t) = |x|2λ+1 exp(−x4 + tx2) x ∈ R for λ > −1 and t ∈ R (2.5)

known as the generalized Freud weight.

Exercise Show that the moments of the generalized Freud weight (2.5) all exist for
x, t ∈ R and λ > −1.

Generalized Freud orthogonal polynomials with respect to the generalized Freud
weight (2.5) satisfy the three-term recurrence relation

Sn+1(x; t) = xSn(x; t)− βn(t; λ)Sn−1(x; t), S−1 = 0, S0 = 1.

Expressions for the recurrence coefficients βn(t; λ) in terms of Wronskians of
parabolic cylinder functions that appear in the description of special function
solutions of PIV were obtained in [13].

The first moment,

μ0(t; λ) =
∫ ∞
−∞
|x|2λ+1 exp

(
−x4 + tx2

)
x.

= �(λ + 1)

2(λ+1)/2
exp

(
1
8 t

2
)
D−λ−1

(− 1
2

√
2 t

)
,

can be obtained using the integral representation of a parabolic cylinder function
(cf. [34]). The even moments are

μ2n(t; λ) =
∫ ∞
−∞
x2n |x|2λ+1 exp

(
−x4 + tx2

)
dx

= dn

dtn
μ0(t, λ), n = 1, 2, . . .

and, since the integrand is odd, the odd ones are

μ2n+1(t; λ) = 0, n = 1, 2, . . .
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The explicit expressions for the recurrence coefficients

βn = �n+1�n−1

�2
n

in the three term recurrence relation for generalized Freud polynomials are given by
(cf. [13])

β2n = d

dt
ln
τn(t; λ+ 1)

τn(t; λ) ,

β2n+1 = d

dt
ln
τn+1(t; λ)
τn(t; λ+ 1)

,

for n ≥ 0, where τn(t; λ) is the Hankel determinant given by

τn(t; λ) = det

[
dj+k

dtj+k
μ0(t; λ)

]n−1

j,k=0
, τ0(t; λ) = 1.

Theorem 2.8 ([13]) The recurrence coefficients βn(t; λ) satisfy the nonlinear dif-
ference equation

βn(βnn+ 1+ βn + βnn− 1− 1
2 t) =

2n+ (2λ+ 1)[1− (−1)n]
8

, (2.6)

which is known as discrete Painlevé I.

An overview of the problem of existence and uniqueness of positive solutions of
nonlinear difference equations of type (2.6) is given by Alsulami, Nevai, Szabados
and van Assche in [2].

Theorem 2.9 ([12]) For t ∈ R and β0 = 0, there exists a unique β1(t; λ) > 0 such
that {βn(t; λ)}n∈N defined by the nonlinear difference equation (2.6) is a positive
sequence and the solution arises when

β1(t; λ) = 1
2 t + 1

2

√
2
D−λ

(− 1
2

√
2 t

)
D−λ−1

(− 1
2

√
2 t

) =  λ(t). (2.7)

The solution of the nonlinear discrete equation (2.6) is highly sensitive to the
initial conditions β0(t; λ) = 0 and β1(t; λ) =  λ(t) in (2.7) as illustrated in Fig. 1.

The asymptotic expansion of βn(t; λ) satisfying the nonlinear discrete equa-
tion (2.6) when

• t = 0 and λ = − 1
2 was studied by Lew and Quarles [30];

• t ∈ R and λ = − 1
2 was given by Clarke and Shizgal [10].
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β1 = Φλ(5) β1 = Φλ(5) + 10−4

Fig. 1 Plots of the points (n, βn) where βn satisfies (2.6) with initial conditions β0 = 0 and
β1 =  λ(t) + ε, with ε = 0, 10−4, for t = 5 and λ = 1

2

Theorem 2.10 ([12]) Let t, λ ∈ R, then as n → ∞, the recurrence coefficient βn
associated with monic generalized Freud polynomials

β2n(t; λ) =
√

6n1/2

6

{
1+

√
6 t

12n1/2 +
t2

48n
− t

4 − 48

4608n2 +O(n−5/2)

}
,

β2n+1(t; λ) =
√

3 (2n+ 1)1/2

6

{
1+

√
3 t

6(2n+ 1)1/2
+ t

2 + 12(2λ+ 1)

24(2n+ 1)

− t
4 + 24(2λ+ 1)t2 + 96(6λ2 + 6λ+ 1)

1152(2n+ 1)2
+O(n−5/2)

}
. (2.8)

The first few terms of the asymptotic expansions of β2n(t; λ) and β2n+1(t; λ),
considered as functions of a continuous variable n, are compared to the actual values
of the points (n, bn) satisfying (2.8) in Fig. 2.

As t →∞, the recurrence coefficient βn(t; λ) has the asymptotic expansion

β2n(t; λ) = n
t
− 2n(2λ− n+ 1)

t3
+O(

t−5),

β2n+1(t; λ) = t
2
+ λ− n

t
− 2(λ2 − 4λn+ n2 − λ− n)

t3
+O(

t−5).

The plots of βn(t; λ), for n = 1, 2, ..., 10, with λ = 1
2 given in Fig. 3 clearly

illustrate the completely different behaviour for βn(t; λ) as t →∞ when n is even
and n is odd.



468 K. Jordaan

Fig. 2 Plots of points (n, βn) satisfying (2.6) with initial conditions β0 = 0, β1 =  λ(t) and the
first few terms of the asymptotic expansions (2.8) of β2n(t; λ) (blue) and β2n+1(t; λ) (red) with
λ = 1

2 and t = 5

β2n−1(t; λ), n = 1, 2, . . . , 5 β2n(t; λ), n = 1, 2, . . . , 5

Fig. 3 Plots of the recurrence coefficients β2n−1(t; 1
2 ) and β2n(t; 1

2 ), for n = 1 (black), n = 2
(red), n = 3 (blue), n = 4 (green) and n = 5 (purple)
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Further, as t →−∞

β2n(t; λ) = −n
t
+ 2n(2λ+ 3n+ 1)

t3
+O(

t−5),

β2n+1(t; λ) = −λ+ n+ 1

t
+ 2(λ+ n+ 1)(λ+ 3n+ 2)

t3
+O(

t−5).

lim
t→∞βn(t; λ) =

1
4 [1− (−1)n]t .

In [41], the asymptotics of Sn(x; t) as n → ∞ are discussed. Asymptotic
properties of the extreme zeros of generalized Freud polynomials were studied
by Freud [18] and Nevai [33]. Kasuga and Sakai [26] extended and generalized
these results. Arceo et al. [3] generalized the electrostatic interpretation of the zero
distribution and provided an equation of motion for the distribution of the zeros of a
polynomial associated with an Uvarov modification of a quartic Freud type weight
(λ = − 1

2 ).
The generalized Freud weight w(x; t) = |x|2λ+1 exp(−x4 + tx2), is even and

the zeros of the corresponding orthogonal polynomials are symmetric about the
origin. This implies that the positive and the negative zeros have opposing mono-
tonicity and, as a result of this symmetry, it suffices to study the monotonicity and
bounds of the positive zeros.

Theorem 2.11 ([12]) Let Sn(x; t) be the monic generalized Freud polynomials
orthogonal with respect to the weight w(x; t) = |x|2λ+1 exp(−x4 + tx2), and let
xn,1(λ, t) < xn,2(λ, t) < · · · < xn,[n/2](λ, t) denote the positive zeros of Sn(x; t)
where [m] is the largest integer smaller than m. Then, for λ > −1 and t ∈ R

(i) the zeros of Sn(x; t) are real and distinct and

xn,1(λ, t) < xn−1,1(λ, t) < xn,2(λ, t) < · · · < xn,[n/2](λ, t);

(ii) the νth zero xn,ν(λ, t), ν fixed, is an increasing function of both λ and t;
(iii) the largest zero satisfies the inequality

xn,[n/2](λ, t) < max
1≤k≤n−1

√
cnβk(t; λ),

where cn = 4 cos2
(
π
n+1

)
+ ε, ε > 0.

The interlacing of the zeros of consecutive terms in the sequence {Sn(x; t)}∞n=0 of
generalized Freud polynomials, described in Theorem 2.11(i), is clearly illustrated
in Fig. 4.

Figure 5 shows the monotocity of the zeros of Sn(x; t) for n fixed with
increasing t .
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Fig. 4 Plots of the
polynomials S3(x; t) (black),
S4(x; t) (red), S5(x; t) (blue),
S6(x; t) (green) for t = 3,
with λ = 1

2

Fig. 5 Plots of the
polynomial Sn(x; t), n = 3
for t = 0 (black), t = 1 (red),
t = 2 (blue), t = 3 (green)
and t = 4 (purple), with
λ = 1

2

Consider the differential-difference equation satisfied by monic orthogonal
polynomials Sn(x; t) with respect to the generalized Freud weight

π(x)
d

dx
Sn(x; t) =

s∑
j=−t

an,n+j Sn+j (x; t), n = 1, 2, . . . (2.9)

Shohat [35] gave a procedure using quasi-orthogonality to derive (2.9) for weights
w(x; t) such that w′(x; t)/w(x; t) is a rational function. The method of ladder
operators was introduced by Chen and Ismail [8] and adapted by Chen and Feigin [7]
to the situation where the weight function vanishes at one point. Clarkson, Jordaan
and Kelil [13] generalized the work by Chen and Feigin, giving a more explicit
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expression for the coefficients in (2.9) when the weight function is positive on the
real line except for one point.

Theorem 2.12 ([13]) For the generalized Freud weight

w(x; t) = |x|2λ+1 exp
(
−x4 + tx2

)
, x ∈ R, λ > 0

the monic orthogonal polynomials Sn(x; t) satisfy

x
d

dx
Sn(x; t) =

0∑
j=−1

an,n+j Sn+j (x; t)

with

an,n−1 = 4βnx(x2 − 1
2 t + βn + βn+1),

an,n = −4x2βn − (2λ+ 1)[1− (−1)n]
2

.

3 A Characterisation of Askey–Wilson Polynomials

A sequence of orthogonal polynomials is classical if the sequence {pn(x)}∞n=0 as
well asDmpn+m,m ∈ N, whereD is the usual derivative d

dx
or one of its extensions,

including the difference operator, q-difference operator and divided-difference
operator, satisfies a three term recurrence of the form ensuring orthogonality by
the spectral theorem.

Consider a structural relation of type

π(x)pn(x) =
s∑

j=−t
an,n+jpn+j (x), n = 1, 2, . . . (3.1)

where π(x) is a polynomial and S is a linear operator that maps a polynomial of
precise degree n to a polynomial of degree n− 1.

Askey raised the problem of characterizing the orthogonal polynomials satisfying

a structure relation of the form (3.1) when S = d

dx
(cf. [1, p. 69]).

Al-Salam and Chihara [1] characterized Jacobi, Laguerre and Hermite as the
only orthogonal polynomials with a structure relation of form (3.1) with t = s = 1
where π(x) is a polynomial of degree at most two. Replacing S in (3.1) by the
difference operator�f (s) = f (s + 1)− f (s), García et al. [19] proved that Hahn,
Krawtchouk, Meixner and Charlier polynomials are the only orthogonal polynomial
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sequences satisfying

π(x)�pn(x) =
1∑

j=−1

an,n+j pn+j (x), n = 1, 2, . . . ,

with π(x) a polynomial of degree at most two. More recently, replacing the operator
S in (3.1) by the Hahn operator, also known as the q-difference operator or Jackson
derivative,

(Dqf )(x) = f (x)− f (qx)
(1− q)x ,

Datta and Griffin [14] characterized the big q-Jacobi polynomial or one of its special
or limiting cases (Al-Salam-Carlitz 1, little and big q-Laguerre, little q-Jacobi, and
q-Bessel polynomials) as the only orthogonal polynomials that satisfy

π(x)Dqpn(x) =
1∑

j=−1

an,n+jpn+j , n = 1, 2, . . .

where π(x) is a polynomial of degree at most two.
Although the polynomials mentioned above are all special or limiting cases of

the Askey–Wilson polynomials

anPn(x; a, b, c, d|q)
(ab, ac, ad; q)n = 4φ3

(
q−n, abcdqn−1, ae−iθ , aeiθ

ab, ac, ad
; q, q

)
, x = cos θ,

Askey–Wilson polynomials do not satisfy any of these structural relations.
An extension of Askey’s problem is to find a structural relation of type (3.1)

that characterises the Askey–Wilson polynomials for S = Dq , the Askey–Wilson
divided difference operator, taking eiθ = qs , with

Dqf (x(s)) = f (x(s +
1
2 ))− f (x(s − 1

2 ))

x(s + 1
2 )− x(s − 1

2 )
, x(s) = q

−s + qs
2

.

Ismail [23] gave an important hint to the solution of this problem by suggesting that
S = D2

q .

Conjecture 3.1 ([23]) Let {pn(x)}∞n=0 be orthogonal polynomials and π a polyno-
mial of degree at most 4. Then {pn(x)} satisfies

π(x)D2
qpn(x) =

s∑
j=−t

an,jpn+j (x)

if and only if {pn(x)} are Askey–Wilson polynomials or special cases of them.
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In order to complete and prove the above conjecture, we begin by generalizing
a result due to Hahn [20], that a sequence of monic orthogonal polynomials
{pn(x)}∞n=0 satisfying

1

n+ 1

dpn+1

dx
(x) = (x − ãn)1

n

dpn

dx
(x)− b̃n

n− 1

dpn−1

dx
(x), ãn, b̃n ∈ R, b̃n �= 0,

satisfies a second order Sturm-Liouville differential equation of the form

φ(x)
d2

dx2pn(x)+ ψ(x)
d

dx
pn(x)+ λn pn = 0. (3.2)

where, φ andψ are polynomials independant of nwith deg(φ) ≤ 2 and deg(ψ) = 1,
while λn is a constant dependant on n.

Bochner [5] first considered sequences of polynomials satisfying (3.2) and
showed that the orthogonal polynomial solutions of (3.2) are Jacobi, Laguerre and
Hermite polynomials. Ismail [22] generalized Bochner’s theorem to Askey–Wilson
divided difference operators. A more general version is due to Vinet and Zhedanov
[40].

Lemma 3.2 ([27]) Let {pn(x)}∞n=0 a sequence of monic orthogonal polynomials. If
there are two sequences (a′n) and (b′n) of numbers such that

1

γn+1
Dqpn+1(x) = (x − a′n)

1

γn
Dqpn(x)− b′n

γn−1
Dqpn−1(x)+ cn, cn ∈ R,

then, there are two polynomials φ(x) and ψ(x) of degree at most two and of degree
one respectively and a sequence {λn}∞n=0, such that pn(x) satisfies the divided-
difference equation

φ(x)D2
qpn(x)+ ψ(x)SqDqpn(x)+ λnpn(x) = 0, n ≥ 5

where Sq is the averaging operator.

Sq f (x(s)) = f (x(s +
1
2 ))+ f (x(s − 1

2 ))

2
. (3.3)

Theorem 3.3 ([27]) Let {pn(x)}∞n=0 be a sequence of monic polynomials orthog-
onal with respect to a positive weight function w(x). The following properties are
equivalent:

(a) There is a polynomial π(x) of degree at most 4 and constants an,n+j ,−2 ≤ j ≤
2, n ≥ 2, an,n−2 �= 0 such that pn satisfies the structure relation

π(x)D2
qpn(x) =

2∑
j=−2

an,n+j pn+j (x), n = 2, 3, . . . ;
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(b) There is a polynomial π(x) of degree at most four such that {D2
qpn}∞n=2 is

orthogonal with respect to π(x)w(x);
(c) There are two polynomials φ(x) and ψ(x) of degree at most two and of degree

one respectively and a constant λn such that

φ(x)D2
qpn(x)+ ψ(x)SqDqpn(x)+ λnpn(x) = 0, n = 5, 6, . . . .

Corollary 3.4 ([27]) A sequence of monic orthogonal polynomials satisfies the
relation

π(x)D2
qpn(x) =

2∑
j=−2

an,n+j pn+j (x), an,n−2 �= 0, x = cos θ,

where π is a polynomial of degree at most 4, if and only if pn(x) is a multiple of the
Askey–Wilson polynomial for some parameters a, b, c, d, including limiting cases
as one or more of the parameters tends to∞.

Even though Askey–Wilson polynomials (3) are a basic hypergeometric analog of
the Wilson polynomials (cf. [29, (9.2.1)]),

Wn(x
2; a, b, c, d)

(a + b)n(a + c)n(a + d)n = 4F3

(
−n, n+ a + b + c + d − 1, a − ix, a + ix

a + b, a + c, a + d ; 1
)
,

the coefficients in (3.1) for S = δf (x2) = f ((x + i
2 )

2) − f ((x − i
2 )

2), the
Wilson operator, as well as its solutions can not easily be deduced from those
of Askey–Wilson polynomials. It therefore is necessary to also consider Ismail’s
Conjecture 3.1 for the Wilson variable x(z) = z2 (z = is, i2 = −1) as was done
in [28].

The explicit structure relation characterizing Askey–Wilson polynomials (cf. [27,
Prop 4.2]) is useful to derive bounds for the extreme zeros of the Askey–Wilson
polynomials by an application of Theorem 5.1 in the lecture on Zeros of Orthogonal
Polynomials.

Proposition 3.5 ([27]) Let n ∈ N be fixed and (xn,n) be the largest zero of the
monic Askey–Wilson polynomial pn(x, a, b, c, d|q). Then a lower bound for xn,n is

2( qn−1 + 1)
(
Aqn−1 − a − b − c − d) (abcdqn−1 − 1

)+√Dn
8
(
abcdq2 n−2 − 1

) (
abcdqn−1 − 1

)

where

A = (abc+ abd + acd + bcd)



Properties of Certain Classes of Semiclassical Orthogonal Polynomials 475

–1.0 –0.5 0.5 1.0

–1.0

–0.5

0.5

1.0

Fig. 6 Plots of zeros of pn(x; a, b, c, d|q) (blue) for n = 8, a = 6
7 , b = 5

7 , c = 4
7 , d = 3

7 , q = 1
9

and the bounds for the extreme zeros (red)

and

Dn = −(4
(
−q3n−3abcd − 1

)
(abcd − ab − ac − ad − bc − bd − cd + 1)

+ 4 ((b2c2d2 + b2c2 + b2cd + b2d2 + bc2d + bcd2 + c2d2 − bc − bd − cd)a2

+ (bc + bd + cd) (bcd − b − c − d) a + bcd (bcd − b − c − d))q2n−2

+ 4 ((−bc − bd − cd + 1) a2 − (bc + bd + cd − 1) (d + c + b) a − b2cd − bc2d

− bcd2 + b2 + bc + bd + c2 + cd + d2 + 1)qn−1)
(

4 abcdq2n−2 − 4
)(
abcdqn−1 − 1

)

+ 4
(
qn−1 + 1

)2 (
qn−1abc + qn−1abd + qn−1acd + qn−1bcd − a − b − c − d

)2

(
abcdqn−1 − 1

)2

The zeros of monic Askey–Wilson polynomials pn(x; 6
7 ,

5
7 ,

4
7 ,

3
7 | 19 ) and the bounds

obtained from the structure relation for the extreme zeros are illustrated in Fig. 6.
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Abstract Classical orthogonal polynomials of the Askey–Wilson scheme have
extremely many different properties, e.g. satisfying differential equations, recur-
rence equations, having hypergeometric representations, Rodrigues formulas, gen-
erating functions, moment representations etc. Using computer algebra it is possible
to switch between one representation and another algorithmically. Such algorithms
will be discussed and implementations are presented using Maple.

Keywords Computer algebra · Classical orthogonal polynomials ·
Askey–Wilson scheme
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1 Orthogonal Polynomials

Given: a scalar product

〈f, g〉 :=
∫ β

α

f (x)g(x) dμ(x)

with non-negative Borel measure μ(x) supported in the interval [α, β]. The
following special cases are most important:

• absolutely continuous measure dμ(x) = ρ(x) dx with weight function ρ(x),
• discrete measure μ(x) = ρ(x) supported in Z,
• discrete measure μ(x) = ρ(x) supported in qZ.
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A system of polynomials (Pn(x))n�0

Pn(x) = knxn + k′nxn−1 + k′′nxn−2 + · · · , kn �= 0 (1.1)

is called orthogonal (OPS) w.r.t. the positive-definite measure dμ(x), if

〈Pm,Pn〉 =
{

0 if m �= n
hn > 0 if m = n .

Using the Gram-Schmidt orthogonalization procedure one can compute the orthogo-
nal polynomialsPn(x) iteratively up to a constant standardization factor. One option
is to compute the monic system with kn = 1.

We define the scalar product of the Legendre polynomials Pn(x):
> ScalarProduct:=proc(f,g,x) int(g*f,x=-1..1) end proc:

and declare the Gram-Schmidt procedure
> GramSchmidt := proc (n, x) local j, k, g, liste;
> liste := [seq(x^j, j = 0 .. n)]; g(0) := 1;
> for j to n do g(j):=op(j+1,liste)-
> add(ScalarProduct(op(j+1,liste),g(k),x)*g(k)/
> ScalarProduct(g(k), g(k), x), k = 0 .. j-1) end do;
> [seq(g(j), j = 0 .. n)]
> end proc:

Now we can compute using the Gram-Schmidt procedure.
> SEQ1 := GramSchmidt(10, x);

SEQ1 := [1, x, x2 − 1/3, x3 − 3/5 x, x4 + 3

35
− 6/7 x2, x5 + 5 x

21
− 10 x3

9
,

x6 − 5

231
+ 5 x2

11
− 15 x4

11
, x7 − 35 x

429
+ 105 x3

143
− 21 x5

13
,

x8 + 7

1287
− 28 x2

143
+ 14 x4

13
− 28 x6

15
, x9 + 63 x

2431
− 84 x3

221

+ 126 x5

85
− 36 x7

17
, x10 − 63

46189
+ 315 x2

4199
− 210 x4

323
+ 630 x6

323
− 45 x8

19
]

This computation has created the first 11 monic Legendre polynomials. Of course,
Maple knows the Legendre polynomials internally as LegendreP(k,x):

> SEQ2:=expand([seq(LegendreP(k,x),k=0..10)]);

SEQ2 := [1, x,−1

2
+ 3

2
x2,

5

2
x3 − 3

2
x,

3

8
+ 35 x4

8
− 15 x2

4
,

63 x5

8
− 35 x3

4
+ 15 x

8
,

− 5

16
+ 231 x6

16
− 315 x4

16
+ 105 x2

16
,

429 x7

16
− 693 x5

16
+ 315 x3

16
− 35 x

16
,

35

128
+ 6435 x8

128

− 3003 x6

32
+ 3465 x4

64
− 315 x2

32
,

12155 x9

128
− 6435 x7

32
+ 9009 x5

64
− 1155 x3

32
+ 315 x

128
,

− 63

256
+ 46189 x10

256
− 109395 x8

256
+ 45045 x6

128
− 15015 x4

128
+ 3465 x2

256
]
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Obviously the ratios of the corresponding polynomials must be constant:
> normal([seq(op(k,SEQ2)/op(k,SEQ1),k=1..11)]);

[1, 1, 3/2, 5/2,
35

8
,

63

8
,

231

16
,

429

16
,

6435

128
,

12155

128
,

46189

256
]

Every OPS has the following main properties:

• (Three-term Recurrence) Every OPS satisfies

x Pn(x) = an Pn+1(x)+ bn Pn(x)+ cn Pn−1(x) .

• (Zeros) All zeros of an OPS are simple, lie in the interior of [α, β] and have some
nice interlacing properties.

• (Hankel Matrix: Representation by Moments)

Pn(x) = Cn

∣∣∣∣∣∣∣∣∣∣∣

μ0 μ1 · · · μn
μ1 μ2 · · · μn+1
...

...
...

...

μn−1 μn+1 · · · μ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
,

where μn :=
∫ b
a
xndμ(x) denote the moments of dμ(x).

We can compute the moment matrix by
> Momentmatrix := proc (n)
> local j, k;
> convert([seq([seq(ScalarProduct(x^j, x^k, x), j = 0 .. n)],
> k = 0 .. n)], Matrix)
> end proc:

> H := Momentmatrix(5);⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2/3 0 2/5 0
0 2/3 0 2/5 0 2/7

2/3 0 2/5 0 2/7 0
0 2/5 0 2/7 0 2/9

2/5 0 2/7 0 2/9 0
0 2/7 0 2/9 0 2/11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and the Hankel matrix is given by
> Hankelmatrix := proc (n)
> local j, k, m;
> m := [seq([seq(ScalarProduct(t^j,t^k,t),j=0..n)],k=0..n-1)];
> m := [op(m), [seq(x^k, k = 0 .. n)]];
> convert(m, Matrix)
> end proc:

Its determinant gives a multiple of the orthogonal polynomial whose degree is
the size of the square matrix minus 1. The determinant of the following matrix is
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therefore a multiple of P5(x):
> Hankelmatrix(5); ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2/3 0 2/5 0
0 2/3 0 2/5 0 2/7

2/3 0 2/5 0 2/7 0
0 2/5 0 2/7 0 2/9

2/5 0 2/7 0 2/9 0
1 x x2 x3 x4 x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and the first six multiples of the Legendre polynomials are given by
> SEQ3:=[seq(LinearAlgebra[Determinant](Hankelmatrix(n)),
> n=0..5)];

SEQ3 :=
[
1, 2 x, 4/3 x2 − 4/9,

32 x3

135
− 32 x

225
,

256 x4

23625
− 512 x2

55125
+ 256

275625
,

32768 x5

260465625
− 65536 x3

468838125
+ 32768 x

1093955625

]

Again, the ratios of the corresponding polynomials must be constant:
> normal([seq(op(k,SEQ3)/op(k,SEQ1),k=1..6)]);

[1, 2, 4/3, 32

135
,

256

23625
,

32768

260465625
]

2 Classical Orthogonal Polynomials

The classical OPS (Pn(x))n�0 can be defined as the polynomial solutions of the
differential equation:

σ(x)P ′′n (x)+ τ (x)P ′n(x)− λnPn(x) = 0 . (2.1)

Substituting (1.1) into (2.1), we conclude:

• n = 1 yields τ (x) = dx + e, d �= 0,
• n = 2 yields σ(x) = ax2 + bx + c,
• The coefficient of xn yields λn = n(a(n− 1)+ d).

These classical families can be classified (modulo linear transformations) accord-
ing to the following scheme (Bochner [2])

• σ(x) = 0 powers xn,
• σ(x) = 1 Hermite polynomials,
• σ(x) = x Laguerre polynomials,
• σ(x) = 1− x2 Jacobi polynomials,
• σ(x) = x2 Bessel polynomials.

For the theory one needs

• a representing basis fn(x), here the powers fn(x) = xn;
• an operator, here the derivative operatorD, with D fn(x) = n fn−1(x).
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The corresponding weight function ρ(x) satisfies the Pearson Differential Equation

d

dx

(
σ(x)ρ(x)

)
= τ (x)ρ(x) . (2.2)

Hence the weight function is given by

ρ(x) = C

σ(x)
e
∫ τ (x)
σ (x) dx .

The following properties are equivalent, each defining the classical continuous
families:

• Differential equation (2.1) for (Pn(x))n�0.
• Pearson differential equation (2.2) (σ ρ)′ = τ ρ for the weight ρ(x).
• With (Pn(x))n�0 also (P ′n+1(x))n�0 is an OPS.
• Derivative Rule:

σ(x) P ′n(x) = αn Pn+1(x)+ βn Pn(x)+ γn Pn−1(x) .

• Structure Relation: Pn(x) satisfies

Pn(x) = ân P ′n+1(x)+ b̂n P ′n(x)+ ĉn P ′n−1(x) .

• Rodrigues Formula: Pn(x) is given as

Pn(x) = En

ρ(x)

dn

dxn

(
ρ(x) σ (x)n

)
.

3 Classical Discrete Orthogonal Polynomials

The classical discrete OPS can be analogously defined as the solutions of the
difference equation [12]:

σ(x)�∇Pn(x)+ τ (x)�Pn(x)− λnPn(x) = 0 (3.1)

where�f (x) = f (x+1)−f (x) and ∇f (x) = f (x)−f (x−1) denote the forward
and backward difference operators. As in the continuous case, we get

• n = 1 yields τ (x) = dx + e, d �= 0,
• n = 2 yields σ(x) = ax2 + bx + c,
• The coefficient of xn yields λn = n(a(n− 1)+ d).
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The classical discrete families can be classified (modulo linear transformations)
according to the following scheme ([12], see also [14]):

• σ(x) = 0 falling factorials xn = x(x − 1) · · · (x − n+ 1),
• σ(x) = 1 shifted Charlier polynomials,
• σ(x) = x Charlier, Meixner, Krawtchouk polynomials,
• deg(σ (x), x) = 2 Hahn polynomials.

For the theory one needs

• a representing basis fn(x), here the falling factorial fn(x) = xn;
• an operator, here the operator�, with �fn(x) = n fn−1(x).

The corresponding discrete weight function ρ(x) satisfies the Pearson difference
equation

�
(
σ(x)ρ(x)

)
= τ (x)ρ(x) .

Hence it is given by the term ratio

ρ(x + 1)

ρ(x)
= σ(x)+ τ (x)

σ (x + 1)
. (3.2)

We would like to put our results into the general framework of hypergeometric
functions.

The power series

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)
=
∞∑
k=0

Ak z
k ,

whose summands αk = Akzk have a rational term ratio

αk+1

αk
= Ak+1 z

k+1

Ak zk
= (k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

z

(k + 1)
,

is called the generalized hypergeometric series. The summand αk = Akz
k of a

hypergeometric series is called a hypergeometric term.
The relation (3.2) therefore tells that the weight function ρ(x) of the classical

discrete orthogonal polynomials is a hypergeometric term w.r.t. the variable x.
For the coefficients of the generalized hypergeometric series one gets the

following formula

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)
=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!

using the Pochhammer symbol (a)k = a(a + 1) · · · (a + k − 1) = �(a+k)
�(a)

.
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From the differential equation (2.1) one can compute a recurrence equation for
the corresponding power series coefficients [16]. Using Maple, we get

> sigma := a*x^2+b*x+c; tau := d*x+e;

σ := ax2 + xb + c
τ := dx + e

> DE := sigma*(diff(F(x), x$2))+tau*(diff(F(x), x))
> -n*(a*n-a+d)*F(x);

DE :=
(
ax2 + xb + c

) d2

dx2
F (x)+ (dx + e) d

dx
F (x)− n (an− a + d) F (x)

This differential equation is converted towards the recurrence equation
> RE := gfun[diffeqtorec](DE, F(x), A(k));

RE :=
(
ak2 + (−a + d) k − an2 + an− dn

)
A (k)

+
(
bk2 + (b+ e) k + e

)
A (k + 1)+

(
ck2 + 3 c k + 2 c

)
A (k + 2)

The Laguerre polynomials have the data
> laguerre := {a = 0, b = 1, c = 0, d = -1, e = alpha+1};

laguerre := {a = 0, b = 1, c = 0, d = −1, e = α + 1}
so that we get for their power series coefficients Ak
> laguerreRE := subs(laguerre, RE);

laguerreRE := (−k + n)A (k)+
(
k2 (2+ α) k + α + 1

)
A(k + 1)

Therefore their quotient Ak+1/Ak is given in factored form by
> quotient := factor(solve(laguerreRE, A(k+1))/A(k));

quotient := k − n
(k + 1) (k + α + 1)

from which one can read off directly the hypergeometric representation
> lag := hypergeom([-n], [alpha+1], x);

lag := 1F1(−n; α + 1; x)
By an internal command, Maple can convert this towards
> convert(lag, StandardFunctions);

� (n+ 1) � (α + 1) LaguerreL (n, α, x)

� (n+ α + 1)

back, again. We have therefore seen that using this approach one gets for the
Laguerre polynomials

Lαn(x) =
(
n+ α
n

)
1F1

(
−n
α + 1

∣∣∣∣∣ x
)
=

n∑
k=0

(−1)k

k!
(
n+ α
n− k

)
xk .
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Another example are the Hahn polynomials which are given by

Q(α,β)n (x,N) = 3F2

(
−n,−x, n+ 1+ α + β

α + 1,−N

∣∣∣∣∣ 1

)
.

Similarly, all the other classical systems have a hypergeometric representation.
These can be found in every book about OPS, e.g. in [7], and on the CAOP web
page [9].

4 Classical q-Orthogonal Polynomials and the Askey–Wilson
Scheme

The classical q-OPS can be analogously defined as the polynomial solutions of the
q-difference equation (Hahn [6]):

σ(x)DqD1/qPn(x)+ τ (x)DqPn(x)− λn,qPn(x) = 0 (4.1)

whereDqf (x) = f (x)−f (qx)
(1−q)x is the Hahn operator. As before, we can conclude

• n = 1 yields τ (x) = dx + e, d �= 0,
• n = 2 yields σ(x) = ax2 + bx + c,
• The coefficient of xn yields λn,q = [n]q(a[n− 1]q + d[n]q) where [n]q =

1−qn
1−q is the q-bracket.

The classical q-discrete families of the Hahn class considered can be classified
(modulo linear transformations) according to the following list: Big q-Jacobi
polynomials, q-Hahn polynomials, Big q-Laguerre polynomials, Al-Salam-Carlitz
I polynomials, discrete q-Hermite I polynomials, Little q-Jacobi polynomials,
alternative q-Charlier polynomials, Little q-Laguerre polynomials, q-Meixner
polynomials, Stieltjes-Wigert polynomials, q-Laguerre polynomials, q-Charlier
polynomials, Al-Salam-Carlitz II polynomials, discrete q-Hermite II polynomials,
see e.g. [7] and [9].

For the theory one needs:

• two representing bases fn(x), here fn(x) = xn and gn(x) = (x; q)n where
(x; q)n = (1− x)(1− xq) · · · (1− xqn−1) is the q-Pochhammer symbol ;

• an operator, here the operator Dq , with Dq fn(x) = [n]q fn−1(x) and a similar
relation for gn(x).

The corresponding q-discrete weight function ρ(x) satisfies the Pearson q-
difference equation

Dq

(
σ(x)ρ(x)

)
= τ (x)ρ(x) .
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Hence it is given by the term ratio:

ρ(qx)

ρ(x)
= σ(x)+ (q − 1)xτ(x)

σ (qx)
. (4.2)

The power series

rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ q ; z
)
=
∞∑
k=0

Ak z
k ,

whose summands αk = Akzk are given by

Ak z
k = (a1; q)k · · · (ar; q)k

(b1; q)k · · · (bs; q)k
zk

(q; q)k
(
(−1)kq(

k
2)
)1+s−r

is called the basic hypergeometric series. The summand αk = Akz
k of a basic

hypergeometric series is called a q-hypergeometric term.
The relation (4.2) therefore tells that the weight function ρ(x) of the classical

q-orthogonal polynomials is a q-hypergeometric term w.r.t. the variable x.
In CAOP [9] you saw all the families of the Askey–Wilson Scheme. This scheme

contains

• continuous measures supported in an interval (classical continuous OPS);
• discrete measures supported in Z (classical discrete OPS);
• discrete measures supported in qZ (Hahn tableau);
• discrete measures supported on a quadratic lattice (Wilson tableau);
• discrete measures supported on a q-quadratic lattice (Askey–Wilson tableau).

It turns out that the last two classes can be treated in a similar way as the continuous
and the discrete cases resulting in a similar theory [3].

5 Computer Algebra Applied to Classical Orthogonal
Polynomials

Using linear algebra one can compute the coefficients of the following identities—
expressed through the parameters a, b, c, d and e from the defining equations (2.1),
(3.1) or (4.1)—(Lesky [13]):

(RE) x Pn(x) = an Pn+1(x)+ bn Pn(x)+ cn Pn−1(x)

(DR) σ(x) P ′n(x) = αn Pn+1(x)+ βn Pn(x)+ γn Pn−1(x)

(SR) Pn(x) = ân P ′n+1(x)+ b̂n P ′n(x)+ ĉn P ′n−1(x)
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We define Pn(x), given by (1.1) in Maple, and substitute the three highest
coefficients—which will be sufficient for our purposes—into the differential equa-
tion:

> p := k[n]*x^n+kprime[n]*x^(n-1)+kprimeprime[n]*x^(n-2);

p := knxn + kprimenx
n−1 + kprimeprimenx

n−2

> DE := sigma*(diff(p, x$2))+tau*(diff(p, x))-lambda[n]*p:

We divide by xn−4 so that the result is a polynomial of degree 4 (whose three highest
coefficients are those of x4, x3 and x2)

> de := collect(simplify(DE/x^(n-4)), x):

Equating the highest coefficients yields the relation for λn that we already met:
> rule1 := lambda[n] = solve(coeff(de, x, 4), lambda[n]);

rule1 := λn = n (an− a + d)
Next, we substitute λn into the differential equation and equate the next highest
coefficient. This shows that the second highest coefficient k′n of Pn(x) is a rational
multiple of the leading coefficient kn:

> de := expand(subs(rule1, de)):

> rule2 := kprime[n] = solve(coeff(de, x, 3), kprime[n]);

rule2 := kprimen =
nkn (bn− b + e)
2 an− 2 a + d

In the last step we deduce that generically k′′n is also a rational multiple of kn:
> rule3 := kprimeprime[n] =
> solve(coeff(subs(rule2, de), x, 2), kprimeprime[n]);

rule3 := kprimeprimen = kn n

·
(
b2n3+2 acn2−4b2n2+2ben2−4acn+5b2n−5ben+cdn+e2n+2ac−2b2+3be−cd−e2

)
2 (2 an− 2 a + d) (2 an− 3 a + d)

In the sequel, we consider without loss of generality the monic case.
> k[n] := 1;

kn := 1

To get information about the coefficients of the recurrence equation, we put it in the
following form to be zero.

> RE := x*P(n)-a[n]*P(n+1)-b[n]*P(n)-c[n]*P(n-1);

RE := xP (n)− anP (n+ 1)− bnP (n)− cnP (n− 1)

After substituting Pn(x), given by (1.1), and the previous results about k′n (rule2)
and k′′n (rule3), and by equating again the three highest coefficients, we get:

> RE:=subs({P(n)=p,P(n-1)=subs(n=n-1,p),P(n+1)=subs(n=n+1,p)},
RE):

> RE:=subs({rule2,rule3,subs(n=n-1,rule2),subs(n=n-1,rule3),
> subs(n = n+1, rule2), subs(n = n+1, rule3)}, RE):

> re := simplify(numer(normal(RE))/x^(n-3)):
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> rule4 := a[n] = solve(coeff(re, x, 4), a[n]);

rule4 := an = 1
> rule5 := b[n] = factor(solve(subs(rule4, coeff(re, x, 3)),

b[n]));

rule5 := bn = −2 abn2 − 2 abn+ 2 bdn − 2 ae + de
(2 an− 2 a + d) (2 an+ d)

> rule6 := c[n] =
> factor(solve(subs(rule5, subs(rule4, coeff(re, x, 2))),
> c[n]));

rule6 := cn = − n (an− 2 a + d)
(2 an− 2 a + d)2 (2 an− 3 a + d) (2 an− a + d) ·(

4a2cn2−ab2n2−8a2cn+2ab2n+4acdn− b2dn+4a2c−ab2−4acd+ae2+b2d−bde+ cd2
)

Such relations were given generically in the paper [10] for the continuous and
the discrete cases, and in later papers extended to the q-case ([4, 11]) and to the
quadratic case ([5, 15, 18]).

They can be used to compute power series coefficients, inversion coefficients,
connection coefficients and parameter derivatives, as e.g. [10]

∂

∂α
L(α)n (x) =

n−1∑
m=0

1

n−mL
(α)
m (x) .

We have shown that the coefficients of the recurrence equation of the classical
systems can be written in terms of the coefficients a, b, c, d, and e of the
differential/difference equation.

If one uses these formulas in the backward direction, then one can determine the
possible differential/difference equations from a given recurrence. For this purpose
one must solve a non-linear system.

Assume the following recurrence equation is given:

Pn+2(x)− (x − n− 1) Pn+1(x)+ α(n + 1)2Pn(x) = 0 .

Does this equation have classical OPS solutions?
We find out [11] that the solutions of this equation are shifted Laguerre

polynomials for α = 1/4. For α < 1/4 the recurrence has Meixner and Krawtchouk
polynomial solutions.

> read "hsum17.mpl";

‘Package "Hypergeometric Summation", Maple V - Maple 17‘

‘Copyright 1998-2013, Wolfram Koepf, University of Kassel‘

> read "retode.mpl";

‘Package "REtoDE", Maple V - Maple 8‘

‘Copyright 2000-2002, Wolfram Koepf, University of Kassel‘

> RE := P(n+2)-(x-n-1)*P(n+1)+alpha*(n+1)^2*P(n) = 0;

RE := P (n+ 2)− (x − n− 1) P (n+ 1)+ α (n+ 1)2 P (n) = 0
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> REtoDE(RE, P(n), x);

‘Warning: parameters have the values‘
{a = 0, α = 1/4, b = −d/2, c = −d/4, d = d, e = 0}

[
1/2 (2 x + 1)

∂2

∂x2
P (n, x)− 2 x

∂

∂x
P (n, x)+ 2 nP (n, x) = 0,

[
I = [−1/2,∞], ρ (x) = 2 e−2 x

]
,
kn+1

kn
= 1

]

> REtodiscreteDE(RE, P(n), x);

For the last computation we omit the lengthy output and just state that the
difference equation and weight of the Meixner and Krawtchouk polynomials is
discovered.

Recently Walter Van Assche asked me the question to find all OPS of the Askey–
Wilson scheme that satisfy a certain recurrence equation, see [19]. Dr. Daniel
Tcheutia solved this question completely [17] by extending the above algorithm
to the quadratic lattice. The answer is: The adapted algorithm finds the solutions to
the first question (that were already know to Walter Van Assche). This algorithm
also proves that the second recurrence equation does not have such solutions.

The Legendre Polynomials Pn(x) of the Jacobi class have several representations
as series:

Pn(x) =
n∑
k=0

(
n

k

)(−n− 1

k

)(
1− x

2

)k

= 1

2n

n∑
k=0

(
n

k

)2

(x − 1)n−k(x + 1)k

= 1

2n

�n/2�∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k .

It is already non-trivial to identify that these three series represent the same
functions, but Zeilberger’s algorithm [8] computes the desired normal forms,
namely the corresponding (and identical) recurrence equations jointly with enough
initial values.

> legendreterm1:=binomial(n,k)*binomial(-n-1,k)
> *((1-x)*(1/2))^k;

legendreterm1 :=
(
n

k

)(−n− 1

k

)
(1/2− x/2)k

> legendreterm2 := binomial(n, k)^2*(x-1)^(n-k)*(x+1)^k/2^n;

legendreterm2 :=
((
n
k

))2
(x − 1)−k+n (x + 1)k

2n
> legendreterm3 :=
> (-1)^k*binomial(n, k)*binomial(2*n-2*k, n)*x^(n-2*k)/2^n;

legendreterm3 := (−1)k
(
n
k

)(2 n−2 k
n

)
xn−2 k

2n
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> RE1 := {sumrecursion(legendreterm1, k, P(n)),
> P(0) = add(subs(n = 0, legendreterm1), k = 0 .. 0),
> P(1) = add(subs(n = 1, legendreterm1), k = 0 .. 1)};

RE1 :=
{(n+ 2) P (n+ 2)− x (2n+ 3) P (n+ 1)+ (n+ 1) P (n) = 0, P (0) = 1, P (1) = x}

> RE2 := {sumrecursion(legendreterm2, k, P(n)),
> P(0) = add(subs(n = 0, legendreterm2), k = 0 .. 0),
> P(1) = add(subs(n = 1, legendreterm2), k = 0 .. 1)};

RE2 :=
{(n+ 2) P (n+ 2)− x (2n+ 3) P (n+ 1)+ (n+ 1) P (n) = 0, P (0) = 1, P (1) = x}

> RE3 := {sumrecursion(legendreterm3, k, P(n)),
> P(0) = expand(add(subs(n = 0, legendreterm3), k = 0 .. 0)),
> P(1) = expand(add(subs(n = 1, legendreterm3), k = 0 .. 1))};

RE3 :=
{(n+ 2) P (n+ 2)− x (2n+ 3) P (n+ 1)+ (n+ 1) P (n) = 0, P (0) = 1, P (1) = x}

The above computations have computed the normal forms of each of the three
different series representations. Since they agree, we have proved that the series
represent the same family of functions.

