
Network of Experts: Learning
from Evolving Data Streams Through

Network-Based Ensembles

Heitor Murilo Gomes1(B) , Albert Bifet1, Philippe Fournier-Viger2,
Jones Granatyr3, and Jesse Read4

1 University of Waikato, Hamilton, New Zealand
{heitor.gomes,albert.bifet}@waikato.ac.nz

2 Harbin Institute of Technology, Shenzhen, China
philfv8@yahoo.com

3 University of Lisbon, Lisbon, Portugal
jones.granatyr@gaips-inesc-id.pt

4 LIX - École Polytechnique, Palaiseau, France
jesse.read@polytechnique.edu

Abstract. Ensemble classifiers are a promising approach for data
stream classification. Though, diversity influences the performance of
ensemble classifiers, current studies do not take advantage of relations
between component classifiers to improve their performance. This paper
addresses this issue by proposing a new kind of ensemble learner for data
stream classification, which explicitly defines relations between compo-
nent classifiers. These relations are then used in various ways, e.g., to
combine the decisions of component models. The hypothesis is that an
ensemble learner can yield accurate predictions in a streaming environ-
ment based on a structural analysis of a weighted network of its com-
ponent models. Implications, limitations and benefits of this assump-
tion, are discussed. A formal description of a network-based ensemble
for data streams is presented, and an algorithm that implements it,
named Network of Experts (NetEx). Empirical experiments show that
NetEx’s accuracy and processing time are competitive with state-of-the-
art ensembles.

Keywords: Data stream · Classification · Ensemble learning

1 Introduction

High-speed data stream mining has gained in importance in recent years due to
the tremendous amount of real-time data generated by networks, mobile phones
and sensors. Building predictive models from data streams is of uttermost neces-
sity for many applications such as those related to the Internet of Things [11].
But designing an effective data stream learning algorithm is not easy as it must
process a large number of instances at a fast pace. A key challenge is that an
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11953, pp. 704–716, 2019.
https://doi.org/10.1007/978-3-030-36708-4_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36708-4_58&domain=pdf
http://orcid.org/0000-0002-5276-637X
https://doi.org/10.1007/978-3-030-36708-4_58


Network of Experts 705

algorithm must learn useful models using limited computational resources. A
second challenge is that data evolves, i.e., the underlying data distribution may
change over time, resulting in the well known problem of concept drifts [15].

An important data stream mining task is classification. In recent years, clas-
sifiers have been proposed to cope with different aspects of data stream classifi-
cation. An emerging approach is to use classifier ensembles [1,4,18,22,28] as they
frequently achieve better accuracy than single classifiers. Moreover, ensembles
can often deal with concept drifts in a less drastic way than using a single classi-
fier. For example, a single classifier may discard an hypothesis completely when
faced with a concept drift, while an ensemble may only replace (or reset) a few of
its component classifiers. Some of the first studies on ensemble classifiers for data
streams have focused on adapting existing algorithms to handle data streams.
This is the case of Online Bagging and Online Boosting [28]. Many ensembles
were designed for data stream classification, some dealing with concept drift
explicitly [1,4], and others implicitly [18,19,22].

Most ensemble classifiers are based on the intuition that component classifiers
must be diverse to allow their combination to achieve higher accuracy than a
single classifier [17]. That is true for many successful ensemble methods such
as Bagging [6], AdaBoost [13] and Random Forest [7]. The subjective notion of
diversity has been well-studied [8,24,25] and yet there is not a “one size fits all”
metric for measuring diversity between ensemble members, or any proof that
correlates a given diversity measure and its impact on predictive performance.
Even though it is difficult to formalize or measure the contribution of “diversity”
to an ensemble’s overall prediction accuracy, it is intuitively easy to rationalize
why combining an homogeneous set of classifiers cannot achieve better (or worse)
accuracy than any of its members. A limitation of current ensemble classifiers is
that they do not take advantage of the relations between component classifiers
to improve their performance.

This paper addresses this issue by proposing a new kind of ensemble learner
for data stream classification, called network-based ensemble. Such ensemble
explicitly defines relations between members. These relations are then used in
various ways such as to combine the decisions of similar classifiers. A structure
is imposed on components of an ensemble to highlight their diversity, so that
it can be better exploited. An algorithm implementing this idea is presented,
named Network of Experts (NetEx). Experiments show that NetEx’s accuracy
and processing time are competitive with state-of-the-art ensembles.

