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Abstract. Nowadays, the vast volume of data which needs to be eval-
uated potentially malicious is becoming one of the major challenges of
antivirus products. In this paper, we propose a novel image-based mal-
ware classification model using deep learning to counter large-scale mal-
ware analysis. The model includes a malware embedding method called
YongImage which maps instruction-level information and disassembly
metadata generated by IDA disassembler tool into an image vector, and
a deep neural network named malVecNet which has simpler structure
and faster convergence rate.

Our proposed YongImage converts malware analysis tasks into image
classification problems, which do not rely on domain knowledge and com-
plex feature extraction. Meanwhile, we use the thought of sentence-level
classification in Natural Language Processing to establish and optimize
our malVecNet. Compared to previous work, malVecNet has better the-
oretical interpretability and can be trained more effectively.

We use 10-fold cross-validation on Microsoft malware classification
challenge dataset to evaluate our model. The results demonstrate that
our model can achieve 99.49% accuracy with 0.022 log loss. Although our
scheme is less precise than the winner’s, it makes an orders-of-magnitude
performance boost. Compared with other related work, our model also
outperforms most of them.
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1 Introduction

Malware is a term for all software that intend to cause harm or inflict damage on
computer systems. Recently, with introducing of polymorphic and metamorphic
techniques, malicious software gets explosive growth on both quality and quan-
tity. Malware classification has always been a concerned field in recent decade,
which is an issue of giving a malicious sample i, calculating a family label j from
knowledge base. Hence, malware classification can associate a fresh variant to a
known family, which is meaningful to malware detection.

The research of Microsoft [11] indicates that the vast volume of data which
needs to be detected is becoming one of the major challenges of anti-malware
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companies. Traditional signature-based and behavior-based malware analysis
techniques are difficult to meet the demand, a more effective method is needed
[19]. Deep learning is a good choice, under the gpu acceleration, a model can
be easily trained and the detection is even more efficient. In addition, inspired
by the excellent performance of convolution neural network in image field, we
decide to explore a simpler model, converting malware classification tasks into
image classification problems.

In fact, recent research of malware analysis, both static and dynamic, is
moving from traditional aspects to deep learning. Ronen et al. [15] make a com-
parison between research papers using Microsoft malware classification challenge
dataset (BIG2015). The results suggest that none of 12 papers in 2016 introduc-
ing deep learning, but 5 of 17 papers in 2017. Although most of them still rely
on solid domain knowledge, researchers are exploring an end-to-end model to
extract and fuse malware features automatically.

Nataraj et al. [13] propose first malware embedding method called Natara-
jImage based on binary file in 2011. Although NatarajImage is believed vul-
nerable to obfuscation and packing techniques, their work has been followed by
many others [1,7,8,18]. Andrew et al. [2] propose another malware embedding
method named AndrewImage based on disassembly file at Black Hat conference
2015. As far as we know, AndrewImage has not been introduced in any research
paper. Compared with NatarajImage, AndrewImage embeds instruction-level
information, which has better robustness and interpretability. Unfortunately,
AndrewImage uses so much zero padding that the accuracy still remains a chal-
lenge.

To summarize, this paper has the following contributions. 1. We propose a
novel image-based malware classification model including a malware embedding
method called YongImage and a simple deep neural network named malVec-
Net. YongImage directly embeds hexadecimal instruction and other metadata
into vector space. MalVecNet has better theoretical interpretability and can
be trained more effectively. Our model converts malware analysis tasks into
image classification problems that do not rely on domain knowledge and time-
consuming feature extraction. 2. We successfully train the model on Microsoft
malware classification challenge dataset, the results indicate that our model out-
performs most of the related work. As far as we know, it is the state-of-the-art
solution for large-scale malware classification tasks. 3. We make the code for
malware embedding and training based on the model described in this paper,
now is available in github.1

2 Malware Embedding

Formally, malware embedding maps malicious software into a vector space, helps
learning algorithms to obtain better performance in malware analysis tasks.
Similar to word embedding [12] in Natural Language Processing (NLP), this
choice has several advantages—simplicity, effectiveness and the observation that
1 https://github.com/jyker?tab=repositories.
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some image-based models trained on huge malware dataset outperform most of
traditional signature-based and behavior-based methods. Differently, malware
embedding now focuses more on how to choose atomic units.

2.1 NatarajImage and AndrewImage

NatarajImage [13], as shown in Fig. 1, chooses 8-bit malware binary as atomic
units, maps whole Portable Executable (PE) file or only .text section into a gray
image vector.

