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Preface

Welcome to the proceedings of the 26th International Conference on Neural
Information Processing of the Asia-Pacific Neural Network Society (APNNS 2019),
held in Sydney during December 12–15, 2019.

The mission of the Asia-Pacific Neural Network Society is to promote active
interactions among researchers, scientists, and industry professionals who are working
in Neural Networks and related fields in the Asia-Pacific region. APNNS had
Governing Board Members from 13 countries/regions – Australia, China, Hong Kong,
India, Japan, Malaysia, New Zealand, Singapore, South Korea, Qatar, Taiwan,
Thailand, and Turkey. The society’s flagship annual conference is the International
Conference of Neural Information Processing (ICONIP).

The three-volume set of LNCS 11953–11955 includes 177 papers from 645 sub-
mission, and represents an acceptance rate of 27.4%, reflecting the increasingly high
quality of research in Neural Networks and related areas in the Asia-Pacific.

The conference had three main themes, “Theory and Algorithms,” “Computational
and Cognitive Neurosciences,” and “Human Centred Computing and Applications.”
The three volumes are organized in topical sections which were also the names of the
20-minute presentation sessions at the conference. The topics were Adversarial Net-
works and Learning; Convolutional Neural Networks; Deep Neural Networks; Feature
Learning and Representation; Human Centred Computing; Hybrid Models; Artificial
Intelligence and Cybersecurity; Image Processing by Neural Techniques; Learning
from Incomplete Data; Model Compression and Optimisation; Neural Learning
Models; Neural Network Applications; Social Network Computing; Semantic and
Graph Based Approaches; Spiking Neuron and Related Models; Text Computing
Using Neural Techniques; Time-Series and Related Models; and Unsupervised Neural
Models.

Thanks very much in particular to the reviewers who devoted their time to our
rigorous peer-review process. Their insightful reviews and timely feedback ensured the
high quality of the papers accepted for publication. Finally, thank you to all the authors
of papers, presenters, and participants at the conference. Your support and engagement
made it all worthwhile.

October 2019 Tom Gedeon
Kok Wai Wong

Minho Lee
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Abstract. Recently, several techniques to learn the embedding for a given
graph dataset have been proposed. Among them, Graph2vec is significant in that
it unsupervisedly learns the embedding of entire graphs which is useful for
graph classification. This paper develops an algorithm which improves
Graph2vec. First, we point out two limitations of Graph2vec: (1) Edge labels
cannot be handled and (2) Graph2vec does not always preserve structural
information enough to evaluate the structural similarity, because it bundles the
node label information and the structural information in extracting subgraphs.
Our algorithm overcomes these limitations by exploiting the line graphs (edge-
to-vertex dual graphs) of given graphs. Specifically, it complements either the
edge label information or the structural information which Graph2vec misses
with the embeddings of the line graphs. Our method is named as GL2vec (Graph
and Line graph to vector) because it concatenates the embedding of an original
graph to that of the corresponding line graph. Experimentally, GL2vec achieves
significant improvements in graph classification task over Graph2vec for many
benchmark datasets.

Keywords: Line graph � Graph embedding � Graph-based pattern recognition

1 Introduction

Graph is a powerful tool for representing complex objects and is widely used in many
fields such as social network analysis and chemo-informatics.

Recently, to apply graph data to the existing machine learning algorithms, the
problem to represent a graph as a numeric feature vector called a graph embedding has
received extensive attention. Inspired by the success of embedding techniques such as
Word2vec [1] and Doc2vec [2] in natural language processing, many graph embedding
algorithms based on the language model have been proposed. For example, Node2vec
[3] learns the embedding of nodes which is useful for node classification, node clus-
tering, link prediction and so on.

Whereas many previous works focused on the embedding of graph substructures
like nodes, Graph2vec [4] is unique and remarkable, because it learns the embedding of
entire graphs which can be applied to graph classification and graph clustering.
Specifically, given a set of graphs with node labels, Graph2vec outputs the embeddings
of all the graphs in an unsupervised manner. Graph2vec is founded on Doc2vec [2].
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While Doc2vec regards a document as a set of words, Graph2vec views a graph as a set
of rooted subgraphs. Then, the embeddings of the graphs are obtained by the skip-gram
language model [1].

This paper purposes to improve Graph2vec. We first point out that Graph2vec has
two limitations to be improved: (1) Edge labels cannot be handled. (2) When
Graph2vec quantizes the subgraphs of a graph G, it bundles the node label information
and the structural information. Thus, the resultant subgraph IDs for a graph G do not
always maintain enough structural information to evaluate the structural similarity
between G and other graphs.

To overcome these limitations, we exploit the line graph (edge-to-vertex dual
graph) of G. Conceptually, the line graph L Gð Þ of a graph G is created by mapping
every edge in G to a node in L Gð Þ. Thus, the nodes in L Gð Þ can hold the edge features
in G as the node labels. Moreover, because L Gð Þ discards the node labels in G, L Gð Þ is
suitable to treat the structural information about G independently of the node labels
in G.

Our method constructs the embedding of the line graph L Gð Þ and uses it to com-
plement either the edge label information or the structural information of G which
Graph2vec misses. Specifically, if the graph dataset has edge labels, we specify the
edge labels in G as the node labels in L Gð Þ so that the embedding of L Gð Þ may hold the
edge label information of G. On the other hand, for graph datasets without edge labels,
so that the embedding of L Gð Þ may express the structural information about G, we
specify the degrees of edges in G as the node labels in L Gð Þ. Here, the degree of an
edge e is an edge feature and defined as the number of incident edges to e. Since the
embedding of L Gð Þ alone cannot consider the node labels in G, we append the
embedding of G capturing the node label information to it. Due to this property, our
method is named as GL2vec (Graph and Line graph to vector). Experimentally,
GL2vec achieves significant improvements in graph classification task over Graph2vec
for many benchmark datasets.

This paper is organized as follows. Section 2 explains the conventional Graph2vec.
In Sect. 3, we clarify the two shortcomings of Graph2vec. Section 4 describes our
GL2vec to overcome these shortcomings. Section 5 reports the experimental results.
Section 6 briefs the related works and Sect. 7 is the conclusion.

2 Graph2vec

This section explains Graph2vec in [4]. Given a set of graphs G1;G2; . . .GNf g and a
positive integer d which determines the dimensionality of embedding, Graph2vec
learns a mapping which maps the graphs to a set of d-dimensional vectors ff ðG1Þ;
f ðG2Þ; . . .; f ðGNÞg. f ðGiÞ is called the embedding of Gi: In particular, Graph2vec tries
to learn a mapping which satisfies the condition that, as two graphs Gi and Gj are
semantically more similar, f ðGiÞ and f ðGjÞ become closer in the d-dimensional vector
space.

Graph2vec assumes that graphs have node labels. A graph G with node labels is
represented as G ¼ V ;E; kf g. Here, V is a set of nodes and E � V � Vð Þ be a set of
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edges. k : V ! L is a function which assigns a unique label from the alphabet L to
every node v 2 V .

Graph2vec is inspired by Doc2vec [2]. As Doc2vec represents a single document as
a set of words, Graph2vec represents a single graph as a set of rooted subgraphs. After
expressing every graph as a group of rooted subgraphs, Graph2vec learns the
embedding of each graph by the skip-gram language model [1]. In the subsequence,
Sect. 2.1 explains the extraction of rooted subgraphs in a single graph. Then, Sect. 2.2
describes how Graph2vec learns the embedding of all the graphs.

2.1 Extraction of Rooted Subgraphs

Let H be a non-negative integer parameter which defines the maximum height (max-
imum hop) of rooted subgraphs. Usually, the users must specify H. For every node v in
a graph G, Graph2vec generates Hþ 1ð Þ rooted subgraphs whose roots are v. For
0� t�H, the t-th subgraph rooted at v describes the surroundings around v within
t hops, and its height equals t. After all, if G consists of n nodes, Graph2vec enumerates

the set of n Hþ 1ð Þ rooted subgraphs denoted by c Gð Þ ¼ sg oð Þ
1 ; sg 0ð Þ

2 ; . . .; sg 0ð Þ
n ;

n

sg 1ð Þ
1 ; sg 1ð Þ

2 ; . . .sg 1ð Þ
n ; . . .; sg Hð Þ

1 ; sg Hð Þ
2 ; . . .; sg Hð Þ

n g
These subgraphs are quantized into subgraph IDs according to the WL (Weisfeiler-

Lehman) relabeling strategy [5].

Fig. 1. WL relabeling for graph G

GL2vec: Graph Embedding Enriched by Line Graphs 5



Below, we depict the procedure of the WL relabeling at the t-th iteration in which
the t-th rooted subgraphs are created for all the nodes and quantized into subgraph IDs.
In this algorithm, kt vð Þ symbolizes the node label of v which expresses the ID of the t-
th subgraph rooted at v, i.e., sg tð Þ

v .

1. For every node v in G, collect the labels of the nodes adjacent to v and create the
multiset of node labels Mt vð Þ ¼ kt�1 uð Þju 2 Neighbors vð Þ� �

2. Sort the elements in Mt vð Þ in ascending order and concatenate them into a string
St vð Þ. Then, insert kt�1 vð Þ into St vð Þ as the prefix.

3. St vð Þ is mapped to a new ID using some hash function such that Hash St vð Þð Þ ¼
Hash St wð Þð Þ iff St vð Þ ¼ St wð Þ.

4. Replace the label of v with kt vð Þ ¼ Hash St vð Þð Þ.
Here, the second step constructs sg tð Þ

v by combining the (t−1)-th subgraphs rooted at
the neighbors of v with the (t−1)-th subgraph rooted at v itself. Then, the third step
quantizes sg tð Þ

v to the subgraph ID “kt vð Þ”. Figure 1 shows an example of the execution
of the WL relabeling strategy. For instance, the rooted subgraph for v5 is first described
as “3-1,1,2”, where “3” is the label of the root and “1,1,2” expresses the labels of nodes
adjacent to v5. Then, this subgraph is quantized to a new subgraph ID “9”.

2.2 Learning Embeddings of Entire Graphs

After extracting the rooted subgraphs from all the graphs, Graph2vec uses the skip-
gram model [1] to learn the graph embedding. The skip-gram model adopts a neural
network with one hidden layer. At the input layer, the graphs for which we want to
learn the embeddings are encoded as one-hot vectors. The output layer outputs the
predicted probability distribution over the rooted subgraphs conditioned by the graph
inputted at the input layer. Through the learning, the hidden layer acquires the
embeddings of the inputted graphs. The skip-gram model can be trained efficiently with
negative sampling [1].

Given a set of graphs G1;G2; . . .GNf g and their subgraphs fcðG1Þ; c G2ð Þ; . . .;
c GNð Þg, Graph2vec learns a d-dimensional embedding f ðGiÞ for Gi, and a d-dimen-
sional embedding for each member subgraph in c Gið Þ for 1� i�N. The model con-
siders the probability that the j-th subgraph sgj in c Gið Þ occurs in Gi and maximizes the
log-likelihood in Eq. (1).

Xni Hþ 1ð Þ
j¼1

logPr sgjjGi
� �

; ð1Þ

where ni is the number of nodes in Gi, and the probability Pr sgjjGi
� �

is defined as

exp f Gið Þ � f sgj
� �� �

P
sg2Voc exp f Gið Þ � f sgð Þð Þ : ð2Þ
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In Eq. (2), Voc denotes the vocabulary of subgraphs across all the graphs. After the
training converges, graphs which share many common rooted subgraphs are mapped to
similar positions in the vector space.

3 Limitations of Graph2vec

Although Graph2vec is helpful for graph classification and graph clustering, we claim
that it has two limitations which motivate us to initiate this research.

The first limitation is simple. Graph2vec cannot handle edge labels, even if they are
available on the graph dataset. This limitation is trivial, as the WL relabeling strategy in
Graph2vec ignores them.

The second limitation is related to the quantization of subgraphs in Graph2vec.
When Graph2vec quantizes the rooted subgraphs of a graph G, it bundles the node
label information and the structural information. As a result, the resultant subgraph IDs
for G do not always maintain enough structural information to evaluate the structural
similarity between G and other graphs. Because this problem is rather complicated, let
us explain it with a motivating example in Fig. 2. This figure shows two graphs G and
G� which have exactly the same graph shape. Only one difference between them is the
label of the central node. Generally speaking, the similarity between two node-labeled
graphs should be judged from both the node label similarity and the structural similarity
(i.e. the shape similarity). In this sense, the fact that G and G� have the same shape is
valuable.

However, the WL relabeling strategy in Graph2vec makes it impossible to rec-
ognize this fact by bundling the node labels and the structural information. Suppose
that H; the maximum height of rooted subgraphs is set to 1. After extracting rooted
subgraphs, Graph2vec represents G and G� as the lists c Gð Þ and c G�ð Þ of subgraph IDs.
• c Gð Þ ¼ 1; 1; 1; 2; 3; 5ð1�1; 1; 2; 3Þ; 6ð1�1; 2Þ; 7ð1�1; 3Þ; 8ð2�1; 1; 3Þ; 9 3�1; 1; 2ð Þf g
• c G�ð Þ ¼ 1; 1; 2; 3; 4; 10ð1�2; 4Þ; 11ð1�3; 4Þ; 12ð2�1; 3; 4Þ; 13ð3�1; 2; 4Þ; 14 4�1; 1; 2; 3ð Þf g

Fig. 2. Two graphs which are identical in structure but differ only in the label of central node
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Here, for instance, the subgraph rooted at v5 in G whose height is 1 is “3-1,1,2” and
the WL relabeling quantizes it to a subgraph ID “9”. Similarly, the subgraph rooted at
u5 in G� whose height is 1 is “3-1,2,4” and the WL relabeling quantizes it to a different
subgraph ID “13”.

From c Gð Þ and c G�ð Þ, we can only tell that G and G� share four nodes with the
same node labels whose IDs are “1”, “1”, “2” and “3” respectively. We cannot rec-
ognize that the shapes of G and G� are exactly the same by examining c Gð Þ and c G�ð Þ.
We cannot even understand that the degrees of v5 and u5 are the same, after the two
rooted subgraphs “3-1,1,2” and “3-1,2,4” are quantized into different subgraph IDs.

The above inconvenience is caused because two subgraphs with the same shape are
quantized into different IDs, even if only one node label is different. Thus, the approach
in Graph2vec to treat the node labels and the structural shapes at once hinders the pure
evaluation of structural similarity.

4 Proposed Method

This section presents our proposed method named GL2vec which overcomes the
limitations of Graph2vec in Sect. 3 helped by the line graphs. Before describing
GL2vec in Sect. 4.2, Sect. 4.1 explains the notion of line graph [6].

4.1 Line Graph (Edge-to-Vertex Dual Graph)

Given a graph G ¼ V ;Eð Þ, its line graph L Gð Þ ¼ LV ; LEð Þ represents the adjacency
relationship between edges in G. To construct L Gð Þ, the edges in G are converted to the
nodes in L Gð Þ. Namely, LV ¼ v eð Þje 2 Ef g. In LðG), two vertices v eið Þ and v ej

� �
are

connected by an edge, if ei and ej share a common endpoint in G. See Fig. 3. In this
example, because edge v1; v2ð Þ and edge v1; v4ð Þ share the same endpoint v1 in G, an
edge connects the node v1; v2ð Þ and the node v1; v4ð Þ in L Gð Þ.

Fig. 3. Graph G and its line graph L Gð Þ
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In graph theory, the number of edges incident to a node v is called the degree of
v and denoted by deg vð Þ. Similarly, the number of edges incident to an edge e is
referred to as the degree of e and symbolized as deg eð Þ. When an edge e has two
endpoints va and vb; it holds that deg eð Þ ¼ deg vað Þþ deg vbð Þ � 2:

In L Gð Þ, the degree of a node v eð Þ is known to be identical with the degree of e in
G. That is, deg v eð Þð Þ ¼ deg eð Þ.

4.2 GL2vec

As stated in Sect. 3, Graph2vec fails to deal with the edge labels. It also fails to
preserve enough structural information to evaluate the structural similarity by bundling
the node label information and the structural information in quantizing subgraphs.

Our GL2vec aims to complement such edge label information and structural
information which Graph2vec misses by making use of the line graphs. The line graph
has an attractive property that the edge features of a graph G can become the node
labels in L Gð Þ. Furthermore, because L Gð Þ discards the node labels in G, L Gð Þ is
suitable to treat the structural information about G independently of the node labels in
G. In the same way as Graph2vec, GL2vec assumes that graphs are accompanied by
node labels. GL2vec is able to process both graph datasets with edge labels and those
without edge labels.

If the graph dataset has edge labels, GL2vec specifies the edge label of an edge e in
G as the node label of v eð Þ in L Gð Þ. Thus, the embedding of L Gð Þ takes the edge label
information in G into account.

On the other hand, for a graph dataset without edge labels, GL2vec makes the
embedding of L Gð Þ represent the structural information about G without influenced by
the node labels in G. This mechanism is realized by specifying another edge feature,
the degrees of edges in G as the node labels in L Gð Þ. Note that the degree of an edge is
dominated by the shape of G and, therefore, an edge feature which describes the
structure of G:

Here, one may think that the structural information about G can also be extracted
from the original graph G without L Gð Þ, if we modify the label of a node v in G to deg
(v), the degree of v. Although this is correct, L Gð Þ is capable of describing the structure
of G more finely: Since there usually exist more edges than nodes in G, L Gð Þ can
characterize the structure of G with more arithmetic values (i.e., degrees of edges) than
G which counts on the degrees of nodes. Thus, the line graph evaluates the structural
similarity at a finer level than the original graph.

Since L Gð Þ alone cannot consider the node labels in G, GL2vec appends the
embedding of L Gð Þ to that of G into which the node labels in G are reflected. The
operation of GL2vec is written as follows.

1. Given a set of graphs G1;G2; . . . GNf g; we construct their line graphs
LðG1Þ; LðG2Þ; . . .; LðGNÞf g. We change the node labels in LðGiÞ, depending on if

the graph dataset has edge labels or not.

– If Gi has edge labels, a node v eð Þ in LðGi) is assigned the edge label of e in Gi as
the node label.

GL2vec: Graph Embedding Enriched by Line Graphs 9



– If Gi does not have edge labels, a node v eð Þ in LðGi) is assigned deg(e) in Gi as
the node label.

2. By applying Graph2vec to G1;G2; . . .GNf g, the embedding f ðGiÞ of each Gi is
derived.

3. By applying Graph2vec to LðG1Þ; LðG2Þ; . . .LðGNÞf g; we create the embedding
g LðGið ÞÞ of each LðGiÞ.

4. By appending f ðGiÞ to g LðGið ÞÞ the final embedding of Gi is made.

In the last of this section, let us discuss the handling of a graph dataset without node
labels. For such a graph dataset, Graph2vec [4] recommends to label a node v with its
degree deg vð Þ. In this case, the embedding ofG presents the structural information about
G like that of L Gð Þ. However, as discussed in the above, L Gð Þ captures the structure ofG
more finely than G. Hence, GL2vec assesses the structural similarity between graphs at
two different resolutions by combining the embedding of G with that of L Gð Þ.

5 Experimental Evaluations

We evaluate our GL2vec in the task of graph classification on several benchmark
datasets. We compare GL2vec with Graph2vec in terms of classification accuracy.

5.1 Graph Datasets

We prepare 10 graph datasets which are categorized into 2 types. The first type consists of
6 datasets in which graphs do not have edge labels. The second type consists of 4 datasets
in which graphs have edge labels. Table 1 summarizes the number of samples, the
average graph size, the number of distinct node labels, and the number of distinct edge
labels for all the datasets. From now on, we describe these 2 types of datasets in details.

(Type 1) Datasets without edge labels:
The six datasets classified into (Type 1) are MUTAG, PTC, PROTEINS, NCI1,
NCI109 and IMDB-B. The first five of them have already been used to evaluate
Graph2vec in [4].

MUTAG, PTC, NCI1, and NCI109 originate from chemo-informatics field. The
chemical data are converted to graphs, where nodes represent atoms and edges rep-
resent chemical bonds. Nodes are labeled by atoms types. In MUTAG, chemical
compounds are divided into two classes according to their mutagenic effect on a
bacterium. In PTC, the classes indicate the carcinogenicity on rats. NCI1 and NCI109
are composed of chemical compounds screened for activity against non-small cell lung
cancer and ovarian cancer cell lines, respectively.

PROTEINS expresses proteins as graphs, where nodes represent secondary struc-
ture elements (SSEs) and edges indicate neighborhood in amino-acid sequence or in 3D
spaces.

IMDB-B [8] is a special graph dataset in which graphs have neither node labels nor
edge labels. This dataset stores graphs converted from movie collaboration database.
More specifically, two movie collaboration networks are built for two genres “Action”
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and “Romance”, where nodes represent actors/actresses and there is an edge between
them if they appear in the same movie. Then, ego-networks for actors/actresses are
extracted from these networks. We must judge which of the two genres an ego-network
graph belongs to.

(Type 2) Datasets without edge labels:
The members of (Type 2) are MUTAG*, NCI33, NCI83 and DBLP.

MUTAG* [8] is an extension of MUTAG by labeling the edges. NCI33 [7] and
NCI83 [7] are composed of chemical compounds screened for activity against mela-
noma cancer and breast cancer cell lines, respectively. For these datasets, edges are
labeled with chemical bond types.

DBLP dataset [7] creates graphs from bibliography data in computer science, where
an individual paper is represented as a graph. A graph for a paper P consists of the
primary paper node which represents P itself, other paper nodes which correspond to
the papers having the citation relationship with P and the keyword nodes. There exist
three kinds of edge labels, that is, (paper-paper), (keyword-paper) and (keyword-
keyword). We have to predict whether the field of the paper is DBDM (database and
data mining) field or CVPR (computer vision and pattern recognition).

5.2 Experimental Setup

Our implementation of GL2vec calls the existing Graph2vec software package as a
subroutine. As for the parameters in Graph2vec, the maximum height H of rooted
subgraph is set to 3, and the dimensionality of embedding d = 1024. As GL2vec
concatenates the embeddings of G and L Gð Þ, the dimensionality of embedding grows
2048 for GL2vec.

The graphs are classified with the Linear SVM classifier to which their embeddings
are inputted. For each dataset, we randomly choose 90% of the samples as the training
data. The remaining 10% of the samples serve as the testing data. The hyper-parameters
of SVM are tuned by 5-fold cross validation. We repeat the experiments 20 times and
report the average classification accuracy.

Table 1. Dataset statistics

Dataset #samples #nodes
(avg.)

#distinct
node labels

#distinct
edge labels

MUTAG 188 17.9 7 –

PTC 344 25.5 19 –

PROTEINS 1113 39.1 3 –

NCI1 4110 29.8 37 –

NCI109 4127 29.6 38 –

IMDB-B 1000 19.8 – –

MUTAG* 188 17.9 7 4
NCI33 2843 30.2 29 4
NCI83 3867 29.5 28 4
DBLP 19456 10.5 41324 3

GL2vec: Graph Embedding Enriched by Line Graphs 11



5.3 Results and Discussions

Table 2 presents the classification accuracy for Graph2vec and GL2vec for the (Type
1) six datasets without edge labels. While five of these datasets have been already used
in [4] to evaluate Graph2vec, Graph2vec in our experiments classifies graphs with
almost the same accuracy as [4] for such datasets. Table 2 shows that GL2vec out-
performed Graph2vec for 4 datasets (MUTAG, NCI1, NCI109 and IMDB-B) and
worked comparably to Graph2vec for the PTC dataset. On the other hand, GL2vec is
defeated by Graph2vec for the PROTEINS dataset. From these results, we claim that
the approach in GL2vec to complement the structural information with the embedding
of line graphs without being affected by the node labels is promising, which is not
conclusive yet though.

Regarding the IMDB-B dataset, since it originally does not have node labels,
Graph2vec uses the degree of nodes as the node labels in the original graphs.
According to the discussion in the last of Sect. 4.2, the result is interpreted as follows:
GL2vec examining the structural similarity at two different resolutions for the original
graphs and for the line graphs works more effectively than Graph2vec based on the
single-level structural similarity.

The results for the (Type 2) datasets with edge labels are shown in Table 3: GL2vec
outperforms Graph2vec for all the 4 datasets. These results prove that GL2vec ade-
quately settles down a limitation of Graph2vec that it cannot handle the edge labels by
complementing the edge labels with the embeddings of line graphs. They also reveal
that the edge labels are useful for the graph classification tasks.

Overall, GL2vec outperforms Graph2vec for 8 out of the 10 datasets. Therefore, we
consider that the line graphs succeed in complementing the embeddings of the original
graphs, which improves the classification accuracy.

6 Related Works

This section introduces two recent related works in the literature which leverage the
concept of line graphs for graph-based pattern recognition.

Table 2. Classification accuracy (mean� std dev:)% for datasets without edge labels

Datasets MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B

Graph2vec 83:68� 7:02 61:00� 5:58 72:50� 6:16 75:82� 2:72 75:87� 2:27 72:80� 3:42
GL2vec 86:58� 5:78 60:57� 4:41 70:09� 5:52 77:77� 2:34 79:69� 2:04 74:10� 4:44

Table 3. Classification accuracy (mean� std dev:)% for datasets with edge labels

Datasets MUTAG* NCI33 NCI83 DBLP

Graph2vec 83:68� 7:02 78:95� 1:82 75:90� 1:66 90:63� 0:59
GL2vec 87:63� 7:50 81:30� 2:17 77:29� 1:31 92:27� 0:62

12 H. Chen and H. Koga



Bai et al. [9] developed an edge-based matching graph kernel EMBK which
measures the similarity between two graphs from the number of matched edge pairs. To
judge if two edges match, they represent an edge e as a feature vector derived from the
line graph: The i-th coordinate value in the feature vector is determined from the i-hop
surroundings around v eð Þ in the line graph. They show that the edge-based matching
kernel outperforms the node-based matching kernel which operates on the original
graph. The main differences between our method with EBMK are: (1) EBMK is a
graph kernel and does not generate feature vectors directly, while GL2vec outputs
feature vectors which can be applied to any vector-based machine learning algorithms.
(2) EBMK uses the line graph solely with ignoring the original graph, while our
method combines the features of the original graph and the line graph.

DPGCNN [10] is a Dual-Primal graph convolutional networks. DPGCNN is an
extension of GAT (Graph Attention Networks) [11]. Whereas GAT computes attention
scores from the node features, DPGCNN computes them from the edge features.
DPGCNN treats the edge features in the original graph as the node features in the line
graph, which is similar to our method. The main difference between our GL2vec and
DPGCNN is that DPGCNN is an end-to-end model which learns the property of graph
substructures such as nodes and edges in a supervised or in a semi-supervised manner,
while GL2vec learns the features of entire graphs in an unsupervised manner.

7 Conclusion

This paper proposed GL2vec which extends Graph2vec. First, we make clear the two
shortcomings of Graph2vec that edge labels cannot be handled and that structural
information is not kept enough to evaluate the structural similarity, as Graph2vec mixes
the node label information with the structural information in extracting subgraphs. By
contrast, our GL2vec can complement such information missed by Graph2vec with the
embeddings of the line graphs. This property is realized by converting the edge features
in the original graph such as edge labels and degree of edges to the node features in the
corresponding line graph. To cover the node label similarity in addition, GL2vec
concatenates the embedding of the original graph to that of the line graph. Experi-
mentally, GL2vec achieves higher graph classification accuracy than Graph2vec for
many benchmark datasets. One future direction of this research is to examine the
characteristics of graph datasets for which GL2vec works best. Another interesting
research issue is about the handling of dense graphs. If the original graph is dense, the
number of vertices increases up to the square of the original graph in its line graph.
Thus, the line graphs may not be obtained due to lack of computing resources. How to
extend GL2vec for such cases is worth studying.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number JP18K11311,
2019.
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Abstract. Deep hashing methods have achieved impressive results due
to the powerful nonlinear mapping ability brought by deep neural net-
work. However, existing deep hashing algorithms treat label information
as the only measurement for image similarity, which degenerated the task
from retrieval to classification. In this paper, to address this problem,
we propose a joint learning framework that learns semantic hash codes
from both supervised and unsupervised information. We divide the K-
bits hash codes into semantic branch and content branch. The codes from
semantic branch are generated with general deep supervised training pro-
cedure, while the content branch constructs hash codes by autoencoder
incorporated within the hashing model. Experimental results show that
the semantic retrieval performance of our framework is compatible to the
state of the art. In addition, more semantic information can be embed-
ded into the generated hash codes, which demonstrates the effectiveness
of our joint framework for CBIR tasks.

Keywords: Content-based image retrieval (CBIR) · Hashing method ·
Joint learning · Semantic codes · Content codes

1 Introduction

Hashing methods, as one of the most popular strategies for content-based image
retrieval (CBIR), try to represent images with binary hash codes. The compact
binary representation can boost the searching procedure and relieve the stor-
age consumption as well. The key point for qualified hashing methods is the
construction of similarity-preserving hash functions.
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Fig. 1. Illustration for the overfitting problem existed in supervised hashing methods:
(a) 12 samples randomly picked from CIFAR-10 dataset with the same label (i.e.,
the car category); (b) respective hash codes generated by deep supervised hashing
algorithm SSDH [21].

Early hashing methods are performed independently from data distribution
dataset [2,5], which limited the performance. To utilize data information, various
unsupervised hashing [3,7,14,19,20] and supervised hashing methods [4,13,15,
16] are proposed to construct hash function based on data information. Among
these methods, deep hashing performed best due to additional representation
ability brought by deep neural network. Current deep hashing methods utilize
supervised information mainly by constructing similarity pairwise matrix [18] or
triplets [10,12] with labels. There is also a tendency to evaluate the performance
of binary codes by their abilities for classification [11,21].

One problem of current supervised hashing methods is that the label informa-
tion is the only guidance used during the optimization procedure. The content-
based features within the same class will be wiped out from the generated hash
codes, as shown in Fig. 1. The CBIR task will therefore downgrade to traditional
classification task.

To address this issue, in this paper, we incorporate supervised and unsuper-
vised hashing into one framework to obtain information from both image content
and label. We divide hash codes bits into two branches. For the supervised coding
branch, we using deep convolutional neural network (CNN) [9]. For the unsu-
pervised branch we utilize feature maps obtained from the last fully connected
layer of the network to train an autoencoder , which aimed at preserving image
feature ignored by supervised learning procedure. The entire framework is pre-
sented in Fig. 2. Experimental results show that our joint learning framework can
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Fig. 2. The architecture of the proposed joint learning hashing framework. Features
from F7 layer is shared by both branches.

produce more perceptual retrieval results comparing to models using only label
information or only raw pixel input. It demonstrates the practical value of this
method. What’s more, by combination of information from different levels, the
latent semantic label could be discovered, even though it’s not included within
the supervise information.

2 Methodology

Given dataset D = {xn}N
n=1 where xn ∈ RD and class labels set Y = {yn}N

n=1.
Our goal is to seek a set of hash functions h(x) = [h1(x), h2(x), ..., hK(x)], h(x) :
RD �→ {−1,+1} that project images points from D-dimension space down to
K-bits (K � D) codes and preserve the similarity relationship in original space
in the same time. To achieve this, we divide the hash codes of K-bits B into two
sub-codes Bs and Bu with length Ks and Ku respectively, where

B = [b1, b2, ..., bKs
︸ ︷︷ ︸

Ks

, bKs+1, ..., bK
︸ ︷︷ ︸

Ku

]. (1)

Based on the guided information used for construing hash function, out frame-
work can be divided into two branches, i.e., supervised hashing branch and
unsupervised hashing branch.

2.1 Deep Supervised Hashing

Shown in Fig. 2, we adopt the same CNN architecture in [21] for supervised
hashing branch. The structure is similar to the one proposed by Krizhevsky et
al. [9], except that a latent layer H is appended after the second fully connected
layer F7. The latent fully connect (FC) layer has K hidden units and uses tanh(·)
as the activation function. The hash codes can be obtained by binarizing the
activation of this latent layer. The ideal codes can be learned by training the
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network with respect to the classification performance. The loss is therefore
computed as follow.

arg min
Θ

L = arg min
Θ

N
∑

i=1

l(yi, ŷi) + λ‖Θ‖2, (2)

where Θ denotes the network parameters and l(·) denotes the classification error
caused by one singular training samples and has the form

l(yi, ŷi) = −
N

∑

i=1

yi ln ŷi, (3)

where yi and ŷi are the ground-truth and prediction label vector for the i-th
sample.

Additional constraint terms are added to the objective function to ensure the
quality of the hash codes including

Q1 = − 1
2K

N
∑

i=1

∥

∥

∥aHS
i

∥

∥

∥

2

2
, (4)

Q2 =
1

2K

N
∑

i=1

∥

∥

∥aHS
i 1K×1

∥

∥

∥

2

2
, (5)

where aHS ∈ RK denotes the activations from the latent layer H. Equation 4
try to maximize the absolute value of aHS , which is equivalent to push the value
of aHS to {+1,−1}, so that the information loss caused by the binarization
operation can be reduced. Equation 5 expects that the distribution of aHS is
zero-centered to fulfill the balance property [17]. The entire objective function
that learns semantic codes is given as

arg min
Θ

Os = L + α1Q1 + α2Q2. (6)

2.2 Unsupervised Hashing

For the unsupervised branch, we want to find a stable binary embedding using
only content information. Many unsupervised hashing methods are capable for
this purpose. Most of those methods utilize hand-made features extracted from
images contents. However, this feature extraction procedure can be well per-
formed by deep network. In this paper, we construct the unsupervised hash
function using an autoencoder, which project the data from original space into
a representation space, followed by a dimension-expanding stage reconstructing
the input feature using the compact codes. Intuitively, the basic structure of
an autoencoder is similar to the latent layer module used in supervised branch.
Both of them try to represent the input with low-dimensional features and try to
recover information from them. In the supervised branch reconstructed features
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(a) HOG (b) Raw pixel

Fig. 3. Ground truth sets illustration computed with HOG feature and raw pixel
Euclidean distance. Left corner denotes the query while remains are top 48 ground
truths.

can be used to directly perform classification task. In the unsupervised branch,
the input can be recovered from the embedding. In this way, the embedded codes
will learn a compressed representation of the input feature, and preserve more
perceptual information of the input.

Paralleling to the latent embedding layer 2, we append a hidden encoding
layer Hu to the F7 layer for embedding, followed by a decoder to reconstruct the
input feature from the embedded vector. We choose tanh(·) activation so that
the output of the hidden layer ranges the same as the supervised latent layer.
With the Ku units hidden layer, the objective function of the autoencoder can
be formulated by

arg min
Θu

Ou =
1
2

N
∑

i=1

‖aHU
i − âHU

i ‖22 + λu‖Θu‖2, (7)

where Θu denotes the encoder and decoder weights, λu is the coefficient bal-
ance the regularization term and the mean squared error. aHU

i and âHU
i denote

the feature output from F7 and the feature reconstructed by the autoencoder
respectively.

3 Experiments

In this section we compare our proposed framework with original SSDH to test
the effectiveness of our method. We first present the setup of our the experiment.

3.1 Setup

We choose CIFAR-10 benchmark [8] as the experiment dataset. It contains 60,000
color images with a fixed size of 32 × 32 categorized into 10 mutually exclusive
classes. Following the setting adopted by [21], we randomly select 100 images
from each class to compose a query set containing 1,000 samples in total, while
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Fig. 4. (a) Precision comparison for SSDH and our proposed framework using the
Euclidean distance in HOG space as the ground truth; (b) precision comparison with
different sub-codes ratio of the proposed joint learning framework.

the remaining 59,000 samples as the database. The parameter setting is same
as [21], i.e., α1 = α2 = 1. The model is trained on an Ubuntu desktop using
NVIDA TITAN-X GPU, with Caffe deep learning framework [6].

3.2 Content-Based Retrieval Comparison

We generate a 64×8×8 dimension HOG feature [1] and compute the Euclidean
distance between images from queries and database. As shown in Fig. 3, the
ground truth sets constructed with HOG features are better for retrieval per-
formance evaluation because they preserves more perceptual information com-
paring to those with raw pixel features. For queries we traverse the database
and retrieve top 5% nearest samples in HOG space as ground truth set. The top
k nearest neighbors in Hamming space are selected as predict set. The overlap
number of samples between the two sets denote the points that are retrieved
correctly. The curve of retrieval precision versus number of returned images
can be obtained by varying k. For comparison methods, we choose SSDH and
our method integrated with different kinds of unsupervised features, which are
denoted as “SSDH48”, “SSDH24+AEH24” and “SSDH24+ORI24” receptively.
The “ORI” abbreviation denotes the unsupervised codes generated by a LSH-like
random projection using raw pixel input. “AEH” denotes the unsupervised codes
from the hidden layer of the autoencoder. The number after the method abbre-
viation represents the code length used for that method. As can be seen from
Fig. 4(a), our proposed method outperforms the original method significantly
considering the content similarity preserving performance. To demonstrate the
influence of unsupervised codes to the performance of content similarity preserv-
ing, we evaluate our method with different code length ratio between supervised
and unsupervised branch. As shown in Fig. 4(b), the retrieval precision increases
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Table 1. mAP evaluation for different method on CIFAR-10 dataset

Method Mean average precision

SSDH48 89.46%

SSDH24+ORI24 89.35%

SSDH12+AEH36 89.45%

SSDH24+AEH24 89.35%

SSDH32+AEH16 89.49%

with the expansion in the length of content codes, while the length increasement
of the semantic codes downgrades the precision.

3.3 Semantic Retrieval Performance Comparison

Given label information, we can evaluated the performance of the algorithm by
the mean average precision (mAP) computed using the retrieval results. The
results are given in Table 1. We can see that though the semantic codes are
reduced by half in our method, the mAP is still comparable to the original
method that uses full semantic codes, while our method can get additional gain
from the content codes to obtain retrieval results with more perceptual consis-
tency. As the semantic bits increasing, a slight improvement in the the label
retrieval performance can be observed from Table 1. Combined with the ten-
dency observed in Fig. 4(b), we can see that this ratio acts as a balance between
the retrieval performance of semantic information and content information.

3.4 Subjective Comparison

To give a subjective visual evaluation of our method, we input a query image and
return from CIFAR-10 dataset the top nearest 48 images using SSDH24+AEH24
and SSDH48, respectively. The results are shown in Fig. 5. Queries are displayed
at the upper left, with rest 48 patches the retrieval results in ascending order
based on the distance to the query in Hamming space. Obviously, the results
retrieved from our proposed method are more semantically consistent with query
image compared with those of the original SSDH. For example, in Fig. 5(a), given
a query of a man riding a horse, most of the results (i.e., 38 out of the 48) returned
by our method retain the same perceptual content (man riding horse). Moreover,
21 of them give exactly the same semantic information, i.e., a man in black riding
a white horse. In contrast, only 11 out of the 48 retrieval images of SSDH involve
content of both horse and a riding man. Only one of them preserve all of the
semantic label of the query. Same results can be observed from Fig. 5(c)(d) and
Fig. 5(e)(f), in which the retrieval images are of the same category of the query.
The posture and appearance of the returned images are also consistent with the
query, which is desired for content-based images retrieval task.
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(a) SSDH48 (b) SSDH48 (c) SSDH48

(d) SSDH24+AEH24 (e) SSDH24+AEH24 (f) SSDH24+AEH24

Fig. 5. Subjective comparison between proposed joint learning framework and deep
hashing using only supervised branch

4 Conclusion

In this paper, we propose a deep hashing framework that jointly learns a
semantic-preserving and content information embedding hash codes. Experimen-
tal results show that our framework not only achieves comparable performance
with the original model, but also improves content consistency comparing to the
original method. Those results demonstrate the effectiveness of our method for
CBIR task.
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Abstract. With the arrival of the era of big data, multimodal data
increases explosively and the cross-modal retrieval has drawn increas-
ing research interests. Due to benefits of low storage cost and fast
query speed, hashing-based methods have made great advancements in
cross-modal retrieval. Most of the previous hashing methods design a
similarity-preserving matrix based on labels to simply describe binary
similarity relationship between multimodal data, i.e., similar or dissim-
ilar. This method is applicable to single-label data, but it fails to make
use of labels to explore rich semantic information for multi-label data. In
this paper, we propose a new cross-modal retrieval method, called Label-
Based Deep Semantic Hashing (LDSH). In this method, a new similarity-
preserving matrix is given according to multi-label to describe the degree
of similarity between multimodal data. Moreover, the last fully connected
layer of the deep neural network is designed as a Block Structure (B-
Structure) to reduce the redundancy between generated bits. In order
to accelerate the convergence speed of neural network, the Batch Nor-
malization Layer (BN-Layer) is adopted after the B-Structure. Extensive
experiments on two real datasets with image-text modalities demonstrate
the superiority of the proposed method in cross-modal retrieval tasks.

Keywords: Cross-modal retrieval · Multi-label · Deep semantic
hashing · Similarity · B-Structure

1 Introduction

With the rise of social network platforms such as micro-blog and Facebook,
the amount of media data on the network has increased dramatically and the
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forms of media presentation have also shown multimodality, such as images,
texts and videos, etc. In order to make better use of these data, cross-modal
information retrieval, such as searching images by text queries, or searching
texts by image queries, has become one of the hot issues in recent years [1–3].
However, with the rapid growth of media data and the diversification of modality,
traditional retrieval methods designed for single-modal data can no longer meet
the needs of cross-modal retrieval. Therefore, cross-modal hashing methods have
been proposed [4–6]. Hashing is an effective method to solve big data problems
with its benefits of low storage cost and fast query speed, which projects original
high-dimensional data into a common hash code space in such a way that makes
close points more possibly collided than those far apart.

Most existing cross-modal hashing methods can be classified into unsuper-
vised [5,7,8] and supervised hashing [6,9,10]. Supervised cross-modal hashing
methods exploit semantic labels to retrieve different modal data, which achieves
better performance than unsupervised hashing methods. However, almost all
these existing methods use shallow architectures based on hand-crafted features,
which may be not conducive to learning discriminant hash codes from samples
and reduce the accuracy of retrieval.

In recent years, deep neural networks has achieved remarkable success in
many vision and multimedia tasks, such as image classification [11], face recog-
nition [12] and object detection [13], etc. The deep neural networks can automat-
ically learn highly discriminative features and accurately capture the semantic
structure of input data. Deep cross-modal hashing (DCMH) [14] uses two deep
neural networks as hash functions and integrates feature learning and hash-code
learning into the same framework, which extends traditional models for cross-
modal retrieval. However, DCMH only preserves intra-modality similarity while
lacking the inter-modality similarity preservation, which may result in inade-
quate retrieval results. Pairwise relationship guided deep hashing (PRDH) [15]
makes an improvement, which exploits different pairwise constraints to discover
the heterogeneous correlations across different modalities from intra-modality
and inter-modality preserving. However, the similarity-preserving matrix they
give is a binary similarity matrix, in which 0 and 1 are adopted to denote dis-
similar and similar relationship between cross-modal data. This method is appli-
cable to single-label data, but it fails to make use of labels to explore the rich
semantic information for multi-label data. For example, there are three multi-
label instances: image A labeled dog, sleep and white, text B labeled dog, sleep
and yellow and text C labeled dog, run and black. We know that image A is
similar to text B and C, but in fact image A and text B are more similar than
A and C. Therefore, the previously proposed binary similarity matrix can no
longer represent this similarity relationship.

In this paper, we propose a cross-modal hashing method, called Label-Based
Deep Semantic Hashing (LDSH), for cross-modal retrieval. Specifically, LDSH
adopts deep neural networks to simultaneously integrate feature learning and
hash-code learning for each modality into the same framework. It makes full
use of labels to construct a new similarity-preserving matrix to maximize the
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preservation of semantic information between modalities. Moreover, a classifi-
cation loss is given to ensure that the generated hash code can preserve label
information. At the same time, Block Structure (B-Structure) and Batch Nor-
malization Layer (BN-Layer) [16] are also added to the model to solve the redun-
dancy problem between hash bits and accelerate the convergence speed of the
neural network respectively. The main contributions of this work can be sum-
marized as follows:

1. We propose a new similarity-preserving matrix according to multi-label to
capture the rich semantic information to the greatest extent possible between
cross-modal data. It can characterize the degree of similarity between modal-
ities, which can make two samples with more common labels more similar
than those with less common labels.

2. We design the last fully connected layer of two deep neural networks with a
B-Structure, which makes the generated hash bits independent and reduces
the redundancy between them.

3. The BN-Layer is adopted after the B-Structure to accelerate the convergence
speed of two deep neural networks, which will greatly reduce the time con-
sumed in training neural networks.

The rest of this paper is organized as follows. Related works are briefly
introduced in Sect. 2. Section 3 introduces problem definition of this paper and
describes in detail our LDSH method. Section 4 gives the experimental results.
Lastly, we conclude our work in Sect. 5.

2 Related Work

Cross-modal hashing methods can be roughly categorized into two groups: unsu-
pervised methods [7,8] and supervised methods [6,10]. Unsupervised methods
learn hashing functions without semantic labels. As one of representative meth-
ods, latent semantic sparse hashing (LSSH) [5] uses sparse coding and matrix
factorization for each modality. It then maps these learned features to a joint
abstraction space to generate the unified hash codes. Supervised methods can
exploit available supervised information (such as semantic labels or semantic
relevance) to enhance the data correlation from different modalities and reduce
the semantic gap. Semantic correlation maximization (SCM) [6] utilizes label
information to obtain the similarity matrix which describes semantic correla-
tions and reconstructs it through the binary codes. Semantics-preserving hashing
(SePH) [9] generates a unified binary code by transforming semantic affinities of
training data into a probability distribution while at the same time minimizing
the Kullback-Leibler divergence.

However, most of the previous hashing methods are based on hand-crafted
features extracted by shallow architectures, which are unable to describe the
complicated nonlinear correlations across different modalities. Recently, deep
models for cross-modal embedding show that they can effectively exploit the
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heterogeneous relationships among modalities. The representative works adopt-
ing deep architectures to achieve cross-modal retrieval include deep cross-modal
hashing (DCMH) [14], self-supervised adversarial hashing networks (SSAH) [17],
pairwise relationship guided deep hashing (PRDH) [15], etc. In comparison to
these methods with a similarity-preserving matrix to describe binary similarity
relationship, we give a new similarity-preserving matrix to more accurately char-
acterize the degree of similarity among modalities. Moreover, inspirited by [18],
we utilize two B-Structures, one for each modality, to reduce the redundancy
between generated hash codes.

3 Label-Based Deep Semantic Hashing

In this section, we give problem definition and specify our LDSH method. The
framework of the proposed LDSH is shown in Fig. 1, which consists of deep net-
work architecture and hash code learning. The details are illustrated in Sects. 3.2
and 3.3.

Fig. 1. Framework of LDSH.

3.1 Problem Definition

Although the proposed method is also applicable to more than two modalities,
we only focus on cross-modal retrieval for two modalities in this paper. Assume
that we have n training data points, each of which has two modalities of features.
In this paper, we choose image and text modality for illustration. Image set is
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represented by X = {xi}n
i=1, text set is represented by Y = {yi}n

i=1, where
xi denotes the visual feature of image i, and yi denotes the corresponding text
feature. For the case of multi-label data points, let Lx = {lxi }n

i=1 ∈ {0, 1}k×n

denote labels of n images and Ly = {lyi }n
i=1 ∈ {0, 1}k×n denote labels of n texts,

where k is the total number of classes. lxi = {lxmi} ∈ {0, 1}k is the label vector
for the ith image, where lxmi = 1 if the ith image belongs to the mth class and

0 otherwise, m = 1, · · · , k. lyi is defined similarly to lxi . We use
∼
S ∈ [0, 1]n×n to

denote similarity-preserving matrix we proposed. Specifically,
∼
S = (1 − α)S1 + αS2 (1)

where S1 ∈ {0, 1}n×n and S2 ∈ [0, 1]n×n are used to preserve the binary simi-
larity and the degree of similarity between cross-modal data respectively, α is a
trade-off parameter. The specific forms of S1 and S2 are as follows:

S1
ij =

{
1, if image xi and text yj share at least one class label
0, otherwise

(2)

S1
ij = 1 if image xi and text yj are similar, and S1

ij = 0 otherwise. We can find
S1

ij can only judge whether two instances are similar or not, but can not describe
the degree of similarity of two similar instances. To solve this problem, we give
the definition of S2

ij .

S2
ij = S1

ij · e−‖lxi −lyj ‖2
F

/ρ (3)

where ρ is a constant factor and ‖ · ‖F denotes the Frobenius norm of a matrix.
Equation (3) first uses S1

ij to judge whether two instances are similar or not,
calculating their similarity degree S2

ij if they are similar, otherwise S2
ij is directly

0, i.e., not similar. It is easy to find if the more common class labels two instances
have, the greater the value of S2

ij is. When labels of two instances are identical,
S2

ij takes the maximum value of 1. So the value range of S2
ij is [0, 1], which can

divide into different similarity degree and preserve rich semantic information

between modalities. We integrate S1 and S2 to get a new matrix
∼
S. Based on

the above analysis, we can find
∼
Sij = 0 denotes two instances have no common

class label.
∼
Sij = 1 denotes the labels of two instances are the same. The more

common class labels two instances have, the more similar they are. Therefore,
the new similarity-preserving matrix can describe the degree of similarity and
capture the rich semantic information to the greatest extent possible between
cross-modal data.

3.2 Deep Network Architecture

In this part, two deep neural networks are adopted to extract features for image
and text modalities, respectively.

In extracting image features part, we use a refined CNN-F. CNN-F model [19]
contains 5 convolutional layers and three fully-connected layers. The refined
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CNN-F model of first seven layers are the same as CNN-F [19]. After the seventh
layer Fc7, we conduct B-Structure. It takes 4096 output nodes from the seventh
layer as input nodes and then divides the 4096 nodes into c blocks, where c is the
length of hash code. Each block generates a node through its own full connected
layer. Then these nodes are spliced together and the length is obviously c. Finally,
a c-bit hash code is generated from the B-Structure. The B-Structure part of
refined CNN model is illustrated as Fig. 1.

As for the part of text modality, we first represent text modality with bag-of-
words (BOW) representation. Let it pass through two full connected layers and
output 4096 nodes. Then, similar to the image modality part, the 4096 nodes are
taken as input nodes and enter the B-Structure, resulting in a c-bit hash code.

Similar to the last three full-connection layers used by CNN-F [19], each
hash bit generated will be related to all its input features, which may cause
redundant information between these hash bits. However, the method of making
each hash bit generated from a separate block can reduce bit and bit redundancy
and maximize the information provided by each bit. Moreover, to accelerate the
convergence speed of two deep neural networks, the BN-Layer [16] is adopted
after the B-Structure, which will greatly reduce the time consumed in training
neural networks.

3.3 Hash Code Learning

We adopt P∗i = p(xi;ωx) ∈ Rc to denote the learned image feature for a
data point i, which corresponds to the output of the CNN for image modal-
ity; T∗j = t(yj ;ωy) ∈ Rc denotes the learned text feature for a data point j,
which corresponds to the output of the deep neural network for text modality.
ωx, ωy represent the parameters of the CNN for image and the deep neural net-
work for text, respectively. We also effectively use label information, learning
a linear classifier Z to make hash codes B classified into different classes cor-
rectly [20], where Z ∈ Rc×k and B is the unified hash codes from both modalities.
In datasets, data appears as text-image pairs, so Lx and Ly are the same. We
use L to represent them in our loss function.

The overall objective function of LDSH can be defined as follows:

min
ωx,ωy,B,Z

J =J1 + μJ2 + τJ3 + βJ4 + γJ5

s.t. B ∈ {−1, 1}c×n
(4)

where J1 = ‖L − ZTB‖2F , J2 = −∑n
i,j=1 (

∼
Sijθij − log (1 + eθij )), J3 =

‖B − P‖2F + ‖B − T‖2F , J4 = ‖P · 1‖2F + ‖T · 1‖2F , J5 = ‖Z‖2F and μ, τ , β,
γ are hyper-parameters.

The first term J1 = ‖L − ZTB‖2F is a classification loss. Optimizing it enables
B to preserve the label information and classified into different classes correctly.
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The second term J2 = −∑n
i,j=1(

∼
Sijθij − log(1 + eθij )). This equation is

derived from the following deduction.

J2 = −
n∑

i,j=1

log p(
∼
Sij |P∗i,T∗j)

= −
n∑

i,j=1

(
∼
Sij log(σ(θij)) + (1 −

∼
Sij)(1 − log(σ(θij))))

= −
n∑

i,j=1

(
∼
Sijθij − log(1 + eθij ))

(5)

where θij = 1
2P

T
∗iT∗j , P ∈ Rc×n and T ∈ Rc×n, P∗i denotes the ith column

of matrix P, T∗j denotes the jth column of matrix T, PT
∗i is the transpose of

P∗i, σ(θij) = 1

1+e−θij
. It is a similarity-preserving loss to preserve the degree

of similarity between cross-modal data in
∼
S. Optimizing this loss can reduce

the Hamming distance of two more similar modalities and increase the Ham-
ming distance of dissimilar modalities, which enables rich semantic information
between modalities to be preserved.

The third term J3 = ‖B − P‖2F + ‖B − T‖2F can make quantization loss
reduce as much as possible. The fourth term J4 = ‖P · 1‖2F + ‖T · 1‖2F balances
the number of +1 and that of -1 for each bit of the hash code on all the training
samples, where 1 to represent a vector with all elements being 1. The fifth term
J5 = ‖Z‖2F denotes the regularization to avoid overfitting.

3.4 Optimization

It is intractable to optimize Eq. (4) directly since it is non-convex with variables
ωx, ωy,B,Z. However, it is convex when taking one variable with the other three
variables fixed. Therefore, we use an alternating learning strategy that fixing
three parameters and updating the left one at a time until convergence. The
whole alternating learning procedure is shown in Algorithm 1 and the detailed
derivation will be introduced as follows:

1. Optimize Z with ωx, ωy and B fixed, then the problem shown in Eq. (4)
becomes:

min
Z

J = ‖L − ZTB‖2F + γ‖Z‖2F (6)

Let ∂J
∂Z = 0, then the closed-form solution of Z can be derived as:

Z = (BBT + γI)
−1

BLT (7)

2. Optimize ωx with ωy, B and Z fixed. We use stochastic gradient descent
(SGD) with a BP algorithm to optimize the CNN parameter ωx of the image
modality. For each sampled point xi, we can compute the gradient as follows:
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∂J

∂P∗i
=

1
2
μ(

n∑
j=1

(σ(θij)T∗j −
∼
SijT∗j))

+ 2τ(P∗i − B∗i) + 2βP · 1
(8)

Then ∂J
∂ωx

can be computed with ∂J
∂P∗i

by using the chain rule, based on which
BP can be used to update the parameter ωx.

Algorithm 1. The learning algorithm for LDSH
Input: Image dataset X, text dataset Y, label set L, and

similarity-preserving matrix
∼
S, bit length c, parameters μ, τ, β, γ.

Output: Parameters ωx and ωy of the deep neural networks for image and
text modalities, hash codes B.

Initialize network parameters ωx and ωy, mini-batch size Nx = Ny = 128, and
iteration number tx = �n/Nx�, ty = �n/Ny�.

repeat
Update Z according to Eq.(7).
for iter = 1, 2, · · · , nx do

Randomly select Nx images from X to construct a mini-batch.
For each sampled point xi in the mini-batch, calculate P∗i = p(xi; ωx)
by forward propagation.

Calculate the derivative according to Eq.(8).
Update the parameter ωx by back propagation.

end
for iter = 1, 2, · · · , ny do

Randomly select Ny texts from Y to construct a mini-batch.
For each sampled point yi in the mini-batch, calculate T∗i = p(yi; ωy)
by forward propagation.

Calculate the derivative according to Eq.(9).
Update the parameter ωy by back propagation.

end
Update B bit by bit according to Eq.(12).

until a fixed number of iterations;

3. Optimize ωy with ωx, B and Z fixed. Then we also use SGD with a BP
algorithm to optimize the neural network parameter ωy of the text modality. For
each sampled point yi, we compute the gradient as:

∂J

∂T∗j
=

1
2
μ(

n∑
i=1

(σ(θij)P∗j −
∼
SijP∗j))

+ 2τ(T∗i − B∗i) + 2βT · 1
(9)
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Then ∂J
∂ωy

can be computed with ∂J
∂T∗i

by using the chain rule, based on which
BP can be used to update the parameter ωy.

4. Optimize B with ωx, ωy and Z fixed. The objective function shown in
Eq. (4) can be reformulated as:

min
B

J = ‖L − ZTB‖2F + τ(‖B − P‖2F + ‖B − T‖2F )

s.t. B ∈ {−1, 1}c×n
(10)

which is rewritten as:

min
B

J = ‖ZTB‖2F − Tr(BTW)

s.t. B ∈ {−1, 1}c×n
(11)

where W = ZL + τ(P + T) and Tr(·) denotes the trace of a matrix. Although
it is challenging to address the optimization in Eq. (11) due to B ∈ {−1, 1}c×n

is discrete, we can adopt a closed-form solution to optimize a single row of B
by the other rows fixed. So we can directly use the discrete cyclic coordinate
descent (DCC) approach [10] to learn B bit-by-bit iteratively. Specifically, let
hT be the qth row of the B, q = 1, · · · , c and B

′
the matrix of B excluding h.

Analogously, let vT be the qth row of the Z and Z
′

the matrix of Z excluding
v. Besides, let wT be the qth row of the W and W

′
the matrix of W excluding

w. Then the problem can achieve optimal solution:

h = sign(w − B
′TZ

′
v) (12)

where the sign(·) is an element-wise sign function defined as sign(u) = 1 if
u ≥ 0, and = −1 otherwise.

4 Experiments

To verify the effectiveness of the proposed LDSH, we conduct sufficient exper-
iments on two popular datasets. Two types of cross-modal retrieval tasks are
designed to evaluate the performance of cross-modal retrieval: (1) Img2Text:
querying related texts with images, and (2) Text2Img: querying related images
with texts.

4.1 Datasets

The MIRFLICKR-25K dataset [21] contains 25,000 instances collected from
the social photography site Flickr. Each instance includes an image and associ-
ated textual tags and is manually annotated with at least one of the 24 class
labels. In our experiment, we select 20,015 instances which have at least 20
textual tags. The text for each instance is represented as a 1,386-dimensional
bag-of-words vector. For the hand-crafted feature based methods, the image
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modality is represented as a 512-dimensional SIFT feature vector. For the deep
hashing method, the raw pixels are directly used as the image modality inputs.

The NUS-WIDE dataset [22] is a public web image dataset composed of
269,648 instances which have an image with its associated textual tags. Each
instance is manually annotated with one or multiple labels from 81 provided
labels. We select 186,577 image-text pairs that belong to the top 10 most fre-
quent concepts in our experiment. The text for each instance is represented
as a 1,000-dimensional bag-of-words vector. For the hand-crafted feature based
methods, a 500-dimensional bag-of-words vector is adopted for its image modal-
ity representation. For the deep hashing method, the raw pixels are directly used
as the image modality inputs.

4.2 Baselines

To evaluate the effectiveness of our proposed method, we compare it with five
state-of-the-art cross-modal hashing methods, including CVH [7], LSSH [5],
STMH [4], SCM [6] and DCMH [14]. Among these methods, CVH, LSSH, STMH
and SCM are based on shallow structure while DCMH and our method are based
on deep structure. Source codes of these baselines are kindly provided by corre-
sponding authors. In our experiments, all the parameters in these baselines are
set based on the suggestion of the original papers.

Table 1. Comparison with baselines on MIRFLICKR-25K and NUS-WIDE in terms
of mAP. The best accuracy is shown in boldface.

Task Method MIRFLICKR-25K NUS-WIDE

16bits 32bits 64bits 16bits 32bits 64bits

Img2Text CVH 0.5852 0.5861 0.5835 0.3797 0.3871 0.3893

LSSH 0.5850 0.5887 0.5910 0.3831 0.3879 0.3916

STMH 0.5943 0.5981 0.5983 0.4293 0.4350 0.4401

SCM 0.6243 0.6305 0.6352 0.4786 0.4793 0.4854

DCMH 0.7274 0.7298 0.7381 0.6231 0.6277 0.6401

LDSH 0.7366 0.7383 0.7522 0.6330 0.6380 0.6496

Text2Img CVH 0.5849 0.5851 0.5903 0.3682 0.3869 0.3776

LSSH 0.5942 0.5961 0.5992 0.4099 0.4124 0.4118

STMH 0.5865 0.5902 0.5961 0.3769 0.3893 0.4005

SCM 0.6150 0.6216 0.6283 0.4453 0.4502 0.4599

DCMH 0.7601 0.7642 0.7752 0.6571 0.6597 0.6740

LDSH 0.7680 0.7715 0.7858 0.6700 0.6713 0.6851
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Fig. 2. Precision-recall curves with code length 64 on MIRFlickr-25K.

4.3 Settings and Performance Comparisons

For MIRFLICKR-25K dataset, we randomly sample 10,000 instances as the
training set. For testing, we take 2,000 instances of this dataset as the test set
and the rest as retrieval set. For NUS-WIDE dataset, we randomly sample 10,500
instances to train, 2,100 instances to test and the rest to retrieval. After multiple
adjustments of parameters, we find that good performance can be achieved with
ρ = 10, α = 0.5, μ = τ =β = 1 and γ = 0.01 in our experiments. Moreover, the
batch size is fixed to be 128 and the algorithm runs 300 times.

Mean average precision (mAP) and precision-recall curves are adopted to
directly evaluate the performance of all compared methods in our experiment.
As shown in Table 1, we can observe the mAP values of all the methods on
MIRFlickr-25K and NUS-WIDE with 16, 32 and 64 bits, respectively. In addi-
tion, Fig. 2 shows the precision-recall curves of all the methods with code length
64 on MIRFlickr-25K. According to the experimental results, we find that the
performance of LDSH and DCMH is far superior to other methods, because
the features extracted by deep model are better than those extracted by hand-
crafted methods. We can also find that LDSH performs better than DCMH,
which indicates the similarity-preserving matrix we use can capture more rich
semantic information in cross-modal data.

5 Conclusion

In this paper, we propose a label-based deep semantic hashing method for cross-
modal retrieval. The proposed method gives a new similarity-preserving matrix
according to multi-label to describe the degree of similarity, which can capture
the rich semantic information to the greatest extent possible between cross-
modal data. In addition, the last fully connected layer of the deep neural network
is designed as a B-Structure to reduce the redundancy between generated bits
and the BN-Layer is adopted after the B-Structure to accelerate the convergence
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speed of neural network. Extensive experiments on two datasets with image-text
modalities show the superiority of our method in cross-modal retrieval tasks. In
future, we intend to apply the generative adversarial networks to our model and
optimize hash codes through adversarial learning.
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Abstract. POI (point-of-interest) recommendation as an important
location-based service has been widely utilized in helping people dis-
cover attractive locations. A variety of available check-in data provide
a good opportunity for developing personalized POI recommender sys-
tems. However, the extreme sparsity of check-in data and inefficiency of
exploiting unobserved feedback pose severe challenges for POI recom-
mendation. To cope with these challenges, we develop a heterogeneous
graph embedding-based personalized POI recommendation framework
called HRec. It consists of two modules: the learning module and the
ranking module. Specifically, we first propose the learning module to
produce a series of intermediate feedback from unobserved feedback by
learning the embeddings of users and POIs in the heterogeneous graph.
Then we devise the ranking module to recommend each user the ultimate
ranked list of relevant POIs by utilizing two pairwise feedback compar-
isons. Experimental results on two real-world datasets demonstrate the
effectiveness and superiority of the proposed method.

Keywords: POI recommendation · Graph embedding · Personalized
ranking

1 Introduction

Location-based social networks (LBSNs) have become popular recently because
of the increasing proliferation of smart mobile devices with location-acquisition
that make people easy to post their real location and location-related contents.
These LBSNs like Foursquare, Facebook Places, and Yelp allow users to make
friends and share their check-in experiences on Points-of-Interests (POIs), e.g.,
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restaurants, stores, and museums. Driven by a vast amount of check-in data
collected, POI recommendation arises to improve the user experience. It has
become an important location-based service to help people explore interesting
and attractive places [3].

The task of POI recommendation is to model users’ preferences and suggest
novel POIs to users. It is a very challenging problem due to two major reasons.
First, the check-in data are extremely sparse, which significantly increases the
difficulty of POI recommender systems. In fact, a single user usually chooses only
a small portion from millions of POIs to check in. This will make the user-POI
matrix very sparse. In the literature, some researchers have sought to utilize
social information and geographical information to supplement the highly
sparse user-POI matrix. Most existing approaches have been proposed to incor-
porate social relations between users into collaborative filtering (CF) techniques,
e.g., friend-based CF [16], matrix factorization with social regularization [1], and
friend-based matrix factorization [2]. However, these methods provide consider-
ably limited improvements on POI recommendation because social links of users
are also sparse. On the other hand, most related works [1,5,10,12] attempt to
establish independent geographical models to recommend POIs. Nonetheless,
such modeling approaches only mean that the check-in activity is limited to
the distance constraint and do not effectively represent users’ preferences. Sec-
ond, unobserved feedback is implicit and its number is very large, which will
lead to the inefficiency of computation and the inaccuracy of prediction. Some
researchers [2,6,8,13] have proposed to ranking-based models to alleviate this
situation. Bayesian Personalised Ranking (BPR) [8] is a famous ranking-based
model, which learns the ranking based on pairwise preference comparison over
observed and unobserved feedback. However, due to the imbalance between users’
visited POIs and non-visited POIs, the BPR model cannot successfully enhance
prediction accuracy.

More recently, graph embedding methods which embed information networks
into low-dimensional vector spaces have been widely adopted for a variety of
tasks such as link prediction, text mining, and sentiment analysis [9]. Such low-
dimensional representation is denser than the user-POI check-in matrix, so graph
embedding is a potential and powerful solution to alleviate the problem of data
sparsity. In this paper, we extend these efforts and propose a Heterogeneous
graph embedding-based personalized POI Recommendation framework (HRec)
to effectively address the aforementioned challenges. The overall architecture
of HRec is shown in Fig. 1. Our recommendation framework consists of two
modules, one of which is the learning module and the other is the ranking
module. (1) The learning module is to generate a series of intermediate feed-
back from unobserved feedback by exploiting social and geographical information
networks, which is treated as weak preference relative to positive feedback while
as strong preference in comparison to other unobserved feedback. The module
learns vector representations for the nodes (i.e., users and POIs embeddings)
in the heterogeneous graphs and then uses the learned representations for gen-
erating intermediate feedback. (2) The ranking module is to recommend each
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Fig. 1. The architecture framework of HRec.

user a ranked list of relevant POIs that the user might be interested in but has
not visited before. In this module, we augment the ranking function of BPR by
introducing the intermediate feedback generated by the learning module. Fur-
thermore, we design a mini-batch gradient descent (MBGD) with the bootstrap
sampling algorithm to optimize its objective function. Finally, we evaluate the
proposed framework on two large-scale real-world datasets and prove its superi-
ority to several state-of-the-art baselines.

To summarize, our work makes the following contributions:

1 We develop a Heterogeneous graph embedding-based personalized POI Rec-
ommendation framework (HRec) to overcome the data sparsity issue and inef-
ficiency of exploiting unobserved feedback. The HRec consists of two modules:
the learning module and the ranking module.

2 The learning module in HRec is devised for generating a series of intermediate
feedback from unobserved feedback by learning the embeddings of users and
POIs in the heterogeneous graph.

3 The ranking module in HRec is designed for recommending each user the
ultimate ranked list of relevant POIs by utilizing two pairwise feedback com-
parisons.

4 We conduct extensive experiments on real-world datasets. Experimental
results prove the effectiveness and efficiency of the proposed HRec frame-
work.

2 Related Work

In this section, we discuss some existing works related to our research, particu-
larly those employing social and geographical information for POI recommenda-
tion. As the main learning and ranking modules fall within the realm of graph
embedding and personalized ranking, we also review these related techniques.

Based on the fact that friends are more likely to share common interests,
social information is widely used in POI recommender systems [2]. In particular,
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friend-based collaborative filtering [12] and matrix factorization with social reg-
ularization [1] are two effective algorithms in LBSNs, which both integrate social
relationship information into the collaborative filtering techniques to improve the
quality of POI recommendation. Besides, Zhang et al. [15] designed a model to
estimate the social check-in frequency by using a power-law distribution learned
from historical check-ins of all users. Since the geographical characteristics of
locations can affect users’ check-in behavior, geographical information plays an
important role in POI recommendation [1,5,10,12,13,15]. On the one hand, geo-
graphical distance between users and POIs limits users’ check-in choice. On the
other hand, as Tobler’s First Law of Geography shown, geographical clustering
phenomenon is very common in users’ check-in activities. In particular, several
representative models, such as power law distribution (PD) model [12], Multi-
center Gaussian distribution model (MGM) [1], and Kernel Density Estimation
(KDE) [14], are proposed to capture the geographical influence in POI recom-
mendation.

Graph embedding techniques that embed information networks into low-
dimensional vector spaces have attracted considerable attention and made great
progress in recent years. For example, Xie et al. [11] proposed a graph embedding
model for POI recommendations to systematically model the POI, user, and time
relations and learned the representations. Zhao et al. [17] proposed a temporal
POI embedding based on Skip-Gram model to capture users’ temporal prefer-
ence. However, few works based on graph embedding attempt to exploit social
relations between users and geographical neighborhood characteristics between
POIs for POI recommendations. From the perspective of ranking tasks, these
collaborative filtering-based methods mentioned above can be viewed as point-
wise methods. Indeed, empirical studies [6,13] have demonstrated that point-
wise methods are generally less effective than pairwise ranking methods. Yuan
et al. [13] proposed a GeoBPR model that injects users’ geo-spatial preference.
Manotumruksa et al. [6] developed a novel personalized ranking framework with
multiple sampling criteria to enhance the performance of POI recommendation.

In this paper, our work distinguishes itself from previous researches in several
aspects. First, to the best of our knowledge, it is the first effort that exploits social
relations between users and geographical neighborhood characteristics between
POIs to address the challenges of data sparsity and inefficiency of unobserved
feedback in a unified way. Second, we generate a series of intermediate feedback
from unobserved feedback in the learning module to augment the ranking func-
tion of Bayesian Personalised Ranking (BPR) [8]. Moreover, we integrate the
embeddings of users and POIs and BPR in a systematic way for POI recommen-
dations.

3 Problem Statement

Let users and POIs denoted by U = {u1, u2, ...} and L = {l1, l2, ...}. Each user
u checked in some POIs Lu. Each POI has a location lj = {lonj , latj} in terms
of longitude and latitude. We use Fu = {f1, f2, ...} to represent the set of the
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user’s friends. In this paper, we consider three different types of feedback, namely
positive, intermediate, negative feedback. The positive feedback is defined as a
set of POIs previously checked in by user u: Pu = Lu. The intermediate feedback
Iu = {l1, ..., lc} is learned from unvisited POIs in the learning module. The
remaining unvisited POIs are viewed as the negative feedback Nu = {l1, ..., lh}.
Here negative only means no explicit feedback can be observed from the user
and does not denote users’ dislike of the POIs.

Definition 1. User-POI Graph, denoted as Gul = (U ∪ L, Eul), is a bipartite
graph where Eul is the set of edges between users and POIs. The weight wul

between user u and POI l is simply defined as the frequency of user u checked in
POI l.

Definition 2. User-Friend Graph, denoted as Guf = (U ∪ F , Euf ), is a
social relation graph where F is a set of users’ friends and Euf is the set of
edges between users and friends. The weight wuf between user u and friend f
is defined as common check-in ratio between user u and his friend f , which is
measured by |Lu∩Lf |

|Lu∪Lf | .

Definition 3. POI-POI Graph, denoted as Gll = (L ∪ L, Ell), captures the
geographical neighborhood characteristics between POIs. In general, if POI li is
a geographical neighbor of POI lj, there will be an edge between li and lj. The
weight wij of the edge between li and lj is set to 1 when POI li is the neighbors
in geographical space to POI lj.

Problem 1 (POI Recommendation). Given a user check-in record Lu, the
geographical coordinates of POIs and the user’s social friends Fu, the task of
POI recommendation is to generate a ranked list of POIs that the user might
be interested in but has not visited before in LBSNs.

4 POI Recommendation Framework

4.1 Learning Module

In this module, the aim is to generate a series of intermediate feedback from
unobserved feedback by learning the user and POI embeddings of heterogeneous
information networks. We adopt the bipartite graph embedding approach from
Tang et al. [9], which is a representation learning method for heterogeneous text
networks.

Bipartite Graph Embedding. Given a bipartite graph GAB = (VA ∪ VB , E),
where VA and VB are two disjoint sets of vertices of different types, and E is the
set of edges between them. The conditional probability of vertex vi in set VA

generated by vertex vj in set VB can be defined as:

p(vi|vj) =
exp(zT

i · zj)∑
vk∈VA

exp(zT
k · zj)

(1)
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where zi denotes the embedding vector for vertex vi, and zj is the embedding
vector of vertex vj . For each vertex vj in VB , Eq. (1) defines a conditional
distribution p(·|vj) over all the vertices in the set VA. For each edge eij , its
empirical distribution is given by p̂(vi|vj) = wij

degj
, where wij is the edge weight

between vi and vj and degj =
∑

i∈VA
wij .

To learn embeddings, we make the conditional distribution p(·|vj) closely
approximates the empirical distribution p̂(·|vj). Hence, we minimize the following
objective function over the graph GAB :

OAB =
∑

j∈VB

λjd(p̂(·|vj), p(·|vj)) (2)

where d(·, ·) is the KL-divergence between two distributions, and λj is the impor-
tance of vertex vj in the graph, which can be set as the degree degj . Omiting
some constants, the objective function can be writen as:

OAB = −
∑

(i,j)∈E
wij log p(vi|vj) (3)

Optimizing the objective function Eq. (3) is computationally expensive,
which requires the summation over the entire set of vertices when calculating
the conditional probability p(·|vj). To overcome this problem, we use the tech-
niques of edge sampling [9] and negative sampling [7]. For each edge eij , its final
objective function is:

OAB = −
∑

(i,j)∈E

[

log σ(zT
i · zj) +

K∑

n=1

Evn∼Pn(v) log σ(−zT
n · zj)

]

(4)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, K is the number of
negative edges. In our implementation, we set K = 5, Pn(v) ∝ d

3/4
v from the

empirical setting of [7], where dv is the out-degree of node v.

Joint Training Learning. The heterogeneous information network is composed
of three bipartite graphs: User-POI, User-Friend and POI-POI. To collectively
embed the three bipartite graphs, minimizing the sum of all objective functions
as following:

O = Oul + Ouf + Oll (5)

where
Oul = −

∑

(i,j)∈Eul

wij log p(ui|lj) (6)

Ouf = −
∑

(i,j)∈Euf

wij log p(ui|fj) (7)

Oll = −
∑

(i,j)∈Ell

wij log p(li|lj) (8)

We learn user and POI embeddings by joint training the three bipartite
graphs. In each step, we adopt the asynchronous stochastic gradient algorithm
(ASGD) to update the model parameters. See Algorithm 1 for more details.
Finally, we sort all unobserved POIs in accordance with their scores s = zT

uzl
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to acquire the Top-t as intermediate feedback for each user, where zu,zl are
embeddings for user u, POI l and t is the number of intermediate feedback we
defined.

Algorithm 1. Joint training
Input: Bipartite graphs (User-POI graph Gul, User-Friend graph Guf , POI-POI graph

Gll), number of samples T , number of negative samples K, vector dimension d.
Output: users embeddings: Zu ∈ R

|U|×d and POI embeddings Zl ∈ R
|L|×d

1: while iter ≤ T do
2: sample an edge from Eul and draw K negative edges, and update the user and

POI embeddings;
3: sample an edge from Euf and draw K negative edges, and update the user

embeddings;
4: sample an edge from Ell and draw K negative edges, and update the POI embed-

dings;
5: end while

4.2 Ranking Module

In this module, we augment the ranking function of BPR by introducing the
intermediate feedback. Specifically, we treat the intermediate feedback as weak
preference relative to positive feedback while as strong preference in comparison
to other unobserved feedback. Compared with the basic assumption of BPR,
our assumption can mine more contribution information from unobserved POIs.
Thus, for user u, the ranking order of her preference over positive feedback
i ∈ Pu, intermediate feedback c ∈ Iu, and negative feedback j ∈ Nu is given as
the following:

{
r̂ui > r̂uc

r̂uc > r̂uj

⇒
{

WuHT
i + bi > WuHT

c + bc

WuHT
c + bc > WuHT

j + bj

(9)

where r̂ui is the predicted users’ preference score, which is modelled by matrix
factorization, i.e., r̂ui = WuHT

i + bi. The Wu and HT
i denotes latent feature

vectors of user u and POI i, respectively. The bi is the bias term of POI i. Thus,
model parameters Θ =

{
W ∈ R

|U|×k,H ∈ R
|L|×k, b ∈ R

|L|}.
Due to the BPR method gives equal weight to each POI pair, it does not dis-

tinguish between their different contributions in learning the objective function.
To address this limitation, we assign a higher weight to highlight its contribution.
To this end, we propose the augmented bayesian personalized ranking function
based on matrix factorization to compute the ranking loss function, given by:

J(Θ) = min
W,H

−
∑

u∈U

[
∑

i∈Pu

∑

c∈Iu

lnσ (cuic(r̂ui − r̂uc))

+
∑

c∈Iu

∑

j∈Nu

ln σ(r̂uc − r̂uj)

]

+ λΘ||Θ||2

(10)
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where cuic denotes the weight of the difference between positive and intermediate
feedback, and its value is determined by the difference of two visit frequencies
cuic = 1 + αfui, where α is a tuning parameter and fui represents the check-in
frequency of user u on POI i. λΘ are model specific regularization parameters
and σ(x) is the sigmoid function.

Algorithm 2. Ranking Algorithm
Input: feedback data: user u ∈ U , positive feedback Pu, intermediate feedback Iu,

and negative feedback Nu

hyperparameters: sampling times st, batch size bs, learning rate η, and regulariza-
tion parameters λu, λi, λc, λj , βi, βc, βj

Output: model parameters Θ = {W, H, b}
1: Initialization Θ with Normal distribution N (0,0.1)
2: for t = 1 to st do
3: Uniformly sample a user u from U
4: Uniformly sample a positive feedback i from Pu

5: Uniformly sample a intermediate feedback c from Iu

6: Uniformly sample a negative feedback j from Nu

7: end for
8: s = 0
9: while (s + 1) ∗ bs ≤ st do

10: for j = 1 to bs do
11: r̂uic = (1 − σ(cuic(r̂ui − r̂uc))) · cuic, r̂ucj = 1 − σ((r̂uc − r̂uj))
12: Wu ← Wu + η ([r̂uic(Hi − Hc) + r̂ucj(Hc − Hj)] − λuWu)
13: Hi ← Hi + η (r̂uicWu − λiHi)
14: Hc ← Hc + η (−r̂uicWu + r̂ucjWu − λcHc)
15: Hj ← Hi + η (−r̂ucjWu − λiHi)
16: bi ← bi + η (r̂uic − βibi)
17: bc ← bc + η (−r̂uic + r̂ucj − βcbc)
18: bj ← bj + η (−r̂ucj − βjbj)
19: end for
20: s = s + 1
21: end while
22: return Θ

We propose a Mini-batch Gradient Descent (MBGD) with the bootstrap
sampling to optimize the objective function. See Algorithm 2 for more details.

5 Experimental Evaluation

5.1 Datasets

We make use of two publicly available real-world datasets, Gowalla [4] and
Foursquare [2], to evaluate the performance of the proposed framework. Each
check-in record contains a user ID, a location ID, a timestamp and geo-
coordinates of the location. Also, data sets have social links information. The
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data statistics are shown in Table 1. In our experiments, we divide each dataset
into training set, tuning set and test set in terms of the user’s check-in time
instead of choosing a random partition method. For each user, the earliest 70%
check-ins are selected for training, the most recent 20% check-ins as testing, and
the next 10% as tuning.

Table 1. Statistical information of the two datasets

Statistical item Gowalla Foursquare

Number of users 5,628 2,551

Number of POIs 31,803 13,474

Number of check-ins 620,683 124,933

Number of social links 46,001 32,512

User-POI matrix density 0.22% 0.291%

5.2 Evaluation Metrics

We use two widely-used metrics [4] to evaluate the performance of the model
we proposed: precision (Pre@N) and recall (Rec@N), where N is the number of
recommended POIs. Pre@N refers to the ratio of recovered POIs to the top-N
recommended POIs and Rec@N measures the ratio of recovered POIs to the set
of visited POIs in the testing data.

5.3 Baseline Methods

To illustrate the effectiveness of our recommendation framework, we compare it
with the following state-of-the-art methods.

– Random: Random method is to recommend users with random POIs.
– BPR-KNN: This is a ranking-based adaptive model, which employs item-

based k-nearest-neighbor to recommend POIs [8].
– BPR-MF: This is a classical pairwise ranking model based on matrix fac-

torization [8].
– GeoBPR: This is a state-of-the-art method for POI recommendation, which

incorporates the geographic feedback into the BPR model [13].

5.4 Parameter Settings

For all the compared baselines, we adopt the optimal parameter configuration
reported in their works. In our experiments, all critical parameters are tuned
through cross-validation. Empirically, for the learning module, the vector dimen-
sion d is set to 100, the tuning parameter α is set to 0.5 and the number of
intermediate feedback t = 2000. In Foursquare dataset, the learning rate η is
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set to 0.001, the latent factor dimension k = 40, and regularization param-
eters λu = 0.005, λi = λc = λj = 0.005, βi = βc = βj = 0.006. In
Gowalla dataset, the learning rate η is set to 0.005, the latent factor dimension
k = 30, and regularization parameters λu = 0.005, λi = λc = λj = 0.005,
βi = βc = βj = 0.003. The effect of the latent factor dimension k will be
detailed later.

5.5 Experimental Results

Performance Comparisons. Results of all POI recommendation models in
terms of Pre@N and Rec@N on Foursquare and Gowalla are presented in Figs. 2
and 3, respectively. One can observe that HRec framework always outperforms
all the compared POI recommendation methods on the two datasets. On the
one hand, compared with non-ranking algorithm Random, our recommenda-
tion framework presents an absolute advantage. In fact, Random model out-
puts the lowest performance. For example, in terms of Pre@5 and Rec@5, HRec
attains 0.044, 0.0251 and 0.0298, 0.0134 on Foursquare and Gowalla datasets,
respectively. On the other hand, our framework significantly outperforms other
three ranking algorithms BPR-KNN, BPR-MF and GeoBPR. For instance, HRec
improves the second best recommendation algorithm GeoBPR by 33.3%, 39%
and 2.5%, 1.4% in terms of Pre@5, Rec@5 on Foursquare and Gowalla, respec-
tively. Based on the performance comparison of non-ranking and ranking algo-
rithms, the effectiveness and superiority of the proposed method HRec are
proved. The reasons are two fold: (1) HRec makes full of social and geographical
information by learning the embeddings of users and POIs in the heterogeneous

Fig. 2. Varying N on Foursquare

Fig. 3. Varying N on Gowalla
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graph. (2) HRec effectively exploits a series of intermediate POIs learned from
unvisited POIs and utilizes two pairwise feedback comparisons to greatly assist
ranking.

Fig. 4. Impact of data sparsity

Fig. 5. Influence of latent factor dimensions k

Impact of Data Sparsity. Here, we study how HRec deals with the data spar-
sity problem. In order to produce user-POI check-in matrix with different spar-
sity, we randomly reserve x% (x = 50,70,90,100) of check-ins from each user’s
visited records. The smaller the reserved ratio x is, the sparser the user-POI
check-in matrix is. Figure 4 reports Pre@5 and Rec@5 of all recommendation
algorithms on Foursquare under different sparsity. Due to Random outputs poor
performance, it is not added here for comparison. Based on the results, we can
observe that the Pre@5 and Rec@5 of all algorithms increase with the increase
of the reserved ratio x. One possible explanation is that, with the increase of the
proportion of the training set, the number of positive examples increases, and
then contributes to the improvement. We can further observe that our frame-
work HRec consistently outperforms all ranking and non-ranking baselines under
various data sparsity scenarios, which shows great strengths.

Parameter Sensitivity. In this study, we employ matrix factorization to pre-
dict the difference between the two scores of preference for users. Hence, in
this section, we study the influence of variable k, which is the number of latent
feature dimension. Due to limited space, we only show the performance of the
recommendation on Foursquare dataset. In our experiment, k is set to 20, 40,
60, 80 and 100, respectively. Figure 5 reports the recommended quality for dif-
ferent values of k. Based on the results, we can observe that the performance
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in all evaluation metrics has similar behaviour with the varying value of k. The
performance increases with the increase of the k at the beginning, then hits the
highest recommended quality when k = 40, and eventually tends to decline. The
above trend indicates that the performance achieves best at k = 40, and so we
finally choose the optimal parameter k = 40.

6 Conclusions

This paper presents a novel personalized POI recommendation framework called
the HRec, which can address the data sparsity issue and inefficiency of exploiting
unobserved feedback. The HRec consists of two modules: the learning module
and the ranking module. The learning module is designed for producing a series
of intermediate feedback from unobserved feedback by learning the embeddings
of users and POIs in the heterogeneous graph. The ranking module is devised for
recommending each user the ultimate ranked list of relevant POIs by effectively
exploiting intermediate feedback generated by the learning module. Experimen-
tal results on two real-world datasets demonstrate that HRec performs better
than other compared models for POI recommendations.
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Abstract. Software security knowledge involves heterogeneous security
concepts (e.g., software weaknesses and attack patterns) and security
instances (e.g., the vulnerabilities of a particular software product),
which can be regarded as software security entities. Among software
security entities, there are many within-type relationships as well as
many across-type relationships. Predicting software security entity rela-
tionships helps to enrich software security knowledge (e.g., finding miss-
ing relationships among existing entities). Unfortunately, software secu-
rity entities are currently documented in separate databases, such as
Common Vulnerabilities and Exposures (CVE), Common Weakness Enu-
meration (CWE) and Common Attack Pattern Enumeration and Clas-
sification (CAPEC). This hyper-document representation cannot sup-
port effective reasoning of software entity relationships. In this paper,
we propose to consolidate heterogeneous software security concepts and
instances from separate databases into a coherent knowledge graph. We
develop a knowledge graph embedding method which embeds the sym-
bolic relational and descriptive information of software security enti-
ties into a continuous vector space. The resulting entity and relation-
ship embeddings are predictive for software security entity relationships.
Based on the Open World Assumption, we conduct extensive experi-
ments to evaluate the effectiveness of our knowledge graph based app-
roach for predicting various within-type and across-type relationships of
software security entities.

Keywords: Software security entity relationship · Knowledge graph
embedding · Link prediction

1 Introduction

Software weaknesses and vulnerabilities give malicious attacks a chance to com-
promise the system integrality, availability and confidentiality [14]. To facili-
tate security knowledge dissemination and to enhance software security defense,
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researchers invest a lot of efforts to document software weaknesses, vulnera-
bilities and attacks. For example, Common Weakness Enumeration (CWE) is a
community-developed list of common software weakness patterns, such as CWE-
183: Permissive Whitelist. Common Attack Pattern Enumeration and Classifi-
cation (CAPEC) is a list of known attack patterns employed by adversaries
to exploit known weaknesses, such as CAPEC-182: Flash Injection. Common
Vulnerabilities and Exposures (CVE) is a database of publicly disclosed cyber-
security vulnerabilities and exposures of software products, such as CVE-2018-
1002200 is a directory traversal vulnerability of the plexus-archiver tool in Debian
Linux.

Entries in CWE, CAPEC and CVE databases can be considered as soft-
ware security entities. CWEs and CAPECs represent abstract security concepts,
while CVEs are specific security instances. Software security entities have a rich
set of relationships within the same type of entities or across different types
of entities. For example, parentof and childof relationships between CWEs (or
CAPECs) give insights to similar weakness (or attack) patterns that may exist at
higher and lower levels of abstraction, such as <CWE-697: Incorrect Compari-
son, parentof, CWE-183: Permissive Whitelist>. CWEs (or CAPECs) also have
peerof, canprecede and canfollow relationships, for example, <CAPEC-182: Flash
Injection, peerof, CAPEC-248: Command Injection>. Across-type relationships
include those between security instances and concepts (e.g., <CVE, instanceof,
CWE>) and those between weakness and attack patterns (i.e., <CWE, targetof,
CAPEC>). For example, CVE-2018-5390 is an instance of CWE-20: Improper
Input Validation, and CAPEC-136: LDAP Injection can target CWE-20.

As seen in the above examples, software security entity relationships capture
important security knowledge. Considering the complexity of software security
knowledge, we generally make the Open World Assumption (OWA), which states
that observed facts are true (as they are carefully curated by domain experts),
and non-observed facts can be either false or just missing [4]. Under this assump-
tion, predicting software security entity relationships becomes an important
reasoning task. For example, the relationship <CWE-128: Wrap-around Error,
childof, CWE-682: Incorrect Calculation> was not present in CWE version 1.0,
but was added in CWE version 2.0. Finding such missing relationships among
existing entities helps analysts enrich software security knowledge [5].

Although security databases (CWE, CAPEC, CVE) are an effective means
of documenting software security entities, the underlying knowledge represen-
tation (i.e., hyperlinked documents) does not support the effective prediction
of software security entity relationships. This is because software security enti-
ties and their relationships are implicit in document content and hyperlinks.
In this paper, we propose to represent software security entities and relation-
ships as first-class objects in a software security knowledge graph. As illustrated
in Fig. 1, our knowledge graph contains CWEs and CAPECs as core concept
knowledge and CVEs as peripheral instance knowledge. Each entity has a textual
description and may have some relationships with other entities. A knowledge
graph embedding approach is developed to learn predictive embeddings of entity
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descriptions and relationships in a continuous vector space by maximizing the
total plausibility of observed facts [15]. A novel design of our embedding app-
roach is to explicitly incorporate description-based and structure-based embed-
dings through joint training of translation-based knowledge graph embedding
model [16], CNN text encoder [7] and word embeddings [11]. Entity and rela-
tionship embeddings are then used in link prediction task (i.e., given a head (or
tail) entity and a relationship, predicting the likely tail (or head) entity) [3,16].

Our experiment results show that heterogeneous security entities result
in more predictive embeddings than homogeneous entities. Furthermore, our
advanced incorporation of description- and structure-based embeddings results
in more predictive embeddings than concatenating these two types of embed-
dings.

Fig. 1. An illustration of Software Security Knowledge Graph, Knowledge Graph
Embedding, and prediction tasks.

The main contributions of this paper are as follows. (1) To our knowledge, our
knowledge graph is the first software security knowledge graph that integrates
heterogeneous security concepts and instances. This knowledge heterogeneity is
beneficial for embedding software security entity relationships. (2) We develop
an advanced knowledge graph embedding approach to embed the structural and
descriptive knowledge of security concepts and instances into a continuous vector
space to predict software security entity relationships. (3) Our extensive experi-
ments show that our knowledge graph based embedding approach can accurately
predict within-type and across-type relations of software security entities.

2 The Approach

2.1 Approach Overview

This paper aims to design a knowledge graph based approach for embedding
and predicting software security entity relationships. As illustrated in Fig. 1,
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a knowledge graph is a multi-relational directed graph whose nodes and edges
represent domain-specific entities and relationships. Each triple (or fact) is rep-
resented as <head, relationship, tail>, indicating that two entities are connected
by a relationship. As shown in Fig. 2, our goal is to first construct a software
security knowledge graph from heterogeneous security databases, and then use
knowledge graph embedding method to learn an embedding model for embed-
ding entity and relationship in a continuous vector space for link prediction task.

Fig. 2. Approach overview (SGD means stochastic gradient descent).

We denote the head entity, relationship and tail entity as h, r and t. The
structure-based, description-based entity embedding and the relationship embed-
ding are respectively denoted as Es, Ed and R, which are of the same dimension.
Es and R are learned through an enhanced TransH [16] model, which captures
relational knowledge in the knowledge graph. Word embeddings are obtained by
training the word2vec [11] with the descriptions of CWE/CAPEC/CVE entities,
and Ed is obtained by a CNN encoder jointly trained with the TransH model,
which captures the descriptive knowledge of entities.

2.2 Constructing Software Security Knowledge Graph

We construct a software security knowledge graph from the CWE, CAPEC and
CVE databases. Figure 1 shows an excerpt of the resulting knowledge graph.

Security Concepts and Instances as Entities. We extract software security
entities from the CWE, CAPEC and CVE databases. These databases use a
unique index to identify each security concept or instance, for example, CWE-
20, CAPEC-182 and CVE-2018-1002200 in Table 1. Each concept or instance
is considered as an entity in the knowledge graph. Each CWE and CAPEC
entity has a title and a textual description, and each CVE entity has a textual
description. This textual description is used as entity attribute to compute Ed.
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Relationship Extraction from Entry Cross-References. Relationships
between CWE, CAPEC and CVE entries are documented as cross-reference
of entry index in the databases. We parse these index cross-references to obtain
entity relationships in the knowledge graph. As summarized in Table 2, CWE,
CAPEC and CVE databases define seven categories of relationships for secu-
rity concepts and instances. We have parentof, childof, canprecede, canfollow and
peerof between CWE (or CAPEC) entities. These relationships are referred to as
within-type relationships. We have two across-type relationships, i.e., instanceof
from a CVE to a CWE and targetof from a CWE to a CAPEC.

Table 1. Examples of CWE/CAPEC/CVE entity in the knowledge graph.

Weakness ID: CWE-20
Weakness Title: Improper Input Validation
Weakness Description: The product does not validate or incorrectly
validates input that can affect the control flow or data flow of a
program
Attack Pattern ID: CAPEC-182
Attack Pattern Title: Flash Injection
Attack Pattern Description: An attacker tricks a victim to execute
malicious flash content that executes commands or makes flash calls
specified by
Vulnerability ID: CVE-2018-1002200
Vulnerability Description: plexus-archiver before 3.6.0 is vulnerable
to directory traversal, allowing attackers to write to arbitrary via a ...

In addition to the seven pre-defined relationships, we also extract semantic
relationship between a CWE and other CWEs mentioned in the document of this
CWE. For example, the document of CWE-909 states that “...that might occur
as a result of CWE-14.”. From this description, we obtain a semantic relationship
between CWE-909 and CWE-14. We treat this semantic relationship extracted
from the CWE document as a category of general semantic relationship.

2.3 Translation-Based Knowledge Graph Embedding

We develop a translation-based, description-embodied knowledge graph embed-
ding method to obtain Es, Ed and R.

Basic TransH Model. Translation-based models [3,16] have been shown to
be effective for embedding knowledge graph entities and relationships into a
continuous vector space. Because our software security knowledge graph contains
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Table 2. Relationships in our knowledge graph.

Relationship
type

Head
type

Tail
type

Relationship
property

Pre-
defined

Relationship
type

Head
type

Tail type Relationship
property

Pre-
defined

instanceof CVE CWE many-to-1
√

targetof CWE CAPEC many-to-many
√

childof CWE CWE many-to-1
√

childof CAPEC CAPEC many-to-1
√

parentof CWE CWE 1-to-many
√

parentof CAPEC CAPEC 1-to-many
√

peerof CWE CWE 1-to-1
√

peerof CAPEC CAPEC 1-to-1
√

canfollow CWE CWE 1-to-many
√

canfollow CAPEC CAPEC 1-to-many
√

canprecede CWE CWE many-to-1
√

canprecede CAPEC CAPEC many-to-1
√

semantic CWE CWE many-to-
many

×

1-to-many, many-to-1 and many-to-many relationships (see Table 2), we choose
to use the TransH model [16] which is designed for such knowledge graphs.

To embed the 1-to-many, many-to-1 and many-to-many relationships, TransH
introduces relation-specific hyperplanes that allow an entity to have distinct
representations when involved in different relations. It regards a relation as a
translating operation on a relation-specific hyperplane, which is characterized by
a norm vector ar and a translation vector r. Given a triple <h, r, t>, the entity
embeddings h and t are first projected onto the relation-specific hyperplane. The
projection embeddings are assumed to be connected by r on the hyperplane. So
the objective of the TransH model is to minimize the translation-based score
function over all triples <h, r, t> (i.e., observed facts) in a knowledge graph:

fr(h, t) = ‖h⊥ + r − t⊥‖ (1)

where r is the embedding of r. h⊥ and t⊥ are the projection embeddings of
h and t on the hyperplane, respectively. By restricting ‖ar‖ = 1, h⊥ and t⊥
are calculated through h⊥ =h−a�

r har, t⊥ = t−a�
r tar. Intuitively, if <h, r, t>

holds in the knowledge graph, then h+ r ≈ t, i.e., the embedding obtained by
element-wise addition of the embedding of the head entity and the relationship
embedding should be close to the embedding of the tail entity in the continuous
vector space.

Structure- and Description-Based Entity Embedding. The original
TranH model considers only the structure-based entity embedding which cap-
tures the relational knowledge of entities in a knowledge graph. In our knowl-
edge graph, each security entity has a textual description that documents the
rich semantics of the entity. This textual description should also be embedded in
order to obtain more predictive entity embedding [5,15]. Thus, we consider both
structure-based and description-based entity embeddings when embedding our
knowledge graph. The original TransH score function in Eq. (1) will be expanded
as:

fr(h, t) = fss
r (h, t) + fdd

r (h, t) (2)

where fss
r (h, t) = ‖ hs + r − ts ‖, fdd

r (h, t) = ‖ hd + r − td ‖, and hs and ts
are structure-based entity embeddings, hd and td are description-based entity
embeddings.
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To model the interaction between Es and Ed, we further expand Eq. (1) into

fr(h, t) = fss
r (h, t) + fdd

r (h, t) + fsd
r (h, t) + fds

r (h, t) (3)

where fsd
r (h, t) = ‖ hs + r − td ‖, fds

r (h, t) = ‖ hd + r − ts ‖. We refer Eqs.
(2) and (3) as the basic individual and the interaction-enhanced score function,
respectively. We investigate the effectiveness of these two score functions in our
experiments.

Encoding Entity Description by Word Embedding and CNN. Entity
description contains discrete words. To participate in the embedding process,
entity descriptions have to be represented in sentence vectors. To represent sen-
tences in vectors, we first need to represent words in word vectors. In this work,
we represent words using the word2vec word embeddings [11], which are low-
dimensional word vectors learned from a large text corpus. The word embeddings
can encode rich semantic features of words in the general text [1,8] and domain-
specific text [5,6]. In this work, we pre-train security-specific word embeddings
using the text corpus of CWE/CAPEC/CVE entity descriptions.

Given the dictionary of pre-trained word embeddings, a naive way to obtain
sentence embedding is to average the word embeddings of the words in the sen-
tence (i.e., average pooling). However, studies [6,15] show that using a CNN
encoder can extract more informative features for embedding sentences than
average pooling. Therefore, we design a CNN encoder which takes as input
a variable-length entity description and outputs a sentence embedding of the
description. It has five layers, including the input layer, two convolution lay-
ers and two pooling layers. The input layer represents an input sentence as a
sequence of nw dimensional word embeddings. The convolution layers apply N
filters to a sliding window of n-gram over the input sentence to extract features.
The first pooling layer uses max-pooling to capture the most important feature.
The second pooling layer uses mean-pooling to avoid information loss. We con-
duct hyperparameter optimization experiments on a validation set in the same
way as existing works [5,6] on applying CNN to software-specific text. Based on
the results, we set n = 2 and N = 100 for convolution layers, and set nw = 100.

Given the description of an entity, the CNN encoder outputs a fixed-length
vector as initial Ed, which will be used in the score function Eqs. (2) or (3). Dur-
ing the embedding process, initial Ed will be adjusted to minimize the loss func-
tion Eq. (4) described in Sect. 2.3. The gradient will be back-propagated through
the CNN layers to train the encoder model. The pre-trained word embeddings
in the input layer can be optionally fine-tuned in this process.

Model Training and Optimization. We adopt margin-based ranking loss
commonly used in translation-based knowledge graph embedding models [3,16]:

L =
∑

<h,r,t>∈S

∑

<h′,r′,t′>∈S′
[γ + fr(h, t) − fr′(h′, t′)]+ (4)
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where [x]+ = max (0, x). γ is the margin separating positive and negative triples.
The objective of the loss L is to make the score fr(h′, t′) of corrupted triples
higher by at least γ than the score fr(h, t) of the positive triples, i.e., fr(h′, t′)−
fr(h, t) ≥ γ. We set γ = 2.0 as it results in the best prediction performance on
a validation set in our hyperparameter optimization experiments. S is the set of
observed triples < h, r, t > (i.e., positive training samples). S′ = {(h′, r, t)|h′ ∈
E} ∪ {(h, r′, t)|r′ ∈ R} ∪ {(h, r, t′)|t′ ∈ E} denotes the set of corrupted triples
(i.e., negative training samples) for the positive triples, which is produced by
changing h, r or t of positive triples so that the resulting triples are not in S.

We minimize L by stochastic gradient descent. The entity and relationship
embeddings will be updated when fr(h′, t′)−fr(h, t) ≥ γ does not hold. Gradient
descent is back-propagated from Ed to the CNN kernel and the word embed-
dings. After embedding, we obtain trained Es and trained R as well as a trained
CNN encoder and the fine-tuned word embeddings W for obtaining trained Ed.

2.4 Prediction Task

The entity and relationship embeddings support the link prediction task. Given
h and r, link prediction predicts the most likely t. We represent the prediction
task as a to-be-predicted triple <h, r, ?t>. Link prediction helps analysts find
entities related to an entity by a particular relationship, for example, the likely
CWE (i.e., abstract software weakness) for a CVE instance. Link prediction task
can be solved by ranking all entities in the knowledge graph (other than h) by the
similarity between embeddings of these entities and the resulting embedding of
adding embeddings of h and r, i.e., ?t = argmink

t∈E\{h}‖h + r − t‖. In practice,
we return top-k most similar entities. The to-be-predicted triple <?h, r, t> can
be solved in the same way. Given an entity in a to-be-predicted triple, we use
the element-wise addition of the entity’s structure-based and description-based
embeddings (i.e., hs + hd) as the entity embedding in the prediction task.

3 Experiment

3.1 Experiment Design

Method Variants. The solution space of knowledge graph embedding involves
three aspects: score function, word embedding and description embedding. Score
function has three ways to incorporate structure-based and description-based
entity embeddings: concatenation ‖hs⊕hd+r−ts⊕td ‖ (used in Han et al. [5]),
basic individual ‖hs + r − ts ‖ + ‖hd + r − td ‖ (i.e., Eq. (2)), and interaction-
enhanced ‖hs + r − ts ‖ + ‖hd + r − td ‖ + ‖hs + r − td ‖ + ‖hd + r − ts ‖ (i.e.,
Eq. (3)). Pre-trained word embeddings can be used as-is or fine-tuned during
knowledge graph embedding. Description-based embeddings can be obtained by
simple average pooling of word embeddings in the description or a CNN encoder
(see Sect. 2.3).

Considering the variants of the three solution aspects, we design seven meth-
ods for the comparative experiments, as shown in Table 3. The M-1 is a replica of
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Table 3. Variants of knowledge graph embedding method.

Model M-1 M-2 M-3 M-4 M-5 M-6 M-7

Score

function

Concatenation Basic

individual

Basic

individual

Basic

individual

Interaction

enhanced

Interaction

enhanced

Interaction

enhanced

Word

embedding

Pre-trained Pre-trained Pre-trained Fine-tuned Pre-trained Pre-trained Fine-tuned

Description

embedding

Average

pooling

Average

pooling

CNN

encoder

CNN

encoder

Average

pooling

CNN

encoder

CNN

encoder

the method proposed in Han et al. [5], while the other methods are variants of the
approach proposed in this work. Note that using average pooling of word embed-
dings to compute description embeddings does not support fine-tuning of word
embeddings. By comparing M-1 with M-2 and M-5, we can see the impact of dif-
ferent ways to incorporate structure- and description-based entity embeddings.
By comparing M-2/3/4 (or M-5/6/7), we can understand the impact of different
ways to compute word embeddings and description embeddings. By comparing
M-2/5 (or M-3/6, M-4/7), we can understand the impact of explicitly modeling
the interaction of structure-based and description-based entity embeddings.

Research Questions. Our experiments aim to answer two research questions:
RQ1: Can heterogeneous software security knowledge graph pro-

duce more predictive embeddings than homogeneous knowledge
graph? Han et al. [5] construct a software weakness knowledge graph from
CWEs only, but we construct a much broader software security knowledge graph
from CWEs, CAPECs and CVEs. Heterogeneous security entities provide a more
complete picture of security knowledge. We want to investigate if heterogeneous
knowledge graph produces more predictive embeddings than considering CWEs
only.

RQ2: How well can different knowledge graph embedding methods
predict software security entity relationships? An important knowledge
graph completion task is to find new relational facts among existing entities.
We want to study the performance of different knowledge graph embedding
methods in this task and investigate the impact of variations in score function,
word embedding, and description embedding method on the performance.

Evaluation Metrics. We use three metrics: (1) Top-k accuracy (Top-k
Acc): the proportion of prediction tasks for which the correct entity is in the
top-k list. We report Top-5 Acc and Top-10 Acc. (2) Mean Reciprocal Rank
(MRR): the mean of the reciprocal rank of the correct entity for each prediction
task. (3) Mean Average Precision (MAP): the mean of average precision of
all relevant entities for each prediction task. Notice that if a corrupted triplet
exists in the knowledge graph, ranking it before the original triple is not wrong [3,
16]. So we also consider such a prediction as correct on Top-k Acc and MRR.
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3.2 Software Security Knowledge Graph in Experiments

In this work, we use the latest CWE (version 3.2) and the latest
CAPEC (version 3.0). All CWEs and CAPECs (except Category entries) are
used as security concepts. We select CVEs of Linux system published by 1st
October, 2018 as security instances and crawl them from the CVE details web-
site. We construct a knowledge graph with 806 CWEs, 515 CAPECs, 2846 Linux
CVEs and 8 relation types of 8067 triples. Data and statistical test result are
available at https://github.com/kgembedding2019/Embedding-and-Predicting-
Software-Security.

Table 4. Performance comparison: homogeneous KG versus (vs.) heterogeneous KG.

Metric Top-5 Acc Top-10 Acc MRR MAP

CWE-only KG 0.592 0.681 0.449 0.564
Full KG 0.628 0.713 0.459 0.576

3.3 Impact of Knowledge Heterogeneity (RQ1)

Method. We create a sub-knowledge graph with CWEs only (3021 triples) from
the full knowledge graph. This sub-knowledge graph contains homogeneous secu-
rity concepts (i.e., CWEs), as opposed to the full knowledge graph with hetero-
geneous security concepts and instances. We use M-7 in Table 3 for experiments.

We prepare link prediction task in the way described in Sect. 3.4. For CWE-
only knowledge graph, we randomly select 85% triples of each relationship for
training, 5% for model optimization, and 10% as testing triples. The partition
result is duplicated on the full knowledge graph. All CAPEC and CVE entities in
the full knowledge graph remain intact. The prediction will be done on the same
testing set selected from CWE-only knowledge graph. We perform 10-fold cross-
validation and report the average metrics. To determine if there is a statistically
significant difference between the prediction performance of CWE-only and full
knowledge graph, we perform Wilcoxon signed-rank test on all metrics.

Results. As reported in Table 4, the prediction performance of the full hetero-
geneous knowledge graph is always better than that of CWE-only homogeneous
knowledge graph in all evaluation metrics. Wilcoxon signed-rank test confirms
that all performance differences are statistically significant (at p <0.05) [13].

Heterogeneous security concepts and instances produce more predictive
knowledge graph embeddings than homogeneous security concepts.

https://cwe.mitre.org/data/downloads.html
https://capec.mitre.org/data/downloads.html
https://www.cvedetails.com/
https://github.com/kgembedding2019/Embedding-and-Predicting-Software-Security
https://github.com/kgembedding2019/Embedding-and-Predicting-Software-Security
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3.4 Predicting Software Security Entity Relationships (RQ2)

Method. In RQ2, we use our full software security knowledge graph. As the
truly missing triples are unknown, we simulate the missing relational facts by
randomly “remove” some triples in the knowledge graph. Specifically, we ran-
domly select 85% triples of each relationship for training, 5% for optimization
and 10% for testing. We remove the tail or head entity in each testing triple to
make a predict-tail (or head) task <h, r, ?t> (or <?h, r, t>). The tail or head
entity of the testing triple is considered as the correct entity to be predicted.
For each relationship, we compute the metrics listed in Sect. 3.1 for predict-tail
and predict-head tasks respectively. We compute the weighted average of the
performance metrics of all relationships as the overall performance. We report
the average metrics of 10-fold cross-validation. We compare the prediction per-
formance of embeddings learned by the seven methods listed in Table 3.

Results. Overall Performance. As shown in Table 5, the basic individual score
function (M-2) performs worse than concatenation score function (M-1). But
interaction-enhanced score function (M-5) outperforms concatenation score func-
tion (M-1) in all metrics. Under the same word embedding and description
embedding method, interaction-enhanced score function always outperforms
basic individual function (M-5 vs. M-2, M-6 vs. M-3, M-7 vs. M-4). Using the
same score function, the more sophisticated text embedding technique is used,
the better the model performs (M-4 vs. M-3 vs. M-2, M-7 vs. M-6 vs. M5). Com-
bining interaction-based score function, fine-tuned word embedding and CNN
encoder for description embedding lead to the best performing model (i.e., M-
7). M-7 performs statistically significantly better than M-1 (i.e., existing model
in [5]).

Table 5. Link prediction - overall performance.

M-1 M-2 M-3 M-4 M-5 M-6 M-7

Top-5 Acc 0.503 0.474 0.528 0.542 0.529 0.573 0.596

Top-10 Acc 0.583 0.558 0.596 0.612 0.612 0.640 0.661

MRR 0.402 0.391 0.405 0.420 0.419 0.448 0.464

MAP 0.591 0.573 0.606 0.604 0.624 0.647 0.688

Performance by Relationship Type and Predict-Head/Tail. Due to the space lim-
itation, we report the detailed performance for Top-5 Acc only in Table 6. We
can see that M-7 achieves the best performance for all relationships and for both
predict-head and predict-tail tasks (being statistically significantly better than
M-1 in all cases). We can also observe a similar performance boost for each rela-
tionship by interaction-based score function, fine-tuned word embeddings, and
CNN encoder for description embedding, as the overall performance.
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The performance of a method varies across different relationships and across
predict-head or predict-tail tasks. Take M-7 as an example. M-7 achieves
high Top-5 Acc (0.689-0.878) for seven cases: childof, parentof and can-
precede (predict-head/tail), instanceof (predict-tail). It achieves reasonable Top-
5 Acc (0.466-0.523) for four cases: targetof (predict-head), canfollow (predict-
head/tail) and semantic (predict-tail). It achieves below-0.4 Top-5 Acc for five
cases: instanceof and semantic (predict-head), targetof (predict-tail), peerof
(predict-head/tail).

Table 6. Link prediction - Top-5 Acc by relationship type and predict-head/tail.

Model instanceof targetof childof parentof peerof canfollow canprecede semantic overall

Predict head

<?h, r, t>

M-1 0.024 0.396 0.572 0.792 0.111 0.286 0.571 0.193 0.378

M-2 0.017 0.386 0.555 0.758 0.056 0.286 0.571 0.189 0.359

M-3 0.047 0.409 0.578 0.811 0.111 0.307 0.653 0.204 0.383

M-4 0.093 0.420 0.618 0.845 0.167 0.357 0.653 0.234 0.399

M-5 0.065 0.420 0.630 0.831 0.167 0.429 0.643 0.259 0.396

M-6 0.141 0.443 0.684 0.858 0.278 0.457 0.669 0.294 0.441

M-7 0.193 0.466 0.703 0.865 0.278 0.500 0.714 0.314 0.469

Predict tail

<h, r, ?t>

M-1 0.650 0.342 0.789 0.568 0.222 0.357 0.591 0.437 0.625

M-2 0.595 0.330 0.760 0.557 0.167 0.357 0.571 0.429 0.588

M-3 0.822 0.342 0.808 0.575 0.222 0.371 0.623 0.442 0.671

M-4 0.831 0.352 0.851 0.604 0.222 0.428 0.714 0.465 0.684

M-5 0.729 0.355 0.845 0.656 0.278 0.428 0.714 0.477 0.662

M-6 0.838 0.386 0.862 0.656 0.278 0.457 0.757 0.500 0.704

M-7 0.848 0.398 0.878 0.689 0.278 0.500 0.766 0.523 0.720

We identify three factors that affect the embedding performance. First, the
more triples a relationship has, the more predictive embeddings it learns. Typical
cases are childof and parentof relationships that have large numbers of triples, as
opposed to peerof that has fewer instances. Second, the more diverse the seman-
tics of a relationship are, the more difficult to learn predictive embeddings. A
typical case is semantic. Unlike other relationships which have a unique seman-
tic, semantic relationship is a general notion of different semantic relationships
among CWEs. This semantic diversity will “dilute” the learning of predictive
embeddings. Third, the more instances the “many” end of a relationship has,
the less predictive the learned embeddings are for predicting the “many” end. A
typical case is the CVE end of <CVE, instanceof, CWE>. One abstract software
weakness (CWE) can have many instances of CVEs (up to 768). Predicting the
CVE instances of a given CWE has the worst performance among all prediction
tasks. However, the learned embeddings can still accurately predict the CWE
given a CVE instance (0.848). linking the CVE instance to the corresponding
weakness is more important than finding vulnerability examples for a weakness.
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Interaction-enhanced score function, fine-tuned word embeddings and CNN
encoder for description embedding can all boost the knowledge graph embed-
ding performance. Three factors, i.e., the number of triples of relationships,
the semantic diversity of relationships, and the number of instances at the
“many” end of 1-to-many relationships, affect the performance of the learned
embeddings.

4 Related Work

Software Security Databases and Research. CWE, CAPEC and CVE
achieve rich software security knowledge. These knowledge bases have been
exploited in some security analysis research [6,12]. Han et al. [6] propose a CNN
based approach to predict severity level of software vulnerability using CVE
descriptions. Ruohonen et al. [12] investigate information retrieval techniques
for mapping CVE to CWE. Different from these text-mining based works, our
work constructs a software security knowledge graph which allows us to exploit
both relational and textual knowledge of security concepts and instances in secu-
rity analysis.

Knowledge Graph Research in Software Engineering. Some general
domain knowledge graphs (e.g., DBpedia [9] and Freebase [2]) have been built.
In software engineering context, Li et al. [10] construct an API caveat knowledge
graph from API reference documentation and support API-centric caveat search.
The recent work by Han et al. [5] is the closest work to ours. The key differ-
ences are two folds. First, they consider only CWEs, while our knowledge graph
contains CWEs, CAPECs and CVEs. Second, our knowledge graph embedding
method uses more advanced score function to model structure- and description-
based entity embeddings and adopts CNN encoder to compute description
embeddings, which result in better performance in prediction task than the
method in [5].

5 Conclusion and Future Work

This paper presents a novel knowledge graph based approach for embedding and
predicting software security entity relationships. Our software security knowledge
graph incorporates heterogeneous but complementary security concepts (i.e.,
weaknesses and attack patterns) and security instances (i.e., vulnerabilities).
This heterogeneity results in more informative embeddings of software security
entities and relationships. Our knowledge graph embedding method combines the
recent advances in translation-based knowledge graph embedding model and the
application of CNN encoder. Our experiments show that modeling the interac-
tion between structure- and description-based entity embeddings, using a CNN
encoder to compute sentence embeddings and fine-tuned word embeddings result

https://cwe.mitre.org/
https://capec.mitre.org/
https://cve.mitre.org/
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in more predictive embeddings. The future work is to incorporate vulnerable code
in the knowledge graph, which may enable new types of security analysis.

Acknowledgement. This work is supported in part by National Natural Science
Foundation of China (Nos. 61572349, 61872262).

References

1. Abbes, M., Kechaou, Z., Alimi, A.M.: Enhanced deep learning models for sentiment
analysis in Arab social media. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-
S.M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 667–676. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70139-4 68

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: SIGMOD
(2008)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

4. Drumond, L., Rendle, S., Schmidt-Thieme, L.: Predicting RDF triples in incom-
plete knowledge bases with tensor factorization. In: SAC, pp. 326–331. ACM (2012)

5. Han, Z., Li, X., Liu, H., Xing, Z., Feng, Z.: DeepWeak: reasoning common software
weaknesses via knowledge graph embedding. In: SANER, pp. 456–466. IEEE (2018)

6. Han, Z., Li, X., Xing, Z., Liu, H., Feng, Z.: Learning to predict severity of software
vulnerability using only vulnerability description. In: ICSME, pp. 125–136 (2017)

7. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. In: ACL, pp. 655–665 (2014)

8. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP
(2014)

9. Lehmann, J., Isele, R., Jakob, M., et al.: DBpedia-a large-scale, multilingual knowl-
edge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

10. Li, H., et al.: Improving API Caveats accessibility by mining API Caveats knowl-
edge graph. In: ICSME. IEEE (2018)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: ICLR (2013)

12. Ruohonen, J., Leppänen, V.: Toward validation of textual information retrieval
techniques for software weaknesses. In: Elloumi, M., et al. (eds.) DEXA 2018.
CCIS, vol. 903, pp. 265–277. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-99133-7 22

13. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83
(1945)

14. Wu, Y., Gandhi, R.A., Siy, H.: Using semantic templates to study vulnerabilities
recorded in large software repositories. In: ICSE, pp. 22–28. ACM (2010)

15. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge
graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)

16. Zhen, W., Zhang, J., Feng, J., Zheng, C.: Knowledge graph embedding by trans-
lating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

https://doi.org/10.1007/978-3-319-70139-4_68
https://doi.org/10.1007/978-3-319-99133-7_22
https://doi.org/10.1007/978-3-319-99133-7_22


SACIC: A Semantics-Aware
Convolutional Image Captioner Using

Multi-level Pervasive Attention

Sandeep Narayan Parameswaran(B) and Sukhendu Das

Visualization and Perception Lab, Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

sandeepn@cse.iitm.ac.in, sdas@iitm.ac.in

Abstract. Attention mechanisms alongside encoder-decoder architec-
tures have become integral components for solving the image caption-
ing problem. The attention mechanism recombines an encoding of the
image depending on the state of the decoder, to generate the caption
sequence. The decoder is predominantly recurrent in nature. In con-
trast, we propose a novel network possessing attention-like properties
that are pervasive through its layers, by utilizing a convolutional neural
network (CNN) to refine and combine representations at multiple lev-
els of the architecture for captioning images. We also enable the model
to use explicit higher-level semantic information obtained by perform-
ing panoptic segmentation on the image. The attention capability of the
model is visually demonstrated, and an experimental evaluation is shown
on the MS-COCO dataset. We exhibit that the approach is more robust,
efficient, and yields better performance in comparison to the state-of-
the-art architectures for image captioning.

Keywords: Image captioning · Convolutional neural networks · Deep
learning · Computer vision

1 Introduction

Image captioning is a challenging problem that generates a sentence describing
the contents of an image. This finds applications in aiding visually impaired
users, improving human-machine communication, and organizing visual data,
thereby attracting the attention of researchers in the fields of computer vision
and machine learning communities. Among recently published work, an encoder-
decoder framework modeled recurrently using LSTM networks [12,23] have been
commonly employed for this task. Such frameworks are enhanced by associat-
ing the model with an attention mechanism [2,21,26,27,30]. Recently, the work
by Aneja et al. [3] has shown that a convolutional neural network (CNN) based
image captioning method coupled with an attention mechanism performs equally
well for the captioning task in comparison to the recurrent approaches. Such
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models are not sequential and exploit parallelism better during training. In gen-
eral, current attention mechanisms are a weighted sum of the encoded image
representations and have limited modeling capabilities.

The work by Elbayad et al. [8] proposes an architecture for machine trans-
lation, based on a CNN by modeling an attention mechanism that is pervasive
through its layers. Inspired by its success, we extend and adapt this architecture
to solve the image captioning problem. Also, the use of attention at multiple
levels of an architecture has benefited similar tasks [28,29]. Unlike the single-
level attention model proposed in [8], we design a CNN based architecture which
posses attention-like capabilities at multiple intermediate layers of a deep neural
network to attain better performance for the task of image captioning.

Addition of explicit high-level semantic concepts of the input image can
enhance captioning performance to a greater extent [6,30]. Semantic concepts
are extracted either by modeling a multi-label classification problem [24] using
a subset of the vocabulary, or learning them in an unsupervised nature [9], or
using an object detection model [2,12,17].

Frameworks which resemble object detection allows the semantic concepts to
be grounded in the image. The semantic concept can either refer to things (e.g.,
dog, airplane) with a well-defined shape or amorphous background regions (e.g.,
grass, road), referred to as objects and stuff respectively [5]. While some works
[12,17] ignore the stuff classes, some other [2] tries to localize the stuff classes
along with object classes. Panoptic segmentation [14] is a combination of seman-
tic segmentation (every pixel is assigned a class label) and instance segmentation
(detects each instance of an object and segments it) tasks, which considers both
object and stuff classes. In this work, we perform panoptic segmentation [14] on
the image for capturing the associated semantic concepts, allowing stuffs to be
incorporated more naturally in addition to objects.

Feature 
Refinement

Caption 
Generation

A group of 
teens 

playing 
frisbee in 

park
Feature 

Extraction

Image
Features

Semantic
Features

Fig. 1. Our model, where semantic and image features are combined and refined by
using CNNs to generate the sentence describing the image.

This work proposes a CNN based image captioning method, modeling atten-
tion at multiple levels of the architecture that are pervasive. An overview of
the complete framework is illustrated in Fig. 1. A feature representation for the
image is obtained by passing it through a convolutional neural network (CNN).
In addition, semantic features are obtained by performing panoptic segmenta-
tion [14] on the image. We combine both the extracted features and pass it to
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the feature refinement module, comprising of a CNN which possess attention
capabilities across both dimensions of the image, to build an intermediate fea-
ture representation for the image. The product space of the intermediate feature
representation and caption sequence defines the 2-dimensional grid over which
a second attention modeling CNN is applied for generating the caption.

The major contributions of the work include:

– A novel approach which refines feature representations by modeling attention
like capabilities at multiple levels of the architecture using a CNN.

– Introduction of higher-level semantic information based on a panoptic seg-
mentation task to produce captions with better quality.

– Integrate the individual attention capability at multiple levels of the network
to visualize the overall attention.

Experimental evaluation for the proposed method of describing images is
performed on the MS-COCO dataset using established metrics. The standard
image captioning and robust image captioning tasks are considered for evaluating
the proposed framework. The ability of our proposed model to focus on salient
regions in the image is also visually demonstrated.

2 Proposed Model

Our approach is based on the work proposed in [8], which follows a convolutional
approach for the machine translation task. The proposed architecture is depicted
in Fig. 2. It is composed of a feature refinement module and a caption genera-
tion module. We extract two sets of features from the image, namely the image
and semantic features, which are then concatenated to form the input to the
feature refinement module. The feature refinement module consists of a Dense-
Block followed by a row and a column aggregator sub-modules responsible for
modeling attention over the image regions as defined by the M × M grid, along
each row and along each column respectively. The outputs of these sub-modules
are then fused to form a set of intermediate features that captures the visual
aspects of the image. A word embedding of size D is used to represent each word
in the caption. A joint encoding between the embedded caption sequence and
the intermediate features is then performed, forming a 3-D tensor which is fed
as input to the caption generation module. This module is also composed of a
DenseBlock followed by a column aggregator sub-module and a softmax oper-
ation. Attention over the intermediate features is modeled at this stage. Each
module is described in detail in the subsequent sub-sections.

2.1 Feature Extraction

The image I (height H and width W ) is passed through a standard CNN to
extract features (fimg ∈ R

M ×M ×Dimg ) corresponding to a uniform spatial grid
(M × M) of image regions, where Dimg is the size of the feature vector for each
image region. Besides, we also construct features capturing semantic information
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Fig. 2. Architecture block diagram of the proposed approach for captioning images.
The processing modules in Fig. 1 are shown here as sub-modules.

using panoptic segmentation on the image, where a distinction is created between
stuff and things. Each pixel in I is assigned a class label and the instance to
which it belongs. A GLOVE [19] embedding of size Dglv is taken for each pixel,
corresponding to the class label producing fglv ∈ R

H×W×Dglv . For each pixel, the
instance number of the class it belongs is encoded by means of a one-hot vector
of length Dinst, thereby generating finst ∈ R

H×W×Dinst . Then, fglv and finst
are concatenated and a global average pooling is performed to obtain semantic
features (fsem ∈ R

M×M×Dsem) with Dsem = Dglv + Dinst, corresponding to the
uniform spatial grid of image regions in I. fimg and fsem are further concatenated
and passed to the feature refinement module.

2.2 Feature Refinement

This module consists of a DenseBlock [8] followed by 2 aggregators and a fusion
sub-module. Each layer l of the DenseBlock [11] takes as input the activations
of every preceding layer to produce g feature maps. The parameter g is called
the “growth rate”. The output of layer l has fl output channels and is denoted
as H l. The DenseBlock has f0 = Dimg + Dsem channels as input and fL output
channels, where L is the number of layers. A batch-normalization, ReLU non-
linearity and a 1 × 1 convolution, is used to compute 4g channels from the
f0 +(l − 1)g input channels at each layer l. A sequence of operations as: another

Fig. 3. A visual illustration of the dimension changes of the tensor(s) (as HL, UR, UC ,
U and e) upon passing through the sub-module present in the architecture.
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batch-normalization, ReLU non-linearity, a second convolution operation, and
dropout is applied thereafter for generating g output feature maps in each layer.
For more details refer [8,11].

The DenseBlock is followed by two aggregator [8] sub-modules whose input is
the tensor (HL ∈ R

M×M×fL), as visually illustrated in Fig. 3a. The row aggrega-
tor combines information along the 1st dimension while the column aggregator
does it along the 2nd dimension, as:

HR
id = max

j∈{1,...,M}
HL

ijd; HC
jd = max

i∈{1,...,M}
HL

ijd (1)

where HR ∈ R
M×fL and HC ∈ R

M×fL . A linear projection to the word embed-
ding size D is done as:

UR
i = WRHR

i + bR; UC
j = WCHC

j + bC (2)

where WR,WC ∈ R
D×fL , bR, bC ∈ R

D are weight matrices and bias that are
learned during training in the row and column aggregator sub-modules. UR ∈
R

M×D and UC ∈ R
M×D are the corresponding 2−D tensors that are computed.

The fusion sub-module interlaces UR and UC to form the intermediate fea-
ture (U ∈ R

2M×D) as shown in Fig. 3b. A fusion of the feature representations
obtained by the row and column aggregator is necessary for implementing multi-
level attention (details are given later in Sect. 2.4). This allows the network to
adaptively focus attention on different image regions, based on the words seen
in the caption generation module. For k in {1, . . . , 2M}, the result of fusion is:

Uk =

{
UR

�k/2� k is odd
UC
k/2 k is even

(3)

2.3 Caption Generation

The caption of length CS represented as y = {y1, . . . , yCS}, where yt ∈ V and V
is the vocabulary of words, is used to learn an embedding EIN ∈ R

|V |×D during
training, transforming the caption y into a sequence e = {e1, . . . , eCS}, where
et ∈ R

D. The product space of the 2 sequences (U and e) defines the 2 − D grid
(Fig. 3c) which is processed by the CNN in the caption generation module. The
sequences are concatenated to form a 3 − D tensor X, as:

Xkt = [Uk et] (4)

The jointly encoded tensor X ∈ R
2M×CS×2D is passed through a DenseBlock

[8,11] having L layers, where the output of the final layer is GL ∈ R
2M×CS×sL

having sL output channels. Unlike the DenseBlock in the feature refinement
module, the filters of the 2nd convolution operation in the DenseBlock needs to
be masked here to suppress learning information from the succeeding words in
the caption sequence [8]. The 1st dimension of the tensor obtained as the output
of the DenseBlock (GL) is collapsed by column aggregation to compute GC , as:
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GC
td = max

k∈{1,...,2M}
GL

ktd (5)

The distribution over the words forming the output caption is modeled using
the column aggregator module output (GC ∈ R

CS×sL) by learning a word
embedding (E ∈ R

|V |×sL). The probability for the occurrence of word yt at
position t in the output caption sequence, given all preceding words in the cap-
tion, is estimated using a softmax function as:

p(yt|y1:t−1) = softmax(E.GC
t ) (6)

Consider the ground truth caption as {y∗
1 , y

∗
2 , . . . , y

∗
CS} where y∗

t ∈ V . The
cross-entropy loss (LXE) is used to train our model parameters (θ), as:

LXE(θ) = −
∑

t∈{1,...,CS}
log(p(y∗

t |y∗
1:t−1)) (7)

2.4 Multi-level Pervasive Attention

Each DenseBlock followed by either of the aggregators, models an attention
mechanism that is pervasive [8] through its layers. There are three such instances
in our architecture (see Fig. 2), twice in the feature refinement module (attention
across the columns and rows of the concatenated image and semantic features)
and once in the caption generation module (attention across the intermediate
feature). This process is described below.

Consider the column aggregator function in the caption generation module
as given in Eq. 5. At output caption position t, the sL channels of the tensor
GL ∈ R

2M×CS×sL are partitioned by assigning them across the intermediate
feature positions k [8]. Considering the set of channels as S = {1, . . . , sL}, the
set of channels assigned to position k in the intermediate feature U for output
caption position t, is obtained as:

Bkt =

{
d ∈ S | k = arg max

k′∈{1,...,2M}

(
GL

k′td
)}

(8)

The energy used for the softmax function (Eq. 6) to predict the word w ∈ V
for the output caption position at t, is:∑

d∈S

EwdG
C
td =

∑
k∈{1,...,2M}

∑
d∈Bkt

EwdG
L
ktd (9)

where E ∈ R
|V |×sL is the output word embedding matrix. The contribution of

the intermediate feature at position k for generating the word at position t in
the caption sequence is given by:

αkt =
∑

d∈Bkt

EwdG
L
ktd where α ∈ R

2M×CS (10)
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The dependence on w is dropped here for simplicity, and the values αkt

corresponding to the word at position t in the output caption is used to visualize
the attention experimentally.

Similarly, we consider the row and column aggregators in the feature refine-
ment module as given in Eq. 1. The row aggregator partitions the fL channels of
the tensor HL ∈ R

M×M×fL by assigning them across the column position j for
each row position i, whereas the column aggregator partitions them by assigning
them across the row positions i for each column position j. Let F denote the set
of channels {1, . . . , fL}, then the set of channels assigned to column position j
and row position i by the row and column aggregators are :

BR
ij =

{
d ∈ F |j = arg max

j′∈{1,...,M}

(
HL

ij′d
)}

; BC
ij =

{
d ∈ F |i = arg max

i′∈{1,...,M}

(
HL

i′jd
)}

(11)
The sum of each tensor HR ∈ R

M×fL and HC ∈ R
M×fL (computed using

Eq. 1) across the channels in F are expressed as (using Eq. 11):∑
d∈F

HR
id =

∑
j∈{1,...,M}

∑
d∈BR

ij

HL
ijd;

∑
d∈F

HC
jd =

∑
i∈{1,...,M}

∑
d∈BC

ij

HL
ijd (12)

The contribution of the regions along a column for each row (given by αR)
and the contribution of the regions along a row for each column (given by αC),
as computed in the feature refinement module, are:

αR
ij =

∑
d∈BR

ij

HL
ijd; αC

ij =
∑
d∈BC

ij

HL
ijd where αR, αC ∈ R

M×M (13)

Since the row and column aggregations (UR and UC) are fused to obtain (U)
(see Eq. 3), we split the attention weights (α ∈ R

2M×CS) over the intermediate
feature sequence of length 2M to obtain the corresponding attention weights over
the row (aR ∈ R

CS×M ) and column (aC ∈ R
CS×M ) aggregated representations,

obtained in the feature refinement module as:

aR
ti = αkot where ko = 2i − 1; aC

tj = αket where ke = 2j (14)

where i, j ∈ {1, . . . , M}. The overall attention (β ∈ R
CS×M×M ) over each region

in the image grid, for predicting the word at caption position t is:

βtij = aR
tiα

R
ij + aC

tjα
C
ij (15)

The feature refinement module identifies specific salient image regions (using
αR and αC) in the image, which are weighted differently (using aR and aC) for
generating each word in the output caption. This helps to improve the perfor-
mance of caption generation.
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3 Experiments

We validate our approach on the MS-COCO 2014 captions dataset [16] by per-
forming experimentation on two separate captioning tasks: Standard Image Cap-
tioning and Robust Image Captioning. Each image in the dataset is labeled
with five captions. Each caption is converted to lower case while discarding
non-alphanumeric characters. A vocabulary of size 9488 is built using words
that occur at least five times in the training data. BLEU [18], METEOR [4],
ROUGE-L [15], CIDEr [22], and SPICE [1] metrics are used for performance
evaluation.

Table 1. Performance comparison for the standard captioning task on the MS-COCO
[16] dataset. The evaluation metrics (all higher the better): BLEU-1 (B-1), BLEU-2
(B-2), BLEU-3 (B-3), BLEU-4 (B-4), METEOR (M), ROUGE (R), CIDEr (C) and
Spice (S). + indicates that the results are reported by implementing the model [23]
using ResNet-101 as the image encoder. ∗ [2] uses better image features, and hence not
proper to compare. Ours-GT indicates the usage of ground-truth class and instance
labels for generating semantic features.

Method B-1 B-2 B-3 B-4 M R C S

NIC + [23] 0.701 0.531 0.396 0.299 0.243 0.519 0.908 0.171

LSTM [3,12] 0.724 0.552 0.405 0.294 0.251 0.532 0.961 –

CIC [3] 0.72 0.549 0.403 0.293 0.248 0.527 0.945 –

CompCap [6] – – – 0.251 0.243 0.478 0.862 0.199

Up-Down [2] 0.745 – – 0.334 0.261 0.544 1.054 0.192

NBT [17] 0.755 – – 0.347 0.271 – 1.072 0.201

Up-Down ∗ [2] 0.772 – – 0.362 0.27 0.564 1.135 0.203

Baseline-Single 0.716 0.553 0.412 0.291 0.254 0.533 0.953 0.185

Baseline-Double 0.73 0.555 0.414 0.305 0.259 0.545 1.005 0.189

Baseline 0.736 0.563 0.422 0.316 0.263 0.544 1.034 0.193

Ours 0.74 0.569 0.431 0.326 0.272 0.557 1.072 0.202

Ours-GT 0.756 0.586 0.447 0.338 0.276 0.563 1.117 0.206

The ResNet-101 [10] architecture pre-trained on ImageNet [7] is used to
encode the image. Similar to the work [2], the final convolutional layer output is
resized to M ×M ×Dimg, with M = 7 and Dimg = 2048, using bilinear interpo-
lation. The semantic feature is constructed using the segmented image obtained
from the output of UPSNet [25], trained using a ResNet-101-FPN backbone,
with 80 thing classes and 62 stuff classes on the MS-COCO dataset. A memory-
efficient implementation [20] of the DenseNet architecture is used for experimen-
tation. We found that setting the growth rate (g) and number of layers (L) for
both DenseBlocks to 32 and 24 respectively gives optimum performance. We fix
the encoding dimension (D) as 128 and filter kernel size to 3 as used in [8].
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The splits detailed in the prior work of image captioning task [12], comprising
of 113287 training images, and 5000 images for both validation and testing are
used. The Adam optimizer [13] is used for training our model. The model that
best performs on the validation data is selected for generating the captions using
a beam search with width = 3. A performance comparison is tabulated in Table 1.
The effectiveness of incorporating multi-level pervasive attention is demonstrated
by evaluating three variants (as ablation studies) of our proposed architecture:

– Baseline: Models the architecture (see Fig. 2) by excluding the semantic fea-
tures.

– Baseline-Double: The baseline architecture without the column aggregator
and fusion sub-modules in the feature refinement module.

– Baseline-Single: A straight forward adaptation of the sequence to sequence
framework [8] using single-level pervasive attention by linearizing the image
features into a M2 × D feature sequence.

Table 2. Computational efficiency on MS-COCO [16] dataset. The time is measured
on a Nvidia GeForce GTX 1080 GPU with a batch size of 20.

Method Training time per epoch Parameters

NIC [23] 0.1 h 13 M

CIC [3] 1.26 h 20 M

NBT [17] 2.24 h 56 M

Up-Down [2] 0.22 h 20 M

Baseline 0.79 h 9 M

Ours 0.85 h 11 M

We see that modeling attention at different levels of the architecture can
improve the performance consistently on all the metrics. The addition of the
column aggregator in addition to the row aggregator gives the model enough
flexibility to compute attention over regions in the image grid. The baseline
registers a substantial performance boost in comparison to CIC [3] as seen in
Table 1, which is a recently proposed convolutional framework for captioning
images. The results obtained by our proposed model using the semantic fea-
tures generated upon feeding the ground-truth class and instance labels for the
panoptic segmentation task (Ours-GT) is also reported. The inclusion of seman-
tic features alongside the image features, leads to a significant improvement in
performance, as seen in the penultimate row of Table 1. We outperform other
captioning models on all metrics except the BLEU-1 and BLEU-4 metrics.

In Table 2, we analyze the efficiency of the network in terms of the training
time per epoch and the number of trainable parameters. Our baseline model
has lesser number of parameters than all other compared models and needs
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Table 3. Performance comparison for the robust image captioning task on MS-COCO
[16] dataset. The metrics used are BLEU-4 (B-4), METEOR (M), ROUGE (R), CIDEr
(C) and Spice (S). The results of other methods are obtained from [17]. Ours-GT
indicates the usage of ground-truth class and instance labels for generating semantic
features.

Method B-4 M C S

Att2in [21] 0.315 0.246 0.906 0.177

Up-Down [2] 0.316 0.25 0.92 0.181

NBT [17] 0.317 0.252 0.941 0.183

Ours 0.312 0.255 0.949 0.185

Ours-GT 0.316 0.259 0.96 0.188

lesser time to train in comparison to CIC [3] which also follows a CNN based
architectural framework, despite using a memory-efficient implementation [20].

We also perform experimentation on the Robust Image Captioning Task [17].
The dataset split [17] has 110234, 3915 and 9138 images for training, valida-
tion, and testing respectively. The split is devised such that there are sufficient
examples having entity words that belong to the 80 MS-COCO object cate-
gories during training, whereas novel compositions (pairs) of the categories are
encountered at test time. The results are tabulated in Table 3. We observe an
improvement in performance in all metrics except BLEU-4.

Fig. 4. Visualization of the attention over image regions while generating words
“woman”, “throwing”, “frisbee” and “park”. The predicted sentence is “A woman
throwing a frisbee in a park.”

The attention weights over the image regions for each word in the generated
sentence is visualized using an example in Fig. 4. The attention weights are
interpreted by combining individual attention weights obtained in the feature
refinement and caption generation modules as given in Eq. 15.

An image and the generated panoptic segmentation map along with the gen-
erated captions using the baseline and the proposed architecture for 3 examples
are shown in Fig. 5, to qualitatively highlight the role of semantic features in our
model for caption generation. Semantic features guide caption generation pro-
cess, by generating captions focusing on image regions belonging to the objects
and stuff in the image. As seen in the 2nd example, our model is able to generate
better captions for images depicting objects in an out-of-context environment.
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a)

b)
Baseline: a dog sitting on
a couch watching TV
Ours: a living room with
a couch and a television
GT: a living room with a
chair, couch, coffee table
and television

a)

b)
Baseline: a dog sitting on
a bench in front of a house
Ours: a couch sitting in
the grass next to a fire
hydrant
GT: a couch sitting next to
a white fire hydrant

a)

b)
Baseline: a bus driving
down a street next to a
forest
Ours: a large truck is
driving down the road
GT: a colorful truck is
driving on a wet road

Fig. 5. Some qualitative results showing the role of semantic features in our proposed
approach. (a) image, (b) the generated segmentation label map, with the captions
obtained using the baseline, our approach and ground truth (GT).

