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Abstract. Deep learning based methods have dominated super-resolution
(SR) field due to their remarkable performance in terms of effectiveness and
efficiency. In this paper, we propose a new multi-scale information distillation
network (MSID-N) in the non-subsampled contourlet transform (NSCT) domain
for single image super resolution (SISR). MSID-N mainly consists of a series of
stacked multi-scale information distillation (MSID) blocks to fully exploit fea-
tures from images and effectively restore the low resolution (LR) images to
high-resolution (HR) images. In addition, most previous methods predict the HR
images in the spatial domain, producing over-smoothed outputs while losing
texture details. Thus, we integrate NSCT and demonstrate the superiority of
NSCT over wavelet transform (WT), and formulate the SISR problem as the
prediction of NSCT coefficients, which is able to further make MSID-N preserve
richer structure details than that in spatial domain. The experimental results on
three standard image datasets show that our proposed method is capable of
obtaining higher PSNR/SSIM values and preserving complex edges and curves
better than other state-of-the-art methods.

Keywords: Single Image Super Resolution (SISR) � Multi-scale information
distillation network � Non-subsampled Contourlet Transform (NSCT) �
Convolutional Neural Networks (CNNs)

1 Introduction

SISR is an important low-level vision task which has high practical value in many
application fields such as remote sensing, medical imaging and object detecting. It aims
at reconstructing a HR image from a single LR image, which is an ill-posed inverse
problem.

In recent years, CNNs-based models [1–20] significantly improve the super reso-
lution (SR) quality from the first SRCNN [1] to the latest RCAN [17], which are
remarkably better than conventional SR methods. The performance of SRCNN was
limited by its shallow structure. To achieve higher performance the networks are tend to
be deeper and deeper, Kim et al. proposed the VDSR [3] model with a deeper structure.
Recently, some very deep models have been proposed such as EDSR [4] and RCAN,
which achieves very pleasing performance on super-resolution tasks. Moreover,
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super-resolution models integrated with dense connections have been proposed, such as
SRDenseNet [8] and MemNet [9], which boosts the performance further more. In
addition, some more effective CNN-based SR methods construct the entire network by
connecting a series of identical feature extraction modules such as MSRN [14], RDN
[15], IDN [16], indicating the capability of each block plays a crucial role.

The above SR methods are conducted in the spatial domain. By contrast, SR in the
transform domain can preserve the image’s context and texture information in different
layers to produce better SR results. With that in mind, Guo et al. [18] designed a deep
wavelet super-resolution (DWSR) network to acquire HR image by predicting “missing
details” of wavelet coefficients of the LR image. Later, the same team [19] integrated
discrete cosine transformation (DCT) into CNN and put forward an orthogonally
regularized deep network. In addition, Huang et al. [20] applied WT to CNN-based
face SR to validate that this method can accurately capture global topology information
and local textural details of faces. The existing models received excellent performance
in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) in
the SISR problem.

In this paper, we present a novel CNN architecture in the NSCT domain for SISR.
The main contributions are as follows:

(1) We propose multi-scale information distillation (MSID) block to fully exploit
features from images; and MSID-N is mainly formed by multiple MSID blocks to
effectively restore the LR images.

(2) We integrate NSCT and demonstrate the superiority of NSCT over WT, and
formulate the SISR problem as the prediction of NSCT coefficients, which is able
to make MSID-N preserve richer detail information than that in spatial domain.

(3) We evaluate the proposed method with three standard image datasets. The
qualitative and quantitative results confirm that our method is capable of obtaining
data with higher PSNR/SSIM values and preserving complex edges and curves
better than other state-of-the-art methods.

2 Proposed Method

In this section, we will first describe the architecture of our proposed MSID-N. After
that, we will provide a brief introduction to the proposed MSID block, followed by the
description of NSCT domain.