Next, we compute their hypergeometric representations.
> Sumtohyper(legendreterm1, k);

Hypergeom ([n+ 1,−n], [1], 1/2− x/2)
> Sumtohyper(legendreterm2, k);

(x − 1)n

2n
Hypergeom

(
[−n,−n], [1], x + 1

x − 1

)

> convert(Sumtohyper(legendreterm3, k), binomial);(
2n

n

)
xnHypergeom([−n/2, 1/2− n/2], [−n+ 1/2], x−2)

2n

It can also be easily shown that they satisfy the same differential equation.
> DE1 := sumdiffeq(legendreterm1, k, P(x));

DE1 :=
(

d2

dx2
P (x)

)
(x − 1) (x + 1)+ 2 x

d

dx
P (x)− n (n+ 1) P (x) = 0

> DE2 := sumdiffeq(legendreterm2, k, P(x));

DE2 :=
(

d2

dx2
P (x)

)
(x − 1) (x + 1)+ 2 x

d

dx
P (x)− n (n+ 1) P (x) = 0

> DE3 := sumdiffeq(legendreterm3, k, P(x));

DE3 :=
(

d2

dx2
P (x)

)
(x − 1) (x + 1)+ 2 x

d

dx
P (x)− n (n+ 1) P (x) = 0

In the talk given by Naoures Ayadi [1], she introduced the Meixner type polynomials

M̂β1,β2
n (x, c) = (β1)k (β2)k 2F2

(
−n,−x
β1, β2

∣∣∣∣∣
1

c

)
.
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Using Zeilberger’s algorithm, it is easy to get a recurrence equation forMβ1,β2
n (x, c).

> meixnersummand := pochhammer(beta[1], n)*pochhammer(beta[2],
n)*
> hyperterm([-n, -x], [beta[1], beta[2]], 1/c, k);

meixnersummand :=
pochhammer (β1, n) pochhammer (β2, n) pochhammer (−n, k) pochhammer (−x, k) (c−1

)k
pochhammer (β1, k) pochhammer (β2, k) k!

> MeixnerRE := sumrecursion(meixnersummand, k, M(n));

MeixnerRE := −cM (n+ 3)

+
(

3 cn2 + 2 cnβ1 + 2 cnβ2 + cβ1β2 + 11 cn+ 4 cβ1 + 4 cβ2 + 10 c − n+ x − 2
)
M (n+ 2)

− (n+ 2) (1+ β2 + n) (1+ β1 + n) (3 cn+ cβ1 + cβ2 + 4 c − 1)M (n+ 1)

+ c (n+ 2) (n+ 1) (1+ β2 + n) (β2 + n) (1+ β1 + n) (β1 + n)M (n) = 0

The more complicated family

Mβ1,β2,β3
n (x, c) = (β1)k (β2)k (β3)k 2F3

(
−n,−x
β1, β2, β3

∣∣∣∣∣
1

c

)

is similarly feasible.

6 Epilogue

Software developers love when their software is used. But they need your support.
Hence my suggestion: If you use one of the packages mentioned for your scientific
work, please cite its use!
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information. The transfer of quantum states and the generation of entangled states
are two important tasks in this context. Let us first indicate broadly how we shall
describe these mathematically in the following.

Take quite generally, a finite set of sites labelled by the integers n = 0, 1, . . . , N.
Let |n) be the characteristic vector in C

N+1 which has entry 1 at position n and zeros
everywhere else. Consider this bra as the vector representing the quantum state of
interest at the location n. The evolution operator is the unitary U(t) = e−itH with
t the time and H some Hermitian Hamiltonian operator; therefore the state |n) at
time t = 0 will become U(t) |n) at time t . Pick a reference site say 0. We shall wish
to have a dynamics such that for some t = T ,

U(T ) |0) = α |0)+ β |N) , |α|2 + |β|2 = 1. (1.1)

If this happens, we shall say that we have Fractional Revival (FR) at two sites. Two
special cases are of particular interest:

– Perfect State Transfer (PST)
If α = 0 and β = eiφ , one has U(T ) |0) = eiφ |N), that is the state |0) at time

t = 0 is found at time t = T with probability 1 at the site N ; one thus say that it
has been perfectly transferred.

– Generation of maximal entanglement
If the norm of both α and β is equal to 1√

2
, the resulting state at t = T is

equivalent to 1√
2
(|0)+ |N)) which can be pictured as the sum of two vectors:

one with a spin up at site 0 and spin down at all the other sites and the other with
its only spin up at the siteN . This is manifestly a maximally entangled state (that
cannot be written as the product of two vectors). By evolving the vector |0) under
U(t) we have thus generated maximal entanglement at time T .

These two tasks can be achieved in properly engineered spin chains if one focuses
on one-excitation dynamics [2, 3, 16, 25]. PST has in fact been modelled and
experimentally realized in photonic waveguide arrays [5, 21].

In the language of Graph Theory, such processes can be viewed as Quantum
Walks on weighted paths (one-dimensional graphs) [6, 7, 12, 17]. Quantum walks
on other types of graphs have been used in the design of algorithms such as the
ones of Grover or Ambianis for example [8, 10]. The interest in PST has prompted
the examination of this process on spin networks deployed on higher dimensional
graphs with the Hamiltonian taken to be the adjacency matrix (or the Laplacian).

The goals of this lecture are the following:

1. To describe situations where one-excitation dynamics in spin lattices with PST
correspond to quantum walks on graphs.

2. To show that spin systems with PST can conversely be identified through this
correspondence i.e. from projecting from graphs.

3. To consider for illustration graphs that belong to the Hamming and generalized
Hamming schemes.
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4. To show that the “go-betweens” are orthogonal polynomials of the Krawtchouk
type in one or more variables. As a bonus, this will offer a review of their role in
spectral graph theory.

The outline of the lecture is as follows. In the next section, we shall discuss in
some details how spin chains can be engineered so as to exhibit FR and/or PST. As
shall be seen, this will involve conditions on the spectrum and the reconstruction
of the Hamiltonians from these constrained data. Orthogonal polynomials will be
seen to play a central role in such inverse spectral problems. The spin chains
associated to two families of orthogonal polynomials will be introduced as examples
in Sect. 3. This will give the occasion to review some properties of the Krawtchouk
polynomials as well as of the novel para-Krawtchouk polynomials. It will be noted
that this last family stems naturally from the exploration of fractional revival. In
Sect. 4, after an elementary review of the binary Hamming scheme and of its
connection to Krawtchouk polynomials, it will be seen that the quantum walk on
one graph of the scheme, namely the hypercube, precisely identifies with the 1-
excitation dynamics of the spin chain associated to the Krawtchouk polynomials.
Section 5 will offer a primer on bivariate Krawtchouk polynomials and their
algebraic interpretation as matrix elements of the rotation group SO(3) on the state
vectors of the harmonic oscillator in three dimensions. Furthermore, the ordered
2-Hamming scheme will be presented with some of its combinatorics. We shall
find out that the adjacency matrices of this scheme are expressed as some bivariate
Krawtchouk polynomials (of the Tratnik type) in two elementary matrices. Section 6
will be dedicated to the identification of a (weighted) graph in the ordered 2-
Hamming scheme that has both FR and PST and which projects to a spin lattice
with these two phenomena. We shall recap our findings in the last section.

2 Fractional Revival (FR) and Perfect State Transfer (PST)
in a One Dimensional Spin Chain

We shall here briefly review how the design of spin chains with FR and PST is
carried out with the help of orthogonal polynomial theory. Consider the XX chain
with the Hamiltonian on (C2)N+1

H = 1

2

N−1∑
l=0

Jl+1(σ
x
l σ

x
l+1 + σyl σ yl+1)+

1

2

N∑
l=0

Bl(σ
z
l + 1),

where σxl , σ
y
l , σ

z
l are the Pauli matrices acting at site l as follows on the canonical

basis {|0〉 , |1〉} for C2:

σx |1〉 = |0〉 , σ y |1〉 = i |0〉 , σ z |1〉 = |1〉 ,
σ x |0〉 = |1〉 , σ y |0〉 = −i |1〉 , σ z |0〉 = − |0〉 .
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It is not difficult to see that

[
H,

N∑
l=0

σzl

]
= 0,

in other words that the number of spins that are up is conserved. By convention we
shall say that a spin is up if the state is described by the eigenvector of σz that has
eigenvalue +1. We shall use this property to restrict our considerations to the one-
excitation subspace, that is to chain states where there is only one spin up. A basis
for this subspace will be provided by the following vectors in C

N+1:

|el) = (0, 0, . . . , 0, 1, 0, . . . , 0) l = 0, 1, . . . , N,

that have their single 1 entry at the position corresponding to the site where the only
spin up is located. In view of the above conservation law, the Hamiltonian preserves
the span of these vectors and is seen to act as follows on this basis:

H |el) = Jl+1 |el+1)+ Bl |el)+ Jl |el−1) , l = 0, 1, . . . , N

with J0 = JN+1 = 0. In other words, in the occupation basis, the Hamiltonian in the
one-excitation subspace takes the form of the following symmetric Jacobi matrix J

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

B0 J1

J1 B1 J2

J2
. . .

. . .

. . . BN−1 JN

JN BN

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Let us now consider the eigenvalue problem

H |s〉 = xs |s〉 , s = 0, 1, . . . , N. (2.1)

and expand the eigenvectors in terms of the occupation basis vectors:

|s〉 =
N∑
n=0

√
wsχn(xs) |en) , χ0(xs) = 1.

Since H = J on the 1-excitation subspace, it is readily seen that the set {χn(x)}Nn=0
is one of orthogonal polynomials whose orthogonality is given by

N∑
s=0

χn(xs)χm(xs)ws = δmn.
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From (2.1), one also finds the corresponding three-term recurrence relation

xsχn(xs) = Jn+1χn+1(xs)+ Bnχn(xs)+ Jnχn−1(xs).

Since the matrix (
√
wsχn(xs))

N
n,s=0 is an orthonormal matrix assuming that the

eigenvectors are normalized, we have the inverse expansion

|en) =
N∑
s=0

√
wsχn(xs) |s〉 . (2.2)

We can now write down how the FR and PST conditions translate on the spectra.
From the FR one namely,

e−iT H |e0) = μ |e0)+ ν |eN) , |μ|2 + |ν|2 = 1,

one finds with the help of (2.2)

e−iT xs = μ+ νχN(xs) (2.3)

since χ0(x) = 1. Let us begin with the analysis of PST which occurs when μ = 0
and ν = eiφ . It is straightforward to see that

χN(xs) = e−iφe−iT xs , φ ∈ R,

which implies that χN(xs) = ±1 since χN(xs) is real. A simple argument using
the interlacing properties of zeros of orthogonal polynomials and the positivity of
weight function yields

χN(xs) = (−1)N+s (2.4)

as a necessary condition for PST. It has also be shown [25] that the condition (2.4)
amounts in terms of the coefficients of the recurrence relation as the following
mirror-symmetric (or persymmetric) requirement

JN−n+1 = Jn, BN−n = Bn. (2.5)

We then proceed to find spin chains for which both (2.3) and (2.4) are satisfied,
which means spin chains where both FR and PST take place. This is readily seen to
imply

e−iT xs = eiφ(cos θ + i(−1)N+s sin θ). (2.6)

It should be remarked that the case θ = π
2 corresponds to PST since the amplitude

μ is zero.
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The problem at this point amounts to find the corresponding parameters Jn
and Bn given a spectral set that satisfy the FR requirements (2.6). We can find
the solution to this problem by constructing the associated monic orthogonal
polynomials

Pn(x) =
√
J1J2 · · · Jnχn(x)

whose recurrence coefficients will give Jn and Bn. Briefly, this can be done
as follows. From the spectrum data {xs}Ns=0, we can introduce the characteristic
polynomials

PN+1(x) = (x − x0)(x − x1) · · · (x − xN),

which is orthogonal to all other Pn(x) (n = 0, 1, . . . , N). The condition (2.4)
provides values for PN(x) ∝ χN(x) atN+1 points which fixes PN(x) by Lagrange
interpolation. Once two OPs PN+1(x), PN(x) are known, all the others are obtained
by the recurrence relation. (For more details, the readers may consult [11, 25])

3 Para-Krawtchouk and Krawtchouk Models

Let us see how this algorithm applies in an example. Consider the following
spectrum

xs = β
(
s + 1

2
(δ − 1)(1− (−1)s)− 1

2
(N − 1+ δ)

)
, s = 0, 1, . . . , N

(3.1)

which can be viewed as the affine transformation of the superposition of 2 regular
lattices of step 2 with spacing δ. It can be checked that this set of spectral points
satisfies the FR condition (2.6) with

T = π
β
, θ = (−1)N

π

2
δ.

In order to have also PST, there must be a t = T ′ such that

e−iT ′xs = eiφ(−1)N+s,

which requires δ = q
p

with p, q are coprime integers (and p also odd). In this
parametrization,

T ′ = qT .
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The spectrum (3.1) will therefore correspond to a spin chain with both PST and
FR. Using the reconstruction method for the Jacobi matrix that we described briefly
at the end of the last section we can obtain the chain specifications through the
resulting recurrence coefficients of the associated polynomials. In the present case,
when N is odd one finds:

Jn = β
2

√
n(N + 1− n)((N + 1− 2n)2 − δ2)

(N − 2n)(N − 2n+ 2)
, Bn = 0.

One observes that these couplings are indeed mirror symmetric. Similar expressions
are obtained for N even. Remarkably, these explicit recurrence coefficients define
orthogonal polynomials that had not really been studied. We have called them
para-Krawtchouk polynomials in particular because their orthogonality grid (3.1)
has resemblances with the spectrum of the parabosonic oscillator [11, 26]. Quite
strikingly they emerge naturally when one looks for fractional revival [1].

From here reorganize a bit the part on Krawtchouk OPs with inclusion of angular
momentum connection. If we set δ = 1, the recurrence coefficients become

Jn = β
√
n(N + 1− n)

2
, Bn = 0, (3.2)

which are the coefficients of Krawtchouk polynomials given in terms of hypergeo-
metric series:

KNn (x;p) = 2F1

(−n,−x
−N ; 1

p

)
=

N∑
k=0

(−n)k(−x)k
k!(−N)k

(
1

p

)k
, (0 < p < 1)

with p = 1
2 . The corresponding spectrum of the Krawtchouk polynomials are of

course

xs = β
(
s − N

2

)

and

θ = (−1)N
π

2
.

Therefore, only PST (not FR) can be observed in the spin chain associated with
Krawtchouk polynomials.
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4 Quantum Walk on the Hypercube

We have seen that the Krawtchouk model (3.2) exhibits PST. It will be instructive to
understand how this relates to quantum walks on the hypercube viewed as a graph of
the (binary) Hamming scheme and to see how the Krawtchouk polynomials appear
in this picture. This will allow us to review basic facts about a standard example of
association schemes [4].

4.1 A Brief Review of the Hamming Scheme

Recall that a graph G = (V ;E) is defined by the set of vertices V and the
set of edges E, which are 2-element subsets of V . Let |V | be a cardinality of
V . The adjacency matrix A of G is a |V | × |V | matrix whose (x, y) element
Axy = 〈x|A|y〉 is given by the number of edges between vertices x and y. Now
set V = {0, 1}N which consists of N-tuples of 0 and 1. For these vertices, we
can introduce the Hamming distance d(x, y) between x, y ∈ V which is the
number of positions where x and y differ. Using the Hamming distance, we can also
introduce the graph Gi (i = 0, 1, . . . , N) whose edges connect all pairs vertices
with Hamming distance i. It should be remarked that G1 is nothing but the N-
dimensional hypercube. Let Ai be the adjacency matrix of Gi and pkij (= pkji) be
the intersection numbers which count the number of z ∈ V such that

d(x, z) = i, d(y, z) = j if d(x, y) = k.

The set of matrices {Ai}Ni=0 is known to satisfy the Bose–Mesner algebra:

AiAj =
N∑
k=0

pkijAk,

which is a defining condition for an association scheme. The set of graphs {Gi}Ni=0
belongs to the association scheme known as the binary Hamming scheme H(N, 2).
In this case, we especially have

A1Ai = (i + 1)Ai+1 + (N − i + 1)Ai−1

which implies Ai = pi(A1), where pi(x) is a polynomial of degree i. One can
further see that the polynomial pi(x) is a Krawtchouk polynomial [23]:

pi(λs) =
(
N

i

)
KNi

(
s; 1

2

)
s = 0, 1, . . . , N

with λs = N − 2s.
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4.2 Projection of the Quantum Walk on the Hypercube
to the Krawtchouk Model

Let us now explain how quantum walks on the hypercube can be projected to walks
on a weighted path that can be identified with the 1-excitation dynamics of the
Krawtchouk spin model [6].

Let us consider the N-dimensional hypercube, i.e. the graph G1 and denote its
adjacency matrix by A1. The unitary operator

U(t) = e−itA1 (4.1)

defines a (continuous-time) quantum walk on the hypercube. We pick the vertex
which corresponds to (0) ≡ (0, 0, . . . , 0) as reference vertex and organize V as a
set of N + 1 columns Vn (n = 0, 1, . . . , N) defined by

Vn = {x ∈ V | d(0, x) = n}

whose cardinality is |Vn| = kn =
(
N
n

)
. We denote the vertices in Vn by Vn,m (m =

1, 2, . . . , kn). They all have n 1’s. It is not difficult to see that each Vn,m is connected
to the N − n elements of column Vn+1 obtained by converting a 0 of Vn,m to a 1.

To the vertices x ∈ V = {0, 1}N ,we shall associate orthonormalized vectors
|x〉 ∈ C

|V | such that

〈x|y〉 =
{

1 if d(x, y) = 0

0 otherwise
(x, y ∈ V )

and introduce the linear span of the following column vectors:

|col n〉 = 1√
kn

kn∑
m=1

∣∣Vn,m〉 .

The key observation here is that the evolution (4.1) preserves column space because
of distance-regularity, i.e. each vertex in Vn is connected to the same number of
vertices in Vn+1 and vice-versa. In light of this observation, it is possible to project
quantum walks on the hypercube to quantum walk along the columns. We can
realize this quotient by computing the matrix elements of A1 between the column
vectors. The non-zero elements are obtained as follows:

〈col n+ 1|A1|col n〉 = 1√
knkn+1

kn+1∑
m′=1

kn∑
m=1

〈
Vn+1,m′ |A1|Vn,m

〉

= kn(N − n)√
knkn+1

= √
(n+ 1)(N − n).
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By symmetry, we also have

〈col n− 1|A1|col n〉 = 〈col n|A1|col n− 1〉 = √
n(N − n+ 1).

One thus finds that A1 has the action

A1 |col n〉 = Jn+1 |col n+ 1〉 + Jn |col n− 1〉

with Jn = √n(N − n+ 1), which coincides with that of H on |en) in the
Krawtchouk model (up to a constant factor). It turns out that there is PST on the
hypercube but no FR infers the same properties for the Krawtchouk model.

5 Bivariate Krawtchouk Polynomials

In Sect. 3 we have indicated how one-dimensional spin chains with PST and
possibly FR could be engineered by identifying the couplings and local magnetic
fields along the chain with the recurrence coefficients of suitable orthogonal
polynomials. We have presented in some details models associated to the para-
Krawtchouk and Krawtchouk polynomials in one variable. This suggests that spin
lattices in dimensions higher than one could be constructed with the help of
orthogonal polynomials in many variables. We shall focus on two dimensions in
the following. With an eye to finding an example of a two-dimensional spin lattice
with PST-like properties that extends the simplest system in 1D, we shall review
results that concern bivariate Krawtchouk polynomials.

While univariate Krawtchouk polynomials are polynomials orthogonal with
respect to binomial distribution function as follows:

N∑
k=0

(
N

x

)
px(1− p)N−xKn(x)Km(x) = hnδm,n,

bivariate Krawtchouk polynomials are orthogonal with respect to the trinomial
distribution function w(x, y) = (

N
x,y

)
pxqy(1− p − q)N−x−y :

∑
0≤x+y≤N

w(x, y)Km1,n1(x, y)Km2,n2(x, y) = hm1,n1δm1,m2δn1,n2 . (5.1)

It should be noted that the orthogonality condition (5.1) does not define bivariate
Krawtchouk polynomials uniquely and hence there are several realizations.

Bivariate Krawtchouk polynomials of Tratnik are obtained by the product of
univariate Krawtchouk polynomials [24]:

T Nm,n(x, y) =
(n−N)m(x −N)n

(−N)m+n KN−nm (x;p)KN−xn

(
k,

q

1− p
)
. (5.2)
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Krawtchouk polynomials of Griffiths, originally introduced by Griffiths [9, 13] and
rediscovered by Hoare and Rahman [15], are usually defined in terms of the special
case of Aomoto-Gel’fand hypergeometric series [14]:

GNm,n(x, y) =
∑

0≤i+j+k+l≤N

(−m)i+j (−n)k+l (−x)i+k(−y)j+l
i!j !k!l!(−N)i+j+k+l ui1v

j

1u
k
2v
l
2 (5.3)

with

pui + qvi = 1, i = 1, 2,

pu1u2 + qv1v2 = 1

and

p̃u1 + q̃u2 = 1,

p̃v1 + q̃v2 = 1,

p̃u1v1 + q̃v1v2 = 1.

It is obvious from the expression (5.3) that the polynomials {GNm,n(x, y)} have a
duality relation under the exchange of the variables x, y and the degree m,n. They
are hence orthogonal with respect to the variables x, y as follows:

∑
0≤m+n≤N

w̃(m, n)GNm,n(x1, y1)G
N
m,n(x2, y2) = h̃x1,y1δx1,x2δy1,y2

with w̃(m, n) = (
N
m,n

)
p̄mq̄n(1− p − q)N−m−n. It should be remarked here that the

series (5.3) becomes (5.2) if we set

u1 = 1

p
, v1 = 0, u2 = 1, v2 = 1− p

q
. (5.4)

In other words, the Krawtchouk polynomials of Griffiths contains those of Tratnik
as a special case.

5.1 Algebraic Interpretation: SO(3)

A group-theoretic interpretation of the multivariate Krawtchouk polynomials allows
for a cogent derivation of many of their properties. Especially, the Krawtchouk
polynomials of Griffiths in d variables can be interpreted as matrix elements of
SO(d + 1) unitary representations [11]. We shall give a brief review of this in the
case d = 2.
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Let ai, a
+
i (i = 1, 2, 3) be operators of 3 independent oscillators with the action

ai |ni〉 = √ni |ni − 1〉 , a+i |ni〉 =
√
ni + 1 |ni + 1〉 , ai |0〉 = 0

and |n1, n2, n3〉 be oscillator states defined by

|n1, n2, n3〉 = |n1〉 ⊗ |n2〉 ⊗ |n3〉 .

We fix n1 + n2 + n3 = N and write

|m,n〉N = |m,n,N −m− n〉 , 0 ≤ m+ n ≤ N. (5.5)

Since the three-dimensional harmonic oscillator Hamiltonian H = ∑3
i=1 aia

+
i is

invariant under SU(3) and a fortiori under its SO(3) subgroup, the eigensubspace of
energyN spanned by the (orthonormal) basis vectors |m,n〉N forms a representation
space for these groups. Let R ∈ SO(3) and define its unitary representation U =
U(R) by

U(R)aiU
+(R) =

3∑
k=1

Rkiak. (5.6)

The matrix elements of this unitary operator in the basis (5.5) can be cast in the form

〈i, k|U(R)|m,n〉N N = wi,k;NPNm,n(i, k)

with PN0,0(i, k) = 1 and wi,k;N = 〈i, k|U(R)|0, 0〉N N . From the unitarity of U :

〈
m′, n′|U+U |m, n〉

N N
=

∑
0≤i+k≤N

〈
m′, n′|U+|i, k〉

N N
〈i, k|U |m, n〉N N = δm,m′δn,n′ ,

it is straightforward to see that {Pm,n}m,n have the orthogonality relation

∑
0≤i+k≤N

w2
i,k;NP

N
m,n(i, k)P

N
m′,n′(i, k) = δm,m′δn,n′ .

The weight function w2
i,k;N can be computed directly as follows. From (5.6) and

〈i, k|U(R)a1|0, 0〉N−1 N = 0, we see that

〈i, k|Ua1|0, 0〉N−1 N

= 〈
i, k|Ua1U

+Ua1|0, 0
〉

N−1 N

= R11
√
i + 1 〈i + 1, k|U |0, 0〉N N + R21

√
k + 1 〈i, k + 1|U |0, 0〉N N

+ R31
√
N − i − k 〈i, k|U |0, 0〉N N ,
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which results in

R11
√
i + 1wi+1,k;N + R21

√
k + 1wi,k+1;N + R31

√
N − i − kwi,k;N = 0.

Similarly using 〈i, k|U(R)a2|0, 0〉N−1 N = 0, one finds

R12
√
i + 1wi+1,k;N + R22

√
k + 1wi,k+1;N + R32

√
N − i − kwi,k;N = 0.

It is not difficult to verify that

wi,k;N = C Ri13R
k
23R

N−i−k
33√

i!k!(N − i − k)!
is a solution to the above difference systems. The constant term C is determined to
be C = √N ! from the relation

1 = 〈
0, 0|U+U |0, 0〉

N N

=
∑

0≤i+k≤N
〈0, 0|U |i, k〉N N 〈i, k|U |0, 0〉N N =

∑
0≤i+k≤N

w2
i,k;N .

As a result, we have

wi,k;N = Ri13R
k
23R

N−i−k
33

√(
N

i, k

)

and PNm,n(i, k) are thus orthogonal with respect to trinomial distribution function(
N
i,k

)
piqk(1− p − q)N−i−k with

p = R2
13, q = R2

23. (5.7)

We can conclude that {PNm,n(i, k)}0≤m+n≤N are (orthonormal) bivariate Krawtchouk
polynomials.

The group theoretical interpretation enables us to derive several properties of
PNm,n(i, k). For instance, the relations

〈
i, k|a+1 a1U |m,n

〉
N N

= i 〈i, k|U |m,n〉N N =
3∑

r,s=1

Rr1Rs1
〈
i, k|Ua+r as |m,n

〉
N N

,

〈
i, k|a+2 a2U |m,n

〉
N N

= i 〈i, k|U |m,n〉N N =
3∑

r,s=1

Rr2Rs2
〈
i, k|Ua+r as |m,n

〉
N N
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yield the following two 7-term recurrence relations

iPNm,n(i, k) = [R2
11m+ R2

12n+ R2
13(N −m− n)]PNm,n(i, k)

+ R11R12[
√
m(n+ 1)PNm−1,n+1(i, k) +

√
n(m+ 1)PNm+1,n−1(i, k)]

+ R11R13[
√
m(N −m− n+ 1)PNm−1,n(i, k) +

√
(m+ 1)(N −m− n)PNm+1,n(i, k)]

+ R12R13[
√
n(N −m− n+ 1)PNm,n−1(i, k) +

√
(n+ 1)(N −m− n)PNm,n+1(i, k)]

(5.8)

and

kPNm,n(i, k) = [R2
21m+ R2

22n+ R2
23(N −m− n)]PNm,n(i, k)

+ R21R22[
√
m(n+ 1)PNm−1,n+1(i, k) +

√
n(m+ 1)PNm+1,n−1(i, k)]

+ R21R23[
√
m(N −m− n+ 1)PNm−1,n(i, k) +

√
(m+ 1)(N −m− n)PNm+1,n(i, k)]

+ R22R23[
√
n(N −m− n+ 1)PNm,n−1(i, k) +

√
(n+ 1)(N −m− n)PNm,n+1(i, k)].

(5.9)

Furthermore, we can find that PNm,n(i, k) have the explicit expression as the
Krawtchouk polynomials of Griffiths (5.3):

PNm,n(i, k) =
√(

N

m,n

)(
R31

R33

)m (
R32

R33

)n
GNm,n(i, k)

with

u1 = 1− R11R33

R13R31
, v1 = 1− R21R33

R23R31
,

u2 = 1− R12R33

R13R32
, v2 = 1− R22R33

R23R32
.

(5.10)

(For the details of the derivation, see [11].) The Tratnik polynomials (of Krawtchouk
type) are specialization of the Griffiths corresponding to particular rotations given
by the product of two rotation matrices about two orthogonal axes:

R = RyzRxz =
⎛
⎝1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠

⎛
⎝cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

⎞
⎠

=
⎛
⎝ cosφ 0 − sinφ

sin θ sin φ cos θ sin θ cosφ
cos θ sin φ − sin θ cos θ cosφ

⎞
⎠ ,
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from which R12 = 0 and the parametrization (5.7) and (5.10) coincides with (5.4).
The precise identification with the bivariate polynomials of Krawtchouk type
defined in (5.2) involves a normalization factor given by:

PNi,j (x, y) =
√(

N

i, j

)
p̃i q̃j (1− p − q)−i−j T Ni,j (x, y) (5.11)

with

p̃ = p(1 − p − q)
1− p , q̃ = q

1− p .

For later usage, we write down the recurrence relations for T Ni,j (x, y):

xT Ni,j (x, y) = −p(N − i − j)[T Ni+1,j (x, y)− T Ni,j (x, y)]
− (1− p)i[T Ni−1,j (x, y)− T Ni,j (x, y)],

yT Ni,j (x, y) =
pq

1− p (N − i − j)[T
N
i+1,j (x, y)− T Ni,j (x, y)]

− q

1− p (N − i − j)[T
N
i,j+1(x, y)− T Ni,j (x, y)]

+ qi[T Ni−1,j (x, y)− T Ni,j (x, y)]

− p(1− p − q)
1− p j [T Ni+1,j−1(x, y)− T Ni,j (x, y)]

− q

1− p i[T
N
i−1,j+1(x, y)− T Ni,j (x, y)].

(5.12)

For later reference, combining the relations (5.12) and keeping (5.11) in mind, in the
case p = 1

2 and q = 1
4 we find the following relation for the “Hermitian” Tratnik

polynomials PNi,j (x, y):

[α(N − 2x)+ β(2N − 2x − 4y)]PNi,j (x, y)
= αjPNi,j (x, y)+ α

√
(i + 1)(N − i − j)PNi+1,j (x, y)

+ β√2(j + 1)(N − i − j)PNi,j+1(x, y)+ α
√
i(N + 1− i − j)PNi−1,j (x, y)

+ β√2j (N + 1− i − j)PNi,j−1(x, y)+ β
√

2i(j + 1)PNi−1,j+1(x, y)

+ β√2(i + 1)jPNi+1,j−1(x, y).

(5.13)
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The algebraic interpretation also allows us to obtain the generating function formula
for T Ni,j (x, y):

∑
0≤x+y≤N

(
N

x, y

)
T Ni,j (x, y)s

xty

= (1+ s + t)N−i−j
(

1+ p − 1

p
s + t

)i (
1+ p + q − 1

q
t

)j
.

(5.14)

5.2 Relationship to Generalized Hamming Scheme

In Sect. 4.1, we have seen that univariate Krawtchouk polynomials naturally arise
in the binary Hamming scheme H(N, 2). We shall here introduce the genralization
of the Hamming scheme which is usually called the ordered 2-Hamming scheme
[18] and show that this scheme brings on the bivariate Krawtchouk polynomials of
Tratnik.

Let Q = {0, 1} and consider the set Q(N,2) of vectors of dimension 2N overQ.
The vector x ∈ Q(N,2) will be presented by 2-binary sequences of length N :

x = (x̄1, x̄2, . . . , x̄N), x̄j = (xj1, xj2) ∈ Q2.

For x ∈ Q(N,2), we can introduce the shape e(x) by

e(x) = (e1, e2),

e1 = #{j ∈ {1, 2, . . . , N} | x̄j = (1, 0)},
e2 = #{j ∈ {1, 2, . . . , N} | x̄j = (0, 1), (1, 1)}.

For example, x = ((0, 0), (1, 0), (1, 1), (0, 1), (0, 1)) ∈ Q(5,2) and e(x) = (1, 3).
We denote the set of the all shapes by

E = {(e1, e2) ∈ (Z≥0)
2 | 0 ≤ e1 + e2 ≤ N}.

We can now use shapes to establish relations between vertices. We shall say that two
vertices x, y ∈ QN,2 are related under shape e:

x ∼e y if e((x − y mod 2)) = e.

For example, let x = ((0, 0), (1, 0), (0, 0)) and y = ((1, 1), (0, 1), (1, 0)). Then
(x − y mod 2) = ((1, 1), (1, 1), (1, 0)) and e((x − y mod 2)) = (1, 2), we thus
have x ∼(1,2) y. We can then introduce the graphGe associated with the shape e as
the one where all two vertices (vx, vy) in {vx | x ∈ Q(N,2)} are linked if vx ∼e vy .
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The adjacency matrix Ae of the graphGe is given by

〈x|Ae|y〉 =
{

1 (x ∼e y)
0 (otherwise)

.

The set of the adjacency matrices A = {Ae | e ∈ E} satisfy the Bose–Mesner
algebra

A(i,j)A(k,l) =
∑

0≤m+n≤N
α
(m,n)
(i,j),(k,l)A(m,n)

and thus defines an association scheme called the ordered 2-Hamming scheme. The
intersection numbers are here defined by

α
(m,n)
(i,j),(k,l) = #{z ∈ Q(N,2) | x ∼(i,j) z, y ∼(k,l) z, x ∼(m,n) y}.

and it is found in particular that

A(1,0)A(i,j) = (N + 1− i − j)A(i−1,j) + jA(i,j) + (i + 1)A(i+1,j),

A(0,1)A(i,j) = 2(N + 1− i − j)A(i,j−1) + 2(i + 1)A(i+1,j−1)

+ (j + 1)A(i−1,j+1) + (j + 1)A(i,j+1).

(5.15)

The derivation of these relations is not difficult. For instance, we can compute
α
(i−1,j)
(1,0),(i,j) as follows. Let us count the number of z ∈ Q(N,2) such that

e((x − z mod 2)) = (1, 0), e((y − z mod 2)) = (i, j)

if e((x − y mod 2)) = ((i − 1, j)). Take

x = ((1, 0), . . . , (1, 0), (0, 1), . . . , (0, 1), (0, 0), . . . , (0, 0))

with i − 1 (1, 0)s, j (0, 1)s and N + 1− i − j (0, 0)s and y = ((0, 0), . . . , (0, 0)).
In order to get a z, a (0, 0) should be converted into a (1, 0) and hence there are
N + 1− i − j ways to do that. We then conclude that

α
(i−1,j)
(1,0),(i,j) = N + 1− i − j.

The other intersection numbers can be computed in the same manner. Quite
interestingly, the relations (5.15) coincide with the recurrence relations (5.12) for
the bivariate Krawtchouk polynomials of Tratnik with p = 1

2 , q = 1
4 . Therefore,

the bivariate Krawtchouk polynomials of Tratnik arise in the ordered 2-Hamming
scheme as univariate Krawtchouk polynomials do in the binary Hamming scheme
H(N, 2).
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6 FR and PST in Two-Dimensional Spin Lattices

We have seen in Sect. 4.2 that the quantum walk on the hypercube the Hamming
scheme leads to a 1-dimensional spin model with PST. We shall here consider
the graph Gα,β in the ordered 2-Hamming scheme corresponding to the weighted
adjacency matrix:

Aα,β = αA(1,0) + βA(0,1)
and consider quantum walks this matrix generates. Thanks to the distance regularity
of the graph, we can project the quantum walk on the graphGα,β to walks on a two-
dimensional regular lattice of triangular shape in the same fashion as in Sect. 4.2.

Let (0) ≡ ((0, 0), (0, 0), . . . , (0, 0)) be a reference vertex and organize V as the
set of

(
N+1

2

)
column Vi,j defined by

Vij = {x ∈ V | e(x) = (i, j)} 0 ≤ i + j ≤ N.

The cardinality of Vi,j is given by

ki,j = |Vi,j | =
(
N

i, j

)
2j .

Let us label the vertices in column Vi,j by V(i,j),k, k = 1, 2, . . . , ki,j . Under the
relation corresponding to shape (1, 0), each V(i,j),k in Vi,j is connected to N − i− j
vertices in Vi+1,j since exchanging a (0, 0) for a (1, 0) in V(i,j),k gives a vertex in
Vi+1,j and there are N − i − j ways. It is not difficult to see similarly that V(i,j),k
is connected to j vertices in Vi,j . For relation corresponding to (0, 1), we can also
see that each V(i,j),kin Vi,j is connected to 2(N − i − j) vertices in Vi,j+1 and j
vertices in Vi+1,j−1.

Consider now the column space taken to be the linear span of the column vectors
given by

|col i, j 〉 = 1√
ki,j

ki,j∑
k=1

∣∣V(i,j),k〉 .

Distance regularity assures that A(1,0) and A(0,1) preserve column space and allows
to project from the quantum walks onGα,β to the simplex labelling the columns. To
that end, we compute the matrix elements of A(1,0) and A(0,1) between the column
vectors in the same manner as for the hypercube. One finds:

〈
col i + 1, j |A(1,0)|col i, j

〉 = √
(i + 1)(N − i − j),〈

col i, j |A(1,0)|col i, j
〉 = j,
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〈
col i, j + 1|A(1,0)|col i, j

〉 = √
2(j + 1)(N − i − j),

〈
col i + 1, j − 1|A(1,0)|col i, j

〉 = √
2(i + 1)j .

One thus observes that quantum walks on Gα,β are in correspondence with 1-
excitation dynamics of the spin lattice of triangular shape with Hamiltonian [20]

H =
∑

0≤i+j≤N
α
√
(i + 1)(N − i − j)σ

x
i,j σ

x
i+1,j + σyi,j σ yi+1,j

2

+ β√2(j + 1)(N − i − j)σ
x
i,j σ

x
i,j+1 + σyi,j σ yi,j+1

2

+ β√2(i + 1)j
σ xi,j σ

x
i+1,j−1 + σyi,j σ yi−1,j+1

2
+ αj 1+ σzi,j

2
.

(6.1)

Indeed, on the subspace spanned by the 1-excitation basis vectors
∣∣ei,j ) = Ei,j with

Ei,j the (N + 1)× (N + 1) matrix with 1 in the (i, j) entry and zeros everywhere
else, we see that

H
∣∣ei,j ) = α√(i + 1)(N − i − j) ∣∣ei+1,j

)+ β√2(j + 1)(N − i − j) ∣∣ei,j+1
)

+ α√i(N + 1− i − j) ∣∣ei−1,j
)+ β√2j (N + 1− i − j) ∣∣ei,j−1

)

+ β√2(i + 1)j
∣∣ei+1,j−1

)+ β√2i(j + 1)
∣∣ei−1,j+1

)+ αj ∣∣ei,j ) ,
(6.2)

which corresponds to [αA(1,0) + βA(0,1)] |col i, j 〉. as the coefficients of the rela-
tion (6.2) coincide with those in (5.13). On the subspace spanned by the 1-excitation
basis, H can hence be diagonalized by the Hermitian Tratnik polynomials (5.11)
with p = 1

2 and q = 1
4 and the corresponding eigenvalues and eigenvectors are

given by

λx,y = α(N − 2x)+ β(2N − 2x − 4y),

|x, y〉 =
∑

0≤i+j≤N
wx,y;NPNi,j (x, y)

∣∣ei,j ) , 0 ≤ x + y ≤ N

respectively.
Let us now consider the evolution under the dynamics of this spin lattice of a

single qubit located at the apex (0, 0). The amplitude for finding that qubit at the
site (k, l) at time t is given by:

f(k,l)(t) =
(
ek,l |e−itH |e0,0

)
.
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This transition amplitude can be computed with the help of the generating function
formula (5.14) as follows;

f(k,l)(t) =
(
ek,l |e−itH |e0,0

)

=
∑

0≤x+y≤N

(
ek,l|x, y

)
e−itλx,y

(
x, y|e0,0

)

=
∑

0≤x+y≤N

(
N

x, y

)(
1

2

)x (1

4

)y (1

4

)N−x−y
PN0,0(x, y)P

N
k,l(x, y)e

−itλx,y

= e−iN(α+2β)t

√
2l

4N

√(
N

k, l

)
(1+ 2z1 + z2)

N−k−l (1− 2z1 + z2)
k(1− z2)

l

with z1 = e2i(α+β)t and z2 = e4iβt . In order to achieve transfer only to site (i, j)
with i + j = N , we must have for some t = T

1+ 2z1 + z2 = 0.

Since |z1| = |z2| = 1, the relation implies that

z2 = 1, z1 = −1. (6.3)

From last expression for the amplitude fk,l(t), we see that z2 = 1 requires that
j = 0 at t = T and hence

|f(i,j)(T )| =
{

1 (i, j) = (N, 0)
0 (otherwise)

.

This is nothing but PST between (0, 0) and (N, 0). The condition (6.3) for PST can
be realized in different ways. One simple instance is that

α = 1, β = 2, T = π
2
.

It should be remarked here that in the case α = 1 and β = 2, we see that at t = π
4

z2 = 1, z1 �= −1,

which implies

∣∣∣f(i,j)
(π

4

)∣∣∣ = 0, j �= 0.

In other words, at t = π
4 FR occurs on the sites (i, 0), i = 0, 1, . . . , N . This can be

depicted on Fig. 1 where N = 7.
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t = 0 t = π
6 t = π

5

t = π
4 t = π

3 t = π
2

Fig. 1 The transition amplitude |fi,j (t)| for A(1,0)+2A(0,1) when N = 7. The areas of the circles
are proportional to |f(i,j)(t)| at the given lattice point (i, j). PST occurs at π2 and FR on the set of
sites i = 0, 1, · · · , N and j = 0 occurs at t = π

4

7 Concluding Remarks

Summing up, we have seen how PST and FR can occur on weighted paths associated
to spin chains with non-uniform couplings prescribed by orthogonal polynomials.
We have observed in particular that the Krawtchouk spin chain model is related
with quantum walks on the hypercube. This connection is underscored by the
occurrence of Krawtchouk polynomials as eigenfunctions and as matrix eigenvalues
of the Hamming scheme. We have reviewed the algebraic interpretation of a two-
variable generalization of the Krawtchouk polynomials and discussed the ordered
2-Hamming scheme which features the bivariate Krawthouk polynomials of Tratnik.
Such connection enables us to introduce a new two-dimensional spin chain model
where PST and FR can be found. It should be stressed here that the spin chain model
associated with the more general bivariate Krawtchouk polynomials, i.e. of Griffiths,
was considered [19, 22] although PST was not observed in these models. These
observations give illustrations of the role that the theory of orthogonal polynomials
can play in the analysis of quantum information tasks.
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the Nikiforov-Uvarov paradigm [138] when a general transformation of a certain
differential equation, together with an integral representation, have been used for
developing the theory of special functions of hypergeometric type. On the contrary,
we utilize generalized power series expansions which is more traditional in solutions
of applied problems. Basic facts about special functions are useful in the study of
theoretical and mathematical physics, applied mathematics and modeling. This is
why we hope our self-contained presentation of those topics in the state of the art
theory of special functions will be very useful for general readers.

In the second part, in addition to traditional topics, a detailed discussion of a
“missing” solution of simple harmonic oscillator and relativistic Coulomb integrals
are given by computer algebra methods. This will be useful for teaching elementary
quantum mechanics and quantum field theory. We are grateful to all our students.

1 An Introduction to Special Functions

The main objective in this section is to present in a compact form main facts about
the classical special functions of hypergeometric type, i.e., classical orthogonal
polynomials (Jacobi, Laguerre and Hermite) and functions of the second kind,
hypergeometric functions, confluent hypergeometric functions and Bessel functions,
on the base on the second order differential equation they satisfy. That forms
a platform for the study of difference hypergeometric functions, q-orthogonal
polynomials, q-beta integrals and biorthogonal rational functions (see [7–9, 12, 15,
16, 79, 103, 139, 147, 174, 195] and references therein).

1.1 Classical Hypergeometric Functions

Classical orthogonal polynomials, hypergeometric functions and Bessel functions
are particular solutions of the differential equation

σ(x)y ′′ + τ (x)y ′ + λy = 0, (1.1)

where σ(x) and τ (x) are polynomials of respective degrees at most two and one,
and λ is a constant. Equation (1.1) can also be rewritten in the self-adjoint form

(
σρy ′

)′ + λρy = 0, (σρ)′ = τρ. (1.2)

We shall refer to (1.1) as an equation of hypergeometric type, and its solutions as
functions of hypergeometric type. Generally speaking, these functions can be studied
in a domain of the complex plane. In this case, we shall usually use the complex
variable z instead of x.
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1.1.1 Method of Undetermined Coefficients

It is convenient to construct particular solutions of Eq. (1.1) by using the method of
undetermined coefficients (see, for example, the classical work of Boole [32, 33]).

Theorem 1.1 Let a be a root of the equation σ(x) = 0. Then Eq. (1.1) has
particular solution of the form

y(x) =
∞∑
n=0

cn(x − a)n, (1.3)

where

cn+1

cn
= −λ+ n

(
τ ′ + (n− 1) σ ′′

/
2
)

(n+ 1) (τ (a)+ nσ ′(a)) , (1.4)

if:

(i) lim
m→∞

dk

dxk
ym(x) = dk

dxk
y(x) with k = 0, 1, 2;

(ii) lim
m→∞ (λ− λm) cm(x − a)

m = 0.

(Here ym(x) =
m∑
n=0

cn(x − a)n and λm = −mτ ′ − 1

2
m(m− 1)σ ′′.)

In the case σ(x) = constant �= 0 series (1.3) satisfies (1.1) when a is a root of
the equation τ (x) = 0,

cn+2

cn
= − λ+ nτ ′

(n+ 1)(n+ 2)σ
(1.5)

and convergence conditions (i)–(ii) are valid.