4 Conclusion

A novel convolutional approach modeled using pervasive attention at multiple
levels of the architecture is proposed, which exhibit substantial performance
improvement over a recent convolutional framework for image captioning. Abla-
tion studies show the benefit of our approach. The attention at multiple levels
was combined. The proposed architecture is also efficient in terms of the number
of parameters and training time. Moreover, an explicit semantic representation
of image content formed upon performing panoptic segmentation was observed
to improve the quality of generated captions.
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Abstract. We analyze the computational power of discrete-time recur-
rent neural networks (NNs) with the saturated-linear activation func-
tion within the Chomsky hierarchy. This model restricted to integer
weights coincides with binary-state NNs with the Heaviside activation
function, which are equivalent to finite automata (Chomsky level 3),
while rational weights make this model Turing complete even for three
analog-state units (Chomsky level 0). For an intermediate model αANN
of a binary-state NN that is extended with α ≥ 0 extra analog-state
neurons with rational weights, we have established the analog neuron
hierarchy 0ANNs ⊂ 1ANNs ⊂ 2ANNs ⊆ 3ANNs. The separation 1ANNs
� 2ANNs has been witnessed by the deterministic context-free language
(DCFL) L# = {0n1n | n ≥ 1} which cannot be recognized by any 1ANN
even with real weights, while any DCFL (Chomsky level 2) is accepted
by a 2ANN with rational weights. In this paper, we generalize this result
by showing that any non-regular DCFL cannot be recognized by 1ANNs
with real weights, which means (DCFLs \ REG) ⊂ (2ANNs \ 1ANNs),
implying 0ANNs = 1ANNs ∩ DCFLs. For this purpose, we show that
L# is the simplest non-regular DCFL by reducing L# to any language in
this class, which is by itself an interesting achievement in computability
theory.

Keywords: Neural computing · Analog neuron hierarchy ·
Deterministic context-free language · Restart automaton · Chomsky
hierarchy

1 The Analog Neuron Hierarchy

The computational power of discrete-time recurrent neural networks (NNs) with
the saturated-linear activation function1 depends on the descriptive complexity
of their weight parameters [13,21]. NNs with integer weights, corresponding to
1 The results are partially valid for more general classes of activation functions [8,12,

16,24] including the logistic function [7].
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binary-state (shortly binary) networks (with Boolean outputs 0 or 1), coincide
with finite automata (FAs) recognizing regular languages (REG) [1,3,4,9,17,23].
Rational weights make the analog-state (shortly analog) NNs (with real-valued
outputs in the interval [0, 1]) computationally equivalent to Turing machines
(TMs) [4,15], and thus (by a real-time simulation [15]) polynomial-time compu-
tations of such networks are characterized by the fundamental complexity class P.
Moreover, NNs with arbitrary real weights can even derive “super-Turing” com-
putational capabilities [13]. In particular, their polynomial-time computations
correspond to the nonuniform complexity class P/poly while any input/output
mapping (including undecidable problems) can be computed within exponen-
tial time [14]. In addition, a proper infinite hierarchy of nonuniform complexity
classes between P and P/poly has been established for polynomial-time compu-
tations of NNs with increasing Kolmogorov complexity of real weights [2].

As can be seen, our understanding of the computational power of NNs is
satisfactorily fine-grained when changing from rational to arbitrary real weights.
In contrast, there is still a gap between integer and rational weights which results
in a jump from regular languages capturing the lowest level 3 in the Chomsky
hierarchy to recursively enumerable languages on the highest Chomsky level 0.
In order to refine the classification of NNs which do not possess the full power
of TMs (Chomsky level 0), we have initiated the study of binary-state NNs
employing integer weights, that are extended with α ≥ 0 extra analog neurons
having real weights, which are denoted as αANNs. Although this study has been
inspired by theoretical issues, NNs with different types of units/layers are widely
used in practical applications, e.g. in deep learning [11], and they thus require a
detailed mathematical analysis.

In our previous work [20], we have characterized syntactically the class of lan-
guages that are accepted by 1ANNs with one extra analog unit, in terms of so-
called cut languages [22] which are combined in a certain way by usual operations
on languages. By using this syntactic characterization of 1ANNs we have proven
a sufficient condition when a 1ANN recognizes only a regular language (Chomsky
level 3), which is based on the quasi-periodicity [22] of some parameters derived
from its real weights. In particular, a 1ANN with weights from the smallest field
extension Q(β) over the rational numbers Q including a Pisot number β > 1, such
that the self-loop weight w of its only analog neuron equals 1/β, is computa-
tionally equivalent to a FA. For instance, since every integer n > 1 is a Pisot
number, it follows that any 1ANN with rational weights such that w = 1/n,
accepts a regular language. More complex examples of such neural FAs, are
1ANNs that have rational weights except for the irrational (algebraic) self-loop
weight w = 1/ρ ≈ 0.754878 or w = 1/ϕ = ϕ − 1 ≈ 0.618034 for the plastic
constant ρ or the golden ratio ϕ, respectively, which are Pisot numbers.

On the other hand, we have introduced examples of languages accepted
by 1ANNs with rational weights that are not context-free (CFLs) [20], and
they are thus above Chomsky level 2, while we have proven that any language
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accepted online2 by this model is context-sensitive (CSL) at Chomsky level 1.
For instance, the CSL L1 =

{
x1 . . . xn ∈ {0, 1}∗

∣∣∣ ∑n
k=1 xn−k+1

(
216
125

)−k
< 1

}

which is not in CFLs, can be recognized by a 1ANN. In other words, the com-
putational power of binary-state networks having integer weights can increase
from REG (Chomsky level 3) to that between CFLs (Chomsky level 2) and CSLs
(Chomsky level 1), when an extra analog unit with rational weights is added,
while a condition when this does not bring any additional power even for real
weights, was formulated.

Furthermore, we have established an analog neuron hierarchy of classes of
languages recognized by binary αANNs with α extra analog units having rational
weights, for α = 0, 1, 2, 3, . . ., that is, 0ANNs ⊆ 1ANNs ⊆ 2ANNs ⊆ 3ANNs
⊆ · · · , respectively. Note that we use the notation αANNs also for the class
of languages accepted by αANNs, which can clearly be distinguished by the
context. Obviously, the 0ANNs are purely binary-state NNs which are equivalent
to FAs and hence, 0ANNs � 1ANNs because we know there are non-context-free
languages such as L1 accepted by 1ANNs [20]. In contrast, we have proven that
the deterministic context-free language (DCFL) L# = {0n1n |n ≥ 1}, which
contains the words of n zeros followed by n ones, cannot be recognized even
offline (see footnote 2) by any 1ANN with arbitrary real weights [19]. We thus
know that 1ANNs are not Turing complete.

Nevertheless, we have shown that any DCFL included in Chomsky level 2
can be recognized by a 2ANN with two extra analog neurons having ratio-
nal weights, by simulating a corresponding deterministic pushdown automaton
(DPDA) [19]. This provides the separation 1ANNs � 2ANNs since the DCFL L#

is not accepted by any 1ANN. In addition, we have proven that any TM can be
simulated by a 3ANN having rational weights with a linear-time overhead [18].
It follows that recursively enumerable languages at the highest Chomsky level 0
are accepted by 3ANNs with rational weights and thus this model including only
three analog neurons is Turing complete. Since αANNs with rational weights can
be simulated by TMs for any α ≥ 0, the analog neuron hierarchy collapses to
3ANNs:

FAs ≡ 0ANNs � 1ANNs � 2ANNs ⊆ 3ANNs = 4ANNs = . . . ≡ TMs,

which is schematically depicted in Fig. 1. It appears that the analog neuron
hierarchy is only partially comparable to that of Chomsky.

In this paper, we further study the relation between the analog neuron hier-
archy and the Chomsky hierarchy. We show that any non-regular DCFL cannot
be recognized online by 1ANNs with real weights, which provides the stronger
separation (DCFLs \ REG) ⊂ (2ANNs \ 1ANNs), implying REG = 0ANNs =
1ANNs ∩ DCFLs. Thus, the class of non-regular DCFLs is contained in 2ANNs

2 In online input/output protocols, the time between reading two consecutive input
symbols as well as the delay in outputting the result after an input has been read,
is bounded by a constant, while in offline protocols these time intervals are not
bounded.
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with rational weights, having the empty intersection with 1ANNs, as depicted
in Fig. 1. In order to prove this lower bound on the computational power of
1ANNs, we show that L# is the simplest non-regular DCFL by reducing L# to
any language in DCFLs \ REG. Namely, for any non-regular DCFL L, we can
recognize the language L# by a FA that is allowed to call an online subroutine for
solving L, which represents a kind of Turing reduction known in computability
theory. Now if the language L is accepted by a 1ANN, then we could recognize
L# by a 1ANN, which is a contradiction, implying that L cannot be accepted
by any 1ANN even with real weights. The proof exploits the technical repre-
sentation of DCFLs by so-called deterministic monotonic restarting automata
[5,6].

L1 �∈ CFLs L# �∈ 1ANNs
DCFLs \ REG0ANNs ≡ FAs ≡ REG

1ANNs ⊂ CSLs
2ANNs ⊃ DPDAs

3ANNs ≡ TMs

Fig. 1. The analog neuron hierarchy.

Note that the Turing-like reduction from L# to any non-regular DCFL is by
itself an interesting achievement in formal language theory, providing the sim-
plest non-regular DCFL which any language in DCFLs \ REG must include.
This is somewhat opposite to the usual hardness results in computational com-
plexity theory where all problems in a class are usually reduced to its hardest
problem such as in NP-completeness. Our result can thus open a new direction
of research in computability theory aiming towards the existence of the simplest
problems in traditional complexity classes and their mutual reductions.

The paper is organized as follows. In Sect. 2, we introduce basic definitions
concerning the language acceptors based on 1ANNs. In Sect. 3, we present the
theorem that reduces the languages L# to any non-regular DCFL. For this pur-
pose we use the formalism of deterministic monotonic restarting automata, which
is shortly recalled. Section 4 shows that one extra analog neuron is not sufficient
for recognizing any non-regular DCFL. Finally, we summarize the results and
list some open problems in Sect. 5.

2 Neural Language Acceptors with One Analog Unit

We specify a computational model of a discrete-time binary-state recurrent neu-
ral network with one extra analog unit (shortly, 1ANN), N , which will be used
as a formal language acceptor. The network N consists of s ≥ 1 units (neurons),
indexed as V = {1, . . . , s}. All the units in N are assumed to be binary-state
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(shortly binary) neurons (i.e. perceptrons, threshold gates) except for the last
sth neuron which is an analog-state (shortly analog) unit. The neurons are con-
nected into a directed graph representing an architecture of N , in which each edge
(i, j) ∈ V 2 leading from unit i to j is labeled with a real weight w(i, j) = wji ∈ R.
The absence of a connection within the architecture corresponds to a zero weight
between the respective neurons, and vice versa.

The computational dynamics of N determines for each unit j ∈ V its state
(output) y

(t)
j at discrete time instants t = 0, 1, 2, . . .. The states y

(t)
j of the first

s − 1 binary neurons j ∈ V ′ = V \ {s} are Boolean values 0 or 1, whereas the
output y

(t)
s from analog unit s is a real number from the unit interval I = [0, 1].

This establishes the network state y(t) =
(
y
(t)
1 , . . . , y

(t)
s−1, y

(t)
s

)
∈ {0, 1}s−1 × I at

each discrete time instant t ≥ 0.
For notational simplicity, we assume a synchronous fully parallel mode with-

out loss of efficiency [10]. At the beginning of a computation, the 1ANN N is
placed in an initial state y(0) ∈ {0, 1}s. At discrete time instant t ≥ 0, an excita-
tion of any neuron j ∈ V is defined as ξ

(t)
j =

∑s
i=0 wjiy

(t)
i , including a real bias

value wj0 ∈ R which can be viewed as the weight w(0, j) from a formal constant
unit input y

(t)
0 ≡ 1 for every t ≥ 0 (i.e. formally 0 ∈ V ′). At the next instant t+1,

all the neurons j ∈ V compute their new outputs y
(t+1)
j in parallel by applying

an activation function σj : R −→ I to ξ
(t)
j , that is, y

(t+1)
j = σj

(
ξ
(t)
j

)
for j ∈ V .

For the neurons j ∈ V ′ with binary states yj ∈ {0, 1}, the Heaviside activation
function σj(ξ) = H(ξ) is used where H(ξ) = 1 for ξ ≥ 0 and H(ξ) = 0 for ξ < 0,
while the analog unit s ∈ V with real output ys ∈ I employs the saturated-linear
function σs(ξ) = σ(ξ) where σ(ξ) = ξ for 0 ≤ ξ ≤ 1, whereas σ(ξ) = 1 for ξ > 1,
and σ(ξ) = 0 for ξ < 0. In this way, the new network state y(t+1) ∈ {0, 1}s−1 × I
is determined at time t + 1.

The computational power of NNs has been studied analogously to the tradi-
tional models of computations [21] so that the networks are exploited as accep-
tors of formal languages L ⊆ Σ∗ over a finite alphabet Σ = {λ1, . . . λp} com-
posed of p letters (symbols). For a finite 1ANN N , we use the following online
input/output protocol employing its special neurons nxt, out ∈ V ′. An input
word (string) x = x1 . . . xn ∈ Σn of arbitrary length n ≥ 0, is sequentially pre-
sented to the network, symbol after symbol, via the first p < s so-called input
neurons X = {1, . . . , p} ⊂ V ′, at the time instants 0 < τ1 < τ2 < · · · < τn when
queried by N , where τk+1 − τk is bounded by a constant for every k = 1, . . . , n.
Thus, once the prefix x1, . . . , xk−1 of x for 1 ≤ k ≤ n, has been read, the next
input symbol xk ∈ Σ is presented to N one computational step after N activates
the special neuron nxt ∈ V ′. This means that N signals y

(t−1)
nxt = 1 if t = τk

whereas y
(t−1)
nxt = 0 otherwise, for every k = 1, . . . , n.

We employ the popular one-hot encoding of alphabet Σ where each letter
λi ∈ Σ is represented by one input neuron i ∈ X which is activated when
symbol λi is being read. The states of input neurons i ∈ X, which represent
a current input symbol xk at the time instant τk, are thus externally set as
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y
(t)
i = 1 if xk = λi ∈ Σ and t = τk, whereas y

(t)
i = 0 otherwise. At the same

time, N carries its computation deciding about each prefix of the input word x
whether it belongs to L, which is indicated by the output neuron out ∈ V ′ when
the neuron nxt is active, i.e. y

(τk+1−1)
out = 1 if x1 . . . xk ∈ L, and y

(τk+1−1)
out = 0

if x1 . . . xk /∈ L, where τn+1 > τn is the time instant when the input word x is
decided. We say that a language L ⊆ Σ∗ is accepted (recognized) by 1ANN N ,
which is denoted as L = L(N ), if for any input word x ∈ Σ∗, N accepts x iff
x ∈ L.

3 The Simplest Non-regular Deterministic Language

In this section, we show that in some sense, any non-regular DCFL includes the
language L# = {0n1n |n ≥ 1} which is thus the simplest problem in the class
DCFLs \ REG. This fact will be used in Sect. 4 for proving that any non-regular
DCFL cannot be recognized by 1ANNs since we know that L# is not accepted
by 1ANNs [19]. For the proof, we employ deterministic monotonic restarting
automata (shortly, det-mon-R-automata) which have been shown to recognize
exactly the class of DCFLs [5,6].

Recall a det-mon-R-automaton A = (Q,Σ, k, I, q0, QA, QR) has a finite-state
control unit and one head moving on an input while possibly erasing some sym-
bols. A finite set of its states, Q, includes the initial (start) state q0 ∈ Q and
two disjoint subsets of accepting and rejecting states, QA, QR ⊆ Q, respectively.
Moreover, the finite input alphabet Σ is extended with two new special symbols
¢, $ (originally not contained in Σ), which always start and end any input to
A, respectively, and serve as sentinels which cannot be erased. The head of A
scans a ‘window’ of k ≥ 1 consecutive symbols of the input from its position to
the right (or the remaining symbols to the end of the input if the distance of the
head position to the right endmarker $ is less than k).

For an input word s ∈ Σ∗, the det-mon-R-automaton A starts in the initial
state q0, while its head position is on the left endmarker ¢ of input ¢s$. Then
A carries out the computation by performing instructions from a finite set I,
which are of the following two types:

1. the move instruction (q, w) −→ q′

2. the restart instruction (q, w) −→ v

The left-hand side (q, w) of an instruction determines when it is applicable,
namely, the current state of A is q ∈ Q and its head scans the string w ∈ Σ∗

composed of k = |w| consecutive symbols of the input from the head position to
the right (or |w| < k if w ends with $). We assume that A is deterministic which
means there are no two instructions in I with the same left-hand side (q, w).
The right-hand side of an instruction describes the activity to be performed. In
a move instruction, A changes its current state to q′ ∈ Q and the head moves
one symbol to the right. In a restart instruction, some of the symbols (excluding
¢,$) in the string w are deleted which means the scanned part w of the input,
is replaced with a shorter string v ∈ Σ∗ where |v| < |w|, which is a proper
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subsequence of w, and A restarts in the initial state q0, while its head position
is again on the left endmarker ¢ of this modified input. Moreover, we assume
that A is monotonic which means that the whole string v which has replaced w,
will be scanned by the head before the next restart instruction is applied. This
ensures that the positions of deleted symbols do not increase their distances from
the right endmarker $.

Furthermore, the subset of so-called halting states in which no instruction
from I is applicable, coincide with QA ∪ QR ⊆ Q. Thus, an input word s ∈ Σ∗

is accepted (recognized) by A if its computation on s (bounded by ¢, $) halts in
an accepting state from QA. Such input words form the language L(A). For any
s1, s2 ∈ Σ∗, the notation s1 ⇒ s2 means that if A starts in the initial states q0
with the input s1, then this input is rewritten to s2 when A finds in q0 for the
next time, while ⇒∗ denotes the reflexive and transitive closure of the relation ⇒.
In addition, the det-mon-R-automata satisfy the correctness preserving property
[5,6] which guarantees that for every s1, s2 ∈ Σ∗ if s1 ⇒∗ s2, then s1 ∈ L(A) iff
s2 ∈ L(A).

Theorem 1. For any non-regular deterministic context-free language L ⊂ Σ∗

over a finite alphabet Σ = ∅, there exist words u,w, z ∈ Σ∗, nonempty strings
x, y ∈ Σ+, an integer κ ≥ 0, and languages Lk ∈ {L,L} for k ∈ K =
{−κ, . . . ,−1, 0, 1, . . . , κ}, such that for every pair of integers, m ≥ 0 and n ≥ κ,

(
uxmwyn+kz ∈ Lk for all k ∈ K

)
iff m = n. (1)

Proof (Sketch). Let L ⊂ Σ∗ be a non-regular DCFL and assume A =
(Q,Σ, k, I, q0, QA, QR) is a det-mon-R-automaton that accepts L = L(A). It
follows that A employs at least one restart instruction for some input since oth-
erwise A would reduce to a finite automaton implying L is regular. Let s ∈ Σ∗

be an input presented to A. We mark all the symbols in s (including ¢,$) that are
scanned by the head at least once at a time instant when some restart instruction
is applied in the course of computation of A on the input s. These marked sym-
bols form contiguous segments in s called the marked substrings σ1, . . . , σ� ∈ Σ∗,
which are separated by non-marked symbols and have length at least k since the
head of A scans a window of length k. Observe that the number of marked strings
in s′ which is derived from s ⇒∗ s′ does not increases (i.e. is at most �) because
A is monotonic, which guarantees that the windows scanned by the head in the
consecutive restarts, overlap when the distance of the restart head position to
the left endmarker ¢ shortens.

Suppose that the length of marked substrings could be bounded by a con-
stant, say k ≤ |σi| ≤ c for every i = 1, . . . , � and s ∈ Σ∗. In such a case, A could
be modified to an equivalent A′ recognizing the same language L = L(A′), which
employs only the move instructions while the original restart operations of A are
implemented by the finite-state control unit of A′ when the length of the head
window is extended to c symbols. This would imply that L is regular. Hence,
there are inputs to A with marked substrings of unbounded length. In our analy-
sis of input s, we can focus on only one marked substring σ of unbounded length
since the other marked substrings in s can be eliminated by A through restart
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operations because A is monotonic and the marked substrings are separated by
non-marked symbols.

It follows that there exists an infinite sequence of inputs sn ∈ Σ∗ for n ≥ 1,
each with marked substring σn ∈ Σ∗, such that sn+1 ⇒∗ sn (i.e. |sn+1| > |sn|),
and (q, w′) −→ v from I is the first restart instruction that is applicable when
the input sn is presented to A, which can be assumed to be the same for every
n ≥ 1, since both the set of states Q and the set of instructions I are finite. This
also ensures that the number of restart instructions that are applied in order to
rewrite sn+1 to sn, is bounded by a constant. Hence, sn = u′σnz′ for some strings
u′, z′ ∈ Σ∗ composed of symbols that are not marked in sn, and σn = xnw′yn

for some xn, yn ∈ Σ∗ such that the head of A scans w′ ∈ Σ∗ (following xn)
in state q ∈ Q, which implies sn+1 = u′xn+1w

′yn+1z
′ ⇒ u′xn+1vyn+1z

′ ⇒∗

u′xnw′ynz′ = sn.
Since A is monotonic, we have yn+1 = y′

nyn for some y′
n ∈ Σ∗, while xn+1 =

χnx′
n and xn = χnχ′

n for some χn, χ′
n, x′

n ∈ Σ∗. The length of x′
n and y′

n is
bounded due to the number of restart operations rewriting sn+1 to sn is bounded,
which ensures the set {x′

ny′
n |n ≥ 1} is finite. Hence, there are x′, y ∈ Σ∗ such

that x′
n = x′ and y′

n = y for infinitely many n. By pruning the sequence (sn),
we can assume without loss of generality that x′

n = x′ and y′
n = y are the same

for every n ≥ 1. Thus, we have sn+1 = u′χnx′w′yynz′ ⇒∗ u′χnχ′
nw′ynz′ = sn =

u′χn−1x
′w′yyn−1z

′ where |x′y| > |χ′
n| due to any restart operation deletes at

least one symbol.
Suppose that χ′

n = vnx′ where vn ∈ Σ∗, for all but finitely many n ≥ 1,
which implies y = ε. In this case, the derivation sn+1 = u′χnx′w′yynz′ ⇒∗

u′χnvnx′w′ynz′ = sn only swaps the substrings x′w′ of bounded length and y,
while rewriting y with vn through a finite number of restart instructions, for
every n ≥ 1. If this is the only type of operations in any sequence (sn) (apart
from a finite number of n such that χ′

n is a suffix of x′), then A would accept
only a regular language, which is a contradiction. Thus, by pruning the sequence
(sn), we can assume without loss of generality that for every n ≥ 1, x′ = xχ′

n

for some nonempty x ∈ Σ+, which means χn = χn−1x = χ1x
n−1 due to χ′

n

is the same for every n ≥ 1, defining u = u′χ1 and w = χ′
nw′. We obtain

sn+1 = uxnwyynz′ ⇒∗ uxn−1wynz′ = sn.
Furthermore, suppose that for any choice of considered (sn), the string y = ε

is empty, which also ensure yn = ε. Thus the derivation sn+1 = uxnwz′ ⇒∗

uxn−1wz′ = sn only deletes x, confirming that L is regular, which is a contra-
diction. Hence, y ∈ Σ+ and we have yn = yyn−1 = yn−1y1, defining z = y1z

′.
This results in sn+1 = uxnwynz ⇒∗ uxn−1wyn−1z = sn, for every n ≥ 1.

It also follows that uxn+kwynz ⇒∗ uxkwz and uxnwyn+kz ⇒∗ uwykz for
every n ≥ 1 and k ≥ 0. We show that Lx = L∩{uxkwz | k ≥ 0} is regular, while
a similar argument proves Ly = L ∩ {uwykz | k ≥ 0} to be regular. Consider
the inputs uxkwz to A for any k ≥ 1. If A applies only finitely many restart
instructions to these inputs, then the restarts can be implemented by the finite-
state control unit while the head possibly scans a wider window, which implies
Lx is regular. Thus, suppose that the number of restarts that A applies to uxkwz
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is unbounded. We know the first restart instruction can possibly be applied first
when the head scans w′ in uxkwz = u′χ1x

kχ′
nw′y1z′ where recall χ′

n is constant
for every n ≥ 1. According to the previous analysis, there is a repeated cycle of
restart operations rewriting and shortening the sequence of substrings xk from
the right by a regular rule, since Q, k, and |x| are finite. We conclude that Lx

and Ly are regular languages.
Let Kx = {k ≥ 0 |uxkwz ∈ Lx} which meets Kx = �x∪{aq+r | a ≥ 1, r ∈ Rx}

for some integer q ≥ 1, and sets �x, Rx ⊆ {0, . . . , q−1}, because Lx is regular. Note
that we assume without loss of generality that the period q described by Rx equals
the length of preperiodic part determined by �x, since we can align the preperiodic
part to a multiple of the periods while shifting this new multiple period. Similarly,
Ky = {k ≥ 0 |uwykz ∈ Ly} = �y ∪ {aq + r | a ≥ 1, r ∈ Ry} for �y, Ry ⊆
{0, . . . , q − 1}. Without loss of generality, we employ the same periods q in Kx

and Ky by taking their least common multiple. For simplicity, we consider only
the case when Rx = ∅ and Ry = ∅. If �x = �y and Rx = Ry for any choice of
sequence (sn), then L would be regular. Hence, either �x = �y or Rx = Ry.

Now set κ = 2q − 1, and for every k = 0, 1, . . . , κ, define K−k = L if k ∈ Kx

and K−k = L if k /∈ Kx, while Kk = L if k ∈ Ky and Lk = L if k /∈ Ky. It follows
that uxkwz ∈ L−k and uwykz ∈ Lk for every k = 0, . . . , κ. Let m ≥ 0 and n ≥ κ.
First assume that m = n which implies uxmwyn−kz ⇒∗ uxkwz for 0 ≤ k ≤ n
and uxmwyn+kz ⇒∗ uwykz for every k ≥ 0. Hence, uxmwyn+kz ∈ Lk for every
k ∈ K = {−κ, . . . ,−1, 0, 1, . . . , κ}, which proves the right-to-left implication
in (1).

Further assume that m > n, while the argument for m < n is analogous. In
addition, we consider the special case without preperiodic parts, which means
�x = Rx and �y = Ry, whereas the general case can be handled similarly. On the
contrary, suppose that uxmwyn+kz ∈ Lk for all k ∈ K. Denote δ = m − n > 0.
Let d ∈ {0, . . . , κ} be the remainder after dividing δ by 2q, and b ≥ 1 be the
greatest common divisor of d and 2q. We have uxmwyn−kz ⇒∗ uxδ+kwz which
implies uxδ+kwz ∈ L−k for 0 ≤ k ≤ κ. Hence, Lk = Lk−d for k = −κ + d, . . . , 0
whereas Lk = Lk−d+κ+1 for k = −κ, . . . ,−κ + d − 1, which is resolved as Li =
Li−bj for every i = −b+1, . . . , 0 and j = 1, . . . , 2q

b −1. Similarly, uxmwyn+kz ⇒∗

uxδ−kwz ∈ Lk for 0 ≤ k ≤ min(δ, κ), and uxmwyn+kz ⇒∗ uwyk−δz ∈ Lk for
δ + 1 ≤ k ≤ κ. Hence, Lk = Lk−d for every k = 0, . . . , κ, which imposes
Li = Li+bj for every i = 0, . . . , b − 1 and j = 1, . . . , 2q

b − 1. It follows that
Rx = Ry which is a contradiction, completing the proof of the left-to-right
implication in (1). ��
Example 1. We illustrate Theorem 1 on a simple example of the non-regular
deterministic context free language L over the binary alphabet Σ = {0, 1} that
is composed of words containing more zeros then ones. For this language L,
Theorem 1 provides the empty words u = w = z = ε, the non-empty strings
x = 0 ∈ Σ+, y = 1 ∈ Σ+, the integer κ = 1, and the languages L−1 = L and
L0 = L1 = L such that for every pair of integers, m ≥ 0 and n ≥ 1, condition
(1) holds:
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(
0m1n−1 ∈ L−1 = L & 0m1n ∈ L0 = L & 0m1n+1 ∈ L1 = L

)
iff

(m > n − 1 & m ≤ n & m ≤ n + 1) iff m = n.

4 One Analog Unit Doesn’t Accept Non-regular DCFLs

In this section we show the main result that any non-regular DCFL cannot be
recognized online by a binary-state 1ANN extended with one extra analog unit,
which gives the stronger separation (DCFLs \ REG) ⊂ (2ANNs \ 1ANNs) in the
analog neuron hierarchy, implying REG = 0ANNs = 1ANNs ∩ DCFLs. For this
purpose, we exploit the fact that the DCFL L# is not accepted by any 1ANN:

Theorem 2 [19, Theorem 1]. The deterministic context-free language L# =
{0n1n |n ≥ 1} cannot be recognized by any 1ANN with one extra analog unit
having real weights.

According to Theorem 1, the language L# reduces to any non-regular DCFL,
which can be implemented by a binary NN, providing the following theorem.

Theorem 3. Any non-regular deterministic context-free language L cannot be
recognized online by any 1ANN with one extra analog unit having real weights.

Proof (Sketch). Let L ⊂ Σ∗ be a non-regular deterministic context-free language
over a finite alphabet Σ including p > 0 symbols. On the contrary assume that
there is a 1ANN N with the set of neurons V , that accepts L = L(N ). We will
outline a construction of a bigger 1ANN N# with the set of neurons V# ⊃ V ,
recognizing the language L# = {0n1n |n ≥ 1} over the binary alphabet {0, 1},
which incorporates N as its subnetwork. Let u,w, z ∈ Σ∗ and x, y ∈ Σ+ be the
strings, κ ≥ 0 be the integer, and Lk for k ∈ K = {−κ, . . . ,−1, 0, 1, . . . , κ} be the
languages guaranteed by Theorem 1 for L. Since the class of languages accepted
by 1ANNs is clearly closed under intersection with regular languages, we can
confine ourselves only to strings 0m1n for sufficiently large integers m,n ≥ κ,
which represent the inputs to N#. Any such input 0m1n is transformed to the
strings uxmwyn+kz ∈ Σ∗ for all k ∈ K, which are presented as inputs to N .

We first transform N to a 1ANN N ′ so that the output neuron out ∈ V of N ′

decides about each prefix of an input string that has been read so far according to
the input/output protocol (see Sect. 2), as if this prefix extended with the string
z is presented to N . The idea of building N ′ issues from the representation
theorem [20, Theorem 4] characterizing syntactically the languages accepted
by 1ANNs. According to this theorem, the state domain I of the only analog
unit s ∈ V can be partitioned into a finite number of subintervals so that the
binary states y

(t+1)
1 , . . . , y

(t+1)
s−1 ∈ {0, 1} at the next time instant t+1 are uniquely

determined by an index of the subinterval to which the real state y
(t)
s ∈ I belongs,

apart from the current binary states y
(t)
1 , . . . , y

(t)
s−1 ∈ {0, 1}. The partition of I can

further be refined so that the membership in its subintervals, which can easily
be tested by threshold gates, determines the output from out ∈ V as if the tail z
is already read. This refinement can be achieved by continuing the computation
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of N with the state of analog unit replaced by the end-points of the original
subintervals until z is read which takes a constant number of computational
steps in the online input/output protocol, producing a finite partition.

We introduce an input buffer B1 ⊂ V# \ V for the subnetwork N ′, which
is implemented by p parallel oriented paths of binary neurons. These disjoint
paths have the same length b ≥ |uw| + (κ + 1)|xy| and each p neurons in the
same distance from the first units form a layer which encodes one symbol from
Σ using the one-hot encoding. Thus, B1 stores a string from Σ∗ of length at
most b, which is clamped by self-loop weights. Its last layer feeds the p input
neurons X ⊂ V encoding an input symbol from Σ, at the request of N ′ which is
indicated by nxt ∈ V , according to the input protocol for N ′. At the same time,
the neurons in each layer send their outputs to the subsequent layer so that the
string is shifted in B1 by one symbol forward after its last symbol is read by N ′.

On the other hand, B1 is being filled so that it always contains an input
symbol when queried by N ′. The initial states of N# ensures that B1 contains
u ∈ Σ∗ (and possibly some initial copies of x ∈ Σ+). Furthermore, B1 is being
replenished by copies of x whose count m equals exactly the number of 0s which
are being read by N# through its input neurons X# ⊂ V# on request of nxt# ∈
V# when there is a free space in B1. If N# reads the first 1 following the input
sequence 0m, then the string w ∈ Σ∗ is pushed into B1 which is further being
filled by copies of y ∈ Σ+ whose count n equals exactly the number of 1s being
read by N#, increased by κ.

Furthermore, the subnetwork N ′ has also its output buffer B2 for storing the
last 2κ + 1 states of the output neuron out ∈ V from N ′, which are recorded at
the time instants when nxt ∈ V fires, according to the output protocol for N ′.
This is synchronized with the input string 0m1n which has already been read
by N# so that B2 contains the results of whether uxmwyn+kz belongs to L for
every k ∈ K. The neural acceptor N# rejects the input 0m1n for n < κ through
the output neuron out# ∈ V# which is activated when nxt# ∈ V# fires. For
n ≥ κ, the network N# accepts 0m1n iff uxmwyn+kz ∈ Lk for all k ∈ K, which
can be determined from the contents of buffer B2. According to Theorem 1, this
happens if and only if m = n, which ensures N# recognizes L#. This contradicts
Theorem 2 and completes the proof of Theorem 3. ��

5 Conclusion

In this paper, we have refined the analysis of the computational power of discrete-
time binary-state recurrent neural networks αANNs extended with α analog-
state neurons by proving a stronger separation 1ANNs � 2ANNs in the analog
neuron hierarchy. Namely, we have shown that the class of non-regular deter-
ministic context-free languages is contained in 2ANNs \ 1ANNs, which implies
0ANNs = 1ANNs ∩ DCFLs. For this purpose, we have reduced the determin-
istic language L# = {0n1n |n ≥ 1}, which is known to be not in 1ANNs [19],
to any non-regular DCFL. This means that in some sense, L# is the simplest
problem in the class of non-regular DCFLs. This is by itself an interesting new
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achievement in computability theory, which can open a new direction of research
aiming towards the existence of the simplest problems in traditional complexity
classes as a counterpart to the hardest problems such as NP-complete problems.
We conjecture that our result can be generalized to nondeterministic context-
free languages. Another challenge for future research is an open question whether
there is a non-context-sensitive language that can be accepted offline by a 1ANN
or whether the separation 2ANNs � 3ANNs holds.
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21. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: a sur-

vey of complexity theoretic results. Neural Comput. 15(12), 2727–2778 (2003)
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Abstract. The existing image feature extraction methods are primarily
based on the content and structure information of images, and rarely
consider the contextual semantic information. Regarding some types of
images such as scenes and objects, the annotations and descriptions of
them available on the web may provide reliable contextual semantic infor-
mation for feature extraction. In this paper, we introduce novel seman-
tic features of an image based on the annotations and descriptions of
its similar images available on the web. Specifically, we propose a new
method which consists of two consecutive steps to extract our seman-
tic features. For each image in the training set, we initially search the
top k most similar images from the internet and extract their annota-
tions/descriptions (e.g., tags or keywords). The annotation information
is employed to design a filter bank for each image category and generate
filter words (codebook). Finally, each image is represented by the his-
togram of the occurrences of filter words in all categories. We evaluate
the performance of the proposed features in scene image classification on
three commonly-used scene image datasets (i.e., MIT-67, Scene15 and
Event8). Our method typically produces a lower feature dimension than
existing feature extraction methods. Experimental results show that the
proposed features generate better classification accuracies than vision
based and tag based features, and comparable results to deep learning
based features.

Keywords: Image features · Semantic features · Tags · Semantic
similarity · Tag-based features · Search engine

1 Introduction

In computer vision, features of images are extracted primarily from the content
and structure of images. They rely on information such as color, texture, shapes,
and parts. Though these features are shown to work reasonably well in many
image processing tasks [2,21,24,25,32,37–39], the involved information may be
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insufficient to distinguish ambiguous images, e.g., classifying images with inter-
class similarity. Figure 1 shows two images which look very similar but they
belong to two different categories (hospital room and bedroom).

Fig. 1. The images of bed room (left) and hospital room (right) look similar.

Contextual information is useful to distinguish such ambiguous images
[18,33]. Contextual information about the image can be often obtained from
its annotations or descriptions. Though it is impossible to have descriptions or
annotations for all images, such information can be extracted from the web for
certain types of images like objects and scenes. For the extraction of such con-
textual features, we use the well-known search engine Yandex1 for two reasons:
firstly, visually similar images of image categories such as wine cellar are not
meaningful while using the Google search engine; secondly, we notice that the
searched similar images of the input image usually belong to the same category.

Recently few prior works [35,40] have been proposed for scene image recog-
nition using tag-based features. These methods suffer from the following major
issues.

– The task-generic filter banks [35] lack context-based information for the
images such as scene images, owing to their generality based on the help
of pre-defined labels of ImageNet [3] and Places [41] dataset.

– The existing tag-based method [40] does not design filter banks, thus resulting
in high dimensional features with noticeable outliers.

As such, these state-of-the-art techniques yield limited classification accuracy.
In this paper, we introduce new semantic features of an image based on the
annotation/description tags of similar images available on the web. We design
two consecutive steps to extract our proposed features after we select top k
most similar images of each image under the dataset using Yandex and extract
annotation/description tags corresponding to those images. At first, we design
filter banks based on such tags of training images of the dataset which yields
filter words (codebook) corresponding to the dataset. Finally, for each input
image which are represented by the tags, we design our proposed features as the
histogram based on the codebook.

1 https://www.yandex.com/images/.

https://www.yandex.com/images/
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We evaluate the performance of the proposed features in scene image clas-
sification on three popular scene image datasets: MIT-67 [30], Scene15 [4] and
Event8 [17]. Our approach typically produces a smaller feature size than existing
feature extraction methods. The experimental results suggest that the proposed
features generate higher classification accuracies than vision-based and tag-based
features and comparable classification to deep learning based features.

2 Related Works

Generally, there are three types of image features: (i) traditional vision-based
features [2,21,24,25,37–39], (ii) deep learning based features [6,7,13,20,34], and
(iii) tag-based features [35,40].

Traditional vision-based features are extracted based on the algorithms such
as (SIFT) [39], Generalized Search Trees (GIST) [24,25], Histogram of Gradient
(HOG) [2], GIST-color [25], SPM [16], CENsus TRansform hISTogram (CEN-
TRIST) [37], multi-channel (mCENTRIST) [38], OTC [21], and so on. These
features depend on the core information of the image such as colors, intensity,
etc. Broadly, these features are computed in the local sense and are also called
low-level features. These features are suitable for certain areas such as texture
images. These features usually have high dimensions.

Similarly, deep learning based features, such as bilinear [20], Deep Un-
structured Convolutional Activations (DUCA) [13], Bag of Surrogate Parts
(BoSP) [7], Locally Supervised Deep Hybrid Model (LS-DHM) [6] and GMS2F
[34], are extracted from the intermediate layers of deep learning models (pre-
trained models or user-defined models). Different layers of deep learning models
provide different semantics information related to the input image. Thus, they
have the capability to extract discriminating features compared to traditional
vision based features. Deep learning based features enjoy prominent successes in
image classification.

Two prior works [35,40] have been recently presented for scene image recogni-
tion using tags-based features. Zhang et al. [40] used the search engine to extract
the description/annotation tags and designed Bag of Words (BoW) straightly.
Their method ignores the concepts of filter banks and creates high-dimensional
features which yield limited classification accuracy. Similarly, Wang et al. [35]
designed task-generic filters using pre-defined labels for the scene images but
lacked task-specific filters to work in a specific domain. Also, because of the
usage of pre-defined labels to design filter banks, the contextual information
related to the images is hard to achieve. Moreover, due to the out of vocabulary
(OOV) problem while constructing filter banks, their method discards the tags
that are not present in the WordNet [23], and may contain insufficient vocabu-
laries.
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Fig. 2. Overview of the proposed method. D(Si, Ck) denotes averaged similarity for
tags Si and the category label Ck. D(Wj , Fj) represents the semantic similarity of
annotation/description tags Wj with the filter words Fj . The filter words are generated
by concatenating the filtered tags from the filter banks. Finally, based on the filter words
(codebook), we design the histogram and accumulate the histograms for each bin of
the features. The resulting features can semantically represent the input image.

3 The Proposed Method

Before using an actual pipeline of our proposed method, we first extract annota-
tion/description tags of each image on the dataset using Yandex search engine
(see footnote 1) where we select only top k (i.e., k = 50) visually similar images
ranked by the search engine. As suggested in [35,36], we use k = 50 for the
extraction of the tags. Our method consists of two major steps: (1) design of
filter banks (Sect. 3.1), and (2) feature extraction (Sect. 3.2). The overall flow of
our proposed method is shown in Fig. 2.

3.1 Design of Filter Banks Using Training Images

In this section, we describe how to design filter banks using the training set of
one dataset. We use training images to design the filter bank for each category.
To extract the filter words using filter banks, we present the following two steps.

Pre-processing of Annotation/Description Tags. After the extraction of
annotation/description tags of the images under various categories, we pre-
process them by removing punctuation marks, numbers, tokenization and lan-
guage translation. Some of the extracted tags are also in the Russian language.
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We simply translate them into English using Google translator. Similarly, we
remove the numeric content from the tags because numbers are not related to
our purpose. We represent the tags of an image as {Wj}mj=1, where m is the total
number of tags in the image.

Filter Banks with Semantic Similarity. We focus on task-specific filter
banks which utilize the contextual information related to the image. We observe
the fact that the tags of an image are semantically related to its category (or
category label). Because raw tags for a training image are extracted from anno-
tations of its k = 50 most similar images in the web, the number of tags can
be very long. To reduce the number of tags for the image, we select a subset
of tags (Si ⊂ Wj) which have more semantic similarity with the category label.
First, we select the top 500 frequent tags per training image of each category
and then calculate their semantic similarity to the corresponding category label.
We represent tags and category labels as two word embedding vectors [1,22,28]
and use the cosine function to compute the semantic similarity (Eq. (1)).

cos(aaa,bbb) =
aaa · bbb

||aaa|| · ||bbb|| , (1)

where aaa and bbb are the two embedding vectors. For word embeddings, we utilize
three popular pre-trained words embedding models - Word2Vec [22], Glove [28]
and fastText [1]. We find the final similarity by averaging the semantic similarity
of tag and category label over the three types of word embedding vectors. The
averaging strategy usually helps to mitigate the OOV problem. Also, it exploits
the knowledge of three domains from three embedding models. To be efficient,
we select only those tags whose averaged similarity (D) to the category label is
greater than or equal to an empirical threshold of δ = 0.50.

Si =

{
1 if D(Si, Ck) ≥ δ,

0 otherwise.
(2)

We extract the filter bank for each category Ck (the kth category) with the tags
belonging to it. From Eq. (2), we determine whether the particular tag Si is
eligible to the filter bank for the corresponding category. The strategy to accept
and reject the tags are represented by 1 and 0, respectively.

Table 1 lists the filter banks of the categories for the MIT-67 [30] dataset.
We design three separate sets of filter banks for the MIT-67 [30], Scene15 [4]
and Event8 [17] datasets in the experiments. We design filter banks for MIT-67
using the training images of the dataset. On MIT-67 dataset, the total number
of filter banks is 67 where each contains filtered tags. We combine all those filter
banks to obtain 1254-D filter words. Furthermore, for Scene15 and Event8, we
design filter banks over 10 sets on the corresponding dataset. We utilize the
corresponding training images of each set to separately design the filter banks
and obtain filter words.
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Table 1. Sample filter banks of some categories in the MIT-67 dataset.

Category Filter banks

Airport inside Airport, terminal, city, flight, hotel, flights, aviation

Library Library, books, libraries, archives, collections

Winecellar Wines, cellar, whiskey, winemaker, beverages, grapes, tastings

Subway Metro, subway, train, railway, transit, tram

3.2 Extraction of Proposed Tag-Based Semantic Features for Input
Image

We first utilize the annotation/description tags of each image to calculate the
proposed features. These tags are preprocessed using Sect. 3.1. Then, all the filter
banks are concatenated to form a list of filtered tags (or semantic tags), i.e., filter
words (codebook). Inspired by the BoW approach [11], we design the histogram
features of the input image using this codebook. Our codebook is functionally
similar to the codebook obtained by the clustering algorithm [8]. However, our
filter banks are based on contextual information and filter outliers significantly
compared to the existing filter banks [35]. After that, we calculate the pairwise
similarity of each filtered word with the pre-processed annotation/description
tags of the input image. Denote the filter words by {Fj}nj=1. If we have n unique
filter words and the input image contains m annotation/description tags, then
the total similarity calculation is n ∗ m. To calculate the similarity, we use the
same scheme as that in designing the filter bank of each category.

Hj =

{
1 if D(Wj , Fj) ≥ T,

0 otherwise.
(3)

Hj in Eq. (3) represents the histogram based on the filter words Fj . Here, 1
represents the tag accepts the similarity with the filter word, and 0 means the
tag rejects similarity. We design the histogram by taking all the pre-processed
tags of the input image. For the bin of features corresponding to that filter word
Fj , we count the number of tags which have acceptable similarity with Fj .

4 Experimental Results

In this section, we discuss the experimental setup and present results of our
evaluation of the proposed features against other existing feature extraction
methods in scene image classification using Support Vector Machine (SVM) [10].

4.1 Implementation

We use Yandex as the search engine and implement the proposed method
using Python. We use the python SVM implementation available in the sklearn
machine learning package2. We utilize the default setting for the majority of the
2 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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Fig. 3. Sample images from the MIT-67 dataset.

parameters. However, we tune three parameters in the experiments. The setting
of two SVM parameters are: kernel = rbf and gamma = 10−5. And, we tune
the cost parameter C in the range of 0 to 100 and tabulate only the setting
that generates highest classification accuracy (C = 9 for MIT-67 and C = 50 for
the remaining datasets). Furthermore, to take advantage of lightweight word-
embedding vectors [1,22,28] of the tags, we use a popular Python package
pymagnitude [27]. We fix a threshold of 0.50 (i.e., δ = 0.50) to design the filter
banks in Eq. (2) and empirically set a threshold of 0.40 (i.e., T = 0.40 in Eq.
(3)) for the extraction of our features which produces best results compared to
other thresholds. We will discuss about the threshold T for the extraction of our
features in Sect. 4.4.

4.2 Datasets

We use three publicly available datasets in our experiments: MIT-67 [30], Scene15
[4], and Event8 [17]. The MIT-67 dataset contains pictures of 67 categories. This
is a challenging dataset which has noticeable intra-class and inter-class barriers
(e.g., Fig. 3). As defined in [30], the number of training and testing images per
category are 80 and 20, respectively.

Scene15 includes both indoor and outdoor images. It has 15 categories.
As with the previous works [14,16,19,21,25,34,35,37,40], we design 10 sets of
train/test split, where each split randomly contains 100 images for training and
remaining images for testing per category, and note the mean accuracy.

Event8 involves images of 8 sports categories. This dataset does not have
pre-defined train/test splits, either. Like Scene15, we design 10 sets of train/test
split as in previous works [9,14,15,18,19,29,31,35,40,41] and note the mean
accuracy. For each split, we randomly select 130 images per category and divide
70 images for training and 60 images for testing.
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Table 2. Comparisons of classification accuracy (%) for the existing methods and ours
on the three datasets. The dash (-) symbol stands for no published accuracy on the
specific dataset.

Method MIT-67 Scene15 Event8

Traditional computer vision-based methods

GIST-color [25] - 69.5 -

ROI with GIST [30] 26.1 - -

SPM [16] - 81.4 -

MM-Scene [42] 28.3 - -

CENTRIST [37] - 83.9 -

Object Bank [18] 37.6 - 76.3

RBoW [26] 37.9 - -

BOP [12] 46.1 - -

OTC [21] 47.3 84.4 -

ISPR [19] 50.1 85.1 74.9

LscSPM [31] - - 85.3

IFV [29] - - 90.3

Deep learning-based methods

EISR [40] 66.2 94.5 92.7

CNN-MOP [5] 68.0 - -

BoSP [7] 78.2 - -

G-MS2F [34] 79.6 92.9 -

CNN-sNBNL [15] - - 95.3

VGG [41] - - 95.6

ResNet152 [9] - - 96.9

Tag-based methods

BoW [35] 52.5 70.1 83.5

CNN [14] 52.0 72.2 85.9

s-CNN(max)[35] 54.6 76.2 90.9

s-CNN(avg)[35] 55.1 76.7 91.2

s-CNNC(max)[35] 55.9 77.2 91.5

Ours 76.5 81.3 94.4

4.3 Comparison with Existing Methods

We compare the classification accuracy of our proposed features with the exist-
ing features which include traditional vision-based features, deep learning based
features and tag-based features on the three datasets. The statistical accuracy
numbers are listed in Table 2. To minimize the bias, we compare our accuracy
with the existing published accuracy on the same dataset. We straightforwardly
take the results of existing features from corresponding papers.
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In the first column of Table 2, we see that BoW yields an accuracy of 52.5%,
which is the lowest accuracy among the tag-based methods. Researchers improve
the accuracy of tag-based features using Convolutional Neural Network (CNN)
model up to 55.9% [35]. We suspect these methods still could not provide highly
discriminable features of the images. By contrast, deep learning based features
improve classification accuracy. For example, BoSP, the deep learning based fea-
tures, has over 4000-D features size and its accuracy is higher than ours (78.2%
versus 76.5%). Our semantic features, which are based on annotation tags, pro-
vide prominent accuracy in image classification. We notice that our proposed
features generate the highest accuracy of 76.5% among the tag-based methods.
Despite that the accuracy looks slightly lower than some of the deep learning
based methods that benefit from the high-dimensional features, our features still
outperform some of them [5,13,40]. Our method soundly outperforms the tra-
ditional vision based methods [12,18,19,21,26,30,42]. Our method leads to a
noticeably smaller size of features on this dataset compared to other features
(e.g., 1254-D). The feature size differs, due to the number of categories and size
of filter banks on different datasets.

The classification accuracies of different features on the Scene15 dataset are
provided in the second column of Table 2. Since our method belongs to the tag-
based methods, we first compare our features against existing tag-based features.
The BoW method provides an accuracy of 70.1%, which is the lowest among the
tag-based methods on this dataset. With the use of CNN on tag-based methods,
the accuracy surges up to 77.2%. These methods, however, suffer from a large
feature size. Since our features are dependent on the size of filter words (<100)
on this dataset, our feature size is less than 100 which is significantly lower
than other features. Despite that, we observe that the proposed features have a
prominent accuracy of 81.3% among the tag-based features.

In the third column of Table 2, we enlist the classification accuracies of differ-
ent features on the Event8 dataset. In this dataset, the BoW method provides an
accuracy of 83.5%, the lowest accuracy among the tag-based methods. Moreover,
by using CNN on tag-based methods, the accuracy increases up to 91.5%. Simi-
larly, our features have a very low size (<50) on this dataset and are remarkably
lower than other features. We achieve the best accuracy of 94.4% among the
tag-based features.

4.4 Ablative Study of Threshold

We analyze the effects of different thresholds T in this section. To study the
thresholds in depth, we use the Event8 dataset and follow the setup as above.
We test thresholds between 0.30 and 0.80 with a step size of 0.10. We summa-
rize the classification accuracy of the proposed features with the corresponding
thresholds in Table 3. The best accuracy (94.41%) is obtained by T = 0.40,
whereas the worst accuracy (60.4%) is produced by T = 0.80 on the dataset. We
empirically observe that 0.40 is a suitable threshold for all datasets, so we use it
in all experiments.



Tag-Based Semantic Features for Scene Image Classification 99

Table 3. Average accuracy over 10 sets corresponding to different thresholds (T in Eq.
(3)) on the Event8 dataset.

Threshold 0.30 0.40 0.50 0.60 0.70 0.80

Accuracy (%) 93.7 94.4 93.0 89.4 87.5 60.4

4.5 Ablative Study of Individual Embedding

In this section, we study the proposed features based on individual word embed-
ding and the averaged semantic similarity scheme. We set the threshold T = 0.40
and conduct experiments on the Event8 dataset and compute the mean accuracy
over 10 sets.

Table 4 shows the accuracies generated by our proposed features based on the
individual embedding and the averaged semantic similarity. It seems that the
features induced by the averaged semantic similarity produce a higher accuracy
(94.4%) than features of individual embeddings. This is because the features
induced by the averaged semantic similarity act as the combined knowledge from
three domains, which typically possess a higher separability than the individual
embedding based features.

Table 4. Accuracy of the proposed features using the individual embedding and aver-
aged semantic similarity on the Event8 dataset.

Embeddings Word2Vec Glove fastText Averaged

Accuracy (%) 94.3 93.5 93.1 94.4

5 Conclusion

In this paper, we propose a novel method to extract tag-based semantic features
for the representation of scene images. We achieve this by performing two con-
secutive steps which are the design of filter banks and extraction of tag-based
semantic features. We conduct experiments on three popular datasets and find
that the proposed features produce better or comparable results to existing vision
based, deep learning based and tag-based features, given a noticeably lower fea-
ture size of ours than those features. In the future, we would like to investigate
the incorporation of the proposed features and deep features to further improve
image classification accuracy.
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Abstract. The approach based on translation pieces extracted from the
translation memory (TM) knowledge is appealing for neural machine
translation (NMT), owning to its efficiency in memory consumption and
computation. However, the incapable of capturing sufficient contextual
translation knowledge leading to a limited translation performance. This
paper proposes a simple and effective structure to address this issue. The
main idea is to employ the word chain and position chain knowledge from
a TM as additional rewards to guide the decoding process of the neural
machine translation. Experiments on six translation tasks show that the
proposed Double Chain Graph yields consistent gains while achieving
greater efficiency to the counterpart of translation pieces.

Keywords: Translation memory knowledge · Neural machine
translation · Double Chain Graph

1 Introduction

Translation memory (TM) has been widely used to improve translation quality
in machine translation (MT), such as statistical machine translation (SMT) and
neural machine translation (NMT). TM provides the most similar source-target
sentence pairs to the source sentence to be translated, and provides more reliable
translation results than MT does for those matched segments. For example,
a decade earlier, various research work has also been devoted to integrating
TM into SMT [5,7,10,13]. Since the evolutional shift from SMT to the current
mainstream NMT, there are increasingly interests in employing TM knowledge
to help the NMT model to produce more reliable translation results for those
matched segments.

In order to make full use of the TM knowledge, a fine tuning approach [3,6]
was proposed to train a sentence-wise local neural model with the top of a
retrieved TM, and the model was further used to test a particular sentence.
In spite of its appealing performance, the fine-tuning for each testing sentence
led to high latency in decoding process. On the contrary, in [4] and [14], the
c© Springer Nature Switzerland AG 2019
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standard NMT model was augmented by additionally encoding a TM for each
testing sentence, and the proposed model was trained to optimize for testing
all source sentences. These approaches [4,14] are capable of capturing global
context from a TM, but its encoding of a TM with neural networks requires
intensive computation and considerable memory. The main reason is because a
TM encodes much more words than those encoded by a standard NMT model,
typically.

Gratefully, a simple approach was proposed in [15], which was efficient in both
memory consumption and computation. For each sentence, they represented the
TM as a collection of translation pieces consisting of weighted n-grams, whose
weights were added into NMT as rewards. Unfortunately, because the translation
pieces only capture very local context in a TM, this approach can not generate
good enough translations even when a TM is very similar to the testing sentence:
in particular, the translation quality is far away from perfect even if the reference
translation of the source sentence is included in the training set as argued by [14].

To address the above issue, this paper proposes a novel and effective Double
Chain Graph structure, with word chain and position chain from TM, to capture
more contextual information in a TM while achieving greater efficiency to [15].
We apply our approach to Transformer, a strong NMT system [12]. Specifically,
we make the following contributions in this paper:

– We present a simple but effective structure to construct the translation pieces
collected from translation memory for integrating translation memory into
neural machine translation.

– Our proposed structure achieves greater efficiency to the counterpart of trans-
lation pieces in terms of computation and memory consumption.

– Experiments on 6 translation tasks show that our proposed graph structure
achieves substantial improvements over strong Transformer baseline and it
further consistently and significantly outperforms the approach in [15].

2 Preliminary

2.1 Transformer-Based NMT

In this paper, our baseline model is the state-of-the-art NMT model, Trans-
former [12]. The Transformer is the most competitive neural sequence trans-
duction model which has encoder and decoder stacks with attention. Suppose
a source sentence is x =

〈
x1, . . . , x|x|

〉
with length |x| and its corresponding

target sentence is y =
〈
y1, . . . , y|y|

〉
with length |y|. Generally, for a given x,

the Transformer aims to generate its translation y according to the conditional
probability P (y|x), which is defined by neural networks:

P (y|x) =
|y|∏

i=1

P (yi|y<i,x) =
|y|∏

i=1

softmax
(
φ(hD,L

i )
)

(1)
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1 2 3 4 5 6 7 8Source

TM Source

TM Target gets1 and2 affirms3 object4 that5 is6 associated7 with8 the9 label10

1 2 3 4 5 6 7 8

Reference gets1 or2 sets3 an4 object5 that6 is7 associated8 with9 the10 annotation11

Fig. 1. An example of translation pieces in translation memory. The red part is
employed to extract translation pieces, such as “gets”, “object”, “object that”, “that”,
“that is”, “is” and “is associated” etc. (Color figure online)

where y<i = 〈y1, . . . , yi−1〉 denotes a prefix of y with length i − 1. And hD,L
i

indicates the ith hidden unit at Lth layer under the encoder-decoder framework,
and φ is a linear network to project the hidden unit to a vector with the dimen-
sion of the target vocabulary size. To expand each factor P (yi|y<i,x), Trans-
former adopts the encoder-decoder framework similar to the standard sequence-
to-sequence learning in [1].

During encoding x, an encoder employs L identical layers of neural networks.
And during decoding process, Transformer similarly employs L layers of neural
networks. Finally, the factory P (yi|y<i,x) can be defined in Eq. 1.

In NMT decoding process, the standard decoding algorithm is beam search.
The probability of a complete hypothesis is computed as:

log P (y|x) =
|y|∑

i=1

log P (yi|y<i,x) (2)

2.2 Translation Pieces Extracted from TM

For a source sentence x to be translated, we retrieve a set of source sentences
along with corresponding translations from translation memory (TM) with an
off-the-shelf search engine, so we get the TM list {(xm,ym)|m ∈ [1,M ]}. Then,
we calculate the similarity score between x and xm as following [4]:

sim(x,xm) = 1 − dist(x,xm)
max(|x|, |xm|) (3)

where dist(·) denotes the edit-distance. |x| denotes the word-based length of x.
We firstly collect translation pieces from the TM list, which is similar to [15].

Specifically, translation pieces (1-gram and 2-grams) are collected from the tar-
get sentences ym, as the possible translation pieces Gm

x for x, using word-level
alignments information to select n-grams that are related to x. For example, in
Fig. 1, the red part in the retrieved TM target is employed to extracted transla-
tion pieces for the source sentence, such as “gets”, “object”, “that” and “object
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that” etc. Formally, the translation pieces Gx extracted from TM are represented
as:

Gx = ∪M
m=1G

m
x (4)

where Gm
x denotes all weighted n-grams from ym with n up to 2.

Secondly, we calculate the weighted score for each u ∈ Gx. The score for each
u measures how likely it is a correct translation piece for x. And the score bases
on sentence similarity between the input sentence x and the retrieved source
sentences {xm|m ∈ [1,M ]} as following:

sp(x, u) = max
1≤m≤M∧u∈Gm

x

sim(x,xm) (5)

In this section, we only provide a brief summary of how to collect translation
pieces from TM. For more details, we refer readers to [15].

3 Double Chain Graph

How to use the collected translation pieces is a key challenge for integrating TM
knowledge into NMT. Although the method in [15] has shown its effectiveness, it
takes no account of the long-distance dependency words in translation memory.
Hence, in order to achieve more reasonable word to reward, and more effective
reward value to integrate TM knowledge into NMT, we design a novel Double
Chain Graph (abbreviated as DCG), which consists of word chain and position
chain. In this section, we will answer the following three questions: what is DCG,
why we use DCG and how to construct the DCG.

3.1 Double Chain Graph Description

As shown in Fig. 2(iii), we first collect the translation pieces from TM target,
then we construct the Double Chain Graph. The DCG consists of two chains: one
is the word sequence chain, another is the position sequence chain. More specif-
ically, we collect n-grams (n ≤ 2) translation pieces of the top-5 TM instance
(xm,ym), with xm is similar to the input sentence x. Using the TM target ym,
we construct the word chain according to the order in which the words appear
in the collected translation pieces. And the position chain is constructed by the
corresponding position of the word in the TM target. We only use the top-1 TM
instance (x1,y1) to construct the position chain.

3.2 The Effectiveness of Double Chain Graph

How to use the collected translation pieces is a key challenge in integrating TM
knowledge into NMT. As we mentioned before, at each time step, the NMT
decoder mechanism selects the best word as the output value according to the
properties of words in NMT output layer. So, there are two key tasks, one is to
decide which word should be given an additional reward at each decoding step,
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y1, ..., yi-1

yi

ii. Generated word v3 reward

Predict the 

i. NMT output layer

Word

yi-1,v3

yi-2,yi-1,v3

v1

v2

v3

...

v|v|

yi-2

iii. Double Chain Graph

next word

reward
Generate

words

      TM Target 
Example from Fig.1

...   is6  that5  object4  affirms3 and2  gets1

pt-1 p2

v2yi-1

pt-2...

...

Construction

v3

pt

Word chain 
Position chain 

Fig. 2. Adding additional rewards into NMT output layer for words that are generated
from Double Chain Graph. The red part in TM target is employed to extract translation
pieces. In part (i), v refers to the word in the target vocabulary. In part (ii), we select the
last word of the generated continuous pieces to reward according to current decoding
step. In part (iii), v or y refers to a word in the translation pieces, and p refers to the
position of word v or y according to TM. The orange chain in the first row is precedence
links of the word in collected translation pieces. The blue chain in the second row is the
position of the corresponding word v or y. For example, as the orange dot line shows,
v3 refers to “is”, and pt refers to “6”. (Color figure online)

and another is how to compute the additional reward on the specific word at the
current decoding time.

For which word to reward, in the paper [15], they collect continuous segment
such as the red part of the retrieved target sentence shown in Fig. 1, and they
only up-weights the words that match the retrieved translation pieces in the
NMT output layer and has some drawbacks on capturing long patterns. For
example, when the output sequence is “gets or sets an” at the previous decoding
moment, they do not select the fragment “object” as the current word to reward
at next decoding time. Namely, they do not give enough attention to the fragment
“object” at next decoding time. Hence, in our proposed DCG model, we can
give more attention to the discontinuous segment for we use the position chain
to capture long distance dependency.

Considering how much additional reward to a word, in the paper [15], they
don’t give those words which are in the same collected translation piece, equal
reward at different decoding step. For example, as shown in Fig. 1, at decoding
step 7, the reward value for the word “associated” is four times than that of the
word “object” at decoding step 4.

Hence, we propose a more reasonable and effective Double Chain Graph for
integrating TM knowledge into NMT. The proposed DCG based on a translation
fragment sequence is inspired by Coupled HMMs in [2]. While performing the
experiments described in Sect. 4, we also perfect an algorithm with superior
performance and lower complexity, based on the positive word reward and the
feedback mechanism, as shown in Algorithm 1.
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Algorithm 1. Guiding NMT decoding process using Double Chain Graph
Require: Double Chain Graph, decoding output sequence y<i, generated word-score
pair U , transition probability matrix A, translation probability array B.
Output:Update NMT output layer

1: U = φ; su(yx) = 0.
2: feedback:
3: for each yx ∈ B[:] do
4: su(yx) = B[yx]; add <yx, su(yx)> into U
5: end for
6: end feedback
7: main process:
8: for j = 0; j < 4; j++ do
9: ya = yi−j−1 (note: yi−j ∈ y<i)

10: for each yx ∈ A[ya, :] do
11: sw(yx) = A[ya, yx] · B[yx]
12: if locya − locyx == j then
13: sw(yx) = sw(yx) + 1

1+|locya−t| ; su(yx) += sw(yx)

14: if j = 0 and yx �∈ Pm
x then

15: add <yx, su(yx)> into U
16: else
17: update <yx, su(yx)> in U
18: end if
19: end if
20: end for
21: if j = 0 and yx �∈ A[ya, :] then
22: call feedback; break
23: end if
24: end for
25: if [ ∀yx | su(yx) < 0.5 ] then
26: call feedback
27: end if
28: log P (yi|y<i,x) += λU(yi)
29: end main process

3.3 Guiding NMT Decoding with Double Chain Graph

This part describes how to guide the NMT decoding process using Double Chain
Graph. Firstly, for the word chain in Double Chain Graph, we calculate the
translation probability of each word using Eq. (3). The translation probability
measures how likely it is a correct translation piece for the input sentence x.
Suppose u = <wawbwc>, we use pb denotes the translation probability of word
wb. We also calculate the word-to-word (such as from wa to wb) transition prob-
ability pab as following:

pab =
1

N
(
(wawb) ∈ u

) (6)

where N(·) denotes a statistic of all the cases that satisfy (wawb) ∈ u.
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Hence, the reward score of word wb is defined by:

sw(x, wb) = pab · pb (7)

Secondly, for the position chain in Double Chain Graph, at each decoding
step, we will calculate the reward using Algorithm 1. Then, we calculate the
updated score as following:

s′
w(x, wi) = sw(x, wi) +

1
1 + |locwi−n

− t| , (n ≤ 4) (8)

where locwi−n
denotes the word position in TM target and t denotes the current

decoding step.
Thirdly, as shown in Fig. 2(i, ii), an additional word reward generated from

Double Chain Graph will be added to NMT output layer according to:

Su(yi|y<i,x) = λ
4∑

n=1

δ
(
locyi−n

− locyi
== n, sw(x, yi)

)
(9)

where λ can be tuned on the development set and δ(cond, val) is computed as:
if cond is true, then δ(·) is val, otherwise 0. And the locyi−n

denotes the position
in TM target of word yi−n.

Finally, based on Eqs. 1 and 9, the updated probability P ′(yi|y<i,x) for the
word yi is calculated by:

P ′(yi|y<i,x) = P (yi|y<i,x) × eSu(yi|y<i,x) (10)

And then, we use the Algorithm 1 to illustrate how to guide the NMT decod-
ing process using our proposed DCG. We use a dictionary U to store the gen-
erated reward words and their scores for each decoding output sequence y<i.
At each decoding step t, we update the output layer probabilities by traversing
target words that belong to U and updating the corresponding probabilities in
NMT output layer.

4 Experiments

In this section, we use experiments to demonstrate the advantages of the pro-
posed approach: it yields better translation on the basis of Transformer and the
method in [15] with the help of Double Chain Graph constructed from trans-
lation memory; and it still keep the low latency mainly because of the novel
translation piece formulation in Double Chain Graph.

4.1 Settings

To explore the effectiveness of our proposed model fully, we conduct translation
experiments on 6 language pairs: zh-en, fr-en, en-fr, es-en, en-es and en-de. We
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Input

TM Source

TM Target

Reference

TFM

TFM-P

TFM-PG

freedom of movement for all united nations personnel is a matter of principle for the
organization and an operational requirement for unficyp .

the freedom of movement of all united nations personnel is a matter of principle for
the organization and of the operational requirements of unficyp .   

the freedom of movement of all united nations personnel is a matter of principle for
the organization and is a matter of principle for the operational needs of unficyp .

freedom of movement for all united nations personnel is a matter of principle for the
organization and an operational requirement for unficyp .

freedom of movement for all united nations personnel is a matter of principle for the
organization and an operational requirement for unficyp .

Fig. 3. An example of translation results generated by other methods and our model.
TM Source denotes the sentence that is most similar to the input. TM Target
denotes the target sentence of the TM source. Mis-translations in the TFM* are shown
in red. (Color figure online)

use case-insensitive BLEU score on single references as the automatic metric
[8] for translation quality evaluation. For zh-en experiments, we collect about 2
million news sentences from some online news websites. For other language pairs,
we manage to obtain pre-processed JRC-Acquis corpus from [4]. The corpora are
suitable for us to make evaluations. We randomly select 2000 samples to form
the development and the test set respectively, for each language pair. The rest of
the samples are used as the training set. We also employ Byte Pair Encoding [9]
on the datasets. For each language pair, we maintain a source/target vocabulary
of 35k tokens.

As the proposed model directly build upon the Transformer architecture [12],
which is referred to as TFM in this paper. According to [15], we implement
translation pieces method based on Transformer for fair comparison, and it is
denoted by TFM-P. And the implemented system for the Double Chain Graph
is denoted by TFM-PG.

For each source sentence, we retrieve 5 translation pairs from the training
set using Apache Lucene, and score them with fuzzy matching value. Finally, we
use those translation pairs as the TMs for the sentence x to be translated.

Furthermore, we tune the hyper-parameter λ carefully on the development
set for all translation tasks as it is sensitive to the specific translation task for
TFM-PG and TFM-P.

4.2 Results and Analysis

Some of the translation examples are shown in Fig. 3. As shown above, TFM
and TFM-P have mis-translations while TFM-PG do not. Mis-translation refers
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Table 1. Translation accuracy in terms of BLEU on 6 translation tasks. Best results
are highlighted.

zh-en fr-en en-fr es-en en-es en-de

Dev

TFM 41.59 65.29 64.46 64.96 62.09 54.06

TFM-P 48.87 70.74 68.94 67.10 67.35 60.86

TFM-PG 50.32 71.01 69.12 68.87 67.46 61.08

Test

TFM 40.14 65.43 64.07 63.92 61.48 53.38

TFM-P 46.65 70.95 69.12 67.32 66.95 60.06

TFM-PG 48.44 71.06 69.32 68.26 67.27 60.39

Table 2. Similarity Analysis - Translation quality (BLEU score) on zh-en task for
the divided subsets according to similarity. Best results are highlighted.

Dev Test

Similarity [0.0, 0.4) [0.4, 0.7) [0.7, 1.0] [0.0, 1.0] [0.0, 0.4) [0.4, 0.7) [0.7, 1.0] [0.0, 1.0]

Ratio (%) 70.64 8.06 21.30 100.00 72.98 7.37 19.65 100.00

TFM 37.39 49.01 49.05 41.59 36.83 49.11 46.83 40.14

TFM-P 37.60 57.77 71.67 48.87 37.53 56.05 66.93 46.65

TFM-PG 37.38 58.80 77.22 50.32 37.20 57.39 74.33 48.44

to that some source words are not translated correctly. Our proposed model
can make full use of the fragment knowledge in TM target, with the help of
Double Chain Graph constructed from translation memory. And our method
still achieves greater efficiency.

Translation Accuracy. The main experimental results are shown in Table 1.
We can see that our model outperforms the state-of-the-art NMT model TFM
4.34–8.30 BLEU points, which varies as tasks from the overall perspective. And
the method also outperforms the baseline TFM-P system 0.11–1.79 BLEU points,
which varies as tasks. The zh-en translation task obtains the greatest promotion
with the Double Chain Graph, while the fr-en translation task cannot make much
benefit. The main reason is that the baseline TFM-P is extraordinarily strong with
the score of 70.95, and this is still consistent with the discovery in [15].

Error Analysis. As shown in Table 2, compared to TFM-P, the low similarity
subset, in the range of [0.0, 0.4), has an insignificant impact on the result. We
learned from the TM knowledge: if there is a low similarity between the TM
source sentence and the input sentence, the words in translation pieces are less
helpful to guide the decoding process. Hence, the reason is that we still give some
reward to those words which are in the matched translation pieces (actually, we
shouldn’t) during the decoding process, while the sentences in TM are not so
similar to the input.
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Table 3. Similarity Analysis - Translation quality (TER score) on zh-en task for
the divided subsets according to similarity. Best results are highlighted.

Dev Test

Similarity [0.0, 0.4) [0.4, 0.7) [0.7, 1.0] [0.0, 1.0] [0.0, 0.4) [0.4, 0.7) [0.7, 1.0] [0.0, 1.0]

Ratio (%) 70.64 8.06 21.30 100.00 72.98 7.37 19.65 100.00

TFM 50.85 40.74 40.08 47.20 50.68 40.86 42.59 48.07

TFM-P 50.81 36.20 25.41 43.00 50.59 35.32 30.77 45.00

TFM-PG 51.26 35.61 20.40 41.77 50.88 34.90 23.39 43.20

Table 4. Composition of dev and test sets based on similarity score on six translation
tasks.

(Dev|Test)
Ratio (%)

zh-en fr-en en-fr es-en en-es en-de

[0, 0.1) 4.03|5.23 1.35|0.85 0.25|0.35 0.20|0.15 1.50|1.20 2.00|1.80
[0.1, 0.2) 43.74|42.81 9.85|11.3 4.85|6.55 5.45|4.95 10.00|11.20 12.45|13.25
[0.2, 0.3) 16.23|18.55 11.10|10.05 12.15|10.55 15.00|15.30 13.55|13.75 11.40|11.55
[0.3, 0.4) 6.64|6.38 10.00|10.40 10.90|10.50 13.25|11.90 10.15|8.45 10.35|9.20
[0.4, 0.5) 3.00|2.97 7.90|7.15 7.40|8.30 8.20|8.60 7.80|6.25 7.00|6.05
[0.5, 0.6) 2.89|2.37 8.65|8.10 11.55|10.05 8.60|10.45 6.50|9.40 8.30|8.85
[0.6, 0.7) 2.18|2.03 10.15|10.65 10.50|10.30 8.45|8.65 8.65|8.05 7.80|7.70
[0.7, 0.8) 2.89|2.70 13.00|12.90 12.75|14.10 9.00|9.30 8.80|9.35 8.55|9.85
[0.8, 0.9) 5.77|5.50 15.05|15.55 16.30|16.20 16.30|15.65 16.25|16.15 17.20|17.00
[0.9, 1) 12.58|11.45 12.95|13.05 13.25|13.10 15.65|15.05 16.80|16.20 14.95|14.75
[0, 1) 100|100 100|100 100|100 100|100 100|100 100|100

Table 5. Running time in terms of sec-
onds/sentence on zh-en task.

TFM TFM-P TFM-PG

Dev 0.31 0.76 0.58

Test 0.31 0.76 0.56

Table 6. Translation quality (BLEU score)
among various values of λ on zh-en task.

λ 0.8 0.9 1.0 1.1

Dev 50.17 50.32 50.29 50.25

Test 48.18 48.44 48.63 48.35

Influence on Similarity. In order to dig on the influence of similarities deeply,
we report the translation score on zh-en task for the divided subsets according
to similarity, in terms of BLEU and TER [11] as shown in Tables 2 and 3, respec-
tively.

The high similarity subset which is in the range of [0.7, 1.0], obtains signifi-
cant improvements, up to 7.40 BLEU points and down to 7.38 TER (The lower
the TER score, the better.) points for the test set, respectively, with the help of
Double Chain Graph. Table 4 shows statistics datas of each dev and test set on
six translation tasks where sentences are grouped by the similarity score. Gener-
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ally speaking, we can conclude that the Double Chain Graph constructed from
TM is efficient to improve the final translation results in most cases, especially
for those source sentences which have high similarity sentences in TM.

Running Time. We eliminate the time of retrieving similar sentences from TM
and directly compare running time for neural models as shown in Table 5. The
average lengths of sentences in Dev and Test are 31.34 and 31.17 words/sentence,
respectively. From Table 5, compared to the baseline TFM-P employing transla-
tion pieces, our proposed model can still keep the low latency, and our system
TFM-PG achieves better translation performance with lesser time.

Hyper-parameter Robustness. We try to verify the robustness of the hyper-
parameter λ among different translation tasks, and we show the search process
on zh-en task. From Table 6, we can see that, to keep smaller translation quality
volatility, there is enough parameter space for λ. In general, we can search a
better value for λ on other translation tasks in the range of [0.6, 1.2] according
to our experience.

In summary, the extensive experimental results show that the proposed model
achieves better translation results with the Double Chain Graph constructed
from TM, especially for those source sentences that have high similarity sentences
in TM. Furthermore, this model can keep the low latency in terms of running
time.

5 Conclusion

The approach based on translation pieces, which are extracted from translation
memory, is appealing for neural machine translation, owning to its efficiency in
both memory consumption and computation. To capture sufficient contextual
knowledge in translation pieces, in this paper, we propose a novel and effective
Double Chain Graph that integrates word chain and position chain from transla-
tion memory. The extensive experimental results on 6 translation tasks demon-
strate that the proposed approach further achieves better translation results by
integrating translation memory knowledge into neural machine translation, espe-
cially for those source sentences that have high similarity sentences in translation
memory. What’s more, our method can still keep the low memory consumption,
lower latency, and keep the system architecture as simple as possible.
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Abstract. Robotic control via reinforcement learning (RL) has made
significant advances. However, a serious weakness with this method is
that RL models are prone to overfitting and have poor transfer perfor-
mance. Transfer in reinforcement learning means that only a few samples
are needed to train policy networks for new tasks. In this paper we inves-
tigate the problem of learning transferable policies for robots with serial
structures, such as robotic arms, with the help of graph neural networks
(GNN). The GNN was previously employed to incorporate explicitly the
robot structure into the policy network, and thus make the policy easier
to be generalized or transferred. Based on a kinematics analysis particu-
larly on the serial robotic structure, in this paper we further improve the
policy network by proposing a weighted information aggregation strat-
egy. The experiment is conducted in a few-shot policy learning setting on
a robotic arm. The experimental results show that the new aggregation
strategy significantly improves the performance not only on the learning
speed, but also on the policy accuracy.
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1 Introduction

Reinforcement learning (RL) based policy learning has received increasing atten-
tion on the grounds that RL enables autonomous robots to learn large repertoires
of behavioral skills with minimal human intervention [10,16,18,27]. However,
RL models tend to overfit with abundant data, especially for high dimensional
data in the robot state space, and thus suffer from poor generalization per-
formance, which is a significant challenge for transferring models. Therefore,
transfer learning in particular has been considered to be an important direction
in robotic control [23]. Some previous works have been proposed to establish the
direct mapping between state spaces and transfer skills between robots [1,2,11].
However, most of these algorithms require specific domain knowledge to form
the mapping, which makes these algorithms more complex. Besides, the policies
learned by these methods lack clear structure information, making it difficult to
utilize what was learned previously for a new robot with different structures [8].

Wang et al. [26] proposed learning structured policies by incorporating a prior
on the structure via graph neural networks (GNN) [9]. Specifically, as the policy
network of the agent, NerveNet [26] first propagates information through the
structure of the agent and then outputs actions for different parts of the agent.
To verify the transfer or generalization ability of NerveNet from one structure to
another, with the goal of running as fast as possible along the y-direction, Wang
et al. directly generalized the policy learned on a bilateral eight-leg centipede to
a six-leg one, by just correspondingly dropping two leg modules in the NerveNet.
It is intuitively easy to understand that when the agent loses its two bilateral
legs, it does not affect the direction in which the agent runs. Hence, GNN model
can not show its potential in transfer learning in the customized environment.
NerveNet can directly achieve transfer learning for the customized task as most
of the model weights are shared across the nodes. However, the model weights
of some robots with serial structures are not transferable, in which case GNN
model still needs to prove its potential in transfer learning.

In order to explore the performance of GNN on the tasks whose model weights
are not transferable, we investigate the agent with a serial structure similar to
the PR2 arms. The goal of the agent is to get the end of the PR2 arm to a fixed
target point. Specifically, we consider the problem of transferring information
across robots with different structures, including varying number of joints. Nev-
ertheless, the discrepancy in the structure of the robots and the goals of the tasks
prevent us from directly reusing policy parameters learned on different robots
for a new combination. Instead of throwing away experience learned from past
tasks, this work aims at learning structured policies from its past experience to
obtain new skills more quickly via GNN model. We further explore the potential
of the GNN model in transfer learning tasks. On the other hand, given that
the joint information of the serial robotic structure has different importances at
different positions, the average aggregation is inapplicable. Hence, a kinematic
analysis of robotic arms with serial structures is performed. Based on the phys-
ical characteristics of robots with serial structures, we further propose a novel
aggregation method of GNN model.
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The main contributions of this paper are as follows: (1) We investigate that
GNN model permits satisfactory transfer performance, and can achieve few-shot
learning for PR2 arms. (2) For robotic arms with serial structures, we propose an
improved propagation model to accelerate the convergence process and improve
the control accuracy.

2 Related Work

Recently, researches on transfer learning have been receiving more and more
attention [23] because of its potential for reducing the burden of data collec-
tion for learning complex policies. Ammar et al. [2] designed a common feature
space between the states of two tasks, and learn a mapping between states by
using the common feature space. Later research by Ammar et al. [1] applies
unsupervised manifold alignment to assign pairings between states for transfer
learning. In Gupta et al. [11], the authors tried to improve transfer performance
via learning invariant visual features. Efforts have also been made by reusing
policy parameters between environments [7,19] to transfer policies. Neverthe-
less, most of these methods need more domain knowledge to determine how to
form the invariant features, making these algorithms more complex. The pro-
posed method is extremely different from these policy transfer methods, since
our aim is not to directly transfer a policy, which is typically impossible in the
presence of structural differences. This paper adopts GNN model to learn struc-
tured policies.

This paper improves on policy network by utilizing graph neural networks [9].
A graph data structure consists of a finite set of vertices (objects) and edges
(relationships). It is worth noting that graphs have complex structure with rich
potential information [3]. Researches of graph with machine learning methods
have been receiving more and more attention, given that graph structure data
is ubiquitous in the real world. GNN was introduced in [9] as a generalization of
recursive neural networks that can process graph structure data. Due to its good
generalization performance and high interpretability, GNN has become a widely
used graph analysis method in recent years. GNN [17,21] has been explored
in a diverse range of problem domains, including supervised, semi-supervised,
unsupervised, and reinforcement learning settings. GNN has been used to learn
the dynamics of physical systems [6,20] and multi-agent systems [14,15]. These
GNN models have also been used in both model-free [26] and model-based [13]
continuous control. GNN models also have potential applications in model-free
reinforcement learning [12], and for more classical approaches to planning [25].

In this paper, the work is based on the idea of representing a robot as a
graph. Here, we define the graph structure of the robot as G = (u, V,E). u is the
global attribute of the graph. V = {vi}i=1:Nv

is the set of nodes(of cardinality
Nv), where each vi is the attribute of a node. E = {ej , sj , rj}j=1:Ne

is the set
of edges (of cardinality Ne), where each ej is the attribute of an edge, sj is the
index of the sender node and rj is the index of the receiver node. In our tasks,
the nodes correspond to the joints and the edges correspond to the bodies.
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Battaglia et al. [4] presented the Graph Networks (GN) framework that uni-
fied and extended various graph neural networks. The GN framework defined a
set of functions for relational reasoning on graphs and supported constructing
complex structures from simple blocks. The main unit of the GN framework is
the GN block which takes a graph as input and returns a graph as output. A GN
block contains three “update” functions, φ, and three “aggregation” functions,
ρ.

e
′
k = φe(ek, vsk

, vrk
, u) e

′
i = ρe→v(E

′
i)

v
′
i = φv(e

′
i, vi, u) e

′
= ρe→u(E

′
) (1)

u
′
= φu(e

′
, v

′
, u) v

′
= ρv→u(V

′
)

where E
′
i = {e

′
k, sk, rk}rk=i,k=1:Ne

, V
′

= {v
′
i}i=1:Nv

, and E
′

= ∪iE
′
i =

{e
′
k, sk, rk}k=1:Ne

As a graph, G, is the input value of a Graph Network, the computations
propagate from the edge, to the node and the global level. Algorithm 1 shows
the steps of computation for details.

Algorithm 1. Steps of computation in Graph Networks
Input: Graph, G = (u, V, E)
for each edge {ej , sj , rj} do

Compute updated edge attributes e
′
k ← φe(ek, vsk , vrk , u)

end for
for each node{ni} do

Aggregate edge attributes for each node e
′
i ← ρe→v(E

′
i)

end for
Aggregate edge and node attributes globally e

′ ← ρe→u(E
′
), v

′ ← ρv→u(V
′
)

Compute updated global attribute u
′ ← φu(e

′
, v

′
, u)

Output: Graph, G
′
= (u

′
, V

′
, E

′
)

Recent work by Wang et al. [26] modelled the structure of the reinforcement
learning agents using GNN model. Like in our method, they aim to transfer
policies between robots by learning structured policies. The main difference from
our work is that Wang et al. [26] uses the mean value of state information to
do the aggregation. For the customized task in [26], the two legs the agent lost
did not affect the direction in which it ran. Therefore, GNN model can not show
its potential in transfer performance in the customized environment. The way of
doing the aggregation by average functions is that the information of nodes in the
neighborhood is considered without discrimination. However, for robotic arms
with serial structures, the information of nodes in the neighborhood has different
importance. The experiment (refer to Sect. 4.1) also witnesses the limitation of
the way of average aggregation. Accordingly, a kinematic analysis of arms with
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serial structure needs to be done to obtain the physical characteristics of robots.
The proposed method uses a new method of aggregation based on the analysis
result.

3 Proposed Method

In the Graph Networks framework, the average function is a popular method for
doing aggregation. This method of aggregation considers node information in the
neighborhood to be equally important. Nevertheless, for robotic arms with serial
structures, joints (nodes) at different positions have different effects on the end
position. Here we derive the physical characteristics of a robotic arm by doing
a kinematic analysis on the robotic arm, and then propose a novel aggregation
method.

Fig. 1. Coordinate system of D-H parameter

Kinematics Analysis of a Robotic Arm. The forward kinematics of a
robotic arm is to calculate the position and attitude of the end actuator rel-
ative to the base coordinate system according to the parameters of each joint.
Figure 1 shows the D-H parameter coordinate system of two adjacent coordinate
systems. Where αi−1 represents the angle from ̂Zi−1 to ̂Zi measured about ̂Xi−1;
ai−1 is the distance from ̂Zi−1 to ̂Zi measured along the ̂Xi−1 direction(ai > 0);
θi represents the angle from ̂Xi−1 to ̂Xi measured about the ̂Zi; di is the distance
from ̂Xi−1 to ̂Xi measured along the ̂Zi direction.

From Fig. 1, the transformation matrix of the joint coordinate system can be
derived, as shown in (2).

i−1
i T =

⎡

⎢

⎢

⎣

cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

⎤

⎥

⎥

⎦

(2)
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Equation (2) is a general matrix representation of the D-H conversion.
According to Fig. 2, the D-H parameters determined by the length and posi-
tion of the connecting joint are shown in Table 1.

Fig. 2. Coordinate system of D-H parameter of arm

Table 1. D-H parameter table.

Joint Joint angle θi Offset distance di Twist angle αi−1 Rod length ai−1

1 θ1 d1 −π/2 0

2 θ2 0 π/2 a1

3 θ3 0 0 a2

4 θ4 0 0 a3

5 θ5 0 0 0

From Table 1 and Eq. (2), the forward kinematics formula can be expressed
as:

T =0
1 T 1

2 T 2
3 T 3

4 T 4
5 T =

⎡

⎢

⎢

⎣

Px

R Py

Pz

0 0 0 1

⎤

⎥

⎥

⎦

(3)

In (3), R is a matrix representing the spatial attitude of the endpoint of
the robotic arm, and Px, Py, and Pz represent the position coordinates of the
endpoint of the robotic arm.

Px = a3 cos θ1 cos θ2 cos θ3 − a3 cos θ1 sin θ2 sin θ3

+ a2 cos θ1 cos θ2 + a1 cos θ1 (4)
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Py = a3 sin θ2 cos θ3 + a3 cos θ2 sin θ3 + a2 sin θ2 + d1 (5)

Pz = −a3 sin θ1 cos θ2 cos θ3 + a3 sin θ1 sin θ2 sin θ3

− a2 sin θ1 cos θ2 − a1 sin θ1 (6)

In (4), the partial derivative of Py is constructed as follows,

∂Py

∂θ2
= a3 cos θ2 cos θ3 − a3 sin θ2 sin θ2 + a2 cos θ2 (7)

∂Py

∂θ3
= a3 cos θ2 cos θ3 − a3 sin θ2 sin θ3 (8)

∂Py

∂θ2
− ∂Py

∂θ3
= a2 cos θ2 (9)

Given the actual physical structure, we have θ2 ∈ [0, π
2 ]. Then, we can obtain

∂Py

∂θ2
>

∂Py

∂θ3
. (10)

P
′
y − Py = ΔPy =

∂Py

∂θ2
Δθ (11)

P
′′
y − Py = ΔP

′
y =

∂Py

∂θ3
Δθ (12)

With the constraint of (10), we have,

ΔPy > ΔP
′
y (13)

The results, as shown in (13), indicate that θ3 cause a smaller change in the
end position of the robotic arm when joint angle θ2 and θ3 change the same
angle Δθ. As can be seen from Fig. 3, when the joint near the pedestal and the
joint near the end are identically rotated by Δθ, the former one will change the
position of the end of the arm more. In other words, when the endpoint of the
robotic arm is near to the target, we don’t need to change θ2 a lot, just adjust
θ3. Therefore, we consider the joint information at the end of the robotic arm
to be more important. We propose a weighted aggregate function:

ρij = softmax(fij) =
exp(fij)

∑

k∈Ni
exp(fik)

(14)

where fij is the serial number of the node in the graph. The closer to the end of
the robotic arm, the larger the serial number of the node. Ni is the set of nodes
adjacent to node i.
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Fig. 3. Different joints with the same angle of rotation

4 Experiments

First, we evaluate the feasibility of GNN on a transfer learning task. In the
second experiment, the improved GNN model is applied on a robotic arm with
serial structure.

4.1 GNN Model

We run experiments on a simulated continuous control task from Gym, Brock-
man et al. [5], which is based on MuJoCo, Todorov et al. [24]. Particularly, we
use a robotic arm task: PR2 arm. The maximum number of training steps is
set to be 1 million for the PR2 arm task. In this paper, the proximal policy
optimization (PPO) [22] is used to optimize the expected reward.

Two types of structural transfer learning tasks are investigated in this paper.
The first type is to train a model with a robotic arm of small size (small graph)
and apply the learned model to a robotic arm with a larger size. As increasing
the size of the robotic arm, state and action space also increase which makes
learning more difficult. In the second type of structural transfer task, we first
learn a model for the robotic arm and then apply it to the robotic arm with a
smaller size. Note that for both transfer tasks, none of the environmental factors
change except the structure of the robotic arm.

Experimental Settings: The environment in which the agent has a similar
structure to a PR2 arm is created in this paper. The goal of the agent is to get
the end of the PR2 arm to the target point. By linking copies of arms, we create
agents with different lengths. Specifically, the shorter arm consists of seven joints
and the longer one is made up of eight joints. For each time step, the total reward
is the negative value of the distance from the end of the arm to the target point.

Results: In the PR2 environment, we first run experiments of GNN models on
PR2 with seven joints and PR2 with eight joints to get the pre-trained models
for transfer learning.

This work then explores the transfer performance of GNN applied in PR2
environment in a zero-shot setting where zero-shot means directly applying the
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model trained with one structure to the other without any fine-tuning. The zero-
shot transfer performance for PR2 arm is shown in Fig. 4. As we can see, GNN
model does not achieve satisfactory transfer performance on PR2 tasks. On one
hand, GNN has an average reward value of −135.02 when the policy learned
from the PR2 arm with 8 joints is applied to the PR2 arm with 7 joints. On
the other hand, GNN model has an average reward value of −266.13 when we
apply the policy learned from the PR2 arm with 7 joints to the PR2 arm with
8 joints. Neither of them is a pretty good policy since the average reward value
of −60 is considered as solved for the PR2 task. Consequently, GNN models can
be used to learn structured policies. Furthermore, GNN model does not achieve
good transfer performance for transfer learning tasks in a zero-shot setting.

(a) 7 joints to 8 joints (b) 8 joints to 7 joints

Fig. 4. Results on zero-shot transfer learning on the PR2 arm

4.2 The Proposed Method

In this section, we show that GNN model has excellent transfer performance for
PR2 arms in a few-shot learning setting. And then it is experimentally shown
that the proposed method has a better potential of transfer learning by incor-
porating physical structure prior into the network structure.

Experimental Settings: To show the better transfer performance of our pro-
posed method, we compare our proposed method with the NerveNet [26]. More
specifically, for the PR2 task, we use an equal number of time steps for each
policy’s update and calculate the information separately. For NerveNet, infor-
mation is aggregated and the mean value of information is applied to update the
network. While the proposed method adopts the weighted value of information
to update the network.

Results: For the PR2 environment, we first run experiments of two models on
PR2 with six joints and PR2 with seven joints to get the pre-trained models for
transfer learning.
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Table 2. Result of the proposed method

Model Average reward Solved time (number of iterations)

NerveNet −30.26 264

Our proposed method −27.57 192

We fine-tune for two kinds of transfer experiments and show the training
curves in Fig. 5. From the figure, we can see that by using the pre-trained model,
GNN model significantly decreases the number of episodes required to reach the
level of reward which is considered as solved. In conclusion, GNN model can
achieve satisfactory transfer performance in a few-shot learning setting.

As can be seen from Fig. 5, the proposed method achieves better performance
in the PR2 task. The proposed method decreases about 27.3% time required to
reach the level of reward which is considered as solved and increases the control
accuracy by about 8.8% points, which are listed in Table 2. Especially for the
robotic arm tasks that require precise control, the increase of 8.8% points has
important practical application significance. The improvement of the proposed
method is due to the fact that the joint information at the end of the robotic
arm with serial structures to be more important, which accelerates the training
process and improves the control accuracy.

(a) 7 joints to 8 joints (b) 8 joints to 7 joints (c) the proposed method

Fig. 5. (a), (b): Results of fine-tuning for structural transfer learning tasks. (c): Results
of the proposed method.

5 Conclusion

In this paper, we aim to explore whether applying GNN to a robotic arm
with serial structure has good transfer performance. This work introduces an
improved model that employs the weighted GNN model to represent the pol-
icy of the agent. The proposed model learns structured policies by aggregating
and propagating information among joints. Aggregation is done by the proposed
aggregation method which considers information of joint at the end of the robotic
arm to be more important. The weighted aggregation method is proposed in this
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paper, which is specially designed for robotic arms with serial structures. The
experiment in this work showed that the GNN model achieved good transfer
performance on robotic arms in standard benchmark platform. Furthermore, we
demonstrate that policies learned by the proposed model are significantly better
than policies learned by traditional GNN models.

References

1. Ammar, H.B., Eaton, E., Ruvolo, P., Taylor, M.: Unsupervised cross-domain trans-
fer for policy gradient reinforcement learning via manifold alignment. In: Twenty-
Ninth AAAI Conference on Artificial Intelligence (2015)

2. Ammar, H.B., Taylor, M.E.: Reinforcement learning transfer via common sub-
spaces. In: Vrancx, P., Knudson, M., Grześ, M. (eds.) ALA 2011. LNCS (LNAI),
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Abstract. In the context of the Captain Memo memory prosthesis for Alz-
heimer’s patients, we want to generate the family/entourage tree of the user from
data structured based on the PersonLink ontology. This graph ought to be
accessible and readable to this particular user. In our previous work, we pro-
posed an ontology visualization tool called Memo Graph. It aims to offer an
accessible visualization to Alzheimer’s patients. In this paper, we extend it to
address the readability requirement based on the IKIEV approach. It extracts the
most important instances (key-instances) from ontology and generates a “sum-
mary instance graph” (middle-out browsing method). The extraction and visu-
alization processes are undertaken incrementally. First, an “initial summary
instance graph” is generated, then permitting iteratively the visualization of
supplementary key-instances as required. Key-instances’ extraction is based on
measures that take into account the semantic similarity between the ontological
elements and the user’s navigation history.

Keywords: Ontology visualization � Readable visualization � Ontology
summarization � Key-instances � Alzheimer’s patients

1 Introduction

In the context of the VIVA1 project (“Vivre à Paris avec Alzheimer en 2030 grâce aux
nouvelles technologies”), we are proposing a memory prosthesis, called Captain Memo
[1], to help Alzheimer’s patients to palliate mnesic problems. Patient’s data are
structured using PersonLink [2] which is a multilingual ontology for modeling and
reasoning about interpersonal relationships and describing people. Among the services
proposed by this prosthesis, one is devoted to “remember things about people” via the
generation of the family/entourage tree of the patient from their stored data. Hence,
there is a need to integrate in Captain Memo an ontology visualization tool.

1 http://viva.cnam.fr/.
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Alzheimer’s patients present own characteristics that are different from non-expert
users. Some of these characteristics are related to Alzheimer’s disease (e.g., concen-
tration deficit) and the others are related to aging (e.g., sight loss). These characteristics
impair this particular user to interact with graphs offered by standard ontology visu-
alization tools targeting non-expert users e.g., Alzheimer’s patients have difficulty to
read small nodes; do not understand technical jargon and lose concentration when
reading dense and crowded graphs. Hence, there is a need to integrate in Captain Memo
an ontology visualization tool that generates an instance graph which has the partic-
ularity to be accessible and readable to Alzheimer’s patients. Few ontology visual-
ization tools have been proposed to be used by non-expert users.

However, to the best of our knowledge, there is no existing tool that is proposed to
be used by Alzheimer’s patients. In [3], we proposed a tool, called Memo Graph, which
aims to offer accessible ontology visualizations to Alzheimer’s patients.

In this paper, we propose an extension of Memo Graph that addresses the read-
ability requirement based on the IKIEV approach (Incremental Key- Instances
Extraction and Visualization). The aim is to alleviate the generated graph. It extracts
and visualizes, in an incremental way, instance summarizations of a given ontology to
offer concise and readable overviews and support a middle-out navigation method,
starting from the most important instances (Key-instances). The extraction of the last
ones is based measures that take into account the semantic similarity between the
ontological elements and the user’s navigation history.

The remainder of the present paper is structured as follows. In Sect. 2, we focus on
related work. Section 3 presents our first version of Memo Graph. Section 4 presents
the IKIEV approach. Section 5 details the evaluation results. In Sect. 6, we present the
conclusions and some future research directions.

2 Related Work

The present work is closely related to the two following research areas: (i) ontology
visualization and (ii) ontology summarization.

2.1 Ontology Visualization

Several ontology visualization tools have been proposed in the last two decades. Most
of them target expert users. Only very few tools target non-expert users e.g.,
OWLeasyViz [4], WebVOWL [5] and ProtégéVOWL [5]. However, they are not
designed to be used by Alzheimer’s patients.

Most tools offer understandable visualizations only for expert users. ezOWL [6],
OWLGrEd [7], and VOM2 offer UML-based visualizations. A major drawback of these
tools is that they require knowledge about UML. Thus, they are understandable only
for expert users. In the same way, SOVA3 and GrOWL [8] contain many abbreviations

2 http://thematix.com/tools/vom.
3 http://protegewiki.stanford.edu/wiki/SOVA.

128 F. Ghorbel et al.

http://thematix.com/tools/vom
http://protegewiki.stanford.edu/wiki/SOVA


and symbols from the Description Logic. Besides, almost all tools use technical jargon.
For instance, WebVOWL and ProtégéVOWL, targeting users less familiar with
ontologies, use some Semantic Web words.

Most tools overlook the importance of the readability requirement. According to
[5], the current generated visualizations are hard to read for non-expert users. This
problem becomes worse with Alzheimer’s patients. For instance, SOVA, GrOWL,
IsaViz4 and RDF Gravity5 require the loading of the entire graph in the limited space
provided by the computer screen which generates an important number of nodes and a
large number of crossing edges. Without applying any filter technique, the generated
graphs appear crowded, which have a bad impact on their readability.

Only few tools aim for a comprehensive ontology visualization. For instance,
OWLViz6 and KC-Viz [9] visualize merely the class hierarchy of the ontology.
OntoViz Tab [10], TGViz [11] and OntoRama [12] show only inheritance relationships
between the graph nodes. Likewise, many visualization tools, like Jambalaya [13] and
OWLPropViz7, represent all types of property relations, but do not show datatype
properties required to fully understand the data modeled in ontologies. Besides, most
tools do not offer a clear visual distinction between the different ontology key-elements.
For example, there is no visual distinction between datatype and object properties
visualized by RDF Gravity. TGViz and NavigOWL [14] use a plain nodelink diagram
where all links and nodes appear the same except for their color.

2.2 Ontology Summarization

Ontology summarization is the process of extracting knowledge from ontology to
propose an abridged version for particular user(s) and task(s) [15]. It helps to quickly
make sense of ontology. However, a “good” summary is a non-trivial task [16]. Several
approaches have been proposed to identify important components in ontology.

Peroni et al. [17] propose an ontology summarization approach based on a number
of measures, drawn from cognitive science (Name Simplicity and Basic Level), network
topology (Density and Coverage) and lexical statistics (Popularity). Name simplicity
favors classes labeled with simple names and penalizes compounds. Basic Level
measures how “central” a class is in the taxonomy of the ontology. Density is computed
on the basis of the number of direct instances, sub-classes and properties.

Coverage aims to show how well the selected classes are spread over the whole
class hierarchy. The Popularity measure is introduced to indentify classes that are
commonly visited based on the Yahoo search history.

Pires et al. [18] propose an approach to summarize ontologies based on two
measures. The Degree Centrality measure is based on the number of properties of the
class. The Frequency is used as a distinguishing criterion if the ontologies to be
summarized are merged ontologies. The combination of two measures is defined as a

4 https://www.w3.org/2001/11/IsaViz/overview.html.
5 http://semweb.salzburgresearch.at/apps/rdf-gravity/.
6 http://protegewiki.stanford.edu/wiki/OWLViz.
7 http://protegewiki.stanford.edu/wiki/OWLPropViz.
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Relevance score. This score needs to be greater than or equal to a given threshold to
consider the class as a good candidate for the summary.

Queiroz-Sousa et al. [19] propose an algorithm to summarize ontology in two ways:
automatically, using the Relevance measure and semi-automatically, using the users’
opinion. For the first step, they introduce the Relevance measure which is inspired from
the Degree Centrality measure. It is determined through the sum of the properties that
class has. However, this algorithm produces summaries which include nodes that are
already represented by other nodes.

Troullinou et al. [16] propose an approach to summarize RDF schemas. In the first
step, the importance of each property is determined through the Relative Cardinality.
This measure is based on the number of corresponding instances of the property. In the
next step, the importance of each node is estimated by combining the Relative Car-
dinality and number of the edges (In/Out Degree Centrality). Compared to other
approaches that estimate the importance of a class based on the number of its associated
properties, they take into account not only the number of these properties, but their
importance. The final step in this approach is generating valid sub-schema graphs that
cover more relevant nodes by minimizing their overlaps.

We note that the majority of the measures are common to more than one approach.
For instance, three approaches estimate the importance of a concept from its associated
properties (Degree Centrality [18], Relevance [19] and In/Out Degree Centrality [16]).
Furthermore, we criticize the fact that none of the mentioned measures allows esti-
mating the importance of the ontological components based on their “semantics”
(semantic similarity). For instance, in the context of PersonLink, it is obvious that the
object property “doctor” related to the instance representing the “patient” is more
important than the object property “butcher”. Finally, these approaches focus only on
summarizing the schema. They do not define measures to identify important instance in
ontology.

3 Background: The Memo Graph Ontology Visualization
Tool

Memo Graph is a tool that visualizes ontology. It aims to offer an accessible graph to
Alzheimer’s patients. The graph design is based on our 146 guidelines for designing
user interfaces dedicated to Alzheimer’s patients, presented in [20]. The generated
graph has the adequate size of nodes and text. An auditory background is added to help
users in their interactions. For instance, if they position the cursor on the keyword
search field, they are informed that they can search a given element in the graph via an
input field. We provide the traditional and speech-to-text modalities. We use easy-to-
understand wording. For instance, we do not use Semantic Web vocabulary. Graph
nodes are identified using both photos and labels. The photo facilitates the compre-
hension. It can be automatically added from Google if it is not given by the user. Nodes
representing classes are slightly larger than nodes representing instances. Memo Graph
offers the interaction techniques detailed by Shneiderman [21]: zoom, overview,
details-on-demand, filter, history, relate and extract.
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We evaluated the accessibility of the generated graph with 22 Alzheimer’s patients.
We noticed that they lose concentration when reading dense entourage/family graph.
Thus, we extend Memo Graph based on the IKIEV approach.

4 Extending Memo Graph: The IKIEV Approach

In this paper, we extend Memo Graph. Its second version is based on the IKIEV
approach. It tends to avoid problems related to dense and non-legible instance graph by
limiting the number of visible nodes and preserving the most important ones. It allows
an incremental extraction and visualization of instance summaries of the ontology –

incremental being the operative word. Initially, it generates an “initial summary
instance graph” of N0 key-instances with the associated properties, then allowing
iteratively the visualization of supplementary key-instances as required (key-instances
are visualized as nodes and properties are visualized as labeled edges). For each iter-
ation i, it extracts and visualizes Ni = Ni−1 + Ai key-instances; where Ai represents the
number of additional key-instances compared to the previous iteration. N0 and Ai are
set by the user. Figure 1 summarizes the IKIEV approach.

4.1 Measures Determining Key-Instances

We present the properties that a sub-graph of the initial instance graph is required to
have in order to be considered a high-quality summary. Compared to related work, the

Ontology

N0 key-instances N0 + A1 key-instances NI-1 + AI key-instancesNI-2 + AI-1 key-instances

Summary extractorSummary extractorSummary extractor Summary extractor

Summary of ABoxSummary of ABox Summary of ABox Summary of ABox

Graph Generator Graph GeneratorGraph GeneratorGraph Generator …

Iteration 1
Iteration 0 

Iteration (I – 1) Iteration I 

Fig. 1. The IKIEV approach.
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generated summary is determined takes into account the “semantic” dimension as it
favors properties which are semantically related to the associated instance. Besides, the
generated summary is “personalized” as it depends on the user’s navigation history
when navigating the generated graph. Initially, we determine how important the
properties are (Property Centrality). Based on the importance of the last ones, we
estimate the centrality of the instances (Instance Centrality).

Estimating the Importance of a Property. We introduce the Property Centrality
measure to estimate the importance of a given property. It is estimated based on the
Property Semantic Similarity Centrality and Property History Centrality measures.

Property Semantic Similarity Centrality (PSSC). It aims to estimate the semantic
similarity between a property P and an instance I. We exploit the WordNet features (“is
a” taxonomy) coupled with the Lin formula [22].

SimLin P; Ið Þ ¼ ð2� IC MSCA P; Ið Þð Þ= IC Pð Þþ IC Ið Þð Þ ð1Þ

MSCA is the Most Specific Common Abstraction. In our approach, we use the
Information Content (IC) metric proposed by [23].

We use 3 strategies to estimate this measure. If the measure returned by the first
strategy is inferior to a fixed threshold TH1 then we pass to the second strategy. If the
measure returned by the last one is inferior to another fixed threshold TH2 then we pass
to the third strategy.

The first strategy aims to measure the semantic relatedness between the synsets
assigned to the property P and the instance I.

PSSC P; Ið Þ ¼ max SimLin pk; ikð Þ where pk; ikð Þ 2 Synset Pð Þ � Synset Ið Þ ð2Þ

In WordNet, a concept Y is a hypernym of the concept X if the activity X is a (kind
of) Y. The second strategy uses the synsets of all synsets belonging to hypernyms of
the property P and the instance I. After extracting the synsets of all hypernym, we
calculate the semantic similarity of each hypernym pair score of the instance I and the
property P using the same measure used in the first strategy which give a variety of
similarity values. Therefore, the maximum function is not the appropriate solution
because it returns high values. So, we decide to use the median to have a representative
value.

The concepts are commonly represented in WordNet by word senses which each of
them has a definition or gloss that briefly describes its meaning. The third strategy
determines how related the property P and the instance I are by exploiting the semantic
similarity between the associated glosses. This idea is firstly introduced by Lesk [24] to
perform word sense disambiguation. We use our previous work [25]. It proposes an
approach that estimates the semantic similarity between sentences (glosses are con-
sidered as sentences) based on three similarity scores: lexical, semantic and syntactico-
semantic similarity scores.

The lexical similarity score exploits the shared words (overlaps) in the word senses
of the glosses using Jaccard similarity [26].
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SimL GP;GIð Þ ¼ WC= WGP þWGI �WCð Þ ð3Þ
Where WC is the number of common words between the two glosses; WGP is the
number of words contained in the gloss WGP associated to the property P and WGI is
the number of words contained in the gloss WGI associated to the instance I.

To determine the semantic similarity score, we associate the Semantic Vectors to
each gloss. The number of entries of each vector is equal to the number of distinct
words in the associated gloss. We associate the synonymy set of each word. After that,
we calculate the degree of similarity between them using the Jaccard coefficient. On the
basis of the calculated semantic vectors, the semantic similarity degree, is computed
between the two glosses by applying the Cosine similarity

SimS GP;GIð Þ ¼ VGP � VGI= VGPj jj j � jjVGI jjð Þ ð4Þ

The syntactico-semantic similarity score takes into account the common semantic
arguments between the definitions notably the semantic class and the thematic role. It
uses the Jaccard similarity.

SimSS GP;GIð Þ ¼ ASC= ASGP þASGI � ASCð Þ ð5Þ

Where ASC is the number of common semantic arguments between the two glosses;
ASGP is the number of semantic arguments contained in the gloss GP and ASGI is the
number of semantic arguments contained in the gloss GI.

Finally, we estimate the semantic similarity between the property and the instance
using a weighted sum of the mentioned scores.

PSSC P; Ið Þ ¼ SimL GP;GIð Þ �WL þ SimS GP;GIð Þ �WS þ SimSS GP;GIð Þ �WSS ð6Þ

Property History Centrality (PHC). This measure identifies the properties that are
commonly visited by the users based on user’s navigation history.

PHC Pð Þ ¼ MGH Pð Þ �WH þMGS Pð Þ �WS ð7Þ

MGH(P) returns the number of hits of P recorded in previous sessions by the user in
Memo Graph (We use the click-tracking tool). MGS(P) returns the number of searches
when querying the ontology with the name of P as a keyword.

Instance History Centrality. This measure identifies the instances that are commonly
visited by the user. Compared to the Popularity measure, based on the Yahoo search
history, this measure makes the generated summary “Personalized” in the sense that it
is based on user’s navigation history when navigating the generated graph.

PHC Ið Þ ¼ MGH Ið Þ �WH þMGS Ið Þ �WS ð8Þ
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Property Centrality (PC). The mentioned measures are used as a weighted sum in an
overall value to estimate the importance of a property P.

PC Pð Þ ¼ PSSC Pð Þ �WSS þPHC Pð Þ �WH ð9Þ

Estimating the Importance of an Instance. We introduce the Instance Centrality
measure to estimate the importance of a given instance. It is estimated based on the
Instance Properties Centrality and Instance History Centrality measures.

Instance Properties Centrality (IPC). This measure is based on the structure of the
instance graph. It is an adaptation of the In/Out Centrality [16] measure. The Instance
Properties Centrality of an instance is the sum of the Property Centrality of the asso-
ciated object and datatype properties.

IPCðIÞ ¼
Xm

i¼1
PCðPiÞ ð10Þ

M is the number of incoming/outgoing object properties and datatype properties.

Instance History Centrality (IHC). This measure identifies the instances that are
commonly visited by the user. Compared to the Popularity measure, based on the
Yahoo search history, this measure makes the generated summary “Personalized” in the
sense that it is based on user’s navigation history when navigating the generated graph.

IHC Ið Þ ¼ MGH Ið Þ �WH þMGS Ið Þ �WS ð11Þ

Instance Centrality (IC). We rank instances based on their Instance Centrality.
A higher score for an instance means that it is more adequate for the summary.

IC Ið Þ ¼ PHC Ið Þ �WH þPHC Ið Þ �WP ð12Þ

4.2 General Algorithm

The general algorithm of our IKIEV approach is given below.

Inputs: Ontology O (N is the number of instances), Initial number of key-instances N0 
Outputs: “Summary instance graphs”
For each instance ni  N 

Calculate the Importance Score (ni);
Extract N0 key-instances having the highest score and enrich the last ones with properties; 
Generate an “initial summary instance graph” (N0 nodes); 
While (The user needs to display Ai further nodes AND [Ni-1 + Ai] ≤|N|) do

Extract the [Ni-1 + Ai] key-instances having the highest importance score and enrich 
the last ones with properties; Update the “summary instance graph” ; i := i + 1; 

Algorithm 1. The general algorithm of the proposed IKIEV approach. 
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5 Experimentation

The IKIEV approach is implemented using the J2EE platform. We use the JENA8 API
for managing ontology and the JWNL9 API to connect to WorldNet.

5.1 Integration of Memo Graph in Captain Memo

We integrated Memo Graph in Captain Memo to generate the patient family/entourage
tree from data structured using PersonLink. Figure 2 shows a summary instance graph
generated using Memo Graph. It shows 10 key-instances. The total of instances is 217.
As PersonLink manage interpersonal relationships, the Hits Centrality measure takes
into account the history of the user hits when using social networks.

5.2 Other Applications

Memo Graph can be used by expert and non-expert users to offer readable graphs not
only of small-scale inputs, but also for large-scale ones thanks to the IKIEV approach.

Visualization of a Large-Scale Dataset for Ontology Expert Users. Memo Graph is
tested on the large-scale DBpedia dataset which is a semantic knowledge base built
from structured and extracted information from Wikipedia. Memo Graph tends to avoid
the problems of scalability by limiting the number of visible nodes. It extracts the key-
instances, while hiding away the “less important” ones. Figure 3 shows that Memo is
used for visualizing N1 = 30 key-instances of the “Sport” class.

Fig. 2. A family/entourage tree created based on Memo Graph.

8 https://jena.apache.org/.
9 http://jwordnet.sourceforge.net/handbook.html.
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Visualization of LingOnto for Ontology Non-expert Users (Linguistic Experts).
Neji et al. [27] proposed a semantic approach that aims to identify valid linguistic web
services composition scenarios and targets both linguistic experts (non-ontology
expert). It is based on a multilingual ontology, called LingOnto, which models and
reasons about linguistic knowledge. It consists of three steps. The first step consists in
generating, from LingOnto, a dynamic ontological view that aims to highlight the
components that correspond to the user’s need. In the second step, the ontological view
is used to identify an initial composition scenario by selecting a sequence of linguistic
processing. The final step helps discover linguistic web services corresponding to each
selected linguistic processing. The kernel of Memo Graph is integrated in the prototype
of this approach. We select the “Lemmatization” class node to display the associated
datatype property (description) (Fig. 4).

5.3 Evaluation

We evaluate the usability of our approach IKIEV in determining the key-instances.
This evaluation is done in the context of Captain Memo. A total of 12 Alzheimer’s

Fig. 3. Visualizing 30 key-instances of the “Sport” class (DBpedia) with Memo Graph.

Fig. 4. Visualizing LingOnto with Memo Graph.
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patients P1 . . .P12f g and their associated caregivers C1 . . .C12f g were recruited. All
caregivers are first-degree relatives. Let us consider KB1 . . .KB12f g, where KBi rep-
resents knowledge base associated to Pi and structured using PersonLink. The number
of the key-instances is set as 10. Three scenarios are proposed:

– “Golden standard scenario”: Each caregiver Ci is requested to identify the 10 closest
relatives of the patient Pi. The last ones formed the “gold standard” GSi.

– “IKIEV scenario @ 2 weeks”: For each KBi, we associate a summary Si@2 based
on our IKIEV approach. The summaries are generated after 2 weeks of using and
interacting with the resulting graph.

– “IKIEV scenario @ 10 weeks”: For each KBi, we associate a summary Si@10
based on our IKIEV approach. The summaries are generated after 10 weeks of
using and interacting with the resulting graph.

We compare the generated summaries against the golden standard ones. PRi@2
(|Si@2 \ GSi|/|Si@2|) and PRi@10 represent respectively, the Precision associated to
“IKIEV scenario @ 2 weeks” and “IKIEV scenario @ 10 weeks” (Fig. 5).

All entities of KBi are instances of the same class (Person). Thus, the Class
Centrality measure has no influence on determining key-instances.

The overall mean of the precision associated to “IKIEV scenario @ 10 weeks” is
better than the overall mean of the precision associated to “IKIEV scenario @ 2
weeks”. This difference is explained by the fact that the Hits Centrality measure is
improved from one navigation session to another.

6 Conclusion

This paper introduced an extension of Memo Graph to offer readable instance visu-
alizations. It is based on our IKIEV approach. It allows an incremental extraction and
visualization of instance summaries of the ontology. To determinate the relevance of a
given instance, we are based on the relevance of its associated class and properties as
well as the history of its user hits. The proposed tool is integrated in the prototype of
Captain Memo to generate the family/entourage tree of the Alzheimer’s patient from
their personal data structured using the PersonLink ontology. We evaluated the
usability of our IKIEV approach in determining key-instances. The results are
promising.

Future work will be devoted to extend our IKIEV approach to allow an incremental
extraction and visualization of summaries of the ontology’s schema.

Fig. 5. Evaluation’s results.
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Abstract. Convolutional neural networks (CNN) have been applied in
medical image analysis over the past few years. U-Net architecture is one
of the most well-known CNN architectures in many different medical
image segmentation tasks. However, it is hard to capture subtle local
features because of its limitations in standard convolution layers and
one output prediction. In addition, some objects like hippocampus in
the biomedical image occupies an only small area which increases the
difficulty of segmentation. In this manuscript, we present an architecture,
called Side U-Net, which addresses these challenging problems. In the
condition of giving unbalanced class images, Side U-Net outperforms
the U-Net by upgrading loss function and capturing more important
local features using multiple side outputs. And the experimental results
verified our method and demonstrated that our method outperformed
the U-Net model over 0.75% in terms of dice score and in the same
threshold of classification, our model has a higher TPR (True Positive
Rate) when evaluated in ADNI dataset.

Keywords: Hippocampus segmentation · Cross entropy · Side U-Net
architecture

1 Introduction

A medical image such as magnetic resonance imaging (MRI) can depict the
different anatomical structures throughout the human body. The result from
which are used to diagnose and treat disease. One of the significant processes
is image segmentation which is often a prerequisite to further interventions in
many different types of clinical applications.

In this manuscript, we focus on the segmentation of the hippocampus from
MRI. The hippocampus is located in the medial temporal lobe. Changes in the
size and shape of the hippocampus are closely related to Alzheimer’s and other
diseases. Hippocampus segmentation can facilitate possible biomarker identifica-
tion, prognosis and diagnosis of diseases, and optimum treatment identification
[7,10].

The manual segmentation of hippocampus is tedious, time-consuming. Some
traditional automatic segmentation methods are almost based on atlas-based
c© Springer Nature Switzerland AG 2019
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methods [19]. Multiple atlases are separately registered to the new target image
to avoid biased registration [11,16]. A few pieces of research showed that multi-
atlas segmentation approaches significantly have a better performance than a
single atlas [4,19]. Other researches have proposed a patch-based segmentation
(PBS) framework [1,15], because of the challenge in significant intersubject vari-
ability, only some of the subset of atlases are used to improve performance in
both frameworks, which raises a new difficulty in atlases selection.

In recent year, deep learning has revolutionized computer vision with many
excellent examples compared with prior state-of-the-art, especially the convolu-
tional neural network (CNN) studies on image classification [6]. Gradually many
researchers have started applying deep CNN to medical image filed like MRI seg-
mentation lately [2,12,14], and significant progress has been achieved because
of the advent of CNNs [5].

Among the different approaches that use CNNs for medical image segmen-
tation, the U-Net [13] is trained in an end-to-end fashion yielding good segmen-
tation results and this architecture is widely used as their flexible architectures.
However, first, the only one output can not update the weights from multi-scale
feature maps respectively which maybe result in gradient vanishing with the net-
work deepening. Second, in MRI, the number of negative examples is far more
than positive ones, and the latter is also hard to classify accurately, the cross-
entropy loss function can not meet the requirement of accurate segmentation.
In order to address these challenges and apply it into hippocampus segmenta-
tion, we proposed a Side U-Net model with a updated version of class balanced
cross-entropy loss function. More specifically, our major contributions include
the following:

– First, we extended the standard U-Net model for hippocampus segmentation
by introducing multiple side outputs in the expanding path.

– Second, we combined all side outputs to update the weights in multi-scale
feature maps in training phase.

– Third, we proposed a new version of the cross-entropy loss function to solve
the unbalanced class images.

2 Related Works

U-Net Model. The basic image-to-image CNN architecture for many semantic
segmentation problems is the fully convolutional network (FCN) [17], which
consists of cascaded convolution, pooling, and deconvolution layers. The U-Net
consists of a contracting path and an expanding path. In addition it proposed a
skip connection between symmetrical layers in contracting and expanding path.
This connection improves the network performance for remaining some local
features in contracting path and combining them with corresponding upsampling
layers.
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Loss Function. Cross-entropy (CE) loss is for classification (shown in Eq. 1),
where y ∈ {1,−1} specifies the ground truth class and p ∈ [0, 1] is the model’s
estimated probability for class with label y = 1.

CE(p, y) =
{−log(p), if y = 1

−log(1 − p), otherwise.
(1)

Class-balanced cross entropy (BCE) loss function (shown in Eq. 2) performs
well with unbalanced-class image [20] in multi-scale side outputs.

l
(m)
side(W,wm) = −β

∑
j∈Y+

logPr(yi = 1|X;W,w(m))

− (1 − β)
∑

j∈Y−

logPr(yi = 0|X;W,w(m))
(2)

Focal loss [8] was a reshaped cross entropy loss function to down-weight
easy examples and focused on hard ones. The Eq. 3 is the Focal Loss that the
implementation of the loss layer combines the sigmoid operation for computing
p with the loss computation.

FLpt
= −αt(1 − pt)γ log(pt) (3)

3 Proposed Method

3.1 Side U-Net Model

Figure 1 demonstrates our proposed Side U-Net model architecture. Like the U-
Net, our model has a contracting path and an expanding path, five layers for
contracting and four layers for expanding.

In the contracting phase, two convolution and one pool operations are
included in every layer, the output of the second convolution operation in every
layer was connected to the corresponding upsampling layers. For expanding,
every step of upsampling is followed with a side output by deconvoluting to the
same shape as the ground truth, all of four side outputs are fused then convo-
luted one more time so that the final output is a coalition which can take features
in muti-scale maps into account. The weights from different layers can update
by both the final output and side outputs to capture crucial features according
to the corresponding reception field (RF) during training phase.

3.2 Loss Function

The main obstacle of small object segmentation is caused by imbalanced data
distribution and difficulty of classification, because the pixel-wise labeling is
required and small-area organs contribute less to the loss function. In our case,
the area of hippocampus only takes about 0.6% of the whole MRI. The dice loss
can be used to partly solve the issue by transporting pixel-wise labeling issue into
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Fig. 1. There are nine layers in Side U-Net which are separated into two phases, encod-
ing phase and decoding phase. Encoding phase capture the features by convolutional
layer (in different colors) and pooling layers (orange arrows stand for pooling process).
Decoding phase generates the prediction by four different side outputs from different
layers. (Color figure online)

minimizing class-level distribution distance [9]. But it makes the optimization
unstable in the extremely unbalanced segmentation [18]. The focal loss function
we mentioned above in Eq. 3 introduced a multiplier αt(1 − pt)γ to increase the
importance of hard samples. But the multiplier αt was fixed and classed-balance
cross-entropy in Eq. 2 only worked with sigmoid operation in two-classification
problem.

In terms of segmentation there are four types of pixel or four classes of sam-
ple on pixel according to a prediction compared with the ground-truth, true
positive (TP ), true negative (TN), false positive (FP ) and false negative (FN).
In our Side U-Net model, we employed a hybrid loss function consisting of con-
tributions from both dice loss and the updated version of class-balanced cross
entropy loss we proposed. The dice loss learns the class distribution alleviating
the imbalanced pixel issue while the new cross entropy loss forces the model to
learn poorly classified pixel better which also maintains crucial features. The
total loss function is show as following.

TPp(c) =
N∑

n=1,i=1

pn(ci)gn(ci) (4)

FNp(c) =
N∑

n=1,i=1

(1 − pn(ci))gn(ci) (5)

FPp(c) =
N∑

n=1,i=1

pn(ci)(1 − gn(ci)) (6)



Hippocampus Segmentation in MRI Using Side U-Net Model 147

L = Ldice + LNCE

= D + λμ(1 − pn(ci))γ
∑

i

gn(ci)log(pn(ci)) (7)

Where TPp(c) is the true positives which is a vector keeping the prediction
probabilities for class ci, FNp(c) is the probabilities for false negatives and FPp(c)

is the probabilities for false positives. gn(c) is the ground truth for pixel n being
class ci. D = 2TPp(c)/

(
FNp(c) + TPp(c) + FPp(c)

)
, λ is the trade-off between

dice loss Ldice and the new cross entropy loss LNCE , μ is the dynamic multiplier
whose function like the αt in Focal Loss, μ = −(1−TPmean(c)). And TPmean(c)
is an average value of TPp(c).

4 Experiments and Results

4.1 Dataset and Setting

We used the publicly available dataset of T1-weighted MRI brain scans in ADNI
[10]. There are different ages subjects in total dataset and we randomly selected
206 subjects. The segmentation was based on 2D images that resampled the brain
slices to 256× 128 pixels, and affinely align and crop the images to 128× 64. We
obtained anatomical segmentation maps and labels for all scans using Free-Surfer
[3] and transformed them into 2D images. Using one-hot method to generate
ground-truth. The ratio between training and testing set was 0.75, and in training
set we divided it into two parts, training and validation. During every iteration
we shuffled the images for each mini-patch in training set.

We implemented our Side U-Net model with updated cross-entropy loss func-
tion using the TensorFlow framework with Python API and used the gradient
descent method to train model. The learning ratio was set to 0.0001, number of
iterations was 500 and batch was 20. We ran all experiments on NVIDIA-SMI
418.39. And augmented the training data by rotating and flipping.

4.2 Baseline and Comparison Result

Baseline and Evaluation Metrics. We trained and tested the 256 subjects in
various methods including U-Net with cross-entropy (CE), class-balanced cross-
entropy (BCE) and updated class-balanced cross-entropy (UBCE) respectively
and Side U-Net with three types of cross-entropy loss function. In addition, we
fine-tune the size of original U-Net to adjust our dataset.

Dice Similarity Coefficient (dice score) is used to evaluate the accuracy which
is an overlapping coefficient between prediction and ground-truth. The evalua-
tion was based on the whole hippocampus region (left and right), the choroid
fissure region (left and right) and the temporal horn region (left and right),
instead of individual hippocampus structure.
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Comparison Result and Analysis. We list dice scores in three iterations,
100, 300 and 500 in Fig. 2. We can see that:

– only use UBCE (shown in Fig. 3(left)), the result is better than CE and BCE
in three iterations.

– only use Side U-Net architecture (shown in Fig. 3(right)), the result is also
better than the original U-Net architecture. Especially in the last iteration,
the comparison is more obvious.

– use both Side U-Net and UBCE, the dice score is the highest in the all
methods.

and the Fig. 4 shows the dice score in five iterations between 100 and 500
iterations in four parts in MRI, right parts keep increasing iteration by iteration,
while left parts are unstable, but the last results both are better than the others.

Fig. 2. U-Net and Side U-Net with three loss functions.

Fig. 3. The left graph shows dice score only UBCE applied in the U-Net and right
graph shows the result only Side U-Net architecture applied.
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In addition, we test different thresholds (0.6, 0.7, 0.8) of the classification
in pixels and find when threshold is more than 0.8 our model has a better
performance.

Fig. 4. This graph shows the dice score in four parts from 100th to 500th iteration
as the interval of 100. The dice score fluctuates till about 400th iteration and remains
stable and high in 500th iteration.

5 Discussion and Conclusion

In this manuscript, we proposed a novel model Side U-Net model based on U-
Net. And got the average dice score 89.814% which was 0.75% more than U-Net
model in our experiment condition. When enlarge the threshold of classification
in pixels our model are more reliable.
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Abstract. DenseNet, which connects each convolutional layer to all pre-
ceding layers, is a classic model of utilizing skip connections to improve
the performance and learning efficiency of deep convolutional neural net-
works. However, many of the skip connections in DenseNet are redun-
dant, which may lead to huge consumption of computational resources
and computing time. In this paper, we propose an automatic model
compression method based on reinforcement learning to prune redun-
dant skip connections in DenseNet and improve its performance. We call
the proposed method automatic DenseNet sparsification (ADS). ADS
can be implemented with remarkable efficiency, for a 40-layer DenseNet,
only running on 1 single GPU and taking less than 1 day. Experimental
results on image classification tasks show that, the sparsified DenseNet
outperforms not only the original DenseNet, but also related state-of-
the-art deep architectures. Moreover, the sparsified DenseNet has strong
transferability to new image classification tasks.

Keywords: Automatic model compression · Reinforcement learning ·
Sparsified DenseNet · Transferability

1 Introduction

In recent years, deep convolutional neural networks (CNNs) have been increas-
ingly used in many pattern recognition and computer vision applications, such as
image classification, object recognition and semantic segmentation [14]. Specifi-
cally, DenseNet is a classic CNNs model of utilizing skip connections by directly
connecting each layer to all preceding layers (with matching feature map sizes)
[12]. For an L-layer DenseNet, the lth layer has l inputs (consisting of the feature
maps from all preceding dense blocks), and passes on its own feature maps to the
rest L − l layers. This dense connectivity induces O(L2) run-time complexity,
which is excessively expensive. We hypothesize that much of the O(L2) com-
putation is redundant, in that early features are not necessary to be useful for
all the later layers. Moreover, DenseNet with this dense connectivity is usually
restricted by its latency and model size budget in many real-world applications,
e.g., in robotics, self-driving cars and mobile devices [8]. Therefore, it is crucial to
remove redundant skip connections in DenseNet, so as to make it more efficient
and accurate.
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In this paper, we propose an automatic model compression method, called
automatic DenseNet sparsification (ADS), to prune redundant skip connections
in DenseNet and improve its efficiency. The target of ADS is to leverage reinforce-
ment learning (RL) to find a well-performing sparsified DenseNet. In contrast
to many existing network compression approaches [3,5,6,9], ADS can be imple-
mented efficiently without specialized accelerator requirements. For a 40-layer
DenseNet, it can run on 1 single GPU only with less than 1 day. Figure 1(a)
illustrates the RL process of ADS. The RL agent takes actions to prune skip
connections in DenseNet according to a certain compression ratio c, and then
sample candidate sparsified models. The sampled models are then validated to
obtain their prediction accuracies. The reward R, as a function with respect to
the validation accuracies of the sparsified models, is used to update the param-
eters of the RL agent with policy gradient method. This RL process is iterated
to learn better and better compression policies. Therefore, compared with other
compression techniques on DenseNet [11,16], which mainly consider the channel
pruning between adjacent layers, ADS focuses on reducing the redundant skip
connections in DenseNet.

We have conducted extensive experiments to demonstrate the effectiveness
and efficiency of ADS. Experimental results show that the automatically sparsi-
fied DenseNet can outperform not only the original DenseNet, but also related
state-of-the-art networks. Besides, it has strong transferability to new image
classification tasks.

(a) The RL process of ADS (b) The RL agent of ADS

Fig. 1. (a) shows the RL process of ADS; (b) shows the RL agent of ADS.

2 Related Work

In this section, we review some work related to model compression and DenseNet.

2.1 Model Compression

Deep neural networks usually have a substantial number of redundant param-
eters [6,15]. Many network compression methods has been proposed to reduce
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redundancies and computational costs in the networks, e.g., low-rank decomposi-
tion, weight quantization, knowledge distillation and weight pruning [3,5,6,9,15].
However, these conventional network compression methods usually require hand-
crafted heuristics and domain expertise to explore the compression strategies for
each layer, which is time-consuming. Recently, with the development of network
architecture search (NAS) [2,19,20], there has arisen a growing interest in auto-
matic model compression [1,8]. In [1], the authors implemented network com-
pression by leveraging reinforcement learning (RL) and knowledge distillation.
Additionally, He et al. proposed an automatic model compression (AMC) app-
roach to compress deep CNNs with an RL algorithm in a layer-by-layer manner
[8]. Both of these two methods mainly focus on layer removal or layer shrinkage,
but neither of them can be directly used to remove skip connections in Densenet.

2.2 DenseNet

DenseNet concatenates feature maps from all previous layers of each layer as
its inputs [12]. Although DenseNet has relatively better parameter efficiency
compared with other networks including skip connections [7,17], there still exist
redundancies. Some study has been conducted to alleviate the redundancies in
DenseNet. [10] presented the Log-DenseNet, where each layer i was connected to
1 + log(i) previous layers in terms of human-designed principle. [16] proposed a
network slimming method by employing L1 regularization on the scaling factors
γ in the batch normalization (BN) layers to prune unimportant channels. [11]
introduced the CondenseNet by learning group convolutions to remove super-
fluous connections between adjacent layers. Due to utilizing the concatenation
operation, the redundancies in DenseNet are mostly resulted from the skip con-
nections, but the network slimming and CondenseNet methods do not explicitly
perform pruning operations on the skip connections.

3 RL-Based AutoML for DenseNet Compression

In this section, we first formulate skip connections pruning in DenseNet as a rein-
forcement learning (RL) problem. Then, we introduce the automatic DenseNet
sparsification (ADS) framework, which is an RL-based AutoML method for
DenseNet compression. Last but not the least, we describe how to optimize
the policy network during the RL process.

3.1 RL Formulation of DenseNet Sparsification

In an RL problem, an agent transits from the initial state to the final target state
by performing a sequence of actions, and it is updated when receiving a reward.
The goal of the agent is to learn an optimal policy to maximize the expected
reward. The RL process for searching the sparsified DenseNet can be modeled
as a Markov decision process (MDP), M = {S,A, T,R}. We define S,A, T,R
as follows.
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State Space S. The state space S consists of all possible sparsified DenseNet
architectures. That is, by pruning some skip connections, we can obtain a spar-
sified DenseNet s′ from the original DenseNet s (s, s′ ∈ S).

Action Space A. The action space A contains a finite set of actions that can
transform the original DenseNet into a sparsified network architecture. Here, the
actions refer to the operations pruning the skip connections.

State Transition Function F : S × A → S. Concretely, for the original
DenseNet represented by the state s ∈ S, there is always a set of actions A(s) ⊆
A that the agent can take from to transit s to a new state s′, which represents
a sparsified DenseNet.

Reward Function R : S → R. The reward function R is used to measure the
performance of a sparsified DenseNet architecture s′ and update the RL agent.
To find the optimal compression policy π : S → A, the agent should maximize
its expected total reward over all possible action sequences qa1:T :

Rπ = maxEP (qa1:T )[R], (1)

where P (qa1:T ) is the probability of the action sequence taking actions
{a1, . . . , aT } and T is the length of the sequence.

3.2 Automatic DenseNet Sparsification

From a graph theory perspective, the DenseNet architecture can be formulated
as a direct acyclic graph (DAG), and all possible candidate sparsified models
can be obtained by taking subgraphs of the DAG. Hence, we first pre-train a
DenseNet as baseline, and then in the RL process of ADS we force all the sampled
models to directly reuse weights from the pre-trained DenseNet to validate their
performances instead of training thousands of individual candidate models from
scratch. By utilizing this weight sharing mechanism, the RL process of ADS can
be implemented efficiently and save a lot of computational resources. Figure 1(a)
shows the RL process of ADS, and Fig. 1(b) illustrates the RL agent that includes
an encoder network for encoding the architecture and a policy network for taking
actions to prune the skip connections.

The encoder network with an input embedding layer is to learn the architec-
ture state representations of the original DenseNet and the sparsified DenseNet.
For an L-layer DenseNet, we use an L × L binary matrix to represent the skip
connection states between the layers. Each column in the matrix represents the
connection state of a layer. In each iteration, the encoder network takes columns
of the matrix as inputs and learns the representations of the network, which
are then fed into the policy network. We utilize a bidirectional long short-term
memory (Bi-LSTM) to implement the encoder network, which can accurately
learn the network structure information.

Alternatively, the policy network is implemented by an LSTM, whose initial
hidden state is the final hidden state of the encoder network. The policy network
is to make necessary decisions for taking actions to prune skip connections in
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DenseNet. For concreteness, given the initial DenseNet state s, the policy net-
work iteratively determines to (1) select which layer index; (2) prune which skip
connections of this layer. The state encoding is updated iteratively with these
two action steps, and the repeated number of these two action decision steps in
a round is determined according to the compression ratio c. In our work, the
maximum compression ratio c is set to 50%. After taking a round of actions, we
obtain a sparsified DenseNet s′, and its validation accuracy is used to update
the whole encoder and policy network.

3.3 Optimization for the Policy Network

By performing an action sequence qa1:T , we can obtain a candidate sparsified
DenseNet. It is noted that we compute the reward for the final state after
obtaining the sparsified DenseNet in each iteration of the RL process, not for
the intermediate pruning steps. For computing the reward function R, we per-
form a non-linear transformation on the validation accuracy acc of the sparsified
DenseNet:

R = tan(
π

2
× acc). (2)

Suppose that the policy network is parameterized by θ, which needs to be
optimized for the purpose of maximizing the expected total reward. Here, the
expected total reward over all possible action sequences qa1:T is specified as the
objective function with respect to θ:

J(θ) = EP (qa1:T ;θ)[R]. (3)

We iteratively update θ to train the policy network by utilizing the REIN-
FORCEMENT policy gradient method [18]:

∇θJ(θ) = ∇θEP (qa1:T ;θ)[R]

=
T∑

t=1

EP (qa1:T ;θ)[∇θ log P (at|a1:(t−1); θ)R]

≈ 1
m

m∑

i=1

T∑

t=1

[∇θ log P (at|a1:(t−1); θ)Ri],

(4)

where m is the number of sparsified architectures that the agent samples in
one batch, T is the length of the action sequences qa1:T , P (at|a1:(t−1); θ) is the
probability of selecting actions at given a1:(t−1) and θ, and Ri is the reward for
the i-th sparsified DenseNet after validating.

Equation (4) is an unbiased estimate of the gradient, which generally has
a high variance. Following the common practice [2,19], we reduce the variance
by employing an exponential moving average of the previous rewards, as the
state-independent baseline function f :

∇θJ(θ) ≈ 1
m

m∑

i=1

T∑

t=1

[∇θ log P (at|a1:(t−1); θ)(Ri − f)]. (5)
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Algorithm 1 describes the main pipeline of the proposed automatic DenseNet
sparsification algorithm.

Algorithm 1. Automatic DenseNet Sparsification
Input: A pre-trained DenseNet D, Maximum iteration step N , Batch size b and Com-

pression ratio c
Output: The best-performing sparsified DenseNet under compression ratio
1: Compute the number of the agent’s actions, T , according to the compression ratio

c
2: for iteration step=1 to N do
3: Given a set of matrices, M = {M01,M02, . . . ,M0b}, which represents b uncom-

pressed DenseNets D
4: for t=1 to T do
5: The encoder network encodes the initial state of M as S = {St1, St2, . . . , Stb}
6: The policy network takes the state S as input, and zeroes a path in M to get

new M = {Mt1,Mt2, . . . ,Mtb}
7: The sparsified networks represented by M are tested on the validation set to

obtain the reward R
8: The encoder network and the policy network are updated according to R
9: end for

10: end for

4 Experiments

To test the proposed ADS method, we conducted extensive experiments on the
CIFAR-10 and CINIC-10 datasets. In the following, we describe the implemen-
tation details and report the experimental results on the used datasets.

4.1 Implementation Details

Pre-training of DenseNet. Before performing the RL process of ADS, we
pre-trained a 40-layer DenseNet [12] with growth rate k = 12 on the CIFAR-
10 dataset. We trained this DenseNet for 600 epochs using stochastic gradient
descent (SGD) with Momentum optimizer, setting the batch size to 64 and
momentum to 0.9. The learning rate was initialized to 0.1, and was reduced to
0.01, 0.001 and 0.0005 in the 300-th, 475-th and 540-th epoch, respectively.

Since we enforced the sparsified architectures to reuse corresponding weights
of the original network in the RL process of ADS, pruning skip connections from
the original DenseNet had a large possibility to result in severe degradation of
the network performance. In order to ensure the sparsified architectures to be
robust to such changes, we incorporated the path dropout technique [20] into
the training of the original DenseNet. Specifically, we disabled path dropout at
the beginning of the training, and gradually increased the rate p of path dropout
over time in a linear scheme. The maximum of p was 0.6.
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Implementation Details of ADS. In ADS, the encoder network was a Bi-
LSTM with 50 hidden units, and its embedding size was 16. The policy network
was an LSTM with 100 units. They were trained using the Adam optimizer [13]
with an initial learning rate of 0.002. At each iteration, the RL agent sampled
10 sparsified architectures at compression ratio 10%, 20%, 30%, 40%, and 50%.
We ran 300 iterations in total (sampling 15,000 sparsified architectures). Since
the sampled networks directly reuse the weights from the pre-trained DenseNet
rather than training from scratch, ADS is implemented with remarkable effi-
ciency. For a 40-layer DenseNet, running on 1 single NVIDIA 1080Ti GPU within
less than 1 day.