The rest of this paper is organized as follows. Section 2 defines network-based
ensembles. Section 3 describes the proposed NetEx algorithm. Finally, Sect. 4
presents experimental results and Sect. 5 draws the conclusion.

2 Network-Based Ensembles

The proposed concept of network-based ensemble is defined as follows. Let
C = {c1, c2, . . . , cM} be a diverse set of classifiers, R a relation that defines
connections Φ = {φ1, φ2, . . . , φP } between members of C, β a combination



706 H. M. Gomes et al.

method that takes into account the structure formed by Φ, and fψ an adap-
tation function that updates C and Φ according to the current state of a data
stream S. Moreover, it is expected that members of C are different from one
another (diverse) to be consistent with the intuitive principle that a homoge-
neous subset of classifiers cannot contribute to the overall decision any better
than any of them alone [23]. We note that for the sake of generality the definition
is not bound to any specific method to induce diversity into the ensemble.

The connections defined by the relation R are not restricted to be between
pairs of classifiers, although using pairs is an intuitive way of grouping elements
in a network [30] and of measuring diversity between classifiers [24]. Also, the
relation R is not restricted to be a diversity or similarity measure. The combina-
tion method β should use the set of connections Φ to group ensemble members
in a way that they can be explored to produce accurate predictions. For exam-
ple, β can be defined such that any pair (ck, cl) from C which connection φck,cl

is smaller than a given threshold T must be grouped together for voting. The
last component of the proposed definition is the adaptation function fψ, which
updates the ensemble structure, either periodically or incrementally, to allow
it to adapt to drifts. These updates may include adding, removing, or replac-
ing classifiers, and refreshing statistics extracted from classifiers, such as similar
predictions counters.

3 The Network of Experts Algorithm

This section presents a novel network-based ensemble, named Network of Experts
(NetEx). It relies on an active drift detection strategy instead of relying on a
fixed period length parameter as previous approaches [18,19]. The main benefit
is that NetEx does not require to fine tune the period length, yet it increases
the algorithm’s complexity as an adaptive window must be considered for each
component model. In SAE2 [19] the relation R was defined as the similarity
coefficient (Sc) between a pair of classifiers, connections were activated if they
surpassed a Scmin threshold, and a network was induced based on the maximal
cliques. SAE2 performed predictions by combining the weighted votes (based on
current period accuracy) first at the subnetwork level and then at the network
level, which contributes to an indirect drift adaptation technique as recently
added classifiers, probably better adapted to the current concept, tend to receive
higher weights.

Differently, NetEx defines the relation R as either the Kappa statistic between
the output of base model pairs or the Jaccard similarity of the features used to
induce the model, and the network is build using the k nearest strategy presented
in [29]. NetEx uses an adaptation strategy based on one drift/warning detector
per base model, training background learners whenever warnings are detected,
and weighting votes based on accuracy calculated on adaptive windows. Also,
NetEx uses two diversity inducing techniques: vertical (similar to Leveraging
Bagging) and horizontal (random subspaces). The rest of this section describes
each aspect of NetEx in details.



Network of Experts 707

Two different similarity weighting functions are presented to define the rela-
tion R, namely Kappa statistic κ and Jaccard Index. The reason for using Kappa
is because it accounts for agreements that might happen by chance, while also
precisely measuring divergence votes on multiclass problems.

Jaccard Index is used to estimate the similarity between finite sample sets
[26], and is defined as the size of the intersection divided by the size of the union
of the sample sets as shown in Eq. 1, where A and B represents subsets of features
used to induce models a and b. The intuition behind using Jaccard to measure
the similarity among base models is that models induced using approximately
the same features might as well generate very similar models even if online
bagging is used. There are other set distance metrics that could be used instead
of Jaccard, such as Sorensen-Dice index [12]. However, our problem matches the
ideal scenario for applying Jaccard, i.e., it is defined in terms of a binary set
membership and element identity (features either belong to the subset or not),
and two features are either completely equal or not at all.

J(A,B) =
A ∩ B

A ∪ B
(1)

There are three important factors to take into account when comparing
Kappa and Jaccard for measuring similarity in NetEx:

1. Input data to estimate similarity: Kappa is calculated on the output predic-
tions, while Jaccard is calculated on the feature subset;

2. Domain: Kappa ranges from −1 (Inverse dependency) to 1 (Dependency),
where 0 represents independency. Jaccard ranges from 0 (No features are
shared between models) to 1 (Exactly the same subset or one subset is a
superset of the other1).