The proof of Theorem 1.1 follows from the identity

ρ−1 d

dx

[
σρ

d

dx
(x − ξ)n

]
= n(n− 1)σ (ξ)(x − ξ)n−2 (1.6)

+nτn−1(ξ)(x − ξ)n−1 − λn(x − ξ)n,

where τm(ξ) = τ (ξ)+mσ ′(ξ) and λn = −nτ ′ − 1

2
n(n−1)σ ′′, which can be easily

verified (see Exercise 1).
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In fact, for a partial sum of the series (1.3) we can write

[
σ(x)

d2

dx2 + τ (x)
d

dx
+ λ

]
ym(x)

= σ(a)
m∑
n=0

cnn(n− 1)(x − a)n−2

+
m∑
n=0

cnnτn−1(a)(x − a)n−1

+
m∑
n=0

cn (λ− λn) (x − a)n.

By the hypothesis σ(a) = 0, the first term in the right side is equal to zero. Equating
coefficients in the next two terms with the aid of

cn+1

cn
= λn − λ
(n+ 1)τn(a)

,

which is equivalent to (1.4), we get

[
σ(x)

d2

dx2
+ τ (x) d

dx
+ λ

]
ym(x) = cm (λ− λm) (x − a)m. (1.7)

Taking the limit m→ ∞ we prove the first part of the theorem under convergence
conditions (i)–(ii).

When σ = constant we can obtain in the same manner that

[
σ(x)

d2

dx2 + τ (x)
d

dx
+ λ

]
ym(x) (1.8)

= σ
m∑
n=0

cnn(n− 1)(x − a)n−2

+
m∑
n=0

cn (λ− λn) (x − a)n

= cm (λ− λm) (x − a)m,

which proves the second part of the theorem in the limit m→∞. ��
Corollary Equation (1.1) has polynomial solutions ym(x) corresponding to the

eigenvalues λ = λm = −mτ ′ − 1

2
m(m− 1)σ ′′, m = 0, 1, 2, . . ..
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(It follows from (1.7) and (1.8).)

Examples With the aid of linear transformations of independent variable equa-
tion (1.1) for τ ′ �= 0 can be reduced to one of the following canonical forms

x(1− x)y ′′ + [γ − (α + β + 1)x]y ′ − αβy = 0, (1.9)

xy ′′ + (γ − x)y ′ − αy = 0, (1.10)

y ′′ − 2xy ′ + 2νy = 0. (1.11)

According to (1.3)–(1.5) the appropriate particular solutions are:
the hypergeometric function,

y(x) = 2F1(α, β; γ ; x) =
∞∑
n=0

(α)n(β)n

(γ )nn! x
n,

the confluent hypergeometric function,

y(x) = 1F1(α; γ ; x) =
∞∑
n=0

(α)n

(γ )nn! x
n,

and the Hermite function,

y(x) = Hν(x) =
2ν�

(
1
2

)

�
(

1−ν
2

) 1F1

(
−ν

2
; 1

2
; x2

)

+
2ν�

(
− 1

2

)

�
(− ν2

) x 1F1

(
1− ν

2
; 3

2
; x2

)

= 1

2�(−ν)
∞∑
n=0

�

(
n− ν

2

)
(−2x)n

n! ,

respectively. Here (a)n = a(a + 1) . . . (a + n − 1) = �(a + n)/�(a), n ≥
1, (a)0 = 1 and �(a) is the gamma function of Euler.

Generally speaking, these solutions arise under some restrictions on the variable
and parameters. They can be extended to wider domains by analytic continuation.

Definition All the hypergeometric series above are the special cases of the (gen-
eralized) hypergeometric series with r numerator parameters α1, . . . , αr and s
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denominator parameters β1, . . . , βs defined by [16]

rFs (α1, α2, . . . , αr ; β1, . . . , βs; x) = rFs

⎛
⎝α1, α2, . . . , αr

; x
β1, . . . , βs

⎞
⎠ (1.12)

=
∞∑
n=0

(α1)n (α2)n . . . (αr )n

n! (β1)n . . . (βs)n
xn,

where (a)n = a(a + 1) . . . (a + n− 1) and (a)0 = 1, as for the Hermite function.

By ratio test, the rFs series converges absolutely for all complex values of x if
r ≤ s, and for |x| < 1 if r = s + 1. By an extension of the ratio test (Bromwich
[38], p. 241), it converges absolutely for |x| = 1 if r = s+1 and x �= 0 or r = s+1
and Re [β1 + . . .+ βs − (α1 + . . .+ αs)] > 0. If r > s+1 and x �= 0 or r = s+1
and |x| > 1, than this series diverges, unless it terminates.

More Solutions The solution (1.3)–(1.4) can be rewritten in the following explicit
form

y(x) = c0

∞∑
n=0

n−1∏
k=0

(λ− λk) (a − x)
τk(a)(k + 1)

, (1.13)

where c0 is a constant.

Using the expansion

y(x) =
∑
n

cn(x − ξ)α+n, cn+1

cn
= λα+n − λ
(α + n+ 1)τα+n(a)

it is also not difficult to find solutions of a more general form

y(x) = c0(x − a)α
∞∑
n=0

n−1∏
k=0

(λ− λα+k) (a − x)
τα+k(a)(α + k + 1)

, (1.14)

provided that σ(a) = 0 and α τα−1(a) = 0 (in particular, putting α = 0 we
recover (1.13)).

We can also satisfy (1.1) by using the series of the form

y(x) =
∑
n

cn

(x − ξ)α+n ,
cn+1

cn
= (α + n)τ−α−n−1(a)

λ− λ−α−n−1
,

if σ(a) = 0 and λ = λ−α . Hence

y(x) = c0

(x − a)α
∞∑
n=0

n−1∏
k=0

(α + k)τ−α−k−1(a)

(λ− λ−α−k−1) (x − a) . (1.15)
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When σ = constant �= 0 we can write the solution as

y(x) =
∑
n

cn

(x − a)α+n ,
cn+2

cn
= − (α + n)(α + n+ 1)σ

λ− λ−α−n−2
, (1.16)

if τ (a) = 0 and λ = λ−α (for even integer values of n) or λ = λ−α−1 (for odd
integer values of n).

1.1.2 Some Solutions of Hypergeometric Equations

Let us apply the method of undetermined coefficients to the main equations of
hypergeometric type.

1. Consider particular solutions of the hypergeometric equation,

x(1− x)y ′′ + [c − (a + b + 1)x]y ′ − aby = 0, (1.17)

when σ(x) = x(1 − x), τ (x) = c − (a + b + 1)x and λ = −ab. Here τμ(ξ) =
c− (a+b+1)ξ+μ(1−2ξ), λμ = μ(a+b+μ) and λμ−λ = (a+μ)(b+μ).
Equation σ(ξ) = ξ(1 − ξ) = 0 has two solutions.

Solution (1.13) for σ(0) = 0 is the hypergeometric function,

y1(x) = 2F1(a, b; c; x), |x| < 1; (1.18)

for σ(1) = 0 we get

y2(x) = 2F1(a, b; a + b − c + 1; 1− x), |1− x| < 1. (1.19)

The corresponding solutions (1.14) are

y3(x) = x1−c
2F1(1+ a − c, 1+ b − c; 2− c; x) (1.20)

and

y4(x) = (1− x)c−a−b 2F1(c − b, c − a; c − a − b + 1; 1− x). (1.21)

Solutions (1.15) take the form

y5(x) = x−a 2F1

(
a, a − c + 1; a − b + 1; x−1

)
, |x| > 1, (1.22)

y6(x) = y5(x)|a↔b ; (1.23)
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and

y7(x) = (x − 1)−a 2F1

(
a, c − b; a − b + 1; 1

1− x
)
, |1− x| > 1,

(1.24)

y8(x) = y7(x)|a↔b . (1.25)

Any three of these solutions are linearly dependent. For example,

2F1(a, b; c; x) = (1− x)c−a−b 2F1(c − a, c − b; c; x) (1.26)

and

2F1(a, b; a + b − c + 1; 1− x) (1.27)

= �(a + b − c + 1)�(1− c)
�(a − c + 1)�(b − c + 1)

2F1(a, b; c; x)

+�(a + b − c + 1)�(c − 1)

�(a)�(b)
x1−c

2F1(1+ a − c, 1+ b − c; 2− c; x).

2. For the confluent hypergeometric equation,

xy ′′ + (c − x)y ′ − ay = 0, (1.28)

we get σ(x) = x, τ (x) = c − x, τμ(x) = c + μ − x and λ = −a. Particular
solutions are

y1(x) = 1F1(a; c; x), (1.29)

y2(x) = x1−c
1F1(1+ a − c; 2− c; x) (1.30)

and

y3(x) = x−a
∞∑
n=0

(a)n(1+ a − c)n
n! (−x)n (1.31)

(this formal series does not converge unless it terminates).
3. In the case of the Hermite equation,

y ′′ − 2xy ′ + 2νy = 0, (1.32)
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when σ(x) = 1, τ (x) = −2x and λ = 2ν, particular solutions have the forms

y1(x) = Hν(x) =
2ν�

(
1
2

)

�
(

1−ν
2

) 1F1

(
−ν

2
; 1

2
; x2

)
(1.33)

+
2ν�

(
− 1

2

)

�
(− ν2

) x 1F1

(
1− ν

2
; 3

2
; x2

)

and

y2(x) = xν
∞∑
n=0

(− ν2
)
n

(
1−ν

2

)
n

n! (−x2
)n (1.34)

(this 2F0 series diverges, unless it terminates).
4. Finally, let us consider the equation

xy ′′ + cy ′ − λy = 0 (1.35)

with σ(x) = x, τ (x) = c and τμ = c + μ. Solutions (1.13) and (1.14) take the
form

y1(x) = 0F1(−, c; λx) =
∞∑
n=0

(λx)n

(c)n n! (1.36)

and

y2(x) = x1−c
0F1(−; 2− c; λx), (1.37)

respectively. These functions are closely related to the Bessel functions

Jν(x) = (x/2)ν

�(ν + 1)
0F1

(
−; ν + 1; −x2

/
4
)
. (1.38)

1.2 Integral Representations

The special functions of hypergeometric type are also easily studied by means of
integral representation, which holds for solutions of the differential equation (1.1).
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1.2.1 Transformation to the Simplest Form

Many model problems in atomic, molecular, and nuclear physics lead to differential
equations of the form [138]

u′′ + τ̃ (z)
σ (z)

u′ + σ̃ (z)

σ 2 (z)
u = 0, (1.39)

where σ (z) and σ̃ (z) are polynomials of degrees at most two, τ̃ (z) is a polynomial
of degree at most one. It is convenient to assume that z is a complex variable and the
coefficients of the polynomials σ (z), σ̃ (z) and τ̃ (z) are arbitrary complex numbers.
(If the independent variable takes the real values we shall write x instead of z.)

Let us try to transform the differential equation (1.39) to the simplest form by the
change of unknown function u = ϕ (z) y with the help of some special choice of
function ϕ (z).

Substituting u = ϕ (z) y in (1.39) one gets

y ′′ +
(
τ̃

σ
+ 2

ϕ′

ϕ

)
y ′ +

(
σ̃

σ 2 +
τ̃

σ

ϕ′

ϕ
+ ϕ

′′

ϕ

)
y = 0. (1.40)

Equation (1.40) should not be more complicated than our original equation (1.39).
Thus, it is natural to assume that the coefficient in front of y ′ has the form
τ (z) /σ (z), where τ (z) is a polynomial of at most first degree. This implies the
following first order differential equation

ϕ′

ϕ
= π (z)
σ (z)

(1.41)

for the function ϕ (z), where

π (z) = 1

2
(τ (z)− τ̃ (z)) (1.42)

is a polynomial of the most first degree. As a result, Eq. (1.40) takes the form

y ′′ + τ (z)
σ (z)

u′ + σ (z)

σ 2 (z)
u = 0, (1.43)

where

σ (z) = σ̃ (z)+ π2 (z)+ π (z) [̃τ (z)− σ ′ (z)]+ π ′ (z) σ (z) . (1.44)

Functions τ (z) and σ (z) are polynomials of degrees at most one and two in z,
respectively. Therefore, Eq. (1.43) is an equation of the same type as our original
equation (1.39).
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By using a special choice of the polynomial π (z) we can reduce (1.43) to the
simplest form assuming that

σ (z) = λ σ (z) , (1.45)

where λ is some constant. Then Eq. (1.43) takes the form

σ (z) y ′′ + τ (z) y ′ + λ y = 0. (1.46)

We call Eq. (1.46) as a differential equation of hypergeometric type and its solutions
as functions of hypergeometric type. In this contest, it is natural to call Eq. (1.39) as
a generalized differential equation of hypergeometric type.

The condition (1.45) can be rewritten as

π2 + (̃
τ − σ ′) π + σ̃ − kσ = 0, (1.47)

where

k = λ− π ′ (z) (1.48)

is a constant. Assuming that this constant is known we can find π (z) as a solution
of the quadratic equation

π (z) = σ
′ − τ̃
2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ. (1.49)

But π (z) is a polynomial, therefore the second degree polynomial

p (z) =
(
σ ′ (z)− τ̃ (z)

2

)2

− σ̃ (z)+ kσ (z) (1.50)

under the radical should be a square of a linear function and the discriminant of
p (z) should be zero. This condition gives an equation for the constant k, which
is, generally, a quadratic equation. Given k as a solution of this equation, we find
π (z) by (1.49), then τ (z) and λ by (1.42) and (1.48). Finally, we find function
ϕ (z) as a solution of (1.41). It is clear that the reduction of Eq. (1.39) to the
simplest form (1.46) can be accomplished by a few different ways in accordance
with different choices of the constant k and different signs in (1.49) for π (z).

The above transformation allows us to restrict ourself to study of the properties
of solutions of Eq. (1.46).

1.2.2 Main Theorem

The following integral representation holds.
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Theorem 1.2 Let ρ(z) satisfy the equation

[σ(z)ρ(z)]′ = τ (z)ρ(z) (1.51)

and let ν be a root of the equation

λ+ ντ ′ + 1

2
ν(ν − 1)σ ′′ = 0. (1.52)

Then (1.1) has particular solution of the form

y = yν(z) = Cν

ρ(z)

∫

C

σν(s)ρ(s)

(s − z)ν+1 ds, (1.53)

where Cν is a constant and C is a contour in the complex s-plane, if:

(i) the derivative of the integral

ϕνμ(z) =
∫

C

ρν(s)

(s − z)μ+1 ds with ρν(s) = σν(s)ρ(s)

can be evaluated for μ = ν − 1 and μ = ν by using the formula

ϕ′νμ(z) = (μ+ 1)ϕν, μ+1(z);
(ii) the contour C is chosen so that the equality

σ(s)ρν(s)

(s − z)ν+1

∣∣∣∣
s2

s1

= 0

holds, where s1 and s2 are the endpoints of the contour C.

Proof The function ρν(s) = σν(s)ρ(s) satisfies the equation

[σ(s)ρν(s)]
′ = τν(s)ρν(s),

where τν(s) = τ (s)+νσ ′(s). We multiply both sides of this equality by (s−z)−ν−1

and integrate over the contour C. Upon integrating by parts we obtain

σ(s)ρν(s)

(s − z)ν+1

∣∣∣∣
s2

s1

+ (ν + 1)
∫

C

σ(s)ρν(s)

(s − z)ν+2 ds =
∫

C

τν(s)ρν(s)

(s − z)ν+1 ds. (1.54)

By hypothesis, the first term is equal to zero. We expand the polynomials σ(s) and
τν(s) in powers of s − z:

σ(s) = σ(z)+ σ ′(z)(s − z)+ 1

2
σ ′′(s − z)2,

τν(s) = τν(z)+ τ ′ν(s − z).
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Taking into account the integral formulas for the functions ϕν, ν−1, ϕνν and ϕν, ν+1,
we arrive at the relation

(ν + 1)

[
σ(z)ϕν, ν+1 + σ ′(z)ϕνν + 1

2
σ ′′ϕν, ν−1

]
= τν(z)ϕνν + τ ′ν ϕν, ν−1.

Upon substituting τν = τ + νσ ′ and using the formula ϕ′νν = (ν + 1)ϕν, ν+1 we get

σϕ′νν +
(
σ ′ − τ )ϕνν =

(
τ ′ + 1

2
(ν − 1)σ ′′

)
ϕν, ν−1. (1.55)

At the same time, by differentiating the relation σρy ′ = Cνσϕνν we find that

1

Cν
σρy ′ = σϕ′νν +

(
σ ′ − τ )ϕνν. (1.56)

Comparing (1.55) and (1.56) we obtain

σρy ′ = κνCνϕν, ν−1, (1.57)

where κν = τ ′ + (ν− 1) σ ′′
/

2. Upon differentiating (1.57) we arrive at (1.1) in the
self-adjoint form

(
σρy ′

)′ + λρy = 0,

where λ = −νκν = −ντ ′ − ν(ν − 1) σ ′′
/

2. This proves the theorem. ��
In the proof of Theorem 1.2 we have, en route, deduced the formula (1.57),

which is a simple integral representation for the first derivative of the function of
hypergeometric type:

y ′ν(z) =
C
(1)
ν

σ (z)ρ(z)

∫

C

ρν(s)

(s − z)ν ds, (1.58)

where C(1)ν = κνCν =
(
τ ′ + 1

2
(ν − 1)σ ′′

)
Cν . Hence

y(k)ν (z) =
C
(k)
ν

ρk(z)
ϕν, ν−k(z) = C

(k)
ν

σ k(z)ρ(z)

∫

C

ρν(s)

(s − z)ν−k+1 ds, (1.59)

where C(k)ν =
k−1∏
p=0

(
τ ′ + ν + p − 1

2
σ ′′

)
Cν .
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1.2.3 Integrals for Hypergeometric and Bessel Functions

Using Theorem 1.2 we can obtain integral representations for all the most commonly
used special functions of hypergeometric type, in particular, for the hypergeometric
functions:

2F1(α, β; γ ; z) = �(γ )

�(α)�(γ − α)
1∫

0

tα−1(1− t)γ−α−1(1− zt)−β dt, (1.60)

1F1(α; γ ; z) = �(γ )

�(α)�(γ − α)
1∫

0

tα−1(1− t)γ−α−1ezt dt, (1.61)

Hν(z) = 1

�(−ν)
∞∫

0

e−t2−2zt t−ν−1 dt. (1.62)

Here Re γ > Reα > 0 and Re (−ν) > 0.
Let us mention also some solutions of the Bessel equation,

z2u′′ + zu′ +
(
z2 − ν2

)
u = 0. (1.63)

With the aid of the change of the function u = ϕ(z)y when ϕ(z) = zνeiz this
equation can be reduced to the hypergeometric form

zy ′′ + (2iz+ 2ν + 1)y ′ + i(2ν + 1)y = 0 (1.64)

and on the base on Theorem 1.2 one can obtain the Poisson integral representations
for the Bessel functions of the first kind, Jν(z), and the Hankel functions of the first
and second kind,H(1)ν (z) and H(2)ν (z):

Jν(z) = (z/2)ν√
π �(ν + 1/2)

1∫

−1

(
1− t2

)ν−1/2
cos zt dt, (1.65)

Hν(z) =
√

2

πz

e±i(z− π2 ν− π4 )
�(ν + 1/2)

∞∫

0

e−t tν−1/2
(

1± it
2z

)ν−1/2

dt, (1.66)
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where Re ν > −1/2. It is then possible to deduce from these integral representations
all the remaining properties of these functions. (For details, see Nikiforov and
Uvarov [138], or Watson [193], Whittaker and Watson [195].)

1.3 Classical Orthogonal Polynomials

The Jacobi, Laguerre and Hermite polynomials are the simplest solutions of
Eq. (1.1).

1.3.1 Main Property

By differentiating (1.1) we can easily verify that the function υ1(x) = y ′(x) satisfies
the equation of the same type

σ(x)υ ′′1 + τ1(x)υ ′1 + μ1υ1 = 0, (1.67)

where τ1(x) = τ (x) + σ ′(x) is a polynomial of degree at most one and μ1 =
λ+ τ ′(x) is a constant.

The converse is also true: any solution of (1.67) is the derivative of a solution
of (1.1) if λ = μ1−τ ′ �= 0. Let υ1(x) be a solution of (1.67) and define the function

y(x) = −1

λ

(
σ(x)υ ′1 + τ (x)υ1

)
.

We have

λy ′ = − (
συ ′′1 + τ1υ ′1 + τ ′υ1

) = λυ1

or υ1 = y ′(x) and, therefore, y(x) satisfies (1.1).

1.3.2 Rodrigues Formula

By differentiating (1.1) n times we obtain an equation of hypergeometric type for
the function υn(x) = y(n)(x),

σ(x)υ ′′n + τn(x)υ ′n + μnυn = 0, (1.68)
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where

τn(x) = τ (x)+ nσ ′(x), (1.69)

μn = λ+ nτ ′ + 1

2
n(n− 1)σ ′′. (1.70)

This property lets us construct the simplest solutions of (1.1) corresponding to some
values of λ. Indeed, when μn = 0 Eq. (1.68) has the solution υn = constant. Since
υn(x) = y(n)(x), Eq. (1.1) has a particular solution y = yn(x)which is a polynomial
of degree n if

λ = λn = −nτ ′ − 1

2
n(n− 1)σ ′′ (n = 0, 1, 2, . . .). (1.71)

To find these polynomials explicitly let us rewrite Eqs. (1.1) and (1.68) in the
self-adjoint forms

(
σρy ′

)′ + λρy = 0, (1.72)

(
σρnυ

′
n

)′ + μnρnυn = 0. (1.73)

Functions ρ(x) and ρn(x) satisfy the first-order differential equations

(σρ)′ = τρ, (1.74)

(σρn)
′ = τnρn. (1.75)

So,

(σρn)
′

ρn
= τ + nσ ′ = (σρ)

′

ρ
+ nσ ′,

whence

ρ′n
ρn
= ρ

′

ρ
+ n σ

′

σ

and, consequently,

ρn(x) = σn(x)ρ(x). (1.76)

Since σρn = ρn+1 and υ ′n = υn+1 we can rewrite (1.73) in the form

ρnυn = − 1

μn
(ρn+1υn+1)

′ .
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Hence we obtain successively

ρy = ρ0υ0 = − 1

μ0
(ρ1υ1)

′

=
(
− 1

μ0

)(
− 1

μ1

)
(ρ2υ2)

′′

...

= 1

An
(ρnυn)

(n) ,

where

A0 = 1, An = (−1)n
n−1∏
t=0

μk. (1.77)

If y = yn(x) is a polynomial of degree n, then υn = y(n)n (x) = constant and we
arrive at the Rodrigues formula for polynomial solutions of (1.1),

yn(x) = Bn

ρ(x)

[
σn(x)ρ(x)

](n)
, n ≥ 1, (1.78)

where Bn = A−1
n y

(n)
n is a constant. These solutions correspond to the eigenval-

ues (1.71).

Remark We have also found the explicit series representations for polynomi-
als (1.78) in Theorem 1.1.

1.3.3 Orthogonality

The polynomial solutions of (1.1) obey an orthogonality property. Let us write
equations for polynomials yn(x) and ym(x) in the self-adjoint form,

(
σ(x)ρ(x)y ′n(x)

)′ + λnρ(x)yn(x) = 0,

(
σ(x)ρ(x)y ′m(x)

)′ + λmρ(x)ym(x) = 0,

multiply the first equation by ym(x) and the second by yn(x), subtract the second
equality from the first one and then integrate the result over x on the interval (a, b).
Since

ym(x)
(
σ(x)ρ(x)y ′n(x)

)′ − yn (σ(x)ρ(x)y ′m(x))′

= d

dx
(σ(x)ρ(x)W [ym(x), yn(x)]) ,
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whereW(u, υ) = uυ ′ − υu′ is the Wronskian, we get

(λm − λn)
b∫

a

ym(x)yn(x)ρ(x) dx (1.79)

= (σ (x)ρ(x)W [ym(x), yn(x)])|ba .

If the conditions

σ(x)ρ(x)xk
∣∣∣
x=a,b = 0 (k = 0, 1, 2, . . .) (1.80)

are satisfied for some points a and b, then the right side of (1.79) vanishes because
the Wronskian is a polynomial in x. Therefore, we arrive at the orthogonality
property

b∫

a

ym(x)yn(x)ρ(x) dx = 0 (1.81)

provided that λn �= λm. We can replace this condition by m �= n due to the relation

λn − λm = (m− n)
(
τ ′ + n+m− 1

2
σ ′′

)
,

if τ ′ + (m+ n− 1) σ ′′
/

2 �= 0.
We shall refer to polynomial solutions of (1.1) obeying the orthogonality

property (1.81) with respect to a positive weight function as classical orthogonal
polynomials.

1.3.4 Classification

Equation (1.74) for the weight function ρ(x) is usually called the Pearson equation.
By using the linear transformations of independent variable x we can reduce
solutions of (1.74) to the following canonical forms

ρ(x) =

⎧⎪⎨
⎪⎩
(1− x)α(1+ x)β for σ(x) = 1− x2,

xαe−x for σ(x) = x,
e−x2

for σ(x) = 1.
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The corresponding orthogonal polynomials are the Jacobi polynomials P (α, β)n (x),
the Laguerre polynomials Lαn(x) and the Hermite polynomialsHn(x).

The basic information about classical orthogonal polynomials is presented in the
table below, which contains also the leading terms yn(x) = anxn + bnxn−1 + . . .
for these polynomials, squared norms,

d2
n =

b∫

a

y2
n(x)ρ(x) dx, (1.82)

and the coefficients of the three-term recurrence relation

x yn(x) = αn yn+1(x)+ βn yn(x)+ γn yn−1(x), n ≥ 1, (1.83)

where

αn = an

an+1
, βn = bn

an
− bn+1

an+1
, γn = αn−1

d2
n

d2
n−1

, n ≥ 1. (1.84)

yn(x) P
(α, β)
n (x) (α > −1, β > −1) Lαn(x) (α > −1) Hn(x)

(a, b) (−1, 1) (0,∞) (−∞,∞)
ρ(x) (1− x)α(1 + x)β xα e−x e−x2

σ(x) 1− x2 x 1

τ(x) β − α − (α + β + 2) x 1+ α − x −2x

λn n(α + β + n+ 1) n 2n

Bn
(−1)n

2nn!
1

n! (−1)n

an
�(α + β + 2n + 1)

2nn!�(α + β + n + 1)

(−1)n

n! 2n

bn
(α − β)�(α + β + 2n)

2n(n − 1)!�(α + β + n+ 1)
(−1)n−1 α + n

(n − 1)! 0

d2 2α+β+1�(α + n+ 1)�(β + n+ 1)

n!(α + β + 2n+ 1)�(α + β + n+ 1)

�(α + n+ 1)

n! 2nn!√π

αn
2(n+ 1)(α + β + n+ 1)

(α + β + 2n+ 1)(α + β + 2n + 2)
−(n+ 1)

1

2

βn
β2 − α2

(α + β + 2n)(α + β + 2n+ 2)
α + 2n + 1 0

γn
2(α + n)(β + n)

(α + β + 2n)(α + β + 2n+ 1)
−(α + n) n
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1.3.5 Functions of the Second Kind

Consider Eq. (1.1) in the complex z-plane for the eigenvalues (1.71). By using
Theorem 1.2 we can choose a particular solution of the form

y = yn(z) = Bn n!
2πiρ(z)

∫

C

ρn(s) ds

(s − z)n+1 , (1.85)

whereBn is a constant, ρn(s) = σn(s)ρ(s) and C is a closed contour in the complex
s-plane that encloses the point s = z. Here the conditions of the theorem hold.

The solution (1.85) defines classical orthogonal polynomials. In fact, in view of

dn

dzn

(
1

s − z
)
= n!
(s − z)n+1 ,

we arrive at the Rodrigues formula

yn(z) = Bn

2πiρ(z)

∫

C

ρn(s)
dn

dzn

(
1

s − z
)
ds

= Bn

2πiρ(z)

dn

dzn

∫

C

ρn(s)

s − z ds =
Bn

ρ(z)

dn

dzn
[ρn(z)]

with the aid of the Cauchy integral formula.
As a second linearly independent solution of (1.1) for λ = λn we take a function

of the form

y = Qn(z) = Bn n!
ρ(z)

b∫

a

ρn(s) ds

(s − z)n+1
, z �= s, (1.86)

where Bn is the constant in the Rodrigues formula (1.78) and ρn(s) = σn(s)ρ(s).
The points a and b are chosen so that (1.80) holds, which is the case for the classical
orthogonal polynomials. In this case, the conditions of Theorem 1.2 hold.

The functionsQn(z) defined by (1.86) are called functions of the second kind.
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We can find a relation between the functions Qn(z) and the polynomials yn(z).
From definition

Qn(z) = −Bn(n− 1)!
ρ(z)

b∫

a

ρn(s)
d

ds

[
1

(s − z)n
]
ds

= Bn(n− 1)!
ρ(z)

⎛
⎝− ρn(s)

(s − z)n
∣∣∣∣
b

a

+
b∫

a

[ρn(s)]′

(s − z)n ds
⎞
⎠ .

The first term vanishes by virtue of (1.80). Similarly,

Qn(z) = Bn

ρ(z)

b∫

a

[ρn(s)](n)

s − z ds,

and we find that

Qn(z) = 1

ρ(z)

b∫

a

yn(s)

s − z ρ(s) ds (1.87)

due to the Rodrigues formula.
By setting yn(s) = [yn(s)− yn(z)] + yn(z) Eq. (1.87) can be written in the

convenient form

Qn(z) = 1

B0
yn(z)Q0(z)+ 1

ρ(z)
qn−1(z), (1.88)

where

Q0(z) = B0

ρ(z)

b∫

a

ρ(s)

s − z ds (1.89)

and

qn−1(s) =
b∫

a

yn(s)− yn(z)
s − z ρ(s) ds (1.90)
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is a polynomial of degree n − 1 in s, which is called a polynomial of the second
kind. It follows from (1.88) that all the singularities of the second solution Qn(z)
in the complex z-plane are determined by the behavior of the functions Q0(z) and
1
/
ρ(z) .
It is possible to derive from (1.86)–(1.88) all the main properties of the functions

of the second kind. Using the identity

1

s − z = −
1

z

p∑
k=0

(
s

z

)k
+ sp+1

(s − z)zp+1

and the orthogonality property

b∫

a

skyn(s)ρ(s) ds = 0, k < n

we obtain from (1.87) an expansion of the form

ρ(z)Qn(z) = −
p∑
k=n

1

zk+1

b∫

a

skyn(s)ρ(s) ds + rp(z)
zp+1 , (1.91)

where

rp(z) =
b∫

a

sp+1ρ(s) ds.

Equation (1.91) determines the asymptotic behavior of the functionsQn(z) as |z| →
∞. In particular, for p = n, (1.91) yields

Qn(z) =
(
d2
n

/
an

)
ρ(z)zn+1

[
1+O

(
1

z

)]
, z→∞. (1.92)

Hence, the functions of the second kind Qn(z) and the classical orthogonal
polynomials yn(z) have different assumptions behaviors at |z| → ∞, so that they
are two linearly-independent solutions of (1.1) for λ = λn.

According to (1.87), we have

zQn(z) = 1

ρ(z)

b∫

a

s yn(s)

s − z ρ(s) ds −
1

ρ(z)

b∫

a

yn(s)ρ(s) ds.
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Therefore, the functionsQn(z) satisfy a three-term recurrence relation

zQn(z) = αn Qn+1(z)+ βn Qn(z)+ γn Qn−1(z) if n ≥ 1

and

zQ0(z) = α0Q1(z)+ β0Q0(z)− 1

ρ(z)

d2
0

B0
if n = 0,

where αn, βn and γn are the coefficients of the recurrence relation (1.83) for the
classical orthogonal polynomials.

It follows from (1.86) and (1.58) that the derivative ofQn(z) can be represented
in the form

Q′n(z) =
κnBn n!
σ(z)ρ(z)

b∫

a

ρn(s)

(s − z)n ds,

where κn = τ ′ + (n− 1)σ ′′
/

2. For n = 0 this leads to the simple differential
equation forQ0(z),

σ(z)ρ(z)Q′0(z) = C0, (1.93)

where C0 = κ0B0d
2
0 . According to (1.93) we obtain

Q0(z) = Q0 (z0)+ C0

z∫

z0

ds

σ(s)ρ(s)
, (1.94)

where it is convenient to choose for z0 a value of z for whichQ0 (z0) = 0.
The functionsQn(z) have not been defined when z ∈ [a, b]. At this interval it is

convenient to set

ρ(x)Qn(x) = 1

2
[ρ(x − i0)Qn(x − i0)+ ρ(x + i0)Qn(x + i0)] (1.95)

= lim
ε→0

1

2
[ρ(x − iε)Qn(x − iε)+ ρ(x + iε)Qn(x + iε)] .

We note also the relation

ρ(x − i0)Qn(x − i0)− ρ(x + i0)Qn(x + i0) = 2πiρ(x)yn(x), (1.96)

which comes form (1.87) due to

1

x − i0 −
1

x + i0 = 2πi δ(x)

where δ(x) is Dirac’s delta function.
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The explicit forms of the functions of the second kind can be easily found by
comparing the definition (1.86) with the integral representations for the hypergeo-
metric functions in (1.60), (1.62) and Exercise 9(ii). They are

Q(α,β)n (z) = (−1)n2α+β+n+1 �(α + n+ 1)�(β + n+ 1)

�(α + β + 2n+ 2)

× (1− z)(1+ z)−β 2F1

⎛
⎝n+ 1, α + n+ 1

; 2(1− z)−1

α + β + 2n+ 2

⎞
⎠ , (1.97)

z /∈ [−1, 1];
Qαn(z) = e−iπα �(α + n+ 1)

× ez G(α + n+ 1; α + 1; −z), 0 < arg z < 2π; (1.98)

and

Qn(z) = 2n+1n!√π ez2∓i π2 (n−1) H−n−1(∓iz) (Im z > 0 or Im z < 0)
(1.99)

corresponding to the cases of the Jacobi, Laguerre and Hermite polynomials,
respectively.

1.3.6 Complex Orthogonality

Classical orthogonal polynomials obey an interesting orthogonality property with
respect to a complex measure. To prove it, let us start with the identity

[σ(z)ρ(z)W (ym, yn)]
′ = (λm − λn) ym(z)yn(z)ρ(z), (1.100)

derived in Sect. 1.3.3. Multiply both sides of (1.100) by the functionQ0(z) defined
by (1.89) and integrate the result over a contour C in the complex z-plane. Upon
integrating by parts we obtain with the aid of (1.93) that

(λm − λn)
∫

C

ym(z)yn(z)ρ(z)Q0(z) dz (1.101)

= (σ (z)ρ(z)Q0(z)W [ym(z), yn(z)])|z2z1
−C0

∫

C

W [ym(z), yn(z)] dz.

Here, z1 and z2 are the end points of the contour C.
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Suppose first that (a, b) is a finite interval on the real axis. Then for a closed
contour C, which encloses interval (a, b) in the complex z-plane, the right side
of (1.101) vanishes due to Cauchy’s theorem. As a result, we arrive at the complex
orthogonality property

∫

C

ym(z)yn(z)ρ(z)Q0(z) dz = 0, m �= n, (1.102)

provided that τ ′ + (m+ n− 1)σ ′′
/

2 �= 0. This case corresponds to the Jacobi

polynomials yn = P
(α, β)
n (z) if α + β + 1 �= −1,−2, . . . The complex weight

function in (1.102) is a weight function in a wider range of parameters than the real
weight function for the Jacobi polynomials. (See Exercise 24.)

In the case b = +∞, which corresponds to the Laguerre polynomials yn =
Lαn(z), consider (1.101) for the contour Cε(R). Taking the limit ε → 0 (ε > 0) due
to (1.96) we obtain

PV

∫

C(R)

ym(z)yn(z)ρ(z)Q0(z) dz (1.103)

= 2πi

λm − λn σ(R)ρ(R)W [ym(R), yn(R)] ,

where PV denotes Cauchy’s principal value integral and C(R) = lim
ε→0

Cε(R) is the

closed contour. In the limit R →∞ we arrive at a complex orthogonality property,
for the Laguerre polynomials Lαn(z) if α > −1 (Exercise 25).

Finally, consider the case of the Hermite polynomials yn = Hn(z) when a =
−∞ and b = +∞. In the limit ε → 0 for the two contours C±ε (R1, R2), we get

PV

∫

C(R1,R2)

ym(z)yn(z)ρ(z)Q0(z) dz (1.104)

= 2πi

λm − λn (σ (R1) ρ (R1) W [ym (R1) , yn (R1)]

+ σ (R2) ρ (R2) W [ym (R2) , yn (R2)]) ,

whereC (R1, R2) = lim
ε→0

C+ε (R1, R2)
⋃
C−ε (R1, R2) is the closed contour. Taking

the limits R1,2 → ∓∞ we obtain a complex orthogonality property of the Hermite
polynomials (Exercise 26).
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Exercises

1. (i) By using the Pearson equation (σρ)′ = τρ show that the function ρν(s) =
σν(s)ρ(s) satisfy the equation

[σ(s)ρν(s)]′ = τν(s)ρν(s),

where τν(s) = τ (s)+ νσ ′(s);
(ii) using this equation and the expansions

σ(s) = σ(z)+ σ ′(z)(s − z)+ 1

2
σ ′′(s − z)2,

τν(s) = τν(z)+ τ ′ν (s − z)

verify the identity

d

ds

[
σ(s)ρν(s)(s − z)μ

] = μσ(z)(s − z)μ−1ρν(s)

+ [
τν(z)+ μσ ′(z)

]
(s − z)μρν(s)

+
(
τ ′ν +

1

2
μσ ′′

)
(s − z)μ+1ρν(s),

where μ and ν are arbitrary complex numbers;
(iii) verify identity (1.6) for arbitrary complex values of n.

2. Derive (1.13)–(1.16).
3. (i) Show that the series (1.14) with arbitrary α satisfies a non-homogeneous

differential equation (1.1) with the right side

Gα(x) = c0α τα−1(a)(x − a)α−1

if σ(a) = 0.
(ii) Show that the series of the form

u(x) = xα
∞∑
n=0

(α + a)n(α + b)n
(α + c)n(α + 1)n

xn

= xα 3F2

⎛
⎝1, α + a, α + b

; x
α + 1, α + c

⎞
⎠ , |x| < 1,

satisfies the non-homogeneous equation

x(1− x)u′′ + [c− (a + b + 1)x]u′ − abu = α(c + α − 1)xα−1
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(putting α = 0 or α = 1 − c, we recover (1.18) and (1.20), respectively).
Find the general solution of this non-homogeneous equation.

(iii) Show that the series

υ(x) = xα
∞∑
n=0

(α + a)n
(α + c)n(α + 1)n

xn

= xα 2F2

⎛
⎝ 1, α + a

; x
α + 1, α + c

⎞
⎠ , |x| < 1,

satisfies the non-homogeneous equation

xυ ′′ + (c − x)υ ′ − aυ = α(c + α − 1)xα−1.

Find the general solution of this equation.
(iv) Find the general solution of the homogeneous equation of the form

x2w′′ + (a + b)xw′ + a(b− 1)w = 0.

4. (i) Show that the series (1.15) with arbitrary α satisfies the non-homogeneous
differential equation (1.1) with the right side

Gα(x) = c0
λ− λ−α
(x − a)α

if σ(a) = 0.
(ii) Show that the series of the form

u(x) = x−α
∞∑
n=0

(α)n(α − c + 1)n
(α − a + 1)n(α − b + 1)n

x−n

= x−α 3F2

⎛
⎝ 1, α, α − c + 1

; x−1

α − a + 1, α − b + 1

⎞
⎠ , |x| > 1,

satisfies the non-homogeneous equation

x(1− x)u′′ + [c− (a + b + 1)x]u′ − abu = −(α − a)(α − b)x−α.

Find the general solution of this equation.
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5. Prove that

Jν(x) = (x/2)ν

�(ν + 1)
e−ix 1F1(ν + 1/2; 2ν + 1; 2ix)

= (x/2)ν

�(ν + 1)
0F1

(
−; ν + 1; −x2

/
4
)
.

6. By using the special case of (1.6), prove that elementary functions

u0(x) = ex =
∞∑
n=0

xn

n! ,

u+(x) = cos x =
∞∑
n=0

(−1)n
x2n

(2n)! ,

u−(x) = sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)! ,

satisfy the equations u′′ = u and u′′ = −u, respectively.
7. Classify all solutions of the hypergeometric-type equation (1.1) depending on

degrees of σ(x) and τ (x).
8. Prove that functions (1.53) satisfy (under proper boundary conditions) the

differentiation formula

σ(z)y ′ν(z) =
κν

τ ′ν

[
(ν + 1)

Cν

Cν+1
yν+1(z)− τν(z)yν(z)

]

and the recurrence relation

z yν(z) = αν yν+1(z)+ βν yν(z)+ γν yν−1(z),

where

αν = − (ν + 1)κνCν
τ ′ντ ′ν−1/2Cν+1

,

βν = ν τν−1(0)

τ ′ν−1
− (ν + 1)

τν(0)

τ ′ν

=
(
σ ′′ − τ ′) τ (0)− ν (2τ ′ − (ν − 1)σ ′′

)
σ ′(0)

τ ′ν−1τ
′
ν

,
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and

γν = −
τ ′ν−1σ

(−τν−1(0)
/
τ ′ν−1

)
Cν

τ ′ν−1/2Cν−1
.

Here κν = τ ′ + (ν − 1)σ ′′
/

2 [138, 174, 175].
9. (i) Derive integral representations (1.60)–(1.62).

(ii) Prove that the function

G(α; γ ; z) = z−α

�(α)

∞∫

0

e−t tα−1
(

1+ t
z

)γ−α−1

dt, | arg z| < π, Re (α) > 0,

satisfies the confluent hypergeometric equation.
(iii) Prove that

G(α; γ ; z) = �(1 − γ )
�(α − γ + 1)

1F1(α; γ ; z)

+ �(γ − 1)

�(α)
z1−γ

1F1(1+ α − γ ; 2− γ ; z).

10. (i) Transform the Bessel equation (1.63) to the form (1.64) and derive integral
representations (1.65)–(1.66).

(ii) Prove that

d

dz

(
z±νJν(z)

) = ±z±νJν∓1(z)

Jν−1(z)+ Jν+1(z) = 2ν

z
Jν(z),

Jν−1(z)− Jν+1(z) = 2J ′ν(z).

11. Prove that

y(m)n (x) = AmnBn

σm(x)ρ(x)

dn−m

dxn−m
[
σn(x)ρ(x)

]
,

where

Amn = (−1)m
m−1∏
k=0

(λn − λk) = n !
(n−m) !

m−1∏
k=0

(
τ ′ + n+ k − 1

2
σ ′′

)
, A0n = 1.
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12. Prove that the differentiation formula

σ(x)y ′n(x) =
λn

nτ ′n

[
τn(x)yn(x)− Bn

Bn+1
yn+1(x)

]

is valid for classical orthogonal polynomials and the functions of the second
kind.

13. Prove (1.83)–(1.84) for general orthogonal polynomials.
14. Find the following expressions

an = AnnBn
n ! = Bn

n−1∏
k=0

(
τ ′ + n+ k − 1

2
σ ′′

)
, a0 = B0;

bn

an
= n τn−1(0)

τ ′n−1

for the leading terms yn(x) = anxn + bnxn−1 + . . . of the classical orthogonal
polynomials.

15. Show that the following relation

d2
n = (−1)nAnnB

2
n

b∫

a

σn(x)ρ(x) dx

is valid for the squared norms (1.82) of the classical orthogonal polynomials.
16. Prove that

d

dx
P (α, β)n (x) = 1

2
(α + β + n+ 1) P (α+1, β+1)

n−1 (x),

d

dx
Lαn(x) = −Lα+1

n−1(x),

d

dx
Hn(x) = 2nHn−1(x).

17. Prove the symmetry relations

P (α, β)n (−x) = (−1)n P (β, α)n (x),

Hn(−x) = (−1)n Hn(x).

18. Prove that

P (α, β)n (x) = (α + 1)n
n ! 2F1

(
−n, α + β + n+ 1; α + 1; 1− x

2

)

= (−1)n
(β + 1)n
n ! 2F1

(
−n, α + β + n+ 1; β + 1; 1+ x

2

)
;
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Lαn(x) =
(α + 1)n
n ! 1F1(−n, α + 1; x)

= (−1)n

n ! xn 2F0

(
−n,−n− α; −;−1

x

)
;

and

H2n(x) = (−1)n 22n
(

1

2

)
n

1F1

(
−n; 1

2
; x2

)
, n ≥ 0,

H2n+1(x) = (−1)n 22n+1
(

3

2

)
n

x 1F1

(
−n; 3

2
; x2

)
, n ≥ 0,

Hn(x) = (2x)n 2F0

(
−n/2, (1− n)/2; −;−x−2

)
, n ≥ 0.

19. Define moments for classical orthogonal polynomials by

Cm =
b∫

a

(s − ξ)mρ(s) ds.

By using the identity from Exercise 1(i), prove that

Cm+1

Cm
= −τ (a)+mσ

′(a)
τ ′ +mσ ′′/ 2

,

if σ(ξ) = 0 and (σ (s)ρ(s)(s − ξ)n)|ba = 0, n = 0, 1, 2, . . . [14].
20. Find relations between moments for the Jacobi, Laguerre and Hermite polyno-

mials.
21. Let {ϕk}∞k=0 and {ψk}∞k=0 be sequences of polynomialsϕk(x) andψk(x) of exact

degree k. Prove that the orthogonal polynomials pn(x) for a given distribution
dμ can be expressed as Gram determinants

pn(x) =

∣∣∣∣∣∣∣∣∣∣∣

C0,0 C0,1 . . . C0,n

C1,0 . . . C1,n
...