After the RL process of ADS, we selected the best-performing sparsified mod-
els under each compression ratio of 10%–50% to do further training. We trained
these sparsified architectures for 300 epoches without pushing path dropout. We
employed the Momentum optimizer with momentum 0.9, and set the batch size
to 64. The learning rate was initialized to 0.1, and was reduced to 0.01, 0.001 in
the 150-th and 225-th epoch, respectively.

4.2 Experimental Results Obtained on the CIFAR-10 Dataset

The CIFAR-10 dataset consists of 50,000 training images and 10,000 test images,
belonging to 10 classes. Each RGB image has a size of 32×32×3 pixels. We ran-
domly held out 45,000 training samples for pre-training the original DenseNet,
and used the remaining 5,000 samples for validating the performance of the spar-
sified architectures in the RL process of ADS. For preprocessing data augmen-
tation, we normalized each image using channel means and standard deviations.
And more, we followed the standard scheme to zero-pad the images with 4 pixels
on each side, then randomly crop them to produce 32 × 32 images, and hori-
zontally mirror them with probability 0.5 for data augmentation [12]. After the
RL process of ADS, we used all the training images including the validation set
to do further training on the best-performing sparsified model and tested the
network performance on the test set.

Table 1. Error rate (%) obtained on the CIFAR-10 dataset. RL-err refers to the
validation error in the RL process of ADS, and FT-err refers to the test error after the
further training process.

Compression ratio RL-err FT-err #Params (M)

10% 5.89 5.86 0.91

20% 5.70 5.66 0.82

30% 5.74 5.67 0.74

40% 5.99 5.83 0.65

50% 6.63 6.32 0.56

Baseline – 6.43 1.0
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The pre-trained DenseNet achieved an accuracy of 93.57% (our baseline).
In Table 1, we listed the best results under each compression ratio of 10%–50%
in the RL process of ADS and after the further training process. We can see
that, the results after further training are all better than the baseline, which
demonstrates that the skip connections in the original DenseNet are redundant
and pruning them can improve the performance. Furthermore, the results in
the RL process and that after further training only differ slightly, which shows
the effectiveness of both the parameter sharing strategy and the proposed ADS
method.

RL vs RS. We compared the RL-based ADS and random search based (RS-
based) ADS, which are visualized in Fig. 2(a) and (b), respectively. We can
clearly see that RL-based ADS gradually improves its performance and maintains
its stability, but RS-based ADS performs worse than RL-based ADS and is not
stable.

(a) RL-based ADS (b) RS-based ADS

Fig. 2. Mean accuracy against the iterative steps. (a) RL-based ADS, where we sampled
the sparsified architectures under compression ratio c = 10%, 20%, 30%, 40% and 50%,
respectively. (b) RS-based ADS, with the same compression ratio.

Extension. In order to further compress DenseNet and improve its perfor-
mance, we consider to apply L1-norm regularization (please refer to Sect. 2.2) on
the sparsified DenseNet to do channel-level pruning in each layer, and widen the
layers by a width factor ω to improve its performance. Towards a size-accuracy
trade-off, we used the best-performing sparsified DenseNet (L = 40, k = 12) with
compression ratio c = 40% to conduct experiments on the CIFAR-10 dataset.
For the application of the L1-norm regularization, the experimental settings fol-
lowed that of [16]. The scaling factors γ of all the BN layers were initialized to
0.5, and the sparsity hyper-parameter λ to 10−5. We used a global pruning ratio
to prune unimportant channels. For example, “L1-70%” means the global prun-
ing ratio is 70%. For the width factor ω, it was used to increase the number of
filters in each dense block by increasing the growth rate k. We set two schemes:
(1) A: k = ω · k0; (2) B: k = ωb−1 · k0, where k0 refers to the initial growth rate
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(i.e. k0 = 12) and b = 1, 2, 3 denotes the index of the dense block. For instance,
“Sparsified DenseNet (A)” stands for using network widening scheme A; “Spar-
sified DenseNet (B + L1-70%)” refers to using network widening scheme B and
L1 regularization with pruning 70% unimportant channels. In the comparison
experiments, we set global pruning ratio to 70%, and ω = 2.

In Table 2, we show the comparison results between the sparsified DenseNet
and the state-of-the-art deep architectures, including that obtained by com-
pressing DenseNet and by other compression techniques on the VGGNet and
ResNet, on the CIFAR-10 dataset. Note that, a Log-DenseNet [10] is noted by a
pair (n, k), where n refers to the number of layers in each of the 3 dense blocks,
and k denotes the growth rate. The layers and growth rate of Log-DenseNet-
40 (12, 24) is the same with the sparsified DenseNet using widening scheme A
with ω = 2. From Table 2, we can easily see that the automatically sparsified
DenseNet achieves the highest classification accuracy among all the compared
deep architectures, which also indicates the effectiveness of the proposed ADS
method.

Table 2. Comparison results between the sparsified DenseNet and the state-of-the-art
methods on the CIFAR-10 dataset.

Model Test error (%) #Params (M)

DenseNet-40 (L1-70% in [16]) 5.65 0.35

CondenseNet-94 [11] 5.19 0.66

Log-DenseNet-40 V1 (12, 24) [10] 5.98 –

Log-DenseNet-40 V2 (12, 24) [10] 5.12 –

VGGNet-16 [15] 6.60 5.40

VGGNet-19 [16] 6.20 2.30

ResNet-34 (N2N learning) [1] 7.65 2.07

ResNet-50 (AMC) [8] 6.45 –

ResNet-56 [15] 6.94 0.73

ResNet-164 [16] 5.27 1.21

Sparsified DenseNet 5.83 0.65

Sparsified DenseNet (L1-70%) 5.66 0.25

Sparsified DenseNet (A) (12, 24) 4.50 –

Sparsified DenseNet (A + L1-70%) 4.66 0.96

Sparsified DenseNet (B + L1-70%) 5.12 1.01

4.3 Experimental Results Obtained on the CINIC-10 Dataset

The CINIC-10 dataset contains 270,000 images in total, 60,000 images from the
entirety of the original CIFAR-10 dataset and the remaining 210,000 images from
the down-sampled ImageNet dataset [4]. Each image consists of 32×32×3 pixels,
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belonging to 10 classes. This dataset has been split into 3 equal-sized training,
validation, and test subsets (9,000 images per class within each subset). The
preprocessing and data augmentation applied on this dataset were the same as
that on CIFAR-10. In this experiment, we transferred the sparsified DenseNet
(c = 40%) learned on the CIFAR-10 dataset to the CINIC-10 application. We
trained the sparsified DenseNet for 300 epoches with the Momentum optimizer,
with batch size 64 and momentum 0.9. The initial learning rate was set to 0.1,
and was reduced to 0.01, 0.001 in the 150-th and 225-th epoch, respectively.

We compared the sparsified DenseNet with MobileNet [4], and listed the
results in Table 3, where the column “Train” and “Train+Val” refers to the
test error (%) when training the sparsified DenseNet on the training set and
the training and validation sets, respectively. From Table 3, we can see that
the sparsified DenseNet outperforms MobileNet on this task in terms of both
classification accuracy and the number of parameters. These results also provide
evidence for that the sparsified DenseNet learned with the proposed ADS method
on the CIFAR-10 can generalize well to other image classification problems.

Table 3. Results obtained on the CINIC-10 dataset.

Model Train Train+Val #Params(M)

MobileNet [4] 18.00 19.55 3.20

Sparsified DenseNet 13.12 – 0.65

Sparsified DenseNet (L1-70%) 13.11 – 0.25

Sparsified DenseNet (A) – 18.40 2.57

Sparsified DenseNet (A + L1-70%) – 18.60 0.96

5 Conclusion

In this paper, we propose an RL-based automatic DenseNet sparsification (ADS)
method to automatically prune redundant skip connections in DenseNet. The
sparsified DenseNet can outperform not only the original DenseNet, but also
related state-of-the-art deep architectures. Moreover, ADS can be implemented
with remarkable efficiency, for a 40-layer DenseNet, only running on 1 single
GPU with less than 1 day. In addiction, the sparsified DenseNet learned by
ADS has strong transferability to new image classification applications.
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Abstract. Decision making, as one of the most essential functions of the
human brain, is the key neural process from sensory stimuli to neuropsycho-
logical choices till actions. More recently, numerous growing neurophysiology
and neuroscience experimental evidence has indicated that the human brain
performs near-optimal Bayesian inference in various tasks, such as perception,
learning and decision making. In order to further understand the computational
mechanism of decision-making circuit, particularly from the perspective of
biological plausibility and interpretability, this paper proposes a novel brain-
inspired decision-making circuit based on spiking neural networks for percep-
tual decision-making tasks. The proposed model employs a winner-take-all
(WTA) mechanism and reward-modulated spike-timing-dependent plasticity
(STDP) related with Bayesian computation to simulate the neural representation
of decision-making. Experiments in the random-dot motion discrimination task
demonstrate that the proposed spiking decision-making circuit exhibits WTA
property and has a better performance compared with unsupervised STDP.

Keywords: Spiking decision-making circuit � Reward-modulated spike-
timing-dependent plasticity � Winner-take-all � Bayesian computation

1 Introduction

Due to the high complexity of the human brain, exploring and revealing how the brain
works has become one of the major challenges in neuroscience research. Decision-
making is one of the basic functions of central nervous systems, ranging from simple
perceptual decisions to advanced cognitive functions. When making a decision, our
brain first extracts the useful information from the complex environments full of
uncertainty and then integrates a low-level stimulus with evidence accumulation,
finally makes a higher-level decision. Recently, increasing psychological and behav-
ioral experiments have shown that our brain performs near-optimal probabilistic
inference [1, 2] - more akin to a Bayesian machine, that is, Bayesian computation of
perceptual decision making provides a probabilistic relationship between noisy sensory
input and the accumulating sensory evidence [3] to make a final and optimal decision.
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In the last few years, spiking neural networks (SNNs) with Bayesian inference have
been widely used in perceptual decision-making circuit due to its known neuronal
properties. For instance, in [4, 5] a two-level recurrent spiking neural network was
proposed to carry out Bayesian computation for a visual motion detection task. Beck
et al. [6] presented a hierarchical network of decision making with middle temporal
(MT) and lateral intraparietal (LIP) layer. In their work, the firing rates of MT neurons
encode the external stimulus, while LIP neurons only need to integrate the activity of
MT neurons so as to infer the posterior of the stimulus. More specifically, Nessler et al.
[6–8] showed that Bayesian computation also emerges in the winner-take-all
(WTA) circuit through a variant of the spike-timing-dependent plasticity (STDP) rule.

To better understand the computational mechanism of decision-making circuit, a
brain-inspired SNN is presented to analog actual decision-making circuit corresponding
to specific regions of the cerebral cortex. The network has recurrent excitation and
WTA competition mediated by lateral inhibition. In addition, a dopamine system is
incorporated into the circuit. A reward modulated STDP (R-STDP), which combines
unsupervised STDP with a reinforcement signal used for modulating the synaptic
weights, is employed to train the SNNs model. Besides, this paper provides a Bayesian
insight into the role that how such a WTA decision-making circuit of spiking neurons
infers the posterior probability distribution over hidden causes given external input
patterns through the firing probabilities of excitatory neurons and synaptic learning
rule. Experimental results in a random-dot motion discrimination task indicate that
decision-making circuit equipped with R-STDP learning rule exhibits WTA competi-
tion and outperforms that with STDP learning rule.

The remainder of this paper is organized as follows. Section 2 introduces the
spiking neuron model and synaptic learning rule that we adopted in our work. Then a
novel decision-making circuit model is proposed in Sect. 3. After that, we evaluate the
performance of the proposed model in a perceptual decision task in Sect. 4. Finally, we
conclude our work in Sect. 5.

2 Spiking Neural Network

SNNs, as the third generation of neural networks, are used to simulate the decision-
making circuit in the human brain due to its biological plausibility. The spiking
decision-making circuit used in our model is inspired by Wang’s work [9, 10]. In this
section, we introduce the single spiking neuron model and synaptic learning rule of the
proposed model, respectively.

2.1 Spiking Neuron Model

Each neuron in the decision-making neural circuit is simulated by the interconnected
conductance-based leaky integrate-and-fire model [11], which contains NE pyramidal
neurons (excitatory) and NI interneurons (inhibitory) (normally, NE:NI = 4:1) for net-
work balance. The membrane potential V(t) obeys the following dynamics
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Cm
dVðtÞ
dt

¼ �gLðVðtÞ � VrestÞ � IsynðtÞ ð1Þ

where Cm is the membrane capacitance, gL is the leak conductance, Vrest is the resting
potential. When the membrane potential reaches a threshold, i.e., V(t) > Vth = −50
mV, an action potential occurs, that is a neuron fires, and then V(t) is set to its reset
potential Vreset = −55 mV for a refractory period sref, during which time the V(t) re-
mains as Vreset. The total synaptic current Isyn to excitatory and inhibitory neurons are
as follows

IEi;synðtÞ ¼ ðIE!E
i;AMPA þ IE!E

i;NMDA þ II!E
i;GABAÞþ Iext!E

i;AMPA þ Inoise!E
i;AMPA ð2Þ

IIi;synðtÞ ¼ ðIE!I
i;AMPA þ IE!I

i;NMDA þ II!I
i;GABAÞþ Inoise!I

i;AMPA ð3Þ

where the first three terms represent excitatory postsynaptic currents (EPSCs) mediated
by AMPA and NMDA receptors, and inhibitory postsynaptic currents (IPSCs) medi-
ated by GABA receptors. Iext!E

i;AMPA represents external AMPA-mediated input signals
(visual stimulus) applied to the excitatory populations. Inoisei;AMPA represents that all neu-
ronal populations receive a background noise mediated by AMPA, which is modeled as
uncorrelated Poisson spike trains. Three types of receptors for synaptic currents,
AMPA, NMDA and GABA are described by

Ii;AMPA tð Þ ¼ gAMPA Vi tð Þ � VEð Þ�si;AMPA tð Þ ð4Þ

Ii;NMDA tð Þ ¼ gNMDA Vi tð Þ � VEð Þ
1þ Mg2þ½ �e�0:062Vi tð Þ=3:57 �si;NMDA tð Þ ð5Þ

Ii;GABA tð Þ ¼ gGABA Vi tð Þ � VIð Þ�si;GABA tð Þ ð6Þ

where reversal potentials VE = 0 mV for excitatory synapses and VI = −70 mV for
inhibitory synapses. gAMPA/NMDA/GABA is the synaptic efficacy, [Mg2+] = 1 mM is the
extracellular magnesium concentration. The synaptic gating variable �si tð Þ is the fraction
of open channels and �si tð Þ ¼

P
j wijsjðtÞ for the recurrent connections, where wij is the

synaptic weight between presynaptic j and postsynaptic i neuron, sj depends on the
spikes of the presynaptic neuron j, where j runs over all the presynaptic neurons.
For AMPA and GABA receptor, the gating variable is given by

_s ¼ � s
ss

þ
X

k
dðt � tkÞ ð7Þ

for NMDA receptor-mediated currents, the gating variable follows

_s ¼ � s
ss

þ axð1� sÞ ð8Þ
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_x ¼ � x
sx

þ
X

k
dðt � tkÞ ð9Þ

where d is the Dirac delta function, and tk is the firing time of the kth presynaptic
neuron. a = 0.5 kHz, ss is the decay time constant, 2 ms for AMPA, 100 ms for
NMDA, and 10 ms for GABA, sx = 2 ms regulates the rise time of NMDA channels.

2.2 Reward-Modulated Synaptic Plasticity

Numerous studies show that different human behaviors are driven by changes in the
number of synaptic connections and synaptic strengths (weights) between presynaptic
neurons and postsynaptic neurons, which is called neural plasticity [12]. So far, STDP
is a widely used an unsupervised learning rule, and it mainly depends on the spike time
interval between pre- and post-synaptic neuron. One kind of the original STDP formula
is described as

STDP Dtð Þ ¼ Aþ exp Dt=sþð Þ; if Dt\0
�A�exp �Dt=s�ð Þ; if Dt� 0

�
ð10Þ

As can be seen from Eq. (10), the changes of synaptic weights are exponentially
related to the time interval Δt of pairs of pre- and post-synaptic spikes. Briefly, if the
presynaptic spike arrives before the postsynaptic spike, long-term potentiation
(LTP) occurs, otherwise long-term depression (LTD) occurs. Where s+ and s− are time
constant to determine temporal window for synaptic modifications. A+ and A− are
learning rates, both representing the maximum amounts of synaptic modification.

Moreover, reward system of our brain plays a critical role in decision-making
process. What has increasingly been found in physiological experiments is that a kind
of neuromodulator, namely dopamine (DA), is one of the important chemical sub-
stances involved in the reward system [13]. Dopaminergic neurons could encode some
behaviors related to rewards (reward signals) by modulating synaptic plasticity at
corticostriatal synapses [14, 15], including simple decisions based on perceptual
stimulus or advanced decisions involving working memory. This reward mechanism
relies on the dopamine modulation of synaptic modification created by STDP. R-STDP
adopted in our work for training SNNs collects the weight changes in an eligibility
trace, instead of instantaneously applying these weight changes to synapses as men-
tioned in the classic STDP, it can be written as

_w ¼ e� ðd � bÞ ð11Þ

According to the Eq. (11), the synaptic weight changes are proportional to the
product of eligibility trace e with a reward signal d, where e denotes the eligibility trace
of synapse j-i at time t which collecting weight changes given by STDP(Dt) mentioned
as Eq. (10) and reward function d describes the extracellular concentration of DA.
d − b signals a deviation of the reward d from a baseline b [16]. The baseline ensures
that the synaptic weight does not encounter significant modification unless a reward is
issued. The eligibility trace and reward function can be defined as
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_e ¼ � e
se

þ STDPðDtÞdðt � tpre=postÞ ð12Þ

_d ¼ � d
sd

þ dðt � tnÞ
sd

ð13Þ

where se is the time constant of the synaptic eligibility trace indicating the exponential
decay rate of the eligibility trace function, d is the Dirac delta function, sd is the time
constant of neuromodulator concentration, tn represents the spike times of the neuro-
modulator (dopaminergic neurons).

In short, triggered by dopaminergic neurons, effects of STDP events are collected in
an eligibility trace and synaptic weight changes are induced by a reward signal, see
Fig. 1 for an illustration of the R-STDP learning rule. Each pre- and post-synaptic spike
pair contributes to the eligibility trace. LTP and LTD can be promoted by a reward that
is issued within the time of an active eligibility trail.

3 Spiking Decision-Making Circuit Model

In this section, we introduce a spiking decision-making model arranged in a WTA
circuit and discuss how our model can be implemented with biologically realistic
mechanisms. Particularly, we will show how Bayesian computation occur in the
synaptic plasticity.

3.1 The Neural Circuit of Decision Making

Here, we develop a computational model of perceptual decision-making circuit of
spiking neurons and synaptic plasticity to execute a two-alternative forced-choice
motion discrimination task. Specifically, we use a simplified SNN to perform per-
ceptual decision making, which consists of input encoded layer and output decoded
layer (namely decision-making layer) with recurrent connections between all these

Fig. 1. Illustration of a reward-modulated STDP learning rule.
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neurons. Two selective subpopulations of excitatory neurons in the decision-making
layer compete against each other via lateral inhibition from a group of inhibitory
neurons. Lateral inhibition is generally considered to stabilize the activity of excitatory
populations [17].

The decision-making process can be divided into the following stages: (1) After the
external sensory stimulus onset, two signals are encoded to population firing activity and
can be represented by probability distributions over the stimulus. (2) These two signals
then project to the excitatory populations that compete with each other through the
inhibitory interneurons, respectively. The dopamine system brings about dopaminergic
plasticity at corticostriatal synapses that impacting the evidence accumulation process
during decision-making. Such synaptic learning process will modify the synapses from
input signals to the excitatory pool. (3) Consequently, the activity in one excitatory
population increases, and the other population suppresses. The final decision of the
circuit depends on which neural population has a higher population firing rate. In a word,
the cortical network model of perceptual decision-making trained through a reward-
based STDP learning rule can discriminate external input patterns which are encoded
into spiking activity to ensure that definitive decision is made between alternatives.

As illustrated in Fig. 2, the connections from pyramidal neurons to other pyramidal
neurons and interneurons are mediated by AMPA and NMDA receptors. The con-
nections from interneurons to pyramidal neurons and other interneurons are
GABAergic. The circuit receives external input and background noise mediated
exclusively by AMPA receptors. According to the selectivity of excitatory neurons in
WTA circuit, the network can be divided into N subpopulations (N = 2 here). And NS
represents the non-selective neuronal group. The choice of the decision in trials
determines the reward and thereby influences the DA system. The dopamine activity
modulates the decision process by changing the synaptic weights through R-STDP
learning rule.

Fig. 2. The cortical neural circuit model of decision-making with two alternatives.
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In reality, we map the simplified network model of spiking neurons into a sensory
area and its associative decision cortical area in visual cortex, such as MT and
LIP. A large body of evidence indicates that neurons in the sensory area MT encode the
motion stimulus, and neurons in a possible decision area LIP integrate the accumulated
sensory evidence downstream from MT [18, 19]. Therefore, we divide the decision-
making circuit into a sensory circuit (MT) and an integration circuit (LIP). In order to
make a final decision, the circuit employs WTA competition between two decision
populations through the same lateral inhibition. Furthermore, the accumulated evidence
is transmitted to the downstream areas for further computation.

3.2 Underlying Bayesian Computation

Previous works have shown that a network with STDP and lateral inhibition can
produce directional selectivity similar to the visual cortex in the brain. STDP learning
rule has been proved to approximate Bayesian computation using expectation-
maximization algorithm [7, 8]. In the Bayesian framework, a posterior probability
distribution over hidden causes is obtained by the product of the prior knowledge
distribution and the likelihood of the sensory observation for each possible cause.

The spiking decision-making circuit architecture is sketched in Fig. 3. Since
external inputs are encoded through population coding represented by spiking input
neurons y1, …, yn, we define that, when the output layer emits an output spike at time t,
as in Eq. (14), the firing probability ptk of the kth output neuron zk in a WTA circuit is
equivalent to the posterior distribution over the hidden cause k, given the current
evidence encoded in the input activations y(t). The posterior probability of hidden
cause k as pðzk ¼ 1jyðtÞ;wÞ is given by Bayesian inference:

Fig. 3. Architecture of spiking decision-making circuit
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pðzk ¼ 1jyðtÞ;wÞ / pðzk ¼ 1jwÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{prior

: pðyðtÞjzk ¼ 1;wÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{likelihood

ð14Þ

We assume that the membrane potential of each neuron zk is calculated as a
summation of excitatory inputs from the presynaptic neurons through synaptic weights
wij. In the WTA circuit, the instantaneous firing rate of each excitatory output neuron
depends exponentially on the membrane potential and lateral inhibition. Based on the
theoretical work on spike-based Bayesian inference [6, 8], the firing probability of each
excitatory output neuron k at time t can be written as

ptk ¼
euiðtÞPk

l¼1
eulðtÞ

¼ ewi0
z}|{prior

: e
Pn

j¼1
wijyjðtÞ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{likelihood

pðyðtÞjwÞ|fflfflfflfflffl{zfflfflfflfflffl}
normalization

¼ pðzk ¼ 1jyðtÞ;wÞ ð15Þ

The synaptic weights wij in feed-forward synapses from presynaptic input neurons
to postsynaptic output neurons of the network can be explained as an implicit neural
encoding of likelihood distributions pðyðtÞjzk ¼ 1;wÞ. wk0 represents the intrinsic
excitability of the neuron zk. The inference process of the Bayesian model is performed
through the dynamic activities of the proposed WTA circuits. The learning purpose of
the network is to ensure that the marginal distribution of the Bayesian model
approximates the actual distribution of external inputs as closely as possible, by con-
tinuously updating synaptic weights through the synaptic learning rule.

4 Experiments and Results

To verify the WTA property and R-STDP performance of the proposed decision-
making circuit, we test our model in a random-dot visual direction discrimination task
[18], which is widely used in perceptual decision-making experiments.

4.1 Random-Dot Motion Discrimination

In the experiment, the model is required to make a two-alternative forced choice
(2AFC) about the coherent direction, which is assumed to be either rightward or
leftward in our simulation. Neurons in area MT receive external visual inputs modeled
as time-varying currents induced by random-dot motion stimuli (leftward and right-
ward). Then the encoded motion information is transmitted to two competing popu-
lations of excitatory neurons in the decision-making layer like LIP, respectively.

During stimulation, both excitatory units receive stochastic Poisson input trains.
Two signals, representing external sensory inputs induced by the leftward and right-
ward moving dots, are projected into left- and right-preferring cortical areas E1 and E2,
respectively. The distributions of time-varying stimuli are Gaussian with a mean rate l
and a standard deviation r. The mean firing rate l of each input neuron linearly
depends on the coherence level c or motion strength which is the percentage of dots
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that move coherently, l ¼ l0 þ lA � c for the preferred direction and l ¼ l0 � lB � c
for non-preferred direction. l0 (20 Hz) is the baseline input for the random motion, lA
(60 Hz) and lB (20 Hz) are factors of proportionality [20].

4.2 Simulation of the Visual Discrimination Experiment

In the visual random-dot motion discrimination task, after repeating the experiment for
hundreds of times, we obtain the average performance. Note that the two selective
excitatory populations compete with each other over the simulation periods. It will
eventually lead to the situation that the activity in one excitatory population continu-
ously increases, whereas the other is inhibited through lateral inhibition. When the
mean population firing rate of one decision population reaches a decision threshold of
population firing activity, a decision is finally made.

As shown in Fig. 4, raster plot shows the spiking activity of neurons in the two
selective populations E1, E2 and inhibitory pool. The choice of the decision-making
circuit depends on the mean firing rate of selective populations. Although not receiving
external inputs, the interneurons also exhibit stable ramping activity. Furthermore, we
test several different levels of motion strength c in trials. The results show that it is
easier to make a decision in trials with a strong motion strength, compared to a weak
condition.

Fig. 4. Neural activity of two selective populations and interneurons in the decision-making
circuit. Top: raster plot. Bottom: population firing rates. NE = 800, NI = 200.
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4.3 Simulation of Learning with Reward-Modulated STDP

In our decision-making circuit, R-STDP occurred during the learning process at cor-
ticostriatal synapses from external inputs to the selective pyramidal neuronal groups. If
a decision is made, the dopamine neurons release a reward signal, then the synaptic
weights between the pre- and post-neurons are modified by setting the extracellular
concentration of DA. The selected frequency of decision A and B are calculated in
n trials with and without reward signals, where n = 100 in our experiment. As shown in
Fig. 5, after training with R-STDP, the selected frequency of decision A increased
significantly to 87%. Obviously, R-STDP has better performance than STDP. The
results indicate that dopaminergic plasticity can influence the evidence accumulation
process and change the competitive behavior in the decision-making process.

5 Conclusion

In this paper, we have proposed a biologically inspired decision-making circuit model
which can perform Bayesian inference through R-STDP. The experimental results in
the random-dot motion discrimination task have demonstrated that the proposed
spiking decision-making circuit trained by R-STDP learning rule exhibits a kind of
WTA competition and outperforms STDP rule, which indicates the superiority of the
proposed model in perceptual decision making. Our future work will focus on hier-
archical SNNs equipped with R-STDP, which has already shown a potential compu-
tational ability for modeling cortical processing.
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Abstract. Event-driven mode of computation provides SNNs with
potential to bridge the gap between excellent performance and compu-
tational load of deep neural networks. However, SNNs are difficult to
train because of the discontinuity of spike signals. This paper proposes
an efficient framework for CNN-to-SNN conversion, which converts pre-
trained convolution neural networks (CNNs) into corresponding spiking
equivalents. Different from previous work, this paper focuses on the con-
version of deep CNN architectures, such as Inception and ResNet. As
networks in conversion are rate-encoding, a novel weight normalization
method is employed to approximate the spiking rates of SNNs to the
activations of CNNs. And, inspired from homeostatic plasticity in neural
system, a compensation approach is introduced to reduce the deteriora-
tion of spiking rates at deep layers and accelerate the inference of SNNs.
Experimental results on CIFAR dataset show that the SNNs built by
the conversion framework achieve better performance than those trained
with spike-based algorithms. In particular, the accuracy gap between
converted SNNs and original CNNs is further reduced, which is helpful
for large-scale employment of spiking networks.

Keywords: Spiking neural network · Homeostatic plasticity ·
Brain-inspired computing · Object classification

1 Introduction

Spiking neural networks (SNNs) have gained great attentions recently as they are
more brain-inspired and biologically plausible. Signals in SNNs are transmitted
as discrete spikes between layers, and neurons are sparsely and asynchronously
activated by afferent spikes [1]. This event-based mode of operation enables SNNs
more powerful in mobile and embedded applications where real-time computing
and low computational cost is necessary [2]. Studies show that SNNs with tens
of thousands of neurons can be emulated on large-scale neuromorphic spiking
platforms such as TrueNorth [3] and SpiNNaker [4], with orders of magnitude
less energy consumption than on contemporary computing hardware. Meanwhile,
deep neural networks require substantial computational costs to do inference
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although they have achieved great success on many challenging tasks. Thus, it
would be advantageous if deep network architectures can be implemented into
efficient spiking forms while still producing the excellent performance.

SNNs are not suitable for training with backpropagation due to the disconti-
nuity of spike signals, and the spike-based learning algorithms, such as Spiking-
Timing-Dependent Plasticity (STDP) [5], are still ineffective in training deep
networks. Driven by this, a particular category of conversion methods are devel-
oped, which train a convolution neural network (CNN) using standard training
schemes and subsequently map the parameters to an SNN of same structure.
Early studies on conversion began with the work of Perez-Carrasco et al. [6],
where CNN units were translated into spiking units with leaks and refractory
periods. Cao et al. presented the relation between firing rates of spiking neu-
rons and the activations of rectified linear units (ReLUs) in network conversion
[7]. Diehl et al. significantly improved the performance of converted SNNs by
introducing weight normalization, which optimize the ratio of synaptic weights
to spiking threshold [8]. Lately, Rueckauer et al. analyzed the approximation
of the firing rate of spiking neuron to the corresponding activation of ReLU
unit in theory, and derived a measure of approximation errors [9]. In addition,
they improved the implementation of spiking max-pooling, softmax and neuron
biases in SNNs and the performance loss arising from CNN-to-SNN conversion
is reduced. Recently, Hu et al. presented a shortcut connection normalization for
ResNet and achieved high accuracy on CIFAR dataset with spiking ResNet [10].

In order to enable deeper and more powerful SNNs, this paper proposes
a framework for conversion of Inception [11–13] and ResNet [14] which have
achieved the state-of-the-art performance in many benchmarks. In particu-
lar, Inception and Residual architectures are composed of parallel computing
branches, and hundreds of layers are stacked in networks. As SNNs in the conver-
sion scheme are rate-encoding, the firing rates of spiking neurons should approx-
imate to the corresponding activations of CNN for the purpose of maintaining
the network performance. On one hand, a novel weight normalization method,
as an extension of the work by Diehl et al. [8], is proposed to normalize the
CNN activations. This method considers the characteristics of parallel branches
and can avoid distorting the feature maps at concatenation stage. On the other
hand, a compensation approach, inspired from homeostatic plasticity in neu-
ral system [15], is introduced to reduce the deterioration of firing rates at deep
layers of SNN through adapting the spiking threshold. The proposed methods
are evaluated with several efficient CNN architectures, such as Inception-v4 and
Inception-ResNet-v2 [13], on CIFAR benchmark [16]. Results show that the per-
formance of converted SNNs is nearly comparable to the original CNNs, and
much higher than SNNs trained with spike-based methods.

2 Methods for Conversion of CNN into SNN

The main differences between SNNs and CNNs are the forms of input and neural
activation. SNNs operate on dynamic binary spike trains as a function of time,
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while the input and activation of CNNs are static analog values without the
notion of time. In our framework for CNN-to-SNN conversion (Fig. 1), two neural
networks have the same architecture, and the network parameters (weights and
biases) of CNN are trained with backpropagation and then mapped into an
equivalent SNN. Static inputs of CNN are rate-encoded as Poisson spike trains
into the first hidden layer of SNN. Firing rates of spiking neurons correspond to
the static activation of CNN neurons and the approximation errors between them
are the main source of performance loss in conversion [9]. Weight normalization
(Sect. 2.2) is aimed at reducing the approximation errors through rescaling the
network parameters and normalizing the activations. Compensation approach
(Sect. 2.3) adapts the spiking threshold of neurons to modulate the firing rates
of each layer. Here, we start with the overview of conversion as following in
Sect. 2.1.

Fig. 1. Scheme of CNN-to-SNN conversion for Inception and Residual architectures

2.1 Spiking Implementation of CNN Operations

Input and Output Representation. Neurons in SNNs receive and transmit
binary spikes at each time step, while in CNNs, inputs and outputs of neurons
are both analog values. In this paper, networks are evaluated on image datasets
and an rate-encoding operation is utilized to encode the static pixel intensity
into spike trains. Pixel values of an image are normalized and considered as
probabilities in a Poisson event-generation process where at each time step,
spikes of input neurons are triggered based on their individual probability. This
process ensures that the average number of input spikes in SNN is proportional
to the intensity of corresponding image pixel of CNN. Meanwhile, with Poisson-
generated spike trains being fed into SNN, spikes will be produced at the network
output. Inference is implemented based on the cumulative spike count of neurons
at the output layer over a given time-window. Generally, the accuracy of SNN
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goes higher as the time-window becomes larger. This characteristic of SNN is
inherent and known as accuracy-latency trade-off.

Neuron Operations. CNN-to-SNN conversion methods generally consider
Rectified Linear Unit (ReLU) as the activation function of CNN. Not only are
ReLU neurons computationally cheaper and not subject to gradient saturation,
but also they bear functional equivalence to an Integrate-Fire (IF) spiking neuron
without any leak and refractory period [7]. IF neuron keeps track of a membrane
potential, which integrates presynaptic spikes at each time step. Once the mem-
brane potential accumulates beyond the spiking threshold, the neuron fires a
spike and the membrane potential is reset to zero.

For a neural network, let W l and bl denote the synaptic weights and biases
of layer l, l ∈ {1, . . . , L} respectively. |l| is the number of neurons in layer l. The
ReLU activation of ith neuron in layer l is computed as:

al
i := max(0,

|l−1|∑

j=1

W l
ija

l−1
j + bl

i) (1)

While the dynamics of IF neuron as a function of time t can be described as:

dvl
i(t)
dt

=
|l−1|∑

j=1

W l
ijθ

l−1
t,j + bl

i, θl
t,i =

{
1, vl

i(t) > Vthr

0, else.
(2)

Where vl
i denotes the membrane potential and θl

t,i represents the occurrence
of a spike at time step t. As the neuron model in this paper contains no time
constants, the firing rate of a spiking neuron is defined as r(t) = N(t)/t, where t
denotes the number of time steps and N(t) is the number of spikes within time
t. The values of firing rate are in range of [0, rmax], where rmax denotes the max
firing rate, i.e. spike at every time step and therefore rmax = 1.

Since the inputs of CNN are rate-encoded into spike trains, the firing rates
of input spikes can be considered as an approximation of analog values of CNN
inputs, i.e. r0i = xi. By replacing the input spikes θ0t,i with the average firing
rate xi and associating Eqs. 1 and 2, the dynamics of membrane potential in the
first hidden layer can be presented as:

v1
i (t) := v1

i (t − 1) + a1
i − vthrθ

1
t,i (3)

By averaging the membrane potential in Eq. 3 over the simulation time t, the
firing rate of IF neurons can be derived as [9]:

l = 1 r1i (t) = a1
i rmax − v1

i (t)
t · vthr

(4)

l ≥ 2 rl
i(t) =

|l−1|∑

j=1

W l
ijr

l−1
j (t) + rmaxb

l
i − vl

i(t)
t · vthr

(5)



Deep Spiking Neural Networks of Inception and Residual Architectures 177

Equations 4 and 5 state that the firing rates of IF neurons are convergent to the
ReLU activations, reduced by a time-decaying approximation error. With enough
time duration, the activations of CNN can be approximated by the firing rates
of SNN, which is consistent with the foundation of rate-encoding networks.

Conversion of CNN Operations. The convolution operation in CNNs is
to compute the weighted sum of output activations of previous layer and it is
kept unchanged in SNNs. Notably, in order to accelerate the training of CNNs,
the convolution operation is usually followed by a batch-normalization (BN)
operation [17] and after training, the parameters of BN can be integrated into
the weight vectors of the preceding convolution layer.

Nonlinear pooling operations (such as max-pooling and average-pooling) are
widely used in CNNs as the basis of feature selectivity and invariance. Average
pooling can be considered as an specialization of convolution operation and
realized in the same way. However, since the signals between layers of SNN are
transmitted as dynamic binary spikes, the max pooling cannot be implemented
by simply selecting maximum value of spikes. Here, a pooling gate is introduced,
which evaluates the firing rates of input neurons every time step and transmit
the signal of the neuron whose firing rate is maximum at that time [9].

2.2 Weight Normalization Method

In time-stepped simulation of SNNs, the firing rates of spiking neurons are
restricted to the range of [0, rmax], whereas the ReLU activations have no such
limits. In order to ensure the approximation of the firing rates to the activations,
a weight normalization method is proposed to normalize the ReLU activations
from [0, al

max] to [0, rmax] through rescaling the weights of convolutional layers.
Denote λl as the max activation of layer l in training process, then the weight
normalization can be described as [8]:

W l =
λl−1

λl
W l, bl =

1
λl

bl (6)

However, this method is focused on simple CNN architectures, such as LeNet and
VGG [18], and can not be directly applied to Inception and ResNet. Inception
and Residual architectures consist of more than one computing branches, which
must be taken into consideration when normalizing the weights. Taking 16 × 16
grid module of Inception-ResNet architecture (Fig. 2) as example, three branches
of Inception have different numbers of convolutional layers. If the normalizing
factor of one branch, i.e. the product of normalizing factors of stacked convolu-
tional layers is different from the other branches, the outputs of branches will
be scaled disproportionately and the feature maps at concatenation layer will
be distorted. Thus the three branches of Inception architecture should have the
same normalizing factor. Similarly, the shortcut connection of Residual archi-
tecture should be scaled equally as the stacked convolutional layers, in order to
keep the inputs of sum layer are valid.
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Fig. 2. Schema for 16 × 16 grid module of Inception-ResNet-v2

Since branch A, B and C receive the same input from ReLU 1 layer and out-
put to Concatenation layer, the normalizing factors of three branches are com-
puted as λReLU 1

λConcat
. Then the normalizing factor of Conv a1, Conv b2 and Conv c3

which are the inputs of Concatenation layer, should be λReLU 1
λConcat

, λConv b1
λConcat

, λConv c2
λConcat

instead of λReLU 1
λConv a1

, λConv b1
λConv b2

, λConv c2
λConv c3

derived from Eq. 6. Similarly, as the inputs
of Sum layer, Conv d and shortcut connection should be normalized by λConcat

λSum

and λReLU 1
λSum

respectively. Through the analysis above, weight normalization for
networks of Inception and Residual architectures could be concluded as the fol-
lowing Algorithm 1.

2.3 Homeostasis-Based Compensation Approach

The relationship described by Eqs. 4 and 5 demonstrates that the firing rate of
a neuron in layer l is given by the weighted sum of the firing rates of previous
layer, minus a time-decaying approximation error. By inserting the expression
for the firing rates of previous layers and starting with the known firing rates of
the first layer in Eq. 4, the recursive expression in Eq. 5 can be solved iteratively
as follows [9]:
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Algorithm 1. Weight Normalization for Inception and Residual architectures
Input: Max activations of training set λl, Weights and Biases W l, bl, l = 1, . . . , L.
Output: Normalized weights and biases W l, bl.

1: /* l is index of layer, i is index of input of layer. */
2: for layer in Conv.layers do
3: if layer in Concat.Inputs then
4: W l = W l · λi/λcat, bl = bl · 1/λcat

5: else if layer in Sum.Inputs then
6: W l = W l · λi/λsum, bl = bl · 1/λsum

7: else
8: W l = W l · λi/λl, bl = bl · 1/λl

Note: Conv.layers includes convolutional layers, fully-connected layers and identity
mapping (shortcut connection). The max activations λl are recorded on training set
and weight normalization rescales the parameters after training.

rl
i = al

irmax − vl
il
(t)

t · Vthr
−

nl−1∑

il−1=1

W l
ilil−1

vl−1
il−1

(t)

t · Vthr
− . . .

−
nl−1∑

il−1=1

W l
ilil−1

· · ·
n1∑

i1=1

W 2
i2i1

v1
i1

(t)
t · Vthr

(7)

Equation 7 implies that each layer computes a weighted sum of the approxima-
tion errors of earlier layers, and adds its own approximation error. These errors
accumulate layer by layer, which explains why firing rates of SNN deteriorate at
deep layers and why it takes longer to achieve convergence of firing rates to cor-
responding ReLU activations. Since the inference is operated on the cumulative
spike count of neurons of output layer, time required for inference will be greatly
increased if the firing rates at deep layers are too low. For deep SNNs such as
spiking ResNet composed of hundreds of layers, the problem is more prominent.

Inspired from the homeostatic plasticity in neural system, a compensation
approach is proposed to reduce the deterioration of firing rates. Neuroscience
researches show that homeostasis is an important neural mechanism which bal-
ances Hebbian plasticity and stabilizes the neural activity [19]. Among methods
of homeostatic plasticity, adapting spiking threshold is widely used in SNNs to
keep stable firing rates of spiking neurons [20]. As the inputs of IF neuron are
binary spikes, the firing rate mainly depends on the relative scale of synaptic
weights to the spiking threshold. Thus, the deterioration of firing rates can be
reduced by modulating the spiking threshold. For CNN-to-SNN conversion, the
max activation of each layer in CNN is scaled to rmax through weight normal-
ization and accordingly, the max firing rate of each layer is supposed to be rmax.
However, the actual max firing rates declines with the network depth due to
the accumulated approximation errors presented in Eq. 7. The compensation



180 F. Xing et al.

approach takes the ratio of actual max firing rates to the expected rmax as com-
pensation factors to scale down the spiking threshold for each layer. Here the
max firing rates of layers are recorded in the simulation of SNN on training sets,
and denoted as τ l, l ∈ {1, . . . , L}. As the max firing rate τ l generally increases
with time and converge to rmax, it is available to consider only the firing rates
at the end of simulation for simplicity.

τ l = max
t,i

rl
i(t), i = 1, . . . , |l|, t ∈ [0, T ] (8)

V l
thr = V l

thrτ
l, l = 1, . . . , L (9)

Here T denotes the duration of simulation on training set and is an hyperpa-
rameter to tune on the validation set.

3 Experiment and Analysis

The proposed methods are evaluated on CIFAR-10 and CIFAR-100 datasets.
CIFAR-10 consist of 50k training images and 10k testing images, and are clas-
sified into 10 classes with 6000 images per class. The original size of each image
is 32 × 32. CIFAR-100 is similar to CIFAR-10, except that it has 100 classes
with 600 images per class. Networks built in experiment include Inception-v4,
Inception-ResNet-v2 and ResNet. In order to adapt for the image size (original
designed for ImageNet 256 × 256 [21]), Inception-v4 and Inception-ResNet-v2
in this paper are composed of 16 × 16 and 8 × 8 grid modules (Fig. 3), and the
dimensionality of filters is accordingly scaled down, while the basic structures
from original papers [13] are unchanged. ResNets for CIFAR-10 in this paper
are the same as that proposed by He et al. [14]. For inference of SNNs, the clas-
sification accuracy is obtained with simulation of 3000 time steps. The details
of network architectures and the parameters for training are accessible online1.

3.1 Comparison with Other SNNs

Table 1 shows that the spiking Inception-v4 achieves the state-of-the-art perfor-
mance of SNNs, with classification error rates of 7.51% and 29.60% on CIFAR-
10 and CIFAR-100 respectively. Further, the error rates of converted SNNs are
nearly comparable to original CNNs, with very low accuracy loss in conver-
sion. This result demonstrates that the advantages of deep CNN architectures
are available for spiking networks and the conversion framework is effective in
training deep SNNs. Additionally, comparisons of spiking ResNets show that
the accuracy loss caused by conversion increases with the network depth, and
the high performance of deep SNNs is gradually compromised, as in the case of
ResNet-44 and ResNet-56. Here the main reason for accuracy loss is that the
firing rates of SNN is not absolutely convergent to the CNN activations due
to inherent differences of neuron operations and time-decaying approximation
1 https://github.com/Xingfush/ANN-to-SNN-for-Inception-ResNet.

https://github.com/Xingfush/ANN-to-SNN-for-Inception-ResNet
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Fig. 3. Network architectures of Inception-v4 and Inception-ResNet-v2 for CIFAR-10

Table 1. Classification error rates on CIFAR-10 and CIFAR-100 for our converted spik-
ing models, in comparison with other SNNs. The Accuracy loss in conversion is defined
as the error rate gap between original CNN and the converted SNN. In Inception-v4
and Inception-ResNet-v2, m, n denote the number of 16 × 16 and 8 × 8 grid modules
(Fig. 3), respectively.

Dataset [architecture] Depth CNN err. SNN err. Acc loss.

CIFAR-10 [Inception-v4, ours] m = 4, n = 1 6.69 7.51 0.82

CIFAR-10 [Inception-ResNet-v2, ours] m = 4, n = 1 7.28 8.42 1.14

CIFAR-10 [ResNet-20, ours] 20 8.89 9.06 0.17

CIFAR-10 [ResNet-32, ours] 32 7.48 8.10 0.62

CIFAR-10 [ResNet-44, ours] 44 7.09 7.94 0.85

CIFAR-10 [ResNet-56, ours] 56 6.97 8.12 1.15

CIFAR-10 [ResNet-44, Hu et al. [10]] 44 7.15 8.02 0.87

CIFAR-10 [VGG, Rueckauer et al. [9]] 16 8.09 9.15 1.06

CIFAR-10 [Esser et al. [22]] 16 NA 12.50 NA

CIFAR-100 [Inception-v4, ours] m = 4, n = 1 28.18 29.60 1.42

CIFAR-100 [ResNet-44, Hu et al. [10]] 44 29.82 31.44 1.62

CIFAR-100 [Esser et al. [22]] 16 NA 34.52 NA

errors. Deep SNNs are likely to accumulate more approximation errors and thus
suffer more accuracy loss. Despite this, the deep SNNs built by the conversion
methods still outperform those by other training algorithms, including unsuper-
vised STDP learning and SNNs of VGG architecture.
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3.2 Experiment on Compensation Approach

The compensation approach is operated on the max firing rates of each layer
because they measure the loss of firing rates. Here the spiking ResNet-56 is
simulated for 3000 time steps and the changes of the max firing rates is shown
in Fig. 4. Results show that the max firing rates decline with network depth and
the deterioration of firing rates decreases with time, which are consistent with
the description of Eq. 7. At the simulation of 500 time steps in Figs. 4(a) and
5(a), the max firing rates of deep layers go around 0.6 before compensation and
the accuracy of SNN is around 70%. After the compensation approach applied,
the max firing rates keep around 0.8 and the accuracy is nearly 90%, as shown
in Figs. 4(b) and 5(a). This result demonstrates that the improvement of firing
rates is beneficial for the performance of SNNs.
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Fig. 4. Changes of max firing rates with layer depth and simulation time, of spiking
ResNet-56 on CIFAR-10 before compensation (a) and after compensation (b).

The tendency of curves in Fig. 5 presents the accuracy-latency trade-off of
SNNs, i.e. the error rates decrease as the simulation goes. Notably the time
steps required for convergence of SNNs is distinct. The comparison between four
spiking ResNets in Fig. 5(a) shows that deeper networks need more time to con-
verge, while they can achieve higher accuracy finally. Further, the compensation
approach obviously accelerates the convergence of SNNs, and the time steps for
inference are nearly halved while the accuracies are not compromised, for both
spiking ResNet and spiking Inception.
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Fig. 5. Simulation of converted SNNs on CIFAR-10. Bold lines denote results before
compensation and dashed lines denote results after compensation. (a) spiking ResNets
of depth 20, 32, 44, 56. (b) spiking Inception-v4 and Inception-ResNet-v2 of depth
m = 4, n = 1.

4 Conclusion

This paper proposes a homeostasis-based CNN-to-SNN conversion framework for
Inception and Residual architectures. A novel weight normalization method and
a bio-inspired compensation approach are developed. Deep networks, including
Inception-v4, Inception-ResNet-v2 and ResNets, are successfully implemented
in SNNs, with nearly comparable performance to original CNNs. Experimental
results show that the spiking Inception-v4 achieves the state-of-the-art perfor-
mance of SNNs on CIFAR-10 and CIFAR-100 datasets. It is verified that training
deep SNNs by conversion methods is promising and the advantage of deep neural
networks is available for SNNs. This work is helpful for large-scale employment
of spiking networks on efficient neuromorphic spiking platforms.
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Abstract. Neuromorphic circuits with nonvolatile memory crossbar
arrays can train and inference neural networks in a highly power-efficient
manner, which can be a solution to overcome the von Neumann bottle-
neck. This paper proposes a scalable multi-core spiking neuromorphic
system architecture that can support a large-scale multi-layer neural
network larger than a network supported by a computing system with
a single neuromorphic circuit core. To simplify the inter-core commu-
nication, neuromorphic cores communicate only by sending and receiv-
ing spikes. Deep networks can be easily formed on this architecture by
connecting multiple cores. The neuromorphic cores are trained on-chip
by backpropagation, which is a well-known and sophisticated algorithm
for training neural networks in software. We made modifications to the
traditional backpropagation algorithm to propagate errors and update
weights by spikes on the spiking neuromorphic cores of a computing sys-
tem using our architecture. The proposed algorithm was evaluated by an
spike event-based neuromorphic circuit simulator using three datasets.
Cancer1 and Thyroid1 were used for a small network evaluation, which
results showed better test error than previous studies, and MNIST was
used to evaluate a large realistic neural network.

Keywords: Neuromorphic · Backpropagation · Spiking neural network

1 Introduction

Neuromorphic computing systems have a great potential to offer huge comput-
ing power in a highly energy efficient manner, which can be a solution to over-
come the von Neumann bottleneck [1]. Spiking neural networks, which mimic the
human brain, can reduce the energy consumption of the neuromorphic circuits by
consuming energy only when required to process spike events [2,3]. Nonvolatile
memories (NVMs), such as resistive random-access memories and phase change
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11955, pp. 185–194, 2019.
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memories, have been explored as synaptic devices for neuromorphic circuits,
where conductance represents a synaptic weight [4,5]. NVM crossbar arrays well
represent a neural network connection and offer scalable and low-power weighted
sum operation in parallel, which is extensively used in training and inferencing
neural networks.

Backpropagation is a well-known and established algorithm for training neu-
ral networks in software [6]. There are algorithms for training multi-layered spik-
ing neural networks on neuromorphic circuits using backpropagation [7–9]. They
calculate the error of every output neuron in every layer and have a training cir-
cuit per layer to generate signals to increase or decrease synaptic weights of the
NVM crossbar arrays based on the combinations of errors and inputs. Those by
Hasan and Tarek [7] and Zamanidoost et al. [8] update weights in 4 steps based
on the sign of the input and error, and that by Hassan et al. [9] reduces this
into 2 steps. These authors simulated their training algorithms with some small
networks that can be easily implemented within a single neuromorphic core.

To solve real-world problems by using the increasing huge amount of data,
we need large and deep neural networks, whose size cannot be fit into a sin-
gle neuromorphic core. We need multiple neuromorphic cores to construct deep
multi-layered neural networks. Moreover, the cores need to be flexibly coupled
to support neural networks whose sizes differ depending on the application.

The main contributions of this paper are as follows.

– Proposing a scalable multi-core spiking neuromorphic system architecture for
large-scale multi-layer neural networks.

– Proposing a backpropagation algorithm for training multi-core spiking neu-
romorphic circuits.

– Showing experiment results using a large real-world dataset, MNIST [13].

The rest of the paper is organized as follows. Section 2 introduces our flexible
and scalable multi-core spiking neuromorphic system architecture for large-scale
multi-layer neural networks. Section 3 introduces the proposed backpropagation
training algorithm. We first explain the mathematical model then the implemen-
tation of our algorithm in a 2-core neuromorphic system using our architecture.
Section 4 evaluates the proposed algorithm with Cancer1 and Thyroid1 from the
Proben1 benchmark and the MNIST dataset, and Sect. 5 summarizes the paper.

2 Multi-core Neuromorphic System Architecture

We propose a flexible and scalable multi-core spiking neuromorphic system archi-
tecture that can support a large multi-layer neural network. Figure 1 illustrates
a neuromorphic core composed of an NVM crossbar array as synapses and leaky
Integrate and Fire (LIF) neuron circuits (N∗,∗) [10]. Since synaptic weights can
be both positive and negative, a pair of NVM cells forms a synapse, where each
of the pair represents a positive and negative weight [11]. In the forward phase
of backpropagation, the input neurons issue spikes, and the output neurons gen-
erate output spikes when the accumulated weighted-sum exceeds a threshold. In
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the backward and weight update phases, spikes for propagating the errors and
updating the weights are issued from the output neurons.

Fig. 1. Single neuromorphic core. Each synapse is composed of two NVM devices,
where one contributes positive weight G+ and the other contributes negative weight
G−.

Figure 2 shows a 2-core neuromorphic circuit system using our architecture
for implementing a 4 × 3 × 2 network. The first layer of the network is mapped
to core 1 and the second layer is mapped to core 2. The middle layer with
three neurons is physically duplicated in both cores 1 and 2, and its neurons
are connected one by one. The connected neurons communicate only by sending
spikes to each other to simplify the inter-core communication. The upper layers
in each core (N1,∗ and N2,∗) have spike counters associated with each output
neuron to maintain the generated spike count of the neuron. The upper layer
in core 1 (N1,∗) also has spike filters to drop unnecessary spikes in backward
operation, which is explained in detail in Sect. 3.

This system enables the mapping of a larger and deeper neural network by
connecting more cores. It can also easily support the different network sizes
depending on the application by changing the connections between cores.

3 Backpropagation Training Algorithm

In this section, we introduce how to train a multi-layer neural network mapped
on the multi-core neuromorphic system shown in Fig. 2 by backpropagation. We
first describe the proposed algorithm in the mathematical model in Sect. 3.1, then
show its implementation in the multi-core neuromorphic system in Sect. 3.2.
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Fig. 2. 2-core neuromorphic circuit system using our architecture for implementing a
4 × 3 × 2 neural network.

3.1 Mathematical Model

To train multi-layer neural networks by backpropagation, we follow the tradi-
tional backward algorithm, but modify the backward and weight update phases
specifically for the spiking neuromorphic circuit of our multi-core neuromorphic
system architecture.

In the mathematical derivation, we assume that an activation value of a
neuron x is a continuous number. In the spiking circuit, it will be approximated
by the rate of the spikes of the neuron.

Forward Pass. First, in a forward pass, training data is fed to the network and
the forward activations are propagated through the layers. The weighted sum of
the jth output neuron z

(l)
j of the lth layer is given by

z
(l)
j =

∑

i

w
(l)
ji x

(l−1)
i (1)

where x
(l−1)
i is the input spike rate (output of the previous layer) and w

(l)
ji is

the weight of the synapse connecting the input neuron i and output neuron j

in layer l. We call z
(l)
j the sub-threshold potential, since this is, in the spiking

neuron analogy, roughly proportional to the membrane voltage of the neuron
when averaged over a given time window of constant stimulation with the same
input spiking rate.

The neuron output yj is given by (omitting the layer index l)

yj = f(zj) (2)
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where we assume the activation function f(·) to be the rectified linear unit
(ReLU) activation, which can be implemented approximately by the threshold
mechanism of the noisy Integrate and Fire neuron circuit in our system (see [10]
for similar discussion). Note that in this case, if zj < 0, it is yj = 0 (assuming
the threshold is arbitrarily at zero), and if zj ≥ 0, it is at least roughly zj ∝ yj
for the neural implementation (or even identical zj = yj in our mathematical
formulation).

Backward and Update Pass. The gradient of the error function at the output
layer L at the jth output neuron δj is calculated by taking the difference between
the target output tj and actual output y

(L)
j ;

δ
(L)
j = tj − y

(L)
j (3)

Note that since y
(L)
j ≥ 0 and tj are either 1 (or some set target rate) or 0;

thus δ
(L)
j can be in principle be represented by spike rates, which are necessarily

positive.
However, in the traditional form of backpropagation, the errors are now prop-

agated backwards through the other hidden layers in the following manner. For
the hidden layer l, the error is propagated back from the layer l + 1 such that

δ
(l)
j = f ′(z(l)j )

∑

k

δ
(l+1)
k w

(l+1)
kj (4)

where f ′(z) is either 0 if z ≤ 0 or 1 if z > 0 for ReLU; thus, equaling the
Heaviside function H. However, the value δ

(l)
j can in principle be positive or

negative, even if the previous deltas δ
(l+1)
k were all positive, because the weights

might be both positive or negative. Thus, representing the deltas in spike rates
is problematic.

Inspired by the formulation of the spiking Boltzmann machines of Neftci
et al. [10], we solve this problem by representing positive and negative deltas
separately by two backward phases. Note that when having individual positive
and negative deltas, the update pass can be conveniently represented in two
phases as well, i.e., computing (in sequence)

wji ← wji + η δ⊕
jxi

wji ← wji − η δ�
jxi (5)

where η is the learning rate and δ⊕
j and δ�

j are the (all positive) deltas of the
positive and negative phases, respectively.

To use two phases on the backward pass, we first assign δ⊕ (L)
j ≡ tj and

δ� (L)
j ≡ yj in the output layer L, which is identical to Eq. 3.
To compute the other layers’ backward pass (Eq. 4) in a manner applicable

to spiking neural networks, modifications have to be made. There are various
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possibilities. We found that one good solution is to add the sub-threshold activity
zj to the deltas then apply an activation function,

δ⊕ (l)
j = f

(
zj +

∑

k

δ⊕ (l+1)
k w

(l+1)
kj

)
(6)

and do this analogously for the negative phase. This form is implementable in
spiking neurons since it has the same form as the forward pass, except that an
additional input is given.

Note that if the neuron did not fire during the forward pass, zj is negative
(below the threshold), inhibiting the neuron’s activity when the delta “synaptic”
input Ij ≡ ∑

k δ⊕ (l+1)
k w

(l+1)
kj is positive. Together, this mechanism thus imple-

ments the f ′(z(l)j ) ≡ H(z(l)j ) term in Eq. 4. Moreover, if the delta synaptic input
Ij is negative (and yk > 0 during forward), zj provides an additive offset, so that
the neuron representing the output firing rate is likely to be positive. Although
this additional offset adds to the amount of update in one phase, the same offset
is used for both negative and positive phases; therefore, it will be subtracted out
in the differential update phase (see Eq. 5).

We found that this mixing of forward and backward synaptic inputs signals of
Eq. 6 is an effective and elegant solution for a backward pass applicable to spiking
neurons, and seems to be a good approximation of traditional backpropagation.
We found that the test error was not significantly impacted, when comparing
against the traditional backpropagation algorithm on the same 3-layer fully-
connected network on MNIST (in the rate formulation presented here, both
algorithms reach test errors of 2–3%).

However, in the 2-core neuromorphic system (Fig. 2), when crossing the core
boundaries of a multi-core system, sub-threshold activities zj from one core
cannot be mixed directly with synaptic inputs from another core because only
spikes can cross core-boundaries.

Thus, we used an alternative, approximate backward pass. In other words,
we add neuron output spikes yj to the neuron’s input, i.e.,

δ⊕ (l)
j = H(yj)f(yj +

∑

k

δ⊕ (l+1)
k w

(l+1)
kj ) (7)

and do this analogously for the negative phase. Since yj is the spiking activity
(rate); thus, cannot be negative, it provides a similar offset to potentially negative
delta synaptic inputs Ij as before, which again is corrected during the differential
update. However, because yj cannot be negative, it needs to be ensured explicitly
that the deltas are set to zero when the neuron was not active during forward,
thus the H(yj) ≡ H(zj).

The implementation of this modified backward process in our multi-core spik-
ing neuromorphic system is explained in the next section.
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3.2 Hardware Implementation

The backpropagation mathematical model described in Sect. 3.1. was imple-
mented in the 2-core neuromorphic system in Fig. 2.

The forward processes Eqs. 1 and 2 are naturally mapped to the circuit by the
NVM crossbar arrays and LIF neurons. The input training data are converted
to spike trains based on the Poisson distribution. When an input neuron circuit
receives a spike, the signal flows through the NVM crossbar array, which performs
a weighted sum operation in Eq. 1. The result of the weighted sum is delivered to
an output neuron and accumulated to the neuron’s potential. If the accumulated
potential exceeds a certain threshold, the output neuron generates a spike, which
works as a nonlinear activation function in Eq. 2. The generated spike in core
1 is transferred to a corresponding input neuron in core 2 as an input spike
to the next layer. A spike counter associated with each output neuron in every
layer counts the number of spikes generated during the forward process for the
backward process.

The backward process is combined with the weight update process to prop-
agate errors for updating weight. A weight update process of a layer is divided
into two phases, positive and negative update phases, as in Eq. 5. Propagated
errors are used to update synaptic weights by each layer, from top to bottom.
First, as in Fig. 2(b), the synaptic weights of the last output layer are updated
to a negative direction based on the negative error, which is the output spikes
counted in the forward process. Then, the layer is updated to a positive direction
based on the target output, as in Fig. 2(c). In the both phases, core 1 runs a
forward process to generate input spikes for core 2.

The procedure is more complex for the other hidden layers. To propagate
positive and negative errors from the last output layer, the layers between the
last layer and the layer updating its weight performs a backward process. During
the process, we add neuron output yi, which is collected by the spike counters
in the forward process, to the visible neurons of the next layer. This is done
by increasing the corresponding visible neuron’s potential by a constant amount
based on yi. The generated backward spikes are dropped by a spike filter when yi
was not positive. This operation implements the inner-product with f ′(zi). The
filtered backward spike trains represent the propagated positive and negative
errors. As in the similar procedure in the last layer, the target layer is updated
to the negative and positive directions. The backward and weight update process
is repeated by each layer until the first layer in core 1 is updated.

Figure 3 illustrates the whole entire training procedure for a 2-core neuromor-
phic system. There are a total of five phases, i.e., a forward phase and positive
and negative weight update phases per each core. In the forward phase in (a),
both cores perform a forward process to generate the current output of the net-
work. The output spikes are counted in both cores for the later phases. From
(b) to (e), back-ward and weight update processes are performed by each core.
First, in (b), the negative weight update of the core 2 is performed by applying
the outputs generated in (a) to the output neurons of core 2. Then, in (c), the
target outputs are applied to the output neurons to perform the positive weight
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update of core 2. We repeat applying the forward and target outputs in (d) and
(e) to update the weights of core 1. In (d) and (e), core 2 performs a backward
process along with the forward outputs of core 1 generated in (a) to propagate
errors. The propagated error spikes transferred to core 1 are dropped if the out-
put neuron in that core did not spike during (a). In all phases, training data are
provided to the input neurons of core 1.

Fig. 3. Training procedure of 2-core neuromorphic system. There is one forward step
and four weight update phases, which performs positive and negative weight updates
per each core.

4 Experimental Results

We evaluated our proposed backpropagation algorithm through simulation using
an spike event-based C++ simulator for neuromorphic circuits that implements
the proposed architecture described in the Sects. 2 and 3. Three datasets were
used for the evaluation. Cancer1 and Thyroid1 from the Proben1 benchmark [12]
were used to evaluate small networks and the MNIST handwritten dataset [13]
was used to evaluate a realistic learning problem. The network size and number
of training sets in Cancer1 and Thyroid1 are shown in Table 1. For MNIST,
we randomly selected 4,000 images (400 images per label) every epoch from the
60,000 training image set to training a 784×500×40 network, where each pixel of
the 28×28 MNIST images was mapped to one input neuron of the first layer. In
the output layer, four sets of ten labels (0–9) were mapped to the label neurons.
All networks of the three datasets were mapped on a 2-core neuromorphic system.
Spike trains of the training data and labels were generated based on the Poisson
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distribution. The training time of each image was 50 ms. The NVM synapses
were simulated as ideal devices in which conductance increases by a constant
amount by each weight update pulse.

Figure 4 shows the best training and test error rates of Cancer1, Thyroid1,
and MNIST which are simulated for 30 epochs of training. Table 1 compares the
results of Cancer1 and Thyroid1 with those of previous studies. It shows that
our training algorithm achieved the better results than those algorithms. The
MNIST results in Fig. 4 shows that our backpropagation algorithm successfully
trained a large network which requires multiple neuromorphic cores. Some of
the NVM devices hits the maximum weight in the later epochs, which does not
make it possible to update the synaptic weight further to the positive or negative
direction. This can be solved by introducing the NVM conductance refresh [14],
which periodically resets the weight of the each NVM device while maintaining
the total synaptic weight.

Fig. 4. Simulated best training and test error rates for Cancer1, Thyroid1, and MNIST,
trained for 30 epochs.

Table 1. Comparison of the simulation conditions and of results of Cancer1 and Thy-
roid1 from different studies.

Study Cancer1 Thyroid1

Network Training set Error Network Training set Error

[8] 9 × 4 × 2 350 2.9% 21 × 4 × 3 3,600 7.7%

[9] 9 × 10 × 2 600 �6.2% 21 × 15 × 3 6,120 �9.2%

This study 9 × 6 × 2 350 1.7% 21 × 15 × 3 3,600 7.3%

5 Conclusion

We proposed an NVM-based scalable multi-core spiking neuromorphic system
architecture and its training algorithm by backpropagation. We demonstrated
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that the proposed algorithm trained both small and large networks on a 2-core
neuromorphic system through simulation. For future work, we plan to improve
our backpropagation algorithm to further reduce the error rate and the training
cost. Also, the impact of variations in the NVM devices is one of the items to
be investigated in the future.
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Abstract. In the recent years, machine learning and deep learning techniques
are being applied on brain data to study mental health. The activation of neurons
in these models is static and continuous-valued. However, a biological neuron
processes the information in the form of discrete spikes based on the spike time
and the firing rate. Understanding brain activities is vital to understand the
mechanisms underlying mental health. Spiking Neural Networks are offering a
computational modelling solution to understand complex dynamic brain pro-
cesses related to mental disorders, including depression. The objective of this
research is modeling and visualizing brain activity of people experiencing
symptoms of depression using the SNN NeuCube architecture. Resting EEG
data was collected from 22 participants and further divided into groups as
healthy and mild-depressed. NeuCube models have been developed along with
the connections across different brain regions using Synaptic Time Dependent
plasticity (STDP) learning rule for healthy and depressed individuals. This
unsupervised learning revealed some distinguishable patterns in the models
related to the frontal, central and parietal areas of the depressed versus the
control subjects that suggests potential markers for early depression prediction.
Traditional machine learning techniques, including MLP methods have been
also employed for classification and prediction tasks on the same data, but with
lower accuracy and fewer new information gained.

Keywords: Spiking Neural Networks (SNN) � Electroencephalogram (EEG) �
Depression � NeuCube

1 Introduction

In the recent years, deep learning models have been successful in achieving high
accuracy in various applications like speech recognition [1], image recognition [2],
biomedicine and bioinformatics [3, 4], temporal data processing etc. [5], assisting
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humans and challenging the other traditional machine learning models. In all the
standard deep neural architectures (supervised learning), the input data in the form of
vectors are passed into multiple hidden layers with numerous neurons in each layer
(depending on the size of the input data) and activation functions are applied to produce
an outcome. The actual aim is to minimize the error by hyperparameter optimization
methods. All these methods used a scalar, vector-based information representation.

In the human brain, spikes (represented by the spiking neurons – spiking neural
network (SNN) models as binary units) are generated when a neuron’s activation
crosses a threshold value during changes in the membrane potential based on the
stimulation. Here, the time of spiking, the location of the neuron, the firing rate of
neurons and the temporal patterns carry information about external stimuli and the
various internal calculations. Extracting knowledge and learning patterns from them
helps in understanding the various brain states and processes modelled with the use of
brain data. SNN are more biologically realistic [6] as compared with the deep neural
network (DNN). Spiking neurons work with spatial-temporal data using pulse coding
strategies to send information to many other neurons and receive the same from others.
Based on the membrane potentials, these neurons can be excitatory or inhibitory. In this
research, the NeuCube SNN architecture [7] is employed on depression case study data
for extracting knowledge from the EEG signals in order to understand the brain pro-
cesses in the healthy and the depressed individuals.

By 2030, World Health Organization reported that around 322 million people
worldwide will be affected by depression and this will lead to some other physiological
issues in the near future [8]. Depression is a major contributor to the overall global
burden of disease wherein it is more prevalent in females than males. Depression
affects the physical and mental well-being of a person in various aspects, such as lack
of memory power, heart attacks, suicidal thoughts, lack of motivation and interest, high
fatigue, erratic sleep patterns etc. It is very important to identify and treat depression
before depression is manifested for a better treatment outcome.

There are many techniques to detect depression like laboratory methods, non-
laboratory methods, genomics etc. [9]. One of them is using EEG data recordings. After
capturing EEG data, processes like Pearson correlation coefficient (PCC), phase
locking value (PLV) and phase lag index [10], detrended fluctuation analysis and
power spectral analysis [11, 12], etc. can be applied to the EEG data for identifying the
detectors of the underlying brain condition. Deep learning architectures [13–19] have
been recently applied in addition to the classical machine learning models [14, 20–24].

Some researchers first acquire features from the raw data and then feed them into
machine learning (ML) and artificial neural networks (ANN) for classifying the
depressed individuals from the healthy ones using various algorithms, such as: logistic
regression [25]; artificial feedforward network [26]; support vector machine
(SVM) [27]. Convolutional Neural Network have been used extensively for classifying
raw EEG signals [28, 29]. In [30], the authors implemented a deep learning approach
varying the number of hidden units (100 and 50) outperforming SVM and naïve Bayes
classifiers. In [31] and [32] authors used a hybrid model of CNN and LSTM for
categorizing EEG signals. In recent studies of depression detection, Acharya and team
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[33] developed a 13-layer CNN achieving 93.54% and 95.96% from EEG signals of
left and right hemisphere respectively. To overcome the drawback of CNN (poor
sequential learning) in [16] authors employed hybrid CNN-LSTM model for depres-
sion detection, reaching classification accuracy of 97.66% (L.H.) and 99.12% (R.H.).

Despite the high accuracy of classification results of EEG data, none of the papers
reviewed above reported the actual brain patterns that can be used to distinguish the
groups, and there are gaps related to application of brain features underlying depression
into ML.

Brain inspired SNN have been used in variety of applications like forecasting [34],
modelling the effect of mindfulness on depressed individuals [35], real world data
classification, image recognition, odour recognition, motor control and trajectory
tracking, etc. SNN aid in providing unique brain patterns and also models of brain
functions and brain connectivity. A SNN NeuCube model [36] reached 90.91%
accuracy whereas traditional methods achieved just 50.55% accuracy in classifying
opiate addicts from the healthy controls. This is a result of a deeper modelling insight
into neural circuitry, information processing and plasticity in the brain areas to build a
relation between the depression symptoms at the neural level and the resulting mental
disorders of a subject.

Following the successful usage of the NeuCube SNN architecture for EEG data
modelling and understanding, here we apply this architecture on EEG data related to
depressed and control individuals in an attempt to better understand and predict
depression.

2 Methods and Procedures

Ethics: Auckland University of Technology (AUT) Ethics Committee (AUTEC), New
Zealand granted the ethics approval.

2.1 Dataset Description

The EEG data was collected under strict monitoring with 2 min eyes opening state and
2 min eyes closing state. Recordings were carried out using a SynAmps amplifier and
61-channels (FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, F1, FZ, F2, F4, F6, F8, FT7, FC5,
FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ, C2, C4, C6, T8, TP7, CP5,
CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO3,
POZ, PO4, PO8, O1, OZ, O2, PO1, PO2, OI1) with electrode placements based on
standard 10–20 international system. The data was recorded at a sampling rate of
1000 Hz. After EEG recording, 2 s epoch was extracted. Off-line ICA computerized
artefact correction was used to remove detectable eye movement or muscles potentials.
The dataset consists of participants with BDI score ranging from 0 to 3. Participants
having BDI score 0-10 are considered as healthy subjects (12) and those having BDI
score > 10 are considered as mild-depressed subjects (10) for this experiment. After
data pre-processing techniques, each participant’s data consists of 16383 time points.
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2.2 Proposed NeuCube Model for Classifying and Analyzing the Brain
Regions Using EEG Data of Healthy and Depressed Individuals

The NeuCube computational model as shown in Fig. 1 consists of various algorithms
for encoding input data into spike trains, for unsupervised and supervised learning and
for optimization [7]. For this research, we have performed experiments differently for
two cases: Eyes Open and Eyes Closed state for each of the groups (healthy and
depressed) to understand their brain conditions.

The following procedures are applied in the modelling part.

• Encoding (Threshold Based method): Spikes are generated based on the threshold
from the EEG spatio-temporal data (continuous real values) using the threshold-
based method [37, 39]. If the signal changes above the spike threshold (0.5), then a
positive spike is generated, if the signal changes below the threshold value, a
negative spike is generated or else no spikes are generated.

• Mapping spike input data into the SNNr reservoir: The SNNr (mapping inputs into
high dimensional space for pattern analysis) holds the structural and functional
spatial connections following the Talairach brain template [38]. A leaky-integrate
and fire model of spiking neurons with recurrent connections have been imple-
mented in the SNNr module [7].

• Unsupervised Learning: In our experiments, STDP [40] learning method is used in
the SNNr to learn spike sequences from the input data. After the learning, new
connections are generated in the SNNr reservoir that represent spatio-temporal
interactions between the input variables distributed in the SNNr.

• Visualisation of learned patterns: Our results include visualization for the various
connectivity in the brain regions in the depressed and healthy group

• Pattern Classification: This module maps the learned SNN connectivity and temporal
activity to known class labels for a classification task. The output layer classifier is
trained using the dynamic evolving Spiking Neural Network method (deSNN) [41].

Fig. 1. NeuCube computational model [7]
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3 Results

This study is structured in a two-step analysis as follows:

• NeuCube SNN model learning and visualization of the EEG data to investigate
brain connectivity of depressed and healthy individuals for both the Eyes Closed
and the Eyes Opened states

• Using MLP (Multilayer perceptron) machine learning techniques for a comparative
analysis.

3.1 Experiment Design

The original dataset consists of 16383 rows (temporal features) with 61 columns
(spatial features) for each participant (10 depressed, 12 healthy). But for experimen-
tation purposes, we formulated the dataset to suit our requirements according to the
architecture:

• NeuCube: Each participant is termed as a ‘sample’ which consists spatio-temporal
dataset (‘.csv’). Each sample is a matrix consisting of 16383 rows and 61 columns.
To have more samples, we divided each sample into three more samples generating
66 samples altogether (30 depressed, 36 healthy) with 5461 time points (rows) in
each sample keeping number of columns consistent (61).

• MLP and machine learning algorithms: Here, we performed averaging on each
sample (5461 rows) to obtain one frame for each participant keeping number of
columns consistent (61).

3.2 Classification Accuracy

NeuCube, being a stochastic model, classification accuracy depends on the parameters’
settings [39, 42] as described below:

• Spike threshold was set to 0.5 for converting the input data to sequences of spikes.
The spike rate depends on this threshold value.

• The threshold of firing, the refractory time and the potential leak rate were set to 0.5,
6 ms and 0.002 respectively after optimization.

• The STPD learning rate parameter was set to 0.01 which cause changes in the
connection weights (increase or decrease) of two connected neurons depending on
the order of firing.

• For unsupervised learning, the training iteration was set to one which is considered
optimal for incremental, on-line adaptive learning.

• For supervised learning, the parameters ‘mod’ and ‘drift’ of deSNN classifier were
set to 0.4 and 0.25 respectively. Also, we set k = 3 in K-NN classifier for mapping
the input data to the labelled outcome in the training procedure.

For a comparative analysis, we implemented 2-layer MLP network after using grid
search optimization with 100- neurons in each layer. ‘relu’ was used as an activation
function for hidden layers, ‘softmax’ was used for output layer activation, ‘adam’ was
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used for weight optimization, learning rate was set to 0.001, alpha was set to 0.001 (L2
regularization parameter).

After applying cross-validating techniques (5 folds), the accuracy of the NeuCube
model for classifying depressed versus healthy subjects EEG data was 68.18%
(EC) and 72.13% (EO). The MLP NN models for both eyes opened, and eyes closed
EEG data achieved slightly higher than 50% accuracy which was inferior to the
NeuCube model classification.

The reason for reporting only the MLP results and parameters is that all other
traditional machine learning algorithms, such as SVM, decision tree and logistic
regression obtained worse results than MLP. The NeuCube models not only obtained
much higher classification accuracy, but here they have been used to reveal patterns of
brain activities related to each of the two classes of subjects, facilitating a better
interpretation and understanding of the depression phenomenon as explained in the
following section.

3.3 Pattern Discovery of Dynamic Brain Activities of Depressed Versus
Healthy Individuals Through Visualization of the NeuCube Models

This section discusses the functional connectivity inside the brain through the analysis
of the learned NeuCube models using visualization of the feature interaction network
(FIN) [7, 46] graphs and the SNN connectivity graphs.

3.3.1 Eyes Closed State
This section explains the similarities and differences in the eyes closed state byana-
lysing the Feature Interaction Networks (FIN) and SNNr connectivity models,as pre-
sented in Figs. 2 and 3 across 61 EEG channels (features).

In terms of similarity between groups there are feature input interactions in the
frontal, parietal and temporal regions suggested by a great number of lines observed in
these areas. Also, the interactions are stronger in the frontal and lower part of the brain
as these areas have thick black lines like channels F8, F6, FC6, FT8, T8, TP8, PO3,
PO7. Interaction between PO7 and FT8 is evident in both groups.

Some noticeable differences between groups include interaction between channels
F5, FT8 and CP5In contrast to the healthy group, depressed group failed to exhibit any
interaction between F5 and FT8 channels. The lack of connection between frontal and
frontotemporal regions may be reflective of dysfunction within corticolimbic connec-
tions in individuals vulnerable to depression [42]. There is a continuous long-range
communication between F4 and T8 indicating cross-hemispheric communication in the
depressed group. By analyzing the SNN connectivity network (Fig. 2 b and d), there is
complete absence of interaction in the parietal region in the depressed group. By
observing the FIN of the depressed group, it is seen that P4 plays no role in the change
of the network. It may be speculated that the relative reduction in right parietal activity
may reflect a reduction in arousal in those at risk of depression. Previous research has
demonstrated the decreased right parietal activity in resting state EEG data in those
with major depressive disorder in females [43] and within males [44]. More positive
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connections (blue color) are seen in the healthy group whereas there is lot of saturation
of positive (excitatory) and negative (inhibitory) connections in the depressed group
across the scalp. There is a combination of positive and negative connections in the
lower occipital region for both the groups.

3.3.2 Eyes Open State
Both groups have strong connections in the frontal, parietal-occipital and parietal brain
regions of the FIN models (PO3, PO7, PO8, PO4, F4, FP2, T8), but the interaction in
the parietal region of the depressed group is greater than those in the healthy group as
shown in Fig. 3.

The evident difference is the strong triangular connection between F4-T8-PO8
across the right hemisphere in the healthy group which is completely absent in the
depressed group (less interaction between PO8 and T8). There are greater connections

Fig. 2. Visualization for eyes closed state of individual: (a) Depressed FIN; (b) Depressed SNN
connectivity; (c) Healthy FIN; (d) Healthy SNN connectivity. (Here FIN stands for feature
interaction network, the features being the 61 EEG channels).
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in the right frontal regions, including the F4, F6, F8, FC4, FC6, and FC8, compared to
the healthy group. FC4 is totally inactive in the healthy group. Long-range interaction
between FT8-PO7 and F8-P1 in the depressed group is another noticeable difference. In
the depressed group, there is more information exchange and communication between
the frontal-parietal and parietal-occipital regions.

A meta-analysis [45] suggests that depressive disorders can be characterized by
hypoconnectivity within frontoparietal networks, which are often reported to be
involved with attention, emotion regulation and cognitive control systems. Addition-
ally, this abnormal connectivity across these resting states may be suggestive of
atypical internal and self-referential thought. This dysfunctional processing of internal
and external attention could reflect the depressive thought patterns and biases experi-
enced in those with depression or those that may be at risk.

Fig. 3. Visualization for eyes open state: (a) Depressed FIN;(b) Depressed SNN connectivity;
(c) Healthy FIN; (d) Healthy SNN connectivity.
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4 Conclusion

In this research, we performed EEG data analysis for groups of depressed and control
subjects using the NeuCube SNN framework. There were significant differences dis-
covered and reported in the paper that can potentially be used as markers for an early
prediction and a possible prevention of depression. The study also applied a compar-
ative analysis using other machine learning techniques such as MLP to demonstrate the
advantage of using the SNN approach of time-space brain data modelling. The
NeuCube SNN models not only achieved a much better accuracy of classifying sam-
ples from the two subject groups but revealed informative patters of brain activities that
can be further interpreted for a better understanding of depression.

Future work is planned in terms of detecting not only the dynamic patterns that can
be used to predict depression but representing them as deep spatio-temporal rules for a
better understanding of the related brain processes [46]. Research papers claim that
SNNs are still unable to outperform ANNs with regard to accuracy as ANNs employ
backpropagation for reducing the error, however, the learning concept inside the brain
is diverse and still not explored fully. Spiking neurons emit spikes carrying most of the
information to be transferred across all the neurons, replicating the behavior of the
biological neurons [47]. NeuCube is a complex SNN architecture that proved to be
useful for knowledge extraction and pattern recognition from spatio-temporal brain
data [7]. Conversion of deep networks into SNN [55], deep spiking networks [48, 49],
spiking variants of backpropagation [50–52], biologically variants of STDP [53] and
hybrid CNN-SNN models [54] are some of the current techniques employed for SNN.
In the future we aim to develop a more complex brain inspired SNN models, for
example such that use convolution layers/ Gabor filter deriving the features from the
EEG signals, feeding them into SNN, using better learning strategies to adapt the model
connection weights. Finally, using evolutionary algorithms and in particular quantum-
inspired evolutionary algorithms, we can optimize the parameters of SNN to improve
the classification accuracy [46, 56].
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Abstract. Question generation (QG) has been well studied in text and
image but never been studied in video, which is popular multimedia in
practice. In this paper, we propose a new task, video question generation.
We adopt the encoder-decoder based framework to deal with this task.
With the consideration that each video can be asked with more than one
questions, and each question can belong to different types, we involve
question type to guide the generation process. Specifically, a novel type-
conditional temporal-spatial attention is proposed, which could capture
required information of different types from video content at different
time steps. Experiments show that our models outperform baseline and
our type-conditional attention module captures the required information
precisely. To best of our knowledge, we are the first to apply the end-to-
end model on video question generation.

Keywords: Video question generation · Type conditional · Spatial
attention

1 Introduction

Asking questions is a way to understand the surroundings. For example, kids
ask questions to get knowledge of the world, and teachers use questions to assess
students’ comprehension. In this paper, we focus on video question generation,
which is a brand new task and has never been studied yet.

Video question generation is a significant task and can be applied in many
fields. As a popular material for kids education, video-QG can be applied to
generate questions automatically to promote children’s understanding. As main-
stream multimedia in the social network, video-QG can help to filter out spam,
since only users who understand the video content could comment. As a ques-
tion generation model, video-QG can also be used to augment Question-and-
Answering data, which requires manual annotation currently.

Instead of summarizing video content as what video caption does, video-
QG is required to select necessary information to ask detailed questions about.
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Fig. 1. Video-questions pairs sampled from TGIF-QA dataset

For example, in Fig. 1, a video question generator asks questions about a spe-
cific moving action. To make use of the sequential information in the video, we
adopt an encoder-decoder based framework with Recurrent Neural Network as
the encoder. To capture temporal information in the video, we used the atten-
tive decoder [18]. There is one limitation of this model that it can only output
one question per video. However, we argue that different questions should be
asked based on different focuses in one video. The focused region in one video
depends on the information required. In terms of required information, the ques-
tions are pre-classified into 7 different types, namely Repetitive-Count, Repeating-
Action, State-Transition, Frame-Object, Frame-Count, Frame-Color and Frame-
Location. In conclusion, there are two main points in this task: (1) Each video
could be asked questions with different types. (2) Questions with different types
require different information from the video.

For the first main point, we frame the task as a type-guided video ques-
tion generation. For the second main point, we propose a novel type-conditional
temporal-spatial attention to guide the model to obtain the required informa-
tion. Specifically, after extracting frame feature maps and type features, the
type-conditional temporal-spatial attention module will calculate weights which
represent the focuses on this frame feature map under this type. Then the type-
fused frame feature is obtained by weighted average pooling. Through this mech-
anism, irrelevant information will be filtered out, and the required information
will be preserved, which improves the performance of the model.

In summary, the contributions of this paper are:

1. We present a new task, video-QG, to generate questions from video automat-
ically.

2. We propose a novel model to generate diverse questions considering the tem-
poral structure of video under the guidance of question types on each video.
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3. A novel type-conditional temporal-spatial attention is proposed to guide
model to focus on main information in the video.

2 Related Work

In recent years, researchers pay more attention on the inter-discipline of com-
puter vision and natural language processing, such as image question genera-
tion [4,17,21] and visual question answering [7,19,22].

2.1 Question Generation

Text question generation (text-QG) has attracted the attention of researchers
in natural language processing again after the work of Du et al. [3], who is
the first to use deep learning model to do text-QG. After that, text related
question generation has been studied in depth in NLP. At the meantime, image
question generation (image-QG) are also understudying. Different from text-
QG, the input is an image instead of text. Li et al. [9] framed image-QG as the
dual task of image-QA, and the results showed this model improved answering
performance. Both Zhang et al. [21] and Fan et al. [4] generated diverse questions
from one image. Zhang et al. used additional information from image caption to
help to generate questions. Fan et al. proposed a VAE-based model that only
relies on the image. Uebara et al. [17] proposed to use question generation to
ask about unknown objects in images. Image question generation has attracted
much attention in computer vision and several public datasets, such as VQG-
MS COCO and VQG-Flickr [12] have been published to promote the research in
this task. Different to the image, the sequential property makes the video more
difficult to analyze.

Video-only question generation hasn’t been studied yet. Skalban [15] studied
to generate factoid question from video subtitles, and one frame will be extracted
from the video as an auxiliary, which is actually the text-based question gener-
ation process. Besides, these questions are generated from templates which are
labor-consuming to collect. Our model generates questions from video without
the help of any additional text information, and the model is trained end-to-end
without question templates.

2.2 Video Question Answering

Video question answering (Video-QA) is a new and difficult task. Video-
QA requires an understanding of both text and video temporal structure [5].
Recently, Video-QA attracts more attention, and there are several public
datasets being released. MovieFIB [11] is a dataset with fill-in-the-blank ques-
tions collected automatically by removing a phrase from the video’s grounded
description. MovieQA [16] is another dataset consisting of questions collected
manually by referring to plot synopses (movie summaries). Mun et al. released
MarioQA dataset [13] in which the videos are collected from Super Mario Bros.
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Fig. 2. This is the overall model architecture. The encoder and decoder has been rolled
out to better represent time series.

gameplay videos and questions are about the events occurring in videos. Poro-
roQA dataset [8] is another dataset containing unrealistic videos, collected from
children’s cartoon videos.

Recently, Jang et al. [7] released TGIF-QA dataset, which is a large-
scale dataset for video-QA. The videos in this dataset are GIF, which could
be regarded as short but content-focused videos. Questions in this dataset
are divided into 7 types, namely Repetitive-Count, Repeating-Action, State-
Transition, Frame-Object, Frame-Count, Frame-Color and Frame-Location
(details in Sect. 3.2). We use TGIF-QA in our work since videos in TGIF-QA is
short and content-focused, it is a suitable dataset to start on video-QG.

3 Task Definition

Given a video Vi, a question type Cj , our goal is to generate a related question
Qij . This task is to find Q̂ij that satisfies:

Q̂ij = arg max
Qij

P (Qij |Vi, Cj) (1)

Qij is a sequence of words with arbitrary length: Qij = [w1, w2, ..., wL], L is the
length of Qij . The conditional probability P (Qij |Vi, Cj) is factorized approxi-
mately to the product of each word conditional probability in the question:

P (Qij |Vi, Cj) =
L∏

l=1

P (wi|Vi, Cj , w<l) (2)
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Vi is a sequence of frames with fixed length T after sampling.

4 Model

The overall model is based on the encoder-decoder framework, as shown in Fig. 2.
First, frame encoder encodes frame with type. Then video encoder extracts video
features from frame sequences. Finally, a decoder generates questions based on
these video features.

4.1 Type-Fused Frame Encoder

Video is a sequence of frames, which is similar to the sentence in natural language
processing. Therefore, in this work, we first need to encode each frame.

Frame Encoding: We apply ResNet-152 [6], pre-trained by ImageNet
dataset [1] to process frames and use the stage-5 outputs as frame feature maps
mt. The normal approach to extract frame feature is applying average pooling on
each feature map. However, with the intuition that the extracted frame feature
should be varied with different types at a different time step, we propose to use
weighted average pooling, and the weights are calculated by “type-conditional
temporal-spatial attention” module, which will be discussed later in this section.
Before the discussion of novel attention mechanism, we introduce the question
types used in our work and how to encode these types.

Question Type Encoding: Question type decides how the question should
be asked and what to ask. In TGIF-QA dataset, there are 7 pre-defined ques-
tion types. (1) Repeating-Action questions ask the action that repeats several
times; (2) Repetition-Count questions ask the times one action repeats; (3) State-
Transition questions ask the action after an action; (4) Frame questions do not
require temporal information and could be asked by a single frame, divided into
4 types: (a) Frame-Object questions ask about object description question; (b)
Frame-Count questions ask counting question; (c) Frame-Color questions ask
about color and (d) Frame-Location questions ask location of the object. These
questions, except Frame questions, are unique to video question generation con-
sidering the temporal structure and different focuses between different types,
which makes this work challenge and novel.

A type embedding layer is added to map each type to a type feature,
with the intuition that related types should be mapped closely, for example,
both Repetition-Count questions and Repeating-Action questions concentrate
on repeated actions in videos, therefore these two type features should be sim-
ilar to some extent. Specifically, each question type will be represented as a
one-hot vector conehot ∈ R

nc×1, where nc is the number of types. To get the
type feature, a type look-up table Wtype ∈ R

Dc×nc is provided, then the type
feature c is obtained by c = Wtype · conehot, and c ∈ R

Dc×1. Wtype is learned
when training.
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Type-Conditional Temporal Spatial Attention: This attention mecha-
nism is the approach to make model focus on main information required by the
observed type, and is inspired by spatial attention [20] with type and temporal
information as constraints.

Given frame feature map mt ∈ R
C×H×W at time step t, type feature c ∈

R
Dc×1 and temporal feature ht−1 ∈ R

Dh×1, which is the previous hidden state
in GRU video encoder (Sect. 4.2). First, we broadcast type feature and hidden
state to c ∈ R

Dc×H×W and ht−1 ∈ R
Dh×H×W . Then the attention is calculated

on each grid location as follows, and the idea is that the model should focus on
some locations in this frame, instead of treating each location equally:

Ht = tanh(Wm · mt + Wc · c + Wh · ht−1)

at = softmax(wT · Ht)
(3)

The type-fused frame feature is obtained by weighted average pooling as follows:

zt =
H∑

i=1

W∑

j=1

(at)ij(mt)ij (4)

Wm ∈ R
Da×C , Wc ∈ R

Da×Dc Wh ∈ R
Da×Dh and w ∈ R

Da×1 are all learned
parameters, and at ∈ R

H×W . Each score in at represents how much attention
should the model paid on in this region at this time.

After type-fused frame encoding, a fully connected layer is applied to com-
press this feature and outputs the feature ft ∈ R

Df×1. With the consideration
that spatial attention may lose some type information, we also attempt to con-
catenate the fused feature ft with type features c to stress the guidance of type,
which makes ft ∈ R

(Df+Dc)×1.

4.2 Video Encoding and Question Generation

After applying frame encoder (Sect. 4.1) on each frame, we obtain Vi =
[f1, f2, ..., fT ] which represents the video content. Then, we use a Gated Recurrent
Neural Networks (GRU) to encode video content Vi and outputs a sequence of
hidden states h1, ...,hT as video features. Next, another GRU is used to decode
video features into a sequence of words to form a question Qi = [w1, ..., wL].
When decoding, the attention mechanism [18] is used to make the model focus
on different frames at different decoding time step.

The loss function for question generation is the cross-entropy loss between
ground-truth question and the generated question.

5 Experiments

We study our proposed task on existing VQA dataset TGIF-QA [7]. In this
section, firstly, we describe the composition of the dataset and the reason to use
it. Then we give implementation details of our proposed model and baselines.
Finally, we analyze the experiments and their results.
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5.1 Dataset

The dataset we used to evaluate our model is TGIF-QA. It contains 72420 GIFs
with the various number of questions for each. Questions in this dataset are
pre-classified into 7 types based on the information required to ask (Sect. 4.1).
To fix the length of each GIF, we use a fixed frame sampling, that is, the frame
duration length is a fixed constant, and we obtain 35 frames per GIF. For GIFs
whose length is shorter than 35 frames, we pad empty frames at the beginning.

5.2 Comparative Models

Since we are the first to do this task, we compare our model with the
basic encoder-decoder model without type-conditional temporal-spatial atten-
tion module. To study our “type-conditional temporal-spatial attention” (See
Sect. 4.1 for details), we do ablation test on this module and to study the impor-
tance of temporal information, we first extract keyframe from video and then
apply our attention module on image question generation model proposed in [12]
to generation questions from this frame.

Video2Seq: This is the video-to-question model without type as guidance. First,
ResNet-152 is applied on each frame, and the output of last average pooling layer
is used as a frame feature. Then a GRU model is applied on frame features to
encode video. Finally, a decoder with the attention mechanism is used to generate
questions.

Video2Seq+concat: This is the video-to-question model with type as guidance
by concatenation. Each frame feature is extracted from the last average pooling
layer from ResNet-152. Type feature is obtained from type embedding layer.
Then a GRU model is applied to obtain the video feature. Finally, a decoder
with the attention mechanism is used to generate questions.

Video2Seq+concat+spatial: This is the model we mentioned in Sect. 4. Dif-
ferent to the first two models, frame features in this model are extracted from
the stage-5 layer in ResNet-152 in order to compute type-conditional attention
map. In this model, as mentioned in Sect. 4.1, type information is added by both
concatenation and using our novel attention in frame encoding.

KFrame2Seq+concat: This is the key-frame-to-question model with type as
guidance by concatenation. Comparing with this model is to prove the impor-
tance of temporal information in video-QG. This is an image-QG model which
is similar to the model in [12], but involves the type information. We extract
keyframes from video based on the sum of absolute differences in LUV color
space. Then we extract frame feature from the last average pooling layer in
ResNet-152, concatenated with type feature from type embedding layer. Finally,
a GRU decoder is used to generate questions.

KFrame2Seq+concat+spatial: Addition to “KFrame2Seq+concat”, the type
information is also added by using our type-conditional attention module. Dif-
ferent to applying this module in the video, here we do not have temporal infor-
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Table 1. Overall results of different models. V2S= Video2Seq, KF2S = KeyFrame2Seq,
c = concat, s= spatial, BL = BLEU, M = Meteor, R= Rouge.

BL-1 BL-2 BL-3 BL-4 M R-L

V2S 45.35 36.85 30.52 25.30 22.76 45.90

KF2S+c 58.23 50.96 44.99 39.45 30.75 61.65

KF2S+c+s 61.04 53.81 47.79 42.17 30.61 62.14

V2S+c 60.43 53.02 47.00 41.47 31.31 62.75

V2S+c+s 61.31 54.19 48.28 42.76 31.40 63.04

mation in type conditional attention module. In order to compute the attention
map, the frame feature is extracted from the stage-5 layer in ResNet-152.

5.3 Implementation Details

We replace the word whose frequency is 1 with UNK symbol, and finally, the
size of the vocabulary is 5846. The dimensions of type and word embedding are
both set to 512, and both of them are randomly initialized. We set the GRU
hidden unit size to 512, and the number of layers is set to 1 in both encoder and
decoder. Dropout with probability 0.2 is applied after frame encoding and word
embedding. Dropout with probability 0.5 is applied in both encoder GRU and
decoder GRU. When training, we optimize models with Adam, and the batch
size is fixed to 32. Learning rate was initially set to 0.0004 and halved at every
10 epochs.

5.4 Evaluation Methods

In automatic evaluation, considering our goal is to generate high-quality ques-
tions with the guidance of question type, we evaluate our models on the perfor-
mance of overall question quality and type-aware question quality. For overall
question quality, we adopt metrics which are regularly used in machine trans-
lation and text summarization, in terms of BLUE scores [14], METEOR scores
[2] and ROUGE-L scores [10], on all generated questions, each with one ground-
truth question. For type-aware question quality, first, we group questions with
the same type, and then apply the same evaluation methods on each type sepa-
rately.

6 Results and Analysis

In this section, we analyze the results of our models and visualize the “type
conditional temporal-spatial attention” module. We also do error analysis to
demonstrate the limitation of our models.
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Table 2. Results on each type. Each score is calculated in one-to-one manner with
ground-truth and generated question pairs. V2S= Video2Seq, KF2S = KeyFrame2Seq,
c = concat, s = spatial, M = Meteor, R= Rouge.

Type V2S KF2S+c+s V2S+c+s

M R-L M R-L M R-L

Repeating-Action 26.37 53.45 37.23 75.53 38.53 76.77

Repetition-Count 12.72 28.36 36.31 63.41 36.63 63.82

State-Transition 28.41 55.80 29.21 58.04 29.43 59.12

Frame-Object 10.79 28.92 13.48 37.81 14.40 38.95

Frame-Count 8.08 6.58 20.32 39.43 21.20 41.12

Frame-Color 15.52 35.00 45.23 84.48 45.59 84.78

Frame-Location 9.15 17.15 19.10 39.93 20.28 42.54

Table 1 shows the overall results of different models. Our model, which
uses both type-conditional temporal-spatial attention and type concatenation,
achieves the best performance over all metrics.

V2S vs. V2S+c: As expected, type information brings a large improvement,
and all scores have been improved a lot, such as ROUGE-L has been improved
from 45.90 to 62.75. This is because, in our dataset, there are more than one
questions can be asked in one video, and these questions belong to different
types, which is also the case in reality.

V2S+c/KF2S+c vs. V2S+c+s/KF2S+c+s: After adding “type condi-
tional spatial attention” module, both Video2Seq model and KeyFrame2Seq
model improve. But the improvement between KeyFrame2Seq (from 61.65 to
62.14) models is larger than that between Video2Seq models (from 62.75 to
63.04). The explanation is that the additional temporal information in Video2Seq
models have made up the type information loss since we stress the type infor-
mation by concatenating type feature with each frame feature.

KF2S+c/KF2S+c+s vs. V2S+c/V2S+c+s: Temporal information is
important to video question generation task. It improves the performance of the
model by around 1.0 ROUGE-L. Compared with models both using type con-
catenation and “type conditional attention” module, the performance improve-
ment between models only using type concatenation is greater. One explanation
is that in this dataset, the influence of type information is larger than temporal
information.

Table 2 shows the scores in each question type among different models. And
we analyze the results by comparing with different models and by comparing
across each type in one model.

Model Comparison Across All Types: With the guidance of type,
Video2Seq model achieves significant improvements for all types (V2S+c+s
vs. V2S), which proves the importance of type information when more than
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Fig. 3. “Type-conditional temporal spatial attention” visualization. The type for first
example is State-Transition and the type for second example is Frame-QA.

one question should be asked from one video. With the temporal information,
Video2Seq outperforms KeyFrame2Seq model (V2S+c+s vs. KF2S+c+s) in all
types, even on “Frame-based” questions, which demonstrates that temporal
information is essential to video question generation.

Type Results Comparison in One Model: Without type information, V2S
performs best in State-Transition type. This is because most samples in our
training data belong to this type. Therefore without the guidance of type, it
is easier for the model to learn this type questions. When type information is
added, the situation is different. Both KF2S+c+s and V2S+c+s performs best
on Frame-Color questions with the type as guidance because the template of
this question type is very easy to learn, which is “What is the color of [object]?”
or other templates similar to it.

6.1 Attention Visualization

Figure 3 shows the visualization result of “type-conditional temporal-spatial
attention”. The attention mechanism should be able to focus on the regions
related to the question type at this time step. In the first example, the ques-
tion type is State-Transition, therefore the model is always focusing on the man,
and the attention varies on the different time step. In the second example, the
question type is Frame-Object, therefore, with the changing of the main object
in different frames, the model firstly focuses on the cat and then focus on the
lizard. From these examples, our “type-conditional temporal-spatial attention”
captures required information effectively in each frame.
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Fig. 4. Samples of generated questions by our best model “V2S+c+s”

6.2 Case Study and Error Analysis

Figure 4 shows some examples generated by our best model “V2S+c+s”. We see
that the generated questions have good quality, which captures moving actions
in the video. For example, in the first video, our model captures the action
“dance”, which is very similar to the ground-truth action “exercise”. In the
second video, the model captures another action “wave hand” which is different
to the annotated action “skip” but is also right even better. And in the third
video, our model captures the action “jump” precisely. Besides, our model could
also capture counting information, such as Q1 in the second video. For static
information, our model also performs well, such as Q3 in the second video.

However, there are still remains some problems. The first problem is that
action recognition accuracy needs to be improved. For example, in the first video
of Fig. 4, our model recognizes the action as “dance” which is very similar to
ground-truth action “exercise” but still not precise. The second problem is that
there is more than one question that could be asked with the same type. For
example, in the third video of Fig. 4, both Q1 and Q2 have State-Transition
type, but our model could only generate one question with observed type.
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7 Conclusion and Future Works

In this paper, we presented a new task - video question generation (video-QG)
to automatically generate questions from the video. And we proposed the first
model to generate questions from video content with the observed question type.
Specifically, a novel type-aware temporal-spatial attention module was proposed
to capture the required information for that question type at different time
steps. For future works, as mentioned in error analysis of Sect. 6.2, we will study
how to improve the action recognition performance and how to generate diverse
high-quality questions with the same question type.
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Abstract. Multi-paragraph reading comprehension (MPRC) aims to
answer questions based on a number of paragraphs. The background
paragraphs in MPRC are usually collected by information retrieval (IR)
systems. Most of the MPRC models indiscriminately read all the back-
ground paragraphs, and regard paragraphs which contain the answer
string as ground truths. Among these paragraphs, some are not seman-
tically related to the question, therefore, the noisy data will distract
the model from finding the right answer. Besides, most of the MPRC
methods only use the paragraph-question relevance to predict the answer
span. However, the utilization of the paragraph-paragraph relevance that
provides enhanced and complementary evidence has only been explored
in limited methods. To address these issues, we propose a hierarchical
model with a multi-level attention mechanism, which can leverage both
the inter-relation (paragraph-question relevance) and the intra-relation
(paragraph-paragraph relevance), to filter out noisy data and extract the
final answer. We conduct experiments on two challenging public datasets
Quasar-T and SearchQA. The results demonstrate that our model out-
performs recent MPRC baselines.

Keywords: Reading comprehension · Multi-paragraph ·
Multi-perspective

1 Introduction

Reading comprehension (RC), which aims to answer a question based on a pre-
selected paragraph, has made great progress with the development of neural net-
works and attention mechanisms. Different from the traditional RC task, MPRC
is designed to answer a question based on multiple paragraphs. For example,
given a pre-prepared question as shown in Fig. 1, an MPRC system predicts the
final answer by aggregating the evidence from some related paragraphs. Some
studies simply treat MPRC as a RC task and directly apply recent RC models
to the MPRC problem, but the performance of these RC models drops a lot.
The reasons are summarized below:
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Question: Which physicist, mathematician and astronomer discovered the first 4
moons of Jupiter ?
Answer: Galileo Galilei
Paragraph1: Galileo Galilei was an Italian physicist, mathematician, astronomer,
and philosopher who played a major role in the Scientific Revolution .
Paragraph2: Sir Isaac Newton was an English physicist, mathematician, astronomer,
natural philosopher , alchemist and theologian ...
Paragraph3: Galileo Galilei is credited with discovering the first four moons of
Jupiter.
Paragraph4: Galileo Galilei discovered sunspots, craters and peaks in the moon.

Fig. 1. An example of MPRC. The answer string is marked in green. The key infor-
mation is marked in red and blue. (Color figure online)

First, MPRC usually uses an IR system to coarsely select paragraphs that are
relevant to a question. As seen in Fig. 1, some of the paragraphs may not contain
the answer string, e.g. Paragraph2, and some of them are wrong labeled samples,
e.g. Paragraph4. We consider these two kinds of paragraphs as noisy paragraphs.
In general, the IR system will find paragraphs that are similar but not relevant to
the question. Therefore, the returned paragraphs may not contain the answer.
Besides, according to the distant supervision assumption [8], paragraphs that
contain the answer string are considered as ground truths. In this way, wrong
labeled samples will be inevitably introduced. Neglecting these noisy paragraphs
will degrade the performance of MPRC models.

Second, an ideal MPRC model should have the ability of comprehending and
reasoning based on multi-perspective evidence, i.e. the inter-relation between
paragraphs and questions and the intra-relation among paragraphs. As shown
in Fig. 1, the answer “Galileo Galilei” appears in Paragraph1 and Paragraph3,
both of which only contain a part of the information of the question. Through
combining them together, the model is more likely to predict the right answer
“Galileo Galilei”.

To address the noise problem in MPRC, Lin et al. [7] propose a coarse-to-
fine denoising model. At first, a paragraph selector is adopted to produce a
confidence score for each paragraph based on its plausible correlation with the
question. After that, a paragraph reader is used to extract the answer based on
the confidence score. However, in both selection and extraction processes, they
deal with every paragraph independently. This model only considers the inter-
relation between paragraphs and questions, but it ignores the mutual information
among paragraphs. As a result, it does not support iterative reasoning, where
the evidence aggregation from multiple paragraphs is needed.

In order to aggregate evidence from multiple paragraphs and provide a more
accurate answer, Wang et al. [13] and Wang et al. [14] first use an MPRC model
to extract answer candidates from each paragraph, and then they re-rank the
answer candidates to select the final answer. However, these answer re-ranking
approaches still rely on the performance of the MPRC model and ignore the
problem of noisy data.
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In order to address the noise problem and make full use of the multi-
perspective information in MPRC, we propose a hierarchical model with a multi-
level attention mechanism. Similar to the framework of Lin et al. [7], our model
consists of a paragraph selector and a paragraph reader. The paragraph selector
is used to select the relevant paragraphs. After that, these paragraphs are passed
to the paragraph reader to predict the final answer. Furthermore, by utilizing the
multi-level attention mechanism, our selector is capable of effectively utilizing
the inter-relation and intra-relation to select more relevant paragraphs. For the
reader, the selected paragraphs will be concatenated to provide enhanced and
complementary evidence and better predict the correct answer.

To sum up, our work makes the following contributions:

(1) We propose a hierarchical model for MPRC, which can simultaneously make
full use of the multi-perspective information and solve the noise problem.

(2) To better model the inter-relation and intra-relation, we adopt the multi-
level attention mechanism to select question-related paragraphs and extract
the answer. Furthermore, we find that utilizing the relevance among all para-
graphs can further improve the performance of MPRC.

(3) We conduct experiments on two public datasets Quasar-T and SearchQA.
The experimental results demonstrate that our model achieves significant
improvement as compared to all baseline methods.

2 Related Work

Recent approaches on MPRC extract the answer by focusing on paragraphs
retrieved from the web [1,2,6,12,15]. Generally, there are two basic approaches
to addressing this task, pipeline and answer re-ranking approaches. Most exist-
ing methods applied pipeline approaches, which selected some related paragraphs
from all background paragraphs and then extracted answers by passing the para-
graphs to a RC model. Answer re-ranking approaches adopted an extra submod-
ule to re-rank the answer candidates.

For pipeline methods, Chen et al. [1] proposed a two-step method which
consisted of a retriever and a reader. They used an IR system to retrieve a
collection of paragraphs and utilized a RC model to extract the answer. However,
these paragraphs were only relevant to the question and many of them did not
contain the answer string. As a result, the effectiveness of the RC model was
reduced. Therefore, to avoid the influence of noisy paragraphs, Wang et al. [12]
proposed another pipeline model, R3. They utilized a paragraph-selection model
to select the most relevant paragraph from the paragraphs and then used a RC
model to extract the answer. But this method ignored the fact that some other
paragraphs might also contain the answer. Subsequently, Lin et al. [7] proposed
a selector to produce a confidence score for each paragraph to filter out the
noisy ones. However, they dealt with these paragraphs separately and ignored
the information among the paragraphs. As a result, they do not support iterative
reasoning, where the evidence aggregated from multiple paragraphs is needed.
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Fig. 2. The framework of our model. Our model consists of a paragraph selector (left)
and a paragraph reader (right). The selector first chooses top k (k = 2) paragraphs. The
reader concatenates the selected paragraphs (paragraph1 and paragraph2) together
and computes the start score and the end score for each word in the concatenated
paragraph.

For answer re-ranking methods, Wang et al. [13] proposed a re-ranking based
framework for further utilizing the information of all paragraphs. Firstly, a
pipeline model R3 [12] was used to extract answer candidates from all the para-
graphs and then a re-ranking model was used to select the final answer by aggre-
gating evidence from multiple paragraphs. But this method still relied heavily
on the result of the first process and would cause the accumulation of errors if
the answer extractor was not accurate enough.

After analyzing the characteristics of the MPRC task, we propose a hierar-
chical multi-level attention based model, Multi-perspective Denoising Reader,
which utilizes not only the inter-relation but also the intra-relation to predict
the answer. Our system consists of a paragraph selector which computes a confi-
dence score for each paragraph and a paragraph reader that takes full advantage
of the information of all paragraphs to predict the final answer.
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3 Methodology

3.1 Framework

MPRC aims to answer a question based on a number of paragraphs. Formally,
given a question containing m words Q = {q1, q2, ..., qm} and a set of paragraphs
D = {P1, P2, ..., Pn} where Pi = {p1i , p2i , ..., p|pi|

i } is the i-th paragraph, |pi| is the
number of words in the i-th paragraph, our model aims to extract the answer
from these paragraphs D. Figure 2 gives an overview of our MPRC model which
is mainly composed of two modules including a paragraph selector and a
paragraph reader. The paragraph selector aims to compute a confidence score
for each paragraph. Based on the confident score, we select top k paragraphs
and then pass them to the paragraph reader to produce the final answer.

3.2 Paragraph Selector

Firstly, we need to filter the noisy paragraphs out. Therefore, we utilize the
paragraph selector to produce a confidence score for each paragraph and keep
the top-ranked ones. The paragraph selector involves an encoding layer, a P-Q
matching layer, a P-P matching layer and a selector decoding layer.

Encoding Layer. Given a paragraph Pi = {p1i , p2i , ..., p|pi|
i } and a question

Q = {q1, q2, ..., qm}, we map each paragraph and question word to a vector by
combining the following features:

Word Embeddings: We use 300 dimensional pre-trained word vectors,
GloVe [9], to obtain the fixed embedding of each word.

Char Embeddings: We map each character in a word to a 20-dimensional
vector which is then passed to a convolutional layer and a max pooling layer to
obtain the fixed-size vector of each word.

Common word: The feature is set to 1 if the word appears in both the
question and paragraph, otherwise 0. Then the feature is mapped to a vector of
fixed size.

By concatenating the above features, we obtain the encoding sequence of a
paragraph Pemb

i = {pt
i}|pi|

t=1 ∈ R
demb×|pi| and the question Qemb = {qt}mt=1 ∈

R
demb×m. Here |pi| is the number of words in the i-th paragraph. After that, we

use a bi-directional LSTM to obtain a contextual encoding for each word in the
paragraph and question respectively.

Penc
i = BiLSTM(Pemb

i ) ∈ R
dhid×|pi|,Qenc = BiLSTM(Qemb) ∈ R

dhid×m (1)

P-Q Matching Layer. The P-Q matching layer takes Penc
i and Qenc as inputs

and produce a question-aware representation Ci for each paragraph. We use the
bi-directional attention, which is introduced by BIDAF [10], to obtain the hidden
states Hi for Penc

i , where Hi ∈ R
dhid×|pi|. After that, we use a bi-directional
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LSTM to obtain a question-aware paragraph embedding Ci for the paragraph
Pi.

Ci = BiLSTM(Hi) ∈ R
dhid×|pi| (2)

P-P Matching Layer. Given Dc = {C1,C2, ...,Cn}, the P-P matching layer
aims to produce a new representation Zi for each paragraph by effectively aggre-
gating evidence from all paragraphs. Firstly, we use max pooling to obtain a
fixed-size vector for the question-aware paragraph embedding.

Cpool
i = max(Ci) ∈ R

dhid ,Cpool = {Cpool
i }ni=1 ∈ R

dhid×n (3)

where Cpool represents the sequence of summary vectors for all paragraphs. Next,
in order to make full use of the intro-relation among paragraphs, a self atten-
tion layer and a bi-directional LSTM are utilized to produce a final paragraph
representation for each paragraph.

A = softmax(CpoolTCpool) ∈ R
n×n,U = CpoolA ∈ R

dhid×n (4)

Here, A is the similarity matrix and Aij indicates the similarity between
Cpool

:i and Cpool
:j . U:i is the i-th column of U which is the representation of the i-

th paragraph and this representation contains the information of all paragraphs.
The U and Cpool are concatenated together to yield G. We define G by

G:i = [Cpool
:i ;U:i;C

pool
:i ◦ U:i;C

pool
:i − U:i] ∈ R

4dhid (5)

where ◦ is element-wise multiplication, − is element-wise subtraction, and [; ] is
vector concatenation across row. After that, a bi-directional LSTM is used to
obtain the final paragraph representation Z.

Z = BiLSTM(G) ∈ R
dhid×n (6)

Selector Decoding Layer. The selector decoding layer aims to compute a
confidence score for each paragraph. A linear layer and a sotfmax function are
used to produce a normalized score for each paragraph.

Prsen = softmax(WT
1 Z) ∈ R

n (7)

where W1 ∈ R
dhid is a trainable weight vector. Prseni is the i-th element of Prsen

which represents the probability that the i-th paragraph contains the answer.

3.3 Paragraph Reader

The inputs of the paragraph reader are the k top-ranked paragraphs Dtop =
{P1, P2, ..., Pk} which are selected by the selector. Note that k is a hyper-
parameter. After that, we concatenate these paragraphs together to obtain
P̂ = [P1;P2; ...;Pk] which aggregates the evidence from the selected paragraphs
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in word level. Given P̂ and Q, the output of the reader is the probability dis-
tribution of the start index and end index over the concatenated paragraph.
The paragraph reader consists of an encoding layer, a P-Q matching layer and
a reader decoding layer.

The reader and the selector have the same encoding and P-Q matching layers.
After converting P̂ and Q to these two layers, we obtain the hidden states Ĥ ∈
R

dhid×|P̂ | where |P̂ | is the number of words in the concatenated paragraphs.

Reader Decoding Layer. The input of reader decoding layer is Ĥ. After that,
we use a bi-directional LSTM to obtain a matrix M. Next, a linear layer and a
sotfmax function are used to produce the start probabilities.

M = BiLSTM(Ĥ) ∈ R
dhid×|P̂ |,Prs = softmax(W4M) ∈ R

|P̂ | (8)

The concatenation of Ĥ and M is passed to a second bi-directional LSTM
to obtain M2. Hence, We compute the end probabilities by

M2 = BiLSTM([Ĥ;M]) ∈ R
dhid×|P̂ |,Pre = softmax(W5M2) ∈ R

|P̂ | (9)

After that, we split Prs and Pre into k vectors according to the length of
each paragraph and obtain {Prs1,Prs2, ...,Prsk} and {Pre1,Pre2, ...,Prek}. We hope
that the final score of a word in each paragraph contains the output probabilities
of the selector and the reader, so we multiply these two probabilities to get the
final scores.

scoresi = Prseni Prsi , scoreei = Prseni Prei (10)

where Prseni ∈ R, produced by the selector, represents the probability that the
i-th paragraph contains the answer, scoresi ∈ R

|Pi| is a vector representing the
start scores of the i-th paragraph.

3.4 Training and Prediction

We train our model in two stages and regard all paragraphs that contain the
answer string as ground truths following the distantly supervised setup.

For the paragraph selector, every paragraph in set {Pi}ni=1 is associated with
a label yi ∈ {0, 1}. The label is 1 if the paragraph contains the answer string.
Given the paragraph probabilities Prsen ∈ R

n, the selector is trained by mini-
mizing the loss :

Ls = −
n∑

i=1

yilog(Prseni ) (11)

For the paragraph reader, we first select k top-ranked paragraphs and obtain
the final scores scoresi , score

e
i for each paragraph where scoresi (t) represents the

start score of the t-th word in the i-th paragraph. As described above, the answer
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string can appear multiple times in a paragraph. Therefore, let {(xt
i, z

t
i)}|ai|

t=1 be
the set of the start and end positions of the answer strings that appear in the
paragraph Pi. The reader is trained using a summed objective function that
maximizes the probability of selecting any correct answer span.

Lr = −(log(
k∑

i=1

|ai|∑

t=1

(scoresi (x
t
i))) + log(

k∑

i=1

|ai|∑

t=1

(scoreei (z
t
i)))) (12)

During testing, we first utilize the selector to predict a confidence score for
each paragraph and select top k paragraphs. Next, the reader calculates the start
and the end score of each word in all selected paragraphs. After that, we extract
an answer candidate Ai that has maximum span score for each paragraph. This
span score is the product of the start score of the first word and the end score
of the last word in the candidate span. Next, if the answer candidates from
different paragraphs have the same characters, we will add the scores of these
answer candidates together and choose the answer candidate with the maximum
score as our final prediction.

4 Experiments

4.1 Datasets and Baselines

We evaluate our model on two MPRC datasets, Quasar-T [3] and SearchQA [4].
The background paragraphs of these datasets are retrieved from webpages by
IR systems.

Quasar-T. It consists of 43K open-domain trivia question-answer pairs, and
about 100 relevant paragraphs are provided for each question-answer pair by
using the Solr search engine.

SearchQA. It consists of more than 140K question-answer pairs, and about
50 webpage snippets are provided as background paragraphs for each question-
answer pair by using the Google search engine.

To better evaluate the effectiveness of our model, we carefully select some
recent approaches as baselines, including traditional RC models (GA [2], BIDAF
[10]), answer re-ranking models (Re-Ranker [13], Joint [14]) and pipeline models
(DrQA [1], R3 [12], DS-QA [7]).

4.2 Implementation Details

In the experiments, we adopt the same data preprocessing scheme mentioned in
[13]. Our model is tuned on the development set and then the model achieving
best results is used to the predict answer on the test set. We use 300-dimensional
word embeddings pre-trained by GloVe [9] and the word embeddings are not
updated during training. Additionally, 20-dimensional character embeddings are
randomly initialized and updated during training. The common word feature is
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Table 1. Experimental results on Quasar-T and SearchQA.

Models Quasar-T SearchQA Average

EM F1 EM F1 EM F1

GA [2] 26.4 26.4 – – – –

BIDAF [10] 25.9 28.5 28.6 34.6 27.2 31.5

Re-Ranker [13] 42.3 49.6 57.0 63.2 49.6 56.4

Joint [14] 45.9 53.9 58.3 64.2 52.1 59.0

DrQA [1] 37.7 44.5 41.9 48.7 39.8 46.6

R3 [12] 35.3 41.7 40.9 55.3 38.1 48.5

DS-QA [7] 42.2 49.3 58.5 64.5 50.3 56.9

Our model 46.7 55.6 61.1 67.3 53.9 61.4

Table 2. The performance of our selector on the Quasar-T test set.

Models Quasar-T SearchQA

Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

IR 6.3 10.9 15.2 13.7 24.1 32.7

R3 40.3 51.3 54.5 – – –

DS-QA 27.7 36.8 42.6 59.2 70.0 75.7

Our model 48.2 57.3 61.4 72.3 84.0 87.9

mapped to a 4-dimensional vector and it is updated during training. For the
selector, we set the hidden size of LSTM as 150 and the number of LSTM layers
as 1. We use Adam [5] to optimize the model and set batch size as 8, learning
rate as 5e-4. Dropout [11] is adopted to the outputs of all LSTM layers at a rate
of 0.2. For the reader, the parameters of the selector are fixed. We utilize the
selector to produce the confidence score for every paragraph and select the 30,
25 top-ranked paragraphs for Quasar-T, SearchQA respectively. Different from
the settings of the selector, we set the batch size as 16 and learning rate as 1e-3.
The other settings of parameters of the reader are the same as the selector.

4.3 Results and Analysis

In this section, we focus on the performance of the whole model. Table 1 presents
the F1 and Exact Match (EM) scores of our model and the baseline models. The
evaluation metrics is widely-adopted for MPRC. We can observe that our model
outperforms the baselines. Compared with the answer re-ranking models, the
performance of our model is better. The main reason is that these baselines
deal with each paragraph indiscriminately. They ignore the influence of noisy
paragraphs. However, by utilizing the inter-relation between paragraphs and
questions, our model could effectively filter out the noisy data and promote the
overall performance. Compared with the pipeline models, our model also achieves
a better result. The main reason is that our model can use the intra-relation
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Table 3. The upper bound of the Top 1,3,5 answer candidates on the Quasar-T devel-
opment set.

Models R3 DS-QA Our model

Quasar-T EM F1 EM F1 EM F1

Top1 35.3 41.6 42.2 49.3 47.6 56.5

Top3 46.2 53.5 53.1 62.0 55.8 65.0

Top5 51.0 58.9 56.4 66.4 57.9 67.9

among all paragraphs to select relevant paragraphs and answer questions, while
these baselines always handle each paragraph independently.

The experimental results demonstrate our assumption that making full use of
the inter-relation and intra-relation among paragraphs and questions can further
help us to solve the MPRC problem. The following three parts are used to further
analyze the submodule, the potentiality and the case study of our system.

Performance of the Selector. Table 2 shows the performance of our selec-
tor and the baselines including an IR model1 and some neural network models
(DS-QA [7], R3 [12]). Since we do not know which paragraph actually answers
the question in the distantly supervised setup, we follow the previous work to
regard the paragraph which contains the answer string as ground truth. We
adopt Hit@K as evaluation metrics which measures the probability that the
answer string appears in the K top-ranked paragraphs. As shown in the table,
our selector significantly outperforms the baselines which only utilize the inter-
relation between the paragraph and the question. The result proves that the
intra-relation among paragraphs can be used to further improve the performance
of the selector. By simultaneously employing the inter-relation and intra-relation,
we can effectively solve the noisy problem in MPRC.

Potential Improvement. This part is the analysis of the potential of our
model. The scores in the Table 3 could be viewed as the upper bounds of our
model after it is equipped with the answer re-ranking submodule. Specifically,
for each question, we choose the top k predictions and record the best EM/F1
score among them. From the table, we can observe that the scores of the top 3
and top 5 are much higher than those of the top 1. It means that we can find the
correct answer in a small range of k and our model still has a great potential to
be improved by the answer re-ranking submodule. Moreover, the scores of our
model are both higher than those of the DS-QA and R3. This means that our
model has a higher potential to be improved by the answer re-ranking strategy.

Case Study. Table 4 shows two examples of our models, which indicates that
our model can make full use of the multi-perspective information and solve the
1 The IR model ranks the paragraph with BM25.
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Table 4. An example from Quasar-T.

Question: The Latin phrase “Citius Altius Fortius” is the motto for
which sporting event?

Label

Answer: The Olympic Games Distant Select

The motto of the Olympic Games is the hendiatris “Citius, Altius,
Fortius”, which is Latin for “Faster, Higher, Stronger”

1 1

As the official motto of the Olympic Games, Coubertin adopted “Citius,
altius, fortius”, Latin for “Faster, higher, stronger”

1 1

The Olympic Games is a sporting event that takes place in a different
city every four years

1 0

Question: Where, in 1955, was one of the worst accidents in motor
racing history, when 82 spectators were killed?

Label

Answer: Le Mans Distant Select

The worst accident in motor racing history happened at the 1955 24
hours of Le Mans

1 1

In 1955, Hawthorn was the winner of the 24 hours of Le Mans race,
despite being involved in the terrible crash that killed 82 spectators

1 1

His skills were just as highly valued when he was testing for and racing
at Le Mans

1 0

noise problem. “Distant” means the distantly supervised label. “Select” means
the label produced by the paragraph selector. We can observe from the table:

(1) On both examples, all three paragraphs contain the answer string while
the third paragraph is noisy. Because the third one is not relevant to the
question. In the distant supervision setup, we consider the noisy paragraph
as the ground truth and this will affect the performance of the reader. The
table shows that the paragraph selector can effectively filter out the noisy
paragraphs by jointly utilizing the inter-relation and intra-relation.

(2) On the first example, the first two paragraphs are relevant to the ques-
tion and both of them support “The Olympic Games” as the answer. These
paragraphs provide enhanced evidence for the correct answer. On the second
example, the first two paragraphs contain the answer string while both of
them only contain a part of the information of the question. These para-
graphs provide complementary evidence for the correct answer. By concate-
nating the selected paragraphs together, we can provide more useful infor-
mation for the reader.

5 Conclusion

In this paper, we propose a hierarchical model with a multi-level attention
mechanism which can make full use of the multi-perspective information and
solve the noise problem simultaneously. Experiments on two challenging public
MPRC datasets, Quasar-T and SearchQA, show that our model outperforms
recent MPRC baselines. In the future, we will explore the utilizing of structured
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knowledge in solving the MPRC problem. We believe that the performance of
our model will be further improved by effectively exploiting the commonsense
knowledge.
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tion of China (No. 61976207, No. 61906187).
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Abstract. Natural Language Processing models lack a unified approach
to robustness testing. In this paper we introduce WildNLP - a framework
for testing model stability in a natural setting where text corruptions
such as keyboard errors or misspelling occur. We compare robustness
of deep learning models from 4 popular NLP tasks: Q&A, NLI, NER
and Sentiment Analysis by testing their performance on aspects intro-
duced in the framework. In particular, we focus on a comparison between
recent state-of-the-art text representations and non-contextualized word
embeddings. In order to improve robustness, we perform adversarial
training on selected aspects and check its transferability to the improve-
ment of models with various corruption types. We find that the high
performance of models does not ensure sufficient robustness, although
modern embedding techniques help to improve it. We release the code of
WildNLP framework for the community.

Keywords: Natural Language Processing · Robustness · Adversarial
examples · Deep learning

1 Introduction

Adversarial examples have been shown to severely degrade performance of deep
learning models [11,15]. Natural Language Processing systems are no different
in this respect. Multiple areas of NLP, such as machine translation [2], question
answering [13], or text classification [14] have been studied to assess the impact of
adversaries generated with various methods. However, these works tend to focus
on one area only, often with attacks designed just for the selected problem. It
makes comparisons between models, datasets, and NLP areas impossible. In par-
ticular, the robustness of modern contextualized word embedding systems - such
as ELMo [18], Flair [1] and language model based BERT [6] remains unstudied.
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In this article, we evaluate the behavior of natural language models in the
wild. We propose WildNLP - a comprehensive robustness testing framework
which can be used for any NLP model. Instead of focusing on elaborate attacks,
which are unlikely to originate by accident, we simulate the quality of models in a
natural setting, where input data is poisoned with errors involuntarily generated
by actual users.

We put these notions into a set of tests called aspects. Moreover, we introduce
the concept of corruption severity and prove that it is critical to model improve-
ment via adversarial training. The framework is aimed at any NLP problem
irrespective of its form of input and output.

In summary, our contributions are the following:

1. We offer a systematic framework for testing corruption robustness
- the WildNLP. In total, we introduce 11 aspects of robustness testing,
with multiple severity levels. We release the WildNLP code for the commu-
nity1. The framework is easy to extend. New aspects can be defined by the
community.

2. We test corruption robustness of a number of NLP tasks: question
answering (Q&A), natural language inference (NLI), named entity
recognition (NER), and sentiment analysis (SA). We verify stabil-
ity of neural models trained on contextualized embeddings like ELMo and

Table 1. Examples of text corruptions introduced by WildNLP aspects.

Aspect Example sentence

Original Warsaw was believed to be one of the most beautiful cities in the world

Article Warsaw was believed to be one of a most beautiful cities in world

Swap Warsaw aws believed to be one fo teh most beautiful cities in the world

Qwerty Wadsaw was bdlieved to be one of the most beautiful citiee in the world

Remove char Warsaw was believed to be one o th most eautiful cities in the world

Remove space Warsaw was believed tobe one of the most beautiful cities in the world

Original You cannot accidentally commit vandalism. It used to be a rare occurrence

Misspelling You can not accidentaly commit vandalism. It used to be a rare
occurrance

Original Bus Stops for Route 6, 6.1

Digits2words Bus Stops for Route six, six point one

Original Choosing between affect and effect can be scary

Homophones Choosing between effect and effect can bee scary

Original Laughably foolish or false: an absurd explanation

Negatives Laughab*y fo*lish or fal*e: an a*surd explanation

Original Sometimes it is good to be first, and sometimes it is good to be last

Positives Sometimes it is go*d to be first, and sometimes it is goo* to be last

Marks Sometimes, it is good to be first and sometimes, it, is good to be last

1 https://github.com/MI2DataLab/WildNLP/.

https://github.com/MI2DataLab/WildNLP/
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Flair in contrast to non-contextualized FastText [3] and GloVe [17]. We also
analyze BERT in the task of Q&A. We find that new forms of text represen-
tation, despite greater contextual awareness, do not offer a sufficient increase
in robustness.

3. We find that model training on one aspect does improve perfor-
mance on another aspect, contrary to previous studies [2]. For this
to be true, two corruption types must be similar to some extent.

In Sect. 2 we present related literature in the domain of NLP robustness.
In Sect. 3 we present WildNLP framework, describing in detail each introduced
aspect. In Sect. 4 we compare robustness of NER, Q&A, NLI and Sentiment
Analysis. In Sect. 5 we perform adversarial training on Qwerty aspect with dif-
ferent severities and test these models on other aspects. We conclude in Sect. 6.

2 Related Work

The problem of natural noise in textual data has been studied by [2], however
exclusively in the context of character-based machine translation models. They
find that errors such as typos and misspelling cause significant drops in BLEU
scores. Other recent approaches to generating textual adversaries include the
work of [14], who exploit important word manipulations for text classification
models from 2014 and 2015. [8] identify important words and apply 4 kinds of
character perturbations: swap, substitution, deletion and insertion. They test
on vanilla LSTM and CNN model, applying them to 8 datasets. Among others,
they aim for the character swaps to map a word vector to an ‘unknown’ vector
in traditional word embeddings. [20] create rules of substitutions between texts
which produce correct and semantically identical samples in Q&A domain. [10]
design adversaries for NLI systems, swapping words which share a relation such
as antonymy or co-hyponymy.

3 WildNLP: Corruption Robustness Testing Approach

We postulate that performance of each model should be tested on three levels:

1. Performance measures - established metrics such as F1 score, accuracy,
BLEU score should indicate to what extent the model performs correctly on
the testset.

2. Corruption robustness - robustness towards corruptions which can occur
naturally in the model deployment setting. They reflect involuntary perturba-
tions introduced to text by users, resulting from misspelling, haste or varied
writing habits. As such, these are black box attacks as no knowledge of under-
lying models is exploited. WildNLP, presented in this paper, is an example
of this attack method.

3. Targeted robustness - attacks designed for a specific problem and/or
dataset, or demanding access to model internals. An example is the whole
class of white box attacks [7] as well as highly specialized attacks [13].
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3.1 Corruption Aspects

The WildNLP aspects define classes of common disturbances found in natural
text. These corruptions can be produced naturally due to haste, lacking space,
individual writing habits or imperfect command of English.

Articles. Randomly removes or swaps articles into wrong ones.

Swap. Randomly shuffles two characters within a word.

Qwerty. Simulates errors made while writing on a QWERTY-type keyboard.
Characters are swapped for their neighbors on the keyboard.

Remove char. Randomly removes characters from words.

Remove space. Removes a space from text, merging two words.

Misspelling. Misspells words appearing in the Wikipedia list of commonly mis-
spelled English words2.

Digits2words. Rewrites digit numbers into words.

Homophones. Changes words into their homophones from the Wikipedia list
of common misspellings/homophones3. The list contains around 500 pairs or
triples of homophonic words.

Negatives. This aspect reflects attempts made by some Internet users to mask
profanity or hate speech in online forums to evade moderation. We perform
masking of negative words from Opinion Lexicon4. The lexicon contains a list of
English positive and negative opinion words or sentiment words, in total around
6800 words.

Positives. Masks positive words from Opinion Lexicon, similarly as in the case
of Negatives (described above).

Marks. Randomly removes and insert punctuation marks. Marks are inserted
between last letter of a word and space.

Table 2. Exemplary context, question and answer from SQuAD dataset.

Question&Answer Context

Q: How many provinces did the Ottoman
empire contain in the 17th century?

A: 32

(...) At the beginning of the 17th century
the empire contained 32 provinces and
numerous vassal states. (...)

2 https://en.wikipedia.org/wiki/Commonly misspelled English words.
3 https://en.wikipedia.org/wiki/Wikipedia:Lists of common misspellings/

Homophones.
4 https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html.

https://en.wikipedia.org/wiki/Commonly_misspelled_English_words
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/Homophones
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/Homophones
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html


Models in the Wild: On Corruption Robustness of Neural NLP Systems 239

Table 3. Exemplary hypotheses, questions and answers from SNLI dataset.

Premise Hypothesis Type

A woman with a green headscarf,
blue shirt and a very big grin

The woman is young Neutral

An old man with a package poses
in front of an advertisement

A man poses in front of an ad Entailment

A couple walk hand in hand down
a street

A couple is sitting on a bench Contradiction

Table 4. Exemplary tagged sentence fron CoNLL dataset.

Token SOCCER - JAPAN GET LUCKY WIN CHINA IN DEFEAT .

Class O O I-LOC O O O I-PER O O O

Table 5. Excerpts from exemplary reviews from IMDB dataset.

Review Sentiment

Kutcher played the character of Jake Fischer very well, and Kevin
Costner played Ben Randall with such professionalism. The sign of a
good movie is that it can toy with our emotions. (...)

Positive

Once again Mr. Costner has dragged out a movie for far longer than
necessary. Aside from the terrific sea rescue sequences, of which there
are very few I just did not care about any of the characters. (...)

Negative

BERT ELMO GLOVE

50 60 70 80 50 60 70 80 50 60 70 80
Swap 5
Swap 3
Swap 1

Remove space
Remove char 5
Remove char 3
Remove char 1

Qwerty 4
Qwerty 3
Qwerty 1

Misspellings 1
Marks 4
Marks 3
Marks 1

Homophones
Digits2words

Articles 0.5
 Original

F1 score

Drop in F1 for selected methods of input corruption
Question Answering

Fig. 1. Robustness testing results for Q&A models. Each bar starts in the F1 score for
the original data and ends in F1 score for data after selected method of corruption is
applied. The shorter the bar the more robust is a given method.
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Table 6. Influence of the severity of corruption of training data on results of corrupted
testsets in Q&A BiDAF ELMo model.

Tested on Trainset

Original EM Qwerty 1 EM Qwerty 5 EM

Original 71.6 70.7 69.0

Qwerty 1 66.4 68.2 67.8

Qwerty 5 46.2 58.2 63.8

ULMFiT FLAIR INFERSENT

CNN ELMO ELMO

80 85 90

Remove Char 50
Remove Char 40
Remove Char 30

Qwerty 50
Qwerty 40
Qwerty 30

Homophones
Digits

 Positives
 Negatives

  Original

Remove Char 50
Remove Char 40
Remove Char 30

Qwerty 50
Qwerty 40
Qwerty 30

Homophones
Digits

 Positives
 Negatives

  Original

88 90 92

Swap 5
Swap 3
Swap 1

Remove Char 5
Remove Char 3
Remove Char 1

Qwerty 5
Qwerty 3
Qwerty 1

Misspellings
Homophones

Digits
Articles 0.5

  Original

Swap 5
Swap 3
Swap 1

Remove Char 5
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Fig. 2. Robustness testing results for NLI, NER, and SA models. Corruptions of smaller
severities (1–5) are not evaluated on SA models due to greater length of IMDB dataset
sequences. Each bar starts in the performance for the original data and ends in perfor-
mance for data after selected method of corruption is applied.

The severity of perturbations can be varied. In the case of Swap, Qwerty and
Remove char we control it by defining how many words will be affected. In the
case of Article, it is defined by a probability of corruption of each article.

Table 1 presents examples of resulting changes for each aspect.

4 Experiments

We test corruption robustness on various NLP tasks and models. Each of the
models is run on the specific dataset it has been trained on in the original setting,
which is preprocessed by WildNLP. An important point in the experimental
setting is the application of various word embeddings. We focus on testing the
robustness of models trained with newly introduced context-aware embeddings:
ELMo, Flair and language model based BERT. We compare their performance on
corrupted data to older embedding systems - GloVe, FastText (within InferSent)
and in the case of one of sentiment analysis models, even one-hot encoded words.
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We do so to verify the assumption that greater context awareness and lack of
problems with out-of-vocabulary (OOV) words in ELMo, Flair and BERT would
increase robustness of models.

4.1 Experimental Setting

We use our framework on the selection of well known models that are widely
used in NLP community. For training ELMo-based models we use open-source
implementations available in AllenNLP [9], for BERT we follow implementation
of HuggingFace5 and for the rest of the models we use original author research
code. In particular, following models and datasets are used in experiments:

– Q&A task
Models. We test BiDAF and BERT trained on the SQuAD dataset [19]. We
analyze two versions of BiDAF - with ELMo (BiDAF-E) and GloVe (BiDAF-
G) embeddings. BiDAF uses character and word embeddings with a bidirec-
tional attention flow to obtain a query-aware context representation. It is one
of the popular models listed on the SQuAD leaderboard. BERT, on the other
hand, applies a bidirectional Transformer to language modeling task and is
currently used with great success in various NLP tasks, achieving the cur-
rent state-of-the-art. We evaluate the models with the common performance
scores in Q&A task, which are Exact Match (EM) and F1 score.
Dataset. SQuAD dataset comprises around 100,000 question-answer pairs
prepared by crowdworkers. The dataset is based on Wikipedia articles. Table 2
displays examples of the question-answer pairs.

– NLI task
Models. We analyze decomposable attention model [16] trained on ELMo
embeddings and InferSent model [5]. The aim of InferSent embeddings is
to create the universal sentence representations. They are initialized with
FastText embeddings and trained using SNLI dataset.
Dataset. The Stanford Natural Language Inference (SNLI) Corpus [4] is a
collection of 570,000 manually created and labeled English sentence pairs.
Table 3 contains an example of the three possible entailment relations.

– NER task
Models. We use two sequence tagging models with ELMo implementa-
tion (CRF-E) [18] and Flair [1]. Flair comprises new word embeddings an
a BiLSTM-CRF sequence labeling system. It models words as sequences of
characters, which allows to effectively eliminate the notion of separate tokens.
Flair is currently the state-of-the-art model in NER task.
Dataset. The CoNLL 2003 dataset is a standard training dataset used in
NER sequence tagging. It is a collection of news articles from Reuters cor-
pus annotated as Person, Organization, Location, Miscellaneous, or Other
for non-named entities. Due to licensing agreement this is the only corrupted
dataset that we cannot release.

5 https://github.com/huggingface/pytorch-pretrained-BERT.

https://github.com/huggingface/pytorch-pretrained-BERT
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Fig. 3. Performance of models trained on varied levels of Qwerty aspect tested on
varied levels of Qwerty aspects applied to testset.

– SA task
Models. We use the current state-of-the-art ULMFiT model [12] that consists
of language model pretrained on Wikipedia and fine-tuned on the specific text
corpus that is used in classification task. In adversarial training scenario, we
pretrain this language model on corrupted data. We compare ULMFiT with
CNN based classification model, which uses one-hot encoding of words.
Dataset. We train and test described models on IMDB dataset that consists
of 25000 positive and 25000 negative reviews of movies (Tables 4 and 5).

