
On the Mapping of Underlying Concepts
of a Combined Use of Lean

and User-Centered Design with Agile
Development: The Case Study
of the Transformation Process

of an IT Company

Cassiano Moralles1(B) , Matheus Vaccaro1 , Maximilian Zorzetti1 ,
Eliana Pereira2, Cássio Trindade1, Bruna Prauchner1, Sabrina Marczak1,

and Ricardo Bastos1

1 MunDDoS Research Group – PPGCC – School of Technology, Pontif́ıcia
Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

{cassiano.mora,matheus.vaccaro,maximilian.zorzetti,
bruna.prauchner}@acad.pucrs.br,

{cassio.trindade,sabrina.marczak,bastos}@pucrs.br
2 Instituto Federal do Rio Grande do Sul (IFRS), Porto Alegre, RS, Brazil

eliana.pereira@restinga.ifrs.edu.br

Abstract. The agile development of software requires new approaches
to serve users and end customers. The combination of Lean and User-
Centered Design with Agile gives software development a competitive
advantage. Given the novelty and scarcity of studies on such combined
use in software development, as part of our long-term research that aims
to develop a maturity model to accelerate the transformation from agile
to the use of the combined approaches, we posed as our first step to iden-
tify what are the underlying concepts involved on the use of agile, lean,
and user-centered design. We first conducted multiple literature reviews
to identify the concepts for each of the individual approaches to then
conduct an empirical study in order to identify what is considered useful
by two software teams of a multinational IT company that are going
through such a transformation for about 6months. Our study revealed
that there are concepts from literature not yet considered in practice and
the other way around, there are practiced concepts not found in liter-
ature. For now, we hypothesize that this is due to the early maturing
process of the studied teams. We believe that this is an initial contri-
bution that can be of help for other teams enduring this challenging
transformation process. Our research will next investigate how the three
approaches relate to one another in order to provide a unique and con-
solidated combined model of concepts that will further be used as the
skeleton of our maturity model.

Keywords: Agile development · Lean · User-Centered Design ·
Organizational transformation · Empirical study

c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 25–40, 2019.
https://doi.org/10.1007/978-3-030-36701-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_3&domain=pdf
http://orcid.org/0000-0002-8552-5847
http://orcid.org/0000-0002-1431-9288
http://orcid.org/0000-0001-5255-6295
https://doi.org/10.1007/978-3-030-36701-5_3


26 C. Moralles et al.

1 Introduction

The adoption of agile methodologies has become an industry standard in the
past years. Although these methodologies prepare teams to be more adaptive
and to keep a closer contact with clients and customers, some authors (e.g.,
[19]) argue that agile needs to be combined with other approaches in order to
provide better guidance for agile teams to improve their understanding of the
problem at hand so as to provide more aligned solutions and to keep the customer
engaged. To that end, Pivotal Software, Inc.1 (henceforth referred to as Pivotal)
has developed a three-pronged approach to software development: Pivotal Labs.

Pivotal Labs [8] combines certain aspects of Extreme Programming (XP)
[1,2], Lean [12,13], and User-Centered Design (UCD) [4,11,15]. Ideas and prac-
tices from each of these methodologies are used to tackle different aspects of
software development: XP handles the technical activities; Lean mitigates the
risk of building the wrong software; and UCD guarantees the software solves
an end-user real problem. Software development teams that have adopted this
approach show increased productivity and efficacy [16,17], while in our study
experience also reporting increased levels of satisfaction and happiness at work.

Apart from the argumentation for the combined use of the approaches from
literature (e.g., [19]) and the reports from Pivotal customers, little is known on
how to proceed to use XP, Lean, and UCD together. There are, however, com-
parable studies presenting frameworks that integrate Agile, Lean Startup, and
Design Thinking. Grossman-Kahn and Rosensweig present Nordstrom’s Innova-
tion Labs model for innovation, Discovery by Design [7], while sharing lessons
learned from building an innovation capability from the ground up. With a great
focus on the needs of the customers and an iterative mindset, they perform rapid
experimentation, prototyping, and testing cycles based on the core mindsets and
tools from those three methodologies to create innovative products. Dobrigkeit,
de Paula, and Uflacker present a software development process called InnoDev
[5] based specifically on Scrum, Lean Startup, and Design Thinking. Its process
is divided into three phases: Design Thinking, Initial Development, and Devel-
opment; each composed of a list of activities, roles, deliverables, and techniques.
Still, to the best of our knowledge, there are no papers on how a software team
should start the journey of a combined adoption of XP, Lean, and UCD, and on
how to identify that the team is maturing.

To fill in this gap, we have set up a three-years long research project to
investigate the matter. Our main goal is to, at the end of this period, define a
maturity model to help software teams through this transformation. Secondarily,
we aim to define an assessment method (or, a health check) for identifying the
maturity the team presents at a certain moment in time. To do so, our first
step is to identify what are the underlying concepts that represent the combined

1 https://pivotal.io.

https://pivotal.io


On the Mapping of Underlying Concepts 27

use of XP, Lean, and UCD. For that, we conducted a series of literature review
studies2 to identify the concepts from literature and from Pivotal Labs3.