Fig. 1. NatarajImage embedding process

However, even without considering obfuscation and packing techniques,
Ahmadi et al. [1] find that the texture pattern of NatarajImage in different mal-
ware families may be exactly similar. Therefore, models based on NatarajImage
are vulnerable to attackers.

Differently, AndrewImage [2], as shown in Fig. 2, chooses hexadecimal
instruction in disassembly file as atomic units, embeds malware instruction into
a black-white image vector.

Fig. 2. AndrewImage embedding process

In fact, AndrewImage has excellent semantic features —one line instruction,
one row vector. Unfortunately, it is also this excellent visual interpretability that
uses a large percentage of invalid zero padding, which makes output image vector
too large to train, and high accuracy still remains a challenge.
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2.2 YongImage

Inspired by previous work, we propose YongImage. As Fig. 3 shows, a PE
malware disassembly file generated by IDA Pro2 contains two aspects of
information—hexadecimal instruction, and corresponding metadata, i.e. section
name, address of instruction, opcode and operand.

Fig. 3. YongImage embedding process

We embed these information as following steps: 1. Encode malware disassem-
bly file with UTF-8 [20]. 2. Obtain gray vector by truncating each encoded value
from a high order to 8-bit. 3. Reshape the gray vector to (m, 64). Intuitively,
the visual interpretability of YongImage is not as well as AndrewImage. In fact,
YongImage retains instruction-level interpretability by reshaping the gray vector
to (m, 64).

Why (m, 64). Firstly, Let us prove the optimal padding length in AndrewImage
is L = 64.

The Intel 64 and IA-32 architectures instruction encodings are subsets of the
format shown in Fig. 4, which specifies the maximum length of an instruction is
15 bytes, in general, it does not exceed 11 bytes [5]. For example, the hexadecimal
instruction {8B 44 24 10} in Fig. 2 is only 4 bytes.

Fig. 4. Intel 64 and IA-32 architectures instruction format [5]

2 https://www.hex-rays.com/products/ida/.
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Therefore, the first idea is to pad binary digits to 120-bit to cover all instruc-
tions or just truncate binary digits to 88-bit vector to support most. However,
in that case, the output vector is too large to train.

Fig. 5. The cumulative distribution function of instruction in BIG2015 dataset

By analyzing samples in Microsoft malware classification challenge dataset
(BIG2015) [15], we obtain the cumulative distribution function (CDF) of instruc-
tion length in samples, as shown in Fig. 5(a), which indicates that 99% of instruc-
tions do not exceed 64 bits and 82% of instructions do not exceed 32 bits. There-
fore, L = 64 is chosen to cover almost all instructions while maintaining smaller
vector size. Differently, YongImage does not truncate each line vector to 64-bit,
as an alternative, we reshape the vector to (m, 64). Since 64-bit is almost suffi-
cient for a line of disassembly file encoded by UTF-8, m can be approximated
as number of instruction lines, i.e. instruction quantity.

Another problem of YongImage is how many lines of instructions should be
embedded, i.e. how to choose m. Certainly, the larger m can lead to better
accuracy without considering performance. However, when the model reaches a
certain accuracy, m should be as small as possible. Figure 5(b) indicates that
the instruction quantity in disassembly file varies greatly, 50% of files contain
no more than 3200 instructions, and 69% of files contain no more than 6400. In
our experiment, 3200 and 6400 are two candidate values of m.

3 Model Definition

Kim et al. [9] propose a simple novel convolution neural network (CNN) architec-
ture with little hyperparameter tuning and static vectors, which achieves excel-
lent results. Inspired by their work, we propose a variant architecture named
malVectNet, as shown in Fig. 6.

Malware embedding outputs an image vector with size (m, 64), where m
represents the number of instructions. Channel transformation is designed to
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Fig. 6. Image-Based malware classification model architecture

turn vector into a new shape of (m
k , 64, k), in which k represents the number of

channels.
Next, we use a special value k = 1 to illustrate our malVecNet.
First, let Sj ∈ R

64 be the 64-dimensional instruction vector corresponding to
the j-th instruction in m. Then, a malware sample Xi is represented as:

Xi = [S1, S2, ..., Sj , ..., Sm]. (1)

Each convolution layer includes several filters w ∈ R
hc, which apply a window

with size (h, c). For instance, ci,t is a vector generated from a window Xi:i+h(t :
t + c) by

ci,t = w · Xi:i+h(t : t + c) + b, (2)

where b ∈ R is bias. When a row convolution is finished, we obtain a new row
feature vector as follows:

ci = [ci,1, ci,2, ..., ci,64], (3)

Similarly, when whole convolution is completed, a new abstract instruction vec-
tor is generated, i.e.

c = [c1, c2, ..., ci, ..., cm]. (4)

Then, batch normalization (BN) [6] is applied on c. Details of BN on mini-batch
are in Algorithm 1. Recent research has shown that BN can smooth the objective
function [16], which is significant to accelerate deep neural network.

