
Paulo Meirelles
Maria Augusta Nelson
Carla Rocha (Eds.)

10th Brazilian Workshop, WBMA 2019
Belo Horizonte, Brazil, September 11, 2019
Revised Selected Papers

Agile Methods

Communications in Computer and Information Science 1106

Communications
in Computer and Information Science 1106

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, Xiaokang Yang,
and Junsong Yuan

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-0044-503X
https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Paulo Meirelles • Maria Augusta Nelson •

Carla Rocha (Eds.)

Agile Methods
10th Brazilian Workshop, WBMA 2019
Belo Horizonte, Brazil, September 11, 2019
Revised Selected Papers

123

Editors
Paulo Meirelles
Federal University of São Paulo
São Paulo, Brazil

Maria Augusta Nelson
Pontifical Catholic University
of Minas Gerais
Belo Horizonte, Brazil

Carla Rocha
University of Brasília
Brasília, Brazil

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-36700-8 ISBN 978-3-030-36701-5 (eBook)
https://doi.org/10.1007/978-3-030-36701-5

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8923-2814
https://orcid.org/0000-0002-1151-1362
https://orcid.org/0000-0003-3102-5166
https://doi.org/10.1007/978-3-030-36701-5

Preface

Welcome to the 10th edition of the Brazilian Workshop on Agile Methods
(WBMA 2019) held in Belo Horizonte, Minas Gerais, Brazil, on September 11, 2019.
WBMA is the research track in the Agile Brazil conference. It is an academic event that
focuses on agile software development. This year’s edition comes with a history of
successes. The workshop has been a reference point for the Brazilian research com-
munity in Agile Methods for ten years, promoting research activities in the area.

All of the submitted papers (research, experience reports, non-systematic literature
reviews, and position papers) went through a rigorous peer-review process. At least
three members of the Program Committee reviewed each paper. Of the 21 papers
submitted, only 6 were accepted as full papers (28.5%). We also accepted four expe-
rience reports. The Program Committee evaluated each report submission for new
experiences that would be both interesting and beneficial to the Brazilian Agile
Methods community. In summary, we accepted papers dealing with three different
aspects of Agile Methods, such as Agile in education, empirical studies on Agile, and
Agile practices.

Moreover, as a special edition celebrating ten years of the workshop, we had two
invited papers. The first one is a position paper by Claudia Melo, the WBMA 2019
Award Chair. She presents a short narrative on what has been the need for agility, its
evolution, and a possible re-purpose based on our global sustainable development
challenges. Another invited work is a full paper by Alfredo Goldman, who was
awarded, given several criteria analyzed by the WBMA 2019 Chairs, the Most
influential Researcher over ten years of WBMA. He reports his “fun journey”
researching Agile Methods, summarizing almost two decades of research on Agile
Methods. He shows the influence of his work within Agile Methods since 2001, not
only on teaching but also on the research field and on the Brazilian software devel-
opment industry.

We hope that you will find the WBMA 2019 proceedings useful for your educa-
tional, professional, and academic activities.

Finally, we would like to thank all the people who contributed to WBMA 2019,
including the authors, reviewers, volunteers, and the previous and current chairs.
A special thanks to the Agile Brazil conference organizers for their support and
partnership.

September 2019 Paulo Meirelles
Maria Augusta Nelson

Carla Rocha

Organization

Program Committee

Ademar Aguiar Faculty of Engineering of the University of Porto,
Portugal

Adolfo Neto Universidade Tecnológica Federal do Paraná, Brazil
Alfredo Goldman Universidade de São Paulo, Brazil
André Duarte Instituto Federal do Rio Grande do Norte, Brazil
Anh Nguyen University College of Southeast Norway, Norway
Carla Rocha Universidade de Brasília, Brazil
Christina Von Flach Universidade Federal da Bahia, Brazil
Claudia Melo Universidade de Brasília, Brazil
Eduardo Figueiredo Universidade Federal de Minas Gerais, Brazil
Eduardo Guerra National Institute of Space Research, Brazil
Fabio Kon Universidade de São Paulo, Brazil
Fábio Levy Siqueira POLI-USP, Brazil
Felipe Furtado CESAR, Brazil
Filipe Correia Faculty of Engineering of the University of Porto,