Given this context, in this paper we present a case study of two software
development teams from a multinational IT company named ORG (name omit-
ted for confidential reasons). Due to a recent drive to modernize the company
from the inside out, these two teams have recently adopted Pivotal Labs, having
learned the approach from Pivotal itself. As part of the partnership between our
research group and ORG, we have them stationed in a local modern software
development lab within the University campus where teams from ORG spend
3 months working in this isolated environment that was intentionally designed
to serve our research purposes and to allow the teams to work without interfer-
ence from others that have not on-boarded the transformation process yet. The
main goal of this report is to present the mapping between literature and practice
regarding the underlying concepts that relate to XP, Lean, and UCD in order
to provide initial insights to those that aim to endure the same transformation
process. As a next step, we will consolidate such concepts, from literature and
practice, into a conceptual model and, in the long run, this conceptual model
will be used as the skeleton of a maturity model.

The remainder of this paper presents the mapping between literature and our
case study teams’ experience, highlighting and discussing the differences between
both perspectives.

2 Research Method

We conducted a multiple case study [14] on the two ORG software development
teams stationed in our Software Development Lab from April to June, 2019, as
presented next.

2.1 Case Setting

ORG has software product development sites in the USA (headquarters), India,
and Brazil. With over 7,000 employees and responsible for about 1,200 software
products, the IT department started its agile transformation in 2015 and moved
to the combined use of Agile, Lean, and UCD principles in late 2017. The adopted
approach was inspired by the Pivotal Labs [8] methodology, which proposes a

2 A journal article consolidating the review on the concepts of the 3 approaches and
what maturity models are published on the topic is under review, thus we cannot
cite it for now. We would like to note that we found no maturity model addressing
the 3 approaches together nor for the combination of 2 of them, but we did find 19
models for agile maturity and 5 for lean maturity alone.

3 We developed an executive report on findings from this study that is of ORG use
only. Due to our confidential research agreement with the organization we cannot
disclose this document, but we would like to note that there is little on the matter
and that what we report in this paper is representative of what is publicly available
in blogs, websites, etc of Pivotal customers.



28 C. Moralles et al.

“team rhythm” composed of principles and ceremonies based on the 3 afore-
mentioned approaches. It also suggests the adoption of a cross-functional team,
called balanced team, composed of three main roles: Product Designer, Product
Manager, and Software Engineer. Pivotal Labs’ main goal is to help teams to
build software products that deliver meaningful value for users and their busi-
ness. Thus, it offers a framework and initial starting point for any team to discuss
its specific needs and define its own way towards software development.

We had two development teams from ORG’s Brazilian financial sector sta-
tioned in a modern software development lab inside the University’s campus.
Of the total 16 team members, we interacted with the 8 that participated in a
Pivotal hands-on immersion training in the USA. Team A is responsible for a
software product that calculates the cost of associated services offered by the
products sold by ORG and displays this information to ORG consumers. Team
B is responsible for the software product that gathers information about these
services from other ORG software products and stores them for Product A to
use. These teams spent 3 months in the USA working directly with Pivotal Labs
consultants, who played roles in the software development process as hands-on
mentors to the ORG members. Afterwards, both teams spent 3 months working
at the University’s dedicated lab, which is equipped with Pivotal Labs’ collabo-
rative work environment recommendations (e.g., single large table for pair-wise
work, large screen TV for reports and news, large whiteboards for ideas’ devel-
opment and information sharing, and a meeting room that turns into an enter-
tainment space for leisure time). This last stage is when the data collection and
analysis took place.

2.2 Data Collection and Analysis

We used 3 data sources: a questionnaire to collect the participants’ profile (name,
role, responsibilities, and time working in IT and at ORG); observations to learn
about their day to day activities; and focus group sessions to gather informa-
tion on their perceptions about the transformation, the training experience, the
benefits and challenges of the Pivotal Labs approach; and to discuss the concept
mapping between literature and what we observed them doing in practice.

Altogether, we performed six focus group sessions that lasted in average 1
hour with the 8 members that worked in the USA. Their profiles are shown
in Table 1. Meetings were voice recorded and transcribed for thematic analysis
[3,6,18]. Of those six meetings, we used two sessions for each approach. We first
presented them the concepts from their practice in order to clarify whether we
comprehended them correctly and then we presented the concepts from litera-
ture in order to identify the completeness of our observations from practice. By
discussing the literature, team members could present us with concepts that we
might have missed or misunderstood. We considered the work of Kent Beck [1,2]
as literature for XP; Lean Startup [13] and Lean Software Development [12] for
Lean; and the work of Norman [11], Brown [4], and Salah, Paige, and Cairns [15]
for UCD. We based our definition of literature on existing Pivotal work and an
initial observation of the teams. For instance, although Pivotal Labs advocates



On the Mapping of Underlying Concepts 29

Table 1. Participants’ profile

ID Role Training IT Work
Exp (years)

Company
Exp (years)

P1 Software Engineer Enabler 10 4

P2 Product Manager Enabler 19 0.5

P3 Product Designer Enabler 27 10

P4 Software Engineer Enabler 21 8

P5 Product Manager Enabler 21 6

P6 Product Designer Enabler 5 4

P7 Software Engineer Enabler 20 11

P8 Software Engineer Enabler 5 5

for the use of Lean Startup (misnaming it as only “Lean”), we observed the use
of Lean Software Development concepts, so we decided to consider it as part of
the literature for Lean.

