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Abstract. In this work, a scale-space shape descriptor is proposed for
shape retrieval, which is motivated by the multiscale mechanism of our
human visual perception. First, morphological operations and the Gaus-
sian smoothing are jointly used to produce a fused scale-space descrip-
tion of the input shape, which is able to handle strong noise, intra-
class shape variation and irregular deformation simultaneously. Then,
the height-function features of the shape are extracted across scales.
Finally, shape retrieval is conducted by an integration of the retrieval
results individually yielded at multiple scales. Experimental results on
benchmark datasets validate the accuracy, efficiency and robustness of
our proposed method.
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1 Introduction

Shape is considered as an important kind of visual features in image analysis
and computer vision. Shape description is a key issue for shape retrieval, which
has been successfully applied to solve many tasks such as image retrieval [1–4],
face recognition [5] and 3D model reconstruction [6–8].

Existing shape descriptors can be roughly divided into two main categories as
follows: the global descriptors and the local descriptors. Typical global descrip-
tors (such as the shape context (SC) [9] and the inner-distance shape context
(IDSC) [10]) describe the relative spatial distribution of the feature points by
the information of other points. They are naturally robust to local deformation,
but fail to capture local details. On the other hand, local descriptors are precise
to represent local shape features. For that, an effective way is to decompose the
input shape into parts via various strategies, such as the hierarchical procrustes
matching (HPM) [11], the shape tree [12], and the hierarchical string cut (HSC)
[1]. However, local descriptors suffer from strong noise and local deformation.

To overcome the shortcoming caused by noise and intra-class variations, the
concept of multiple scale for shape description is proposed. The curvature scale
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11954, pp. 70–82, 2019.
https://doi.org/10.1007/978-3-030-36711-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36711-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-36711-4_7


Shape Description and Retrieval in a Fused Scale Space 71

(a) (b) (c) (d)

Fig. 1. Effect of using morphological operations to handle irregular shape deforma-
tions. (a, c): the input shapes; (b, d): the corresponding shapes of (a, c) after using
morphological operations.

space (CSS) [13] exploits the Gaussian kernel to produce a multiscale shape rep-
resentation for shape retrieval. Alajlan et al. [14] propose the triangle area (TAR)
which describes convexity/concavity of each contour point using the signed areas
of triangles formed by boundary points at different scales. Yang et al. [15] define
three invariant multi-scale features to represent the shape. Zhang et al. [16] pro-
pose a multiscale ellipse descriptor (MED) method where both spatial location
and topology structure are used to extract the coarse-to-fine shape details. A
small scale has strong shape descriptive ability to local details while a large
scale has stable shape features to overcome the drawbacks of noise and local
deformation. The underlying idea of a multiscale shape descriptor is to obtain
more shape information at different scales. Besides, some algorithms based on
deep features have appeared for shape retrieval, e.g. CNN [26] and DeepGM
[27]. Oliveira et al. [28] create a complex network with boundary points of 2D
shapes, and the dynamic of the network is analyzed by means of the spectral
graph theory. However, it is still a challenging problem to match shapes with
strong noise, intra-class variation and irregular deformation simultaneously.

The intra-class variation indicates the varying geometric transformations of
shapes, including rotation, scaling, affine transformation, etc. The shapes with
noise or intra-class variations can be easily classified to the same class by human
perception, while they are certainly difficult for shape retrieval algorithms. The
irregular deformation refers to dramatic gap inside shapes like Fig. 1(a, c), which
causes too many interference points and increases the shape dissimilarity of the
same class. Therefore, it is critical to design an effective, discriminative and
robust method for shape retrieval.

To satisfy all the challenges above, it is desirable to extract robust shape
features to deal with strong noise. Besides, considering the advantages of global
and local shape descriptors, a straightforward idea is to combine the global and
local shape features for an exhaustive shape representation in different feature
scales, which should be robust to intra-class variations and irregular deformation.

In this paper, a novel fused scale-space description is proposed for shape
retrieval as shown in Fig. 2. Based on height function method [20], we extend
the sequence feature derived from the shape. Then morphological operations
and Gaussian smoothing are jointly used to produce a fused scale space, which
obtains the multiscale shape information. The morphological scale space can well
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Fig. 2. Pipeline of our proposed method: first, a multiscale description of the input
shape is produced by extracting its height features in the fused scale-space; then, a
multiscale integration strategy is used for shape retrieval.

deal with intra-class and irregular deformations in accord with human percep-
tion, while the Gaussian scale space is robust to noise. Finally, we propose a new
integration strategy of the ultimate shape similarity in multiple scales to obtain
a qualitative matching result.

