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Abstract. Aligning users belonging to the same person in different
social networks has attracted much attention. Recently, embedding meth-
ods have been proposed to represent users from different social networks
into vector spaces with same dimension. To handle the challenge of vector
space diversity, existing methods usually make vectors of known aligned
users closer/consistent and overlap different vector spaces. However, com-
pared to large amount of users in each social network, the consistence
constraint on aligned users is not enough to reduce the diversity. Besides,
missing edges/labels may provide incorrect information and affect the
effect of the overlap between learned vector spaces. Therefore, we pro-
pose the OURLACER method, i.e, jOint UseR and LAbel ConsistencE
Representation, to jointly represent each user and label under the con-
sistence constraints of know aligned users and shared labels. Specifically,
OURLACER utilizes collective matrix factorization to complete missing
edges and labels for each user, which can provide sufficient information
to distinguish each user. Moreover, OURLACER adds the consistence
constraint on shared labels in different social networks. Because each
user has own labels, label consistence can restrict each user and greatly
reduce the diversity between learned vector spaces. Extensive experi-
ments conducted on real-world datasets demonstrate that our method
significantly outperforms other state-of-the-art methods.

1 Introduction

With the rapid development of Internet, social networks (e.g., Facebook, Twitter
and YouTube) have played important roles in our daily life. Nowadays, people are
accustomed to surfing on multiple social networks at the same time. According
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to the statistical data from Pew Research Center report1, more than half of the
users tend to read news from multiple social media sites.

Nevertheless, existing social networks are provided by different companies
and isolated from one another, which hinders the positive experience for users
across different social networks. User Identity Linkage is to align users belonging
to the same person in different social networks and has attracted much attention.
Benefited from aligned users, we can complete and integrate users’ information
for sequent applications such as cross-network recommendation [5,14,22,23], link
prediction [1,27,28] and topic analysis [7].

Recently, several embedding methods have been proposed to solve the prob-
lem of user identity linkage [9,11,12,18,19,30–32] by mapping users from each
social network into a vector space with same dimension. Then, to give correct
prediction, these methods overlap different vector spaces by making the vector
representations of known aligned users closer or totally same (also called consis-
tence constraint). Similarly, when we don’t know any aligned users in advance,
making the vector distributions similar can also make effect [8]. In conclusion,
reducing vector space diversity can produce better vector spaces and overlap
probable aligned users in different social networks.

However, existing embedding methods handling the challenge of vector space
diversity still have following problems: (1) Missing edges and labels may mislead
the process of learning good vector space for each social network, which makes
space diversity hard to be reduced. (2) Consistence constraint on known aligned
users may not come into effect. For example, two learned vector spaces may only
overlap known aligned users while other users are all non-overlapped and the
space diversity is still large.

In this paper, to address above problems in the challenge of vector space
diversity, we propose the OURLACER method, i.e, jOint UseR and LAbel
ConsistencE Representation, to jointly represent each user and label under the
consistence constraints of know aligned users and shared labels. Specifically,
OURLACER learns a good vector space for each social network with missing
edges and labels completed by collective matrix factorization. Besides, to reduce
the diversity between vector spaces, OURLACER not only utilizes the consis-
tence constraint between known aligned users but also adds the consistence con-
straint between shared labels in different social networks. Because each user has
unique labels, label consistence constraint can restrict each user and reduce the
space diversity greatly.

The rest of this paper is organized as follows: We review related work in
Sect. 2. Section 3 presents proposed OURLACER approach in detail and opti-
mization algorithm is proposed in Sect. 4. Experimental evaluation and com-
parison are shown in Sect. 5. At last, Sect. 6 concludes the paper with a brief
discussion.

1 http://www.pewresearch.org/fact-tank/2017/11/02/more-americans-are-turning-
to-multiple-social-media-sites-for-news/.

http://www.pewresearch.org/fact-tank/2017/11/02/more-americans-are-turning-to-multiple-social-media-sites-for-news/
http://www.pewresearch.org/fact-tank/2017/11/02/more-americans-are-turning-to-multiple-social-media-sites-for-news/


658 X. Li et al.

2 Related Work

In this section, we review the main lines of works on user identity linkage. Firstly,
we briefly introduce traditional methods. Then, we discuss the progress of embed-
ding methods.