3 Results

To facilitate the presentation of the large number of concepts that we identified
from literature and later mapped to the case study teams’ practice, we introduce
these concepts in tables, one per approach (we divided Lean into Lean Startup
and Lean Software Development, due to them being radically different). When
a concept from literature was not reported by the teams, we indicated “—”
in the Case Study table column. Similarly, the concepts identified in practice
and lacking in literature are indicated with “—” in the Literature table column.
We also organized these concepts into categories, which we name “elements”
as per the literature perspective, namely: Activity, Role, Work Product, and
Technique/Practice. An exception is the Lean Software Development approach,
which organizes itself into Principles that can be realized by Tools, which in turn
make use of Concepts as shown in Table 4.

3.1 Extreme Programming

We observed a few differences with our mapping as presented in Table 2. When
considering the Activities, the teams put aside their categorization, having
them distributed throughout the project life cycle (e.g., BDD as an strategy
to validate acceptance tests). With regards to Roles, given that ORG adopted
the concept of Balanced Teams from Pivotal Labs, there are three main roles,
namely: Product Manager, Product Designer, and Software Engineer. These
interchange job responsibilities with XP defined roles, adding them up as stated
by some team members: “The role of Product Designer encompasses more
attributions than a Designer” (P2, P5, P6). A balanced team is described as



30 C. Moralles et al.

“a global movement of people who value multidisciplinary collaboration and
iterative delivery focused on customer value as a source for innovation” [9]. This
concept is used to complement an agile team, as it places the product-focused
team members, such as product managers and designers, on equal footing with
the team’s technical-focused members through a set of core values instead of
the definition of explicitly defined roles, events, and artifacts [10]. This allows
for a Shared Context. There is also an additional role—Anchor, played by an
experienced Software Engineer who, in addition to coding full-time, acts as a
resource for the rest of the development team for supporting the resolution of
technical and non-technical issues; “The Anchor role is not necessarily played by
the most experienced team member. It is the professional who can talk about the
product and about engineering in the same language” (P1, P2), and “The Anchor
can also be the colleague who will remain in the product team for a longer time,
to become a focal point” (P7). Also, “The anchor can represent the team in a
meeting for clarifications with the user, avoiding the need to send the entire team
for this discussion” (P2). Specific to ORG is the Consultant role, who supports
the team, belongs to the Services team, and is responsible for infrastructure and
databases.

Considering the Work Products, User Stories can be proposed “at any time,
any role can propose a feature or story” (P4), however, some members explained
that “We do informally categorize them into Bugs, Features, and Chores” (P5).
“Bugs are defects that we need to fix, regardless of how they were identified, and
Features are new additions to the software product” (P3). Chores, on the other
hand, are a new specialization to indicate that something needs to be done but
does not add value to the software: “We observed some unnecessary processes,
in our opinion, and questioned the customers. No one knew what they meant.
We just decided alongside with the customers to remove them from the system.
We will do this when time allows” (P7). It is important to note that despite
its categorization, all User Stories are now driven by Problem-resolution rather
than requirements (as it has been for the past two decades): “We don’t start from
the elicitation or clarification of requirements. We now focus on discussing with
the customers and users what are the problems they have” (P8). The Product
Backlog is also specialized. The new Ice Box concept is used to indicate User
Stories that were either not prioritized yet or were put on hold for some reason,
“Any story can be put on hold in the Ice Box” (P4), “We had situations where
the business told us that a user story was necessary, but we left it in the Ice Box
after realizing it was not relevant. The project evolved and with time the user
also realized it was of no use and ended up satisfied with our decision” (P2).
Also, “We use it as a way to record ideas to avoid forgetting them” (P4, P8).

When considering the Techniques and Practices, the major mindset change
we observed is the fact that the ORG teams do not focus on Releases. They do
plan an Iteration as a means to set up expectations with users but they do not
estimate efforts or set due dates, “The term release is used only as a team control
mechanism to set the users’ expectation and provide visibility” (P3, P6). This
is possible because they are in constant contact with the users, although they



On the Mapping of Underlying Concepts 31

Table 2. Extreme Programming Literature and Case Study Mapping

Literature Element Case Study

Coding Coding
Designing —
Testing —
Listening

Activity

Interviews

— Anchor
Consultant Services Consultant
Coach Product Manager
Tester Product Designer/Software Engineer
Programmer Software Engineer
Tracker Software Engineer
Manager Product Manager
Doomsayer Product Manager
Big Boss Product Manager
Customer