Portugal
Genaina Rodrigues Universidade de Brasília, Brazil
Graziela Tonin Universidade Federal da Fronteira Sul, Brazil
Gregorio Robles Universidad Rey Juan Carlos, Spain
Heitor Augustus Universidade Federal de Lavras, Brazil
Hilmer Neri Universidade de Brasília, Brazil
Jutta Eckstein IT Communication, Germany
Kecia Ferreira Instituto Federal de Minas Gerais, Brazil
Maarit Laanti Nitor Delta, Finland
Marcelo Maia Universidade Federal de Uberlândia, Brazil
Marcelo Pimenta Universidade Federal do Rio Grande do Sul, Brazil
Marcelo Werneck PUC-MG, Brazil
Marco Túlio Valente Universidade Federal de Minas Gerais, Brazil
Renato Coral Universidade de Brasília, Brazil
Ricardo Terra Universidade Federal de Lavras, Brazil
Rodrigo Santos UniRio, Brazil
Tiago Silva Da Silva Universidade Federal de São Paulo, Brazil
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Co-reviewers

Adriano Lages dos Santos Universidade Federal de Minas Gerais, Brazil
Awdren Fontão SIDIA Instituto de Ciência e Tecnologia, Brazil
Diogo Pina Universidade de São Paulo, Brazil
Jailton Coelho Universidade Federal de Minas Gerais, Brazil
Johnatan Oliveira Universidade Federal de Minas Gerais, Brazil
Luciana Silva Universidade Federal de Minas Gerais, Brazil
Thatiane Rosa Universidade de São Paulo and Instituto Federal

do Tocantins, Brazil

viii Organization

Contents

An Opening Paper From the Award Chair

Another Purpose for Agility: Sustainability. 3
Claudia de O. Melo

Empirical Studies on Agile

An Empirical Study of Test-Driven Development vs. Test-Last
Development Using Eye Tracking . 11

Joelma Choma, Eduardo M. Guerra, Tiago Silva da Silva,
Thomas Albuquerque, Vanessa G. Albuquerque, and Luciana M. Zaina

On the Mapping of Underlying Concepts of a Combined Use of Lean
and User-Centered Design with Agile Development: The Case Study
of the Transformation Process of an IT Company . 25

Cassiano Moralles, Matheus Vaccaro, Maximilian Zorzetti,
Eliana Pereira, Cássio Trindade, Bruna Prauchner, Sabrina Marczak,
and Ricardo Bastos

Mob Programming and Simultaneous Style Pair Programming
in the Development of a Battle Royale Game: An Action Research 41

Herez Moise Kattan

Agile in Education

Mining Undergraduate Students’ Code Repositories:
Insights from Interdisciplinary Software Projects . 61

Ana Paula dos Santos, Bernardo Baptista, Carlos Felipe Arantes,
Eric Ribeiro, Patrick Rodrigues Galdino, Pedro Pongelupe Lopes,
and Marcelo Werneck Barbosa

Initial Assessment of Agile Development in the Undergraduate Curricula. . . . 76
Nicolas Paez, Alejandro Oliveros, and Diego Fontdevila

Lessons Learned from the Agile Transformation
of an Aeronautics Computing Center . 85

Fernando Rodrigues de Sá, Ricardo Godoi Vieira,
and Adilson Marques da Cunha

Agile Experiences in a Software Development Extension Course
at a Software Engineering Bachelor’s Degree . 92

Carlos Felipe Arantes, Patrícia Lourenço Pereira,
Soraia Lúcia da Silva, and Tadeu dos Reis Faria

Agile Practices

Identifying Success Factors in a Legacy Systems Reengineering Project
Using Agile Methods. 101

Everton Mateus Fernandes and Thiago Schumacher Barcelos

ATIMO – A Tool for Alocating Agile Teams. 111
Júnea Eliza Brandão Caldeira, Bruno Rafael de Oliveira Rodrigues,
Sérgio Roberto Imaeda Yoshioka, and Fernando Silva Parreiras

A Survey on Agile Practices and Challenges of a Global Software
Development Team . 128

Tatiane Lautert, Adolfo Gustavo Serra Seca Neto,
and Nádia P. Kozievitch

A Closing Paper From the Most Influential Researcher
Over 10 Years of WBMA

Having Fun Doing Research on Agile Methods . 147
Alfredo Goldman, Thatiane de Oliveira Rosa, and Viviane A. Santos