Cn−1,0 . . . Cn−1,n

ϕ0(x) ϕ1(x) . . . ϕn(x)

∣∣∣∣∣∣∣∣∣∣∣

with Ci,k =
∫
ψiϕkdμ.

Derive the explicit series representation for the Jacobi polynomials
P
(α,β)
n (x) from the Gram determinant [198, 199].
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22. Prove (1.97)–(1.99).
23. Let a, b <∞. Prove that

1

2πi

∫

C

ym(z)yn(z)ρ(z)Q0(z) dz

= −B0

b∫

a

ym(s)yn(s)ρ(s) ds,

where Q0(z) defined by (1.89) and C is a closed counter-clockwise contour
which encloses the interval [a, b] in the complex z-plane [80, 95].

24. Prove the complex orthogonality relation for the Jacobi polynomials,

1

2πi
PV

∫

C

P (α, β)n (z) P (α, β)m (z) χ(α, β)(z) dz

= 2α+β+1 �(α + n+ 1)�(β + n+ 1)

(α + β + 2n+ 1) n!�(α + β + n+ 1)
δmn,

provided that α + β + 1 �= −1,−2, . . .. Here

χ(α, β)(z) = −(1− z)α(1+ z)β Q(α, β)0 (z)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2α+β+1 �(α + 1)�(β + 1)

�(α + β + 2)(1− z) 2F1

⎛
⎜⎜⎝

1, α + 1

; 2

(1− z)
α + β + 2

⎞
⎟⎟⎠ , |z − 1| > 2,

2α+β+1 �(α + 1)�(β + 1)

�(α + β + 2)(1− z) 2F1

⎛
⎜⎜⎝

1, β + 1

; 2

(1+ z)
α + β + 2

⎞
⎟⎟⎠ , |z + 1| > 2,

andC is a counter-clockwise closed contour which encloses the interval [−1, 1]
in the complex z-plane[95, 153].

25. (i) Let α �= −k and k = 1, 2, . . .. Prove the complex orthogonality relation
for the Laguerre polynomials,

lim
R→∞

1

2πi

∫

C(R)

Lαn(z) L
α
m(z) χ

α(z) dz = (α + 1)n
n ! δmn,
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where

χα(z) = − zαe−z

�(α + 1)
Qα0 (z) = G(1; 1− α; −z)

and C(R) = lim
ε→0

Cε(R) is a closed contour.

(ii) Let α = −k and k = 1, 2, . . .. Prove that a finite number of the Laguerre

polynomials
{
L−kn (x)

}k−1
n=0 satisfies the orthogonality relation

∞∫

−∞
L−kn (x) L−km (x) dμ(x) =

(1− k)n
n ! δmn,

where the measure may be expressed as a real distribution with support at
x = 0:

dμ(x) =
(

1+ d

dx

)k−1

δ(x) dx =
k−1∑
"=0

(
k − 1

"

)
δ(")(x) dx.

(Ismail et al. [95].)
26. Prove the complex orthogonality relation for the Hermite polynomials,

lim
R1,2→∓∞

1

πi
PV

∫

C(R1,R2)

Hn(z)Hm(z) χ(z) dz = 2n n! δmn,

where

χ(z) = − e
−z2

2
√
π
Q0(z) = ∓iH−1(∓iz) (Im(z) > 0 or Im(z) < 0)

and C (R1, R2) = lim
ε→0

C+ε (R1, R2)
⋃
C−ε (R1, R2) is the counter-clockwise

contour (details are left to the reader).

2 Some Problems of Nonrelativistic and Relativistic
Quantum Mechanics

In this section, we give a short summary of Nikiforov and Uvarov’s approach
to special functions of mathematical physics and their applications in quantum
mechanics [138].
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2.1 Generalized Equation of Hypergeometric Type

The second order differential equation of the form

u′′ + τ̃ (z)
σ (z)

u′ + σ̃ (z)

σ 2 (z)
u = 0, (2.1)

where σ (z) and σ̃ (z) are polynomials of degree at most 2 and τ̃ (z) is a polynomial
of degree at most 1 of a complex variable z, is called the generalized equation of
hypergeometric type. By the substitution u = ϕ (z) y Eq. (2.1) can be reduced to the
equation of hypergeometric type

σ (z) y ′′ + τ (z) y ′ + λy = 0, (2.2)

where τ (z) is a polynomial of degree at most 1, and λ is a constant. The factor ϕ (z)
here satisfies

ϕ′

ϕ
= π (z)
σ (z)

, (2.3)

where π (z) is a polynomial of degree at most 1 given by a quadratic formula

π (z) = σ
′ − τ̃
2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ (2.4)

and constant k is determined by the condition that the discriminant of the quadratic
polynomial under the square root sign is zero. Then τ (z) and λ are determined by

τ (z) = τ̃ (z)+ 2π (z) , λ = k + π ′ (z) . (2.5)

Two exceptions are [138]:

1. If σ (z) has a double root, σ (z) = (z− a)2 , the original equation can be carried
out into a generalized equation of hypergeometric type with σ (s) = s, by a
substitution s = (z− a)−1 .

2. If σ (z) = 1 and (̃τ (z) /2)2 − σ̃ (z) is a polynomial of degree 1, the substitution
π (z) = −τ̃ (z) /2 reduces the original equation to the form

y ′′ + (az+ b) y = 0. (2.6)

Solutions of (2.1)–(2.2) are known as special functions of hypergeometric type;
they include classical orthogonal polynomials, hypergeometric and confluent hyper-
geometric functions, Hermite functions, Bessel functions and spherical harmonics.
These functions are often called special functions of mathematical physics.



An Introduction to Special Functions with Some Applications to Quantum Mechanics 551

2.2 Classical Orthogonal Polynomials and Eigenvalue
Problems

The following theorem is a useful tool for finding of the square integrable solutions
of basic problems in quantum mechanics [138].

Theorem 2.1 Let y = y (x) be a solution of the equation of hypergeometric
type (2.2) and let ρ (x) , a solution of the Pearson equation

(σ (x) ρ (x))′ = τ (x) ρ (x) (2.7)

be bounded on the interval (a, b) and satisfy the boundary conditions

σ (x) ρ (x) xk
∣∣∣
x=a,b = 0, k = 0, 1, 2, . . . (2.8)

Then nontrivial solutions of (2.2) such that y (x)
√
ρ (x) is bounded and of

integrable square on (a, b) exist only for the eigenvalues given by

λ = λn = −nτ ′ − 1

2
n (n− 1) σ ′′ (n = 0, 1, 2, . . . ) . (2.9)

They are the corresponding classical orthogonal polynomials on (a, b) and can be
found by the Rodrigues-type formula

yn (z) = Bn

ρ (z)

(
σn (z) ρ (z)

)(n)
. (2.10)

The proof is given in [138].

2.2.1 Example: Linear Harmonic Oscillator

Let us consider one-dimensional stationary Schrödinger equation for the harmonic
oscillator,

− h̄2

2m

d2ψ

dx2
+ 1

2
mω2x2ψ = Eψ (2.11)

with the orthonormal real-valued wave function
∫ ∞
−∞
ψ2 (x) dx = 1. (2.12)
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Introducing dimensionless variables

ψ (x) = u (ξ) , x = ξ
√
h̄

mω
, E = h̄ωε (2.13)

one gets

u′′ +
(

2ε − ξ2
)
u = 0. (2.14)

Here, σ (ξ) = 1, τ̃ (ξ) = 0, and σ̃ (ξ) = 2ε − ξ2. Therefore,

π (ξ) = ±
√
k − 2ε + ξ2 = ±ξ, k = 2ε. (2.15)

We pick π = −ξ, which gives a negative derivative for

τ (ξ) = τ̃ (ξ)+ 2π (ξ) = −2ξ. (2.16)

Then

ϕ′

ϕ
= π (ξ)
σ (ξ)

= −ξ, ϕ (ξ) = e−ξ2/2 (2.17)

and λ = 2ε − 1, ρ (ξ) = e−ξ2
. The energy levels are ε = εn = n + 1/2, (n =

0, 1, 2, . . . ) from (2.9). The eigenfunctions,

yn (ξ) = Bneξ2 dn

dξn

(
e−ξ2

)
, (2.18)

are, up a normalization, the Hermite polynomials.
As a result, the orthonormal wave functions are given by Schrödinger [158]

ψ (x) =
(
mω

πh̄

)1/4 1√
2nn! exp

(
−mω

2h̄
x2

)
Hn

(
x

√
mω

h̄

)
, (2.19)

corresponding to the discrete energy levels

En = h̄ω
(
n+ 1

2

)
(n = 0, 1, 2, . . .), (2.20)

in Gaussian units. (More general, “missing”, solutions of the time-dependent Schrö-
dinger equation will be discussed in section 4 [121].)
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2.3 Method of Separation of Variables and Its Extension

In this part, we give an extension of the method of separation of variables, that
is used in theoretical and mathematical physics for solving partial differential
equations, from a single equation to a system of partial differential equations which
we call Dirac-type system [183].

2.3.1 Method of Separation of Variables

We follow [138] and give an extension for suitable Dirac’s systems. The method of
separation of the variables helps to find particular solutions of equation

Lu = 0 (2.21)

if the operator L can be represented in the form

L =M1N1 +M2N2. (2.22)

Here the operators M1 and M2 act only on one subset of the variables, and the
operators N1 and N2 act on the others; a product of operators MiNk means the
result of applying them successively (MiNk) u =Mi (Nku) with i, k = 1, 2 ; it is
assumed that the operators Mi and Ni are linear operators.

We look for solutions of Eq. (2.21) in the form

u = f g, (2.23)

where the first unknown function f depends only on the first set of variables and the
second function g depends on the others. Since

MiNku = (MiNk) (f g) =Mi (Nk (f g))
=Mi (f (Nkg)) = (Mif ) (Nkg)

the equation Lu = 0 can be rewritten in the form

M1f

M2f
= −N2g

N1g
,

where the left hand side is independent of the second group of the variables and the
right hand side is independent of the first ones. Thus, we must have

M1f

M2f
= −N2g

N1g
= λ,
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where λ is a constant, and one obtains equations

M1f = λM2f, N2g = −λN1g (2.24)

each containing functions of only some of the variables. Since L is linear, a linear
combination of solutions,

u =
∑
k

ck fkgk (2.25)

with some constants ck, corresponding to all admissible values of λ = λk,

will be a solution of the original equation (2.21). Under certain condition of the
completeness of the constructed set of particular solutions, every solution of (2.21)
can be represented in the form (2.25). The method of separation of variables is very
useful in theoretical and mathematical physics and partial differential equations—
including solutions of the nonrelativistic Schrödinger equation—but it should be
modified in the case of the Dirac equation.

Example The stationary Schrödinger equation in the central field with the potential
energy U (r) is given by

�ψ + 2m

h̄2 (E − U (r))ψ = 0. (2.26)

The Laplace operator in the spherical coordinates r, θ, ϕ has the form [138, 139]

� = �r + 1

r2�ω (2.27)

with

�r = 1

r2

∂

∂r

(
r2 ∂

∂r

)
, �ω = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2 . (2.28)

Thus

M1 = �r + 2m

h̄2 (E − U (r)) , M2 = 1

r2 (2.29)

N1 = id = I, N2 = �ω (2.30)

and separation of the variables ψ = R (r) Y (θ, ϕ) gives

�ωY (θ, ϕ)+ λY (θ, ϕ) = 0, (2.31)

1

r2

d

dr

(
r2 dR (r)

dr

)
+

(
2m

h̄2 (E − U (r))−
λ

r2

)
R (r) = 0. (2.32)
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Bounded single-valued solutions of Eq. (2.31) on the sphere S2 exist only when λ =
l (l + 1) with l = 0, 1, 2, . . . . They are the spherical harmonics Y = Ylm (θ, ϕ) .
(See [138, 139, 189, 190, 196, 197] for more details.)

2.3.2 Dirac-Type Systems

Let us consider the system of two equations [183]

Pu = αv, (2.33)

Pv = βu, (2.34)

where u = u (x) and v = v (x) are some unknown (complex) vector valued
functions on R

n (or Cn ). Here operator P has the following structure

P = N (n) (D1 (r)L1 (n)+D2 (r)L2 (n)) , N 2 (n) = id = I, (2.35)

where Di = Di (r) , Lk = Lk (n) and N = N (n) are linear operators acting
with respect to two different subsets of variables, say “radial” r and “angular” n
variables, respectively (in the case of the hyperspherical coordinates in R

n [139]
one gets x = rn and n2 = 1, which justifies our terminology). The following
algebraic properties hold

[Di ,Lk] = [Di ,N ] = 0, (2.36)

[N ,L1] = [L1,L2] = 0, (2.37)

NL2 + L2N = γN , (2.38)

where [A, B] = AB − BA is the commutator and γ is some constant.
We look for solutions of (2.33) and (2.34) in the form

u = Y (n) R (r) , (2.39)

v = (NY (n)) S (r) , (2.40)

where Y is the common eigenfunction of commuting operators L1 and L2 :

L1Y = κ1Y, L2Y = κ2Y. (2.41)

If w = w (x) = F (n)G (r) , we define the action of the “radial” and “angular”
operators in (2.35) as follows

Liw = (LiF )G, Nw = (NF)G, Dkw = F (DkG) . (2.42)
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The Ansatz (2.39) and (2.40) results in two equation for our “radial” functions R
and S :

κ1D1R + κ2D2R = αS, (2.43)

κ1D1S + (γ − κ2)D2S = βR. (2.44)

Indeed, in view of (2.33) and (2.34) and (2.39)–(2.41) one gets

Pu = N (D1L1 + D2L2)YR
= N ((L1Y) (D1R)+ (L2Y) (D2R))

= (NY) (κ1D1R + κ2D2R)

= α (NY) S = αv,

which gives (2.43). In a similar fashion, with the aid of (2.38)

Pv = N (D1L1 +D2L2) (NY) S
= N ((L1NY) (D1S)+ (L2NY) (D2S))

= (NL1NY) (D1S)+ (NL2NY) (D2S)

=
(
N 2L1Y

)
(D1S)+

(
(γ − L2)N 2Y

)
(D2S)

= Y (κ1D1S + (γ − κ2)D2S) = βYR = βu,

which results in the second equation (2.44) and our proof is complete.

Example The original Dirac system (3.44) and (3.45) below has

ψ =
(

u
v

)
=

(
ϕ

χ

)

and

P = cσp = h̄c (σn)
(

1

i

∂

∂r
+ i
r
σl

)
. (2.45)

Here

N = σn, D1 = h̄c
i

∂

∂r
, L1 = id = I, D2 = ih̄c

r
, L2 = σl (2.46)

and

α (r) = E +mc2 − U (r) , β (r) = E −mc2 − U (r) , γ = −2 (2.47)
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by (3.50). Moreover, κ1 = 1, κ2 = − (1+ κ) and we use R = F (r) , S =
−iG (r) . The Ansazts (3.51) and (3.52) give the familiar radial equations (3.53)
and (3.54).

2.4 Nonrelativistic Coulomb Problem

As an example, we give a detailed solution of the nonrelativistic Schrödinger
equation for Coulomb potential [138].

2.4.1 Radial Equation

In view of identity

1

r2

d

dr

(
r2 dR

dr

)
= 1

r

d2

dr2 (rR) ,

the substitution F (r) = rR (r) results in the standard radial equation

F ′′ +
[

2me
h̄2 (E − U (r))− l (l + 1)

r2

]
F = 0, U (r) = −Ze

2

r
(2.48)

for the nonrelativistic Coulomb problem in spherical coordinates. In dimensional
units,

F (r) = u (x) , x = r

a0
, ε = E

E0

(
a0 = h̄2

mee2
, E0 = e

2

a0

)
(2.49)

the radial equation is a generalized equation of hypergeometric type,

u′′ +
[

2

(
ε + Z

x

)
− l (l + 1)

x2

]
u = 0, (2.50)

where

σ (x) = x, τ̃ (x) = 0, σ̃ (x) = 2εx2 + 2Zx − l (l + 1) . (2.51)

Thus one can utilize Nikiforov and Uvarov’s approach in order to determine the
corresponding wave functions and discrete energy levels.
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2.4.2 Quantization

We transform (2.50) to the equation of hypergeometric type,

σ (x) y ′′ + τ (x) y ′ + λy = 0, (2.52)

by means of the substitution u (x) = ϕ (x) y (x) . Here,

ϕ′

ϕ
= π (x)
σ (x)

, π (x) = σ
′ − τ̃
2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ , (2.53)

and the linear function π (x) takes the form

π (x) = 1

2
±

√
1

4
− 2εx2 − 2x + l (l + 1)+ kx, (2.54)

or

π (x) = 1

2
±

{√−2ε x + l + 1/2, k = 2Z + (2l + 1)
√−2ε√−2ε x − l − 1/2, k = 2Z − (2l + 1)
√−2ε

(2.55)

where we should choose the case when the linear function τ = τ̃ + 2π will have a
negative derivative and a zero on (0,+∞):

τ (x) = 2
(
l + 1− x√−2ε

)
.

This choice corresponds to

π (x) = l + 1− x√−2ε, ϕ (x) = xl+1 exp
(
−x√−2ε

)

and

λ = k + π ′ = 2
[
Z − (l + 1)

√−2ε
]
.

The energy values are determined by the equation

λ+ nrτ ′ + 1

2
nr (nr − 1) σ ′′ = 0 (nr = 0, 1, 2, . . .)

resulting in

ε = E

E0
= − Z2

2 (nr + l + 1)2
, E0 = e

2

a0
. (2.56)
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Here, n = nr + l + 1 is known as the principal quantum number.
In order to use the Rodrigues formula, one finds

ρ′

ρ
= τ − σ

′

σ
= 2l + 1

x
− 2Z

n
,

or

ρ (x) = x2l+1 exp

(
−2Z

n
x

)
, x = r

a0
.

Therefore,

ynr (x) =
Bnr

x2l+1e−η
dnr

dxnr

(
xnr+2l+1e−η

)
= L2l+1

nr
(η) , (2.57)

where

η = 2Z

n
x = 2Z

n

(
r

a0

)
,

and, up to a constant,

F (r) = rR (r) = Cnl ηl+1e−η/2L2l+1
nr

(η) . (2.58)

In view of the normalization condition

1 =
∫ ∞

0
F 2 dr = C2

nl

(na0

2Z

) ∫ ∞
0
η2l+2e−η

[
L2l+1
nr

(η)
]2
dη,

the three-term recurrence relation

ηLαn = − (n+ 1)Lαn+1 + (α + 2n+ 1) Lαn − (α + n)Lαn−1,

and the orthogonality property of the Laguerre polynomials, one gets

C2
nl =

Z

a0n2

(n− l − 1)!
(n+ l)! . (2.59)

(We can also utilize a special case of the integral (A.5); see (A.6).)

2.4.3 Summary: Wave Functions and Energy Levels

The nonrelativistic Coulomb wave functions obtained by the method of separation
of the variables in spherical coordinates, see above, are

ψ = ψnlm (r) = Rnl (r) Ylm (θ, ϕ) , (2.60)
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where Ylm (θ, ϕ) are the spherical harmonics, the radial functions Rnl (r) are given
in terms the Laguerre polynomials [28, 113, 138, 156]

R (r) = Rnl (r) = 2

n2

(
Z

a0

)3/2
√
(n− l − 1)!
(n+ l)! e−η/2ηl L2l+1

n−l−1 (η) (2.61)

with

η = 2Z

n

(
r

a0

)
, a0 = h̄2

mee2 (2.62)

and the normalization is
∫ ∞

0
R2
nl (r) r

2 dr = 1. (2.63)

Here n = 1, 2, 3, . . . is the principal quantum number of the hydrogenlike atom
in the nonrelativistic Schrödinger theory; l = 0, 1, . . . , n − 1 and m = −l,−l +
1, . . . , l−1, l are the quantum numbers of the angular momentum and its projection
on the z-axis, respectively. The corresponding discrete energy levels in the cgs units
are given by Bohr’s formula

E = En = −meZ
2e4

2h̄2n2
, (2.64)

where n = 1, 2, 3, . . . is the principal quantum number; they do not depend on
the quantum number of the orbital angular momenta l due to a “hidden” SO (4)-
symmetry of the Hamiltonian of the nonrelativistic hydrogen atom; see, for example,
[61, 113, 173] and references therein and the original paper by Fock [75] and
Bargmann [19].

2.5 Matrix Elements

The following integral evaluations are significant in applications.

2.5.1 General Results

Here we evaluate the mean values

〈
rp

〉 =
∫

R3
|ψnlm (r)|2 rp dv∫

R3
|ψnlm (r)|2 dv

=

∫ ∞
0
R2
nl (r) r

p+2 dr

∫ ∞
0
R2
nl (r) r

2 dr

, dv = r2drdω

(2.65)
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in terms of Chebyshev polynomials of a discrete variable tk (x,N) = h(0, 0)
k (x,N)

[185, 186] and [187]. We have used the orthogonality relation for the spherical
harmonics [138, 189],

∫
S2
Y ∗lm (θ, ϕ) Yl′m′ (θ, ϕ) dω = δll′δmm′ (2.66)

with dω = sin θ dθdϕ and 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. The end results are

〈
rk−1

〉
= 1

2n

(na0

2Z

)k−1
tk (n− l − 1,−2l − 1) , (2.67)

when k = 0, 1, 2, . . . and

〈
1

rk+2

〉
= 1

2n

(
2Z

na0

)k+2

tk (n− l − 1,−2l − 1) , (2.68)

when k = 0, 1, . . . , 2l.
Although a connection of the mean values (2.65) with a family of the hyper-

geometric polynomials was established by Pasternack [141], the relation with
the Chebyshev polynomials of a discrete variable was missing. This is a curious
but fruitful case of a “mistaken identity” in the theory of classical orthogonal
polynomials. The so-called Hahn polynomials of a discrete variable were originally
introduced by Chebyshev [187], they have a discrete measure on the finite equidis-
tant set of points. Bateman, in a series of papers [20–24], and Hardy [89] were
the first who studied a continuous measure on the entire real line for the simplest
special case of these polynomials of Chebyshev. Pasternack gave an extension of
the results of Bateman to a one parameter family of the continuous orthogonal
polynomials [142]. After investigation of these Bateman–Pasternack polynomials in
the fifties by several authors; see [35, 41, 188, 202] and [42]; Askey and Wilson [11]
introduced what nowadays known as the symmetric continuous Hahn polynomials,
they have two free parameters—but one parameter had been yet missing! Finally,
Suslov [172], Atakishiyev and Suslov [13] and Askey [10] have introduced the
continuous Hahn polynomials in their full generality in the mid of eighties. More
details on the discovery the continuous Hahn polynomials and their properties are
given in [104] among other things.

Indeed, in view of the normalization condition of the Coulomb wave func-
tions (2.63) one gets

〈
rp

〉 =
∫ ∞

0
R2
nl (r) r

p+2 dr (2.69)

= 4

n4

(na0

2Z

)p+3
(
Z

a0

)3
(n− l − 1)!
(n+ l)!

∫ ∞
0
e−ηηp+2l+2

(
L2l+1
n−l−1 (η)

)2
dη



562 S. K. Suslov et al.

and the last integral can be evaluated with the help of (A.10) or (A.11) giving rise
to (2.67) and (2.68), respectively.

A convenient “inversion” relation for the Coulomb matrix elements,

〈
1

rk+2

〉
=

(
2Z

na0

)2k+1
(2l − k)!

(2l + k + 1)!
〈
rk−1

〉
(2.70)

with 0 ≤ k ≤ 2l, follows directly from (2.67) and (2.68). This relation is contained
in an implicit form in [113], it was given explicitly in [141].

2.5.2 Special Cases

The explicit expression (2.67) for the matrix elements 〈rp〉 and the familiar three-
term recurrence relation for Hahn polynomials h(α, β)k (x,N) [138, 139],

xh
(α, β)

k (x,N) = αkh(α, β)k+1 (x,N)+ βkh(α, β)k (x,N)+ γkh(α, β)k−1 (x,N) (2.71)

with

αk = (n+ 1) (α + β + n+ 1)

(α + β + 2n+ 1) (α + β + 2n+ 2)
,

βk = α − β + 2N − 2

4
+

(
β2 − α2

)
(α + β + 2N)

4 (α + β + 2n) (α + β + 2n+ 2)
,

γk = (α + n) (β + n) (α + β +N + n) (N − n)
(α + β + 2n) (α + β + 2n+ 1)

,

imply the following three-term recurrence relation for the matrix elements (2.65):

〈
rk
〉
= 2n (2k + 1)

k + 1

(na0

2Z

) 〈
rk−1

〉
(2.72)

−k
(
(2l + 1)2 − k2

)
k + 1

(na0

2Z

)2 〈
rk−2

〉

with the “initial conditions”
〈

1

r

〉
= Z

a0n2 , 〈1〉 = 1 (2.73)
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which is convenient for evaluation of the mean values
〈
rk
〉

for k ≥ 1 [141]. The
inversion relation (2.70) can be used then for all possible negative values of k. One
can easily find the following matrix elements

〈r〉 = a0

2Z

(
3n2 − l (l + 1)

)
, (2.74)

〈
r2
〉
= 2

(na0

2Z

)2 (
5n2 + 1− 3l (l + 1)

)
, (2.75)

〈
1

r

〉
= Z

a0n2 , (2.76)

〈
1

r2

〉
= 2Z2

a2
0n

3 (2l + 1)
, (2.77)

〈
1

r3

〉
= Z3

a3
0n

3 (l + 1) (l + 1/2) l
, (2.78)

〈
1

r4

〉
= Z4

(
3n2 − l (l + 1)

)
2a4

0n
5 (l + 3/2) (l + 1) (l + 1/2) l (l − 1/2)

, (2.79)

which are important in many calculations in quantum mechanics and quantum
electrodynamics [2, 25, 28, 96, 194]; see [28] for more examples.

Equations (2.64) and (2.76) show that the total energy of the electron in the
hydrogenlike atom is equal to half the average potential energy:

〈U〉 = −Ze2
〈

1

r

〉
= −Z

2e2

a0n2
= 2E. (2.80)

This is the statement of so-called virial theorem in nonrelativistic quantum mechan-
ics; see, for example, [28, p. 165] and [113].

The average distance between the electron and the nucleus r = 〈r〉 is given
by (2.74). The mean square deviation of the nucleus-electron separation is

(r − r)2 = r2 − r 2 =
( a0

2Z

)2 (
n2

(
n2 + 2

)
− l2 (l + 1)2

)
. (2.81)

The quantum mechanical analogue to Bohr orbits of large eccentricity corresponds
to large values of this number (small l).
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3 Relativistic Coulomb Problem

A basic problem in quantum theory of the atom is the problem of finding solutions of
the nonrelativistic Schrödinger and relativistic Dirac wave equations for the motion
of electron in a central attractive force field. The only atom for which these equations
can be solved explicitly is the simplest hydrogen atom, or, in general, the one elec-
tron hydrogenlike ionized atom with the charge of the nucleus Ze; this is a classical
problem in quantum mechanics which is studied in great detail; see, for example,
[2, 25, 28, 50, 71, 91, 96, 113, 133, 156] and references therein. Comparison of
the results of theoretical calculations with experimental data provides accurate tests
of the validity of the quantum electrodynamics [28, 96, 194]. Explicit analytical
solutions for hydrogenlike atoms can be useful as the starting point in approximate
calculations of more sophisticated quantum-mechanical systems.

However, the relativistic Coulomb wave functions are not well known for a
“general audience” and this discussion might be useful for the reader who is not an
expert in theoretical physics; this section is written for those who study quantum
mechanics and would like to see more details than in the classical textbooks
[2, 25, 28, 113]; it is motivated by a course in quantum mechanics which one of
the authors (SKS) has been teaching at Arizona State University for more than two
decades.

3.1 Dirac Equation

The relativistic wave equation of Dirac [30, 31, 53–55, 70, 71, 111]

ih̄
∂

∂t
ψ = Hψ (3.1)

for the electron in an external central field with the potential energy U (r) has the
Hamiltonian of the form

H = cαp +mc2β + U (r) , (3.2)

where αp = α1p1 + α2p2 + α3p3 with the momentum operator p = −ih̄∇ and

α =
(

0 σ

σ 0

)
, β =

(
1 0
0 −1

)
, ψ =

(
u
v

)
. (3.3)

We use the standard representation of the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.4)
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and by our definition

0 =
(

0 0
0 0

)
, 1 =

(
1 0
0 1

)
.

The relativistic electron has a four component wave function

ψ = ψ (r, t) =
(

u (r, t)
v (r, t)

)
=

⎛
⎜⎜⎝
ψ1 (r, t)
ψ2 (r, t)
ψ3 (r, t)
ψ4 (r, t)

⎞
⎟⎟⎠ (3.5)

and the Dirac equation (3.1) is a matrix equation that is equivalent to a system of four
first order partial differential equations. The inner product for two Dirac (bispinor)
wave functions

ψ =
(

u1

v1

)
=

⎛
⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ , φ =

(
u2

v2

)
=

⎛
⎜⎜⎝
φ1

φ2

φ3

φ4

⎞
⎟⎟⎠

is defined as a scalar quantity

〈ψ, φ〉 =
∫
R3
ψ†φ dv =

∫
R3

(
u1

†u2 + v1
†v2

)
dv (3.6)

=
∫
R3

( ∗
ψ1φ1 +

∗
ψ2φ2

∗+ψ3 φ3
∗+ψ4 φ4

)
dv

with the squared norm

||ψ||2 = 〈ψ, ψ〉 =
∫
R3
ψ†ψ dv =

∫
R3

(
u1

†u1 + v1
†v1

)
dv (3.7)

=
∫
R3

(
|ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2

)
dv

and the wave functions are usually normalized so that ||ψ|| = 〈ψ, ψ〉1/2 = 1.
The substitution

ψ (r, t) = e−i(E t)/h̄ ψ (r) , (3.8)

gives the stationary Dirac equation

Hψ (r) = Eψ (r) , (3.9)

where E is the total energy of the electron.
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According to Steven Weinberg [194, vol. I, p. 565], physicists learn in kinder-
garten how to solve problems related to the wave equation of Dirac in the presence
of external fields. In Sect. 3.3 of this chapter, for the benefits of the reader who is
not an expert in theoretical physics, we outline a procedure of separation of the
variables and solve the corresponding first order system of radial equations for the
Dirac equation in the Coulomb field U (r) = −Ze2/r. The end results are presented
in the next section; see also [2, 25, 28, 71, 96, 133, 138, 140, 156] and references
therein for more information.

3.2 Relativistic Coulomb Wave Functions and Discrete Energy
Levels

The exact solutions of the stationary Dirac equation

Hψ =
(
cαp +mc2β − Ze2/r

)
ψ = Eψ (3.10)

for the Coulomb potential can be obtained in the spherical coordinates. The energy
levels were discovered in 1916 by Sommerfeld [168] from the “old” quantum theory
and the corresponding (bispinor) Dirac wave functions were found later by Darwin
[48] and Gordon [83] at the early age of discovery of the “new” wave mechanics
(see also [29] for a modern discussion of “Sommerfeld’s puzzle” ). These classical
results are nowadays included in all textbooks on relativistic quantum mechanics,
quantum field theory and advanced texts on mathematical physics (see, for example,
[2, 25, 28, 96, 133, 140] and [138]). The end result is

ψ =
(

ϕ

χ

)
=

(
Y±jm (n) F (r)
iY∓jm (n) G (r)

)
, (3.11)

where the spinor spherical harmonics Y±jm (n) = Y(j±1/2)
jm (n) are given explicitly

in terms of the ordinary spherical functions Ylm (n) , n = n (θ, ϕ) = r/r and the
special Clebsch–Gordan coefficients with the spin 1/2 as follows [2, 25, 148, 189]:

Y±jm (n) =

⎛
⎜⎜⎝
∓
√
(j + 1/2)∓ (m− 1/2)

2j + (1± 1)
Yj±1/2, m−1/2 (n)√

(j + 1/2)± (m+ 1/2)

2j + (1± 1)
Yj±1/2, m+1/2 (n)

⎞
⎟⎟⎠ (3.12)

with the total angular momentum j = 1/2, 3/2, 5/2, . . . and its projection m =
−j,−j+1, . . . , j −1, j (see also Sect. 3.3.1 below for the properties of the spinor
spherical harmonics).
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The radial functions F (r) and G(r) can be presented as [138]

(
F (r)

G (r)

)
= a

2β3/2

ν

√
(εκ − ν) n!

μ (κ − ν) � (n+ 2ν)
ξν−1e−ξ/2

×
(
f1 f2

g1 g2

)(
ξL2ν+1

n−1 (ξ)

L2ν−1
n (ξ)

)
. (3.13)

Here, Lαk (ξ) are the Laguerre polynomials given by (B.1) and we use the following
notations:

κ = ± (j + 1/2) , ν =
√
κ2 − μ2, μ = αZ = Ze2/h̄c, (3.14)

a =
√

1− ε2, ε = E/mc2, β = mc/h̄ = 1/λ,

and

ξ = 2aβr = 2
√

1− ε2 mc

h̄
r. (3.15)

The elements of 2× 2-transition matrix in (3.13) are given by

f1 = aμ

εκ − ν , f2 = κ − ν, g1 = a (κ − ν)
εκ − ν , g2 = μ. (3.16)

This particular form of the relativistic radial functions is due to Nikiforov and
Uvarov [138]; it is very convenient for taking the nonrelativistic limit c → ∞ (see
also [183]).

The relativistic discrete energy levels ε = εn = En/E0 with the rest mass energy
E0 = mc2 are given by the Sommerfeld–Dirac fine structure formula

En = mc2√
1+ μ2/ (n+ ν)2

. (3.17)

Here, n = nr = 0, 1, 2, . . . is the radial quantum number and κ = ± (j + 1/2) =
±1,±2,±3, . . . . The following identities

εμ = a (ν + n) , εμ+ aν = a (n+ 2ν) , εμ− aν = an, (3.18)

ε2κ2 − ν2 = a2n (n+ 2ν) = μ2 − a2κ2

are useful in calculation of the matrix elements below.
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The familiar recurrence relations for the Laguerre polynomials allow to present
the radial functions (3.13) in a traditional form [2, 25, 49, 128, 183] as follows

(
F (r)

G (r)

)
= a2β3/2

√
n!

μ (κ − ν) (εκ − ν) � (n+ 2ν)
ξν−1e−ξ/2 (3.19)

×
(
α1 α2

β1 β2

)(
L2ν
n−1 (ξ)

L2ν
n (ξ)

)
,

where the coefficients are found in (3.106) and (3.107) below.
We give the explicit form of the radial wave functions (3.13) for the 1s1/2 state,

when n = nr = 0, l = 0, j = 1/2, and κ = −1 :
(
F (r)

G (r)

)
=

(
2Z

a0

)3/2
√

ν1 + 1

2� (2ν1 + 1)

⎛
⎝ −1√

1− ν1

1+ ν1

⎞
⎠ ξν1−1

1 e−ξ1/2. (3.20)

Here, ν1 =
√

1− μ2 = ε1, ξ1 = 2
√

1− ε2
1βr = 2Z (r/a0) , and a0 = h̄2/me2 is

the Bohr radius. One can see also [2, 25, 28, 48, 64, 83, 96, 128, 133], and [156] and
references therein for more information on the relativistic Coulomb problem.

In the nonrelativistic limit c→∞ one can expand the exact Sommerfeld–Dirac
formula (3.17) in ascending powers of μ2 = (αZ)2 , the first terms in this expansion
are

E

mc2 = 1− μ2

2n2 −
μ4

2n4

(
n

j + 1/2
− 3

4

)
+ O

(
μ6

)
, μ→ 0. (3.21)

Here n = nr + j + 1/2 is the principal quantum number of the nonrelativistic
hydrogenlike atom. The first term in this expansion is simply the rest mass energy
E0 = mc2 of the electron, the second term coincides with the energy eigenvalue
in the nonrelativistic Schrödinger theory (2.64) and the third term gives the so-
called fine structure of the energy levels—the correction obtained for the energy
in the Pauli approximation which includes interaction of the spin of the electron
with its orbital angular momentum; see [28] and [156] for further discussion of
the hydrogenlike energy levels including comparison with the experimental data.
One can show that in the same limit μ → 0 the relativistic Coulomb wave
functions (3.11) tend to the nonrelativistic wave functions of the Pauli theory;
see, for example, [138] for more details; we shall elaborate more on this limit in
Sect. 3.3.4.
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3.3 Solution of Dirac Wave Equation for Coulomb Potential

This section is written for the benefits of the reader who is not an expert in
relativistic quantum mechanics and quantum field theory. We separate the variables
and construct exact solutions of the Dirac equation of in spherical coordinates for
the Coulomb field. The corresponding four components (bispinor) wave functions
are given explicitly by (3.11)–(3.16). We first construct the angular parts of these
solutions in terms of the so-called spinor spherical harmonics or spherical spinors.

3.3.1 The Spinor Spherical Harmonics

The vector addition j = l + s of the orbital l = −ir× ∇ and the spin s = 1

2
σ

angular momenta (in the units of h̄) for the electron in the central field gives the
eigenfunctions of the total angular momentum j, or the spinor spherical harmonics
[189], in the form

Y(l)jm (n) =
∑

ml+ms=m
C
jm

lml
1
2ms
Ylml (n) χ 1

2ms
(3.22)

(j = |l − 1/2| , l + 1/2; m = −j,−j + 1, . . . , j − 1, j)

where Ylm (n) with n = n (θ, ϕ) = r/r are the spherical harmonics, Cjm
lml

1
2ms

are

the special Clebsch–Gordan coefficients, and χms = χ 1
2ms

are eigenfunctions of the
spin 1/2 operator s :

s2χ 1
2ms
= 3

4
χ 1

2ms
, s3χ 1

2ms
= msχ 1

2ms
, ms = ±1/2 (3.23)

given by

χ 1
2
=

(
1
0

)
, χ − 1

2
=

(
0
1

)
; (3.24)

see [113, 139, 148, 189]. From (3.22)

Y(l)jm (n) =
1/2∑

ms=−1/2

C
jm

l, m−ms , 1
2ms
Yl, m−ms (n) χms (3.25)

= Cjm
l, m+ 1

2 ,
1
2 , − 1

2
Y
l, m+ 1

2
(n) χ− 1

2
+ Cjm

l, m− 1
2 ,

1
2 ,

1
2
Y
l, m− 1

2
(n) χ 1

2

=
⎛
⎝ C

jm

l, m− 1
2 ,

1
2 ,

1
2
Y
l, m− 1

2
(n)

C
jm

l, m+ 1
2 ,

1
2 , − 1

2
Yl, m+ 1

2
(n)

⎞
⎠ , l = j ± 1/2.
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Substituting the special values of the Clebsch–Gordan coefficients [62, 189],
we obtain the spinor spherical harmonics Y±jm (n) = Y(j±1/2)

jm (n) in the
form (3.12). The orthogonality property for the spinor spherical harmonics
Y±jm (n) = Y(j±1/2)

jm (n) is given by Varshalovich et al. [189]

∫
S2

(
Y(l)jm (n)

)† Y(l
′)

j ′m′ (n) dω = δjj ′δll′δmm′ (3.26)

with dω = sin θ dθdϕ and 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. They are common
eigenfunctions of the following set of commuting operators

j2Y±jm (n) =
(

l+ 1

2
σ

)2

Y±jm (n) = j (j + 1)Y±jm (n) , (3.27)

j3Y±jm (n) = mY±jm (n) , (3.28)

l2Y±jm (n) =
(
j ± 1

2

)(
j ± 1

2
+ 1

)
Y±jm (n) , (3.29)

σ 2Y±jm (n) = 3Y±jm (n) . (3.30)

However,

j2 =
(

l+ 1

2
σ

)2

= l2 + σ · l + 3

4
,

or

σ · l = j2 − l2 − 3

4
. (3.31)

This implies that the spinor spherical harmonics Y±jm (n) are also eigenfunctions of
the operator σ · l :

(σ · l)Y±jm (n) = −
(

1±
(
j + 1

2

))
Y±jm (n) , (3.32)

and it is a custom to write

(σ · l)Y±jm (n) = − (1+ κ)Y±jm (n) , (3.33)

where the quantum number κ = κ± = ±
(
j + 1

2

)
= ±1,±2,±3, . . . takes all

positive and negative integer values with exception of zero: κ �= 0.
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Finally, the following relation for the spinor spherical harmonics,

(σ · n)Y±jm (n) = −Y∓jm (n) , (3.34)

plays an important role in the Dirac theory of relativistic electron. In view of
(σ · n)2 = 1, it is sufficient to prove only one of these relations, say

(σ · n)Y+jm (n) = −Y−jm (n) ,

and the second will follow. A direct proof can be given by using the recurrence
relations for the spherical harmonics given in the Appendix B, (B.16)–(B.18), or
with the help of the Wigner–Eckart theorem; see [148] and [189], the reader can
work out the details.

The quadratic forms

Qjm =
(
Y(l)jm (n)

)† Y(l)jm (n) (3.35)

of the spinor spherical harmonics Y(l)jm (n) describe the angular distributions of the
electron in states with the total angular momentum j, its projectionm and the orbital
angular momentum l. These forms, given by [189]

Qjm (θ) = 1

2j

(
(j +m)

∣∣∣Yj− 1
2 , m− 1

2
(n)

∣∣∣2 + (j −m)
∣∣∣Yj− 1

2 , m+ 1
2
(n)

∣∣∣2
)

(3.36)

= 1

2j + 2

(
(j +m+ 1)

∣∣∣Yj+ 1
2 , m+ 1

2
(n)

∣∣∣2 + (j −m+ 1)
∣∣∣Yj+ 1

2 , m− 1
2
(n)

∣∣∣2
)
,

are, in fact, independent of l and ϕ. There is the useful expansion in terms of the
Legendre polynomials

Qjm (θ) =
j−1/2∑
s=0

as (j,m) P2s (cos θ) (3.37)

with the coefficients of the form

as (j,m) = − (4s + 1)
√

2j (2j + 1)

4π

{
j j 2s

j − 1
2 j − 1

2
1
2

}
C
j− 1

2 ,0

j− 1
2 ,0,2s0

C
jm

jm 2s0

= (−1)s
4s + 1

4π

√
(2j + 2s + 1) (2j − 2s)!
(2j + 1) (2j + 2s)!

(
j + s − 1

2

)
! (2s)!(

j − s − 1
2

)
! (s!)2

C
jm
jm 2s0. (3.38)

See [189] for more information, including definition of the 6j -symbol.
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3.3.2 Separation of Variables in Spherical Coordinates

Using the explicit form of the α and β matrices

α =
(

0 σ

σ 0

)
, β =

(
1 0
0 −1

)
, (3.39)

we rewrite the stationary Dirac equation

Hψ (r) = Eψ (r) , (3.40)

in a central field with the Hamiltonian

H = cαp +mc2β + U (r) =
(
U +mc2 cσp

cσp U −mc2

)
(3.41)

and the bispinor wave function

ψ =
(

ϕ

χ

)
(3.42)

in a block matrix form

(
U +mc2 cσp

cσp U −mc2

)(
ϕ

χ

)
= E

(
ϕ

χ

)
, (3.43)

or

cσpϕ =
(
E +mc2 − U

)
χ , (3.44)

cσpχ =
(
E −mc2 − U

)
ϕ. (3.45)

Here we shall use the following operator identity

σ ·∇ = (σ · n) (n · ∇ + iσ · (n × ∇)) (3.46)

in the form

cσp = h̄c (σn)
(

1

i
n∇ + i

r
σl

)
, (3.47)
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where l = −ir×∇ is the operator of orbital angular momentum, n = r/r and
p = −ih̄∇. It can be obtained as a consequence of a more general operator identity
[53]

(σ · A) (σ · B) = A · B+ i σ · (A× B) , (3.48)

which is valid for any vector operators A and B commuting with the Pauli σ -
matrices; it is not required that A and B commute. The proof uses a familiar property
of the Pauli matrices

σi σk = ieikl σl + δik, (3.49)

where eikl is the completely antisymmetric Levi-Civita symbol, δik is the symmetric
Kronecker delta symbol and we use Einstein’s summation rule over the repeating
indices; it is understood that a summation is to be taken over the three values of
l = 1, 2, 3. Thus

(σ · A) (σ · B) = (σi Ai) (σk Bk)
= (σi σk) Ai Bk = iσl eikl Ai Bk + δik Ai Bk
= iσl (A× B)l + Ak Bk = i σ · (A× B)+ A · B,

where (A× B)l = elik Ai Bk = eikl Ai Bk in view of antisymmetry of the Levi-
Civita symbol: eikl = −eilk = elik, and δik Ai = Ak.