Traditional methods have paid much attention to extract useful features and
compute reasonable similarity. The first work on UIL problem utilizes usernames
[24]. More specifically, they study the behavior patterns during selecting user-
names and construct totally more than four hundreds features [25,26]. Moreover,
spatio-temporal information has been specially studied for extracting useful fea-
tures [2,3]. For content information, topic distribution has been demonstrated
the effect [13]. Furthermore, based on pairwise similarity of artificial features,
a new discrimination model has been proposed to promote the performance by
viewing user identity linkage as a classification problem [10].

Considering the cost of artificial features, embedding methods have attracted
much attention and made great progress. Different embedding methods have
been proposed for different types of information. For network information, PALE
preserves neighbor links in users’ representations and learns the linear/non-linear
mapping among known aligned users [11]. IONE models the followee/follower
relationship and learn multiple representations for each user [9]. DeepLink intro-
duces the deep neural network based on the learned users’ representations by
random walk [32]. Besides network information, label information has also been
studied. MAH constructs hypergraph by labels for capturing high-order rela-
tion [19]. Based on MAH, UMAH emphasizes the effect of shared labels among
different social networks and automatically learns the weights of different types
of labels [31]. Besides, MASTER utilizes matrix factorization to factorize pre-
computed similarity matrices into users’ representations with kernel tricks [18].
MEgo2Vec views user identity linkage as a classification problem and capture
user’s attributes and ego network in the user’s representation [30]. However,
above embedding methods haven’t thought over the effect of missing edges and
labels when learning users’ representations, which can be solved by proposed
OURLACER method.

When learning the vector space for each social network, an inevitable chal-
lenge is how to reduce the diversity between vector spaces, which means probable
aligned users are closer. Existing embedding methods mainly utilize the consis-
tence constraint based on known aligned users [9,11,18,19,30–32]. Moreover,
ULink modifies consistence constraint by making aligned users closer than non-
aligned users [12]. However, compared the large amount of users in each social
network, the consistence constraint based on limited known aligned users is not
enough to reduce the space diversity. In this paper, the proposed OURLACER
considers the emergence of same labels in different social networks and adds the
consistence constraint based on these shared labels to restrict each user.
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3 Proposed Method

In this section, we firstly introduce the basic notations. Then, we present the
way of completing missing edges and labels. Finally, we show the two types of
consistence constraint and give the final optimization objective.

We use Gi = (Ai, Li) to represent i-th social network. Ai ∈ Rni×ni is the
adjacency matrix, where 1 represents two users is connected. Different from
previous methods, we use 0 to represent missing edge rather than no connection.
Besides, Li ∈ Rni×di refers to the label matrix, where each row means the labels
of one user. Similarly, we use 0 to represent missing label. ni means the total
number of users in Gi. The final dimension of user representation is m.

3.1 Collective Matrix Factorization

In real life, users in social networks usually own a fraction of labels and links,
which means some real labels/links are missing in the social networks. Hence,
the vector space learned by existing embedding methods cannot capture full
and useful information in fact. To learn a good vector space, we should take into
account the missing labels and edges.

As demonstrated in the work of network embedding [16], some classical meth-
ods, such as DeepWalk [15], LINE [21], PTE [20] and node2vec [4], can be unified
into the matrix factorization framework with closed forms. Therefore, we also
apply matrix factorization to learn the final vector representations. Noting that
we own not only the adjacency matrix but also the label matrix. Then, we fac-
torize these two matrices jointly. For the i-th social network, we can express the
problem as

min
Ui,Vi

1
2
||Ai − UiU

T
i ||2F +

1
2
||Li − UiV

T
i ||2F +

α

2
(||Ui||2F + ||Vi||2F ), (1)

where Ui ∈ Rni×m represents users’ vector representations and Vi ∈ Rdi×m

represents labels’ vector representations. α is to control the complexity of Ui

and Vi. || · ||F stands for Frobenius norm.
Though objective (1) can learn a vector space preserving enough network

information and label information, we still cannot complete the missing edges
and labels because objective (1) tend to recover original edges in Ai and original
labels in Li exactly. As a result, 0 in Ai is seen as no edge rather than missing
edges. Therefore, analogous to transfer learning based collaborative filtering,
we use collective matrix factorization [17] to complete missing edges and labels
and learn a good vector space for social network Gi by following optimization
problem