Role

Product Manager

Bug Fix Bug
FeatureUser Story

Problem-based User Story
Chore
CurrentProduct Backlog Product Backlog
Ice Box

Iteration Backlog

Work
Product

—

Release Planning —

Iteration Planning
Pre-Iteration Planning Meeting (Pre-IPM)/
Iteration Planning Meeting (IPM)

Customer Approval User Feedback
Pair Programming Pair Programming
Acceptance Test-Driven Development —
Test-Driven Development Test-Driven Development
Customer Tests/
On-Site Customer —

Continuous Delivery Continuous Delivery
Refactoring/
Design Improvement Refactoring

Continuous Integration Continuous Integration
Planning Game Planning Game
Estimation by Example —
— Behavior-Driven Development (BDD)
Spike Experiments
Daily Meeting Daily Stand-Up
Stand-up Meeting Office Stand-up/Team Stand-up
Whole Team Balanced Team
Collective Ownership/
Collective Code Ownership Collective Ownership

Coding Standards S.O.L.I.D.
40 Hours per Week/Sustainable Pace Sustainable Pace
Constant Feedback Constant Feedback
Simple Design Simple Design
Metaphor Metaphor
Small Releases Small Increments
Retrospective Retrospective
— Tech Talks
— Shared Context
— Team Agreement
— Question Actual Process
—

Technique
/

Practice

Information Repository



32 C. Moralles et al.

are not On-Site Customers but “they are nearby” (P1). They also believe that a
good way to constantly collect User Feedback is by using BDD: “We use BDD
to have better communication with our users. We validate our acceptance tests,
which in turn validate the users’ perspectives” (P5). Spikes, simple programs
to explore potential solutions, often not good enough to keep, are used in a
slightly different way than proposed in literature. The ORG teams use spikes as
a resource for their experimentation of hypotheses, “We work up to 4 hours if
needed to build a spike to experiment our theories and explore possibilities” (P2).

Other smalls adjustments to concepts from literature are: instead of only writ-
ing code in accordance with rules (Coding Standards), the teams use SOLID, the
mnemonic acronym for five design principles intended to make software designs
more understandable, flexible, and maintainable—Single responsibility, Open–
closed, Liskov substitution, Interface segregation, and Dependency inversion prin-
ciple. Tech Talks meetings focus on exposing a subject of interest to the teams and
other colleagues who want to learn something new. These meetings can be of tech-
nical nature or comprise any other aspect. Team Agreement refers to any kind of
decision the team makes that will take longer than 30 min to be implemented and
therefore is worth discussing and recording. Question Actual Process is the mind-
set “we learned from Pivotal; they instigated us to be investigative all the time by
asking questions when we see fit” (P2, P5). And, finally, Information Repository
is used as a resource to maintain a shared context “where everyone has access to
information about the problems we are trying to resolve. Currently we are using
Slack to make it easier” (P3, P6).

3.2 Lean

Lean Startup. Overall, we identified that the Lean Startup (LS) concepts used
by the ORG teams are all heavily centered around conducting experiments,
as stated by a Software Engineer, “Let’s conduct an experiment to validate if
this approach will be better. If it works, let’s proceed. How do we know this?
Through experimentation.” (P7), and being able to make informed decisions,
as exemplified by a Product Manager: “The team compiled the results and sent
them to the stakeholders saying: ‘look, these are the results and this is what we’ve
learned. What are we going to do with it? Do you want to follow this approach
or the other one? The decision is yours.”’ (P2).

As part of the Activity element, we find some activities related to LS princi-
ples, e.g., Building Experiments, Measuring Results, and Learning being directly
associated with the Build Measure Learn Cycle. A similar phenomenon happens
in the Work Product section, where Iterate, Escalate, Persevere, and Give Up
are outcomes of the principle Validated Learning. The 31 techniques presented
in Table 3 were extracted from the Lean Startup book by Eric Ries [13].

We found that ORG teams use a subset of the activities mapped from the
literature. The core experimentation cycle activities related to the principles
of Build Measure Learn and Innovation Accounting are used normally, however
Formulating the Business Model and Hypotheses is approached in a different



On the Mapping of Underlying Concepts 33

Table 3. Lean Startup Literature and Case Study Mapping

Literature Element Case Study

Formulating the Business Model and Hypotheses

Activity

Understanding the Problem
Defining the Team’s Vision of the Problem
Establishing the Team’s Strategy to Solve the Problem
Mapping Everyone Affected by the Problem
(Users and Stakeholders)
Formulating Hypotheses

Build Measure Learn
(Principle)

Building Experiments
Build Measure Learn
(Principle)

Building Experiments
Measuring Results Measuring Results
Learning Learning

Innovation Accounting
(Principle)

Establish the Baseline
Innovation Accounting
(Principle)

Establish the Baseline
Tune the Engine Tune the Engine
Pivot or Persevere Pivot or Persevere

Running the Engine of Growth —
Pivot or Persevere Meeting —

Entrepreneur Role Team

Ideas (Hypotheses)