After that, we use a non-linear activation function f and max-pooling on ei,
which aims to reduce the dimension of the feature vector.

e = maxpooling(f([e1, e2, ..., ei, ..., em])); ei = BNβ,γ(ci) (5)

So far, we have described the process of one CNN block in malVecNet, which
uses four similar CNN blocks. Therefore, the input of global max-pooling is a
normalized, activated and pooled feature vector, i.e.
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Algorithm 1. The algorithm of batch normalization on mini-batch
Input: c value on each mini-batch ϕ = {c1...n}
1: parameters to learn γ, β
Output: ei = BNβ,γ(ci)
2: calculate mean of mini-batch μ ← 1

n

∑n
i=1 ci

3: calculate variance of mini-batch σ2
ϕ ← 1

n

∑n
i=1(ci − μϕ)2

4: standardize ĉi ← ci−μϕ√
σ2+ε

5: scale and shift ei ← γĉi + β ≡ BNβ,γ(ci)

e = [e1, e2, ..., eg]. (6)

where g is determined by the specific parameters of the before layers. In order
to preserve the most important features (one with highest value) while reducing
the dimension of the final feature vector, we apply global max-pooling on e and
take ê = max {e} as the final instruction-level features vector.

Finally, we use two fully-connected blocks and a softmax layer to get:

y = [y1, y2, ..., yn]. (7)

in which yi is the probability of malware family i, n represents the number of
malware families.

We use the idea of sentence-level classification to construct the entire model.
In theory, it is more suitable for instruction-level malware embedding methods,
such as AndrewImage and YongImage.

4 Experiments and Results

4.1 Dataset

BIG2015 [15] contains 21741 malware samples of 9 different families, i.e. Ram-
nit(F1), Lollipop(F2), Kelihos ver3(F3), Vundo(F4), Simda(F5), Tracur(F6),
Kelihos ver1(F7), Obfuscator.ACY(F8) and Gatak(F9).

Since only 10868 training samples in BIG2015 is labeled, we choose this
part as experimental dataset. As shown in Fig. 7(a), the dataset is extremely
unbalanced. Therefore, we combine the following two methods to eliminate the
impact of this unbalance on the model. Firstly, F4, F5 and F7 are randomly up-
sampled to 500. Secondly, a loss function weight that is inversely proportional
to the class frequency is set in the input data [10].

4.2 Platform and Environment

We evaluate malVecNet on the platform environment presented in Table 1. More
model details can be found in our github.3

3 https://github.com/jyker/zklearn.

https://github.com/jyker/zklearn
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Fig. 7. The distribution of dataset and cross-validation results

Table 1. The platform environment of experiment

Platform Content

Hardware 2 × GeForce GTX 1080 @ 8 GB

1 × E5-2630 v3 @ 2.40 GHz

32 GB of memory

Software CentOS 7.4

python 3.6.5

tensorflow-gpu 1.8.0

Keras 2.2.0

scikit-learn 0.19.1

numpy 1.14.3

Pillow 5.1.0

Loss function of the model is cross entropy, which is defined in Eq. (8),

loss = − 1
M

M∑

i

N∑

j

yij log pij . (8)

where M is the number of samples in min-batch, N is the number of malware
classes, yij is 1 if sample i is in class j, otherwise, yij is 0, and pij is the predicated
probability of sample i in class j.

At the same time, we choose accuracy, precision, recall and f1-score4 to eval-
uate the performance of our model.

4 https://scikit-learn.org/stable/modules/model evaluation.html#precision-recall-f-
measure-metrics.

https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
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4.3 Hyperparameter

In this section, we begin to discuss hyperparameters in our model. Firstly, it is the
instruction quantity m. Experiment results shown in Table 2 indicate YongImage
outperforms AndrewImage on all metrics regardless of m. In particular, when
m reaches 6400, the accuracy of YongImage is increased, and AndrewImage
decreased. One potential reason is that as m increases, the large number of
invalid zero padding in AndrewImage causes more interference.

Intuitively, a larger m covers more instruction information, which should
achieve a higher accuracy. In fact, when m increases to 6400, the accuracy of
YongImage is only slightly improved, however the training time almost increases
by half. Therefore, our model takes m = 3200.