3. Update frequency: To maintain an updated estimation, Kappa must be recal-
culated after training using each new instance, while Jaccard is updated only
when subspaces are defined for each model or when subspaces are reset.

In overall, Kappa provides a more accurate similarity estimation as it is
based on the actual outputs. For example, it may happen that a completely
different subset of features is used to induce two models, yet the features that
compose these subsets may be correlated, thus both models will output very
similar predictions. The main concern about using Kappa is that NetEx does not
use a fixed update period length to control network updates, thus it is necessary
to recalculate Kappa after training using each new instance, which requires a
lot of computational resources. Optionally, we could have defined a grace period
after which Kappa would be recalculated and the network rebuilt. But we would
then be tied to a parameter similar to the period length l of SAE2.

Beyond defining relations, it is also necessary to specify how they will be
explored by the ensemble. In this case, how the structure induced by them
will be used to boost predictions. In our formal framework this is equivalent
1 In NetEx, the number of subspaces is fixed, the number of features is the same for

all classifiers.



708 H. M. Gomes et al.

to defining the combination method β. In SAE2, classifiers were combined based
on dichotomous connections created based on the Scmin parameter. The goal
was to first decide within a set of highly similar classifiers a class label, and then
use this decision at a secondary level in which all subsets of classifiers decisions
were combined to form the overall ensemble decision.

NetEx uses a similar voting strategy, i.e., it first combines votes within sub-
networks and then combines subnetwork votes to obtain an overall prediction.
Precisely, when an unknown instance x is to be classified each component model
yields one vote weighted by its current estimated accuracy. These individual
votes are then combined into an overall subnetwork vote, which is weighted by
the average accuracy estimation of its members. This final vote per subnetwork
is used to define the overall decision.

The network structure is created based on a variation of the k nearest neigh-
bors network construction technique as proposed in [29]. This method must not
be confused with the classical k nearest neighbor learner. In [29] authors present
a deterministic approach to construct a network given an arbitrary distance
function. Basically, once set a reference vertex, the remaining non-reference ver-
tices are ordered according to the their distance to it. Then, the reference vertex
creates a connection with the top k vertices, i.e., closest, from the ordered list.

The base algorithm [29] does not specify how the reference vertices are
selected. Thus, we have changed it to accommodate a more intuitive network
construction approach given our problem. First, we define the k reference ver-
tices, which we name as seed models/nodes, to maximize the overall distance
among them. Intuitively, our goal is to create subnetworks as diverse as possible
from one another. To do that, we maximize the dissimilarity among seed nodes in
an iterative process: first we select the 2 most distant nodes, then the node that
is most distant from the previously selected 2, and continue until k is reached.
For example, assuming k = 3 and that nodes are arranged in Fig. 1 with distance
corresponding to their Kappa (or Jaccard) measure, the nodes selected as seeds
would be first 14 and 81, and then 12.

There are a multitude of algorithms for finding subgroups on networks [5].
For example, SAE [18] uses weakly connected components to build subnetworks;
and [27] which uses a so-called degeneracy framework.

This network formation strategy still depends on an hyperparameter (k).
However, it is an improvement over SAE2 Scmin’s parameter as it is independent
of the connections weight scale. For example, assuming each connection in the
example from Fig. 1 were 25% “closer”, the resulting subnetworks would be the
same.

3.1 The Adaptation Function fψ

Following our definition of a network-based ensemble, we have to define the
adaptation function fψ, responsible for matters such as: how training takes place
and when/how the ensemble structure is updated. Our general definition of a
network-based ensemble does not explicitly defines a training method, although



Network of Experts 709

Initial network.
After selecting the 2 most distant
nodes (12 and 81).

After selecting the most distant
node (14) from the previously se-
lected one.

Assigning remaining nodes to the
nearest seed node.

Fig. 1. NetEx network formation example.

the definition specifies that component classifiers must be diverse. Thus, this
must be taken into account for implementation.