Work
Product

Ideas (Hypotheses)
Product Product
Data (Metrics and Measurements) Data (Metrics and Measurements)

Validated Learning
(Principle)

Iterate

Validated Learning
(Principle)

Iterate
Escalate —
Persevere Persevere
Give Up Give Up
— Double Down

Split Tests

Technique
/

Practice

—
Small Batches Small Batches
Triple “A” Metrics
(Actionable, Accessible, Auditable) —

Customer Development Customer Development
5 Whys 5 Whys
Customer Advisory Board —
Falsifiable Hypotheses —
Product Owner —
Accountability —
Customer Archetypes Customer Archetypes
Cross-Functional Teams Balanced Teams
Smoke Tests —
Continuous Deployment Continuous Deployment
Usability Tests —
Real-Time Monitoring & Alerting Real-Time Monitoring & Alerting
Customer Liaison Customer Liaison
Funnel Analysis —
Cohort Analysis —
Net Promoter Score —
Search Engine Marketing —
Predictive Monitoring —
Unit Tests Unit Tests
Continuous Integration Continuous Integration
Incremental Deployment Incremental Deployment
Free & Open-Source —
Cloud Computing —
Cluster Immune System —
Just-In-Time Scalability —
Refactoring Refactoring
Developer Sandbox —
Minimum Viable Product Minimum Viable Product

way, since the team’s goal is to solve the company’s problems instead of cre-
ating a sustainable business: the team focuses on understanding the problem at
hand, so that they can build a common understanding and a strategy to tackle
it. A Product Manager says: “When we are identifying a problem, we contact



34 C. Moralles et al.

the stakeholders in order to understand what the problem we’re dealing with is.
We spent the whole morning discussing everything we thought was related to the
problem, and everything that could be a problem, until we reached a final state-
ment. After that, as a team, we defined the vision and the strategy that we were
going to use to solve the problem. . . ” (P2). We did not identify the explicit usage
of Pivot or Persevere Meetings and Engines of Growth.

We did not identify any explicit categorization of roles in the literature.
Eric Ries often refers to the ones conducting the scientific method of the LS as
Entrepreneurs. In our case study, this role is taken by the Team as a whole.

Regarding Work Products, the main difference found is that the teams did
not mention Escalate as an informed decision based on the outcome of an exper-
iment, i.e., a Validated Learning outcome. A Software Engineer says that “The
decisions normally are: you can abandon that track of work; you can persevere,
and continue to work on that; you can pivot, change the direction and try to
investigate it in another way; or you can even double down on it, things are
going the right way but we want it to go faster, so we put more engineers to
work on it.” (P4) Among the 31 presented Techniques, we identified that the
team actively uses 13 of them. Most notably, we found that the concept of
Cross-functional Teams is mapped to Balanced Teams, as previously mentioned
in the XP approach (Sect. 3.1).

Lean Software Development. Most of what is presented by the Poppendiecks
[12] is used in some way by the ORG development teams as seen in Table 4. We
observed that the Iteration tool is used differently: ORG teams disregard the use
of fixed time-boxes, as “[stakeholders do not impose deadlines], unless there’s a
compliance or interlocking deadline already in-place” (P5), although a Software
Engineer adds that “stakeholders have target dates or launch windows for the
final solution, and we aim to deliver it all by then” (P4). Additionally, Iterations
have an open scope, says a Software Engineer: “We might have decided to work
on two User Stories for a given Iteration, but if something—anything—comes
up mid-iteration, we reshuffle our priorities and work on something else” (P8).

For Synchronization purposes, the teams prefer the use of spanning applica-
tion instead of matrix : upon being asked if they develop a system by sketching
out its components and then splitting the team to work on each, a Software Engi-
neer responded, “No, we make experiments—a whole slice of a solution, com-
prised of the full technology stack, to see if it works. If it does, we expand upon
it” (P4). In regards to the team’s decision making process (Making Decisions),
all decisions are made exclusively through the interpretation of experiment
results, disregarding the Poppendiecks’ intuitive decision making and simple
rules (we called this experiment-based decisions). Although an expert’s intuition
can influence the decision or open up more options, the final say comes from
experimentation, as stated by a Software Engineer: “We needed to insert a lot
of data into a database, and it was taking too long with our current technology
stack. I developed a solution using another technology stack that I was sure was
going to perform better. As I thought, it did, so we started using it” (P1).



