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Abstract. Rain Streaks in a single image can severely damage the visual
quality, and thus degrade the performance of current computer vision
algorithms. To remove the rain streaks effectively, plenty of CNN-based
methods have recently been developed, and obtained impressive per-
formance. However, most existing CNN-based methods focus on net-
work design, while rarely exploits spatial correlations of feature. In this
paper, we propose a deep self-attentive pyramid network (SAPN) for
more powerful feature expression for single image de-raining. Specifi-
cally, we propose a self-attentive pyramid module (SAM), which con-
sists of convolutional layers enhanced by self-attention calculation units
(SACUs) to capture the abstraction of image contents, and deconvolu-
tional layers to upsample the feature maps and recover image details.
Besides, we propose self-attention based skip connections to symmet-
rically link convolutional and deconvolutional layers to exploit spatial
contextual information better. To model rain streaks with various scales
and shapes, a multi-scale pooling (MSP) module is also introduced to
efficiently leverage features from different scales. Extensive experiments
on both synthetic and real-world datasets demonstrate the effectiveness
of our proposed method in terms of both quantitative and visual quality.

Keywords: Rain streak removal · Encoder-decoder network ·
Self-attention

1 Introduction

Images captured in rain weather are common in real life, thus resulting in images
with rain streaks. Such rain streaks would not only affect the visual quality
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Fig. 1. Sample de-raining results on real-world rainy scenes with long heavy rain
streaks. The details in the enlarged regions shows that our SAPN removes long heavy
rain streaks in the input rainy images more cleanly, while keeps the sharp details of
the background objects. The two rows demonstrate that our self-attentive network
produces better de-raining results on image regions with long heavy rain streaks.

of images, but also degrade performance of existing computer vision systems,
such as self-driving, video surveillance, and object detection. Therefore, it is of
crucial importance to remove rain streaks while recovering image details. Image
de-raining has received much attention in recent years, and can be generally
divided into video-based [1–4] and single image based methods [5–10]. Most
video based methods focus on utilizing the temporal correlations in successive
frames, which provide extra temporal information of the rainy scene. In contrast,
it is more challenging to perform single image de-raining due to the very limited
information from a single image (Fig. 1).

In recent years, many single image de-raining methods [5–8,10] have been
proposed. Most traditional image de-raining methods focus on exploiting pow-
erful image prior of the rainy images, including sparse prior [7], low rank prior
[11] and Gaussian mixture model (GMM) prior [6]. Among them, Luo et al. [5]
proposed a dictionary learning based method, which sparsely approximates the
patches of the rain layer and the de-rained layer by discriminative sparse codes
with a learned dictionary. Li et al. [6] further introduced patch-based Gaussian
mixture model (GMM) priors for both the background layer and the rain layer.
Zhu et al. [7] introduced three types of priors, and proposed a joint optimization
process to alternately remove rain-streak details. However, since such methods
rely heavily on the handcrafted feature and the fixed priors, they are limited
in practice due to the diversity of rain streaks (e.g., various shapes, scales and
density levels).

Due to the powerful feature representation capability, convolutional neural
networks have been widely used in image de-raining, and obtained remarkable
performance. For example, Fu et al. [8] proposed a deep detail network to learn
the high frequency details during the training process, since most rain streaks
belong to high-frequency information. To consider various shapes and density
of rain drops, Zhang et al. [10] proposed a densely connected network with
learned rain streak density information to assist the rain streak removal process.
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Fig. 2. Framework of our self-attentive pyramid network (SAPN)

Since spatial contextual information is important for rain streaks removal, some
methods [12,13] have been developed. Specifically, Li et al. [12] proposed a multi-
stage dilated CNN network to obtain a large receptive field size. Recently, Ren
et al. [14] proposed a progressive recurrent network (PReNet) to better take
advantage of the recursive computation and exploit the dependencies of deep
features across stages.