We decided to simulate Online Bagging [28] using a poisson (λ = 6) dis-
tribution as in Leveraging Bagging [1]. Both methods train each model using a
randomly selected subset of instances. These methods simulated bootstrap aggre-
gation in an online setting by using a Poisson distribution. The Online Bagging
algorithm uses Poisson(λ = 1), which means that around 37% of the values out-
put by the Poisson distribution are 0, another 37% are 1, and 26% are greater
than 1. This implies that by using Poison (1), 37% of the instances are not used
for training (value 0), 37% are used once (value 1), and 26% are trained with rep-
etition (values greater than 1). Leveraging Bagging uses Poisson(λ = 6), which
implies that 0.25% of values are 0, 45% are lower than 6, 16% are 6, and 39%
are greater than 6. Effectively, base models are trained using more instances
in Leveraging Bagging, still more resources are used in comparison to Online
Bagging.

Besides training classifiers on different subsets of instances, NetEx also trains
them on different subsets of features. This strategy is known as the Random
Subspace Method (RSM) [20]. There are 2M − 1 different non-empty subsets of
features, which makes it not practical to try every possible combination given



710 H. M. Gomes et al.

a larger M . However, it is possible to achieve good classification performance
in the aggregated ensemble even if only a subset of all possible combinations is
explored. The main reason for using random subspaces to train NetEx compo-
nent classifiers is to enhance diversity among them.

As previously commented, instead of using a fixed window approach for
updates, NetEx uses drift detectors. Each component classifier is associated with
one drift/warning detector. When detector dj signals a drift warning, then a
background learner cbkg(j), is initialized. When dj outputs the drift signal, then
cbkg(j) replaces the current classifier cj . This approach is similar to that used in
Leveraging Bagging [1], although instead of just resetting the classifier, we also
start training a replacement beforehand, i.e., when a drift warning is detected
similarly to Adaptive Random Forest [16]. NetEx is not bound to a specific drift
detection method, however ADWIN [2] is used in the implementation, which
has a single parameter that specify the drift confidence level δ. Thus, we have
two separate parameters, one for warning detection δw and another for drift
detection δd.

Given our reset strategy based on drift detectors there is no fixed window to
estimate accuracy or any other metric. Therefore, to weight classifiers we use
the estimated accuracy for the given classifier window. This provides a good
estimation of the classifier as long as it has seen enough instances, i.e., it will
underestimate or overestimate its classification performance if the classifier has
seen just a few instances. This is somewhat aided by using background learners as
by the time a classifier is added to the ensemble it will have already been trained
on a few instances (hundreds or thousands) and will have a good estimation of
its accuracy.

It is very difficult to achieve a hyperparameter-free ensemble classifier. For
example, we were not able to eliminate the parameter to limit the number of
classifiers n and introduced a few other hyperparameters. The following list
presents NetEx’s hyperparameters accompanied by their short descriptions.

– n defines the total amount of active based models that the ensemble will have
at any time. In a stream learning context it is very important to limit the
number of classifiers, since memory and processing time are limited assets. n is
different from maxc from SAE2, as NetEx starts execution with n component
classifiers and maintain it during the whole execution, while in SAE2 maxc

defines the maximum number of component classifiers, thus at some point of
the execution there might be less than maxc active classifiers.

– k defines the number of seed nodes to build the network. This parameter
serves a similar purpose as that from Scmin in SAE2, i.e., it guides connection
and subnetwork creation. However, k is easier to set as it is independent from
the similarity metric used scale.

– m is the subspace size, which defines the percentage of features randomly
assigned to be used for training each base model. A small m increases diver-
sity into the ensemble as it lower the chances that the same subspaces are
assigned to the same component classifiers. However, it can decrease perfor-
mance as low subspace sizes for a high dimensional problem may incur that
some important features are never selected.



Network of Experts 711

– δd and δw represent the ADWIN drift and warning confidence levels. These
parameters effectively replace SAE2 l period length, since they define indi-
vidually the periodicity of when each base model is updated. Effectively, each
base model has its own adaptive window.

4 Experiments

We present empirical results comparing ensemble classifiers in both real and
synthetic datasets, with and without concept drifts. All experiments were con-
figured and executed using the MOA (Massive On-line Analysis) framework [3].
To evaluate accuracy in all experiments, we applied the Prequential [14] evalua-
tion procedure. The processing time is measured in seconds per MOA CPU time
estimation (i.e., it measures the CPU time of the current thread).