On the Mapping of Underlying Concepts 35

Table 4. Lean Software Development Literature and Case Study Mapping

Literature Case Study

Principle Tool Concept Principle Tool Concept

Eliminate
Waste

Seeing Waste Eliminate
Waste

Seeing Waste
Value Stream Mapping Value Stream Mapping

Amplify
Learning

Feedback

Amplify
Learning

Feedback

Iteration
Negotiable Scope

Iteration
Negotiable Scope

Team Commitment Team Commitment
Fixed Time-Box —

Set-Based
Development

Constraints Set-Based
Development

Constraints
Multiple Options Multiple Options

Synchronization

Daily Build and
Smoke Test

Synchronization

Daily Build and
Smoke Test

Spanning
Application

Spanning
Application

Matrix —

Decide as Late
as Possible

Making Decisions

Intuitive Decision
Making

Decide as Late
as Possible

Making Decisions
—

Simple Rules —
— Experiment-Based

Options Thinking Options Thinking
The Last Responsible Moment The Last Responsible Moment

Deliver as Fast
as Possible

Cost of Delay Economic Model

Deliver as Fast
as Possible

Cost of Delay Economic Model

Pull Systems
Information
Radiators Pull Systems

Information
Radiators

Queueing Theory

Small Work
Packages

Queueing Theory

Small Work
Packages

Slack Slack
Steady Rate
of Service

Steady Rate
of Service

Steady Rate
of Arrival

Steady Rate
of Arrival

Empower
the Team

Expertise
Communities
of Expertise

Empower
the Team

Expertise
Communities
of Expertise

Standards Standards

Motivation

Belonging, Safety,
Competence,
and Progress

Motivation

Belonging, Safety,
Competence,
and Progress

Moderation Moderation
Purpose Purpose
Champion —

Self-Determination
Principles,
Not Practices Self-Determination

Principles,
Not Practices

Leadership Master Developer —

Build
Integrity In

Conceptual Integrity
Software
Architecture

Build
Integrity In

Conceptual Integrity
Software
Architecture

Perceived Integrity
Institutional
Memory Perceived Integrity

Institutional
Memory

Model-Driven
Design

Model-Driven
Design

Refactoring Refactoring

Testing
As-Built Test Suite

Testing
As-Built Test Suite

Customer Tests Customer Tests
Developer Tests Developer Tests

See the Whole

Measurements
Information
Measurement

See the Whole

Measurements
Information
Measurement

Contracts

Target-Cost
Contracts

—Time-And-Material
Contracts
Shared-Benefit
Contracts
Multistage
Contracts



36 C. Moralles et al.

Concerning Motivation, ORG teams do not have a champion, a person that
compels other members to work on a project. Instead, they all compel themselves
to work, as stated by a Software Engineer: “The empathy we feel for our work
colleagues motivates us to work” (P1). As for Leadership, we observed that the
ORG teams do not have leaders at all: a Software Engineer points out that
each role in the Balanced Team spearheads its respective domain (e.g., Software
Engineers lead technical discussions), but also adds that “all decisions are shared
and made by the whole team” (P4), while a Product Manager emphasizes that
“[even a rookie can make] the most experienced team member say ‘You are right,
let’s do it your way.”’ (P2). Finally, ORG teams dismiss the need for Contracts
since they work for ORG itself: “We do not sign any legal contracts. ORG decides
what problems need solving, and these eventually trickle down to us” (P2).

3.3 User-Centered Design

Table 5 shows the Phases, Activities, Work Products, and Techniques for UCD.
The Phases, shown in the left side of the activities in the table, from literature,
are related to the Double Diamond of Design Thinking. The idea is to perform
the UCD activities inside of the Finding the Problem and Finding the Solution
phases [11]. It is important to mention that we identified 77 techniques from
the literature, however, Table 5 shows only the most cited techniques and those
identified in our case study.

We found that the phases and activities of the UCD literature are the same
used by the teams. In terms of Phases, the difference is the used terminology.
We identified the Finding the Problem phase is the Discovery phase and the
Finding Solution is the Framing phase. For the Activities, the first difference
was in the Testing activity that originally (from literature) focus on validating
the solution with the final users. In the studied teams, the solution is validated
internally by the Product Designer (PD) and Product Manager (PM) roles in
the Seek Feedback activity before being validated with the final users: “The PM
and PD will validate if the solution proposed is according to what was devel-
oped by the team. PM and PD validate before reaching the user. They will either
accept or reject the story” (P4); “Sometimes we do not even have access to the
user” (P7). Another difference in terms of activities was that the teams per-
form an additional activity named Communicate Early and Often. This activity
is related to the designer’s pairing with the team members during product devel-
opment: “During implementation, the PD can pair with an engineer to ensure
that this engineer has all the understanding he needs to develop” (P4), “It is the
responsibility of the whole team to deliver the correct product” (P5).

As for UCD Work Products and Roles, we did not observe any differences
between those used in the team and the literature. The teams have the role
Product Designer and produce a small set of work products connected with
the applied techniques by them. Finally, we identify that of the 77 UCD tech-
niques listed in literature, the teams have only used 7 of them so far. They
also used 4 techniques we had not found in literature. Indeed, what we could
obverse was that although they did not use a vast amount of techniques,