Author Index . 165

x Contents

An Opening Paper From the Award
Chair

Another Purpose for Agility:
Sustainability

Claudia de O. Melo(B)

International Atomic Energy Agency, Vienna, Austria
c.melo@iaea.org

http://www.iaea.org

Abstract. This position paper aims at building a short narrative on
what has been the need for agility, its evolution, and a possible re-purpose
based on our global sustainable development challenges. Agile implies
that a software development team (or now entire organizations) should
be resilient, adaptable, and quickly learn, which is also a great capability
featured by nature. However, the justification for becoming agile is being
a chorus of voices repeating the same mantra: competitive advantage.
The evolution of agility could be shaped by forces of cooperation, instead
of only of competition, with a purpose to enable a better and more
sustainable future for society. There is a strong case for inter- and trans-
disciplinarity in agile, technology and sustainable development research,
where agility has definitely a role.

Keywords: ICT4S · Agility · Sustainability

1 The Need for Agility

Agile has an important role in the current technological revolution, as it enables
technologists to quickly adapt and evolve the digital systems that are transform-
ing our economy and society. The Digital Economy is considered the single most
important driver of innovation in countries [3], with a promise to contribute to
inclusion, sustainability and peace [11].

When reflecting on the origins of agility, there was a combination of factors
fostering agile ideas. Mostly a reaction to heavyweight, prescriptive approaches
to software development, combined to the increasing level of change in the
business environment urged practitioners to handle complex and unpre-
dictable requirements in systems development [12].

When dealing with complexity, teams experimenting with agile needed to
face a number of paradoxes that enabled a range of responses depending on con-
textual changes. Agile leaders needed to learn how to balance accountability and
autonomy, hierarchical control and self-organization, predictability and adapt-
ability, or efficiency and responsiveness. This, alongside with the engineering
practices, required a great deal of learning for software development teams.

c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 3–7, 2019.
https://doi.org/10.1007/978-3-030-36701-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-36701-5_1

4 C. O. Melo

Over time, what started being experimented on small teams, for specific situ-
ations, finally become mainstream to software development at scale. A number
of adaptations were developed by industry, shared through community events
and investigated by researchers. Examples of this evolution is the Continuous
Delivery approach, in which software can be released to production at any time,
and the DevOps movement [9].

As concluded by the State of DevOps 2019 report involving over 31,000
professionals (mostly from Global North countries), the industry continues to
improve on agility, particularly among the so-called “elite performers”. They
also conclude, through their research models, that delivering software quickly,
reliably, and safely is a core engine of the technology transformation and orga-
nizational performance on respondents’ organizations [6].

2 Agile Transformations and the Risk of Commodification

Agile ideas scaled not only in size, from teams to the whole organizations, but
also in scope. As recently stated by Steve Denning, “we are now seeing Agile
in manufacturing, Agile in retail, Agile in petroleum, Agile in strategy, Agile
in human resources, Agile budgeting, Agile auditing, and Agile organizational
culture” [4]. Agile transformations aiming to achieve organizational (or business)
agility are happening in many organizations [13]. The research community is still
defining the meaning of agile transformation and the possible research areas to
address existent challenges, as how to manage organizational boundaries or how
to integrate non-development functions to this new way of organizing work [1].

In the experts’ community, there is a debate on how much these ideas are
still following the agile principles, if it makes sense to call them “agile” or it is
going beyond its essence and meaning. In the same vein, there is a strong debate
around failures of agile transformations. One of the main arguments is that
many organizations still mimic agile practices, that they do not really grasp (yet)
agile principles and values [4]. Often, organizations follow technology trends and
behaviors without understanding the cause, but expecting the promoted effects.
Because the values and principles need to be well understood to be practiced
and finally learned, no matter what specific agile method is in trial, few benefits
will be realized.

To address concerns about the risks of agile transformations, there are pro-
posals for frameworks describing principles and, sometimes, recipes for organiza-
tions to roll out agile. This is known as the commodification of agile, a tentative
to simplify and control the journey, what usually also limits its full realization
(because it will be partial or contextual) and can often bring discredit to the
movement. Guidance that concentrates on principles are usually more beneficial,
because frame the process without being prescriptive. Examples are Bossa Nova
[5] and the DevOps Handbook [9].