The datasets include five real datasets and ten variations of synthetic data
streams. The synthetic data contains 1 million instances each, and they simulate
either evolving (abrupt, gradual or incremental drifts) or stationary (no drift)
streams. Abrupt and gradual drifts are simulate thrice, i.e., one every 250 thou-
sand instances. The data stream configuration is identified by a subscript, e.g.,
LEDa, such that: {a}brupt, {g}radual, incremental {m}oderate and {f}ast), and
{n}o drift (stationary). Table 1 presents a summary of the real datasets used.

Table 1. Real datasets.

ID # Instances # Attributes # Classes

Airlines 539,383 8 2

Electricity 45,312 8 2

Covertype 581,012 54 7

GMSC 150,000 11 2

KDD99 4,898,431 41 23

All experiments in this section use 100 base models2; the base learner for all
ensembles is the Hoeffding Naive Bayes Tree (HNBT) [21] (grace period = 50 and
split confidence = 0.01); specific parameter values for methods other than NetEx
were set according to their original publications. Other algorithms used for com-
parison include the Online Accuracy Updated Ensemble (OAUE) [9], Online
Smooth Boosting (OSBoost) [10], Online Bagging (OzaBag) and Online Boost-
ing (OzaBoost) [28], Leveraging Bagging (LevBag) [1] and the Social Adaptive
Ensemble algorithm (version 2) (SAE2) [19].

2 DWM [22] is an exception as it does not include a maximum or target number of
base models.



712 H. M. Gomes et al.

4.1 Jaccard and Kappa Networks

We start the experiments comparing the two connection weighting functions
described in Sect. 3, i.e. Jaccard and Kappa. Specifically, we present the results
for k = 5, 10, 20, 30 using Jaccard or Kappa. As previously mentioned, k stands
for the number of seed base models used to create subnetworks according to
either Kappa or Jaccard measures. Table 2 presents the results for these experi-
ments.

Table 2. Accuracy - NetEx Jaccard and Kappa varying k. KDD99 did not finish for
some variations of Kappa versions, thus KDD99 is not used for the average and ranking
calculations.

Dataset NetExkap5 NetExkap10 NetExkap20 NetExkap30 NetExjac5 NetExjac10 NetExjac20 NetExjac30

LEDa 73.77 73.8 73.8 73.78 73.73 73.74 73.76 73.76

LEDg 73.1 73.11 73.1 73.12 73.06 73.07 73.09 73.11

SEAa 89.49 89.49 89.49 89.49 89.49 89.49 89.49 89.48

SEAg 89.08 89.07 89.07 89.07 89.07 89.07 89.07 89.07

AGRa 90.16 90.38 90.66 90.85 90.71 90.21 90.27 90.33

AGRg 86.25 86.63 86.99 87.09 87.24 86.48 86.55 86.65

RTS 97.33 97.31 97.06 96.94 97.39 97.37 97.36 97.32

RBFm 86.46 86.47 86.47 86.49 86.36 86.5 86.51 86.52

RBFf 77.11 77.16 77.29 77.34 76.9 77.14 77.18 77.22

HYPER 85.08 85.05 85.03 85.08 85.18 85.24 85.26 85.29

AIRL 64.94 65.04 65.14 65.14 65 64.87 64.92 64.96

ELEC 89.66 89.61 89.65 89.75 89.58 89.73 89.67 89.67

COVT 95.11 95.12 95.14 95.12 95.1 95.12 95.14 95.15

GMSC 93.55 93.55 93.55 93.55 93.57 93.55 93.54 93.55

KDD99 99.96 - - - 99.96 99.96 99.96 99.96

Avg Rank 5.5 4.54 4.19 3.08 4.85 4.85 4.88 4.12

Avg Rank

Real

5.63 4 3.63 3 5.25 5.5 5.13 3.88

Avg Rank

Synt.

5.44 4.78 4.44 3.11 4.67 4.56 4.78 4.22

The results in Table 2 suggests that NetExkap30 is the most effective, yet the
non-parametric Friedman test indicates that there are no differences among the
methods.

4.2 NetEx Compared to Other Ensembles

In this section we compare NetEx against state-of-the-art ensemble learners using
prequential accuracy [14].