min
Ui,Vi

1
2
||IAi � (Ai−UiU

T
i )||2F +

1
2
||ILi � (Li−UiV

T
i )||2F +

α

2
(||Ui||2F +||Vi||2F ), (2)

where � is the Hadamard (element-wise) product and IAi is an indicator matrix.
IAi (p, q) = 1 if Ai(p, q) is observed, and otherwise IAi (p, q) = 0. Similarly,
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ILi (p, q) = 1 if Li(p, q) is observed, and otherwise ILi (p, q) = 0. Noting that the
normal value in Ai and Li should be equal to 0 or 1. We change the value from
discrete value into the continuous value in [0, 1]. Hence, we add new constraints
on Ui and Vi and the optimization problem can be written as

min
Ui,Vi

1
2
||IAi � (Ai − UiU

T
i )||2F +

1
2
||ILi � (Li − UiV

T
i )||2F

+
α

2
(||Ui||2F + ||Vi||2F )

s.t.0 ≤ Ui ≤ 1, 0 ≤ Vi ≤ 1.

(3)

By above optimization problem, we can learn a good vector space for each
social network with missing edges and labels completed.

3.2 Consistence Constraint

When learning the good vector space for each social network, we should make
the diversity between different vector spaces as small as possible. In this paper,
we apply the user consistence constraint widely used in traditional methods
and propose a new label consistence constraint, which can restrict each user
effectively.

User Consistence Constraint. In real life, we often know some aligned users in
different social networks. A direct intuition is to make the representation of same
user in different social network closer or totally same. Then, by preserving the
network information, different vector spaces can be overlapped. Formally, we get
following optimization problem

min
U1,U2

||T1U1 − T2U2||2F , (4)

where Ti ∈ Ra×ni is the indicator matrix. Ti(p, q) = 1 if the q-th user belongs
to the p-th real person. a is the number of known aligned users and all know
aligned users are re-numbered from 1 to a.

However, though preserving the network information, we only can restrict
neighbors connected to known aligned users and users far away may suffer from
the error propagation. Therefore, we should seek to other consistence constraint
to bind each user.

Label Consistence Constraint. To restrict each user, we should add constraint
on the information owned by each user. Naturally, each user owns unique labels
and label consistence constraint is reasonable. Formally, the label consistence
constraint can be formulated as

min
V1,V2

||M1V1 − M2V2||2F , (5)

where Mi ∈ Rl×di is the indicator matrix. Mi(p, q) = 1 if the q-th label is the
p-th shared label. l is the number of shared labels and all shared labels are
re-numbered from 1 to l.
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Finally, with above two types of consistence constraint, we can get the final
optimization problem

min
Ui,Vi

∑

i

1
2
||IAi � (Ai − UiU

T
i )||2F +

1
2
||ILi � (Li − UiV

T
i )||2F

+
α

2
(||Ui||2F + ||Vi||2F ) +

β

2
(||T1U1 − T2U2||2F + ||M1V1 − M2V2||2F )

s.t.0 ≤ Ui ≤ 1, 0 ≤ Vi ≤ 1,

(6)

where β is a penalty term to control the importance of consistence constraints.

4 Optimization

In this section, we present the optimization algorithm to solve (6). It is hard to
get the optimal solution due to the nonconvexity of optimization objective (6).
Therefore, we utilize stochastic gradient method with multiplicative updating
rules to ensure the nonnegativity of Ui and Vi. Besides, we use an alternative
way to update U1, U2, V1, V2. The whole algorithm is shown in Algorithm1.

Optimize U1, U2: The partial derivatives of objective (6) w.r.t.U1, U2 are

∂L

∂U1
= IA1 � (U1U

T
1 − A1)U1 + IL1 � (U1V

T
1 − L1)V1 + αU1

+ βTT
1 (T1U1 − T2U2)

∂L

∂U2
= IA2 � (U2U

T
2 − A2)U2 + IL2 � (U2V

T
2 − L2)V2 + αU2

+ βTT
2 (T2U2 − T1U1).