On the Mapping of Underlying Concepts 37

Table 5. User-Centered Design Literature and Case Study Mapping

Literature Element Case Study

Finding the Problem and
Finding the Solution Phases

Observation
/Inspiration

Activity
Discovery and
Framing Phases

Conduct Research

Ideation Generate Solutions

Prototyping
Deliver Design
Decisions

Testing
Seek Feedback
Testing

—
Communicate Early
and Often

Designer Role Product Designer

Prototype
Work

Product
Prototype

User Journey Map

Technique
/

Practice

—
Business Model Canvas —
Scenarios —
Stakeholders Mapping —
Persona Persona
Affinity Diagram Affinity Mapping
Blueprint Blueprint
Photo Journal —
Empathy Mapping —
Mind Mapping —
Storytelling —
Card Sorting —
Prototyping Prototyping
Ethnography —
Interview Interview
Brainstorming Design Session
5 Why —
Point of View —
Questionnaire —
Usability Test —
Inspection —
Profiles —
Survey —
How Might We How Might We
— 2x2 Prioritization
— Now, Near, Next
— Integration Research
— Design Studio

they are continually searching and studying new techniques, as argued by a
Product Manager, “Techniques are things that we keep looking for, studying,
and eventually applying” (P5). The teams pointed out How Might We and
2 × 2 Prioritization as the most used techniques: “How Might We is one that
we use a lot” (P6). “We always use How Might We because it helps us think
about the value that solution will deliver” (P5). Concerning 2 × 2 Prioritization
they said: “2 × 2 to identify the pain points” (P3), “2 × 2 can be used in prob-



38 C. Moralles et al.

lems, solutions” (P5), “2 × 2 to validate with user” (P4), and “2 × 2 is used
as wild card” (P7). They also mentioned the Product Designer as responsible
for choosing better techniques for each situation: “The Product Designer has
the responsibility to attempt to identify the best technique to validate as fast as
possible the teams’ assumptions. The Product Designer tries to find the better
technique to validate the idea” (P6).

4 Discussion

Evolution is natural for software development with the adoption of new method-
ologies and technologies—the evolution of XP with the joint use of other
approaches in the industry is evidenced in our research. The shared responsibil-
ities, resulting of the multidisciplinary work, is a valid direction with increasing
complexity in software development. More specifically, a balanced team works
with no time-bound iterations (no Iteration Planning) as a mean to continuously
deliver value to the customer. To do so, the main mindset change is to now focus
on problems (Problem-based User Stories) rather than on requirements as the
starting point of customer interaction and involvement.

As for Lean, the ORG teams seem to use a subset of LS and LSD that
complements the use of one another. For instance, the teams’ Decision Making
does not use the concepts provided by LSD, instead, it uses experiment-based
decisions, which is completely rooted in LS. Following this example is the lack
of Leadership: since all decisions are experiment-driven, there is no need for a
leader or boss figure among the team.

In regards to UCD, it seems that both teams only use a subset of its available
tools, and understandably so, given how many of them there are. Not only that,
but each team uses different sets of tools for their respective problems, indicating
that there is really no be-all-end-all tool package to product design.

As a side note, we observed that both teams always seek to adapt techniques,
practices, and roles to their context: they seem to have a “drive” to strive for
the best way to do their jobs at all times. We believe this is a good indicator
for the undergoing transformation of ORG. This also leads us to leave the fol-
lowing questions up in the air: are the differences identified in our mapping an
issue? Since teams are always evolving, can our study be a good-to-have-at-hand
document for consulting?

5 Final Considerations

As part of a long-term research project that aims to define a maturity model
to help teams in their transformation to the combined use of XP, Lean, and
UCD, we report in this paper our first step: the mapping between the identified
underlying concepts from literature and those used by the observed ORG teams.
From the comparison between the results from literature and our case study
with the two teams that have been undergoing this transformation process for
about 6 months, we found that the teams’ use of Pivotal Labs is mostly aligned
with the literature, but differs in some aspects, namely:



On the Mapping of Underlying Concepts 39

• All decisions are based on experiments, disregarding the intuition of experts;
• Lack of leaders, since the team inspires itself and shares decision making

equally;
• There is an Anchor role, that bridges the understanding between business

and engineering;
• Not all UCD techniques are used, but the teams are constantly seeking out

to use new ones that might benefit their case.

This initial contribution can already be of use to software development teams
aiming to endure such transformation. By revealing the concepts from literature,
practitioners can have a broad overview of what they might have to deliberate
on and can use, and by identifying what is being used by a maturing team that
has been experiencing such transformation as part of a large multinational IT
company, practitioners can envision some adjustments that have been proven to
work so far. We note that our results are not generalizable nor are conclusive
given the exploratory nature of our case study. However, they are a first step
towards our main goal. We will continue observing other teams (there are 4
teams confirmed for the coming 6 months) in the University lab and contacting
the past observed teams every 3 months as a means to identify how they mature
throughout time. We expected to soon report on our to-be-proposed maturity
model.

Acknowledgement. We would like to thank the study participants from ORG. Also,
we thank ORG for the financial support (Brazilian Informatics Law n◦ 8.2.48 of 1991).