We highlight NetEx stability in comparison to other ensembles. For exam-
ple, OAUE obtain good results in general, but fails to obtain a reasonable model
for KDD99 (2.45% accuracy while others obtain a minimum of 99.93% accu-
racy). The same happens for OzaBoost, which obtains the best result for the
ELEC dataset (90.67% accuracy), yet obtains the worse results for LEDa, LEDg,
RBFm and RBFf . Using the same parametrization (besides varying the subspace
reset strategy) NetEx may obtain the best results for all datasets considered in



Network of Experts 713

this experiment. This is interesting, since there is a multitude of different prob-
lems represented in this benchmark.

We followed these experiments with a non-parametric Friedman test, which
indicate that there are significant differences among the evaluated classifiers
for these datasets, both when we evaluate all datasets at once and when we
conduct the test separately for synthetic and real datasets. Figures 2 presents
the results of applying the nemenyi posthoc test to identify the statistically
relevant differences (Table 3).

Table 3. Accuracy - NetEx vs. others.

Dataset OAUE OSBoost OzaBag OzaBoost LevBag DWM SAE2 NetExjac30

LEDa 73.39 72.47 69.04 68.9 73.95 71.69 72.53 73.85

LEDg 72.58 72.12 68.71 68.54 73.22 70.72 72.07 73.16

SEAa 88.8 89.16 87.21 88.25 88.44 86.81 88.94 89.48

SEAg 88.19 88.94 87.11 87.92 89.09 86.38 88.72 89.07

AGRa 90.16 90.37 83.83 88.12 88.72 76.91 88.17 91.31

AGRg 85.24 87.83 79.25 84.66 83.71 76.3 82.4 87.93

RTS 96.81 94.78 95.12 96.93 97.85 94.76 95.68 97.4

RBFm 84.26 74.51 73.06 65.23 84.34 73.51 65.43 86.47

RBFf 57.15 48.7 43.54 26.16 76.77 53.88 39.83 77.15

HYPER 87.8 86.96 79.37 85.3 85.74 81.04 85.11 85.51

AIRL 65.23 64.56 64.89 60.63 62.82 61.67 59.03 66.3

ELEC 87.41 89.51 85.08 90.67 89.51 82.19 83.66 89.82

COVT 92.86 92.69 91.49 94.82 95.1 90.03 91.98 95.18

GMSC 93.57 93.05 93.52 92.32 93.54 92.92 93.46 93.55

KDD99 2.45 99.94 99.93 99.49 99.97 99.93 99.88 99.96

Avg Rank 3.47 3.83 6.17 5.87 2.63 6.77 5.6 1.67

Avg Rank Synt. 3.2 3.6 6.8 6.2 2.5 6.8 5.2 1.7

Avg Rank Real 4 4.3 4.9 5.2 2.9 6.7 6.4 1.6

12345678910

CD = 2.711

NetExjac30
LEVBAG
OAUE
OSBOOST

SAE2
OZABOOST

OZABAG
DWM

Fig. 2. Nemenyi posthoc with 95% confidence.

Finally, we compare NetEx and the other ensembles in terms of the average
CPU time for in Fig. 3. The overall good classification performance of NetEx
comes at the expense of a high resources demand. The inefficiency in using
computational resources by NetEx is attributable mainly to three aspects of its
implementation: (1) it is rare that all base models in the ensemble maintain a
background learner at the same time, however in the worst case it is necessary
to maintain 2 versions of each base model concomitantly; (2) when a drift is
detected it triggers a change in the ensemble, effectively replacing the learner
where it was detected by its background learner and causing a recalculation of the



714 H. M. Gomes et al.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1,
32

2.
54

1,
53

1.
89

1,
08

3.
5

1,
08

7.
45

2,
82

3.
51

56
.9
7 51
9.
2

6,
62

5.
37

C
P
U

T
im

es
(s
)

OAUE OSBoost OzaBag OzaBoost
LevBag DWM SAE2 NetExjac30

Fig. 3. Average CPU Time for NetEx and others.

network; (3) the subspace reset based on accuracy demands further calculation to
estimate each feature probability. For NetExjac30 (2) and (3) are not applicable,
since there are no subspace resets in this version and thus it is not necessary
to recalculate the network structure, neither perform any estimation on the
features.

5 Conclusion

We presented a definition for network-based ensembles for data stream clas-
sification and an ensemble learning algorithm based on that definition called
the Network of Experts (NetEx). We experimented with NetEx by varying its
combination method and including different resetting strategies for the features’
subspaces. We compared NetEx against other ensembles for data stream clas-
sification and found out that it obtains reasonable results for all datasets. One
of the main limitations of the proposed method is the high computational cost,
specifically to keep the network structure updated. For future work, we plan to
exploit network-based ensembles for semi-supervised learning and other tasks
beyond classification problems.