(7)

Using the Karush-Kuhn-Tucker (KKT) complementarity conditions, we can
obtain the following updating rules:

U1 = U1 �
√

(IA1 � A1)U1 + (IL1 � L1)V1 + βTT
1 T2U2

(IA1 � U1UT
1 )U1 + (IL1 � U1V T

1 )V1 + αU1 + βTT
1 T1U1

(8)

U2 = U2 �
√

(IA2 � A2)U2 + (IL2 � L2)V2 + βTT
2 T1U1

(IA2 � U2UT
2 )U2 + (IL2 � U2V T

2 )V2 + αU2 + βTT
2 T2U2

. (9)

Optimize V1, V2: The partial derivatives of objective (6) w.r.t.V1, V2 are

∂L

∂V1
= (UT

1 IL1 � (U1V
T
1 − L1))T + αV1 + βMT

1 (M1V1 − M2V2)

∂L

∂V2
= (UT

2 IL2 � (U2V
T
2 − L2))T + αV2 + βMT

2 (M2V2 − M1V1).
(10)
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Similar to U1, U2, we update V1, V2 by

V1 = V1 �
√

((IL1 )T � LT
1 )U1 + βMT

1 M2V2

((IL1 )T � V1UT
1 )U1 + αV1 + βMT

1 M1V1
(11)

V2 = V2 �
√

((IL2 )T � LT
2 )U2 + βMT

2 M1V1

((IL2 )T � V2UT
2 )U2 + αV2 + βMT

2 M2V2
. (12)

Algorithm 1. Joint User and Label Consistence Representation (OURLACER)
Input: G1 = (A1, L1), G2 = (A2, L2), a known aligned users, l shared labels, parame-
ters α, β, maximal number of iterations maxiter
Output: U1, U2 and V1, V2

1: Initialize U1, U2, V1, V2 with (0, 1) uniform distribution
2: for t=1:maxiter do
3: Update U1 by (8)
4: Update U2 by (9)
5: Update V1 by (11)
6: Update V2 by (12)
7: if objective (6) converge then break

Considering the value of Ui and Vi cannot exceed 1, we utilize the projection
technique [6,29] to project elements greater than 1 in Ui and Vi to 1 after each
update process.

5 Experiment Study

In this section, we evaluate the performance compared to state-of-the-art meth-
ods. The main compared methods used in experiments include:

– Global Method (GM) [26]: By constructing spectral embedding for each user,
this algorithm learns a linear transformation between known aligned users
and this method can be seen as a basic version of PALE [11].

– MAH [19]: By constructing hypergraphs by labels and edges, each user owns
a vector representation while known aligned users in different social networks
own totally same vector representation.

– UMAH [31]: Based on MAH, this method considers the effect of shared labels
and automatically learns the weights of different types of shared labels.

– OURLACER: Our proposed OURLACER method can learn the vector rep-
resentation for each user and label with user and label consistence contraint.
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Datasets. We use two real-world datasets to evaluate the performance: (1)
Twitter vs. BlogCatalog: This dataset is provided by [31] and contains 2710
aligned users in both networks. For each user, this dataset has friendship, user-
name and location information. For location information, 6.38% users do not
reveal their location information in both networks and 31.03% only publish loca-
tion information in one network. In the remaining users (62.59%), only 14.39%
users input exactly the same location information in the two networks. (2) DBLP
2015 vs. 2016: We use “Yoshua Bengio” as the center node, and then crawl the
co-authors that can be reached from the center node with no more than two
hops. This process was repeated for authors published papers in 2015 and 2016
independently. Then, we can get two co-author networks. Besides, the confer-
ences/journals published at least once in one year are used as the labels of users
in that year. Finally, we have 2845 users in 2015, 3234 users in 2016 and 2169
aligned users between two networks. For label information, user in 2015 and 2016
respectively owns 882 and 1005 unique labels. Except unique labels, the number
of shared labels is 945.

Performance Metric. To evaluate the performance of comparison methods,
Accuracy and Hit Precision@k are used to evaluate the exact prediction and
top-k prediction [31]. Specially, Hit Precision@k allocates different weights for
different rank k:

h(x) =
k − (hit(x) − 1)

k
,

where hit(x) is the position of correct linked user in the returned top-k users.

Then, Hit Precision@k can be computed on N test users by
∑N

i h(xi)

N . During
experiments, we set k = 5.

Experiment Setups. Compared methods except MAH have provided their
source codes. For MAH, we implement it by matlab according to original paper
and the implement of UMAH. We use same training ratio and test setting in
UMAH. Noting that we only use the friendship among 2710 users in dataset
Twitter-BlogCatalog. Considering existing study on the effect of dimension, we
set the dimension of user representation to a big value such as 500. We denote
ro as the ratio of known aligned users among all aligned users. When setting the
parameter of our method, we set β to a bigger value such as 10 to make loss
of consistence constraint as small as possible. For parameter α, we set it to a
same value for both two datasets. For parameters of other compared methods,
we set them to reasonable values according to original papers. Because spectral
embedding in GM can only capture structure information, we concat normalized
label information with spectral embedding to form new user representation.