If A = B, Eq. (3.48) implies (σ · A)2 = A2. In particular, (σn)2 = n2 = 1, and
the proof of the “gradient” formula (3.46) is

σ ·∇ = (σ · n)2 (σ ·∇) = (σ · n) ((σ · n) (σ · ∇))
= (σ · n) (n · ∇ + iσ · (n × ∇))

by (3.48) with A = n and B = ∇. In a similar fashion, one can derive the following
“anticommutation” relation,

(σn) (σl)+ (σl) (σn) = −2 (σn) , n = r/r, (3.50)

we leave details to the reader.
The structure of operator σp in (3.47) suggests to look for solutions of the Dirac

system (3.44) and (3.45) in spherical coordinates r = r n (θ, ϕ) in the form of the
Ansatz:

ϕ = ϕ (r) = Y (n) F (r) , (3.51)

χ = χ (r) = −i ((σn)Y (n)) G (r) , (3.52)
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where Y = Y±jm (n) are the spinor spherical harmonics given by (3.12). This sub-
stitution preserves the symmetry properties of the wave functions under inversion
r → −r. Then the radial functions F (r) and G(r) satisfy the system of two first
order ordinary differential equations

dF

dr
+ 1+ κ

r
F = mc

2 + E − U (r)
h̄c

G, (3.53)

dG

dr
+ 1− κ

r
G = mc

2 − E + U (r)
h̄c

F, (3.54)

where κ = κ± = ± (j + 1/2) = ±1,±2,±3, . . . , respectively.
If f = f (r) = f (rn) , then

∂f

∂r
= ∂f
∂r
∂r
∂r
= n∇f

and in spherical coordinates Eq. (3.47) becomes

cσp = h̄c (σn)
(

1

i

∂

∂r
+ i
r
σl

)
. (3.55)

Thus

cσp ϕ = h̄c (σn)
(

1

i

∂

∂r
+ i
r
σl

)
YF

= h̄c (σn)
(

1

i
Y dF
dr
+ i
r
(σlY) F

)

= −ih̄c (σnY)
(
dF

dr
+ 1+ κ

r
F

)

by (3.33), and we arrive at (3.53) in view of (3.44) and (3.52). Equation (3.54) can
be verified in a similar fashion with the help of (3.50) or (3.34).

Equations (3.53) and (3.54) hold in any central field with the potential energy
U = U (r) . For states with discrete spectra the radial functions rF (r) and rG (r)
should be bounded as r → 0 and satisfy the normalization condition

∫
R3
ψ† ψ dv =

∫ ∞
0
r2

(
F 2 (r)+G2 (r)

)
dr = 1 (3.56)
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in view of

||ψ||2 = 〈ψ, ψ〉 =
∫
R3
ψ†ψ dv =

∫
R3

(
u1

†u1 + v1
†v1

)
dv (3.57)

=
∫
R3

(
|ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2

)
dv.

And Eqs. (3.51), (3.52) and (3.26).

3.3.3 Solution of Radial Equations

For the relativistic Coulomb problem, U = −Ze2/r, we introduce the dimension-
less quantities

ε = E

mc2 , x = βr = mc
h̄
r, μ = Ze

2

h̄c
(3.58)

and the radial functions

f (x) = F (r) , g (x) = G(r) . (3.59)

The system (3.53) and (3.54) becomes

df

dx
+ 1+ κ

x
f =

(
1+ ε + μ

x

)
g, (3.60)

dg

dx
+ 1− κ

x
g =

(
1− ε − μ

x

)
f. (3.61)

We shall see later that in nonrelativistic limit c → ∞ the following estimate holds
|f (x)| 5 |g (x)| .

We follow [138] with somewhat different details. Let us rewrite the system (3.60)
and (3.61) in matrix form [83]. If

u =
(
u1

u2

)
=

(
xf (x)

xg (x)

)
, u′ =

(
u′1
u′2

)
. (3.62)

Then

u′ = Au, (3.63)
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where

A =
(
a11 a12

a21 a22

)
=

⎛
⎝ −κ

x
1+ ε + μ

x

1− ε − μ
x

κ

x

⎞
⎠ . (3.64)

To find u1 (x) ,we eliminate u2 (x) from the system (3.63), obtaining a second order
differential equation

u′′1 −
(
a11 + a22 + a

′
12

a12

)
u′1 (3.65)

+
(
a11a22 − a12a21 − a′11 +

a′12

a12
a11

)
u1 = 0.

Similarly, eliminating u1 (x) , one gets equation for u2 (x):

u′′2 −
(
a11 + a22 + a

′
21

a21

)
u′2 (3.66)

+
(
a11a22 − a12a21 − a′22 +

a′21

a21
a22

)
u2 = 0.

The components of matrix A have the form

aik = bik + cik/x, (3.67)

where bik and cik are constants. Equations (3.65) and (3.66) are not generalized
equations of hypergeometric type (2.1). Indeed,

a′12

a12
= − c12

c12x + b12x2
,

and the coefficients of u′1 (x) and u1 (x) in (3.65) are

a11 + a22 + a
′
12

a12
= p1 (x)

x
− c12

c12x + b12x2 ,

a11a22 − a12a21 − a′11 +
a′12

a12
a11 = p2 (x)

x2 − c12 (c11 + b11x)

(c12 + b12x) x2 ,

where p1 (x) and p2 (x) are polynomials of degrees at most one and two, respec-
tively. Equation (3.65) will become a generalized equation of hypergeometric
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type (2.1) with σ (x) = x if either b12 = 0 or c12 = 0. The following consideration
helps. By a linear transformation

(
v1

v2

)
= C

(
u1

u2

)
(3.68)

with a nonsingular matrix C that is independent of x we transform the original
system (3.63) to a similar one

v′ = Ãv, (3.69)

where

v =
(
v1

v2

)
, Ã = CAC−1 =

(
ã11 ã12

ã21 ã22

)
.

The new coefficients ãik are linear combinations of the original ones aik.Hence they
have a similar form

ãik = b̃ik + c̃ik/x, (3.70)

where b̃ik and c̃ik are constants.
The equations for v1 (x) and v2 (x) are similar to (3.65) and (3.66):

v′′1 −
(
ã11 + ã22 + ã

′
12

ã12

)
v′1 (3.71)

+
(
ã11ã22 − ã12ã21 − ã′11 +

ã′12

ã12
ã11

)
v1 = 0,

v′′2 −
(
ã11 + ã22 + ã

′
21

ã21

)
v′2 (3.72)

+
(
ã11ã22 − ã12ã21 − ã′22 +

ã′21

ã21
ã22

)
v2 = 0.

The calculation of the coefficients in (3.71) and (3.72) is facilitated by a similarity
of the matrices A and Ã :

ã11 + ã22 = a11 + a22, ã11ã22 − ã12ã21 = a11a22 − a12a21.

By a previous consideration, in order for (3.71) to be an equation of hypergeometric
type, it is sufficient to choose either b̃12 = 0 or c̃12 = 0. Similarly, for (3.72): either
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b̃21 = 0 or c̃21 = 0. These conditions impose certain restrictions on our choice of
the transformation matrix C. Let

C =
(
α β

γ δ

)
. (3.73)

Then

C−1 = 1

�

(
δ −β
−γ α

)
, � = detC = αδ − βγ,

and

Ã = CAC−1 (3.74)

= 1

�

(
(a11δ − a12γ )α + (a21βδ − a22γ )β (α2 − β2)a12 + (a22 − a11) αβ

a21δ
2 − a12γ

2 + (a11 − a22) γ δ a12αγ − a11βγ + a22αδ − a21βδ

)
.

For the Dirac system (3.63) and (3.64):

a11 = −κ
x
, a12 = 1+ ε + μ

x
,

a21 = 1− ε − μ
x
, a22 = κ

x

and

� ã12 = α2 − β2 +
(
α2 + β2

)
ε +

(
α2 + β2

)
μ+ 2αβκ

x
, (3.75)

� ã21 = δ2 − γ 2 −
(
δ2 + γ 2

)
ε −

(
δ2 + γ 2

)
μ+ 2γ δκ

x
. (3.76)

The condition b̃12 = 0 yields (1+ ε) α2 − (1− ε) β2 = 0,
” ” c̃12 = 0 ”

(
α2 + β2

)
μ+ 2αβκ = 0,

” ” b̃21 = 0 ” (1+ ε) γ 2 − (1− ε) δ2 = 0,
” ” c̃21 = 0 ”

(
δ2 + γ 2

)
μ+ 2γ δκ = 0.

We see that there are several possibilities to choose the elements α, β, γ, δ of the
transition matrix C. All quantum mechanics textbooks use the original one, namely,
b̃12 = 0 and b̃21 = 0, due to Darwin [48] and Gordon [83]; cf. Eqs. (3.106) and
(3.107) below. Nikiforov and Uvarov [138] take another path, they choose c̃12 = 0
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and c̃21 = 0 and show that it is more convenient for taking the nonrelativistic limit
c→∞. These conditions are satisfied if

C =
(

μ ν − κ
ν − κ μ

)
, (3.77)

where ν = √
κ2 − μ2, and we finally arrive at the following system of the first order

equations for v1 (x) and v2 (x):

v′1 =
(εμ
ν
− ν
x

)
v1 +

(
1+ εκ

ν

)
v2, (3.78)

v′2 =
(

1− εκ
ν

)
v1 +

(ν
x
− εμ
ν

)
v2. (3.79)

Here

Tr Ã = ã11+ ã22 = 0, det Ã = ε2− 1+ 2εμ

x
− ν

2

x2 , ν2 = κ2−μ2, (3.80)

which is simpler than the original choice in [138, 140]. The corresponding second
order differential equations (3.71)–(3.72) become

v′′1 +
(
ε2 − 1

)
x2 + 2εμx − ν (ν + 1)

x2 v1 = 0, (3.81)

v′′2 +
(
ε2 − 1

)
x2 + 2εμx − ν (ν − 1)

x2 v2 = 0. (3.82)

They are the generalized equations of hypergeometric type (2.1) of a simplest form
τ̃ = 0, thus resembling the one-dimensional Schrödinder equation; the second
equation can be obtained from the first one by replacing ν →−ν.

Let 1 + εκ/ν = 0, then ε = −ν/κ that is possible only if κ < 0, since ν > 0
and ε > 0. The corresponding solution of (3.78),

v1 (x) = C1x
−νe(εμ x)/ν,

satisfies the conditions of the problem only if C1 = 0. Then from (3.79)

v2 (x) = C2x
νe−(εμ x)/ν,

which does satisfy the condition of the problem with C2 �= 0.
Let us analyze the behavior of the solutions of (3.81) as x → 0. Since

∣∣∣
(
ε2 − 1

)
x2 + 2εμx

∣∣∣6 ν (ν + 1)
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as x → 0, one can approximate this equation in the neighborhood of x = 0 by the
corresponding Euler equation

x2v′′1 − ν (ν + 1) v1 = 0,

whose solutions are

v1 (x) = C1x
ν+1 + C2x

−ν, C2 = 0.

Thus v1 → C1x
ν+1 as x → 0. The results for (3.82) are similar: v2 → C2x

ν as
x → 0; one can use the symmetry ν →−ν.

Equation (3.81) is the generalized equation of hypergeometric type (2.1) with

σ (x) = x, τ̃ (x) = 0,

σ̃ (x) =
(
ε2 − 1

)
x2 + 2εμx − ν (ν + 1) .

The substitution

v1 = ϕ (x) y (x) , ϕ′

ϕ
= π (x)
σ (x)

, (3.83)

where

π (x) = σ
′ − τ̃
2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ (3.84)

with k = λ − π ′ and τ (x) = τ̃ (x) + 2π (x) , results in the equation of
hypergeometric type

σ (x) y ′′ + τ (x) y ′ + λy = 0 (3.85)

by the method of [138]; see also Sect. 2.1. From the four possible forms of π (x):

π (x) = 1

2
±

(√
1− ε2 x ±

(
ν + 1

2

))
, (3.86)

corresponding to the values of k determined by the condition of the zero discrimi-
nant of the quadratic polynomial under the square root sign in (3.84):

k − 2εμ = ±
√

1− ε2 (2ν + 1) , (3.87)
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we select the one when the function τ (x) has a negative derivative and a zero on
(0,+∞) . This is true if one chooses

k = 2εμ− a (2ν + 1) ,

π (x) = ν + 1− ax,
τ (x) = 2π (x) = 2 (ν + 1− ax) ,
λ = k + π ′ = 2 (εμ− a (ν + 1))

and

ϕ (x) = xν+1e−ax, ρ (x) = x2ν+1e−2ax,

where a = √1− ε2 and ν = √
κ2 − μ2. The analysis for (3.82) is similar, one can

use the symmetry ν →−ν in (3.86) and (3.87).
From (3.56) and (3.62)
∫ ∞

0
r2

(
F 2 (r)+G2 (r)

)
dr = β−3

∫ ∞
0

(
u2

1 (x)+ u2
2 (x)

)
dx = 1. (3.88)

It requires by (3.68) the square integrability of v1 (x) and v2 (x) . Their boundness
at x = 0 follows from the asymptotic behavior as x → 0. So
∫ ∞

0
v2

1 (x) dx =
∫ ∞

0
ϕ2 (x) y2 (x) dx =

∫ ∞
0
x y2 (x) ρ (x) dx <∞. (3.89)

For the time being, we replace this condition by
∫ ∞

0
y2 (x) ρ (x) dx <∞ (3.90)

in order to apply Theorem 2.1, and will verify the normalization condition (3.88)
later. Then the corresponding energy levels ε = εn are determined by

λ+ nτ ′ + 1

2
n (n− 1) σ ′′ = 0 (n = 0, 1, 2, . . . ) , (3.91)

whence

εμ = a (ν + n+ 1) , (3.92)

and the eigenfunctions are given by the Rodrigues formula

yn (x) = Cn

ρ (x)

(
σn (x) ρ (x)

)(n) = Cn x−2ν−1e2ax d
n

dxn

(
x2ν+n+1e−2ax

)
.

(3.93)
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The functions yn (x) are, up to certain constants, Laguerre polynomials L2ν+1
n (ξ)

with ξ = 2ax.
The previously found eigenvalue ε = −ν/κ satisfies (3.92) with n = −1.

Consequently it is natural to replace n by n − 1 in (3.92)–(3.93) and define the
eigenvalues by

εμ = a (ν + n) , a =
√

1− ε2 (n = 0, 1, 2, . . . ) . (3.94)

The corresponding eigenfunctions have the form

v1 (x) =
{

0, n = 0,
Anξ

ν+1e−ξ/2L2ν+1
n−1 (ξ) , n = 1, 2, 3, . . . .

(3.95)

They are square integrable functions on (0,∞) . The counterparts are

v2 (x) = Bnξνe−ξ/2L2ν−1
n (ξ) , n = 0, 1, 2, . . . . (3.96)

It is easily seen that our previous solution for ε = −ν/κ is included in this formula
when n = 0. By Eq. (3.78) the other solutions can be obtained as

v2 (x) = 1

1+ κε/ν
(
v′1 (x)+

( ν
x
− εμ
ν

)
v1 (x)

)

and substituting v1 (x) from (3.95) one gets

v2 (x) = ξνe−ξ/2Y (ξ) ,

where Y (ξ) is a polynomial of degree n. But function v2 (x) satisfies (3.82). By the
previous consideration the substitution

v2 (x) = xνe−axy (x)

gives

xy ′′ + (2ν − 2ax) y ′ + 2any = 0,

in view of the quantization rule (3.94). The change of the variable y (x) = Y (ξ)
with ξ = 2ax results in

ξY ′′ + (2ν − ξ) Y ′ + nY = 0 (3.97)

and the only polynomial solutions are the Laguerre polynomials L2ν−1
n (ξ) ,

whence (3.96) is correct. Solutions v2 (x) are square integrable functions on (0,∞) .
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To find the relations between the coefficients An and Bn in (3.95) and (3.96)
we take the limit x → 0 in (3.78) with the help of the following properties of the
Laguerre polynomials [138, 139, 184]:

d

dξ
Lαn (ξ) = −Lα+1

n−1 (ξ) , Lαn (0) =
� (α + n+ 1)

n!� (α + 1)
. (3.98)

The result is

2a (ν + 1) AnL
2ν+1
n−1 (0) = −2aνAnL

2ν+1
n−1 (0)+

(
1+ εκ

ν

)
BnL

2ν−1
n (0) ,

whence

An = ν + εκ
an (n+ 2ν)

Bn (n = 1, 2, 3, . . .) .

Since

a2n (n+ 2ν) = a2
(
(n+ ν)2 − ν2

)
= μ2ε2 − a2ν2

= μ2ε2 −
(

1− ε2
)
ν2 = κ2ε2 − ν2,

we have proved the useful identity

a2n (n+ 2ν) = ε2κ2 − ν2, (3.99)

and the final relation is

An = a

κε − ν Bn. (3.100)

By (3.68) and (3.77) we find

(
u1

u2

)
= C−1

(
v1

v2

)
, C−1 = 1

2ν (κ − ν)
(

μ κ − ν
κ − ν μ

)
.

Therefore

xf (x) = Bn

2ν (κ − ν)ξ
νe−ξ/2

(
f1ξL

2ν+1
n−1 (ξ)+ f2L

2ν−1
n (ξ)

)
, (3.101)

xg (x) = Bn

2ν (κ − ν)ξ
νe−ξ/2

(
g1ξL

2ν+1
n−1 (ξ)+ g2L

2ν−1
n (ξ)

)
, (3.102)
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where

f1 = aμ

εκ − ν , f2 = κ − ν, g1 = a (κ − ν)
εκ − ν , g2 = μ. (3.103)

These formulas remain valid for n = 0; in this case the terms containing L2ν+1
n−1 (ξ)

have to be taken to be zero. Thus we derive the representation for the radial
functions (3.13) up to the constant Bn. The normalization condition (3.88) gives
the value of this constant as

Bn = aβ3/2

√
(κ − ν) (εκ − ν) n!
μ� (n+ 2ν)

. (3.104)

This will be verified in Sect. 5.4. Observe that Eq. (3.104) applies when n = 0.
The familiar recurrence relations for the Laguerre polynomials (B.4) and (B.5)

allow to present the radial functions (3.13) in a traditional form [2, 25, 49] as

(
F (r)

G (r)

)
= a2β3/2

√
n!

μ (κ − ν) (εκ − ν) � (n+ 2ν)
ξν−1e−ξ/2

×
(
α1 α2

β1 β2

)(
L2ν
n−1 (ξ)

L2ν
n (ξ)

)
, (3.105)

where

α1 =
√

1+ ε
(
(κ − ν)√1+ ε + μ√1− ε

)
,

α2 = −
√

1+ ε
(
(κ − ν)√1+ ε − μ√1− ε

)
(3.106)

and

β1 =
√

1− ε
(
(κ − ν)√1+ ε + μ√1− ε

)
,

β2 =
√

1− ε
(
(κ − ν)√1+ ε − μ√1− ε

)
. (3.107)

A convenient identity holds

(
(κ − ν)√1+ ε ± μ√1− ε

)2 = 2 (κ − ν) (κ − νε ± aμ) . (3.108)

One can rewrite this representation in terms of the confluent hypergeometric
functions (B.1).



An Introduction to Special Functions with Some Applications to Quantum Mechanics 585

3.3.4 Nonrelativistic Limit of the Wave Functions

Throughout this section, we have always used the notation n = nr for the radial
quantum number, which determines the number of zeros of the radial functions in
the relativistic Coulomb problem; see (3.13). For the sake of passing to the limit
c → ∞ in this section, let us introduce the principal quantum number of the
nonrelativistic hydrogen atom as n = nr + |κ | = nr + j + 1/2 and temporarily
consider N = nr + ν as its “relativistic analog”. As c→∞ one gets

ν =
√
κ2 − μ2 = |κ | − μ2

2 |κ | −
μ4

8 |κ |3 + O
(
μ6

)
, (3.109)

N = nr + ν = nr + |κ | − μ2

2 |κ | −
μ4

8 |κ |3 + O
(
μ6

)
(3.110)

as μ = Ze2/h̄c→ 0. As a result, for the discrete energy levels

ε =
(

1+ μ
2

N2

)−1/2

(3.111)

we arrive at the expansion

E

mc2 = 1− μ2

2n2 −
μ4

2n4

(
n

j + 1/2
− 3

4

)
+ O

(
μ6

)
, μ→ 0. (3.112)

in the nonrelativistic limit c→∞.
In a similar fashion,

a =
√

1− ε2 = μ

nr + |κ |
(

1+ nr μ
2

2 |κ | (nr + |κ |)2
+ O

(
μ4

))
, (3.113)

ξ = ξ (c) = 2a
mc

h̄
r = 2Ze2m

nh̄2 r
(

1+ O
(
μ2

))
(3.114)

as μ→ 0, thus giving

lim
c→∞ ξ (c) = η =

2Z

n

(
r

a0

)
, a0 = h̄2

me2 . (3.115)

Also

κ − ν = (κ − |κ |)+ μ2

2 |κ | + O
(
μ4

)
, (3.116)
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εκ − ν = (κ − |κ |)+ (nr + |κ |)
2 − κ |κ |

2 |κ | (nr + |κ |)2
μ2 + O

(
μ4

)
(3.117)

as μ→ 0. This allows to evaluate the nonrelativistic limit of the transition matrix:

S =
(
f1 f2

g1 g2

)
=

⎛
⎜⎝

aμ

εκ − ν κ − ν
a (κ − ν)
εκ − ν μ

⎞
⎟⎠ . (3.118)

There are two distinct cases with the end result

ψ± =
( Y±F
iY∓G

)
→

(±Y±R
0

)
, μ→ 0. (3.119)

Here R = Rnl (r) are the nonrelativistic radial functions

R (r) = Rnl (r) = 2

n2

(
Z

a0

)3/2
√
(n− l − 1)!
(n+ l)! e−η/2ηl L2l+1

n−l−1 (η) (3.120)

with

η = 2Z

n

(
r

a0

)
, a0 = h̄2

me2 (3.121)

and Y± = Y(j±1/2)
jm (n) are the spinor spherical harmonics (3.12).

Indeed, if κ = |κ | = j + 1/2 = l,

S = S+ (μ) =

⎛
⎜⎜⎝

2κ (nr + κ)
nr (nr + 2κ)

+ O
(
μ2

) μ2

2 |κ | + O
(
μ4

)
(nr + κ) μ
nr (nr + 2κ)

+ O
(
μ3

)
μ

⎞
⎟⎟⎠ ∼

(
1 μ2

μ μ

)

as μ→ 0 or

lim
μ→0

S+ (μ) = 2nl

n2 − l2
(

1 0
0 0

)
. (3.122)

In this case ν → l and, therefore,

(
F (r)

G (r)

)
→

(
Ze2m

h̄2

)3/2 (
1
0

)
2

n2

√
(n− l − 1)!
(n+ l)! ηle−η/2 ηL2l+1

n−l−1 (η)

(3.123)
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in the limit c→∞ thus giving

ψ+ =
( Y+F
iY−G

)
→

(Y+R
0

)
, μ→ 0. (3.124)

In a similar fashion, when κ = − |κ | = − (j + 1/2) = −l − 1 one gets

ψ− =
( Y−F
iY+G

)
→

(−Y−R
0

)
, μ→ 0 (3.125)

due to the corresponding asymptotic form of the transition matrix S = S− (μ):

S− (μ) =
⎛
⎜⎝−

μ2

2 |κ | (nr + |κ |) + O
(
μ4

) − 2 |κ | + O
(
μ2

)
μ

nr + |κ | + O
(
μ3

)
μ

⎞
⎟⎠ ∼

(
μ2 1
μ μ

)

(3.126)

as μ→ 0 [138]. This completes the proof of (3.119).
The representation of the radial functions in the form (3.13), due to Nikiforov

and Uvarov [138], is well adapted for passing to the nonrelativistic limit since one
coefficient of the transition matrix S is much larger than the others as μ→ 0. In the
traditional form (3.106) and (3.107), however, there is an overlap of the orders of
these coefficients and one has to use the recurrence relations (B.4) and (B.5) in order
to obtain the nonrelativistic wave functions as a limiting case of relativistic ones.

4 Symmetry of Quantum Harmonic Oscillators

In this section, we elaborate on a “missing” class of solutions to the time-dependent
Schrödinger equation for the simple harmonic oscillator in one dimension [121, 122,
127] and provide an interesting computer-animated feature of these solutions—the
phase space oscillations of the electron density and the corresponding probability
distribution of the particle linear momentum. As a result, a dynamic visualization
of the fundamental Heisenberg Uncertainty Principle [92] is given, for better
understanding of quantum mechanics [123, 182].

4.1 Symmetry and “Hidden” Solutions

The time-dependent Schrödinger equation for the linear harmonic oscillator,

2iψt + ψxx − x2ψ = 0, (4.1)
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in dimensionless units, has the following multiparameter family of square integrable
solutions

ψn (x, t) = e
i
(
α(t)x2+δ(t)x+κ(t))+i(2n+1)γ (t)√

2nn!μ (t)√π e−(β(t)x+ε(t))2/2 Hn (β (t) x + ε (t)) ,
(4.2)

whereHn (x) are the Hermite polynomials and the periodic time-dependent param-
eters are given by

μ (t) = μ0

√
β4

0 sin2 t + (2α0 sin t + cos t)2, (4.3)

α (t) = α0 cos 2t + sin 2t
(
β4

0 + 4α2
0 − 1

)
/4

β4
0 sin2 t + (2α0 sin t + cos t)2

, (4.4)

β (t) = β0√
β4

0 sin2 t + (2α0 sin t + cos t)2
= β0μ0

μ(t)
, (4.5)

γ (t) = γ0 − 1

2
arctan

β2
0 sin t

2α0 sin t + cos t
, (4.6)

δ (t) = δ0 (2α0 sin t + cos t)+ ε0β
3
0 sin t

β4
0 sin2 t + (2α0 sin t + cos t)2

, (4.7)

ε (t) = ε0 (2α0 sin t + cos t)− β0δ0 sin t√
β4

0 sin2 t + (2α0 sin t + cos t)2
, (4.8)

κ (t) = κ0 + sin2 t
ε0β

2
0 (α0ε0 − β0δ0)− α0δ

2
0

β4
0 sin2 t + (2α0 sin t + cos t)2

(4.9)

+1

4
sin 2t

ε2
0β

2
0 − δ2

0

β4
0 sin2 t + (2α0 sin t + cos t)2

.

(Here, μ0 > 0, α0, β0 �= 0, γ0, δ0, ε0, κ0 are real-valued initial data.)
These “missing” solutions can be derived analytically in a unified approach to
generalized harmonic oscillators (see, for example, [44, 45, 108, 115, 131] and
references therein). They are also verified by a direct substitution with the aid of
Mathematica computer algebra system [106, 123, 182]. (The simplest special
case μ0 = β0 = 1 and α0 = γ0 = δ0 = ε0 = κ0 = 0 reproduces the
textbook solution obtained by the separation of variables [73, 82, 113, 132]; see
also the original Schrödinger papers [157, 158]; and the shape-preserving oscillator
evolutions occur when α0 = 0 and β0 = 1. More details on the derivation of these
formulas can be found in [122, 127, 137]; see also references therein and Sects. 4.4–
4.5 below.)
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On the other hand, the “dynamic harmonic oscillator states” (4.2)–(4.9) are
eigenfunctions,

E (t) ψn (x, t) =
(
n+ 1

2

)
ψn (x, t) , (4.10)

of the time-dependent quadratic invariant,

E (t) = 1

2

[
(p − 2αx − δ)2

β2
+ (βx + ε)2

]
(4.11)

= 1

2

[̂
a (t) â† (t)+ â† (t) â (t)

]
,

d

dt
〈E〉 = 0,

with the required operator identity [57, 154]:

∂E

∂t
+ i−1 [E,H ] = 0, H = 1

2

(
p2 + x2

)
. (4.12)

Here, the time-dependent annihilation â (t) and creation â† (t) operators are explic-
itly given by

â (t) = 1√
2

(
βx + ε + i p − 2αx − δ

β

)
, â† (t) = 1√

2

(
βx + ε − i p − 2αx − δ

β

)

with p = i−1∂/∂x in terms of the periodic functions (4.4)–(4.9). These operators
satisfy the canonical commutation relation,

â (t) â† (t)− â† (t) â (t) = 1, (4.13)

and the oscillator-type spectrum (4.10) of the dynamic invariant E can be obtained
in a standard way by using the Heisenberg–Weyl algebra of the raising and lowering
operators (a “second quantization” [2, 119], the Fock states):

â (t) %n (x, t) =
√
n %n−1 (x, t) , â† (t) %n (x, t) =

√
n+ 1 %n+1 (x, t) .

(4.14)

Here,

ψn (x, t) = ei(2n+1)γ (t) %n (x, t) (4.15)

is the relation to the wave functions (4.2) with ϕn (t) = − (2n+ 1) γ (t) being the
nontrivial Lewis phase [119, 154].

This quadratic dynamic invariant and the corresponding creation and annihilation
operators for the generalized harmonic oscillators have been introduced in [154] (see
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also [44, 57, 177] and references therein for important special cases). Applications
to electromagnetic-field quantization is discussed in [109, 110, 112].

The key ingredients, the maximum kinematical invariance groups of the free
particle and harmonic oscillator, were introduced in [4, 5, 87, 97, 136] and [137] (see
also [34, 98, 134, 151, 170, 171, 191] and references therein). We establish a (hidden
symmetry revealing) connection with certain Ermakov-type system which allows us
to bypass a complexity of the traditional Lie algebra approach [122] (see [67, 116]
and references therein regarding the Ermakov equation). (A general procedure of
obtaining new solutions by acting on any set of given ones by enveloping algebra
of generators of the Heisenberg–Weyl group is described in [57].) In addition, the
maximal invariance group of the generalized driven harmonic oscillators is shown to
be isomorphic to the Schrödinger group of the free particle and the simple harmonic
oscillator [122, 136, 137].

4.2 Computer Animations

Mathematica source CODE lines are taken from [123].

Example 1 Animation of the dynamic ground state n = 0, using α0 = γ0 = ε0 = 0,
β0 = 2/3, δ0 = 1:

In[1]:= Animate
[

Plot
[

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

9
√

2 e
− 72

(
x− Sin

[
1

500 π(−1+T )
])2

97+65 Cos
[

1
250 π(−1+T )

]

√
97 + 65 Cos

[
1

250π(−1 + T )
] , e− 4x2

9

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, {x, −3.5, 3.5},

AxesLabel -> {x, (Abs[ψ])∧2}, PlotRange → {0, 2.3}, Filling → {1 → Bottom},
PlotStyle→ {Thick,Blue}

]
, {T , 1001}

]

Out[1]= Fig. 1

Example 2 The following animation is for the first excited dynamic state n = 1,
using α0 = γ0 = ε0 = 0, β0 = 2/3, δ0 = 1:

In[2]:= Animate
[

Plot
[{(

1296
√

2 e
− 72

(
x− Sin

[
1

500 π(−1+T )
])2

97+65 Cos
[

1
250 π(−1+T )

]

(
x − Sin

[
1

500π(−1 + T )
])2

)
/
(

97+ 65 Cos
[

1
250π(−1 + T )

])3/2
, 8

9 e
− 4x2

9 x2
}
,

{x,−4.5, 4.5}, AxesLabel ->{x, (Abs[ψ])∧2},PlotRange→ {0, 1.67},
Filling→ {1→ Bottom},PlotStyle→ {Thick,Blue}

]
, {T , 1001}

]

Out[2]= Fig. 2
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(a) (b) (c)

(d) (e)

Fig. 1 Subfigures (a)–(e) are a few stills taken from the mathematica movie animation [123].
Starting with (a) they denote the oscillating electron density (shaded) of the ground “dynamic
harmonic state” of the time-dependent Schrödinger equation (4.1). These space oscillations
complement (with the help of Mathematica) the corresponding “static” textbook solution
(dashed)[157]

Example 3 The following animations simultaneously show the phase space oscilla-
tions of the electron density and the momentum probability distribution, according
to the Heisenberg Uncertainty Principle, for the dynamic ground state n = 0 with
parameters α0 = γ0 = ε0 = κ0 = 0, β0 = 2/3 and δ0 = 3/2:

In[3]:= Animate
[

Plot
[{

9
√

2 e
− 18

(
2x+3 Cos

[
1

500 π(249+T )
])2

97+65 Cos
[

1
250 π(−1+T )

]

√
97 + 65 Cos

[
1

250π(−1 + T )
] ,

9
√

2 e

18
(
−2x+3 Cos

[
1

500 π(−1+T )
])2

√
97+65 Cos

[
1

250 π(−1+T )
]

−97+65 Cos
[

1
250 π(−1+T )

]
√

97−65 Cos
[

1
250 π(−1+T )

]
}

, {x,−4.5, 4.5},

AxesLabel -> {{x, p}, {(Abs[ψ])∧2, (Abs[a])∧2}}, PlotRange→ {0, 2.3},
Filling→ {1→ Bottom}, PlotStyle→ {Thick,Blue}

]
, {T , 1001}

]

Out[3]= Fig. 3
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(a) (b) (c)

(d) (e)

Fig. 2 Subfigures (a)–(e) are a few stills taken from the mathematica movie animation [123].
Starting with (a) they denote the oscillating electron density (shaded) of the first excited “dynamic
harmonic state” of the time-dependent Schrödinger equation (4.1). These space oscillations
complement (with the help of Mathematica) the corresponding “static” textbook solution
(dashed)[157]

One immediately recognizes from these animations that the particle is the most
localized at the turning points when its linear momentum is the least precisely deter-
mined, as required by the fundamental Heisenberg Uncertainty Principle [92]—The
more precisely the position is determined, the less precisely the momentum is known
in this instant, and vice versa (see also [43]). In the creator own words—“If the
classical motion of the system is periodic, it may happen that the size of the wave
packet at first undergoes only periodic changes” (see [92, p. 38]).

According to the time-dependent form of creation and annihilation operators
and (4.14), the corresponding expectation values are given by

〈x〉 = − 1

β0
[(2α0ε0 − β0δ0) sin t + ε0 cos t] ,

d

dt
〈x〉 = 〈p〉, (4.16)

〈p〉 = − 1

β0
[(2α0ε0 − β0δ0) cos t − ε0 sin t] ,

d

dt
〈p〉 = −〈x〉 (4.17)
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with the initial data 〈x〉|t=0 = −ε0/β0 and 〈p〉|t=0 = − (2α0ε0 − β0δ0) /β0. This
provides a classical interpretation of our “hidden” parameters.

The expectation values 〈x〉 and 〈p〉 satisfy the classical equation for harmonic
motion, y ′′ + y = 0, with the total mechanical energy

1

2

[
〈p〉2 + 〈x〉2

]
= (2α0ε0 − β0δ0)

2 + ε2
0

2β2
0

= 1

2

[
〈p〉2 + 〈x〉2

]∣∣∣∣
t=0
. (4.18)

For the standard deviations,

〈(�p)2〉 =
(
n+ 1

2

) 1+ 4α2
0 + β4

0 +
(
4α2

0 + β4
0 − 1

)
cos 2t − 4α0 sin 2t

2β2
0

, (4.19)

〈(�x)2〉 =
(
n+ 1

2

) 1+ 4α2
0 + β4

0 −
(
4α2

0 + β4
0 − 1

)
cos 2t + 4α0 sin 2t

2β2
0

, (4.20)

one gets

〈(�p)2〉〈(�x)2〉 =
(
n+ 1

2

)2 1

4β4
0

[(
1+ 4α2

0 + β4
0

)2

−
((

4α2
0 + β4

0 − 1
)

cos 2t − 4α0 sin 2t
)2

]
.

(4.21)

In the case of the Schrödinger solution [157, 158] when α0 = δ0 = ε0 = 0 and
β0 = 1, we arrive at 〈x〉 = 〈p〉 ≡ 0 and

〈(�p)2〉 = 〈(�x)2〉 = n+ 1

2
(4.22)

as presented in the textbooks [73, 82, 84, 94, 113, 132]. The dependence on the
quantum number n, which disappears from the Ehrenfest theorem [63, 92], is
coming back at the level of the higher moments of the distribution.

According to (4.21),

〈(�p)2〉〈(�x)2〉 =
(
n+ 1

2

)2 1− 4α2
0 sin2 2t

β4
0

, (4.23)

provided that 4α2
0 + β4

0 = 1, and the product is equal to 1/4, if n = 0 and sin2 2t =
1. These are conditions for the minimum-uncertainty squeezed states of the simple
harmonic oscillator (see, for example, [94, 110]). For the coherent states α0 = 0 and
β0 = 1,which describes a two-parameter family with the initial data 〈x〉|t=0 = −ε0
and 〈p〉|t=0 = δ0.

The corresponding wave functions in the momentum representation are derived
by the (inverse) Fourier transform of our solutions (4.2) and (4.3)–(4.9). Moreover,
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below we explicitly present the action of the Schrödinger group on the wave
functions of harmonic oscillators and elaborate on the corresponding eigenfunction
expansion for the sake of ‘completeness’[110]. More examples are available in the
authors’ websites.

4.3 The Momentum Representation

For the wave functions in the momentum representation,

an (p, t) = 1√
2π

∫ ∞
−∞

e−ipxψn (x, t) dx, (4.24)

the integral evaluation is similar to Ref. [115]. As a result, the functions an (p, t)
are of the same form (4.2)–(4.9), if ψn → an and x → p, with the initial data

α1 = − α0

4α2
0 + β2

0

, β1 = β0√
4α2

0 + β2
0

, (4.25)

γ1 = γ0 + 1

2
arccot

β2
0

2α0
, μ1 = μ0

√
4α2

0 + β2
0 , (4.26)

δ1 = 2α0δ0 + β3
0ε0

4α2
0 + β2

0

, ε1 = 2α0ε0 − β0δ0√
4α2

0 + β2
0

, (4.27)

κ1 = κ0 + α0
(
β2

0ε
2
0 − δ2

0

)+ β3
0δ0ε0

4α2
0 + β2

0

. (4.28)

The calculation details are left to the reader [182] (see, for example, [82] for the
classical case).

4.4 The Schrödinger Group for Simple Harmonic Oscillators

The following substitution

ψ (x, t) = e
i
(
α(t)x2+δ(t)x+κ(t))
√
μ (t)

χ (ξ, τ ) , (4.29)

where relations (4.3)–(4.9) hold, transforms the time-dependent Schrödinger equa-
tion (4.1) into itself with respect to the new variables ξ = β (t) x + ε (t) and
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τ = −γ (t) [137] (see also [122] and references therein). A Mathematica
verification can be found in [106] and [182].

The eigenfunction expansion of the “dynamic harmonic states” with respect
to the standard “static” ones can be obtain in an obvious way (see, for example,
[114, 120] for similar integral evaluations and [110] for the details). The corre-
sponding matrix elements define the representation of the Schrödinger group acting
on the oscillator wave functions. (The structure of the Schrödinger group in two-
dimensional space-time as a semidirect product of SL (2,R) and WeylW (1) groups
is discussed, for example, in Refs. [34, 98] and [134].)

An explicit time evolution of the (bosonic field) creation and annihilation
operators for the “dynamic harmonic (Fock) states” (with the embedded hidden
Schrödinger group symmetry) can be easily derived from (4.1), (4.14) and (4.15).
Applications to the quantization of electromagnetic fields are discussed in
[109, 110, 112].

4.5 A Complex Parametrization of the Schrödinger Group

The Ansatz

ψ (x, t) = √
β (t)eiS(x,t) χ (ξ, τ ) , S = α (t) x2 + δ (t) x + κ (t) , (4.30)

where relations (4.4)–(4.9) hold, transforms the time-dependent Schrödinger equa-
tion (4.1) into itself:

2iψt + ψxx − x2ψ = eiSβ5/2
(

2iχτ + χξξ − ξ2χ
)
= 0 (4.31)

with respect to the new variables ξ = β (t) x + ε (t) and τ = −γ (t) . This
transformation is known as the Schrödinger group for linear harmonic oscillator
[137] (see also the previous subsection).

Let us introduce the following complex-valued function:

z = c1e
it + c2e

−it , z′′ + z = 0, (4.32)

where by definition

c1 =
(

1+ β2
0

)
/2− iα0, c2 =

(
1− β2

0

)
/2+ iα0 (4.33)

(
c1 + c2 = 1, |c1|2 − |c2|2 = β2

0

)
,

and

c3 = δ0
β0
− iε0. (4.34)
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Then Eqs. (4.4)–(4.9) can be rewritten in a compact form in terms of our complex-
valued parameters c1, c2, and c3. Indeed, with the help of identities

δ

β
+ iε =

(
δ0

β0
+ iε0

)
e2i(γ−γ0), (4.35)

δ − 2αε

β
+ i ε
β
=

(
δ0 − 2α0ε0

β0
+ i ε0

β0

)
e−it , (4.36)

1− β2

2
+ iα = e−it

(
1− β2

0

2
+ iα0

)
/
(

2α0 sin t + cos t + iβ2
0 sin t

)
, (4.37)

1+ β2

2
− iα = eit

(
1+ β2

0

2
− iα0

)
/
(

2α0 sin t + cos t + iβ2
0 sin t

)
(4.38)

one gets

|z| =
(
|c1|2 + c1c

∗
2e

2it + c∗1c2e
−2it + |c2|2

)1/2
(4.39)

and

α = i c1c
∗
2e

2it − c∗1c2e
−2it

2 |z|2 , (4.40)

β = β0

|z| = ±
√
|c1|2 − |c2|2
|z| , (4.41)

γ = γ0 − 1

2
arg z, (4.42)

δ = β0

2 |z|
(
c3e

i arg z + c∗3e−i arg z
)
, (4.43)

ε = i
2

(
c3e

i arg z − c∗3e−i arg z
)
, (4.44)

κ = κ0 − i
8

[
c2

3

(
1− e2i arg z

)
− c∗3 2

(
1− e−2i arg z

)]
. (4.45)

The inverse relations between the essential, real and complex, parameters are given
by

α0 = i
2

(
c1c
∗
2 − c∗1c2

)
, β0 = ±

√
|c1|2 − |c2|2, (4.46)

δ0 = ±1

2

√
|c1|2 − |c2|2

(
c3 + c∗3

)
, ε0 = i

2

(
c3 − c∗3

)
. (4.47)
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These formulas (4.40)–(4.45) provide a complex parametrization of the Schrödinger
group for the simple harmonic oscillator originally found in [137] (see also
[121, 122] and references therein; see [88] and [109] for an extension to generalized
harmonic oscillators).

4.6 Discussion

Quantum systems with quadratic Hamiltonians (see, for example, [3, 26, 27, 44,
57, 58, 68, 72, 88, 124, 200, 203, 206, 207] and references therein) have attracted
substantial attention over the years because of their great importance in many
advanced quantum problems. Examples are coherent and squeezed states, uncer-
tainty relations, Berry’s phase, quantization of mechanical systems and Hamiltonian
cosmology. More applications include, but are not limited to charged particle traps
and motion in uniform magnetic fields, molecular spectroscopy and polyatomic
molecules in varying external fields, crystals through which an electron is passing
and exciting the oscillator modes, and other mode interactions with external fields.
Quadratic Hamiltonians have particular applications in quantum electrodynamics
because the electromagnetic field can be represented as a set of generalized driven
harmonic oscillators [59, 72].

The maximal kinematical invariance group of the simple harmonic oscillator
[137] provides the multiparameter family of solutions, namely (4.2) and (4.3)–
(4.9), for an arbitrary choice of the initial data (of the corresponding Ermakov-type
system [67, 115, 116, 122]). These “hidden parameters”, that are explicitly visible
in the wave function, usually disappear after evaluation of matrix elements from
the spectrum. How to distinguish between these “new dynamic” and the “standard
static” harmonic oscillator states (and which of them is realized in a particular
measurement) is thus a fundamental problem. However, these oscillator states can
be detected in cold ion trap experiments [90, 117] and in the measuring the quantum
states of light [118]. A similar effect of proton beam (super)focusing in a thin
monocrystal film was predicted in [51, 52]; see also [110].

At the same time, the probability density |ψ (x, t)|2 of the solution (4.2) is
obviously moving with time, somewhat contradicting to the standard textbooks
[73, 82, 113, 132, 157, 158]—an elementary Mathematica simulation reveals
such space oscillations for the simplest “dynamic oscillator states” [122, 123]. The
same is true for the probability distribution of the particle linear momentum due
to the Heisenberg Uncertainty Principle [92]. These effects, quite possibly, can be
observed experimentally, say in Bose condensates, if the nonlinearity of the Gross–
Pitaevskii equation is turned off by the Feshbach resonance [46, 69, 102, 144, 169,
180]. A more elementary example is an electron moving in a uniform magnetic field.
By slowly changing the magnetic field, say, from an initially occupied Landau level
with the standard solution [113, 120], one may continuously follow the initial wave
function evolution (with the quadratic invariant) until the magnetic field becomes a
constant once again (a parametric excitation; see, for example, [45, 57, 114, 124]
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and the references therein). The terminal state will have, in general, the initial
conditions that are required for the “dynamic harmonic states” (4.2)–(4.9) and
the probability density should oscillate on the corresponding Landau level just
as our solution predicts. However, it is still not clear how to observe this effect
experimentally (but these “dynamic harmonic states” will have a nontrivial Berry’s
phase [26, 27, 154, 181, 182]).