4.2 Model Robustness

Figure 1 (Q&A models) and Fig. 2 (other models) present aggregate results of
testing on all models and all corruption aspects.

Robustness Measure. To comprehensively measure model robustness to cor-
ruptions, we calculate an overall mean of drops across all aspects (Av-Drop). We
use this aggregated metric to compare robustness between models.

Q&A. The robustness of Q&A models was the lowest of all tested tasks. The
corruptions which proved most damaging to the performance and in result to
Av-Drop were the following: Swap 5 (32–37 EM drop), Remove char 5 (29–37
EM drop), Qwerty 5 (25–30 EM drop).

BERT and ELMo-based systems were found to mitigate performance loss to
some degree compared to GloVe. However, their performance loss pattern across
corruptions was similar to GloVe, and the difference of Av-Drop between BERT
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(most robust model) and BiDAF GloVe (least robust model) was 2.8 pp, despite
huge performance differences reflected in F1 and EM (1).

We observe that severity of aspects plays an important role in drop of per-
formance metrics across all Q&A models. For aspects that corrupt individual
words like Qwerty, Remove char or Swap, drop in performance of GloVe-based
models is intuitive - we substitute words from out of vocabulary (OOV) with
unknown token. However, in the case of ELMo and BERT the problem of OOV
tokens is not that severe - they are character or subword-based, which means
that they can reconstruct word embeddings for unknown words. Still, we observe
an average drop of F1 metric on these three aspects (severity 5) at the level of
23.04 (BiDAF-E) and 24.46 (BERT) in comparison to drop of BiDAF-G at 32.9.
Lower severities of word corruptions induce much lower drops - in case of sever-
ity 1 it is still a noticeable difference of 4.48 (BiDAF-E), 3.44 (BERT) and 5.63
(BiDAF-G).

WildNLP also tests on aspects that do not alter words but sentences. As
previously, we state that context-aware models should be indifferent to such
changes as they do not alter sentence meaning. However, we observe that aspects
such as Remove space and Marks decrease F1 values among all Q&A even by
8.89 in case of Remove space tested with BiDAF-E, whereas BERT proves to
be more robust to this sentence-level corruption with drop of F1 at 2.47.

NLI. Natural Language Inference task tested by WildNLP framework is more
robust when trained with decomposable attention model with ELMo embeddings
(Dec-E) rather than simple MLP classifier that uses sentence embeddings created
by InferSent method (InferSent). The Av-Drop for Dec-E is half the value of Av-
Drop for InferSent, being at the level of 4.19. On all sets of aspects, Dec-E model
has lower drops of performance metric. However, it still has relatively high drops
when it comes to word corruption aspects like Qwerty, Remove char or Swap,
with average drop of 10.92 at severity 5 and 2.09 at severity 1. InferSent performs
worse by around 3 pp (5.56 and 12.82 respectively).

However, when we consider sentence level aspects like adding extra commas
to the sentence, Dec-E model is very robust, having only 0.85 of drop in accuracy
on highest possible severity.

NER. Both NER models seems to be robust, having the Av-Drop measure at
the level of 2.37 (CRF-E) and 2.14 (Flair). However, in the case of state-of-the-
art NER models, differences in performance are so small, that such relatively
small values of Av-Drop must be seen as meaningful.

SA. ULMFiT model was found to be slightly less robust than CNN using one-
hot encodings (2.36 vs 2.28 of Av-Drop). Drop in performance of the CNN
model was mainly caused by Positives and Negatives corruptions (7.22 and
9.7 Av-Drop). Presumably this behavior is caused by the model’s focus on detect-
ing sentiment-carrying words, which were on average rarely affected by other
corruptions. On the other hand, ULMFiT was less affected by Positives and
Negatives corruptions (3.6 and 4.2 Av-Drop) probably because of its reliance
on context and more subtle expressions of sentiment. In spite of the fact that
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Fig. 4. Influence of training on data corrupted with Qwerty aspects on testing on other
aspects.

the CNN model suffered from out-of-vocabulary words problem (corrupted words
were simply unrecognized) while ULMFiT did not, the CNN proved more robust
to most deformations in WildNLP framework.

5 Robustness Enhancements

We use adversarial training to research the potential of overcoming corruption
errors. We validate two hypotheses:

1. Adversarial training on data corrupted with aspects of greater
severity should help to resolve problems with data corrupted with
lesser severity. For example, training on Qwerty 5-corrupted data should
increase performance of data corrupted with Qwerty 1 up to Qwerty 5 sever-
ities.

2. Adversarial training on one corruption type should increase model
robustness to other corruptions. [2] suggest that this might not be the
case. They find that models trained on one type of noise do not perform
well on others in character-based translation models. However, this analysis
includes a very limited set of corruptions. We hope to prove that robustness
can be improved between aspects which are related.

Corruption Severity. In agreement with our hypothesis we find that increased
severity of corruption during training does increase performance on data cor-
rupted with the same aspect type but lesser severity. Table 6 presents numeric
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scores for the training setting in Q&A BiDAF ELMo models, while Fig. 3 shows
plots for multiple models. In all scenarios, we test on Qwerty 1 and Qwerty 5
corruptions.

Interestingly, in the case of NER models, results obtained on models trained
on both corruption types are even better than for the original model (for
Qwerty 5 model, this behavior is consistent across levels of severity of test data
perturbations).

Empirically, the severity of Qwerty perturbation (and others) does make the
text unintelligible for humans at some point. For example, this boundary was
found to be level 5 for Q&A questions. However, the Q&A BiDAF ELMo model
trained on Qwerty 5 performs reasonably well even at severity level 8. This
suggests that the model learned to decode this corruption even beyond human
ability.

Relation Between Corruption Types. To verify relations between perfor-
mance of models trained and tested on various corruption types, we test models
trained on Qwerty corruption with severity 1 and 5. Qwerty exhibits similari-
ties to Swap and Remove char types, since all of them imply manipulations of
word characters. We find our hypothesis to be true - the performance on related
aspects is improved by training a model adversarially on one of them. We observe
that BiDAF ELMo and NER ELMo models trained on Qwerty and tested on
similar aspects perform better than original models not trained in adversarial
setting. Results are depicted in Fig. 4.

6 Conclusions

We have presented the WildNLP framework for corruption robustness testing.
We have introduced 11 text corruption types (at various severity levels) which
can occur naturally in model deployment setting: misspellings, keyboard errors,
attempts at masking emotional language, and others. We test on four NLP areas
and multiple deep learning models, verifying corruption robustness of state-of-
the-art BERT system and new LM-based embeddings: ELMo and Flair, con-
trasted with GloVe and Fasttext. We find that the problem of lacking corruption
robustness is not solved by these recent systems. However, we find that the issue
can be partially alleviated by adversarial training, even across aspects. Without
doubt, more work is needed to make models robust to noise.
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Abstract. Abstractive summarization methods based on neural net-
work models can generate more human-written and higher qualities sum-
maries than extractive methods. However, there are three main prob-
lems for these abstractive models: inability to deal with long article
inputs, out-of-vocabulary (OOV) words and repetition words in gener-
ated summaries. To tackle these problems, we proposes a hierarchical
hybrid Transformer model for abstractive article summarization in this
work. First, the proposed model is based on a hierarchical Transformer
with selective mechanism. The Transformer has outperformed traditional
sequence-to-sequence models in many natural language processing (NLP)
tasks and the hierarchical structure can handle the very long article
inputs. Second, the pointer-generator mechanism is applied to combine
generating novel words with copying words from article inputs, which can
reduce the probability of the OOV words. Additionally, we use the cov-
erage mechanism to reduce the repetitions in summaries. The proposed
model is applied to CNN-Daily Mail summarization task. The evalua-
tion results and analyses can demonstrate that our proposed model has
a competitively performance compared with the baselines.

Keywords: Abstractive summarization · Hierarchical transformer ·
Selective mechanism · Pointer-generator · Coverage mechanism

1 Introduction

Text summarization can be considered as a process to compress the main infor-
mation and generate a short summary from a original longer text. There are two
main approaches to achieve text summarization: extractive and abstractive [11].
Extractive methods simply copy same words and phrases from the source text
to assemble summaries. While abstractive methods usually get more human-
written sentences since it is based on semantic representation and may generate
novel words and phrases. Abstractive framework have sophisticated abilities to
paraphrase, generalize and incorporate real-world knowledge [14], as a result,
more and more researches have been focused on abstractive text summarization.
Since abstractive summarization aims to map long input documents into brief
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output summaries, it is usually based on a encoder-decoder framework to achieve
this task.

The fundamental challenge of abstractive summarization is that the original
sentences to be summarized is too long and have multiple sentences with redun-
dant information. It causes that the summaries generated by abstractive frame-
work have out-of-vocabulary (OOV) words and repeated words. Many recent
researches have made progress in sequence-to-sequence models to tackle these
problems. Some abstractive frameworks combine the extractive method to reduce
OOV words with a pointer-generator models, which considers both copying prob-
abilities and generating probabilities to get the summaries [5,14]. Gehrmann et
al. [4] develop a bottom-up model with coverage penalty and length penalty
to get summaries with fewer repeated words. Besides the OOV and repeated
problems, when the original article contains too many sentences and words, the
simple neural network encoder can not receive all words from the inputs and have
huge numbers of parameters. As a result, the encoder can not get high quality
semantic information and the huge numbers of parameters cost too much time
and too many memory resources for training. The hierarchical framework is used
to deal with the training issues in the encoder [18].

In this paper, we focus on article summarization rather than headline gen-
eration tasks in abstractive summarization. The document summarization has
longer text and multiple sentences which requires higher levels of abstraction
and more effective encoder to get the core semantic information. Motivated by
the recent researches, we propose a hierarchical hybrid framework to address the
OOV, repeated words and long article inputs in abstractive article summariza-
tion. And the proposed model is based the Transformer [16], which outperforms
Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) in
many natural language processing (NLP) tasks [8,15,19]. The proposed model
(Hie-Transformer) contains a hierarchical encoder (words to sentences, sentences
to an article) based on the Transformer with selective layer to obtain semantic
information and long-range dependencies between sentences more effectively. To
deal with OOV word issues, we apply the pointer-generator mechanism in the
decoder stack. This method combines getting novel words by generating with
copying same word from article inputs by pointing. Besides, the coverage mech-
anism which keeps track of the words already generated to reduce the repetition
probability when getting the next new word. We evaluate the proposed model on
CNN-Daily Mail dataset [6,12] and it achieves improvements compared with the
baseline models. The analyses on the summary results show the model facilitates
reducing OOV and repeated words.

2 Related Work

Most of abstractive text summarization methods are based on sequence-to-
sequence model [1]. It can be divided into headline generation task [13] and
article summarization task [12].

The headline generation task is more concerted with the sentence level sum-
marization. It gets semantic information from one or two sentences and compress
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to a single headline. Rush et al. [13] are first to use sequence-to-sequence frame-
work on this task with a CNN encoder and a language model decoder. Chopra
et al. [3] extend their work with a RNN decoder and get a better performance.
Nallapati et al. apply a full RNN sequence-to-sequence framework with attention
mechanism to get headline summarization. And recent researches on this task
apply a selective mechanism to filter out the secondary information in the input
sentences to improve the performance [10,20].

On the other hand, the article summarization task usually has a much longer
input with multiple sentences, and it is document or paragraph level summariza-
tion. Nallapati et al. [12] also apply their model on the article summarization
task and provide the baseline on CNN-Daily Mail dataset. See et al. [14] apply
extractive method in abstractive model. They combine the copying mechanism
[5] with attention mechanism and get a pointer-generator method to reduce the
OOV words in output summaries. Many recent researches are motivated by this
pointer-generator framework. Celikyilmaz et al. [2] propose a similar model with
communicating agents to deal with the long input text. Gehrmann et al. [4] add
a content selector to mask some words in the input text before the neural net-
work model. And the bottom-up attention model improves the performance on
article summarization.

When it comes to long text inputs with many words or tokens in NLP tasks,
hierarchical structures are usually applied to the neural network models. These
hierarchical structures obtain whole semantic representation from sentence-level
to document level. Yang et al. [18] propose a hierarchical attention networks for
document classification task. The model has a better performance than those
without a hierarchical structure. Xing et al. [17] use a hierarchical network in
response generation task. The communicating agents structure in Celikyilmaz’s
work can also considered as a hierarchical framework for abstractive summariza-
tion.

3 Proposed Model

As show in Fig. 1, we extend the original Transformer model with a hierarchical
hybrid structure. The encoder stack has a word level encoder and a sentence
level encoder, which gets sentence level semantic vector and document level
semantic vector respectively. A selective layer is added after each encoder to filter
out the secondary information. The pointer-generator mechanism is applied in
the summary decoder, which combines vocabulary distribution with attention
distribution to get the final distribution to predict the generated words. We
introduce the details of different components in the following sections.

3.1 Problem Formulation

For article summarization, given a dataset D which contains L article-summary
pairs (x,y), each source article has M sentences x = (s1, · · · , sM ) and each
sentence consists of n words sm = (wm1, · · · , wmn). The corresponding target



Hie-Transformer: A Hierarchical Hybrid Transformer 251

Fig. 1. The overview of the proposed model.

summary has T words y = (y1, · · · , yT ). The abstractive article summarization
can be considered as a sequence-to-sequence task. As a result, the problem can
be given by:

p(y|x;θ) =
T∏

t=1

p(yt|y<t,x;θ) (1)

where θ is a set of model parameters and y<t is a partial target summary; yt is
the tth word in generated summary and we call t as time step t in this paper.

3.2 Hierarchical Encoder

The proposed model contains a encoder stack and a decoder stack similar with
the original Transformer, which use multi-head attention instead of RNN struc-
ture. Given a list of queries Q = (q1, · · · , qt) and key-value pairs (K,V ), multi-
head attention maps the query and key-value pairs to an output h times as
follows:

MultiHead(Q,K, V ) = Concat(head1, · · · , headh) (2)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

Attention(Q,K, V ) = attnV (4)

attn = softmax(
QKT

√
dk

) = Concat(a0, · · · , an) (5)

at = softmax(
qtK

T

√
dk

) (6)
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where at is the attention distribution between qt and K at time step t (the tth
query in Q); attn is the total attention distribution matrix; WQ

i , WK
i , WV

i are
parameter matrices and dk is the dimension of K.

Given the input article x = (s1, · · · , sM ) with sentences, the encoder stack
gets the semantic vector by two steps. First, each sentence sm = (wm1, · · · , wmn)
is sent to the word level encoder to get the sentence level semantic vector hs

m by
calculating the multi-head attention in one sentence. It obtains the semantic rela-
tionship between word and word, and each sentence semantic vector isn’t influ-
enced by the information in other sentence in this word level encoder. Then, the
sentence level semantic vector hs = (hs

1, · · · , hs
M ) gets the mean pooling oper-

ation at the sentence length dimension to obtain the input vector of sentence
level encoder. The sentence level encoder works similar as vanilla Transformer
encoder. Differently, it takes sentence level vector and calculates the article (doc-
ument) level semantic vector ha.

To obtain a better semantic vector, we add the selective layer after each
encoder to filter out the secondary information in the vector. The selective mech-
anism is motivated by Zhou et al. [20]. The selective mechanism combines n-gram
features and whole semantic information. We use a CNN structure with three
1-dimension convolutions to obtain the n-gram features c. The kernel size is set
to 1, 3, 3 respectively and the output is concatenated into a dense vector. And
the whole semantic information is the vector itself. For each time step t, the
selective layer calculates the gate vector gatet as follows:

gatet = δ(itWg + ctUg + bg) (7)
i′t = it � gatet (8)

where Wg and Ug are weight matrices; bg is bias vector; δ denotes sigmoid acti-
vation function and � is element-wise multiplication; it is the input semantic
vector and i′t is the tailored vector. The gate vector gatet contains values between
0 and 1 at each dimension. If the value is close to 0, the semantic vector at cor-
responding dimension be considered as secondary information.

3.3 Summary Decoder

We also extend the vanilla Transformer decoder with multiple mechanisms.
Given the generated summary y = (y1, · · · , yt−1, yt) at time step t, the decoder
stack aims to generate the word yt+1. The decoder stack contains four sub-layer
to calculate the probability distribution of yt+1 (the vanilla Transformer decoder
only has three sub-layer). As shown in Fig. 1, the multi-head attention layer cal-
culates the self attention distribution between word and word in y and get the
semantic vector st of the target sentence. The word level multi-head attention
sub-layer calculates the word attention distribution matrix attnw between sum-
mary tokens y and every word wmi in source article x. The summary tokens are
queries and words in the article are key-value pairs and this layer outputs the
sentence level context vector h∗

s . Similarly, the sentence level multi-head atten-
tion layer gets the sentence attention distribution attns and article level context
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vector h∗
a. Finally, the feed forward and softmax layer get the vocabulary proba-

bility distribution Pvocab and generate the word yt+1 at highest score dimension.
To tackle the OOV problem, we apply the pointer-generator mechanism in

the decoder stack. The basic idea is to combine the vocabulary distribution with
the word attention distribution attnw . It first calculates a scalar pgen as follows:

pgen = δ(yWy + stWs + h∗
w Ww + h∗

aWa + bp) (9)

where Wy, Ws, Ww and Wa are weight matrices; bp is bias vector; δ is the sigmoid
activation function. Each article has a extended vocabulary which contains the
words in the article but not in the vocabulary and let these words denote oov-
in-article sets. This pgen works as a weight to calculate the final probability
distribution Pfinal:

Pfinal = pgenPvocab + (1 − pgen)
∑

i:wi=w

attnw
i (10)

The Pfinal combines generating a word from vocabulary with copying a word
from the article by sampling from the word attention distribution attnw . If the
Pvocab gets a highest value at the OOV word dimension, the pointer-generator
mechanism may get a word from oov-in-article sets, which helps to reduce the
probability of generating a OOV word.

The coverage mechanism is applied in the word level multi-head attention
sub-layer to deal with the repetition problem. Let covt denote the coverage vector
at time step t and it is calculated by attention distribution at between query
and keys as follows:

covt =
t−1∑

i=0

at,i (11)

The coverage vector keeps track the information of the total attention distribu-
tions before time step t. It is added to the multi-head attention to reduce the
probability of focusing on the same words at adjacent time steps:

Attention(Q,K, V ) = Concat(a0, · · · , at)V (12)
at = softmax(et) (13)

et,i = vT tanh(KWk + qtWq + covt,iWcov + battn) (14)

where v, Wk, Wq and Wcov are parameter matrices; battn is bias vectors and
at,i denotes the attention value between the query at time step t and ith key in
K. In this word level multi-head attention sub-layer, the dot-product attention
in formulation 6 is replaced by the additive attention. This calculating method
is not calculated by using highly optimized matrix multiplication code as the
dot-product method, but it is necessary in the coverage mechanism. Because the
coverage vector covt is calculated by the attention distributions before time step
t, and at the next time step t + 1, the attention distribution at+1 is calculated
by the covt. That means the attention distribution and coverage vector influence
each other at each time step, which can not be calculated paralleling.
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3.4 Overall Loss Function

The training process is to minimize the negative log-likelihood loss function:

L =
1
T

T∑

t=1

(−logPfinal(w∗
t ) + λ

∑

i

min(at,i, covt,i)) (15)

where T is the length of target sentence; w∗
t is the predicted words at time step

t; λ is a hyperparameter. The second part of the loss function is the coverage
loss to fit the coverage mechanism.

4 Experiments

In this section, we introduce the datasets and baseline models we use; the experi-
ment details and performance of the proposed Hie-Transformer model. And some
analyses are provided to show the performance of each proposed mechanism.

4.1 Datasets and Baselines

The CNN-Daily Mail [6,12] dataset is the standard corpora for article summa-
rization, which consists of online news articles and corresponding multi-sentences
summaries. We pre-process the anonymized version of dataset by the scripts pro-
vided by Nallapati et al. [12]. The dataset contains more than 287k training pairs,
13k validation pairs and 11k test pairs. There are 781 words in articles and 56
tokens in summaries on average.

The performance of our proposed model is compared with some recent
researches’, which reported in their original papers. Abstractive Model is a full
RNN based model with attention mechanism proposed by Nallapati et al. [12].
PG-Original [14] is a RNN based sequence-to-sequence model with pointer-
generator mechanism. CopyTransformer [4] and PG-BRNN [4] are both imple-
ments of copying mechanism based on a 4-layer Transformer and a sequence-to-
sequence model with bidirectional RNN encoder respectively.

4.2 Experiment Settings

We implement our experiment in Tensorflow on an NVIDIA 1080Ti GPU. The
encoder stack has a 4-layer word level encoder and a 4-layer sentence level
encoder both with 512 hidden dimension size. The num of decoder stack layer
is set to 6 just like the vanilla Transformer. The word embeddings dimension is
also 512 and the vocabulary size is set to 50k. The source articles are truncated
to 20 sentences with 40 words each at most for the hierarchical structure and the
target summaries are truncated to 100 words at training stage. We use Adam
optimizer [7] with β1 = 0.9, β2 = 0.98 and ε = 10−9 and the learning rate is
varied over the course of training as Vaswani et al. [16] mentioned. We use beam
search to generate summaries and the beam size is set to 5 in our experiments.
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Table 1. ROUGE scores on CNN-Daily Mail test set.

Model R-1 R-2 R-L

Abstractive Model 35.46 13.30 32.65

PG-Original 36.44 15.66 33.42

PG-Original + Coverage 39.53 17.28 36.38

PG-BRNN 39.12 17.35 36.12

Copy-Transformer 39.25 17.54 36.45

transformer 36.34 14.95 33.53

transformer+ h 37.16 15.25 34.41

transformer+ h + s 37.74 15.71 34.86

transformer+ h + pg 38.63 16.80 35.87

transformer+ h + coverage 38.77 16.97 35.93

Hie-Transformer 39.96 17.61 37.26

The coverage mechanism is not always used during the training stage. The model
is supposed to focus on learning to get a better semantic information first, and
at the end of training, the coverage mechanism is turned on to help the decoder
to reduce repetitions. The hyperparameter λ is set to 1 and the coverage model
is trained about 5000 iterations.

We employ ROUGE [9] to evaluate the qualities of generated summaries.
ROUGE score calculates the overlapping between output summary and refer-
ence. We use the F1 scores of ROUGE-1, ROUGE-2 and ROUGE-L metrics to
evaluate the performance at CNN-Daily Mail works [14].

4.3 Results and Discussion

The evaluation results of our proposed model and the baselines are shown in
Table 1. The first section of the table shows the results of the recent abstractive
baselines. And the second section presents the performance of our implement
baselines in this work. In detail, transformer is the original Transformer model
we implement, it contains a 6-layer encoder and decoder stack with 512 hidden
dimension. transformer+h is the basic hierarchical transformer introduced in this
work and it doesn’t contain any other mechanisms except hierarchical encoder
structures. transformer+h+s is the hierarchical model with selective mechanism
in the encoder stack. transformer+h+pg and transformer+h+coverage are the
basic hierarchical model with pointer-generator mechanism and coverage mech-
anism respectively. And Hie-Transformer is the proposed model with all mech-
anisms described in this work.

The proposed Hie-Transformer model achieves 39.96 ROUGE-1 scores, 17.61
ROUGE-2 scores and 37.26 ROUGE-L scores, which outperforms the baseline
models in Table 1. The basic transformer model gets a litter higher results than
the RNN based Abstractive Model, which proves that the Transformer framework
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Table 2. The percentage (%) of repetitions and OOV words on CNN-Daily Mail test
sets.

Model Repetitions OOV words

2-gram 3-gram 4-gram

reference 17.95 1.91 0.44 –

transformer 39.76 24.51 19.10 54.01

transformer + h 39.51 24.24 18.88 53.26

transformer + h + pg 31.74 23.47 16.69 1.27

transformer +vh + coverage 24.31 18.87 3.56 16.69

Hie-Transformer 23.48 18.01 2.83 1.17

outperforms the RNN based framework in abstractive summarization. And our
hierarchical baseline models get a competitively results, which all achieve a gain
in ROUGE scores compared with the basic transformer. It demonstrates that
the hierarchical structure with selective layer, pointer-generator mechanism and
coverage mechanism help the basic transformer model get higher quality sum-
maries.

We also provide some analyses on each mechanisms described in this work.
First, the hierarchical structure can reduce the calculating resources and use
less memory for training. For example, if the input article has 400 words to feed
into the encoder stack, the multi-head attention layer will compute a matrix
with 400 ∗ 400 = 160, 000 size of self attention weights. However, the hierar-
chical structure receives the article with 10 sentences with 40 words each at
most and the size of attention weights matrix is 40 ∗ 40 ∗ 10 + 10 ∗ 10 = 16, 100,
which is much smaller. The gap will be more obvious with longer input article.
Additionally, Table 2 presents the percentage of repetitions and OOV words in
the generated summaries. We compute the percentage at summary level, which
means if one repeated word or one unknown token appears in summary sum,
this summary will be counted as one number of summary with repetitions and
OOV words. There are many named entities in the CNN-Daily Mail and they are
easily duplicated in the summaries, so we don’t compute the 1-gram repetitions.
As shown in Table 2, the percentage of OOV words declines a lot by pointer-
generator mechanism and the coverage mechanism helps the model reduce rep-
etitions in the summaries.

5 Conclusion

This work presents a hierarchical hybrid Transformer model for abstractive arti-
cle summarization. The hierarchical structure encoder stack with selective mech-
anism makes the model train long article inputs easier, the pointer-generator
mechanism and the coverage mechanism can reduce OOV words and repeated
words effectively. The evaluation results on CNN-Daily Mail test set show the
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proposed model has a competitively performance compared with the recent arti-
cle summarization models. We plan to apply a extractive method to select which
sentences are sent into the abstractive model in the future work.
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Abstract. Aspect-level sentiment classification, which aims to deter-
mine the sentiment polarity of the specific target word or phrase of a
sentence, is a crucial task in natural language processing (NLP). Pre-
vious works have proposed various attention methods to capture the
important part of the context for the desired target. However, these
methods have less interaction between aspects and contexts and can
not accurately quantify the importance of context words with the infor-
mation of aspect. To address these issues, we firstly proposed a novel
target-based attention model (TBAM) for aspect-level sentiment analy-
sis, which employs an attention mechanism between the position-aware
context representation matrix. TBAM can generate more accurate atten-
tion scores between aspects and contexts at the word level in a joint way,
and generate more discriminative features for classification. Experimen-
tal results show that our model achieves a state-of-the-art performance
on three public datasets compared to other architectures.

Keywords: Natural language processing · Sentiment analysis ·
LSTM · Attention mechanism

1 Introduction

Aspect based sentiment analysis aims to determine the sentiment polarity (neg-
ative, neutral, or positive) of the specific target or aspect of a sentence. For
example, given a sentence “Dreadful food but the service was good” the senti-
ment polarity of aspect “food” is negative while the polarity of aspect “service”
is positive. There are some different sentiment polarities in the same sentence
for different aspects.

In recent years, neural networks have played an increasingly important role
in the field of aspect-level sentiment analysis. In these methods, aspect words
are usually regarded with equal importance across the context words, the aspect
information is not fully considered into the context in the neural network model.
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Later, some neural attention mechanisms have applied to this task, although
performance has improved through these methods, according to our empirical
study, there are still some common problems shared by these previous models.
For example, given the sentence “The local sweet food is delicious, but the
service is dreadful.”, the aspect words are “local sweet food”. Suppose these
words become one-dimensional vectors after word embedding, and the specific
value of each word is ‘1’, ‘3’ and ‘5’. If we directly average these vectors with the
same importance in previous methods, so the average result is ‘3’, which is same
to the value of the word ‘sweet’. In other words, the semantic information of
“local sweet food” is similar to the word “sweet”, obviously, it is not correct and
the key word for this sentence is ‘food’. They only consider unilateral information
and do not consider the impact of each context word on the aspect word.

To solve the above issues, in this paper, a target-based attention model
(TBAM) is induced for aspect-level sentiment analysis. TBAM can better detect
the most important textual information in the given aspect of a sentence. Aspect
information plays a key role in its sentence. In our datasets, the number of words
containing more than one word in the aspect account for approximately 25%,
38% and 70% respectively. The previous processing methods treated the word
vectors average as a word vector, and often ignore the important relationship
between the aspect words, TBAM uses the attention information to assign the
corresponding weights to each aspect word, which compute the attention scores
between content and aspect at the word level in a joint way, and effectively quan-
tify the representations. Moreover, TBAM can observe the position information
between the context and aspect at the sentence level, which is important for
capturing the key words. The model is evaluated on three datasets: Restaurant
and Laptop are from SemEval 2014 [12], and the third one is Twitter dataset.
The experimental results show that TBAM can effectively predict the polarity
of the given aspect sentence and reach the highest level.

The remainder of this paper is structured as follows: Sect. 2 discusses the
overview of related work, Sect. 3 gives a detailed description of TBAM, Sect. 4
presents extensive experiments to justify the effectiveness of TBAM, and Sect. 5
provides some conclusions and the future direction.

2 Related Work

Aspect-level sentiment analysis is designed to determine the sentiment polarity
of the sentence for a given aspect or target. Traditional approaches to solve the
problem are to manually design set of features and most of them focus on building
sentiment classifiers with feature [10,11]. However, the results highly depend on
the quality of these features and the feature engineering is labor intensive.

Recursive neural networks (RecNNs) were firstly introduced into this field
by Dong et al. [1], and their proposed algorithm can adaptively propagate the
sentiment of contexts to the aspect, but they often make mistakes in the face of
some grammatical errors that are common in practice. Later, the recurrent neural
networks (RNNs) have been demonstrated to be more effective for the tasks of
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sentence sequence [13,14]. Tang et al. [2] introduced the TD-LSTM approach
which learns the feature representation from the leftmost and rightmost sides of
the sentence. Vo and Zhang [3] used neural pooling functions to extract features
from word embeddings.

Most of the neural network models often suffer from the semantic mismatch-
ing problems. Hence, attention mechanism has been successfully applied to the
aspect-level sentiment analysis. Wang et al. [9] proposed the attention based
LSTM with aspect embedding (ATAE-LSTM), which firstly applied attention
mechanism to aspect level sentiment analysis by simply concatenating the aspect
vector into the sentence hidden representations and achieving a good perfor-
mance. Tang et al. [5] developed a deep memory network based on a multi-hop
attention mechanism (Mem-Net), which introduced the position information
into the hidden layer. Ma et al. [4] proposed an interactive attention mecha-
nism (IAN), which interactively learns attentions from the aspect and context,
their approach is similar ours. However, the semantic information between con-
text and aspect and the relation between aspects in the same sentence are not
well exploited, they only consider unilateral information and do not consider the
impact of each context word on the aspect word. For example, given the sentence
“The sweet food is delicious, but the service is dreadful.”, the aspect informa-
tion is “sweet food”, it’s easy to know the word “good” is more important to
the aspect information than the word “dreadful” according to the position infor-
mation. In addition, based on our Linguistic habit, we know the word good”
is more to describe the word “food” than the word “sweet”, however, in the
previous work, they only qualitatively described the importance and did not
materialize it.

Compared with the above models, TBAM captures the attention scores to
assign the corresponding weights for each aspect word and can also observe the
location information between the aspect and context, which is the first work to
explore the aspect-level interactions.

3 Model Overview

Our target-based attention modeling framework consists of four components:
Input Embedding Layer, Contextual Layer, Target-Based Attention Layer
and Output Layer. As the Fig. 1 has shown, TBAM takes a sentence w =
[w1, w2, ..., wn] and an aspect t = [t1, t2, ..., tn] as input, and the goal of its
process is to predict the sentiment polarity of the sentence over the aspect.

3.1 Input Embedding Layer

The input embeddings layer contains two components: context word embed-
dings and aspect word embeddings. Given a sentence w = [w1, w2, ...wi..., wn]
and an aspect t = [ti, ti+1, ..., ti+m−1] where n is the sentence length and
m is the aspect length. They would be mapped from two one-hot matrixes
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Fig. 1. The framework of target-based attention model.

into two matrixes MV ∗d make up with vector v1; v2; ...; vn] ∈ Rn∗d and vec-
tor [vi; vi+1; ...; vi+m−1] ∈ Rm∗d from both context and aspect where d is the
dimension of word embedding and V is the vocabulary size.

3.2 Contextual Layer

The contextual layer with Bi-LSTM architecture is used for learning the more
abstract representation of sentence and aspect, which can obtain richer semantic
information from both ends of the sentence and avoid vanishing-gradient and
over-fitting in the same time.

The output h = [
−→
h ,

←−
h ] of Bi-LSTM encoder is the concatenation of forward

hidden state h = [
−→
h1,

−→
h2, ...,

−→
hn] and backward hidden state h = [

←−
h1,

←−
h2, ...,

←−
hn]

where n is the length of the sentence.
In addition, considering that the context words with closer distance to an

aspect may have higher influence to the aspect, and the hidden layer neurons
have the same weight in one sentence, which is not flexible enough for predicting
respective sentiments of these aspects. We utilize the position encoding mecha-
nism to simulate the observation. Based upon this understanding, the position
encoding is defined as follows:

dis(i) =

⎧
⎨

⎩

i − m0, i < m0

i − m0 − m, n ≥ i > m0 + m
0, m0 + m ≥ i ≥ m0

(1)

li = 1 − |dis(i)|
n

(2)
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where i is the current word index and m0 is the first word index of the aspect,
dis(i) indicates the relative distance of the i-th word. m is the length of the
aspect and n is the length of the context. The li is used to as the weight of
the hidden layer neuron to measure the relative position between each word
and the first aspect word. As a result, there are new hidden layer neurons v =
[v1, v2, ..., vi, ..., vn] ∈ R2d.

vi = li · vi (3)

where the vi is the i-th original hidden layer neuron.

3.3 Target-Based Attention Layer

Attention mechanism is a common way to capture the interactions between the
aspect and context words. When getting the hidden semantic representations
of the context and the aspect, the dot product is used for obtain the pairwise
matching matrix. Unlike previous works on introducing complex architectures
or many untrainable hyperparameters into models, our operational mechanism
is much simpler, but better than the advanced systems. The matching matrix as
follow:

M(i, j) = hs(i) · ht(j)T (4)

where M(i, j) is the similarity between the i-th word in the sentence and the j-th
word in aspect. The attention mechanism is used to automatically determine the
importance of each word, rather than using simple heuristics (such as summation
or averaging) to focus these words’ attention on the final attention. The attention
mechanism consists of two parts. Firstly, with the portrait normalization, we
obtain the attention score of each aspect word to the context. Then, with the
portrait normalization, we can also obtain the attention score of each context
word to the aspect, which is inspired by the AOA module in question answering
[15]. The attention score is calculated as:

αi,j =
exp(Mi,j)

∑
i exp(Mi,j)

(5)

βi,j =
exp(Mi,j)

∑
i exp(Mi,j)

(6)

In order to consider the differences between the aspect words, and make full
use of the information of the aspect term, the attention score β is used to them
as weights. We interact two attention α and β scores and get the final attention
weight α. h is the representation of the entire sentence, which obtains sentence
representation r. And the interacting formula is as follows:

α = ϕ(αi,j � βi,j) (7)

r = hT · α (8)

where the function represents the matrix summing by row, the range of values of
i is 0 ≤ j ≤ n − 1 and j is 0 ≤ j ≤ m − 1. The � means the matrix is multiplied
by the element and r ∈ R2d.
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3.4 Output Layer

At last, we get the final classification feature vector r, and feed it into a linear
layer, the length of whose output equals to the number of class. Finally, we add a
softmax layer to compute the probability distribution for judging the sentiment
polarities as positive, negative or neutral:

y = softmax(W · r + b) (9)

where W and b are the weight matrix and bias respectively, y is the estimated
probability. TBAM is trained to use end-to-end back propagation and minimize
the cross-entropy loss with L2 regularization. p is the distribution for sentence,
p̂ is the predicted sentiment distribution, the loss objective is defined as follows:

loss = −
∑

i

∑

j

pji log p̂ji + λ ‖ θ ‖2 (10)

where i stands for the index of the sentence, j stands for the category index,
and there are three categories, λ indicates L2 regularization parameter, θ is the
parameter of setting weights in Bi-LSTM networks and liner classifier.

4 Experiment

4.1 Dataset and Settings

Our algorithm is evaluated on SemEval 2014 dataset (PontiKi et al. 2014), which
includes the review data for Restaurant and Laptop and the other one is Twit-
ter. They were widely used in previous work. The first two reviews are labeled
with four sentiment polarities: positive, neutral, negative and conflict, we remove
conflict category as the number of conflict samples is very small and make the
dataset extremely unbalanced. Table 1 shows the training and test sample num-
bers in each sentiment polarity. Taking into account the differences between
aspect words, the number of aspect words of each dataset is listed in Table 2.

Table 1. Details of the experimental datasets.

Dataset Positive Neutral Negative

Restaurant-train 2164 637 807

Restaurant-test 728 196 196

Laptop-train 994 464 870

Laptop-test 341 169 128

Twitter-train 1561 3217 1560

Twitter-test 173 346 173
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Table 2. Statistics on the number of aspect words.

Dataset Num(word)= 1 Num(word)> 1

Restaurant 0.7447 0.2553

Laptop 0.6110 0.3840

Twitter 0.2999 0.7001

The pre-trained 300-dimensional Glove word vectors are initialized for our
experiments. The dimensions of hidden layer are set to 300. Model training
through 128 samples in each batch, Set the learning rate to 0.001, dropout rate
to 0.5 and L2 regularization to 0.001. The model runs on the ubuntu16.04 system,
operating environment are pytorch and NVIDIA GTX 1080ti.

4.2 Results and Discussions

To verify the validity of our model, we compare it to several baseline methods.
In the experiments, the classification accuracy and macro-F1 score are used as
the evaluation metrics. The performances of these baselines are cited from their
original papers (Table 3).

Table 3. Classification results of different methods on three datasets. The result of ‘*’
are retrieved from Li et al. [18], ‘–’ means this result is not available, the ‘[]’ stand for
their original papers index.

Method Laptop (%) Restaurant (%) Twitter (%)

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

Feature-SVM [15] 70.49 – 80.16 – 63.4 63.3

TD-LSTM [4] 68.13 68.43 75.63 66.73 70.8 69

ATAE-LSTM [2] 68.7 62.45 77.2 64.95 – –

IAN [13] 72.1 67.48 78.6 67.9 – –

MemNet [7] 72.37 64.09 80.32 65.83 68.5 66.91

RAM [16] 74.49 71.35 80.23 70.8 69.36 67.3

TBAM 74.66 71.39 80.99 71.59 73.12 71.24

The performance fluctuates with different random initialization, which is a
common issue in training neural networks, so the model is run 5 times, and report
the best average performance. We can observe that TBAM achieves the best
performance among all these methods, it learns the attention weights between
content and aspect at the word level in a joint way, which is helpful for aspect
sentiment analysis. This indicates that exploiting the clues of target and position
effectively can improve the performances.
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In addition, The TD-LSTM model, which gets the worst performance, the
main reason is the semantics of the divided sentences are already incomplete.
Further, the LSTM based model ATAE-LSTM and IAN perform better than
TD-LSTM on three datasets. One main reason maybe the introduction of an
attention mechanism that can make the models notice the important parts of
the sentence for a given aspect. This result also shows that introducing aspect
clues only by splitting the sentence according to position of aspect is not enough.

4.3 Effects of Position Encoding

Obviously, the closer the word is to aspect, the higher weight the word would
be assigned. In this experiment, we use absolute values to measure the distance
between them, which is most effective. In order to verify the validity of the
position encoding, we conducted two sets of comparative experiments, which
were tested on two public datasets.

Table 4. Effects of position encoding on three datasets

Models Laptop (%) Twitter (%)

Acc Macro-F1 Acc Macro-F1

No-Position 72.57 68.19 72.39 70.86

TBAM 74.66 71.39 73.12 71.24

In Table 4, we report the performance of the two models. The No-Position
represents the model that removes location information in the TBAM. After
inducing the position embeddings, the performance has an increase of about
3% and 1% on two datasets, which indicates that exploiting the position clues
effectively can improve the performance of TBAM in this task.

4.4 Effects of Attention Interaction

In TBAM, with the portrait normalization, we obtain the attention score β of
each context word to the aspect, which is used to the aspect words as weights.
Then we interact two attention α and β scores and get the final attention. In
order to verify the validity of the method of attention interaction, we test the
following three sets of experiments and the results are shown in Table 5.

No-Inter-mean refers to directly calculate attention α by average, in other
words, it only calculates the attention weights of the aspect words for the con-
text words. Similarly, No-Inter-max refers to calculate attention by maximum
pooling. Inter-mean refers to calculate two attentions and interact them, but
removing the influence of location information. We can be observed that Inter-
mean performs mostly better than other models, which verifies that interacting
two attentions weights according to context words for the aspect is ineffective
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Table 5. Effects of information interaction on three datasets.

Models Laptop (%) Restaurant (%) Twitter (%)

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

No-Inter-mean 71.92 67.13 80.61 71.27 71.38 69.12

No-Inter-max 71.64 69.27 80.64 71.32 71.56 69.94

Inter-mean 72.57 68.19 80.44 72.11 72.39 70.86

in this task. We also found that the accuracy on Restaurant is lower than No-
Inter-max. On the one hand, because the proportion of more than two words in
aspect is relatively small, on the other hand, it is mostly about food in Restau-
rant, which is relatively easy to find the main semantic information of the aspect
information.

4.5 Case Study

In order to better understand TBAM, the sample of the restaurant dataset is
extracted and visualized the weight of the context words in the sentence in Fig. 2.
The aspect of context a is “food” while the aspect of context b is “service”. The
color depth represents the level of weight α. The sentence is “good food but the
service was dreadful!”, when the current aspect term is food, obviously, its
neighboring words such as “good” should play a great role for judging sentiment
polarity of food. For aspect term service, it is obvious that the word “dreadful”
is more important to express the aspect term than the word “service. In addi-
tion, given the sentence “The sweet food is good, but the service is dreadful.”,
based on our Linguistic rules, we know the word “good” is more to describe the
word food” than the word “sweet”, TBAM captures the attention information
to assign the corresponding weights for each aspect word and help it find out
the sentiment.

Fig. 2. Visualization of specific context aspect.

5 Conclusion

In this paper, we proposed the target-based attention model (TBAM) for aspect-
level sentiment analysis. The main proposal is to compute the attention scores
between contents and aspects at the word level in a joint way, and effectively
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quantify the representations. Moreover, the position encoding is induced into the
model which makes TBAM more robust to against irrelevant information and
achieves the best results on SemEval 2014 Datasets and Twitter.

Before the popularity of deep learning, the predecessors summarized a lot of
knowledge bases, which could be a huge treasure in the field of natural language
processing. Now many scholars are trying to use these knowledge bases. In the
future, we would like to explore how to fuse linguistic rules into the neural
network models.
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Abstract. Keyphrase generation aims to generate several words that
can simply summarize the semantics of the article, which is the basis
of many natural language processing tasks. Although most previous
approaches have achieved good results, they neglect the independent
word information in the source text. Previous models use attention mech-
anism to calculate the relationship between the encoder RNN hidden
states and the target side. However hidden state ht is the summarization
of the first t words as a subsequence in the source sentence. We, in this
paper, propose a novel sequence-to-sequence model called WordRNN,
which can capture word level representations in the source text. Our
model can enrich the expression of the source text by directly promoting
the pure word level information. Moreover, we use fuse gate and simply
concat operation to combine the subsequence level and word level con-
textual information. Experiment results demonstrate that our approach
achieves higher performance than the state-of-the-art methods.

Keywords: Keyphrase generation · Sequence-to-sequence · Attention

1 Introduction

Keyphrases are a set of words used to highly summarize the semantics of an arti-
cle [9]. They can often be used to retrieve, summarize, query articles. Before read-
ing an essay, we can use the keyphrases to get an overview of it. The keyphrase
with higher quality can make it easier for us to understand, organize and access
the content of the document. Due to the necessity and accuracy of keyphrase,
keyphrase tasks have been used extensively for information retrieval [12], text
summarization [23], text categorization [11] and opinion mining [2].

Keyphrase-related tasks can be divided into two categories: extractive tasks
[10,15,24] and generative tasks [4,5,18,26]. The conventional extractive task
extracts the keyphrase candidate set from the source article and ranks each
keyphrase in the set to select the final result. The first generation task is proposed
by Meng et al. [18]. This model employs a sequence-to-sequence model [21] which
generates keyphrases from a predefined vocabulary and a copy mechanism [8]
which computes the distribution of copy probability for keyphrase generation.

In the previous sequence-to-sequence model, the encoder first converts the
source text into a hidden state vector representation. Then the target RNN make
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11955, pp. 270–281, 2019.
https://doi.org/10.1007/978-3-030-36718-3_23
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use of the hidden state vector representation to generate the distribution over
the hidden state. The hidden state representation of the source text is linearly
weighted into a context vector of the source text based on the current distribu-
tion. The target keyphrases are then generated through this context vector step
by step. However, they only consider the connection between the target side
and the hidden state representation ht of the source text which representing
the summary of the first t words, and do not take into account the associa-
tion between the target side and each individual word in the source text. We
use a word-attention to weight each individual word in the source text to help
generate target keyphrases more comprehensively. Within each decoding step,
word-attention can take care of different individual words in the original text,
resulting in a word-context that only focuses on the expression of the clean source
text. Then we use the word-context and the hidden-context which is generated
by the association between the hidden state representation and the target side
to generate the keyphrases. In order to make the representation combined with
the two contexts more effective acting on the target side, we experiment with a
variety of methods such as fuse gate [7] and simply concat.

In summary, our contribution includes the following three aspects:

– A new keyphrase generation model which named WordRNN that can simul-
taneously notice the hidden layer state of the source text and individual
independent words in the source text;

– Using fuse gate and concat methods which could better combine the hidden
context and word context to further improve the performance;

– The new state-of-the-art performance on several real-world benchmarks. A
detailed analysis of the experimental results and explain why the algorithm
and model have better results.

2 Related Work

Keyphrase-related tasks have been studied for a long time, but currently the
task can be divided into two categories: extraction based and generation based.

Extractive tasks have been proposed in a variety of ways, the most typical
extraction method can be broken down into two steps: generating candidate
sets and ranking choices for candidate sets. In the first step, when generate
candidate sets, we usually get a larger candidate set, so that the probability
that the candidate set contains the target keyphrase will increase accordingly.
The methods of extracting the candidate set include extracting important n-
grams [10], selecting text chunks with certain postags [14,15,24] and sequence
match [14,24]. The second step is to rank the candidate set according to the
original text and obtain the top keyphrases as the result. Some studies use
supervised tasks to treat it as a classification task [6,10,17,25], while others
employ unsupervised approaches [3,16,27] to solve this task. In addition, Liu
et al. [15] solved the problem of inconsistent vocabulary between source text
and target keyphrases through an alignment model. Zhang et al. [28] use a joint
recurrent neural network to extract keypharses from small dataset such as tweets.
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Fig. 1. The overall architecture of our model. Note that α and β indicates the conven-
tional attention and word attention respectively, cα and cβ indicates the hidden-context
and word-context respectively, cc is a combination of the two contexts.

Generating tasks can predict keyphrases when they are in subtle different
order or synonymous. It aims to predict absent keyphrases in the original arti-
cle. Meng et al. [18] first raised a generative model named CopyRNN with an
Encoder-Decoder [1] and a copy mechanism [8]. Chen et al. [4] consider the cor-
relation among keyphrases and propose CorrRNN which is an improvement of
CopyRNN. Later, Ye and Wang [26] and Chen et al. [5] have effectively utilized
the title of the source text as additional information to enhance the ability to
generate. Ye and Wang [26] first used a semi-supervised method to generate
keyphrases.

The model we proposed is based on the generative method. The main dif-
ference between our model and the previous generative model is that we con-
sider the connection between the generated keyphrases and each of the inde-
pendent words in the source text, and make the representation of the source
text more comprehensive through combining the word-context and the hidden-
context. This allows for more accurate keyphrase generation.

3 Model

In this section, we introduce the implementation details of our model. We
describe the traditional sequence-to-sequence model first, and then introduce
our special word-attention and combination methods. The overall framework of
our model is illustrated in Fig. 1.

3.1 Seq2seq Model with Coverage and Copying Mechanism

In this paper, our contributions are based on the sequence-to-sequence encoder-
decoder model. The sequence-to-sequence model first converts the input sequence
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x = (x1, x2, ..., xN ) into a hidden layer vector representation h = (h1, h2, ..., hN )
via the encoder which is a bidirectional Long Short-Term Memory. N denote the
length of word sequence x. In the following equation f is a non-linear function.

ht = f(xt, ht−1) (1)

Then the weighted vector α is calculated through a conventional attention
mechanism.

αtj =
exp(eα

tj)
∑T

k=1 exp(eα
tk)

(2)

eα
tj = vT

α tanh(Wα
h hj + Wα

s st−1 + bα
attn) (3)

where αtj represents the degree of matching between the output target yt and
the hidden state hj . The weighted representation is redistributed back into h to
get the context vector cα.

cα
t =

T∑

j=1

αtjhj (4)

Decoder uses this context vector cα to generate target words step by step.

st = f(yt−1, st−1, c
α) (5)

p(yt|y<t, x) = g(yt−1, st, c
α) (6)

where st is the hidden layer state at time t of decoder, and yt is the word selected
from the vocabulary with a higher probability after the g function.

However, the traditional generation method can not generate keyphrases
which are not in the vocabulary. At this time, we need a copy mechanism to pre-
dict out-of-vocabulary words by copying the appropriate words from the source
text into the target. The copy mechanism differs from the predictive process
in that it performs weighting operations on the source text representation by
calculating positional attention. We give different proportions to generate and
copy mechanism to combine copy and generate methods.

p(yt|y<t, x) = pg(yt|y<t, x) + pc(yt|y<t, x) (7)

pc(yt|y<t, x) =
1
Z

∑

j:xj=yt

exp(ψc(xj)), y ∈ X (8)

ψc(xj) = σ(hT
j Wc) [yt−1; st; ct] (9)

In the above formula, pg and pc denote the generating and copying probability
respectively. X is the set of unique words in source text x, σ is a non-linear
function and Wc is a learned parameter matrix. Z is the sum of all the scores
and is used for normalization. You can see more details in Gu et al. [8].
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Redundant issues arise with the generated target keyphrases. Different target
keyphrases should focus on different aspects, and the keyphrases that have been
summarized should not continue to receive attention. To overcome this problem,
we combine the coverage mechanism in our model. The mechanism can notice
the connection between the different keyphrases generated.

In our model, we maintain a coverage vector ct to record all the original text
information that has been noticed before the t step. It is the weighted sum of
the attention at the previous t moments, which is derived from the following
formula:

ct =
t−1∑

i=0

αi (10)

Due to this vector is equivalent to a summary vector, and our goal is to make
different keyphrases focus on different aspects of the text, the connection between
the keyphrases should be as small as possible. We use this coverage vector ct as an
additional input to improve the effect of attention. wc is a learnable parameter
vector, and its length is the same as vα.

eα
tj = vT

α tanh(Wα
h hj + Wα

s st + wcctj + bα
attn) (11)

By combining a coverage mechanism, the attention mechanism can pay less
attention to the previous results. The generated keyphrases can be reduced in
the same way.

3.2 Word Attention

From the previous formula we can see that the attention in the model only
considers the hidden layer state of LSTM. This makes the target word focus
on ht which represents the summary of the first t words. And it does not pay
attention to the individual words in the original text. So we use a more intuitive
way to pay attention to the original text representation, and we consider it would
be more effective in helping the decoder generate keyphrases. We represent word-
attention by calculating the input vector and the target output hidden vector
at each moment. We use βtj to represent the relationship between the output
hidden vector st−1 and the input vector xj . We obtain a word-based context
vector by weighting the input vector x with β and the context vector is denoted
as cβ . The following is the implementation details of the word-attention.

When the decoder decodes the target word yt, we first calculate the energy
vector etj which is computed by the target hidden layer representation st−1 and
the source input representation xj (the j-th word embedding of the source text).
Then we get βtj which is obtained by performing a softmax operation on etj .
The attention weight βtj represents the connection between the t-th target word
and the j-th word in the original text.

βtj =
exp(eβ

tj)
∑T

k=1 exp(eβ
tk)

(12)
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eβ
tj = vT

β tanh(W β
h xj + W β

s st−1 + bβ
attn) (13)

Since we only consider xj when calculating this attention weight βtj , the
difference between this attention weight and the traditional attention weight is
whether using the words before position j in the source text as extra input. The
above attention weight βtj can be simply treated as the probability that target
word yt directly align to an individual source word xj . After we calculate the
weight of the original text input, the word-context cβ is the weighted sum of all
the source word embedding vectors.

cβ
t =

T∑

j=1

βtjxj (14)

3.3 Combine Hidden Context and Word Context

The word-context is regarded as an extra input to get the target hidden state
st. In order to better combine word-context and hidden-context, we experiment
in a variety of ways. For example, the first method we used is called fuse gate
which is proposed by Gong et al. [7] and another is a simply concat operation.
The implementation of fuse gate is as follows, where W 1, W 2, W 3, W 4 and b1,
b2, b3 are trainable weights, σ is sigmoid nonlinear operation:

r1 = tanh(W 1[cα; cβ ] + b1) (15)

r2 = σ(W 2[cα; cβ ] + b2) (16)

r3 = σ(W 3[cα; cβ ] + b3) (17)

cc = r2 ⊗ (W 4[cα; cβ ]) + r1 ⊗ r3 (18)

However, a simple concat has fewer parameters than a fuse gate, and it
can also combine two contexts well. W c in the following formula is a learnable
parameter vector.

cc = W c[cα; cβ ] (19)

Then, we use the combined context cc as an additional input to generate
target word.

st = f(yt−1, st−1, c
c) (20)

The decoding hidden state st now consider both word-context and hidden-
context and it can benefit from both contexts. They can help to generate words
under different situations. We denote our model with concat method and fuse
gate as WordRNNC and WordRNNF respectively.
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4 Experiment

In this section, we would introduce our experimental details, including datasets,
baseline models and evaluation metrics, implementation details and results anal-
ysis.

4.1 Datasets

Similar to Meng et al. [18], we also train our model on the dataset KP20k
[18]. This dataset contains 529,816 articles for training, 20,000 for validation,
and 20,000 for testing. After removing the duplicated data in the dataset, we
get 503,614 articles for training. We employ several testing datasets which often
be used in the previous works. The testing datasets we used include Inspec
[10], NUS [20], SemEval [13], and KP20k. Each dataset is described in detail
below.

– Inspec: This dataset includes 2,000 paper abstracts. We randomly selected
500 papers as our testing dataset from the whole papers.

– NUS: This dataset contains 211 papers with author-assigned keyphrases and
we use all of them as our testing dataset.

– SemEval: This dataset includes 288 papers from the ACM Digital Library.
We use 100 papers among them as our testing dataset.

– KP20k: This dataset contains titles, abstracts and keyphrases in computer
science. Due to the memory limits of implementation, we were not able to
train the supervised baselines on the whole training set. Thus we randomly
selected about 20k articles as our testing dataset.

4.2 Baseline Models and Evaluation Metrics

To measure the effectiveness of our model in a more comprehensive way. We
compare our model with traditional extractive baselines and generative base-
lines. The extractive methods includes unsupervised methods which are Tf-idf,
TextRank [19], SingleRank [22] and ExpandRank [22], supervised methods which
are TopicRank [3], KEA [25] and Maui [17]. The generative baselines consist of
RNN, CopyRNN [18] and CorrRNN [4].

In order to fairly measure the gap between our model and other models, we
adopt F-measure score based on the exact match for keyphrases while predicting
top-5 and top-10 keyphrases (F1@5, F1@10) as our evaluation metrics. Note that,
when we judge whether two keyphrases are the same, we use Porter Stemmer
for preprocessing.

4.3 Implementation Details

Similar to Meng et al. [18] in the preprocessing procedures, we process the ori-
gin text with lowercasing, tokenizing and changing digits into 〈digit〉 symbol.
In the origin KP20k dataset, each has an abstract, a title and several target
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Table 1. The performance of total keyphrase prediction on all testing datasets. The
best results are bold.

Method Inspec NUS SemEval KP20k

F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

Tf-Idf 0.171 0.243 0.112 0.150 0.096 0.144 0.085 0.117

TextRank 0.209 0.253 0.152 0.156 0.131 0.138 0.151 0.124

SingleRank 0.172 0.247 0.132 0.169 0.133 0.176 0.096 0.119

ExpandRank 0.177 0.252 0.132 0.162 0.139 0.170 N/A N/A

TopicRank 0.201 0.268 0.115 0.123 0.083 0.102 0.101 0.103

KEA 0.093 0.124 0.069 0.084 0.025 0.026 0.154 0.152

Maui 0.040 0.042 0.249 0.263 0.045 0.039 0.257 0.230

RNN 0.085 0.064 0.169 0.127 0.157 0.124 0.176 0.189

CopyRNN 0.240 0.272 0.263 0.268 0.186 0.197 0.270 0.256

CorrRNN 0.243 0.276 0.267 0.269 0.188 0.199 0.276 0.260

WordRNNC 0.247 0.281 0.268 0.272 0.191 0.210 0.279 0.261

WordRNNF 0.250 0.283 0.274 0.273 0.187 0.189 0.288 0.263

keyphrases. We stitch the title and abstract together as input to the source text.
Our vocabulary has 50000 words which are frequently occurred. The text after
200 words are cutted. In the training procedures, we use a bidirectional Long
Short-Term Memory Network as the encoder and another forward Long Short-
Term Memory Network as the decoder. Two seq2seq models are trained by us.
One model has the word-attention mechanism and the word-context and hidden-
context are concated, another has both word-attention mechanism and Fuse Gate
to combine the two contexts. For both models, the embedding dimension is set
to 150, the dimension of hidden layers is set to 300, and the word embeddings
are randomly initialized with uniform distribution in [−0.1, 0.1]. The optimizer
is set to Adam with learning rate 10−4, gradient clipping = 0.1, and dropout
rate = 0.5. We use early-stopping strategy to control model’s training process,
that is the training would be stopped once the cross-entropy loss stops dropping
for several iterations. In the generation procedures, we set the max depth of
beam search to 6, and set the beam size to 200.

4.4 Results Analysis

In order to evaluate our model more comprehensively, we do not filter out the
keyphrases in the evaluation. Instead, we consider both the present keyphrases
and absent keyphrases in the evaluation. The F1 scores for our model and other
baseline models are listed in Table 1. From the table we can see that our model
is much better in terms of performance and accuracy than other baseline models
in most cases. Especially in terms of F1@5 scores, our model is more prominent.
This indicates the strength of our combination with the word level information.
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Table 2. MAP@10 scores of total keyphrase predictions. The best results are bold.

Method Inspec NUS SemEval KP20k

Tf-Idf 0.142 0.067 0.041 0.066

TextRank 0.156 0.088 0.159 0.112

SingleRank 0.134 0.091 0.109 0.086

ExpandRank 0.129 0.103 0.112 N/A

TopicRank 0.157 0.074 0.038 0.065

KEA 0.052 0.173 0.017 0.126

Maui 0.024 0.147 0.019 0.193

RNN 0.043 0.077 0.035 0.131

CopyRNN 0.194 0.216 0.118 0.275

CorrRNN 0.196 0.218 0.119 0.277

WordRNNC 0.190 0.218 0.127 0.278

WordRNNF 0.200 0.224 0.124 0.284

Notably, WordRNNC outperforms WordRNNF for SemEval dataset because of
the gold keyphrases of SemEval testing dataset have already been stemmed.
For mean average precision (MAP) metric which considers prediction orders, we
obtain similar conclusions as shown in Table 2.

Then we analyze the performance of present and absent keyphrase prediction.
We use F1@5 metric for present predictions and R@10 which denote the recall
score for absent predictions. We compare with the neural-based baselines since
they are the state-of-the-art models. We can see that our model outperform
baselines in Fig. 2.

In addition, we also pay attention to the performance of the model which
only use word-attention, and found that the result is not particularly good. This
proves that the individual word-level features are not particularly suitable for
this task.

Fig. 2. The present and absent keyphrase prediction performance.
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5 Conclusion

In this paper, we propose a new keyphrase generation model named WordRNN
which consider both hidden state and specific word in the input sequence. We
use a word-attention to leverage pure source word level information to make
the semantic representation of source text more comprehensive. We also use
several methods to combine word-context and hidden-context. Comprehensive
empirical studies demonstrate that our model can generate keypharses more
accurately and effectively. Compared to other state-of-the-art models, our model
achieves significant improvements as a result of the word-attention. To the best
of our knowledge, we are the first to use word-attention for keyphrases generation
models and the model is able to generate target keyphrases better.
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Abstract. Language evolves over time with trends and shifts in tech-
nological, political, or cultural contexts. Capturing these variations is
important to develop better language models. While recent works tackle
temporal drifts by learning diachronic embeddings, we instead propose
to integrate a temporal component into a recurrent language model. It
takes the form of global latent variables, which are structured in time
by a learned non-linear transition function. We perform experiments on
three time-annotated corpora. Experimental results on language model-
ing and classification tasks show that our model performs consistently
better than temporal word embedding methods in two temporal evalu-
ation settings: prediction and modeling. Moreover, we empirically show
that the system is able to predict informative latent representations in
the future.

Keywords: Temporal modelling · Language model · RNN

1 Introduction

Language modeling with deep neural networks is a very active research field
[13,21–23]. It is a central task in Natural Language Processing (NLP) as it plays
a major role in various text-related tasks such as speech recognition [5], image
captioning [35], or text generation [8]. LSTM networks for language modeling [12,
25] are still the state of the art in language modeling [21,23], although research
on new architectures is very active [1,6,26,34]. However, most recurrent language
models are static and do not consider the various shifts that affect language; the
meaning of words can shift, new words appear as other vanish, and yesterday’s
topics are different from tomorrow’s.

To handle temporal variations in texts, recent research mainly focuses on
learning distinct word embeddings per timestep [11,17,20], and smoothing them
in time [2,39]. Word embeddings are powerful tools to capture and analyze
semantic relations between word pairs [24]. However, learning different embed-
dings for each timestep leads to learning algorithms with high time and memory
complexity. Moreover, to our knowledge, no proper neural language models tak-
ing into account publication date have been proposed yet.
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In this paper, we propose a state-based dynamic neural language model, that
learns transitions between global states through time, rather than focusing on
distinct word embeddings. Our contribution is threefold:

– We empirically show that temporal word embeddings models are not well
suited for language modeling.

– We propose a dynamic neural language model in the form of an LSTM con-
ditioned on global latent variables structured in time.

– We evaluate the proposed model on three datasets for language modeling and
downstream classifications tasks.

2 Related Work

Studying language evolution has been of interest for a long time in machine
learning and information retrieval communities. Topics detection and tracking
were among the firsts approaches to study language evolution. In 2002, [16]
proposed a Hidden Markov Model (HMM) to visualize the temporal evolution of
topics in a textual stream. In 2006, [37] and [3] proposed non-Markovian models
based on Latent Dirichlet Allocations (LDA). While [37] learns distributions of
topics through time, [3] learns word distributions conditioned on latent topics
that evolve through time with a State Space Model. However, these methods
require to manually tune the number of latent topics, and language models
are limited to simple word occurrence distributions. Moreover, these models are
usually limited to specific conjugate distributions on the latent variables to allow
tractable Variational Inference. Note that [3] led to several extensions, e.g. with
multi-scale temporal variables [14], or continuous time dependencies [36].

After the introduction of the Word2Vec model [24], numerous papers pro-
posed derivations of the famous skip-gram algorithm for time annotated corpora
[10]. All these approaches attempt to acquire a better understanding of language
evolution by studying shifts in words semantic through time. Among them, [7]
learns linear temporal dependencies between word representations. [39] learns
diachronic word representations by matrix factorization with temporal align-
ment constraints. [2] proposed a temporal probabilistic skip-gram model with
a diffusion prior. [29] also proposes a probabilistic framework that uses expo-
nential embeddings. However, all these temporal word embeddings approaches
suffer from a major drawback: complete sets of embeddings must be learned for
each timestep. This leads to learning algorithms, with high time and memory
complexity, requiring several approximations, like alternate optimization that
breaks gradient flow through time in [39], or gradient approximations in [2]. An
exception is [28] that combines a static word representation to a scalar timestep
in a deep neural network that produces a temporal embedding.

An alternative to these various models is to leverage RNNs for language
modeling. A recurrent language model takes a sequence of words of arbitrary size
as input and outputs a probability distribution of the next word. Such models
are often parameterized by LSTM networks [12]. Compared to the skip-gram
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algorithm that uses a limited context window, recurrent language models operate
on sequences of arbitrary length and can capture long-term dependencies.

In this paper, we propose a dynamic language model based on RNNs. The aim
is to capture the language evolution through time via an end-to-end framework,
where a standard RNN is conditioned by a latent representation of temporal
drifts in language. Incorporating latent random variables in RNNs is not new
[9] and have been applied to textual data [31,40]. However, to the best of our
knowledge, no RNN LMs methods have been proposed for the extraction of tem-
poral dynamics in text. Moreover, the cited methods learn local latent variables,
that must be inferred for each word or each sentence. We propose to learn latent
variables that are global to all documents published during the same time period.

3 Model

We propose a dynamic recurrent neural network for language modeling in docu-
ment corpora, where each document is annotated with a discrete timestep. The
model is a State Space Model (SSM) with one global latent state per timestep
used to condition an LSTM Language Model. Unlike most current methods that
learn complete word embedding matrices for each timestep, we only learn one
embedding per word which is augmented with a state of the SSM. The LSTM
captures general language dynamics, and uses the temporal states to adapt its
dynamics depending on language bias specific to each timestep. We also learn a
transition function between states that enables prediction of future states.

3.1 Notations and Task

We consider textual documents defined over a vocabulary of size V and anno-
tated by discrete timesteps t ∈ {1, 2, . . . , T}. Let D = (d(i), t(i))i=1..N be a corpus
composed of N documents associated with their publication timestep. A docu-
ment d(i) is a word sequence of size n(i) of the form d(i) = {w(i)

1 ,w(i)
2 , . . . ,w(i)

n(i)}.
We denote by Nt the number of documents in D published at timestep t.

In standard language modeling task, the objective is to find parameters θ∗

maximizing the likelihood of words given previous ones in documents:

θ∗ = arg max
θ

N∏

i=1

n(i)−1∏

k=0

pθ (w(i)
k+1|w(i)

0:k), (1)

where w(i)
0 is always the start token, and w(i)

n(i) the end of sentence token. w(i)
0:k is

the sequence of the first k+1 tokens in document d(i), and pθ is parametrized by
an RNN with parameters θ that outputs next token probabilities. Specifically,
we have pθ (w(i)

k+1|w(i)
0:k) = softmax(Wh

(i)
k + b) where W ∈ R

V ×dh and b ∈ R
V

are parameters to learn, h
(i)
k = f(w(i)

k ,h
(i)
k−1;v) is a hidden vector of size dh for

all k ∈ {1, . . . , n(i) −1} (h(i)
0 being the null vector for all i), and f is the LSTM’s

recurrent function with parameters v. We thus have θ = {U ,W , b,v} where U
is the word embeddings matrix.
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LSTM LSTM LSTM

Fig. 1. Schematic representation of our model.

3.2 Dynamic Recurrent Language Model

Our goal is to extend classic recurrent language models with a dynamic com-
ponent in order to adapt it to language shifts through time. To that aim, we
condition an LSTM LM with temporal latent variables. We learn global latent
variables structured in time with a transition function learned jointly with the
LSTM. The latent variables are global because documents published at the same
timestep all share the same latent variable. This allows the LSTM to capture
language structures common to the entire dataset, while global latent variables
are able to factorize language elements specific to their timestep. A schematic
overview of the model is presented on Fig. 1.

Let zt ∈ R
dz be the latent variable corresponding to timestep t. The sequence

probability of a document d(i) published at timestep t(i) is now computed as

pθ (d(i)|t(i)) = pθ (d(i)|zt(i)) =
n(i)−1∏

k=0

pθ (w(i)
k+1|w(i)

0:k, zt(i)).

Note that zt(i) depends only on the timestep at which d(i) has been published,
and not specifically on d(i) itself. In our architecture, we concatenate zt(i) to the
embeddings of each word w(i)

k as we have found it to work best empirically.
The latent states zt are Gaussian random variables structured in time via a

dynamic component taking the form of a Gaussian model. Its mean is a function
g of the previous state and its covariance is a learned diagonal matrix σ2:

zt+1|zt ∼ N (g(zt;w), σ2),

where w are the parameters of g. Learning a transition model gives the system
more freedom for learning useful trajectories. Moreover, it gives us the possibil-
ity to estimate future states of the system, where data is not available during
training. The prior’s mean on the first timestep is a learned vector z0 acting as
the initial conditions of the system. The joint distribution factorizes as follows:

pθ ,ψ (D,Z) =
N∏

i=1

pθ (d(i)|zt(i))
T−1∏

t=0

pψ (zt+1|zt), (2)
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where ψ = (w, σ2, z0) are the temporal prior parameters, and Z ∈ R
T×dz is the

matrix containing latent vectors zt. pθ (x|zt(i)) is parameterized by an LSTM
where the latent state zt(i) is concatenated to every word embedding vectors.
Note that, following our notation introduced in Sect. 3.1, t(i) is a variable repre-
senting the publication timestep of document i, whereas t are timestep values.

3.3 Inference

Learning the generative model in Eq. 2 requires to infer the latent variables
zt. In Bayesian inference, it is done by estimating their posterior pθ ,ψ (Z|D) =

pθ ,ψ (D,Z)∫
pθ ,ψ (D,Z)dZ

. Unfortunately, the marginalization on Z requires to compute an
intractable normalizing integral. We therefore use Variational Inference (VI), and
consider a variational distribution qφ(Z) that factorizes across all timesteps:

qφ(Z) =
T∏

t=1

qtφ(zt),

where qtφ are independent Gaussian distributions N (μt, σ
2
t ) with diagonal covari-

ance matrices σ2
t , and φ is the total set of variational parameters.

This factorization is possible because recurrent language modeling is an auto-
regressive task (c.f. Eq. 1) that does not require an auto-encoding scheme. We
are thus able to learn a model with fewer parameters while avoiding common
pitfalls associated with variational text auto-encoders, e.g. KL vanishing [4]. A
particularity of our approach is that we have several documents published at the
same timestep. So, to obtain an Evidence Lower Bound (ELBO) L(θ,ψ,φ), we
adapt the derivation in [19] as follows:

log pθ ,φ (D) = log

∫
Z
pψ (Z)

T∏
t=1

pθ (Dt|zt)dZ ≥
∫
Z
qφ (Z) log

⎛
⎜⎜⎜⎝pψ (Z)

T∏
t=1

pθ (Dt|zt)

qφ (Z)

⎞
⎟⎟⎟⎠ dZ

=
T∑

t=1

∫

zt

qtφ (zt) log pθ (Dt|zt)dzt +
∫

zt−1

qt−1
φ (zt−1) log

pψ (zt|zt−1)

qtφ (zt)
dzt−1dzt

=
T∑

t=1

Eqt
φ
(zt)

[log pθ (Dt|zt)] − E
qt−1

φ
(zt−1)

[
DKL(q

t
φ (zt)‖pψ (zt|zt−1))

]
, (3)

where Dt is the set of all documents published at timestep t, and the inequality
is obtained thanks to the Jensen theorem on concave functions.

This ELBO exhibits two expectation terms. The first one corresponds to a
conditional log-likelihood of the observations at t given the state zt. The sec-
ond one is the Kullback-Leibler divergence of the variational distribution from
its Gaussian prior given the previous state zt−1, which owns an analytically
closed form (as given in the supplementary material1). This ELBO can be clas-
sically optimized via stochastic gradient ascent using the re-parametrization trick
[18,27].
1 Supplementary material available at https://github.com/edouardelasalles/drlm/

raw/master/supplementary.pdf.

https://github.com/edouardelasalles/drlm/raw/master/supplementary.pdf
https://github.com/edouardelasalles/drlm/raw/master/supplementary.pdf
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Global temporal states coupled with variational distributions independent in
time offer several learning and computation advantages. This allows the system
to deal with strong disruptions in language shifts, for which regularities observed
on other steps could not hold. Rather than considerably upsetting the transition
function, and thus highly impacting consecutive states, the learning algorithm
can choose to ignore such difficult transitions, at a cost depending on the vari-
ance σ2. This variance σ2, learned jointly with the model, allows the learning
algorithm to adapt the stochastic transition according to the regularity level of
the data. Moreover, since temporal dependency is broken, optimization over all
timesteps can be done in parallel using mini-batches containing texts published
at t.

4 Experiments

4.1 Models and Baselines

In our experiments, we compare the following models2:

– LSTM: a standard regularized LSTM. This baseline has no temporal com-
ponent but is currently the state-of-the-art in language modeling.

– DT: the DiffTime model presented in [28] is a deep model which learns only
one embedding vector per word. It combines those word embeddings with a
temporal prior obtained by scaling a learned vector with a scalar timestep.

– DWE: the Dynamic Word Embedding model [2] learns Gaussian word
embeddings with a probabilistic version of the skip-gram algorithm. It learns
a different set of word embeddings per timestep, that are smoothed in time
with a diffusion prior.

– DRLM-Id: the Dynamic Recurrent Language Model proposed in this paper,
where the transition function is replaced by the identity matrix so that zt+1 ∼
N (zt, σ2).

– DRLM: the Dynamic Recurrent Language Model proposed in this paper
with learned transition function.

For comparison purposes, we adapted the temporal word embedding models
DT and DWE for language modeling, by replacing the skip-gram component
with an LSTM. More details can be found in the supplementary material.

4.2 Temporal Settings

We propose to evaluate the models in the two following temporal settings:

– Prediction: The first Tp timesteps are used to train the model. Timesteps
Tp + 1 to T , with T the total number of timesteps, are used for evaluation.
For DRLM, we use the transition model g to predict future states zt in time.
For DT and DWE we use the embeddings from the last training timestep Tp.
Timestep Tp + 1 is used for hyperparameters tuning.

2 Code of the models available at https://github.com/edouardelasalles/drlm.

https://github.com/edouardelasalles/drlm
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(a) S2 (b) NYT (c) Reddit

Fig. 2. Perplexity through time for the prediction setting.

– Modeling: In this configuration, corpora are randomly split into training
(60%), validation (10%) and test (30%) sets for each timestep.

We evaluate the models on language modeling and downstream classification
tasks. For language modeling, the evaluation metric is the token level perplexity
on the respective test sets. For classification, we report F1 scores for multi-label
classification, and top1 scores for multi-class classification.

4.3 Datasets

We use three different corpora for our experiments:

– The Semantic Scholar3 corpus (S2) contains 50K titles published in
machine learning venues from 1985 to 2017, split by years (33 timesteps).

– The New York Times [39] corpus (NYT) contains 50K newspaper headlines
(500K words) spanning from 1990 to 2015, split by years (26 timesteps).

– The Reddit corpus contains a sample of 3% of the social network’s posts
presented in [33]. It is composed of 100K posts sampled from January 2006
to December 2013 split by quarters (32 timesteps).

For each corpus, the vocabulary is constructed with words appearing at least
5 times in training sets (3 times for S2). The resulting vocabulary sizes are 5K
tokens for S2, 8K for NYT and 13K for Reddit. All baselines and models are
based on 2 layers AWD-LSTM [23] with hidden units and word embeddings of
size 400. We use weight dropout, variational dropout, embedding dropout, and
embeddings weight-tying (except for DWE that learns distinct word embeddings
per timestep).

4.4 Language Modeling Results

Prediction. Figure 2 shows perplexity evolution for the prediction setup
(numerical results are provided in the supplementary material). On the three cor-
pora, both DRLM-Id and DRLM beat all baselines. The standard LSTM always

3 http://labs.semanticscholar.org/corpus/.

http://labs.semanticscholar.org/corpus/
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(a) S2 (b) NYT (c) Reddit

Fig. 3. Perplexity through time with recursive inference. DRLM-F and DWE-F are
trained on Tp timesteps, and then their variational parameters are recursively inferred
on data at timestep Tp + τ and evaluated at Tp + τ + 1.

performs better than the DWE and DT baselines that systematically overfit.
This shows that LSTMs language models are powerful, even without temporal
components, and conditioning them is not trivial. Results on Reddit (Fig. 2c)
tend to confirm this observation: performances of LSTM, DRLM-Id, and DRLM
are quasi-equivalent, with a gain of 2 points of perplexity for DRLM compared
to LSTM. It is a corpus twice larger than the others, with longer sequences. Our
analysis is that with sufficient data, and due to the auto-regressive nature of
textual data, LSTM, even without explicit temporal prior, manages to capture
temporal biases implicitly.

In the S2 corpus, we can see in Fig. 2a that, while the perplexity of DRLM-Id
tends to converge to LSTM’s perplexity, DRLM presents consistent improvement
through time. On the NYT corpus, while DRLM-Id and DRLM have signifi-
cant performance gain compared to LSTM (more than 5 points), the difference
between the two models is small and vanishes with time. This is explained by
the fact that news headlines from NYT are mostly induced by external factors,
while scientific publications from S2 are influenced by one another through time.

Recursive Inference. To validate this hypothesis, we recursively infer the
latent states of DRLM. We optimize the variational parameters of every zt for
t > Tp by maximizing Eq. 3 according to data from Dt and states inferred form
previous steps. All other parameters remain unchanged. Specifically, we infer zt
according to Dt and zt−1. We then evaluate the resulting model at t+1, and next
we infer zt+1 according to Dt+1 and zt, evaluate at t + 2 and so on. The same
process is performed for the variational parameters of DWE. The two resulting
models are respectively referred to as DRLM-F and DWE-F in Fig. 3.

We first observe that the DWE baseline benefits a lot more from recursive
inference than DMLR. This is expected since it can adapt each word embedding
at each timestep, whereas DRLM-F only infers the distribution of a single vector
per timestep. This thus makes DWE-F a good baseline for assessing temporal
drift. DRLM-F improves performances on the last timesteps of NYT, meaning
that the trained language model is able to interpret latent states zt never seen
during training. This is not trivial, given the difficulties and various tricks present
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S2 NYT Reddit

DRLM

(a) (b) (c)

DRLM-Id

(d) (e) (f)

Fig. 4. Latent trajectories through time of the two most varying components of zt for
the prediction task on the three datasets, for DRLM and DRLM-Id.

in the literature to condition LSTM language models [4,30,38]. We also see that
recursive inference does not improve DRLM results on S2, while DWE results
are greatly improved. This shows that there is a temporal drift in S2, which is
less clear on Reddit since recursive inference improves performances neither on
DMLR nor on DWE. It then follows that DLRM predicts accurate latent states
on the S2 corpus, since there is a temporal drift, and latent states inferred with
future data yield performances similar to those with predicted states.

To confirm these hypotheses, we plot on Fig. 4 the latent trajectories of the
two components of z that vary the most through time for DRLM (first row) and
DRLM-Id (second row). For DRLM, the inferred points correspond to the means
of q(zt), and the prior points correspond to the means of p(zt|zt−1) for train
timesteps. The predicted points for test timesteps are obtained by recursively
applying the transition function g from the last training zt, and the filtered
points are those obtained by recursive inference. For DRLM-Id, we only report
the inferred points, as there is no transition function to apply (and the prior at
each timestep is the state inferred at the previous one).

By comparing the first and second row of Fig. 4, we first observe that learning
a transition function allows the model to learn smoother latent states in time
compared to DRLM-Id. This confirms the relevance of our end-to-end learning
process, compared to an approach that would extract trajectories from DRLM-
Id a posteriori. DRLM automatically organizes states in a smooth fashion, from
which extrapolation is easier. On Fig. 4a, we see that the predicted latent states
are very close to the filtered ones, confirming the ability of the transition model to
capture and predict global tendencies in the data. On the NYT corpus (Fig. 4b),
we observe that the predicted latent states diverge slightly from the filtered
states, which is coherent with the gain in perplexity observed on Fig. 3b by
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Table 1. Modeling perplexity.

S2 NYT Reddit

LSTM 62.8 109.9 116.7

DT 70.7 125.6 136.8

DWE 65.9 119.9 129.4

DRLM-Id 60.6 104.0 115.5

DRLM 60.2 103.5 114.7

Table 2. Classification results.

Task Prediction Modeling

Corpus S2 NYT Reddit S2 NYT Reddit

Metric F1 top1 top1 F1 top1 top1

LSTM 0.19 35.1 32.0 0.22 41.4 44.0

DT 0.15 19.1 12.5 0.11 17.3 40.9

DWE 0.18 33.4 34.3 0.17 24.8 44.5

DRLM 0.21 41.2 38.0 0.23 44.8 45.2

DRLM-F. On the Reddit corpus, we see that the filtered states are close in
time, indicating a slow temporal drift. This is also coherent with the perplexities
observed on Fig. 3c.

Modeling. Table 1 presents results for the modeling setup. As for prediction,
temporal word embeddings baselines also fail to beat the LSTM baseline. All
perplexities are lower since the task is easier, but our models DRLM and DRLM-
Id keep their perplexity gain over LSTM.

4.5 Text Classification Results

To further evaluate the representations learned by DRLM, we extract its word
embeddings augmented with temporal states and use them for text classifica-
tion. For the DT and DWE baselines, we learned temporal embeddings exactly
as described in their respective papers. For every classification task, we learn
a linear classifier that takes as inputs the average of the embeddings of each
sequence, as done in [15] and [32]. Labels are articles’ keywords for S2 (multi-
label with 400 classes), articles’ sections for NYT (mono-label with 28 labels)
and subreddits in which posts were submitted for Reddit (mono-label with 60
labels). Classification results for prediction and modeling settings are presented
in Table 2. DRLM outperforms all baselines. This shows that the representations
it learns contain useful information that can be used for downstream tasks such
as classification.

4.6 Text Generation Through Time

We present here texts samples generated by beam search with DRLM trained
with the modeling setting. We use starting word triplets that most often appear
in the S2 test set as a seed, and we change the latent state through time. Table 3
presents generated samples where the latent state evolves from 1985 to 2017.
We can see a smooth evolution in vocabulary. Around the 90s, we can see that
the language model evolves slowly, as the exact same sequences are generated 5
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Table 3. Texts generated with DRLM for different timesteps on the S2 corpus.

Year A framework for... Unsupervised learning
of...

A comparison of...

1985 Shape recovery from images Hidden markov models Smoothing techniques
for statistical machine
translation

1995 Shape recovery from images Gaussian graphical
models

Smoothing techniques
for word sense
disambiguation

2005 Automatic evaluation of
statistical machine
translation

Named entity
recognizers

Smoothing techniques
for statistical machine
translation

2015 Unsupervised feature
selection

Deep convolutional
neural networks

Convolutional neural
networks for action
recognition

2016 Unsupervised learning of
deep neural networks

Convolutional neural
networks

Convolutional neural
networks for action
recognition

2017 Training deep convolutional
neural networks

Generative adversarial
networks

Convolutional neural
networks for action
recognition

years apart in the first set of samples. And we see that the language model start
to evolve quickly from 2015, where references to deep learning begin to appear.
In the second set, we even see a reference to GAN on the 2017 sample.

5 Conclusion

We proposed a Dynamic Recurrent Language Model (DRLM) for handling tem-
poral drifts in language. Language evolution dynamics are captured via a learned
transition function, which defines trajectories of temporal states through time.
Experiments on three corpora showed that our approach beats temporal embed-
dings baselines in various settings and on downstream classification tasks.
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Abstract. Speech dereverberation based on deep learning has recently
gained a remarkable success with the substantial improvement of speech
recognition for the accuracy in the distant speech recognition task. How-
ever, environmental mismatches due to noise and reverberation may
result in performance degradation when the features (e.g. MFCCs) are
simply fed into a speech recognition system without feature enhance-
ment. To address the problem, we propose a new speech dereverberation
approach based on the deep convolution and self-attention mechanisms
to enhance the MFCC-based feature in distant signals. The deep con-
volutional component used in this approach can efficiently exploit the
frequency-temporal context patterns, and the multi-head self-attention
mechanism can obtain the complete time-domain cues to enhance the
temporal context. Meanwhile, the bottleneck features trained on a clean
corpus are utilized as teacher signals, because they contain relevant
cues to phoneme classification and the mapping is performed with the
objective of suppressing noise and reverberation. Extensive experimental
results on the REVERB challenge corpus demonstrate that our proposed
approach outperforms all the competitors, reducing about 17% relative
word error rate (WER) compared with the deep neural network (DNN)
baseline method.

Keywords: Speech dereverberation · Speech recognition · Multi-head
self-attention · Bottleneck feature · DNN

1 Introduction

With the development of speech processing techniques, hands-free speech tech-
niques for various applications are increasingly popular, such as chat robots
and smart speakers. However, automatic speech recognition from distant micro-
phones remains a challenge because the speech signals to be recognized are
degraded by the presence of interfering signals and reverberation due to a long
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11955, pp. 295–305, 2019.
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speaker-to-microphone distance. To overcome such a challenging task, speech
dereverberation algorithms often function as a preprocessing module that to
help suppress the reverberation in observed speech signals before they are fed
into the following stage of speech recognition systems.

Recently, speech dereverberation methods based on deep neural networks
have been shown to significantly improve speech recognition performance due
to the strong regression capability. The general solution is to view the speech
dereverberation problem as a multivariate regression problem, where the nonlin-
ear regression function is parametrized by various deep neural networks, such as
deep neural networks (DNNs) [1–3], convolutional neural networks (CNNs) [4,5],
recurrent neural networks (RNNs) [6–8] and generative adversarial networks
(GANs) [9–11]. Based on how the enhanced target is achieved, the techniques
can be categorized into the mapping-based methods [1,4,12] and masking-based
methods [13,14]. The former aims to learn a non-linear mapping function from
the observed noisy speech into the desired clean speech, while the latter focuses
on learning a time-frequency mask from the observed noisy speech to desired
clean speech. Despite the success of these existing methods, they often fail to
meet the realistic complex scenarios for the following two drawbacks. First, the
mismatch between the training and testing environments degrades significantly
the performance of speech recognition. Second, high computing costs make it
difficult to apply to real-world applications.

To address the above problems, we propose a fast single-channel speech dere-
verberation approach for distant speech recognition. Specifically, in order to solve
the first mismatch problem, we make efforts to the exploration of input cues and
enhancement of target prediction. In terms of the input cues, 2D deep convolu-
tion operations are adopted to exploit the frequency-temporal context patterns,
and a self-attention mechanism [15] is incorporated into our approach to pre-
serving the complete time-domain context patterns. Complete signal preserva-
tion on the time-frequency domain is conducive to better target prediction, and
we call this as deep convolutional self-attention neural network (DCANN). As
regard to the target prediction, the conventional log-power spectral represen-
tation or time-frequency mask prediction only focuses on the front-end speech
dereverberation, ignoring the back-end speech recognition task. Motivated by
the strong discriminative ability of the bottleneck feature [16], we first extract
the phoneme-based bottleneck features based on the close-talking corpus from
the DNN-HMM speech recognition system [17], and then use them as another
teacher signals besides the traditional ones (P-DCANN). The discriminatory
bottleneck features do not only enhance the robust of speech dereverberation
but also provide more feature choices for an back-end speech recognition system
in real cases. Benefited from the proposed network structure without recursive
operations, the speed has been significantly improved compared with the tra-
ditional LSTM and CNN-based frameworks. Lastly, the results obtained from
various experiments demonstrate that our approach achieves better performance
than all other competitors based on the REVERB challenge database [18].
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The paper is organized as follows. Section 2 discusses detailed mapping based
speech enhancement studies. We then describe our approach in detail in Sect. 3.
The experiment and its results are shown in Sect. 4. We discuss related issues
and conclude the paper in the last section.

2 Related Work

It has been reported that the DNN mapping method [1] is useful to improve
the speech dereverberation system performance. In this method, the DNN is
used for a regression task to learn a nonlinear function between acoustic fea-
tures of reverberant speech and clean speech. The used features before inputting
to the network need a mean normalization. In the dereverberation stage, the
reverberant speech acoustic features are fed into the DNN model to generate
the corresponding enhanced acoustic features. After obtaining the dereverber-
ated speech acoustic features, these features are used to train the DNN or the
other acoustic model and the dereverberated test data features are used to do
a decoding process. Finally, a higher accuracy rate compared with the model of
dereverberation without the DNN will be obtained.

Furthermore, the CNN [4] and LSTM [6] based methods can be used as a
speech enhancement method as well. The utility of CNN as the feature extrac-
tion part is the capability of overviewing broader features, and its use will
attain a better learning performance on speech in the frequency-temporal con-
text domain. Although the LSTM will bring good performance in the sequence
learning, it requires a higher cost for the training. In the end-to-end automatic
speech recognition (ASR) [19,20], some researchers use a structure called the
transformer [15] that does not to use the CNN, and the LSTM obtains a high
accuracy rate. The core of the transformer is for a multi-head self-attention
application. We expect that the efficient and effective combination of these neu-
ral networks finally achieves a good performance in speech dereverberation for
robust speech recognition in the real condition.

3 Proposed Method

3.1 DCANN Based Speech Dereverberation Model

In this section, a detailed introduction to our proposed DCANN model is
described. As shown in Fig. 1, the system contains three modules: the CNN
module, multi-head self-attention module, and post-mapping module.

In the CNN module, a 4-layer CNN is used to extract deep level features,
which learns several different filters simultaneously. The CNN filters with mul-
tiple sizes capture valuable features of different scales, it helps learn MFCC fea-
tures for robust frequency-temporal patterns. Then the multi-head self-attention
will facilitate feature learning in the time-domain context patterns, and com-
pared with LSTM, it will also save much time. In the post-mapping module, a
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Fig. 1. P-DCANN structure for robust speech recognition. The upper part is the
DCANN method.

2-layer DNN is used to learn the detail of the MFCC features. To further sup-
press the problem of data mismatch between the training and testing set, some
concat and resnet structures are used. Specifically, we concatenate the output of
the CNN features and the input of the MFCC features, and use the concatenated
features combined with multi-head self-attention output features. The DCANN
architecture combines different strengths for the three modules, which does not
only gain a better result but also will save training and decoding time. We also
detail the multi-head self-attention in the subsection.

Multi-head Self-attention. Many tasks have successfully applied the atten-
tion mechanism, including ASR, machine translation [15] and language under-
standing [21]. It is expected that the attention mechanism used in speech dere-
verberation tasks resembles the human auditory mechanism, which focuses on
the frames that contain more useful information, and gives low attention for the
reverberant speech frames.

In this paper, we adopt the multi-head self-attention proposed by [15].
The core of multi-head self-attention is the scaled dot-product attention being
improved from the dot-product attention. Because of the utilization of highly
optimized matrix multiplication code, the dot-product attention could do a faster
computation compared with the standard additive attention mechanism [22].
The scaled dot-product attention computes the attention value based on the
following equation:

Attention (Q,K, V ) = softmax

(
QKT

√
d

)
V (1)
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Fig. 2. The computation flow of multi-head self-attention mechanism. All the heads
can be computed in parallel for scaled dot-product attention.

where the query vectors Q ∈ R
n×d, keys K ∈ R

n×d, and values V ∈ R
n×d is the

same matrix, d is the number of hidden units of our network.
Figure 2 shows the computational flow of the multi-head self-attention mech-

anism. In the first step, it uses three different linear projection maps for the
input vectors queries Q, keys K, and values V matrices. Q, K, and V are the
same as the input matrix X. In the next step, the mapped queries, keys, and
values are respectively split into h parallel head channels. If i is the i-th head, we
use WQ

i ∈ R
n×d/h, WK

i ∈ R
n×d/h, WV

i ∈ R
n×d/h respectively as the queries,

keys and values that pass through the DNN layer and split expressing. Then the
scaled dot-product attention is used to compute the relationship between queries
and keys, and a mask matrix in this part will be learned. By multiplying the
mask matrix of the last step by the value matrix, we will obtain the attention
matrix. The mathematical formulation is shown in the following equation:

Headi = Attention
(
WQ

i ,WK
i ,WV

i

)
(2)

After obtaining every head attention, we concatenate all parallel head
together to form a single vector:

Multihead (Q,K,V) = Concat (head1 . . . headh) (3)

Lastly, by a DNN layer, the final vector Y will be computed. In this paper, the
parallel head is set to h = 8.

The use of the multi-head self-attention mechanism has many merits com-
pared with the LSTM. It is highly parallel, compare with LSTM without recur-
sive computation.

DCANN Loss Function. In the training stage of DCANN speech dereverber-
ation system, the mean square error (MSE) is applied as a loss function:

Lmse =
1
N

N∑
i=0

(yi − xi)
2 (4)

where yi represents the features generated from the DCANN model, xi is the
clean speech MFCC features. N is the length for the dimension from one frame.
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3.2 P-DCANN

The phoneme-based bottleneck feature (P-BNF) [16,23] is one of the most pop-
ular features used in speech recognition. It derives from the acoustic model in
the DNN-HMM-based speech recognition process. The final phonemes or other
recognition results are not necessary, and we just use the feature for the last
layer’s output. The P-BNF contains some semantic information about speech to
phoneme classification, and it is also more identifiable than traditional features
(e.g. MFCCs) in the real environment.

In this paper, based on the DCANN we further propose a P-DCANN model,
as shown in Fig. 1. It is expected that the clean MFCC features would better
perform in a speech recognition task with a P-BNF constraint imposed at another
output layer as a teacher signal. It will bring stronger discriminant power for
the clean speech MFCC features learning, and this treatment especially useful
in the training set and testing set for the environmental mismatch case.

One similar work in [24] showed that the use of the multi-target learning
with both input and output layers could improve the performance of DNN-based
speech enhancement. However, the motivation of our work is using the multi-
target learning to learn some discriminant cases in the MFCC feature generating
process, since these features are effective for the back-end speech recognition in
the real condition.

For the P-DCANN training stage, the loss function is:

L = Lmse1 + αLmse2 (5)

where Lmse1 is the MFCC features MSE loss, and Lmse2 is the P-BNF features
MSE loss. The MSE loss of the P-BNF is controlled by a hyper-parameter α.
Finally, the P-DCANN by coordinating the DCANN and multi-target learning
could efficiently work in the real condition.

4 Experiments

4.1 Datasets

To verify the effectiveness of our approach, we evaluate it experimentally on the
single channel official data of the REVERB challenge [18]. The training set used
in our experiment contains about 7861 reverberant utterances (about 17.5 h)
and 7861 corresponding clean utterances from the WSJCAM0 corpus [25]. The
reverberant utterances are generated from the clean WSJCAM0 training data
by convolving the clean utterances with measured room impulse responses and
adding recorded background noise with an SNR of 20 dB. The reverberation
times of the measured impulse responses in the dataset range from 0.2 s to 0.8 s.
In addition, the evaluation test set consists of two different parts, namely sim-
ulated data (SimData) and real recordings (RealData). The SimData contains
2176 reverberant speech utterances (about 4.8 h) that are artificially simulated
in the same way as the training set. It simulates six different reverberation
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Table 1. WERs (%) comparisons by previous mapping based networks and our pro-
posed method. “Avg” means the average.

Method Simulated data Real data

Room1 Room2 Room3 Avg Room1 Avg

Far Near Far Near Far Near Far Near

No process 8.18 7.47 13.58 9.11 16.33 10.85 10.92 27.95 28.07 28.01

DNN 8.44 7.45 12.22 8.07 14.23 10.13 10.09 25.02 24.43 24.73

R-CED 7.39 7.17 11.81 7.76 13.31 8.94 9.40 24.81 23.76 24.29

LSTM 8.42 7.20 11.94 7.86 14.40 9.88 9.95 24.44 24.05 24.25

DCNN 7.72 7.32 11.62 8.34 14.53 10.15 9.95 23.16 21.72 22.44

DCANN 7.20 6.34 11.01 7.83 13.43 8.82 9.11 22.18 20.44 21.31

P-DCANN 7.47 6.78 10.61 7.33 13.25 9.11 9.09 21.54 19.51 20.52

conditions: three rooms with different volumes (small, medium and large) and
two different speaker-to-microphone distances (near = 50 cm and far = 200 cm).
Meanwhile, the RealData from the MC-WSJ-AV corpus [26] contains 372 real
recordings (about 0.6 h) made in a reverberant meeting room, which includes two
different speaker-to-microphone distances (near = 100 cm and far = 250 cm). The
reverberation time in the RealData is about 0.7 s.

4.2 Experimental Setup

Our speech dereverberation front-end is used to enhance the MFCC features
for speech recognition experiments. The Kaldi [27] toolkit is used to train our
back-end ASR system with a DNN acoustic model and the enhanced the MFCC
features. For the speech dereverberation front-end, the ReLU is used as the
activation function of each hidden layer, and the Adam algorithm is used to
ensure a stationary solution [28]. In practice, the learning rate is set to 0.01,
and the batch size is set to 256. For the back-end ASR, it is mainly divided into
two stages: training and decoding. In the training stage, 13-dimensional MFCC
features of each frame are extracted from reverberant and clean speech with a
frame length of 512 and a frame shift of 256. To enhance context information
of input features, each frame is combined with 10 frames in the context to form
the final MFCC features. The MFCC features of reverberant and clean speech
are both used as input into the DNN acoustic model. During the decoding stage,
the tri-gram language model with explicit pronunciation and silence probability
modeling is utilized. All the experiments are listed as follows:

No Process: A speech recognition system without speech dereverberation front-
end processing.

DNN [1]: A speech recognition system with DNN-based speech dereverberation
front-end processing. The structure of DNN model consists of 3 hidden layers
with 512 units per hidden layer.
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Table 2. The training time compared with previous speech dereverberation method
and proposed method.

Metric DNN R-CED LSTM DCANN P-DCANN

Time epoch/h 0.05 0.42 0.62 0.11 0.13

R-CED [4]: A speech recognition system with R-CED speech dereverberation
processing. The 2D CNN component contains 9 convolutional layers, where the
number of filters for each convolution layer is 12, 16, 20, 24, 32, 24, 20, 16, and
12 respectively.

LSTM [7]: A speech recognition system with the speech dereverberation pro-
cessing based on an LSTM model. The LSTM model has 3 hidden layers and
512 units in each hidden layer.

DCNN: A speech recognition system using our proposed DCANN model with-
out multi-head self-attention mechanism.

DCANN: A speech recognition system with our proposed DCANN as shown
in DCANN block of Fig. 1.

P-DCANN: A speech recognition system with our proposed P-DCANN as
shown in Fig. 1. After the fine tune, hyper-parameter α is set to 3.

4.3 Experimental Results and Discussion

The experimental results are summarized in Table 1, with summaries detailed
below: (1) The ASR system with DNN front-end processing significantly outper-
formed the system without speech dereverberation processing by respectively
7.6% and 11.7% relative error reduction in terms of simulated and real condition
WER, proving that speech dereverberation processing based on the deep learn-
ing can effectively suppress the interference of reverberation and significantly
improve the performance of back-end ASR system. (2) The R-CED and LSTM
systems have better performance than the DNN system. To be specific, compared
with the conventional independent modeling of temporal context in a DNN sys-
tem, the frequency-temporal context can be exploited by using the convolution
operations in the R-CED, and the dynamic temporal context can be obtained
by adopting the sequential operations in the LSTM. (3) Our proposed DCNN
system achieves better results than the R-CED system with about 7.6% relative
error reduction in terms of WER on the real data. One possible explanation is
that the DCNN not only effectively acquires deep frequency-temporal context
patterns by using deep convolution operations, but also preserves the original
shallow speech information by using the concat structure, instead of only deep
information in the R-CED. (4) Our proposed DCANN system with an attention
mechanism achieves better performance compared with the DCNN system, indi-
cating that the attention block preserves the real signal of target speech well and
removes the disturbing noise from various environments. This fact enables our



A Fast Convolutional Self-attention Based Speech Dereverberation Method 303

approach to better enhances the temporal context. (5) Our P-DCANN achieves
the best performance than all the competitors, reducing WER from 10.09 to
9.09 with 10% relative WER reduction on the simulated data and from 24.73 to
20.52 with 17% relative WER reduction on the real data compared with the DNN
baseline. It proves that the additional phoneme-based bottleneck objective func-
tion brings the stronger discriminant power for the back-end speech recognition.
The bottleneck features are extracted from the DNN-HMM speech recognition
system with the close-talking corpus as inputs, which make the final MFCC from
the P-DCANN model more suitable for the back-end speech recognition task.

To verify the efficiency of our proposed P-DCANN approach, the training
time of each of the above methods in a single TITAN X GPU is listed in Table 2.
As we can see in Table 2, our P-DCANN approach is faster than other competi-
tors. Specifically, the training time of the LSTM is about five times that of our
P-DCANN. The reason is that our approach does not have recursive operations
used in the LSTM, thus achieving fewer training parameters and shorter train-
ing time. Besides, the R-CED system is slower than our P-DCNN and DCNN
systems due to numerous convolution layers in the R-CED. To summarize, the
proposed P-DCANN is more effective and efficient compared with the existing
methods.

5 Conclusion

In this paper, we proposed a DCANN-based single-channel speech dereverbera-
tion system with multi-head self-attention that learns the time domain informa-
tion. We also propose a P-DCANN structure to further improve DCANN per-
formance. The use of our proposed dereverberation methods achieves impressive
performance improvement compared with the DNN-based speech dereverbera-
tion methods. Our approach also attain a faster training and decoding speed
compared with use for CNN and LSTM to do speech dereverberation in a single
TITAN X GPU. We also note that the proposed method has the great potential
for further improvement. The bidirectional self-attention structure is also pro-
posed in the BERT. We believe that using it will further improve our system
performance.
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ence Foundation of China under Grant 61771333 and the Tianjin Municipal Science
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Abstract. In this paper, we study the problem of multi-choice reading
comprehension, which requires a machine to select the correct answer
from a set of candidates based on the given passage and question. Most
existing approaches focus on designing sophisticated attention to model
the interactions of the sequence triplets (passage, question and candi-
date options), which aims to extract the answer clues from the passage.
After this matching stage, a simple pooling operation is usually applied
to aggregate the matching results to make final decisions. However, a
bottom-up max or average pooling may loss essential information of the
evidence clues and ignore the inter relationships of the sentences, espe-
cially dealing with complex questions when there are multiple evidence
clues. To this end, we propose an option attentive capsule network with
dynamic routing to overcome this issue. Instead of pooling, we introduce
a capsule aggregating layer to dynamically fuse the information from
multiple evidence clues and iteratively refine the matching representa-
tion. Furthermore, we design an option attention-based routing policy
to focus more on each candidate option when clustering the features of
low-level capsules. Experimental results demonstrate that our proposed
model achieves state-of-the-art performance on RACE dataset.

Keywords: Multi-choice reading · Capsule network · Attention

1 Introduction

Machine reading comprehension (MRC) is a fundamental and crucial topic in
the field of natural language understanding and question answer (QA), and has
attracted an increasing number of attentions in recent years. In this paper, we
mainly focus on the problem of MRC with multiple-choice questions, which
requires a machine to choose the correct answer based on the given passage,
question and several candidate options. Compared with extractive MRC whose
expected answer is a short text span in the passage, multi-choice MRC is more
challenging because most of the answers do not appear in the passage, which
means more complex reasoning and inferences are required to tackle this task.
Owning to the release of a relatively large-scale dataset called RACE, many neu-
ral network based models have been proposed to solve this task, though there
are still a significant gap between humans and AI systems.
c© Springer Nature Switzerland AG 2019
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Typically, most deep learning based models for MRC task contain three main
stages: encoding, matching and aggregating. To be more specific, a compositional
encoder is firstly applied to encode the given texts into context-aware represen-
tations after the word embedding layer. Subsequently, a word-level attention
mechanism is employed to model the interactions between text sequences, which
matches the information of a sequence to specific parts of another sequence, then
we could get the matching representation. Finally, a aggregating layer is added
to project the matching representation into a fix-size encoding vector and we rea-
son over it to select the correct answer. Most recent works involving multi-choice
MRC concentrate on matching stage and many sophisticated matching mecha-
nisms have been proposed to model the relationships of text sequence triplets
(passage, question and candidate options). However, few works pay attention to
how to aggregate information from the matching representation. Most previous
works apply a pooling operation (max pooling or average pooling) to aggregate
the matching information, which may loss essential information of the evidence
clues and it lack the guide of task information [5].

In order to handle the aforementioned problems, we regard the aggregation
as a routing problem, and employ an attentive capsule network to iteratively
aggregate information from the matching representation to make final decisions.
A capsule is a small group of neurons to represent features. Here we treat the
matching representation obtained from matching stage as capsules which cap-
ture the low-level semantic information of evidence clues. By leveraging dynamic
routing policy [12], we could decide which parts and how much of the information
should be transferred from each state of the matching representation (low-level
capsules) to the final output representation (high-level capsules). Noticing that
traditional dynamic routing algorithm does not focus on the candidate option
in the routing process, we introduce an option attention-based routing policy to
our capsule network. This could help to better fuse the information from mul-
tiple evidence clues and reason over them to make decisions. This strategy is
similar to the method used by humans when doing reading examinations. When
we humans are doing multi-choice reading, we firstly match the key information
of the question and each candidate option against the passage to extract evi-
dence snippets. For some complex questions, we tend to get multiple evidence
snippets based on the question and options. Then we need to jointly consider
the relationships of the snippets, and fuse the essential information with respect
to each candidate option to make final decisions. To the best of our knowledge,
we are the first to investigate capsule network for multi-choice MRC task.

2 Related Works

Multi-choice Reading Comprehension. Multi-choice MRC is a task which
aims to select a certain answer from several candidate options given a passage
and a question. [7] adopted and modified two deep learning based models used
in cloze-style MRC task: Stanford Attentive Reader (SAR) and Gated-Attention
Readers (GA) as baselines for this dataset. After that, a rich line of studies have
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attempted to design sophisticated attention mechanism to model the relation-
ship of the input triples. Xu et al. [21] designed a dynamic multiple matching
method to fuse the information of the input triples into attention vectors and
utilized a multi-step reasoning strategy for answer selection. [14] was the first
to propose a triple sequences matching strategy to jointly match the passage
against the question and candidate options and performed a hierarchical LSTM
aggregation to capture sentence-level information. [3] proposed a Convolutional
Spatial Attention (CSA) which leveraged a modified attention mechanism to
extract the enriched representation of the input triples and then used a CNN to
summarize the attention values.

Capsule Network. Capsule network was firstly introduced by [6] at 2011 to
tackle the representational limitation issues of CNN. Basically, a capsule is a
group of neurons whose activity vector denotes the instantiation parameters of a
specific type of entity [12]. Combining with an iterative dynamic routing mecha-
nism, capsule network achieved state-of-the-art performance on MNIST dataset.
Recently, several works began to investigate the performance of capsule network
in NLP tasks such as text classification and relation extraction. [20] employed
capsule network with dynamic routing for text classification. [5] introduced two
dynamic routing mechanisms to aggregate the representation of CNN or RNN
into a fixed-size vector, and validated the effectiveness of this aggregation method
on document and sentence level text classification tasks. [18] proposed a capsule
network with attention mechanism for relation extraction, which performed bet-
ter on multiple entity pairs. [19] devised an attention-based routing policy in
the capsule network for multi-labeled relation extraction, which improved the
capability of clustering relation features. Apart from that, capsule network has
also been explored in recommendation system. [8] made use of capsule routing
mechanism to learn users’ diverse interest representations and achieved superior
performance on public benchmarks. To our best knowledge, there are no work
that employs capsule network in the field of multi-choice MRC task.

3 Our Proposed Model

In this section, we describe the overall structure of our proposed Option Atten-
tive Capsule Network for multi-choice MRC. Our model expects three inputs:
question, passage and four candidate options, denoted as Q, P and {Oi}4i=1,
respectively. The objective of our model is to infer the correct answer based on
the interaction between the question, passage and candidate options. Our model
consists of four main components: context encoding layer, sequence matching
layer, capsule aggregating layer and option selecting layer. The overall structure
is depicted in Fig. 1.

3.1 Content Encoding Layer

The input triplet of sample is:
(
Q,P, {Oi}4i=1

)
, where Q = {wt}|Q|

t=1, P =

{wt}|P |
t=1, Oi = {wt}|O|

t=1; wt is the t-th word of each text sequence; |Q|, |P | and
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c c c

c c c

Fig. 1. Overall neural structure of the attentive capsule model for multi-choice MRC.

|O| are the max sequence length of the question, passage and each candidate
option respectively. Firstly, we map each word into a continuous representation
space by leveraging a pre-trained word embedding and obtain the word represen-
tations: Qemb ∈ R

d×|Q|, P emb ∈ R
d×|P | and Oemb

i ∈ R
d×|O|, d is the embedding

size. In order to control the information flow and alleviate over fitting, we use
a two-layer highway network following a ReLU activation to process the word
representations as follows:

EQ = ReLU
(
Highway

(
Qemb

))
, EP = ReLU

(
Highway

(
P emb

)
Eoi = ReLU

(
Highway

(
Oemb

i

) (1)

where EQ ∈ R
d×|Q|, EP ∈ R

d×|P | and EOi ∈ R
d×|O|. After that, we feed them

into a bidirectional Gated Recurrent Unit (BiGRU) to process the text sequences
from both sides and capture the contextual information of each sequence:

CQ = BiGRU
(
EQ

)
, CP = BiGRU

(
EP

)
, Coi = BiGRU (Eoi) (2)

where CQ ∈ R
h×|Q|, CP ∈ R

h×|P | and COi ∈ R
h×|O|, h denotes the hidden size

of BiGRU encoder. Unlike the shared highway network, we use three separated
BiGRU without sharing weights for the sequence triplets and concatenate the
forward and backward hidden states to form the final contextual representations.

3.2 Sequence Matching Layer

The sequence matching layer is responsible for modeling the interactions between
passage, question and each candidate option, producing the matching repre-
sentation which captures the evidence clues in the original passage. We take
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the interaction between passage and question as an example to illustrate the
detailed matching strategy. Given the passage and question representation CP

and CQ, we calculate a word-by-word similarity matrix by leveraging attention
mechanism:

SPQ = softmax
((

WQCQ
)T

CP
)

(3)

where SPQ ∈ R
|Q|×|P |, its element Sij

PQ denotes the semantic similarity between
the i-th hidden state of CQ and j-th hidden state of CP ; WQ ∈ R

h×h is a
trainable parameter. SPQ signifies which words in the question are most rel-
evant to each word in the passage while ST

PQ represents which passage words
have the highest similarity to each question word. We utilize SPQ and ST

PQ

to calculate question-aware passage representation and passage-aware question
representation:

HP = SPQCQ,HQ = ST
PQCP (4)

where HP ∈ R
h×|P |, HQ ∈ R

h×|Q|. HP and HQ indicate how the question can
be aligned to the passage and how the passage can be aligned to the question,
respectively. To better incorporate the attended vectors with the original contex-
tual representation, we leverage an effective matching tricks [2,14–16] to obtain
the fusion representation:

MP = ReLU

⎛
⎝WP

M

⎡
⎣

HP − CP

HP · CP

HP

⎤
⎦ + bPM

⎞
⎠ (5)

where MP ∈ R
h×|P |, MQ ∈ R

h×|Q|; WP
M ,WQ

M ∈ R
h×3h and bPM , bQM ∈ R

h are the

learnable weights and biases.

⎡
⎣

·
·
·

⎤
⎦denotes the column-wise concatenation. After

that, we conduct a row-wise concatenation to form a enriched representation:

MPQ =
[
MP ;MQ

]
(6)

where MPQ ∈ R
h×(|P |+|Q|), [; ] is the raw-wise concatenation. In the same

method, we obtain the enriched representation MPO ∈ R
h×(|P |+|O|) based on

the passage and candidate option. Finally, we use a BiGRU layer to project the
concatenation of MPQ and MPO and produce the final matching representation:

U = BiGRU
(

WU

[
MPQ

MPO

]
+ bU

)
(7)

where U ∈ R
h×(|P |+|Q|), WU ∈ R

h×2h and bU ∈ R
h are parameters to learn.

To concatenate MPQ and MPO across column, we keep |Q| and |O| equal by
setting the max sequence length of question and each option to the same value.
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Algorithm 1. Attentive Dynamic Routing Algorithm
Input: the matching representation U = {u1, u2, . . . , uN}, iteration times T ,

number of high-level capsules K
Output: V = {v1, v2, . . . , vK}

1 Initialize: bij ← 0
2 for T iterations do
3 for all low-level capsules ui and high-level capsules vj :
4 cij = softmax(bij)
5 for all high-level capsules vj :

6 sj =
∑N

i=1 cijαiWijui, vj = squash(sj)
7 for all low-level capsules ui and high-level capsules vj :

8 bij = bij + vj
TαiWijui

9 end
10 return V = {v1, v2, . . . , vK};

3.3 Capsule Aggregating Layer

Given the input capsule vectors U = {u1, u2, . . . , uN}, ui ∈ R
h×1, N denotes

the number of low-level capsules, we compute the total input candidate vector
of each high-level capsule by a weight sum operation as follows:

sj =
N∑

i=1

cij ûj|i (8)

where ûj|i is the prediction vector produced by capsule ui; cij is coupling coeffi-
cient determined by the dynamic routing process. It represents how much infor-
mation need to be transformed from low-level capsule ui to high-level capsule
vj , computed by:

cij = softmax (bij) =
exp (bij)∑
k exp (bik)

(9)

where bij denotes the logits which are the log probabilities of capsule ui being
coupled to capsule vj . After that, we could obtain the final high-level output
capsule vectors by applying a non-linear “squash” function:

vj = squash(sj) =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖ (10)

In the traditional dynamic routing algorithm, ûj|i is produced by multiplying ui

by a mapping matrix, computed as:

ûj|i = Wijui (11)

where Wij ∈ R
h×l is a mapping matrix to be learned, l denotes the hidden

size of each output capsule unit; Inspired by [19], we propose an option attentive
dynamic routing policy to focus more on the candidate options when aggregating
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the low-level capsules. To be more specific, we apply an attention weight to each
low-level capsule and then obtain the prediction vector:

ûj|i = αiWijui (12)

where αi is relevance of the i-th low-level capsule and the option representation,
computed by:

αi = softmax (Cself−Oui) (13)

Cself−O is the self-attended option representation, which could better capture
the whole semantic meaning of the option sentence. The details of the self-
attention mechanism are as follows:

A = softmax
(
Ws2 tanh

(
Ws1C

O
))

(14)

where A ∈ R
1×h represents the self attention vectors, Ws1 ∈ R

h×h and Ws2 ∈
R

1×h are weight matrices. Then we sum up the hidden state of CO according to
the self attention vectors:

Cself−O = ACO (15)

The initial logits bij and each output capsule vj are iteratively updated in
the routing process. The detailed option attentive dynamic routing policy is
demonstrated in Algorithm 1.

3.4 Option Selection Layer

For each candidate option Oi, we flatten its corresponding output capsule vectors
V i and feed them into a fully connected layer to get the matching score. Then
we add a softmax layer to get the final probability distributions over all the
candidate options:

Pr(Oi|P,Q,O) =
exp(WvV

i)∑4
k=1 exp(WvV k)

(16)

where Wv is a trainable parameter. The whole model is trained by minimize the
cross entropy loss function.

4 Experiments

4.1 Dataset and Experimental Setups

We evaluate the empirical performance of our proposed model on the RACE
dataset. RACE is a recently proposed large-scale dataset collected from English
reading comprehension tests for Chinese students. In RACE, each passage is
associated with several questions and for each given question, we need to select
only one correct answer from the candidate options. This dataset is composed of
two subsets: high school subset and middle school subset, denoted as RACE-H
and RACE-M respectively. The main difference between RACE-M and RACE-H
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Table 1. Performance comparison of published single models.

Single models RACE-M RACE-H RACE

Random 24.6 25.0 24.9

Sliding Window [11] 37.3 30.4 32.2

Stanford AR [1] 44.2 43.0 43.3

GA Reader [4] 43.7 44.2 44.1

ElimiNet [9] 44.5 44.5 44.5

Hierarchical Attention Flow [21] 45.3 44.2 44.1

Dynamic Fusion Network [17] 51.5 45.7 47.4

Hierarchical Co-Matching [14] 55.8 48.2 50.4

BiAttention + Simple MRU [13] 57.7 47.5 50.4

Convolutional Spatial Attention [3] 52.2 50.3 50.9

Attentive-Capsule (Our model) 59.7 50.1 52.9

Turkers [7] 85.1 69.4 73.3

Ceiling [7] 95.4 94.2 94.5

lies on that RACE-H is associated with more complex questions which require
sentence reasoning and inference.

In the experiment, we set the maximum words of the question and each
candidate option to 30. The pre-trained 300-dim Glove embeddings [10] is used
as the embedding initialization. To mitigate over-fitting, we apply a recurrent
dropout of 0.25 to each BiGRU cell and a dropout of 0.5 to each fully-connected
layer. Additionally, the hidden size of BiGRU is fixed to 128. We use Adam
optimizer with an initial learning rate of 10−3 for weight optimization.

4.2 Overall Results and Ablation Study

We use accuracy to evaluate the performance of our model. Experimental results
are shown in Table 1. We report the results of all the compared baselines from
respective papers. Here we just include the performances of single models, with-
out ensemble models. As we can see, our model outperforms all the compared
single models on RACE and its’ subset RACE-H, which demonstrates the effec-
tiveness of our model. On the RACE-H dataset with more complicated questions
involving sentence reasoning and summarizing, our model outperforms Hier-
archical Co-Matching and BiAttention with Simple MRU by 2.1% and 2.8%,
respectively. When compared to the recent published work Convolutional Spa-
tial Attention Model (CSA), our model achieves a comparable result on RACE-
H, and gets a much higher accuracy on RACE-M. That indicates our model is
capable of handling relatively complicated questions. However, there is still a
gap between human ability and deep learning based models, as the performance
of Amazon Tuckers and human ceilings are 73.3% and 94.5% on RACE.

We carry out an ablation study to further determine the contributions of
each component of our model, the results are illustrated in Table 2. We mainly
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Table 2. Results of ablation study.

Model RACE-M RACE-H RACE

Full-model 59.7 50.1 52.9

- Capsule aggregating 57.7 47.8 50.7

- Option attentive routing 58.1 49.2 51.8

- Highway 59.5 49.9 52.7

Fig. 2. Performance on different type of questions on RACE test set.

focus on investigating the influence of the capsule aggregating layer. We firstly
remove the capsule aggregating layer and replace with a max-pooling layer to
aggregate the information based on the matching representation. It could be
observed that the accuracy decreases significantly by 2.2% on RACE, which
indicates that utilizing capsule network to dynamically aggregate information
from the matching representation is much more efficient compared with simple
pooling operation. Then we remove the option attention in the routing process
and use the traditional dynamic routing algorithm instead. We can see that the
performance drops by 1.1%. That suggests it is useful to incorporate the option
attention routing policy. We also removed the highway network in the contextual
encoding layer. The result decreases by 0.2%, indicating that adding highway to
control the information flow in the encoding stage is moderately effective.

4.3 Analysis and Discussion

Performance w.r.t. Question Type. We carry out an analysis with respect
to different question types to evaluate the performance of our model. Firstly, we
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Fig. 3. Comparison results on RACE test set.

divide the test examples into nine categories according to the key words that
appear in the question: six ‘wh’ types, ‘how’ type, judgement type and summa-
rization type. Specifically, judgement type questions require to select the true or
false option, symbolized by key words ‘true’, ‘not true’ or ‘false’. Summarization
type questions usually involve the ‘purpose’, ‘title’ or ‘main idea’, which require
high-level information summarizing capability. Relatively speaking, ‘why’, ‘how’
and summarization types are more complex compared with other types. The
results are as shown in Fig. 2. As we can observe, our model achieves a better
performance on ‘why’ questions and summarization questions. Especially, our
model achieves an accuracy of over 70% on RACE-M subset when dealing with
‘why’ questions. That suggests that our model could handle relatively compli-
cated questions involving sentence reasoning. However, there is a significantly
drop on RACE-H subset, indicating that more efforts need to be made to tackle
with difficult reasoning questions.

To fairly validate the effect of our proposed capsule aggregating layer, we
compare the performance between our full model and that discarding capsule
aggregating layer. Figure 3 shows the comparison results. When we remove the
capsule aggregating layer, performance on most type of questions decreases. On
the question type ‘why’ and summarization, the accuracy drops by 2.7% and
2.6%, respectively. This indicates that utilizing capsule network as an aggregat-
ing method is effective in handling relatively sophisticated questions.

Performance w.r.t. Routing Iteration. We conduct experiments to investi-
gate how the iteration number of the routing affect the overall performance of
our model. We train our model with different number of routing iteration from 1
to 5, as Table 3 shows. We can see from the table that as the number of iteration
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increase, the accuracy on RACE and the two subsets increases and achieves the
best performance when iteration is set to 3. This phenomenon is consistent with
the original capsule network for image recognition, demonstrating the effective-
ness of dynamic routing. Then the performance decreases when the number of
iteration is large than 3, we assume it may due to over fitting.

Performance w.r.t. High-Level Capsule Numbers. We also study the effect
of different number of high-level capsules in the capsule aggregating layer. In the
experiment, we fix the number of iteration to 3 and train the model with different
high-level capsule numbers (4, 8, 12, 16, 20). The results are illustrated in Table 4.
We could observe the performance increase as we increase the high-level capsule
numbers. That means relatively larger number of high-level capsules tend to
increase the capacity of high-level feature information contained in each capsule
unit. However, when we continue to enlarge the capsule numbers, there is a
substantial drop, indicating the model is hard to converge with relatively too
large capsule numbers.

Table 3. Performance w.r.t. routing iteration

Dataset RACE-M RACE-H RACE

Iteration = 1 59.2 49.2 52.1

Iteration = 2 59.4 49.7 52.5

Iteration = 3 59.7 50.1 52.9

Iteration = 4 58.4 48.5 52.4

Iteration = 5 57.6 48.7 52.3

Table 4. Performance w.r.t. capsule
nums

Dataset RACE-M RACE-H RACE

K = 4 58.4 49.0 51.8

K = 8 59.0 49.4 52.2

K = 12 59.7 50.1 52.9

K = 16 59.0 49.1 52.0

K = 20 57.7 48.1 50.9

5 Conclusion

In this paper, we introduce an option attentive capsule network for multi-choice
machine reading comprehension. Our model firstly extracts the contextual infor-
mation from the passage, question and candidate answers, then matches the
passage against the question and option to extract specific evidence clues in the
passage, obtaining a matching representation. Instead of using a simple pooling
operation to aggregate the matching vectors, we introduce a capsule aggregat-
ing layer to dynamically fuse the information from multiple evidence clues and
iteratively refine the matching representation. Furthermore, we design an option
attention-based routing policy to focus more on the candidate options when clus-
tering the features of low-level capsules. Experimental results demonstrate that
our model outperforms all the compared baselines and achieves the state-of-the-
art performance on RACE and RACE-M for single models.
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Abstract. In recent years, various web-based attacks such as Drive-by-
Download attacks are becoming serious. To protect legitimate users, it
is important to collect information on malicious sites that could provide
a blacklist-based detection software. In our study, we propose a system
to collect URLs of malicious sites in the dark web. The proposed system
automatically crawls dark web sites and collects malicious URLs that are
judged by using VirusTotal and the Gred engine. We also predict danger-
ous categories of collected web sites that are potentially malicious using
a document embedding with a gradient boosting decision tree model. In
the experiments, we demonstrate that the proposed system can predict
dangerous site categories with 0.82 accuracy in F1-score.

Keywords: Cybersecurity · Tor · Dark web · Document
classification · Machine learning

1 Introduction

Recently, web-based cyberattacks such as Drive-by-Download attacks, phishing
and social engineering attacks have become serious. One of the countermeasures
against such cyberattacks is to introduce a mechanism into a web browser so
that it deters a user from guiding to so-called malicious sites. A famous security
function of web browsers is Google Safe Browsing (GSB), which has been intro-
duced in Chrome browser. In GSB, when a user tries to access a malicious site,
an alert is appeared on a browser and it blocks the user’s access to dangerous
sites. However, it is known that GSB alone cannot completely block, and there
are not a few malicious sites not detected by GSB. Therefore, it makes sense to
develop a function that complements the GSB protection mechanism. For this
purpose, a browser sensor has been developed to collect users’ web browsing his-
tories through the construction of a user participation type observation network,
and a research project called WarpDrive has been conducting a proof-of-concept
to stop users from accessing malicious URLs since 2018.

The purpose of this paper is to develop a mechanism to find unknown mali-
cious sites through dark web crawling. Specifically, we propose a system that
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crawls the Tor network [1] and find malicious URLs from collected HTML con-
tents. The Tor network is one of the highly anonymized and popular web areas
called the dark web, which is not allowed to browse and search with ordinary
browsers. In the dark web, tools used for cyberattacks such as Exploit Kit are
traded, and there is also a community of crackers. Generally, Dark Web is con-
sidered to be used by persons with high computer skills, such as attackers, but in
fact links to malicious sites targeting dark web users and places where attackers
exchange malicious site information are found. There is no doubt that crawling
the dark web to get information on malicious sites is effective.

There are several researches obtain information related to cyberattacks from
the Tor network. Nunes et al. [2] crawled forums and markets on the dark web,
and classified whether they obtained product information related to cyberattacks
using classifiers such as ensemble random trees and label propagation. They also
show that classification was carried out with high accuracy and that the collected
information was useful for discovering unknown cyberattacks. Tavabi et al. [3]
predicted the possibility of exploiting the vulnerability by monitoring discussions
in the dark web. Specifically, they proposed Darkembed, which obtains document
vectors using neural networks for unstructured documents, and showed that it is
actually useful for prediction. Our research differs from the previous researches
in that we collect information related to malicious sites, and also differ in that
we target Web-based attacks targeting general dark web users.

Section 2 explains the developed Tor crawler and a system to collect mali-
cious URLs in Dark Web. In Sect. 3, we construct a classification system to find
suspicious site using a document analysis for collected HTML contents. Finally,
we show our conclusions and future work in Sect. 4.

2 A Study on Malicious Sites in Dark Web

2.1 Collection System of Malicious URLs in Tor Network

Using seed URLs in the link collection, we crawled the website in the Tor net-
work [1] and developed a crawler for collecting HTML content in Python 3.6.
In addition, we used Python library AIOHTTP [12] to generate HTML request.
AIOHTTP is a library designed to work with ASYNCIO, an asynchronous I/O
library introduced in Python 3.4. Considering the purpose of our research that
a broad area of dark web space must be crawled, it is desirable to introduce
parallel processing in our Tor crawler so that multiple requests are requested
in parallel at high speed. Also, SQLite [13] is used as a database to manage
collected URLs and HTML contents.

We adopt VirusTotal [11] and Gred engines as a mechanism to predict the
maliciousness of extracted URLs from collected HTML contents. VirusTotal is
a web service that can perform 66 detection engines consisting of anti-virus
software and blacklist based classifiers for files and URLs. The Gred engine is
also a Web service developed by SecureBrain Corporation, and can be used to
determine the degree of malignancy such as tampering and phishing sites for
HTML contents. The HTML obtained by the Tor crawler is stored in the dark
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Fig. 1. Distribution of malicious sites for the number of detected engines.

web database, from which the links to the surface (including not only the links of
the ‘href’ attribute but also the format of the URL in the text) are extracted and
the surface URLs are saved in the link database. Then, the degree of malignancy
of the website registered in this database is judged using external engines where
an URL is posted to VirusTotal and a collected HTML is posted to the Gred
engine. Note that crawling Tor network and evaluating maliciousness of collected
HTML contents are performed independently once a month.

2.2 Exploration of Malicious Sites in Dark Web

The developed malicious-site collection system was operated from April 1, 2018
to January 23, 2019. With the developed Tor crawler, we collected HTML con-
tents from a total of 8,910 domains, but only 5,101 domains were accessible on
the last day of collection. Then, 569,138 URLs to the surface web (65,869 unique
domains) were extracted from the collected HTML contents.

Using VirusTotal API, 1,444 sites on the surface web were judged malicious
by one or several engines. Figure 1 illustrates the distribution of malicious sites
that are detected by a different number of engines. As seen in Fig. 1, many
malicious web sites are detected by a single engine, and almost all malicious web
sites are detected only by one or a few engines.

Table 1 shows the major VirusTotal engines that frequently detect malicious-
ness and their decisions on attacks. As seen in Table 1, Malicious Sites are
detected most frequently by the CRDF engine, while many web sites are also
judged maliciousness by other engines. Since Fig. 1 shows that only one or a few
engines detect maliciousness at the same time, it is assumed that the judgement
by each engine was distinctively varied; that is, the engines seem to have strong
and weak points for different types of web-based attacks. Therefore, even if there
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Table 1. The most frequently detecting engines in VirusTotal

Engine Attack category #Detection

CRDF Malicious Site 212

Sophos Malicious Site 156

Quttera Malicious Site 139

Dr. Web Malicious Site 127

AutoShun Malicious Site 121

Fortinet Malware Infected Site 118

Avira Malware Infected Site 109

Forcepoint ThreatSeeker Malicious Site 108

Sucuri Site Check Malware Infected Site 109

Table 2. Detection results in Gred engine.

Detection results #Detection

Phishing site 10

Fraud attack 3

is only one active engine judging maliciousness, it is better to consider that such
a web site is danger. Therefore, we need more evidence about the maliciousness
of collected web sites so that we can make sure to be safe or danger with more
confidence.

On the other hand, as seen in Table 2, the Gred engine judges 13 cases as mali-
cious sites. It is worth mentioning that such 13 sites were not judged malicious-
ness by VirusTotal; that is, they might be unknown malicious sites. Although
the number of malicious judgements by the Gred engine is much smaller than
that by VirusTotal, note that the Gred engine is good at detailed analysis of
HTML contents with less false detection.

2.3 Discussions

As seen in Table 1, only a small number of web sites were detected malicious-
ness with 5 or more engines in VirusTotal and such web sites are highly sus-
pected to be malicious. We collected 71 web pages from such malicious sites (31
domains). To understand the features of such malicious sites, we looked at the
pages individually and categorized them into several groups. Table 3 summarizes
the categories of such highly suspected web sites.

The Scams category in Table 3 mainly consists of sites for buying and sell-
ing credit card information. Hacking/Programming/Software includes web pages
on technical topics for cyberattacks (e.g., virtual environments) and descrip-
tions of attack codes causing a browser to crash. The Libraries/Wikis cate-
gory includes wiki pages that contain useful information and mail services when
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Table 3. Categorization of collected dark web pages with malicious links.

Category #Domain #Pages

Forums 7 11

Scams 6 19

Hacking/Programming/Software 6 15

Libraries/Wikis 5 12

Adult/Porn 1 2

Other 2 9

Empty/Error/Unknown 3 3

using the Tor service. In Forums, bulletin board sites are classified. Some bul-
letin board sites introduce links to malicious sites and attract users to be dan-
gerous links. The Adult/Porn category contains links to adult contents and
pages that summarize sexual preferences. The other categories include miscel-
laneous sites, mentioning biographies about certain US military personnel, and
the Empty/Error/Unknown consists of pages with meaningless texts.

Among highly suspected web sites in Table 3, there is only one URL that
was explicitly mentioned to be malicious at the bulletin board site. For other
sites, there was no explicit warning for malicious URLs. Therefore, it is very
likely that most of malicious URLs in dark web is targeting dark web users. For
example, at a credit card trading site, the link to the marketplace itself was a
malicious URL that promptly drives users to a malicious site. On the other hand,
as seen in Table 3, the pages containing malicious URLs are distributed over
specific categories. Therefore, if such category information is combined with the
above-mentioned less confident detection result given by one or a few engines in
VirusTotal, it might effectively work to keep users away from dangerous malicious
sites. Then, let us see if we can identify web sites whose HTML contents are
categorized into the 8 groups in Table 3.

3 Categorization of HTML Contents in Dark Web

In the previous section, we found that the categories of web pages that contain
malicious URLs have some bias. Therefore, let us verify whether the category of
a web page can be predicted accurately from HTML contents. If certain accuracy
is expected, it is possible to give an alert to users based on the category of a
web page being browsed even when one or a small number of VirusTotal engines
detected maliciousness.
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3.1 Feature Embedding and Classification Method

In this paper, we use FastText [4] and Sparse Composite Document Vector
(SCDV) [5] for feature transformation of HTML contents, and LightGBM [6]
where ensemble learning and random tree are combined for classification. In the
following, let us give a brief explanation about each method.

FastText is one of the methods to convert words into distributed represen-
tation, and is one of the derivatives of Word2Vec [7]. Word2Vec learns a word
embedding space with a neural network under the assumption that words that
can be exchangeable each other in a sentence are located close to each other
in the embedding space. It has been proved that such feature embedding gives
high performance in document analysis. However, Word2Vec makes it difficult
to learn words that appear infrequently and requires a huge amount of docu-
ments to obtain effective features. To alleviate this, FastText has been proposed.
In FastText, we focus on the fact that the word itself contains morphological
meaning, and a word can be decomposed into meaningful parts of word (i.e.,
sub words). Considering the co-occurrence of decomposed sub words, we can
obtain an embedded vector space that introduces similarity between words with
the same sub words. In this way, even with words that have a low frequency
of occurrence, linguistic feature can be obtained by using sub words, and the
amount of documents required for learning can be reduced.

FastText is a method to obtain word embedding vectors, not a feature rep-
resentation for a document. Therefore, we adopt Sparse Composite Document
Vectors (SCDV) that can generate document embedding vectors from the word
embedding vector obtained by FastText. In SCDV, words are clustered, and the
weighted average of word embedding vectors in a document is calculated using
the probability of belonging to a cluster and Inverse Document Frequency (IDF)
[8], and this is used as a document embedding vector.

Gradient Boosting Decision Tree (GBDT) [10], which combines gradient
boosting with RandomForest [9]. More concretely, LGBM is composed of
Gradient-based One-side Sampling (GOSS) for an active learning purpose and
Exclusive Feature Bundling (EFB) for automatic feature selection. In GOSS,
data with small gradients in each iteration are removed from training data as
being well-trained. EFB finds sparse effective features that are often found in
large-scale data by combining multiple exclusive features with non-zero elements
into a single bundle. It also contributes to reducing the number of features and
achieving faster computation.

3.2 Experiments

Experimental Setup. HTML contents used for evaluation were collected from
web sites in the Tor network that were accessible as of January 10, 2019. In
addition to the categories including malicious URLs shown in Table 3, ‘Com-
munication/Social category’ dealing with anonymous mail service, encrypted
chat service, etc., ‘Cryptocurrencies’ category dealing with wallet of bitcoin and
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Table 4. Evaluated Web Site Categories.

Category #Web pages

Adult/Porn 1246

Communication/Social 1753

Cryptocurrencies 1493

Empty/Error/Unknown 9527

Forums 2148

Hacking/Programming/Software 2063

Hosting 303

Libraries/Wikis 228

Market/Shops/Store 2157

Other 2108

Personal Sites/Blogs 2727

Scams 9085

Search 777

Security/Privacy/Encryption 2464

Whistle-blowing 342

mixing (a method to enhance the anonymity by mixing transactions of ‘Cryp-
tocurrencies’), and whistle-blowing dealing with underground information from
journalists are added. The number of web pages in each category is shown in
Table 4. In addition, categories with high risk including malicious URLs are
considered as positive data which are categorized into ‘Forums’, ‘Scams’, ‘Hack-
ing/Programming/Software’, and ‘Libraries/Wikis’.

Experimental Results and Discussions. The developed system has the per-
formance of 0.9523 in AUC, which means the classification of dangerous web
pages is accurately conducted with less false positives. Table 5 shows the clas-
sification results for the dangerous prediction with the four performance scales
(i.e., accuracy, precision, recall and F1-score). As seen from Table 5, the accu-
racy is relatively stable for different thresholds, which differentiate the LGBM
prediction between positive (dangerous) and negative (safe). In contrast, the pre-
cision and recall have a trade-off property and the F1-score, a harmonic mean
of precision and recall, is highest when the threshold value is 0.35.

Considering the actual operation, instead of F1-score, it might be appropriate
to adopt the threshold as the key performance indicator (KPI), since security
operators want to reduce the number of false-positives and do not want to miss
dangerous sites significantly. An optimal threshold can be found by looking at
the values of precision and recall. In this experiment, we can say that an optimal
threshold would be 0.5.
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Table 5. Performance of Dangerous web page classification.

Threshold

0.30 0.35 0.40 0.45 0.50

Accuracy 0.8603 0.8647 0.8674 0.8720 0.8770

Precision 0.7557 0.7767 0.7996 0.8397 0.8605

Recall 0.8910 0.8640 0.8319 0.7992 0.7664

F1-score 0.8178 0.8180 0.8154 0.8146 0.8163

4 Conclusions

In this paper, under the WarpDrive project where a browser sensor of Chrome is
developed to protect internet users from serious web-based attacks, the crawling
of the dark web was performed in order to obtain information on malicious
sites. The developed system automatically collects malicious URLs from the
dark web and we evaluate the risk allowance of such sites based on the number
of active detectors in the VirusTotal and Gred engines. In addition, in order to
determine the category of malicious sites, we developed a system where FastText
and SCDV are adopted to have document embedding vectors of the collected web
pages and such embedding vectors are used for identifying dangerous sites with
LightGBM. The experimental results show that the developed system attains the
performance of 0.9523 in AUC, 0.8770 in accuracy, 0.7664 in recall, and 0.8664
in F1-score.

Here, we used external detection engines (i.e., VirusTotal and Gred engine) to
judge the maliciousness of websites. However, it is known that there are quite a
few malicious sites that are not even detected by state-of-the-art security engines.
Therefore, it might be promising to judge the maliciousness of web sites not only
by relying on the detection engine results but also by considering the malicious
prediction using other information such as HTML contents and JavaScripts. This
is left as our future work.
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Abstract. Neural Machine Translation (NMT) has achieved great
developments in recent years, but we still have to face two challenges:
establishing a high-quality corpus and exploring optimal parameters of
models for long text translation. In this paper, we first attempt to set
up a paragraph-parallel corpus based on English and Chinese versions of
the novels and then design a hierarchical model for it to handle these two
challenges. Our encoder and decoder take all the sentences of a paragraph
as input to process the words, sentences, paragraphs at different levels,
particularly with a two-layer transformer. The bottom transformer of
encoder and decoder is used as another level of abstraction, conditioning
on its own previous hidden states. Experimental results show that our
hierarchical model significantly outperforms seven competitive baselines,
including ensembles.

Keywords: Neural Machine Translation · Hierarchical structure ·
Paragraph parallel corpus · Natural language processing

1 Introduction

In the past few years, Neural Machine Translation (NMT) has seen great
progress, especially in short-single-sentence translation. NMT model is mainly
based on the encoder-decoder framework: the encoder compresses the input sen-
tences of the source language into an abstraction from which the decoder gen-
erates target sentences. Since [20] introduced Multi-Head attention mechanisms
to capture contexts in different semantic spaces, the transformer has become a
dominant NMT architecture.

However, we still have to face two big challenges. First, the quality of machine
translation mainly depends on the quantity and quality of the used corpus.
Recently, many corpora that have been well studied are mostly based on TED
Talks, Open Subtitles, news and so on. However, it seems that all of the open-
source corpora employed in these studies are sentence-aligned even for document-
level translation. But in the translation of paragraphs (from novels in our case),
though the paragraphs are aligned between source and target languages, there
are no strict alignments at sentence-level, which renders the models based the
above open source corpora less applicable in this situation. Second, the perfor-
mance of NMT for long text is still not ideal due to the reasons mentioned in [4].
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Recently, hierarchical structures used by some researchers [12,14] have shown
a clear advantage in modeling paragraphs and documents. Unfortunately, these
models cannot be directly used in paragraph parallel corpus since the numbers
and orders of sentences in paragraph pairs are different.

To the best of our knowledge, this study is the first attempt to explore
end-to-end paragraph level NMT based on the paragraph-parallel corpus. Our
corpus is established on translated novels, which contributes to addressing the
problem of data scarcity in NMT to some extent. To model our corpus, we
propose a hierarchical model to get context from word-level and sentence-level
abstractions in a structured manner. Specifically, we first segment the input
paragraphs into a sequence of sentences. Second, we use hierarchical models
based on transformers to capture the context from target and source languages.
When encoding a paragraph, the sentence-level abstraction generated by the
bottom encoder which will be further used as the input of the top encoder to
generate paragraph-level abstraction. Correspondingly, in decoding, we use two
layers of decoders, with the given paragraph abstraction as input, the paragraph-
level decoder first generates the sequence of sentence-level abstraction. Second,
the sentence-level decoder translates these sentences individually. In addition,
the above two layers encoder and decoder can directly solve the problem of not
aligned sentences in source and target language. In other aspects, the hierarchical
encoder can effectively disambiguate the expression of source words, while the
hierarchical decoder improves the cohesion and coherence of target words. In this
way, our model will jointly optimize the translation of paragraphs, overcoming
the difficulties in modeling paragraph-parallel corpus.