The main contribution of this paper is two folds. First, the fused scale-space
description is proposed to overcome the problems result from different transfor-
mations simultaneously in Sect. 2. The second is that a scale-space integration
strategy for shape retrieval is proposed in Sect. 3, which combines the individual
retrieval results produced in different scales to generate the final output. Exten-
sive experiments are carried out to show the effectiveness and robustness of the
proposed method.

2 Shape Description in a Fused Scale Space

When objects are retrieved based on shape features, the retrieval results would
be easily influenced due to our perceptual customs. It is well known that the
Gaussian smoothing can effectively remove noise along the contour, but it is not
able to handle irregular deformations properly. Therefore, the Gaussian smooth-
ing cannot be used alone to simulate human perception. Moreover, morphological
operations can capture the main structure of shape well. Inspired by the work
of Hu et al. [17], we combine the advantages of the two operations and jointly
exploit them to produce a scale-space description of the input shape for getting
more comprehensive features.

2.1 The Morphological Scale Space

Morphological operations include the dilation and the erosion, which are realized
by using a structuring element (SE) to modify the shape according to two specific
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Fig. 3. Effect of using Gaussian smoothing to handle contour noise. The first row
presents three shapes taken from the MPEG-7 database, where the first two belong
to the same class, and the third one belongs to another shape class. The second row
presents the smoothed versions of the input shapes correspondingly. In each row, the
Euclidean distances between the last two shapes and the first shape (used as a reference)
are computed and marked at their right bottom corners, respectively.

rules, respectively [18]. Especially, opening operation and closing operation are
defined by different sequence with the same structuring element of dilation and
erosion operators. In our method, morphological scale space (MSS) is obtained
by closing (dilation+erosion) the binary shape with operators of increasing size
(1). The closing operation is defined as:

M (ς, x, y) = B (x, y) • f (ς, x, y) , (1)

where the • operator denotes the morphological closing operation applied to the
binary shape B (x, y). The structuring element f (·, ·) is parameterised by size ς.
At each MSS level, ς is increased such that the closing operation affects a large
region, which can be regarded as the scale parameter. In our experiments, ς is
m · 5 pixels, where m is the MSS level starting from 0.

From Fig. 1, we know that this operation can well handle shapes with irreg-
ular deformations and preserve the main structure to conform human visual
perception by ς = 20. In more detail, we first use the Matlab function ‘strel’ to
create flat disk-shaped structuring elements by using different ς which are invari-
ant to shape rotation. Then, a sequence of shapes are generated by adjusting
different ς under different morphological scales.

2.2 The Gaussian Scale Space

The Gaussian is a conventional kernel for producing a multiscale shape repre-
sentation [19], by which noise and insignificant shape features can be effectively
suppressed along the shape contour. Denote the considered shape contour as:

C = (x (u) , y (u)) , (2)
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Fig. 4. The proposed scale-space shape description under different scale parameters:
(a) the evolved versions of the input shape under the scale {ς0, σ0} = {0, 0}, {ς1, σ1} =
{5, 8} and {ς2, σ2} = {10, 16}, respectively; (b) the height values of the three evolved
versions.

where u is arc length parameter normalized by contour length. The one-
dimensional Gaussian filter is expressed as:

g (u, σ) =
1

σ
√

2π
exp

(
− u2

2σ2

)
, (3)

where σ is the width of Gaussian kernel and regarded as the scale parameter.
Let X (u, σ) and Y (u, σ) be the coordinate functions of the contour curve at the
scale σ, which are produced by the convolution operation as follows:

X (u, σ) = x(u) ∗ g(u, σ), (4)

Y (u, σ) = y(u) ∗ g(u, σ). (5)

Figure 3 shows the visual effect of Gaussian smoothing and similarity cal-
culations with shapes of the same or different class. It is clear that Gaussian
smoothing has good effect when facing shapes with strong noise along the shape
contour. As shown in Fig. 3, the first row shows three shapes taken from the
MPEG-7 dataset, where second shape is of the same class as the first one, while
the third shape belongs to a different class. However, when referred with the
first shape (a), the third shape (c) has a closer Euclidean distance than that of
the second shape (b) (the distance values are marked on the right bottom corner
of the two shapes, respectively). This will lead to an incorrect retrieval result.
The second row shows the smoothed versions of the three shapes correspond-
ingly, where the miss-retrieved problem has been solved as the second shape (e)
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Fig. 5. Height function feature descriptor.

becomes more closer than the third shape (f) to the first one (d). It satisfies
the basic principle of minimizing intra-class distance and maximizing distance
between different classes in pattern recognition.

2.3 The Fused Scale Space

To jointly exploit the advantages of morphological operations and Gaussian
smoothing, we propose the fused scale-space shape description which is gener-
ated by using the two operations together with different ς and σ, that is, {ς, σ}.
The effect of this description is demonstrated in Fig. 4.