One may imagine other possible applications, for example, in molecular spec-
troscopy [124], theory of crystals, quantum optics [84, 206], and cavity quantum
electrodynamics [56, 59, 77, 109, 205]. We believe in a dynamic character of
the nature [93]. All of that puts the consideration of this section into a much
broader mathematical and physical context—This may help better understand some
intriguing features of quantum motion and will be useful for pedagogy.

5 Expectation Values in Relativistic Coulomb Problems

Recent experimental progress has renewed interest in quantum electrodynamics of
atomic hydrogenlike systems. Experimentalists and theorists in atomic and particle
physics are discovering problems of common interest with new ideas and methods.
A current account of the status of this fundamental area of quantum physics, which
is more than a century old, is given in [99, 100, 135, 165]. Exciting research topics
vary from experimental testing of Quantum Electrodynamics (QED) to fruitful
training models for the bound-state Quantum Chromodynamics and Bose-Einstein
Condensation [47, 99–101, 135, 165, 204].

The highly charged ions are an ideal testing ground for the strong-field bound-
state QED. They posses a strong static Coulomb field of the nucleus and a simple
electronic structure which can be accurately computed from first principles. It is
possible nowadays to make massive highly charged ions with a strong nuclear
charge and only one electron through the periodic table up to uranium, the most
highly charged ion [85, 86]. These systems are truly relativistic and require the
Dirac wave equation as a starting point in a detailed investigation of their spectra
[135, 163]. The binding energy of a single K-shell electron in the electric field of a
uranium nucleus corresponds to roughly one third of the electron rest mass. For the
simple hydrogen atom the nonrelativistic Schrödinger approximation can be used
[28].

In the last decade, the two-time Green’s function method of deriving formal
expressions for the energy shift of a bound-state level of high-Z few-electron sys-
tems was developed [163] and numerical calculations of QED effects in heavy ions
were performed with excellent agreement to current experimental data [85, 86] (see
[161, 162, 165–167, 204] and references therein for more details). These advances
motivate, among other technical things, evaluation of the expectation values 〈Orp〉
for the standard Dirac matrix operators O = {1, β, iαnβ} between the bound-
state relativistic Coulomb wave functions. Special cases appear in calculations of
the magnetic dipole hyperfine splitting, the electric quadrupole hyperfine splitting,
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the anomalous Zeeman effect, and the relativistic recoil corrections in hydrogenlike
ions (see, for example, [1, 162, 164] and references therein). We discuss convenient
closed forms of these integrals in general and derive matrix symmetry relations
among them which can be useful in the theory of relativistic Coulomb systems.

In this section, we evaluate the matrix elements 〈Orp〉, whereO = {1, β, iαnβ}
are the standard Dirac matrix operators and the angular brackets denote the
quantum-mechanical average for the relativistic Coulomb problem, in terms of gen-
eralized hypergeometric functions 3F2 (1) for all suitable powers. Their connections
with the Chebyshev and Hahn polynomials of a discrete variable are emphasized. As
a result, we derive two sets of Pasternack-type matrix identities for these integrals,
when p→−p − 1 and p→−p − 3, respectively [176].

5.1 Evaluation of the Matrix Elements

We evaluate the following integrals of the radial functions:

Ap =
∫ ∞

0
rp+2

(
F 2 (r)+G2 (r)

)
dr, (5.1)

Bp =
∫ ∞

0
rp+2

(
F 2 (r)−G2 (r)

)
dr, (5.2)

Cp =
∫ ∞

0
rp+2F (r)G (r) dr (5.3)

in terms of generalized hypergeometric series. (Equation (C.4) of the Appendix C
establish their relations with the expectation values 〈Orp〉, where O =
{1, β, iαnβ} , respectively.) The final results with the notations from Sect. 3 can be
presented in two different closed forms. Use of the traditional radial functions (3.19)
results in:

2μ (2aβ)p
� (2ν + 1)

� (2ν + p + 1)
Ap = 2pεan 3F2

(
1− n, −p, p + 1

2ν + 1, 2

)
(5.4)

+ (μ+ aκ) 3F2

(
1− n, −p, p + 1

2ν + 1, 1

)
+ (μ− aκ) 3F2

(−n, −p, p + 1
2ν + 1, 1

)
,

2μ (2aβ)p
� (2ν + 1)

� (2ν + p + 1)
Bp = 2pan 3F2

(
1− n, −p, p + 1

2ν + 1, 2

)
(5.5)

+ε (μ+ aκ) 3F2

(
1− n, −p, p + 1

2ν + 1, 1

)
+ ε (μ− aκ) 3F2

(
−n, −p, p + 1

2ν + 1, 1

)
,
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4μ (2aβ)p
� (2ν + 1)

� (2ν + p + 1)
Cp (5.6)

= a (μ+ aκ) 3F2

(
1− n, −p, p + 1

2ν + 1, 1

)
− a (μ− aκ) 3F2

(
−n, −p, p + 1

2ν + 1, 1

)
.

Nikiforov and Uvarov’s form (3.13) gives the following result:

4μν2 (2aβ)p Ap (5.7)

= aκ (εκ + ν) � (2ν + p + 3)

� (2ν + 2)
3F2

(
1− n, p + 2, −p − 1

2ν + 2, 1

)

−2 (p + 2) a2μn
� (2ν + p + 2)

� (2ν + 1)
3F2

(
1− n, p + 2, −p − 1

2ν + 1, 2

)

+aκ (εκ − ν) � (2ν + p + 1)

� (2ν)
3F2

(−n, p + 2, −p − 1
2ν, 1

)
,

4μν (2aβ)p Bp (5.8)

= a (εκ + ν) � (2ν + p + 3)

� (2ν + 2)
3F2

(
1− n, p + 2, −p − 1

2ν + 2, 1

)

−a (εκ − ν) � (2ν + p + 1)

� (2ν)
3F2

(−n, p + 2, −p − 1
2ν, 1

)
,

8μν2 (2aβ)p Cp (5.9)

= aμ (εκ + ν) � (2ν + p + 3)

� (2ν + 2)
3F2

(
1− n, p + 2, −p − 1

2ν + 2, 1

)

−2 (p + 2) a2κn
� (2ν + p + 2)

� (2ν + 1)
3F2

(
1− n, p + 2, −p − 1

2ν + 1, 2

)

+aμ (εκ − ν) � (2ν + p + 1)

� (2ν)
3F2

(−n, p + 2, −p − 1
2ν, 1

)
.

Here, the terminating generalized hypergeometric series 3F2 (1) are related to the
Hahn and Chebyshev polynomials of a discrete variable [139, 183]. (See Eq. (5.11)
below, we usually omit the argument of the hypergeometric series 3F2 if it is equal to
1.) Two more forms occur if one takes one of the radial wave functions from (3.13)
and another one from (3.19). We leave the details to the reader.

The averages of rp for the relativistic hydrogen atom were evaluated by Davis
[49] in a form which is slightly different from our Eqs. (5.4) and (5.7); see also
[6] and [183] for a simple proof of the second formula including evaluation of the
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corresponding integral of the product of two Laguerre polynomials (Appendix A
below):

∫ ∞
0
e−xxα+s Lαn (x)Lβm (x) dx (5.10)

= (−1)n−m
� (α + s + 1) � (β +m+ 1) � (s + 1)

m! (n−m)! � (β + 1) � (s − n+m+ 1)

× 3F2

(−m, s + 1, β − α − s
β + 1, n−m+ 1

)
, n ≥ m.

(The limit c → ∞ of the integral Ap is discussed in [183].) Equations (5.5)–(5.6)
and (5.8)–(5.9), which we have not been able to find in the available literature, can
be derived in a similar fashion. It does not appear to have been noticed that the
corresponding 3F2 functions can be expressed in terms of Hahn polynomials:

h(α, β)n (x,N) = (−1)n
� (N) (β + 1)n
n! � (N − n) 3F2

(−n, α + β + n+ 1, −x
β + 1, 1−N

)
.

(5.11)

The ease of handling of these matrix elements for the discrete levels is greatly
increased if use is made of the known properties of these polynomials [66, 138, 139].

For example, the difference-differentiation formulas (4.34) and (4.35) of
Ref. [183] (see also (B.22) below) take the following convenient form

p (p + 1)

n+ 2ν
3F2

(
1− n, −p, p + 1

2ν + 1, 2

)
= p (p + 1)

2ν + 1
3F2

(
1− n, 1− p, p + 2

2ν + 2, 2

)

= 3F2

(−n, −p, p + 1
2ν + 1, 1

)
− 3F2

(
1− n, −p, p + 1

2ν + 1, 1

)
(5.12)

in terms of the generalized hypergeometric functions. (Another proof of these
identities is given in the Appendix B.) As a result, the linear relation holds [1, 160]

2κ
(
Ap − εBp

)− (p + 1)
(
Bp − εAp

) = 4μCp, (5.13)

and we can rewrite (5.4) and (5.5) in the following matrix form

2 (p + 1) aμ (2aβ)p
� (2ν + 1)

� (2ν + p + 1)

(
Ap

Bp

)
(5.14)

=
(
γ1 γ2

δ1 δ2

)
⎛
⎜⎜⎝

3F2

(
1− n, −p, p + 1

2ν + 1, 1

)

3F2

(−n, −p, p + 1
2ν + 1, 1

)
⎞
⎟⎟⎠ (p �= −1) ,
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where

γ1 = (μ+ aκ) (a (2εκ + p + 1)− 2εμ) ,

γ2 = (μ− aκ) (a (2εκ + p + 1)+ 2εμ) (5.15)

and

δ1 = (μ+ aκ) (a (2κ + ε (p + 1))− 2μ) ,

δ2 = (μ− aκ) (a (2κ + ε (p + 1))+ 2μ) . (5.16)

This representation of integrals Ap and Bp involves the Chebyshev polynomials of

a discrete variable h(0, 0)
p (x,−2ν) at x = n, n − 1 only; see also Eq. (5.6) for Cp.

The corresponding dual Hahn polynomials [139] may be considered as difference
analogs of the Laguerre polynomials in Eq. (3.19) for the relativistic radial functions
[178].

5.2 Inversion Formulas

Due to the symmetry of the hypergeometric functions in (5.4)–(5.6) under the
transformation p→−p − 1, one gets [176]

A−p−1 = (2aβ)2p+1 � (2ν − p)
� (2ν + p + 1)

((
1+ ε2

)
p + ε2

)
Ap − (2p + 1) εBp(

1− ε2
)
p

,

(5.17)

B−p−1 = (2aβ)2p+1 � (2ν − p)
� (2ν + p + 1)

(2p + 1) εAp −
((

1+ ε2
)
p + 1

)
Bp(

1− ε2
)
p

,

(5.18)

C−p−1 = (2aβ)2p+1 � (2ν − p)
� (2ν + p + 1)

Cp. (5.19)

(These relations allow us to evaluate all the convergent integrals with p ≤ −2.)
Indeed,

A−p−1 − εB−p−1 = (2aβ)2p+1 � (2ν − p)
� (2ν + p + 1)

(
Ap − εBp

)
, (5.20)

B−p−1− εA−p−1 = −p + 1

p
(2aβ)2p+1 � (2ν − p)

� (2ν + p + 1)

(
Bp − εAp

)
, (5.21)

which gives the first two equations, if Bp �= εAp and p �= 0,−1. The last
one follows from (5.6). Special cases p = 0,−1 of (5.20)–(5.21) are simply
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identity (5.46) and Fock’s virial theorem (5.43), respectively. In view of our
formulas (5.4)–(5.5), equation Bp = εAp occurs only when p = 0 or n = 0.

The symmetry of the hypergeometric functions in (5.7)–(5.9) under another
reflection p→−p − 3 gives

A−p−3 = (2aβ)2p+3 � (2ν − p − 2)

� (2ν + p + 3)
(5.22)

×
(

4μ2 (2p + 3)+ (p + 2)
(
4ν2 + (p + 1) (p + 2)

)
p + 2

Ap

− 2κ (2p + 3) Bp − 8κμ
2p+ 3

p + 2
Cp

)
,

B−p−3 = (2aβ)2p+3 � (2ν − p − 2)

� (2ν + p + 3)
(5.23)

×
(
−2κ (2p + 3) Ap +

(
4ν2 + (p + 1) (p + 2)

)
Bp

+ 4μ (2p + 3) Cp
)
,

C−p−3 = (2aβ)2p+3 � (2ν − p − 2)

� (2ν + p + 3)
(5.24)

×
(

2κμ
2p + 3

p + 2
Ap − μ (2p + 3) Bp

− 4μ2 (2p + 3)+ (p + 1)
(
4ν2 − (p + 2)2

)
p + 2

Cp

)

as a result of elementary matrix multiplications. These relations can be used for all
the convergent integrals with p ≤ −3. Further details are left to the reader [176].

The corresponding single two-term nonrelativistic relation was found by Paster-
nack [141, 142] (see also subsection 2.5.1, [160] and references therein). We have
been unable to find the relativistic matrix identities (5.17)–(5.19) and (5.22)–(5.24)
in the available literature (see Eq. (18) of [6] as the closest analog).

5.3 Recurrence Relations

A set of useful recurrence relations between the relativistic matrix elements was
derived by Shabaev [160] (see also [1, 65, 164, 192]) on the basis of a hypervirial
theorem:

2κAp − (p + 1)Bp = 4μCp + 4βεCp+1, (5.25)
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2κBp − (p + 1)Ap = 4βCp+1, (5.26)

μBp − (p + 1)Cp = β
(
Ap+1 − εBp+1

)
. (5.27)

(Their computer algebra derivation is presented in [143].) Linear relation (5.13) and
convenient recurrence formulas

Ap+1 = − (p + 1)
4ν2ε + 2κ (p + 2)+ ε (p + 1) (2κε + p + 2)

4
(
1− ε2

)
(p + 2) βμ

Ap (5.28)

+4μ2 (p + 2)+ (p + 1) (2κε + p + 1) (2κε + p + 2)

4
(
1− ε2

)
(p + 2) βμ

Bp,

Bp+1 = − (p + 1)
4ν2 + 2κε (2p + 3)+ ε2 (p + 1) (p + 2)

4
(
1− ε2

)
(p + 2) βμ

Ap (5.29)

+4μ2ε (p + 2)+ (p + 1) (2κε + p + 1) (2κ + ε (p + 2))

4
(
1− ε2

)
(p + 2) βμ

Bp,

Cp+1 = 1

4μ
(2κ + ε (p + 2)) Ap+1 − 1

4μ
(2κε + p + 2) Bp+1 (5.30)

are obtained from these equations (see [1, 160, 164] for more details). Their con-
nections with the theory of generalized hypergeometric functions will be discussed
elsewhere.

5.4 Special Expectation Values and Their Applications

The Sommerfeld–Dirac formula (3.17) is derived for a point charge atomic nucleus
with infinite mass and no internal structure (electron moving in static Coulomb
field). In reality, the electron’s mass is not negligibly small compared with the
nuclear mass and one has to consider the effect of nuclear motion on the energy
levels. Actual nuclei have a finite size and possess some internal structure, such as an
internal angular momentum or spin, a magnetic dipole moment, and a small electric
quadrupole moment associated with the spin, which also affect the energy levels.
Radiative corrections are introduced by the quantization of the electromagnetic
radiation field. (See [28, 37, 161–163, 165, 166, 204] and references therein for more
details.) Calculations of the real energy levels of the high-Z one-electron systems
with the help of the perturbation theory require special relativistic matrix elements.

From the explicit expressions (5.4)–(5.9) one can derive the following special
matrix elements:

A2 =
〈
r2
〉
= 5n (n+ 2ν)+ 4ν2 + 1− εκ (2εκ + 3)

2 (aβ)2
(5.31)
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= 2κ2ε4 + 3κε3 + (
3μ2 − ν2 − 1

)
ε2 − 3κε − ν2 + 1

2β2
(
1− ε2

)2 ,

A1 = 〈r〉 = 3εμ2 − κ (1− ε2
)
(1+ εκ)

2βμ
(
1− ε2

) , (5.32)

A0 = 〈1〉 = 1, (5.33)

A−1 =
〈

1

r

〉
= β

μν

(
1− ε2

) (
εν + μ

√
1− ε2

)
(5.34)

= m
2c4 − E2

m2c4

⎛
⎝ E

Ze2 +
√

m2c4 − E2

h̄2c2κ2 − Z2e4

⎞
⎠ ,

A−2 =
〈

1

r2

〉
= 2a3β2κ (2εκ − 1)

μν
(
4ν2 − 1

) , (5.35)

A−3 =
〈

1

r3

〉
= 2 (aβ)3

3ε2κ2 − 3εκ − ν2 + 1

ν
(
ν2 − 1

) (
4ν2 − 1

) . (5.36)

(Note that A−3 exists only if |κ | ≥ 2 [160].) The average distance between the
electron and the nucleus r = 〈r〉 is given by A1. The mean square deviation of

the nucleus-electron separation is (r − r)2 = A2 − (A1)
2 . The energy eigenvalue

〈E〉 , mean radius 〈r〉 and mean square radius
〈
r2
〉
are frequently used when making

comparisons of wave functions computed by different approximation methods. The
integrals A1 and A2 have been evaluated in [40, 78, 146, 183] (see also Ref. [6] for
closed-form expressions for

{
Ap

}5
p=−6). Matrix elementA−3 appears in calculation

of the electric quadrupole hyperfine splitting [145, 161, 164]. Integrals Ap are also
part of the expression for the effective electrostatic potential for the relativistic
hydrogenlike atom [183].

B2 =
〈
βr2

〉
= ε

2 (aβ)2

(
5n (n+ 2ν)+ 2ν2 + 1− 3εκ

)
(5.37)

= ε 3κε3 + (
5μ2 + 3ν2 − 1

)
ε2 − 3κε − 3ν2 + 1

2β2
(
1− ε2

)2 ,

B1 = 〈βr〉 = 3ε2μ2 − (
1− ε2

) (
εκ + ν2

)
2βμ

(
1− ε2

) , (5.38)

B0 = 〈β〉 = ε = E

mc2
, (5.39)
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B−1 =
〈
β

r

〉
= βa

2

μ
= m

2c4 − E2

Ze2mc2 , (5.40)

B−2 =
〈
β

r2

〉
= 2a3β2

(
2ν2 − εκ)

μν
(
4ν2 − 1

) , (5.41)

B−3 =
〈
β

r3

〉
= 2 (aβ)3 ε

1+ 2ν2 − 3εκ

ν
(
ν2 − 1

) (
4ν2 − 1

) . (5.42)

The integral B0 appears in the virial theorem for the Dirac equation in a Coulomb
field,

E = mc2 〈β〉 , (5.43)

established by Fock [74] and then developed by many authors (see [37, 39, 60, 65,
76, 81, 125, 130, 149, 150, 152, 155, 160, 164] and references therein). Relation
(5.43) can also be obtained with the help of the Hellmann–Feynman theorem,

∂E

∂λ
=

〈
∂H

∂λ

〉
(5.44)

(see [17, 18, 65, 130] and references therein), if applied to the mass parameter [1,
164]. This theorem implies two more relations

∂E

∂Z
= −e2

〈
1

r

〉
= −e2A−1,

∂E

∂κ
= 2h̄cC−1. (5.45)

The following identities hold

A−1 − εB−1 = a
3β

ν
= 1

β
(μB−2 + C−2) (5.46)

by (5.27). The integral B−1 is evaluated in [37] and A−1, A−2, B−2, C−2, and
A−3 are given in [160] (see also [164]).

The relativistic recoil corrections to the energy levels, when nuclear motion is
taken into consideration, require matrix elements A−2, B−1 and C−2 (see [1, 37,
162, 166] and references therein).

C2 = κa
2
(
3n (n+ 2ν)+ 2ν2 + 1

)− 3μ2ε

4μ (aβ)2
(5.47)

= κ
(
1− ε2

) (
1− ν2

)+ 3εμ2 (εκ − 1)

4μβ2
(
1− ε2

) ,
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C1 = 2εκ − 1

4β
= h̄

4m2c3

(
2κE −mc2

)
, (5.48)

C0 = κ

2μ

(
1− ε2

)
= h̄cκ

2Ze2

m2c4 − E2

m2c4
, (5.49)

C−1 = κ

2μν
a3β = aβ

ν
C0 (5.50)

= h̄κ

2Ze2m2c3

(
m2c4 − E2

)3/2

(
h̄2c2κ2 − Z2e4

)1/2 ,

C−2 = a
3β2 (2εκ − 1)

ν
(
4ν2 − 1

) = 4 (aβ)3 C1

ν
(
4ν2 − 1

) , (5.51)

C−3 = (aβ)3 κ
(
1− ε2

) (
1− ν2

)+ 3εμ2 (εκ − 1)

μν
(
ν2 − 1

) (
4ν2 − 1

) = 4 (aβ)5 C2

ν
(
ν2 − 1

) (
4ν2 − 1

) .
(5.52)

The integralsC0, C1, andB−1 are computed in [81]. In view of (5.40) and (5.49),
respectively (5.35) and (5.51), the following simple relations hold

C0 = κ

2β
B−1, A−2 = 2κ

μ
C−2 = 8 (aβ)3 κ

μν
(
4ν2 − 1

)C1. (5.53)

The last but one was originally found in [39].
The integralC1 occurs in calculations of the bound-electron g factor (the anoma-

lous Zeeman effect in the presence of an external homogeneous static magnetic
field) [126, 149, 164, 167, 201]. The matrix elementC−1 has also been found by the
Hellmann–Feynman theorem (5.45). The integral C−2 appears in calculation of the
magnetic dipole hyperfine splitting [36, 39, 76, 129, 145, 149, 161].

We hope that the rest of matrix elements will also be useful in the current theory
of hydrogenlike heavy ions and other exotic relativistic Coulomb systems. Professor
Shabaev kindly pointed out that the formulas derived in this section can be used in
calculations with hydrogenlike wave functions where a high precision is required
(see also [105] for the most accurate up-to-date electron mass measurements, where
the relativistic mean electric fields are estimated with the help of one of our
integrals).

In Table 1, we list the expectation values for the 1s1/2 state, when n = nr =
0, l = 0, j = 1/2, and κ = −1. The corresponding radial wave functions are
given by Eq. (3.20).
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Table 1 Expectation values for the 1s1/2 state

p Ap Bp Cp

2
1

2

(a0

Z

)2
(ν1 + 1) (2ν1 + 1)

1

2

( a0

Z

)2
ν1 (ν1 + 1) (2ν1 + 1) −λa0

4Z
(ν1 + 1) (2ν1 + 1)

1
a0

2Z
(2ν1 + 1)

a0

2Z
ν1 (2ν1 + 1) −λ

4
(2ν1 + 1)

0 1 ν1 − λZ
2a0

−1
Z

a0ν1

Z

a0
−

(
Z

a0

)2 λ

2ν1

−2

(
Z

a0

)2 2

ν1 (2ν1 − 1)

(
Z

a0

)2 2

(2ν1 − 1)
−

(
Z

a0

)3 λ

ν1 (2ν1 − 1)

−3

(
Z

a0

)3 2

ν1 (ν1 − 1) (2ν1 − 1)

(
Z

a0

)3 2

(ν1 − 1) (2ν1 − 1)
−

(
Z

a0

)4 λ

ν1 (ν1 − 1) (2ν1 − 1)

In the table, ε1 = ν1 =
√

1− μ2 =
√

1− (αZ)2, α = e2/h̄c is the Sommerfeld
fine structure constant, a0 = h̄2/me2 is the Bohr radius, and λ = h̄/mc is the
Compton wavelength. The relations

Bp = ε1 Ap, Cp = − λZ
2a0

Ap, Ap =
( a0

2Z

)p � (2ν1 + p + 1)

� (2ν1 + 1)
(5.54)

(for all the suitable integers p > −2ν1 − 1 > −3) follow directly from (5.4), (5.5)
and (5.7), (5.9). (The formal expressions forA−3, B−3, andC−3,when the integrals
diverge, are included into the table for “completeness”; see Ref. [1] for more
details.) The reflection relation (5.19) holds for all the convergent integralsAp, Bp,
and Cp.

5.5 Three-Term Recurrence Relations and Computer Algebra
Methods

The following three-term recurrence relations for the relativistic matrix elements
have been found in [178]:

Ap+1 = μP (p)

a2β
(
4μ2 (p + 1)+ p (2εκ + p) (2εκ + p + 1)

)
(p + 2)

Ap (5.55)

−
(

4ν2 − p2
) (

4μ2 (p + 2)+ (p + 1) (2εκ + p + 1) (2εκ + p + 2)
)
p

(2aβ)2
(
4μ2 (p + 1)+ p (2εκ + p) (2εκ + p + 1)

)
(p + 2)

Ap−1,
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Bp+1 = εμQ (p)

a2β
(
4ν2 + 2εκ (2p + 1)+ ε2p (p + 1)

)
(p + 2)

Bp (5.56)

−
(
4ν2 − p2

) (
4ν2 + 2εκ (2p + 3)+ ε2 (p + 1) (p + 2)

)
(p + 1)

(2aβ)2
(
4ν2 + 2εκ (2p + 1)+ ε2p (p + 1)

)
(p + 2)

Bp−1,

where

P (p) = 2εp (p + 2) (2εκ + p) (2εκ + p + 1) (5.57)

+ε
(

4
(
ε2κ2 − ν2

)
− p

(
4ε2κ2 + p (p + 1)

))

+ (2p + 1)
(

4ε2κ + 2 (p + 2)
(

2εμ2 − κ
))
,

Q (p) = (2p + 3)
(

4ν2 + 2εκ (2p + 1)+ p (p + 1)
)

(5.58)

−a2 (2p + 1) (p + 1) (p + 2) .

In comparison with other papers (see [1, 6, 159, 160, 176, 179] and references
therein), our consideration provides an alternative way of the recursive evaluation of
the special values Ap and Bp, when we deal separately with one of these integrals
only. The corresponding initial data A0 = 1, B−1 = a2β/μ can be found in [176].

These three-term recurrence relations are investigated by advanced computer
algebra methods in [107, 143] among other things. For instance, their direct
derivations from the integrals of Laguerre polynomials (5.1) and (5.2) are given
[107].
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Appendix A: Evaluation of an Integral

Let us compute the following integral

J αβnms =
∫ ∞

0
e−xxα+sLαn (x)Lβm (x) dx, (A.1)
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where n ≥ m and α − β = 0,±1,±2, . . . . Similar integrals were evaluated in
[28, 49] and [113], see also references therein, but an important relation with the
Hahn polynomials seems to be missing.

It is convenient to assume at the beginning that parameter s takes some
continuous values such that α + s > −1 for convergence of the integral. Using
the Rodrigues formula for the Laguerre polynomials [138, 139, 184]

Lαn (x) =
1

n!e
xx−α

(
xα+ne−x

)(n)
, (A.2)

see the proof in Sect. 1 of the present chapter, and integrating by parts

J αβnms =
1

n!
∫ ∞

0

(
xα+ne−x

)(n) (
xsLβm (x)

)
dx

= 1

n!
((
xα+ne−x

)(n−1) (
xsLβm (x)

))∣∣∣∞
0

− 1

n!
∫ ∞

0

(
xα+ne−x

)(n−1) (
xsLβm (x)

)′
dx

...

= (−1)n

n!
∫ ∞

0

(
xα+ne−x

) (
xsLβm (x)

)(n)
dx.

However, in view of (B.1),

(
xsLβm (x)

)(n) = � (β +m+ 1)

m! � (β + 1)

∑
k

(−m)k
k! (β + 1)k

(
xk+s

)(n)
(A.3)

= � (β +m+ 1) � (s + 1)

m! � (β + 1) � (s − n+ 1)

∑
k

(−m)k (s + 1)k
k! (β + 1)k (s − n+ 1)k

xk+s−n

and with the help of Euler’s integral representation for the gamma function [8, 138]

∫ ∞
0
xα+k+se−x dx = � (α + k + s + 1) = (α + s + 1)k � (α + s + 1) ,

see also (B.10) below, one gets

J αβnms = (−1)n
� (α + s + 1) � (β +m+ 1) � (s + 1)

n! m! � (β + 1) � (s − n+ 1)

× 3F2

(−m, s + 1, α + s + 1
β + 1, s − n+ 1

)
. (A.4)
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See [16] or Eq. (1.12) for the definition of the generalized hypergeometric series
3F2 (1) . Thomae’s transformation (B.8), see also [16] or [79], results in [183]

J αβnms =
∫ ∞

0
e−xxα+s Lαn (x)Lβm (x) dx (A.5)

= (−1)n−m
� (α + s + 1) � (β +m+ 1) � (s + 1)

m! (n−m)! � (β + 1) � (s − n+m+ 1)

× 3F2

(−m, s + 1, β − α − s
β + 1, n−m+ 1

)
, n ≥ m,

where parameter s may take some integer values. This establishes a connection with
the Hahn polynomials given by Eq. (B.6) below; one can also rewrite this integral in
terms of the dual Hahn polynomials [139].

Letting s = 0 and α = β in (A.5) results in the orthogonality relation for the
Laguerre polynomials. Two special cases

I1 = J ααnn1 =
∫ ∞

0
e−xxα+1 (Lαn (x))2

dx = (α + 2n+ 1)
� (α + n+ 1)

n!
(A.6)

and

I2 = J α−2, α
n, n−1, 2 =

∫ ∞
0
e−xxαLαn−1 (x)L

α−2
n (x) dx = −2

� (α + n)
(n− 1)! (A.7)

are convenient for normalization of the wave functions of the discrete spectra in the
nonrelativistic and relativistic Coulomb problems [28, 138].

Two other special cases of a particular interest in this chapter are

Jk = J ααnnk =
∫ ∞

0
e−xxα+k

(
Lαn (x)

)2
dx (A.8)

= � (α + k + 1) � (α + n+ 1)

n! � (α + 1)
3F2

(−k, k + 1, −n
1, α + 1

)

and

J−k−1 = J ααnn, −k−1 =
∫ ∞

0
e−xxα−k−1 (

Lαn (x)
)2
dx (A.9)

= � (α − k) � (α + n+ 1)

n! � (α + 1)
3F2

(−k, k + 1, −n
1, α + 1

)
.
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The Chebyshev polynomials of a discrete variable tk (x) are special case of the Hahn
polynomials tk (x,N) = h(0, 0)

k (x,N) [185, 186] and [187]. Thus from (A.8)–(A.9)
and (B.6) one finally gets

Jk = J ααnnk =
∫ ∞

0
e−xxα+k

(
Lαn (x)

)2
dx (A.10)

= � (α + n+ 1)

n! tk (n,−α)

and

J−k−1 = J ααnn, −k−1 =
∫ ∞

0
e−xxα−k−1 (

Lαn (x)
)2
dx (A.11)

= � (α − k)� (α + n+ 1)

n! � (α + k + 1)
tk (n,−α)

for 0 ≤ k < α. One can see that the positivity of these integrals is related to a
nonstandard orthogonality relation for the corresponding Chebyshev polynomials
of a discrete variable tk (x,N) when the parameter takes negative integer values
N = −α. Indeed, according to the method of [139] and [138], these polynomials
are orthogonal with the discrete uniform distribution on the interval [−α,−1] which
contains all their zeros and, therefore, they are positive for all nonnegative values
of their argument. The explicit representation (B.6) gives also a positive sum for all
positive x and negativeN.

Appendix B: Hypergeometric Series, Discrete Orthogonal
Polynomials, and Useful Relations

This section contains some relations involving the generalized hypergeometric
series, the Laguerre and Hahn polynomials, the spherical harmonics and Clebsch–
Gordan coefficients, which are used throughout the paper.

The Laguerre polynomials are defined as [8, 138, 139, 184]

Lαn (x) =
� (α + n+ 1)

n! � (α + 1)
1F1

( −n
α + 1

; x
)
. (B.1)

(It is a consequence of Theorem 1.1.) The differentiation formulas [138, 139]

d

dx
Lαn (x) = −Lα+1

n−1 (x) , (B.2)
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x
d

dx
Lαn (x) = nLαn (x)− (α + n)Lαn−1 (x) (B.3)

imply a recurrence relation

xLα+1
n−1 (x) = (α + n)Lαn−1 (x)− nLαn (x) . (B.4)

The simplest case of the connecting relation (c.f. [8] and [9]) is

Lαn (x) = Lα+1
n (x)− Lα+1

n−1 (x) . (B.5)

The Hahn polynomials are [138, 139]

h(α, β)n (x,N) = (−1)n
� (N) (β + 1)n
n! � (N − n) 3F2

(
−n, α + β + n+ 1, −x

β + 1, 1− N ; 1

)
. (B.6)

(We usually omit the argument of the hypergeometric series 3F2 if it is equal to
one.) An asymptotic relation with the Jacobi polynomials is

1

Ñ
n h

(α, β)
n

(
Ñ

2
(1+ s)− β + 1

2
, N

)
= P (α, β)n (s)+ O

(
1

Ñ
2

)
, (B.7)

where Ñ = N + (α + β) /2 and N →∞; see [139] for more details.
Thomae’s transformation [16, 79] is

3F2

(−n, a, b
c, d

; 1

)
= (d − b)n

(d)n
3F2

( −n, c − a, b
c, b − d − n+ 1

; 1

)
(B.8)

with n = 0, 1, 2, . . . .
The summation formula of Gauss [8, 16, 79]

2F1

(
a, b

c
; 1

)
= � (c)� (c − a − b)
� (c − a)� (c − b), Re (c − a − b) > 0. (B.9)

The gamma function is defined as [8, 66, 138]

� (z) =
∫ ∞

0
e−t tz−1 dt, Re z > 0. (B.10)

It can be continued analytically over the whole complex plane except the points
z = 0,−1,−2, . . . at which it has simple poles. Functional equations are

� (z + 1) = z� (z) , (B.11)
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� (z) � (1− z) = π

sinπz
, (B.12)

22z−1� (z)� (z+ 1/2) = √π� (2z) . (B.13)

The generating function for the Legendre polynomials and the addition theorem
for spherical harmonics give rise to the following expansion formula [138, 189]

1

|r1 − r2| =
∞∑
l=0

l∑
m=−l

4π

2l + 1

rl<

rl+1
>

Ylm (θ1, ϕ1) Y
∗
lm (θ2, ϕ2) , (B.14)

where r< = min (r1, r2) and r> = max (r1, r2) .
The Clebsch–Gordan series for the spherical harmonics is [139, 148, 189]

Yl1m1 (θ, ϕ) Yl2m2 (θ, ϕ) =
l1+l2∑

l=|l1−l2|

√
(2l1 + 1) (2l2 + 1)

4π (2l + 1)
(B.15)

×Cl, m1+m2
l1m1l2m2

C
l, 0
l10l20 Yl,m1+m2 (θ, ϕ) ,

where Clml1m1l2m2
are the Clebsch–Gordan coefficients. The special case l2 = 1 reads

[71],

− sin θeiϕ Yl, m−1 =
√
(l+m)(l+m+1)
(2l+1)(2l+3) Yl+1, m −

√
(l−m)(l−m−1)
(2l+1)(2l−1) Yl−1, m, (B.16)

sin θe−iϕ Yl, m+1 =
√
(l−m)(l−m+1)
(2l+1)(2l+3) Yl+1, m −

√
(l+m)(l+m+1)
(2l+1)(2l−1) Yl−1, m, (B.17)

cos θ Ylm =
√

(l+1)2−m2

(2l+1)(2l+3) Yl+1, m +
√

l2−m2

(2l−1)(2l+1) Yl−1, m, (B.18)

where

√
8π

3
Y1, ±1 = ∓ sin θe±iϕ,

√
4π

3
Y10 = cos θ. (B.19)

These relations allow to prove (3.34) by a direct calculation.
The required identity (5.12) can be derived from the theory of classical polyno-

mials in the following fashion. Let us start from the difference equation for the Hahn
polynomials ym = h(α, β)m (x,N) [139]:

(σ (x)∇ + τ (x))�ym + λmym = 0, (B.20)
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where�f (x) = ∇f (x + 1) = f (x + 1)− f (x) and

σ (x) = x (α +N − x) , (B.21)

τ (x) = (β + 1) (N − 1)− (α + β + 2) x,

λm = m(α + β +m+ 1) ,

and use the familiar difference-differentiation formula:

�h(α, β)m (x,N) = (α + β +m+ 1) h(α+1, β+1)
m−1 (x,N − 1) . (B.22)

As a result,

(σ (x)∇ + τ (x)) h(α+1, β+1)
m−1 (x,N − 1)+mh(α, β)m (x,N) = 0. (B.23)

Letting α = β and β →−1, one gets

x (N − x − 1)∇h(0, 0)
m−1 (x,N − 1) = −m lim

β→−1
h(β, β)m (x,N) (B.24)

= (−1)m m (m− 1)
� (N − 1)

� (N −m)x 3F2

(
1−m, m, 1− x

2, 2−N
)

by (5.11). The last identity takes the form (5.12), if the Chebyshev polynomials of
a discrete variable h(0, 0)

m−1 (x,N − 1) are replaced by the corresponding generalized
hypergeometric functions. (Use of (B.22) in (B.24) gives the special 3F2 transfor-
mation.)

Appendix C: Dirac Matrices and Inner Product

We use the standard representations of the Dirac and Pauli matrices (3.3) and (3.4).
The inner product of two Dirac (bispinor) wave functions

ψ =
(

u1

v1

)
=

⎛
⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ , φ =

(
u2

v2

)
=

⎛
⎜⎜⎝
φ1

φ2

φ3

φ4

⎞
⎟⎟⎠ (C.1)



An Introduction to Special Functions with Some Applications to Quantum Mechanics 617

is defined as a scalar quantity

〈ψ, φ〉 =
∫
R3
ψ†φ dv =

∫
R3

(
u

†
1u2 + v

†
1v2

)
dv (C.2)

=
∫
R3

(
ψ∗1φ1 + ψ∗2φ2 + ψ∗3φ3 + ψ∗4φ4

)
dv

and the raised asterisk is used to denote the complex conjugate. The corresponding
expectation values of a matrix operator A are given by

〈A〉 = 〈ψ, Aψ〉 . (C.3)

From this definition one gets

〈rp〉 = Ap, 〈βrp〉 = Bp, 〈iαnβrp〉 = −2Cp, (C.4)

where the integrals Ap, Bp, and Cp are given by (5.1)–(5.3), respectively.
Indeed, the first relation is derived, for example, in [183] and the second one can

be obtained by integrating the identity

rpψ†βψ = rp
(
ϕ†, χ†

)(
1 0
0 −1

) (
ϕ

χ

)
= rp

(
ϕ†, χ†

) (
ϕ

−χ

)
(C.5)

= rp
(
ϕ†ϕ − χ†χ

)
= rp

(
Y†Y

) (
F 2 −G2

)

(we leave details to the reader) in a similar fashion.
In the last case, we start from the matrix identity

(αn) βψ =
(

0 σn
σn 0

)(
ϕ

−χ

)
=

(− (σn) χ

(σn) ϕ

)
(C.6)

and use the Ansatz [183]

ϕ = ϕ (r) = Y (n) F (r) , χ = χ (r) = −i ((σn)Y (n)) G (r) , (C.7)
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where n = r/r andY = Y±jm (n) are the spinor spherical harmonics given by (3.12).
As a result,

irpψ† ((αn) βψ) = irp
(
ϕ†, χ†

)(− (σn) χ

(σn) ϕ

)

= irp
(
FY†, iGY† (σn)

)(
iYG

(σn)YF
)

= −rp
(
Y†Y

)
FG− rp

(
Y† (σn)2 Y

)
FG

= −2rp
(
Y†Y

)
FG (C.8)

with the help of the familiar identity (σn)2 = n2 = 1. Integration over R3 in the
spherical coordinates completes the proof.
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Orthogonal and Multiple Orthogonal
Polynomials, Random Matrices,
and Painlevé Equations

Walter Van Assche

Abstract Orthogonal polynomials and multiple orthogonal polynomials are inter-
esting special functions because there is a beautiful theory for them, with many
examples and useful applications in mathematical physics, numerical analysis,
statistics and probability and many other disciplines. In these notes we give an
introduction to the use of orthogonal polynomials in random matrix theory, we
explain the notion of multiple orthogonal polynomials, and we show the link with
certain non-linear difference and differential equations known as Painlevé equations.
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polynomials · Painlevé equations
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1 Introduction

For these lecture notes I assume the reader is familiar with the basic theory of
orthogonal polynomials, in particular the classical orthogonal polynomials (Jacobi,
Laguerre, Hermite) should be known. In this introduction we will fix the notation
and terminology. Let μ be a positive measure on the real line for which all the
momentsmn, n ∈ N = {0, 1, 2, 3, . . .} exist, where

mn =
∫
R

xn dμ(x).
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The orthonormal polynomials (pn)n∈N are such that pn(x) = γnx
n + · · · , with

γn > 0, satisfying the orthogonality condition

∫
R

pn(x)pm(x) dμ(x) = δm,n, m, n ∈ N.

It is well known that the zeros of pn are real and simple, and we denote them by

x1,n < x2,n < · · · < xn,n.

Orthonormal polynomials on the real line always satisfy a three-term recurrence
relation

xpn(x) = an+1pn+1(x)+ bnpn(x)+ anpn−1(x), n ≥ 1, (1.1)

with initial condition p0 = 1/
√
m0 and p−1 = 0, with recurrence coefficients

an+1 > 0 and bn ∈ R for n ≥ 0. Often we will also use monic orthogonal
polynomials, which we denote by capital letters:

Pn(x) = 1

γn
pn(x) = xn + · · · .

Their recurrence relation is of the form

Pn+1(x) = (x − bn)Pn(x)− a2
nPn−1(x), (1.2)

with initial conditions P0 = 1 and P−1 = 0. The classical families of orthogonal
polynomials are

• The Jacobi polynomials P (α,β)n , for which

∫ 1

−1
P (α,β)n (x)P (α,β)m (x)(1− x)α(1+ x)β dx = 0, m �= n,

with parameters α, β > −1.
• The Laguerre polynomials L(α)n for which

∫ ∞
0
L(α)n (x)L

(α)
m (x)x

αe−x dx = 0, m �= n,

with parameter α > −1.
• The Hermite polynomialsHn(x) for which

∫ ∞
−∞
Hn(x)Hm(x)e

−x2
dx = 0, m �= n.
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Usually these polynomials are neither normalized nor monic but another normaliza-
tion is used (for historical reasons) and one has to be a bit careful with some of the
general formulas for orthonormal or monic orthogonal polynomials.

The matrix

Hn =

⎛
⎜⎜⎜⎜⎜⎝

m0 m1 m2 · · · mn−1

m1 m2 m3 · · · mn
m2 m3 m4 · · · mn+1
...

...
... · · · ...

mn−1 mn mn+1 · · · m2n−2

⎞
⎟⎟⎟⎟⎟⎠
= (
mi+j−2

)n
i,j=1

is the Hankel matrix with the moments of the orthogonality measure μ. The Hankel
determinant is

Dn = det

⎛
⎜⎜⎜⎜⎜⎝

m0 m1 m2 · · · mn−1

m1 m2 m3 · · · mn
m2 m3 m4 · · · mn+1
...

...
... · · · ...

mn−1 mn mn+1 · · · m2n−2

⎞
⎟⎟⎟⎟⎟⎠
= det

(
mi+j−2

)n
i,j=1. (1.3)

If the support of μ contains infinitely many points, then Dn > 0 for all n ∈ N.
The monic orthogonal polynomials Pn(x) are given by

Pn(x) = 1

Dn
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0 m1 m2 · · · mn
m1 m2 m3 · · · mn+1

m2 m3 m4 · · · mn+2
...

...
... · · · ...

mn−1 mn mn+1 · · · m2n−1

1 x x2 · · · xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.4)

and

1

γ 2
n

=
∫
R

P 2
n (x) dμ(x) =

Dn+1

Dn
. (1.5)

The Christoffel-Darboux kernel is defined as

Kn(x, y) =
n−1∑
k=0

γ 2
k Pk(x)Pk(y) =

n−1∑
k=0

pk(x)pk(y).
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This Christoffel-Darboux kernel is a reproducing kernel: for every polynomial qn−1
of degree≤ n− 1 one has

∫
Kn(x, y)qn−1(y) dμ(y) = qn−1(x).

If f is a function in L2(μ), then

∫
Kn(x, y)f (y) dμ(y) = fn−1(x)

gives a polynomial of degree ≤ n − 1 which is the least squares approximant of f
in the space of polynomials of degree≤ n− 1. The Christoffel-Darboux kernel is a
sum of n terms containing all the polynomials p0, p1, . . . , pn−1, but there is a nice
formula that expresses the kernel in just two terms containing the polynomials pn−1
and pn only:

Property 1.1 The Christoffel-Darboux formula is

n−1∑
k=0

γ 2
k Pk(x)Pk(y) = γ 2

n−1
Pn(x)Pn−1(y)− Pn−1(x)Pn(y)

x − y ,

and its confluent version is

n−1∑
k=0

γ 2
k P

2
k (x) = γ 2

n−1

(
P ′n(x)Pn−1(x)− P ′n−1(x)Pn(x)

)
.