Our main contributions are summarized as follows:

1. We are the first to introduce paragraph-level corpus based on literary works
(novels) into NMT. The corpus and code will be shared in GitHub.

2. Based on the two layers hierarchical encoder and decoder structure, we com-
press a whole paragraph to abstraction by two steps and then also decode
it by two steps, from paragraph to sentences, then from sentences to words,
which considering the whole paragraph for prediction.

3. According to the experimental results, our model significantly outperforms
seven strong baselines, in translation tasks.

2 Related Work

In recent years, many researchers have tried to use models with a hierarchical
structure in some of different NLP tasks, such as the auto-encoder in paragraph
and document [12], translation for long sentences [8], query suggestion [17],
dialogue modeling [16], and document classification [22]. Among these, based
on our paragraph-parallel corpus, we introduce a two layers hierarchy trans-
former model, which is beneficial in parameter learning and context modeling in
paragraph-translation.

Our work is related to the studies on segmenting long sentences into short
ones, and [2] first explored dividing a sentence into a set of parts. Later, many



330 Y. Zhang et al.

criteria are proposed, such as N-gram, edit distance clues [5], and word alignment
[21]. For the translation of long sentences, [8] adopt a two-level encoder model
at word and clause levels. In order to build sentence alignments, [19] uses a
distributed system to reliably mine parallel text from large corpora.

Nowadays, all the existing translation works of long texts are intended to
capture contexts from either the source or target side. For document-level trans-
lation, in statistical machine translation (SMT), [18] provide a novel method for
long distance, sentence-level reordering, and [7] translate with cross-sentential
context. The cache-based approach is also introduced in document-level transla-
tion [6]. In NMT, [9] uses a hierarchical attention model to dynamically introduce
document-level context into the NMT structure. And [13] takes both source and
target contexts into account using memory networks.

In contrast, to the best of our knowledge, the paragraph-parallel corpus based
on literary translations has never been investigated before in NMT. Although,
in SMT, [19] use e-books as sources for machine translation data sets, while it
is based on not end-to-end learning model. The most relevant models could be
found include [9] and [8]. But these are always based on sentence aligned corpus,
which is not that suitable for the translation of paragraph parallel corpus.

3 The Proposed Approach

Essentially, NMT is to maximize the likelihood of a sentence in the target lan-
guage as sequence of words y = (y1, y2, . . . , yt) when given a sentence in source
language in sequence x = (x1, x2, . . . , xn), i.e.:

max
Θ

1
N

N∑

n=1

log (PΘ (yn|xn)) . (1)

Thus, paragraph PARA translation is the combination of translating each
individual sentences. Specially in this paper, we take into consideration the co-
relations among all the sentences within a paragraph from both source and target
languages.

max
Θ

1
N

N∑

n=1

log
(
PΘ

(
yn|xn,PARAyT ,PARAxn

))
, (2)

where PARAxn =
(
x1, . . . ,xn

)
and PARAyT =

(
y1, . . . ,yT

)
represent the

sentences from source and target sides respectively. The contexts of PARAyn

and PARAyT are constructed by the hierarchical encoder and decoder.

3.1 Corpus

In order to establish the corpus, we need to convert the formats of the bilingual
e-books from pdf, mobi, epub, and azw3 to text, remove invalid words and
scrambles, divide the bilingual texts into two separate single-language files, and
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“ If it worked for Ben, it can work for us , ” as mom would say .

The story came during the hour of reflec on , that me a er dinner when we
peruse goals accomplished during the day and set goals for the day to come .

1
Source language:

Target language:
2

1

2

3

Fig. 1. An example of parallel paragraph in source language and target language. The
dotted line frames represent the boundary of segmented sentences.

finally manually check and rearrange the sentence order within paragraphs to
form the one-to-one correspondences between paragraph pairs.

Based on the proposed corpus, we segment the paragraphs to sentences
in source and target language, as shown in Fig. 1, to fit the word-sentence-
paragraph structure. The number and order of sentences in source and target
language are different. It needs to be noted that we choose to divide the para-
graphs into natural sentences rather than clauses, because sentences are usually
single semantic blocks that could be easily matched between the original text
and the translation, whereas clauses are more semantically complex with a little
less poor performance than the one with sentences.

3.2 Hierarchical Transformer Encoder

The input paragraph PARA is divided into T sentences, PARA = (s1, s2, ...sT ),
and sj is made up of certain number of words. Specifically, <eoc> is appended at
the end of each sentence. As shown at the bottom of Fig. 2, we use the hierarchical
encoder to model the input paragraph by two steps to a low-dimensional vector
from which the two-layer decoders generate target sequences from paragraph to
sentences, then from sentence to words.

We build our model based on the transformer model [20] for its high efficiency
and accuracy in translation tasks. First, the bottom layer of our model operates
at the word level, and generates abstraction of each sentence j into a vector sj .

Qw = Fw (ht) , (3)

sj = MultiHead
(
Qw, h

j
i

)
, (4)

where ht is the last hidden state of the word to be encoded or decoded at
time t, hj

i is the last hidden state of word i of sentence j. Function Fw is a
linear transformation to get query Qw. The MultiHead attention function [20]
can obtain of different semantic information within the sentence. The hidden
representations hj

i is used as value V and key K for this attention.
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Paragraph-level encoder

All sentences of input paragraph

Sentence-level
encoder

Sentence-level
encoder

Sentence-level 
encoder

H-TRANS encoder
The story  …    . <eoc>

...
I … would say . <eoc> 

...

...

...

If   it   …  

...

...

...

...

Paragraph-level decoder

Sentence-level
decoder

...

…

Input

Sentence-level
decoder

…

Output

...

...
Sentence-level

decoder

…

H-TRANS decoder

...
Transla on Language Modeling (TLM) –word embedding

Fig. 2. Hierarchical NMT model at time step t. ˜ht is the hidden state for the word xt.

And then the top layer of the model takes these sentences abstraction as
input and works at the sentence level to obtain the abstraction of the entire
input paragraph as PARAt at time t. The context PARAt that pays attention
to all source sentences of the input paragraph.

Qs = Fs (ht) , (5)
PARAt = FFN (MultiHead (Qs, sj)) , (6)

where Fs is a linear transformation, Qs is the query, FFN is a position-wise
feed-forward layer [20]. Each layer is followed by a normalization layer in the
transformer. During the encoding and decoding, when the <eoc> is detected at
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the end of a sentence, the translation process of this sentence terminates, and it
moves on to the next sentence with a new ht+1.

3.3 Hierarchical Transformer Decoder

Similar to conventional NMT [20], our decoder is based on two layers of trans-
formers and trained to predict next word context representation sequentially
with the considering of all the words of given paragraph PARAt. As illus-
trated in Fig. 2, the translated paragraph contains M sentences, and with the
given paragraph abstraction PARAt, the paragraph-level decoder first generates
the sequence of sentence-level abstraction (s

′
1, s

′
2, ...s

′
M ). Second, the sentence-

level decoder translate these sentences individually. For example, given s
′
j , the

sentence-level decoder then generates an output sequence (y1, y2, ...ym) of sym-
bols one element at a time. In each step, the model is auto-regressive, containing
the previously generated symbols as additional inputs when generating the next
one.

3.4 Synthesis Model

When encoding or decoding a word, we can take the contexts from different
scopes. The contexts are distinguished by the input query Q and value V of the
function. In this study, five kinds of context are experimented: one in encoding,
three in decoding, one combining both. In the process of encoding, query is the
function of the hidden state hxt

of the word xt currently being encoded in the
source side, and values are the states of all the encoded sentences in the same
paragraph hj

xt
(H-TRANS encoder). In the process of decoding, query is the

function of hyt
of the currently decoded word yt in target side, while the values

can be of three states: the encoded states of hj
xt

(H-TRANS decoder source);
the decoded states of sentences in target language hj

yt
(H-TRANS decoder);

the alignment vectors [1] hj
i (H-TRANS decoder alignment). Finally, our model

(referred to as H-TRANS-joint) with the combination of hierarchical encoder
and decoder is used to capture contexts from both target and source sides.

Notably, the non-segmented paragraphs can also be better translated with
only one hidden state in the top transformer layer, as the overall parameters of
our model have been optimized by training segmented paragraphs (as proved in
Sect. 4.4). Thus, our model is suitable for all paragraph pairs.

4 Experiments

4.1 Corpus Establishing

We establish our paragraph-parallel corpus based on more than one hundred
translated novels from English to Chinese, such as The Wonderful Wizard of Oz,
Robinson Crusoe, Little Women etc., with a total of 114k bilingual paragraph
pairs of 19.4M Chinese words and 20.2M English words. The building of the
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Table 1. The Statistics of our proposed corpus (English-Chinese).

Language pairs (English-Chinese) Training Validation Test

Number of parallel paragraph pairs 91.2K 11.4K 11.4K

Number of sentences in source language 186.1K 26.5K 24.3K

Kept parallel pairs (≤250) % 99.5% 99.1% 98.7%

Segmented paragraphs % 67.5% 74.6% 66.2%

Average number of sentences/paragraph 4.08 4.64 4.27

corpus involves a series of seemingly trivial tasks including converting the formats
of the e-books, separating English and Chinese texts from the original bilingual
contents, and wiping out the garbles generated during the process. The most
troublesome is to manually rearrange the paragraph-pairs of the original texts
and their translations as they are not strictly aligned at paragraph-level. With
our great effort, the paragraph-parallel corpus based on more than one hundred
novels are built and it will be shared in GitHub.

In order to better evaluate our model, we use MT track from TED Talks of
IWSLT 2017 [3] which contains transcripts of TED talks aligned at sentence-
level. Each talk is considered to be a paragraph here. We take tst2016-2017
(En-Zh) for testing and the rest for development.

4.2 Setup

We randomly set the ratio of training, verification, and test to 8:1:1 as shown
in Table 1. We use the case insensitive 4-gram BLEU score [15] to evaluate the
results and the script from Moses [11] to test the BLEU scores. The vocabulary
size of Chinese and English is 90,000, and the words outside the vocabulary
are marked as “unk”. In addition, we keep the paragraph pairs with less than
250 words, covering 99.5% of our corpus, where the max sentence-number of
paragraphs is six. And 81.8% of the input paragraph has less than 80 words of
each.

We used the Open NMT [10] implementation of the transformer. The encoder
and decoder are each made up of 6 hidden layers. All hidden states have a
dimension of 512, dropout of 0.1 and heads of 8 for MultiHead attention. The
optimization and regularization methods were the same as proposed by [20]. We
trained the models in two steps: first, the network parameters are optimized
without considering the whole paragraph, and then the parameters of the whole
network are optimized.

4.3 Overall Performance

Our model referred to as H-TRANS-joint, is based on H-TRANS encoder and
H-TRANS decoder to translate sentences considering the context information
from source and target sides. It is compared to the following systems.
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Table 2. BLEU scores for the different model based on our paragraph parallel English-
Chinese corpus and English-Chinese TED Talks.

Models Our corpus TED Talks

TRANS (paragraph as input) 17.12 (baseline) –

TRANS (sentence as input) – 16.87 (baseline)

Bi-LSTM (attention) 16.02 (− 1.10) 16.01 (− 0.86)

Deep Conv+LSTM [23] 16.15 (− 0.97) 16.13 (− 0.74)

H-TRANS - encoder 18.30 (+ 1.18) 17.92 (+ 1.05)

H-TRANS - decoder 18.21 (+ 1.09) 17.73 (+ 0.86)

H-TRANS - decoder (source) 18.24 (+ 1.12) 17.86 (+ 0.99)

H-TRANS - decoder (alignment) 18.18 (+ 1.06) 17.67 (+ 0.80)

H-TRANS-joint 19.44 (+ 2.32) 18.21 (+ 1.34)

1. TRANS (paragraph as input): based on the normal transformer with the
whole paragraphs as inputs to train the model.

2. Bi-LSTM (attention): base on the bidirectional LSTM model with input as
whole paragraphs.

3. Deep Conv+LSTM [23] is made up of a deep convolutional network as an
encoder and LSTM decoder with input as whole paragraphs.

4. H-TRANS encoder: based on two layers transformers as the encoder and one
layer decoder to translate sentences sequentially.

5. H-TRANS decoder: based on the whole paragraph as input, one layer encoder
and two layers transformer as the decoder. Three kinds of decoders have
similar performance.

The overall experimental results of different models are evaluated by the
BLEU score, based on our paragraph-parallel corpus and the document-level
corpus from TED Talks. As shown in Table 2, H-TRANS-joint significantly
outperforms TRANS (paragraph as input), Bi-LSTM (attention) and Deep Conv
+LSTM, by 2.32, 3.42 and 3.29 BLEU scores on our corpus, respectively. In
addition, our model also has better performance over the other seven baselines
based on TED talks. Furthermore, the transformer performs better than the
bidirectional LSTM and deep convolutional model.

Next, the test sets are divided into different groups according to the number
of the sentence as shown in Fig. 3. We found that our model always outperforms
other baselines when the input contains more than three sentences. Particularly,
compared with TRANS (paragraph as input), our model gains 2.33 BLEU points
with no less than six sentences.

These results strongly prove that our model can better handle paragraph
translation, while remains effective in dealing with sentences and non-segmented
paragraphs. Because many long paragraphs have been divided into sentences, the
parameters of the model are fine-tuned by these training data.
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Fig. 3. BLEU scores on translation groups of different sentence-number of the input
paragraph in source language based on our corpus.

4.4 Analysis on the Effect of Attention Mechanism

As shown in Table 2, we try to compare the influence of different contexts as
mentioned in Sect. 3.4. Obviously, the model with a joint hierarchical encoder
and decoder gets the best scores, which is significantly higher than the oth-
ers. An important improvement comes from H-TRANS-encoder because the
source language always contains the correct information, while the target lan-
guage may have incorrect predictions. Using inter-clause context in decoder also
improves the performance in translation. In addition, combining H-TRANS-
encoder and H-TRANS-decoder can further improve the translation perfor-
mance, which proves that we can get more information in a complementary way.
The above-mentioned three kinds of contexts in decoder perform in a similar
way.

4.5 Case Study

To better understand the advantages of our model, we compared the transla-
tion results of different models on our corpus, as shown in Table 3. In this case,
the TRANS (paragraph as input), Bi-LSTM (attention) and Deep Conv+LSTM
often produce incorrect translation, incoherently translated sentences and some
mistakes as well as repetitions in the translations, with the latter two mod-
els Bi-LSTM (attention) and Deep Conv+LSTM incorrectly overlooking some
contexts. In H-TRANS - encoder, we also find some incorrect translations.
And H-TRANS - decoder results in some incoherently translated sentences. In
contrast, H-TRANS-joint is able to solve all these problems in translation to
some extent.
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Table 3. A translation example based on our corpus. Texts in red are incorrectly
translated, in yellow are incoherently translated, in blue are correctly translated.

5 Conclusion

To improve the performance of NMT in paragraph-level translation, we are the
first to establish a paragraph parallel corpus and propose a hierarchical model.
What distinguishes this study from previous ones is that a two-layer transformer
model is applied in the encoder-decoder system to modify the input paragraph
in a word-sentences-paragraph structure. As shown in the experimental results,
our model significantly outperforms seven competitive baselines on our model
and TED Talks. The study shows that the context from source and target can
work in a complementary way to further improve translation performance. From
the case study, it is found that our model can address most of the problems in
paragraph translation to some extent.
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In future work, we intend to explore the possibility of integrating an auto-
encoder into our model to get a better abstraction of the sentences.
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Abstract. Generally, the candidate options for multiple choice machine
reading comprehension (MRC) are not explicitly present in the document
and need to be inferred from text or even from the world’s knowledge.
Previous work endeavored to improve performance with the aid of com-
monsense knowledge or using multi-step reasoning strategy. However,
there is no model adopt multi-step reasoning with external commonsense
knowledge information to solve multiple choice MRC, and two shortcom-
ings still remain unsolved, i.e., external knowledge may involve undesir-
able noise and only the latest reasoning step makes contribution to the
next reasoning. To address the above issues, we propose a multi-step
reasoning neural network based on the strong Co-Matching model with
the aid of commonsense knowledge. Firstly, we present a sentence-level
knowledge interaction (SKI) module to integrate commonsense knowl-
edge with corresponding sentence rather than the whole MRC instance.
Secondly, we present a residual connection-based multi-step reasoning
(RCMR) answer module, which makes the next reasoning depending on
the integration of several early reasoning steps rather than only the lat-
est reasoning step. The comparative experimental results on MCScript
show that our single model achieves a promising result comparable to
SOTA single model with extra samples and specifically achieves the best
result for commonsense type questions.

Keywords: Machine reading comprehension · Question answering ·
Attention · Multi-step reasoning · Commonsense knowledge

1 Introduction

Unlike span-based or cloze-style machine reading comprehension (MRC) tasks
(e.g., SQuAD [1], CNN/DailyMail [2]) locating the span of answer in given doc-
ument, multiple choice MRC selects the right answer from multiple candidate
choices (i.e. options). Thus for the first two MRC tasks, their answers must
appear in the given document. However, for multiple choice MRC most options
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11955, pp. 340–352, 2019.
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are not explicitly present in the document and need to be inferred from the given
document or even from the world’s knowledge. Thus the questions of multiple
choice MRC can be divided into two types according to the source from which
their answers can be inferred: (1) “text” type questions which can be answered or
inferred from the given document and (2) “commonsense” type questions which
need to be reasoned with the aid of external knowledge.

Fig. 1. Two types of questions and one MRC instance <Doc,Q2,Opts2,Ans2> from
MCScript dataset with two types of related knowledge, i.e., sentence-level knowledge
is external knowledge relevant to one specific sentence, and instance-level knowledge is
relevant to one given MRC instance, which includes all sentence-level knowledge.

Figure 1 shows one “text” type question Q1 and one “commonsense” type
question Q2 from the MCScript dataset [3]. Q1 can be easily answered by sen-
tence S1 (in green) in document. But the answer to Q2 is not mentioned in given
document. We need to both use the information of S2 (in blue) (i.e., the author
digs a hole during planting tree) and the external knowledge (i.e., a shovel
is used to dig holes) together to reason out that they plant the tree with a
shovel.

On the one hand, most existing multiple choices MRC models focus on solv-
ing the “text” type questions [4–8] through attention mechanism to enrich the
text representations for answer prediction. Among them, Co-Matching [6] is a
strong model, which concurrently makes the interaction in between document
and question and the interaction in between document and option, in order to
obtain strong integrated representation among document, question and option.
These studies have insufficient reasoning ability when answering “commonsense”
type questions due to lack of assistance of external knowledge. More recently, sev-
eral studies explore the ways of external knowledge usage. One line of research
implicitly transfer external knowledge (i.e., ConceptNet [9]) in word embed-
ding (e.g., TriAN [10], GCN [11]) or even augment training dataset with extra
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samples from similar domain (TriAN [10]). Another line explicitly transfer addi-
tional knowledge to each word in MRC instance after context encoding to solve
the cloze-style MRC task (e.g., Knowledgeable Reader [12]). However, one short-
coming of these work using external knowledge is that external commonsense
knowledge may bring in undesirable noise as well. This can be observed in Fig. 1,
given the MRC instance <Doc,Q2,Opts2,Ans2>, the related knowledge of
S1 (e.g.,“(pine, RelatedTo, pine needle)”) and of S2 (e.g.,“(shovel, CapableOf,
dig hole)”) both belong to instance-level knowledge but they make different con-
tributions to Q2. However, since Knowledgeable Reader adopts instance-level
knowledge interaction (i.e. interact instance-level knowledge to each word in the
MRC instance) and combines the related knowledge of S1 with each word in
this MRC instance (including words of S2 and Q2), it would lead to inaccurate
interaction between external knowledge and the words in MRC instance.

On the other hand, several researchers explore multi-step reasoning mecha-
nism in the answer layer of MRC (e.g., ReasoNet [7], DFN [13] and SAN [14])
but they only infer answers from the given document rather than from external
knowledge. Moreover, they only make use of the result of the latest reasoning step
for next reasoning step, which is inconsistent with human experience for infer-
ence. In practical cases, human would use the results of several early reasoning
steps rather than only the latest step to make next step reasoning. Otherwise the
next reasoning step would fail if the previous reasoning step infers incorrectly or
loses information.

In this paper, to address the above two issues, we propose a novel resid-
ual connection-based multi-step reasoning neural networks with the aid of com-
monsense knowledge to solve the multiple-choice MRC. Specifically, we design
a sentence-level knowledge interaction module (SKI) to interact sentence-level
external knowledge with each word in corresponding sentence, then a residual
connection-based multi-step reasoning module (RCMR) to improve the reason-
ing ability of the model in dealing with “commonsense” type questions. Mean-
while, in order to solve the “text” type questions, we implement our model based
on the strong Co-Matching model [6]. The main contributions of our work are
summarized as follows:

– Knowledge. To our knowledge, this is the first work to treat external com-
monsense knowledge beyond instance-level alone but leverage its relevance to
individual sentence and interaction with words in the corresponding sentence.

– Reasoning. To our knowledge, this is the first work to adopt multi-step
reasoning with external commonsense knowledge model to address multiple
choice MRC task. And we add residual connections to multi-step reasoning
module to integrate several early reasoning results, rather than only the latest
result, for the next reasoning step.

2 Related Work

Most existing multiple choice MRC models [4–8] still struggle with the “text”
type questions by designing various attentions for semantic matching between
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the given texts and enriching representation of the given texts. For example,
Co-Matching [6] matches the document with the question and an option concur-
rently to get a strong representation of the Furthermore, several works explore
the multi-step reasoning in MRC models [7,13–15]. For example, GA Reader
[15] integrates question and document multiple times by an attention mecha-
nism. SAN [14] applies a stochastic prediction dropout on multi-step reasoning
answering layer. ReasoNet [7] and DFN [13] use reinforcement learning to deter-
mine how many reasoning steps to take. These models rely on the latest reasoning
result to make the next reasoning, not make use of results from previous steps
to reason in the next step. And they only use the given texts information to
reasoning without external commonsense knowledge help.

Although the models above achieve promising results on “text” type ques-
tions, the ability of these models is still limited when answering the “com-
monsense” type questions. In order to solve the “commonsense” type ques-
tions, one research line is implicitly transfer external knowledge by enhancing
the word embeddings [10,11] or training model parameters with extra datasets
[10]. Another study line is explicitly transfer external knowledge into the model.
For example, Knowledgeable Reader [12] explicitly fuses external instance-level
knowledge to each word in the MRC instance after context encoding to solve the
cloze-style MRC task.

3 Problem Statement

3.1 Task Definition

In multiple-choice MRC, given an MRC instance <D, Q, OP>, the task outputs
an option from the candidate options set OP as correct answer, where the
document D = {wD

i,j}mj=1, the question Q = {wQ
j }nj=1, the candidate options set

OP contains y options op = {wop
j }lj=1, wD

i,j represents the j-th word of the i-th
sentence in the document, the document has p sentences, wQ

j and wop
j represents

the j-th word of the question and the candidate option, respectively. Since the
questions and options are short, we treat each of them as a sentence.

3.2 Commonsense Knowledge

Knowledge is usually stored in the graphical structure and represented by a
knowledge triple k = (subj, rel, obj), where subj and obj are terms that con-
tain at least one word, and rel is the relationship between subj and obj defined
by the knowledge graph. In our work, we use ConceptNet1[9] as an external
commonsense knowledge source, which is a large graph-structured common-
sense knowledge base built from OMCS2, Open Multilingual WordNet [16],

1 http://www.conceptnet.io/.
2 http://www.openmind.org/commonsese.

http://www.conceptnet.io/
http://www.openmind.org/commonsese
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OpenCyc3, DBPedia4, JMDict5, Wiktionary6, and “Games with a purpose”
[17–19]. An example from ConceptNet is: (shovel, CapableOf, dig hole).

3.3 Sentence-Level Knowledge Construction

Since there are a lot of commonsense knowledge triples in ConceptNet, we use
four steps to build sentence-level knowledge sets associated with each sentence
of the MRC instance. We first retrieve the triples whose subj or obj contain at
least one word (except stopwords) in the MRC instance. Second, we heuristically
score these triples via Eqs. (1) and (2) to evaluate relevance between triples and
instance, and then rank them via their scores to select top T triples:

scorek = (scoresubj + scoreobj) ∗ weight (1)

weight =
count((subj ∪ obj) ∩ (D ∪ Q ∪ OP))

count(sub) + count(obj)
, (2)

where scorek is the score of a triple k, scoresubj is the score of the subj in the
k, scoresubj has four values, i.e., 4: if OP ∩ subj �= ∅; 3: else if Q ∩ subj �= ∅,
2: else if D ∩ subj �= ∅. 0: else if (D ∪ Q ∪ OP) ∩ subj = ∅. Same for scoreobj .
In Eq. (2), count() means the number of words. We think that if more words in
subj and obj appear in the MRC instance means the triple is more relevant to
MRC instance, so this triple has a higher weight. Third, we set the amount of
triples per options to be the same in order to avoid knowledge frequency bias
[12], and the remaining triples are grouped into instance-level knowledge set K

′
.

Finally, we use the same method in the first step to retrieve the triples from the
set K

′
to construct the sentence-level knowledge set KD

i = {ki,1, ki,2..., ki,km},
KQ = {k1, k2, ..., kkn} and Kopo = {k1, k2, ..., kkl} for each sentence in D, Q or
opo(o ∈ [1, y]), respectively. Where KD

i is the knowledge set of the i -th sentence
of D, km means the number of triples, kn and kl means the number of triples
of the question and the o-th candidate option in OP, respectively.

4 Our Model

In this section, we introduce the base model Co-Matching and two proposed
modules of our model, i.e. SKI and RCMR.

4.1 The Co-Matching Model

The Co-Matching model reads an MRC instance <D, Q, OP> as the input. For
each candidate option opo(o ∈ [1, y]) in OP, the model get a co-matching state
by jointly matching the Q and opo to the D concurrently. Then, the model use
3 https://www.cyc.com/opencyc/.
4 https://wiki.dbpedia.org/.
5 http://www.edrdg.org/jmdict/.
6 https://www.wiktionary.org.

https://www.cyc.com/opencyc/
https://wiki.dbpedia.org/
http://www.edrdg.org/jmdict/
https://www.wiktionary.org
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the co-matching states to predict answer. Co-Matching model consists of five
layers, i.e. Embedding Layer, Encoding Layer, Interaction Layer, Modeling layer
and Answer Layer.

Embedding Layer. Embedding Layer converts each word of the input to the
vector space. Co-Matching model use the pre-trained GloVe embedding [20].
Differently, we concatenate GloVe embedding with the binary match features,
which can be described as: if the word appears in D, in Q, in opo(o ∈ [1, y]), in
both Q and opo, and in Q or opo. So we get ED

i = {eDi,j}mj=1, E
Q = {eQj }nj=1,

Eopo = {eopo

j }lj=1, where e = [eglove, efeature], “[,]” means concatenate.

Encoding Layer. A bi-directional LSTM (biLSTM) is used to encode context
information for all words in the each sentence of D, the Q and each option,
respectively. Then we get HD

i = {hD
i,j}mj=1, H

Q = {hQ
j }nj=1, H

opo = {hopo

j }lj=1.
Where hD

i,j , h
Q
j and hopo

j ∈ R
1×2hdim, hdim is the hidden size of the biLSTM.

Interaction Layer. This layer enables the model to focus on the relevant parts
of the document, questions and an option by attention mechanism. The Co-
Matching model plays attention on each sentence of the document with both
the question and the candidate option concurrently.

˜H
Q

i = Attmodule(HD
i ,HQ,HQ), ˜H

opo

i = Attmodule(HD
i ,Hopo ,Hopo) (3)

Then, ˜H
Q

i and ˜H
opo

i are concatenated to get a co-matching state of CD
i,o =

[ ˜H
Q

i , ˜H
opo

i ]. And for all sentences in D, we have a co-matching states set
{CD

1,o, C
D
2,o, ..., C

D
p,o}.

Modeling Layer. The base model uses the hierarchical LSTM [21] to modeling
the {CD

1,o, C
D
2,o, ..., C

D
p,o} into a vector dopo .

Answer Layer. For each candidate option, Co-Matching build a co-matching
states set through above layers. The probability of each option to be the answer
is computed as follows:

pro(opo|D,Q) =
exp(w1d

opo + b1)
∑y

x=1 exp(w1dopx + b1)
(4)

where opo means o-th option in the candidate options set OP, y is the number
of candidate options, w1 and b1 are trainable parameters.

4.2 Attention Mechanism

The Attmodule(Query,Key, V alue) above refers to the attention mechanism
calculated with specific Query, Key and V alue inputs, which can be summarize
as mapping a query and a key-value pair to an output [6,22,23] and calculated
as follow:

Vatt = softmax(QueryKeyT )V alue (5)
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Att(Query,Key, V alue) = ReLU(W [Vatt − Query, Vatt ∗ Query] + b) (6)

where Query ∈ R
u×dim is u dim-dimensional vector, Key and V alues ∈ R

v×dim

are both v dim-dimensional vectors, Vatt ∈ R
u×dim. W and b are trainable

parameters, “−” and “∗” are element-wise operation. ReLU is a non-linear acti-
vation function. The attention mechanism is very important in MRC, because it
allows the model to selectively focus on the relevant parts of the document, the
question and the option.

4.3 Sentence-Level Knowledge Interaction Module (SKI Module)

In order to solve the “commonsense” type questions, we decide to enrich the
representations of the given texts with their related commonsense knowledge.
Figure 2 provides an overview of our proposed model architecture.

Fig. 2. An overview of our model that modeling the D , the Q and the opo, and their
corresponding sentence-level knowledge KD

i , KQ and K opo .

We design a sentence-level knowledge interaction module (SKI module) in
interaction layer before calculating co-matching states.

Input: Different from the Co-Matching, the input of our model add the sentence-
level knowledge sets build in Sect. 3.3. For each knowledge triple in the sets, we
map each word into embedding as descript above. To ensure the representation
vector of each knowledge triple in the same vector space as D, Q, OP, we encode
each knowledge triple by the method in Mihaylov et al. [12] that use biLSTM to
encode subj, rel and obj in each triple respectively. Hence, we get hsubj , hrel, and
hobj for each triple. Example with KD

i , we have HDsubj
i = {hsubj

i,j }kmj=1, HDrel
i =

{hrel
i,j }kmj=1 and HDobj

i = {hobj
i,j }kmj=1. Where hsubj

i,j , hrel
i,j and hobj

i,j are represents subj,
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rel and obj of j-th triple in KD
i , respectively. Same for the KQ and Kop. Then,

we send encoded triples and encoded text in to SKI module.

SKI Module: The SKI module employs attention mechanism to calculate the
sum of weighted sentence-level related knowledge triples to represents each word
in the corresponding sentence. Example with j-th word hD

i,j in i-th sentence of
document, we use Eq. (7) to calculate the sum of weighted knowledge triples
representation h̄D

i,j :

h̄D
i,j = Attmodule(hD

i,j ,H
Dsubj
i ,HDobj

i ) (7)

Then, we use context encoded representation hD
i,j and the sum of weighted knowl-

edge triples representation h̄D
i,j to obtain ̂hD

i,j (Eq. (8)). So ̂hD
i,j contains informa-

tion of the word in the context that encoded by biLSTM and information from
related sentence-level external commonsense knowledge.

̂hD
i,j = α ∗ h̄D

i,j + (1 − α) ∗ hD
i,j (8)

where α ∈ R
1×hdim is a trainable vector that randomly initialized.

We do the same operations for the words in the Q and each option. Hence,
we can get ̂H

D

i = {̂hD
i,j}mj=1, ̂H

Q
= {̂hQ

j }nj=1 and a candidate option ̂H
opo

=

{̂hopo

j }lj=1. Thus, we can use ̂H
D

i , ̂H
Q

and ̂H
opo

to calculate co-matching states
instand of using HD

i , HQ and Hopo .

4.4 Residual Connection-Based Multi-step Reasoning Module
(RCMR Module)

To improve the reasoning ability of the model and make full use of reasoning
results for next reasoning, we propose a residual connection-based multi-step
reasoning module (RCMR) to replace the answer layer.

Input: The input of the RCMR module is also different from the original Co-
Matching, at the modeling layer, we only use a layer biLSTM followed by a
maxpooling layer to model matrix CD

i,o into a sentence vector ci,o, all the sentence
vectors in the D consist of matrix {cDi,o}pi=1.

RCMR Module: As shown in Fig. 2, we use multi-layer biLSTMs to infer the
information from {cDi,o}pi=1. In the multi-layer biLSTMs, we add residual connec-
tions to some reasoning steps (The arcs with an arrow in Fig. 2, which represents
a linear layer followed by ReLU). “�” in Fig. 2 means the element-wise average
of two vectors. We obtain the N-steps reasoning results through the N layers
biLSTM. To avoid a “step bias problem” [14] , we use the stochastic predic-
tion dropout [14] on the N-steps reasoning results. Thus, we get f reasoning
results {R1, R2, ...Rf} after the stochastic prediction dropout. We perform max-
pooling on these results respectively to make each reasoning result into a vector
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{r1, r2, ..., rf}. Then we calculate the probability of each option to be the correct
answer according to the formula below:

pro(opo|D,Q) = Avg(
f

∑

t=1

exp(w2r
opo

t + b2)
∑y

x=1 exp(w2r
opx

t + b2)
) (9)

Equation (9) means that we use the inference results in {r1, r2, ..., rf} to calcu-
lates the probability of opo as the answer respectively, and then averages these
probabilities to get the final probability of opo.

5 Experiments

5.1 Dataset

We evaluate on the MCScript [3]. According to the dataset paper, about 70% of
the questions in MCScript can be answered or inferred from the given documents,
and about 30% of the questions require commonsense inference. Therefore, we
apply this dataset to verify the effectiveness of the proposed model. Table 1 shows
the statistics of MCScript. We use accuracy to evaluate the model performance.
“#” represent the number of questions.

Table 1. Statistics of train, dev and test data.

Dataset Documents Questions

#text #commonsense #all

train 1,470 7,032 2,699 9,731

dev 219 1,006 405 1,411

test 430 2,074 723 2,797

5.2 Preprocessing and Training Details

For data preprocessing, we use Stanford CoreNLP7 to perform tokenization,
lowercase, and lemmatization. And we adjust the following hyper-parameters
according to the performance on the MCScript development set. For each
instance, we select the top 50 knowledge triples from the ranking results. We
use 300-dims pre-trained GloVe [20] word vectors concatenate with 8-dims fea-
tures as initial word embedding, which is fixed during training. Each question in
the MCScript has 2 options, so the features are 8-dims, i.e., if the word in D, Q,
op1, op2, Q&op1, Q&op2, Q ||op1, Q ||op2. The relationships (rel) of triples from
ConceptNet are represented by 308-dimensional random initialization vectors.
The hidden size of biLSTMs in encoding layer and answering layer is 150-dims.
The objective function is Cross Entropy. We use Adamax [24] with an initial

7 https://stanfordnlp.github.io/CoreNLP/.

https://stanfordnlp.github.io/CoreNLP/
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learning rate of 0.002 to update parameters and a minibatch size is 10 for each
update. We run all the models up to 50 epochs. To avoid overfitting, dropout
with probability 0.4 is adopted for embedding layer and encoding layer. We use
8-steps reasoning answer layer, residual connect every three steps, and the prob-
ability of stochastic dropout is 0.4. Our model is implemented with PyTorch8.

5.3 Results

Table 2 shows the results of our model and other models on MCScript. We
achieve 81.73%(accuracy) on the test dataset, which is competitive compared to
the SOTA single model (TriAN) with extra training samples and the ensemble
model (MITRE). The accuracy on “text” and “commonsense” types questions
are 82.11% and 80.64%, respectively. Obviously, our model achieves the best
result of the “commonsense” question compared to the other models.

Table 2. Results on the MCScript test set. “–” indicates not available. † is our run on
source code provided by author.

Models Extra training samples Ensemble Test

text(%) commonsense(%) all(%)

Human Performance [3] – – – – 98.20

Random [3] No No 50.00 50.00 50.00

Sliding Window [3] No No 55.70 53.10 55.00

Bilinear Model [3] No No 69.80 71.40 70.20

Attentive Reader [3] No No 70.90 75.20 72.00

GCN [11] No No – – 78.97

Co-Matching† [6] No No 81.21† 77.03† 80.01†
HMA [25] No No – – 80.94

TriAN w/o extra training samples [10] No No 80.61† 80.05† 80.44†
TriAN [10] Yes No – – 81.94

MITRE [26] No Yes 83.00 79.00 82.27

MITRE(NN-T) [26] No No – – 80.23

MITRE(NN-GN) [26] No No – – 80.12

MITRE(LR) [26] No No – – 79.66

Our model No No 82.11 80.64 81.73

The first four models are the experimental benchmark models on MCScript
[3]. Co-Matching is our base model.9 HMA [25], TriAN [10] and MITRE [26] are
the top three models in SemEval-2018 Task 11 10. Compared with MITRE, the
accuracy of our model is 0.54% lower than MITRE for “all” questions, maybe
MITRE ensemble three kinds of different submodels. The accuracy of our single

8 https://github.com/pytorch/pytorch.
9 We use the code on https://github.com/shuohangwang/comatch to implement Co-

Matching model. But one difference is that we add binary features to the word
embedding.

10 The ensemble results of the HMA and the TriAN were 84.13% and 83.95% in
SemEval-2018 Task 11, respectively. Table 2 shows the results of their single models.

https://github.com/pytorch/pytorch
https://github.com/shuohangwang/comatch
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model is higher than MITRE submodels (i.e., NN-T, NN-GN and LR). Further-
more, the accuracy of our model is 1.64% higher than MITRE for “common-
sense” type questions11. Compared with TriAN, the accuracy of our model is
0.21% lower than TriAN. The reason maybe TriAN not only uses ConceptNet as
an external knowledge source but also uses extra training samples (RACE [28]).
However, our model only uses ConceptNet. And the accuracy of our model is
1.29% higher than TriAN without extra training samples. As for “commonsense”
type questions, the accuracy of our model is 0.59% higher than TriAN without
extra training samples12.

5.4 Analysis

We perform ablation experiments to verify the SKI and RCMR modules are
positively contributed to our model, the results are shown in Table 3. Compare
the results of “Our model” and “Our model w/o SKI&RCMR”, we observe the
accuracy decrease by 1.02%, 3.47%, 1.64% on “text”, “commonsense”, and “all”
types questions, respectively. These results show that the two proposed modules
are useful, and our model achieves a comfortable margin on the “commonsense”
type questions than the baseline model.

Table 3. Our model ablation experiments on the MCScript test set.

Models text(%) commonsense(%) all(%)

Our model 82.11 80.64 81.73

Our model replace SKI with IKI 81.67 79.52 81.12

Our model w/o SKI 81.43 78.83 80.76

Our model replace RCMR with MR 81.73 79.81 81.23

Our model w/o RCMR 81.29 78.99 80.70

Our model w/o SKIR&RCMR 81.09 77.17 80.09

The Impact of SKI Module. Removing SKI results in 0.68%, 1.81% and
0.97% point accuracy drop on “text”, “commonsense”, and “all” questions,
respectively. The results reveal that external commonsense knowledge plays an
important character in answer reasoning. To show the effectiveness of SKI, we
compared the SKI with the IKI (i.e. we implemented instance-level knowledge
interaction method in Knowledgeable Reader). Compare the results of “Our
model” and “Our model replace SKI with IKI” on the “commonsense” type of
question, SKI module leads to an improvement of 1.12%over the IKI module.
This result illustrates the SKI module contributes towards the model’s perfor-
mance since it interacts words with more relevant external knowledge.
11 The “commonsense” type questions accuracy of MITRE is reported in reference [27].
12 We use the code on https://github.com/intfloat/commonsense-rc to implement

TriAN model.

https://github.com/intfloat/commonsense-rc
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The Impact of RCMR Module. Removing the RCMR module perform with
0.82%, 1.65%, and 1.03% decrease on the accuracy of “text”, “commonsense”,
and “all” questions, respectively. This illustrates the RCMR module is useful.
And in order to check whether the residual connections are valid in multi-step
reasoning, we remove the residual connections in the RCMR module and retain
the remaining multi-step reasoning (MR) module for experimentation (i.e. “Our
model replace RCMR with MR”). The result on “all” types questions shows that
MR leads to a reduction of 0.5% over the RCMR module, which indicates that
making each step of reasoning not only rely on the latest reasoning results by
adding residual connections on multi-step reasoning is helpful.

6 Conclusion and Future Work

In this paper, we propose an residual connection-based multi-step reasoning
MRC model that using commonsense knowledge to solve multiple choice MRC
task. The proposed SKI and RCMR modules improve the accuracy of “com-
monsense” type questions. However, compared with human performance, there
is still a lot of room for improvement. In future work, we would explore more on
how to infer using external knowledge for MRC tasks.
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Abstract. Existing image search engines, whose ranking functions are
built based on labeled images or wrap texts, have poor results on queries
in new, or low-frequency keywords. In this paper, we put forward the
zero-shot transfer learning (ZSTL), which aims to transfer networks
from given classifiers to new zero-shot classifiers with little cost, and
helps image searching perform better on new or low-frequency words.
Content-based queries (i.e., ranking images was not only based on their
visual looks but also depended on their contents) can also be enhanced
by ZSTL. ZSTL was proposed after we found the resemblance between
photographic composition and the description of objects in natural lan-
guage. Both composition and description highlight the object by stressing
the particularity, so we consider that there exists a resemblance between
visual and textual space. We provide several ways to transfer from visual
features into textual ones. The method of applying deep learning and
Word2Vec models to Wikipedia yielded impressive results. Our experi-
ments present evidence to support the existence of resemblance between
composition and description and show the feasibility and effectiveness of
transferring zero-shot classifiers. With these transferred zero-shot classi-
fiers, problems of image ranking query with low-frequency or new words
can be solved. The image search engine proposed adopts cosine distance
ranking as the ranking algorithm. Experiments on image searching show
the superior performance of ZSTL.

Keywords: Transfer learning · Zero-shot learning · Deep learning

1 Introduction

In natural languages, people distinguish one object from another by identifying
the differences between them. As a result, these differences become features,
which are set up for distinguishing objects [1]. Features in natural languages
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usually exist in definitions or descriptions of objects, e.g. “the cat is probably
a Persian cat, because of its long white fur”. These visual features in natural
language play a constructive role in how humans learn to classify objects.

As for the object recognition in machine learning, the usual method is to train
a model with training data, which should satisfy the following requirements: (1)
each sample should include an expert labeled image; (2) its size should be big
enough to make the model be able to converge [2]. However, the limitations are:
(1) expert labeling is expensive; (2) Some classes have few training data, it is too
hard for classifiers to recognize it. Under these limitations, zero-shot learning and
transfer learning show their talents: zero-shot learning can automatically label
the unlabeled data in the neighborhood, while transfer learning can transfer
the known information to different fields, thus it can scale down the necessary
training data and shorten the training time [3].

Zero-shot learning has received a growing amount of attention recently [4].
Zero-shot learning is inherently a two stage process: training and inference. In the
training stage, knowledge about the attributes is captured, and in the inference
stage, this knowledge is used to categorize instances among a new set of classes
[5]. The key to zero-shot learning is the use of a set of semantic embedding
vectors associated with the class labels. These semantic embedding vectors might
be obtained from human-labeled object attributes, or they might be learned
from a text corpus in an unsupervised fashion, based on an independent natural
language modeling task [6].

Zero-shot learning has succeeded in labeling the data without training data
set on all classes. According to Lampert’s research [7], zero-shot learning can
label the unlabeled data based on humans concluded features. They find out
that humans concluded features play a constructive role in the object conjecture
in zero-shot learning. So far, Norouzi and Li’s research [6,8] has made some
achievements: they used natural language model to widen the label field of the
model, thus labelling the unlabeled data which is similar to the labeled data
in semantic. Also, it showed the efficiency of using natural language model for
zero-shot learning.

Zero-shot learning resembles the use of human knowledge scattered in seman-
tic space to widen the existing classifier’s recognition range within the same
category: e.g. make a dog breed classifier able to recognize more breeds of dog
without more training data. Moreover, the information in the language model
is more than the neighborhood information, e.g. the information among similar
various categories [9,10].

For these various categories, we make an assumption that there exists some
categories sharing similar distribution in semantic space. The assumption is
based on the human regularity that people use similar features to classify similar
categories. For example, in the classification of cat breeds, the somatotype, the
coat color and the fur length are all important indexes, which are also used in dog
classifications. Based on this assumption, we conjecture that language model can
help us transfer classifying knowledge between categories, which makes transfer
classifier become possible. Simultaneously, considering the continuity of semantic
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space, we can obtain a multi-category classifier with the efficiency of zero-shot
learning and broader applicable scope at a very low cost. We name the method
as zero-shot transfer learning (ZSTL).

In the image retrieval area, ZSTL can improve the image retrieval of the
categories with few image samples, the low frequency or unlabeled words and
new words. Like humans describe objects by features, photographers tend to
emphasis subjects in picture composition, that is: (1) the subject shows in the
salient position. (2) The subject has salient feature [11]. The common composi-
tion method makes it possible to transfer visual feature to semantic feature [12].
In this paper, we first utilize the common composition method to form a zero-
shot transfer learning module, which will bridge the visual space and textual
space.

2 Zero-Shot Transfer Learning

2.1 Problem Statement

The methods used to search images on the Internet are based on the similarity
of visual content. However, it is difficult to rank images just according to their
similarity of content in semantic space. Moreover, if there are rarely tags, or even
no exact tags, relative to some images, searching them will be extra difficult. In
order to accomplish image searching based on visual content, a neat idea is to
transform from visual features into semantic features to simplify the searching
process, which has performed well in natural language processing.

Here our research focuses on converting visual features to textual features,
which can improve the quality of image ranking according to content similarity.
What’s more, it can help transfer a classifier into another zero-shot one by a few
target labels. In image searching, when users submit an image to search for the
information it contains, such as the name of the object in the image, it will be
a very difficult job, if this image was not used to train the classifier. Similarly,
quite a few zero-shot learning methods are not fit for large visual space. Thus,
we not only focus on the thought of zero-shot learning, but also highlight the
key of transfer learning in large expression domain.

In this paper, we propose the zero-shot transfer learning to solve the problems
above. The target of zero-shot transfer learning is to build a classifier containing
few or no training data through applying another known similar classifier (e.g.
building a classifier of tiger based on a classifier of cat). To meet this aim, we
convert the known image classifier into a textual feature extractor, and transform
its output space into somewhere near target labels’ textual space.

Base on our observations of images, we make an assumption that the struc-
ture of source and the target labels are similar in natural language, which means
it is possible that their semantic feature space share the similar distribution with
the textual feature space through non-linear transformation.

More formally, let x denotes a image, y denotes a label, and p(y—x) denotes
a classifier. Given a known classifier ptrain on data set Dtrain = {(xi, yi)}ntrain

i=1

where ntrain stands for the size of train data set, we aim to build a classifier pT
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on test set DT = {(xi, yi)}nT
i=1, and give a label set Ltarget ⊂ {yi|(xi, yi) ∈ DT }

as target, where {yi|(xi, yi) ∈ Dtrain}∩{yi|(xi, yi) ∈ DT } = ∅ and nT stands for
the size of test set. In Sect. 2.2, we transform ptrain into pT using the similarity in
semantic space, and introduce a way to improve it by a fine tuning net described
in Sect. 2.3.

2.2 The Transfer Model

Our target is to transfer a classifier into another one which is in a new semantic
space. The similarity of semantic space would help our model transfer. That
is to say, we expect {yi|(xi, yi) ∈ DT } and {yi|(xi, yi) ∈ Dtrain} to have sim-
ilar distribution in different semantic space. The semantic transfer part [13]
embedded in our transfer model assumes that each label y ∈ {yi|(xi, yi) ∈
Dtrain} ∪ {yi|(xi, yi) ∈ DT } can be presented with a semantic vector s(y),
S ∈ Rk, where k denotes the dimensions of semantic feature space. The seman-
tic space is continuous, which helps transfer extensively. In the semantic space,
two words are similar only if they have short distance corresponding to seman-
tic features. To reach the target transferring p to pT , there are three problems
needed be handled: 1. Find a way to transform visual features into semantic
features. 2. Find a method of shifting semantic features into a specified space.
3. Find a strategy of ranking labels based on similarity.

Fig. 1. Zero-Shot transfer learning model.

Transfer Net. For problem 1, we designed a transfer neural network to trans-
form visual features, as shown in Fig. 1. The transfer net has four layers: 1
inputting layer, 2 hidden layers and 1 outputting layer. Nodes of the hidden layer
constructed a 1024-1024 architecture. We denote the transfer net as Nt, denote
convolutional neural network (CNN) based visual feature extractor as Nv, and
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denote semantic feature extractor word2vec as Nw. Let x′
i = Nt(Nv(xi)), y′

i =
Nw(yi), (xi, yi) ∈ Dtrain, n = |Dtrain|, the loss function is defined as

losst(i) = −1
k

k∑

j=1

[y′
i,j lnx

′
i,j + (1 − y′

i,j)ln(1 − x′
i,j)] (1)

Feature Shifting. The problem 2 is how to shift features into target semantic
space. An obvious way is to shift the source center into target center. Equation 2
evaluates the shifting effect.

Vs =
1

|Ltarget|
∑

l∈Ltarget

Nw(l) − 1
|Lo|

∑

l∈Lo

Nw(l) (2)

Here Lo = {yi|(xi, yi) ∈ Dtrain}, and we denote Nt(Nv(x)) + Vs as shifted
semantic feature.

Word2Vec. As for an image x to be labeled, our method is to rank word vectors
in word2vec model according to cosine distances of Nt(Nv(x)) + Vs, and export
Top-10 words as potential labels.

2.3 Transfer Model with Fine-Tuning

If a small data set Dtuning �= ∅ (Dtuning ⊂ DT ) is used, the fine tuning net can
enhance feature transformation. The previous work has strict requirement for
semantic space, which makes the model perform inefficiently. The strict require-
ment is: the source label space and the target space should share an exactly
same distribution, with only the concept center being different. Obviously, as
it is hard to find the concept matches in the semantic space, a fine tuning
net is applied to fit the source space for the target space. Using the method
of transferring model with fine tuning, the problem is redefined as follows: let
x′
i = mNt(Nv(xi))+ b, y′

i = Nw(yi) and (xi, yi) ∈ Dtuning; defining loss function

lossf (i) = −1
k

k∑

j=1

[y′
i,j ln(x′

i,j) + (1 − y′
i,j)ln(1 − x′

i,j)] (3)

and minimizing lossf to build the fine tuning net, with m ∈ Rk×k, b ∈ Rk. In
our model, we use gradient descent to optimize.

3 Empirical Evaluation

3.1 Dataset

Our visual data set was obtained from image.google.com, which contained 9,336
images in 31 classes with plenty of noisy images. The data set can be retrieved
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at http://bit.ly/1Rv0NVA. In order to study how training data set affects our
transfer model, we used two different training datasets to study our visual fea-
ture extractor. One data set was about 80% animals images (7,468 images in
31 classes), and the other one included 80% of dog images (4,034 images in 13
breeds). The feature extractor trained by the first data set was used to extract
common features of animals, and specially, the feature extractor formed by the
second dog data set focused on producing the features of different dog breeds.
Meanwhile, we used the second data set to train our transfer net to build dif-
ferent breed mappings. Furthermore, as English Wikipedia is one of the largest
encyclopedia and it has much analogous expression space with human being,
it was selected to train our word2vec model. In the experiment, Wikipedia
helped word2vec build a comprehensive semantic space, and it was comprehen-
sive enough to build a global express space, in which the visual feature can be
transferred reasonably.

3.2 Platform Setup

We chose two outstanding convolutional neural networks, AlexNet [14] and
GoogleNet [15], to demonstrate the influence of visual feature extractor upon our
transfer model. We trained our model on Caffe with GPU. We used Theanets,
based on Theano, to train our transfer net and fine tuning net.

3.3 Experiments

We studied three problems through lots of the experiments to reveal the regular-
ity of zero-shot transfer learning: (1) Verify the resemblance between visual space
and semantic space. (2) Verify the effectiveness of feature transfer. (3) Check the
result of transfer model, and make comparisons between different settings.

Fig. 2. Self organizing feature map (SOM) of visual feature (left) and semantic feature
(right), with lines showing 100 samples. (Color figure online)

To verify the resemblance between visual space and semantic space, we uti-
lized the self-organizing feature map (SOM) to build the mapping relationship
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between image visual feature and tagging semantic feature. Through summariz-
ing the statistics of a large number of training data, we formed some interesting
mappings that clearly revealed the resemblance among different spaces. In our
experiment, we built two coordinate systems. one represented the visual feature
space, and the other represented the semantic feature space. From Dtrain, we
randomly selected 100 samples, each one of which had two attributes(the visual
features and the semantic features). For example, assume that one of the 100
samples is “Persian cat” and one of its attributes is the visual features, like
“white fur”, “long fur”, “wide head” and “short leg”, which are depicted in pic-
tures. The other attribute of this sample is semantic features, like “white fur”,
“long fur”, “wide head” and “short leg”, which are depicted through words and
phrases. After the 100 samples were selected, we mapped their attributes into the
two coordinate systems we built in the beginning. Therefore, each sample was
represented by a point in the coordinate systems. For each sample, we matched
its two attributes in two coordinate systems by drawing a red line to connect
the two points. So far, we had 100 red lines, as shown in Fig. 2, revealing the
correlative objects between visual space and semantic space. It showed that the
clustering results of visual features and semantic features were similar, which
means it is quite possible that resemblance exists between visual and semantic
space. In addition, the distance relationships are also included in two different
spaces, which is helpful in assisting image searching by similarity computation.

Table 1. Top-5 labels (the correct label is shown in bold)

Test image Feature shifting Fine-tuning
american shorthair british shorthair

maine coon american shorthair
japanese bobtail exotic shorthair

devon rex devon rex
british shorthair cornish rex

devon rex british shorthair
british shorthair exotic shorthair

american shorthair american shorthair
egyptian mau devon rex
cornish rex japanese bobtail

american shorthair british shorthair
devon rex exotic shorthair

japanese bobtail american shorthair
maine coon devon rex

exotic shorthair cornish rex

Feature transfer relies on mapping the relationship between different spaces.
To achieve feature transfer, a transfer network, as shown in Fig. 1, is proposed to
reveal the mapping according to the resemblance of visual and semantic space.
The transfer network are constructed with multiple full-connection layers. We
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trained the transfer network by the dog breeds training data set. After conduct-
ing a series of experiments, we gladly found out that the result turned out to be
impressive. The mean-squared error in the results was less than 0.185%. Then
we tested feature shifting and fine tuning models, and we chose three represen-
tative results, as shown in Table 1, to demonstrate the quality of our models.
In the first column of Table 1, three pictures of three different-breed cats are
shown, which served as the test image of our model. On the right, we listed the
top-5 results for each sample picture, and the two columns are results produced
by applying the feature shifting model and the fine tuning method. Compared
with the results of feature shifting model, the results of fine tuning model are
more accurate, so it shows: (1) The visual feature strongly affects the results of
transfer learning, because complex visual features like the second cat example
in Table 1 produce worse feature shifting results. (2) The fine tuning net can
enhance our model greatly, as the correct label of the second cat was ranked at
the second position through applying the fine tuning model.

Table 2. Performance of different models (best results are shown in bold)

CNN Model CNN training set Transfer model Fine tuning set size Top-k(accuracy%)

1 5 10

AlexNet 80% of whole data Feature shifting – 7.66 32.74 71.26

AlexNet 80% of dog breeds Feature shifting – 6.60 33.21 70.01

AlexNet 80% of whole data Fine-tuning net 100 in 3 labels 8.51 37.62 75.85

AlexNet 80% of dog breeds Fine-tuning net 100 in 3 labels 9.19 40.27 76.88

AlexNet 80% of whole data Fine-tuning net 500 in 5 labels 5.64 33.97 71.37

AlexNet 80% of dog breeds Fine-tuning net 500 in 5 labels 6.73 35.99 71.40

GoogLeNet 80% of whole data Feature shifting – 8.12 36.83 71.89

GoogLeNet 80% of dog breeds Feature shifting – 9.05 31.92 68.89

GoogLeNet 80% of whole data Fine-tuning net 100 in 3 labels 8.59 39.53 78.60

GoogLeNet 80% of dog breeds Fine-tuning net 100 in 3 labels 8.78 38.90 77.21

GoogLeNet 80% of whole data Fine-tuning net 500 in 5 labels 4.12 32.22 36.65

GoogLeNet 80% of dog breeds Fine-tuning net 500 in 5 labels 10.01 33.45 69.66

Meanwhile, we would like to find out the performance of our transfer network
under different circumstances. In the beginning, we set up various conditions,
including different CNN networks, CNN training set, transfer model, and the
size of fine tuning set (if we chose the fine tuning as the transfer model). These
conditions were carefully designed to control variables, as shown in Table 2, which
assured that the results are helpful when we compared one to another to find
out the influence of the single variable. The variables could be divided into the
internal factors and the external ones. On one hand, the transfer model and the
size of fine tuning set was the internal factor, because it was set up before we
started training. On the other hand, various visual features and sensitivity of
the training data set are the external cause, as they could affect the robustness
and accuracy of the transfer net.
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In Table 2, the three columns on the right demonstrate the results of those 12
models, with the best ones labeled in bold, revealing the influence of numerous
properties upon the zero-shot transfer learning. The results of fine tuning net are
better averagely than the ones of feature shifting, which verifies the conclusion of
the previous experiment. Moreover, the results of choosing dog breeds as training
data set mostly outperform the ones of using the whole data to train our models,
which indicate that the semantic feature space should be transformed to fit for
specific breeds. Because the visual space is more complex than semantic space,
the fine tuning net is sensitive to the data set, and we should utilize a preferable
image data set to fit for specific image searchings. As for the size of fine tuning
set, 100 in 3 labels have averagely better results.

4 Conclusions

This paper reveals the resemblance between visual and textual features and
proposes the zero-shot transfer learning model (ZSTL). Differ from zero-shot
learning and transfer learning, ZSTL has an advantage that it is able to convert
visual features to semantic features, which further helps the feature transfor-
mation in semantic space. Our model is capable of transferring a classifier into
a new classifier with zero-shot samples. Meanwhile, the transformed semantic
feature can be used to help labels rank by computing similarity on cosine dis-
tance. This property solves the problem of image querying with rare images or
new low-frequency keywords. Through conducting numerous experiments, ZSTL
has been validated to be effective on the image querying. We believe ZSTL pro-
vides an inspired way for the semantic space transformation and image querying.
In the near future, we will extend our approach to research how to adapt the
domain shift problems which is widely existing in zero-shot learning.
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Abstract. Mongolian constituent parsing is a challenging task due to lack of
hand-annotated corpus and rich morphological varying. This paper takes a self-
attention neural network to deal with Mongolian constituent parsing, which
follows an encoder-decoder architecture. Concerning the syntactic functions of
morphemes in Mongolian words, we make morphological analysis on each word
and learn a novel word representation on such basis. To fully utilize the mor-
phological knowledge, we adopt the last suffix tag of each word in the input
embedding instead of its POS. The input embedding is the accumulation of word
representation, the last suffix tag and the word position. The test experiment
demonstrates that our model significantly outperforms the previous Mongolian
constituent parsers. We achieve 87.16% F1 on the development set and 86.23%
F1 on the test set.

Keywords: Mongolian constituent parsing � Morphological analysis � Word
representation

1 Introduction

Constituent parsing is a fundamental task in natural language processing (NLP), such
as machine translation and question answering. The goal of constituent parsing is to
obtain the syntactic structure of sentences expressed as a phrase structure tree [1]. For
example, given the sentence in Fig. 1, a parser maps it into a parenthesized version of
the constituent parse tree.

Mongolian is an agglutinative language which words are formed by attaching
suffixes to stem. There are two kinds of scripts Mongolian: traditional Mongolian and
an Cyrillic Mongolian. In this work, we address the constituent parsing of traditional
Mongolian. This kind of script and its Latinize letters are shown in Fig. 1. The internal
morphological of Mongolian words, relatively fixed position of the central word and
sentence form provide the theoretical basis for building traditional constituent parsers.
Therefore, a lot of morphological rules [2–6] are annotated manually, which require a
lot of domain knowledge and consume a lot of time. However, even so, comparing its
performance with the Chinese or English, there is still a very big promotion space.
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In recent years, deep learning based constituent parsers have shown excellent
performance without handcraft features [1, 7–10]. Recently, Kitaev et al. [9] presented
a new state-of-the-art parsing approach which relies on a self-attentive encoder and a
chart decoder. However, it is extremely hard for training a neural parser with large scale
parameters only dependent on a small size of Mongolian annotated corpus. Therefore,
parameter learning instructed by the external knowledge is very significant, such as the
word distributed representation ELMO and BERT. Nevertheless, those works of
Mongolian constituent parsing have not been well studied. That is not just only because
lack of hand-annotated corpus, but also due to its nature of rich morphological varying.

In this paper, we propose a solution to this problem by using a self-attention neural
network, which follows an encoder-decoder architecture. Our method is inspired by
Hall et al. [11] who found it effective to replace words with frequently-occurring
morphemes (suffixes). By learning word embeddings from morphemes, we try to get
more syntactic representations. Moreover, we use the last suffix tag to replace the POS
(Part-of-Speech) in input embedding. Then an accumulation embedding of word rep-
resentation, word position and the last suffix tag of each word, as the input embedding
feed into the parser. Test experiment demonstrates that our model significantly out-
performs the previous Mongolian constituent parsers. We achieve 87.16% F1 on the
development set and 86.23% F1 on the test.

The main contributions of the work can be summarized as follows:

– To the best of our knowledge, however, we are the first group to employ a deep
neural network for the task of Mongolian constituent parsing.

– We propose morpheme representation and the last suffix tagging to improve
performance.

– We compare the performance of three composition functions of morpheme repre-
sentation and two schemes of POS tagging in Mongolian constituent parsing in
details.

Fig. 1. Example of Mongolian, Latin trans literature, constituent parsing tags and the sentence
meanings.
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2 Mongolian Morphological Analysis

Due to lack of hand-annotated corpus and rich morphological varying, morphological
knowledge parsing approaches were proposed to facilitate the Mongolian constituent
parsing. Generally, morphological knowledge is summarized by hand, including syn-
tactic template sets, rule base and dictionary base [2–6]. These methods given in [2–6]
could give constituent parsing results automatically, but the problem also following.
There are more than 2000 syntax rules in literature [5], and three dictionary bases and
three rule bases in [2], however, only part of the linguistic phenomenon is covered.
Another work [6] tries to deal Mongolian constituent parsing with open-source tools,
Stanford Parser, which is a typical constituent parser for Chinese, English, German and
other languages. However, the performance improvement is not significant because the
constituent parsing is a language-related problem.

In the past, parsers optimize input by using a variety of pretrained morphological
representations [10–15], such as suffixes, prefixes, special tokens and unsupervised
morphemes to improve the performance. However, there is a very little similar study on
Mongolian words representations [16], especially for Mongolian constituent parsing.

Mongolian is a morphologically-rich language, which is formed by attaching suffix
to stem. The suffix falls into two groups: derivational suffix and inflection suffix. From
example, Table 1 illustrates the grammatical and meaning functions of suffixes, where
“ (jin)” and “ (la)” are derivational suffixes, “ (-y′i)” and “ (-bar)” are inflection
suffixes. Both of two groups indicate syntactic or semantic relations between words in a
sentence. Therefore, we segmented the suffixes as a new token and extracted implicit
knowledge to optimize our parser. After morphological segmentation, the sentence, in
Fig. 1, will be turned into “arad-a′ ca erhile gsen svrgan homujil -u′n hogjilte -y′i jqrigji
gvl vn jirvm ji gvl v n_a.” Our key idea is to make the input embedding layer of
Mongolian constituent parser more syntactic awareness. In order to realize this idea, we
compare three different composition functions to compute the word representation at
morpheme-level and find the best. We also replace POS with the last suffix tag, which
makes the parser more efficient and easier to use.

Table 1. Examples of Mongolian suffix

Suffix Stem Meaning New word Meaning

(jin) (ebul) winter (ebuljin) in the whole winter
(la) (vsv) water (vsvla) watering
(-y'i) (svrvn_a) Surna (svrvn_a-y'i) Let Surna
(-bar) (svrvn_a) Surna   (svrvn_a-bar) Through Surna
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3 Method

Our method has three components: input embedding layer, encoder layer and decoder
layer. It is shown in Fig. 2. Firstly, it learns the distributed representation of each input
word by their morphemes. Secondly, the word representation, position and the last
suffix tag of each word will be fed into the self-attention neural network. On the top of
network, a chart decoder layer finds the optimal constituent parse tree. We will
introduce our parser and its variants from bottom to top in following.

3.1 Input Embedding Layer

There are three kinds of embeddings will be fed into the encoder, word embeddings
w1;w2; � � � ;wL;½ �, the last suffix tag embeddings s1; s2; � � � ; sL;½ � and position embed-
dings p1; p2; � � � ; pL;½ �, all of which are generated from input embedding layer.

3.1.1 Word Representation Models
As outlined above, when parsing Mongolian, we characterized words with their mor-
phemes to capture the syntactic information, thereby allowing better generalization
between words with similar morphemes. In order to get better word representation for
parsing, we compared three different composition functions that have commonly been
used in recent works.

Suppose that a word w is made up of a sequence of morphemes where mi 2 M is
the embedding of morphemes and theM 2 R

d is the vocabulary of morphemes, the d is
the dimension of embeddings, and the wj j stands for the number of constituent

Input

Encoder
Layer

erhilegsen svrgan hogjilte-y'I hogjilte-y'i jqrigjigvlvn
Ft Un Fc Fc Fn
2 3 4 5 6

Svrgan Fc hogjilte-y'i) ) hogjilte-y'i ) (VP-h Fn jqrigjigvlvn  Fs

Input Embedding

Decoder
Layer

Embedding
Layer

Fig. 2. The main architecture of our parser with layers
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morphemes in the word. We use three composition functions to compute the word
representations.

1. Addition. This composition function constructs the representation w of word w by
simply adding together the embeddings of its morphemes. Formally, the equation is
shown below:

w ¼
X wj j

i¼1 mi ð1Þ

2. Bidirectional LSTM Neural Network. We adapt bidirectional long-short-term
memory neural network (denoted Bi-LSTM) [17, 18] as our second composition
function, which is widespread used for word representation in NLP tasks [19, 20].

Bi-LSTM use a pair of LSTMs to compute left-to-right hi
!¼ LSTM hi�1

��!
;mi

� �
and

right-to-left hi
 ¼ LSTM hiþ 1

 ��
;mi

� �
for each morpheme, where hi

!
and hi
 

are the

LSTM hidden states. Then, we fed them into multilayer perception with a single
hidden layer and a tanh activation function to form the word representation:

w ¼ MLP h wj j
�!

; h1
 � �

ð2Þ

3. Convolutional Neural Network. Convolutional Neural Network. The Convolutional
neural network (CNN) [14, 21] is the third strategy extensively employed as the
composition function [22], which have achieved state-of-the-art results on various
NLP task. The CNN composition function considers windows of l consecutive
morphemes within the words, where a set of filters (Hl 2 R

d�l) are applied to these
morphemes windows to generate corresponding feature maps fw 2 R

wj j�lþ 1, and
the i� th element of fw ið Þ is defined as:

fw ið Þ ¼ \MWj j;i;Hl [ þ b
� � ð3Þ

where \A;B[ ¼Pi;j Ai;jBi;j ¼ Tr ABTð Þ denotes the Frobenius inner product, the
Mwj j is the morpheme embedding matrices, and the b is a bias. Then a max-pooling
operation is used on the top of each feature map:

yw ¼ max
i

fw ið Þ ð4Þ

To capture the interactions between the morpheme n-grams, which are picked up by
the filters, we apply a highway network following. One layer of a highway network
forms the word representation as following:

w ¼ t �MLP ywð Þþ 1� tð Þ � yw ð5Þ

where t ¼ MLPr ywð Þ is a sigmoid gating function, which is called the transform
gate, and 1� tð Þ is called the carry gate.
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3.1.2 Last Suffix Embedding
POS tagging is a part of the input variable that has a great impact on the performance of
the constituent parser. The POS of the central morpheme’s (stem) was used in earlier
Mongolian parsers. This approach ignores a lot of morpheme syntax information. To
fully utilize morphological knowledge, we propose a suffix-based POS tagging
approach to address this problem.

Suffix-based POS tagging approach is inspired by [10], who found it effective to
use suffix information for Mongolian constituent parsing. The grammatical relation-
ship, for instance, the grammatical subject or object of the sentence, is indicated in
these languages by suffixes. Following [9], we replace the POS tag with the last suffix
tag of each word and get the embedding s. There are 175 kinds of suffixes in our
experiment, which is classified into 17 categories according to Mongolian Grammar
Dictionary.

3.1.3 Position Embedding
There are various ways to encode positions. We adopt the signal timing approach from
[13] for position embedding, which is formulated as follows:

timing p; 2ið Þ ¼ sin p
100002i=dm

� �
timing p; 2iþ 1ð Þ ¼ cos p

100002i=dm

� �
8<: ð6Þ

where p represents the word position in a sentence.

3.2 Self-attention Encoder

Self-attention network (SAN), as its name suggests, is a special case of attention
mechanism that only needs internal information of a sequence to compute its repre-
sentation. Thus, it is more flexible at modeling both long-range and local dependencies
comparing to RNN/CNN [23]. Following [9], we choose self-attention [23] as the key
component in our architecture instead of LSTMs. The center of this SAN formulation is
the multi-head attention sub-layer and the feed-forward sub-layer.

Multi-headed self-attention sublayer is a variant of dot-product (multiplicative)
attention. Formally, for the n� th head, given an input matrix Xn; Xn ¼ T� dm, where
each row vector xnt corresponds to character t in the sentence and dm
is themodel dimensionality. And the trainable parameter matrices CQ, CK , and CV are
used to map an input xnt to three vectors query qnt ¼ xtCn

Q, key knt ¼ xtCn
K and value

vnt ¼ xtCn
V , where Cn

Q;C
n
K ;C

n
V

n o
2 R

d , and the d is the number of hidden units of our

network. We calculate the probability that character I attending to character j as

pn i! jð Þ / exp
qni �knjffiffi

d
p

� �
, and the vj for all characters that have been attended to are

aggregated to form an average value v!n
i ¼

P
j
pn i! jð Þvnj . The scaled dot-product

attention computes the attention scores based on the following mathematical
formulation:

368 N. Liu et al.



Mn ¼ Attention Qn;Kn;Vnð Þ ¼ softmax
QnKnTffiffiffi

d
p

 !
Vn ð7Þ

where Qn ¼ XnCn
Q, K

n ¼ XnCn
K , V

n ¼ XnCn
V . Finally, all the vectors produced by

parallel multi-heads are added together to form a single vector: M ¼ PN
n¼1

Mn. This

allows a character to gather information from up to N remote locations in the sequence
at each attentional layer.

Our feed-forward sub-layer is simple and following Vaswani et al. [23]. It consists
of two linear layers with hidden ReLU (Rectified Linear Unit) nonlinearity in the
middle. Formally, the equation is shown below:

FeedForward Xð Þ ¼ W2ReLU W1X þ c1ð Þþ c2 ð8Þ

where W1 2 R
dm�d and W2 2 R

d�dm are trainable matrices.

3.3 Chart Decoder

Given a Mongolian sentence X ¼ x1; x2; � � � ; xLð Þ with L tokens, we aim to predict a
constituent parse tree T. In this model, we apply the encoder-decoder architecture from
[2], which the decoder assigns a real-valued score s Tð Þ to each T:

s Tð Þ ¼
X

i;j;lð Þ2T s i; j; lð Þ ð9Þ

where s i; j; lð Þ is a real-valued score for a constituent that is located between fencepost
positions i and j in a sentence and has the label l. So, the objective function of our
model is to find the optimal constituent parse tree bT :

bT ¼ argmaxT 0s T 0ð Þ ð10Þ

The chart-based methods estimate the non-linear potential and perform precisely
structured reasoning by dynamic programming [12, 24], which can incorporate struc-
tured loss functions during the training process. In the decoder, we use a chart-based
approach to generate a parse tree to achieve the ultimate goal, as shown in formula (2)
above. The chart decoder we used is proposed by [25] and additionally modified by [9,
10, 26], which contains two components, one is span representation and other is label
scoring.

3.3.1 Span Representation
Stern et al. [25] define the span i; jð Þ as rij which is concatenated by the corresponding
forward and backward representations fi and bi for each fencepost i, where the fi and bi
are the output of their encoder BiLSTM. In our parsing model, we follow [9] split the
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output of encoder SAN in half, the even coordinates contribute to fi and the odd
coordinates contribute to bi. And then we can define span representation as [25]:

rij ¼ fj � fi; bi � bj
� 	 ð11Þ

3.3.2 Label Scoring
The label scoring function is a one-layer feed forward network whose input is feed with
the span representation and output vector dimensionality equals the number of possible
labels. The score of the label l is defined as:

s i; j; lð Þ ¼ M2relu LayerNorm M1vþ z1ð Þþ z2ð Þ ð12Þ

where LayerNorm denotes Layer Normalization, relu is the Rectified Linear Unit
nonlinearity.

During the training, given the gold tree T�, the model is trained to satisfy the
constraints:

s T�ð Þ� s Tð ÞþD T ; T�ð Þ ð13Þ

For each training sample, here D is the Hamming loss on labeled spans. The
training objective is minimizing the hinge loss:

max 0; maxT 6¼T� s Tð ÞþD T; T�ð Þ½ � � s T�ð Þ� � ð14Þ

4 Experiments

4.1 Word Embedding Corpus

The word embedding training data were crawled from traditional Mongolian news web
sites. After cleaning and Latin transliteration, we have got 50,000 sentences for training
word embeddings and morpheme embeddings, which length are between 2 and 56.
Morphemes are obtained from Mongolian Morphological Analyzer [27]. The token
size and vocabulary of the corpus are shown in Table 2. The “morpheme-level” refers
to take all of roots and suffixes as new tokens when segmenting the word, while “word-
level” means without any segmentation. We use Gensim to obtain the pretrained word
embedding and morpheme embedding with skip-gram method.

Table 2. The number of vocabulary and token

Level Vocabulary Tokens

Morpheme-level 19,672 1,508,007
Word-level 63,433 858,013
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4.2 Constituent Parsing Corpus

Nowadays, there is no public annotated corpus about Mongolian Constituent Parsing.
In this paper, we use the manually annotated corpus in [5, 6]. The corpus we used has
been reviewed manually by a group of Mongolian native speakers and made minor
modifications, which includes 5000 Mongolian sentences. We split it into training
(4000 sentences, 80%), developing (500 sentences, 10%) and testing (500 sentences,
10%). This corpus was converted into phrase structure trees to training. In this paper,
the tree label schema follows the works [5, 6], which is shown in Tables 3 and 4.

4.3 Metrics and Baseline

We evaluated the results by the PASER-VAL metrics of precision (P), recall (R) and
F1 [28], and we use CL to denote that the parser only marks the constituent tags in
Table 3 and the CSL to denote that tags both in Tables 3 and 4 marked by the parser.
We take two Mongolian constituent parsers as baseline systems which are described in
the literature [5] (abbr. Wudan [5]) and literature [6] (abbr. Ning [6]).

4.4 Neural Network Training

All of our parsers use the same hyperparameters as standard SAN constituent parser
[8]. Moreover, all LSTMs has 2 layers. We initialized all of the LSTM’s parameters
with the uniform distribution between −0.1 and 0.1. We used stochastic gradient
descent without momentum, with a fixed learning rate of 0.8. After 50 epochs, we
begin to half the learning rate every epoch.

Table 3. Constituent tag set

Label Description Label Description Label Description

NP Noun Phrase VP Verb Phrase OP Orientation Phrase
AP Adverb Phrase QP Quantifier Phrase SP Modal Particle
RP Pronominal MP Numeric Phrase DP Adverb Phrase
TP Temporal phrase FP Fixed Phrase HP Modal Phrase
S Sentence GP Postpositional Phrase

Table 4. Internal syntactic relation tag set

Label Description Label Description

t object-predicate u predicate-verb
b adverb-predicate s auxiliary relationship
h coordination relationship d attribute relationship
j duplicate relationship x general relationship
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5 Results and Discussion

5.1 The Effect of Different Composition Function

We compared our proposed Mongolian constituent parser, which is guided by mor-
phological knowledge against baselines mentioned in Sect. 4.3. The input embedding
layer of our parsers consists of morpheme representation, the last suffix tagging and
position tagging. Our parsers are named after their composition function. Note that
shown in Table 5 is the result of the development sets.

As shown in Table 5, all of our models perform better than the baseline models
without any feature engineering or dictionary. Considering these evaluate metrics, the
parser with Bi-LSTM composition function is the best of all. It establishes the per-
formance of 87.16% (CL) and 85.31% (CSL) F1, outperforming the best of baseline
10.12% and 27.23% F1. The results indicated that our models can better extract the
syntactic information from Mongolian morphemes, and the Bi-LSTM composition
function is better than others.

5.2 The Effect of Word Representation

Table 6 shows the performance Mongolian constituent parsing with different level
word representations. We observed that the performance of morpheme-level models is
better than word-level models. Besides, about 97.25% morphemes can be found in the
pretrained morpheme vocabulary, while about 82.4% words can be found in the pre-
trained embedding. This result shows that the parser benefits from additional word
representations, which consistent with previous research.

5.3 The Effect of Different POS Tagging

To validate the effectiveness of the last suffix tagging, we evaluate their performance on
the testing dataset and the scores are reported in Table 7. We also list the score of the
different models with CHARLSTM POS tagging scheme [9]. According to the results,
the following conclusions were obtained:

Table 5. Performance of our models and baseline systems (Dev)

Model CL CSL
P(%) R(%) F1(%) P(%) R(%) F1(%)

Wudan [5] 77.01 77.07 77.04 – – –

Ning [6] 75.89 75.71 75.80 57.66 57.49 57.58

Addition model 83.75 83.81 83.78 79.19 80.55 79.86
Bi-LSTM model 87.10 87.22 87.16 85.49 85.14 85.31
CNN model 86.74 86.88 86.81 84.23 83.54 83.88
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– Each parsing model with the last suffix tagging achieves a better result than that
with CHARLSTM, because the last suffix tagging represents syntactic information.

– For all unsupervised POS Tagging schemes, the Bi-LSTM model performs better
than other models, because it provides more temporal syntactic information than the
Addition model and the CNN.

6 Conclusion

In this paper, we have proposed morphological knowledge guided approaches for
Mongolian constituent parsing without resorting to dictionaries, rules, and large
training corpus. Our key idea is to make the input embedding layer of Mongolian
constituent parser have more syntactic awareness. We improved the word representa-
tions at morpheme-level and replaced POS with the last suffix tag to make them more
syntactical and easier to use. Our experiments show that these models are able to obtain
stranger competitive results compared to early methods. The BiLSTM model achieved
state-of-the-art accuracy when BiLSTM composition function plus the last suffix
embedding is used.

Acknowledgments. This work was funded by National Natural Science Foundation of China
(Grant No. 61563040, 61773224, 61762069, 61866029), Natural Science Foundation of Inner
Mongolia Autonomous Region (Grant No. 2017BS0601, 2016ZD06, 2018MS06025), and
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Table 6. Performance of word representation (Test)

CL CSL
P(%) R(%) F1(%) P(%) R(%) F1(%)

Word-level 80.36 80.47 80.41 70.68 76.21 73.34
Morpheme-level 86.05 86.41 86.23 82.39 84.54 83.45

Table 7. Performance of different POS tagging (Test)

POS tagging Model CL CSL
P(%) R(%) F1(%) P(%) R(%) F1(%)

CHARLSTM Addition model 81.33 82.49 81.91 77.72 79.23 78.47
Bi-LSTM model 85.98 86.22 86.10 82.36 82.47 82.41
CNN model 84.32 85.13 84.72 80.97 81.49 81.23

The last suffix Addition model 82.24 82.61 82.42 79.17 79.53 79.35
Bi-LSTM model 86.05 86.41 86.23 82.39 84.54 83.45
CNN model 84.89 86.35 85.61 83.76 85.6 84.67
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Abstract. In microblog sentiment analysis task, most of the existing
algorithms treat each microblog isolatedly. However, in many cases, the
sentiments of microblogs can be ambiguous and context-dependent, such
as microblogs in an ironic tone or non-sentimental contents convey-
ing certain emotional tendency. In this paper, we consider the context-
aware sentiment analysis as a sequence classification task, and propose a
Bidirectional Encoder Representation from Transformers (BERT) based
hierarchical sequence classification model. Our proposed model extends
BERT pre-trained model, which is powerful of dependency learning and
semantic information extracting, with Bidirectional Long Short Term
Memory (BiLSTM) and Conditional Random Field (CRF) layers. Fine-
tuning such a model on the sequence classification task enables the model
to jointly consider the representation with the contextual information
and the transition between adjacent microblogs. Experimental evalua-
tions on a public context-aware dataset show that the proposed model
can outperform other reported methods by a large margin.

Keywords: Context-aware sentiment · Sentiment classification ·
BERT

1 Introduction

Since the inception of online microblog services such as Twitter and Weibo,
increasing numbers of people are using such services to express their feelings
and attitudes about different hot topics [2,12]. Identifying sentiments or opin-
ions from microblogs can reveal if the online mood is positive, negative or even
indifferent, and also facilitate many other disciplines, including social psychology,
customer relationship management, and political science etc [19]. Therefore, how
to provide an effective way to analyze users’ sentiments has received significant
attentions from both academic researchers and commercial companies.

J. Wang—This work was done while Jinshan Wang was an intern at Meituan-Dianping
Group.
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There are three technical obstacles in determining the sentiment of
microblogs effectively. First, users have very limited space to express their opin-
ions in microblogs, thus the corresponding sentimental feature vectors generated
from tweets are extremely sparse. Second, the sentiments embedded in microblog
conversations are usually implicit and context-dependent, even a single non-
sentimental word can express obvious sentiment in a given context. Third, long
term memory is necessary to handle a microblog conversation. In a long con-
versation, all tweets usually share a common topic, namely background topic.
If a target tweet of which polarity we want to determine, is at the tail of the
conversation flow, the background topic can be distant from sentiment indicator
since topic words are often omitted during the conversation [5].

Some deep learning models have been proposed to tackle above issues. Huang
et al. [10] propose a hierarchical LSTM model to capture the long distance sen-
timent dependency in the microblog conversations. The performance of their
proposed model is further improved by combining other social and text-based
contextual features. Zhao et al. [20] use the following relationships in Twitter to
build heterogeneous networks and incorporate random walks into the LSTM net-
work for personalized sentiment classification. Ren et al. [16] extract the words
in the training corpus as contextual features according to TF-IDF values and
the Convolutional Neural Network (CNN) model is used to further process the
text features for context-sensitive tweet sentiment classification. Feng et al. [5]
introduce attention mechanism into hierarchical LSTM network models to clas-
sify context-aware sentiments in microblogs. The proposed Context Attention
(CA)-LSTM model is capable of learning continuous representations and cap-
turing context dependency by considering both the word order and tweet order
in a conversation. However, none of these models can achieve very satisfying
result for context-aware sentiment analysis task.

In this paper, we consider microblog conversation as a sequence ordered by
time and utilize preceding and succeeding microblogs to enrich the representa-
tion of the target microblog. Besides, we use BERT [3] model to extract the
contextual information at the char-level representation and it is pre-trained on
a large scale of corpus with various topics. These can effectively alleviate spar-
sity problem and incorporate semantic contextual information. And we develop
a hierarchical model with BERT and a BiLSTM layer, which can embed the
contextual information at char level and incorporate the contextual information
at tweet level. This can effectively model the long distance dependency for sen-
timent analysis. In addition, we adopt CRF layer in our model, which enables
model to determine the sentiment not only considering the target microblog
representation but also transitions between the neighboring sentiment. Experi-
mental evaluations show that the proposed model can outperform other reported
methods by a large margin.

The rest of the paper is organized as follows. Section 2 describes the details of
the proposed BERT based sequence sentiment labeling model for context-aware
microblog sentiment analysis. Experimental results are presented and analyzed in
Sect. 3. Finally, Sect. 4 ends upwith conclusions anddiscusses possible futurework.
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2 Methods

In this section, we will describe our proposed model for context-based microblog
sentiment classification in detail. Firstly, we introduce the CA-LSTM model for
sentiment classification, which is currently the stat-of-the-art model for COAE
2015 Context-Sensitive Microblog Sentiment Classification Task.1 Then we will
describe the improvement of our model compared with CA-LSTM model.

2.1 Overview of CA-LSTM Model for Baseline Comparison

To capture the hierarchical sequential structure for microblog sequence, the CA-
LSTM model constructs a hierarchical architecture, as shown in Fig. 1 [5]. The
input of the model is word embedding corresponding to each word. The first
word-level LSTM layer generates representation of a single tweet using the last
hidden state. And the second tweet-level LSTM layer is able to model the con-
textual information of the target tweet. Specifically, the inputs for the tweet-level
LSTM are the representations of tweets in the conversation that is composed of
the preceding tweets and the target tweet. The first tweet is root tweet, while the
others are retweets or references of the root tweet ordered by time with the target
tweet being the last one. It is worth noting that a contextual attention mecha-
nism is adopted to improve the representation of those LSTM units. There are
word-level and tweet-level context attention vectors in CA-LSTM model. Based
on CA-LSTM model, the enhanced vector extracted from microblog sequences
considers not only the features in target microblog, but also the contextual infor-
mation from the preceding microblogs, which gives target microblog a better
context-aware representation.

2.2 The Proposed BERT Based Sequence Sentiment Labeling
Model

The overview of our proposed model architecture is shown in Fig. 2. We propose
a BERT based hierarchical sequence sentiment classification model to build a
context-aware sentiment classifier for microblogs. We firstly exploit BERT to
incorporate contextual information implicitly and generate char-level represen-
tations of the target microblog. Then the representations are fed into an aver-
age pooling layer and BiLSTM layer to generate the tweet-level representation.
Finally, representation is fed into CRF, which determines the sentiment not
only considering the target microblog representation but also the neighboring
sentiment transition.

Embedding Contextual Information Using BERT. The CA-LSTM model
has achieved the state-of-the-art result for the context-aware sentiment classifi-
cation task [5]. In CA-LSTM, LSTM units are used to learn long distance depen-
dency and extract semantic information. In the first word-level LSTM layer, it
1 http://www.ccir2015.com/.

http://www.ccir2015.com/
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Fig. 1. The architecture of CA-LSTM network.

Fig. 2. The overall architecture of the proposed model.

can only generate the representation of a single tweet. Then the second tweet-
level LSTM layer model the context information of the target tweet. However
it has been proved theoretically and practically that self-attention unit achieves
a better performance in terms of learning dependency and computational effi-
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ciency than traditional Recurrent Neural Networks (RNN) [9]. Besides, in [17], it
is proved that self-attention networks perform distinctly better than RNN and
CNN on word sense disambiguation, which means self-attention networks has
much better ability to extract semantic features from the source text. In our
model, we introduce pre-trained BERT model as the semantic extraction layer.
BERT model [3] has achieved a new state-of-the-art performance in eleven natu-
ral language processing tasks. Since BERT is mainly composed of self-attention
unit that has strong long dependency learning ability and computational effi-
ciency, it can learn the contextual information of the whole conversation directly
without separately modeling the different microblogs at word-level layer like CA-
LSTM. With the whole information of the conversation, the semantic feature
can be learned better, and this has been proven in our experiment which will be
demonstrated in Sect. 3.4.

Extra BiLSTM-CRF Layer. In our proposed model, BiLSTM-CRF network
architecture is utilized as an extension of BERT to finetune on the sequence
classification task. BiLSTM-CRF is a deep neural network model for sequence
learning, where BiLSTM layer [7] and CRF layer [13] are stacked together, as
shown at top the Fig. 2. This architecture has been a popular network archi-
tecture on sequence labeling tasks. Inspired by [10,13], we introduce a hierar-
chical architecture to model the context information further at the tweet-level.
To expand the contextual information, we feed the concatenated microblogs of
the same conversation into BERT. Then the char-level feature representations
of the target microblog generated from BERT should include the contextual
information around the target microblog. Different from [5] which only consid-
ers the microblogs before the target as the contextual information, we use the
BERT and BiLSTM layer to generate complete contextual information preceding
and succeeding the target text. In context-aware microblog classification task,
the classification models do not consider the sentimental labels of the contextual
microblog as a part of contextual information, which is actually useful and infor-
mative. It has been proven that the sentimental label is helpful in [14]. With the
help of neighboring sentiment information, the CRF model can achieve a better
accuracy than the classifiers which learn to predict isolated sentence labels.

The Integrated Model for Context-Aware Microblog Sentiment Anal-
ysis. As shown in Fig. 2, we exploit BERT and BiLSTM to extract linguist
feature and use CRF for joint decoding. The representation of tweet-level is
generated by feeding the char-level feature representations into an average pool-
ing layer separately. Then we feed the microblog conversation representation
sequence into the BiLSTM layer. And we concatenate the representations from
the forward and backward directional LSTM of each target microblog to generate
the enhanced conversation representation sequence that composed of n tweets.
Finally we feed them into the CRF model, which determines the sentiment not
only considering the target microblog but also the sentimental dynamics of the
conversation.
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3 Experiment

In this section, the benchmark dataset for context-aware microblog sentiment
classification task is introduced firstly. Then the experiment setup and baseline
algorithms for comparison are described. Finally, the experimental results and
the corresponding analysis are discussed.

Table 1. The statistics of the conversation length in the dataset.

Length 2 Length 3 Length 3+

Percentage 57.8% 25.1% 17.1%

3.1 Dataset

The effectiveness of our proposed model is evaluated on COAE 2015 Context-
Sensitive Microblog Sentiment Classification Task dataset.2 In this dataset, the
official training set were crawled from Weibo.com, the largest Chinese microblog-
ging platform, and contains 2800 examples with Positive, Neutral and Negative
as labels. Besides training set, the test set is also provided by the organization of
COAE task, but the labels of this set are not disclosed. To evaluate models with
the test set, two graduate students were asked to label the testing set [5], and
only the examples with the consistent label are remained, which is about 65%
of the whole testing set. Since Chinese context-sensitive microblog benchmark
dataset is rare and to keep consistent with existing research, the dataset used
in [5] is followed in our experiments.

Table 2. The sentiment drift information of the target and preceding adjacent
microblog.

Target tweet Preceding tweet

Positive Neutral Negative

Positive 764 286 120

Neutral 509 855 466

Negative 60 157 338

In the dataset, there are 4248 labeled Chinese microblogs, which form 555
threads by retweet and reference ‘@’ relationships. From the point of labels, there
are 1571 examples with Positive label, 1647 with Neural label and 1030 with
Negative label. Among the threads, 57.8% threads have two microblog, 25.1%
2 https://github.com/Jiahuan2019Sentiment-classification/coae2015/blob/master/

data.

http://weibo.com/
https://github.com/Jiahuan2019Sentiment-classification/coae2015/blob/master/data
https://github.com/Jiahuan2019Sentiment-classification/coae2015/blob/master/data
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has three microblog and 17.1% has more than three microblogs as shown in
Table 1. The statistics information of sentiment polarity drift between microblog
and their preceding adjacent neighbor in the conversation chain are shown in
Table 2. It can been seen that about 45% microblogs have changed polarities
compared with their neighbors in the conversations. These polarity drifts are
indicated by sentiment labels and features extracted from text, both of these
two information can be captured by our model.

For each microblog thread, there are about 157 chars on average, and 35
chars on average for each microblog. In the dataset, 86.9% data are ‘not-root’
microblog. In our experiment, 4/5 of the whole dataset is selected as training
set and the rest as testing set.

3.2 Baseline Methods for Comparison

We compare our proposed model with several baseline models including the
state-of-art method for context based microblog sentiment classification. As deep
learning models outperform existing traditional algorithms by a large margin,
we focus on recent deep learning models, i.e. RNN models and its variants, such
as RNN, Gated recurrent units (GRU), BiLSTM, Hierarchical LSTM (HLSTM),
etc.

GRU. GRU is designed to have more persistent memory thus theoretically mak-
ing it easier to capture long-term dependencies. The GRU model has two types
of gates: the update gate and the reset gate. GRU model has fewer parameters
to train and the training time can be less than the vanilla LSTM model [8].

BiLSTM. The basic idea of BiLSTM is to connect two LSTM hidden layers
of opposite directions to the same output. Because the BiLSTM model looks at
the sequence twice (from left to right and right to left), the output layer can get
information from past and future states and the contextual information can be
handled well [18].

HLSTM. Capturing this hierarchical sequential structure for text can poten-
tially give the RNN models higher predictive accuracy [2], as seen in previous
works [4,6,15,21]. The similar hierarchical LSTM network has been adopted
by [10] for modeling the microblog conversations.

CA-LSTM. The CA-LSTM network has a hierarchical structure for modeling
microblog sequence and allocates the words and tweets with different weights
using attention mechanism [1,5]. With the help of the word-level and tweet-level
attentions, CA-LSTM can capture the long distance dependency in microblog
conversation and infer the sentiment polarities of context-sensitive words and
tweets.
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BERT. As aforementioned, BERT is pre-trained on a large scale of corpus,
which can effectively alleviate the sparsity problem of feature space and give
neural model a better training initialization [3]. In our experiments, we finetune
BERT on the training set with a softmax output layer and without feeding the
contextual text but only the target microblogs.

BERT with the Context. This model has a single different setting compared
with BERT described in previous subsection, which is feeding the contextual
information of the target microblogs to BERT directly. This is implemented
by concatenating all the microblogs in the same conversation and feeding the
whole string into BERT. By comparing the performance between BERT and
BERT with contextual information, we can evaluate the improvement from the
context.

BERT with the Context + CRF. This model is to finetune BERT pre-
trained model with CRF layer on the training set, which converting the classifi-
cation task of the target microblogs to a sequence labeling task. The CRF layer
not only considers the input features extracted from source text, but also the
sentiment from neighboring microblog in the same conversation. By comparing
the performance of BERT with the context, we can evaluate the performance
increment by the CRF layer.

3.3 Hyper-parameters

We use Chinese BERT-Base model3 and it has 12 layers, 768 hidden states and
12 heads. For finetuning, all hyper-parameters are tuned on the training set. The
maximum length is 400, the batch size is 16. Adam [11] is used for optimization
with an initial learning rate of 2e-5. The dropout probability is 0.1. In BiLSTM
and CRF layers, the hidden state size is 256. The maximum epoch number for
training is 30.

3.4 Experimental Results

The hyper-parameters are tuned for all above mentioned models using training
dataset to achieve the best performance [5]. The experimental results are shown
in Table 3.

Table 3 shows that BERT-based models have better performance compared
with the RNN networks by a large margin. Even without the contextual infor-
mation, the performance of BERT exceeds CA-LSTM by a relative large margin.
We think the reason is that the pre-trained BERT model can effectively allevi-
ate the sparsity problem of feature space and give neural network model a good
training initialization.

3 https://github.com/google-research/bert.

https://github.com/google-research/bert
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Table 3. Experiment results of the DNN models.

Model Context Accuracy Precision Recall MacroF1

GRU No 0.5894 0.5959 0.5839 0.5794

Yes 0.6188 0.6059 0.6012 0.6019

LSTM No 0.6153 0.6100 0.5900 0.5815

Yes 0.6205 0.6145 0.6058 0.6057

Bi-LSTM No 0.6118 0.5921 0.5855 0.5802

Yes 0.6268 0.6196 0.6189 0.6183

HLSTM Yes 0.6401 0.6123 0.6320 0.6101

CA-LSTM Yes 0.6518 0.6368 0.6369 0.6362

BERT No 0.6745 0.6699 0.6755 0.6722

Yes 0.8278 0.8168 0.8154 0.8147

BERT+CRF Yes 0.8344 0.8254 0.8274 0.8256

BERT+Bi-LSTM+CRF Yes 0.8461 0.8348 0.8381 0.8358

By comparing the performance between BERT and BERT with context, we
can evaluate the gain brought by contextual information, which is 15.33% abso-
lute increment on accuracy, while the performance increments by context in
RNN networks are less than 3%. This demonstrates the effectiveness of learning
contextual information by concatenating the sequential microblogs and feeding
them directly into the BERT.

We can also see finetuning with the CRF layer also bring 0.66% absolute
increment on accuracy compared with BERT+context, which indicates the effec-
tiveness of considering the neighboring sentiment transitions.

We add the BiLSTM layer before feeding the tweet-level representation into
the CRF layer. By comparing the performance between BERT+CRF with BiL-
STM and without BiLSTM, we can see this BiLSTM layer can increase 1.17%
absolute value on accuracy, this demonstrates that there is some scope at the
tweet-level representation to improve.

According to the experimental results, the pre-trained BERT model is able to
alleviate the sparsity problem of feature space and increase the sentiment clas-
sification performance by a large margin. Based on the Bert, adding the context
and hierarchical architecture can effectively capture context-aware sentiments
with long distance contextual dependency in microblog conversations. Besides,
we adopt CRF layer to consider the sentimental dynamics and this results in
further improvement.

4 Conclusion

In this work, we propose a BERT based sequence classification model which
incorporates the contextual information with the target microblog for context-
aware microblog sentiment classification task. By using the pre-trained BERT
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with self-attention units and hierarchical architecture, our model can capture
the long distance dependency in microblog conversations. In addition, the CRF
layer determines the sentiment not only considering the target microblog rep-
resentation but also the neighboring sentiment transitions. According to the
extensive experiments on a public Chinese context-aware microblog sentiment
classification dataset, it is demonstrated that our model outperforms the state-
of-the-art model by a large margin. The pre-trained BERT model adopted in this
work was trained using corpus of Chinese Wikipedia text, the expression style
in Wikipedia is much different from that of microblogs, thus post-training the
BERT-base model with microblog corpus will be further explored in our future
work.
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Abstract. Response generation is an important direction in conversa-
tion systems. Currently a lot of approaches have been proposed and
achieved significant improvement. However, an important limitation has
been widely realized as most models tend to generate general answers. To
cope with this limitation, besides the needs of more sophisticated genera-
tion models, how to use extra information is also an important direction.
In this research, inspired by the importance of topics in conversation, we
proposed a topic aware context modelling framework by utilizing similar
question answer pairs in the repository. Furthermore, we use adversarial
learning to improve the quality of generated response. The experimental
study has shown the propose framework’s potential.

Keywords: Dialogue response · Topic · Context · Adversarial

1 Introduction

Automatic chatbot has recently attracted much attention in the natural language
processing area. It can be used in a lot of applications such as customer relation-
ship management. In a chatbot system, how to generate proper response given
a question is one of the most fundamental tasks. Earlier work focused on rule-
based and instance-based methods. For example, Banchs et al. [2] introduced an
instance-based dialog system based on a large conversational data set that uses
a dual search strategy to complete the conversation. At the same time, Wang
et al. [21] proposed a retrieval-based automatic question-and-answer model by
constructing a short text dialogue data set of Sina Weibo, which is a popular
social network service in China.

Recently, due to the development of deep learning, especially the emergence
of end-to-end learning algorithms, a lot of advanced chatbot systems have been
proposed. seq2seq is one of the most popular approaches and has been widely
lauded as a promising solution for this task [7]. A typical seq2seq based model is
an Encoder-Decoder model consisting of two recurrent neural networks to encode
the source statement and map it to a fixed length. The vector space is decoded
by another RNN to the vector space of the target statement [4].

Though seq2seq model has been widely employed and can generate smooth,
grammatically compliant responses [8,10], it has a significant limitation, or called
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11955, pp. 387–397, 2019.
https://doi.org/10.1007/978-3-030-36718-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36718-3_33&domain=pdf
https://doi.org/10.1007/978-3-030-36718-3_33


388 D. Chen et al.

“safe response” problem [18], which means the model tends to generate some
general responses, thereby making the chatbot far from practical use [14]. To
overcome this challenge, some more sophisticated models are proposed, e.g, Hier-
archical Recurrent Encoder-Decoder (HRED) [16], Conditional Variation Auto
Encoder (CVAE) [5], Attention and so on. Such advanced methods have achieved
significant improvement indeed.

Besides employing new models towards answer generation, another impor-
tant thought is to add extra information to help generate more diverse responses.
For example, Li et al. proposed to integrate user identity to help generate more
personalized responses [9]. Asghar et al. discussed the importance and feasi-
bility of employing emotion information to help generate diverse responses [1].
It has been justified that using extra knowledge is able to help generate more
meaningful text [20].

In this research, we proposed a framework to help generate diverse response
by utilizing the topics in improving meaningful response due to the importance of
topic in conversation [20]. Furthermore, it is also expected that similar question
answer pairs in related to the submitted question could probably help to gener-
ate diverse meaningful response since there are usually a lot of similar question
answer pairs already existed in the repository. It is essential to utilize this kind
of information to help find accurate topics. To further help improve the overall
performance, in this research we employed the idea of adversarial learning [23]
to further help the topic aware encoding and decoding during the response gen-
eration process. To verify the proposed framework, we generate a dataset from
Tianya Wenda1, one of the most popular social question answering platform in
China and the experimental study on the dataset against popular benchmarks
has shown the framework’s potential.

The rest of the paper is organized as follows. Section 2 will briefly intro-
duce the related work to the response generation and Sect. 3 will elaborate the
proposed framework. The experimental study will be illustrated in Sect. 4 and
Sect. 5 will conclude the paper.

2 Related Work

Response generation is a hot topic in recent years and has attracted much atten-
tion. Though most existed models have shown possible feasibility, there is a
fundamental challenge in the community, normally referred as “safe response”
problem [11]. To overcome this limitation, researchers put forward several dif-
ferent solutions and a lot of advanced response generation models have been
proposed in the community.

Earlier approaches normally use rule-based and instance-based strategy to
generate possible responses [2,21]. Though this kind of approaches is easy in
implementation, the performance is not satisfied for open ended questions. Later
on, seq2seq and its variant models have been widely lauded as promising solu-
tion for this task. For example, Shang et al. [17] proposed using a recurrent
1 http://wenda.tianya.cn/.

http://wenda.tianya.cn/
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neural network to generate responses to short text conversations. Based on the
Encoder-Decoder framework, they proposed the Neural Responding Machine
(NRM) and both encoding and decoding use recurrent neural networks. Simi-
larly Shao et al. [18] proposed to add attention mechanism in the decoding stage.
Li et al. [8] proposed an objective function based on mutual information based
on the assumption that the original objective function tends to generate words
with large marginal probability, which leads to a safe response by introducing
source and target statements in the objective function. More recent advanced
samples in this direction also include HRED and CVAE based approaches [16].

Besides proposing new models, some researchers have argued the importance
of employing auxiliary information towards meaningful response [19]. For exam-
ple, from the perspective of the speaker, Li et al. [9] proposed a speaker-based
neural network dialogue model, which can capture the nature of dialogue between
two speakers, including background information and style of speech. Their model
has a large improvement in the perplexity and BLEU scores compared to the
basic models, and the persistence of the dialogue. Similarly Xing et al. [22] pro-
posed the introduction of topic information based on the sequence-to-sequence
model. Its core idea is when constructing the dataset, a twitter-LDA [24] topic
model is to used to infer the topic of the problem and selected the words with
higher probability under the topic.

Another direction is to employ more sophisticated learning techniques to
solve the problem. For example, Li et al. [10] used reinforcement learning directly
on the generative question and answer. They proposed that the recent neural
network model can be used to construct a dialogue system that automatically
generates answers. Gasic et al. [6] proposed a dialogue management system based
on POMDP (Partially Observable Markov Decision Process), which can quickly
adapt to new fields by extending some core concepts and combining reinforce-
ment learning. Yu et al. [23] applied the adversarial generation model to the
generation of Chinese ancient poetry and achieved excellent results. The adver-
sarial generation model can greatly alleviate the safe response problem, and it
also has excellent performance when it is used as an evaluation standard by
artificial scoring, which has great potential.

3 Methodology

In this framework, we will firstly try to find topics for the submitted question, and
then also find similar question answer pairs in related to the submitted question
to construct the context information for the submitted question. Afterwards we
will utilize the context into the encode and decoder process to help generate
diverse meaningful response.

3.1 Topic Aware Context Modeling

Considering there are normally a large number of question answering pairs in
the repository, it is feasible to find similar question answer pairs as auxiliary
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background in relation to the given question. Based on this assumption, in this
research, we employ classical BM25 [15] to find similar question answer pairs
in related to the submitted question. The first step is to calculate the inverse
document frequency (IDF) value of the word. The second step is to build an
inverted index table and its purpose is to avoid redundant calculations and
optimize the calculation speed. The third step is to calculate the most relevant
question and answer pairs in the knowledge base for each submitted question.
According to the above steps, the background information of the give question
can be obtained.

After getting the background information of a question, the next step is to
get the topics about the question and its related background information. In this
research we utilize classical Latent Dirichlet Allocation (LDA) topic model [3] to
infer the subject of the questions and take out the high probability words under
the theme. By training the classical LDA theme model, we can calculate two
probability distributions. One is the document-theme distribution and another
is the topic-word distribution.

3.2 Topic Aware Context Based Encoder

The encoder proposed in this paper is as shown in Fig. 1, which consists of three
parts. The first one is the recurrent neural network (RNN) based encoder for
submitted question. The second one is also RNN based encoder for the relevant
question and answer pairs. The third one is a multi-layer perception (MLP)
responsible for the encoding topic words.

Fig. 1. Context aware encoder
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The purpose of using this encoder structure is to explore the relevant ques-
tions and answers and the topic words that help generate high quality responses.
The whole structure will generate four semantic vectors, among which the ques-
tion answer pairs part will generate two independent vectors.

For submitted question and similar question answer pairs encoding, RNN is
a typical model to generate semantic vectors, respectively. Assume the dimen-
sion of the word matrix E is V × embsize, V is the total number of words in
the dictionary, and embsize is the dimension of the word vector, we can define
a mapping function named lookup, which is the output The word vector corre-
sponding to the word number, such as the word numbered 0, outputs the first
line vector of the word matrix E. The second step is to input w1 to wm into the
RNN. As such the final output of [h1, h2, h3, ..., hm] is a set of semantic vectors.

ht = (1 − zt)ht−1 + zj
t δht (1)

zj
t = σ(Wzwt + Uzht−1) (2)

δht = tanh(Wδwt + Uδ(rt � ht−1)) (3)

rt = σ(Wrwt + Urht−1) (4)

For the multi-layer perception for encoding topics, assuming that the topic
words vector is xi, i = 0, 1, ..., n, n refers to the index topics words, the topic
words ca be encoded as follow:

vi = tanh(MT xi + b) (5)

where MT is a matrix of Dimsize, Dim refers to the dimension of the word vector,
and b is the bias term. The resulting [v0, v1, ..., vn] is the topic words vectors.

3.3 Topic Aware Context Based Decoder

The proposed decoder is shown in Fig. 2, where we need to consider the topics
during the decode process. Assuming that the word probability vector output
by the decoder is Pw, the word probability vector of the topic word is PB by
making the soft weight of the background word, and the weight of the i-th word
in the vocabulary can de defined as wi:

wi =

{
0, i /∈ B∑

i wB
i , i ∈ B

(6)

where the summation symbol in the formula refers to the sum of the weights of all
the i-th words. wB

i is the weight of the word in the background, and softmax can
be obtained for w, i.e., PB = softmax(w). Therefore the final word probability
generated is defined as::

PFi
=

{
PWi′ , i /∈ B

PWi
+ αPBi′ , i ∈ B

(7)
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Fig. 2. Context aware decoder

where α is an enhancement factor, describing the size of the influence of back-
ground words on the generated response, and the larger the value, the greater
the impact.

To further enhance the decode performance, we also use attention mechanism.
Suppose that the hidden state in the i-th decode step is si, and the set of
semantic vectors from the encoder is [h1, h2, ...hm], then the attention weight of
each semantic vector is defined as:

aij =
f(si, hj)∑
k f(si, hk)

(8)

f(si, hj) = vT
a tanh(W1si + W2hj) (9)

4 Experimental Study

4.1 Dataset and Configuration

The experimental data set contains 6 million question and answer pairs, crawled
from Tianya Q&A. After segmentation using the word segmenter, the average
length of the questions is 9.338 words, and the average length of the responses
is 9.096 words. In order to satisfy the independence between the data set used
to generate the model and the search model data set, we divided the 6 million
questions and answers into two parts. The first part is called D1, which is the
knowledge base as the retrieval model and used to train the LDA theme model.
The second part is defined as D2, divided into training sets and test sets by 8:2,
used to train the generated dialogue model.

In the experiment, we implemented BM25 algorithm on the data set D1.
When the request is input, the program returns the k question and answer pairs
most relevant to it. We also directly used the python gensim package to train
the LDA theme model. Considering the total number of words and the size of
the dictionary, the number of topics in the experiment is set to 50. Training the
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LDA theme model will first save the strong 200 words under each theme. Due to
computer performance limitations, only the top 50 words under the theme are
involved in the training of the generated model.

Figure 3 shows the construction of a background-aware data set. First, use
D1 to build the BM25 retrieval model, and train an LDA topic model, record
the 50 most probable words under each topic to the file topic words.txt; for each
sample (q, a) in D2, use BM25 from Select the most relevant question and answer
pair in D1, get the sample (q, a, c); use the LDA model to infer the subject t of
(q, a), get the sample (q, a, t); merge (q, a, c) and (q, a, t), we can obtain samples
(q, a, c, t).

Fig. 3. Experimental data set construction

4.2 Results and Analysis

In order to better evaluate the performance of the model, we selected the evalu-
ation metrics with Greedy Matching (GM), Embeding Average (EA) and Vector
Extreme (VE) [12]. The baseline models are traditional Seq2Seq, RCNN, CA,
Seq2seqBM, RCNNBM, CABM. In this section, we use CE to indicate the pro-
posed model and two different α is also considered.

The overall performance of the proposed framework against all baselines are
listed in Table 1. It is found from that table that the context aware encode decode
framework can improve the diversity of the response, while the improvement in
terms of similarity is not obvious. From the results of experiments of lines 7 and 8,
it can be found that with the increase of the enhancement factor, the diversity is
increased and the similarity slightly decreased. Considering the increase in the
enhancement factor, the probability of background word generation increases,
and the result is in line with our expectations. In addition, using the maximum
likelihood estimation training model, considering the marginal probability of the
security sample, it is difficult to improve the diversity of the model to a certain
extent.

Table 2 shows the performance of the semantic evaluation, which is mainly
used in the offline testing phase to select responses with higher semantic scores.
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Table 1. Similarity assessment and diversity assessment

Seq Model GM EA VE Distinct

1 Seq2seq 0.739995 0.891978 0.927852 0.162096

2 RCNN 0.738256 0.890657 0.926255 0.152166

3 CA 0.737784 0.889459 0.926193 0.154732

4 Seq2seqBM 0.745508 0.899429 0.930630 0.129898

5 RCNNBM 0.745356 0.899824 0.929974 0.128734

6 CABM 0.739452 0.891713 0.926812 0.157761

7 CEa=1 0.741951 0.891856 0.921084 0.224890

8 CEa=10 0.740210 0.887253 0.913598 0.244705

9 Ground – – – 0.579080

The assessment is based on the Deep Semantic Matching Model (DSSM), which
is mentioned above as a powerful tool for constructing sentence vectors. The indi-
cator used is Topk@N [13], which means that among the N alternative answers,
the score of the correct answer is in the top k, such as Top2@5 refers to 5 choices,
among which 2 are accurate.

Table 2. Semantic evaluation model performance

Index Accuracy

Top1@2 0.70944

Top1@5 0.40855

Top2@5 0.65421

Top1@10 0.26882

Top2@10 0.41702

Top5@10 0.77216

Table 3 shows the results of the semantic evaluation against other baselines.
It can be seen from the table that the three models based on the greedy decoder
(sequence 1, 2, 3) have similar scores, while the cluster based decoder scores are
not satisfied.

Table 4 shows the results of the adversial assessment. The adversial assess-
ment reflects the gap between the response and the real response. The higher the
score, the better the performance of the model. From the results, it can be seen
that the performance of the background enhancement decoder is significantly
higher than other models. Combined with the results of diversity, we can infer
that the diversity of responses is strongly correlated with the scores of adversial
assessments, and increasing the diversity of models is conducive to generating
closer to manual responses.
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Table 3. Semantic evaluation result

Seq Model Score

1 Seq2seq 0.666681169

2 RCNN 0.656602106

3 CA 0.656193612

4 Seq2seqBM 0.636741288

5 RCNNBM 0.632538633

6 CABM 0.657613024

7 CEα=1 0.623462068

8 CEα=10 0.623878515

Table 4. Confrontation assessment results

Seq Model Score

1 Seq2seq 0.0185

2 RCNN 0.0150

3 CA 0.0185

4 Seq2seqBM 0.0175

5 RCNNBM 0.0190

6 CABM 0.0180

7 CEα=1 0.0440

8 CEα=10 0.0425

From the results of the whole experiment, the background perception gener-
ation model proposed by us has greatly improved the diversity, but the improve-
ment in relevance and similarity is not obvious, and there is still room for
improvement.

5 Conclusion

In this paper, we have conducted in-depth research on dialogue response gener-
ation model and tried to improve the problems of “safety response” challenge.
The assumptions we put forward are that the information that the model can
process is not rich enough. Based on this assumption, we proposed a topic aware
context based encode/decode model for dialogue response generation. We firstly
tried to get topic information for the submitted question by analyzing the simi-
lar question answer pairs. Afterwards an advanced encode decode framework is
proposed. The experimental study has shown that this model can alleviate the
problem of “safe reply”.
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Abstract. A short and simple text carrying no emotion can represent
some strong emotions when reading along with its context, i.e., the same
sentence can express extreme anger as well as happiness depending on
its context. In this paper, we propose a Contextual Affect Detection
(CAD) framework which learns the inter-dependence of words in a sen-
tence, and at the same time the inter-dependence of sentences in a dia-
logue. Our proposed CAD framework is based on a Gated Recurrent
Unit (GRU), which is further assisted by contextual word embeddings
and other diverse hand-crafted feature sets. Evaluation and analysis sug-
gest that our model outperforms the state-of-the-art methods by 5.49%
and 9.14% on Friends and EmotionPush dataset, respectively.

Keywords: Emotion classification · Emotion in dialogue · Contextual
word embedding

1 Introduction

It becomes quite natural for us to gauge the emotion of a person if they explicitly
mention that they are angry, sad or excited or even if they use the corresponding
emojis at the end of the sentence, but what if there happens a drift in emotion
while having a series of conversation between two people? And what if they stop
using emotional emojis after a certain point of time even though they continue
to be in the same state of emotion. Even human annotators may be confused
if they do not consider context. Given that, even face-to-face conversation is
confusing, sometimes, it should not be a matter of surprise if there could be a
misinterpretation in textual conversations. The situation can get worse if there is
a multi-party1 conversation. In this scenario, emotion of one speaker can change
due to the utterance of the second speaker, and can again be switched due to
the intervening of the third speaker. We have to be attentive to every speaker
in the conversation or else our context would be lost.

1 Multi-Party conversation refers to the one having more than two speakers.
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Although a significant amount of research has been carried out for emotion
analysis, only in the recent time there is a trend for performing emotion analysis
of the dialogues in order to build an effective and human-like conversational
agent.

Our current work focuses on detecting emotions in a textual dialogue system.
We aim at labeling each utterance of a dialogue with one of the eight emotions,
which comprises of Ekman’s [4] six basic emotion tags, i.e., anger, fear, sad-
ness, happiness, disgust and surprise plus neutral and non-Neutral2 emotion.
An example instance is depicted in Table 1. If we look at the last utterance in
the table i.e., There was no kangaroo!, it can be considered as neutral but while
we consider its previous context, it should be assigned with the anger class.

Table 1. Example utterances of a dialogue with their speaker and emotion label from
EmotionLines [1] 2018 dataset

Speaker Utterance Emotion

Chandler Good job Joe! Well done! Top notch! Joy

Joey You liked it? You really liked it? Surprise

Chandler Oh-ho-ho, yeah! Joy

Joey Which part exactly? Neutral

Chandler The whole thing! Can we go? Neutral

Joey Oh no-no-no, give me some specifics Non-Neutral

Chandler I love the specifics, the specifics were the best part! Non-Neutral

Joey Hey, what about the scene with the kangaroo?
Did-did you like that part?

Neutral

Chandler I was surprised to see a kangaroo in a World War I
epic

Non-Neutral

Joey You fell asleep!! Anger

Joey There was no kangaroo! Anger

Our deep neural network framework follows a stacking structure which uti-
lizes bidirectional gated recurrent unit (Bi-GRU) arranged in an hierarchical
form. The lower Bi-GRU produces utterance level embeddings, and the upper-
level Bi-GRU makes use of these embeddings to capture the contextual informa-
tion in the dialogue. Some handcrafted features are incorporated at the different
levels of the model to capture more linguistic evidences, which eventually found
to be effective compared to the other models. We evaluate our proposed sys-
tem on the benchmark dataset of EmotionLines 2018 [1]. We observe that our
proposed framework attains better performance compared to the state-of-art
model.

2 Non-Neutral emotion refers to the one having no majority voting of any one emotion
type.
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2 Related Work

Emotion detection and Sentiment classification have always been a hot research
topic in the area of Natural Language Processing (NLP). Existing research on
emotion detection have mostly focused on textual contents. In recent times,
deep neural nets are being used very extensively to perform emotion analysis
in a variety of domains, mediums and languages. Some of the most widely used
models for capturing emotions include Convolutional Neural Network (CNN)
[11] and Recurrent Neural Networks (RNN) [14] like Long-Short Term Memory
(LSTM) [12] and Gated Recurrent Unit (GRU) [2]. All these works focus on to
classifying emotions at the sentence level or utterance level, and thus cannot
capture the context and inter-dependence among the utterances in dialogue.

[17] proposed a network which made use of bidirectional long contextual
short-term memory to detect the emotion of an utterance in dialogue and named
it as bcLSTM. Later on, [6] improved bcLSTM by introducing a memory net-
work which makes use of speaker information as well for context modeling. The
authors in [13] used Bi-LSTM to capture word dependencies and to extract
relevant features for detecting various emotions. On top of that, they applied
self-attention [21] to capture the inter-dependencies between the utterances of
a dialogue. The work reported in [18] uses hierarchical attention network model
[22] to embed contextual information among the utterances in a dialogue. [8]
used a bidirectional gated recurrent unit (Bi-GRU) [3] fused with self-attention
[21] and its word embeddings to efficiently utilize word-level as well as utterance-
level information.

Our proposed model differs from the existing models in the sense that we
derive deep contextualized representation of each word in an utterance, and
then incorporate it into the model as a feature along with the pre-trained Glove
word embedding [15]. We acquire these word embedding from the pre-trained
ELMo [16] model. These representations take the entire context into account.
Being character based, they allow the network to use morphological cues to
form robust representations for out-of-vocabulary words unseen in training. We
use hierarchical Bi-GRU to learn the context in a dialogue fused with various
handcrafted features obtained through transfer learning over similar tasks.

3 Proposed Methodology

In this section, we describe our proposed framework in details. Unlike the pre-
vious models, which performed exceptionally well in predicting some emotions
follows complex architecture. Evaluation shows that a model which performs
very well for a specific emotion class compensates with the lower performance in
other emotion classes (i.e. performs at the cost of other classes). In contrast, our
model is straightforward and efficient, and at the same time outperforms every
different models with significant margins. It consists of two layers of hierarchy-
the lower layer is for encoding the utterances (named as utterance-encoder), and
the upper layer is for encoding the dialogues (named as dialogue-encoder).
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Fig. 1. Proposed architecture

Given a batch/dialogue3, firstly the individual utterances are passed through
utterance-encoder which comprises of a recurrent layer (biGRU) followed by a
max-pooling layer. GRU learns the contextual representation of each word in an
utterance, i.e., the representation of each word is learned based on the sequence
of words in the utterance. Subsequently, we apply max-pooling over the hidden
representation of each utterance to capture the most important features over
time. The obtained utterance representations form the input to the dialogue-
encoder, which again comprises of biGRU to capture the contextual information
of each utterance in a dialogue. Since the task is to classify each utterance of a
dialogue, the hidden representations of biGRU over the time are passed through
fully connected layer followed by Softmax to obtain the corresponding emotion
label. Further, the inputs to utterance encoder and dialogue encoder are assisted
by a diverse set of hand-crafted features (c.f. Sect. 3.1) for the final prediction.
Figure 1 depicts our proposed architecture.

3.1 Hand-Crafted Features

We make use of transfer learning to capture important evidences obtained from
the various state-of-the-art pre-trained deep learning models. Following sub-
sections explain these models in details:

– DeepMoji [5]: DeepMoji performs distant supervision on a very large dataset
[20] (1.2 billion tweets) comprising of noisy labels (emojis). By incorporating
transfer learning on various downstream tasks, they were able to outperform
the state-of-the-art results on 8 benchmark datasets on 3 NLP tasks across
the five domains. DeepMoji can give an excellent representation of text which

3 We treat each dialogue as one batch.
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can be incorporated in any sentiment or emotion detection model to improve
the performance. Since our target task is closely related to this, we adopt
this for our domain and extract the embeddings of 2304 dimension from the
attention layer, which acts as the utterance embedding feature for upper-level
(dialogue-encoder) of the model.

– ELMo [16]: Unlike traditional word embedding techniques, ELMo makes use
of bidirectional LSTM network to create word representations. This biLSTM
is trained with a coupled language model objective on a large text corpus.
Thus we can say, each word representation is a function of the entire sentence.
It analyses the words within the context that they are used, thus capturing
the syntactic as well as semantic characteristics of the words and also take
care of variance across the linguistic contexts. Also, being character based, we
can have representations of out-of-vocabulary words as well. Since it is proven
that the addition of ELMo representations can improve the performance of
any NLP model, we incorporate it into our model along with the pre-trained
Glove word embedding. To reduce the processing time, we extracted the 1024
dimensional ELMo word embeddings beforehand instead of creating it during
the process.

3.2 Word Embedding

Embedding matrix is generated from the pre-processed text using a combination
of pre-trained and deep contextualized word embedding:

1. Pre-trained GloVe embeddings for tweets [15]: We use 300-dimensional
pre-trained GloVe word embeddings, trained on the Twitter corpus, for the
experiments. The glove is a count-based model that captures the count of the
word, i.e., how frequently it appears in a context.

2. Deep contextualized ELMo embeddings [16]: We extract 2304 dimen-
sional word vectors from ELMo embedding model, which learns the embed-
ding from an internal state of biLSTM and represents word-level contextual
features of the input text.

We finally concatenate the word representation of both the embeddings, which
act as input to the utterance-encoder (lower level).

4 Experiments and Results

4.1 Dataset Description

For experiments, we use the benchmark dataset of EmotionLines 2018 [1], which
is an emotion annotated corpus of multi-party conversation. The dataset com-
prises of two individual corpus of dialogue set extracted from two different
sources, one from the famous TV show scripts named Friends, and the other
from human to human chat logs on Facebook messenger through an application
called EmotionPush.
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Table 2. Statistics of EmotionLines 2018 [1] dataset

Dataset #Dialogues (#Utterances) Emotion label distribution

Train Validation Test Neu Joy Sad Fea Ang Sur Dis Non

Friends 720

(10,561)

80

(1,178)

200

(2,764)

6530 1710 498 246 759 1657 331 2772

EmotionPush 720

(10,733)

80

(1,202)

200

(2,807)

9855 2100 514 42 140 567 106 1418

1. Friends TV series data: The Friends script was crawled, and each scene
of an episode was treated as a dialogue. Thus each dialogue consists of mul-
tiple speakers. [1] separated the dialogues based on its window size4 of [5, 9],
[10, 14], [15, 19], and [20, 24]. Finally, they randomly collected 250 dialogues
from each- thus creating a corpus of 1000 dialogues, which are further split-
ted up into 720, 80, and 200 dialogues for training, validation and testing,
respectively.

2. EmotionPush Chat log data: This data was collected by crawling the pri-
vate conversation among the friends on facebook messenger with the help of
EmotionPush app. To protect the private information of the users like names,
organizations, locations, email address, and phone numbers, they used a two-
step masking procedure. They treated the conversations lasting not more than
30 min as a dialogue. Finally, they make use of the same procedure for sam-
pling and categorizing as they used for Friends TV script and collected 1000
dialogues which were again divided in the same ratio for training, validation,
and testing.

Table 2 shows the distribution of both Friends and EmotionPush datasets in
terms of the number of dialogues, the number of utterances, and the number of
emotion labels. To compare our model we follow the setup of [7] and evaluate its
performance only on four emotions, i.e., anger, joy, sadness and neutral on both
Friends and EmotoinPush datasets, and excluding all the other emotion classes
during training of our model. We ignore other emotion classes by setting their
corresponding loss weights to zero. Figure 2 depicts the distribution of emotion
classes into train, validation, and test set for both Friends and EmotionPush
datasets.

4.2 Pre-processing

Friends data consists of scene snippets containing multi-speaker conversation,
while EmotionPush data includes Facebook messenger chats between two indi-
viduals. Both datasets contain some incomplete sentences and excessive use of
punctuations. In addition to it, EmotionPush data also contains emoticons which
are absent in the Friends data. We believe that the reason behind it is that
Friends data is the script which is collected by converting audio to text. We
perform the following pre-processing steps:
4 Window size refers to number of utterances in a dialogue.
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Fig. 2. Emotion class distribution of Friends and EmotionPush dataset

(i) all the characters in text are converted to lower case; (ii) remove punctu-
ation symbols except ! and ? because we believe ‘!’ and ‘?’ may contribute to a
better understanding of intense emotions like surprise and anger; and (iii) remove
extra space, emoticons and the newline character. Finally, we perform word tok-
enization to construct the vocabulary of words and symbols. The tokens, thus,
collected are mapped to their corresponding 300-dimensional Glove vectors.

4.3 Experiments

We pad each utterance to a maximum length of 50 words. The GRU dimension is
set to 300 for both lower and upper level. We employ 300 plus 1024 dimensional
word embeddings and 300 plus 2304 dimensional sentence embeddings for the
experiments. We use Tanh activation and set the Dropout [19] as 0.5 in order
to prevent the model from overfitting. We optimize our model using Adam opti-
mizer along with weighted categorical cross-entropy loss functions for emotion
classification. From Table 2, it is clear that EmotionLines data suffers from class
imbalance issue. We follow [9] to prevent our model from getting biased towards
more frequently occurring emotion classes-thereby providing larger weights to
the losses corresponding to less frequently occurring classes and vice-versa.

We conduct our experiments on the Pytorch framework5. We adopt the offi-
cial evaluation metric of EmotionX 2018 [7] shared task, i.e. weighted accuracy
(WA) (Eq. 1) and un-weighted accuracy (UWA) (Eq. 2), for measuring the per-
formance of our model. We train our model for the maximum 50 epochs with
early stopping criteria on validation accuracy, having the patience of 10. We
initialize the learning rate by 0.00025 with the decaying factor of 0.5 on every
15 epochs.

WA =
∑

cεC

pc.ac (1)

UWA =
1
|C|

∑

cεC

ac (2)

5 Pytorch Home Page. http://www.pytorch.org/.

http://www.pytorch.org/.
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where ac refers to the accuracy of emotion class c and pc refers to the percentage
of emotion class c in the test set.

Table 3. Experimental results on Friends and EmotionPush datasets. F(E) denotes
that the training is done on the corresponding dataset while F+E indicates that training
is done on both Friends and EmotionPush dataset.

Friends dataset EmotionPush dataset
Framework used Train data

WA UWA WA UWA

HiGRU [8] F(E) 74.4 67.2 73.8 66.3

HiGRU-sf [8] F(E) 74 68.9 73 68.1

HiGRU-sf F+E 69 64.8 77.1 70.2

CAD F(E) 75.94 74.39 86.24 80.18

Class accuracies
Neu: 75.14 Joy : 83.88

Sad : 65.88 Ang : 72.67

Neu: 87.62 Joy : 83.84

Sad : 73.56 Ang : 75.68

Table 3 shows the evaluation results of the top-performing existing models
so far compared with that of our proposed framework. In the table, HiGRU and
HiGRU-sf are proposed by [8]. Results show that our model outperforms all the
other models with a significant margin. Further, we observe the improvement to
be statistically significant with 95% and 99% confidence on Friends and Emo-
tionPush dataset, i.e., the p-value is less than 0.05 for paired T-test [10] of both
the datasets. On Friends dataset, our model reports un-weighted and weighted
accuracy of 74.39% and 75.94% as compared to that of 68.9% and 74.4% of the
state-of-art models, thus improving them by 5.49% and 1.54%. On the other
hand, our CAD framework performs better on EmotionPush dataset as well,
reporting the unweighted and weighted accuracies of 80.18% and 86.24%, respec-
tively, as compared to that of 70.2% and 77.1% in the state-of-art model, thus
giving an increment of 9.14% and 9.98%. It is worth noticing that the accuracy
of anger in EmotionPush dataset increases by 17.38 points without compen-
sating with the other classes. This implies that for all the emotion classes our
framework performs reasonably competent with the accuracies being balanced
and not biased to any specific class.

To test the correctness of our prediction, we adopt some examples where the
emotion drift occurs over an extended context. It can be seen from the Table 4
that rare emotions are predicted correctly. Thus we can say that our model
captures the contextual information in the dialogue pretty well.

4.4 Error Analysis

In Fig. 3, we show the confusion matrices for both the datasets (i.e., Friends and
EmotionPush) for quantitative analysis. We find that joy and sad emotions are
mostly confused with neutral, possibly due to the absence of affective words and
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Table 4. A set of two dialogues from Friends’ test set showing the correct predictions
of rare emotions

Speaker Utterance True emotion Predicted emotion

Nurse This room’s available Neutral Neutral

Rachel Okay! Joy Joy

:
:

Rachel You listen to me! Anger Anger

Chandler Hey! Joy Neutral

Monica Hi! Neutral Neutral

:
:

Chandler So, I guess this is over Sadness Sadness

large number of neutral class. Most of the neutral emotions get confused with joy
due to the presence of some positive sentiment words. Majority of anger emotion
in EmotionPush dataset are missclassified as neutral (mostly due to absence of
any sentiment bearing words) while that of Friends dataset are misclassified as
joy due to presence of exclaimation mark which shows strong emotion such as
joy or anger. The presence of positive sentiment enforce it to predict joy.

(a) Friends (b) EmotionPush

Fig. 3. Confusion matrices for Emotion Classification.

We also perform a qualitative analysis to get better insights about the
strength and weakness of the system. We found that, apart from dominating
the effect of higher distribution class, few other error cases are present such as:

– Loss of emotion drift: When a strong emotion such as anger is encountered,
it continues to be predicted. The reason behind it might be because we did
not consider the speaker information while extracting contextual information
from the utterances. An example is shown in the first part of Table 5.
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– Usage of expression like lol, haha, etc.: Conversations involving such
expressions have led to misclassifications of prediction by the model for some
of the instances. An example is given in the second part of Table 5. The
sentences are originally labeled Sad. However, due to the presence of a smiling
expression-related term (haha and lol), the model has predicted it as Joy.

Table 5. Table showing loss of emotion drift in a dialogue of Friends dataset.

Utterances True Predicted

Don’t ask me, I had it and I blew it! Anger Anger

Well, I want it! Other Anger

You can have it! Other Anger

I don’t know, maybe I can’t. I mean, maybe
there’s something wrong with me

Other Anger

Oh, no! No! Other Anger

It’s out there man! I’ve seen it! I got it!! Joy Anger

Then you hold on to it!! Other Anger

All right, man!! Joy Anger

All right, congratulations you lucky bastard! Joy Joy

I got it wrong lol Sad Joy

Gone but not forgotten haha Sad Joy

5 Conclusion

In this paper, we have presented a hybrid deep neural network framework (CAD)
for detecting emotions in a dialogue. We propose a hierarchical BiGRU network
which takes the assistance of various hand-crafted feature set on different lev-
els of architecture to learn the contextual information of dialogue. The learned
representation is fed to a fully connected layer over the time steps followed by
softmax layer for the predictions. We have evaluated our model on the benchmark
datasets of EmotionLines-2018, which consists of two corpora i.e., Friends and
EmotionPush data. The evaluation suggests that our CAD framework obtains
improved results against the state-of-art model so far. This model can be applied
to various other similar datasets as well to improve their results.
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Abstract. Student forums are important for student engagement and
learning in university courses but require high staff resources to moderate
and answer questions. In introductory courses, the content can remain
almost unchanged each year, so the questions asked in the course forums
do not see a lot of variety over different iterations, which provides an
opportunity for automation. This paper compiles a dataset of forum
threads and meta-information of the participants from the Web Design
and Development course at the Australian National University for the
purposes of duplicate question detection in educational forums. A state
of the art neural network model is trained on the dataset to measure its
usefulness. An accuracy of 91.8% is achieved, which is on par with what
is achieved on other datasets with similar features. A high performing
neural network for this dataset could potentially be used to create a live
system that detects and reuses answers for duplicate questions on course
forums.

Keywords: Duplicate question detection · Neural networks ·
Duplicate question pair dataset

1 Introduction

The use of online forums as a medium for discussion and communication has
become widespread in the field of education. One typical use case is for facil-
itating student discussions during an offering of a course. These forums are
generally very rich in micro-collaborations [1] because all users have the ability
to ask, answer and rate content. A study [2] reveals that discussions on these
course forums promote collaborative learning by enhancing community building,
developing self-identity, and improving relational dynamics, which in turn sup-
port learning at various knowledge levels and improve the cognitive process in
learning.

However, while solving some problems, these discussion forums face problems
of their own. While the forums are becoming more and more accessible by making
the bar for participating on these forums quite low, it also inevitably leads to a
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lowering of the overall quality of the forum. In particular, while asking questions,
it has been observed that a significant number of questions asked on a forum
have previously been asked before. While no formal study that investigates this
was found, this has been observed in some of the major web forums such as
StackExchange, Quora and Yahoo! Answers.

With this paper, we release an anonymised dataset of questions and answers
asked in a course forum for a Web Development and Design course at the Aus-
tralian National University over the years 2015–2019. This course uses Piazza, a
question and answer web service. We thus, henceforth, refer to this dataset as the
“COMP1710 Piazza Dataset” (COMP1710 is the course code of the undergrad-
uate version of the Web Design Development course at the Australian National
University). This dataset will also feature metadata about the students in the
course, such as their overall grade in the course, the mark they got for their par-
ticipation on the course forum, their gender and ethnicity etc. Moreover, infor-
mation about the questions that are duplicates of one another are also stored
within the dataset.

After construction of the dataset, we perform some experiments by running a
state-of-art-model built for natural language sentence matching on this dataset.
We find that it achieves an impressive accuracy of 91.8% despite the average “sen-
tence” length being much higher than what was previously used with that model.
Upon experimenting with other duplicate question datasets where the average
sentence is comparatively longer than the Quora Question Pairs Dataset (the
original dataset on which it was tested), similar high accuracies were achieved.
Surprisingly, this fact was not noted in the original paper.

2 Related Work

The task of detecting duplicate questions is a sub-task of the more general para-
phrase detection task. However, the approaches used to solve the more general
task are not always a step in the right direction towards detecting duplicate
questions. In fact, it has been found that the performances achieved by different
machine learning models on text paraphrase detection was significantly better
than the ones achieved on detecting semantically equivalent questions [3].

2.1 Datasets

Numerous datasets related to the fields of question similarity have been published
in recent years.

The Qatar Living Dataset. SemEval (Semantic Evaluation) is an ongoing
series of evaluations of computational semantic analysis systems. In 2016, one of
the tasks (Task 3) [4] in the SemEval workshops was related to answer selection
in community question answering forums, which involves both detecting seman-
tically equivalent questions and also selecting the best answer from a range of
answers.
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For evaluation of the models, they released the Qatar Living data corpus the
source of which is the Qatar Living Forum1. This dataset contained 317 original
questions, 3169 related questions and 31690 comments

The CQADupStack Dataset. CQADupStack is another benchmark dataset
in the field of Community Question Answering. It contains threads from twelve
StackExchange subforums, annotated with duplicate question information and
comes with pre-defined training, development, and test splits, both for retrieval
and classification experiments [5].

The dataset contains over 460,000 threads (an average of 38,362 threads per
subforum). The percentage of duplicate questions has a high variation between
subforums- ranging from 1.52% for the Wordpress2 subforum to 9.31% for the
English subforum3. The average number of duplicate questions per duplication,
however, has a much smaller range (1.02 to 1.22).

The duplicate question annotations were manually performed by the users in
these subforums. As a result, these labels are not guaranteed to be perfect. In
fact, a study [6] concluded that the number of duplicates could be increased by
around 45%, by annotating only 0.0003% of all the question pairs in the data
set.

The Quora Question Pairs Datasets. In early 2017, Quora4, a question and
answer website, published a dataset of over 400,000 potential duplicate question
pairs [7].

Questions on Quora differ from the questions on the Stackexchange and
Yahoo! Forums in that they do not possess a separate question body. Questions
on Quora are limited to a maximum length of 250 characters. This limitation
compels the user to ask more general and less detailed questions. This is in con-
trast to most educational forums where the asker has the ability to explain their
current understanding of the topic through the question bodies.

Despite the existence of a multitude of datasets relating to the field of com-
munity question answering, we construct another dataset due to the following
reasons:

1. Narrow Scope of Field: Other datasets published so far are quite general
in nature (with the exception of InsuranceQA). Quora Question Pairs for
example, is not limited by scope in the types of questions contained. The
Stackoverflow dataset, on the other hand, is somewhat more restricted in
scope when compared to the Quora Question Pairs dataset. However, its
scope (general programming) is still quite large to make it difficult to perform
a detailed analysis. We create a dataset with a more restricted scope, one
of questions asked during multiple offerings of a web design course at the

1 www.qatarliving.com/forum.
2 https://wordpress.stackexchange.com/.
3 https://english.stackexchange.com/.
4 www.quora.com.

www.qatarliving.com/forum
https://wordpress.stackexchange.com/
https://english.stackexchange.com/
www.quora.com
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Australian National University. The scope of this is small enough such that
a significant fraction of duplicate question pairs are found, and large enough
so that significantly many new questions can be added to it that are not
duplicates of existing questions. This helps with the training of neural network
models.

2. Inclusion of Meta-data: None of the datasets published so far include
meta-data about the backgrounds of the users who participate in the forums.
We include meta-data such as the ethnicity, gender, grade obtained in the
course etc. This can potentially be used to deduce correlations between the
quality of the posts made and the backgrounds of the users. A presence of a
strong correlation would suggest that the background of the students could
act as an effective heuristic measure when deciding the best answer to a given
question.

3 The COMP1710 Piazza Dataset

Piazza is a question and answer platform that is used by many universities
across the world. Piazza comes with a wide set of features which makes it an
indispensable asset for many courses. For instance, the platform allows users to
ask questions, post notes or hold a poll. These can be done anonymously, semi-
anonymously or with the name visible to everyone. Piazza also provides a good
rendering engine for code and LATEX snippets.

The COMP1710 Piazza dataset is an anonymised dataset of questions and
answers asked in the Piazza course forum for a Web Development and Design
course at the Australian National University over the years 2015–2019. This
dataset also features metadata about the students in the course, such as their
overall grade in the course, the mark they got for their participation on the
course forum, their gender and ethnicity etc. Moreover, information about the
questions that are duplicates of one another are also provided within the dataset.

3.1 Dataset Format

The dataset is divided into three different files- one for the content of the threads,
one for the metadata and one for information about duplicate questions.

One of the files (questions.json) is a JSON file that maps unique thread ids to
information about them. The unique ids for the threads were created by hyphen
separating the year of posting and the serial number of the thread in that year.
For example, 2018 − 141 refers to the 141st thread in the year 2018. These ids
are mapped to information about the threads such as their title, body, answers,
comments, votes, anonymous ids of the users that participated etc. Information
on the history of the thread is also supplied along with the timestamps. The
names used for their keys are self-explanatory. As mentioned previously, the
choice of these keys was influenced by the visual structure of a Piazza thread
page, and the information available to users.
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The metadata is present in a separate JSON file (metadata.json). This file
consists of a mapping from the anonymous students ids to their relevant meta
information. References to the anonymised student mappings will also be present
in the questions.json file.