Although significant progress has been achieved for single image de-raining,
most of existing CNN-based methods focus on the network design, while rarely
considering the inherent spatial correlations in feature maps. Meanwhile, self-
attention [15] exploits the spatial correlations of features by using the attention
scores to weight all features to obtain the salient features. To make full use of the
spatial correlations of features, we propose a deep self-attentive pyramid network
(SAPN) for single image de-raining, which mainly consists of self-attentive pyra-
mid module (SAM) and multi-scale pooling (MSP) module. Specifically, to effi-
ciently exploit the spatial contextual information, we propose the self-attention
calculation units (SACUs) based encoding layers to enhance the encoding pro-
cess, and SACUs based skip connections to enhance the symmetrical decoding
process. With the assistance of SACUs, the encoding layers can better utilize
the spatial correlations from the input features. Besides, our SACUs based skip
connections can not only contribute to the propagation of gradient flows, but
also pass the enhanced original feature signal from convolutional layers to sym-
metrical deconvolutional layers directly, which is helpful for recovering image
details. Furthermore, since feature pyramid is helpful for multi-resolution fea-
ture representation, we apply multi-scale pooling in the shallow layers of our
network. Extensive experiments on synthetic and real-world datasets demon-
strate the superiority of our proposed method in terms of both quantitative and
visual quality.
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2 Self-attentive Pyramid Network (SAPN)

2.1 Network Architecture

As shown in Fig. 2, our SAPN consists of four main parts: multi-scale pooling
module, shallow feature extraction, self-attentive pyramid module (SAM) and
feature reconstruction.

Multi-scale Pooling Module. Given I as input rainy image and R̂ as esti-
mated rain streak image, then the output of SAPN is represented as follows:

Ô = I − R̂, (1)

where Ô denotes the estimated de-rained image. To model rain streaks with
various scales and shapes from the input image I, we firstly introduce a multi-
scale pooling operation Hmsp(·) to get the multi-scale feature Fmsp from I:

Fmsp = Hmsp(I)

= [S32×32
1 (I), S16×16

2 (I), S8×8
3 (I), S4×4

4 (I), I],
(2)

where [·, ·, ..., ·] denotes channel-wise concatenation and Sk×k
i (·) represents the

i-th k × k-scale pooling operation which is defined as:

Sk×k
i (I) = Uk×k(ReLU(Conv1×1(Dk×k(I)))), (3)

where Dk×k(·) and Uk×k(·) denote k × k-scale downsampling and upsampling
respectively. Conv1×1(·) denotes a 1 × 1 convolutional layer.

Shallow Feature Extraction. After we get multi-scale feature concatenation
Fmsp from Eq. (3), the shallow feature representation Ffr can be obtained by

Ffr = Hex(Fmsp), (4)

where Hex(·) represents two 3×3 convolutional layers with 64 filters respectively,
which are designed to extract the shallow feature representation Ffr from Fmsp.

Self-attentive Pyramid Module (SAM). Given the shallow feature repre-
sentation Ffr obtained from the above step, the self-attentive pyramid module
(SAM), denoted as Hsam(·), adopts a pyramid encoder-decoder structure with
Self-attention Calculation Units (SACU) embedded in it, and produce a rain
streak layer feature representation Frs:

Frs = Hsam(Ffr). (5)

The detailed description of SAM is given in Sect. 2.2.

Feature Reconstruction Part. After obtaining the rain streak layer feature
representation Frs, we can reconstruct the estimated rain streak R̂ using the
feature reconstruction part Hrc(·), which is actually a 3 × 3 convolutional layer:

R̂ = Hrc(Frs) = Hsapn(I), (6)
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where Hsapn(·) represents the function of our proposed SAPN.

Loss Function. During the training process, our SAPN is optimized with loss
function. To improve not only the pixel-wise reconstruction but the high-level
semantic representation, we add perceptual loss to pixel-level L1 loss to get the
combined loss LC :

LC = LL1 + λLP , (7)

where λ denotes the trade-off coefficient between the two losses, and the L1 loss
LL1 and the perceptual loss LP are defined as:

LL1 =
1

CWH

C∑

c=1

W∑

w=1

H∑

h=1

‖Ôc,w,h − Oc,w,h‖1, (8)

LP =
1

CWH

C∑

c=1

W∑

w=1

H∑

h=1

‖(V (Ô))c,w,h − (V (O))c,w,h‖22, (9)

where C, W and H denote the channel, width and height dimension of the esti-
mated de-rained image Ô and the ground truth clean image O. V (·) represents
the front layers of a pretrained VGG model which is regarded as the high-level
feature extractor. The loss function is optimized by Adam optimizer.