The version for orthonormal polynomials is

Property 1.2 The Christoffel-Darboux formula is

n−1∑
k=0

pk(x)pk(y) = an pn(x)pn−1(y)− pn−1(x)pn(y)

x − y ,

and its confluent version is

n−1∑
k=0

p2
k(x) = an

(
p′n(x)pn−1(x)− p′n−1(x)pn(x)

)
.
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2 Orthogonal Polynomials and Random Matrices

The link between orthogonal polynomials and random matrices is via the Chris-
toffel-Darboux kernel and Heine’s formula for orthogonal polynomials, see Prop-
erty 2.1. Useful references for random matrices are Mehta’s book [31], the book by
Anderson et al. [1], and Deift’s monograph [11]. First of all, let x1, x2, . . . , xn be
real or complex numbers, then we define the Vandermonde determinant as

�n(x1, . . . , xn) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
x1 x2 x3 · · · xn
x2

1 x2
2 x2

3 · · · x2
n

...
...

... · · · ...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.1)

This Vandermonde determinant can be evaluated explicitly:

�n =
∏
i>j

(xi − xj ).

From this it is clear that �n �= 0 when all the xi are distinct, and if x1 < x2 <

· · · < xn then �n > 0. Heine’s formula expresses the Hankel determinant with the
moments of a measure μ as an n-fold integral:

Property 2.1 (Heine) The Hankel determinantsDn in (1.3) can be written as

Dn = 1

n!
∫ ∞
−∞
· · ·

∫ ∞
−∞

�2
n(x1, . . . , xn) dμ(x1) · · · dμ(xn), (2.2)

where �n is the Vandermonde determinant (2.1). Furthermore, the monic orthogo-
nal polynomial Pn(x) is also given by an n-fold integral

Pn(x) = 1

n!Dn
∫ ∞
−∞
· · ·

∫ ∞
−∞

n∏
i=1

(x − xi) �2
n(x1, . . . , xn) dμ(x1) · · · dμ(xn).

(2.3)

Proof If we write all the moments in the first row of (1.3) as an integral and use
linearity of the determinant (for one row), then

Dn =
∫ ∞
−∞

det

⎛
⎜⎜⎜⎜⎜⎝

1 x1 x2
1 · · · xn−1

1
m1 m2 m3 · · · mn
m2 m3 m4 · · · mn+1
...

...
... · · · ...

mn−1 mn mn+1 · · · m2n−2

⎞
⎟⎟⎟⎟⎟⎠
dμ(x1).
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Repeating this for every row gives

Dn =
∫ ∞
−∞
· · ·

∫ ∞
−∞

det

⎛
⎜⎜⎜⎜⎜⎝

1 x1 x2
1 · · · xn−1

1
x2 x2

2 x3
2 · · · xn2

x2
3 x3

3 x4
3 · · · xn+1

3
...

...
... · · · ...

xn−1
n xnn x

n+1
n · · · x2n−2

n

⎞
⎟⎟⎟⎟⎟⎠
dμ(x1) · · · dμ(xn).

In each row we can take out the common factors to find

Dn =
∫
Rn

n∏
j=1

x
j−1
j �n(x1, . . . , xn) dμ(x1) · · · dμ(xn).

Now write the integral over Rn as a sum of integrals over all simplices xi1 < xi2 <
· · · < xin , where σ = (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n). Then

Dn =
∑
σ∈Sn

∫
xσ(1)<···<xσ(n)

n∏
j=1

x
j−1
j �n(x1, x2, . . . , xn) dμ(x1) · · · dμ(xn).

With the change of variables xσ(j) = yj one has xj = yτ(j), with τ = σ−1 and

Dn =
∫
y1<···<yn

∑
τ∈Sn

n∏
j=1

y
j−1
τ (j) �n(yτ(1), . . . , yτ(n)) dμ(y1) · · · dμ(yn).

Observe that�n(yτ(1), . . . , yτ(n)) = sign(τ )�n(y1, . . . , yn), so that

Dn =
∫
y1<···<yn

⎛
⎝∑
τ∈Sn

sign(τ )
n∏
j=1

y
j−1
τ (j)

⎞
⎠ �n(y1, . . . , yn) dμ(y1) · · · dμ(yn).

Now use

∑
τ∈Sn

sign(τ )
n∏
j=1

y
j−1
τ (j) = �n(y1, . . . , yn)

to find

Dn =
∫
y1<···<yn

�2
n(y1, . . . , yn) dμ(y1) · · · dμ(yn).
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This is an integral over one simplex y1 < y2 < · · · < yn in R
n. This integral is

the same for every simplex, and since there are n! simplices (because there are n!
permutations of (1, 2, . . . , n)), we find the required formula (2.2).

The proof for formula (2.3) is similar, using the determinant expression (1.4) for
the monic orthogonal polynomial. ��
It is remarkable that Szegő writes in his book [40]:

[These] Formulas . . . are not suitable in general for derivation of properties of the
polynomials in question. To this end we shall generally prefer the orthogonality property
itself, or other representations derived by means of the orthogonality property.

Heine’s formulas have now become crucial in the theory of random matrices.

2.1 Point Processes

A n-point process is a stochastic process where a set of n points {X1, . . . , Xn} is
selected, and the joint distribution of the random variables (X1,X2, . . . , Xn) is
given. Since we are dealing with a set of n random numbers, the order of the random
variables is irrelevant and hence we use a probability distribution which is invariant
under permutations. Our interest is in the n-point process where the joint probability
distribution has a density (with respect to the product measure dμ(x1) . . . dμ(xn))
given by

P(x1, x2, . . . , xn) = 1

n!Dn�
2
n(x1, . . . , xn), (2.4)

where we mean that

Prob(X1 ≤ y1, . . . , Xn ≤ yn) =
∫ y1

−∞
. . .

∫ yn

−∞
P(x1, . . . , xn) dμ(x1) · · · dμ(xn).

Observe that by Heine’s formula (2.2) this is indeed a probability distribution since
it is positive and integrates over Rn to one. The points in this n-point process are
not independent and the factor �2

n(x1, . . . , xn) describes the dependence of the
points. Two points are unlikely to be close together because then �2

n(x1, . . . , xn) =∏
j>i(xj − xi)2 is small and by the maximum likelihood principle the points will

prefer to choose a position that maximizes �2
n(x1, . . . , xn). This n-point process

therefore has points that repel each other.
An important property of this n-point process is that it is a determinantal

point process. To see this, we will express the probability density in terms of the
Christoffel-Darboux kernel. We need a few important properties of that kernel.
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Property 2.2 The Christoffel-Darboux kernel satisfies

∫ ∞
−∞
Kn(x, y)Kn(y, z) dμ(y) = Kn(x, z),

and
∫ ∞
−∞
Kn(x, x) dμ(x) = n.

Proof The first property follows from the reproducing property of the Christoffel-
Darboux kernel. For the second property we have

∫ ∞
−∞

Kn(x, x) dμ(x) =
n−1∑
k=0

∫ ∞
−∞

p2
k(x) dμ(x) = n.

��
Property 2.3 The density (2.4) can be written as

P(x1, x2, . . . , xn) = 1

n! det
(
Kn(xi, xj )

)n
i,j=1,

whereKn is the Christoffel-Darboux kernel.

Proof If we add rows in the Vandermonde determinant (2.1), then

�n(x1, . . . , xn) = det

⎛
⎜⎜⎜⎜⎜⎝

P0(x1) P0(x2) P0(x3) · · · P0(xn)

P1(x1) P1(x2) P1(x3) · · · P1(xn)

P2(x1) P2(x2) P2(x3) · · · P2(xn)
...

...
... · · · ...

Pn−1(x1) Pn−1(x2) Pn−1(x3) · · · Pn−1(xn)

⎞
⎟⎟⎟⎟⎟⎠
,

for any sequence (P0, P1, P2, . . . , Pn−1) of monic polynomials. If we take the
monic orthogonal polynomials, then

⎛
⎝n−1∏
j=0

γ 2
j

⎞
⎠�2

n(x1, . . . , xn)

= det

⎛
⎜⎜⎜⎜⎝

P0(x1) P1(x1) · · · Pn−1(x1)

P0(x2) P1(x2) · · · Pn−1(x2)

P0(x3) P1(x3) · · · Pn−1(x3)

.

.

.
.
.
. · · ·

.

.

.

P0(xn) P1(xn) · · · Pn−1(xn)

⎞
⎟⎟⎟⎟⎠�n

⎛
⎜⎜⎜⎜⎝

P0(x1) P0(x2) · · · P0(xn)

P1(x1) P1(x2) · · · P1(xn)

P2(x1) P2(x2) · · · P2(xn)

.

.

.
.
.
. · · ·

.

.

.

Pn−1(x1) Pn−1(x2) · · · Pn−1(xn)

⎞
⎟⎟⎟⎟⎠ ,
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where �n = diag(γ 2
0 , γ

2
1 , . . . , γ

2
n−1). Then use (1.5) to find that

∏n−1
j=0 γ

2
j = 1/Dn,

so that

�2
n(x1, . . . , xn) = Dn det

(n−1∑
k=0

γ 2
k Pk(xi)Pk(xj )

)n
i,j=1

,

which combined with (2.4) gives the required result. ��
For this reason we call the n-point process with density (2.4) the Christoffel-

Darboux point process.

2.2 Determinantal Point Process

The fact that the density P(x1, . . . , xn) can be written as a determinant of a kernel
function K(x, y) that satisfies Property 2.2 is important and allows to compute
correlation functions for k points k ≤ n of the point process, in particular the
probability density of one point (for k = 1).

Definition 2.4 For k ≤ n the kth correlation function is

ρk(x1, . . . , xk) = det
(
Kn(xi, xj )

)k
i,j=1

.

The interpretation of these kth correlation functions is the following: ifAi∩Aj =
∅ (i �= j ), and N(A) is the number of points in A, then

∫
A1

∫
A2

· · ·
∫
Ak

ρk(x1, . . . , xk) dμ(x1) · · · dμ(xk) = E

(
k∏
i=1

N(Ai)

)
.

The kth correlation function can also be seen as the density of the marginal
distribution of k points in the n-point process, up to a normalization factor:

Property 2.5 The kth correlation function is obtained from P(x1, . . . , xn) by

ρk(x1, x2, . . . , xk) = n!
(n− k)!

∫ ∞
−∞
· · ·

∫ ∞
−∞︸ ︷︷ ︸

n−k

P (x1, . . . , xn) dμ(xk+1) · · · dμ(xn).
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Proof For k = n− 1 we have, by expanding the determinant along the last row,

∫ ∞
−∞
P(x1, . . . , xn) dμ(xn)

= 1

n!
n−1∑
k=1

∫ ∞
−∞
(−1)n+kKn(xn, xk) det

(
Kn(xi, xj )

)
1≤i �=n,j �=k≤n dμ(xn)

+ 1

n!
∫ ∞
−∞

Kn(xn, xn) det
(
Kn(xi, xj )

)n−1

i,j=1
dμ(xn).

By Property 2.2 the last term is 1/(n − 1)!ρn−1(x1, . . . , xn−1). Expanding the
remaining determinant along the last column gives

1

n!
n−1∑
k=1

n−1∑
"=1

(−1)n+k(−1)n−1+"
∫ ∞
−∞

Kn(xn, xk)Kn(x", xn)

× det
(
Kn(xi, xj )

)
1≤i �=",j �=k≤n−1

dμ(xn).

The determinant does not contain xn, so the remaining integration can be done using
Property 2.2 and gives

1

n!
n−1∑
k=1

n−1∑
"=1

(−1)k+"−1Kn(x", xk) det
(
Kn(xi, xj )

)
1≤i �=",j �=k≤n−1

.

The sum over " gives the (n− 1)× (n− 1) determinant (recall that column k which
containsKn(xi, xk) is missing since j �= k)

(−1)n det

⎛
⎜⎜⎜⎝

Kn(x1, x1) Kn(x1, x2) · · · Kn(x1, xn−1) Kn(x1, xk)

Kn(x2, x1) Kn(x2, x2) · · · Kn(x2, xn−1) Kn(x2, xk)
...

... · · · ...
...

Kn(xn−1, x1) Kn(xn−1, x2) · · · Kn(xn−1, xn−1) Kn(xn−1, xk)

⎞
⎟⎟⎟⎠ ,

and to get the last column in the kth position, we need to interchange columns
n− 1− k times, which gives

∫ ∞
−∞
P(x1, . . . , xn) dμ(xn)

= −1

n!
n−1∑
k=1

ρn−1(x1, . . . , xn−1)+ 1

(n− 1)!ρn−1(x1, . . . , xn−1),
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and hence

ρn−1(x1, . . . , xn−1) = n!
∫ ∞
−∞
P(x1, . . . , xn) dμ(xn).

To prove the case for all k = n − m one uses induction on m, for which we just
proved the case m = 1. ��
Definition 2.6 A point process on R with correlation functions ρk is a determinan-
tal point process if there exists a kernel K(x, y) such that for every k and every
x1, . . . , xk ∈ R

ρk(x1, x2, . . . , xk) = det
(
K(xi, xj )

)k
i,j=1.

The following theorem shows that Property 2.2 is indeed crucial.

Theorem 2.7 SupposeK : R× R→ R is a kernel such that

•
∫∞
−∞K(x, x) dx = n ∈ N,

• For every x1, . . . , xn ∈ R, one has det
(
K(xi, xj )

)k
i,j=1 ≥ 0.

• K(x, y) = ∫∞
−∞K(x, s)K(s, y) ds.

Then

P(x1, . . . , xn) = 1

n! det
(
K(xi, xj )

)n
i,j=1

is a probability density on R
n which is invariant under permutations of coordinates.

The associated n-point process is determinantal.

The most important example (at least in the context of this section) is when
dμ(x) = w(x) dx, and then one can take

K(x, y) = Kn(x, y)
√
w(x)

√
w(y).

2.3 Random Matrices

To see the relation with random matrices, we claim that the eigenvalues of certain
random matrices of order n form a determinantal point process with the Christoffel-
Darboux kernel for a particular family of orthogonal polynomials. The Gaussian
unitary ensemble (GUE) consists of Hermitian random matrices M of order n with
random entries

Mk," = Xk," + iYk,", M",k = Xk," − iYk,", k < ",

Mk,k = Xk,k, 1 ≤ k ≤ n,
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where all Xk,", Yk,",Xk,k are independent normal random variables with mean zero
and variance 1

4n (if k < ") or 1
2n (if k = "). The multivariate density is

1

Zn

∏
k<"

e
−2n(x2

k,"+y2
k,")

n∏
k=1

e
−nx2

k,k

∏
k<"

dxk,"dyk,"

n∏
k=1

dxk,k,

where Zn is normalizing constant. But this is also equal to

1

Zn
exp(−nTrM2) dM

whereMk," = (xk," + iyk,") for k < ",Mk,k = xk,k, andM = M∗.
We are mostly interested in the eigenvalues λ1, . . . , λn of the random matrix M.

To find the density of the eigenvalues, we use the change of variables:M �→ (�,U),
where U is a unitary matrix for which

M = U�U∗,

and� = diag(λ1, . . . , λn), and then integrate over the unitary part U , which leaves
only the eigenvalues. This change of variables is done using the Weyl integration
formula (see, e.g., [1, §4.1.3]):

Theorem 2.8 (Weyl Integration Formula) For the change of variables M =
U�U∗ one has

dM = cn
∏
i<j

(λi − λj )2 dλ1 · · · dλn dU,

where cn is a constant and dU is the Haar measure on the unitary group.

We will use a simplified version of this result, for which one does not need the
Haar measure on the unitary group. This works when the expression f (M) that we
want to integrate only depends on the eigenvalues of M . Let Hn be the Hermitian
matrices of order n.

Definition 2.9 A function f : Hn → C is a class function if

f (UMU∗) = f (M)

for all unitary matrices U .

Theorem 2.10 (Weyl Integration Formula for Class Functions) For an inte-
grable class function f we have

∫
f (M) dM = cn

∫
Rn

f (λ1, . . . , λn)
∏
i<j

(λi − λj )2 dλ1 · · · dλn,
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with

cn = π
n(n−1)/2∏n
j=1 j !

.

The characteristic polynomial of a matrix M only depends on the eigenvalues,
hence det(xI −M) is a class function. For random matrices in GUE one finds for
the average characteristic function

E det(xI −M) = 1

Dn

∫
Rn

n∏
i=1

(x − xi) �2
n(x1, . . . , xn)e

−n(x2
1+···+x2

n) dx1 · · · dxn
(2.5)

and by (2.3) this is the monic Hermite polynomial Hn(
√
nx). More generally, the

eigenvalues of a random matrix in GUE form a determinantal point process with the
Christoffel-Darboux kernel of (scaled) Hermite polynomials. The average number
of eigenvalues of M in [a, b] is in terms of the correlation function ρ1(x):

E
(
N([a, b])) =

∫ b

a

Kn(x, x) e
−nx2

dx.

2.4 Random Matrix Ensembles

Here we give a few more random matrix ensembles for which the eigenvalues
form a determinantal point process with the Christoffel-Darboux kernel of classical
orthogonal polynomials.

• We already defined GUE (Gaussian Unitary Ensemble): this contains random
matrices in Hn with density

1

Zn
exp(−nTrM2) dM.

The average characteristic polynomial is

E det(xI −M) = (scaled) Hermite polynomial.

This suggests that on the average the eigenvalues behave like the zeros of (scaled)
Hermite polynomials. This is indeed true, but for this one needs the correlation
function ρ1 and the result that

lim
n→∞

1

n

∫ b

a

f (x)Kn(x, x)e
−nx2

dx = lim
n→∞

1

n

n∑
j=1

f (xj,n/
√
n),

where x1,n, . . . , xn,n are the zeros of the Hermite polynomialHn.
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• The Wishart ensemble. Let M be a n × m matrix (m ≥ n) with independent
complex Gaussian entries Xk," + iYk,". Then MM∗ has the Wishart distribution
with density

1

Cn
| detW |m−n exp(−T rW).

The average characteristic polynomial is

E det(xI −MM∗) = Laguerre polynomial with α = m− n.

Observe that MM∗ is a positive definite matrix so that all the eigenvalues are
positive. On the average they behave like the zeros of Laguerre polynomials.

• Truncated unitary matrices. Let U be a random unitary matrix of order (m+k)×
(m+ k) and let V be them× n upper left corner (m ≥ n). Then V∗V is an n× n
matrix and

E det(xI − V∗V) = Jacobi polynomial on [0, 1], α = m− n, β = k − n.

Unitary matrices have their eigenvalues on the unit circle, and a truncated
unitary matrix has its singular values (the eigenvalues of V∗V) in [0, 1]. These
eigenvalues behave on the average like the zeros of Jacobi polynomials.

Exercise Let Mn be the Hermitian random matrix with entries

(Mn)k," =

⎧⎪⎪⎨
⎪⎪⎩
Xk," + iYk,", k < ",

X",k − iY",k, k > ",

Xk,k, k = ",

where Xk,", Yk," (k < ") and Xk,k (1 ≤ k ≤ n) are independent random
variables with means E(Xk,") = E(Yk,") = E(Xk,k) = 0 and variances
E(X2

k,") = E(Y 2
k,") = E(X2

k,k) = σ 2 > 0. Show that Pn(x) = E det(xIn −
Mn) satisfies the three-term recurrence relation

Pn(x) = xPn−1(x)− 2(n− 1)σ 2Pn−2(x),

with P0(x) = 1 and P1(x) = x. Identify this Pn(x) as σnHn(x/2σ),
where Hn is the Hermite polynomial of degree n. This shows that the
Hermite polynomial is the average characteristic polynomial of a large class
of Hermitian random matrices, not only GUE.
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So far we found that on the average the eigenvalues of random matrices
from these ensembles behave like zeros of orthogonal polynomials. To get more
information about individual eigenvalues, for example the largest eigenvalue or
the smallest eigenvalue, one needs a more detailed analysis of the point process.
In particular one needs to investigate the asymptotic behavior of the Christoffel-
Darboux kernels. In particular, to understand the spacing between the eigenvalues
in the neighborhood of x∗ in the bulk of the spectrum, one needs results for

lim
n→∞

1

n
Kn

(
x∗ + u

n
, x∗ + v

n

)
,

or, when x∗ is at the end of the spectrum,

lim
n→∞

1

nγ
Kn

(
x∗ + u

nγ
, x∗ + v

nγ

)
,

where γ depends on the nature of the endpoint (hard or soft edge). This will give
kernels of well-known point processes.

An important quantity of interest is the probability pA(m) that there are exactly
m eigenvalues in the set A ⊂ R. If there arem eigenvalues in A, then the number of
ordered k-tuples in A is

(
m
k

)
and thus

∞∑
m=k

(
m

k

)
pA(m) = 1

k!
∫
Ak
ρk(x1, . . . , xk) dμ(x1) · · · dμ(xk), k ≥ 1,

because this is the expected number of ordered k-tuples in A. For k = 0 one has

∞∑
m=0

pA(m) = 1,

therefore

1+
∞∑
k=1

(−1)k

k!
∫
Ak
ρk(x1, . . . , xk) dμ(x1) · · · dμ(xk) =

∞∑
k=0

∞∑
m=k
(−1)k

(
m

k

)
pA(m).

Changing the order of summation (we assume that this is allowed) and using

m∑
k=0

(−1)k
(
m

k

)
= δm,0,
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we find that

pA(0) = 1+
∞∑
k=1

(−1)k

k!
∫
Ak
ρk(x1, . . . , xk) dμ(x1) · · · dμ(xk).

This is the so-called gap probability: the probability to find no eigenvalues in A. For
a determinantal point process, such as the eigenvalues of various random matrices,
this gap probability is in fact the Fredholm determinant det(I −KA) of the operator
KA : L2(A)→ L2(A) defined by

KAf (x) =
∫
A

Kn(x, y)f (y) dμ(y), x ∈ A.

The asymptotic behavior as the size n of the random matrices increases to infinity,
then gives the Fredholm determinant det(I − KA) of the operator KA that uses the
kernel K(x, y) which is the limit of the Christoffel-Darboux kernel Kn(x, y) as
described above. The lesson to be learned from this is that the asymptotic behavior
of orthogonal polynomials and their Christoffel-Darboux kernel gives important
insight in the behavior of eigenvalues of random matrices.

3 Multiple Orthogonal Polynomials

In this section we will explain the notion of multiple orthogonal polynomials. Useful
references are Ismail’s book [20, Ch. 23], Nikishin and Sorokin’s book [33, Ch. 4]
and the papers [2, 29, 48]. Instead of orthogonality conditions with respect to one
measure on the real line, the orthogonality will be with respect to r measures, where
r ≥ 1. For r = 1 one has the usual orthogonal polynomials, but for r ≥ 2 one gets
two types of multiple orthogonal polynomials.

Let r ∈ N and let μ1, . . . , μr be positive measures on the real line, for which
all the moments exist. We use multi-indices 9n = (n1, n2, . . . , nr ) ∈ N

r and denote
their length by |9n| = n1 + n2 + · · · + nr .
Definition 3.1 (Type I) Type I multiple orthogonal polynomials for 9n consist of
the vector (A9n,1, . . . , A9n,r ) of r polynomials, with degA9n,j ≤ nj − 1, for which

∫
xk

r∑
j=1

A9n,j (x) dμj(x) = 0, 0 ≤ k ≤ |9n| − 2,

with normalization

∫
x |9n|−1

r∑
j=1

A9n,j (x) dμj(x) = 1.
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Definition 3.2 (Type II) The type II multiple orthogonal polynomial for 9n is the
monic polynomial P9n of degree |9n| for which

∫
xkP9n(x) dμj(x) = 0, 0 ≤ k ≤ nj − 1,

for 1 ≤ j ≤ r .
The conditions for type I and type II multiple orthogonal polynomials give a

system of |9n| linear equations for the |9n| unknown coefficients of the polynomials.
This system may not have a solution, or when a solution exists it may not be unique.
A multi-index 9n is said to be normal if the type I vector (A9n,1, . . . A9n,r) exists and is
unique, and this is equivalent with the existence and uniqueness of the monic type II
multiple orthogonal polynomial P9n, because the matrix of the linear system for type
II is the transpose of the matrix for the type I linear system. Hence 9n is a normal
multi-index if and only if

det

⎛
⎜⎜⎝
M
(1)
n1

M
(2)
n2

.

.

.

M
(r)
nr

⎞
⎟⎟⎠ �= 0,

where

M
(j)
nj =

⎛
⎜⎜⎜⎜⎜⎝

m
(j)
0 m

(j)
1 · · · m

(j)

|9n|−1

m
(j)
1 m

(j)
2 · · · m

(j)

|9n|
...

... · · · ...

m
(j)

nj−1 m
(j)
nj · · · m(j)|9n|+nj−2

⎞
⎟⎟⎟⎟⎟⎠

are rectangular Hankel matrices containing the moments

m
(j)

k =
∫
xk dμj (x).

3.1 Special Systems

Interesting systems of measures (μ1, . . . , μr) are those for which all the multi-
indices are normal. We call such systems perfect. Here we will describe two such
systems.
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Definition 3.3 (Angelesco System) The measures (μ1, . . . , μr) are an Angelesco
system if the supports of the measures are subsets of disjoint intervals �j , i.e.,
supp(μj ) ⊂ �j and �i ∩�j = ∅ whenever i �= j .

Usually one allows that the intervals are touching, i.e.,
◦
�i ∩

◦
�j= ∅ whenever

i �= j .

Theorem 3.4 (Angelesco, Nikishin) The type II multiple orthogonal polynomial

P9n for an Angelesco system has exactly nj distinct zeros on
◦
�j for 1 ≤ j ≤ r .

This means that the type II multiple orthogonal polynomial P9n can be factored
as P9n(x) =

∏r
j=1 p9n,j (x), where p9n,j has all its zeros on �j . In fact, p9n,j is an

ordinary orthogonal polynomial of degree nj on the interval �j for the measure∏
i �=j p9n,i (x) dμj (x):

∫
�j

xkp9n,j (x)
∏
i �=j
p9n,i dμ(x) = 0, 0 ≤ k ≤ nj − 1.

Observe that for i �= j the polynomial p9n,i (x) has constant sign on �j .

Corollary 3.5 Every multi-index 9n is normal (an Angelesco system is perfect).

Exercise Show that every A9n,j has nj − 1 zeros on
◦
�j .

For another system of measures, which are all supported on the same interval
[a, b], we need to recall the notion of a Chebyshev system.

Definition 3.6 The functions ϕ1, . . . , ϕn are a Chebyshev system on [a, b] if every
linear combination

∑n
i=1 aiϕi with (a1, . . . , an) �= (0, . . . , 0) has at most n − 1

zeros on [a, b].
We can then define an Algebraic Chebyshev system:

Definition 3.7 (AT-System) The measures (μ1, . . . , μr) are an AT-system on the
interval [a, b] if the measures are all absolutely continuous with respect to a positive
measure μ on [a, b], i.e., dμj(x) = wj(x) dμ(x) (1 ≤ j ≤ r), and for every 9n the
functions

w1(x), xw1(x), . . . , x
n1−1w1(x), w2(x), xw2(x), . . . , x

n2−1w2(x),

. . . , wr(x), xwr(x), . . . , x
nr−1wr(x)

are a Chebyshev system on [a, b].
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For an AT-system we have some control of the zeros of the type I and type II
multiple orthogonal polynomials.

Theorem 3.8 For an AT-system the function

Q9n(x) =
r∑
j=1

A9n,j (x)wj (x)

has exactly |9n| − 1 sign changes on (a, b). Furthermore, the type II multiple
orthogonal polynomial P9n has exactly |9n| distinct zeros on (a, b).

Corollary 3.9 Every multi-index in an AT-system is normal (an AT-system is
perfect).

A very special system of measures was introduced by Nikishin in 1980.

Definition 3.10 (Nikishin System for r = 2) A Nikishin system of order r = 2
consists of two measures (μ1, μ2), both supported on an interval�2, and such that

dμ2(x)

dμ1(x)
=

∫
�1

dσ(t)

x − t ,

where σ is a positive measure on an interval�1 and �1 ∩�2 = ∅.
Nikishin showed that indices with n1 ≥ n2 are perfect. Driver and Stahl [12]

proved the more general statement.

Theorem 3.11 (Nikishin, Driver-Stahl) A Nikishin system of order two is perfect.

In order to define a Nikishin system of order r > 2 we need some notation. We
write 〈σ1, σ2〉 for the measure which is absolutely continuous with respect to σ1 and
for which the Radon-Nikodym derivative is the Stieltjes transform of σ2:

d〈σ1, σ2〉(x) =
(∫

dσ2(t)

x − t
)
dσ1(x).

Nikishin systems of order r can then be defined by induction.

Definition 3.12 (Nikishin System for General r) A Nikishin system of order r on
an interval �r is a system of r measures (μ1, μ2, . . . , μr) supported on �r such
that μj = 〈μ1, σj 〉, 2 ≤ j ≤ r , where (σ2, . . . , σr ) is a Nikishin system of order
r − 1 on an interval�r−1 and �r ∩�r−1 = ∅.
Fidalgo Prieto and López Lagomasino proved [13]
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Theorem 3.13 Every Nikishin system is perfect.

In most cases the measures (μ1, . . . , μr) are absolutely continuous with respect
to one fixed measure μ:

dμj (x) = wj (x) dμ(x), 1 ≤ j ≤ r.

We then define the type I function

Q9n(x) =
r∑
j=1

A9n,j (x)wj (x).

The type I functions and the type II polynomials then are very complementary: they
form a biorthogonal system for many multi-indices.

Property 3.14 (Biorthogonality)

∫
P9n(x)Q 9m(x) dμ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if 9m ≤ 9n,
0, if |9n| ≤ | 9m| − 2,

1, if |9n| = | 9m| − 1.

3.2 Nearest Neighbor Recurrence Relations

The usual orthogonal polynomials (the case r = 1) on the real line always satisfy a
three-term recurrence relation that expresses xpn(x) in terms of the polynomials
with neighboring degrees pn+1, pn, pn−1. A similar result is true for multiple
orthogonal polynomials, but there are more neighbors for a multi-index. Indeed,
the multi-index 9n has r neighbors from above by adding 1 to one of the components
of 9n. We denote these neighbors from above by 9n + 9ek for 1 ≤ k ≤ r , where
9ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 in position k. There are also r neighbors from
below, namely 9n− 9ej , for 1 ≤ j ≤ r . The nearest neighbor recurrence relations for
type II multiple orthogonal polynomials are [45]

xP9n(x) = P9n+9e1(x)+ b9n,1P9n(x)+
r∑
j=1

a9n,jP9n−9ej (x),

...

xP9n(x) = P9n+9er (x)+ b9n,rP9n(x)+
r∑
j=1

a9n,jP9n−9ej (x).
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Observe that one always uses the same linear combination of the neighbors from
below. The nearest neighbor recurrence relations for type I multiple orthogonal
polynomials are

xQ9n(x) = Q9n−9e1(x)+ b9n−9e1,1Q9n(x)+
r∑
j=1

a9n,jQ9n+9ej (x),

...

xQ9n(x) = Q9n−9er (x)+ b9n−9er ,rQ9n(x)+
r∑
j=1

a9n,jQ9n+9ej (x).

These are using the same recurrence coefficients a9n,j , but there is a shift for the
recurrence coefficients b9n,k. For r ≥ 2 the recurrence coefficients {a9n,j , 1 ≤ j ≤ r}
and {b9n,k, 1 ≤ k ≤ r} are connected:

Theorem 3.15 (Van Assche [45]) The recurrence coefficients (a9n,1, . . . , a9n,r ) and
(b9n,1, . . . , b9n,r) satisfy the partial difference equations

b9n+9ei ,j − b9n,j = b9n+9ej ,i − b9n,i,
r∑
k=1

a9n+9ej ,k −
r∑
k=1

a9n+9ei ,k = det

(
b9n+9ej ,i b9n,i
b9n+9ei ,j b9n,j

)
,

a9n,i
a9n+9ej ,i

= b9n−9ei ,j − b9n−9ei ,i
b9n,j − b9n,i ,

for all 1 ≤ i �= j ≤ r .
By combining the equations of the nearest neighbor recurrence relations, one can

also find a recurrence relation of order r+1 for the multiple orthogonal polynomials
along a path from 90 to 9n in N

r . Let (9nk)k≥0 be a path in N
r starting from 9n0 = 90,

such that 9nk+1 − 9nk = 9ei for some 1 ≤ i ≤ r . Then

xP9nk (x) = P9nk+1(x)+
r∑
j=0

β9nk,j P9nk−j (x).

These β9nk,j coefficients can be expressed in terms of the recurrence coefficients
in the nearest neighbor recurrence relations, but the explicit expression is rather
complicated for general r . An important case is the stepline:

9nk = (
j︷ ︸︸ ︷

i + 1, . . . , i + 1, i, . . . i︸ ︷︷ ︸
r−j

), k = ri + j, 0 ≤ j ≤ r − 1.
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This recurrence relation of order r + 1 can be expressed in terms of a Hessenberg
matrix with r diagonals below the main diagonal:

x

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P9n0 (x)

P9n1 (x)

P9n2 (x)

.

.

.

P9nk (x)
.
.
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β9n0,0 1 0 0 0 0 · · ·
β9n1,1 β9n1,0 1 0 0 0 · · ·
.
.
.

. . .
. . . 1 0 0 · · ·

β9nr ,r β9nr ,r−1 · · · β9nr ,0 1 0 · · ·
0 β9nr+1,r β9nr+1,r−1 · · · β9nr+1,0 1 · · ·
0 0 β9nr+2 ,r β9nr+2,r−1 · · · β9nr+2,0 · · ·

0 0 0
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P9n0 (x)

P9n1 (x)

P9n2 (x)

.

.

.

P9nk (x)
.
.
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

3.3 Christoffel-Darboux Formula

The Christoffel-Darboux kernel, which is the important reproducing kernel for
orthogonal polynomials, has a counterpart in the theory of multiple orthogonal
polynomials. It uses both the type I and type II multiple orthogonal polynomials,
and is a sum over a path from 90 to 9n as described before. The Christoffel-Darboux
kernel is defined as

K9n(x, y) =
N−1∑
k=0

P9nk (x)Q9nk+1(y)

where 9n0 = 90, 9nN = 9n and the path in N
r is such that 9nk+1 − 9nk = 9ei for some

i satisfying 1 ≤ i ≤ r , i.e., in every step the multi-index is increased by 1 in one
component. This definition seems to depend on the choice of the path from 90 to 9n,
but surprisingly this kernel is independent of that chosen path. This is a consequence
of the relations between the recurrence coefficients given by Theorem 3.15 and is
best explained by the following analogue of the Christoffel-Darboux formula for
orthogonal polynomials:

Theorem 3.16 (Daems and Kuijlaars) Let (9nk)0≤k≤N be a path in N
r starting

from 9n0 = 90 and ending in 9nN = 9n (where N = |9n|), such that 9nk+1 − 9nk = 9ei for
some 1 ≤ i ≤ r . Then

(x − y)
N−1∑
k=0

P9nk (x)Q9nk+1(y) = P9n(x)Q9n(y)−
r∑
j=1

a9n,jP9n−9ej (x)Q9n+9ej (y).

Proof This was first proved in [9] and a proof based on the nearest neighbor
recurrence relations can be found in [45]. ��

The sum depends only on the endpoint 9n of the path in N
r and not on the path

from 90 to this point. In many cases this Christoffel-Darboux kernel can be used to
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generate a determinantal process by using Theorem 2.7 and the biorthogonality in
Property 3.14. The only thing which is not obvious is the positivity K9n(x, x) ≥
0, which needs to be checked separately. See [24] for more details about such
determinantal processes.

3.4 Hermite-Padé Approximation

Multiple orthogonal polynomials have their roots in Hermite-Padé approximation,
which was introduced by Hermite and investigated in detail by Padé (for r = 1).
Hermite-Padé approximation is a method to approximate r functions simultaneously
by rational functions. Multiple orthogonal polynomials appear when one uses
Hermite-Padé approximation near infinity. Let (f1, . . . , fr ) be r Markov functions,
i.e.,

fj (z) =
∫
dμj (x)

z− x =
∞∑
k=0

m
(j)
k

zk+1 .

Definition 3.17 (Type I Hermite-Padé Approximation) Type I Hermite-Padé
approximation is to find r polynomials (A9n,1, . . . , A9n,r ), with degA9n,j ≤ nj − 1,
and a polynomial B9n such that

r∑
j=1

A9n,j (z)fj (z)− B9n(z) = O
(

1

z|9n|

)
, z→∞. (3.1)

The solution is that (A9n,1, . . . , A9n,r ) is the type I multiple orthogonal polynomial
vector, and

B9n(z) =
∫ r∑
j=1

A9n,j (z)− A9n,j (x)
z− x dμj (x).

The error in this approximation problem can also be expressed in terms of the type
I multiple orthogonal polynomials. One has

r∑
j=1

A9n,j (z)fj (z)− B9n(z) =
∫ r∑
j=1

A9n,j (x)
z − x dμj (x),

and the orthogonality properties of the type I multiple orthogonal polynomials
indeed show that (3.1) holds.

Definition 3.18 (Type II Hermite-Padé Approximation) Type II Hermite-Padé
approximation is to find a polynomial P9n of degree ≤ |9n| and polynomials
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Q9n,1, . . . , Q9n,r such that

P9n(z)fj (z)−Q9n,j (z) = O
(

1

znj+1

)
, z→∞, (3.2)

for 1 ≤ j ≤ r .
The solution for this approximation problem is to take the type II multiple

orthogonal polynomial P9n and

Q9n,j (z) =
∫
P9n(z)− P9n(x)

z− x dμj (x).

Observe that this approximation problem is to find rational approximants to each fj
with a common denominator, and this common denominator turns out to be the type
II multiple orthogonal polynomial. The error can again be expressed in terms of the
multiple orthogonal polynomial:

P9n(z)fj (z)−Q9n,j (z) =
∫
P9n(x)
z− x dμj (x),

which can be verified by using the orthogonality conditions for the type II multiple
orthogonal polynomial.

Hermite-Padé approximants are used frequently in number theory to find good
rational approximants for real numbers and to prove irrationality and transcendence
of some important real numbers. Hermite used these approximants (but at 0 rather
than∞) to prove that e is a transcendental number.

3.5 Multiple Hermite Polynomials

As an example we will describe multiple Hermite polynomials in some detail
and explain some applications where they are used. The type II multiple Hermite
polynomialsH9n satisfy

∫ ∞
−∞

H9n(x)xke−x
2+cj x dx = 0, 0 ≤ k ≤ nj − 1

for 1 ≤ j ≤ r , with ci �= cj whenever i �= j . This condition on the parameters
c1, . . . , cr guarantees that every multi-index 9n is normal, since the measures with
weight function e−x2+cj x (1 ≤ j ≤ r) form an AT-system. These multiple
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orthogonal polynomials can be obtained by using the Rodrigues formula

e−x2
H9n(x) = (−1)|9n|

2|9n|

⎛
⎝ r∏
j=1

e−cj x d
nj

dxnj
ecjx

⎞
⎠ e−x2

.

Exercise Show that the differential operators

e−cj x d
nj

dxnj
ecj x, 1 ≤ j ≤ r

are commuting. Use this (and integration by parts) to show that this indeed
gives the type II multiple Hermite polynomial.

By using this Rodrigues formula (and the Leibniz rule for the nth derivative of a
product), one finds the explicit expression

H9n(x) = (−1)|9n|

2|9n|
n1∑
k1=0

· · ·
nr∑
kr=0

(
n1

k1

)
· · ·

(
nr

kr

)
c
n1−k1
1 · · · cnr−krr (−1)|9k|H|9k|(x),

where Hn are the usual Hermite polynomials. The nearest neighbor recurrence
relations for multiple Hermite polynomials are quite simple:

xH9n(x) = H9n+9ek (x)+
ck

2
H9n(x)+ 1

2

r∑
j=1

njH9n−9ej (x), 1 ≤ k ≤ r.

They also have some useful differential properties: there are r raising operators
(
e−x2+cj xH9n−9ej (x)

)′ = −2e−x2+cj xH9n(x), 1 ≤ j ≤ r,

and one lowering operator

H ′9n(x) =
r∑
j=1

njH9n−9ej (x).

By combining these raising operators and the lowering operator one finds a
differential equation of order r + 1:

⎛
⎝ r∏
j=1

Dj

⎞
⎠DH9n(x) = −2

⎛
⎝ r∑
j=1

nj
∏
i �=j
Di

⎞
⎠H9n(x),
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where

D = d

dx
, Dj = ex2−cj xDe−x2+cj x.

One can also find some integral representations (see [5])

H9n(x) = 1√
πi

∫ i∞

−i∞
e(s−x)2

r∏
j=1

(
s − cj

2

)nj
ds.

For the type I multiple Hermite polynomials one has

e−x2+ckxA9n,k(x) = 1√
π2πi

∮
�k

e−(t−x)2
r∏
j=1

(
t − cj

2

)−nj
dt,

where �k is a closed contour encircling ck/2 once and none of the other cj /2, and

Q9n(x) =
r∑
k=1

e−x2+ckxA9n,k(x) = 1√
π2πi

∮
�

e−(t−x)2
r∏
j=1

(
t − cj

2

)−nj
dt,

where � is a closed contour encircling all cj /2.

3.5.1 Random Matrices

These multiple Hermite polynomials are useful for investigating random matrices
with external source [4]. Let M be a randomN ×N Hermitian matrix and consider
the ensemble with probability distribution

1

ZN
exp

(
−Tr(M2 − AM)

)
dM, dM =

N∏
i=1

dMi,i
∏

1≤i<j≤N
dMi,j ,

whereA is a fixed Hermitian matrix (the external source). The average characteristic
polynomial is a multiple Hermite polynomial:

Property 3.19 SupposeA has eigenvalues c1, . . . , cr with multiplicities n1, . . . , nr ,
then

E

(
det(M− zIN )

)
= (−1)|9n|H9n(z).

Furthermore, the eigenvalues form a determinantal process with the Christoffel-
Darboux kernel for multiple Hermite polynomials:
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Property 3.20 The density of the eigenvalues is given by

PN(λ1, . . . , λN) = 1

N ! det
(
KN(λi, λj )

)N
i,j=1

,

where the kernel is given by

KN(x, y) = e−(x2+y2)/2
N−1∑
k=0

H9nk (x)Q9nk+1(y),

with (9nk)0≤k≤N a path from 90 to 9n in N
r and

Q9n(y) =
r∑
j=1

A9n,j (y)ecjy .

This means that we can also find the correlation functions:

Property 3.21 The m-point correlation function

ρm(λ1, . . . , λm) = N !
(N −m)!

∫ ∞
−∞
· · ·

∫ ∞
−∞

PN(λ1, . . . , λN) dλm+1 . . . dλN

is given by

ρm(λ1, . . . , λm) = det
(
KN(λi, λj )

)m
i,j=1

,

where the kernel is given by

KN(x, y) = e−(x2+y2)/2
N−1∑
k=0

H9nk (x)Q9nk+1(y).

3.5.2 Non-intersecting Brownian Motions

Another interesting problem where multiple Hermite polynomials are appearing is
to find what happens with n independent Brownian motions (in fact, n Brownian
bridges) with the constraint that they are not allowed to intersect, see [10].

The density of the probability that the n non-intersecting paths, leaving (t = 0)
at a1, . . . , an and arriving (t = 1) at b1, . . . , bn, are at x1, . . . , xn at time t ∈ (0, 1)
is (Karlin and McGregor [22])

pn,t (x1, . . . , xn) = 1

Zn
det

(
P(t, aj , xk)

)n
j,k=1

det
(
P(1 − t, bj , xk)

)n
j,k=1

,
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Fig. 1 Non-intersecting Brownian motions

where

P(t, a, x) = 1√
2πt

e−
1
2t (x−a)2.

When a1, . . . , an → 0 and b1, . . . , bn→ 0 (see Fig. 1) then

pn,t (x1, . . . , xn) = 1

n! det
(
Kn(xj , xk)

)n
j,k=1

,

where the kernel is given by

Kn(x, y) = e−
x2
4t − y2

4(1−t)
n−1∑
k=0

Hk(
x√
2t
)Hk(

y√
2(1− t) ).

This kernel is related to the Christoffel-Darboux kernel for the usual Hermite
polynomials.

When a1, . . . , an→ 0 and b1, . . . , bn/2 →−b, bn/2+1, . . . , bn→ b (see Fig. 2)
then

pn,t (x1, . . . , xn) = 1

n! det
(
Kn(xj , xk)

)n
j,k=1

,
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Fig. 2 Non-intersecting Brownian motions (two arriving points)

with

Kn(x, y) = e−
x2
4t − y2

4(1−t)
n−1∑
k=0

H9nk (
x√
2t
)Q9nk+1(

y√
2(1− t) ),

with multiple orthogonal polynomials for the weights

e−x2−2bx, e−x2+2bx.

This kernel is related to the Christoffel-Darboux kernel for multiple Hermite
polynomials. An interesting phenomenon appears: for small values of t the points
at level t accumulate on one interval, but for larger values of t in (0, 1) the points
accumulate on two disjoint intervals. There is a phase transition at a critical point
tc ∈ (0, 1). A detailed asymptotic analysis of the kernel near this point will require a
special function satisfying a third order differential equation (the Pearsey equation)
which is a limiting case of the third order differential equation of multiple Hermite
polynomials. The limiting kernel is known as the Pearsey kernel.
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3.6 Multiple Laguerre Polynomials

The Laguerre weight is

w(x) = xαe−x, x ∈ [0,∞), α > −1.