Finally, the annotations for the duplicate questions are available in a CSV
file of its own (duplicates.csv). Each row in the file contains the thread ids of
questions that are duplicates of one another. Only the questions that have at least
one duplicate have been mentioned in this file. Otherwise if a particular thread
id is omitted from the file, it means that either the thread is not a question, or
that it does not have any duplicates.

The dataset will be made available in December via www.hcc-workshop.anu.
edu.au/comp1710-piazza-dataset.

3.2 Duplicate Question Definition

The definition for duplicate questions that was initially agreed upon by
the dataset annotators was the same as the one that is used frequently in
literature [8].

“Two questions are semantically equivalent if they can be adequately answered
by the exact same answer.”

However, this definition when used directly with the COMP1710 Piazza
Dataset is not very useful. The primary reason for that is that the Piazza forums
for the COMP1710 course are monitored for quality less rigorously than other
real world forums such as StackExchange. In particular, asking multiple ques-
tions as part of the same thread is allowed in the former whereas, the latter
follows the principle of “one question per thread”5. Keeping in mind that the
eventual goal was to create a live question answering system, a few constraints
were added to make it applicable to the majority of the questions in the dataset.
The additional constraints added are listed below.

– If multiple questions are asked in two different threads, the threads would be
considered duplicates if the majority of questions in one are duplicates of the
majority of questions in another.

– In the case above, if there is no clear majority on the number of questions,
the questions are then weighted by their word counts. As a consequence, if
a particular thread consists of two questions where one uses a word count of
100 and the other uses 10 words only, the first question is assumed to be the
“majority” of the given thread.

– Some questions when asked in different years get different responses. For
example, “What is the location for the final exam?” is likely to receive dif-
ferent responses in each year. Such information retrieval questions where the
answer may vary across years have still been annotated as duplicates.

5 https://stackoverflow.com/help/how-to-ask.

www.hcc-workshop.anu.edu.au/comp1710-piazza-dataset
www.hcc-workshop.anu.edu.au/comp1710-piazza-dataset
https://stackoverflow.com/help/how-to-ask
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Adding these additional constraints to the definition for duplicate questions
made the annotation process more robust to human biases when performing
annotations for questions that are in the inevitable grey areas due to ambiguities
in the questions being considered.

3.3 Forum Statistics

The COMP1710 Piazza Dataset combines data from various different sources.
Performing different statistical analyses may thus, reveal better insights about
the dataset. Various statistical analyses are performed for the dataset, and the
results obtained are then compared to existing datasets and discussed.

Number of Threads. The COMP1710 Piazza Dataset consists of 4,145 threads
(inclusive of questions, notes and polls). When compared to other datasets from
the domain, this is only larger than the Qatar Living Dataset. However, while
the dataset size may seem orders of magnitude smaller relative to the larger ones,
the smaller scope for the topic of discussion compensates for fewer threads, and
is at the large end of what can plausibly collected from university course forums
– the course has grown from 146 students in 2015 to 264 in 2019, and so has
been on the medium to large size throughout.

Out of the 4,145 threads in the dataset, 3,262 of them are questions.

Average Length of Questions. On average, a question body contains 66.2
words (all HTML tags are stripped before this figure is calculated). This is on
par with the average question length of the StackExchange datasets where the
users have the ability to contextualise/describe their thoughts about the problem
they are facing.

On the other hand, this statistic is much larger when compared to the Quora
Question Pairs dataset, which has an average question length of under 10 words.
The reduced length of questions on Quora allows the question to be more focused
in scope. A longer question body, while allows the asker to explain the question
with more rigour, also carries extra information that is often irrelevant to the
question being asked.

3.4 Statistics for Duplicate Questions

The COMP1710 Piazza dataset has some interesting statistics for the duplicate
questions present. We discuss these in this section and also compare the statistics
with other datasets where possible. Due to the late arrival of the 2019 data, these
statistics have been measured for the 2015–2018 subset.

Percentage of Duplicate Questions. There has been little change in the
content and assignments of the COMP1710 course with each iteration. Unsur-
prisingly, a lot of the questions that are asked in a particular year are very similar
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to those that were asked in other years. In fact, around 42% of the questions that
have been asked over the four years in the Piazza forums for this course have
duplicates. When compared against question pairs, approximately 0.14% of the
question pairs in this dataset are duplicates from all possible pairs of questions.

While the low percentage for the percentage of duplicate pairs is explicable,
it does imply that there is a heavy imbalance in the labels of the classes of this
dataset. This needs to be a consideration when trying to learn latent features
from the dataset.

Number of Duplicate Questions per Duplicate Question. When a par-
ticular question has at least one duplicate, there are at least 4 of them on average
in the COMP1710 Piazza Dataset. This number is significantly higher than the
StackExchange datasets where this statistic has a value between 1 and 2 for all
forums [6]. The higher number in this case is likely indicative of the fact that
certain questions are very popular which push the average up. As an example,
20 various forms of the question “How do I submit my assignment?” were posted
over the four years.

It should be noted that the feature of certain questions being very popular is
not restricted to this dataset. In the StackExchange dataset, for example, on the
webmasters subforum6, a certain question appeared in 106 different forms. Due
to the sheer size of the dataset, the value of the average number of duplicates is
not heavily affected by such outliers.

4 Experiments and Results

4.1 The BiMPM Model

Wang et al. proposed the Bilateral Multi-Perspective Matching (Bi-MPM) model
for the task of Natural Language Sentence Matching [9]. The model achieves
state of the art performance for sentence paraphrase matching, when tested on
the Quora Question Pairs Dataset. This model matches each time stamp of each
of the two questions with every time stamp of the other question. A Bi-LSTM
layer is then used to produce a fixed length matching vector, which is further as
used as input for a fully connected layer that makes the final decision. We use
this model to conduct our experiments.

4.2 Experiments Performed

Due to the late arrival of the 2019 data, we only utilised the 2015–2018 subset of
the data for our experiments. That subset of the data contains 2,300 questions
which corresponds to approximately 2.6 million question pairs (Fig. 1).

6 https://webmasters.stackexchange.com.

https://webmasters.stackexchange.com
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Fig. 1. The Bi-MPM model [9]

Preprocessing of the Data. The data was pre-processed in three stages- con-
version to lowercase, removal of HTML tags (including images) and the removal
of foreign characters. The final step was necessary because even though the
course is taught in English, due to the significant number of international stu-
dents, some question inadvertently contain non-English characters. We also used
a list of stop words that contained standard greetings, as they add little value
to the semantics of a question. However, it was also observed that removing this
stop list did not affect results significantly.

4.3 Samples Generated

The first sample we generated consisted of 7,260 question pairs. This sample
was created such that the number of question pairs labelled as duplicates was
roughly equal to the number question pairs labelled non-duplicates. We created
a 60%-20%-20% split for training, validation and testing respectively.

Another sample that we generated was one containing over 33,000 question
pairs. This sample was purposefully created such that there is a heavy imbalance
in the number of duplicate and non-duplicate questions. This sample contained
around 2,200 duplicate question pairs. The validation and the test files used for
this sample were the same as the ones used in the previous sample.
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Results. We trained and tested the Bi-MPM model on the samples described
above. The experiments were run with a batch size of 60 and trained to a max-
imum of 20 epoch cycles. The dropout rate used was 0.1 and the learning rate
was 0.0005. We made use of the Adam [10] optimiser for the model. The results
we achieved are summarised below (averaged over multiple runs) (Table 1).

Table 1. Performance of the Bi-MPM model on balanced and unbalanced samples

Sample type Validation accuracy Test accuracy

Unbalanced 77.14% 76.11%

Balanced 94.23% 91.78%

Discussion. Considering the average performance of various other models on
other datasets that we discussed in Sect. 2, the results achieved by the Bi-MPM
model on the balanced sample are on the higher end of the spectrum. However,
the results are not overly surprising because the model performed remarkably
well on the Quora Question Pairs dataset. We also validate its performance on
other datasets, which we investigate in Sect. 4.3.

The difference between the performance of the model on the balanced and
unbalanced samples is, however, not surprising. The heavy imbalance in the
model causes the weights in the model to be trained such that the output is
always biased towards marking question pairs as non-duplicates. However, since
the test set itself is balanced, the overall accuracy is significantly lower on the
test set.

Q1: the mark about assignment2: i have some questions about the mark and the feed-
back about it. 1. it is said that there is no forum posts nominated. however, apparently
my questions are not anonymous. here is the photo about it. 2. it is said that there
is no more than 3 links and no labels in the image map. however, there are 5 photos
in the image map and each one has a label and a link. 3. it is said that there are no
less than 10 photos in the photo gallery. however, i made two photo galleries and each
one has five photos. in all, there are 10 photos here is the photo about the feedback.
i strongly hope you can check my assignment again and give me a reasonable mark.
thank you!
Q2: marking issues: i had included a portfolio page on my website showing some of
my music, which was supposed to be my ”something original”, but received no marks
for it. also, i accidentally added my new css file to every page rather than just 1, and
received no marks. is there any chance of that being taken into consideration for my
marks?
Model Output: Non-duplicates
Gold Standard: Duplicates

Fig. 2. Example of a question pair that was incorrectly classified as non-duplicates
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A further analysis of questions that were incorrectly classified by the model
trained on the balanced sample is performed below.

Figure 2 is an example of a question pair where the intent of both the ques-
tions is the same, in that they want to get their assignments remarked. The
reasons, however, are very different which is evident from the context. This addi-
tional context is likely to be the reason why the model did not consider these
two questions to be duplicates. The additional context, however, does not affect
the true label of this question pair because all such questions in the dataset had
the same answer along the lines of “It is best to bring this up with your tutor
directly during your lab”.

Q1: how do i make multiple page?
Q2: delete file in partch: hi all, i want to know how to delete files in partch with file
name have symbol . or space in it? thanks so much for the answer.
Model Output: Duplicates
Gold Standard: Non-duplicates

Fig. 3. Example of a question pair that was incorrectly classified as duplicates

Finally, Fig. 3 is a question pair where one of the questions is quite short and
harder to reason about. While there are not any common keywords between the
two questions, they have been likely labelled as duplicates because the training
set contained a few questions about “deleting multiple files on Partch” which
may have ended up in the model parameters being updated such that the words
“multiple”, “delete” and “Partch” might be treated as near synonyms of one
another resulting in the two questions being classified as duplicates.

With Other Datasets. To confirm that the results obtained by the Bi-MPM
model on the COMP1710 Piazza dataset were not the result of an anomaly in the
dataset, we ran the Bi-MPM model on a few other datasets, namely, AskUbuntu
and Meta StackExchange. They were chosen primarily because the format of the
questions in those are more similar to the ones in the COMP1710 Piazza dataset
as compared to Quora Question Pairs.

The configuration of the model was the same as in the above experiment.
The train, validation and test splits used for these datasets were the same ones
used by Rodrigues et al. [11] to discredit the work of Bogdanova et al. [8]. These
splits do not contain the clue in the question texts which had originally been
left in by Bogdanova et al. The training, validation and testing sets in both the
datasets have an almost equitable distribution for the two labels.

Running the Bi-MPM model for a maximum of 20 epochs on the respective
datasets produced the results that are summarised in Table 2.

Discussion
The performance achieved by the Bi-MPM model on the other datasets is in
a very similar range to what is achieved with the COMP1710 Piazza dataset.
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Table 2. Performance of the Bi-MPM model on other duplicate question datasets

Dataset Test set accuracy

Quora Question Pairs 88.17%a

Meta StackExchange 88.95%

AskUbunutu 92.34%

Comp1710 Piazza 91.78%
aAs reported in the original paper

Surprisingly enough, not all of these results were reported in the original Bi-
MPM paper [9]. There are two main points of discussion with these results.

Firstly, the average question length seems to have an inverse effect on the
performance of the model. The model performs worst on the dataset with the
smallest average question length. This is a bit surprising because a longer ques-
tion often contains information that is not entirely relevant to the crux of the
underlying question.

Secondly, despite major differences between the COMP1710 Piazza dataset
and the AskUbuntu and Meta StackExchange datasets, the test accuracy
achieved on the datasets is comparable. We believe that there are two conflicting
factors at play here. Firstly, the narrow scope of field of the COMP1710 Piazza
dataset makes it comparatively easier for the model to learn from the training
set as it has a very limited vocabulary and can thus be better analysed. Secondly,
the lack of incentive to maintain a high question quality results in the questions
in the dataset having a high number of spelling errors and often, bad grammar.
Considering these two points, it is not surprising that the accuracy achieved on
the COMP1710 Piazza dataset is similar to the StackExchange datasets.

5 Conclusion and Future Work

In the previous section we saw that the Bi-MPM model performs very well on
questions where the length is longer. This fact was surprisingly not noted in
their original paper. In absolute terms, an accuracy of 91.8% is achieved on our
test set. This is a lot higher than the test accuracies on other datasets by other
models that we found during our research. However, this figure is on par with
the accuracy achieved by the Bi-MPM model on other datasets, including those
of StackExchange, where the questions are longer on average.

A substantial perceived benefit of the automated system is responsiveness, in
being able to provide an answer essentially instantaneously to the large majority
of questions. This work was used to create a pilot automated question answering
system that automatically reuses answers from previous years if a new question
that is semantically equivalent to a question from a previous year is asked. On
limited testing by 11 students (9 males, 2 females with an average age of 22.18
and a standard deviation of 2.52) on a live version of the course, the average
vote (on a scale from 1 to 5) on the ability of the bot to reuse answers from
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previous years was valued at 2.67. One of the reasons that the value was low
was likely that the validity and the quality of the old answer was not taken
into account when reusing it in another year, which should be possible given the
91.8% accuracy on duplicate question detection.

Finally, the inclusion of the metadata in the dataset makes it a useful dataset
outside the fields of artificial intelligence and machine learning. As an example,
one could use the metadata to study the correlation (and potential causation)
between forum participation and the grade achieved in the course.
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Abstract. Optical text recognition has seen continual improvement in
character accuracy over the past decade. However, as error persists, it is
crucial to know when and where a recognition error occurs. Studies have
shown that recent development of deep convolutional neural networks
tends to increase calibration errors, compared to traditional classifiers
such as SVM. Yet, the calibration error in deep neural networks for
sequential text recognition has not been studied in the literature.

This paper addresses the probability misalignment problem in unseg-
mented text recognition models. We analyze the causes of probability
misalignment in the popular recurrent text recognition model, the atten-
tion encoder-decoder model, and propose a novel probability calibration
algorithm for individual character predictions. Experiments show that
the proposed methods not only reduce expected calibration error, but
also improve the character prediction accuracy. In our experiments, cali-
bration error on authentic industrial datasets improved as much as 68%
compared to original text recognizer outputs.

1 Introduction

In the past decade, deep neural networks (DNNs) have been successfully applied
in many domains. The accuracy of DNN classifiers also grows rapidly with the
development of deeper, and more sophisticated network structures and training
techniques.

On the other hand, researches found that recent developments in convolu-
tional neural networks (CNNs) lead to increased calibration error in the model
[1]. In other words, the probability score given by the CNNs does not align with
the true credibility of their predictions. In industrial applications, the misaligned
probability score poses big challenges to subsequent decision making systems. For
example, practitioners make treatment decisions based on probability of disease
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prediction [2]. Self-driving vehicles take correspondent actions based on prob-
abilities of obstacle detection. In text recognition applications, the probability
score is often used to filter false recognition results. Even though the text recog-
nition model may have an overall character accuracy of 95% or above, it is not
satisfactory in industrial applications. For instance, in an office document pro-
cessing system, to alleviate human effort in logging identity information, names
on the citizen identity card would be extracted by a text recognition model from
scanned copies. An error in such text information is intolerable. Measures must
be taken to filter out false predictions, which is usually done by thresholding the
probability score from the predictions. If the model itself cannot discover an error
from its output, human labour has to be allocated to double check the results
from the text recognition model, increasing the total cost of the documenting
system.

For general classification problems, model calibration methods have been
proposed to reduce the error in probability scores. Guo et al experimented with
series of contemporary CNNs and proposed that temperature scaling, a single-
variant version of Platt scaling [3], is effective in reducing calibration error in
all experiments [1]. Leethart et al. proposed a probability calibration tree to
adapt calibration parameters according to original input data [4]. Pereyra et
al. [5] and Kumar et al. [6] proposed an alternative option to enforce calibra-
tion during training. Yet, probability misalignment in recurrent neural networks
and calibration methods on recurrent models have not been addressed in the
literature.

In this paper, we analyze causes for probability misalignment in recurrent
text recognition models. A novel calibration method, called Calibration CNN, is
proposed for text recognition models. The performance of the proposed methods
is demonstrated by experiments on authentic data in industry applications.

Contributions of this paper include:

1. Formulation of the probability misalignment problem in text recognition mod-
els.

2. Proposed a novel off-line probability calibration method for text recognizer.
3. Extensive comparison of the proposed model calibration method with existing

methods on authentic industrial data.

2 Related Work

2.1 Text Recognition

Text recognition has always been an important branch of computer vision and
scene understanding researches. Especially, for unsegmented character images,
i.e., images containing a sequence of characters, recurrent neural networks
(RNNs) are commonly adapted for text recognition models.

Connectionist temporal classification (CTC) [7] combines the probability
maximization task with finding optimal sequence decoding for the output
sequence from a recurrent network. Kim et al. improved the CTC network by
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incoporating attention mechanism [8] as well as a language model, which is also
a recurrent network module itself [9].

Unlike CTC approaches, the encoder-decoder structure solves the feature-
output vector alignment problem using the attention matrix. Its application in
unsegmented character image labeling has proved very successful [10,11]. In [10],
a fully convolutional network is used as the encoder. Given its uniformly shaped
input images, a fully convolutional encoder has provided superior recognition
accuracy compared to preceding methods. Whereas for input images with highly
variable shapes, such as the equation images in [11], a recurrent encoder would be
more robust in producing reliable features, as suggested in the original encoder-
decoder proposition [12].

The contemporary text recognizers often achieve character accuracy above
95% given proper datasets. This paper bases on the encoder-decoder approach
proposed in [11] for all experiments. Note that it is not our aim to discuss
accuracy improvement for text recognizers, but rather the correctness of the
confidence in the predicted individual characters.

2.2 Model Calibration

Classifiers are trained to minimize the overall error rate in given datasets. Yet,
error rate is not the only criterion to measure the quality of a classifier. In many
applications, it is also important to know the confidence of a prediction made by
the classifier. The probability score that accompany the class prediction would
be a convenient measurement of confidence. However, such probability scores are
sometimes not available, or not reliable. The difference between a predicted con-
fidence score and the actual extent of credibility is termed probability misalign-
ment, and the process to correct such misalignment is termed model calibration.

Probability calibration can be incorporated with an existing classifier [6],
or can be carried out off-line as post-processing steps with the classifier model
untouched. Off-line calibration methods perform calibration on a hold-out valida-
tion dataset. Many classical calibration methods, such as histogram binning, iso-
tonic regression, and Bayesian binning are designed for binary models. Extension
for multinomial classification is often achieved by converting the problem into
multiple one-versus-all problems. In contrast to the previous binning methods,
Platt scaling [3] is a parametric approach to calibration. The non-probabilistic
predictions of a classifier are used as input features for a logistic regression model.
Guo et al. report that the temperature scaling, a single-parameter variant of Platt
Scaling, is effective at calibrating predictions of various contemporary convolu-
tional classification models [1].

Probability calibration trees [4] expands the Platt scaling method with a
tree structure, where each leaf node is attached with a logistic regression model.
The logistic model trees provides an adaptive calibration model, adjusting to
the complexity in the input data distribution. Our proposed method is also an
adaptive one. Instead of a decision tree, we train a convolutional neural network
to extract features from character images. Logistic regression parameters are
adaptively generated from the feature vectors.
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3 Definitions

This paper addresses the per-character probability calibration problems in text
recognition models. In this section, we lay out the formal definitions of related
problems.

3.1 Text Recognition

The task of a text recognition model is to recognize unsegmented text strings
from images. Given image input I of text string y, a text recognition model T
finds an estimate ŷ = T (I; θ), where θ is the collection of parameters of T .

In theory, the design of the recognition model T (·; θ) should maximize the
overall joint likelihood, i.e.,

P (ŷ = y | I; θ) = P (ŷ0 = y0, ..., ŷM = yM | I; θ) . (1)

Yet, in practice, evaluating the joint probability in Eq. 1 is often infeasible.
Therefore, most text prediction models assume Markov dependence [13] among
characters in the text string, reducing the likelihood to

P (ŷ = y | I; θ) =
T∏

t=1

P (ŷt = yt | I; ŷt−1, θ) . (2)

Given a set of training samples X = {(I(i),y(i)), i = 1, ..., N}, the negative
log-likelihood loss is given by

LNLL =
N∑

i=1

|y(i)|∑

j=1

− logP
(
ŷ
(i)
j = y

(i)
j | I(i); θ

)
. (3)

During training, the model parameters θ are optimized to minimize the total
negative log-likelihood loss over the training dataset, i.e., θ∗ = arg minθ LNLL.

3.2 Model Calibration

A classification model is said to be perfectly calibrated if

P (ŷ = y | p̂ = p) = p,∀p ∈ [0, 1], (4)

where p̂ is the confidence of prediction ŷ, given by the classification model. The
left hand side of Eq. 4 is called the accuracy of the model. Therefore, in case of
perfect calibration, the expected accuracy of the model is equal to its confidence.

In a finite sample validation set, the accuracy of the model is estimated
by grouping predictions into segments with similar confidence p̂. Specifically,
predictions are grouped into M bins,

Bm =
{

(ŷ, p̂) | p̂ ∈
(

m − 1
M

,
m

M

]}
,m = 1, ...,M. (5)
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Then, the confidence and accuracy of Bm are estimated by taking the average
values in the bin, respectively, i.e.,

conf(Bm) =
1

|Bm|
∑

i∈Bm

p̂i, (6)

acc(Bm) =
1

|Bm|
∑

i∈Bm

1(ŷi = yi), (7)

where 1(·) is the indicator function. The reliability diagram of a classification
model is the plot of acc(Bm) versus conf(Bm) [14]. If the model is perfectly
calibrated, the reliability diagram should be aligned with the identity line.

Note that the Eqs. 6 and 7 are unbiased estimates of the true confidence and
accuracy of a model, only if the sample size |Bm| is large enough. In modern
classifiers, this assumption might not hold in most cases, because the predicted
confidence p̂ often clusters around 1.0. For such scenario, Leathart et al. proposed
to divide the validation set into M equally populated bins for accuracy and
confidence estimation [4].

Scalar statistic of the calibration, expected calibration error (ECE), is also
defined based on the estimates of Bm’s, i.e.,

ECE =
M∑

m=1

|Bm|
n

|acc(Bm) − conf(Bm)| , (8)

where n is the number of samples in the validation set.
In addition to the above calibration errors, other metrics of the classification

model are also of interest to our applications.

4 Proposed Methods

4.1 Reasoning for the Cause of Miscalibration

As shown in Eq. 2, in recurrent text recognition models, the inference of char-
acter ŷt is conditioned on previous prediction ŷt−1. The conditional probability
increases overall prediction accuracy by exploiting prior distribution of char-
acter combinations in the training datasets. But it also causes bias towards
frequent character combinations during inference. The conditional assumption
might assert a prediction ŷ by looking at the previous prediction only, while
rare combinations of characters are considered outliers. It further deepens the
problem of class imbalance.

On the other hand, in [15], the authors found that a lot of the errors in text
recognition originated from a shifted attention map. When the attended area
shifts from the center of a character, the prediction of the character may be
totally wrong, but has very high confidence score. By restraining the classifier
to use features around the character centers only, these error can be alleviated
in most cases [15].
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We also investigated the connectionx between attention alignment and text
recognition accuracy on our own datasets. The results are consistent with those
in [15]. An example of misaligned attention is shown in Fig. 1.

+ + + +

Fig. 1. Example of attention center misalignment.

In Fig. 1, the depicted sample image contains Chinese characters “ ”.
Attention centers are marked with red “+” signs on the sample images. The
results predicted by the original SRN (left) and the revised SRN (right) are
“ ” (confidence 0.9999, 0.9936) and “ ” (confidence 0.9987, 0.9999),
respectively. In the results predicted by the original SRN, the attention center of
the second character drifted only slightly to the left of the ground truth. Yet the
predicted character is incorrect, while still holding extremely high confidence.

4.2 Calibration CNN

Based on the above reasoning, we propose the Calibration CNN to alleviate the
probability misalignment in recurrent text recognition models.

Inspired by [4], the Calibration CNN is devised to perform adaptive cali-
bration by referring to the original image data corresponding to a character
prediction (see Fig. 2(a)).

Let ẑ denote the un-calibrated logits from the classification model. In [4], a
decision tree is expanded on the original input data, where each leaf node n is
attached to a logistic regression model {Wn,bn} for samples belonging to this
leaf node. The calibrated probabilities in node n are given by vector scaling of ẑ:

z̃ = Wnẑ + bn, (9)
p̃ = softmax (z̃) . (10)

Since the original input data in our problem are text images, we replace
the decision tree with a CNN. On top of the CNN, parameters in the logistic
regression model, W and b, are inferred from the convoluted feature vector, i.e.,

z̃ = W (Ir;ψ) · ẑ + b (Ir;ψ) , (11)
p̃ = softmax (z̃) , (12)

where Ir is the subimage corresponding to an individual character prediction in
the original text image I. ψ is the collection of parameters in the Calibration



On Probability Calibration of Recurrent Text Recognition Network 431

Input Image

CNN

Feature Vector

FC Layer FC Layer

Weights: W Bias: b

Softmax(W*z+b)

Calibrated
Probability

Sequence
Recognition

Network

Original Logits: z

CNN

Input Image

Visual Feature Vectors

BiLSTM

Visual
Attentions

GRUGRU GRUGRU

SOS p0 r0 p1 r1 EOS

Fig. 2. Structure of the proposed neural networks.

CNN model. The original logits from the recognition model, and the logits from
the character image CNN are combined in Eq. 11, to form the calibrated predic-
tion of the individual character. The CNN learns how much to trust the original
prediction through W, and adjust the prediction by added bias b adaptively.

The proposed calibration CNN structure can also be interpreted as a residual
structure, where the logits zi from the SRN would be retained if it is coherent
with ground truth labels. In other words, the accuracy of the calibration CNN
predictions for individual characters could not be worse than the predictions
from the SRN. It is also shown in experiments that the proposed calibration
CNN improves character prediction accuracy even if the original accuracy of the
SRN is extremely high.

Let Y =
{(I(i), r(i), ẑ(i)

) | i = 1, ..., N
}

be the hold-out validation set.
Parameters in the Calibration CNN are optimized to minimize the negative
log-likelihood of individual character predictions, i.e.,

ψ = arg min
ψ∗

|Y|∑

i=1

− logP
(
ỹ(i) = y(i) | I(i)

r(i)
;ψ∗

)
(13)

To find out the image region r that corresponds to a character prediction of
the recognizer, one might think of the using the attention map as an indirect
reference. But the attention map is designed to gather contextual information
for a single inference, it does not necessarily restrain in the character region
itself. Therefore, instead of reusing the attention map, we add a branch to the
decoder of our text recognition model, to obtain the correspondent image region
with a character prediction.

The recurrent text recognition we used in our experiments is based on the
sequential text recognition network (SRN) in [11]. The revised SRN is illustrated
in Fig. 2(b).
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Parameters in the SRN are optimized to minimize the negative log-likelihood
of predicted texts, as well as the smooth L1 loss of character bounding boxes,
i.e.,

θ = arg min
θ∗

LNLL + λLL1 , (14)

where

LL1 =
|Y|∑

i=1

∑

j∈{x,y,w,h}
l1

(
r̂(i)j − r(i)j

)
, (15)

l1(d) =
{

0.5|d|2, if |d| ≤ 1,
0.5 + (|d| − 1), otherwise. (16)

r(i) = {r(i)x , r(i)y , r(i)w , r(i)h } represents the normalized top-left coordinate and
width/height of character bounding boxes.

Although we do not directly constrain the attention map to focus around
character centers, the smooth L1 loss on character bounding boxes imposes
location sensitive constraints on the encoded features. In practice, adding the
bounding box regression branch also helps to alleviate some of the errors caused
by attention drift.

By singulating individual character input regions in the calibration, we
turned the calibration problem into an image classification problem. Various
techniques and structures developed for common image classification problems
can be applied. In the experiments section, we compare performance of different
CNN structures.

5 Experiments

5.1 Implementation Details

Models in our paper are implemented under the Tensorflow framework [16].
The input images are resized to have maximum heights of 32 pixels, and

padded to size of 86 × 32 pixels. The encoder has 5 convolutional layers and 5
max pooling layers, reducing the input image to a 22 × 512 dimensional feature
vector. A 2-layer bi-directional LSTM is applied on the top of the convolutional
layers, each LSTM has 128 hidden units. For the decoder, GRU cells with 128
memory blocks are used. Character prediction logits zi and bounding boxes are
obtained by applying separate linear layers on shared GRU states.

The calibration CNN is also implemented on Tensorflow framework. Given
an input text image I and a character prediction (ẑ, r) from the SRN, the image
region Ir is first pooled to fixed size 64 × 64. A CNN head is used to extract
features from the character subimage. On top of the convolution layers of the
backbone, we make two fully connected layers for the logistic regression param-
eters, W and b, respectively.

All our experiments are carried out on a work station with a NVIDIA Tesla
P100 GPU. The SRN is trained with an AdaDelta optimizer [17]. The batch size
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is set to 64. The initial learning rate is set to 1.0. The SRN model converges after
about 100 epochs over the training dataset. The Calibration CNN is trained with
an Adam optimizer [18] with initial learning rate 0.001. The batch size is set to
100. The Calibration CNN models typically converges after 20 epochs over the
validation set.

5.2 Datasets

The proposed methods are experimented on two authentic industrial datasets,
as well as an open dataset accessible to the public. Text images are cropped from
optically scanned or photographed images of documents.

The composition of training/validation/testing sets are specified in Table 1.
The samples in each dataset are divided into training/validation/testing sets by
6:3:1 ratio. In the licence plate number dataset, the lexicon is consisted of 25
upper-case letters (letter “I” is not allowed in license plate numbers), 10 digits, 34
Chinese characters representing provincial districts in China, and another 6 Chi-
nese characters representing vehicles of police force or other specific uses. The ID
name dataset contains 5,577 Chinese characters, with severe class imbalance in
its lexicon. Last but not least, the SROIE dataset, published in the ICDAR2019
Robust Reading Challenge, has lexicon size 101, comprising of upper and lower
case letters, numeric digits, punctuation signs, and 9 Chinese characters.

Table 1. Sample numbers and lexicon sizes for datasets in our experiments.

Dataset Total sample size Training Validation Testing Lexicon size

License plate number 63,802 38,281 19,141 6,380 75

ID name 158,785 83,271 61,636 13,878 5,577

SROIE 30,158 18,094 9,049 3,015 101

5.3 Results Analysis

The proposed method is compared with existing parametric calibration methods,
such as vector scaling [3] and temperature scaling [1]. We compared several pop-
ular CNN structures as the head feature extractor of Calibration CNN, namely
VGGNet [19], ResNet50 [20], and DenseNet [21].

For computation of reliability diagram, we grouped test samples into 32 bins
by their prediction confidence p̂. Because the dominating majority of the samples
are predicted with high confidence, many bins in the reliability diagrams do not
contain enough examples for a meaningful statistical estimate of the accuracy
and confidence. In the reliability diagrams included in this section, we have
dropped bins that contain less than 10 samples.

Experiment results are summarized in Table 2 and Fig. 3.
On the license plate number dataset, all experimented methods perform rea-

sonably well. The proposed calibration CNN with a DenseNet backbone has the
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Table 2. Statistics comparison of original SRN predictions/calibrated predictions. Best
calibrated score in each item is suffixed with • and the second best is suffixed with ◦.

Dataset Calibration method ECE ECE ratio

License plate number Uncalibrated 0.003075 100.00%

Vector Scaling 0.002913 65.46%

Temperature Scaling 0.001513 49.20%

VGGNet 0.001934 62.89%

ResNet50 0.001433 ◦ 46.60%

DenseNet 0.000983 • 31.97%

ID name Uncalibrated 0.002572 100.00%

Vector Scaling 0.003304 128.46%

Temperature Scaling 0.003189 123.99%

VGGNet 0.006116 237.79%

ResNet50 0.002682 ◦ 104.28%

DenseNet 0.002571 • 99.96%

SROIE Uncalibrated 0.013817 100.00%

Vector Scaling 0.003425 ◦ 24.79%

Temperature Scaling 0.005481 39.67%

DenseNet 0.003414 • 24.71%

lowest ECE. Compared to the uncalibrated predictions, the ECE is reduced by
68.03% by DenseNet calibrator.

For the ID name dataset, almost all calibration methods failed to reduce
the ECE, except for the proposed DenseNet calibrator. Conventional methods,
including vector scaling and temperature scaling, increased ECE by more than
20%. The proposed ResNet50 calibrator and DenseNet calibrator reported the
lowest ECE, with only the DenseNet calibrator being able to reduce the ECE.
ID name dataset is one with large corpus and severe class imbalance. This exper-
iment also demonstrates that calibrating a text recognition model involving a
comprehensive character corpus poses a different level of challenge on the cal-

Fig. 3. Reliability diagrams of the experimented datasets.
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ibrators. The proposed CNN calibrator outperforms conventional methods in
suppressing the ECE, but still has large room for improvement.

The performance of the proposed methods is also evaluated on the open
dataset released by the SROIE Challenge. Due to time limit, we only compared
the performance of the proposed DenseNet calibrator with vector scaling and
temperature scaling algorithms. The performance of DenseNet calibrator is sim-
ilar with that of vector scaling, both outperforming temperature scaling.

According to the above experiments, with a DenseNet or ResNet50 backbone,
the proposed CNN calibrator outperforms the conventional scaling methods on
both balanced and unbalanced datasets. With a VGGNet backbone, the pro-
posed only works with a smaller-corpus, balanced dataset, such as the licence
plate number dataset. Between datasets, the difficulty of calibration also varies
by the corpus size and class balancedness.

6 Discussion

In this paper, we address the probability calibration problem for sequential text
recognition systems. A novel calibration method is proposed for text recognition
results calibration. The proposed calibration CNN takes the original image, as
well as the output of the SRN as input, and performs adaptive calibration. Exper-
iment results show that, with a DenseNet or ResNet50 backbone, the proposed
CNN calibrator outperforms the conventional scaling methods on both balanced
and unbalanced datasets. In future researches, more extensive experiments may
be carried out to validate the performance of the proposed calibration method
on more general text recognition frameworks.
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Abstract. In the paper, we develop the mathematically justified stream
data mining algorithm for solving regression problems. The algorithm is
based on the Hermite expansions of drifting regression functions. The
global convergence, in the L2 space, is proved both in probability and
with probability one. The examples of several concept drifts to be han-
dled by our algorithm, and the illustrative simulations are presented.

Keywords: Data streams · Regression function · Concept drift ·
Hermite series

1 Introduction

In the last decade, data stream mining has emerged as a very active and chal-
lenging area of research. For the excellent surveys and overviews of available
techniques, the reader is referred to [2,4], and [18]. In many cases, data streams
are characterized by the lack of stationarity and they require to develop new
online algorithms working in a time-varying environment. Typical examples of
changing environments include sensor networks, financial market or climate fluc-
tuations. The environmental changes are known in the literature under the name
concept drift and this phenomenon should be taken into account when designing
stream data mining algorithms. In the excellent survey [4], the authors formalize
the process of learning in non-stationary environments and describe the main
strategies to cope with concept drift.

The vast majority of available algorithms are based on the classical methods
developed for static data, often combined with windowing techniques to eliminate
data elements coming from an old concept, see e.g. [2]. One of the first successful
tools to stream data mining was the VFDT algorithm [5], based on the idea of
the Hoeffding trees. This algorithm was later extended to the CVFDT algorithm
[9] to work in a time-varying environment. The mathematical foundations of the
VFDT and CVFDT were established in [16] and [17].
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From several dozen different well known other algorithms we mention here
only a few, namely ensemble methods [10,14], nearest neighbor techniques [3,
15], Bayesian classifiers [21], spiking neural networks [11,12], and nonparametric
density estimates [8].

The vast majority of available solutions in the world literature are devoted to
classification problems in a time-varying environment, whereas regression prob-
lems are almost untouched. The VFDT and CVFDT methods, mentioned above,
concern very fast decision trees, also used for classification.

In the recent papers [6] and [7], the authors studied the regression problems
using the concept of the generalized regression neural networks, proposed by
Specht [19]. They showed pointwise tracking properties of their algorithms.

Our goal is to extend those results to the L2 (global) convergence. More pre-
cisely, in the paper, we assume that φn(·), for n = 1, 2, . . . , are the time-varying
regression functions. Then, using the Hermite orthogonal expansions, we propose
the online procedure φ̂n(·), n = 1, 2, . . . , and prove its ability to track regres-
sions φn(·), for n = 1, 2, . . . , in the sense of the weak (in probability) and strong
(with probability one) L2 convergence. The convergence conditions, presented
in Theorems 1 and 2, depend on the rate of changes of φn(·), for n = 1, 2, . . . ,
and their smoothness properties. We will show that the global convergence holds
under weaker conditions and, consequently, the class of possible concept drifts
can be wider than that presented in [6] and [7].

The rest of the paper is organized as follows. In Sect. 2, the basic properties
of the Hermite series are introduced. In Sect. 3, the online algorithm is derived,
whereas Sect. 4 presents its weak and strong convergence. The exemplary sim-
ulations are illustrated in Sect. 5. Finally, in Sect. 6, we draw conclusions and
propose directions of future research.

2 Preliminaries

The online stream data mining algorithm, presented in this paper, is based on
the Hermite orthonormal system, in the unidimensional case, defined by

gj (x) =
(
2jj! π

1
2

)− 1
2

e− x2
2 Hj (x) , (1)

where
H0 (x) = 1, Hj (x) = (−1)j

ex2 dj

dxj
e−x2

, j = 1, 2, . . . (2)

are Hermite polynomials. Functions gj of this system are bounded as follows [20]

max
x

|gj (x)| ≤ c1 j− 1
12 , j = 1, 2, ... (3)

and can be generated in a recurrent way

g0 (x) = π− 1
4 e

−x2
2 , g1 (x) = 2

1
2 π x e− x2

2 = 2
1
2 x g0 (x) ,
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gj+1 (x) = − (2/ (j + 1))
1
2 x gj (x) − (j/ (j + 1))

1
2 gj−1 (x) (4)

for j = 1, 2, . . . .
Since gj(.) is a complete orthonormal system in L2(R), for j = 1, 2, . . . . then,

the system composed of all possible products

Ψj1 , . . . ,jp

(
x(1), . . . , x(p)

)
= gj1

(
x(1)

)
. . . gjp

(
x(p)

)
(5)

for jk = 0, 1, 2, . . . , and k = 1, . . . , p, is a complete orthonormal system in
L2 (Rp), where p > 1, see [13].

In the paper, for any square integrable function h(x), we use the following
notation:

||h(x)||L2 =
(∫

h2(x)dx

) 1
2

. (6)

The most important property of the Hermite orthonormal system is the abil-
ity to approximate any function defined in R

p. Therefore, it is suitable for the
situation when drifting regression functions, defined in this space, are considered.

3 The Stream Data Mining Algorithm

In the paper, we study a time-varying data stream model of the form:

Yn = φn(Xn) + Zn, n = 1, 2, . . . , (7)

where φn(·) is a sequence of unknown functions, Xn is a sequence of indepen-
dent and identically distributed random variables in R

p with the same density
function f(x); and Zn is a sequence of independent random variables such that:

EZn = 0, V ar[Zn] = σ2
z , n = 1, 2, . . . . (8)

Based on the learning sequence (X1, Y1), (X2, Y2), . . . , we will design a nonpara-
metric procedure tracking changes of φn(·), for n = 1, 2, . . . . Let us represent
functions φn(·) in model (7) in the form:

φn(x) =
φn(x)f(x)

f(x)
=

Rn(x)
f(x)

(9)

at each point x at which f(x) �= 0, n = 1, 2, . . . . Without loss of generality,
we assume that the density function, f(x), is known. If it is unknown, it can be
estimated by a number of various sequential procedures, including the orthogonal
series [6] and the Parzen kernel-based methods [7]. Under that assumption, the
estimate of φn(·) is given by

φ̂n(x) =
R̂n(x)
f(x)

. (10)
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Now, the challenge is to design a procedure R̂n(·) tracking for changes of func-
tions Rn(·) in formula (9). Assuming that

||Rn(x)||L2 <= ∞, n = 1, 2, . . . , (11)

using (1) and (5), we expand functions Rn(·) in the Hermite orthogonal series
as follows:

Rn(x) ∼
∞∑

j1=0

· · ·
∞∑

jp=0

aj1,...,jp,n Ψj1 , . . . ,jp (x), (12)

for n = 1, 2, . . . , with

aj1,...,jp,n =
∫

Rn(x) Ψj1 , . . . ,jp (x) dx, (13)

where x ∈ R
p.

Let us denote the partial expansion of (12) by

Sn(x) =
q(n)∑
j1=0

· · ·
q(n)∑
jp=0

aj1,...,jp,n Ψj1 , . . . ,jp (x) (14)

where q(n) −→ ∞ as n −→ ∞.
In the next section, we require, in Theorems 1 and 2, that partial expansions

Sn(x) approach unknown functions Rn(x) as n −→ ∞.
Replacing coefficients aj1,...,jp,n in (14) by their estimates would give a natural

estimate of functions Rn(x), for n = 1, 2, . . . . However, the tracking procedure
would not work in the online mode. Therefore, here for tracking Rn(x), n =
1, 2, . . . , we propose the procedure:

R̂n+1(x) = R̂n(x)+

γn+1

⎛
⎝Yn+1

q(n)∑
j1=0

· · ·
q(n)∑
jp=0

gj1(x
(1))gj1(X

(1)
n+1) . . . gjp(x

(p))gjp(X
(p)
n+1) − R̂n(x)

⎞
⎠ ,

(15)
where R̂0(x) = 0 and γn is a sequence of numbers such that

∞∑
n=1

γn = ∞, γn
n−→ 0, γn > 0. (16)

Equation (15) can be considered as a counterpart of the online Parzen kernel-
based procedure:

R̂n+1(x) = R̂n(x) + γn+1

(
Yn+1 h−p

n+1 K

(
x − Xn+1

hn+1

)
− R̂n(x)

)
(17)

where K(·) is the Parzen kernel, and hn is a sequence of numbers such that
hn −→ 0 as n −→ ∞, see [7]. On the other hand, procedure (17) is the online
version of the generalized regression neural networks introduced by Specht in
[19].
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4 Convergence Theorems

In this section, we investigate the tracking properties of algorithm (10) where
R̂n(x) is given by (15). Let us denote:

dn =
∫

Rp

φ2
n(x)f(x)dx + σ2

z , (18)

for n = 1, 2, . . . .

Theorem 1. Assume that condition (18) holds and sequence γn satisfies con-
ditions (16). Suppose that the unknown functions, φn(x) in model (7), vary in
such a way that

γ−1
n ||φn+1(x) − φn(x)||L2

n−→ 0, (19)

sequence q(n) satisfies

γ−1
n (q(n))

11p
6 dn

n−→ 0, q(n) n−→ ∞, (20)

and
γ−1

n ||Sn(x) − Rn(x)||L2

n−→ 0, (21)

then
E||(φ̂n(x) − φn(x))f(x)||2L2

n−→ 0, (22)

and
||(φ̂n(x) − φn(x))f(x)||L2

n−→ 0 in probability. (23)

Proof. See Appendix.

Remark 1. Let us assume that tln(x;Rn) ∈ L2(Rp) where

tln(x;Rn) =
p∏

k=1

(
x(k) − ∂/∂x(k)

)l

Rn

(
x(1), . . . , x(p)

)
. (24)

Then, it can be shown (see [18], p. 259) that

||Sn(x) − Rn(x)||L2 ≤ ||tln(x;Rn)||L2

(
q(n)

−pl
2

)
. (25)

The bound given by (25) will be useful to find sequences γn and q(n) satisfying
condition (21).

Example 1. (incremental concept drift)
We consider the incremental concept drift in the regression model:

φn(x) = nαφ(x) (26)

where α > 0 and φ(x) ∈ L2. It is easily seen that, using (25), conditions (19),
(20), and (21) take the form:

γ−1
n nα−1 n−→ 0, γn(q(n))

11p
6 n2α n−→ 0, γ−1

n (q(n))
−pl
2 nα n−→ 0. (27)
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Let us choose
γn = c1n

−γ , q(n) = [c2nq] (28)

for c1, c2, γ, q > 0, where [a] means the integer part of a.
Then, conditions (27) are satisfied if

γ + α < 1,
11qp

6
+ 2α − γ < 0, γ + α − qpl

2
< 0. (29)

It is easily seen that, for a given α, parameters γ and q shoud satisfy:

γ < 1 − α,
2(γ + α)

pl
< q <

6(γ − 2α)
11p

. (30)

If 0 < α < 0.5, one can choose sequences γn and q(n) in procedure (15),
assuring convergence (22) and (23). Comparing with the recent pointwise con-
vergence [7], which holds for 0 < α < 1/3, the L2 convergence allows a bigger
incremental concept drift.

Example 2. (reoccurring and mixed concept drifts)
The algorithm presented in the previous section is also applicable to tracking
reoccurring concept drift, e.g. in the model:

Yn = φ(Xn) (C1 sin An + C2 cos Bn) + Zn (31)

or it also can handle the mixed concept drift of the form:

Yn = φ(Xn)
(
C1n

t + C2 sin An + C3 cos Bn

)
+ Zn (32)

where An = k1n
α1 , Bn = k2n

α2 , and C1, C2, C3, k1, k2 are real numbers,
α1, α2, t > 0.

For models (31) and (32), we can determine sequences γn and q(n) guaran-
teeing convergence (22) and (23) if t < 0.5 and α1, α2 < 1.

Theorem 2. Assume that condition (11) holds and sequence γn satisfies con-
ditions (16). Suppose that the unknown functions, φn(x) in model (7), vary in
such a way that

∞∑
n=1

γ−1
n ||(φ̂n(x) − φn(x))f(x)||2L2

< ∞, (33)

sequence q(n) satisfies functions, φ(x) in model (7) vary in such a way that
∞∑

n=1

γ2
n(q(n))

11p
6 dn < ∞ (34)

and ∞∑
n=1

γ−1
n ||Sn(x) − Rn(x))||2L2

< ∞, (35)

then
||(φ̂n(x) − φn(x))f(x)||L2

n−→ 0 with probability one. (36)
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Proof. See Appendix.

Example 3. Assuming the incremental concept drift, as in model (26), condi-
tions (33), (34), and (35) take the form:

∞∑
n=1

γ−1
n n2(α−1) < ∞, (37)

∞∑
n=1

γ2
n(q(n))

11p
6 n2α < ∞, (38)

∞∑
n=1

γ−1
n (q(n))−pl

n2α < ∞. (39)

For sequences γn and q(n), given by (28), the above conditions are satisfied if

γ < 1 − 2α,
γ + 2α + 1

pl
< q <

6(2γ − 2α − 1)
11p

. (40)

It is easly seen that we can find parameters γ and q if 0 < α < 0.5, and again this
interval is wider than interval 0 < α < 1/6 determined in [7] for the pointwise
convergence.

5 Simulation Results

In this section, we show the performance of algorithm (10) with recursion (15),
assuming that input data X1,X2, . . . , are coming from the following mixture of
three normal distributions: 0.4N(0, 0.2) + 0.3N(−1.2, 0.5) + 0.3N(0.8, 0.5), and
the time-varying data stream model is given by (7) and (26) with

φ(x) = sin(2x + 3)(x + 8)(x − 8)(x + 1)/10 (41)

whereas Zn are from the normal distribution, N(0, 1), moreover γn, and q(n)
are given by (28) with q = 0.19 and γ = 0.75, for c1 = 1 and c2 = 20, chosen in
the experiment.

Plots of the MSE are shown in Fig. 1, for α = 0.1; 0.2; 0.25. The conditions
of the convergence theorem are satisfied for α = 0.1 and α = 0.2, but violated
for α = 0.25.

In Fig. 2, we depict the fit of the tracking algorithm to the data points, for α =
0.2, whereas Fig. 3 shows its perfect performance after processing 100000 data
items. Figures 3 and 4 portray plots of estimator φ̂n(x) and estimated function
φn(x). In Fig. 4, the tracking properties are demonstrated for x = 1.



444 D. Rutkowska and L. Rutkowski

Fig. 1. Plots of the MSE for α = 0.1; 0.2; 0.25.

Fig. 2. The fit of the tracking algorithm to the data points.
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Fig. 3. Comparison of the estimator and estimated function after 100000 iterations

Fig. 4. Tracking of the estimated function by its estimator at point x = 1
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6 Conclusions

In the paper, we studied the tracking properties of the Hermite series-based
algorithm for solving the regression problem in a time-varying environment. In
Theorems 1 and 2, under several conditions imposed on the learning rate, γn, and
the number of terms, q(n), in the Hermite orthogonal expansions, we showed the
weak and strong convergence of the proposed algorithm. It should be noted that
the L2 convergence holds for a wider class of the incremental and reoccurring
concept drifts than in the case of the pointwise convergence presented in [6]
and [7]. In future research, we plan to investigate the speed of the convergence
of procedure (15) and apply alternative techniques, including higher order neural
networks, see e.g. [1], for stream data mining.

Acknowledgments. The project is financed under the program of the Minister of
Science and Higher Education under the name “Regional Initiative of Excellence”
in the years 2019–2022, project number 020/RID/2018/19, the amount of financing
12,000,000 PLN.

Appendix – Proof of Theorems 1 and 2

Let us denote:

Kn(x, u) =
q(n)∑
j1=0

...

q(n)∑
jp=0

gj1(x
(1))gj1(u

(1)) . . . gjp(x
(p))gjp(u

(p)). (42)

Obviously, ∫
V ar[YnKn(x,Xn)]dx ≤

∫
E[Y 2

n K2
n(x,Xn)]dx. (43)

Since Xn and Zn are independent random variables, using (7) and (8), one gets:
∫

E[Y 2
n K2

n(x,Xn)]dx

=
∫

E[φ2
n(Xn)K2

n(x,Xn)]dx +
∫

E[Z2
nK2

n(x,Xn)]dx

=
∫ ∫

φ2
n(u)K2

n(x, u)f(u)dxdu + σ2
z

∫ ∫
K2

n(x, u)f(u)dxdu. (44)

By the Schwarz inequality, one has:

K2
n(x, u) ≤

q(n)∑
j1=0

g2j1(x
(1))

q(n)∑
j1=0

g2j1(u
(1)) · · ·

q(n)∑
jp=0

g2jp(x
(p))

q(n)∑
jp=0

g2jp(u
(p)) (45)

Combining (44) with (45), using (3), (18), and the orthonormality of system (1),
one obtains the following bound:

∫
V ar[YnKn(x,Xn)]dx ≤ qp(n)

⎛
⎝

q(n)∑
j=0

G2
j

⎞
⎠

p

dn. (46)
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In view of (25) and (46), a proper application of Theorems 9.3 and 9.4 in [18]
concludes the proof of Theorems 1 and 2.
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Abstract. Humans use rich facial expressions to indicate unpleasant
emotions, such as pain. Automatic pain intensity estimation is useful in
a variety of applications in social and medical domains. However, the
existing pain intensity estimation approaches are limited to either clas-
sifying the discrete intensity levels in pain or estimating the continuous
pain intensities without considering the key-frame. The first approach
suffers from abnormal fluctuations while estimating the pain intensity
levels. Further, continuous pain estimation approaches suffer from low
prediction capabilities. Hence, in this paper, we propose a deep hybrid
network based approach to automatically estimate the continuous pain
intensities by incorporating spatiotemporal information. Our approach
consists of two key components, namely key-frame analyser and temporal
analyser. We use one conventional and two recurrent convolutional neu-
ral networks to design key-frame and temporal analysers, respectively.
Further, the evaluation on a benchmark dataset shows that our model
can estimate the continuous emotions better than existing state-of-the-
art methods.

Keywords: Pain intensity estimation · Hybrid deep network ·
Convolutional neural network · Recurrent convolutional neural network

1 Introduction

Highly social species such as human use face as the primary medium to express
emotional states, such as pain during everyday interactions [5]. Due to the fact
that the pain assessment is inevitable in applications related to medical, sports
and social environments, it is essential to devise efficient mechanisms to esti-
mate the pain in-the-wild automatically. For, instance, accurate pain evaluation
during a medical intervention can help the practitioner to provide appropriate
treatment at the right time. Meanwhile, the fine-grained analysis of many basic
and non-basic emotions has become an emerging topic in the past [25]. For exam-
ple, in [21], we have recognised different intensity levels of micro-expressions
from images. Further, in [22], a metric-based intensity estimation mechanism
for primary emotions is proposed. However, in general, estimating the level of
pain is subjective, and hence complicated. In the past, researchers have used
c© Springer Nature Switzerland AG 2019
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various techniques to define the pain intensities, manually and automatically,
from acute facial expressions. So far, two widely known manual pain intensity
estimation methods, namely, self and observer reports, have been used by med-
ical practitioners. Moreover, the computer-aided pain intensity estimation from
facial expressions has always been in the centre of attraction for computer vision
researchers.

In practice, the lack of labelled data and standard rules cause the auto-
matic pain intensity estimation challenging. The action units (AUs) of the facial
action coding system (FACS) [3] provide a universal standard to define the pain
intensity levels. In [17], authors proposed Prkachin and Solomon Pain Intensity
(PSPI) metric to estimate the pain intensities in sixteen-scale ordinal scale from
a combination of six AUs. Following the work [17], in the recent past, plenty
of research have utilized the PSPI metric to classify the pain intensity levels
into a various number of classes. For instance, Rudovic et al. [20] have adopted
the original PSPI metric to classify the pain intensities into six classes, namely,
none, mild, discomforting, distressing, intense and excruciating. A few emotional
states, such as distress, discomfort and excruciating, can be extracted from the
pain levels defined in the PSPI metric. More importantly, the pain intensity
levels can become a critical ingredient of other non-basic emotions, such as non-
confidence or distress. Hence, it is important to accurately classify these pain
intensity levels in order to explore new non-basic emotions.

This paper proposes a hybrid deep neural network framework that utilizes the
features extracted from both target and adjacent frames, to estimate the frame-
level pain intensity continuously from facial expressions. We carefully construct
the conventional and recurrent versions of the convolutional neural networks
(CNNs) together to achieve accurate intensity estimation in our framework.
According to the best of our knowledge, the proposed framework is the first one
to use the features obtained from both target and adjoint frames to estimate the
frame-level emotion intensity levels. In addition, to obtain the final pain estima-
tion, we present a comprehensive neural network based feature fusion mechanism
that combines the features extracted from different CNNs. Below we list the key
contributions of this paper.

– We present an efficient hybrid pain intensity estimation framework, comprised
of one conventional and two recurrent CNNs (RCNNs), to extract features
from the target and adjoint frames, respectively. We use a selected number
of frames before and after the target frame (i.e., key-frame) as adjoint frames
in our frame-by-frame regression model to encode the additional temporal
changes.

– We evaluate the method on UNBC-McMaster Shoulder Pain Expression
Archive Database [11], and show that our approach outperforms the state-
of-the-art pain intensity estimation methods in terms of stability, accuracy
and efficiency. Further, we perform an ablation study to show that our final
model yields significant performance improvement compared to using only
the intermediate components, such as considering only the past frames.
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The remaining sections of this paper are structured as follows. In Sect. 2, the
preliminaries are defined. Section 3 describes our proposed pain intensity esti-
mation method. The experimental results and a summary of the discussion are
presented in Sect. 4. The conclusion and remarks to future works are presented
in the final section of the paper.

2 Preliminaries

In this section, we outline the background of PSPI metric and briefly discuss the
existing state-of-the-art pain intensity estimation approaches.

2.1 PSPI Metric

Empirical studies in pain intensity estimation from facial expressions suggest
that four facial action units (AUs); brow lowering (AU4), orbital tightening
(AU6 and AU7), levator contraction (AU9 and AU10) and eye closure (AU43)
reveal majority of the information about pain. As mentioned previously, Prkachin
proposed a pain metric, namely PSPI in [16], and as a follow-up work, Prkachin
and Solomon recently confirmed the metric in [17]. Authors defined the pain
intensity metric as the summation of the AU intensities mentioned above, as
shown in Eq. (1).

PSPI = AU4 + (AU6|AU7) + (AU9|AU10) + AU43 (1)

As illustrated in Eq. (1), in PSPI metric, the pain intensity values are calcu-
lated by adding the intensity values of AU4, maximum of AU6 or AU7, maximum
of AU9 or AU10 and AU43. For example, if the intensity values of AU4, AU6,
AU7, AU9, AU10 and AU43 are 4, 5, 3, 1, 2 and 1 respectively, then the pain
intensity value is calculated as PSPI = 4 + max(5, 3) + max(1, 2) + 1, which
is 12. PSPI metric generates a 16-point pain intensity scale based on the inten-
sity scales of the corresponding AUs. The intensity scale of each AU spans from
absent (0) to maximum (5), while AU43 takes only the binary values; 1 when
the eye is closed and 0 otherwise. Hence, the pain intensity score ranges from a
minimum of 0 to a maximum of 16.

Using the PSPI metric as the standard pain intensity definition, many
researchers in the recent past have proposed different approaches to estimate
the emotion intensities. Next, we survey a few noteworthy works in this area.

2.2 Related Work

Early research works in pain intensity estimation had a tendency of classifying
the pain into a binary class; pain and non-pain. However, in recent years, a vast
number of studies have started focusing on a fine-grained pain intensity level esti-
mation rather than a simple twofold classification. Typical handcrafted feature
based techniques, such as [6,9,11,14,18–20,25], were started a decade ago. Yet,
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handcrafted feature extraction methods are effective due to the fact that they
require less computational power. Although the handcrafted feature extraction
techniques are straightforward in general, they are not effective. On the other
hand, due to the recent advances in computational power (i.e., the invention of
powerful GPU based chips), researchers have started working on automatic fea-
ture extractive deep learning techniques [12,23,26]. A simple deep architecture
has outperformed handcrafted feature extraction based pain intensity estimation
techniques comprehensively [23].

Binary classification of pain, commonly known as detection, is less compli-
cated than estimating multiple intensity levels of pain. Kalkhoran and Fatem-
izadeh [9] eliminated a few intensity levels, and proposed a slightly different
regression-based approach to detect the pain. Unlike other existing pain detec-
tion approaches, this method considered observer-rated pain intensity (OPI)
value. In [14], Neshov and Manolova proposed a similar binary classification
method of pain based on PSPI value. Although the authors stated that the
proposed method clearly outperforms all the existing regression-based methods
after a careful comparison, binary classification is not capable to cater the needs
of present day applications. However, estimation of pain intensity at fine-grained
levels, such as using PSPI value from 0 to 16, is challenging due to the limited
deviations available in painful facial expressions between subsequent PSPI scales.
Hence, researchers in the past tend to curtail the number of pain intensity classes.
Hammal and Cohn [6] proposed one such approach to define the pain intensity in
four levels, namely PSPI = 0 as none, PSPI = 1 as trace, PSPI = 2 as weak
and PSPI ≥ 3 as strong. Roy et al. [19] proposed another novel framework to
estimate the pain intensity levels, in the medical domain using four class defini-
tion of [6] and achieved an improved performance. Rudovic et al. [20] presented
another novel pain estimation approach that does not use any previously pro-
posed standard classification of pain intensity levels. The authors categorized the
pain intensity levels into six meaningful emotions, namely, none, mild, discom-
forting, distressing, intense and excruciating. Further, Zhao et al. [25] extended
the [20] in their approach and showed better classification accuracies under a
fully supervised setting.

In order to initiate the fine-grained pain level estimation, Lucey et al. [11]
investigated the automatic pain estimation problem through the 16-level PSPI
scale. In a follow-up work, Rathee and Ganotra [18] demonstrated a slightly
higher accuracy of 96% for the 16-level pain intensity estimation with their
model. More recently, in [12], authors designed a recurrent neural network
based feature extractor for 16-level pain intensity estimation. However, all these
approaches used single frame static features to estimate the frame-wise pain
intensity levels, which gives abnormal fluctuations when estimating the con-
tinuous pain from a sequence of images. In order to overcome this drawback,
[7,8,23,26] and [4] considered the pain intensity estimation using regression-
based approaches, and shown substantial performance enhancement. In particu-
lar, [23] and [26] examined a set of prior frames to estimate the pain intensity of
the target frame. Evaluations demonstrated that the use of historical informa-
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Fig. 1. The overall architecture of our proposed deep pain intensity estimation frame-
work.

tion improves the pain assessment in a sequence of images with continuous pain
annotations (i.e., a video). Lastly, considering [23] and [26], the key observations
is that less attention is paid for the pain related features that can be extracted
from the key-frame. More importantly, the frames located after the key-frame
were not considered. In this work, we incorporate both the past and subsequent
frames in addition to the key-frame when estimating the pain intensity. Next,
we present our proposed model.

3 Proposed Model

Our proposed method consists of two main components and a fusion unit, namely
key-frame analyser and temporal analyser. The key-frame analyser is a conven-
tional deep CNN model used to extract features from a target frame in each
step of a sliding window. The second component, namely temporal analyser,
estimates the pain related features from the adjacent frames of a target frame.
We use two identical RCNNs to extract features from h number of frames located
prior and posterior to the key-frame. Lastly, to construct the pain intensity level
estimator, we use a fusion mechanism to combine the features extracted by the
deep networks. The overall architecture of our proposed pain intensity estima-
tion framework is illustrated in Fig. 1. In this figure, note that we have described
one of multiple feature extraction and fusion steps available in a sliding window
process. This step will be repeated multiple times for a long sequence of pain
frames.

3.1 Key-Frame Analyser

In this sub-section, we describe the architecture of the proposed key-frame anal-
yser in detail. Motivated by the recent successes of deep CNNs in computer
vision, the proposed frame-wise feature extractor is constructed to utilize the
spatial features extracted from a key-frame during pain intensity estimation
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Fig. 2. Illustration of the conventional CNN architecture used in our pain intensity
estimation method to extract features from the key-frame.

task. Figure 2 illustrates the deep CNN architecture used in the frame-wise fea-
ture extractor. As shown in the figure, our CNN network consists of six convo-
lutional networks and two deep residual blocks. In addition, rectifier linear unit
(ReLU), dropout, normalization and pooling layers are appropriately staked in
our architecture. The first layer accepts the input frames in sizes of 128 × 128.

As can be seen, we use multiple ReLU regularly after each convolution layer.
In a deep neural network, sparse representations can be obtained effortlessly
through a ReLU activation function. Additionally, ReLU allows a deep neural
network to achieve a better gradient propagation. We have added a dropout
layer after the convolution layers 2 and 4 to prevent over-fitting. As indicated in
[13], the max pooling layer drastically cut down the computational complexity
by progressively reducing the parameters and spatial feature size. The train-
ing time can further be reduced by placing cross-channel normalization layers
appropriately. Hence, after the convolution layers 2, 4 and 6, we have stacked in a
normalization and pooling layers in our architecture. In deep networks, accuracy
starts to degrade after a saturation point when we increase the number of con-
volutional layers; this situation is commonly known as a degradation issue. The
degradation problem can be avoided using properly designed residual networks
with short connections. Thus, in our architecture, two deep residual blocks are
placed after convolution layers 2 and 4. Both residual blocks have six convolution
layers with appropriately linked short and long skip connections.

3.2 Temporal Analyser

As described in the previous sub-section, the proposed keyframe analyser con-
siders only the spatial features of the keyframe in each step. However, from the
previous studies related to emotion estimation, it has been observed that the
adjacent frames have an impact on a keyframe’s pain intensity level. Hence, in
addition to the extracted spatial features of a keyframe, we also incorporate the
temporal features extracted from a few frames located before and after each
corresponding keyframe.

Recently, the RCNN has shown a rapid success in various sequential image
classification tasks, such as continuous emotion estimation [2] and tracking [15].
In order to improve the performance of RCNN, researchers have proposed diverse
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architectures and experimented on different sequential computer vision tasks.
The hidden layers of several adjacent frames in a sequence, including the cur-
rent layer, are connected in RCNN. Commonly, in sequential tasks, an RCNN
demonstrates better performance due to the fact that the temporal informa-
tion of a sequential input is preserved. In particular, an appropriately designed
RCNN can effortlessly outperform existing state-of-the-art pain estimation meth-
ods that use only the spatial features. Inspired by [10], in our approach, we use
two similar RCNNs to extract temporal features from the adjacent frames. The
overall architecture of the RCNN used in the temporal analyser unit is pre-
sented in Fig. 3(a). We designed our proposed RCNN architecture using five
layers (i.e., layers 1–5) with four RCNN layers after a conventional CNN layer
placed upfront. The input size of the first layer is same as the keyframe analyser,
which is 128×128. Apart from convolution and recurrent layers, after each layer
in our architecture, we place a max pooling layer. We get the temporal features
map for a sequence of frames after the last convolutional layer as the output,
which will be combined with features extracted by the keyframe analyser.

Figure 3(b) provides an illustration of an unfolded RCNN layer with multiple
conventional CNN layers. In each RCNN layer, the hidden layer weights obtained
in t+1 steps are shared. Unlike a conventional CNN network with (t + 1) layers
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that takes only the values of the current step, an RCNN network keeps a sequence
of values from 0 to current step (i.e., t). Generally, the model appears to be a very
deep feed-forward network with a fixed number of (4(t+1)+1 in our architecture)
layers after unfolding all RCNN layers. As can be seen, in our RCNN network,
there exist shared weights and local connections between recurrent and feed-
forward connections.

3.3 Fusion and Continuous Pain Estimation

In our approach, we use a feature level fusion technique to combine the pain
related features extracted from the key-frame and temporal analysers. To per-
form the feature fusion, we combine the intermediate-level representations of the
features derived from the last layer of each analyser. We adopted a regularised
fusion network proposed in [24]. The outcome of the fusion unit is fed to a soft-
max layer, which is the final output layer of our proposed framework. We then
used a linear activation function in the output layer in order to activate the
continuous-valued emotion intensity level predictions, as presented in Eq. 2.

ŷ = wT (x + y) (2)

where, ŷ indicates the continuous pain predicted value and x + y is the feature
vector after the fusion. We have modified the loss function to regression-based
mean squared error and minimized it during the training process using back-
propagation through time (BPTT) technique [1].

4 Results and Experiments

4.1 Settings

We evaluated our proposed spatiotemporal based continuous pain intensity esti-
mation framework on a benchmark dataset, namely, UNBC-McMaster Shoulder
Pain Expression Archive (UNBC) [11]. In the past, UNBC dataset has been
used widely in most pain intensity estimation studies since it provides a well-
annotated facial expression based pain intensity labels. The videos in this dataset
were recorded under the clinical and controlled environment, and the subjects
experienced a variety of chronic shoulder pain. The original UNBC benchmark
dataset contains spontaneous videos of 129 human subjects distributed evenly for
each gender, with 63 males and 66 females. However, the database portion avail-
able for distribution consists of 200 sequences of 25 subjects with 48,398 FACS [3]
coded frames. Along with 16-level PSPI values, annotations for self-rated Sen-
sory Scale (SEN), Affective Motivational Scale (AFF) and Visual Analog Scales
(VAS) are also provided. In this paper, to perform our proposed continuous pain
intensity estimation experiments, we use the images of publicly released dataset
with the corresponding 16-level PSPI ground-truth values.

We also performed a series of preprocessing steps to improve the performance
of our proposed framework. We use a preprocessing pipeline, which is similar
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Fig. 4. Illustration of the pain intensity classification results using key-frame analyser
proposed as a component in our approach. Results are presented based on 10-fold and
leave-one-subject-out cross-validations.

to the one proposed in [21]. It mainly consists of two primary phases: data
augmentation and normalisation. The preprocessed images are then used in the
training and testing phases. We use both leave-one-subject-out and 10-fold cross-
validation during the training and testing phase of the experiment. In leave-one-
subject-our cross-validation, we use 1 subject to test on a model which is trained
on the other subjects. On the contrary, we split the dataset into 10 partitions, to
train the model on 9 and test on last. In both cross-validations, we repeated the
same step multiple times to obtain the average performance metric values. The
stochastic gradient descent (SGD) has been used as the optimization objective
function for the deep learning components, with the learning parameters set to
learningrate = 0.001, momentum = 0.9 and weightdecay = 0.00005.

4.2 Ablation Study

In this sub-section, we perform a component-wise evaluation to demonstrate the
importance of the complete framework in estimating the continuous pain inten-
sity levels. As mentioned previously, our proposed framework has two major
components. The first component, key-frame analyser, is to extract the spatial
features from the key-frame. We use key-frame analyser alone to estimate the
pain intensity values from a sequence of images. Note that the results obtained
are the discrete pain intensity levels (i.e., pain levels 0, 1, 2, ..., 16) since the key-
frame analyser is a traditional feed-forward deep CNN network. Therefore, we
have not compared the results achieved in this step against other steps which are
described later in the ablation study. However, the classification accuracies for
the pain intensity levels are reported in Fig. 4. Due to the lack of annotated sam-
ples for the higher pain intensity levels, such as 14, 15 and 16, we have grouped
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Fig. 5. The continuous prediction of the pain intensities for a sequence taken from
UNBC dataset is presented. The results obtained by an intermediate and the final
model proposed in our approach is shown along with ground truth (Colour figure
online).

them to a single intensity class in our experiment and denoted as ≥ 14. As can
be seen, the key-frame analyser achieved the highest classification accuracies
for the pain intensity level prediction in 10-fold cross-validation. For example,
the pain intensity prediction accuracies are 52.7% and 38.5% for 10-fold and
leave-one-subject-out cross-validations, respectively. Next, we will demonstrate
how we have improved this detection accuracy by incorporating our temporal
features.

In order to extract the temporal features from the frames located before
and after the key-frame, we use the second component. In order to demonstrate
the significance of the frames located before and after the key-frame, we have
structured this experiment as follows. We design an intermediate component
with key-frame extractor and one RCNN network to extract only the features
from frames located before the key-frame. Next, we combine the next RCNN
network that extracts the features from frames located after the key-frame to
obtain our final model.

Figure 5 illustrates the predicted continuous pain intensities for a sequence
from UNBC dataset using the aforementioned variations of our proposed frame-
work. The ground truth frame-level pain intensity annotations are indicated
using blue line in the figure. The results demonstrate that our final model
achieved better results (indicated in green colour) in terms of estimating con-
tinuous pain intensities compared to the intermediate component (indicated in
orange colour).

4.3 Comparison with the State-of-the-art

Additionally, we compare our model with other noteworthy techniques proposed
for continuous pain intensity estimation on UNBC dataset. The comparison
results are illustrated in Table 1. After exploiting the features extracted from
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both key-frame and temporal analyser, our approach shows promising results
and outperforms all the state-of-the-art methods proposed in the literature. Our
final framework achieved an average mean squared error (MSE) and Pearson’s
inner-product correlation coefficient (PCC) of 1.29 and 0.73 for the fused features
key-frame and temporal analysers, which shows that our framework is effective.

Table 1. Comparison of the pain intensity estimation results of the proposed hybrid
approach with other state-of-the-art methods in the literature.

Methods Variations MSE PCC

Kaltwang et al. [8] PTS 2.59 0.36

DC 1.71 0.55

LBP 1.81 0.48

(DCT+LBP)/RVR 1.39 0.59

Florea et al. [4] Hessian Histograms 3.76 0.25

Gradient Histograms 4.76 0.34

Hong et al. [7] 2Standmap 1.42 0.55

Zhou et al. [26] RCNN regression 1.54 0.65

Our method Before 1.51 0.62

Before+After 1.37 0.69

Before+After+key-frame 1.29 0.73

5 Conclusion

This paper introduces a deep hybrid network based continuous pain intensity
estimation framework. The combination of key-frame and temporal analysers
allowed us to devise a sophisticated mechanism that works effectively on a con-
tinuous pain sequence. The robustness of our approach was further enhanced by
including a feature set extracted from a few prior and posterior frames by the
temporal analyser. Experiments on the benchmark UNBC-McMaster Shoulder
Pain Expression Archive dataset demonstrated that our approach is capable of
estimating continuous pain intensities effectively. Further, the comparison with
other existing state-of-the-art methods proved that our approach outperformed
the state-of-the-art continuous pain intensity estimation methods. As a future
direction, we aim to expand this continuous pain intensity estimation framework
to estimate other complex emotions, such as confidence, depression and distress.
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Abstract. Generating accurate and reliable sales forecasts is crucial in
the E-commerce business. The current state-of-the-art techniques are
typically univariate methods, which produce forecasts considering only
the historical sales data of a single product. However, in a situation
where large quantities of related time series are available, conditioning
the forecast of an individual time series on past behaviour of similar,
related time series can be beneficial. Since the product assortment hier-
archy in an E-commerce platform contains large numbers of related prod-
ucts, in which the sales demand patterns can be correlated, our attempt
is to incorporate this cross-series information in a unified model. We
achieve this by globally training a Long Short-Term Memory network
(LSTM) that exploits the non-linear demand relationships available in
an E-commerce product assortment hierarchy. Aside from the forecast-
ing framework, we also propose a systematic pre-processing framework to
overcome the challenges in the E-commerce business. We also introduce
several product grouping strategies to supplement the LSTM learning
schemes, in situations where sales patterns in a product portfolio are dis-
parate. We empirically evaluate the proposed forecasting framework on a
real-world online marketplace dataset from Walmart.com. Our method
achieves competitive results on category level and super-departmental
level datasets, outperforming state-of-the-art techniques.

Keywords: E-commerce · Time series · Demand forecasting · LSTM

1 Introduction

Generating product-level demand forecasts is a crucial factor in E-commerce
platforms. Accurate and reliable demand forecasts enable better inventory plan-
ning, competitive pricing, timely promotion planning, etc. While accurate fore-
casts can lead to huge savings and cost reductions, poor demand estimations are
proven to be costly in this domain.
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The business environment in E-commerce is highly dynamic and often
volatile, which is largely caused by holiday effects, low product-sales conver-
sion rate, competitor behaviour, etc. As a result, demand data in this domain
carry various challenges, such as highly non-stationary historical data, irreg-
ular sales patterns, sparse sales data, highly intermittent sales, etc. Further-
more, product assortments in these platforms follow a hierarchical structure,
where certain products within a subgroup of the hierarchy can be similar or
related to each other. In essence, this hierarchical structure provides a natural
grouping of the product portfolio, where items that fall in the same subcate-
gory/category/department/su per-department are considered as a single group,
in which the sales patterns can be correlated. The time series of such related
products are correlated and may share key properties of demand. For example,
increasing demand of an item may potentially cause to decrease/increase sales
demand of another item, i.e., substituting/complimentary products. Therefore,
accounting for the notion of similarity between these products becomes necessary
to produce accurate and meaningful forecasts in the E-commerce domain.

The existing demand forecasting methods in the E-commerce domain are
largely influenced by state-of-the-art forecasting techniques from the exponential
smoothing [1] and the ARIMA [2] families. However, these forecasting methods
are univariate, thus treat each time series separately, and forecast them in isola-
tion. As a result, though many related products are available, in which the sales
demand patterns can be similar, these univariate models ignore such potential
cross-series information available within related products. Consequently, efforts
to exploit the enormous potentials of such multiple related time series is becom-
ing increasingly popular [3–8]. More recently, Recurrent Neural Networks (RNN)
and Long Short-Term Memory Networks (LSTM), a special group of neural net-
works (NN) that are naturally suited for time series forecasting, have achieved
promising results by globally training the network across all related time series
that enables the network to exploit any cross-series information available [5,6,8].

Therefore, with the primary objective of leveraging demand forecasts in the
E-commerce domain, we identify the main research contributions of this study
as follows:

– We exploit sales correlations and relationships available in an E-commerce
product hierarchy, while introducing a systematic preprocessing framework
to overcome the data challenges in the E-commerce domain.

– We analyse and compare two different LSTM learning schemes with differ-
ent back-propagation error terms, and include a mix of static and dynamic
features to incorporate potential external driving factors of sales demand.

– We empirically evaluate our framework using real-world retail sales data from
the internal database of Walmart.com, in which we use state-of-the-art fore-
casting techniques to compare against our proposed framework.

The rest of the paper is organized as follows. We describe the proposed
preprocessing scheme in Sect. 2. Next, in Sect. 3, we outline the key learning
properties included in our LSTM network architecture. We summarise the over-
all architecture of our forecasting engine in Sect. 4. Our experimental setup is

https://www.walmart.com
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presented in Sect. 5, where we demonstrate the results obtained by applying our
framework to a large dataset from Walmart.com. Finally, Sect. 6 concludes the
paper.

2 Data Preprocessing

Sales datasets in the E-commerce domain experience various issues that we aim
to address with the following preprocessing mechanisms in our framework.

2.1 Handling Data Quality Issues

Nowadays, data extract, transform, load (ETL) [24] is the main data integra-
tion process in data warehousing pipelines. However, the ETL process is often
unstable in real-time processing, and may cause false “zero” sales in the dataset.
Therefore, we propose a method to distinguish the actual zero sales from the
false zero sales (“fake zeros”) and treat the latter as missing observations.

Our approach is mostly heuristic, where we initially compute the minimum
non-zero sales of each item in the past 6 months. Then, we treat the zero sales
as “fake” zero sales if the minimum non-zero sales of a certain item are higher
than a threshold γ = 10. We treat these zero sales as missing observations. It is
also noteworthy to mention that the ground truth of zero sales is not available,
thus potential false positives can appear in the dataset.

2.2 Handling Missing Values and Sales Normalization

We use a forward-filling strategy to impute missing sales observations in the
dataset. This approach uses the most recent valid observation available to replace
the missing values. We performed preliminary experiments that showed that this
approach outperforms more sophisticated imputation techniques such as linear
regression and Classification And Regression Trees (CART).

Also, the product assortment hierarchy is composed of numerous commodi-
ties that follow various sales volume ranges, thus performing a data normalisation
strategy becomes necessary before building a global model like ours. We use the
mean-scale transformation proposed by [5], where the mean sales of a product
is considered as the scaling factor. This transformation can be formally defined
as follows:

Xi,new =
Xi

1 + 1
k

∑k
t=1 Xi,t

(1)

Here, Xi,new represents the normalised sales vector, and k denotes the num-
ber of sales observations of product i.
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2.3 Product Grouping

According to [8], employing a time series grouping strategy can improve the
LSTM performance in situations where time series are disparate. Therefore, we
introduce two product grouping mechanisms in our preprocessing scheme.

In the first approach, the target products are grouped based on available
domain knowledge. Here, we use the sales ranking and the percentage of zero
sales as primary business metrics to form groups of products. The first group
(G1) represents the product group with a high sales ranking and a low zero
sales density. Whereas, group 2 (G2) represents the product group with a low
sales ranking and a high zero sales density. Group 3 (G3) represents the rest of
the products. From an E-commerce perspective, products in G1 are the “head
items” that bring the highest contribution to the business, thus improving the
sales forecast accuracy in G1 is most important. Details of the above groupings
are summarized in Table 2.

The second approach is based on time series clustering, where we perform K-
means clustering on a set of time series features to identify the product grouping.
Table 1 provides an overview of these features, where the first two features are
business specific features, and the rest are time series specific features. The
time series features are extracted using the tsfeatures package developed by [23].
Finally, we use a silhouette analysis to determine the optimal number of clusters
in the K-means clustering algorithm.

Table 1. Time series and sales-related features used for product clustering

Feature Description

Sales.quantile Sales quantile over total sales

Zero.sales.percentage Sales sparsity/percentage of zero sales

Trend Strength of trend

Spikiness Strength of spikiness

Linearity Strength of linearity

Curvature Strength of curvature

ACF1-e Autocorrelation coefficient at lag 1 of the residuals

ACF1-x Autocorrelation coefficient at lag 1

Entropy Spectral entropy

Table 2. Sales sparsity thresholds used for domain-based product grouping

Group-ID Sales ranking Sales sparsity

1 Sales.quantile ≤ 0.33 Zero.sales.percentage.quantile ≥ 0.67

2 Sales.quantile ≥ 0.67 Zero.sales.percentage.quantile ≤ 0.33

3 Other Other
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3 LSTM Network Architecture

LSTMs are an extension of RNNs that have the ability to learn long-term depen-
dencies in a sequence, overcoming the limitations of vanilla RNNs [9,11,12]. The
cohesive gating mechanism, i.e., input, output, and forget gates, together with
the self-contained memory cell, i.e., “Constant Error Carousel” (CEC) allow the
LSTM to regulate the information flow across the network. This enables the
LSTM to propagate the network error for much longer sequences, while captur-
ing their long-term temporal dependencies.

In this study, we use a special variant of LSTMs, known as “LSTM with
peephole connections” that requires the LSTM input and forget gates to incor-
porate the previous state of the LSTM memory cell. For further discussions of
RNN and LSTM architectures, we refer to [8]. In the following, we describe how
exactly the LSTM architecture is used in our work.

3.1 Learning Schemes

We use the input and output data frames generated from the Moving Window
(MW) strategy procedure as the primary training source of LSTM. Here, MW
strategy transforms a time series (Xi) into pairs of <input, output> patches,
which are used as the training data of the LSTM. As recommended by Bandara
et al. [8], in the MW generation process, we follow the Multi-Input Multi-Output
(MIMO) strategy [14] and employ a local normalization process to avoid possible
network saturation effects, which are caused by the bounds of the network acti-
vation functions [15]. In particular, the mean value for each input window (X̄i) is
calculated and subtracted from each data point of the corresponding input and
output window. This also enables the network to generate conservative forecasts,
which is particularly beneficial in the E-commerce domain, as this reduces the
risk of generating large demand forecasting errors.

Figure 1 summarizes the LSTM learning schemes used in our study, LSTM-
LS1 and LSTM-LS2. Here, Wt ∈ R

n represents the input window at time step
t, ht ∈ R

p represents the hidden state at time step t, and the cell state at time
step t is represented by Ct−1 ∈ R

p. Note that p denotes the dimension of the
memory cell of the LSTM. Additionally, we introduce Ŷt ∈ R

m to represent
the projected output of the LSTM at time step t. Here, m denotes our output
window size, which is equivalent to the forecasting horizon M . Here, each LSTM
layer is followed by a fully connected neural layer (excluding the bias component)
to project each LSTM cell output ht to the dimension of the output window m.

The proposed learning schemes can be distinguished by the overall error term
Et used in the network back-propagation, which is back-propagation through
time (BPTT; [10,13]). Given Yt ∈ R

m are the actual observations of values in
the output window at time step t, which are used as the teacher inputs for the
predictions Ŷt, the LSTM-LS1 scheme accumulates the error et of each LSTM cell
instance to compute the error Et of the network. Here, et refers to the prediction
error at time step t, where et = Yt − Ŷt. Whereas in LSTM-LS2, only the error
term of the final LSTM cell instance et+1 is used as the error Et for the network
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training. For example, in Fig. 1, the Et of LSTM-LS1 scheme is equivalent to∑t+1
j=t−2 ej , while the error term in the final LSTM cell state et+1 gives the error

Et of LSTM-LS2. These error terms are eventually used to update the network
parameters, i.e., the LSTM weight matrices. In this study, we use TensorFlow,
an open-source deep-learning toolkit [16] to implement the above LSTM learning
schemes.

(a) An unrolled representation of learning scheme LSTM-LS1

(b) An unrolled representation of learning scheme LSTM-LS2

Fig. 1. The architectures of LSTM learning schemes, LSTM-LS1 and LSTM-LS2. Each
squared unit represents a peephole connected LSTM cell, where ht provides short-term
memory and Ct retains the long-term dependencies of LSTM.

3.2 Exogenous Variables

We use a combination of static and dynamic features to model external factors
that affect the sales demand. In general, static features include time invari-
ant information, such as product type, product category, etc. Dynamic features
include calendar features (e.g., holidays, season, weekday/weekend). These fea-
tures can be useful to capture sales demand behaviours of products in a certain
period of time.

Figure 2 demonstrates an example of applying the MW approach to include
static and dynamic features in an input window. Now, the input window Wt

is a unified vector of past sales observations Xt, static features Z
(s)
t , and

dynamic features Z
(d)
t . As a result, in addition to historical sales observations

{x1, x2, ..., xn}, we also include the input windows of the holidays {h1, h2, ..., hn},
seasons {s1, s2, ..., sn}, day of the week {d1, d2, ..., dn}, and the sub category
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Fig. 2. Using both static Z
(s)
t , and dynamic Z

(d)
t features with the MW approach.

All categorical variables are represented as “one-hot-encoded” vectors in the LSTM
training data.

types {sc1, sc2, ..., scn}. Later, LSTM uses a concatenation of these input win-
dows to learn the actual observation of the output window {y1, y2, ..., ym}.

4 Overall Procedure

The proposed forecasting framework is composed of three components, namely
(1) pre-processing layer, (2) LSTM training layer, and (3) post-processing layer.
Figure 3 gives a schematic overview of our proposed forecasting framework.

As described in Sect. 2, we initially perform several preprocessing techniques
to arrange the raw data for the LSTM training procedure. Afterwards, the LSTM
models are trained according to the LSTM-LS1 and LSTM-LS2 learning schemes.
Then, in order to obtain the final forecasts, we rescale and denormalize the pre-
dictions generated by the LSTM. Here, the rescaling process back-transforms the
generated forecasts to their original scale of sales, whereas the denormalization
process (see Sect. 3) adds back the mean sales of the last input window to the
forecasts.

5 Experiments

In this section, we describe the experimental setup used to empirically evaluate
our proposed forecasting framework. This includes the datasets, error metrics,
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Fig. 3. The overall summary of the proposed sales demand forecasting framework,
which consists of a pre-processing, an LSTM training, and a post-processing part.

hyper-parameter selection method, benchmark methods and LSTM variants used
to perform the experiments, and the results obtained.

5.1 Datasets

We evaluate our forecasting framework on two datasets collected from the inter-
nal database of Walmart.com. We first evaluate our framework on a subset of
1724 items that belong to the product household category, which consists of
15 different sub-categories. Next, we scale up the number of products to 18254
by extracting a collection from a single super-department, which consists of 16
different categories.

We use 190 consecutive days of daily sales data in 2018. The last 10 days of
data are reserved for model testing. We define our forecasting horizon M as 10,
i.e., training output window size n is equivalent to 10. Following the heuristic
proposed by Bandara et al. [8], we choose the size of the training input window
n as 13 (10 * 1.25).

5.2 Error Measure

We use a modified version of the mean absolute percentage error (mMAPE) as
our forecasting error metric. We define the mMAPE for each item as:

mMAPE =
1
m

m∑

t=1

( |Ft − At|
1 + |At|

)

. (2)

Here, At represents the actual sales at time t, and Ft is the respective sales
forecast generated by a prediction model. The number m denotes the length of
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Table 3. LSTM parameter grid

Model parameter Minimum value Maximum value

LSTM-cell-dimension 50 100

Mini-batch-size 60 1500

Learning-rates-per-sample 10−6 10−3

Maximum-epochs 5 20

Gaussian-noise-injection 10−4 8 · 10−4

L2-regularization-weight 10−4 8 · 10−4

the intended forecasting horizon. Furthermore, to avoid problems for zero values,
we sum a constant term ε = 1 to the denominator of (2). This is a popular error
measure used in the retail and supply chain industry [26].

To report the overall mMAPE for a set of items, we use both mean of the
mMAPEs (Mean mMAPE) and the median of the mMAPEs (Median mMAPE).
Here, median mMAPE is suitable to summarise the error distribution in situa-
tions where the majority of the observations are zero sales, i.e., long tailed sales
demand items.

5.3 Hyperparameter Selection and Optimization

Our LSTM based learning framework contains various hyper-parameters, includ-
ing LSTM cell dimension, model learning rate, number of epochs, mini-batch-
size, and model regularization terms, i.e., Gaussian-noise and L2-regularization
weights. We use two implementations of a Bayesian global optimization method-
ology, bayesian-optimization and SMAC [17,19] to autonomously determine
the optimal set of hyper-parameters in our model [18]. Table 3 summarises the
bounds of the hyper-parameter values used throughout the LSTM learning pro-
cess, represented by the respective minimum and maximum columns.

Moreover, we use the gradient-based Adam [20] and COntinuous COin Bet-
ting (COCOB) [21] algorithms as our primary learning optimization algorithms
to train the network. Unlike in other gradient-based optimization algorithms,
COCOB does not require tuning of the learning rate.

5.4 Benchmarks and LSTM Variants

We use a host of different univariate forecasting techniques to benchmark against
our proposed forecasting framework. This includes forecasting methods from
the exponential smoothing family, i.e., exponentially weighted moving average
(EWMA), exponential smoothing (ETS) [22,23], and a model from the mov-
ing average family, i.e., autoregressive moving-average model (ARIMA) [22,23].
Though some of these benchmarks have been proposed in the literature decades
ago, they are used in many businesses as the forecasting work-horses on a
daily basis, and recent forecasting competitions have shown that even today
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these methods are able to obtain very competitive accuracies [25]. We also
use Prophet, a forecasting technique recently introduced by Facebook Research
[27], as a benchmark. In addition to the well-established benchmarks in this
domain, we include standard benchmarks such as Näıve, and Näıve Seasonal.
Some of these benchmarks are also currently used in the forecasting framework
at Walmart.com. Furthermore, in our experiments, we add the following variants
of our baseline LSTM model.

– LSTM.ALL: The baseline LSTM model, where one model is globally trained
across all the available time series.

– LSTM.GROUP : A separate LSTM model is built on each subgroup of time
series, which are identified by the domain knowledge available.

– LSTM.FEATURE : The subgroup labels identified in the LSTM.GROUP
approach is used as an external feature (one-hot encoded vector) of LSTM.

– LSTM.CLUSTER: The time series sub-grouping is performed using a
time series feature based clustering approach (refer Sect. 2). Similar to
LSTM.GROUP, a separate LSTM model is trained on each cluster.

5.5 Results and Discussion

Tables 4 and 5 show the results for the category level and super-department
level datasets. Here, k corresponds to the number of items in each group, and
G1/G2/G3 represent the product sub-groups introduced in Sect. 2.3. We use
a weekly seasonality in the seasonal benchmarks, i.e., ETS (seasonal), Näıve
Seasonal. It is also worth to mention that for the super-department dataset, we
only employ one grouping strategy, namely LSTM.GROUP, and include only the
best-performing learning scheme in the category level dataset, which is LSTM-
LS1, to examine the robustness of our forecasting framework.

In the tables, under each LSTM variant, we present the results of the differ-
ent learning schemes, i.e., LSTM-LS1 and LSTM-LS2, hyper-parameter selec-
tion methods, i.e., Bayesian and SMAC, and optimization learning algorithms,
i.e., Adam and COCOB, and achieve comparable results. According to Table 4,
considering all the items in the category, the proposed LSTM.Cluster variant
obtains the best Mean mMAPE, while the Näıve forecast gives the best Median
mMAPE. Meanwhile, regarding G1, which are the items with most business
impact, the LSTM.Cluster and LSTM.Group variants outperform the rest of the
benchmarks, in terms of the Mean mMAPE and Median mMAPE respectively.
We also observe in G1 that the results of the LSTM.ALL variant are improved
after applying our grouping strategies. Furthermore, on average, the LSTM vari-
ants together with the Näıve forecast achieve the best-performing results within
G2 and G3, where the product sales are relatively sparse compared to G1.

We observe a similar pattern of results in Table 5, where in general, the
LSTM.GROUP variant gives the best Mean mMAPE, while the Näıve forecast
ranks as the first in Median mMAPE. Likewise in G1, the LSTM.GROUP variant
performs superior amongst other benchmarks, and in particular outperforms the
LSTM.ALL variant, while upholding the benefits of item grouping strategies
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Table 4. Results for category level dataset

Model Configuration mMAPE (All)mMAPE (G1)mMAPE (G2)mMAPE (G3)

k=1724 k=549 k=544 k=631

Mean Median Mean Median Mean Median Mean Median

LSTM.ALL LSTM-LS1/Bayesian/Adam 0.888 0.328 1.872 0.692 0.110 0.073 0.640 0.283

LSTM.ALL LSTM-LS1/Bayesian/COCOB0.803 0.267 1.762 0.791 0.070 0.002 0.537 0.259

LSTM.ALL LSTM-LS2/Bayesian/Adam 0.847 0.327 1.819 0.738 0.103 0.047 0.582 0.326

LSTM.GROUP LSTM-LS1/Bayesian/Adam 0.873 0.302 1.882 0.667 0.093 0.016 0.604 0.283

LSTM.GROUP LSTM-LS1/Bayesian/COCOB1.039 0.272 2.455 0.818 0.074 0.000 0.549 0.250

LSTM.GROUP LSTM-LS2/Bayesian/Adam 0.812 0.317 1.818 0.738 0.091 0.022 0.587 0.314

LSTM.FEATURE LSTM-LS1/Bayesian/Adam 1.065 0.372 2.274 0.889 0.135 0.100 0.738 0.388

LSTM.FEATURE LSTM-LS1/Bayesian/COCOB0.800 0.267 1.758 0.772 0.0690.000 0.533 0.255

LSTM.FEATURE LSTM-LS2/Bayesian/Adam 0.879 0.324 1.886 0.750 0.091 0.022 0.611 0.324

LSTM.CLUSTER LSTM-LS1/Bayesian/Adam 0.954 0.313 2.109 0.869 0.135 0.110 0.625 0.322

LSTM.CLUSTER LSTM-LS1/Bayesian/COCOB0.7930.308 1.6950.748 0.077 0.005 0.562 0.302

LSTM.CLUSTER LSTM-LS2/Bayesian/Adam 1.001 0.336 2.202 0.863 0.084 0.017 0.664 0.347

EWMA 0.968 0.342 1.983 1.026 0.107 0.021 0.762 0.412

ARIMA 1.153 0.677 2.322 0.898 0.103 0.056 0.730 0.496

ETS (non-seasonal) 0.965 0.362 2.020 0.803 0.113 0.060 0.713 0.444

ETS (seasonal) 0.983 0.363 2.070 0.804 0.116 0.059 0.713 0.445

Näıve 0.867 0.250 1.803 0.795 0.124 0.000 0.632 0.250

Näıve Seasonal 0.811 0.347 1.789 0.679 0.086 0.000 0.5230.320

Prophet-Facebook 0.892 0.342 1.923 0.842 0.103 0.042 0.609 0.325

Table 5. Results for super-department level dataset

Model Configuration mMAPE

(All items)

mMAPE (G1)mMAPE (G2)mMAPE (G3)

k=18254 k=5682 k=5737 k=6835

Mean MedianMean Median Mean Median Mean Median

LSTM.ALL LSTM-LS1/Bayesian/Adam 1.006 0.483 2.146 1.285 0.191 0.079 0.668 0.434

LSTM.ALL LSTM-LS1/Bayesian/COCOB0.944 0.442 2.041 1.203 0.163 0.053 0.614 0.394

LSTM.GROUP LSTM-LS1/Bayesian/Adam 0.8710.445 1.8181.009 0.189 0.067 0.6030.377

LSTM.GROUP LSTM-LS1/Bayesian/COCOB0.921 0.455 1.960 1.199 0.173 0.053 0.618 0.394

LSTM.FEATURE LSTM-LS1/Bayesian/Adam 0.979 0.424 2.117 1.279 0.1510.050 0.653 0.377

LSTM.FEATURE LSTM-LS1/Bayesian/COCOB1.000 0.443 2.143 1.282 0.215 0.092 0.676 0.398

EWMA 1.146 0.579 2.492 1.650 0.229 0.091 0.805 0.562

ARIMA 1.084 0.536 2.305 1.497 0.198 0.094 0.734 0.510

ETS (non-seasonal) 1.097 0.527 2.314 1.494 0.204 0.092 0.755 0.509

ETS (seasonal) 1.089 0.528 2.290 1.483 0.204 0.092 0.756 0.510

Näıve 0.981 0.363 2.008 1.122 0.204 0.000 0.713 0.286

Näıve Seasonal 1.122 0.522 2.323 1.513 0.219 0.050 0.803 0.475

Prophet-Facebook 1.087 0.554 2.266 1.400 0.210 0.113 0.765 0.534

under these circumstances. Similarly, on average, the LSTM variants and Näıve
forecast obtain the best results in G2 and G3. In both tables, we observe several
methods producing zero Median mMAPE in the G2 subgroup. This is due to
the high volume of zero sales present among the items in G2. In E-commerce
business, items in the G2 are called “tail items”, which are usually seasonal
products. These items follow low sales during most time of a year and high sales
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during certain period of time. Therefore, generating demand forecast for these
items is still essential, although their sales are sparse.

Overall, the majority of the LSTM variants show competitive results under
both evaluation settings, showing the robustness of our forecasting framework
with large amounts of items. More importantly, these results reflect the contri-
bution made by the time series grouping strategies to uplift the baseline LSTM
performance.

6 Conclusions

There exists great potential to improve sales forecasting accuracy in the E-
commerce domain. One good opportunity is to utilize the correlated and similar
sales patterns available in a product portfolio. In this paper, we have introduced
a novel demand forecasting framework based on LSTMs that exploits non-linear
relationships that exist in the E-commerce business.

We have used the proposed approach to forecast the sales demand by training
a global model across the items available in a product assortment hierarchy. Our
developments also present several systematic grouping strategies to our base
model, which are in particular useful in situations where product sales are sparse.

Our methodology has been evaluated on a real-world E-commerce database
from Walmart.com. To demonstrate the robustness of our framework, we have
evaluated our methods on both category level and super-department level
datasets. The results have shown that our methods have outperformed the state-
of-the-art univariate forecasting techniques.

Furthermore, the results indicate that E-commerce product hierarchies con-
tain various cross-product demand patterns and correlations are available, and
approaches to exploit this information are necessary to improve the sales fore-
casting accuracy in this domain.
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Abstract. Detecting actions in videos is an important yet challenging
task. Previous works usually utilize (a) sliding window paradigms, or
(b) per-frame action scoring and grouping to enumerate the possible
temporal locations. Their performances are also limited to the designs
of sliding windows or grouping strategies. In this paper, we present a
simple and effective method for temporal action proposal generation,
named Deep Point-wise Prediction (DPP). DPP simultaneously predicts
the action existing possibility and the corresponding temporal locations,
without the utilization of any handcrafted sliding window or grouping.
The whole system is end-to-end trained with joint loss of temporal action
proposal classification and location prediction.

We conduct extensive experiments to verify its effectiveness, generality
and robustness on standard THUMOS14 dataset. DPP runs more than
1000 frames per second, which largely satisfies the real-time requirement.
The code is available at https://github.com/liluxuan1997/DPP.

Keywords: Temporal action proposal · Deep point-wise prediction ·
Untrimmed videos

1 Introduction

Despite huge success in understanding a single image, understanding videos still
needs further more exploration. Temporal action proposal generation, which aims
to extract temporal intervals that may contain an action, has drawn lots of
attention recently. It is a challenging task since high quality proposals not only
require accurate classification of an action, but also require precise starting time
and ending time.

Previous temporal action proposal generation methods can be generally clas-
sified into two main types. The first type is to generate proposals by sliding
windows. These methods first predefine a series of temporal windows with fixed
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Fig. 1. Overview of DPP. For time points in the sequence of an untrimmed video, DPP
directly predicts the probability of action existence and the corresponding starting and
ending offsets.

lengths as proposal candidates. Then those proposal candidates are scored to
indicate the probability of action existence. Finally ranking is applied to get top
proposals. Early works like SST [1] and SCNN-prop [19] try to get high recall by
generating dense proposal candidates. SST generates k proposals at each time
step by utilizing RNN. TURN [6] and S3D [23] add boundary regression net-
work to get more precise starting and ending time. However, the disadvantages
of the sliding window methods are obvious: (1) High-density sliding windows
cause great cost of time; (2) Without boundary regression network, the tempo-
ral boundaries are not so precise; (3) Sliding windows require multiple prede-
fined lengths and strides, thus introducing additional hyper-parameters of design
choices (Fig. 1).

The second type is to generate proposals by actioness grouping. These meth-
ods evaluate the probability of action existence for each temporal point and
group points with high actioness scores to form final proposals. For example,
TAG [24] first uses an actioness classifier to evaluate the actioness probabilities
of individual snippets and generates proposals by classic watershed algorithm.
BSN [13] adopts three binary classifiers to evaluate starting, ending and actioness
probabilities of each snippet separately. Then it combines all candidate starting
and ending locations as proposals when the gaps between them are not too far.
Methods based on actioness score tend to generate more precise boundaries.
However, quality of proposals generated by this type of methods highly depends
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on the grouping strategy. Besides, evaluating actioness probabilities for all points
and grouping them limit the processing efficiency.

How we humankind recognize and localize a video action? Do we need pre-
defined windows and scanning the whole video sequence? The answer is obviously
no. For any single frame in a video, human can directly distinguish if an action
happens. And sometimes, human even do not need to see the very start or end
of the action but can predict the location.

Inspired by this, we present a simple yet effective system named Deep Point-
wise Prediction Network (DPP) to generate temporal action proposals. Our
method can be divided into two sibling streams: (1) predicting action exist-
ing probability for each temporal point in feature maps; (2) predicting starting
time and ending time respectively for each position that potentially contains an
action. The whole architecture consists of three parts. The first part is back-
bone network to extract high level spatio-temporal features. The second part
is Temporal Feature Pyramid Network (TFPN), which is inspired by Feature
Pyramid Network (FPN) [14] for object detection task. The third part includes
a binary classifier for actioness score and a predictor for starting and ending
time. The whole system is end-to-end trained with joint loss of classification and
localization.

In summary, the main contributions of our work are three-fold:

– We propose a novel method named Deep Point-wise Prediction for temporal
action proposal generation, which can generate high quality temporal action
proposals with precise boundaries in real time.

– Our proposed DPP breaks through the performance limitation of sliding win-
dow based methods. It needs no extra design for predefined sliding windows or
anchors. Also, with different backbone networks, DPP gets promising results.

– We evaluate DPP on standard THUMOS 2014 dataset, and achieve state-of-
the-art performance.

2 Related Work

Action Recognition. Action Recognition is an important task of video under-
standing. Architectures of this task always consist of two part: spatio-temporal
feature extraction network and category classifier. Since action recognition and
temporal action proposal generation both need spatio-temporal features for the
following steps, this task is worthy of investigation. Earlier works like improved
Dense Trajectory (iDT) [21] use traditional feature extraction method consists
of HOF, HOG, and MBH. With the development of convolutional neural net-
work, many researchers adopt two-stream network [5] for this task. It combines
2D convolutional neural network and optical flow to capture appearance and
motion features respectively. Recently, as kinds of 3D convolutional neural net-
works such as C3D [20], P3D [17], I3D [2] and 3D-ResNet [8] appear, adopting
3D convolutional neural network to extract spatio-temporal feature is getting
more and more popular [1–3,23].
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Temporal Action Proposals and Detection. Since natural videos are always
long and untrimmed, temporal action proposals and detection have aroused
intensive interest from researchers [1,3,6,8,23,24]. DAP [4] leverages LSTM to
encode the video sequence for temporal features. SST [1] presents a method
combined C3D and GRU to generate temporal action proposals, trying to cap-
ture long-time dependency. SCNN-prop [19] adopts multi-scale sliding windows
to generate segment proposals. Then it uses 3D convolution neural network
and fully-connected layers to extract features and classify proposals separately.
Recent studies focus more on how to get proposals with precise boundaries.
TURN [6] applies a coordinate regression network to adjust proposal boundaries.
CBR [7] proposes cascaded boundary regression for further boundary refinement.
Other methods like TAL-net [3] modifies Faster-RCNN to fit temporal action
proposal generation task.

For temporal action detection, methods can be divided into two main types:
one-stage [7,12,19,23,24] and two-stage [1,6,13]. One-stage methods like S3D
[23] generate temporal action proposals and make classification simultaneously.
While two-stage methods such as TURN [6] and BSN [13] generate proposals
first and re-extract features to classify those proposals.

3 Approach

In this section, we introduce the proposed Deep Point-wise Prediction Network
and how it works in details.

Fig. 2. The architecture of our Deep Point-wise Prediction Network.
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3.1 Deep Point-Wise Prediction Network

As shown in Fig. 2, Deep Point-wise Prediction Network consists of three sub-
networks, which are backbone network, Temporal Feature Pyramid Network,
and prediction network.

Backbone Network. We use backbone network and spatial pooling to generate
the first-level feature map from a video sequence1. More specifically, given a video
sequence with shape of T × H × W × 3, through backbone network, we get a
feature map with shape of T

8 × H
16 × W

16 ×C, where T is the frame number, H and
W are height and width respectively, C is output channel varying with backbone
networks. Then we adopt a transpose 3D convolutional layer to upsample the
feature map in T dimension and a 2D average pooling layer to pool the spatial
features. Finally, we get our first-level temporal feature map with the shape of
T
4 × 256.

Temporal Feature Pyramid Network. The core unit of Temporal Feature
Pyramid Network is the Temporal Reduction Unit. It receives current feature
map as input and outputs next feature map with larger receptive field in each
point. And it consists of four 1D temporal convolutional layers with the first
three layers of stride 1 and last layer of stride 2. As a result, every feature map
is half size of last feature map in temporal dimension. TRU between different
levels share the same weights.

Prediction Network. Prediction Network is applied on different feature maps
and generates predictions for every point. The first part is a binary classifier to
generate foreground and background score. The second part is a predictor to
generate left offset and right offset of proposals. Both parts are achieved by 1D
convolutional operation.

3.2 Label Assignment

During training, we need to assign actioness label to every output point accord-
ing to the ground truth. We design a simple but effective label assignment
strategy here. First, points in feature maps are mapped into time points in the
original video. For example, for a point in lth-level feature map with position
t = {0, 1, · · · , Tl}, its corresponding position in the original video is 2l+1(t+0.5).
If the corresponding position of a point is inside any ground truth, we define
it as a positive point. Further restriction for positive labels is introduced in
Sect. 3.3. Since there is no overlap in adjacent ground truths, a point can only
be inside one ground truth. While previous methods whether sliding window
based or actioness grouping based adopt a temporal Intersection over Union
(tIOU) threshold strategy to define positive proposals and assign correspond-
ing ground truth proposals [1,4,6,7,23,24]. Their predefined segments may have
overlap with more than one ground truths simultaneously. Compared with the
tIoU based matching strategy, our label assignment process is more simple and
straightforward.
1 We contrast different backbones in our experiments.
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3.3 Scale Assignment

To predict the proposal location for every point, we try to learn transformation
of left offset and right offset between ground truths and current point. Specif-
ically, for points in lth-level feature map with position t = {0, 1, · · · , Tl} and
corresponding ground truth proposal with boundary (tstart, tend), our localiza-
tion target is:

s1 = λ log
2l+1(t + 0.5) − tstart

2l+1
, s2 = λ log

tend − 2l+1(t + 0.5)
2l+1

(1)

where l indicates that the point is from lth feature map, Tl is the length of this
feature map, 2l+1(t + 0.5) projects the point in feature map into the original
input video sequence. λ is a coefficient which is set as 3.0 in our training to
control the importance of localization part in final loss.

As we can learn from label assignment strategy in Sect. 3.2, a ground truth
may be assigned to different points in different level feature maps. And if we
keep all these positive points for training, it can be difficult with large scale
variations in boundary offsets. Also, as a result of fixed sizes of convolutional
kernels, receptive fields of points in the same level feature map are same and
points in higher level feature map tend to have bigger receptive fields. And it
is hard for a point to predict proposal boundaries far from its receptive field.
In lth feature map, the stride of adjacent points is 2l+1. And its receptive field
size is several times as the stride. Here, we want to restrict target left offset
and right offset around receptive field of current point. So we divide the original
localization targets by default stride of corresponding feature maps to regularize
them. For target offsets close to default stride of corresponding feature maps,
this operation centers them around 1. And the log function further centers them
around 0. We add additional restrictions for positive points as below:

s1, s2 ∈ [−η, η] (2)

where η is a parameter to control the localization range. Note that points
regarded as positive in Sect. 3.2 but do not satisfy condition in this Eq. 2 will be
ignored during training. As η increases, a ground truth is likely to be optimized
by more feature maps.

In conclusion, Eq. (1) computes the regularized left offset and right offset
between each time point in feature maps and corresponding ground truth pro-
posals. With predictions from our regressor, we can easily get the final bound-
aries by inverse transformation of Eq. (1). Equation (2) selects valuable boundary
prediction targets for training.

3.4 Loss Function

Our loss consists of two parts which are action loss and localization loss respec-
tively. The overall loss is combination of above two loss defined as:

L = Lact + Lloc. (3)
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For action loss, we use cross entropy loss, which is effective for classification task

Lact = − 1
N

ΣN
i

(
ai log q1i + (1 − ai)q0i

)
, (4)

where ai is the actioness label for ith sample, qi is a vector contains two elements
which are predicted foreground and background score with Softmax activation.
For localization loss, we adopt the widely used Smooth L1 loss [18].

Lloc =
1

Npos
Σ

Npos

i Σ2
j=1smoothL1(r

j
i − sji ) (5)

where Npos is the number of points we define as positive samples, ri is boundary
prediction of ith point and si is the target defined in Sect. 3.3.

4 Experiments

4.1 Dataset and Setup

THUMOS 2014. We evaluate the proposed method on THUMOS 2014 dataset
[10], which is a standard and widely used dataset for temporal action proposal
generation task. It contains 200 validation and 213 test untrimmed videos whose
action instances are annotated temporally. Following the conventions [1,6,13,16,
23,24], We train our models on validation set and evaluate them on testing set.

Evaluation Metrics. For temporal action proposal generation, we adopt the
conventional evaluation metric. We calculate Average Recall (AR) which is mean
value of recall over different tIOU thresholds under various Average Number of
proposals, denoted as AR@AN. Specifically, tIOU set of [0.5 : 0.05 : 1.0] is used
in our experiments.

Experiments Setup. During training, we used the stochastic gradient descent
(SGD) as our optimizer. Momentum factor is set as 0.9 and weight decay factor
is set as 0.0001 to regularize weights. We apply a multi-step learning scheduler
to adjust learning rate. For all models, the training process lasts for 10 epochs.
The initial learning rate is set as 0.0001. It is divided by 10 at epoch 7 and
divided by 10 again at epoch 10. Training for one epoch means iterating over
the dataset once. To form a batch while training, we clip videos as segments with
equivalent length, which is 256 frames in our experiments specifically. The over-
lap of adjacent clips is 128 frames. We adopt sampling frequency of 8 fps in our
experiments. According to our network architecture introduced in Sect. 3.1, we
finally get 126 samples for one clip regardless of assignment strategy. To reduce
overfitting, we adopt a multi-scale crop strategy [22] for per frame in addition to
random horizontal flip transformation. Like most foreground/background tasks,
huge imbalance of positive and negative samples exists in our experiments. Thus,
we randomly sample negative samples in each batch to keep the ratio of posi-
tive and negative samples about 1:1. This strategy is proved to be efficient and
results in more stable training.
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During inference, We predict actioness score and boundary offset for each
point in all feature maps. Final boundary can be computed by inverse trans-
formation of Eq. (1). Then proposals of different clips in the same video are
gathered. Finally, all proposals of a video are sorted according to the actioness
score and filterd by Non-Maximum Suppression (NMS) with threshold value of
0.7.

4.2 Ablation Study

Comparison with Pre-defined Sliding Windows. For sliding window based
methods, the density of sliding windows at each timestamp is an important fac-
tor that influences the performance. Most of them adopt a multi-scale anchor
strategy to cover more ground truth proposals [12,23]. It may come to an assump-
tion that more dense pre-defined sliding windows will lead to a better result. To
explore the influence of sliding window density, we setup a fair contrast experi-
ment and results are shown in Table 1. For better comparison with our methods,
we use the same architecture in Fig. 2 and assign a base sliding window for
each point in feature maps. The ratios in Table 1 means the number of sliding
windows in each point. For example, in second row, there are two pre-defined
sliding windows for each position in feature maps. One is the base sliding win-
dow, the other is a sliding window with same center but half length as base
sliding window. Thus, the amount of output proposals is twice as our method.
During training for sliding window based methods, we assign positive labels for
pre-defined sliding windows when their tIOU with any ground truth exceeds 0.5
[7,12,23].

Table 1. Contrast of sliding windows with various ratios and DPP

Method Ratios AR@50 AR@100 AR@200

Sliding window 1 24.2 32.05 39.63

Sliding window 2 24.25 32.3 40.76

Sliding window 3 24.42 32.79 41.09

Sliding window 5 23.07 31.08 39.78

DPP n/a 25.88 34.79 43.37

With a certain limit, more sliding windows do result in a higher average recall.
However, over-density sliding windows do not help. While our method is superior
to the best performance of sliding window based methods. This may be caused by
many reasons. One possible reason is that multi-ratio sliding windows cause the
ambiguous problem. Sliding windows at the same position with different ratios
share the same input features, but expected to have different predictions. And
our scale assignment strategy restricts target predictions of each point inside its
receptive field, likely to result in better performance. Meanwhile, more sliding



Deep Point-Wise Prediction for Action Temporal Proposal 483

windows mean more outputs both in training and inference, undoubtedly lead-
ing to decrease in speed. In conclusion, compared with sliding window based
methods, DPP has the following advantages: (1) no ambiguous problem thus
making optimization much easier; (2) fewer hyper-parameters which needs to be
manually designed; (3) fewer proposal candidates resulting in faster processing.

Analysis of Scale Assignment. We design a novel scale assignment strategy
in Sect. 3.3. And according to Eq. (1), η decides the localization target range of
each pyramid. As η increases, the localization target range will be larger. Thus
a ground truth is more likely to match different pyramids, resulting in more
positive proposal candidates.

Table 2. Influence of η for DPP

η Backbone AR@50 AR@100 AR@200

2 ResNet-50 25.58 33.29 41.52

2.5 ResNet-50 25.79 33.54 42.24

3 ResNet-50 25.88 34.79 43.37

4 ResNet-50 25.47 33.74 42.26

Table 2 shows the influence of η on the performance of DPP. And η = 3 gets
the best performance, which is used in all the following experiments. We can
compute by the inverse transformation of Eq. (1) that, when η = 3, the lower
bound and upper bound of localization target are about 1

3 and three times of
default size for each pyramid.

Exploration of Backbone Network. For the test of different backbones, we
fix the pyramid amount as 6. As Table 3 shows, 3D ResNet-50, 3D ResNet-
101 [8] and C3D [20] are compared in our experiments. Backbone network with
heavier weights tends to get better performances. We also test the performance
of different backbone networks in speed. C3D outperforms other backbones in
average recall but loses in speed competition. With almost the same average
recall, 3D ResNet-101 attains about the twice speed of C3D. Note that all fps
data is evaluated on a single GeForce GTX 1080 Ti. And for each experiment,
fps is computed as mean fps of three epochs.

Table 3. Performance of different backbones

Backbone network AR@50 AR@100 AR@200 fps

ResNet-50 25.88 34.79 43.37 1804

ResNet-101 28.01 36.27 44.36 1294

C3D 28.57 36.65 44.55 676
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Varying Pyramids for DPP. DPP adopts a pyramid structure to generate
feature maps with different scales. We make a contrast experiment here to explore
how pyramid amounts affect the performance of DPP.

Table 4. Varying pyramids for DPP

Pyramids npc AR@50 AR@100 AR@200

6 126 28.57 36.65 44.55

5 124 27.14 35.61 43.51

4 120 27.28 35.69 42.89

3 112 28.75 36.22 43.05

Table 4 shows results of different pyramid amounts varying from 3 to 6, where
npc means number of proposals in one clip. Here, all experiments in Table 4
use C3D as backbone network. It is found that under metrics of AR@100 and
AR@200, 6 pyramids performs best. And under metirc of AR@50, 3 pyramids
performs best. Since the difference among results of all these experiments is
slight, we can infer that our proposed DPP is robust for pyramids variation.

4.3 Comparison with State-of-the-art Methods

We compare the proposed DPP with other state-of-the-art methods on action
temporal proposal generation in Table 5. To illustrate effectiveness of DPP, all
methods adopt C3D [20] to extract spatio-temporal features and our method
outperforms other methods. All methods in the top part of the table adopt
pre-defined sliding windows to generate proposal candidates, which is similar to
anchor-based methods in object detection such as SSD [15]. As we can see, DPP
surpasses all sliding-window based method by a large margin. Specifically, DPP
outperforms TURN, which performs best in sliding-window based methods, by
improvement of 16.2% in AR@200.

Actioness-grouping methods like BSN group temporal points with high
actioness scores to form temporal action proposals. Compared to BSN, DPP
increases AR@200 with 2%. MGG ensembles actioness-grouping based method
which is proposed in [24] and sliding-window based method to get higher results.
Such methods cost much time when predicting, while our method generates high
quality proposals with a high speed. Fps for the four methods in the top part of
Table 5 are evaluated on a Geforce Titan X GPU and our method is evaluated
on a Geforce GTX 1080 Ti GPU. Though BSN and MGG do not report their
fps, according to the difference in principles, sliding-window based methods are
expected to run faster than actioness-grouping based methods. Thus, compared
to ensemble methods, DPP achieves comparative even better results with a much
faster speed.
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Table 5. Comparison with other temporal action proposal generation methods

Features AR@50 AR@100 AR@200 fps

Sliding-window methods

DAPs [4] C3D 13.56 23.83 33.96 134.1

SCNN-prop [19] C3D 17.22 26.17 37.01 60

SST [1] C3D 19.90 28.36 37.90 308

TURN [6] C3D 19.63 27.96 38.34 880

Actioness-grouping methods

BSN [13] C3D 27.19 35.38 43.61 –

Ensemble methods

MGG [16] C3D 29.11 36.31 44.32 –

Our method

DPP C3D 28.57 36.65 44.55 676

DPP ResNet-101 28.01 36.27 44.36 1294

5 Conclusion

In this paper, We present a simple yet efficient method named Deep Point-wise
Prediction to generate high quality temporal action proposals. Unlike previous
work, we do not use any pre-defined sliding windows to generate proposal can-
didates, but predict left and right offsets for each point in different feature maps
directly. We also note that there are also previous works in 2D object detection
sharing similar ideas [9,11]. Without ambiguity of using same feature to regress
different proposal candidates, our method gets better performance on localiza-
tion and generates higher quality proposals. In experiments, we explore different
settings of our methods and prove its robustness. DPP is evaluated on standard
THUMOS 2014 dataset to demonstrate its effectiveness.
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Abstract. This paper proposes a novel algorithm called Meta-cognitive
Recurrent Kernel Online Sequential Extreme Learning Machine with a
kernel filter and a modified Drift Detector Mechanism (Meta-RKOS-
ELMALD-DDM). The algorithm aims to tackle a well-known concept
drift problem in time series prediction by utilising the modified concept
drift detector mechanism. Moreover, the new meta-cognitive learning
strategy is employed to solve parameter dependency and reduce learn-
ing time. The experimental results show that the proposed method can
achieve better performance than the conventional algorithm in a set of
financial datasets.

Keywords: Financial data · Real-time prediction · Kernel filter ·
Concept drift · Meta-cognitive learning

1 Introduction

Many researchers and professional workers have been paid attention to real-
time financial prediction [1–4]. In the real world, forecasting the movement is a
practical issue that affects the decision of traders in the trading process. Real-
time time series prediction for financial data is in demand because the investors
want to make trading decisions based on the most recent data and how it fits into
historical context. Therefore, this paper focuses on real-time financial prediction
problem.

It is required to select an appropriate technique which can handle the prob-
lem. The selection depends on data type, quality of models, and pre-defined
assumption [5]. Considering an example, Autoregressive Moving-Average model,
it requires data that are a normal distribution. However, the majority of real-
world data distribution is not a normal distribution. Moreover, removing outlier
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11955, pp. 488–498, 2019.
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values from the data prior to utilising most of the statistical models is essential
because these models cannot handle non-stationary data. In real-world appli-
cations, time-series data is almost non-stationary–which causes some limited
conditions for the statistical models.

Nowadays, machine learning algorithms have been widely applied in the stock
market analysis and prediction due to its capability of handling non-linearity in
financial market data and extracting useful features from a vast amount of data
without relying on prior knowledge of predictors [6,7]. One of the well-known
and effective algorithms is the Extreme Learning Machine (ELM) that has been
proved to have good generalisation performance and fast learning speed [8]. How-
ever, ELM is unable to update its model when new data is entering. Therefore,
Online Sequential ELM (OS-ELM) was proposed [9]. Although its performance is
satisfying, it is still not stable due to the characteristic of random input weights.
Hence, the kernel method is employed to replace the random part of OS-ELM
to stabilise the model [10]. However, when introducing the kernel method to the
algorithm, the complexity is scaled by the number of training sample. Therefore,
kernel filter is considered to save computational complexity [10].

Financial data are non-stationary. It also generally appears concept drift
problem, in which the statistical properties of the target variable changes over
time. This problem can reduce the accuracy of the model because the data may
become obsolete quickly over time. There are three types of method that have
been successfully applied to solve the concept drift problem as follows: (i) Using
a unified framework to detect the drift–an ensemble algorithm to detect using
incremental learning manner [11]; (ii) Feature extraction for explicit concept
drift detection [12]–using time series features to monitor how concepts evolve
over time; and (iii) monitoring the change of error distribution in the learning
part [13]. According to [13], detecting the change of error distribution by Drift
Detection Method (DDM) is the most efficient way for concept drift detection,
but it is only applicable for a classification task. In this work, we employ DDM
to detect concept drift in the learning part for regression task.

Moreover, our regression prediction model utilises a new meta-cognitive
learning strategy that can decide to retrain the model, adding or discarding
the neuron in the learning part when there is a new incoming sample. At the
same time, it also can automatically define the threshold of kernel filter, that
can directly reduce the training time.

2 Methodology

This section first describes the data processing method. Then Recurrent Kernel
OS-ELM is explained and followed by a kernel filter method–is employed to
select useful training samples. Next, DDM that is employed to detect the concept
drift problem and a new meta-cognitive learning strategy that can automatically
define the threshold of kernel filter are explained in the following subsections.
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2.1 Data Transformation and Processing

Time series data is defined as a series of data points listed in time order. Assum-
ing that the data is given as x = [x1, x2, . . . , xN ], where N is the data size.
The time series data x is transformed to be a matrix X with a dimension of
[(N − W − P + 1) × (W + P )] as shown in (1).

X=

⎡
⎢⎢⎢⎢⎢⎢⎣

X1,1 · · · X1,W X1,W+1 · · · X1,W+P

...
. . .

...
...

. . .
...

XL,1 . . . XL,W XL,W+1 · · · XL,W+P

...
. . .

...
...

. . .
...

XN−W−P+1,1 . . . XN−W−P+1,W XN−W−P+1,W+1 · · · XN−W−P+1,W+P

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(1)
where W is the time window size, P is the number of prediction horizon, and L is
the training size. More details can be found in [7]. Then, the data is normalised
and separated into the training input data (XTr), its corresponding target data
in the p-th step (yp), testing input data (XTe), and its corresponding target data
in the p-th step (t̂yp), which are shown as follows:

XTr =

⎡
⎢⎣

X1,1 · · · X1,W

...
. . .

...
XL,1 · · · XL,W

⎤
⎥⎦ ;yp =

⎡
⎢⎣

X1,W+p

...
XL,W+p

⎤
⎥⎦ , (2)

XTe =

⎡
⎢⎣

XL+1,1 · · · XL+1,W

...
. . .

...
XN−W−P+1,1 · · · XN−W−P+1,W

⎤
⎥⎦ ; t̂yp =

⎡
⎢⎣

XL+1,W+p

...
XN−W−P+1,W+p

⎤
⎥⎦ . (3)

2.2 Recurrent Kernel OS-ELM

Scardapane et al. proposed an algorithm for online learning with Kernel ELM [10]
that is called Online Sequential Extreme Learning Machine with Kernel (KOS-
ELM). It overcomes the drawbacks of OS-ELM that is unstable prediction results
due to random input weights. Liu and his colleagues proposed a recurrent algo-
rithm with KOS-ELM (RKOS-ELM) that handle the multi-step time series pre-
diction [14,15]. The size of the output weight will increase when the new training
samples are received. In the update phase, l ∈ {2, . . . , L}, the output weights (βl)
with interval coefficient matrix Ql can be calculated by the following equations:

Ql =
[
Ql−1rl + zlz

T
l −zl

−zT
l 1

]
, (4)

βl =
[
βl−1 − zlr

−1
l el

r−1
l el

]
, (5)

where gl = [k(XTrl ,XTr1), . . . , k(XTrl ,XTrl−1)]
T , zl = Ql−1gl, rl = C−1 +

k(XTr1 ,XTr1) − zT
l gl, and el = yl − gT

l βl−1. k is a kernel function, C is a
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regularisation parameter that generally is set to 1, and e stands for prediction
error.

According to the theory of recurrent multi-step-ahead prediction algorithm,
the training data in the p-th step can be defined as

XTr,p =

⎡
⎢⎣

X1,p · · · X1,W ŷ1,1 · · · ŷ1,p−1

...
. . .

...
...

. . .
...

XL,p · · · XL,W ŷL,1 · · · ŷL,p−1

⎤
⎥⎦ , (6)

where ŷp−1 represents the predicted values of training data in the (p−1)-th step
and (W + 1) ≥ P .

2.3 Kernel Filters in RKOS-ELM

Although the kernel method plays a vital role in the aspect of improving fore-
casting performance in RKOS-ELM, it takes time in the learning process of
RKOS-ELM. A kernel filter, Approximate Linear Dependency (ALD), achieved
superior performance in filtering incoming samples for classification [10]. There-
fore, RKOS-ELM employs ALD to filtering samples in the process of time series
prediction in this work, that is referred as RKOS-ELMALD.

In RKOS-ELMALD, the initialisation phase is similar to KOS-ELM. In the
updating phase, RKOS-ELMALD employs ALD criteria that bases on the dis-
tance (Δ) between a sample and the linear span of the current dictionary (D)
in the feature space. Δ can be calculated by

Δl = kttl − ktTl Qlktl, (7)

where Ql is an interval coefficient matrix with information of the previous input
data in RKOS-ELM, kttl = k(XTr,l,XTr,l) that is a kernel of XTr,l, and ktl =
[k(D(1),XTr,1), . . . , k(D(l),XTr,l)] that is the kernels of dictionary (D) and the
input data (XTr,l). If Δ is more than or equal to a constant ϕ, the corresponding
input sample will update the output weights that leads to an increasing of hidden
neuron. Then, the sample will be added into D. If Δ is less than or equal to ϕ
the output weights will be updated without adding any neurons. It is noted that
the kernel filter aims to reduce the training cost.

2.4 Modified DDM in RKOS-ELMALD

Perceptron, neural network, and decision tree employed DDM and were found
to be affective to learn a new concept in classification task [16]. Therefore, DDM
is modified to use in time series prediction.

The binomial distribution is closely approximated by a normal distribution
with the same mean and variance when there is a sufficiently large number of
sample [16]. Therefore, this study focuses on a probability distribution that is
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a key flag that represents changes in context. In the learning phase of RKOS-
ELMALD, the l-th error rate ERl,p in the p-step can be defined as

ERl,p =
|yl,p − ŷl,p|

yl,p
, (8)

where y and ŷ is a target and a predicted target, respectively. The standard
deviation (SDl,p) can be calculated as

SDl,p =

√
ERl,p × (1 − ERl,p)

l
, (9)

Hence, the error rate, ERl,p, in the 1−α/2 confidence interval is approximately
ERl,p ± α · SDl,p when there are a large number (L ≥ 30), where α depends
on the confidence level. When the first data point is fed into the model, the
initial minimum value of error rate ERmin and standard deviation SDmin are
defined as ER1,p and SD1,p, respectively. Then, the new data of the p-th step
coming in the learning part is processed and updates ERmin and SDmin. In this
work, the warning confidence level has been set to 95%. This means that the
warning level is reached if ERi + SDi ≥ ERmin + 2 · SDmin. The confidence
level for the concept drift is set to 99%. Therefore the concept drift problem
appears if ERi +SDi ≥ ERmin +3 ·SDmin. Otherwise, there is no concept drift,
(ERi + SDi ≤ ERmin + SDmin). At the same time, the minimum of error rate
and standard deviation will be updated. Therefore, DDM is used in the learning
of RKOS-ELMALD in order to decide that the incoming data should be added
into the output weight or update the output weight. The output weights can be
updated by the following equation:

βl = βl−1 + Ulvl(yl − ktβl−1), (10)

where U and V are the interval matrices for output weights that can be calculated
as (11) and (12), respectively.

Ul =
1
Δl

[
ΔlUl−1 + opl−1opT

l−1 −opl−1

−opT
l−1 1

]
, (11)

vl = vl−1 − vl−1

1 + oplvl−1opl

(oplvl−1), (12)

where opl = Ulkt. It is noted that the initialised interval matrices can be defined
as U1 = 1

k(XTr,1,XTr,1)
and op1 = U1k(XTr,1,XTr,1). The pseudocode of RKOS-

ELMALD with DDM is shown in Algorithm 1.

2.5 New Meta-cognitive Learning Strategy

Searching for the optimal ALD threshold directly leads to the growth of learning
time. To solve this problem, meta-cognitive learning strategy is considered in the
model. When there is a new incoming data, the strategy not only decides to add,
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Algorithm 1. Learning of RKOS − ELMALD with DDM
Require: Prediction horizon size P ; Time window size W ; Number of training data

L; Training data XTr and y by (2); Kernel parameter δ; Output weight
of RKELM in the p-th step βp; Prediction value in the p-th step ŷp; ALD
threshold ϕ;

Ensure: Output weight βp; Prediction value ŷp.
1: for p ∈ {1, . . . , P} do
2: Initialise Q1,p and β1,p based on data ([XTr1,p , y1,p]);
3: Dp = XTr1,p ;
4: v1,p = 1;
5: Calculate ER1,p, SD1,p, ERmin and SDmin;
6: for l ∈ {2, . . . , L} do
7: Calculate Δl,p by (7);
8: Compute ERl,p, SDl,p by (8) and (9), respectively;
9: if an incoming sample has concept drift problem and Δl,p ≥ ϕl then

10: Update Ql,p by (4);
11: Update βl,p by (5);
12: Add the current sample into Dp;
13: else
14: Update Vp by (12);
15: Update βp by (10);
16: ERmin = ERl,p;
17: SDmin = SDl,p;
18: end if
19: end for
20: Add the predicted value into training data as a new training sample for the

next step by (6);
21: end for

retrain or discard neuron but also automatically defines ALD threshold. It con-
tains four parts, including under-sampling, neuron addition, updating sample,
and discarding samples.

Under-sampling is the first phase–initialisation for the model–which requires
the minimum number of hidden neurons. In the online learning models, the
minimum number of hidden neurons is defined as one. At the same time, the
initial threshold of ALD (ϕ) is equal to the current prediction error (e1). The
second phase is neuron addition, which contains ϕ and DDM criteria for incoming
data. The hidden neuron will be increased, and input data is added into the
dictionary memory when the incoming data fulfills the requirement of ALD and
DDM. Then the current ϕ for the l-th input sample can be defined by the
following equation:

ϕl = λ(ϕl−1) + (1 − λ)el, (13)

where λ is the slope that controls the rate of self-adaptation and set close to
1. If the incoming sample does not have concept drift problem or is close to
the samples in dictionary memory, it will go to the updating phase. The output
weight will be updated by (10). The last phase is discarding phase. If the number
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Algorithm 2. The new strategy of meta-cognitive learning.
1: Initialise the output weight of model β1; � Undersampling:
2: Calculate the prediction error e1;
3: Initialise the threshold of ALD (ϕ1 = e1);
4: for p ∈ {2, . . . , P} do
5: if There is a concept drift then
6: CD = 1;
7: else
8: CD = 0;
9: end if

10: Calculate Δ by (7);
11: if CD = 1 and Δ ≥ ϕp−1 then � Neuron Addition:
12: Increase a hidden neuron;
13: Adding the incoming sample into D;
14: end if
15: Update the threshold of ALD by (13);
16: if CD = 0 and Δ ≤ ϕp−1 then � Updating Phase
17: Update the output weights by (10);
18: Update the threshold of ALD by (13);
19: end if
20: if HiddenNode ≥ #HiddenNodemax then � Discarding Phase
21: Employ FB algorithm to discard the row with minimum error pattern of

the kernel matrix;
22: Update the output weights by updated kernel matrix and memory;
23: Update the threshold of ALD by (13);
24: end if
25: end for

of hidden neurons is more than the maximum number of hidden nodes (1000 in
this work), the corresponding sample with the minimum error pattern that is
determined by Fixed Budget (FB) will be discarded from dictionary memory.
The detail of FB algorithm can be found in [17]. The pseudocode of new strategy
of meta-cognitive learning is shown in Algorithm 2.

3 Experimental Results and Discussion

In this section, we evaluate the proposed model–RKOS-ELMALD-DDM and
Meta-RKOS-ELMALD-DDM–with the state-of-the-art–Recurrent OS-ELM–in a
set of financial data. This work aims to predict the daily closing value for each
stock. We use eighteen historical data to predict the next eighteen steps in the
future, similar to [7]. All data sets are collected from Yahoo! Finance as follows:
Nikkei 225 (Nikkei) is retrieved from January 5, 1965 to January 5, 2000; Hang
Seng Index (HSI) is collected from January 1, 1990 to December 31, 2010; Shang-
hai Stock Exchange Composite Index (SSE) is collected from January 1, 1991 to
January 6, 2017; Standard & Poor’s 500 Index (S&P500) is from December 1,
2006 to December 1, 2016. After data transformation process, Nikkei, HSI, SSE,
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and S&P500 has the dimension of (12796 × 36), (8205 × 36), (6558 × 36), and
(1270 × 36), respectively.

The experiments were conducted on a computer with Window 10 OS, 8th
Gen Intel Core i7 Processor with 16 GB of memory. Each model was selected
based on their minimum Symmetric Mean Absolute Percentage Error on each
dataset. The optimal number of hidden neurons (σ) of ROS-ELM was searched
in the range of {5, 10, 15, 20, . . . , 1000}. A threshold ϕ of RKOS-ELMALD was
search in range of {0.00010, 0.00011, . . . , 0.00100}. In RKOS-ELMALD-DDM,
we simply set the threshold as the same value as of RKOS-ELMALD for each
dataset. This can show how DDM play a role in the model.

Table 1 compares the Mean Square Error (MSE) of ROS-ELM, RKOS-
ELMALD, and RKOS-ELMALD-DDM in the average values of four periods of
prediction horizons. RKOS-ELMALD-DDM can perform best in all periods in
Nikkei and SSE, except for 13–18 period in Nikkei. In other datasets, RKOS-
ELMALD-DDM yields the best performance only in 13–18 period while ROS-
ELM achieves the best accuracy in 1–7 and 8–12 periods. However, considering
at long period prediction (1–18), it is clearly seen that RKOS-ELMALD-DDM is
the best contender in all four datasets.

Table 1. Comparison of Mean Square Error of multi-step-ahead prediction for the
ROS-ELM, RKOS-ELMALD, and RKOS-ELMALD-DDM. The best performance is in
boldface.

Dataset Model Average period

1–7 8–12 13–18 1–18

Nikkei ROS-ELM 3.46E-04 1.70E-03 9.95E-04 9.39E-04

RKOS-ELMALD 7.73E-05 2.09E-04 3.29E-04 1.98E-04

RKOS-ELMALD-DDM 7.71E-05 2.09E-04 3.30E-04 1.98E-04

HSI ROS-ELM 7.76E-04 1.32E-03 1.65E-02 6.16E-03

RKOS-ELMALD 9.55E-04 1.94E-03 4.15E-03 2.29E-03

RKOS-ELMALD-DDM 1.03E-03 2.02E-03 3.54E-03 2.14E-03

SSE ROS-ELM 8.00E-04 1.37E-03 1.73E-03 1.27E-03

RKOS-ELMALD 3.46E-04 1.13E-03 5.01E-03 2.12E-03

RKOS-ELMALD-DDM 2.81E-04 8.89E-04 1.69E-03 9.20E-04

S&P500 ROS-ELM 2.35E-05 8.30E-05 4.23E-04 1.73E-04

RKOS-ELMALD 5.07E-05 9.58E-05 1.53E-04 9.78E-05

RKOS-ELMALD-DDM 4.90E-05 1.13E-04 1.42E-04 9.77E-05

We further compare RKOS-ELMALD-DDM and Meta-RKOS-ELMALD-DDM
in order to show the ability of meta-cognitive learning strategy in the learn-
ing process as shown in Table 2. Employing meta-cognitive learning strategy in
RKOS-ELMALD-DDM can only improve the prediction performance in 8–12, 13–
18, 1–18 periods for Nikkei, and in 1–7 for HSI only. Although the meta-cognitive
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learning strategy degrades the performances in other datasets, the difference of
MSE between employing and not employing the meta-learning strategy are very
small. However, the benefit of employing meta-learning strategy is a huge reduc-
tion of computational times compared to without the strategy, RKOS-ELMALD-
DDM. The learning time in RKOS-ELMALD-DDM is much more approximately
a hundred of times than that of Meta-RKOS-ELMALD-DDM. Therefore, meta-
cognitive learning strategy plays a significant role in the learning part of RKOS-
ELMALD-DDM. It helps RKOS-ELMALD-DDM to reduce the learning time and
solve the parameter dependency.

Table 2. Comparison of Mean Square Error of multi-step-ahead prediction and learn-
ing time for the RKOS-ELMALD-DDM and Meta RKOS-ELMALD-DDM. The best
performance is in boldface.

Dataset Model Average period Learning time

1–7 8–12 13–18 1–18 Time

Nikkei RKOS-ELMALD-DDM 7.71E-05 2.09E-04 3.30E-04 1.98E-04 4139.26

Meta-RKOS-ELMALD-DDM 7.76E-05 2.08E-04 3.28E-04 1.97E-04 40.58

Difference 5.86E-07 −8.81E-07 −1.88E-06 −6.43E-07 −4098.68

HSI RKOS-ELMALD-DDM 1.03E-03 2.02E-03 3.54E-03 2.24E-03 18265.56

Meta-RKOS-ELMALD-DDM 9.47E-04 2.35E-03 3.58E-03 2.21E-03 171.42

Difference −7.88E-05 3.28E-04 −3.85E-05 3.01E-05 −18094.14

SSE RKOS-ELMALD-DDM 2.81E-04 8.89E-04 1.69E-03 9.20E-04 1417.05

Meta-RKOS-ELMALD-DDM 2.85E-04 9.91E-04 1.76E-03 9.72E-04 12.70

Difference 4.00E-06 1.02E-04 7.00E-05 5.20E-05 −1404.35

S&P500 RKOS-ELMALD-DDM 4.90E-05 1.13E-04 1.42E-04 9.77E-05 1935.98

Meta-RKOS-ELMALD-DDM 7.67E-05 1.44E-04 1.74E-04 1.28E-04 21.73

Difference 2.77E-05 3.10E-05 3.20E-05 3.03E-05 −1914.25

4 Statistical Analysis

We employ the Mann-Whitney U Test to compare Meta-RKOS-ELMALD-DDM
with RKOS-ELMALD-DDM in multi-step-ahead time series prediction. The null
hypothesis is that there is no difference between the ranks of each method.
Firstly, all samples of the two models are ranked based on their MSE as shown in
Table 3. Then we can calculate the sum of ranks in each model that corresponds
to U1 = 121 and U2 = 135. According to the table of critical values of the
Mann-Whitney U , the critical value of U is 75 at α = 0.05 for n1 = 16 and
n2 = 16. The min(U1, U2) is greater than the critical value U . This means that
we cannot reject the null hypothesis, hence the performance of Meta-RKOS-
ELMALD-DDM is competitive to RKOS-ELMALD-DDM. However, our proposed
model is approximately thousands time faster than RKOS-ELMALD-DDM. This
shows that meta-cognitive learning strategy plays a significant role in saving
training time.
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Table 3. The comparison of RKOS-ELMALD-DDM (Model 1) and Meta-RKOS-
ELMALD-DDM (Model 2).