2.1 Network Architecture

As shown in Fig. 1, our MSID-N consists of two parts, the shallow feature extraction
(SFE) module and the deep feature extraction (DFE) module. Let’s denote the ILR and
IHR as the LR images and HR images respectively. Our ultimate goal is to learn an end-
to-end mapping function F between ILR and IHR. So, we solve the following problem:
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ĥ ¼ argmin
h

1
N

XN

i¼1

LSR Fh ILRi
� �

; IHRi

� �
; ð1Þ

where h¼ w1;w2; � � � ;wp; b1; b2; � � � ; bp� �
denotes the weights and bias of our p con-

volutional layers. N is the number of training samples. LSR is the loss function for
minimizing the difference between the ILR and IHR.

The mean square error (MSE) function is the most widely-used objective opti-
mization function in image super-resolution [2, 7, 9]. However, Lim et al. [14] have
experimentally demonstrated that training with MSE loss is not a good choice. In order
to avoid introducing unnecessary training tricks and reduce computations, we use the
mean absolute error (MAE) function LSR as a better alternative, as defined below

LSR Fh ILRi
� �

; IHRi

� � ¼ 1
N

XN

i¼1

ILRi � IHRi

�� ��
1: ð2Þ

Specially, we use two convolution layers to extract the shallow feature M0 from the
noisy seismic signals. So we can have

M0 ¼ HSFE1 HSFE2 ILR
� �� �

; ð3Þ

where HSFE1 and HSFE2 denote the convolution operation of the two layers in SFE
module respectively. After shallow feature module, the shallow feature M0 is used for
DFE module, which contains a set of cascaded MSID blocks. Each MSID block can
gather more information as much as possible and distill more useful information. After
that we use a 1 � 1 convolutional layer to adaptively control the output information.
We name this operation as feature fusion formulated as

MGF ¼ HGFF M1;M2; � � � ;MD½ �ð Þ; ð4Þ

where M1;M2; � � � ;MD½ � denotes the concatenation of feature maps produced by MSID
blocks 1, 2, …, D. HGFF is a composite function of 1 � 1 convolutional layer. Global
residual learning is utilized after feature fusion to obtain the feature maps IOutput, which
can be formulated as

IOutput ¼ MGF þM0: ð5Þ

In our MSID-N, all convolutional layers have 64 filters, except that in feature
fusion, whose has 128 filters.
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2.2 MSID Block

The proposed MSID block is shown in Fig. 2. Each MSID block can be divided into
two parts, which are used for exploiting short and long-path features. Different from the
IDN model [19], we construct three-bypass network in each part and different bypass
use different convolutional kernels. In this way, our model can adaptively detect the
short and long-path features at different scales.

Supposing the input and output of the first part are Md�1 and OP1, we have

OP1 ¼ r Y1
1�1 r Y2

3�3 Md�1ð Þ� �þ r Y3
5�5 Md�1ð Þ� �þ r Y4

7�7 Md�1ð Þ� �� �� �� �
; ð6Þ

where Y1
1�1, Y

2
3�3, Y

3
5�5 and Y4

7�7 refers to the function of 1 � 1, 3 � 3, 5 � 5 and
7 � 7 convolutional layers in the first part respectively. �½ � indicates the concatenation
of feature maps by different convolutional kernels. r denotes the ReLU function [21].
After that, the feature maps with 64 dimensions of OP1 and the input Md�1 are con-
catenated in the channel dimension,

R ¼ C S OP1; 64ð Þ;Md�1ð Þ; ð7Þ

where C and S indicate concatenation operation and slice operation respectively.
Therefore, the 64 dimensional features are fetched from S. The purpose is to combine
the current multi-scale information with the previous information. It can be regarded as
retained short path information. And then, we take the rest of 64 dimensional feature
maps as the input of the second part, which mainly further extracts long path
information,

OP2 ¼ r Y5
1�1 r Y6

3�3 OP1; 64ð Þ� �þ r Y7
5�5 OP1; 64ð Þ� �þ r Y8

7�7 OP1; 64ð Þ� �� �� �� �
; ð8Þ

where Y5
1�1, Y

6
3�3, Y

7
5�5 and Y8

7�7 refers to the function of 1 � 1, 3 � 3, 5 � 5 and
7 � 7 convolutional layers in the second part respectively. Finally, the input infor-
mation, the short path information and the long path information are aggregated, which
can be formulated as follows:

Md ¼ RþOP2: ð9Þ

where Md indicates the output of the MSID block.
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Fig. 1. The architecture of our proposed MSID-N.
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2.3 Non-subsampled Contourlet Transform (NSCT) Prediction

Wavelet analysis [22] cannot “optimally” represent image functions with straight lines
and curves. The contourlet transform (CT) [23] improved WT. It is constructed by two
filter-bank stages, a Laplacian Pyramid (LP) followed by a Directional Filter Bank
(DFB). CT is a shift-variant transform, as it involves sampling at both the LP and the
DFB stages. However, shift-variance is not a desirable property for various multimedia
processing tasks. To overcome this problem, Cunha et al. [24] proposed NSCT, which
is a translation-invariant version of the CT. This transform eliminates all sub-sampling
operations, resulting in high redundancy.

NSCT mainly comprises non-subsampled pyramid filter bank (NSPFB) and non-
subsampled direction filter bank (NSDFB) in cascade. Firstly, decomposition is made
on the image by NSPFB and the resulting sub-bands is taken as input of NSDFB to get
decomposition results of the original image in multiple dimensions and directions K-
level decomposition is made on any image by NSCT to get one low-frequency sub-
band and some high-frequency band-pass sub-bands, all of which have the same size as
the original image. Both NSPFB and NSDFB are eligible for full reconstruction so
NSCT is fully rebuilt as well.

As stated in the introduction, SR in the transform domain can achieve better results
than spatial domain. In this paper, we formulate the SISR problem as the prediction of
NSCT coefficients, which is able to make MSID-N further preserve richer structure
details. In Fig. 3, we compare the high-frequency coefficients of NSCT and WT, where
we can clearly see that NSCT represents the curvature more accurately. This demon-
strates the superiority of NSCT over WT.
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Fig. 2. The architecture of MSID block.
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In this paper, we formulate the SR problem as the prediction of NSCT coefficients
as show in Fig. 4, which is able to make MSID-N further preserve richer structure
details than that in spatial domain. It is worth mentioning that NSCT can be used in
different SR networks, which is a simple and effective way to improve the performance.
Speaking of the role of NSCT, it is to take further experiment in Sect. 3.3. The detailed
process of NSCT implementation can be found in [24].

3 Experiments

In the experiments, the performance of the proposed method is evaluated on both
qualitative and quantitative aspects. PSNR and SSIM [25] are used for quantitative
evaluation.

3.1 Implementation Details

Recently, Timofte et al. [26] have released a high-quality dataset DIV2 K for image
restoration applications. We train our model with 800 training images and use 5

MSID-N

... ...

LR image SR image

NSCT

Low frequency

High frequency

Input Output

Low frequency

High frequency

Inverse
NSCT

Fig. 4. NSCT domain coefficients prediction.

Fig. 3. Comparison of NSCT and WT coefficients on the Lena image: (a) The original HR
image Lena; (b) the fusion of NSCT high-frequency coefficients; (c) the fusion of discrete WT
high-frequency coefficients.
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validation images in the training process. For testing, we use the standard benchmark
datasets: Set5, Set14, and BSD100. We use the RGB input patches of size 48 � 48
from the LR input for training. We sample the LR patches randomly and augment them
by flipping horizontally or vertically and rotating 90. We implement our method with
the Torch7 framework and update it with the ADAM optimizer. The mini-batch size is
64, and the learning rate begins with 0.0001 and decreases half for every 100 epochs.
Training our model roughly takes 12 h with a NVIDIA Tesla P100 for 200 epochs.