Overall Prediction Performance. We evaluate the overall prediction perfor-
mance for compared methods. The ratio of known aligned users is 30%. As shown
in Table 1, OURLACER always behaves better than other methods. Compared
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Table 1. Overall prediction performance on two datasets with ro = 30%

Metric Method Twitter-BlogCatalog DBLP 2015–2016

Accuracy GM 3.54 2.93

MAH 9.39 5.40

UMAH 47.27 6.45

OURLACER 52.63 11.59

Hit Precision@5 GM 6.72 5.40

MAH 17.40 12.06

UMAH 52.13 11.55

OURLACER 55.88 19.61

to GM, other methods utilizing label information carefully show better per-
formance, which demonstrate the potential good effect of labels. Furthermore,
by comparing MAH and UMAH, we can find modeling the shared labels in
two networks simultaneously is better than modeling labels separately. Finally,
OURLACER is still much better than UMAH, which means the great effects of
filling missing labels/edges and label consistence constraint.

Twitter
BlogCatalog

Twitter
BlogCatalog

Twitter
BlogCatalog

Twitter
BlogCatalog

(a) GM (b) MAH (c) UMAH (d) OURLACER

Fig. 1. Visualization of user representations learned by different methods. We plot the
overlap results on dataset Twitter-BlogCatalog with ro = 30%.

Visualization of User Representations. To vividly understand the effect
of different methods, we visualize the learned user representations of dataset
Twitter-BlogCatalog as shown in Fig. 1. Noting that we only use the representa-
tions of testing users. From Fig. 1(a) and (b), we can find the diversity between
learned two vector spaces are very big. Besides, Fig. 1(c) and (d) demonstrates
that the diversity between two vector spaces can be reduced greatly by carefully
modeling label information. Furthermore, Fig. 1(c) shows UMAH tends to learn
clustered representations, which means it can restrict users with coarse-grained.
By contrary, Fig. 1(d) shows proposed OURLACER can learn the representa-
tions more uniformly, which means it can approximately restrict each user by
proposed label consistence constraint. From Table 2, the gap between UMAH and
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Table 2. Prediction performance by different consistence constraints

Metric Constraint Twitter-BlogCatalog DBLP 2015–2016

Accuracy user 11.51 8.66

label 45.89 3.71

user+label 52.63 11.59

Hit Precision@5 user 17.40 15.07

label 47.93 6.73

user+label 55.88 19.61

OURLACER on Hit Precision@5 is smaller than it on Accuracy, which demon-
strates UMAH learns clustered vector space while OURLACER learns uniform
vector space.

Effect of User and Label Consistence Constraint. Besides overall pre-
diction performance, we also study the effect of user consistence constraint and
label consistence constraint. The ratio of known aligned users is also set to 30%
and the ratios of shared labels are 100% for Twitter-BlogCatalog and 33.37% for
DBLP 2015–2016. As shown in Table 2, only one consistence constraint is always
worse than two consistence constraints. Hence, our proposed label consistence
constrain can make great effect. When the ratio of shared labels increases, the
performance of only using label consistence constraint rises greatly. Specifically,
the performance of only using label consistence constraint is much higher than
only using user consistence contraint for Twitter-BlogCatalog while much smaller
for DBLP 2015–2016, which means the effect of proposed label consistence con-
straint can be enhanced with the increasement of shared labels.

6 Conclusion

Vector space diversity is a great challenge for existing methods. Traditional
methods try to learn a vector space for each social network while ignore the
effect of missing edges/labels and label consistence among different social net-
works. Therefore, we propose the jOint UseR and LAbel ConsistencE Repre-
sentation (OURLACER) method to learn a good space for each social net-
work and greatly reduce the diversity between different vector spaces. Specially,
OURLACER learns the vector space by using collective matrix factorization to
complete the missing edges and labels. Besides, we propose the label consistence
constraint to restrict each user and reduce the vector space diversity. Experiment
results demonstrate the effectiveness of OURLACER. Future directions include
the consideration of automatically learning the different importances of network
information and label information.
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