After a full glance at the framework of the proposed SAPN, we can conclude
that the deep feature representation in our SAPN heavily relies on the self-
attentive pyramid module (SAM), which will be shown in the next section.

2.2 Self-attentive Pyramid Module (SAM)

Our SAM is based on encoder-decoder networks [16], which are widely used in
image-to-image tasks. However, most existing encoder-decoder based networks
focus on network design, while rarely exploits spatial correlations of features and
thus limits representation capability of the network. To exploit such correlations
inherent in features, we propose a novel self-attentive pyramid module (SAM).

As shown in Fig. 2, the core component of SAPN is self-attentive Pyramid
Module (SAM), which is further composed of four Self-attention Calculation
Units (SACUs), four encoders and four decoders. The detailed description of
SACU will be given in the next section.

Given the feature representation Ffr obtained from shallow feature extraction
step Hex(·), the original U-net [16] simply encodes the features iteratively and
feeds the encoded features to symmetrical decoder. However, the single encoding
layer, which consists of several convolutional layers, can not fully utilize the
spatial correlations of the features, thus leading to poor ability of modeling
the long-range dependency inherent in the features. Given this, we embed self-
attention calculation unit (SACU) Hsa,i(·) in each encoder Hen,i(·) to model
the long-range spatial correlations, and thus the encoded features are enhanced
before passing through the decoding layer. i-th encoder Hen,i(·) is composed of a
3×3 convolutional layer with stride 2 and doubled channels from input, and two



Self-attentive Pyramid Network for Single Image De-raining 395

3×3 layers with ReLU activation, which keeps input channels. We can formulate
the self-attentive encoding part of the SAM component Hsam(·) as:

Fsa,i = Hsa,i−1(Fen,i−1),
Fen,i = Hen,i(Fsa,i), i = 1, 2, 3, 4,

(10)

where Fsa,i denotes the output of i-th SACU and Fen,i denotes the output of
i-th encoder. Fen,0 denotes Ffr for convenience. With the help of self-attention
information obtained from the SACU, the encoding process can be enhanced to
get more spatial correlation into consideration.

After the self-attentive encoding part, we obtain Fsa,i plus the final output
(i.e. Fen,4) of encoders as the input of following decoding part. Unlike the pyra-
mid network and U-net, which directly utilize the symmetrical encoded features
Fen,4−i from skip connection as the extra information:

Fde,i = Hde,i([Fde,i−1, Fen,4−i]), (11)

we adopt the extra self-attention information besides the original encoded fea-
tures Fen,4−i, which is integrated in features Fsa,4−(i−1), to decoder Hde,i(·) to
get output features Fde,i. Similar with the encoder design, i-th decoder Hde,i(·)
starts with a 3 × 3 deconvolutional layer with stride 2 and keeps the channels,
followed by two consecutive 3 × 3 layers with ReLU activation which halves the
channels in the former layer. Specifically, we utilize the obtained self-attention
Fsa,i to enhance the decoding process, which can be formulated as:

Fde,i = Hde,i([Fde,i−1, Fsa,4−(i−1)]), (12)

where Fde,4, the output features of the last decoder, is also the final output of
SAM and input of feature reconstruction layer, which is also denoted as Frs.
Fde,0, or Fen,4, is the output features of the last encoding layer and also the
input of the first decoding layer. Through the skip connection which delivers the
output self-attention Fsa,4−(i−1) of (4− i)-th SACU (i.e. Hsa,4−(i−1)(·)), the i-th
decoder Hde,i(·) can get not only the symmetrical features but their self-attention
information directly since the skip connection structure in SACU. With the
help of the extra self-attention information of features, the decoding process can
be further enhanced with the spatial correlation provided by the self-attention
information, which makes the representation of long-range dependency possible.
The experiments in Sect. 3 demonstrate the performance gain of the utilization
of the extra self-attention information. We will give a further explanation to the
self-attention calculation unit (SACU) in the next section.