References

1. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams.
In: PKDD, pp. 135–150 (2010)

2. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: SIAM (2007)

3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA data stream mining - a
practical approach. Centre for Open Software Innovation (2011). http://heanet.dl.
sourceforge.net/project/moa-datastream/documentation/StreamMining.pdf

http://heanet.dl.sourceforge.net/project/moa-datastream/documentation/StreamMining.pdf
http://heanet.dl.sourceforge.net/project/moa-datastream/documentation/StreamMining.pdf


Network of Experts 715

4. Bifet, A., Holmes, G., Pfahringer, B., Gavaldà, R.: Improving adaptive bagging
methods for evolving data streams. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009.
LNCS (LNAI), vol. 5828, pp. 23–37. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-05224-8 4

5. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex net-
works: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
8. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey

and categorisation. J. Inf. Fusion 6, 5–20 (2005)
9. Brzezinski, D., Stefanowski, J.: Combining block-based and online methods in

learning ensembles from concept drifting data streams. Inf. Sci. 265, 50–67 (2014)
10. Chen, S.T., Lin, H.T., Lu, C.J.: An online boosting algorithm with theoretical

justifications. In: ICML, June 2012
11. Da Xu, L., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans.

Industr. Inf. 10(4), 2233–2243 (2014)
12. Dalirsefat, S.B., da Silva Meyer, A., Mirhoseini, S.Z.: Comparison of similarity

coefficients used for cluster analysis with amplified fragment length polymorphism
markers in the silkworm, bombyx mori. J. Insect Sci. 9(71), 1–8 (2009)

13. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm.
ICML 96, 148–156 (1996)

14. Gama, J., Rodrigues, P.: Issues in evaluation of stream learning algorithms. In:
15th ACM SIGKDD, pp. 329–338. ACM SIGKDD, June 2009

15. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM CSUR 46(4), 44:1–44:37 (2014)

16. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classifica-
tion. Mach. Learn. 106, 1–27 (2017)

17. Gomes, H.M., Barddal, J.P., Enembreck, F., Bifet, A.: A survey on ensemble learn-
ing for data stream classification. ACM CSUR 50(2), 23:1–23:36 (2017)

18. Gomes, H.M., Enembreck, F.: SAE: Social adaptive ensemble classifier for data
streams. In: CIDM, pp. 199–206 (2013)

19. Gomes, H.M., Enembreck, F.: SAE2: advances on the social adaptive ensemble
classifier for data streams. In: SAC. ACM, March 2014

20. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

21. Holmes, G., Kirkby, R., Pfahringer, B.: Stress-testing Hoeffding trees. In: PKDD,
pp. 495–502 (2005)

22. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for
drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

23. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley,
Hoboken (2004)

24. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

25. Kuncheva, L.I., Whitaker, C.J., Shipp, C.A., Duin, R.P.: Limits on the majority
vote accuracy in classifier fusion. Pattern Anal. Appl. 6(1), 22–31 (2003)

26. Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35
(1971)

27. Nikolentzos, G., Meladianos, P., Limnios, S., Vazirgiannis, M.: A degeneracy frame-
work for graph similarity. In: IJCAI, pp. 2595–2601 (2018)

28. Oza, N.: Online bagging and boosting. In: IEEE SMC, vol. 3, pp. 2340–2345 (2005)

https://doi.org/10.1007/978-3-642-05224-8_4
https://doi.org/10.1007/978-3-642-05224-8_4


716 H. M. Gomes et al.

29. Silva, T.C., Zhao, L.: Machine Learning in Complex Networks, vol. 2016. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-17290-3

30. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications,
vol. 8. Cambridge University Press, Cambridge (1994)

https://doi.org/10.1007/978-3-319-17290-3

	Network of Experts: Learning from Evolving Data Streams Through Network-Based Ensembles
	1 Introduction
	2 Network-Based Ensembles
	3 The Network of Experts Algorithm
	3.1 The Adaptation Function f

	4 Experiments
	4.1 Jaccard and Kappa Networks
	4.2 NetEx Compared to Other Ensembles

	5 Conclusion
	References