Table 2. The impact of instruction quantity m

Method m Accuracy (%) Precision (%) Recall (%) Train time (h)

AndrewImage 3200 97.87 98.08 97.87 1.95

6400 96.16 97.01 96.16 3.31

YongImage 3200 99.49 99.51 99.51 1.70

6400 99.55 99.57 99.56 3.23

Note: BIG2015 tenfold cross-validation results; k = 1

Second hyperparameter is k, which represents the initial number of channels.
In fact, the initial idea is to analyze the correlation between instructions by
stacking k instructions in the channel direction to obtain higher model accuracy.
However, the experimental results in Table 3 indicate that this design is only
beneficial to accelerate model training. In order to achieve better accuracy, we
finally choose k = 1.

Table 3. The impact of channel parameter k

Method k Accuracy (%) Precision (%) Recall (%) Train time (h)

YongImage 1 99.49 99.51 99.51 1.70

4 98.87 98.89 98.87 1.01

8 98.54 98.57 98.54 0.69

Note: BIG2015 10-fold cross-validation results; m = 3200

We use tenfold cross-validation on BIG2015 to evaluate the above hyperpa-
rameters. Particularly, the detail results of YongImage with k = 1 and m = 3200
is shown in Fig. 7(b), where the average accuracy is 99.49%, and the average
training time is 1.70 h.
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4.4 Comparison with Other Work

In this part, we compare malVecNet with several methods that have performed
well on BIG2015 in recent years. Certainly, due to differences in experimental
platforms, time metric is only a certain degree of reference.

The results in Table 4, suggest that only the solutions of Kaggle Winner [17]
(BIG2015 winner) and Ahmadi [1] are slightly more accurate than our malVec-
Net. However, they all rely on time and labor consuming feature engineering,
which is inefficient during both training and detecting phases. Hence, compared
with them, malVecNet makes an orders-of-magnitude performance boost.

Garcia et al. [4] introduce random forest based on NatarajImage to classify
variant malware. Unfortunately, it is believed that NatarajImage is vulnerable
to obfuscation and packing techniques, so their solution is less robust.

Raff et al. [14] propose a novel valid distance metric named Lempel-Ziv Jac-
card Distance (LZJD) to classify malware in raw data, which obtains greater
performance improvement than Normalized Compression Distance (NCD). How-
ever, models combining distance metrics with clustering algorithm are easy to
train but time-consuming to detect.

Drew et al. [3] introduce strand gen sequence to malware classification, which
achieves 98.89% accuracy and requires only 0.75h to train. Unfortunately, the
detection time of strand gen sequence classifier is still too long for large-scale
malware.

In fact, only the method of Yan et al. [18], which stacks VGG (based on
NatarajImage), LSTM (based on opcode), achieves similar performance as our
malVecNet. However, our model still has obvious advantages despite the differ-
ences in the experimental platform. Firstly, we use YongImage as the only input
feature vector, model preprocessing and training are relatively simple, certainly,
detection is faster. Secondly, benefit from instruction embedding and sentence-
level modeling, our solution is more robust and interpretable.

Therefore, as far as we know, our malVecNet is the advanced solution for
large-scale malware classification tasks.

Table 4. The comparison with other work

Methods Accuracy (%) Process (h) Train (h) Detect (s)

(2015) Kaggle Winner [17] 99.83 72 1 13649

(2016) Novel Features [1] 99.77 21.86 — 4096

(2016) Random Forest [4] 95.62 — — —

(2017) LZJD [14] 97.10 1.35 — —

(2017) Strand Gene Sequence [3] 98.59 — 0.75 307.20

(2018) VGG LSTM [18] 99.36 — 2.91 30.72

malVecNet 99.49 0.22 1.70 4.79

Note: detection time is measured on 1024 samples.
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5 Conclusion

This research aims to explore a simple and practical model to convert malware
classification tasks into image classification problems.

We propose a novel image-based malware classification model including a
malware embedding method called YongImage and a simple deep neural net-
work named malVecNet. YongImage directly embeds hexadecimal instruction
and other metadata into vector space. MalVecNet has better theoretical inter-
pretability and can be trained more effectively. Our model does not rely on solid
domain knowledge and time-consuming feature extraction.

We successfully train the model on Microsoft malware classification challenge
dataset, the results indicate that our model outperforms most of the related work.
To the best of our knowledge, it is the state-of-the-art solution for large-scale
malware classification tasks.
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