From Fig. 4, it is seen that the device shape can preserve better structure
at {ς, σ} = {0, 0}, while {ς, σ} = {10, 16} are suitable for human perception.
In Fig. 4(b), the height function in our paper for the same sample point shows
scale-space shape description under different fused scale parameters. With more
experiments, it can be concluded that shapes with small deformations need lower
ς and σ, while irregular deformations should be handled with larger ς and σ.
Hence, individual results yielded under different scales should be fused to handle
different transformations simultaneously.

At each joint scale (consist of a ς and a σ), the height-function shape features
[20] are extracted. Figure 5 shows the schematic diagram of the height function
descriptor. More specific details can refer to [20]. The feature vector of the point
pi is an ordered sequence of the height function:

Hi =
(
H1

i ,H2
i , ...,HN−1

i

)T
= (Hi,i+1, ...,Hi,N ,Hi,1, ...,Hi,i−1)

T
,

(6)

where Hi,j denotes the height value of the jth sample point pj with regard to
the point pi, calculated by:

Hi,j =
det (pi−1, pj , pi+1)

|pi−1pi+1| . (7)
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3 Scale-Space Shape Retrieval

For shape retrieval, we first use the dynamic programming to find the optimal
correspondence of contour points between the query and model shape. Then,
the shapes in datasets are ranked according to their matching scores measured
by the Euclidean distance of corresponding points. This produces the retrieval
result at each scale individually.

To conduct a scale-space shape retrieval, a key step is to fuse the individual
results of different scales properly. In this work, we select n scales to conduct such
an integration. At each scale, the top m most similar shapes are considered. Note
that the similarity scores are inconsistent across scales because the shapes have
suffered different levels of morphological operations and Gaussian smoothing at
different scales. Therefore, we reset the similarity scores of the returned shapes
by using a uniform criterion. In more detail, we denote the set of retrieval shapes
at the scale St as {rt1, r

t
2, ..., r

t
m}. For each shape in the St, a new similarity score

is assigned based on its order in the return shapes. The new similarity score
could be defined as a non-linear function of its order; that is,

simt
i = exp

(−2 × Lt
i

)
, (8)

where Lt
i is the ranking order of the i-th shape at the scale St, i ∈ {1, 2, ...,m}.

The function defined above is a descending one, which describes the score of
similarity between the return shape and the query shape at the same fused
scale.

The final retrieval result will be generated by using a union of the returned
shape sets; that is, U = {S0, S1, .., Sn}, in which each shape has been assigned
with the new similarity score. Since a database shape could have multiple
response in U , the length of U might vary from m to m · n. To calculate the
final similarity score of each shape in U , if a shape Cj is not a returned one at
a certain scale, we assume that simt

j = 0 (j ∈ {1, 2, ...,m}).
With the above preparation, the final similarity score of each database shape

in U is produced as follows:

Fj =
n∑

k=0

wk · simk
j (9)

where wk is a weightage to determine the contribution of the retrieval result at
individual scales. The retrieval results are finally obtained by ranking the shapes
in U according to their similarity score Fj (j ∈ {1, 2, ...,m}) in a multiscale sense.

4 Experimental Results

4.1 MPEG-7 Shape Dataset

The MPEG-7 shape dataset [10,21] has been widely used for evaluating a shape
retrieval algorithm. This dataset consists of 1400 shapes, belonging to 70 classes
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Fig. 6. Top 15 retrieved shapes of the query shape “camel” at different scales. The
fused result is generated by the proposed multiscale retrieval.

Table 1. Performance comparison of different methods by using Bulls-eye score on
MPEG-7 dataset

Method IDSC [10] HSC [1] HF [20] CNSS [28] IMD [15] SFR [22] MFD [23] Ours

BER (%) 85.40 87.31 89.66 89.47 91.25 92.70 83.94 93.64

with 20 shapes in each class. The retrieval accuracy is measured by the well-
known bulls-eye score. The result of our method, comparing with other 8 state-
of-the-art methods, is documented in Table 1, where our method achieves the
highest accuracy.

To illustrate how the proposed multiscale retrieval method works, an exem-
plary experiment is shown in Fig. 6, where 5 joint scales are used; that is, {ς0, σ0},
{ς1, σ0}, {ς2, σ0}, {ς0, σ1} and {ς0, σ2}, with ς ∈ {0, 5, 10}, σ ∈ {0, 8, 16}. The
query shape is a “camel”, and the top 15 retrieved shapes are presented at each
used scale individually. The non-linear function defined in (9) is then used to
compute a new similarity score for each shape. The default value is m = 40 and
the weightages in (9) are taken to be w0 = 0.4, w1 = 0.2, w2 = 0.2, w3 = 0.1
and w4 = 0.1. In Fig. 6, the shapes marked in ellipses or boxes represent false
positive retrieved shapes. One can see that our multiscale retrieval (the fused
result) is clearly superior over the conventional retrieval (the result at {ς0, σ0}).
It might be argued that the result at some fused scale is better than the multi-
scale retrieval. However, in practice there is no prior about which scale performs
best, and we observe that the multiscale retrieval can perform better than any
single scale in average.
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Table 2. Retrieval results on the Kimia-99 dataset