# Model 1 Model 2 Rank 1 Rank 2

1 7.71E-05 7.76E-05 3 4

2 1.03E-03 9.47E-04 24 21

3 2.81E-04 2.85E-04 15 16

4 4.90E-05 7.67E-05 1 2

5 2.09E-04 2.08E-04 14 13

6 2.02E-03 2.35E-03 27 30

7 8.89E-04 9.91E-04 19 23

8 1.13E-04 1.44E-04 6 9

9 3.30E-04 3.28E-04 18 17

10 3.54E-03 3.58E-03 31 32

11 1.69E-03 1.76E-03 25 26

12 1.42E-04 1.74E-04 8 10

13 1.98E-04 1.97E-04 12 11

14 2.24E-03 2.21E-03 29 28

15 9.20E-04 9.72E-04 20 22

16 9.77E-05 1.28E-04 5 7

Sum of ranks 257 271

5 Conclusion

We propose an approach called Meta-RKOS-ELMALD-DDM. The experimental
results show that the proposed algorithm can improve the forecasting perfor-
mance to some extent in different prediction periods in financial datasets. ALD
and DDM enable RKOS-ELMALD-DDM to yield the best performance in the
long term prediction (1–18) for all datasets. Moreover, meta-cognitive learning
strategy can deal with the incoming samples in the learning process–when to
add neuron, to discard sample, or to retrain the output weight. In each step, it
also can automatically define the ALD threshold. The major benefits of Meta-
RKOS-ELMALD-DDM are as follows: a good generalisation model for financial
datasets; a new modified DDM which is a method of dealing with concept drift
in time series prediction; meta-cognitive learning strategy that does not only
reduce the learning time but also solves the parameter dependency problem.
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Abstract. We present a human-head-orientation estimation approach
which enables effective estimation of head orientations of multiple indi-
viduals appeared within the same scene. Our approach bases deep repre-
sentation in order to obtain adequate visual features of head orientations.
To boost the estimation performance, we propose a conditional random
field which fuses shallow feature, deep feature and spatial-temporal con-
textual cues, where the fusing parameters are learned from data via
structured support vector machine. We demonstrate that the three com-
ponents of fusion are complementary to each other in terms of head
orientation estimation. Meanwhile, the proposed spatial-temporal field
outperforms the state-of-the-art significantly on public dataset.

Keywords: Head orientation estimation · Spatial-temporal
representation · Fusion

1 Introduction

Head pose estimation is essential to many applications such as human com-
puter interaction, human activity recognition, pedestrian tracking [17–19] and
scene understanding. For instance, in scene understanding, head pose informa-
tion helps to determine the interaction between people [1]. Head orientation can
also represent the visual focus of attention. In particular, if a person oriented his
head towards some direction, probably something interesting happens in that
direction.

Most existing approaches estimate 3D head orientations including yaw, pitch
and roll. These approaches can be classified into two categories: appearance based
methods and model based methods. The first category learns discriminative
models from visual features of head images, which are robust against large head
pose variation [2,4,5,10,11,13]. Model based approaches rely on geometric cues
and non-rigid 3D facial models which are able to estimate precise continuous
values of yaw, pitch and roll [3,6–8]. However, they are typically sensitive to
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large variation of head poses as they rely on the localization of local features
and estimated 3D information.

In this paper, we consider the problem of estimating discrete head orienta-
tions for multiple persons appeared within the same scene. To our knowledge,
most existing approaches for such a problem treat different individuals inde-
pendently [4,10,13]. However, relations among objects can provide significant
contextual cues which fix incorrect recognition when objects lack discriminative
cues caused by factors like low image resolution, motion blur, poor lighting. We
address the problem by exploiting the complementary characteristic of various
discriminative cues including deep CNN representation, hand-engineered fea-
tures and spatial-temporal context. To this end, we build a conditional random
field for fusing such representations and learn the model parameters via struc-
tured support vector machine. Experimental results show our approach outper-
forms the state-of-the-art on public dataset.

2 Related Work

With respect to appearance based methods, Tran et al. [2] matched local HoG
feature with a pre-trained codebook to get the closest extended templates which
provide the corresponding rotation angles. Foytik et al. [3] presented a two layer
framework, which dissected global nonlinear manifold into local linear neighbor-
hood. Lee et al. [4] designed a filter bank to generate sparse responses, which
were compressed via random projections and utilized for pose estimation with a
random forest. Lu et al. [5] proposed an ordinary preserving manifold analysis
approach to seek a low-dimensional subspace for head pose and age estima-
tion. Patron-Perez et al. learned a simple set of one-vs-all linear support vector
machine (SVM) classifiers using HoG features [11], and the scores of SVM clas-
sifiers are temporally smoothed by applying a quadratic smoothing.

With respect to model based approaches, Breitenstein et al. [6] aligned a
range image with pre-computed pose images of an average face model. Li et al.
[8] reconstructed a face template by fitting a 3D morphable face model, and the
head pose is then determined by registering this user-specific face template to
the input depth video. These methods rely on the accurate localization of facial
features, which are typically sensitive to large variation of head poses and facial
expression, as well as low resolution of input image.

Our approach is novel compared with existing methods. First, this work
considers a much more challenging task, which is estimating head orientations
of multiple persons simultaneously, whereas the aforementioned approaches deal
with single person only. Second, we combine deep features, shallow features and
contextual information for the recognition of head orientations, which has yet
been exploited for this task. Finally, in terms of accuracy, the proposed approach
is competitive compared against both baselines and the state-of-the-art.
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Fig. 1. Convolutional neural network for head orientation classification. The input is
64× 64 pixels RGB image. The network outputs five classification scores, one for each
orientation class.

3 Methodology

We now present our approach for the classification of head poses of multiple
individuals. We assume that the human heads have been detected beforehand
using detectors like [14]. Here we consider a standard way of discretizing head
orientations proposed in [10]. This discretization includes five classes of head
orientations, i.e. profile-left (right), frontal-left (right) and backwards.

3.1 Deep CNN Feature

Our deep representation of head orientations is illustrated by Fig. 1 (layer-wise
parameters are provided in Table 1). It uses 64 × 64 pixels RGB scale image
as input. We normalize the intensity values of head images such that the mean
and variance are 0 and 1 respectively. Max-pooling follows each of the first
four convolutional layers. The first, the second and the third fully connected
(FC) layers contain 120, 84 and 5 neurons respectively. We use ReLU as the
activation function for all layers except for the last FC layer, where Tanh function
is employed. We train the parameters of the network using stochastic gradient
descent with momentum.

Table 1. Summary of the CNN structure for head-orientation classification. I(s, s, c)
means a square c-channel input image of s pixels. C(k, n) denotes convolutional layer
with square filters of k pixels., where n is the number of filters. Pooling Layer is denoted
by P(p), where p is the size of the square pooling regions. F(e) indicates fully connected
layer of e neurons.

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

I(64,64,3) C(5,16) P(2) C(5,20) P(2) C(4,20) P(2) C(3,20) C(3,120) F(84) F(5)
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3.2 Hand-Engineered Feature

In addition to the deep representation, for each detected human head, we also
extract its histogram of gradients (HoG) feature due to its superior representative
capability for orientated objects. Specifically, we divide each head image into an
8 × 8 grid, and bin gradients for each cell within the grid using 6 discretized
orientations. As a result, we can represent each head image as a 386 × 1 feature
vector. Figure 2 gives a visualization of a number of extracted HoG diagrams.

It is well-known that the learned feature (CNN as an example) outperforms
hand-crafted feature (HoG as an example) by a large margin on various vision
tasks. We can draw the same conclusion from our experimental results in Sect. 4.
However, it is interesting to find that the combination of deep and hand-crafted
feature representations delivers much better estimation of head orientations com-
pared with using each individual representation only, see Sect. 4 for details.

3.3 Spatial Temporal Model

Our goal is to estimate the orientation of Mt persons within frame t. We cast
the estimation problem as finding a discriminative function F (x,y,w) such that
for an image x, the assignment of head orientations y exhibits the best score
calculated by F , which is given by:

y∗ = arg max
y∈Y

F (x,y,w). (1)

As in many learning framework, we consider functions linear in some feature
representation Φ,

F (x,y,w) = w� Φ(x,y). (2)

Let (x,y) denote a training instance, where x = (x1, . . . ,xT ) is the video
sequence including T frames, y = (y1, . . . ,yT ) is the pose labelling of all frames
in the sequence. Here yt = (y1

t , . . . , y
Mt
t ) is the labelling of a number of Mt per-

sons within frame t. For each time-stamp t, we consider the dependency among
the head orientations of different people, which can be modelled by a graphical
representation Gt = (Vt, Et). Here Vt is the node set of the graph with each node
representing the head orientation of the associated person. Et = Vt × Vt is the
edge set of the graph Gt. Hence Gt is fully-connected. For an arbitrary (x,y),
the discriminative function F is formulated as:

F (x,y,w) =
∑

t∈{1...T}

{
w�

1

∑

i∈Vt

Φ1(xt, y
i
t) + w�

2

∑

(i,j)∈Et

Φ2(yi
t, y

j
t ) + w�

3

∑

s∈Vt

Φ3(ys
t , y

s
t−1)

}
, (3)

where w = [w1,w2,w3] are the model parameters to be learned during training.
The local feature Φ1(xt, y

i
t) is defined as:

Φ1(xt, y
i
t) = e1(yi

t)S(xt, y
i
t), (4)
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(a) Detected human heads (b) The corresponding HoG features

Fig. 2. An illustration of hand-engineered feature. The left represents detected human
heads. The right depicts the extracted HoG features.

where S(xt, y
i
t) denotes the belief of assigning an orientation label yi

t to person i
in the t-th frame xt, which is the discriminant score of SVM classification using
a concatenation of CNN and HoG features. e1(yi

t) ∈ {0, 1}|Y | denotes a vector
takes 1 at its yi

t-th position, and takes 0 elsewhere.
The spatial feature Φ2(yi

t, y
j
t ) is defined as:

Φ2(yi
t, y

j
t ) =

(
e2(yi

t − 1) × |Y | + yj
t

)
, (5)

where e2 ∈ {0, 1}|Y |2 denotes a vector takes 1 at its (yi
t−1)×|Y |+yj

t -th position,
and takes 0 elsewhere. This joint feature enables us to learn the compatibility
between the labelling of head orientations appeared within the identical frame.

The temporal feature Φ3(ys
t , y

s
t−1) is defined as:

Φ3(ys
t , y

s
t−1) = e2

(
(ys

t−1 − 1) × |Y | + ys
t

)
, (6)

which enables the learning of transitions of head orientations of the same person
across time. To train w, we use the structured SVM package [15], with the
inference problem (that is, finding the most violated constraints) solved via loopy
belief propagation.

4 Experiment

Here we provide experimental results to show (1) combining CNN feature and
HoG feature improves head orientation estimation significantly. (2) the classifi-
cation results can be further improved by considering the spatio-temporal rela-
tions among heads of different individuals. For CNN training, we use TensorFlow
library.
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Table 2. Head orientation classification on TVHI using different features and SVM
classifiers.

Features Test accuracy

F1 HoG features 67.1%

F2 CNN features 71.9%

F3 (ours) HoG + CNN features 76.1%

Table 3. Head orientation classification on TVHI using spatio-temporal context.

Model terms Test accuracy

The state-of-the-art Patron et al. [10] 72.0%

M1 (ours) Concatenated + temporal 76.2%

M2 (ours) Concatenated + spatial 77.0%

M3 (ours) Concatenated + temporal + spatial 77.5%

4.1 Result on TV Human Interaction Dataset (TVHI)

TV Human Interaction dataset [9] is composed of 300 videos clips cut from
23 different TV shows. Each clip contains one to six people (mostly two or
three people). The dataset contains 55,678 upper body bounding boxes, and
five discrete head orientation categories including frontal-left (fl), frontal-right
(fr), profile-left (pl), profile-right (pr) and backwards (bw). As prefect frontal
orientations are rare, they are moved to either of the two frontal categories. We
split the dataset as is suggested in [9], which generates two mutually exclusive
groups: one subset contains 30,148 bounding boxes while the other contains
25,530 bounding boxes. For each group, we train a model on it and test the
model on the other such that we can evaluate the performance of our approach
on the entire dataset. Results are reported by summarizing the results on both
subsets.

To obtain the bounding boxes of human heads, we empirically estimate the
location and size of human head for each human upper body. We collect such
estimations for both training and testing, and take the annotations of upper
body orientations as the groundtruth of head orientations.

Data augmentation is a common way to create additional samples to train
the deep model sufficiently. To this end, we apply transformations, flipping and
RGB jittering to the extracted head patches. In terms of transformation, we
first apply a random rotating within ten degrees to the head patches. Then the
resulting images are randomly shifted within five pixels. Next random noise is
added to one channel of the head image picked by random. At last all patches
are resized to 64 × 64 pixels.

We now compare three types of feature representations for head orientation
estimation: (1) HoG feature, (2) CNN feature, (3) the concatenation of both
features. For each cell of an 8 × 8 grid overlay onto a head image, we extract 6
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Fig. 3. Confusion matrices for head orientation classification on TVHI. From left to
right, it shows results of concatenated features, concatenated + temporal, concatenated
+ spatial and concatenated + temporal + spatial respectively. Note our full model (that
is, concatenated + temporal + spatial) obtains best results on all classes.

Table 4. Head orientation classification on HH dataset using different features with
SVM classifiers and spatial context.

Features Test accuracy

F3 (without data augmentation) CNN features 45.4%

F4 (without data augmentation) HoG features 68.3%

F5 (with data augmentation) CNN features 53.6%

F6 (with data augmentation) HoG features 68.9%

F7 (ours) HoG + CNN features 75.9%

M4 (ours) Concatenated + spatial 77.4%

oriented gradients as its local features. As result, each head image can be repre-
sented by a 384 dimensions HOG feature vectors. In Fig. 2 we visualize the hog
features extracted from a few head images. We extract CNN features from convo-
lutional layers. Specifically, we evaluate the effectiveness of CNN features from
different convolutional layers and found that the second to last convolutional
layer performs best. We normalize the CNN feature (180 dimensions) and the
HoG feature (384 dimensions) separately, which are then concatenated to obtain
a 564 dimensional feature vector. For each representation, we use the LIBLIN-
EAR toolbox [16] to train a discriminative model to predict head orientations.
Table 2 demonstrates classification results using different features. Clearly CNN
performs much better than the HoG representation. Evidently, the concatenated
representation outperforms each component significantly, which is interesting
given the fact that the first component, that is, the HoG representation per-
forms much worse than the CNN feature. This suggests that these features are
complementary to each other in terms of representing head orientations.

Next we compare our spatio-temporal model against (1) the concatenated
feature, (2) the spatio-temporal model without using spatial term, (3) the spatio-
temporal model without using temporal term. Results are provided in Table 3.
Two conclusions can be drawn here. First, the spatio-temporal model out-
performs the concatenated feature representation by 1.4%, mainly due to the



506 Z. Xiong et al.

modeling of contextual relations among head orientations of people within our
spatio-temporal model. Second, modeling spatial context (77.0%) is more effec-
tive than modeling temporal context (76.2%), at least for this experiment. Note
that our full spatio-temporal model gives the best classification accuracy among
all approaches. We also compare the state-of-the-art proposed by [10], where the
overall classification accuracy (72.0%) is 3.5% worse than ours.

We also plot the confusion matrices for head orientation classification with
different approaches. Results are shown in Fig. 3. One can see that when the
contextual information is used, the classification performance is significantly
improved. Note our full model (that is, concatenated + temporal + spatial )
obtains best results on all classes of head orientations.
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Fig. 4. Confusion matrices for head orientation classification on HH dataset. From left
to right, it shows results of CNN Features without data augmentation, HoG Features
without data augmentation, HoG + CNN Features and concatenated + spatial, respec-
tively (temporal information is not available for this dataset). Note that our approach
(that is, concatenated + spatial) obtains best results on most classes.

4.2 Result on Hollywood Heads Dataset (HH)

This dataset contains a set of images extracted from Hollywood movies where
people have been annotated at both head and upperbody-level. It includes six
head orientations: left-profile (lp), right-profile (pr), left-frontal (fl), right-frontal
(fr), left-back (lb) and right-back (rb). Here we also compare three types of fea-
ture representation for head orientation estimation: (1) HoG feature, (2) CNN
feature, (3) the concatenation of both features. For each cell of an 8×8 grid over-
lay onto a head image, we extract 6 oriented gradients as its local representation.
As result, each head image can be represented by a 384 dimensions HOG fea-
ture vectors. We extract deep representation from each head region using CNN.
Afterwards we normalize the extracted CNN feature (180 dimensions) and HoG
feature (384 dimensions) separately, and the resulting normalized features are
concatenated to obtain a 564 dimensional feature vector. For each representation,
we use the LIBLINEAR toolbox [16] to train a discriminative model to classify
head orientations. Table 4 demonstrates the classification results using (1) HoG
and CNN features without data augmentation, (2) HoG and CNN features with
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data augmentation, (3) the spatial context model (excluding the temporal con-
text term in Eq. (3) as spatial information is not available for this dataset).
Interestingly, HoG performs significantly better than the deep representation.
The reason might be that the number of training examples is extremely small
for HH, which is insufficient to train an effective deep model. SVM is well known
for its generalization ability against small dataset, and the SVM model trained
on HoG feature is more accurate on this dataset. Remarkably, when concate-
nating the deep and hand-engineered features, again the classification result is
improved significantly, which indicates that HoG and CNN features are comple-
mentary to each other with respect to the head orientation prediction task. We
also compare the results of models trained with and without data augmentation.
Clearly results using data augmentation are much better (especially when using
HoG feature) than the results without using augmentation. Finally, our spatial
model (M4) gives the best result (outperforms HoG + CNN features by 1.5%),
which suggests that modeling the relations among people is important to the
head orientation classification task. We also plot the confusion matrices for head
orientation classification with different approaches in Fig. 4. Some visualization
results are provided in Fig. 5.

Fig. 5. Visualization of head orientation classification results using three examples.
The top row shows the result of HoG + CNN features, and the bottom row lists the
result of concatenated + spatial, which is able to correct misclassified results by local
representation (i.e. HoG + CNN features).

5 Conclusion

In this paper, we have presented a spatial temporal field for the learning discrete
head orientations from video clips, with each video contains possibly an arbitrary
number of persons. Our spatial temporal model combined the learned feature, the
handcrafted feature and the contextual information to represent the relations of
head orientations of different individuals, which admitted superior performance
on benchmark dataset. We found that the deep feature, the hand-engineered
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feature and the contextual feature are complementary to each other in terms of
head orientation recognition, and fusing these features with our spatial temporal
model boosted recognition accuracy. In addition, data augmentation is important
to learn effective local features of head orientations, especially when the training
set is small. In future, a sufficiently large dataset is essential to further improve
the recognition performance of discrete head orientations.
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Abstract. In the context of time-series forecasting, we propose a LSTM-
based recurrent neural network architecture and loss function that
enhance the stability of the predictions. In particular, the loss function
penalizes the model, not only on the prediction error (mean-squared
error), but also on the predicted variation error.

We apply this idea to the prediction of future glucose values in dia-
betes, which is a delicate task as unstable predictions can leave the
patient in doubt and make him/her take the wrong action, threaten-
ing his/her life. The study is conducted on type 1 and type 2 diabetic
people, with a focus on predictions made 30-min ahead of time.

First, we confirm the superiority, in the context of glucose prediction,
of the LSTM model by comparing it to other state-of-the-art models
(Extreme Learning Machine, Gaussian Process regressor, Support Vec-
tor Regressor).

Then, we show the importance of making stable predictions by
smoothing the predictions made by the models, resulting in an over-
all improvement of the clinical acceptability of the models at the cost in
a slight loss in prediction accuracy.

Finally, we show that the proposed approach, outperforms all baseline
results. More precisely, it trades a loss of 4.3% in the prediction accu-
racy for an improvement of the clinical acceptability of 27.1%. When
compared to the moving average post-processing method, we show that
the trade-off is more efficient with our approach.

Keywords: Glucose prediction · Recurrent neural network · Loss
function · Stability · Clinical acceptability

1 Introduction

With 1.5 milion inputed deaths in 2012, diabetes is one of the leading diseases
in the modern world [26]. Diabetic people, due to the non-production of insulin
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(type 1) or an increased resistance to its action (type 2), have a lot of trouble
managing their blood glucose. In one hand, when their glycemia falls too low
(state of hypoglycemia), they are at risk of short-term complications (e.g., coma,
death). In the other hand, if their glycemia is too high (hyperglycemia), the
complications are long-term (e.g., cardiovascular diseases, blindness).

A lot of efforts are focused towards helping diabetic people in their daily life,
with, for instance, continuous glucose monitoring (CGM) devices (e.g., FreeStyle
Libre [18]), artificial pancreas (e.g., MiniMed 670G [16]), or coaching smartphone
applications for diabetes (e.g., mySugr [20]). Thanks to the advances in the field
of machine learning and the increased availability of data, a lot of researchers
are following the lead of the prediction of future glucose values. The goal is to
build data-driven models that, using the patient’s past information (e.g., glucose
values, carbohydrate intakes, insulin boluses), predict glucose values multiple
minutes ahead of time (we call those models multi-step predictive models).

While a lot of the early work in the glucose prediction field were focused on
the use of autoregressive (AR) models [22], the models that are used nowadays
are more complex. Georga et al. explored the use of Support Vector Regression
(SVR) in predicting glucose up to 120 min ahead of time in type 1 diabetes [9].
Valletta et al. proposed the use of Gaussian Process regressor (GP) to include
a measure of the physical activity of type 1 diabetic patients into the predictive
models [25]. In their work, Daskalaki et al. demonstrated the superiority of feed-
forward neural networks compared to AR models [2]. As for them, Georga et
al. studied the use of Extreme Learning Machine models (ELM) in short-term
(PH of 30 min) type 1 diabetes glucose prediction [10]. Finally, recurrent neural
networks (RNN) have shown a lot of interest in the field [27], and in particular
those with long short-term memory (LSTM) units [5,15,17,24].

However, neural-network-based models, while exhibiting very promising
results, often show instability in the predictions. This comes from the training of
the models that, most of the time, aims at minimizing the mean-squared error
(MSE) loss function. It makes the model focus on getting a good point-accuracy,
without questioning the coherence of consecutive predictions.

The stability of the predictions is very important in predicting future glu-
cose values. Predicting towards the wrong direction or with consecutive inconsis-
tent directions can make the diabetic patient take the wrong action, potentially
threatening his/her life. This is why the accuracy of the predicted glucose vari-
ations is taken into account when assessing the clinical acceptability of glucose
predictive models, with, for instance, the widely-used Continuous Glucose-Error
Grid Analysis (CG-EGA) [19]. We identified that this issue is not specific to the
field of glucose prediction and can be extended to other multi-step forecasting
applications, such as stock market prediction [6] or flood levels forecasting [1].

In this paper, to enhance the stability of the predictions, we propose a new
LSTM-based RNN architecture and loss function. We demonstrate the usefulness
of the idea by applying it to the challenging task of predicting future glucose
values of diabetic patients which directly benefits from an increased stability.

We can summarize our contributions as follows:
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1. We propose a new loss function that penalizes the model simultaneously dur-
ing its training, not only on the classical MSE, but also on the predicted
variation error. To be able to compute the penalty, we propose to use the
loss function in a two-output LSTM-based RNN architecture. We validate
the proposed approach by comparing it to four other state-of-the-art models.

2. We demonstrate the importance of making stable predictions in the context
of glucose predictions as accurate but unstable predictions lead the models
to have a bad clinical acceptability.

3. We confirm the overall usefullness of using LSTM-based RNN in predicting
future glucose values by comparing it to other state-of-the-art models. In
particular, the LSTM model shows more clinical acceptable results.

4. We have conducted the study on two different datasets, one with type 1 and
one with type 2 diabetic patients. This is worth mentioning as glucose predic-
tion studies are very rarely done on type 2 diabetes (although it represents
around 90% of the whole diabetic population).

5. Finally, we have made all the source code and a standalone implementation
of the CG-EGA available in Github.

The rest of the paper is organized as follows. First, we introduce the proposed
architecture and loss function. Then, we present its application to the prediction
of future glucose values. Finally, we provide the reader with the results and
takeaways from the experiments.

2 Prediction-Coherent LSTM-Based Recurrent Neural
Network

2.1 Presentation of the Model

In multi-step time-series forecasting, at time t, the model takes a set of features
X to predict the future value of the time-series y at a prediction horizon PH:
ŷt+PH . Most of the time, the input features X comprises the past H known
values of the time-series y as well as other time-related features.

RNN, and in particular those based on LSTM cells, are neural networks that
are particularly suited for time-series forecasting as they include the temporal
component of the features and the predictions into their architecture [13]. Such
models are usually trained with the MSE loss function (see Eq. 1) which estimates
the mean accuracy of the predictions.

MSE(y, ŷ) =
1
n

n∑

i=1

(yi − ŷi)2 (1)

However, using the MSE does not incentivize the model to make successive
predictions that are coherent with their respective true values. More formally,
we can call two consecutive predictions, ŷt+PH−1 and ŷt+PH , coherent with the
true values when the predicted variation from one to the other, Δŷt+PH , reflect
the true variation of the time-series Δyt+PH .
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To enhance to coherence of consecutive predictions, we propose the idea of
using a two-output LSTM that takes advantage of its architecture to penalize
incoherent successive predictions during its training. We call this neural network
a Prediction-Coherent LSTM-based recurrent neural network (pcLSTM).

Two-Output LSTM. The two-output LSTM is a standard LSTM unrolled H
times and that outputs the predictions of the last two steps (see Fig. 1).

ŷt+PH−1 ŷt+PH

NN ... NN NN

Xt−H Xt−1 Xt

Fig. 1. Two-output LSTM which has been unrolled H times. Xt are the input features
at time t and ŷt+PH is the forecast of the time-series y at a time t + PH.

Variations Penalized Loss Function. To enhance the coherence between two
consecutive predictions, we propose to penalize the network on the error of the
predicted variation. We define the cMSE (see Eq. 2), which is the weighted sum
of the MSE of the predictions and the MSE of the predicted variations. We call
the parameter c the coherence factor. It represents the relative importance of
the variation-based penalty compared to the accuracy of the predictions.

cMSE(y, ŷ) = MSE(y, ŷ) + c · MSE(Δy,Δŷ)

=
1
n

n∑

i=1

(yi − ŷi)2 + c · (Δyi − Δŷi)2
(2)

The coherence factor c is a problem-dependent parameter that has to be
optimized depending on the relative importance of having coherent or stable
predictions versus having accurate predictions.

We note that, if the coherence factor, c, is set to 0, the cMSE becomes the
MSE and the model then behaves like a standard one-output LSTM model.

3 Methods

In this section, we go through the experimental details of the study, and, in
particular, the data we used, the preprocessing steps we followed, the models we
implemented, and the evaluation metrics we used.
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We made the source code used in this study available in the pcLSTM Github
repository [4].

3.1 Experimental Data

Our data come from two distinct datasets: the Ohio T1DM dataset and the
IDIAB dataset accounting for 6 type 1 and 5 type 2 diabetic patients respectively.

Ohio Dataset. First published for the Blood Glucose Level Prediction Chal-
lenge in 2018, the OhioT1DM Dataset comprises data from six type 1 diabetic
people who were monitored during 8 weeks [14]. For the sake of simplicity and
the uniformity with the IDIAB dataset, we restrict the dataset to the glucose
readings (in mg/dL), the daily insulin boluses (in units) and the meal informa-
tion (in g of CHO).

IDIAB Dataset. For this study, we conducted a data collection on the type
2 diabetic population. The data collection and the use of the data in this study
has been approved by the french ethical committee “Comités de protection des
personnes” (ID RCB 2018-A00312-53).

Five people with type 2 diabetes (4F/1M, age 58.8 ± 8.28 years old, BMI
30.76 ± 5.14 kg/m2, HbA1c 6.8 ± 0.71 %), have been monitored for 31.8 ± 1.17
days in free-living conditions. The patients were equipped with FreeStyle Libre
(FSL) CGM devices (Abbott Diabetes Care) [18], which were recording their
glucose levels (in mg/dL), and with the mySugr (mySugr GmbH) coaching app
for diabetes [20], in which the patient logged his/her food intakes (in g of CHO)
and insulin boluses (in units).

3.2 Preprocessing

The goal of the preprocessing part is to uniformize the two datasets and prepare
them for the training and testing of the models.

Data Cleaning. To balance the training and the testing sets regarding the
distribution of the samples on the daily timeline, we have chosen to remove
incomplete days from the datasets. As a result, for every patient, we ended up
with an average of 38.5 (±4.82) and 29.4 (±1.62) days worth of data for the
Ohio and IDIAB datasets respectively.

We noticed that several glucose readings in the IDIAB dataset were erroneous
(characterized by high amplitude spikes). As this is not particularly surprising
(a study by Fokkert et al. reported that only 85.5% of the FSL readings were
within ±20% of the reference sensor values [7]), we removed them to prevent
them from disturbing the training of the model.
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Resampling and Interpolation. To synchronize the data between them, we
have resampled both datasets to get a sample every 5 min. During the resampling
process, glucose values have been averaged, insulin boluses and CHO intakes have
been summed up.

To make up for the introduced missing glucose values in the IDIAB dataset
(which has one reading every 15 min, instead of 5), we interpolated the glucose
signals as it has already been done in the context of glucose prediction [23]. In
particular, we used a piecewise cubic hermite interpolating polynomial (PCHIP)
[8] to avoid oscillations in the interpolated signal (which occurred with a single
polynomial interpolation) and to preserve the monotonicity of the fitted signal
(which was an issue with a spline interpolation) [12].

Datasets Splitting. To ready up the datasets for the training and testing
of the models, we have to create the training, validation and testing sets. The
splitting of the data has been done on full days of data to ensure an uniform
distribution of the daily sequences across the datasets. We split the data into
training, validation and testing sets following a 50%/25%/25% distribution.

Input Scaling. Lastly, the training sets data have been standardized (zero-
mean and unit-variance). The same transformation has then been applied to the
validation and testing sets.

3.3 Models

In this study, we compare the proposed approach (pcLSTM) to four other state-
of-the-art models, namely an Extreme Learning Machine neural network (ELM),
a Gaussian Process regressor (GP), a LSTM recurrent neural network (LSTM),
and a Support Vector Regression model (SVR).

Every model is personalized to the patient. To be able to model long-term
dependencies, every model takes the past 3 h of glucose, insulin, and CHO values
as input. The hyperparameters of every model have been tuned on the validation
sets by grid search.

ELM. The ELM architecture has 105 neurons in its single hidden layer. To
reduce the impact of overfitting, we applied a L2 penalty (500) to the weights.

GP. The GP model has been implemented with a dot-product kernel. The dot-
product has been chosen instead of a traditional radial basis function kernel as
it has been shown to perform better in the context of glucose prediction [5]. The
inhomogeneity parameter of the kernel has been set to 10−8. To ease the fitting
of the model, white noise (value of 10−2) has been added to the observations.
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LSTM. The LSTM model is made of a single hidden layer of 128 LSTM units. It
has been trained to minimize the MSE loss function using the Adam optimizer
with batches of 10 samples and a learning rate of 5 × 10−3. To prevent the
overfitting of the network to the training data, we added a L2 penalty (10−4)
and used the early stopping methodology.

pcLSTM. The pcLSTM recurrent neural network shares the same character-
istics with the LSTM model. The only difference is its two-output architecture
and its associated cMSE loss function (see Sect. 2). In particular, the coherence
factor has been optimized through grid search to ensure a good trade-off between
the accuracy of the predictions and the accuracy of the predicted variations. We
settled down with a coherence factor of 2.

SVR. The SVR model has been implemented with a radial basis function (RBF)
kernel. The coefficient of the kernel has been set to 5 × 10−4. The wideness of
the no-penalty tube has been set to 0.1 and the penalty itself has been set to 50.

3.4 Post-processing

By using the cMSE loss function, we incentivize the model to make consecutive
predictions reflecting the actual glucose rate of change. In a way, it can be viewed
as a smoothing effect integrated to the training of the model.

Some post-processing time-series smoothing techniques exist, such as the
exponential smoothing or the moving average smoothing [21]. The latter, yielding
a better trade-off between the accuracy of the predictions and the accuracy of
the predicted variations, has been used with a window of the last 3 predictions.

3.5 Evaluation Metrics

In this study, three evaluation metrics have been used: the Root-Mean-Squared
prediction Error (RMSE), the Root-Mean-Squared predicted variation Error
(dRMSE), and the Continuous Glucose-Error Grid Analysis (CG-EGA) mea-
suring the clinical acceptability of the predictions.

RMSE. The RMSE is the most used metric in the world of glucose prediction
as it measures the overall accuracy of the predictions [19].

dRMSE. We call the dRMSE the RMSE applied to the difference between two
consecutive predictions. Therefore, it measures the accuracy of the predicted
variations and can be used to estimate the impact of the variation-based penalty
in the cMSE loss function.



Prediction-Coherent LSTM RNN for Safer Glucose Predictions in Diabetes 517

CG-EGA. The CG-EGA provides a measure of the clinical acceptability of
the predictions [19]. Indeed, predictions, depending on the current state of the
patient’s glycemia (hypoglycemia, euglycemia1, or hyperglycemia), can be more
or less dangerous, which is not taken into account in metrics such as the RMSE.

Technically, the CG-EGA is made of two grids: the Point-Error Grid Analy-
sis (P-EGA) and the Rate-Error Grid Analysis (R-EGA). Whereas the P-EGA
provides an acceptability score (from A to E) to the glucose predictions, the
R-EGA gives each prediction a score (also from A to E) based on the variation
from the previous prediction to the current one [11]. The CG-EGA combines
both grids and gives, for every prediction, in its simplified representation, a
clinical acceptability category: accurate prediction (AP), benign error (BE), or
erroneous prediction (EP). For a prediction to be categorized as an AP, it needs
to have a score of A or B in both the P-EGA and the R-EGA.

We published the source code of the CG-EGA implementation in Github [3].

4 Results and Discussion

The results of the models, presented with and without the moving average
smoothing technique discussed in Sect. 3.4, are reported in Table 1. Figure 2 gives
a graphical representation of the effect of the proposed approach on the predic-
tions. A detailed graphical clinical acceptability classification of the predictions
is given by Fig. 3.
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Fig. 2. Glucose predictions of the unsmoothed LSTM and pcLSTM against the ground
truth, for a given day of one of the patients.

1 The euglycemia region is the region between hypoglycemia and hyperglycemia.



518 M. De Bois et al.

Table 1. Performances of the ELM, GP, LSTM, pcLSTM, and SVR models, evaluated
at a prediction horizon of 30 min with and without the smoothing of the predictions
(mean ± standard deviation, averaged on the subjects from both datasets).

Model RMSE dRMSE CG-EGA

AP BE EP

Without smoothing

ELM 25.54 ± 5.02 1.90 ± 0.45 79.34 ± 7.53 14.92 ± 5.50 5.74 ± 2.33

GP 18.92 ± 4.56 2.21 ± 0.44 81.70 ± 6.21 13.88 ± 4.09 4.41 ± 2.28

LSTM 19.48 ± 4.42 1.95 ± 0.40 82.98 ± 5.65 12.42 ± 3.73 4.60 ± 2.06

pcLSTM 20.32 ± 4.56 1.47 ± 0.31 87.60 ± 4.74 8.76 ± 3.23 4.01 ± 1.84

SVR 20.08 ± 4.24 1.74 ± 0.44 83.92 ± 6.10 11.75 ± 4.24 4.32 ± 2.01

With smoothing

ELM 26.64 ± 5.17 1.42 ± 0.31 86.13 ± 5.26 9.31 ± 3.89 4.57 ± 1.79

GP 20.42 ± 4.70 1.48 ± 0.31 87.17 ± 4.38 9.08 ± 3.03 3.74 ± 1.65

LSTM 21.21 ± 4.63 1.41 ± 0.30 87.51 ± 4.45 8.60 ± 3.15 3.89 ± 1.60

pcLSTM 22.42 ± 4.85 1.29 ± 0.28 88.82 ± 4.43 7.36 ± 3.18 3.81 ± 1.68

SVR 21.81 ± 4.43 1.42 ± 0.32 87.38 ± 4.78 8.79 ± 3.37 3.83 ± 1.63

First, when looking at the unsmoothed baseline results, apart from the ELM
model that has overall the worse performances (excluding it from the follow-
ing analysis), we can see that the models have different strengths and weak-
nesses. Whereas the GP model stands out as being the most point-accurate
model (RMSE), it is also the most unstable model (dRMSE). This makes it the
least clinically acceptable model of the remaining three, having the lowest AP
and the highest EP rates. On the other hand, the SVR model has the worse
RMSE, the best dRMSE, and the best AP and EP rates, making it the most
clinically acceptable baseline model. Finally, the LSTM model displays compet-
itive results with respect to the GP and SVR models, which validates the use of
the LSTM model in the context of glucose prediction.

When looking at the unsmoothed performances of the pcLSTM model, we can
see that, compared to the LSTM model, its RMSE is slightly worse (+4.3%),
its dRMSE drastically improved (−24.6%) and so is its clinical acceptability
(+27.1% and −12.8% for the room for improvement in the AP and EP rates
respectively). This shows the importance of focusing on the coherence of succes-
sive predictions as the increased accuracy in predicted variations (dRMSE) is
the main contributor to the increased clinical acceptability.

The results of the models with smoothed predictions show us the general ben-
efit of improving the stability of the predictions to make them more clinically
acceptable. Even though all the models see their clinical acceptability improved,
the improvement varies from model to model: the models with the highest insta-
bility benefit from the smoothing the most. In average, the improvement due to
the smoothing applied on the baseline models (still excluding the ELM model) is
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Fig. 3. P-EGA (left) and R-EGA (right) for LSTM (top) and pcLSTM (bottom) mod-
els for a patient during a given day. The CG-EGA classification (AP, BE, or EP) is
computed by combining both P and R-EGA ranks.

of +8.5%, −24.3%, +26.0%, and −14.14% in RMSE, dRMSE, AP and EP rates
respectively. Those results show us that the trade-off made by the pcLSTM
is much more efficient (+8.5% against +4.3% in RMSE for overall the same
improvement in the other metrics).

5 Conclusion

In this paper, we have presented a new loss function for recurrent neural networks
which, by penalizing the model on the predicted variation errors in addition to
the prediction errors, helps the network making more stable predictions.

We apply the proposed model to the prediction of future glucose values in dia-
betes. First, we validate the use of recurrent neural networks (in particular with
LSTM units) by showing that our baseline LSTM model is competitive when
compared to other state-of-the-art models. Then, we demonstrate the impor-
tance of the proposed approach as it greatly improves the clinical acceptability
of the predictions. Lastly, we compare the proposed approach to another smooth-
ing technique. While the effect on the clinical acceptability is the same, the loss
in the accuracy of the prediction is higher, making our proposed approach more
efficient.



520 M. De Bois et al.

The tuning of the coherence factor in the cMSE loss function is of paramount
importance for the proposed approach. The desired stability is application depen-
dant and must, in the case of glucose prediction, be assessed by practitioners.
In the future we plan on improving the loss function further by adding penalties
directly tied to the CG-EGA (e.g., penalizing the model when the prediction is
an EP).
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Abstract. In real-world environments, automatic speech recognition
(ASR) is highly affected by reverberation and background noise. A well-
known strategy to reduce such adverse interferences in multi-microphone
scenarios is microphone array acoustic beamforming. Recently, time-
frequency (T-F) mask-based acoustic beamforming receives tremendous
interest and has shown great benefits as a front-end for noise-robust
ASR. However, the conventional neural network (NN) based T-F mask
estimation approaches are only trained in parallel simulated speech cor-
pus, which results in poor performance in the real data testing, where
a data mismatch problem occurs. To make the NN-based mask estima-
tion, termed as NN-mask, more robust against data mismatch problem,
this paper proposes a bi-directional long short-term memory (BiLSTM)
based teacher-student (T-S) learning scheme, termed as BiLSTM-TS,
which can utilize the real data during student network training stage.
Moreover, in order to further suppress the noise in the beamformed sig-
nal, we explore three different mask-based post-processing methods to
find a better way to utilize the estimated masks from NN. The pro-
posed approach is evaluated as a front-end for ASR on the CHiME-3
dataset. Experimental results show that the data mismatch problem can
be reduced significantly by the proposed strategies, leading to relative 4%
Word Error Rates (WER) reduction compared to conventional BiLSTM
mask-based beamforming, in the real data test set.
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1 Introduction

Automatic speech recognition (ASR) has attracted amounts of attention in
recent years with the growing demands for many applications [9,17], such as
mobile devices with speech-enabled personal assistants and interaction among
smart home devices and people by speech [17]. However, for such real-world
far-field practical application scenarios, background noise and reverberation
degrades speech quality as well as the performance of the ASR system, espe-
cially under low signal-to-noise ratio (SNR) conditions.

Multi-channel speech enhancement [4,8], especially NN-mask for acoustic
beamforming [2,7,11], significantly improves the performance of ASR under
these circumstances. For example, CHiME-3 and CHiME-4 challenges [1], the
NN-mask has been developed for beamforming [2,15], which achieves the state-
of-art. In [2], a BiLSTM mask network has been designed and trained. In this
study, researchers treat the multi-channel signals separately where one speech
mask and one noise mask are learned for one channel signal. Finally, the masks
are combined to generate the final mask by median pooling. The beamforming
weights are computed as the principal generalized eigenvector of the speech and
noise covariance matrices.

In principle, the key idea of those mask-based acoustic beamforming is to esti-
mate a monaural time-frequency (T-F) mask with a well-trained NN in advance,
so that the spatial covariance matrices of speech and noise can be derived for
beamforming. Therefore, accurately estimating the T-F mask is essential to per-
form beamforming efficiently. Note that there are two types of NN training
T-F mask targets [16]: one is hard mask target, which is a binary mask con-
structed from premixed speech and noise signals, such as ideal binary mask
(IBM); while the second is soft mask target, which contains the probabilistic
information among noise signal class and speech signal class, such as ideal ratio
mask (IRM). However, the conventional NN-mask only using parallel simulated
speech corpus to train shows the poor performance when it predicts masks in
the real data testing, where a data mismatch problem occurs [18].

In this paper, in order to reduce the impact of the data mismatch problem
of NN-mask, our proposed approach uses bi-directional long short-term memory
based teacher-student (BiLSTM-TS) learning [3,10,14] architecture to utilize
the real data information in training phase. Specifically, two BiLSTM mask esti-
mation networks, are designed as a teacher network and a student network,
respectively. The teacher network is trained with simulated data, and it is then
employed to generate the soft labels for both simulated and real data separately.
Then, the student network can be trained by the simulated data and real data
with generated soft labels from the well-trained teacher network. In addition, in
order to further suppress the noise in the beamformed signal, we explore three
different mask-based post-processing methods to find a better way to utilize
the estimated masks. The proposed approach and mask-based post-processing
methods are evaluated on CHiME-3 dataset [1]. Our proposed approach leads to
relative 4% average Word Error Rates (WER) reduction compared to conven-
tional BiLSTM mask-based beamforming, in the real data test set.
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In summary, our contributions are as follows:

– We propose a BiLSTM-based teacher-student learning scheme for mask esti-
mation (BiLSTM-TS), which enable the NN-based mask estimator to utilize
the real training data in the training stage, in order to reduce the impact of
the data mismatch problem.

– We explore various mask-based post-processing ways to utilize the estimated
masks to further suppress the noise in the beamformed signal.

The remainder of this work is organized as follows: Sect. 2 shows the related
work of mask-based acoustic beamforming. Our approach is presented in Sect. 3
in detail. Detailed experimental corpus, metric, setups, and results are discussed
in Sect. 4. Finally, Sect. 5 summarizes the conclusions.

2 Background

In the short-time Fourier transform (STFT) domain, the received noisy signal
from multiple microphones can be expressed as:

Yτ,ω = Xτ,ω + Nτ,ω (1)

where Yτ,ω, Xτ,ω and Nτ,ω represent STFT vectors of the noisy signal, clean
speech and noise respectively. τ and ω denote time index and frequency channel,
respectively. The beamformer applies a linear filter wH

ω to observed noisy signal
Yτ,ω to produce an beamformed speech signal, s̃τ,ω, as follow:

s̃τ,ω = wH
ω Yτ,ω (2)

where superscript H denotes conjugate transpose.
Figure 1 shows the diagram of the recently proposed mask-based acoustic

beamforming. In the stage of time-frequency mask estimation, multiple micro-
phones receive a set of noisy speech signals, generate a speech mask and a noise
mask for each microphone by treating the microphone array as several indepen-
dent microphones. Then the estimated masks are condensed to a single speech
mask and a single noise mask by using a median filter.

With the estimated clean speech mask MX(τ, ω) and noise mask MN (τ, ω) by
BiLSTM network, spatial covariance matrices of speech ΦX(ω) and noise ΦN (ω)
are computed as:

Φv(ω) =
T∑

τ=1

Mv (τ, ω)Yτ,ωY
H

τ,ω v P {X,N} (3)

Then these spatial covariance matrices compute beamformer coefficients wω. In
this study, we propose to maximize the SNR of the beamformer output in each
frequency bin separately leading to the Generalized Eigenvalue (GEV) beam-
former [2] with coefficients:

wGEV (ω) = argmax
w

wHΦX (ω)w
wHΦN (ω)w

(4)
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Fig. 1. Processing flow of mask-based beamforming.

This optimization problem is equivalent to solving the following eigenvalue prob-
lem: {

Φ−1
N ΦX

}
wGEV (ω) = λwGEV (ω) (5)

where wGEV (ω) is the eigenvector of
{
Φ−1

N ΦX

}
and λ is the corresponding

eigenvalue. Finally, the blind analysis normalization (BAN) [2] is used as a post-
filter of beamformer to reduce arbitrary distortion of the GEV beamformer.

3 Approach

3.1 BiLSTM Teacher-Student Learning for Mask Estimation

This work focuses on the data mismatch problem in NN-mask. Considering that
the NN-mask is a supervised training which requires target labels in training
stage. Hence, parallel speech corpus, such as original clean speech and simulated
noisy speech, is required to prepare the corresponding labels. This means the
conventional NN-mask can only be trained with simulated data, which may
lead to a poor performance of the mask estimation network under the real data
conditions where a data mismatch problem occurs. In order to reduce the impact
of the data mismatch problem, our idea is quite intuitive that the real data can
be pooled with the simulated data in the NN-mask training stage to train a
better mask estimation network. In this work, we introduce teacher-student (T-
S) scheme to reduce data mismatch problem. The training strategy is that the
well-trained teacher network is used as the label generator which processes the
original simulated and real data in order to predict soft labels. Then the student
network can utilize real-data information and simulated data information to
train a mask estimator. Figure 2 illustrates the framework of proposed BiLSTM
teacher-student learning (BiLSTM-TS).

Teacher Network. For teacher network, in the training stage, the magnitude
spectrum of noisy signal in STFT-domain is given as the input of the teacher net-
work. Note that the teacher network is only trained by using simulated training
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Fig. 2. The framework of our proposed BiLSTM teacher-student learning mask estima-
tion (BiLSTM-TS). (a) Feature extraction. Obtain the short-time Fourier transforms
(STFT) of the noisy signals and calculate their magnitude spectra |Y|τ,ω. (b) Pro-
posed BiLSTM-TS model. Use magnitude spectrum of ith channel Y m

i (τ, ω) as the
input of NN. The well-trained BiLSTM teacher network generates the estimated clean
speech soft labels MSXT and MRXT as well as noise soft label MSNT and MRNT as
additional labels to student network.

data. We employ the ideal binary mask (IBM) as the training target. There are
two types of IBM are estimated: one is the clean speech mask IBMX(τ, ω) P 0, 1,
the other is the noise mask IBMN (τ, ω) P 0, 1, which are defined as:

IBMN =

{
1, ||X(τ,ω)||

||N(τ,ω)|| < 10thN ,

0, else.
(6)

IBMX =

{
1, ||X(τ,ω)||

||N(τ,ω)|| > 10thX ,

0, else.
(7)

where ||X(τ, ω)|| P Rě0 and ||N(τ, ω)|| P Rě0 are power spectra of the clean
speech signal and the noise signal at each T-F unit (τ, ω), respectively. To obtain
the better results, the two thresholds thX and thN are manually selected to be
different from each other.

The teacher network is trained to predict the clean speech mask
MSXT (τ, ω) P [0, 1] and MRXT (τ, ω) P [0, 1] as well as the noise mask
MSNT (τ, ω) P [0, 1] and MRNT (τ, ω) P [0, 1] at each T-F bin (τ, ω). We use
the NN proposed in [2] as the architecture of our teacher network, including a



Teacher-Student Learning and Post-processing 527

BiLSTM layer followed with three-feed forward layers. Table 1 shows the config-
urations of teacher network.

Table 1. Configurations of BiLSTM teacher mask network.

Layer Units Type Activation Dropout

L1 256 BiLSTM Tanh 0.5

L2 513 Feedforward 1 ReLU 0.5

L3 513 Feedforward 2 ReLU 0.5

L4 1026 Feedforward 3 Sigmoid 0.0

We use the binary cross-entropy (BCE) as the loss function of teacher network
which is defined as:

Loss =BCE(IBMv,MvT )

def=
1
T

1
W

∑

vP{X,N}

T∑

τ=1

W∑

ω=1

IBMv (τ, ω) log(MvT (τ, ω))

+ (1 − IBMv (τ, ω))log(1 − MvT (τ, ω))

(8)

As shown in Fig. 2, in our design, the well-trained teacher network is used
as the soft label generator for the real data and the simulated data. Then the
student network can utilize the generated masks of clean speech MXT (τ, ω) and
noise MNT (τ, ω) as the soft labels.

Student Network. The structure of the student network is the same as the
teacher network described in Sect. 3.1. In the training stage of student network,
we use different loss functions to train our SMM with the simulated data and the
real-recording data, respectively. For simulated data, we consider the following
lost functions for speech LSsX and noise LSsN , as follow:

LSsX =(1 − π)BCE(IBMX(τ, ω),MSXS(τ, ω))
+ πBCE(MSXT (τ, ω),MSXS(τ, ω))

(9)

LSsN =(1 − π)BCE(IBMN (τ, ω),MSNS(τ, ω))
+ πBCE(MXNT (τ, ω),MSNS(τ, ω))

(10)

where MSXS(τ, ω) and MSNS(τ, ω) denotes the estimated clean speech mask
and noise mask by student network, respectively. The hyper-parameter π is the
imitation parameter adjusting the relative attention of two type of targets. The
IBMX(τ, ω) and IBMN (τ, ω) are the hard mask labels of speech and noise,
respectively. The final cost function of SMM for simulated data, termed as LSs

is expressed as:
LSs = (LSsX + LSsN )/2 (11)
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For real data, the conventional NN-mask can only utilize parallel data com-
bined by the clean speech and noise, which are not usually obtained in the prac-
tical application. However, the student network is able to obtain the soft labels
of the real data generated by teacher network. Therefore, the loss function for
the student network for real data, termed as LSr, is defined as:

LSr =[BCE(MRXT (τ, ω),MRXS(τ, ω))
+ BCE(MRNT (τ, ω),MRNS(τ, ω))]/2

(12)

where MRXS(τ, ω) and MRNS(τ, ω) represent the estimated noise mask and
clean speech mask by student network, respectively.

With this setup, the student network has been trained on the simulated
data and real-recording data with loss LSs and loss LSr, respectively. When
the student predicts the clean speech mask and noise mask for each microphone
channel, we calculate the beamforming coefficients using the method shown in
Sect. 2.

3.2 Mask-Based Post-processing

For the beamformer, the aim of the method is to improve the signal-to-noise ratio
(SNR) without distorted the clean speech, but it is hard to completely eliminate
the noise. There are many post-processing approaches can be utilized to eliminate
the noise in the beamformed speech, and obtain the extra enhanced signals.
However, the enhanced speech need to avoid being distorted to further improve
the ASR performance. We explore three different mask-based post-processing
for the beamformed speech:

1. Apply the estimated clean speech mask MX(τ, ω) directly (direct-mask),
after beamforming as post-processing. After this post-processing, we can
obtain enhanced speech x̃τ,ω as follow:

x̃τ,ω = s̃τ,ω � MX(τ, ω) (13)

where � presents dot multiplication. And the MX is estimated by the mask
estimation network.

2. In order to simultaneously control the noise reduction level and speech dis-
tortion, the beamformed speech s̃τ,ω can be conditionally used MX(τ, ω) by
piecewise function (condition-mask) as follows:

x̃τ,ω =

⎧
⎨

⎩

s̃τ,ω MX(τ, ω) ě 0.8
s̃τ,ω � MX(τ, ω) 0.2 ď MX(τ, ω) < 0.8

s̃τ,ω � 0.2 otherwise
(14)

Note that the value of MX(τ, ω) are real numbers within the range [0,1]. If
the value of estimated MX(τ, ω) is very large indicating that it has very high
SNR at certain T-F unit, it is not necessary to perform noise reduction which
can potentially result in the speech distortion.
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3. Apply the threshold-mask post-processing method. Firstly, we compute the
global SNR for each frequency ω, termed as gSNR(ω), as follow:

gSNR(ω) = 10log10

∑T
τ=1 MX(τ, ω)s̃2τ,ω∑T
τ=1 MN (τ, ω)s̃2τ,ω

(15)

Secondly, we use gSNR(ω) to calculate a threshold, th(ω), as:

th(ω) =
1

1 + e(αgSNR−β)/γ
(16)

The Eq. (16) is a sigmoidal function, hence the threshold is ranged [0,1]. We
use parameters α, β and γ to adjust the shape of the sigmoidal function.
Through cross-validation, their values are set to 1.5, −5 and 2, respectively.
Then, the threshold-mask can be obtained, termed as Mth(τ, ω), as:

Mth(τ, ω) = MX(τ, ω)th(ω) (17)

From Eqs. (16) and (17), we can find that when gSNR(ω) is high the value
of th(ω) will be close 0. This makes the threshold-mask Mth(τ, ω) be close to
1, which is independent of the value of clean speech mask MX(τ, ω). If not,
Mth(τ, ω) is close to MX(τ, ω) when gSNR(ω) is low. Finally, we can obtain
the enhanced speech x̃τ,ω by:

x̃τ,ω = s̃τ,ω � Mth(τ, ω) (18)

4 Experiments

In this work, we evaluate the proposed acoustic beamforming approach on ASR
tasks using the CHiME-3 corpus [1]. The proposed algorithm is used as a frontend
for ASR systems.

4.1 Corpus

CHiME-3. The CHiME-3 corpus includes real and simulated data generated
by artificially mixing the incorporations of Wall Street Journal (WSJ) corpus
[5] sentences spoken with 4 different noisy environments which selected: cafe
(CAFE), street junction (STR), public transport (BUS) and pedestrian area
(PED). This corpus is recorded by using a 6-channel microphone array attached
to a tablet device. The corpus is divided into 3 respective subset:

– Training set: composing 8738 (1600 real + 7138 simulated) noisy utterances.
– Development set (dt 05): containing 3280 (1640 real + 1640 simulated) noisy

utterances.
– Evaluation set (et 05): including 2640 (1320 real + 1320 simulated) noisy

utterances.
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4.2 Metric

Word Error Rate (WER). WER is a common metric to evaluate the perfor-
mance of ASR system [6]. The WER compares a reference to an hypothesis and
is defined as:

WER =
S + D + I

N
(19)

where S is the number of substitutions, D is the number of deletions, I is the
number of insertions and N is the number of total words in the reference. The
lower the value of WER, the better the ASR performance.

4.3 Experimental Setups

To compare the performance of different masking models, the standard back-
end ASR provided by the CHiME-3 challenge is directly used, which contains
based on a relatively simple Gaussian Mixture Model (GMM) acoustic model [12]
trained using Kaldi speech recognition toolkit [13]. For language model, A stan-
dard the Wall Street Journal (WSJ) speaker-independent medium-vocabulary
(5K) word tri-gram language model is used for decoding in this work. We use a
common metric word error rate (WER) to denote the performance of ASR.

4.4 Evaluation on BiLSTM-TS

As frontend processing, the mask-based beamforming approach proposed by
Heymann et al. [2] which is described in Sect. 2 as well as set as our teacher
network, is used for comparison with our proposed student models with differ-
ent values of hyper-parameter π.

Table 2. Comparison of the performance (%WER) of different mask estimation net-
works for ASR systems on CHiME-3.

Parameters BiLSTM mask DEV EVAL

simu real simu real

− Baseline/Teacher 10.8 11.97 11.59 17.97

π = 0.0 Student 10.87 11.84 11.62 17.34

π = 0.2 Student 10.61 11.67 11.84 16.89

π = 0.5 Student 10.2 11.26 11.79 15.53

π = 0.8 Student 10.4 10.78 9.96 14.75

π = 1.0 Student 8.4 9.37 8.89 13.79

The results of these experiments are shown in Table 2. From the results, we
can see that the performance of most student models with different configu-
rations are better than that of the teacher network as expected, although the
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teacher model has already been robust. The results also reveal that except for
the student model with hyper-parameter π = 0.0, the improvements are largely
achieved not only on the real test condition but also on the simulated test con-
dition. This is an interesting finding, since the data mismatch problem between
the original simulation training and the test conditions is small, only adding the
real data in the training actually increases the mismatch for the simulated test
conditions. Specifically, adding the teacher-student (T-S) learning scheme results
in a relative improvement rate of up to 4.1% and 2.7% for the real and simu-
lated evaluation data, respectively. In contrast, utilizing T-S learning scheme can
reduce the impact of the data mismatch problem of mask estimation for acoustic
beamforming by pooling real data with simulated data in the training stage with
soft labels from teacher model, thus contributes to better performance for real
applications.

4.5 Evaluation on Different Post-processing Methods

We also compared the three different mask-based post-processing methods
described in Sect. 4 on two BiLSTM mask estimation networks for beamforming
by using same ASR back-end. In detail, the two BiLSTM mask models are the
teacher model and the student model with hyper-parameter π = 0.0. And we
use the BiLSTM teacher model and student model without the post-processing
as the baselines.

Table 3 lists the ASR performance of direct-mask, condition mask and
threshold-mask approaches. First, for the direct-mask method, we can find that
since directly applying the mask to the beamformed signal is very sensitive to the
mask estimation error. And the performance of direct-mask method underper-
forms that of the baselines. Second, for the condition-mask method, the results
of this method show the improvements on the real data, while the performances

Table 3. Comparison of the performance (%WER) of the BiLSTM teacher and stu-
dent mask estimation network with direct-mask, condition mask, and threshold-mask
methods as well as without post-processing for ASR systems on CHiME3.

BiLSTM MASK Post-processing DEV EVAL

simu real simu real

Baseline None 10.8 11.97 11.59 17.97

Student None 8.4 9.37 8.89 13.79

Baseline Direct-mask 12.37 13.12 13.01 19.85

Student Direct-mask 11.81 12.58 10.36 16.27

Baseline Condition-mask 10.27 11.43 11.63 17.86

Student Condition-mask 8.22 9.35 9.09 13.52

Baseline Threshold-mask 10.97 12.08 11.27 17.42

Student Threshold-mask 8.42 8.96 9.1 13.46
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of condition-mask post-processing on the simulated data are slightly decreased.
From the results of the threshold-mask method, we can find that threshold-mask
post-processing for beamformed speech can suppress the noise, which can further
improve the ASR performance for both real-recording data and simulated data.

5 Conclusion

In this work, motivated by the data mismatch problem for NN-based mask esti-
mation acoustic beamforming results from training simulated data and testing
real data, we propose BiLSTM teacher-student learning (BiLSTM-TS) approach.
With the aim of utilizing the real record data in mask estimation training,
the T-S is applied on the real record data to produce the soft labels, hence
the real data can be combined with the simulated data for mask estimation.
Experimental results show that, as a frontend, the student model of BiLSTM-
TS improves ASR performance. Furthermore, through exploring the different
mask-based post-processing methods, we find that the threshold-mask can fur-
ther suppress the noise in the beamformed signal. For the future work, by using
strong ASR back-end, we believe that the ASR performance can be further
improved.
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Abstract. Research on Arabic handwriting recognition has been seriously
challenged due to its cursive appearance, the variety of writers and the diversity
of styles. In fact, motivated by a series of success cases in computer vision, we
try to explore the Maxout units in Multidirectional neural networks for the
offline task. Therefore, in this work, we model an Arabic handwritten word with
a deep MDLSTM-based system. This architecture can directly work on raw
input images since it enables us to model the script variations on both axes of the
image due to recurrence over them. However, several problems, such as the
vanishing gradient, can affect the training of this recognition system. To over-
come this problem, we should integrate Maxout units into MDLSTM system in
order to enhance it and improve its performance. In this context, different
integration modes are carried out to draw out the best topology. Proposed
systems are evaluated on a large database IFN/ENIT. According to the exper-
imental results and compared to the baseline system, the best tested architecture
reduced the label error rate by 6.86%.

Keywords: LSTM � MDLSTM � Maxout � Offline Arabic handwriting
recognition

1 Introduction

Recurrent Neural Network (RNN) is a powerful learning model that achieves state-of-
the-art results in a wide range of computer vision and deep neural network-based
solution. In particular, the Long Short-Term Memory (LSTM) [1] has been a very
successful recurrent neural network architecture in various recognition systems.
The LSTM units enable the network to store information for longer amounts of time.
Besides, an LSTM unit is integrated into the Multi-Dimensional Recurrent Neural
Network (MDRNN), which generalize the standard RNN by providing recurrent
connections along all spatio-temporal dimensions present in the input data. The
MDRNN’s connections enable the network to create a flexible representation of the
context. Then, the combination of the MDRNN and LSTM, which has been used to
achieve state of the art results in offline handwriting recognition systems [2], is called
the Multi-Dimensional Long Short-Term Memory MDLSTM [3]. However, the deep
MDLSTM architecture can suffer from the vanishing gradient problem which can be
solved by integrating Maxout units with different locations and group size in order to
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draw out the best topology that improves the accuracy of the baseline system, based on
MDLSTM, for offline Arabic handwriting recognition. The obtained recognition sys-
tems have been tested and compared on the IFN/ENIT corpus [4].

The remainder of the paper is organized as follows. Section 2 introduces the
MDLSTM network and explains how it outperforms for Arabic offline handwriting
recognition. Section 3 describes the Maxout units and their different integration modes
into the baseline system. The experiments and results are presented in Sect. 4. Finally,
the conclusion is drawn and some future perspectives are suggested in Sect. 5.

2 MDLSTM Baseline System Overview

Recently, MDLSTM networks, which can deal with higher-dimensional data, were won
handwriting recognition competitions [5, 6]. In fact, recognition systems based on
MDLSTM have been shown to yield promising results due to recurrence used over both
axes of an input image which allows to model the writing variations on both axes and to
directly work on raw input images. Several works were done to improve the MDLSTM
performance, for a better offline Arabic handwriting recognition system, such as
applying dropout technique during training [7] to prevent network from overfitting.
Indeed, dropout improves the network performance and significantly reduces the error
rate when it is applied before, after or between LSTM layers [8] (Table 1).

MDLSTM layers are composed by several LSTM nodes. Each one consists of
multiple recurrent connections, called memory blocks (see Fig. 1). Each block contains
a set of internal cells, whose activation is controlled by three multiplicative ‘gate’ units.
those gates allow the cells to store and to access information over long periods of time.

Network computes the input gate i, the forget gate f, the cell activation vectors c,
the output gate o and the hidden vector sequence h. where W denotes weight matrices,
the b terms denotes bias vectors, s and / are Tanh functions and r is the logistic
sigmoid function.

it ¼ r Wxixt þWhiht�1 þWcict�1 þ bið Þ ð1Þ

ft ¼ r Wxf xt þWhf ht�1 þWcf ct�1 þ bf
� � ð2Þ

at ¼ s Wxcxt þWhcht�1 þ bcð Þ ð3Þ

Table 1. MDLSTM-based recognition systems comparison with IFN/ENIT database

Approach Label Error Rate (LER)

Baseline system: MDLSTM w/CTC 16.97%
MDLSTM w/CTC w/dropout 1 [7] 12.09%
MDLSTM w/CTC w/dropout 2 [8] 11.62%
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ct ¼ ftct�1 þ ittanh Wxcxt þWhcht�1 þ bcð Þ ð4Þ
ot ¼ r Wxoxt þWhoht�1 þWcoct þ boð Þ ð5Þ

ht ¼ ot/ ctð Þ ð6Þ

To recognize offline handwriting script, and when we need to use images as input
data for neural networks, we need to put the images on a vertical line at a time so that
input images can be converted into a 1D series. It would therefore be unlikely for the
recognition system to manage deformations along the vertical axis. In fact, a simple
one-pixel transformation of an image makes it regarded as a new image by the process.

In this context, the proposed MDRNN [3] is an easier solution that consists in
presenting a special case of a directed acyclic graph network, which is a stronger
generalization of a standard RNN by offering recurrent connections across all the
spatio-temporal dimensions found in the data. (Figure 2 shows the case of two
dimensional MDRNN). Such links enable the network to build an internal dynamic
internal representation, which makes the system strong to handle distortions such as
image rotations and shears. The MDRNN allows to model multidimensional context in
a flexible way. In fact, there are four parallel MDRNN layers that process each input in
one of the four possible directions (Fig. 2). Then, the four directions will be brought
together to get the full context from all directions at every spatial position.

Fig. 1. LSTM memory cell
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The hidden state h(i, j) for position (i, j) of an MDRNN layer is computed based on
the previous hidden states h(i − 1, j) and h(i, j − 1) of both axes and the current input x
(i, j) by

hði; jÞ ¼ r W xði; jÞþ I hði� 1; jÞþ J hði; j� 1Þþ bð Þ ð7Þ

where W, I and J are weight matrices, b a bias vector and r a nonlinear activation
function.

To make network able to access long-range context, a Multidimensional LSTM is
proposed, this neural network is the combination of two networks: LSTM and
MDRNN.

The challenge with MDLSTM network is to transform two-dimensional images
into one-dimensional label sequences. This problem can be solved by the use of a
hierarchy structure of MDLSTM layers. In fact, the data is transmitted through
recurrent layers with blocks of activations gathered together after each level. The
heights of the blocks are fixed to incrementally collapse the 2D images into 1D
sequences able to be labelled by the output layer. The output layer based on CTC [9] is
added to the MDLSTM network to label non-segmented sequence data. In fact, the
CTC layer allows the network to directly map input sequences to the conditional
probabilities of possible labelling. Their activations are interpreted as the probabilities
of observing the corresponding characters at specific timesteps. The CTC-based output

Fig. 2. Two dimensional MDRNN give four scan directions [3].
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layer has 121 units, 120 of which are required to present our 120 labels. The last one’s
activation is the chance of no observation or ‘blank’ observation. By adding all the
possible probabilities, this output layer can easily interpret all possible ways of aligning
each label sequence.

The MDLSTM is a deep feedforward neural network, however, despite the use of
powerful LSTM units, MDLSTM network can suffer from the vanishing gradient
problem [10, 11], which can be solved by adding Maxout units in different locations in
this network in order to draw out the best one that improves the baseline system.

3 Maxout

3.1 Definition

The Maxout units [12] were first proposed in the feed-forward DNNs [13–17] This
regularization technique allows the hidden units to be divided into disjunctive groups.
So, the Maxout nonlinearity reduces the dimension from F � G to F, where F is the
number of unit groups and G is the number of neurons in each group namely the group
size. The output is the maximum of all the inputs:

hi ¼ maxGi¼1 zij ð8Þ

where zij ¼ xTWij þ bij

3.2 Previous Work

The Maxout makes the state-of - the-art well-performing in different computer vision
tasks, such as the speech recognition. In Table 2, concentrating on the recognition
systems based on the LSTM, we observed that Maxout outperforms when it is applied
on stacked LSTM-based recognition system for the Mandarin Chinese conversational
telephone speech recognition. In fact, when network is trained and evaluated on the
HKUST database with Maxout group size of 4, the recognition system achieves a
character error rate (CER) improvement that exceeds 1.75%[13].

Table 2. Error recognition rate reduced with Maxout.

Authors Network Error rate Dataset Reduction

Li and Wu [13] Stacked LSTM CER HKUST 1.75%
Cai and Liu [18] LSTM CER Cantonais 1.7%
Cai and Liu [18] LSTM SER Vietnamiens 1.8%
Cai and Liu [18] LSTM WER Pashto 2.4%
Cai and Liu [18] LSTM WER Turque 2.5%
Cai and Liu [18] LSTM WER Tagalog 2.2%
Cai and Liu [18] LSTM WER Tamil 1.6%
Maalej and kherallah [19] BLSTM (1) LER ADAB 10.62%
Maalej and kherallah [19] BLSTM (2) LER ADAB 10.99%
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Similarly, according to [18], the Maxout operates well on the IARPA Babel
datasets in recognition of six different languages. In fact, this function reduces the
Cantonese Character Error Rate (CER) by 1.7% and the Vietnamese Syllable Error
Rate (SER) by 1.8%. On the other hand, the Maxout function decreases the Pashto
Word Error Rate (WER) by 2.4%, the Turkish one by 2.5%, the Tagalog by 2.2% and
the Tamil by 1.6%. Such recurrent Maxout neural networks are trained with a dropout
rate of 0.2 added only on the fully-connected layers.

Moreover, for an online Arabic handwriting recognition system based on BLSTM
[19], two modes of Maxout integration are proposed. First, Maxout function is used
inside the LSTM nodes, with the Maxout group size of 3, the Label Error Rate
(LER) of 23.78% are founded, hence the error rate reduction reaches 10.62%; in a
second step Maxout layers are stacked after the BLSTM layers and this last architecture
was the most powerful and the reduction in the label error rate reached 10.99%.

According to these previous works, we can conclude that the Maxout is an elegant
activation function that significantly enhance LSTM-based systems. In next section, we
presented the two different ways of the Maxout integration into baseline system based
on the MDLSTM of the offline Arabic handwriting recognition.

3.3 Architecture of Maxout on MDLSTM

Two approaches have been suggested to connect the Maxout to our MDLSTM
network-based recognition system. The first is to add the Maxout function within the
LSTM unit, whereas the second consists in adding a Maxout layer in feedforwards
layers, after each MDLSTM layers.

3.3.1 Maxout Inside LSTM Units
Certainly, the Maxout enhances the performance of several LSTM-based recognition
systems. Indeed, this technique was found to be well suited inside the LSTM unit and
we attempted to use it to improve the accuracy of the offline Arabic handwriting
recognition system based on the MDLSTM.

In order to avoid the explosion of the hidden state activation over time and calculate
the hidden state at each step, the recurrent neural network uses mostly saturating
nonlinear activation functions, such as the Tanh, which results in a more stable
dynamic learning system. Hence, at the first thought, this does not enable us to create
an LSTM network with a non-saturating activation function, such as the Maxout.

Nonetheless, when we investigated the structure of the LSTM (see Fig. 1), we
discovered that this RNN uses self-connected unbounded internal memory cells that are
kept by multiplicative non-linear gates. In fact, apart from the activation of these three
gates, two non-linear functions s and / in our system are a saturating non-linearity
Tanh. On the other hand, since the output is the multiplication of the / output vector
and the ot output gate, in this / non-linear function there will no longer a dimension
reduction. As a consequence, we can add a Maxout unit rather than the s function (see
Fig. 3).
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Moreover, Maxout improves the efficiency of different recognition systems based
on LSTM. In fact, since this technique is found to be well adapted to the LSTM
networks, we are trying to use it to improve the accuracy of the MDLSTM-based
offline Arabic handwriting recognition system.

The output activation / in Eq. (6) is keeping the same saturating nonlinearity
function tanh, in this proposed network. Therefore, the hidden states ht are kept
bounded for the memory blocks. Consequently, we can allocate any non-saturating
nonlinear function for s, such as the Maxout non-linearity. For Eq. (3), the formula for
cell output activation will be:

at ¼ maxGi¼1 Wxcixt þWhciht�1 þ bcið Þ ð9Þ

Where G is the group size.

3.3.2 Maxout in Feedforward Layers on MDLSTM
The second way to integrate Maxout into MDLSTM network is to add Maxout units in
feedforward layers as illustrated in Fig. 4. We get a hybrid model that can be called a
recurrent Maxout network, it combines MDLSTM and Maxout layers. The MDLSTM
network is used in the lower layers of this recognition system, to model the long-term
dependencies of the data at the input. Fully connected layers with Maxout neurons are
used after LSTM recurrent layers and finally, the CTC layer is used as an output layer.
This architecture has already proven its success in the field of voice recognition [18].

Fig. 3. LSTM with Maxout group Size of 3.
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4 Experimental Results

4.1 IFN/ENIT Database

The IFN/ENIT Database [4] contains 32492 images of Arabic words written by more
than 1000 writers, which are used to validate and compare different proposed archi-
tectures. Those words are the names of 937 Tunisian towns and villages. The
IFN/ENIT database is divided in 5 sets (see Table 3). To compare our architectures
with those of other systems we chose the same circumstances. In fact, set a, b and c are
used for training while set d and e are used for testing. The IFN/ENIT database was
triumphantly exploited by several research groups as it was used for offline Arabic
handwriting recognition competition in ICDAR 2009 [6].

In order to integrate Maxout into the baseline recognition system based on
MDLSTM, two methods are detailed in Sect. 3. The first is to add the Maxout function
inside LSTM nodes and the second method is to switch from tanh to Maxout at the
activation function in the feed-forward layers.

4.2 Maxout Inside LSTM Units

As illustrated in Table 4, Maxout decreases the label error rate of the offline hand-
writing recognition system based on MDLSTM when it is added inside LSTM nodes.

Fig. 4. MDLSTM with Maxout in feedforward layers.

Table 3. The IFN/ENIT dataset.

Sets Words Characters

a 6537 51984
b 6710 53862
c 6477 52155
d 6735 54166
e 6033 45169
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In fact, with Maxout group size of 2, the label error rate became 11.09% compared to
16.97% for the baseline system, achieving a significant 5.88% reduction in the error
rate. With the Maxout group size of 3, the label error rate decreases to 10.86% and the
reduction reaches 6.11%. With the Maxout group size of 4, we get the lowest label
error rate of 10.3% hence the error rate reduction reaches 6.67%.

Table 4 shows that Maxout significantly improves the performance of our offline
Arabic handwriting recognition system based on MDLSTM for all three examinated
group sizes. It is worth noting that the lowest error rate was reached with the group size
of 4.

4.3 Maxout Nodes in Feedforward Layers

Regarding the second MDLSTM extension manner with Maxout, it is worth noting that
when added, the Maxout layer reduces the label error rate of the offline handwriting
recognition system, firstly with group size of 2 to achieve a substantial reduction of the
error rate by 6.37%, the formed label error rate is 10.60% when it was equivalent to
16.97% for the baseline system. Secondly, the group size of 3 to achieve a better
reduction of the error rate of 6.44%, given that the new founded label error rate is
10.53%. Thirdly, with group size of 4, to achieve the best reduction, which this
architecture that reaches 6.86%, given the 10.11% new label error rate.

As illustrated in Table 5, we can therefore conclude that adding of the Maxout
layers in the MDLSTM network significantly reduces the label error rate. In fact, the
lowest error rate was achieved with a size of group equal to 4.

Table 4. LER comparaison of Maxout into LSTM node on the MDLSTM network, tested on
IFN/ENIT database.

System Group size Label Error Rate (LER) Reduction

MDLSTM baseline system – 16.97% –

MDLSTM w\ Maxout into LSTM 2 11.09% 5.88%
MDLSTM w\ Maxout into LSTM 3 10.86% 6.11%
MDLSTM w\ Maxout into LSTM 4 10.30% 6.67%

Table 5. LER comparaison of Maxout layers with MDLSTM network tested on IFN/ENIT
database.

System Group size Label Error Rate Reduction

MDLSTM baseline system 0 16.97% –

Maxout layers with MDLSTM 2 10.60% 6.37%
Maxout layers with MDLSTM 3 10.53% 6.44%
Maxout layers with MDLSTM 4 10.11% 6.86%
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Finally, we found that our solution for offline Arabic handwriting recognition,
which is based on a deep learning architecture combining MDLSTM and Maxout units,
gives a competitive result against the other systems, as illustrated in Table 6. In fact,
the label error rate of a recognition system based on the Dynamic Bayesian Network
reached 18% [20], while the one based on MDLSTM with CTC and on which dropout
is applied was 11.62%. However, for a hybrid recognition system with CNN and
HMM, the label error rate was 10.77%. In fact, all cited research studies gave worse
results than the present work in which the recognition system is based on Maxout and
MDLSTM as the LER reached 10.11%. On the other hand, a hybrid system based on
CNN-BLSTM and trained with an extended IFN/ENIT database, created by some
augmentation data techniques, has the best label error rate estimated at 7.79%.

5 Conclusions

In this paper, we have proposed on offline Arabic handwriting recognition system
based on the architecture of MDLSTM. We have integrated Maxout units in the
MDLSTM to counter against vanishing gradients problem common to deep neural
networks. Two methods of Maxout incorporation are tested and compared with dif-
ferent Maxout group sizes. First, we added a Maxout unit inside the LSTM units
instead of s the tanh function. The best result was recorded with group size of 4. The
second way to combine Maxout with MDLSTM is to add Maxout units in the feed-
forward layers instead of the sigmoid functions. The performance of the new system
outdoes the MDLSTM baseline system and the reduction of the error label rate, which
reached 6.86%. As a future perspective, we propose to evaluate the effect of other
regularization methods such as DropConnect, ReLU and leaky ReLU on the MDLSTM
network.
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Abstract. Unsupervised feature selection (UFS) based on matrix fac-
torization (MF) is an efficient technique for dimensionality reduction
in image processing task. Most MF based methods learn cluster indi-
cator matrix and bases matrix, and exploit the bases matrix for fea-
ture selection via ranking weights. Since correlated features tend to have
similar rankings and these methods select the top ranked features with
large correlations, the selected features might contain redundant infor-
mation. Toward this end, we propose a novel matrix factorization with
redundancy minimization method, in which performing MF and remov-
ing redundant features are incorporated into a coherent model. To reduce
the redundancy, we define a regularization to penalize the high-correlated
features. The effective �2,p-norm (0 < p ≤ 1) imposed on bases matrix
is suitable for feature selection. Experimental results on image datasets
validate the effectiveness of the proposed approach.

Keywords: Image processing · Unsupervised feature selection ·
Matrix factorization · Redundancy minimization

1 Introduction

Many image processing tasks have witnessed images represented by high dimen-
sional features, such as local features (SIFT) [5]. In most cases, not all fea-
tures of visual contents of real-life images are significant for pattern recognition,
computer vision and multimedia applications and most of them are even noisy
and redundant, which would demand more on computational time and stor-
age requirements and weaken the performance of model [2,8]. Feature selection
which can keep data properties and select the most representative features is a
main technique to overcome the over-fitting, low efficiency of model and poor
performance of the learning tasks.
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From the perspective of availability of labels, feature selection can be grouped
into three categories: supervised [11], semi-supervised [10,15] and unsupervised
cases [14,16]. Supervised and semi-supervised methods can select discriminative
features according to the power of distinguishing instances from different classes,
which can achieve higher performance. Since images often have incomplete labels
and assigning labels to images is an expensive and time consuming task, UFS is
more challenging and promising [13].

In recent years, UFS has drawn increasingly attention, and a number of
alternative criteria have been proposed. One type of UFS algorithms adopts
MF technique to learn the cluster indicator matrix and bases matrix, and per-
form feature selection by using the bases matrix with sparse learning, which
has been extensive studied by researchers. RUFS [9] performs robust clustering
by local learning regularized nonnegative MF and robust feature selection via
joint �2,1-norms minimization. EUFS [12] directly embeds feature selection into
a clustering algorithm by MF without transforming UFS into supervised case.
However, the aforementioned methods do not explicitly consider the redundancy
among features, which may result in the redundancy existing in the results. More
specifically, since correlated features have similar ranking and be considered to be
equally significant for UFS, these methods select the top ranked features which
might be highly correlated to each other and contain redundant information.

To address the above issue, we propose a novel UFS algorithm, namely Matrix
Factorization with Redundancy Minimization (MFRM). Different from existing
MF based UFS methods, a main advantage of our approach is that it take the
redundancy among features into consideration. Besides, the joint learning of
MF and spectral analysis enables to learn more accurate cluster labels of input
images. The main contributions of this work are summarized as:

(1) A novel UFS method based on matrix factorization with redundancy mini-
mization is proposed. We formulate the proposed model as an optimization
problem and design an efficient alternating minimization algorithm for it.

(2) We define a redundancy minimization regularization to penalize the high-
correlated features.

(3) We conduct extensive experiments on image datasets to demonstrate the
superiority of the proposed model.

2 Matrix Factorization

For an arbitrary matrix A, we denote its i-th row, its j-th column and (i, j)-
th entry as ai, aj and Aij , and its Frobenius norm is denoted as ||A||F =√∑

i

∑
j A2

ij , and Tr(A) is the trace of A if A is square. Ic is an c × c iden-
tity matrix.

Let X ∈ R
n×d be the data matrix, where each row xi ∈ R

1×d denotes an
instance. The feature matrix is denoted as X = {f1, f2, . . . , fd}, where f j is
the j-th feature vector. Suppose these n samples are clustered into c clusters
(U1, U2, . . . , U c) by the matrix factorization as:
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min
UT U=I,U≥0,W

||X − UWT ||2F (1)

where U ∈ R
n×c is the cluster indicator matrix and W ∈ R

d×c is the bases
matrix. According to the following theorem [12], we perform feature selection
via the bases matrix.

Theorem 1. Given X = {f1, f2, . . . , fd} and ||f i||1 = 1,∀i, we use UWT to
reconstruct X, i.e, X̂ = UWT , and perform feature selection via W with the
orthogonal on U .

Proof. Since X̂ = UWT , we get f i = UwT
i .

||f̂ i||22 = ||UwT
i ||22 = wiU

T UwT
i = ||wT

i ||22 (2)

3 Methodology

To select the most representative features and reduce the redundancy among
features for UFS, we propose to adopt the matrix factorization and redundancy
minimization, simultaneously. Our main task of this work is to obtain the cluster
labels of input images and remove the redundancy among the selected features
of visual contents of images. Matrix factorization technique is used to learn
cluster labels U and bases matrix W (which can be regarded as the weights of
features). Redundancy minimization is designed to be imposed on W to remove
the redundant features which are highly correlated to each other and have similar
rankings. Therefore, the framework of MFRM is formulated as:

min
UT U=I,U≥0,W

||X − UWT ||2F + G(W ) + R(W ) (3)

where G(W ) is a regularization function which is usually imposed on feature
selection matrix to make model more robust and suitable for feature selection,
and R(W ) is a redundancy minimization regularization to penalize the high-
correlated features and make the difference of similar features larger.

Most existing UFS methods adopt multiple criteria to compute feature scores,
use different strategies to rank features and select the top ranked features. Con-
sequently, the selected features may contain much redundancy due to the fact
that correlated features have similar ranking and be considered to be equally sig-
nificant for UFS. To penalize the framework (3) for redundant features, the first
thing we need to do is to calculate the correlation between features. There are
many correlation strategies, such as Pearson correlation coefficient and mutual
information. Here, we adopt the Pearson correlation coefficient C ∈ R

d×d which
between the i-th feature f i and the j-th feature f j is defined as:

Cij =
1

n − 1

n∑
m=1

(
f i

m − f i

σfi

)(
f j

m − f j

σfj

) (4)
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where fi
m−fi

σfi
, f i and σfi are the standard score, mean and standard deviation

of i-th feature.
To make high-correlated features with similar rankings far away from each

other, we define a redundancy minimization regularization imposed on W as:

R(W ) = min
W

−
c∑

l=1

d∑
i,j=1

(Wil − Wjl)2Cij

⇒ min
W

−Tr(WT LCW ) (5)

where LC = DC − C is a Laplacian matrix and the (i, i)-th element of diagonal
matrix DC equals

∑d
j=1 Cij . By minimizing the above defined term R(W ), the

framework (3) can reduce the redundancy during feature selection.
For the regularization function G(W ), we impose effective �2,p-norm (0 <

p ≤ 1) on bases matrix W , which can perform sparse feature selection and get
a better sparsity solution than �2,1-norm. The formulation of the group sparsity
regularization �2,p-norm added on W is:

G(W ) = ||W ||p2,p =
d∑

i=1

(
c∑

j=1

W 2
ij)

p/2 =
d∑

i=1

||wi||p (6)

where wi is i-th row of W , d is the number of features and c is the number of
cluster labels. The weight of i-th feature is calculated by ||wi||2. The sparsity of
W is affected by the value of p. When p = 1, the above formulation is �2,1-norm.
Obviously, the sparsity of W increases as p decreases.

By incorporating the redundancy minimization regularization (5) and the
group sparsity regularization �2,p-norm into the proposed framework (3), we
have:

min
U,W

||X − UWT ||2F + ||W ||p2,p − Tr(WT LCW )

s.t. UT U = I, U ≥ 0 (7)

Although we use MF to learn the cluster labels of input images, we fail
to capture the local data structure. Inspired by that similar images should have
similar cluster labels, we apply spectral analysis to detect the manifold structure
and force similar images with similar cluster labels:

min Tr(UT LSU) (8)

where LS = DS − S is a Laplacian matrix and DS is a diagonal matrix with
its elements defined as DSii =

∑n
j=1 Sij . S ∈ R

n×n is the sample similarity
matrix which is obtained by RBF kernel in this work. By considering manifold
information of input images, the problem (7) can be rewritten as:

min
U,W

||X − UWT ||2F + αTr(UT LSU)

+ β||W ||p2,p − Tr(WT LCW )

s.t. UT U = I, U ≥ 0 (9)
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where α and β are nonnegative trade-off parameters. The first two terms are
joint learning of MF and spectral analysis which learn more accurate cluster
labels and bases matrix while the last two terms are to make the bases matrix
be sparse and select non-redundant representative features correspondingly.

4 Optimization

In this section, an alternating minimization strategy is derived to effectively
solve the optimization problem of MFRM. We iteratively update W and F by
the alternating minimization method which decomposes the problem into two
subproblems where only one variable is involved.

First, when the cluster label U is fixed, the optimization problem in (9) is
rewritten as:

min
W

||X − UWT ||2F + β||W ||p2,p − Tr(WT LCW ) (10)

When p = 1, the problem (10) is convex but non-smooth. However, in our model,
the range of values of p is (0, 1] and the problem is non-convex when 0 < p < 1.
To this end, we use Iterative Reweighted Least Square (IRLS) algorithm to solve
the subproblem of W with the �2,p-norm.

We define the diagonal weighting matrice Gt ∈ R
d×d by the given current

W t:

gt
j =

p

2
||wt

j ||p−2
2 (11)

where wt
j is j-th row of W t and gt

j is the j-th diagonal element of Gt. The
solution of IRLS algorithm at the t+1 step involves the following weighted least
squares problem:

W t+1 = arg min
W

Q(W |W t)

= arg min
W

Tr((X − UWT )T (X − UWT ))

+ βTr(WT GtW ) − Tr(WT LCW ) (12)

By setting the derivative of (12) w.r.t W to zero, we can get the closed-form
solution of W t+1 as:

W t+1 = (I + βGt − LC)−1XT U (13)

After getting the W t+1, we can update Gt+1 by the definition (11). According
to [17], the problem (10) monotonically decreases and is guaranteed to converge
to a stationary point by iteratively updating W t and Gt. We also introduce a
sufficiently small value ε to redefine gt

j to get a stable solution:

gt
j =

p

2max(||wt
j ||2−p

2 , ε)
(14)
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Algorithm 1. Algorithm for the proposed MFRM.
Input: Data matrix X ∈ R

n×d; Parameters α, β and θ; cluster number c; Number of
selected features t;

1: Construct sample similarity matrix S and calculate LS ;
2: Construct correlation coefficient C and calculate LC ;
3: Initialize θ = 106, U and W ;
4: repeat
5: Update W by solving (10) via IRLS;
6: Update U by (17);
7: until Convergence criterion satisfied
Output: Sort all d features according to ||wi||2 in descending order and select the

top-t ranked features.

Next, when the bases matrix W is fixed, we rewrite the objective function
(9) with relaxing the orthogonal constraint:

min
U

||X − UWT ||2F + αTr(UT LSU) +
θ

2
||UT U − Ic||2F

s.t. U ≥ 0 (15)

where θ
2 ||UT U − Ic||2F is a penalty term and θ is a parameter which should be

large enough to ensure the orthogonality satisfied. Since the problem (15) is a
convex optimization with nonnegative constraint, we introduce the Lagrangian
multiplier Δij for constraint Uij ≥ 0 and get the Lagrangian function:

L(U,Δ) = ||X − UWT ||2F + αTr(UT LSU)

+
θ

2
||UT U − Ic||2F − Tr(ΔT U) (16)

By setting the derivative of (16) w.r.t U to zero and applying the Karush-
Kuhn-Tuckre (KKT) condition ΔijUij = 0, we can get the following updating
method:

Uij ← Uij
(XW + θU)ij

(UWT W + αLSU + θUUT U)ij
(17)

Then we normalize U with (UT U)ii = 1, i = 1, . . . , c. The algorithm for solving
MFRM is summarized in Algorithm 1. The loop will stop if the loss variation
ratio is less than 10−6 or the number of iterations reach the maximum iteration.

Complexity and Convergence. There are two subproblems in the proposed
algorithm: subproblem W and subproblem U . In each iteration, the time com-
plexities of W and U are O(T (d3 + d2n + dnc)) and O(cn2), respectively, where
d is the number of features, n is number of samples, c is the number of pseudo
classes and T is the iteration number of the IRLS algorithm. The convergence of
subproblem W depends on the IRLS algorithm whose convergence has been well
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Table 1. Detailed information of the datasets.

Dataset Instances Features Classes Domain

ORL 400 1024 40 Image, Face

AR 130 2400 10 Image, Face

PIE 210 2420 10 Image, Face

Yale 165 1024 15 Image, Face

pixraw10P 100 10000 10 Image, Face

COIL20 1440 1024 20 Image, Object

studied and proved [17]. The optimization problem for U is a convex function.
Hence, the objective function value is guaranteed to decrease in each iteration
and our algorithm will eventually converge due to the lower bound 0.

5 Experiments

In this section, we conduct extensive experiments to evaluate the performance of
the proposed method on six image datasets. We compare MFRM with compar-
ison methods in terms of clustering performance. We also give the performance
of selected features with the proposed method on face images.

5.1 Datasets

In our experiments, six diverse image datasets are collected to evaluate the per-
formance of the proposed method and comparison methods, including five face
image datasets (ORL, AR, PIE, Yale and pixraw10P) and one object image
dataset (COIL20). The detail information of chosen datasets is shown is Table 1.

5.2 Experimental Settings

To validate the effectiveness of the proposed MFRM, we compare it with the
following UFS methods:

– LapScore [4]: LapScore is a filter method that evaluates features by the power
of preserving the local manifold structure.

– MCFS [1]: MCFS adopts spectral clustering with �1-norm regularization to
maintain data distribution.

– NDFS [7]: NDFS uses the nonnegative spectral analysis to select the most
discriminative features.

– RUFS [9]: RUFS combines robust nonnegative matrix factorization and local
learning to perform robust feature learning.
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– EUFS [12]: EUFS is an embedded method that applies orthogonal matrix fac-
torization to select features without transforming unsupervised feature selec-
tion into supervised learning.

For all methods, we specify the size of neighborhoods k as 5. In our model
MFRM, we set the value of p for �2,p-norm as 0.8 and denote θ = 106 to guaran-
tee the orthogonality satisfied. For fair comparison, we adopt grid-search strat-
egy to traverse the parameters from

{
10−6, 10−4, . . . , 106

}
and record the best

results. We set the number of selected features as {50, 100, . . . , 300} and report
the average results due to the fact that it is still an open problem to determine
the optimal number of selected features in unsupervised feature selection [3,6].
We evaluate the performance of k-means clustering on selected features via two
widely used metrics, i.e., Normalized Mutual Information (NMI) and Clustering
Accuracy (ACC) [6]. The lager NMI and ACC are, the better the performance
is. Since k-means algorithm is sensitive to the initialization, we repeat k-means
clustering 20 times with random initialization and record the mean and standard
deviation of results for all methods.

5.3 Results and Analysis

The clustering performance in terms of NMI and ACC on six image datasets for
the compared methods are reported in Tables 2 and 3, respectively. The results
are given in the format of “average ± standard deviation”. The best results are
highlighted in bold.

Table 2. Clustering results (NMI% ± std) of the compared methods.

ORL AR PIE Yale pixraw10P COIL20

Baseline 72.01± 2.97 13.88± 3.57 22.36± 4.66 44.55± 2.51 80.61± 3.33 70.47± 3.92

LapScore 66.38± 2.58 22.00± 3.09 22.27± 2.23 43.10± 3.95 79.75± 6.12 65.64± 3.81

MCFS 72.49± 2.63 17.26± 2.96 50.38± 2.80 44.74± 2.88 82.57± 3.98 70.95± 1.60

NDFS 71.29± 2.98 35.74± 2.74 48.02± 4.00 40.65± 2.71 88.42±2.92 72.20± 3.00

RUFS 73.48± 3.88 40.17± 5.23 43.93± 5.11 45.34± 2.08 84.18± 3.76 72.56± 2.70

EUFS 70.46± 3.09 53.59± 3.52 63.39± 3.30 47.82± 2.72 81.29± 5.19 66.19± 7.35

MFRM 75.67±2.47 55.95±2.86 65.01±2.94 49.70±3.02 86.69± 2.99 73.89±2.10

Table 3. Clustering results (ACC% ± std) of the compared methods.

ORL AR PIE Yale pixraw10P COIL20

Baseline 47.75± 2.83 19.23± 3.61 24.74± 2.54 35.76± 2.74 74.88± 3.45 58.65± 4.82

LapScore 42.78± 3.35 21.60± 3.45 21.65± 2.77 37.44± 2.88 66.47± 7.99 52.37± 4.71

MCFS 51.40± 2.95 21.40± 2.93 38.29± 3.74 37.93± 2.54 76.33± 4.71 58.07± 2.31

NDFS 50.12± 2.31 33.10± 2.68 39.56± 2.93 33.13± 3.05 79.95±2.89 59.57± 3.63

RUFS 52.11± 3.78 37.77± 4.88 33.71± 4.97 38.01± 3.44 77.36± 4.52 61.61± 3.68

EUFS 48.18± 2.81 48.97± 3.71 53.01± 4.11 39.96± 3.95 76.18± 5.34 53.59± 5.75

MFRM 56.76±2.69 49.83±2.70 55.22±2.85 41.51±3.08 78.77± 3.21 63.05±2.81



Matrix Factorization with Redundancy Minimization 557

From these two tables, it is noticed that feature selection can not only select
the most representative features, but also improve the performance by comparing
with baseline which adopts all features. We can see that simultaneous cluster-
ing and feature selection can outperform the strategies that select features one
by one. NDFS, RUFS, EUFS and MFRM all outperform MCFS by using the
orthogonal nonnegative constraint. RUFS performs robust clustering by local
learning regularized nonnegative MF and robust feature selection, which result-
ing in relatively good results. EUFS yields larger values of NMI and ACC, which
demonstrates that it is significant to directly embed feature selection into a clus-
tering algorithm by MF for unsupervised feature selection. Our method MFRM
achieves the best performance on five datasets and the second best result on
pixraw10P dataset by explicitly taking the redundancy among high-correlated
features in account.
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Fig. 1. Clustering results (ACC) of all methods with different features on six image
datasets.

Additionally, we also conduct experiments to evaluate the performance of all
methods with increasing number of features. The experimental results in terms
of ACC of all methods are shown in Fig. 1. It is observed that as the num-
ber of features increases, the ACC of the competing methods usually begins to
decrease after reaching the maximum, which denotes that the selected features
by these methods may contain redundant features that degrade the performance.
Our method can handle this case and has better results of ACC regarding most
feature numbers, which demonstrates that it is necessary to consider the redun-
dancy among features. However, these unsupervised feature selection methods
are all sensitive to the number of selected features.
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(a) ORL

(b) Yale

Fig. 2. Eight samples selected from ORL and Yale face image datasets with the number
of selected features varying in {128, 256, 384, 512, 640, 768, 896, 1024} from left to right.

In order to vividly validate the effectiveness of the proposed approach, we
select eight face images from ORL and Yale datasets, including four different face
images of a woman and a man, respectively. We adopt the different number of
features of every face image for reconstruction. As shown in Fig. 2, the proposed
MFRM can reconstruct the outline of the facial features with a small number of
features which are useful to distinguish a people. Obviously, the proposed method
can select the valuable and discriminative features (e.g., eyes, nose, mouth, etc)
primarily and remove the redundant features (cheek and background).

6 Conclusion

In this paper, we propose a novel unsupervised feature selection method which
could jointly learn cluster labels of images and select the non-redundant repre-
sentative features. A redundancy minimization regularization has been defined
to penalize high-correlated features to minimize the redundancy among fea-
tures. The effective �2,p-norm is introduced to perform sparse feature selection.
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Experimental results on different image datasets demonstrate the proposed
method MFRM outperforms the state-of-the-art methods.
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Abstract. Quantum machine learning is a new area of research with
the recent work on quantum versions of supervised and unsupervised
algorithms. In recent years, many quantum machine learning algorithms
have been proposed providing a speed-up over the classical algorithms.
In this paper, we propose an analysis and a comparison of three quan-
tum distances for protoptypes-based clustering techniques. As an appli-
cation of this work, we present a quantum K-means version which gives
a good classification just like its classical version, the difference resides
in the complexity: while the classical version of K-means takes polyno-
mial time, the quantum version takes only logarithmic time especially in
large datasets. Finally, we validate the benefits of the proposed approach
by performing a series of empirical evaluations regarding the quantum
distance estimation and its behavior versus the stability of finding the
nearest centers in the right order.

Keywords: Quantum machine learning · K-means · Unsupervised
learning · Prototypes based clustering

1 Introduction

Machine learning techniques are applied for solving a large variety of problems
such as sorting, regression and classifying information. In supervised machine
learning, the learner is provided a set of training examples with features pre-
sented in the form of high-dimensional vectors and with corresponding labels to
mark its category. The aim is to classify new examples based on these training
sets. In unsupervised learning, the machine tries to find a hidden structure in
unlabeled data.

As the amount of data generated in our society is drastically increasing, it is
necessary to have more powerful ways of handling information. That’s why recent
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studies and applications are focusing on the problem of large-scale machine learn-
ing. A lot of works have been devoted to quantum machine learning. For example,
the development of quantum procedures for linear algebra as: matrix multiplica-
tion, eigenvectors and eigenvalues of matrices and estimating distances between
quantum states. Efforts have also been made to solve the problem of pattern
recognition [9] and to develop the quantum version of artificial neural networks
[6] widely used in machine learning.

In this paper, we are interested in the estimation of the distance for quantum
prototypes based clustering as the main task of machine learning algorithm is
analyzing the similarity between the vectors that is done through the evaluation
of the distance and the inner products between the large vectors. The notion
of distance in quantum clustering algorithms differs from the conventional one,
in the sense that it may vary depending on the probabilistic effects due to the
quantum nature of the states.

The rest of paper is organized as follows. Section 2 presents the distance esti-
mation. Section 3 describes grover’s algorithm. Section 4 would be the description
of the proposed quantum K-means. Section 5 is devoted to experimental results.
Finally, the conclusion summarizes our work and its advantages.

2 How to Estimate the Distances Between a Given Data
and Centroids?

Distance measurements to the different centroids are necessary for a clustering
algorithm. To do this, how can we translate the idea of measuring distances
into something that can be easily and efficiently done on a quantum computer?
For a conventional computer, calculating Euclidean distances is easy, but doing
it in the same way on a quantum computer would be much more complicated
and would require more qubits than we can afford. On the other hand, the
probabilistic nature of qubits makes it easier to measure phase differences and
probability amplitudes.

For clustering algorithms, distances are necessary just to assign data points
to different clusters. The objective is then to know which cluster is closest to a
data point. This measure does not need to be proportional to the real distance,
but only in positive correlation with it. Indeed, we only need the nearest centroid,
not the exact values of the real distances.

In quantum computing, many distance-type measurements are available
when we process qubits [2,7,10], such as the inner product between two (nor-
malized) vectors and the probabilities of measuring a qubit in the states |0〉
or |1〉.

2.1 Fidelity as a Similarity Measure

Fidelity is a measure of similarity between two quantum states, which is defined
in the case of two pure states |ψ〉 and |φ〉 by Fid(|ψ〉 , |φ〉) = | 〈ψ|φ〉 |2. The
fidelity varies between 0 if the states are orthogonal (that’s to say, perfectly
distinguishable) to 1 if the states are identical.
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Fidelity is similar to a measure commonly used in classical information, called
cosine similarity. The properties of fidelity include symmetry: Fid(|ψ〉 , |φ〉) =
Fid(|φ〉 , |ψ〉), as well as invariance under unitary transformation, which means
that if we apply the same unitary transformation U to two quantum states this
does not change their fidelity: Fid(|Uψ〉 , |Uφ〉) = Fid(|φ〉 , |ψ〉).

The fidelity | 〈ψ|φ〉 | [1] of two quantum states |ψ〉 and |φ〉 can be obtained
through the quantum circuit Swap test presented in Fig. 1.

Fig. 1. Swap test circuit

The circuit of swap test allows to compare two quantum states. It is composed
of two Hadamard gates and a Control-Swap gate.
The control qubit is on the state: |+〉 = |0〉+|1〉√

2

After applying the Controlled Swap test, we get:

CSWAP |+〉 |ψ〉 |φ〉 → |0〉 |ψ〉 |φ〉 + |1〉 |φ〉 |ψ〉√
2

By applying the second Hadamard gate, we obtain:

CSWAP |+〉 |ψ〉 |φ〉 → |0〉 (|ψ〉 |φ〉 + |φ〉 |ψ〉) + |1〉 (|ψ〉 |φ〉 − |φ〉 |ψ〉)
2

While measuring the ancillary qubit, we get:

P (|0A〉) =
∣
∣
∣
∣

1
2

〈0|0〉 |ψ〉 |φ〉 + |φ〉 |ψ〉
∣
∣
∣
∣

2

=
1
4

∣
∣
∣ |ψ〉 |φ〉 + |φ〉 |ψ〉

∣
∣
∣

2

=
1
2

+
1
2

|〈ψ|φ〉|2

After measurement, we have P (|0A〉) = 1
2 + 1

2 | 〈ψ|φ〉 |2. A probability of 1/2
consequently shows that the two quantum states |ψ〉 and |φ〉 do not overlap
at all (they are orthogonal), while a probability of 1 indicates that they have
maximum overlap.

2.2 States Construction to Estimate the Distance-Type
Measurements

Several works have been made to compute the fidelity between two quantum
states, all these works use the swap test circuit to obtain the similarity measure
but they use different data preparation and construction of the states. In this
section, we present the preparation and the construction of the states |ψ〉 and |φ〉
of each method. Let’s consider that we want to compute the distance between
the two quantum states |x〉 and |w〉.



564 K. Benlamine et al.

Wiebe et al. Approach

1. Data preparation

Given N = 2n dimensional complex vectors x and w with components
xj = |xj |e−iαj and wj = |wj |e−iβj respectively. Assume that {|xj |, αj} and
{|wj |, βj} are stored as floating point numbers in quantum random access
memory.

2. Construction of the states

Wiebe, Kapoor and Svore [10] suggested a representation of the states that
aims to write the parameters into amplitudes of the quantum states.

|ψ〉 =
1√
d

∑

j

|j〉
(√

1 − |xj |2
r2max

e−iαj |0〉 +
xj

rmax
|1〉

)

|1〉

|φ〉 =
1√
d

∑

j

|j〉|1〉
(√

1 − |wj |2
r2max

e−iβj |0〉 +
wj

rmax
|1〉

)

Where j = {1, ..., n}, and rmax is an upper bound on the maximum value
of any feature in the dataset. The input vectors are d-sparse, i.e., contain no
more than d non-zero entries.

Using the swap test, the inner product is evaluated by:

dq1(|x〉 , |w〉) = d2r4max(2P (|0〉) − 1) (1)

Lloyd et al. Approach

1. Data preparation

To use the forces of quantum mechanics without being limited to the classical
ideas of data encoding; Lloyd, Mohseni and Rebentrost [7] proposed a way to
encode the classical vectors into a quantum state.
Consider N = 2n dimensional complex vectors x and w, we have:

|x〉 =
x

|x| , |w〉 =
w

|w|
2. Construction of the states

Seth Lloyd and his co-workers proposed a way to construct the state |ψ〉 and
|φ〉. The idea is to adjoin an ancillary qubit to states creating an entangled
state |ψ〉. The greater the difference between the states |x〉 and |w〉, the more
the resulting state is entangled [3].

|ψ〉 =
1√
2
(|0〉 |x〉 + |1〉 |w〉)
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|φ〉 =
1√
Z

(|x| |0〉 − |w| |1〉)

Where Z = |x|2 + |w|2
After applying the swap test circuit, the distance is evaluated by:

dq2(|x〉 , |w〉) = 2Z(2P (|0〉) − 1) (2)

Anagolum Approach

1. Data preparation
For simplification, we assume that we are in 2-dimensional space. Let’s con-
sider that we have two vectors x(x0, x1) and w(w0, w1).
We can map data values to θ and α values using these equations.
For x we get:

α0 = (x0 + 1)
π

2
, θ0 = (x1 + 1)

π

2
(3)

Similarly for w we get:

α1 = (w0 + 1)
π

2
, θ1 = (w1 + 1)

π

2
(4)

2. Construction of the states
To construct the two states |ψ〉 and |φ〉 Anagolum [2] proposed to use U gate
as follows:

|ψ〉 = U(θ0, α0, 0)|0〉 (5)

|φ〉 = U(θ1, α1, 0)|0〉 (6)

Indeed, U gate implement the rotations we need to perform to encode our
data points.

U(θ, α, λ) =

⎛

⎝

cos θ
2 −eiλ sin θ

2

eiαsin θ
2 eiλ+iα cos θ

2

⎞

⎠

This instruction would cause the qubit to move θ radians away from the positive
z-axis, and α radians away from the positive x-axis.

Using the swap test, the distance is evaluated by:

dq3(|x〉 , |w〉) = P (|1〉) (7)

3 How to Search for the Nearest Centroid to a Given
Data?

In quantum computing, Grover’s algorithm allows to search for one or more
element in an unsorted database with N entries in O(

√
N) time. Grover’s algo-

rithm begins with a quantum register of n qubit initialized to |0〉, when n is the
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number necessary to represent the search space, we have 2n = N which means
|0〉⊗n = |0〉.
Equal Superposition: The first step is to apply the Hadamard transform H⊗n to
put the system into an equal superposition of states:

|ψ〉 = H⊗n|0〉⊗n =
1√
2n

2n−1∑

x=0

|x〉

Quantum Oracle O: An oracle is a black-box function and a quantum oracle is
a quantum black-box, which means that it can observe and modify the system
without collapsing it to a classical state. It will recognize if the system is in the
correct state: if the system is in the correct state, then the oracle will rotate
the phase by π radians, otherwise it will do nothing. To create the circuit that
represents this oracle it is necessary to implement this transformation of |x〉:

O|x〉 → (−1)y(x)|x〉,where y(x) =

⎧

⎨

⎩

1 if x is the correct state

0 else

Diffusion Transform: It performs inversion about the average. This part consists
of another application of the Hadamard transform H⊗n, followed by a condi-
tional phase shift that shifts every state except |0〉 by −1, followed by another
Hadamard transform. The diffusion transform can be represented by this equa-
tion, using the notation |ψ〉:

H⊗n[2|0〉〈0| − I]H⊗n = 2H⊗n|0〉〈0|H⊗n − I = 2|ψ〉〈ψ| − I

The entire Grover iteration is given by: [2|ψ〉〈ψ| − I]O.
The runtime of Grover’s entire algorithm is O(2

n
2 ), as it performs O(

√
N) =

O(2
n
2 ) iterations each with a runtime of O(n).

4 Proposed Quantum Clustering Approach

4.1 General Concept

K-means clustering [8] is a type of unsupervised machine learning that aims to
find groups in the data by dividing the dataset into K clusters. In this section,
we give the algorithm of quantum K-means, this algorithm is adaptable for the
three approaches explained above.

Assume that we have a set of quantum states |X〉 = {|xn〉 ∈ C
M , n =

1, ..., N}, and a set of K clusters Ck, |Ck| is the number of vectors within the
cluster k. K-means clustering aims to partition the N observations into K clus-
ters Ck with |W 〉 = |w1〉 , |w2〉 , ...., |wK〉 centroids, so as to minimize the within-
cluster variance. Formally, the objective is to find:
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argmin
W

D(|x〉 , |w〉) = argmin
C

K∑

k=1

∑

|xn〉∈Ck

d2qi(|xn〉 , |wk〉) (8)

We compute the distance between each training state and each cluster cen-
troid using the swap test circuit Fig. 1. Then, we assign each state to the closest
centroid using Grover’s algorithm as explained in Sect. 3.

The second step of QK-means is updating the centroid of each cluster. To
do so, the update centroid of each cluster is given by:

|w(t+1)
k 〉 = |(Y (t)

k )T X〉
where

|Y (t)
k 〉 =

1
√|Ck|

N∑

n=1

ynk |n〉 and ynk =

⎧

⎨

⎩

1 if xn ∈ Ck

0 else

4.2 Quantum Learning Algorithm

We give the main steps of the proposed algorithm in the following. The distance
dqi(|xn〉 , |wk〉) is at the user’s choice, in our case we opt for the distance dq1 as
it gives the best result. For the stopping criterion, we use the relative distortion
between two iterations with respect to a threshold ε.

Algorithm 1: Quantum K-means algorithm
Input: |X = {|xn C

M , n = 1, ..., N}, K number of clusters Ck, initial
centroids of the clusters at t = 0: |w(0)

1 , |w(0)
2 , ...., |w(0)

K .
Output: K clusters Ck.

repeat

Assignment step (clustering): Each data is assigned to the cluster with the
nearest center using Grover’s search:

C
(t)
k ←− {|xn : d2qi(|xn , |w(t)

k ) ≤ d2qi(|xn , |w(t)
j ), ∀j, 1 ≤ j ≤ K}

where each |xn X is assigned to exactly one C
(t)
k , even if it could be

assigned to more of them.

Update step: The center of each cluster Ck is recalculated as being the average
of all data belonging to this cluster (following the previous assignment step):

|w(t+1)
k (Y (t)

k )TX

until Convergence is reached
Convergence can be considered as achieved if the relative value of the distortion
level D(|x , |w(t) ) falls below a small prefixed threshold :

D(|x , |w(t−1) ) − D(|x , |w(t) )
D(|x , |w(t) )

<
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4.3 Validation Criteria

As a validation criteria, we use the Davies-Bouldin (DB) index and quantum
Davies-Bouldin (QDB) index. As the estimation of the distance in the classical
version it’s not the same as the quantum version.

The Davies Bouldin index [4] can be calculated with the following formula:

DB =
1
K

K∑

k=1

max
k �=k′

dn(wk) + dn(wk′)
d(wk, wk′)

(9)

where K is the number of clusters, dn is the average distance of all elements
from the cluster Ck to their cluster center wk, d(wk, wk′) is the distance between
clusters centers wk and wk′ . This index well evaluates the quality of unsupervised
clustering because it’s based on the ratio of the sum of within-clusters scatter to
between-clusters separation. More the value of DB is lower, more the clustering
is better. The main objective is to evaluate how well the clustering has been
done.

As we have already mentioned before, the notion of distance in quantum
approaches is different from the classical case. Quantum distance does not need
to be proportional to the real distance, but only have a positive correlation with
it. We need only the nearest centroid, not the exact value of the real distance.
To evaluate the quality of quantum clustering with a Davies-Bouldin index-
type based on intra- and inter-cluster distances, we propose to adapt it to the
quantum case. To do this, we will define the Quantum Davies-Bouldin (QDB)
quality index as follows:

QDB =
1
K

K∑

k=1

max
k �=k′

δn(wk) + δn(wk′)
δ(wk, wk′)

(10)

where

δn(wk) =
1

|Ck|
|Ck|
∑

i=1

dq1(|xi〉xi∈Ck
, |wk〉) and δ(wk, wk′) = dq1(|wk〉 , |wk′〉)

5 Empirical Evaluations

5.1 Datasets

The classical and quantum version of K-means was tested on three real world
datasets available for public use in the UCI Machine learning repository [5]. Iris
data set contains 3 classes of 50 instances each, where each class refers to a type
of iris plant. Wine is a dataset that is related to a chemical analysis of wines
grown in the same region in Italy but derived from different cultivars. The data
Breast Cancer has 569 instances with 32 variables (ID, diagnosis, 30 real-valued
input variables). Each data observation is labeled as benign (357) or malignant
(212).
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5.2 Comparison of Different Quantum Distances

Which Quantum Distance Has a High Probability of Finding the Right
Nearest Center? Because of the probabilistic nature of the qubits, the distance
between two states is hard to compute as we will get a probabilistic result; the
distance is unstable. However, it’s easier to assign data points to different groups
because we don’t need the exact distances to each one but only the closest
centroid. Thus, we can just put the new data point in the cluster associated
with the smallest value that our parameter takes. To illustrate more our idea, we
gave an example of two distributions. Figures 2 and 3 represent two distributions
where the black dot X is the test data and the three crosses are the centers (C1,
C2, C3).

Fig. 2. Distribution 1 Fig. 3. Distribution 2

From Table 1, we can notice that the distance changes from an iteration
to another but the assignment to the closest centroid is correct. Wiebe et al.
approach gives a higher confidence interval in a time lower than other approaches.

Table 1. Distance-types comparison

Distance Distribution Green Blue Black Probability of success

Wiebe et al. approach 1 665 times 9322 times 13 times [92.71%, 93.70%]

(dq1 ) 2 0 times 0 times 10000 times [99.96%, 100%]

Lloyd et al. approach 1 2190 times 7620 times 190 times [75.35%, 77.02%]

(dq2 ) 2 0 times 515 times 9485 times [94.40%, 95.26%]

Anagolum approach 1 2722 times 6530 times 748 times [64.36%, 66.22%]

(dq3 ) 2 2486 times 2175 times 5339 times [52.41%, 54.36%]

Which Quantum Distance Has a High Probability of Finding the Near-
est Centers in the Right Order with a Good Stability? After analyzing
the performance of the different quantum distances in terms of the stability of
the values allowing the choice of the right center, we will study the behaviour
of these quantum distances, but this time in terms of the stability of the order
of the nearest centers. In other words, how far away is it possible to find the
nearest centers in the right order whatever the iteration? To do this, we carried
out 10,000 searches for the nearest centers for the two studied distributions. We
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analyzed the stability of the order of the nearest centers found by each quantum
distance. The results show that the distance dq1 is the best one which offers a
very good stability in the order of the nearest centers in the case of the two
studied distributions. As shown in Table 1, the distance dq1 exhibits a very good
stability in the order of the nearest centers compared to the other two quantum
distances. For distribution 1, the correct order of the nearest centers is [C2 C1
C3]. The distance dq1 finds this order with a probability of 85.32% (8532 times
out of 10,000 searches), while the distance dq2 and dq3 find the order with a
probability of 53.26% (5326/10,000) and 26.10% (261/10,000) respectively. In
the case of distribution 2, the situation is more complicated because the test
point is almost halfway between two centers. This situation is confirmed by the
results obtained in Fig. 5. Indeed, the distance dq1 always finds the right order of
the nearest centers [C3 C1 C2]. Nevertheless, this distance continues to provide
the right solution but the order changes significantly [C3 C2 C1]. Compared to
the other two quantum distances, the distance dq1 seems much more stable in
the order of the nearest centers. As can be seen in both Figs. 4 and 5, the other
two quantum distances dq2 and dq3 change order quite often compared to the
distance dq1 . Order stability is a very relevant information on the behaviour of
quantum distances.

Fig. 4. Stability in distribution 1 Fig. 5. Stability in distribution 2

5.3 Clustering Through Quantum K-means

We used three different datasets to show the experimental results of QK-means.
Figures 6, 7 and 8 represent the projection of the datasets iris, wine and breast
cancer respectively using the principal component analysis. We can notice that
the algorithm of QK-means has identified the different clusters (groups) which
are significantly different (distant) from each other. Therefore, the quantum K-
means gives a good classification just like it’s classical version, but the advantage
of the quantum version is that it can deal with high dimensional spaces in a time
much more quicker than the classical version, which is crucial in nowadays.

For each data set we compare the Davies-Bouldin (DB) index for both the
classical and the quantum version of K-means. These results are represented in
Table 2. DB and QDB index are not calculated with the same distances. Direct
comparison is therefore difficult, but we can see that QDB shows a decreasing
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Fig. 6. QK-means clus-
tering on Iris data

Fig. 7. QK-means clus-
tering on Wine data

Fig. 8. QK-means cluster-
ing on Breast Cancer data

behaviour during different iterations of learning process, indicating an improve-
ment in the quality of quantum clustering. We can therefore consider that QDB
is a good quality indicator for quantum clustering (Figs. 9 and 10).

Table 2. K-means & QK-means using DB index

Dataset K-means (DB) QK-means (QDB)

Iris 0.66 [0.37, 0.56]

wine 0.53 [0.40, 0.59]

Breast Cancer 0.50 [0.38, 0.57]

Fig. 9. Davies-Bouldin variation Fig. 10. QDavies-Bouldin variation

6 Conclusion

In this paper, we implemented a new logarithmic time complexity quantum algo-
rithm for K-means clustering. We analyzed three different methods to estimate
the distance for quantum prototypes based clustering algorithms. Through this
analysis, we noticed that the notion of distance in quantum computing is dif-
ferent from the classical one. Because what counts in the quantum computation
is the correlation not the real values of the distance. This analysis is so cru-
cial as it can solve any prototype based clustering algorithm. To measure the
quality of clustering, we have adapted a classical criterion to the quantum case.
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This quantum version of K-means has given a good classification just like its
classic version, the only difference is its complexity; while the classic version of
K-means takes polynomial time, the quantum version only takes logarithmic
time, especially in large data sets.
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Abstract. We propose a fast Bag-of-Words (BoW) method for image
classification, inspired by the mechanism that arrangement of neurons
in visual cortex can preserve the topology of mapping from inputs, and
the fact that human brain can retrieve information almost instantly. We
propose algorithms for accelerating both Self-Organizing Map (SOM)
training and BoW coding. First, we modify the traditional SOM based
on the matrix factorization form of K-means. Utilizing the topology-
preserving property of dictionary learned by SOM, the coding process of
BoW can be accelerated by fast search of k-nearest neighbor codewords in
the grid of SOM dictionary. We evaluate the proposed method in different
coding scenarios for image classification task on MNIST and CIFAR-10
datasets. The results show that the proposed method accelerates BoW
classification greatly with little loss of classification accuracy.

Keywords: Bag-of-Words · Self-Organizing Map · Fast coding ·
Image classification

1 Introduction

Bag-of-Words (BoW) is a classical framework used for pattern representation
and classification. It has been widely used in various recognition tasks, such as
face recognition, image classification, and natural language processing.

The process of BoW-based image classification consists of five basic steps:
patch extraction, patch feature extraction, dictionary learning, feature coding
and pooling [8]. The coding and pooling steps enable representing the image of
various size as a global vector of fixed dimensionality. In recent years, deep neural
networks (DNNs) have achieved higher classification performance than BoW in
image classification, but there are close links between DNN and BoW, making
space for combining DNN with BoW. The deep convolutional neural network can
be considered as an end-to-end BoW model, it behaves like BoW on ImageNet
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11955, pp. 573–584, 2019.
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[2]. In the BoW framework, using DNN to extract patch features is effective
to improve the classification performance. It has been demonstrated that BoW
can also realize deep models [3] and achieve comparable performance with deep
models [2]. Bag-of-Words has its own advantages of shift invariance and stable
performance [22]. As hybrids of BoW and DNN, spatial pyramid pooling can
handle arbitrary size/scale inputs [7], neural BoW models can outperform RNN
on text classification [9] and scale coding bag of deep features can improve the
performance of action recognition [12]. Nowadays, BoW model still has its own
advantages in the era of deep learning.

Feature coding is an important step in BoW model, and there are a variety
of coding methods which use k nearest neighbors to code local descriptors. The
computation of coding can be large in each training or testing step because
each patch descriptor is compared with all the codewords in the dictionary. On
the other hand, the accuracy of BoW models on test set can be improved by
increasing the size of dictionary, which further makes computation larger [4].

This paper proposes a method using Self-Organizing Map (SOM) instead of
K-means clustering to generate dictionary to accelerate the coding process for
BoW. The dictionary generated by SOM is featured by the topology of code-
words that neurons (corresponding to codewords) neighboring in a grid are also
close in the data space. With this feature, the search of k nearest neighbors
in the dictionary will be simplified by searching for the nearest neighbor only.
This will significantly accelerate the coding step during training and testing. By
taking advantage of these features, we develop algorithms for both fast SOM
training and fast coding in BoW classification. The main contributions of this
paper are as follows. (1) we propose to use topologically ordered prototypes gen-
erated by SOM to accelerate the feature coding step of BoW framework; (2) we
modify classical Self-Organizing Map algorithm to make it converge faster; (3)
we analyze the effects of acceleration and performance under different coding
methods.

The rest of this paper is organized as follows. Section 2 reviews the back-
ground methods of BoW and SOM; Sect. 3 describes the proposed accelera-
tion methods; Sect. 4 presents experimental results, and Sect. 5 draws concluding
remarks.

2 Background

Before describing our proposed methods, we briefly review the Bag-of-Words
framework [8] in Sect. 2.1 and the Self-Organizing Map (SOM) model [21] in
Sect. 2.2.

2.1 Bag-of-Words

The BoW framework has been widely used for text categorization and image
classification by representing the text/image as a vector of weights of code-
words. Typically, the coding process for image classification consists of five steps:
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Fig. 1. The Bag-of-Words framework.

patches extraction, feature extraction, dictionary learning, feature coding, and
feature pooling [8], see Fig. 1. Assume input images have w ×w pixels, the steps
are illustrated as follows.

Patches Extraction. Each image is divided into small blocks and sampled.
Grid sampling [17] is the most common method. Each block is represented as a
vector. Assume patch size of p × p, then for step size s, ((w − p)/s + 1)2 patches
are obtained per image.

Patch Feature Extraction. Each block (patch) is described as a vector by
extracting local features. Common descriptors include the histogram of oriented
gradients (HOG) [6] and scale-invariant feature transform (SIFT) [16] descriptor,
both of which use local gradient information. Other types of features can be
extracted from a block by using, e.g., deep neural network.

Dictionary Learning. For representing the whole image, a dictionary of code-
words is learned for weighting patch features. The codewords are usually gener-
ated by unsupervised or supervised methods [10]. Each codeword is a vector of
the same dimensionality as patch descriptor, and all codewords together compose
a dictionary which is a matrix.

Feature Coding. This is to assign weights for codewords to each patch. Each
patch descriptor is compared with codewords and assigned a weight to each
codeword according to the similarity between descriptor and codewords. The
weights form a vector with dimensionality equal to the number of codewords.

Feature Pooling. This step is to summarize the weights of all the patches of an
image to obtain the global representation of the image. Classical pooling methods
include max-pooling [20] and average-pooling [5]. Pooling makes the final code
invariant to small perturbation, such as translation, rotation or scaling.

2.2 Self-Organizing Map

Self-Organizing Map [13] is a topology-preserving vector quantization algorithm.
It not only learns codewords (cluster centers), but also organizes the centers into
an ordered map in which similar centers will be gathered as close as possible.
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In SOM, neurons representing codewords are often arranged in a 2-D rect-
angular or hexagonal grid. From the input data X = (x1, · · · , xN ), xi ∈ IRD, a
dictionary of codewords (weight vectors) W = (w1, · · · , wM ), wj ∈ IRD will be
generated. M is the number of neurons, and wi corresponds to the weights of a
neuron. Let Ω be the index of neurons on a rectangular grid. Now for neuron
k and neuron v, where k, v ∈ Ω, the distance on grid is η(k, v, t), which is the
neighborhood function defined on grid. If two neurons locate near to each other
in the grid, then the value of this function is large, otherwise is small. There are
many ways to define neighborhood function. “Mexican-hat” function resulted by
lateral inhibition is found to be biologically plausible [11]. Step function outputs
1 for neighbors and 0 otherwise. The Gaussian-like function is more practical
and frequently-used [21]. Gaussian-like function is defined as

η(k, v, t) = exp(−‖k − v‖2
2σ(t)2

), (1)

where σ represents the effective range of the neighborhood and often decreases
with time t.

Algorithm 1. SOM Algorithm
1 Initialize the SOM grid map and Neuron weights (w1, · · · , wM );
2 repeat
3 At each time t, sample an input x(t) from dataset X;
4 Match the input to all Neurons and select the winner:

ν(t) = arg maxj∈Ω [wT
j x(t)];

5 Update the weights of winner and its neighbors:

wj(t + 1) =

{
wj+α(t)x(t)

‖wj+α(t)x(t)‖ j ∈ ηv(t)

wj j /∈ ηv(t)

6 until the map converges;
7 return The SOM model ;

The learning process of SOM is shown in Algorithm1. Here because normal-
ized weight vectors (unit norm) are used, the inner product is used as similarity
measure, and the neighborhood function uses step function for simplicity. The
learning rate {a(t), t > 0} decreases monotonically. Finally on termination, this
algorithm returns the weights of the neurons, each neuron corresponding to a
prototype of vector quantization in the data space.

3 Accelerated Bag-of-Words

The motivation of our work is to make feature coding faster using SOM dic-
tionary to accelerate the BoW framework. For fast training of SOM, we also
propose a modified SOM algorithm.
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3.1 Modified Self-Organizing Map

Classical SOM is an online learning algorithm [21]. It takes a long time to con-
verge [13]. K-means is a kind of matrix factorization and can be accelerated [1].
Since SOM can be considered as a kind of extension to K-means algorithm, it is
reasonable to predict that SOM can also be accelerated. What we base here is
spherical K-means [3] defined as follows:

min
D,c

∑

i

‖ciD − xi‖2 + ‖D − Dold‖2 , (2)

subject to

‖ci‖0 ≤ 1, ‖Dj‖2 = 1, i ∈ 1, 2, · · · , N ; j ∈ 1, 2, · · · ,M, (3)

where ci is the code vector of xi, and ci ∈ IRM . Let C = (c1, c2, · · · , cN ), C ∈
IRN×M . Dj is the jth row of dictionary, which is a single prototype. The goal
is to find a dictionary that can minimize the error of xi and its reconstruction
ciD. Each input xi only belong to one cluster in spherical K-means, so the code
vectors ci have at most one non-zero entry. Dj has a unit length so that ci and D
cannot scale along with each other. Unit length dictionary will not learn different
magnitude of the same pattern. This makes quantization more efficient.

However, SOM would prefer ‖ci‖0 to be larger than 1 to update similar
centers simultaneously. Thus, the SOM loss can be defined as:

min
D,c

∑

i

‖(ci � ηi)D − xi‖2 + ‖D − Dold‖2 , (4)

ηi,j = η(vi, j, t) with vi = arg max
j∈Ω

[Djxi], i ∈ 1, 2, · · · , N, (5)

subject to
‖Dj‖2 = 1, j ∈ 1, 2, · · · ,M, (6)

where η will decay respect to time t. From Spherical K-means update rules [3],
we can infer the same conclusion:

Dnew ∝ ((C � η)T X + Dold), (7)

here � denotes the element-wise multiplication, and the regulation term
‖D − Dold‖2 can prevent small clusters from being pulled too far in a single
iteration. The total SOM process becomes a matrix multiplication that can be
parallelized. According to the results of the original paper [3], the objective
function converges extremely fast using this method.

The learning process of fast SOM is shown in Algorithm2. Calculating dis-
tance matrix in advance can further accelerate the process. We use a one-hot
vector to index the distance matrix and output the corresponding distance with
all other neurons on the grid for each input. Altogether, we generate a neighbor
matrix for the whole dataset, and each row represents the neighbor coefficient
of neurons over the dictionary for a single input.
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Algorithm 2. Fast SOM Algorithm
1 Initialize the SOM grid map and Neuron weights (w1, · · · , wM );
2 for (k, v) ∈ Ω2 do

3 Hk,v = ‖k − v‖2

4 end
5 repeat
6 At each time t, decay effective range of the neighborhood:
7 σ(t) = M ∗ exp(− t

decay step
)

8 Select the winner and calculate the coefficient η:
9 for i ∈ 1, 2, · · · , N do

10 vi = arg maxj∈Ω |Djxi|;
11 ζi = Onehot(vi)∈ IRM

12 end

13 η = exp
ζH

2σ(t)2 , η ∈ IRN×M

14 C = XDT

15 D = D + α(t)(C � η)T X

16 Dj =
Dj

‖Dj‖2 , j ∈ 1, 2, · · · , M

17 until the map converges;
18 return The SOM model ;

3.2 Feature Coding by Fast K-Nearest Neighbor Search

Assume each image has already been sampled into L patches, and SOM has
learned M prototypes for the patches throughout the dataset. Now coding step
would be mainly applied on similarity matrix for the given dictionary. For an
image that has L patches, each patch would be compared to M prototypes, thus
similarity matrix S ∈ IRN×L×M . There are many ways to evaluate similarity
between patches and codewords in dictionary, here we choose the inner product
which shows advantages in parallelization.

Feature coding includes global coding and local coding [8]. Local coding uses a
combination of the nearest codewords for approximating the manifold of inputs,
and is more effective than global coding that uses all codewords which is excess.

Assume results of comparison between patches and codewords are stored in
similarity matrix S. A transform function is applied on the top k similarity vec-
tors to fit certain constraints, unitization for example. Because SOM organizes
similar codewords together on grid and the neighborhood relationship on grid is
fixed, so we can retrieve approximate k nearest neighbor with two steps: find the
top nearest neighbor and then retrieve its k − 1 neighbors on grid by indexing,
shown in Algorithm 3. Thus, a neighboring mask can be prepared in advance
and then we can identify the top k nearest neighbors in similarity matrix S by
element-wise multiply. These are all operations on matrixes, they can be paral-
lelized on GPU. Furthermore, there are fewer operations in fast encoding than
traditional k nearest neighbor search, thus it is much faster than the traditional
one.
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Algorithm 3. Fast Encoding
1 Calculating distances of clustering centers on grid:
2 for (k, v) ∈ Ω2 do

3 Hk,v = ‖k − v‖2

4 end
5 Defined neighboring mask on grid organizing centers:

6 Maskk,v =

{
1 if Hk,v ∈ topk(Hk)
0 otherwise

7 Calculate similarity matrix between patches P ∈ IRN×L×(p×p) and dictionary D:

8 S = PDT

9 for i ∈ 1, 2, · · · , N do
10 v = arg maxj∈Ω |Si|;
11 Si = Si � Maskv

12 Encode with a non-linear function f :
13 code = f(Si)

14 end
15 return code;

The difference in function f results in distinct coding results. We use four
local coding methods in this paper: hard coding, soft coding, threshold coding,
and salient coding [8]. Hard coding usually uses one-hot vector, we use k-hot
vector here instead for k nearest neighbors and then normalize it. Soft coding
utilizes k-nearest neighbor in the form of expSi,j

∑
j expSi,j

, increasing the signal to

noise ratio. Threshold coding outputs the signal when it surpasses the threshold.
Salient coding [8] uses the ratio between outputs from the nearest neighbor and
k-1 next nearest neighbors:

Ψi,j = Φ(
Si,j

1
K−1

∑K
j �=i Si,j

), (8)

here use Φ(z) = 1−z for convenience. After coding the descriptors of all patches,
the codes of patched are pooled to obtain the global representation of image.

4 Experiments

In this section, we validate our proposal on the classic MNIST and CIFAR-10
datasets. MNIST is a widely-used handwritten digits dataset, which contains 10
classes of 60,000 training samples and 10,000 testing samples, where each image
has 28 × 28 pixels [15]. CIFAR-10 dataset consists of 60000 color images, which
are sized 32×32 from 10 classes, including 50000 training images and 10000 test
images [14]. First, we generate codewords for patches using the proposed fast
SOM method. Then, we test the dictionary on different coding methods. Finally,
we use fast encoding to accelerate the whole BoW framework. The classifier used
here is a multiple layer perceptron (MLP) with 512 hidden units and 10 outputs.
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Fig. 2. Average loss and number of non-empty prototypes for K-means and fast SOM
model. Top: MNIST, bottom: CIFAR-10. The K-means reinitialize will re-initialize
empty prototypes after each iteration, K-means that doesn’t re-initialize will get stuck
in local optimum for MNIST.

4.1 Dictionary Generation

We adapt fast SOM algorithm inspired by Spherical K-means [3]. The latter
also serves as a baseline to compare against. For MNIST, we use patch size of
5 × 5 as feature descriptor directly, and there should be 23 × 23 descriptors for
each image. For CIFAR-10, we trained a VGG-19 [19] with 92.75% test accuracy
and feed the images directly to the model, then use output of the second block,
with 256 8 × 8 filters, as feature descriptors. The dictionary size that we use
is 400. From Fig. 2, we can see that for both datasets, fast SOM converges in
7 iterations, and each iteration only costs 2.7 s. This is remarkably faster than
popular SOM package pyclustering [18] that use classical online training, which
takes 427 s for one iteration in the python version. The resulted prototypes for
MNIST are shown in Fig. 3, we can see that the similar prototypes locate more
closely than dissimilar pairs.

4.2 Bag-of-Words Classification

Each descriptor is compared to the dictionary, and there should be k non-zero
elements in each code of descriptor, which is selected by k nearest mask Maskv in
Algorithm 3. Then we use a max-pooling of stride 2 upon coding results and feed
them into the MLP. The final output of MLP indicates the probability for each
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Fig. 3. The codewords for MNIST generated by fast Self-Organizing Map arranged on
a rectangular grid. We can see that similar orientation codewords are located near to
each other.

Table 1. Run time for coding methods on MNIST (M) and CIFAR-10 (C), k = 50.
Suffixes -400 and -1600 show the size of dictionary.

Run time (s) M/C Threshold Soft Hard Salient

K-means-400 36.5/20.3 37.5/20.4 36.6/19.6 45.5/21.9

SOM-400 37.2/20.7 38.8/20.6 41.3/19.5 43.5/22.1

SOM ANN-400 12.6/9.4 13.0/9.9 10.9/8.5 15.2/10.34

K-means-1600 199.6/102.8 201.0/109.6 193.1/104.9 222.6/112.6

SOM-1600 219.8/101.2 224.9/107.8 212.6/101.5 242.3/111.2

SOM ANN-1600 60.7/35.9 62.8/38.5 52.2/32.8 67.7/39.5

class. Using 400 codewords generated by K-means and fast SOM, we compared
the performance of four coding methods and varies k from 10 up to 400, where
there are 10 repetitions under each setting of k. The results on MNIST are shown
in Fig. 4 and CIFAR-10 in Fig. 5. We did not see an obvious difference in test
accuracy between the results using SOM dictionary and K-means dictionary.

To accelerate BoW, we approximate the nearest neighbor coding method by
Algorithm 3. The index of the maximal similarity between patch and codewords
in dictionary are used to retrieve k-nearest neighbors that are organized together
(neighborhood) in the pre-defined grid. This method saves a lot of time when
compared to the conventional k nearest search over the dictionary. The perfor-
mance of approximate k nearest neighbors for SOM (SOM ANN) is shown in
Figs. 4 and 5, it is similar to the conventional k-nearest neighbor coding on SOM
dictionary. The running time when k = 50 is shown in Table 1, and we can see
that SOM ANN spends much shorter time than K-means and SOM that use
conventional k-nearest neighbors search: one third for 23 × 23 feature map in
MNIST and half for 8 × 8 feature map in CIFAR-10 for small dictionary. The
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Fig. 4. For MNIST dataset, SOM ANN behaves similar to K-means and SOM that
uses true k nearest neighbor for coding (dictionary size 400).

Fig. 5. For CIFAR-10 dataset, SOM ANN behaves similarly to K-means and SOM
that use true k nearest neighbor for coding (dictionary size 400).
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degree of acceleration become one forth in MNIST and one third in CIFAR-10
for bigger dictionary.

A higher degree of acceleration can be achieved by using larger feature map
and bigger dictionary which cost of more running time. Thus, our method is
especially suitable for those tasks in which big dictionary and high-resolution
images are used.

5 Conclusion

In this paper, we introduce a method for accelerating Bag-of-Words (BoW)
framework in image classification. The code dictionary is learned using SOM,
which arranges the codewords (cluster centers) on a grid with topology pre-
served (neurons neighboring on the grid have similar codewords). The topology-
preserving properties can be utilized to accelerate the search of k-nearest neigh-
bors in feature coding in BoW-based classification. We also modify the original
SOM for faster convergence in training than popular packages at the present
time, this will make big dictionary learning more easily. Our experimental results
on the MNIST and CIFAR-10 datasets show that using SOM learned dictionary,
the coding can be largely accelerated while the classification accuracy is compa-
rable to that of coding without utilizing the grid topology.

In future work, we plan to improve the image classification performance using
better feature extraction using deep neural networks.
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Abstract. Unsupervised person re-identification (RE-ID) has attracted
increasing attentions due to its ability to overcome the scalability prob-
lem of supervised RE-ID methods. However, it is hard to learn dis-
criminative features without pairwise labels and identity information
in unlabeled target domains. To address this problem, we propose a
deep clustering-guided model for unsupervised RE-ID that focuses on
full mining of supervisions and a complete usage of the mined informa-
tion. Specifically, we cluster person images from unlabeled target and
labeled auxiliary datasets together. On the one hand, although the clus-
tering IDs of unlabeled person images could be directly used as pseudo-
labels to supervise the whole model, we further develop a non-parametric
softmax variant for cluster-level supervision. On the other hand, since
clustering badly suffers from intra-person appearance variation and inter-
person appearance similarity in the unlabeled domain, we propose a reli-
able and hard mining in both intra-cluster and inter-cluster. Concretely,
labeled persons (auxiliary domain) in each cluster are used as compara-
tors to learn comparing vectors for each unlabeled persons. Following
the consistency of the visual feature similarity and the corresponding
comparing vector similarity, we mine reliable positive and hard negative
pairs in the intra-cluster, and reliable negative and hard positive pairs
in the inter-cluster for unlabeled persons. Moreover, a weighted point-
to-set triplet loss is employed to adaptively assign higher (lower) weights
to reliable (hard) pairs, which is more robust and effective compared
with the conventional triplet loss in unsupervised RE-ID. We train our
model with these two losses jointly to learn discriminative features for
unlabeled persons. Extensive experiments validate the superiority of the
proposed method for unsupervised RE-ID.

Keywords: Unsupervised person re-identification · Clustering ·
Supervision

1 Introduction

Person re-identification (RE-ID), a task that consists of matching pairs of per-
son images across non-overlapping camera views, has attracted significant atten-
tion in the computer vision community [1]. In recent years, RE-ID has achieved
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impressive progress due to the significant development of deep learning [2,3].
However, most existing RE-ID methods require tremendous labeled data, which
incurs unaffordable manual efforts, limiting the scalability for large-scale real-
world application scenarios. To address this, some studies have focused on unsu-
pervised learning by improving hand-crafted feature representation [4,5], clus-
tering [6–8] and resorting to the auxiliary labeled dataset [9–11]. However, these
methods do not achieve satisfying performance against supervised RE-ID meth-
ods; hence, they are far from practical application to large-scale real-world data.
Obviously, great intra-person appearance variation is the major challenging for
supervised RE-ID. Even worse, lacking the pairwise labeling and identity infor-
mation in unsupervised RE-ID, it is more difficult to identify the discriminative
information. Therefore, mining the potential supervision information as learning
guidance is reasonable and necessary for unsupervised RE-ID.

Recent works focus on mining such desired supervision. The most common
techniques are based on clustering. Fan et al. [6] propose the progressive unsu-
pervised learning framework, which integrates clustering and self-paced learning.
Lin et al. [7] develop the bottom-up clustering framework with diversity regular-
ization. Yu et al. [8] propose to learn the cross-view asymmetric distance metric
based on clustering labels. However, these clustering-based methods are unable
to learn discriminative enough feature embeddings, since clustering badly suffers
from intra-person appearance variation and inter-person appearance similarity.
Meanwhile, Yu et al. [10] propose to learn a soft multilabel vector for each unla-
beled image based on an auxiliary dataset, which can be used to mine positive
and hard negative samples. The main difference in [10] is that such soft multilabel
could leverage the auxiliary reference information other than only visual feature
similarity, while clustering-based methods only use pseudo-labels to encode the
visual feature similarity of a pair of unlabeled images. Nevertheless, the latter
method fails to make full mining of supervisions and take full advantage of the
mined label information.