There are two easy ways to obtain multiple Laguerre polynomials:

1. Changing the parameter α to α1, . . . , αr . This gives multiple Laguerre polyno-
mials of the first kind.

2. Changing the exponential decay at infinity from e−x to e−cj x with parameters
c1, . . . , cr . This gives multiple Laguerre polynomials of the second kind.

3.6.1 Multiple Laguerre Polynomials of the First Kind

Type II multiple Laguerre of the first kind L9α9n(x) satisfy

∫ ∞
0
xkL9α9n(x)x

αj e−x dx = 0, 0 ≤ k ≤ nj − 1,

for 1 ≤ j ≤ r . In order that all multi-indices are normal we need to have parameters
αj > −1 and αi − αj /∈ Z whenever i �= j , in which case the r measures form an
AT-system. The multiple orthogonal polynomials can be found from the Rodrigues
formula

(−1)|9n|e−xL9α9n(x) =
r∏
j=1

(
x−αj d

nj

dxnj
xnj+αj

)
e−x.

An explicit formula is

L9α9n(x) =
n1∑
k1=0

· · ·
nr∑
kr=0

(−1)|9k| n1!
(n1 − k1)! · · ·

nr !
(nr − kr )!

×
(
nr + αr
kr

)(
nr + nr−1 + αr−1 − kr

kr−1

)
· · ·

(|9n| − |9k| + k1 + α1

k1

)
x |9n|−|9k|.

Another explicit expression with hypergeometric functions is

(−1)|9n|e−xL9α9n(x) =
r∏
j=1

(αj + 1)nj rFr

(
n1 + α1 + 1, . . . , nr + αr + 1

α1 + 1, . . . , αr + 1

∣∣∣∣− x
)
.
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The nearest neighbor recurrence relations are

xL9n(x) = L9n+9ek (x)+ b9n,kL9n(x)+
r∑
j=1

a9n,jL9n−9ej (x)

with

a9n,j = nj (nj + αj )
r∏

i=1,i �=j

nj + αj − αi
nj − ni + αj − αi ,

and

b9n,k = |9n| + nk + αk + 1.

These multiple Laguerre polynomials also have some differential properties. There
are r raising operators

d

dx

(
xαj+1e−xL9α+9ej9n−9ej (x)

)
= −xαj e−xL9α9n(x), 1 ≤ j ≤ r.

and there is one lowering operator

d

dx
L9α9n(x) =

r∑
j=1

∏r
i=1(ni + αi − αj )∏r
i=1,i �=j (αi − αj )

L
9α+9ej
9n−9ej (x).

Combining them gives the differential equation

⎛
⎝ r∏
j=1

Dj

⎞
⎠DL9α9n(x) = −

r∑
j=1

∏r
i=1(ni + αi − αj )∏r
i=1,i �=j (αi − αj )

⎛
⎝∏
i �=j
Di

⎞
⎠L9α9n(x).

D = d

dx
, Dj = x−αj exDxαj+1e−x.

3.6.2 Multiple Laguerre Polynomials of the Second Kind

Type II multiple Laguerre polynomials of the second kind Lα,9c9n (x) satisfy

∫ ∞
0
xkL

α,9c
9n (x)x

αe−cj x dx = 0, 0 ≤ k ≤ nj − 1,
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for 1 ≤ j ≤ r . The parameters need to satisfy α > −1 and cj > 0 with ci �= cj
whenever i �= j . The Rodrigues formula is

(−1)|9n|
r∏
j=1

c
nj
j x

αL
α,9c
9n (x) =

r∏
j=1

(
ecj x

dnj

dxnj
e−cj x

)
x |9n|+α,

which allows to find the explicit expression

L
α,9c
9n (x) =

n1∑
k1=0

· · ·
nr∑
kr=0

(
n1

k1

)
· · ·

(
nr

kr

)(|9n| + α
|9k|

)
(−1)|9k|

|9k|!
c
k1
1 · · · ckrr

x |9n|−|9k|.

The nearest neighbor recurrence relations are

xL9n(x) = L9n+9ek (x)+ b9n,kL9n(x)+
r∑
j=1

a9n,jL9n−9ej (x),

with

a9n,j = nj (|9n| + α)
c2
j

, b9n,k = |9n| + α + 1

ck
+

r∑
j=1

nj

cj
.

The differential properties include r raising operators

d

dx

(
xα+1e−cj xLα+1,9c

9n−9ej (x)
)
= −cjxαe−cj xLα,9c9n (x), 1 ≤ j ≤ r.

and one lowering operator

d

dx
L
α,9c
9n (x) =

r∑
j=1

njL
α+1,9c
9n−9ej (x).

They give the differential equation

⎛
⎝ r∏
j=1

Dj

⎞
⎠ xα+1DL

α,9c
9n (x) = −

r∑
j=1

cjnj

⎛
⎝∏
i �=j
Di

⎞
⎠ xαLα,9c9n (x),

where

D = d

dx
, Dj = ecj xDe−cj x.
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3.6.3 Random Matrices: Wishart Ensemble

Wishart (1928) introduced the Wishart distribution for N × N positive definite
Hermitian matrices

M = XX∗, X ∈ C
N×(N+p),

where all the columns of X are independent and have a multivariate Gauss
distribution with covariance matrix *. The density for the Wishart distribution is

1

ZN
e−Tr(*−1M)(detM)p dM.

If * = IN then Laguerre polynomials (with α = p) play an important role. If *−1

has eigenvalues c1, . . . , cr with multiplicities n1, . . . , nr , then we need multiple
Laguerre polynomials of the second kind. The average characteristic polynomial is

E

(
det(M− zIN)

)
= (−1)|9n|Lp,9c9n (z).

3.7 Jacobi-Piñeiro Polynomials

There are several ways to find multiple Jacobi polynomials. Here we only mention
one way which uses the same differential operators as the multiple Laguerre
polynomials of the first kind. The Jacobi-Piñeiro polynomials P (9α,β)9n satisfy

∫ 1

0
P
(9α,β)
9n (x)xkxαj (1− x)β dx = 0, 0 ≤ k ≤ nj − 1,

for 1 ≤ j ≤ r . Hence we are using Jacobi weights xα(1 − x)β on the interval
[0, 1], with α, β > −1 but with r different parameters α1, . . . , αr . In order to have
a perfect system we require αi − αj /∈ Z whenever i �= j . They can be obtained
using the Rodrigues formula

(−1)|9n|
⎛
⎝ r∏
j=1

(|9n| + αj + β)nj
⎞
⎠ (1− x)βP (9α,β)9n (x)

=
r∏
j=1

(
x−αj d

nj

dxnj
xnj+αj

)
(1− x)β+|9n|.



662 W. Van Assche

An expression in terms of generalized hypergeometric functions is

(−1)|9n|
⎛
⎝ r∏
j=1

(|9n| + αj + β)nj
⎞
⎠ (1− x)βP (9α,β)9n (x)

=
r∏
j=1

(αj + 1)nj r+1Fr

(−|9n| − β, α1 + n1 + 1, . . . , αr + nr + 1
α1 + 1, . . . , αr + 1

∣∣∣∣ x
)
.

This hypergeometric function does not terminate when β is not an integer. Another
useful expression is

(−1)|9n|P (9α,β)9n (x)

= n1! · · · nr !∏r
j=1(|9n| + αj + β)nj

n1∑
k1=0

· · ·
nr∑
kr=0

(−1)|9k|
r∏
j=1

(
nj + αj +∑j−1

i=1 ki

nj − kj
)

×
(|9n| + β
|9k|

) |9k|!x |9k|(1− x)|9n|−|9k|
k1! · · · kr ! .

Again there are r raising differential operators and one lowering operator and
the recurrence coefficients are known explicitly. These polynomials are useful for
rational approximation of polylogarithms, and in particular for the zeta function
ζ(k) at integers. The polylogarithms are defined by

Lik(z) =
∞∑
n=1

zn

nk
, |z| < 1,

and one has

Lik+1(1/z) = (−1)k

k!
∫ 1

0

logk(x)

z− x dx.

Simultaneous rational approximation to Li1(1/z), . . . ,Lir (1/z) can be done using
Hermite-Padé approximation with a limiting case of Jacobi-Piñeiro polynomials
where β = 0 and α1 = α2 = · · · = αr = 0, which is possible when
n1 ≥ n2 ≥ · · · ≥ nr . This is particularly interesting if we let z → 1, since
Lik(1) = ζ(k). Apéry’s construction of good rational approximants for ζ(3)
(proving that ζ(3) is irrational) essentially makes use of these multiple orthogonal
polynomials, see, e.g. [43].
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4 Orthogonal Polynomials and Painlevé Equations

In this section we describe how orthogonal polynomials are related to non-linear
difference and differential equations, in particular to discrete Painlevé equations
and the six Painlevé differential equations. For a recent discussion on this relation
between orthogonal polynomials and Painlevé equations we refer to the monograph
[46]. Other useful references are [7, 8, 44].

Painlevé equations (discrete and continuous) appear at various places in the
theory of orthogonal polynomials, in particular

• The recurrence coefficients of some semiclassical orthogonal polynomials satisfy
discrete Painlevé equations.

• The recurrence coefficients of orthogonal polynomials with a Toda-type evolu-
tion satisfy Painlevé differential equations for which special solutions depending
on special functions (Airy, Bessel, (confluent) hypergeometric, parabolic cylinder
functions) are relevant.

• Rational solutions of Painlevé equations can be expressed in terms of Wronskians
of orthogonal polynomials.

• The local asymptotics for orthogonal polynomials at critical points is often using
special transcendental solutions of Painlevé equations.

In this section we will only deal with the first two of these.
What are Painlevé (differential) equations? They are second order nonlinear

differential equations

y ′′ = R(y ′, y, x), R rational,

that have the Painlevé property: The general solution is free from movable branch
points. The only singularities which may depend on the initial conditions are poles.
Painlevé and his collaborators found 50 families (up to Möbius transformations), all
of which could be reduced to known equations and six new equations (new at least
at the beginning of the twentieth century). The six Painlevé equations are

PI y
′′ = 6y2 + x,

PII y
′′ = 2y3 + xy + α, (4.1)

PIII y
′′ = (y

′)2

y
− y

′

x
+ αy

2 + β
x

+ γy3 + δ
y
, (4.2)

PIV y ′′ = (y
′)2

2y
+ 3

2
y3 + 4xy2 + 2(x2 − α)y + β

y
, (4.3)

PV y ′′ =
(

1

2y
+ 1

y − 1

)
(y ′)2 − y

′

x
+ (y − 1)2

x2

(
αy + β

y

)
+ γy
x

+ δy(y + 1)

y − 1
, (4.4)
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PVI y
′′ = 1

2

(
1

y
+ 1

y − 1
+ 1

y − x
)
(y ′)2 −

(
1

x
+ 1

x − 1
+ 1

y − x
)
y ′

+ y(y − 1)(y − x)
x2(x − 1)2

(
α + βx

y2 +
γ (x − 1)

(y − 1)2
+ δx(x − 1)

(y − x)2
)
,

Discrete Painlevé equations are somewhat more difficult to describe. Roughly
speaking they are second order nonlinear recurrence equations for which the contin-
uous limit is a Painlevé equation. They have the singularity confinement property,
but this property is not sufficient to characterize discrete Painlevé equations. A quote
by Kruskal [23] is:

Anything simpler becomes trivially integrable, anything more complicated becomes hope-
lessly non-integrable.

A more correct description is that they are nonlinear recurrence relations with
‘nice’ symmetry and geometry. A full classification of discrete (and continuous)
Painlevé equations has been found by Sakai [36]. This is based on rational surfaces
associated with affine root systems. It describes the space of initial values which
parametrizes all the solutions (Okamoto [34]). A fine tuning of this classification
was given recently by Kajiwara, Noumi and Yamada [21]: they also include the
symmetry, i.e., the group of Bäcklund transformations, which are transformations
that map a solution of a Painlevé equation to another solution with different
parameters. A partial list of discrete Painlevé equations is:

d-PI xn+1 + xn + xn−1 = zn + a(−1)n

xn
+ b, (4.5)

d-PII xn+1 + xn−1 = xnzn + a
1− x2

n

, (4.6)

d-PIV (xn+1 + xn)(xn + xn−1) = (x
2
n − a2)(x2

n − b2)

(xn + zn)2 − c2 ,

d-PV
(xn+1 + xn − zn+1 − zn)(xn + xn−1 − zn − zn−1)

(xn+1 + xn)(xn + xn−1)

= [(xn − zn)
2 − a2][(xn − zn)2 − b2]

(xn − c2)(xn − d2)
,

where zn = αn+ β and a, b, c, d are constants.

q-PIII xn+1xn−1 = (xn − aqn)(xn − bqn)
(1− cxn)(1− xn/c) ,

q-PV (xn+1xn − 1)(xnxn−1 − 1) = (xn − a)(xn − 1/a)(xn − b)(xn − 1/b)

(1− cxnqn)(1− xnqn/c) ,
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q-PVI
(xnxn+1 − qnqn+1)(xnxn−1 − qnqn−1)

(xnxn+1 − 1)(xnxn−1 − 1)

= (xn − aqn)(xn − qn/a)(xn − bqn)(xn − qn/b)
(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)

,

where qn = q0q
n and a, b, c, d are constants.

α-d-PIV (xn + yn)(xn+1 + yn) = (yn − a)(yn − b)(yn − c)(yn − d)
(yn + γ − zn)(yn − γ − zn)

(xn + yn)(xn + yn−1) = (xn + a)(xn + b)(xn + c)(xn + d)
(xn + δ − zn+1/2)(xn − δ − zn+1/2)

.

The latter corresponds to d-P(E(1)6 /A
(1)
2 ) where E(1)6 is the surface type and A(1)2 is

the symmetry type. Sakai’s classification (surface type) corresponds to the following
diagram:

Ee8 A
q

1

↓ ↗
E
q

8 → E
q

7 → E
q

6 → D
q

5 → A
q

4 → (A2 +A1)
q → (A1 +A1)

q → A
q

1

↓ ↓ ↓ ↓ ↓ | ↓ | ↓
Ed8 → Ed7 → Ed6 → Dc4 → Ac3 → | (2A1)

c → | Ac1
↘ ↓ ↘ ↓

Ac2 → Ac1

4.1 Compatibility and Lax Pairs

There is a general philosophy behind the reason why Painlevé equations appear
for the recurrence coefficients of orthogonal polynomials. Orthogonal polynomials
Pn(x) are really functions of two variables: a discrete variable n and a continuous
variable x. The three term recurrence relation (1.2) gives a difference equation in
the variable n, and if the measure is absolutely continuous with a weight functionw
that satisfies a Pearson equation

d

dx
[σ(x)w(x)] = τ (x)w(x), (4.7)

where σ and τ are polynomials, then the orthogonal polynomials also satisfy
differential relations in the variable x. If deg σ ≤ 2 and deg τ = 1 then we
are dealing with classical orthogonal polynomials which satisfy the second order
differential equation

σ(x)y ′′(x)+ τ (x)y ′(x)+ λny(x) = 0,
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where λn = −n(n−1)σ ′′/2−nτ ′. In the semiclassical case we still have the Pearson
equation (4.7) but we allow degσ > 2 or deg τ �= 1. In that case there is a structure
relation

σ(x)
d

dx
Pn(x) =

n+s−1∑
k=n−t

An,kPk(x), (4.8)

where s = deg σ and t = max{deg τ, deg σ − 1}. The structure relation (4.8) and
the three-term recurrence relation (1.2) have to be compatible: if we differentiate
the terms in the recurrence relation (1.2) and replace all the P ′k(x) using the
structure relation (4.8), then we get a linear combination of a finite number of
orthogonal polynomials that is equal to 0. Since (orthogonal) polynomials are
linearly independent in the linear space of polynomials, the coefficients in this
linear combination have to be zero, and this gives relations between the recurrence
coefficient a2

n, bn and the coefficients An,k in the structure relation. Eliminating
these An,k gives recurrence relations for the a2

n, bn, which turn out to be non-
linear. If they are of second order, then we can identify them as discrete Painlevé
equations. In this way the three-term recurrence relation and the structure relation
can be considered as a Lax pair for the obtained discrete Painlevé equation.

In order to get to the Painlevé differential equation, we need to introduce an
extra continuous parameter t . For this we will use an exponential modification of
the measure μ and investigate orthogonal polynomials for the measure dμt(x) =
ext dμ(x), whenever all the moments of this modified measure exist. We will denote
the monic orthogonal polynomials by Pn(x; t) and in this way the orthogonal
polynomial is now a function of three variables n, x, t . The behavior for the
parameter t is given by:

Theorem 4.1 The monic orthogonal polynomials Pn(x; t) for the measure
dμt(x) = ext dμ(x) satisfy

d

dt
Pn(x; t) = Cn(t)Pn−1(x; t), (4.9)

where Cn(t) depends only on t and n.

Proof First of all, since Pn(x; t) is a monic polynomial, the derivative d
dt
Pn(x; t)

is a polynomial of degree ≤ n − 1. We will show that it is orthogonal to xk for
0 ≤ k ≤ n − 2 for the measure ext dμ(x), so that it is proportional to Pn−1(x; t),
which proves (4.9). We start from the orthogonality relations

∫
Pn(x; t)xkext dμ(x) = 0, 0 ≤ k ≤ n− 1,

and take derivatives with respect to t to find

∫ (
d

dt
Pn(x; t)

)
xkext dμ(x)+

∫
Pn(x; t)xk+1ext dμ(x) = 0, 0 ≤ k ≤ n−1.
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The second integral vanishes for 0 ≤ k ≤ n− 2 by orthogonality, hence

∫ (
d

dt
Pn(x; t)

)
xkext dμ(x) = 0, 0 ≤ k ≤ n− 2,

which is what we needed to prove. ��
This relation is not new, see e.g. [39, §4], but has not been sufficiently appreciated

in the literature. If we now check the compatibility between (4.9) and the three-
term recurrence relation (1.2), then we find differential-difference equations for the
recurrence coefficients a2

n, bn.

Theorem 4.2 (Toda Equations) The recurrence coefficients a2
n(t) and bn(t) for

the orthogonal polynomials Pn(x; t) satisfy

d

dt
a2
n(t) = a2

n(bn − bn−1), n ≥ 1, (4.10)

d

dt
bn(t) = a2

n+1 − a2
n, n ≥ 0, (4.11)

with a2
0 = 0.

Proof If we take derivatives with respect to t in the three-term recurrence rela-
tions (1.2), then

x
d

dt
Pn(x; t) = d

dt
Pn(x; t)+ b′n(t)Pn(x; t)+ bn

d

dt
Pn(x)

+ (a2
n)
′(t)Pn−1(x; t)+ a2

n

d

dt
Pn−1(x; t).

Use (4.9) to find

xCnPn−1(x; t) = Cn+1Pn(x; t)+ b′nPn(x; t)+ bnCnPn−1(x; t)
+ (a2

n)
′Pn−1(x; t)+ a2

nCn−1Pn−2(x; t).

If we compare this with (1.2) (with n shifted to n− 1), then we find

Cn+1 + b′n = Cn, (4.12)

Cn(bn−1 − bn) = (a2
n)
′ (4.13)

a2
nCn−1 = a2

n−1Cn. (4.14)

From (4.14) we find that a2
n/Cn does not depend on n, so that a2

n/Cn = a2
1/C1 and

from (4.12) we find that C1 = −b′0(t). A simple exercise shows that b′0(t) = a2
1(t)
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so that Cn(t) = −a2
n(t). If we use this in (4.13), then we find (4.10). If we use it

in (4.12), then we find (4.11). ��
The system (4.10)–(4.11) is closely related to a chain of interacting particles

with exponential interaction with their neighbors, introduced by Toda [41] in 1967.
If xn(t) is the position of particle n, then the Toda system of equations is

x ′′n(t) = exp(xn−1 − xn)− exp(xn − xn+1).

The relation with orthogonal polynomials was made by Flaschka [15, 16] and
Manakov [28], who suggested the change of variables

an(t) = exp(−[xn − xn−1]/2), bn = −x ′n(t),

which gives the system (4.10)–(4.11).
If we are dealing with symmetric orthogonal polynomials, i.e., when the measure

is symmetric and all the odd moments are zero, then the three-term recurrence
relation simplifies to

xPn(x) = Pn+1(x)+ a2
nPn−1(x), n ≥ 0. (4.15)

A symmetric modification of the measure is given by dμt (x) = etx2
dμ(x) and the

relation becomes

d

dt
Pn(x; t) = Cn(t)Pn−2(x; t). (4.16)

The compatibility between (4.15) and (4.16) then gives:

Theorem 4.3 (Langmuir Lattice) Let μ be a symmetric positive measure on R

for which all the moments exist and let μt be the measure for which dμt(x) =
etx

2
dμ(x), where t ∈ R is such that all the moments ofμt exist. Then the recurrence

coefficients of the orthogonal polynomials for μt satisfy the differential-difference
equations

d

dt
a2
n = a2

n(a
2
n+1 − a2

n−1), n ≥ 1. (4.17)

Proof If we differentiate (4.15) with respect to t and then use (4.16), then we find

xCnPn−2(x; t) = Cn+1Pn−1(x; t)+ (a2
n)
′Pn−1(x; t)+ a2

nCn−1Pn−3(x; t).

Comparing with (4.15) (with n replaced by n− 2) gives

(a2
n)
′ = Cn − Cn+1, (4.18)

a2
nCn−1 = a2

n−2Cn. (4.19)



OPS, Random Matrices, Painlevé Equations 669

From (4.19) it follows that a2
na

2
n−1/Cn is constant and therefore equal to a2

2a
2
1/C2.

Now C2(t) = −(a2
1)
′ and one can easily compute a2

1, a
2
2 and (a2

1)
′ in terms of the

moments m0,m2,m4 to find that a2
2a

2
1/C2 = −1, so that a2

na
2
n−1 = −Cn. If one

uses this in (4.18), then one finds (4.17). ��
This differential-difference equation is known as the Langmuir lattice or the Kac-
van Moerbeke lattice. We will now illustrate this with a number of explicit examples.

4.2 Discrete Painlevé I

Let us consider orthogonal polynomials for the weight function w(x) = e−x4+tx2

on (−∞,∞). The symmetry w(−x) = w(x) of this weight function implies that
the recurrence coefficients bn in (1.1) or (1.2) vanish and the three-term recurrence
relation is (4.15). The orthogonal polynomials also have a nice differential property:
the structure relation is

P ′n(x) = AnPn−1(x)+ CnPn−3(x), (4.20)

for certain sequences (An)n and (Cn)n. Indeed, we can express P ′n in terms of the
orthogonal polynomials as

P ′n(x) =
n−1∑
k=0

cn,kPk(x),

where

cn,k

∫ ∞
−∞

P 2
k (x)e

−x4+tx2
dx =

∫ ∞
−∞

P ′n(x)Pk(x)e−x
4+tx2

dx.

Using integration by parts gives

cn,k/γ
2
k = −

∫ ∞
−∞

Pn(x)
(
Pk(x)e

−x4+tx2)′
dx

= −
∫ ∞
−∞

Pn(x)P
′
k(x)e

−x4+tx2
dx

+
∫ ∞
−∞

Pn(x)Pk(x)(4x3 − 2tx)e−x4+tx2
dx,

and the last two integrals are zero for 0 ≤ k < n − 3 by orthogonality, so that
only cn,n−1, cn,n−2 and cn,n−3 are left. The symmetry of w implies that P2n(x) is an
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even polynomial and P2n+1(x) is an odd polynomial for every n, hence cn,n−2 = 0.
Taking An = cn,n−1 and Cn = cn,n−3 then gives the structure relation.

We now have a recurrence relation (4.15) which describes the behavior of Pn(x)
in the (discrete) variable n, and a structure relation (4.20) which describes the behav-
ior of Pn(x) in the (continuous) variable x. Both relations have to be compatible:
if we differentiate (4.15) and then use (4.20) to replace all the derivatives, then
comparing coefficients of the polynomials pk gives the compatibility relations

4a2
n

(
a2
n+1 + a2

n + a2
n−1 −

t

2

)
= n. (4.21)

This simple non-linear recurrence relation is known as discrete Painlevé I (d-PI)
and is a special case of (4.5) we gave earlier. This particular equation was already in
work of Shohat [37] in 1939, who extended earlier work of Laguerre [25] from 1885.
Later it was obtained again by Freud [18] in 1976, who was unaware of the work
of Shohat. The special positive solution needed to get the recurrence coefficients
was analyzed by Nevai [32] and Lew and Quarles [26]. An asymptotic expansion
was found by Máté-Nevai-Zaslavsky [30]. Only later (in 1991) it was recognized
as a discrete Painlevé equation by Fokas, Its and Kitaev [17] who coined the name
d-PI. Magnus [27] used the extra parameter t and showed that, as a function of t ,
the recurrence coefficient an(t) satisfies the differential equation Painlevé IV, as we
will see later.

The discrete Painlevé equation (4.21) easily allows to find the asymptotic
behavior as n→∞:

Theorem 4.4 (Freud) The recurrence coefficients for the weight w(x) = e−x4+tx2

on (−∞,∞) satisfy

lim
n→∞

an

n1/4 =
1

4
√

12
.

Observe that (4.21) is a second order recurrence relation, so one needs two initial
conditions a0 and a1 to generate all the recurrence coefficients. It turns out that
the recurrence coefficients are a special solution with a0 = 0 for which all an are
positive for n ≥ 1. This means that there is only one special initial value a1 that
gives a positive solution. Put xn = a2

n, then (for t = 0)

xn(xn+1 + xn + xn−1) = an, a = 1/4. (4.22)

Theorem 4.5 (Lew and Quarles, Nevai) There is a unique solution of (4.22) for
which x0 = 0 and xn > 0 for all n ≥ 1.

Hence one should not use this recurrence relation (4.22) to generate the recurrence
coefficients starting from x0 = 0 and x1, because a small error in x1 will produce
a sequence for which not all the terms are positive. A small perturbation in the
initial condition x1 has a very important effect on the solution as n → ∞. This
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is not unusual for non-linear recurrence relations. Instead it is better to generate the
positive solution by using a fixed point algorithm, because the positive solution turns
out to be the fixed point of a contraction in an appropriate normed space of infinite
sequences. See, e.g., [46, §2.3].

4.3 Langmuir Lattice and Painlevé IV

We will modify the measure μ by multiplying it with the symmetric function etx
2
,

where t is a real parameter. This gives the Langmuir lattice (4.17). We can combine
this with the discrete Painlevé equation (4.21) to find a differential equation for a2

n(t)

as a function of the variable t . Put a2
n = xn, then

n = 4xn(xn+1 + xn + xn−1 − t/2), (4.23)

x ′n = xn(xn+1 − xn−1), (4.24)

where the ′ denotes the derivative with respect to t . Differentiate (4.24) to find

x ′′n = x ′n(xn+1 − xn−1)+ xn(x ′n+1 − x ′n−1).

Replace x ′n+1 and x ′n−1 by (4.24), then

x ′′n = x ′n(xn+1 − xn−1)+ xn
(
xn+1(xn+2 − xn)− xn−1(xn − xn−2)

)
.

Eliminate xn+1 and xn−1 using (4.23)–(4.24) to find

x ′′n =
(x ′n)2

2xn
+ 3x3

n

2
− tx2

n + xn
(
n

2
+ t

2

8

)
− n2

32xn
.

This is Painlevé IV if we use the transformation 2xn(t) = y(−t/2). This means
that Painlevé IV has a solution which can be described completely in terms of the
moments of w(x) = e−x4+tx2

, since a2
n = γ 2

n−1/γ
2
n and by (1.5) γ 2

n = Dn/Dn+1,
where Dn is the Hankel determinant (1.3) containing the moments. Notice that all
the odd moments m2n+1 are zero, and for the even moments one has

m2n =
∫
R

x2ne−x4+tx2
dx = dn

dtn
m0.

Hence the special solution a2
n(t) of Painlevé IV is in terms ofm0(t) only, and this is

a special function:

m0(t) =
∫ ∞
−∞

e−x4+tx2
dx = 2−1/4√πet2/8D−1/2(−

√
t/2),

whereD−1/2 is a parabolic cylinder function.
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4.4 Singularity Confinement

In this section we will explain the notion of singularity confinement for the discrete
Painlevé I equation

4xn(xn+1 + xn + xn−1) = n.

From this equation one finds

xn+1 = n

4xn
− xn − xn−1.

If xn = 0 then xn+1 becomes infinite. This need not be a problem, but problems
arise later when we have to add or subtract infinities. So we need to be careful and
suppose that xn = ε is small. Then

xn+1 = n

4ε
− ε − xn−1,

and

xn+2 = − n
4ε
+ xn−1 + ε +O(ε2),

and

xn+3 = −ε +O(ε2),

and one more

xn+4 = xn−1 +
2− 8x2

n−1

n
ε +O(ε2),

and for ε → 0 we see that xn+4 is finite again and recovers the value xn−1 we had
before we started to get singularities. The singularities are confined to xn+1 and xn+2
and one can continue the recurrence relation from xn+4. This has some meaning in
terms of the orthogonal polynomials for the weight e−x4

, but we have to consider
this weight on the set R ∪ iR and look for orthogonal polynomials (Rn)n for which

α

∫ ∞
−∞
Rn(x)Rm(x)e

−x4
dx + β

∫ +i∞
−i∞

Rn(x)Rm(x)e
−x4 |dx| = 0, n �= m,

with α, β > 0. They satisfy the recurrence relation

xRn(x) = Rn+1(x)+ cnRn−1(x)



OPS, Random Matrices, Painlevé Equations 673

and the recurrence coefficients (cn)n still satisfy (4.22) but with initial condition
c0 = 0 and c1 = (α−β)m2

(α+β)m0
. If α = β then c1 = 0 generates a singularity for d-PI and

gives c2 = ∞, hence R3 does not exist if we define it using (1.4). The singularity,
however, is confined to a finite number of terms. We have

Property 4.6 For α = β one hasD4n−1 = D4n−2 = 0 for the Hankel determinants,
so that R4n−1 and R4n−2 as defined by (1.4) do not exist for n ≥ 1. Furthermore

R4n(x) = rn(x4), R4n+1(x) = xsn(x4).

The polynomials rn and sn can be identified as Laguerre polynomials with parameter
α = −3/4 and α = 1/4 respectively. The problem with R4n−1 and R4n−2 is not so
much that they do not exist, but rather that they are not unique.

Exercise Show that for every a ∈ R the polynomials (x2 + ax)sn(x4) are
monic polynomials of degree 4n + 2 that are orthogonal to xk for 0 ≤ k ≤
4n + 1, so that the monic orthogonal polynomial R4n+2 is not unique. In a
similar way (x3 + ax2 + bx)sn(x4) are monic polynomials of degree 4n+ 3
that are orthogonal to xk for 0 ≤ k ≤ 4n + 2 for every a, b ∈ R so that the
monic orthogonal polynomial R4n+3 is not unique.

4.5 Generalized Charlier Polynomials

Our next example is a family of discrete orthogonal polynomials Pn(x), which
satisfy

∞∑
k=0

Pn(k)Pm(k)
ck

(β)kk! = 0, n �= m.

Without the factor (β)k the polynomials are the Charlier polynomials, but with the
factor (β)k we have a semiclassical family of discrete orthogonal polynomials. The
case β = 1 was investigated in [47] and the general case in [38], see also [46,
§3.2]. The structure relation for discrete orthogonal polynomials is now in terms of
a difference operator instead of a differential operator. For these generalized Charlier
polynomials it is

�Pn(x) = AnPn−1(x)+ BnPn−2(x), (4.25)

where� is the forward difference operator acting on a function f by

�f (x) = f (x + 1)− f (x),
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and (An)n and (Bn)n are certain sequences. If one works out the compatibility
of (1.2) and (4.25), then one finds

bn + bn−1 − n+ β = cn
a2
n

,

(a2
n+1 − c)(a2

n − c) = c(bn − n)(bn − n+ β − 1).

This corresponds to a limiting case of discrete Painlevé with surface/symmetryD(1)4
in Sakai’s classification.

If we put c = c0e
t , then the weights with parameter c are a Toda modification of

the weights with parameter c0,

ck

(β)kk! = e
tk ck0

(β)kk! ,

and hence the recurrence coefficients satisfy the Toda equations given in Theo-
rem 4.2. Put xn(t) = a2

n and yn(t) = bn, then

(xn − c)(xn+1 − c) = c(yn − n)(yn − n+ β − 1),

yn + yn−1 − n+ β = cn
xn
,

and if x ′n = dxn/dc, y ′n = dyn/dc, the Toda lattice equations are

cx ′n = xn(yn − yn−1),

cy ′n = xn+1 − xn.

Eliminate yn−1 and xn+1 (this requires quite a few computations) and put xn = c
1−y ,

then y(c) satisfies (after even more computations)

y ′′ = 1

2

(
1

2y
+ 1

y − 1

)
(y ′)2 − y

′

c
+ (1− y)

2

c2

(
n2y

2
− (β − 1)2

2y

)
− 2y

c
.

This is a Painlevé V differential equation as in (4.4) with δ = 0. Such an equation
can always be transformed to Painlevé III.

4.6 Discrete Painlevé II

We will now give an example of a family of orthogonal polynomials on the unit
circle, for which the recurrence coefficients satisfy a discrete Painlevé equation.



OPS, Random Matrices, Painlevé Equations 675

Orthogonal polynomials on the unit circle (OPUC) are defined by the orthogonality
relations

1

2π

∫ 2π

0
ϕn(z)ϕm(z)v(θ) dθ = δm,n, z = eiθ , ϕn(z) = κnzn + · · ·

where κn > 0. We denote the monic polynomials by  n = ϕn/κn. They satisfy a
nice recurrence relation

z n(z) =  n+1(z)+ αn ∗n(z), (4.26)

where  ∗n(z) = zn n(1/z) is the reversed polynomial. The recurrence coefficients
αn = − n+1(0) are nowadays known as Verblunsky coefficients, but earlier they
were also known as Schur parameters or reflection coefficients. Let v(θ) = et cos θ

for θ ∈ [−π, π]. The trigonometric moments for this weight function are modified
Bessel functions

1

2π

∫ 2π

0
einθv(θ) dθ = In(t),

which is why Ismail [20, Example 8.4.3] calls them modified Bessel polynomials.
The symmetry v(−θ) = v(θ) implies that αn(t) are real-valued. If we write

v(θ) = v̂(z), z = eiθ ,

then

v̂(z) = exp

(
t
z + 1

z

2

)
,

and this function satisfies the Pearson equation

v̂′(z) = t
2

(
1− 1

z2

)
v̂(z).

As a consequence the orthogonal polynomials satisfy a structure relation:

Property 4.7 The monic orthogonal polynomials for v(θ) = et cos θ satisfy

 ′n(z) = n n−1(z)+ Bn n−2(z), (4.27)

for some sequence (Bn)n. In fact, one has

Bn = t
2

κ2
n−2

κ2
n

.



676 W. Van Assche

We now have two equations: the recurrence relation (4.26) and the structure
relation (4.27), and we can check their compatibility. They will be compatible if
the recurrence coefficients satisfy the following non-linear relation:

Theorem 4.8 (Periwal and Shevitz [35]) The Verblunsky coefficients for the
weight v(θ) = et cos θ satisfy

− t
2
(αn+1 + αn−1) = (n+ 1)αn

1− α2
n

,

with initial values

α−1 = −1, α0 = I1(t)
I0(t)

.

Let xn = αn−1, then

xn+1 + xn−1 = αnxn

1− x2
n

, α = −2

t
, (4.28)

and this is a particular case of discrete Painlevé II (d-PII) given in (4.6). We need a
solution with x0 = −1 and |xn| < 1 for n ≥ 1, because for Verblunsky coefficients
one always has |αn| < 1. Such a solution is unique.

Theorem 4.9 Suppose α > 0. Then there is a unique solution of (4.28) for which
x0 = −1 and−1 < xn < 1. The solution corresponds to x1 = I1(−2/α)/I0(−2/α)
and is negative for every n ≥ 0.

A proof of this result can be found in [46, §3.3] for α > 1; a proof for 0 < α ≤ 1
has not been published and we invite the reader to come up with such a proof. This
special solution converges to zero (fast).

4.7 The Ablowitz-Ladik Lattice and Painlevé III

The lattice equations corresponding to orthogonal polynomials on the unit circle are
the Ablowitz-Ladik lattice equations (or the Schur flow).

Theorem 4.10 Let ν be a positive measure on the unit circle which is symmetric
(the Verblunsky coefficients are real). Let νt be the modified measure dνt (θ) =
et cos θ dν(θ), with t ∈ R. The Verblunsky coefficients (αn(t))n for the measure νt
then satisfy

2α′n = (1− α2
n)(αn+1 − αn−1), n ≥ 0.
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We can now combine the discrete Painlevé II equation

αn+1 + αn−1 = −2nαn
t (1− α2

n)

with the Ablowitz-Ladik equation

αn+1 − αn−1 = 2α′n
1− α2

n

.

Eliminate αn+1 and αn−1 to find

α′′n = −
αn

1− α2
n

(α′n)2 −
α′n
t
− αn(1− α2

n)+
(n+ 1)2

t2

αn

1− α2
n

.

Exercise If one puts αn = 1+y
1−y , then show that y satisfies the Painlevé V

differential equation (4.4) with γ = 0.

Painlevé V with γ = 0 can always be transformed to Painlevé III. A direct
approach was given by Hisakado [19] and Tracy and Widom [42]. They showed
that the ratio wn(t) = αn(t)/αn−1(t) satisfies Painlevé III.

4.8 Some More Examples

Several more examples have been worked out in the literature the past few years.
Here is a short sample.

4.8.1 Generalized Meixner Polynomials

These are discrete orthogonal polynomials

∞∑
k=0

Pn(k)Pm(k)
(γ )ka

k

(β)kk! = 0, n �= m,

which were considered in [8, 14, 38]. Put a2
n = na − (γ − 1)un, and bn = n+ γ −

β + a − γ−1
a
vn, then

(un + vn)(un+1 + vn) = γ − 1

a2 vn(vn − a)
(
vn − a γ − β

γ − 1

)
,

(un + vn)(un + vn−1) = un

un − an
γ−1

(un + a)
(
un + a γ − β

γ − 1

)
.
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The initial values are

a2
0 = 0, b0 = γ a

β

M(γ + 1, β + 1, a)

M(γ, β, a)
,

where M(a, b, z) is Kummer’s confluent hypergeometric function. This is asym-
metric discrete Painlevé IV or d-P(E(1)6 /A

(1)
2 ). If we put

vn(a) =
a
(
ay ′ − (1+ β − 2γ )y2 + (n+ 1− a + β − 2γ )y − n

)

2(γ − 1)(y − 1)y
,

then

y ′′ =
(

1

2y
+ 1

y − 1

)
(y ′)2 − y

′

a
+ (y − 1)2

a2

(
Ay + B

y

)+ Cy
a
+ Dy(y + 1)

y − 1

with

A = (β − 1)2

2
, B = −n

2

2
, C = n− β + 2γ, D = −1

2
,

which is Painlevé V given in (4.4).

4.8.2 Modified Laguerre Polynomials

Chen and Its [6] (see also [46, §4.4]) looked at orthogonal polynomials for the
weight function w(x) = xαe−xe−t/x on [0,∞). This is a modification of the
Laguerre weight with an exponential function that has an essential singularity at
0. Put bn = 2n+ α + 1+ cn, a2

n = n(n+ α)+ yn +
∑n−1
j=0 cj , and cn = 1/xn, then

xn + xn−1 = nt − (2n+ α)yn
yn(yn − t) ,

yn + yn+1 = t − 2n+ α + 1

xn
− 1

x2
n

.

This corresponds to the discrete Painlevé equation d-P((2A1)
(1)/D

(1)
6 ). The expo-

nential modification is not of Toda type but belongs to a similar class of modifica-
tions (the Toda hierarchy). With some effort one can find the differential equation

c′′n =
(c′n)2

cn
− c

′
n

t
+ (2n+ α + 1)

c2
n

t2
+ c

3
n

t2
+ α
t
− 1

cn

which is Painlevé III given in (4.2).
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4.8.3 Modified Jacobi Polynomials

Basor et al. [3] (see also [46, §5.2]) considered the weight w(x) = (1 − x)α(1 +
x)βe−tx . This is a Toda modification of the weight function for Jacobi polynomials.
In this case one has

tbn = 2n+ 1+ α + β − t − 2Rn,

t (t + Rn)a2
n = n(n+ β)− (2n+ α + β)rn −

trn(rn + α)
Rn

,

where rn and Rn satisfy the recurrence relations

2t (rn+1 + rn) = 4R2
n − 2Rn(2n+ 1+ α + β − t)− 2αt,

n(n+ β)− (2n+ α + β)rn = rn(rn + α)
(

t2

RnRn−1
+ t

Rn
+ t

Rn−1

)
,

and for y = 1+ t/Rn one has the differential equation

y ′′ = 3y − 1

2y(y − 1)
(y ′)2 − y

′

t
+ 2(2n+ 1+ α + β)y

t
− 2y(y + 1)

y − 1

+ (y − 1)2

t2

(
α2y

2
− β

2

2y

)
,

which is Painlevé V given in (4.4).

4.8.4 q-Orthogonal Polynomials

There are also examples of families of q-orthogonal polynomials for which one can
find q-discrete Painlevé equations for the recurrence coefficients. In this case the
structure relation uses the q-difference operatorDq for which

Dqf (x) = f (x)− f (qx)
x(1− q) .

If we consider the weight

w(x) = xα

(−x2; q2)∞(−q2/x2; q2)∞
, x ∈ [0,∞)
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then the recurrence coefficients (after some transformation) satisfy q-discrete
Painlevé III

xn−1xn+1 = (xn + q−α)2
(qn+αxn + 1)2

.

For the weight

w(x) = xα(−p/x2; q2)∞
(−x2; q2)∞(−q2/x2; q2)∞

, x ∈ [0,∞)

one finds q-discrete Painlevé V

(znzn−1 − 1)(znzn+1 − 1) = (zn +
√
q2−α/p)2(zn

√
pqα−2)2

(qn+α/2−1√pzn + 1)2
.

and for

w(x) = xα(q2x2; q2)∞, x ∈ {qk, k = 0, 1, 2, 3, . . .}

one again finds q-discrete Painlevé V. Observe that sometimes the weights are on
[0,∞) but they can also be on the discrete set {qn, n ∈ N}. See [46, §5.4] for more
details.

4.9 Wronskians and Special Function Solutions

There is a good explanation why these Toda modifications of orthogonal poly-
nomials often give rise to Painlevé differential equations. In fact the solutions
that we need for the recurrence coefficients are special solutions of the Painlevé
equations in terms of special functions, such as the Airy functions, the Bessel
functions, parabolic cylinder functions, the confluent hypergeometric function and
the hypergeometric function. Such special function solutions are often in terms
of Wronskians of one of these special functions. We can easily explain where
these Wronskians are coming from, by using the theory of orthogonal polynomials.
Indeed, we return to our Hankel determinants Dn given in (1.3). They contain the
momentsmn, which for a Toda modification are

mn(t) =
∫
R

xnext dμ(x) = dn

dtn

∫
R

ext μ(x) = dn

dxn
m0(t).
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Hence all the moments are obtained from the momentm0(t) by differentiation, and
the Hankel determinant (1.3) becomes

Dn = det

⎛
⎜⎜⎜⎜⎜⎜⎝

m0 m′0 m′′0 · · · m(n−1)
0

m′0 m′′0 m′′′0 · · · m(n)0
m′′0 m′′′0 m

(4)
0 · · · m(n+1)

0
...

...
... · · · ...

m
(n−1)
0 m

(n)
0 m

(n+1)
0 · · · m(2n−2)

0

⎞
⎟⎟⎟⎟⎟⎟⎠

which is the Wronskian of the functionsm0,m
′
0,m

′′
0, . . . ,m

(n−1)
0 ,

Dn =Wr(m0,m
′
0,m

′′
0, . . . ,m

(n−1)
0 ).

The recurrence coefficient a2
n can be expressed in terms of these Hankel determi-

nants as

a2
n(t) =

γ 2
n−1

γ 2
n

= Dn+1(t)Dn−1(t)

D2
n(t)

,

where we used (1.5). The recurrence coefficients bn can also be found in terms of
determinants. If we write Pn(x) = xn + δnxn−1 + · · · and compare the coefficients
of xn in the recurrence relation (1.2), then bn = δn− δn+1. The coefficient δn can be
obtained from (1.4) from which we see that δn = −D∗n/Dn, where D∗n is obtained
from Dn by replacing the last column (mn−1,mn, . . . ,m(2n−2))

T by moments of
one order higher (mn,mn+1, . . . ,m2n−1)

T . If we take a derivative of the Wronskian,
then

d

dt
Dn =Wr(m0,m

′
0,m

′′
0, . . . ,m

(n−2)
0 ,m

(n)
0 ) = D∗n,

so that

bn(t) =
D′n+1(t)

Dn+1(t)
− D

′
n(t)

Dn(t)
.

This gives explicit expressions of the recurrence coefficients a2
n(t) and bn(t) in terms

of Wronskians generated from one seed functionm0(t).
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