3.2 Evaluation of Results

In this section, we evaluate the performance of our method on three standard image
datasets. In order to evaluate the SISR performance, we use PSNR and SSIM as a
quantitative evaluation metric to justify the reconstruction results. For fair comparison,
we use the released codes of the above models and train all models with the same
training set. The PSNR (dB) and SSIM values for comparison are shown in Tables 1
and 2. The tables show that our proposed method obtains higher PSNR/SSIM values
than other methods; it is that our model constructs multi-bypass network to adaptively
detect the short and long-path features and distill more useful information at different
scales in transform domain (Fig. 5).

Table 1. Average PSNR values for scaling factor �2, �3, and �4.

Datasets Scale Bicubic VDSR MemNet DWSR IDN MSRN Ours

Set5 �2 33.66 37.53 37.78 37.43 37.83 38.08 38.51
�3 30.39 33.66 34.09 33.82 34.11 34.38 34.75
�4 28.42 31.35 31.74 31.39 31.82 32.07 32.36

Set14 �2 30.24 33.03 33.28 33.07 33.30 33.74 34.21
�3 27.55 29.77 30.00 29.83 29.99 30.34 30.68
�4 26.00 28.01 28.26 28.04 28.25 28.60 28.88

BSD100 �2 29.56 31.90 32.08 31.80 32.08 32.23 32.59
�3 27.21 28.82 28.96 – 28.95 29.08 29.44
�4 25.96 27.29 27.40 27.25 27.41 27.52 27.84

Table 2. Average SSIM values for scaling factor �2, �3, and �4.

Datasets Scale Bicubic VDSR MemNet DWSR IDN MSRN Ours

Set5 �2 0.9299 0.9587 0.9597 0.9568 0.9600 0.9605 0.9664
�3 0.8682 0.9213 0.9248 0.9215 0.9253 0.9262 0.9289
�4 0.8104 0.8838 0.8893 0.8833 0.8903 0.8903 0.8937

Set14 �2 0.8688 0.9124 0.9142 0.9106 0.9148 0.9170 0.9203
�3 0.7742 0.8314 0.8350 0.8308 0.8354 0.8395 0.8412
�4 0.7024 0.7674 0.7723 0.7669 0.7730 0.7751 0.7774

BSD100 �2 0.8431 0.8960 0.8978 0.8940 0.8985 0.9013 0.9061
�3 0.7385 0.7976 0.8001 – 0.8013 0.8041 0.8064
�4 0.6675 0.7251 0.7281 0.7240 0.7297 0.7273 0.7302
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3.3 Ablation Investigation

Given that in this paper, we introduce to predict NSCT coefficients for SISR. We
evaluate the effect of the contribution on scale 2�. We use three methods (MSRN, IDN
and MSID-N) and integrate them with NSCT prediction. Figure 6(a) shows the com-
parison results of MSID-N across different image datasets. Figure 6(b) shows the
comparison results of IDN and MSRN. From Fig. 6, we can see that three methods can
be improved significantly when integrated with NSCT. Experimental results demon-
strate that NSCT prediction is superior to spatial domain; the improvements are con-
sistent across various networks and benchmarks.

(a) Bicubic (24.13/0.6777) (b) VDSR (26.38/0.7585) (c) MemNet (26.82/0.7648)   (d) DWSR (26.90/0.7649)

(e) IDN (27.04/0.7687) (f) MSRN (27.07/0.7688)   (g) Ours (27.58/0.7729) (h) Original image

Fig. 5. Visual results (PSNR/SSIM) of our method and several state-of-the-art methods.

(a) 

(b)

Fig. 6. Effectiveness of NSCT prediction. (a) Comparison for spatial domain, WT domain and
NSCT domain. (b) NSCT prediction using different networks.
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4 Conclusions

In this paper, a CNN-based SISR method is proposed. Our network MSID-N contains a
set of cascaded MSID blocks, which effectively exploit features of image to improve the
SISR performance. In addition, NSCT is applied to the network structure to effectively
preserve richer detail information than spatial domain, which further improves the SISR
performance. Qualitative and quantitative results show that the proposed method is
much better than other state-of-the-art methods, boosting restoration ability of LR
images.
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