2.3 Self-attention Calculation Unit (SACU)

Self-attention focuses on the attention of feature maps towards themselves, which
has been widely researched by previous works [15,17]. The information provided
by self-attention properly handles the problem that long-range feature depen-
dency can not be efficiently convolved by the convolutional layers.
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Fig. 3. Self-attention Calculation Unit (SACU)

As shown in Fig. 3, given the output features Fen,i of i-th encoder Hen,i(·),
we firstly obtain three embedding representation θ(Fen,i), φ(Fen,i), g(Fen,i) from
three different 1 × 1 convolutional layers θ(·), φ(·) and g(·). Then the self-
correlation Fsc,i of feature map Fen,i can be obtained via

Fsc,i = θ(Fen,i)φ(Fen,i)T. (13)

Then, we can get the self-weights F
′
sc,i by softmaxing each row of Fsc,i, and use

it to weight the embedding representation θ(Fen,i) by:

F
′
sa,i+1 = F

′
sc,ig(Fen,i). (14)

After that, the self-attention map F
′′
sa,i+1 is obtained via a further 1 × 1 convo-

lutional layer h(·).
Furthermore, to boost the gradient transmission and avoid the gradient van-

ishing problem, we add skip connection from the input Fen,i to the calculated
self-attention map F

′′
sa,i+1. To better calibrate the influence between them, unlike

the original non-local implementation [17], which regards the balance between
the two terms as a hyper-parameter, we bring in a learnable parameter α as a
trade-off weight. The final output Fsa,i+1 of SACU can be formulated as:

Fsa,i+1 = Fen,i + αF
′′
sa,i+1. (15)

With the learnable parameter α, the weighting of the self-attention information
becomes more flexible and thus leads to better utilization of self-attention.

3 Experiments

To validate the advantage of our method, we conduct tremendous experiments
on various synthetic datasets and natural rainy images. Since the ground truth
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images are available in synthetic datasets, PSNR and SSIM are adopted as
the evaluation criterion of the de-raining results. We calculate PSNR/SSIM
in luminance channel of YCbCr space. Additionally, we compare our proposed
SAPN with state-of-the-art de-raining methods, including Deep Detailed Net-
work (DDN) [8], Joing Rain Detection and Removal (JORDER) [9], Density-
aware Single Image De-raining using a Multi-stream Dense Network (DID-MDN)
[10] and Progressive Recurrent Network (PReNet) [14].

3.1 Datasets

Synthetic Datasets. To make a comparison with previous state-of-the-art de-
raining approaches, we adopt three public benchmark synthetic datasets to train
and evaluate our SAPN, including DDN-Dataset [8], DID-MDN-Dataset [10] and
Rain100H [9]. Specifically, DDN-Dataset contains 14,000 rainy-clean image pairs
which is synthesized by 1000 clean images. We randomly select 9100 image pairs
as training dataset and use the left 4900 image pairs as the testing dataset. DID-
MDN-Dataset is composed of 12000 training rainy-clean image pairs and 1201
testing image pairs. Rain100H contains 100 testing images and there are 1800
training image pairs in the corresponding training dataset (i.e. RainTrainH).

Real-World Images. To validate the effectiveness of the proposed network
in real world rainy scenes, we randomly select some images from the previous
de-raining works [8,9,18,19] and the internet.

3.2 Training Details

For each of the three datasets, we train our SAPN on a 1080 ti GPU on the
training dataset, and evaluate the model on corresponding testing dataset. We
train our model for 300, 350 and 50 epochs for DID-MDN-Train, DDN-Train, and
RainTrainH respectively. The initial learning rate is set to 2 ·10−4 and decreased
linearly at the end of every epoch. To avoid the problem of over-fitting, we use a
weight decay of 10−5 and Adam optimizer with betas 0.5 and 0.999. The model
is trained on the Pytorch framework.

Table 1. Quantitative results of average PSNR (dB)/SSIM compared with state-of-
the-art de-raining works. The two best-performing methods are marked in bold and
underlined respectively.

Dataset Matric Input DDN [8]
(CVPR’17)

JORDER [9]
(CVPR’17)

DID-MDN [10]
(CVPR’18)

Our
SAPN

DID-MDN-Dataset PSNR (dB) 23.63 30.08 26.80 29.36 30.86

SSIM .7313 .8788 .8361 .9002 .9230

DDN-Dataset PSNR (dB) 23.74 30.00 26.47 28.00 30.26

SSIM .7499 .8932 .8276 .8776 .9110

Rain100H PSNR (dB) 13.56 22.26 26.10 26.35 27.06

SSIM .3800 .6928 .7971 .8287 .8474
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3.3 Results on Synthetic Datasets