References

1. Beck, K.: Embracing change with extreme programming. Computer 32(10), 70–77
(1999). https://doi.org/10.1109/2.796139

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley, Upper Saddle River (2004)

3. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res.
Psychol. 3(2), 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa.
https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa.
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

4. Brown, T.: Design thinking. Harvard Bus. Rev. 86, 84–92, 141 (2008)
5. Dobrigkeit, F., de Paula, D., Uflacker, M.: InnoDev: a software development

methodology integrating design thinking, scrum and lean startup. In: Meinel,
C., Leifer, L. (eds.) Design Thinking Research. UI, pp. 199–227. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-97082-0 11

6. Gregory, P., Barroca, L., Taylor, K., Salah, D., Sharp, H.: Agile challenges in
practice: a thematic analysis. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.)
XP 2015. LNBIP, vol. 212, pp. 64–80. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18612-2 6

7. Grossman-Kahn, B., Rosensweig, R.: Skip the silver bullet: driving innovation
through small bets and diverse practices. In: Leading Through Design, p. 815
(2012)

https://doi.org/10.1109/2.796139
https://doi.org/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-3-319-97082-0_11
https://doi.org/10.1007/978-3-319-18612-2_6
https://doi.org/10.1007/978-3-319-18612-2_6


40 C. Moralles et al.

8. Pivotal Software Inc.: Pivotal Labs (2019). https://pivotal.io/labs. Accessed 18
July 2019

9. Jarrell, J., Berner, I.: Balanced Team: A Balanced Approach to Product Design
and Delivery (2014). http://www.balancedteam.org/. Accessed 18 July 2019

10. Jarrell, J., Berner, I.: Striking the Right Balance with Balanced Teams
(2019). https://content.pivotal.io/white-papers/striking-the-right-balance-with-
balanced-teams. Accessed 18 July 2019

11. Norman, D.A.: The Design of Everyday Things. Basic Books, New York (2002)
12. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.

Addison-Wesley, Boston (2003)
13. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-

tion to Create Radically Successful Businesses. Crown Business, New York (2011)
14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Softw. Eng. 14(2), 131 (2008). https://doi.org/
10.1007/s10664-008-9102-8

15. Salah, D., Paige, R.F., Cairns, P.: A systematic literature review for agile devel-
opment processes and user centred design integration. In: Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering,
London, England, pp. 5:1–5:10. ACM (2014). https://doi.org/10.1145/2601248.
2601276

16. Sedano, T.: Sustainable Software Development: Evolving Extreme Programming,
April 2017. https://doi.org/10.1184/R1/6723431.v1. https://kilthub.cmu.edu/
articles/Sustainable Software Development Evolving Extreme Programming/
6723431

17. Sedano, T., Ralph, P., Péraire, C.: Sustainable software development through over-
lapping pair rotation. In: Proceedings of the 10th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, ESEM 2016, Ciudad
Real, Spain, pp. 19:1–19:10. ACM(2016). https://doi.org/10.1145/2961111.2962590

18. Vaismoradi, M., Turunen, H., Bondas, T.: Content analysis and thematic analysis:
implications for conducting a qualitative descriptive study. Nurs. Health Sci. 15(3),
398–405 (2013). https://doi.org/10.1111/nhs.12048. https://onlinelibrary.wiley.
com/doi/pdf/10.1111/nhs.12048. https://onlinelibrary.wiley.com/doi/abs/10.
1111/nhs.12048

19. Ximenes, B.H., Alves, I.N., Araújo, C.C.: Software project management combining
agile, lean startup and design thinking. In: Marcus, A. (ed.) DUXU 2015. LNCS,
vol. 9186, pp. 356–367. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20886-2 34

https://pivotal.io/labs
http://www.balancedteam.org/
https://content.pivotal.io/white-papers/striking-the-right-balance-with-balanced-teams
https://content.pivotal.io/white-papers/striking-the-right-balance-with-balanced-teams
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/2601248.2601276
https://doi.org/10.1145/2601248.2601276
https://doi.org/10.1184/R1/6723431.v1
https://kilthub.cmu.edu/articles/Sustainable_Software_Development_Evolving_Extreme_Programming/6723431
https://kilthub.cmu.edu/articles/Sustainable_Software_Development_Evolving_Extreme_Programming/6723431
https://kilthub.cmu.edu/articles/Sustainable_Software_Development_Evolving_Extreme_Programming/6723431
https://doi.org/10.1145/2961111.2962590
https://doi.org/10.1111/nhs.12048
https://onlinelibrary.wiley.com/doi/pdf/10.1111/nhs.12048
https://onlinelibrary.wiley.com/doi/pdf/10.1111/nhs.12048
https://onlinelibrary.wiley.com/doi/abs/10.1111/nhs.12048
https://onlinelibrary.wiley.com/doi/abs/10.1111/nhs.12048
https://doi.org/10.1007/978-3-319-20886-2_34
https://doi.org/10.1007/978-3-319-20886-2_34

	On the Mapping of Underlying Concepts of a Combined Use of Lean and User-Centered Design with Agile Development: The Case Study of the Transformation Process of an IT Company
	1 Introduction
	2 Research Method
	2.1 Case Setting
	2.2 Data Collection and Analysis

	3 Results
	3.1 Extreme Programming
	3.2 Lean
	3.3 User-Centered Design

	4 Discussion
	5 Final Considerations
	References