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

IDSC [10] 99 99 99 98 98 97 97 98 94 79

TAR [14] 99 99 99 98 98 97 98 95 93 80

CDPH+EMD [25] 96 94 94 87 88 82 80 70 62 55

IMD [15] 99 99 99 99 98 97 95 94 90 83

Ours 99 99 99 98 98 98 99 99 96 88

Table 3. Retrieval results on the Kimia-216 dataset

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

SC [9] 214 209 205 197 191 178 161 144 131 101 78

CDPH+EMD [25] 215 215 213 205 203 204 190 180 168 154 123

IMD [15] 216 216 214 210 207 207 201 194 188 182 163

Ours 216 215 215 213 215 211 211 209 195 190 185

4.2 Kimia Shape Datasets

The Kimia database [24] is another widely used benchmark database for shape
retrieval, including Kimia-99 and Kimia-216 datasets. The Kimia-99 dataset
contains 99 shapes grouped into 9 classes. The retrieval rates are summarized as
the number of shapes from the same class among the top 1 to 10 most similar
shapes. The best possible result of the retrieval is 99. In experiments, we set
4 joint scales, where {ς0, σ0}, {ς0, σ1}, {ς0, σ2} and {ς0, σ3}, with ς0 = 0, σ ∈
{0, 5, 8, 12}. The weightages in (9) are taken to be w0 = 0.4, w1 = 0.3, w2 = 0.2
and w3 = 0.1.

The Kimia-216 dataset consists of 18 classes with 12 shapes in each class.
The top 11 closest matches are selected which are in the same class as the query
shape and the best result is 216. In experiments, we set 4 joint scales, where
{ς0, σ0}, {ς1, σ1}, {ς1, σ2} and {ς1, σ3}, with ς ∈ {0, 5}, σ ∈ {0, 5, 8, 10}. The
weightages in (9) are w0 = w1 = w2 = w3 = 0.25. The overall retrieval results
comparing with other methods are shown in Tables 2 and 3.

4.3 Robustness Against Noise, Intra-class, and Irregular
Transformations

To evaluate our method in the presence of noise, the shape contours are per-
turbed by Gaussian noise with zero mean and varying deviation. The deviation
value increases from 0.2 to 0.8, and the noisy effect is demonstrated in Fig. 7.
Figure 8 shows the performance of different methods on the Kimia-99 dataset,
and the average retrieval result of each method is plotted against noise. It can
be seen that our proposed method performs stably well and produces the best
results under various intensity of noise.
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(a) (b) (c) (d) (e)

Fig. 7. Noisy shape contours. (a) The original shape contour; (b) to (e): The noise
intensity increases from 0.2 to 0.8.
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Fig. 8. Robustness against noise on the Kimia-99 dataset.

Table 4. Runtimes on the MPEG-7 dataset

Method SC [9] IDSC [10] TAR [14] ST [12] IMD [15] Ours

Time (ms) 200 310 70 500 65 60

Furthermore, in order to verify the effectiveness of our method, we compare
the Euclidean distances of query shape and other shapes facing Gaussian noise,
intra-class variation and irregular deformation simultaneously, as shown in Fig. 9.
From the comparison results, we can see that the distance values are very similar
even with 18 different types of transformations, which shows strong robustness
of the proposed method.

4.4 Runtimes of Different Methods

To verify the computational efficiency of our proposed method, we conduct
experimental tests on the MPEG-7 dataset comparing with some state-of-the-art
methods. Each shape in the dataset is used for retrieval, and the average calcu-
lation time of each query shape is recorded. The comparison results are shown
in Table 4. It can be seen that the calculation time required with the proposed
algorithm is 60 ms. Compared with the other five representative shape retrieval
algorithms, it has obvious computational efficiency superiority.
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Fig. 9. The Euclidean distances comparison with different Gaussian noise, intra-class
variation and irregular deformation simultaneously.

5 Conclusion

In this paper, a new scale-space method is proposed for shape description and
retrieval. To overcome the difficulties caused by strong noise, intra-class shape
variation and irregular deformation simultaneously, morphological operations
and Gaussian smoothing are jointly used, so that a fused scale space of the
input shape is generated. Based on height function, shape features are extracted
across scales. The retrieval results under multiple scales are fused by using an
integration strategy. The experimental results on benchmark datasets are pre-
sented to validate the effectiveness and robustness of the proposed method.
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