The details of evaluation results on synthetic datasets are shown in Table 1.
Note that the pretrained model of PResNet [14] is trained from other datasets,
thus we did not report the quantitative results for fair comparison. Results show
that our method outperforms other state-of-the-arts consistently. This is mainly
because our SAPN utilizes both multi-scale information and spatial correlations
of features, which enhances the feature representation capability of the network.
In contrast, DDN [8] learns the mapping from high-frequency details of rainy

PSNR (dB) / SSIM

Ground Truth

19.06 / .6003

Input

27.87 / .8769

DDN [8]

22.16 / .7415

JORDER [9]

26.86 / .8765

DID-MDN [10]

29.60 / .9268

Our SAPN

Fig. 4. De-raining results on sample image from DDN-Testset.

PSNR (dB) / SSIM

Ground Truth

14.11 / .3528

Input

18.19 / .4836

DDN [8]

26.04 / .7741

JORDER [9]

17.76 / .5940

DID-MDN [10]

31.13 / .8877

Our SAPN

Fig. 5. De-raining results on sample image from Rain100H.
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Input DDN [8] JORDER [9]

DID-MDN [10] PReNet [14] Our SAPN

Fig. 6. De-raining results on sample real-world image.

images to clean ones with ResNet [20], while DID-MDN [10] utilize multi-scale
features and multi-stream DenseNet [18] architecture, both of which do not take
spatial correlations inherent in features into consideration.

Besides the quantitative evaluation on synthetic datasets, we also randomly
select several images from the testing datasets to validate the visual effect. As
shown in Figs. 4 and 5, our method obtains better visual results. For example, the
alphabets in enlarged region in Fig. 4 are clearly recovered by our SAPN, while
other methods fail to remove long heavy rain streaks or bring in unpleasant arti-
facts. Another sample in Fig. 5 also show that our SAPN keeps the background
scenes better and removes the rain streaks more cleanly, especially when the
image has some long rain streaks or other objects with long shapes, since the
adoption of self-attention mechanism enhances the capability of the network to
capture long-range dependency and non-local similarity.

3.4 Qualitative Evaluation on Real-World Images

To verify the performance gain of SAPN over previous methods on rainy scenes
in real world, we also test our SAPN and other methods on real-world images.
The de-raining results on a randomly selected real world image sample is shown
in Fig. 6. Noticeably, our method achieves extremely better results when the
rain streaks in rainy image are longer than average, just because we adopt self-
attention mechanism in our network design, which can better leverage non-local
similarity of input rainy image and attain long-range dependency more effectively
and more efficiently. This specialty of our SAPN helps locate rainy areas in input
rainy images, leading to better final de-raining results. It is clearly shown in Fig. 6
that our SAPN produces preferable results compared with other methods, which
tend to either under de-rain or over de-rain the natural rainy images. Specifically,
all other four methods fail to remove all long rain streaks, while JORDER even
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brings in severe artifacts. In contrast, our method not only removes more rain
streaks, but preserves background details better.

3.5 Ablation Study

To verify benefits of each individual component, including multi-scale pooling
(MSP) module and SACUs, we train some variants of our SAPN on RainTrainH
and evaluate trained models on Rain100H. The results are shown in Table 2.

Table 2. Ablation study of our proposed SAPN on SACUs and multi-scale pooling
module on Rain100H.

Methods Ua Ub Uc Ud

SACUs? � �
MSP? � �
PSNR (dB) 26.78 26.95 26.89 27.06

We can conclude that the adoption of SACUs effectively promotes the de-
raining results of the basic pyramid encoder-decoder network (Ua), while MSP
also improves the performance of the network effectively. The combination of
SACUs and MSP leads to our final SAPN architecture (Ud).

4 Conclusion

In this paper, we propose a pyramid encoder-decoder network with self-attention
calculation units for single image de-raining. Compared with previous methods
which does not exploit spatial correlations of features, our method explicitly
learns the self-correlation inherent in output features of each encoder layer,
making the encoding and symmetrical decoding process more self-attentive and
better resolve the long-range dependency problem in images, leading to better
eventual de-raining results, especially in long rain streaks conditions. In order
to further improve the de-raining results, we add a multi-scale pooling module
before feature extraction, which leads to even higher quantitative performance
and much better visual experience. Tremendous experiments on various datasets
validate that our network outperforms the state-of-the-art methods.
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