To address the shortcomings of existing methods, this study proposes a novel
deep clustering-guided method (i.e., CEG) to achieve full mining of supervisions
and a full usage of the mined information. The key strategy is to cluster the
unlabeled target and labeled auxiliary datasets, which can mine two types of
supervision signals. On the one hand, the cluster IDs of unlabeled person images
could be used as pseudo-labels to train the whole model, which can achieve
cluster-level discrimination. Nevertheless, it is error-prone and unable to learn
discriminative enough feature embeddings, as clustering results badly suffer from
intra-person appearance variation and inter-person appearance similarity in the
unlabeled dataset. Therefore, on the other hand, in each cluster we further pro-
pose to use labeled persons as comparators and learn a comparing vector for
each unlabeled image, which could be used to mine the latent discriminative
pairwise label information. Essentially, such comparing vector encodes the indi-
rect comparative characteristic of the unlabeled person, and images of the same
person should have similar comparing vectors. Integrating the clustering results
and comparing vectors, we propose a reliable and hard mining in intra- and
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inter-clustering. When a pair of person images are in the same cluster (intra-
cluster) and sufficiently visual similar, with similar comparing vectors, they are
considered as a reliable positive pair; otherwise, they are regarded as a hard
negative pair. A pair of person images in different clusters (inter-cluster) and
sufficiently visual dissimilar, with dissimilar comparing vectors, are considered
as a reliable negative pair; otherwise, they are regarded as a hard positive pair. In
our hands, merely mining reliable pairs is unable to learn discriminative enough
feature embeddings, and only mining hard pairs and selecting the hardest pair is
error-prone. Therefore, we propose a weighted point-to-set (P2S) triplet loss to
consider both reliable and hard pairs. The weight of a sample against the anchor
lies in its visual feature and comparing vector; the reliable (hard) samples are
assigned higher (lower) weights to maintain stability and effectiveness. Histor-
ically, multi-loss joint training has shown superiority in supervised RE-ID [1].
In unsupervised RE-ID, without pedestrian annotations existing unsupervised
RE-ID methods fail to make full usage of the mined label information (i.e., only
single loss could be used.). Fortunately, we mine two kinds of supervision signals
used as two types of losses to jointly supervise the CNN model, which achieves
full mining of supervisions and a full usage of the mined information.

2 Related Works

2.1 Unsupervised RE-ID

According to whether the auxiliary dataset is used, unsupervised RE-ID can
be categorized into two types: (1) Fully unsupervised RE-ID without the auxil-
iary dataset. This includes designing hand-craft features [4,5], exploiting local-
ized salience statistics [12,13], and clustering-based methods [6–8]. The most
related works are clustering-based methods. For example, Yu et al. [8,14] pro-
posed to learn the cross-view asymmetric distance metric based on clustering
labels. Meanwhile, Fan et al. [6] proposed the progressive unsupervised learning
framework, which integrates clustering and self-paced learning, and Lin et al.
[7] developed the bottom-up clustering framework with diversity regularization.
However, due to the lack of pairwise labels, these methods are unable to learn
discriminative enough features, and fail to achieve a satisfying performance. (2)
Unsupervised RE-ID with the auxiliary dataset. Lv et al. [9] proposed the transfer
learning of the pedestrians’ spatio-temporal patterns from labeled source dataset
to the unlabeled target domain. Peng et al. [11] developed a cross-dataset trans-
fer method based on dictionary learning. Furthermore, Yu et al. [10] proposed to
learn a soft multilabel vector for each unlabeled person based on labeled persons
from an auxiliary dataset. Different from these methods, our model combines
clustering and guidance of the auxiliary dataset, mining not only cluster-level
supervision but also potential pairwise label information.

2.2 Unsupervised Domain Adaptation

Our work is also related to unsupervised domain adaptation (UDA), where
the target dataset is unlabeled during training. Most UDA approaches learn
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a mapping between source and target distributions. Yang et al. [15] proposed to
learn a domain-shared group-sparse dictionary to align condition and distribu-
tions. Cao et al. [16] propose to learn a transfer support vector machine. Tsai
et al. [17] proposed to learn a common feature space for joint adaptation and
classification. Shekhar et al. [18] proposed to learn a latent dictionary which can
represent both domains. Different from the UDA setting which assumes that
both source and target domains have the same class, distinct RE-ID datasets
contain entirely varying person identities (classes). Hence, UDA methods cannot
be directly utilized for unsupervised RE-ID.

Fig. 1. Illustration of the proposed model. We cluster unlabeled (yellow dots) and
labeled person images (red dots). With the clustering IDs of unlabeled person images,
we propose a non-parametric softmax variant L1 to achieve basic cluster-level dis-
crimination. Moreover, in each cluster, labeled persons are used as comparators r (red
squares), which are compared with each unlabeled person images to obtain their com-
paring vectors v (green rectangles with hollow circles). In intra-clustering, two unla-
beled images are considered as a reliable positive pair (green solid arrows) with similar
visual features and comparing vectors; otherwise, they are regarded as a hard negative
pair (black dotted arrows). Accordingly, in inter-clustering, two unlabeled images are
viewed as a reliable negative pair (black solid arrows) with dissimilar visual features
and comparing vectors; otherwise, they are regarded as a hard positive pair (green
dotted arrows). With this mining scheme, we further propose a weighted point-to-set
loss L2 to adaptively assign higher (lower) weights to reliable (hard) pairs. We train
our model with the above joint losses to learn discriminative feature embeddings of
unlabeled images. Best viewed in color. (Color figure online)

3 Deep Clustering-Guided Learning

3.1 Preliminary

Given the unlabeled target dataset X = {xi}Nu
i=1 with Nu person images and a

labeled auxiliary dataset S = {si, yi}Na
i=1 with Na labeled person images where
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yi denotes the label for the i-th image si. The total number of person images
is N = Nu + Na. Note that identities in the target dataset are non-overlapping
with those in the source dataset. Our goal is to learn a discriminative feature
embedding function f(·) from the unlabeled dataset X with the guidance of the
labeled dataset S. Specifically, our framework mainly contains two iterative pro-
cedures as follows: (1) The feature embeddings of unlabeled target and labeled
auxiliary datasets X and S are clustered to mine two types of supervision sig-
nals. (2) The network is retrained with two joint losses to learn discriminative
feature embeddings for unlabeled person images. The overall illustration of this
model is shown in Fig. 1. Note that we enforce a unit norm constraint in feature
embedding (‖ f(·) ‖2= 1, ‖ r ‖2= 1).

3.2 Cluster-Level Supervision

We follow a standard clustering algorithm (e.g. k-means) to group the feature
embeddings of both unlabeled dataset X and labeled dataset S into predefined
K distinct clusters. Thus, we can obtain the cluster assignments c = [ci]N×1 with
ci = 1, · · · ,K and a centroid matrix C ∈ Rd×K , where d is the feature dimen-
sion. Obviously, the cluster assignments of unlabeled person images could be
viewed as their pseudo-labels to train the whole model (the classifier parameter
W and the embedding parameter θ) using the softmax criterion [19]:

P (k|x) =
exp(W�f(θ;x))

∑K
j=1 exp(W�f(θ;x))

. (1)

However, this conventional parametric softmax formulation with the weight
parameter W in fully connected layer may not be suitable for our model, since
we mainly focus on the feature embedding function f(θ; ·). Therefore, according
to [20], we propose its non-parametric variant by defining the probability that
an unlabeled image x belongs to the k-th cluster:

P (k|x, Ĉ) =
exp(Ĉ�

k f(θ;x)/τ)
∑K

j=1 exp(Ĉ�
j f(θ;x)/τ)

, (2)

where τ is a temperature parameter and Ĉk denotes the k-th cluster center of
only unlabeled person images. We do not adopt the original centroid matrix C,
encoded by both the unlabeled domain X and the labeled auxiliary domain S,
due to domain shift [21]. Against the parametric softmax classifier, the above
Eq. (2) entirely focuses on the feature embedding function. The final objective
is to minimize the negative log-likelihood over the unlabeled dataset X :

L1 = −
Nu∑

i=1

1
Nci

logP (ci|xi, Ĉ), (3)

where ci is the cluster ID of the unlabeled image xi, and Nci is the size of the
ci-th cluster, which addresses the trivial parametrization problem by weighting
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the contribution of each cluster to the loss function [19]. However, since there are
intra-person appearance variation and inter-person appearance similarity in the
unlabeled dataset X , visually similar person images of different identities may
be assigned to the same cluster ID and visually dissimilar person images of same
identities may be in different clusters. Therefore, it could not learn discriminative
enough feature embeddings only based on cluster-level supervision. To address
this problem, we next mine another type of supervision to jointly learn the
discriminative feature embeddings of unlabeled person images.

3.3 Reliable and Hard Mining

Generally, each cluster is composed of both unlabeled and labeled person images.
In each cluster, such labeled person images could serve as comparators, which are
compared with each unlabeled person image to encode its indirect comparative
characteristics defined as comparing vector. We use a simple way to establish
these comparators by averaging feature embeddings of images of each labeled
person. Formally, the i-th comparator in the k-th cluster is denoted by rki =
∑Nk

i
j=1 f(sj)/Nk

i , where Nk
i is the number of person images of the i-th labeled

person in the k-th cluster. Based on the inner product of the feature embeddings
of unlabeled person images and corresponding comparators, the comparing vector
v for the unlabeled person image x in the k-th cluster is as follows:

vi =
exp(rk�

i f(θ;x))
∑Nk

j=1 exp(rk�
j f(θ;x))

, (4)

where vi is the i-th element of vector v, and Nk is the number of comparators in
the k-th cluster. Each unlabeled person image is only compared with compara-
tors in the same cluster. Generally, different clusters have different numbers of
comparators, thus the dimension of comparing vector is expanded to the total
number of comparators for easily comparing them among different clusters.

In supervised RE-ID, hard sample mining has the outstanding performance in
learning discriminative feature embeddings [1,22]. However, it is very challenging
to perform such mining in the absence of pairwise labels, as it is error-prone to
determine whether visually dissimilar (similar) images have the same identity or
not. Obviously, a pair of images in the same cluster cannot be directly identified
as a positive pair (same identity), and a pair of images in different clusters cannot
also be directly identified as a negative pair (different identities). Based on the
visual feature and the comparing vector, we propose to mine reliable positive
pairs and hard negative pairs in the intra-cluster, and reliable negative pairs
and hard positive pairs in the inter-cluster. Specifically, we make the following
assumptions:

Assumption 1. When a pair of unlabeled person images xi, xj are in the same
cluster, i.e., ci = cj, if they are sufficiently visually similar and have highly sim-
ilar comparing vectors, they are considered as a reliable positive pair, otherwise,
they are defined as a hard negative pair.
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Assumption 2. When a pair of unlabeled person images xi, xj are in different
clusters, i.e., ci �= cj, if they are highly visually dissimilar and have dissimilar
comparing vectors, they are defined as a reliable negative pair, otherwise, they
are considered as a hard positive pair.

The feature similarity measure of unlabeled person images adopts the cosine
similarity, which is simplified as the inner product of their feature embeddings.
For the similarity measure of comparing vectors of two unlabeled person images
xi and xj , we apply the agreement function [10], i.e., z(vi,vj) = 1− ‖ vi −vj ‖1
/2, where ‖ · ‖1 is the well-defined L1 distance. We define two threshold values σ1

and η1 for the visual feature and comparing vector similarity in the intra-cluster,
and two threshold values σ2 and η2 in the inter-cluster (specific threshold scheme
is based on a mining ratio and shows in Sect. 4.2). Based on Assumptions 1 and
2, for an unlabeled person image pair (xi, xj), we formally propose:

Intra-cluster:

relia P = {(i, j)|ci = cj ; f(xi)�f(xj) ≥ σ1; z(vi,vj) ≥ η1}
hard N = {(i, j)|ci = cj ; f(xi)�f(xj) ≤ σ1; z(vi,vj) ≤ η1}, (5)

Inter-cluster:

hard P = {(i, j)|ci �= cj ; f(xi)�f(xj) ≥ σ2; z(vi,vj) ≥ η2}
relia N = {(i, j)|ci �= cj ; f(xi)�f(xj) ≤ σ2; z(vi,vj) ≤ η2}. (6)

In unsupervised RE-ID, merely mining reliable pairs cannot learn discriminative
enough feature embeddings, and only mining hard pairs and selecting the hard-
est pair is error-prone. Hence, we propose a reliable and hard mining strategy,
which considers both reliable and hard samples with adaptive weights. Intu-
itively, reliable samples should be assigned higher weights to maintain stability,
and the hard samples should be assigned lower weights to reduce the impact
of identity error. Therefore, we adopt the weighted point-to-set (P2S) triplet
loss [22] to consider all reliable and hard samples, which is robust and effective.
Given an anchor xa without its label, let P+

a = relia Pa ∪ hard Pa denote the
whole positive set which contains the reliable and hard positive samples, and
N−

a = relia Na ∪ hard Na denote the whole negative set. The P2S triplet loss
is defined as:

L2 =
1

Nbatch

Nbatch∑

a=1

{D(f(xa), P+
a ) − D(f(xa), N−

a ) + m}+, (7)

where {·}+ = max(·, 0), margin m is a constant, and D denotes the P2S distance
which assigns larger (lower) weights to reliable (hard) samples in both positive
and negative sets as
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(f(xa), P+
a ) =

∑
xi

d(f(xa), f(xi))w+
i∑

xiw
+
i

D(f(xa), N−
a ) =

∑
xj

d(f(xa), f(xi))w−
j

∑
xjw

−
j

,

(8)

where w+
i and w−

j denote the weights of f(xi) and f(xj) in the positive and
negative sets respectively, and d is a predefined distance metric. The weight of a
sample against the anchor is considered to lies in its visual feature and comparing
vector. Accordingly, we propose the following exponential weighting schemes:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w+
i = exp(

z(va,vi)
d(f(xa), f(xi))δ

), if xi ∈ P+
a

w−
j = exp(

d(f(xa), f(xj))
z(va,vj)δ

), if xj ∈ N−
a ,

(9)

where δ > 0 is a coefficient. In the positive set, reliable samples with small
distances against the anchor and high contrast values of comparing vectors are
assigned higher weights than hard ones. On the contrary, in the negative set,
hard samples with small distances against the anchor and low contrast values of
comparing vectors are assigned lower weights than reliable ones.

To summarize, the loss objective of the proposed model is formulated by:

LCEG = L1 + λL2, (10)

where λ is the hyperparameter. We train our model end to end by the Stochastic
Gradient Descent (SGD) method. For testing, we compute the cosine feature
similarity of each probe(query)-gallery pair, and obtain the ranking list of probe
images against the gallery images.

4 Experiments

4.1 Datasets

Evaluation Benchmarks. We apply our model to two benchmark datasets,
including Market-1501 [23] and DukeMTMC-reID [24]. For simplicity, they will
be referred as Market and Duke respectively. Market contains 32,668 images
of 1,501 identities from six cameras, while Duke has 36,411 images of 1,404
identities from 8 cameras. Following the standard protocol [23], we utilize half of
identities for training and the other half for testing. Target image labels are not
utilized during training. We evaluate the accuracy of Rank-1/Rank-5/Rank-10
and the mean average precision (MAP) [23].

Auxiliary Dataset. We select MSMT17 [25] as the auxiliary dataset. It con-
tains 126,441 images of 4,101 identities from 15 cameras, which is beneficial for
the diversity of comparators.



A Deep Clustering-Guide Learning for Unsupervised Person Re-identification 593

4.2 Implementation Details

We choose the ResNet-50 [26] as the CNN backbone and initialize it with pre-
trained parameters on ImageNet [27]. Additionally, the last fully-connected layer
is removed and the stride of the last residual block is set to 1. The batch size
is set to 128, randomly sampling unlabeled images. We use the SGD [28] as the
optimization algorithm, and the learning rate is set to 0.0001 initially and decay
by 0.1 every 40 epochs. Totally there are 120 training epochs. For threshold
values, we define the mining ratio ρ = 0.05 for indirect assignment [10]. We set
λ to 0.001 which balances the two losses. The number of clusters K is set to 700
for Duke and 750 for Market.

Table 1. Comparison with state-of-the-art methods in the Market and Duke datasets.

Methods Venue Market-1501 DukeMTMC-reID

Rank-1 Rank-5 Rank-10 MAP Rank-1 Rank-5 Rank-10 MAP

LOMO CVPR15 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8

BoW ICCV15 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3

UDML CVPR16 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3

TJ-AIDL CVPR18 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

PTGAN CVPR18 38.6 57.3 66.1 15.7 27.4 43.6 50.7 13.5

SPGAN CVPR18 51.5 70.1 82.7 27.1 41.1 56.6 68.0 22.3

PUL ToMM18 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4

CAMEL ICCV17 54.5 73.1 – 26.3 40.3 57.6 – 19.8

DECAMEL TPAMI2019 60.2 76.0 81.1 32.4 – – – –

CEG w/o L1 Ours 61.4 78.2 82.5 33.8 47.5 73.4 70.4 30.1

CEG w/o L2 Ours 59.8 77.4 80.6 31.2 45.1 73.4 68.5 28.6

CEG Ours 64.5 80.5 83.8 38.5 54.5 73.4 79.5 35.6

4.3 Comparison to the State of the Art

Hand-crafted feature representation based methods [11,23,29] are comparatively
assessed, and the proposed method significantly outperforms them by a large
margin. This is because the previous methods are mostly based on heuristic
design and cannot learn discriminative features.

Compared with unsupervised domain adaptation based methods [25,30,31],
the proposed method achieves superior performance. The reason is that the
previous methods focus on adapting the knowledge from the source domain to
the target one, while the proposed method directly mines the discriminative
supervision in the unlabeled dataset, which is more effective for unsupervised
RE-ID.

Compared with clustering-based methods [6,8,14], the proposed method also
achieves superior performance. The key reason is that the previous methods
assign pseudo-labels only based on visual feature similarity, which may assign
the same pseudo-label to similar images of different identities, and cannot mine
discriminative supervision.
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Fig. 2. Evaluation of the important hyperparameters K and λ on Market (red curves)
and Duke (blue curves). (M/D), Market/Duke. (Color figure online)

4.4 Ablation Study

We perform an ablation study to demonstrate the effectiveness of both L1 and
L2. As shown in Table 1, “CEG w/0 L1” (“CEG w/0 L2”) indicates that our
model is trained without L1 (L2). Specifically, on Market/Duke, CEG outper-
forms “CEG w/0 L1” by 3.1%/7.0% on Rank-1 accuracy, and CEG outperforms
“CEG w/0 L2” by 4.7%/9.4% on Rank-1 accuracy. This is because either meth-
ods makes full usage of the mined label information. Only with L1 (w/o L2) the
basic cluster-level discrimination of feature embeddings is merely guaranteed;
only with L2 (w/o L1), the method fails to take advantage of the identity label
information; With two losses L1 and L2, the method achieves the best perfor-
mance. Thus, the effectiveness of CEG (with both L1 and L2) is demonstrated.

4.5 Further Analysis

Various Numbers of Clusters K . We evaluate how the number of
clusters affects model learning (λ is fixed to 0.001). K is sampled from
{300, 350, 500, 550 · · · 1100, 1150}. As shown in Fig. 2 (left panel), the best per-
formance occurs with K = 750/700 on Matket/Duke.

Parameter λ. We evaluate the impact of λ (K is set to 750/700). As shown in
Fig. 2 (right panel), it is significant to balance the two losses.

5 Conclusion

In this paper, we propose a clustering-guide approach (CEG) to address the unsu-
pervised RE-ID task. Specifically, we cluster unlabeled and auxiliary datasets,
aiming to achieve full mining of supervisions and a complete usage of the mined
information. On the one hand, we develop a non-parametric softmax variant for
cluster-level supervision. On the other hand, using labeled persons in each clus-
ter as comparators, each unlabeled person image maintains a comparing vector,
which is utilized to mine reliable and hard pairs in intra- and inter-clusters. We
further propose a weighted point-to-set loss, which is robust and effective. We
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train our model with these two losses jointly to learn discriminative features for
unlabeled person images. Extensive experiments validate the superiority of the
proposed method for unsupervised RE-ID.
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Abstract. Deep learning demands a huge amount of well-labeled data
to train the network parameters. How to use the least amount of labeled
data to obtain the desired classification accuracy is of great practical
significance, because for many real-world applications (such as medical
diagnosis), it is difficult to obtain so many labeled samples. In this paper,
modify the unsupervised discriminant projection algorithm from dimen-
sion reduction and apply it as a regularization term to propose a new
semi-supervised deep learning algorithm, which is able to utilize both
the local and nonlocal distribution of abundant unlabeled samples to
improve classification performance. Experiments show that given dozens
of labeled samples, the proposed algorithm can train a deep network to
attain satisfactory classification results.

Keywords: Manifold regularization · Semi-supervised learning · Deep
learning

1 Introduction

In reality, one of the main difficulties faced by many machine learning tasks is
manually tagging large amounts of data. This is especially prominent for deep
learning, which usually demands a huge number of well-labeled samples. There-
fore, how to use the least amount of labeled data to train a deep network has
become an important topic in the area. To overcome this problem, researchers
proposed that the use of a large number of unlabeled data can extract the topol-
ogy of the overall data’s distribution. Combined with a small amount of labeled
data, the generalization ability of the model can be significantly improved, which
is the so-called semi-supervised learning [5,18,21].
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Recently, semi-supervised deep learning has made some progress. The main
ideas of existing works broadly fall into two categories. One is generative model
based algorithms, for which unlabeled samples help the generative model to
learn the underly sample distribution for sample generation. Examples of this
type algorithms include CatGAN [15], BadGAN [7], variational Bayesian [10],
etc. The other is discriminant model based algorithms, for which the role of the
unlabeled data may provide sample distribution information to prevent model
overfitting, or to make the model more resistant to disturbances. Typical algo-
rithms of this type include unsupervised loss regularization [1,16], latent feature
embedding [8,14,18,20], pseudo label [11,19]. Our method belongs to the second
category, in which an unsupervised regularization term, which captures the local
and global sample distribution characteristics, is added to the loss function for
semi-supervised deep learning.

The proposed algorithm is based on the theory of manifold regularization,
which is developed by Belkin et al. [3,4] and then introduced into deep learning
by Weston et al. [18]. Given L labeled samples x1, x2, ...xL and their correspond-
ing labels y1, y2, ..., yL, recall that manifold regularization combines the idea of
manifold learning with the idea of semi-supervised learning, and learns the man-
ifold structure of data with a large amount of unlabeled data, which gets the
model better generalization. Compared to the loss function in tradition super-
vised learning framework, the manifold regularization based semi-supervised
learning algorithm adds a new regularization term to penalize the complexity of
the discriminant function f over the sample distribution manifold, as shown in
the Eq. (1):

1
L

L∑

i=1

V (xi, yi, f) + γA ‖f‖2K + γI ‖f‖2I (1)

where V (·) is an arbitrary supervised loss term, and ‖·‖K is a kernel norm,
such as a Gaussian kernel function, that penalizes the model complexity in the
ambient (data) space. ‖·‖I is the introduced manifold regularization term, which
penalizes model complexity along the data distribution manifold to make sure
that the prediction output have the same distribution as the input data. γA and
γI are used as weights. As shown in Fig. 1, after the manifold regularization term
is introduced, the decision boundary tries not to destroy the manifold structure
of the data distribution and meanwhile, keeps itself as simple as possible, so that
the boundary finally passes through where the data is sparsely distributed.

However, the research on the application of manifold regularization in the
field of semi-supervised deep learning has not been fully explored. The construc-
tion of manifold regularization only considers the local structural relationship of
samples. For classification problems, we should not only preserve the positional
relationship of neighbor data to ensure clustering, but also consider distinguish-
ing data from different manifolds and separating them in the embedded space.
Therefore, in this paper, we propose a novel manifold loss term based on the
improved Unsupervised Discriminant Projection (UDP) [9], which incorporates
both local and nonlocal distribution information, and we conduct experiments
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Fig. 1. Manifold regularization makes the decision boundary where the data distribu-
tion is sparse. Left: traditional supervised learning results; right: manifold regularized
semi-supervised learning.

on real-world datasets to demonstrate that it can produce better classification
accuracy for semi-supervised deep learning than its counterparts.

The following contents are organized as follows: The theory and the proposed
algorithm are presented in Sect. 2; then the experimental results are given in
Sect. 3, followed by conclusions and discussions in Sect. 4.

2 Improved UDP Regularization Term

In this section, we first review the UDP algorithm and then introduce an
improved UDP algorithm. Then we propose a semi-supervised deep learning
algorithm which is based on the improved UDP algorithm.

2.1 Basic Idea of UDP

The UDP method is proposed by Yang et al. originally for dimensionality reduc-
tion of small-scale high-dimensional data [9]. As a method for multi-manifold
learning, UDP considers both local and non-local quantities of the data dis-
tribution. The basic idea of UDP is shown in Fig. 2. Suppose that the data is
distributed on two elliptical manifolds denoted by c1 and c2, respectively. If we
only require that the distances of neighboring data are still close after being
projected along a certain direction, then the projection along w1 will be the
optimal direction, but at this time the two data clusters will be mixed with
each other and difficult to separate after projection. Therefore, while requiring
neighbor data to be sufficiently close after projection, we should also optimize
the direction of the projection so that the distance between different clusters is
as far as possible. Such projected data are more conducive to clustering after
dimensionality reduction.

For this reason, UDP uses the ratio of local scatter to non-local scatter, to
find a projection which will draw the close data closer, while simultaneously
making the distant data even more distant from each other. The local scatter
can be characterized by the mean square of the Euclidean distance between any
pair of the projected sample points that are neighbors. The criteria for judging
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Fig. 2. Illustration of clusters of two-dimensional data and optimal projection direc-
tions [9].

neighbors can be K-nearest neighbors or ε neighbors. Since the value of ε is
difficult to determine and it may generate an unconnected graph, the K-nearest
neighbor criterion is used here to define the weighted adjacency matrix H with
kernel weighting:

Hij =

⎧
⎪⎨

⎪⎩

exp(− |‖xi − xj |‖2/t) if xj is among K nearest neighbors of xi,

or xi is among K nearest neighbors of xj

0 otherwise
(2)

Then given a training set containing M samples x1, x2, ..., xM , denote the
local set UK = {(i, j)|xj is the neighbor of xi}. After projecting xi and xj onto
a direction w, we get their images yi and yj . The local scatter is defined as

JL(w) =
1

MM

M∑

i=1

M∑

j=1

Kij(yi − yj)2 (3)

Similarly, the nonlocal scatter can be defined by the mean square of the
Euclidean distance between any pair of the projected sample points that are not
in any set of neighborhoods. It is defined as

JN (w) =
1

MM

M∑

i=1

M∑

j=1

(Kij − Hij)(yi − yj)2 (4)

The optimal projection vector w∗ minimizes the following final objective function

w∗ = arg min J(w) =
JL

JN
(5)
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2.2 An Improved UDP for Large Scale Dimension Reduction

Since the original UDP method is developed for dimensionality reduction of
small-scale data sets, the data outside the K-nearest neighbors of a sample are
regarded as nonlocal data and participate in the calculation of a nonlocal scatter.
However, when the scale of training data is large, this way of calculating the
nonlocal scatter will bring a prohibitive computational burden, because each
sample has M − K nonlocal data. To overcome this problem, we propose an
improved UDP for large scale dimension reduction.

Suppose there are training data x1, x2, ..., xM , and the desired output of xi

after dimension reduction is yi. Using the Euclidean distance as a measure, sim-
ilar to the definition of the K-nearest neighbor set, we define a set of N -distant
data set DN = {(i, j)|xj is one of the N farthest data from xi}. Similarly, we
define a non-adjacency matrix W:

Wij =

⎧
⎪⎨

⎪⎩

exp(− |‖xi − xj |‖2/t) if xj is among N farthest samples away from xi,

or xi is among N farthest samples away from xj

0 otherwise.

(6)
Then we define the distant scatter as

JD =
1
m

M∑

i=1,j∈DN

Wij ‖yi − yj‖22 (7)

for the local scatter JL, we use the same one as the original UDP. So the objective
function of the improved UDP is

JR(w) =
JL

JD
(8)

=
M∑

i=1

∑
j∈UK Hij ‖yi − yj‖22∑
b∈DN Wib ‖yi − yb‖22

(9)

The improved UDP also requires that after the mapping of the deep network,
the outputs of similar data is as close as possible, while simultaneously “push-
ing away” the output of dissimilar data. Although only the data with extreme
distance is used, in the process of making the dissimilar data far away from
each other, the data similar to them will gather around them respectively, thus
widening the distance between the classes and making the sparse area of data
distribution more sparse, densely areas denser.

2.3 The Improved UDP Based Semi-supervised Deep Learning

Suppose we have a dataset {x1, ..., xL, xL+1, ...xM}, in which the first L data
points are labeled samples with labels {y1, y2, ..., yL}, and the rest data points
are unlabeled samples. Let {g1, g2, ..., gM} be the embeddings of the samples
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through a deep network. Our aim is to train a deep network f(x) using both
labeled and unlabeled samples, such that different classes are well separated and
meanwhile, cluster structures are well preserved. Putting all together, we have
the following objective function

J =
L∑

i=1

l(fi, yi) + λ
L+U∑

i=1,j∈UK ,k∈DN

JR(gi, gj , gk,Hij ,Wik) (10)

where L is the number of labeled data and U is the number of unlabeled data. l(·)
is the supervised loss function and JR(·) is the UDP regularization term. λ is the
hyperparameter, which is used to balance the supervisory loss and unsupervised
loss. We use the softmax function as our supervised loss, but other type of loss
function (e.g. mean square error) are also applicable.

We use error backpropagation (BP) to train the network. The details of the
training process are given in the following algorithm.

Algorithm 1. Semi-supervised deep learning based on improved UDP
Require: labeled data xi and corresponding label yi, i = 1, 2, ..., L, unlabeled data

xj , j = 1, 2, ..., U , output of neural network f(·), output of the embedded UDP
regularization item g(·)

1: Find K-nearest neighbors and N -distant samples of each sample
2: Calculated the kernel weights Hij for neighbors and Wij for distant samples
3: repeat
4: Randomly select a group of labeled data and their labels (xi, yi)
5: Gradient descend l(f(xi), yi)
6: Select xi and its K-nearest data xj and N -distant data xk

7: Gradient descend JR(g(xi), g(xj), g(xk), Hij ,Wik)
8: until
9: Meet accuracy requirements or complete all iterations

3 Experimental Results

3.1 Results of Dimensionality Reduction

Firstly, we test the dimensionality reduction performance of the improved UDP
method in two different image datasets, MNIST and ETH-801. Then we compare
the improved UDP with original UDP, as well as several popular dimension
reduction algorithms (Isomap [2], Multidimensional scaling (MDS) [6], t-SNE
[13] and spectral embedding [12]), to show its performance improvement.

MNIST is a dataset consisting of 28 × 28 grayscale images of handwritten
digits. We randomly selected 5000 samples from the dataset to perform our

1 ETH-80: https://github.com/Kai-Xuan/ETH-80.

https://github.com/Kai-Xuan/ETH-80
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experiments because the original UDP usually applies to small-scale datasets.
ETH-80 is a small-scale but more challenging dataset which consists of 256 ×
256 RGB images from 8 categories. We use all the 820 samples from “apples”
and “pears” categories and convert the images from RGB into grayscale for
manipulation convenience. The parameters of the baseline algorithms are set to
their suggested default values and the parameters (kernel width t, number of
nearest neighbors K and number of farthest points N) of the improved UDP
are set empirically. The experimental results on the two datasets are shown in
Figs. 3 and 4, respectively.

Fig. 3. Dimension reduction of digits 1 and 2 in MNIST (t = 4,K = 10 and N = 300).

Fig. 4. Dimension reduction of ‘apples’ and ‘pears’ categories in ETH-80 (t = 12.0,K =
10 and N = 50).

From these results we can see that after dimension reduction, the improved
UDP maps different classes more separately than the original UDP on both
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datasets. This is important because while adopting the new UDP into semi-
supervised learning in Eq. (10), better separation means more accurate classifi-
cation. It is also worth mentioning that although on the ETH-80 dataset, the
improved UDP achieves comparable results as the rest baseline algorithms, its
results on MNIST is much better (especially than MDS, Isomap) in terms of
classes separation.

To quantitatively measure the classes separation, Table 1 shows the cluster
purity given by k-means clustering algorithm on these two datasets after dimen-
sionality reduction. The purity is calculated based maximum matching degree
[17] after clustering.

Table 1. Cluster purity of 6 methods.

Method MNIST ETH-80

UDP 81.7 77.7

Improved UDP 93.8 99.4

Isomap [2] 86.1 99.9

MDS [6] 53.7 98.9

t-SNE [13] 93.1 100.0

Spectral embedding [12] 98.6 100.0

Table 1 demonstrates that our improved UDP method improves the cluster
purity by a large margin compared to the original UDP. It can also be seen from
Figs. 3 and 4 that our improved UDP method is more appropriate for clustering
than original UDP. Furthermore, our method is more efficient than the original
UDP because we do not have to calculate a fully connected M ×M graph. What
we need are the kernel weights of the K neighbors and N distant data. On both
datasets, our method gets much better (on MNIST) or competitive results with
other dimension reduction methods.

3.2 Results of Classification

We conduct experiments on MNIST dataset and SVHN dataset2 to compare
the proposed algorithm with the supervised deep learning (SDL) and Manifold
Regularization (MR) semi-supervised deep learning [18]. The number of labeled
data for MNIST dataset is set to 100, combined with 2000 unlabeled data, to
train a deep network. For SVHN, from the training set we randomly selected
1000 samples as labeled data and 20000 samples as unlabeled data to train a
network. For both experiments, we test the trained network on the testing set

2 SVHN the Street View House Numbers (SVHN) Dataset (http://ufldl.stanford.edu/
housenumbers/), which consists of color images for real-world house number digits
with various appearance and is a highly challenging classification problem.

http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
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(of size 10000 in MNIST and 26032 in SVHN) to obtain testing accuracy. The
optimizer we choose Adam. The parameters are manually tuned using a simple
grid search rule. K and N take 10 and 50 and kernel width is within [3.5, 4.0].

We adopt the three embedding network structures described in [18] and the
results of MNIST and SVHN are shown in Table 2. For supervised deep learn-
ing, we apply entropy loss at the network output layer only, since middle layer
embedding and auxiliary network do not make any sense. From the table we can
see, MR is better for middle layer embedding. Our method is better for output
embedding and auxiliary network embedding and achieves better classification
results for most network structures. The results also suggest that it may be help-
ful to combine MR with UDP together, using MR for hidden layer and UDP for
output layer3.

Table 2. Classification correct rate.

Number of labled data MNIST SVHN

SDL MR Improved UDP SDL MR Improved UDP

Output layer embedding 74.31 82.95 83.19 55.21 64.70 72.66

Middle layer embedding – 83.52 83.07 – 72.10 69.35

Auxiliary neural network – 87.55 87.79 – 62.61 71.32

4 Conclusions and Future Work

Training a deep network using a small number of labeled samples is of great
practical significance, since many real-world applications have big difficulties
to collect enough labeled samples. In this paper, we modify the unsupervised
discriminant projection (UDP) algorithm to make it suitable for large data
dimension reduction and semi-supervised learning. The new algorithm simul-
taneously takes both local and nonlocal manifold information into account and
meanwhile, could reduce the computational cost. Based on this, we proposed a
new semi-supervised deep learning algorithm to train a deep network with a very
small amount of labeled samples and many unlabeled samples. The experimental
results on different real-world datasets demonstrate its validity and effectiveness.

The construction of the neighbor graph is based on Euclidean distance in data
space, which may not be a proper distance measure on data manifold. In the
future, other neighbor graph construction methods, such as the measure on the
Riemannian manifold, will be tried. The limitation of the current method is that
3 We leave this to our future work. We should also point out that although the classifi-

cation accuracies are somehow lower than the state-of-the-art results, the network we
employed is a traditional multilayer feedforward network and we do not utilize any
advanced training techniques such as batch-normalization, random data augmen-
tation. In the future, we will try to train a more complex network with advanced
training techniques to make thorough comparisons.
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it can attain good results for tasks that are not too complex, such as MNIST, but
for more challenging classification datasets, such as CIFAR10, which the direct
K nearest neighbors may not reflect the actual similarity, the method may not
perform very well. Our future work will try to use some pre-learning techniques,
such as auto-encoder or kernel method, to map origin data to a much concise
representation.
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Abstract. In this paper, we propose a novel unsupervised pre-training
method to learn the brain dynamics using a deep learning architecture
named residual D-net. As it is often the case in medical research, in
contrast to typical deep learning tasks, the size of the resting-state func-
tional Magnetic Resonance Image (rs-fMRI) datasets for training is lim-
ited. Thus, the available data should be very efficiently used to learn
the complex patterns underneath the brain connectivity dynamics. To
address this issue, we use residual connections to alleviate the training
complexity through recurrent multi-scale representation and pre-training
the architecture unsupervised way. We conduct two classification tasks to
differentiate early and late stage Mild Cognitive Impairment (MCI) from
Normal healthy Control (NC) subjects. The experiments verify that our
proposed residual D-net indeed learns the brain connectivity dynamics,
leading to significantly higher classification accuracy compared to previ-
ously published techniques.

1 Introduction

Alzheimer’s Disease (AD) is the most common degenerative brain disease asso-
ciated with dementia in elder people [5], and it is characterized by a progressive
decline of memory, language and cognitive skills. The transition from cognitive
health to dementia flows throw different stages, and it may require decades until
the damage is noticeable [25]. Unfortunately, the precise biological mechanisms
behind the AD remain unknown, to a large extent, and this makes the develop-
ment of an effective treatment difficult. Moreover, the costs of Alzheimer’s care
constitutes a substantial burden on families, which exacerbates through the evo-
lution of the disease [4]. For these reasons, early detection is crucial to prevent,
slow down and, hopefully, stop the development of the AD.
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11955, pp. 608–620, 2019.
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Towards this goal, several studies point out that an intermediate stage of
cognitive brain dysfunction, referred as Mild Cognitive Impairment (MCI), is
a potential precursor of AD [4] (especially with respect to memory problems,
referred as amnesic MCI). Although the final transition from MCI to AD varies
per individual, a recent systematic review of 32 available studies reported that
at least 3 out 10 patients with MCI developed the AD over the period of five
or more years [23]. During the early stages of the AD and MCI, the brain oper-
ates so that to allow the individuals to function normally by inducing abnormal
neuronal activity, that compensates for the progressive loss of neurons. These
fluctuations can be measured using rs-fMRI, which is a powerful non-invasive
technique to examine the brain behavior. Therefore, the rs-fMRI provides valu-
able information to study the brain connectivity dynamics and, potentially, to
detect individuals with AD or MCI from healthy subjects.

Nowadays, several methods have been proposed to classify subjects with MCI
from healthy subjects using fMRI data [6]. The most basic approach consists of
a direct study of the mean Functional Connectivity (FC). For example, features
from the FC matrix [27] or graph theoretical approach [12] are proposed to
perform the classification task. However, two practical limitations restrict these
approaches: first, the manual feature designing requires an extensive domain
knowledge of the brain connectivity dynamics and, second, the limited number
of the available data samples makes it difficult to find a proper model that will
generalize in different datasets.

On the other hand, a more sophisticated approach is proposed in [21] to
address these two problems: this method automatically learns the features from
the data using a Deep Auto-Encoder (DAE) by avoiding potential human biases.
Nevertheless, the DAE does not consider any information regarding the brain
connectivity dynamics, which is crucial to understand the AD. Accordingly, any
alternative deep learning method must simultaneously consider the structure and
the dynamics of the brain functional connectivity, for automatically extracting
significant features from the data. However, since complex deep learning archi-
tectures usually require a large number of training samples, the lack of sufficient
data constitutes the major practical limitation of such methods.

For all these reasons, in this paper, we introduce a recurrent multi-scale deep
neuronal network, named residual D-net, to analyze the brain behavior. The
main novelty of the presented architecture is that it allows us to unravel the
brain connectivity dynamics, but, efficiently learning with a limited number of
samples, which constitutes the most common scenario in practice. Therefore, we
applied our proposed residual D-net to learn the brain connectivity dynamics of
our subjects. Then, we feed the learned brain dynamic features into a classifier
to distinguish subjects with MCI from healthy individuals.
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2 Materials and Preprocessing

In this study, we use a public rs-fMRI cohort from the Clinical Core of
Alzheimer’s Disease Neuroimaging Initiative (ADNI)1, which has established
a competitive collaboration among academia and industry investigation focused
on the early identification and intervention of AD [1].

Among the different datasets of ADNI (including the latest studies ADNI
go and ADNI 2 ), there are data sets referring to patient with early stage of
Mild Cognitive Impairment (eMCI), and patients with an advanced stage of the
condition referred as Late stage Mild Cognitive Impairment (LMCI). In this
paper, we report studies for both datasets separately.

Table 1. Demographics of the healthy control subjects (NC), patients with eMCI and
patients with LMCI

NC eMCI LMCI

Number of subjects 36 31 26

Male/Female 14/22 15/16 15/11

Number of scans 100 100 77

Male/Female 37/63 58/42 41/36

Age (mean± SD) 72.7± 4.5 72.4± 3.8 74.3± 3.4

2.1 ADNI Cohorts

The final used cohort comprises 277 scans from 36 Normal healthy Control (NC)
subjects, 31 patients with eMCI and 26 patients with LMCI (see Table (1)). With
respect to the data acquisition, all the rs-fMRI scans were collected at different
medical centers using a 3 Tesla Philips scanners following the same acquisition
protocol [11]: Repetition Time (TR) = 3000 ms, Echo Time (TE) = 30 ms, flip
angle = 80◦, matrix size 64 × 64, number of slices = 48 and voxel thickness =
3.313 mm. Each scan was performed during 7 min producing a total number of
140 brain volumes.

2.2 Preprocessing

The functional images were preprocessed using the Data Processing Assistant
for Resting-State fMRI (DPARSF) toolbox2 and the SPM 12 package3 following
standard preprocessing steps:

1 Availiable at http://adni.loni.usc.edu/.
2 DPARSF: Available at http://rfmri.org/DPARSF.
3 SPM 12: Available at http://www.fil.ion.ucl.ac.uk/spm.

http://adni.loni.usc.edu/
http://rfmri.org/DPARSF
http://www.fil.ion.ucl.ac.uk/spm
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– First, we discarded the first 10 volumes of each scan to avoid T1 equilibrium
effects and we applied a slice-timing correction to the slice collected at TR/2
to minimize T1 equilibrium errors across each TR.

– After correcting the acquisition time, we realigned each time-series using
a six-parameter rigid-body spatial transformation to compensate for head
movements [9]. During this step, we excluded any scanner that exhibited a
movement or rotation in any direction bigger than 3 mm or 3◦ respectively.

– Then, we normalized the corrected images over the Montreal Neurological
Institute (MNI) space and resampled to 3 mm isotropic voxels. The resulted
images were detrended in time through a linear approximation and spatially
smoothed using a Gaussian filtering with FWHM = 4 mm.

– Finally, we removed the nuisance covariates of the white matter and the
cerebrospinal fluid to avoid further effects and focused on the signal of the
grey matter, and we band-pass filtered (0.01–0.08 Hz) the remaining signals
to reduce the effects of motion and non-neuronal activity fluctuations.

2.3 Brain Network Analysis

In order to investigate the behavior of the brain functional connectivity, we
labeled each brain volume into 116 Regions of Interest (ROIs), using the Auto-
mated Anatomical Labeling (AAL) atlas4. This atlas divides the brain into
macroscopic brain structures: 45 ROIs for each hemisphere and 26 cerebellar
ROIs. In this study, we excluded the 26 cerebellar ROIs, because theses areas
are mainly related to motor and cognitive functional networks [16]. Then, we
estimated a representative time course by averaging the intensity of all the voxel
within each ROI, and we normalized the values in the range −1 to 1. Finally, we
folded all the time courses into a matrix R ∈ R

90×130, where each row contains
the time evolution of one specific ROI.

3 Proposed Methods

In this paper, we propose a novel residual D-net framework to model the brain
connectivity dynamics. First, the selective brain functional connectivity dynam-
ics, used as input for the residual D-net is presented. Then, the details of residual
D-net will be described.

3.1 Selective Brain Functional Connectivity Dynamics

In order to capture the brain connective dynamics in the rs-fMRI, we examine
the time-varying functional connectivity (FC) variability via windowing corre-
lation matrices [2], which provides a fair estimate of the natural dynamics of
the functional brain connectivity. However, our goal is to identify individuals
that will potentially develop AD. Consequently, we restricted our study of the

4 AAL documentation available at http://www.gin.cnrs.fr/en/tools/aal-aal2/.

http://www.gin.cnrs.fr/en/tools/aal-aal2/
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Fig. 1. Residual D-net architecture

whole-brain dynamics to just a few areas that may suffer damage due to the AD,
which, also, reduces the pattern complexity of the brain functional connectiv-
ity. In this way, severals studies have pointed that certain brain areas are more
likely to be affected by the AD. These areas are localized in the Frontal Lobe [7],
the Hypocampus [19] and the Temporal Lobe [18,19]. Therefore, we limited our
study of the brain connectivity dynamics to 28 ROIs that are vulnerable to AD.

Thus, using this specific set of ROIs and following the method described in [2],
for each scan (Ri), with i = 1, 2, . . . , N , where N is the total number of analyzed
scans, we estimated the dynamic FC through a sliding window approach, and we
computed each covariance matrix from a windowed segment of Ri. We applied
a tapered window created by convolving a rectangle (with = 10 TRs = 30) with
a Gaussian (σ = 4TRs) and a sliding window in steps of 2 TRs, resulting in
a total number of 56 windows. Accordingly, the result of each scan contains a
sequence of 56 covariance matrices that encode the connectivity dynamics of the
studied ROIs. These sequential matrices comprise the FC dynamics of the 28
ROIs, and we will use them as an input to the proposed method. Figure (4.a)
shows examples of input sequences of these covariance matrices.

3.2 Residual D-Net

The proposed model needs to understand the dynamics of brain FC; that is, how
the pattern within the covariance matrix changes along time. Furthermore, the
model should be very efficient to learn the dynamics given a limited number of
training data.
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Fig. 2. Major component of the residual D-net: Donw/up Residual Block and Residual
convLSTM Block

To address these issues, the proposed residual D-net has three major prop-
erties that allow the model to learn with relatively few training samples, while
retaining its capacity to learn complex dynamics. Figure (1) shows the main
architecture of the proposed residual D-net, which is formed by three main com-
ponents: up residual block, down residual block (RES U/D Block) and a residual
convolutional long short-term memory block (RES cLSTM).

RES U/D Block: The residual network (resNet) [10] is a competitive deep
architecture capable to produce a detailed decomposition of the input data. The
residual connection in the resNet constrains the network to learn a residual
representation, so that to facilitate the training. We exploit this property to
learn complex patterns in the input, while keeping the training to be simple.
In addition, we add an “average pooling” layer and “up convolution” layer,
to express the multi-scale representation. The formulations of each down/up
residual block can be expressed as follows:

xl+1
t = avgpool(F l

d(x
l
t) + xl

t), (1)

yl+1
t = F l

u([ŷl
t, z

l
t]) + yl

t, (2)

where xl
t and yl

t are the inputs of the lth RES D/U Block, respectively. Each
block has a bypass identity connection to fit the residual mapping from the input.
We denote each convolutional layer in the block as F l

d(x
l
t) and F l

u(yl
t) in Fig. (2),

which are composed of two 3 × 3 convolutional layers and we employ the expo-
nential linear units (ELUs) [8] as the nonlinear activation function. The major
difference lies in their “up/down sampling” layer. In the RES D BLOCK, a aver-
age pooling layer is attached to down sample the input. In the RES U BLOCK,
we use a up-conv layer for up-sampling (ŷl

t) the input and it is concatenated with
zlt, which comes from the high resolution feature map in the upper RES cLSTM
Block.

RES cLSTM Block: The convolutional LSTM [26] is a well-known Recurrent
Neural Network (RNN) model, capable of capturing spatial-temporal features
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in a video sequence. As we described above, the brain dynamics is represented
as a sequence of images. Thus, the use of a convolutional LSTM is fully jus-
tified by the nature of our task. Moreover, the use of the residual connection,
together with the convolutional LSTM, facilitates the training, while retaining
the spatial-temporal information. The connection was designed in a way similar
to existing residual LSTM models [3,13,22] with two concatenated LSTM blocks
with identity connection as shown in Fig. (2). The formulation of the Residual
Convolutional LSTM block can be expressed as follows:

zl+1
t = hl2

t + zlt, (3)

hl2
t = Gl(zlt, h

l1
t−1, h

l2
t−1). (4)

Here, zlt is the input of the lth RES cLSTM Block and hl1
t−1, hl2

t−1 represents
hidden states of the convolutional LSTM layer from previous t−1 time step. The
function Gl(zlt, h

l1
t−1, h

l2
t−1) represents the lth two-layered convolutional LSTM

that maps dynamics of the input pattern into the current hidden states(H l
t :

[hl1
t , hl2

t ]). Similarly to the residual block, all convolutional layer uses 3 × 3 size
filter.

Structure of Residual D-net: Using the residual blocks as components, we
build a 2-depth U-net architecture for multi-scale representation. The U-net
framework [17] was developed for dealing with deep representative learning tasks
with few training samples. We adopt the same framework to take advantage of
the rich feature representation and the efficient learning scheme. In addition, we
add a recurrent flow to capture the dynamic behavior, so that the architecture
forms D-shape. As shown in Fig. (1), The input xl=0

t comprises 28×28 images of
the correlation map at t time step. RES D Block decreases the input size by half
and increases the feature map by two starting from the initial 16-feature map
size. The feature maps are contracting until they reach the last RES cLSTM
block. These abstract embeddings (zlastt ) are finally used later on for the classifi-
cation. During the expansion path, the feature map from the middle-depth layer,
zmiddle
t , is concatenated via a skip-connection. This multi-scale way of training

allows to learn the complex patterns of the input sequences and to capture the
dynamic changes in the hidden state of the convolutional LSTM.

3.3 Unsupervised Pre-training and Fine-Tuning

First, we train our residual D-net with sequences of correlation maps by pre-
dicting a few steps ahead of the sequences. Given T -time step input sequences,
residual D-net predicts the output until next 2T time points (x̃T+1,...,2T ). By
predicting the future steps, model can be trained unsupervised way [20], see
Fig. (3). We use mean square error (MSE) of prediction as the loss, and the
adam [14] optimizer for updating the parameter with learning rate 0.0005. In
Fig. (4.b), we can see an example of the predicted sequences, and it shows that
unsupervised pre-training of the residual D-net learns the dynamic behavior of
the human brain. After unsupervised training, we take all the output of the
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Fig. 3. Training scheme of the (a) unsupervised pre-training and (b) supervised fine-
tuning using the residual D-net.

Fig. 4. (a) shows the sequences of the dynamic functional connectivity that used for
input, and (b) shows the target sequences to be predicted and (c) represents the
sequences of the predictions from residual D-net.

last layer of RES cLSTM block (zlastt ) for classification task. During the clas-
sification learning, the parameters in the contracting path(2×(RES D BLOCK
+ RES cLSTM)) can be fine-tuned with concatenated softmax-classifier such
as Fig. (3.b). And the final decision will be made by averaging the result from
classifier as follows:

logit =
1
T

N∑

t=1

softmax(wcl × zlastt + bcl). (5)

Here, wcl and bcl are the softmax-classifier projection weights and bias, respec-
tively. We use the binary cross-entropy as a loss function to fine-tune the archi-
tecture with a learning rate 0.00001. We found that involving unsupervised pre-
training is crucial, in order to avoid over-fitting during the training of the net-
works, see Fig. (5). After the fine-tuning, the classifier learns the differences
between the two dynamic pattern in each class.

4 Performance Evaluation

We conducted two classification experiments (NC vs. eMCI and NC vs. LMCI)
to evaluate the proposed residual D-net and compare it with three baselines tech-
niques. For this, we performed a five-fold subject-wise cross-validation to avoid
using the same subject. Each validation set was used for selecting the optimal
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hyper-parameters for the classification model. The performance was measured
by the total accuracy, precision, and recall on the test set.

4.1 Baselines

Static Functional Connectivity (SFC) + SVM: Zhang et al. [27] suggest five
specific pairs of the Pearson’s correlation coefficients on each raw dataset (R ∈
R

90×130), assuming that the FC can be used to distinguish the MCI subjects
from the NC. The authors explicitly selected these features after applying a
two-sample T-test on 40 subjects. In this paper, we further investigated twenty
alternative coefficients using Fisher feature selection [24], and we fed the selected
features to a linear Support Vector Machine (SVM) classifier to perform the
classification task.

Dynamic Functional Connectivity (DFC) + SVM: In this experiment, in order
to consider the brain dynamics, we used a sliding rectangular window (width: 30
TRs) and a 5 TRs stride to estimate the functional connectivity maps Σ(w) ∈
R

90×90 in each window(w = 1, . . . , 20). Then, according to [15], we project our
data into a K × 20-dimensional feature map and then, we selected the best 100
features using Fisher feature selection, and we measured the performance with
a linear SVM classifier.

Deep Auto-Encoder (DAE) + HMM: Suk et al. [21] propose an unsupervised
feature learning using a DAE. First, they trained a four-layer DAE (hidden
layers: 200-100-50-2) using as an input all the ROIs directly. Afterward, for each
specific time instance, they converted the information of all the ROIs (a 116 real
vector) into a 2-dimensional feature map. Then, they fit these 2-dimensional
feature maps into two Hidden Markov Models (HMM) to model the NC and the
MCI classes. Similarly, we implemented this method but using 6 hidden states
with 2-mixtures of Gaussian HMM via the Baum-Welch algorithm.

Table 2. Values of the Accuracy (Acc), Precision (Pre) and Recall (Rec) for each
five-fold subject-wise cross-validation for the eMCI dataset.

SFC + SVM DFC + SVM DAE+ HMM Res. D-net

CV Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

1 57.1 52.0 68.4 50.0 46.2 63.2 59.5 54.5 63.2 71.4 62.1 94.7

2 52.5 61.1 47.8 42.5 50.0 30.4 45.0 53.8 30.4 70.0 66.7 95.7

3 27.8 36.8 33.3 63.9 78.6 52.4 63.9 65.4 81.0 72.2 72.0 85.7

4 50.0 48.0 57.1 43.2 40.0 38.1 43.2 41.7 47.6 72.7 66.7 85.7

5 36.8 33.3 50.0 42.1 38.5 62.5 52.6 45.5 62.5 65.8 56.0 87.5

Total 45.5 45.9 51.0 48.0 48.0 48.0 52.5 52.3 56.0 70.5 64.7 90.0
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Table 3. Values of the Accuracy (Acc), Precision (Pre) and Recall (Rec) for each
five-fold subject-wise cross-validation for the LMCI dataset.

SFC + SVM DFC + SVM DAE+ HMM Res. D-net

CV Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

1 50.0 44.4 42.1 50.0 41.7 26.3 38.1 37.9 57.9 73.8 68.2 78.9

2 48.5 44.4 25.0 54.5 55.6 31.3 60.6 80.0 25.0 75.8 75.0 75.0

3 74.1 85.7 50.0 33.3 25.0 25.0 51.9 46.7 58.3 66.7 60.0 75.0

4 61.1 47.1 61.5 50.0 27.3 23.1 61.1 46.7 53.8 72.2 61.5 61.5

5 48.7 40.0 35.3 61.5 57.1 47.1 56.4 50.0 52.9 64.1 55.6 88.2

Total 55.4 48.5 41.6 50.8 41.4 31.2 53.1 46.3 49.4 70.6 63.4 76.6

4.2 Discussion and Results

As we discussed during the description of the experiment, we adopted a five-fold
subject-wise cross-validation, in order to ensure the reliability of the different
methods.5 Tables (2) and (3) show the results associated with the accuracy,
precision and recall obtained for the different methods, for the eMCI and LMCI
dataset respectively.

The main conclusion is that all the baseline techniques turned out signifi-
cantly inferior results. First, the inferior performance of SFC + SVM is expected
because it does not consider any brain dynamics. Moreover, a further analysis
turned out that this method performed well on the training set, in contrast to the
test set. This observation evidences that the method fails to generalize among dif-
ferent datasets. On the other hand, although the DFC+ SVM takes into account
the time evolution of the FC, the method does not learn the relationships within
the brain dynamics and, consequently, fails to perform the classification task.

Regarding to the DAE + HMM, the major limitation of this approach is that
is not an end-to-end learning method. That is, although it incorporates an HMM
that tries to model the dynamics, the DAE does not capture any information
from the brain connectivity dynamics. Leading to a inferior performance. In
contrast, further analysis during the training and the pre-training have shown
that our proposed method effectively learns the brain dynamics. Thus, Fig. (4)
shows the original and the predicted covariance matrices, which assembles the FC
brain dynamics. Observe that our proposed approach captures and reproduces
the true dynamics of the brain behavior. This explains why the proposed method
exhibits the best performance and it properly generalizes among the different
cross-validation sets.

Pre-training vs. Overfitting
Considering the limited number of samples of the studied datasets, the pri-
mary risk of our proposed method is that of overfitting. However, we faced this

5 The code and pre-processed data is available at https://github.com/youngjoo-epfl/
residualDnet.

https://github.com/youngjoo-epfl/residualDnet
https://github.com/youngjoo-epfl/residualDnet


618 Y. Seo et al.

Fig. 5. Cross-entropy errors on the LMCI dataset obtained by the proposed method
without pre-training (a) and with pre-training (b).

challenge by introducing the residual D-net architecture, and also by pre-training
the model prior to the classification task.

Although we have already discussed the advantages the residual D-net archi-
tecture, we illustrate the benefits of the pre-training in Fig. (5), where we plot-
ted the loss errors for the LMCI dataset with and without pre-training. Observe
that the model overfits without pre-training (see Fig. (5.a)); that is, we can not
guarantee that the method had generalized correctly, making it impossible to
establish any proper stopping criterion. However, the behavior of the loss curves
radically changes after pre-training the model (see Fig. (5.b)). Now, the method
has converged and we can define a proper stopping criterion.

5 Conclusions

In this paper, we presented a new method named residual D-net to identify
MCI from NC subjects. In contrast to the previous methods, proposed residual
D-net can be efficiently trained with few number of training samples, while
unravels the brain connectivity dynamics in unsupervised learning. Furthermore,
the proposed pre-training approach enforces the generalization performance of
the proposed method and offers an adequate selection of a stopping criterion.
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Abstract. Clustering ensemble selection methods choose qualified and
diverse base clusterings for ensemble. Existing methods rank base cluster-
ings according to validity indices as quality measures and select diverse
clusterings in top qualified ones. However, the ranking-based selection
is hard to filter out base clusterings and may miss important diverse
clusterings of moderate quality for ensemble. Aiming at the problem, we
revisit the base clustering selection from the view of stochastic sampling
and propose a Clustering Ensemble Selection method with Determinan-
tal Point Processes (DPPCES). DPP sampling of base clusterings adds
the randomness to the clustering selection while guaranteeing quality and
diversity. The randomness is helpful to avoid the local optimal solution
and provide a flexible way to select qualified and diverse base cluster-
ings for ensemble. Experimental results verify the effectiveness of the
proposed DPP-based clustering ensemble selection method.

Keywords: Clustering ensemble selection · Determinantal Point
Process

1 Introduction

Clustering Ensemble methods utilize consensus functions to integrate a group
of base clusterings to obtain the final clustering results [20]. Not all the base
clusterings play a positive role in ensemble process and therefore Clustering
Ensemble Selection methods have been proposed to select significant base clus-
terings from candidate ones [6]. Clustering quality and diversity are two critical
factors to evaluate the significance of base clusterings for ensemble [6]. Cluster-
ing ensemble selection methods aim to find qualified and diverse base clusterings
to generate final clustering results.
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Existing clustering ensemble selection methods adopt both external validity
indices [6] and internal validity indices [3] to evaluate the quality of base cluster-
ings. Based on the quality evaluations, base clusterings are ranked and the top
ones are chosen for ensemble. Among the qualified base clusterings, considering
the clustering diversity, the distance measures between data distributions, such
as normalized mutual information are used to further select diverse base cluster-
ings to generate final ensemble results [6]. However, the ranking-based selection
methods are hard to filter out base clusterings according to their quality and
may miss important diverse clusterings of moderate quality for ensemble [10].
Moreover, the quality and diversity measures can be linearly combined to obtain
the overall evaluation of base clusterings [19]. But it is difficult to define a general
combination function for diverse data distributions.

To tackle the problems above, we model the base clustering selection prob-
lem as a stochastic sampling process and propose a clustering ensemble selection
method with Determinantal Point Processes (DPPs) in this paper. DPPs provide
a class of precise probabilistic models for subset selection problems where diver-
sity is preferred [15]. In DPPs, diverse items are selected according to the proba-
bilities which are computed from the determinants of item-correlation matrices.
The correlation matrices can be constructed based on the measures of item qual-
ity and diversity [15]. As to the attractive properties of selecting important and
diverse items, DPPs have gained substantial research interests and been extended
to k-DPPs [14], structured DPPs, sequential DPPs and low-rank DPPs. DPP
sampling adds the randomness to the selection process on the premise of guaran-
teeing quality and diversity. The randomness is helpful to avoid the local optimal
solution and thereby provides a flexible way to select qualified and diverse base
clusterings for ensemble. The contributions of this paper are summarized as
follows.

– Formulate base clustering selection with DPP sampling. We revisit the selec-
tive clustering ensemble from the view of stochastic sampling and construct
k-DPPs for sampling subsets of significant base clusterings. The probability
in DPP clustering sampling is computed based on the determinants of corre-
lation matrix L of base clusterings, and each element of the matrix consists
of the quality and diversity evaluations of base clusterings.

– Implement a clustering ensemble selection algorithm with DPP sampling
(DPPCES). The algorithm of sampling base clusterings from DPPs consists
of two stage. In the first stage, a subset of eigenvectors of correlation matrix
L is selected to form an elementary DPP. In the second stage, a subset of k
base clusterings is sampled in probability from the elementary DPP.

The rest of this paper is organized as follows. Section 2 overall introduces the
clustering ensemble selection method based on DPPs sampling, which includes
the sampling model of base clustering selection, probability computation and
algorithm implementation. In Sect. 3, experiment results validate the effective-
ness of the DPP-based selective clustering ensemble. The work conclusion is
given in Sect. 4.
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2 Clustering Ensemble Selection with DPPs

The key problem of clustering ensemble selection is how to choose a subset of sig-
nificant base clusterings. Traditional methods rank the base clusterings according
to their quality and diversity and thereby select the top ones for ensemble. Dif-
ferent from the ranking-based selection strategies, we revisit the selection of base
clusterings as a stochastic sampling process. Given a set of M base clusterings
C = {c1, c2, · · · , cM}, we randomly select a subset of k base clusterings from C
in probability, CS ⊆ C and

∣
∣CS

∣
∣ = k. The probability of subset selection P

(

CS
)

depends on the quality and diversity of the base clusterings contained in CS .

P
(

CS
) ∼ P

(

quality
(

CS
)

, diversity
(

CS
))

(1)

The base clusterings of both high quality and diversity will be considered sig-
nificant and have high probabilities being selected. As to the characteristics of
DPPs for sampling qualitative and diverse items [15], we formulate the selec-
tion of base clusterings with k-DPP sampling. The k-DPP sampling model of
base clusterings and the corresponding probability computation will be further
introduced in next subsections.

2.1 Modeling Base Clustering Selection with DPP Sampling

Revisiting the clustering ensemble selection from the view of DPP sampling, we
can define a determinantal point process for sampling base clusterings with the
item-correlation matrix in the form of marginal kernel [14].

Definition 1. DPP of base clustering sampling. Given a set of M base
clusterings C= {c1, c2, · · · , cM}, a point process P defines a probability measure
on all the clustering subsets of C. P is a determinantal point process if drawing
a random set CS from C according to P, the probability of CS being selected is

P
(

CS
)

= det (KCS ) (2)

where K is a M × M symmetric matrix indexed by the elements of C, which
presents the correlation between M base clusterings. It is required that K is
positive semidefinite and all the eigenvalues of K should be less than or equal to
one. The matrix K is referred as the marginal kernel to compute the probability
of any subset CS being selected. KCS = [Kij ]ci,cj∈CS denotes the sub-matrix
indexed by the base clusterings in CS and det (KCS ) is the determinant of the
sub-matrix. For the empty set, det (KCS ) = 1. If CS = {ci} is a singleton,
P (ci) = Kii, which means the diagonal of the marginal kernel K gives the
probabilities of selecting individual base clusterings.

In general, it is difficult to construct the marginal kernel K. Therefore, we
utilize L-ensemble to construct DPPs for sampling base clusterings referring to
[15]. Comparing with the marginal kernel, L-ensemble defines a DPP via a posi-
tive semidefinite correlation matrix L but without the constraints of eigenvalues.
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Definition 2. DPP of base clustering sampling with L-ensemble. A
point process P on the clustering subsets of C is a determinantal point pro-
cess if drawing a random set CS from C according to P , the probability of CS

being selected is

P
(

CS
)

=
det (LCS )
det (L + I)

(3)

where L is a M × M positive semidefinite matrix indexed by elements of C, I is
the M ×M identity matrix and det (L + I) =

∑

C′⊆C

det (LC′) is used to normalize

the matrix determinants to probabilities.

Based on the DPPs of clustering sampling with L-ensemble, we can further
define the probability of selecting a subset of k base clusterings for ensemble
referring to k-DPP models which are used to sample fixed-size subsets from
DPPs [14].

Definition 3. k-DPP of base clustering sampling with L-ensemble. Sup-
pose any sampled subset CS consists of k base clusterings, the k-DPP of cluster-
ing sampling is defined by the following probability measure of subset selection
with L-ensemble,

P k(CS) =
det (LCS )

∑

C′⊆C∧|C′|=k

det (LC′)
(4)

where
∣
∣CS

∣
∣ = k and LCS is the k × k submatrix of L indexed by CS.

Based on the definition above, we can compute the probabilities of selecting
subsets of k base clusterings with the eigenvalues of matrix L. Suppose L =
M∑

i=1

λiviv
T
i , λi refers to the eigenvalue corresponding to the eigenvector vi, the

probability of selecting a k-size subset CS is

P k(CS) =
det (LCS )

∑

C′⊆C∧|C′|=k

det (LC′)

=

∏

ci∈CS λi

∑

C′⊆C∧|C′|=k

{

∏

cj∈C′
λj

} ,
(5)

The probability calculations of DPP samplings of base clusterings need to
construct the correlation matrix L. Decomposing the matrix L as a Gram matrix
L = BTB, we can reformulate the probability measure of DPP sampling with
the diversity and quality of elements [15]. Suppose each vector Bi in B has the
form of Bi = qi ·φi , in which qi is a positive real number to measure the element
quality and the normalized feature vector φi, ‖φi‖2 = 1 denotes the direction of
the ith element. We rewrite the matrix L as

L = [Lij ]1≤i,j≤M , Lij = qiφ
T
i · φjqj (6)
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We can see that the inner product φT
i · φj ∈ [−1,+1] indicates the similarity

between the elements i and j. Lij consists of the quality and diversity of the
pair of elements. Denoting the similarity φT

i · φj = sij , we rewrite

L = {Lij = qi · sij · qj |1 ≤ i ≤ M, 1 ≤ j ≤ M } (7)

Next we adopt multiple diversity and quality measures of clusterings to construct
the L matrix of base clusterings.

Quality Measure of Base Clusterings. Without loss of generality, we adopt
internal validity indices which measure the data partitions by clusterings without
external class labels to evaluate the quality of base clusterings. Specifically, we
adopt four popular internal indices which include Compactness Index (CPI),
Davies-Bouldin Index (DBI) [5], Calinski Harabasz Index (CHI) [3] and I Index
[16]. CHI and I Index have positive correlations with clustering quality, high
index values indicate the high quality of clustering results. For consistency, we
also transform DBI and CPI to make the indexes have a positive correlation with
clustering quality, DBI = exp (−DBI) and CPI = exp (−CPI). Moreover, we
map the values of all the internal indexes to [0,1] with min-max normalization.
Based on the consistent and normalized internal validity indices, we can directly
obtain the quality evaluation qi of a base clustering ci through averaging the
values of four internal validity indexes.

qi = q(ci) =
CPI(ci) + DBI(ci) + I(ci) + CHI(ci)

4
(8)

Diversity Measure of Base Clusterings. As to the characteristic of Nor-
malized Mutual Information (NMI) to measure nonlinear correlations between
distributions [17], we adopt NMI to measure the similarity between two base
clusterings ci and cj .

si,j = s(ci, cj) = NMI (ci, cj) (9)

Based on the quality and diversity measures of base clusterings, we can con-
struct L matrix to compute the probability of DPP clustering sampling. In the
algorithm implementation, we further set factors to balance the clustering qual-
ity and diversity in the elements of L matrix to select significant base clusterings
for ensemble.

2.2 Algorithm Implementation

The probability of k-DPP clustering sampling in Definition 3 requires computing
the determinants of all the k × k submatrices of L, which is an exponential task
and difficult to apply. To tackle this problem, Kulesza and Taskar proposed
an efficient two-stage DPP sampling method [14]. To implement the two-stage
k-DPP sampling, a k-DPP is decomposed into a mixture of elementary DPPs as
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P k
(

CS
)

=
1

eMk

∑

J⊆{1,...,M}∧|J|=k

PVJ
(

CS
) ∏

t∈J

λt (10)

in which PVJ is an elementary DPP which is defined by a subset of k eigenvectors
VJ = {vt |t ∈ J } of matrix L and the marginal kernel of the elementary DPP
PVJ is given by

∑

t∈J vtv
T
t , the mixture weight of PVJ is

∏

t∈J

λt
/

eMk
which is

determined by the eigenvalues of k eigenvectors in VJ , eMk =
∑

|J|=k

∏

t∈J

λt is a

shorthand for the kth elementary symmetric polynomial for normalization.
Based on the formula (10), we can further define the marginal probability

for selecting a single clustering as

P k
(

ci ∈ CS
)

=
1

eMk

∑

|J|=k

PVJ
(

ci ∈ CS
) ∏

t′∈J

λt′ (11)

Because the diagonal of the marginal kernel gives the probabilities of individual
items being included in the selected subset. We can infer that

P k
(

ci ∈ CS
)

=
1

eMk

∑

|J|=k

PVJ
(

ci ∈ CS
) ∏

t′∈J

λt′

=
1

eMk

∑

|J|=k

(
∑

t∈J

(

vT
t ρi

)2

)
∏

t′∈J

λt′

=
1

eMk

M∑

t=1

(

vT
t ρi

)2 ∑

J⊇{t},|J|=k

∏

t′∈J

λt′

=
M∑

t=1

(

vT
t ρi

)2
λt

e−t
k−1

eMk

(12)

where e−t
k−1 denotes the (k − 1)-order elementary symmetric polynomial for all

the eigenvalues of L except λt, ρi is the ith standard basis M -vector, which is
all zeros except for a one in the ith position.

Referring to formula (12), the marginal probability of selecting the ith item
is the sum of the contributions

(

vT
t ρi

)2 made by each eigenvector scaled by
the respective probabilities that the eigenvectors are selected. The probability
for selecting an eigenvector vt is computed as λt

(

e−t
k−1

/

eMk

)

. Based on this, we
can implement a two-stage k-DPP sampling to select k base clusterings from
M candidates for clustering ensemble. In the first stage, a subset of k ≤ M
eigenvectors is selected from M eigenvectors of the matrix L to form a subspace,
where the probability of selecting each eigenvector depends on its associated
eigenvalue. In the second stage, a subset of k base clusterings is sampled based
on the selected eigenvectors. The details are shown in Algorithm 1.
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Algorithm 1. Clustering Ensemble Selection with k-DPP Sampling (DPPCES)
Input: Set of M base clusterings, C= {c1, c2, · · · , cM},

Number of selected base clusterings, k;
Output: Set of selected k base clusterings, CS .
1: Initialize CS = ∅;
2: Compute the quality of base clusterings in C according to formula (8), Q (C) =

0.7 ∗ {q1, q2, · · · , qM};
3: Construct the similarity matrix of M base clusterings according to formula (9),

S (C) = 0.3 ∗ {sij |1 ≤ i ≤ M, 1 ≤ j ≤ M };
4: Construct L matrix, L = Diag (Q (C)) · S (C) · Diag (Q (C));
5: Decompose L matrix into eigenvalues and eigenvectors, (λi, vi) , 1 ≤ i ≤ M ;
6: Set t = M , l = k;
7: //First stage: select k eigenvectors to form an elementary DPP;
8: while l > 0 do

9: if rand ∼ U [0, 1] < λt
et−1
l−1
et
l

then

10: V = V ∪ {vt};
11: l = l − 1;
12: end if
13: t = t − 1
14: end while
15: //Second stage: sample k base clusterings from the elementary DPP;
16: while |V | > 0 do

17: Select one clustering ci from C with probability P (ci) = 1
|V |

∑
v∈V

(
vT ρi

)2
;

18: Add ci into CS , CS = CS ∪ {ci};
19: Compute V⊥ , which is the orthonormal basis of the subspace of V orthogonal

to ej ;
20: Update the subspace V ← V⊥;
21: end while

3 Experimental Results

We implement two experiments to verify the proposed clustering ensemble selec-
tion method based on DPP sampling (DPPCES). In the first experiment, we val-
idate the superiority of DPP sampling for base clustering selection. The second
experiment overall evaluates the performance of DPPCES through comparing
with other elegant clustering ensemble selection methods. The descriptions of
test data sets are shown in Table 1.

In the experiments, we adopt three external criteria and two internal crite-
ria to evaluate the performances of clustering ensemble selection methods. The
external criteria include Clustering Accuracy (CA), Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI), and the internal criteria include
Silhouette Coefficient (SC)and Calinski Harabasz Index (CHI) [3]. The high val-
ues of criteria indicate the clustering ensemble selection methods produce good
results. The other experiment settings are listed below.

– K-means algorithm is adopted to generate candidate base clusterings and the
cluster centers are randomly initialized.
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Table 1. Description of data sets

Data sets Feature Instance Class Sources

DS1 (S1) 2 5000 15 [7]

DS2 (Jain) 2 373 2 [12]

DS3 (Flame) 2 240 2 [8]

DS4 (Pathbased) 2 300 3 [4]

DS5 (Aggregation) 2 788 7 [9]

DS6 (D31) 2 3100 31 [18]

DS7 (Iris) 4 150 3 [1]

DS8 (Heart) 13 270 2 UCI [1]

DS9 (Wine) 13 178 3 UCI [1]

DS10 (Protein localization sites) 7 336 8 UCI [1]

DS11 (Australian credit approval) 14 690 2 UCI [1]

DS12 (Waveform) 21 5000 3 UCI [1]

– The number of candidate base clusterings is set 30 and the selection ratio
ranges from 20% to 60%.

– The number of clusters in each base clustering is set
√

N as default, N
denotes the number of items in the data set. Specially, for Two-level-refined
Co-association Matrix Ensemble (TOME) method, the cluster numbers of
base clusterings are randomly initialized in the range of [2,

√
N ].

– LinkCluE [11] is utilized as a consensus function to ensemble the selected
base clusterings to generate the final clustering results.

– We perform the clustering ensemble selection methods 10 times on each data
set and present the average evaluation of the clustering results.

3.1 Test of Base Clustering Selection Strategy

In this experiment, we utilize DPPCES and other four clustering selection strate-
gies to select base clusterings and compare the ensemble results. The com-
parative base clustering selection strategies include Full Clustering Ensemble
(FCE), Top-k Quality Clustering Ensemble Selection (TQCES), Random Clus-
tering Ensemble Selection (RCES) and Top-k of Diversity Clustering Ensemble
Selection (TDCES). FCE strategy ensembles all the base clusterings to obtain
the final results and thus can be considered as the baseline for comparison.

Because of the limitation of paper length, we just present the average evalua-
tions of the selective clustering ensemble results generated by different selection
strategies on all the data sets as shown in Fig. 1. The selection ratio of base
clusterings ranges from 20% to 60%. We can find that, under all the evaluation
criteria, the selection strategy based on DPP sampling achieves the best clus-
tering ensemble results. Synthesizing both the clustering quality and diversity
measures in the selection probability computation, DPP clustering sampling is
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effective to capture significant base clusterings and thus produce more precise
clustering ensemble results than the other selection strategies which rank and
filter out base clusterings according to only quality or diversity measure.
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Fig. 1. Comparison of different base clustering selection strategies.

3.2 Comparison with Other Clustering Ensemble Selection Methods

Besides the validation of base clustering selection, in the second experiment,
we overall evaluate the proposed DPPCES method through comparing with
three elegant clustering ensemble selection methods, which include Cluster and
Selection algorithm (CAS) [6], Adaptive Cluster Ensemble Selection algorithm
(ACES) [2] and Selective Spectral Clustering Ensemble algorithm (SELSCE)
[13].

Figure 2 illustrates the average evaluations of the selective clustering ensem-
ble results produced by different methods on all the test data sets. It is obvi-
ous that DPPCES outperforms the other clustering ensemble selection methods
under both internal and external evaluation criteria. Based on the superiority
of DPP sampling to select important and diverse items, DPPCES can select a
limited number of significant base clusterings to achieve precise ensemble results.

Tables 3 and 2 show the external and internal evaluations of the best results
generated by different clustering ensemble selection methods against the selection
ratio on each data set. We can see that on most data sets, DPPCES produces
more precise ensemble results than the other methods. Abundant experiments
indicate that the clustering ensemble selection method based on DPP sampling
is effective to select qualified and diverse base clusterings and thereby produce
precise clustering ensemble results.
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Fig. 2. Comparison of different clustering ensemble selection methods.

Table 2. Internal evaluations of different clustering ensemble selection methods.

Data sets SC

DPPCES CAS ACES SELSCE

DS1 0.82 (30%) −0.23 (40%) 0.60 (20%) 0.75 (50%)

DS2 0.61 (30%) 0.36 (40%) 0.39 (20%) 0.61 (40%)

DS3 0.44 (50%) 0.32 (30%) 0.44 (40%) 0.44 (30%)

DS4 0.42 (20%) 0.19 (20%) 0.60 (60%) 0.70 (30%)

DS5 0.62 (20%) −0.10 (20%) 0.62 (20%) 0.62 (40%)

DS6 0.61 (60%) 0.54 (50%) 0.50 (50%) 0.22 (20%)

DS7 0.69 (20%) 0.70 (20%) 0.60 (30%) 0.60 (20%)

DS8 0.32 (30%) 0.20 (60%) 0.32 (20%) 0.32 (20%)

DS9 0.46 (50%) 0.31 (30%) 0.40 (30%) 0.42 (20%)

DS10 0.57 (30%) 0.10 (20%) 0.52 (40%) 0.41 (60%)

DS11 0.41 (50%) 0.20 (20%) 0.41 (20%) 0.38 (20%)

DS12 0.23 (40%) 0.01 (60%) 0.30 (30%) 0.15 (20%)

Data sets CHI

DS1 13607 (30%) 255 (40%) 6385 (50%) 10061 (50%)

DS2 371 (30%) 157 (40%) 82 (20%) 371 (40%)

DS3 118 (50%) 86 (20%) 116 (40%) 118 (30%)

DS4 125 (20%) 31 (20%) 244 (60%) 330 (30%)

DS5 1156 (20%) 45(60%) 1155 (20%) 1156 (40%)

DS6 5072 (50%) 1327 (60%) 4136 (50%) 1881 (20%)

DS7 349 (20%) 358 (20%) 249 (30%) 249 (20%)

DS8 62 (30%) 44 (30%) 60(20%) 60 (20%)

DS9 81 (50%) 47 (30%) 40 (30%) 55 (30%)

DS10 106 (30%) 47 (20%) 51 (30%) 64 (60%)

DS11 228 (30%) 102 (20%) 2 (20%) 222 (20%)

DS12 1220 (40%) 398 (50%) 1481 (30%) 1059 (20%)
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Table 3. External evaluations of different clustering ensemble selection methods.

Data sets CA

DPPCES CAS ACES SELSCE

DS1 0.91 (30%) 0.35 (40%) 0.80 (50%) 0.85 (50%)

DS2 1.00 (30%) 0.82 (50%) 0.81 (20%) 1.00 (40%)

DS3 0.98 (20%) 0.63 (20%) 0.97 (30%) 0.96 (30%)

DS4 0.97 (40%) 0.41 (40%) 0.88 (40%) 0.77 (50%)

DS5 1.00 (50%) 0.40 (50%) 1.00 (20%) 1.00 (20%)

DS6 0.85 (60%) 0.65 (20%) 0.79 (50%) 0.61 (60%)

DS7 0.96 (40%) 0.89 (20%) 0.75 (30%) 0.75 (20%)

DS8 0.74 (30%) 0.70 (60%) 0.73 (20%) 0.73 (20%)

DS9 0.97 (50%) 0.60 (20%) 0.65 (30%) 0.73 (60%)

DS19 0.82 (30%) 0.50 (20%) 0.65 (20%) 0.70 (60%)

DS11 0.86 (30%) 0.63 (20%) 0.56 (20%) 0.83 (20%)

DS12 0.77 (40%) 0.61 (40%) 0.58 (20%) 0.59 (20%)

Data sets ARI

DS1 0.91 (30%) 0.13 (40%) 0.81 (50%) 0.86 (50%)

DS2 1.00 (30%) 0.31 (50%) 0.26 (20%) 1.00 (40%)

DS3 0.92 (20%) 0.05 (20%) 0.90 (30%) 0.84 (30%)

DS4 0.91 (40%) 0.01 (40%) 0.69 (40%) 0.51 (60%)

DS5 1.00 (50%) 0.10 (50%) 1.00 (20%) 1.00 (40%)

DS6 0.82 (60%) 0.45 (20%) 0.78 (50%) 0.57 (60%)

DS7 0.89 (40%) 0.72 (20%) 0.57 (30%) 0.57 (20%)

DS8 0.23 (30%) 0.16 (60%) 0.20 (20%) 0.20 (20%)

DS9 0.90 (50%) 0.48 (30%) 0.47 (30%) 0.56 (60%)

DS10 0.77 (30%) 0.24 (40%) 0.47 (20%) 0.57 (60%)

DS11 0.50 (30%) 0.07 (20%) 0.01 (20%) 0.44 (20%)

DS12 0.43 (40%) 0.14 (40%) 0.34 (30%) 0.18 (20%)

Data sets NMI

DS1 0.96 (30%) 0.46 (40%) 0.90 (50%) 0.92 (50%)

DS2 1.00 (30%) 0.24 (40%) 0.18 (20%) 1.00 (40%)

DS3 0.86 (20%) 0.16 (20%) 0.84 (30%) 0.77 (30%)

DS4 0.88 (40%) 0.08 (20%) 0.73 (40%) 0.60 (50%)

DS5 1.00 (50%) 0.31 (30%) 1.00 (20%) 0.99 (40%)

DS6 0.92 (60%) 0.80 (20%) 0.90 (50%) 0.80 (60%)

DS7 0.86 (40%) 0.74 (20%) 0.63 (30%) 0.63 (20%)

DS8 0.18 (30%) 0.14 (60%) 0.17 (20%) 0.17 (20%)

DS9 0.88 (50%) 0.56 (30%) 0.50 (30%) 0.57 (30%)

DS10 0.69 (30%) 0.46 (40%) 0.46 (20%) 0.56 (60%)

DS11 0.43 (30%) 0.13 (20%) 0.01 (20%) 0.38 (20%)

DS12 0.44 (40%) 0.29 (40%) 0.38 (30%) 0.22 (20%)
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4 Conclusion

The ranking-based clustering ensemble selection methods are hard to filter out
base clusterings and may miss important diverse clusterings for ensemble. In
this paper, we revisit the base clustering selection from the view of stochastic
sampling and propose a clustering ensemble selection method with Determinan-
tal Point Processes. DPP sampling of base clusterings provide a flexible way to
select qualified and diverse base clusterings in probability. Experimental results
verify the effectiveness of the proposed DPP-based clustering ensemble selection
method. The efficiency of DPP clustering sampling will be further improved in
our future works.
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7. Fränti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pat-

tern Recogn. 39(5), 761–775 (2006)
8. Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of dna

microarray data. BMC Bioinf. 8(1), 3 (2007)
9. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl.

Disc. Data (TKDD) 1(1), 4 (2007)
10. Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P.: Moderate diversity for better

cluster ensembles. Inf. Fusion 7(3), 264–275 (2006)
11. Iam-on, N., Garrett, S., et al.: LinkCluE: a MATLAB package for link-based cluster

ensembles. J. Stat. Softw. 36(9), 1–36 (2010)
12. Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pal, S.K., Bandy-

opadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer,
Heidelberg (2005). https://doi.org/10.1007/11590316 1

13. Jia, J., Xiao, X., Liu, B., Jiao, L.: Bagging-based spectral clustering ensemble
selection. Pattern Recogn. Lett. 32(10), 1456–1467 (2011)

14. Kulesza, A., Taskar, B.: k-DPPs: Fixed-size determinantal point processes. In:
Proceedings of the 28th International Conference on Machine Learning (ICML
2011), pp. 1193–1200 (2011)

15. Kulesza, A., Taskar, B.: Learning determinantal point processes (2011)

https://doi.org/10.1007/11590316_1


Clustering Ensemble Selection with Determinantal Point Processes 633

16. Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algo-
rithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–
1654 (2002)

17. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combin-
ing multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)

18. Veenman, C.J., Reinders, M.J.T., Backer, E.: A maximum variance cluster algo-
rithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

19. Zhao, X., Liang, J., Dang, C.: Clustering ensemble selection for categorical data
based on internal validity indices. Pattern Recogn. 69, 150–168 (2017)

20. Zhong, C., Hu, L., Yue, X., Luo, T., Fu, Q., Xu, H.: Ensemble clustering based
on evidence extracted from the co-association matrix. Pattern Recogn. 92, 93–106
(2019)



Generative Histogram-Based Model
Using Unsupervised Learning
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Abstract. This paper presents a new generative unsupervised learn-
ing algorithm based on a representation of the clusters distribution by
histograms. The main idea is to reduce the model complexity through
cluster-defined projections of the data on independent axes. The results
show that the proposed approach performs efficiently compared with
other algorithms. In addition, it is more efficient to generate new
instances with the same distribution than the training data.

Keywords: Unsupervised learning · Clustering · Generative model ·
Histogram distribution

1 Introduction

Unsupervised learning is a branch of machine learning able to compute a model
of the data distribution without any external information. Unsupervised learn-
ing is a very important tool for data analysis and popular application have been
proposed in various field such as marketing [13], bioinformatic [1] or fraud detec-
tion [4]. One of the most common family of unsupervised learning approaches
are clustering algorithms. Their task is to detect groups (clusters) of objects
(instances) having similar features, compared to objects belonging to different
groups. Some clustering algorithms compute a model representing the distribu-
tion of each cluster. The simplest models compute only the mean vector of each
cluster: the most cited being the K-means family [9]. Others propose a more com-
plex model, for example the Gaussian Mixture Model (GMM) [12] which assumes
a mixture of Gaussian functions, usually one for each cluster, as model of the
data distribution. Other clustering algorithms do not propose an explicit model
of the data distribution: they perform the clustering of the training data, but
in order to classify new objects, they require a comparison with all the objects
of the training data-set. These algorithms are, for example, density-based algo-
rithms such as BDSCAN [7], or hierarchical clustering approaches such as the
Hierarchical Agglomerative Clustering [11].
c© Springer Nature Switzerland AG 2019
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Among the wide panel of family of clustering algorithms, we are interested
in probabilistic approaches. The main idea is to be able to predict, given a set
of observations, a probability distribution over a set of classes, instead of only
delivering the most similar class that the observation should belong to. Prob-
abilistic approaches can be divided into two families. Generative approaches
compute, given the data X and the clusters labels C, a statistical model of the
joint probability distribution on X × C, P (X,C), the probabilities to observe
an object x in a cluster c [10]. These models are called generative because the
join probability distribution can be used to generate new samples following the
same distribution as the training data. On the contrary, discriminative models
compute the conditional probability of the cluster label C, given an object x:
P (C|X = x) [10]. Such approaches can compute membership probabilities, but
are not suited to estimate the generative functions. Most of the time, the Expec-
tation - Maximization (EM) algorithm [5] is used to estimate the parameter of
the models.

A popular algorithm for discriminative clustering is Fuzzy C-Mean (FCM) [3].
FCM is similar to K-Means algorithm [9], except for the assignment of the objects
to the clusters according to a membership value. First, the number of clusters
must be chosen by the user and the membership values are initialized randomly,
then the centroid of each cluster is computed based on the memberships’ values
(maximization step) and new memberships are computed based on the centroids
(expectation step). These two steps are repeated until convergence. In Fuzzy C-
Mean, the centroid of a cluster is the mean of all data points, weighted by their
degree of membership to the cluster. When a generative approach is preferable,
one of the most used algorithm is the above mentioned Gaussian Mixture Model
(GMM) [12]. Again, the number of clusters is given as input and the model’s
parameters (the weight, the center and the covariance matrix of each Gaussian)
are computed by alternating expectation and maximization steps.

GMM can produce very good results when the clusters’ distributions are
not too different from Gaussian distributions. When it is not the case, however,
the data distribution cannot be modelled with a small number of Gaussian.
Few approaches have been proposed to try to compute more general models.
The algorithm presented in [2] is based on a (usually Gaussian) kernel den-
sity estimation made under a couple of constraints. In [16], the authors propose
approaches based on different family of distributions (e.g. mixed logit model). As
far as we are aware, there is no work using histograms as a true non-parametric
representation of the data distribution. Histograms are a simple way of describ-
ing the empirical distribution as observed from the data. We propose here a
non-parametric generative approach based on the EM algorithm, able to com-
pute a histogram mixture model, allowing to deal with a much wider range of
distributions than in previous algorithms.

The remainder of this paper is organized as follows. Section 2 describes the
proposed approach and a complexity analysis is given in Sect. 3. The experimen-
tal protocol and the obtained results are detailed in Sect. 4. Finally, Section 5
concludes the paper and introduces future works.
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2 General Framework

In this section, we introduce a new histogram-based clustering algorithm. The
principle is to represent each cluster k with a set Hk of d histograms where d is
the number of dimensions of the data-set X. Hk is a distribution represented with
d histograms: Hk = (hk,1, . . . , hk,d). Each hk,l is an empirical distribution and
it is represented by a sequence of B continuous and no-overlapped intervals (or
bins) Ij

k,l with an associated weight (or relative frequency) πj
k,l, for j = 1, . . . , B,

such that
∑B

j=1 πj
k,l = 1:

hk,l = [(I1k,l, π
1
k,l, . . . , (I

B
k,l, π

B
k,l)]. (1)

Let X = (x1, x2, . . . , xn) be a data-set of N independent observations from
a mixture of K distributions of dimension d, each represented by a set Hk of d
histograms, and let Z = (z1, z2, . . . , zn) be the latent variables that determine
the component (i.e. the cluster) from which the observation originates.

The aim is to estimate the unknown parameters of the histograms:

θ = (θ1, . . . , θK) (2)

with
θk = (τk, hk,1, . . . , hk,B). (3)

The expected values of θ minimize the following likelihood function :

L(θ;X,Z) = p(X,Z | θ). (4)

This minimization can be done via an Expectation - Maximization (EM)
algorithm.

2.1 Maximization Step

In the Maximization step of the algorithm, the parameters of the histogram dis-
tribution are updated in order to maximize the expected value of the likelihood
function of the model based on the current membership matrix of the data X, as
computed is the Expectation step. To compute the membership matrix, however,
we expect the histograms (hk,1, . . . , hk,d) in Hk, for each cluster (component) k,
to be independents from each other.

As each histogram hk,l represents a distribution along one dimension, we
compute a set of d new independent axes and project the data belonging in
cluster k in this new space. The projection is performed via Weighted Principal
Component Analysis (WPCA [19]) to compute the eigenvectors of the covariance
matrix of the data, weighed by their membership values for cluster k. We obtain
d new independent axes representing the principal components of the data in
cluster k, according to their membership values.

The data are then projected on each of the d new axes and d histogram are
computed. To compute the parameters of an histogram hk,l, the range between
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the minimal and the maximal value of the data projected on axis l is divided
into B equal intervals (bins) Ij

k,l, j ∈ (1, . . . , B). For each of these interval, the
relative frequency πj

k,l is computed as the normalized sum of the membership
for cluster k of the objects projected in this interval:

πj
k,l =

∑
i/xl

i∈Ij
k,l

Tk,i

∑B
j=1

∑
i/xl

i∈Ij
k,l

Tk,i

(5)

with xl
i the value on the ist data point projected on axis l and Tk,i := P (Zi =

k | Xi = xi; θ) is the membership for cluster k of an observation xi, according
the current parameters θ, as computed in the Expectation step.

The mixing parameters τk for each cluster k are simply computed as the sum
of the membership values for this cluster:

τk =
N∑

i=1

Tk,i. (6)

This process is repeated for each cluster k, in order to obtain the values of
all the parameters in θ.

2.2 Expectation Step

The expectation step computes the K × N membership matrix T = [Tk,i], such
as Tk,i := P (Zi = k | Xi = xi; θ), with K the number of clusters (components)
and N the number of observations in the training data-set.

The probability Pk(xl
i) := P (X l

i = xl
i | Zi = k; θ) of an unique value xl

i for a
distribution represented by a histogram hk,l is simply the weight πj

k,l (we recall
that

∑B
j=1 πj

k,l = 1 and πj
k,l ∈ [0, 1]) so that xl

i is in the corresponding interval
Ij
k,l:

Pk(xl
i) = πj

k,l with j | xl
i ∈ Ij

k,l (7)

As the representation space of each cluster have been redefined such as the
new axes are independents, the multivariate probability of an observation xi for
the full distribution Hk associated to cluster k is proportional to the product of
the individual probabilities and can be computed with the Bayesian formalism:

Tk,i =
τk

∏d
l=1 Pk(xl

i)
∑K

k=1 τk

∏d
l=1 Pk(xl

i)
(8)

Note that this equation is only valid because of the WPCA projections com-
puted for each cluster in the Maximization step. Without this trick, we would
have needed to compute the full multivariate histogram, with a weight π associ-
ated to each combination of intervals in all dimensions. The number of param-
eters to learn would have been in O(Bd), instead of O(B.d) in the proposed
approach.
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2.3 Proposed Algorithm

The approach is described in Algorithm 1. It takes as input the data X, the
expected number of components (clusters) K and the number of intervals (bins)
B for the histograms.

Algorithm 1. Histogram-based generative clustering
Input: X, K and B.
Output: Adapted parameters θ.

1: Initialize T = [Tk,i] and τk for each component k.
2: repeat

MAXIMIZATION STEP
3: for each component k do
4: Compute a WPCA projection of X weighted by Tk,..
5: Compute the histogram distributions on each WPCA axes l:

πj
k,l =

∑
i/xl

i∈I
j
k,l

Tk,i

∑B
j=1

∑
i/xl

i∈I
j
k,l

Tk,i

.

6: Compute the mixing parameter τk:

τk =
N∑

i=1

Tk,i

EXPECTATION STEP
7: for each component k and instance xi ∈ X do
8: Compute the membership Tk,i:

Tk,i =
τk

∏d
l=1 Pk(x

l
i)

∑K
k=1 τk

∏d
l=1 Pk(xl

i)

with Pk(x
l
i) = πj

k,l for j | xj
i ∈ Ij

k,l.

9: until convergence.

The mixing parameters are initialized such that τk = N/K for k = 1, . . . ,K,
with N the number of instances in the training data-set. The membership matrix
T = [Tk,i] can be initialized randomly, but we choose to optimize the initializa-
tion using a Fuzzy C-means algorithm [3] trained on the data with a number of
cluster equal to K. Fuzzy C-means computes a membership matrix Tinit based
on the distances between data points and clusters’ centers. After normalization,
it is a good starting point for the proposed model.

3 Complexity

In this section we analyze the complexity of the proposed approach in comparison
to a classical Gaussian Mixture Model (GMM).
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In term of time complexity, the maximization step of the proposed algorithm
requires, for each cluster, the computation of the covariance matrix (O(K.N.d2),
with K the number of clusters, N the data size and d the number of dimensions)
and the computation of the eigenvectors of the covariance matrix, usually around
O(d3), though some decomposition approaches are known to have a lower com-
plexity. The projection is in O(N.d), and the histograms computation have a
complexity of O(B.N.d), with B the number of chosen bins. The expectation
step requires the computation of a probability for each histogram in each cluster,
for each data point, leading to a complexity of O(K.B.N.d). The number of bins
B being a constant user-chosen parameter, the overall complexity is O(K.N.d3).
It is the same complexity as the classical EM algorithm used to compute a full
GMM [5]. Non-generative approaches, such as K-means, have a lower complexity
regarding the number of dimension (O(K.N.d)), because of the simplicity of the
produced model.

In term of model complexity, the proposed approach is actually at least as
parsimonious as a full GMM. Indeed, thanks to the projections, for each clus-
ter only d histograms (size B) are computed, leading to global model size in
O(B.K.d). A full GMM is composed of K mean vectors (size d) and K covari-
ance matrices (size d2), for a model complexity of O(K.d2). If we chose a number
of bins B < d, the histograms model is at the same time smaller than the GMM
and not limited to a family of distributions. In addition, in most cases, B does
not need to be large, values between 5 to 20 have shown very good results in
our preliminaries experiments. Note that a GMM computing only the diagonal
covariance (i.e. the variance in each dimension) results in a more compact model
(O(K.d)), at the expense of ignoring all possible correlations between features.

The proposed approach is therefore no more complex than a GMM, both
in term of computation and model complexity. However, the histograms model
should be a better representation of the data distribution than a GMM, because
it can model a much larger range of distributions.

4 Experimental Validation

In this section, we compare experimentally the proposed approach with sev-
eral classical algorithms. We compared it with two well-known “discriminative”
approaches, K-means [9] and Fuzzy C-means (FCM) [3]. As the proposed app-
roach initializes its membership matrix using FCM, it is important to check that
the obtained clustering improves from the initial partition. We also compared
with two generative approaches, a Gaussian Mixture Model learning only the
diagonal covariance (GMM diag) and Gaussian Mixture Model learning the full
covariance matrix (GMM full). In order to validate the proposed algorithm, we
tested two criteria in particular: the quality of the algorithm for the clustering
task and its ability to generate new samples with the same distribution as the
training data.

In order to evaluate these criteria, the algorithms are applied on sixteen
data-sets. Eight of them are artificial data-set generated from various distribu-
tions (Sect. 4.1). Knowing the distributions allows an easier interpretation of the
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experimental results. In real data-sets, however, the range of possible distribu-
tions are usually more diverse, thus we also tested the algorithms on eight real
data-sets with various sizes, dimensions and expected number of clusters.

To test the clustering quality of the proposed algorithm in comparison to its
competitors, we chose two external quality indexes (see Sect. 4.2) able to compare
the obtained clustering to an expected partition of the data. Internal quality
indexes, which estimate the compactness and the separability of the clusters,
are usually biased toward hyper-spherical distributions and are, therefore, not
well adapted to the type of approaches proposed in this paper.

To test the quality of the generated samples, we compare the dissimilarity
between the distribution of the original training data and the distribution of
the generated data (Sect. 4.3). The computation of the dissimilarity measures
between each pair of empirical distributions is based on the Wasserstein metric
[14], seen as a solution of an optimal transport problem.

In all experiments, we chose a value of K matching the expected number
of clusters and we fixed the number of bins to B = 20. All experiments have
been done using Python 3.7, with the scikit-learn package for the classical algo-
rithms and the quality indexes and the Python Optimal Transport package for
the computation of the Wasserstein distance.

4.1 Data-Sets

Sixteen data-sets have been used for the experiments. They were chosen to pro-
pose a high diversity of challenges in order to validate the proposed approach in
comparison to classical algorithms. Table 1 summarizes the data-sets character-
istics.

Eight of them are artificial data. “Gauss 1” and “Gauss 2” data-sets are struc-
tured with several Gaussian clusters, in respectively 3 and 50 dimensions. “Rect
1” and “Rect 2” have rectangular clusters in two dimensions, with some overlap
between clusters. Clusters in “Comets” and “Gradients” are drawn from gamma
distributions, resulting in non-symmetrical shapes. Finally, two data-sets with
non-linearly separable clusters in three dimensions, “Atom” and “Chainlink”
were chosen from the Fundamental Clustering Problems Suite (FCPS) [17].

The eight real data-sets come from the Open Machine Learning (OpenML)
data base [18]. The data-sets were chosen for their variety of shapes, size, dimen-
sions and number of expected clusters. We selected four data-sets with a small
number of objects, under 500, as it is usually more difficult to compute the
empirical distribution in such case. We also tested the approaches on bigger
data-sets, from 5000 to 20000 objects, with a number of dimensions going up to
40 and a number of expected clusters ranging from 5 to 26.

4.2 Quality

Evaluating the performance of a clustering algorithm is not as trivial as counting
the number of errors or the precision and recall of a supervised classification
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Table 1. Data-sets description

Name Size Dimension #Clusters Type

Gauss 1 10000 3 3 Artificial

Gauss 2 10000 50 10 Artificial

Rect 1 3000 2 3 Artificial

Rect 2 3000 2 3 Artificial

Comets 3000 2 3 Artificial

Gradients 3000 2 3 Artificial

Atom 800 3 2 Artificial

Chainlink 1000 3 2 Artificial

Ecoli 336 7 2 Real

Letter 20000 16 26 Real

Page-blocks 5473 10 5 Real

Satimage 6430 36 6 Real

Seeds 210 7 3 Real

Texture 5500 40 11 Real

Transplant 131 3 2 Real

Galaxy 323 4 2 Real

algorithm. A popular strategy is to evaluate if the obtained clustering defines
separations of the data similar to some ground truth set of classes [6].

In this paper, we used two external quality indexes which provide a measure
of similarity between the cluster assignment proposed by the algorithms and the
“true” labels, when they are known. Here we evaluate the clustering results using
the Adjusted Rand Index (ARI) [8] and the Normalized Mutual Information
score (NMI) [15]. These two indexes were computed for each data-set and each
algorithm. We also computed a global measurement score following [20]:

Score(Ai) =
1

Nd

∑

j

Ind(Ai,Xj)
maxi Ind(Ai,Xj)

(9)

where Ind(Ai,Xj) indicates the quality index value of algorithm Ai for data-set
Xj and Nd the number of tested data-sets. This score gives an overall evaluation
of the performance of each approach relatively to the others. A value of 1 means
that the approach is always the more efficient regarding the quality index. The
lower the values in [0, 1], the less efficient is the algorithm in comparison to its
competitors. The results are very similar between the two indexes and we chose
to show here only the results obtained for the ARI index (Table 2).

The quality of the proposed approach is either comparable to the classical
approaches, especially when the clusters’ distributions follow a Gaussian law
(“Gauss 1” and “Gauss 2”), or better than the other algorithms. In average,
generative models perform better than K-means or Fuzzy C-means (FMC).
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Table 2. Adjusted Rand Index (ARI) for each data-set and each algorithm.

Data-set K-means FCM GMM diag GMM full Proposed

Gauss 1 0.97 0.97 0.97 0.97 0.97

Gauss 2 1.00 1.00 1.00 1.00 0.98

Rect 1 0.77 0.72 0.99 0.98 1.00

Rect 2 0.68 0.68 0.49 0.68 0.80

Comets 0.65 0.67 0.65 0.94 0.92

Gradients 0.81 0.78 0.94 0.85 0.96

Atom 0.18 0.22 0.02 0.03 0.72

Chainlink 0.09 0.09 0.91 0.91 0.99

Ecoli 0.23 0.53 0.00 0.37 0.72

Letter 0.15 0.00 0.11 0.18 0.19

Page-blocks 0.10 0.01 0.06 0.19 0.22

Satimage 0.53 0.53 0.50 0.47 0.51

Seeds 0.77 0.77 0.68 0.72 0.78

Texture 0.51 0.47 0.44 0.69 0.75

Transplant 0.61 0.77 0.74 0.59 0.85

Galaxy 0.27 0.27 0.27 0.22 0.33

Score 0.70 0.66 0.70 0.82 0.99

Fig. 1. Visual examples of clustering results obtain by various algorithms. Top to
bottom: “Gauss 1”, “Gradients”, “Comets”, “Rect 1” and “Atom”.
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We also see a clear increase of quality with the increase of generality of the
model, a full Gaussian Mixture Model (GMM) being better than the diagonal
GMM and the proposed approach being in average better than the GMM.

It is interesting to note that the proposed algorithm, despite using a FMC
to initialize its membership matrix, shows much better clustering results than
FMC. The GMM approaches are very good for many of the tested data-sets,
but sometime fail to produce the desired clustering (remarkable examples are
data-sets “Atom” and “Ecoli”). In this experiment, there is no clear impact of
the number of observations, dimensions or clusters on the quality of the obtain
clustering. We suppose that the complexity of the data structure, in term of
clusters’ distributions and overlapping, plays a much more important role.

Figure 1 illustrates the observed differences in quality among the algorithms.
In these examples, some of the algorithms’ limitations are clearly visible. In
particular, FCM is suited for hyper-spherical clusters such as in “Gauss 1”, but
lack the flexibility to detect correctly clusters from other type of distributions.
Diagonal GMM is slightly better, but is unable to model correlations between
features (“Comets”, “Rect 1”). Finally, the full GMM is more efficient, but have
difficulties with far-from-Gaussian distributions (e.g. “Rect 1” or “Atom”).

4.3 Generation of New Samples

Generative models are powerful tools to model the data distribution and can
be used to generate new samples following the same distribution. As the pro-
posed approach compute an estimation of the empirical distribution instead of
a mixture of Gaussian, we expect that its ability to generate new data is bet-
ter than the GMM. To test this assumption, we generated samples following
the distributions learn from the sixteen training data-sets, and we compared
the distribution of the generated data to the distribution of the original data.
The similarity between the two distribution, based on the data, were computed
with a Earth mover’s distance (EMD) also known as the Wasserstein metrics.
The EMD between two distributions is proportional to the minimum amount of
work required to convert one distribution into the other [14]. The Wasserstein
distance between two distributions u and v is:

l1(u, v) = inf
π∈Γ (u,v)

∫

R×R

|x − y|dπ(x, y) (10)

where Γ (u, v) is the set of (probability) distributions on R×R whose marginals
are u and v on the first and second factors respectively. Note that the input
distributions can be empirical, i.e. described from data samples.

All distances for each algorithm and each data-sets are presented in Fig. 2.
Note that the values can vary a lot from a data-set to another, based on their size
and dimension. In order to increase the readability of the results, the distances
have been normalized such that the less efficient approach for each data-set have
a score of 1. A score of 0 would indicate a perfect match between the two dis-
tributions. The results show that, as expected, the proposed approach is usually
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much better than the GMM to generate new data matching the distribution of a
training data-set. For some data-set, a full GMM is as efficient as the histogram-
based model (see data-sets “Satimage” or “Texture”), but in other cases the
proposed algorithm is much better (for example “Rect 1”, “Gradients”, “Ecoli”
or “Letter”).

Fig. 2. For each generative algorithm, Normalized Wasserstein distance between each
training data-set and the generated data. Smaller values indicate a better fit.

5 Conclusion

In this paper, we introduced a new generative unsupervised learning algorithm
based on the computation of histograms to representation the data distributions.
The main idea is to reduce the model complexity for each class via different
projections on independent axes and to compute a one-dimensional histogram
for each of these axes. Axes being independent, the computation of the join
probability distribution is greatly simplified.

The proposed algorithm has a complexity comparable to the complexity of a
Gaussian Mixture Model (GMM), while being able to model a wider variety of
distributions. To validate its quality experimentally, we compared the proposed
approach to several classical algorithms. The results show that the obtained
model is in average better than models obtained with other algorithms. In addi-
tion, the proposed approach is more efficient than a GMM to generate new
instances with the same distribution as the training data.
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To pursue this study, we plan to test the use of non-linear projections instead
of the current linear projections. We expect that this will improve the perfor-
mances of the model when the data distribution have non-convex components.
We also plan to reduce the complexity of the algorithm by limiting the number
of principal components in the projections.

Acknowledgements. This work was supported in part by the Pro-TEXT project
(No ANR-18-CE23-0024) financed by the ANR (Agence Nationale de la Recherche).

References

1. Baldi, P., Brunak, S., Bach, F.: Bioinformatics: The Machine Learning Approach.
MIT press, Cambridge (2001)

2. Benaglia, T., Chauveau, D., Hunter, D.R.: An EM-like algorithm for semi- and
nonparametric estimation in multivariate mixtures. J. Comput. Graph. Stat. 18(2),
505–526 (2009)

3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm.
Comput. Geosci. 10(2–3), 191–203 (1984)

4. Cabanes, G., Bennani, Y., Grozavu, N.: Unsupervised learning for analyzing the
dynamic behavior of online banking fraud. In: IEEE 13th International Conference
on Data Mining, pp. 513–520 (2013)

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

6. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the
number of clusters in a dataset. Genome Biol. 3(7), 1–21 (2002)

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: International Conference
on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

8. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
9. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),

651–666 (2010)
10. Jebara, T.: Machine Learning: Discriminative and Generative, vol. 755. Springer,

Heidelberg (2012)
11. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook.

Springer, New York (2005). https://doi.org/10.1007/b107408
12. McLachlan, G.J., Basford, K.E.: Mixture models: inference and applications to

clustering, vol. 84. M. Dekker, New York (1988)
13. Rastin, P., Cabanes, G., Matei, B., Bennani, Y., Marty, J.M.: A new sparse rep-

resentation learning of complex data: application to dynamic clustering of web
navigation. Pattern Recogn. 91, 291–307 (2019)

14. Ruschendorf, L.: Wasserstein metric. In: Hazewinkel, H. (ed.) Encyclopedia of Math-
ematics. Springer, Berlin (2001). https://doi.org/10.1007/978-94-009-5991-0

15. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for com-
bining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

16. Train, K.E.: Mixed Logit, p. 138–154. Cambridge University Press (2003)
17. Ultsch, A.: Fundamental Clustering Problems Suite (FCPS) (2005)
18. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science

in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)

https://doi.org/10.1007/b107408
https://doi.org/10.1007/978-94-009-5991-0


646 P. Rastin et al.

19. Yue, H.H., Tomoyasu, M.: Weighted principal component analysis and its applica-
tions to improve FDC performance. In: IEEE Conference on Decision and Control
(CDC), vol. 4, pp. 4262–4267 (2004)

20. Zhao, H., Fu, Y.: Dual-regularized multi-view outlier detection. In: International
Conference on Artificial Intelligence, pp. 4077–4083. AAAI Press (2015)



Author Index

Ammi, Mehdi 510
Aryal, Sunil 90

Bandara, Kasun 462
Bao, Feilong 363
Basaj, Dominika 235
Basnet, Anish 90
Benlamine, Kaoutar 561
Bennani, Younès 561, 634
Bergmeir, Christoph 462
Bhattacharyya, Pushpak 398
Biecek, Przemysław 235

Cabanes, Guénaël 634
Chen, Dali 387
Chen, Guo 585
Chen, Hong 3
Chen, Jian-Hui 573
Chen, Qiuyuan 522
Chen, Wei 259
Couronne, Thierry 634

Dai, Jianhua 549
Dang, Jianwu 295
Das, Sukhendu 64
De Bois, Maxime 510
Deep, Kumar Shikhar 398
Delasalles, Edouard 282
Denoyer, Ludovic 282
Doborjeh, Maryam 195
Doborjeh, Zohreh 195

Ekbal, Asif 398

Fan, Yang 549
Fan, Yibo 259
Fang, Tao 162, 173
Fang, Xingqi 15
Fu, Huiyuan 143

Gao, Guanglai 363
Gao, Neng 37

Gao, Sheng 306
Gargouri, Bilel 127
Ge, Meng 295
Gedeon, Tom 410
Ghorbel, Fatma 127
Gosiewska, Alicja 235
Grozavu, Nistor 561
Gu, Yueyang 15
Guo, Hao 50
Guo, Junxiong 425

Haensch, Wilfried 185
Hamdi, Fayçal 127
Han, Xiao 597
He, Gang 259
He, Qiuxiang 103
Hewamalage, Hansika 462
Hibti, Mohamed 561
Hong, Zhenhou 425
Hosokawa, Kohji 185
Hu, Bin 24
Hu, Han 522
Hu, Shaohan 209
Huang, Guoping 103
Huang, Hai 270
Huang, Shenglei 209
Huang, Tianshuo 270
Huo, Hong 162, 173

Ishii, Masatoshi 185
Ito, Megumi 185

Jiang, Yiwen 37
Jiao, Wencong 151

Kasabov, Nikola 195
Kawaguchi, Yuki 319
Kherallah, Monji 534
Kim, Sangbum 185
Koga, Hisashi 3
Kong, Tao 475
Kopsinis, Yannis 608



Lamprier, Sylvain 282
Lan, Man 340
Lei, Jiahuan 376
Li, Li 103
Li, Luxuan 475
Li, Nan 295
Li, Tao 151
Li, Xiang 37
Li, Xiaohong 50
Lin, Zheng 222
Liu, Cheng-Lin 573
Liu, Gongshen 248, 328
Liu, Huaping 475
Liu, Linfeng 24
Liu, Na 363
Liu, Ruifang 306
Liu, Wei 621
Liu, Xinle 162
Liu, Zhaoyi 522
Liu, Zhiyong 115
Liu, Zongying 488
Loo, Chu Kiong 488
Lu, Min 363
Lu, Xuequan 90
Luo, Hengliang 376

Ma, Longxuan 270
Ma, Suwei 15
Ma, Zhiyuan 387
Maalej, Rania 534
Matei, Basarab 561
Meng, Kui 248, 328
Métais, Elisabeth 127
Miao, Hang 306
Mohania, Manal 410
Morante, Manuel 608

Niu, Xiaoguang 15
Nomura, Akiyo 185

Okazaki, Atsuya 185
Okazawa, Junka 185
Ouyang, Yuanxin 387
Ozawa, Seiichi 319

Parameswaran, Sandeep Narayan 64
Pasupa, Kitsuchart 488
Plátek, Martin 77

Qiao, Yu 15

Rajasegarar, Sutharshan 449
Rasch, Malte 185
Rastin, Parisa 634
Rong, Wenge 387
Rutkowska, Danuta 437
Rutkowski, Leszek 437
Rychalska, Barbara 235

Seaman, Brian 462
Seo, Youngjoo 608
Shah, Dhvani 195
Sheng, Yixuan 340
Shi, Gang 222
Shi, Peibei 462
Šíma, Jiří 77
Sitaula, Chiranjibi 90
Su, Xiangdong 363
Su, Yijun 37
Sun, Fuchun 475
Suryanarayana, Gunnam 597

Tang, Haoyu 522
Tang, Wei 37
Theodoridis, Sergios 608
Thuseethan, Selvarajah 449
Tran, Quoc 462
Tu, Enmei 597

Verde, Rosanna 634

Wali, Wafa 127
Wang, Grace Y. 195
Wang, Jianzong 425
Wang, Jinshan 376
Wang, Li-Na 151
Wang, Longbiao 295
Wang, Shan 143
Wang, Weiping 222
Wang, Zheng 499
Wang, Zhenhua 499
Wang, Zihao 597
Wang, Zuo-Ren 573
Weng, Weiwei 24
Wu, Jiagao 24
Wu, Song 585

648 Author Index



Xiang, Ji 37
Xiang, Yong 90
Xiao, Guoqiang 585
Xiao, Hongbo 50
Xiao, Jing 425
Xiao, Xiaobin 15
Xing, Fu 173
Xing, Zhenchang 50
Xiong, Fangzhou 115
Xiong, Zhang 387
Xiong, Zhansheng 499
Xu, Jieping 353
Xu, Kepeng 259
Xu, Kuan 15
Xu, Siqi 549
Xu, Yanfu 222

Yacoubi, Mounîm A. El 510
Yan, Bencheng 209
Yan, Hui 162
Yang, Gang 353
Yang, Jie 597
Yang, Lu 24
Yang, Xu 115
Yang, Zhuo 259

Yao, Wenbin 143
Yearwood, John 449
Yu, Wenxin 259
Yuan, Fengcheng 222
Yuan, Ye 173
Yue, Xiaodong 621

Zaiou, Ahmed 561
Zha, Daren 37
Zhang, Fengwei 259
Zhang, Fengyi 115
Zhang, Jianhua 499
Zhang, Lei 270
Zhang, Qing 376
Zhang, Xuewen 248
Zhang, Yunye 259
Zhang, Yuqi 328
Zhang, Zhiqiang 259
Zhong, Caiming 621
Zhong, Guoqiang 151
Zhou, Jie 621
Zhou, Liyuan 410
Zhu, Xinghua 425
Zou, Y. X. 522

Author Index 649


	Preface
	Organization
	Contents – Part III
	Semantic and Graph Based Approaches
	GL2vec: Graph Embedding Enriched by Line Graphs with Edge Features
	Abstract
	1 Introduction
	2 Graph2vec
	2.1 Extraction of Rooted Subgraphs
	2.2 Learning Embeddings of Entire Graphs

	3 Limitations of Graph2vec
	4 Proposed Method
	4.1 Line Graph (Edge-to-Vertex Dual Graph)
	4.2 GL2vec

	5 Experimental Evaluations
	5.1 Graph Datasets
	5.2 Experimental Setup
	5.3 Results and Discussions

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

	Joint Semantic Hashing Using Deep Supervised and Unsupervised Methods
	1 Introduction
	2 Methodology
	2.1 Deep Supervised Hashing
	2.2 Unsupervised Hashing

	3 Experiments
	3.1 Setup
	3.2 Content-Based Retrieval Comparison
	3.3 Semantic Retrieval Performance Comparison
	3.4 Subjective Comparison

	4 Conclusion
	References

	Label-Based Deep Semantic Hashing for Cross-Modal Retrieval
	1 Introduction
	2 Related Work
	3 Label-Based Deep Semantic Hashing
	3.1 Problem Definition
	3.2 Deep Network Architecture
	3.3 Hash Code Learning
	3.4 Optimization

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Settings and Performance Comparisons

	5 Conclusion
	References

	HRec: Heterogeneous Graph Embedding-Based Personalized Point-of-Interest Recommendation
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 POI Recommendation Framework
	4.1 Learning Module
	4.2 Ranking Module

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Baseline Methods
	5.4 Parameter Settings
	5.5 Experimental Results

	6 Conclusions
	References

	Embedding and Predicting Software Security Entity Relationships: A Knowledge Graph Based Approach
	1 Introduction
	2 The Approach
	2.1 Approach Overview
	2.2 Constructing Software Security Knowledge Graph
	2.3 Translation-Based Knowledge Graph Embedding
	2.4 Prediction Task

	3 Experiment
	3.1 Experiment Design
	3.2 Software Security Knowledge Graph in Experiments
	3.3 Impact of Knowledge Heterogeneity (RQ1)
	3.4 Predicting Software Security Entity Relationships (RQ2)

	4 Related Work
	5 Conclusion and Future Work
	References

	SACIC: A Semantics-Aware Convolutional Image Captioner Using Multi-level Pervasive Attention
	1 Introduction
	2 Proposed Model
	2.1 Feature Extraction
	2.2 Feature Refinement
	2.3 Caption Generation
	2.4 Multi-level Pervasive Attention

	3 Experiments
	4 Conclusion
	References

	One Analog Neuron Cannot Recognize Deterministic Context-Free Languages
	1 The Analog Neuron Hierarchy
	2 Neural Language Acceptors with One Analog Unit
	3 The Simplest Non-regular Deterministic Language
	4 One Analog Unit Doesn't Accept Non-regular DCFLs
	5 Conclusion
	References

	Tag-Based Semantic Features for Scene Image Classification
	1 Introduction
	2 Related Works
	3 The Proposed Method
	3.1 Design of Filter Banks Using Training Images
	3.2 Extraction of Proposed Tag-Based Semantic Features for Input Image

	4 Experimental Results
	4.1 Implementation
	4.2 Datasets
	4.3 Comparison with Existing Methods
	4.4 Ablative Study of Threshold
	4.5 Ablative Study of Individual Embedding

	5 Conclusion
	References

	Integrating TM Knowledge into NMT with Double Chain Graph
	1 Introduction
	2 Preliminary
	2.1 Transformer-Based NMT
	2.2 Translation Pieces Extracted from TM

	3 Double Chain Graph
	3.1 Double Chain Graph Description
	3.2 The Effectiveness of Double Chain Graph
	3.3 Guiding NMT Decoding with Double Chain Graph

	4 Experiments
	4.1 Settings
	4.2 Results and Analysis

	5 Conclusion
	References

	Learning Transferable Policies with Improved Graph Neural Networks on Serial Robotic Structure
	1 Introduction
	2 Related Work
	3 Proposed Method
	4 Experiments
	4.1 GNN Model
	4.2 The Proposed Method

	5 Conclusion
	References

	Visualizing Readable Instance Graphs of Ontology with Memo Graph
	Abstract
	1 Introduction
	2 Related Work
	2.1 Ontology Visualization
	2.2 Ontology Summarization

	3 Background: The Memo Graph Ontology Visualization Tool
	4 Extending Memo Graph: The IKIEV Approach
	4.1 Measures Determining Key-Instances
	4.2 General Algorithm

	5 Experimentation
	5.1 Integration of Memo Graph in Captain Memo
	5.2 Other Applications
	5.3 Evaluation

	6 Conclusion
	References

	Spiking Neuron and Related Models
	Hippocampus Segmentation in MRI Using Side U-Net Model
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Side U-Net Model
	3.2 Loss Function

	4 Experiments and Results
	4.1 Dataset and Setting
	4.2 Baseline and Comparison Result

	5 Discussion and Conclusion
	References

	AutoML for DenseNet Compression
	1 Introduction
	2 Related Work
	2.1 Model Compression
	2.2 DenseNet

	3 RL-Based AutoML for DenseNet Compression
	3.1 RL Formulation of DenseNet Sparsification
	3.2 Automatic DenseNet Sparsification
	3.3 Optimization for the Policy Network

	4 Experiments
	4.1 Implementation Details
	4.2 Experimental Results Obtained on the CIFAR-10 Dataset
	4.3 Experimental Results Obtained on the CINIC-10 Dataset

	5 Conclusion
	References

	Mechanisms of Reward-Modulated STDP and Winner-Take-All in Bayesian Spiking Decision-Making Circuit
	Abstract
	1 Introduction
	2 Spiking Neural Network
	2.1 Spiking Neuron Model
	2.2 Reward-Modulated Synaptic Plasticity

	3 Spiking Decision-Making Circuit Model
	3.1 The Neural Circuit of Decision Making
	3.2 Underlying Bayesian Computation

	4 Experiments and Results
	4.1 Random-Dot Motion Discrimination
	4.2 Simulation of the Visual Discrimination Experiment
	4.3 Simulation of Learning with Reward-Modulated STDP

	5 Conclusion
	References

	Homeostasis-Based CNN-to-SNN Conversion of Inception and Residual Architectures
	1 Introduction
	2 Methods for Conversion of CNN into SNN
	2.1 Spiking Implementation of CNN Operations
	2.2 Weight Normalization Method
	2.3 Homeostasis-Based Compensation Approach

	3 Experiment and Analysis
	3.1 Comparison with Other SNNs
	3.2 Experiment on Compensation Approach

	4 Conclusion
	References

	Training Large-Scale Spiking Neural Networks on Multi-core Neuromorphic System Using Backpropagation
	1 Introduction
	2 Multi-core Neuromorphic System Architecture
	3 Backpropagation Training Algorithm
	3.1 Mathematical Model
	3.2 Hardware Implementation

	4 Experimental Results
	5 Conclusion
	References

	Deep Learning of EEG Data in the NeuCube Brain-Inspired Spiking Neural Network Architecture for a Better Understanding of Depression
	Abstract
	1 Introduction
	2 Methods and Procedures
	2.1 Dataset Description
	2.2 Proposed NeuCube Model for Classifying and Analyzing the Brain Regions Using EEG Data of Healthy and Depressed Individuals

	3 Results
	3.1 Experiment Design
	3.2 Classification Accuracy
	3.3 Pattern Discovery of Dynamic Brain Activities of Depressed Versus Healthy Individuals Through Visualization of the NeuCube Models
	3.3.1 Eyes Closed State
	3.3.2 Eyes Open State


	4 Conclusion
	Acknowledgements
	References

	Text Computing Using Neural Techniques
	Watch and Ask: Video Question Generation
	1 Introduction
	2 Related Work
	2.1 Question Generation
	2.2 Video Question Answering

	3 Task Definition
	4 Model
	4.1 Type-Fused Frame Encoder
	4.2 Video Encoding and Question Generation

	5 Experiments
	5.1 Dataset
	5.2 Comparative Models
	5.3 Implementation Details
	5.4 Evaluation Methods

	6 Results and Analysis
	6.1 Attention Visualization
	6.2 Case Study and Error Analysis

	7 Conclusion and Future Works
	References

	Multi-perspective Denoising Reader for Multi-paragraph Reading Comprehension
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Framework
	3.2 Paragraph Selector
	3.3 Paragraph Reader
	3.4 Training and Prediction

	4 Experiments
	4.1 Datasets and Baselines
	4.2 Implementation Details
	4.3 Results and Analysis

	5 Conclusion
	References

	Models in the Wild: On Corruption Robustness of Neural NLP Systems
	1 Introduction
	2 Related Work
	3 WildNLP: Corruption Robustness Testing Approach
	3.1 Corruption Aspects

	4 Experiments
	4.1 Experimental Setting
	4.2 Model Robustness

	5 Robustness Enhancements
	6 Conclusions
	References

	Hie-Transformer: A Hierarchical Hybrid Transformer for Abstractive Article Summarization
	1 Introduction
	2 Related Work
	3 Proposed Model
	3.1 Problem Formulation
	3.2 Hierarchical Encoder
	3.3 Summary Decoder
	3.4 Overall Loss Function

	4 Experiments
	4.1 Datasets and Baselines
	4.2 Experiment Settings
	4.3 Results and Discussion

	5 Conclusion
	References

	Target-Based Attention Model for Aspect-Level Sentiment Analysis
	1 Introduction
	2 Related Work
	3 Model Overview
	3.1 Input Embedding Layer
	3.2 Contextual Layer
	3.3 Target-Based Attention Layer
	3.4 Output Layer

	4 Experiment
	4.1 Dataset and Settings
	4.2 Results and Discussions
	4.3 Effects of Position Encoding
	4.4 Effects of Attention Interaction
	4.5 Case Study

	5 Conclusion
	References

	Keyphrase Generation with Word Attention
	1 Introduction
	2 Related Work
	3 Model
	3.1 Seq2seq Model with Coverage and Copying Mechanism
	3.2 Word Attention
	3.3 Combine Hidden Context and Word Context

	4 Experiment
	4.1 Datasets
	4.2 Baseline Models and Evaluation Metrics
	4.3 Implementation Details
	4.4 Results Analysis

	5 Conclusion
	References

	Dynamic Neural Language Models
	1 Introduction
	2 Related Work
	3 Model
	3.1 Notations and Task
	3.2 Dynamic Recurrent Language Model
	3.3 Inference

	4 Experiments
	4.1 Models and Baselines
	4.2 Temporal Settings
	4.3 Datasets
	4.4 Language Modeling Results
	4.5 Text Classification Results
	4.6 Text Generation Through Time

	5 Conclusion
	References

	A Fast Convolutional Self-attention Based Speech Dereverberation Method for Robust Speech Recognition
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 DCANN Based Speech Dereverberation Model
	3.2 P-DCANN

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Experimental Results and Discussion

	5 Conclusion
	References

	Option Attentive Capsule Network for Multi-choice Reading Comprehension
	1 Introduction
	2 Related Works
	3 Our Proposed Model
	3.1 Content Encoding Layer
	3.2 Sequence Matching Layer
	3.3 Capsule Aggregating Layer
	3.4 Option Selection Layer

	4 Experiments
	4.1 Dataset and Experimental Setups
	4.2 Overall Results and Ablation Study
	4.3 Analysis and Discussion

	5 Conclusion
	References

	Exploring and Identifying Malicious Sites in Dark Web Using Machine Learning
	1 Introduction
	2 A Study on Malicious Sites in Dark Web
	2.1 Collection System of Malicious URLs in Tor Network
	2.2 Exploration of Malicious Sites in Dark Web
	2.3 Discussions

	3 Categorization of HTML Contents in Dark Web
	3.1 Feature Embedding and Classification Method
	3.2 Experiments

	4 Conclusions
	References

	Paragraph-Level Hierarchical Neural Machine Translation
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Corpus
	3.2 Hierarchical Transformer Encoder
	3.3 Hierarchical Transformer Decoder
	3.4 Synthesis Model

	4 Experiments
	4.1 Corpus Establishing
	4.2 Setup
	4.3 Overall Performance
	4.4 Analysis on the Effect of Attention Mechanism
	4.5 Case Study

	5 Conclusion
	References

	Residual Connection-Based Multi-step Reasoning via Commonsense Knowledge for Multiple Choice Machine Reading Comprehension
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Task Definition
	3.2 Commonsense Knowledge
	3.3 Sentence-Level Knowledge Construction

	4 Our Model
	4.1 The Co-Matching Model
	4.2 Attention Mechanism
	4.3 Sentence-Level Knowledge Interaction Module (SKI Module)
	4.4 Residual Connection-Based Multi-step Reasoning Module (RCMR Module)

	5 Experiments
	5.1 Dataset
	5.2 Preprocessing and Training Details
	5.3 Results
	5.4 Analysis

	6 Conclusion and Future Work
	References

	Zero-Shot Transfer Learning Based on Visual and Textual Resemblance
	1 Introduction
	2 Zero-Shot Transfer Learning
	2.1 Problem Statement
	2.2 The Transfer Model
	2.3 Transfer Model with Fine-Tuning

	3 Empirical Evaluation
	3.1 Dataset
	3.2 Platform Setup
	3.3 Experiments

	4 Conclusions
	References

	Morphological Knowledge Guided Mongolian Constituent Parsing
	Abstract
	1 Introduction
	2 Mongolian Morphological Analysis
	3 Method
	3.1 Input Embedding Layer
	3.1.1 Word Representation Models
	3.1.2 Last Suffix Embedding
	3.1.3 Position Embedding

	3.2 Self-attention Encoder
	3.3 Chart Decoder
	3.3.1 Span Representation
	3.3.2 Label Scoring


	4 Experiments
	4.1 Word Embedding Corpus
	4.2 Constituent Parsing Corpus
	4.3 Metrics and Baseline
	4.4 Neural Network Training

	5 Results and Discussion
	5.1 The Effect of Different Composition Function
	5.2 The Effect of Word Representation
	5.3 The Effect of Different POS Tagging

	6 Conclusion
	Acknowledgments
	References

	BERT Based Hierarchical Sequence Classification for Context-Aware Microblog Sentiment Analysis
	1 Introduction
	2 Methods
	2.1 Overview of CA-LSTM Model for Baseline Comparison
	2.2 The Proposed BERT Based Sequence Sentiment Labeling Model

	3 Experiment
	3.1 Dataset
	3.2 Baseline Methods for Comparison
	3.3 Hyper-parameters
	3.4 Experimental Results

	4 Conclusion
	References

	Topic Aware Context Modelling for Dialogue Response Generation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Topic Aware Context Modeling
	3.2 Topic Aware Context Based Encoder
	3.3 Topic Aware Context Based Decoder

	4 Experimental Study
	4.1 Dataset and Configuration
	4.2 Results and Analysis

	5 Conclusion
	References

	A Deep Neural Framework for Contextual Affect Detection
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Hand-Crafted Features
	3.2 Word Embedding

	4 Experiments and Results
	4.1 Dataset Description
	4.2 Pre-processing
	4.3 Experiments
	4.4 Error Analysis

	5 Conclusion
	References

	Improving Student Forum Responsiveness: Detecting Duplicate Questions in Educational Forums
	1 Introduction
	2 Related Work
	2.1 Datasets

	3 The COMP1710 Piazza Dataset
	3.1 Dataset Format
	3.2 Duplicate Question Definition
	3.3 Forum Statistics
	3.4 Statistics for Duplicate Questions

	4 Experiments and Results
	4.1 The BiMPM Model
	4.2 Experiments Performed
	4.3 Samples Generated

	5 Conclusion and Future Work
	References

	Time-Series and Related Models
	On Probability Calibration of Recurrent Text Recognition Network
	1 Introduction
	2 Related Work
	2.1 Text Recognition
	2.2 Model Calibration

	3 Definitions
	3.1 Text Recognition
	3.2 Model Calibration

	4 Proposed Methods
	4.1 Reasoning for the Cause of Miscalibration
	4.2 Calibration CNN

	5 Experiments
	5.1 Implementation Details
	5.2 Datasets
	5.3 Results Analysis

	6 Discussion
	References

	On the Hermite Series-Based Generalized Regression Neural Networks for Stream Data Mining
	1 Introduction
	2 Preliminaries
	3 The Stream Data Mining Algorithm
	4 Convergence Theorems
	5 Simulation Results
	6 Conclusions
	References

	Deep Hybrid Spatiotemporal Networks for Continuous Pain Intensity Estimation
	1 Introduction
	2 Preliminaries
	2.1 PSPI Metric
	2.2 Related Work

	3 Proposed Model
	3.1 Key-Frame Analyser
	3.2 Temporal Analyser
	3.3 Fusion and Continuous Pain Estimation

	4 Results and Experiments
	4.1 Settings
	4.2 Ablation Study
	4.3 Comparison with the State-of-the-art

	5 Conclusion
	References

	Sales Demand Forecast in E-commerce Using a Long Short-Term Memory Neural Network Methodology
	1 Introduction
	2 Data Preprocessing
	2.1 Handling Data Quality Issues
	2.2 Handling Missing Values and Sales Normalization
	2.3 Product Grouping

	3 LSTM Network Architecture
	3.1 Learning Schemes
	3.2 Exogenous Variables

	4 Overall Procedure
	5 Experiments
	5.1 Datasets
	5.2 Error Measure
	5.3 Hyperparameter Selection and Optimization
	5.4 Benchmarks and LSTM Variants
	5.5 Results and Discussion

	6 Conclusions
	References

	Deep Point-Wise Prediction for Action Temporal Proposal
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Deep Point-Wise Prediction Network
	3.2 Label Assignment
	3.3 Scale Assignment
	3.4 Loss Function

	4 Experiments
	4.1 Dataset and Setup
	4.2 Ablation Study
	4.3 Comparison with State-of-the-art Methods

	5 Conclusion
	References

	Real-Time Financial Data Prediction Using Meta-cognitive Recurrent Kernel Online Sequential Extreme Learning Machine
	1 Introduction
	2 Methodology
	2.1 Data Transformation and Processing
	2.2 Recurrent Kernel OS-ELM
	2.3 Kernel Filters in RKOS-ELM
	2.4 Modified DDM in RKOS-ELMALD
	2.5 New Meta-cognitive Learning Strategy

	3 Experimental Results and Discussion
	4 Statistical Analysis
	5 Conclusion
	References

	Deep Spatial-Temporal Field for Human Head Orientation Estimation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Deep CNN Feature
	3.2 Hand-Engineered Feature
	3.3 Spatial Temporal Model

	4 Experiment
	4.1 Result on TV Human Interaction Dataset (TVHI)
	4.2 Result on Hollywood Heads Dataset (HH)

	5 Conclusion
	References

	Prediction-Coherent LSTM-Based Recurrent Neural Network for Safer Glucose Predictions in Diabetic People
	1 Introduction
	2 Prediction-Coherent LSTM-Based Recurrent Neural Network
	2.1 Presentation of the Model

	3 Methods
	3.1 Experimental Data
	3.2 Preprocessing
	3.3 Models
	3.4 Post-processing
	3.5 Evaluation Metrics

	4 Results and Discussion
	5 Conclusion
	References

	Teacher-Student Learning and Post-processing for Robust BiLSTM Mask-Based Acoustic Beamforming
	1 Introduction
	2 Background
	3 Approach
	3.1 BiLSTM Teacher-Student Learning for Mask Estimation
	3.2 Mask-Based Post-processing

	4 Experiments
	4.1 Corpus
	4.2 Metric
	4.3 Experimental Setups
	4.4 Evaluation on BiLSTM-TS
	4.5 Evaluation on Different Post-processing Methods

	5 Conclusion
	References

	Maxout into MDLSTM for Offline Arabic Handwriting Recognition
	Abstract
	1 Introduction
	2 MDLSTM Baseline System Overview
	3 Maxout
	3.1 Definition
	3.2 Previous Work
	3.3 Architecture of Maxout on MDLSTM
	3.3.1 Maxout Inside LSTM Units
	3.3.2 Maxout in Feedforward Layers on MDLSTM


	4 Experimental Results
	4.1 IFN/ENIT Database
	4.2 Maxout Inside LSTM Units
	4.3 Maxout Nodes in Feedforward Layers

	5 Conclusions
	References

	Unsupervised Neural Models
	Unsupervised Feature Selection Based on Matrix Factorization with Redundancy Minimization
	1 Introduction
	2 Matrix Factorization
	3 Methodology
	4 Optimization
	5 Experiments
	5.1 Datasets
	5.2 Experimental Settings
	5.3 Results and Analysis

	6 Conclusion
	References

	Distance Estimation for Quantum Prototypes Based Clustering
	1 Introduction
	2 How to Estimate the Distances Between a Given Data and Centroids?
	2.1 Fidelity as a Similarity Measure
	2.2 States Construction to Estimate the Distance-Type Measurements

	3 How to Search for the Nearest Centroid to a Given Data?
	4 Proposed Quantum Clustering Approach
	4.1 General Concept
	4.2 Quantum Learning Algorithm
	4.3 Validation Criteria

	5 Empirical Evaluations
	5.1 Datasets
	5.2 Comparison of Different Quantum Distances
	5.3 Clustering Through Quantum K-means

	6 Conclusion
	References

	Accelerating Bag-of-Words with SOM
	1 Introduction
	2 Background
	2.1 Bag-of-Words
	2.2 Self-Organizing Map

	3 Accelerated Bag-of-Words
	3.1 Modified Self-Organizing Map
	3.2 Feature Coding by Fast K-Nearest Neighbor Search

	4 Experiments
	4.1 Dictionary Generation
	4.2 Bag-of-Words Classification

	5 Conclusion
	References

	A Deep Clustering-Guide Learning for Unsupervised Person Re-identification
	1 Introduction
	2 Related Works
	2.1 Unsupervised RE-ID
	2.2 Unsupervised Domain Adaptation

	3 Deep Clustering-Guided Learning
	3.1 Preliminary
	3.2 Cluster-Level Supervision
	3.3 Reliable and Hard Mining

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Comparison to the State of the Art
	4.4 Ablation Study
	4.5 Further Analysis

	5 Conclusion
	References

	Semi-supervised Deep Learning Using Improved Unsupervised Discriminant Projection
	1 Introduction
	2 Improved UDP Regularization Term
	2.1 Basic Idea of UDP
	2.2 An Improved UDP for Large Scale Dimension Reduction
	2.3 The Improved UDP Based Semi-supervised Deep Learning

	3 Experimental Results
	3.1 Results of Dimensionality Reduction
	3.2 Results of Classification

	4 Conclusions and Future Work
	References

	Unsupervised Pre-training of the Brain Connectivity Dynamic Using Residual D-Net
	1 Introduction
	2 Materials and Preprocessing
	2.1 ADNI Cohorts
	2.2 Preprocessing
	2.3 Brain Network Analysis

	3 Proposed Methods
	3.1 Selective Brain Functional Connectivity Dynamics
	3.2 Residual D-Net
	3.3 Unsupervised Pre-training and Fine-Tuning

	4 Performance Evaluation
	4.1 Baselines
	4.2 Discussion and Results

	5 Conclusions
	References

	Clustering Ensemble Selection with Determinantal Point Processes
	1 Introduction
	2 Clustering Ensemble Selection with DPPs
	2.1 Modeling Base Clustering Selection with DPP Sampling
	2.2 Algorithm Implementation

	3 Experimental Results
	3.1 Test of Base Clustering Selection Strategy
	3.2 Comparison with Other Clustering Ensemble Selection Methods

	4 Conclusion
	References

	Generative Histogram-Based Model Using Unsupervised Learning
	1 Introduction
	2 General Framework
	2.1 Maximization Step
	2.2 Expectation Step
	2.3 Proposed Algorithm

	3 Complexity
	4 Experimental Validation
	4.1 Data-Sets
	4.2 Quality
	4.3 Generation of New Samples

	5 Conclusion
	References

	Author Index