Another Purpose for Agility: Sustainability 5

3 Agility for Broader Positive Impact and Sustainability

Because of the discussions on what is next for agile, in industry or academia, we
often refer back to agile roots to remember the fundamental reasons, the essence,
why agile in the first place? One of the drivers of agility has been the increased
competition at a global scale, where the advantage is transient, and learning and
adapting quickly is the way to thrive [10].

So, the fundamental assumption is that agile processes harness change for the
customer’s competitive advantage. This frequently justifies continuous improve-
ment efforts and investments. It is rare to hear questions on why competitive
advantage? Is competitive advantage the final purpose we are all working for?
Is competitive advantage sustainable?

For instance, there is already acknowledgment that most successful digital
organizations have become (quasi-)monopolies through agility and that some-
times they abuse this power (e.g. on users’ privacy). Statements as “business
agility is not the same thing as business virtue” [4] are examples of luminaries
recognizing the importance of discussions related to positive impact that orga-
nizations need to reflect a.

The Agile Manifesto brought a principle related to sustainability, defined as
“maintaining a constant pace indefinitely”. This principle has been interpreted
from managerial, technical, and social aspects. A team should be able to keep its
workload under control given the short-term focus. If they do not carry a heavy
workload, a traditional problem faced by software development teams, they are
less likely to burnout or have work-life balance issues. Finally, from a technical
and management perspective, the team should be able to avoid future heavy
workloads or stress of not getting anything done by managing technical debit.

In a broader sense, sustainability is meeting the needs of the present without
compromising the ability of future generations to meet their needs. It is often
considered in terms of the three pillars of environmental, social and economic
considerations [8]. The link between sustainability and software development has
been done by some research fields, as the nascent Information and Communica-
tion Technologies for Sustainability (ICT4S)1.

This research community has created the Karlskrona Manifesto [2] to
articulate a set of principles and commitments, as we are responsible for the
long-term consequences of our systems’ designs. They state that “if we don’t
take sustainability into account when designing, no matter in which domain and
for what purpose, we miss the opportunity to cause positive change”. A positive
impact on society occurs when the effect of a sustainable activity on the social
fabric of the community causes well-being of the individuals and families [16].

The Karlskrona Manifesto states that “sustainability is at its heart a systemic
concept and has to be understood on a set of dimensions, including social, indi-
vidual, environmental, economic, and technical”. When trying to understand the
most important global discussions around sustainability, we usually refer to the
17 universal goals for sustainable economic, social and ecological development to
be met by 2030, described as the Sustainable Development Goals (SDGs) [11].
1 http://ict4s.org.

http://ict4s.org

6 C. O. Melo

4 Core Agility Capabilities at the Heart
of Implementation of SDGs

Implementing sustainable development goals is finding solutions for wicked
problems, complex, non-linear, dynamic challenges in situations of insufficient
resources, incomplete information, emerging risks and threats, and fast changing
environments. Software development, in general, is a complex environment that
cannot be fully understood upfront, some experimentation is needed.

In this context, agile principles are appropriate for the exploration of emer-
gent needs, so the agile evolutionary approach is a fit to the experimentation
approach that sustainable (wicked) problems require [14]. Agile has brought a
huge contribution to the IT community as it created a language, a set of prin-
ciples, a structure for experimentation and digital innovation through teams.
Agile is being successfully connected to other innovation approaches, as Design
Thinking and Lean Startups.

The agile movement is now devoted to transform entire organizations, which
requires knowledge to redesign them from upside down, breaking silos and re-
purposing entire business functions. This required systemic capability is no
longer exclusive for solving clients’ problems, but to the reinvention of the orga-
nizations themselves. This set of sophisticated capabilities can be key levers to
promote systemic changes we need for sustainability.

While the assumption that agility enables competitiveness is still valid, how
much competitiveness we want to enable and to what price? Is the indefinite
evolution of agility towards competitiveness helping society to live more sustain-
ably? Should agility enable cooperativeness among organizations, not only inside
them? To answer these questions, professionals need to embrace knowledge on
areas as ethics, environment, policy, economics, and social justice. I would argue
this is a new purpose for the agile movement, beyond the “compete or die” logic,
assuming a more proactive and robust role on sustainability challenges and goals.

Implementing SDGs will require strategic efforts by different actors and trans-
formative actions. There is a need for approaches and principles guiding strategic
transformational change for organizations trying to implement SDGs [7]. There-
fore, there is an opportunity to investigate how business agility can support the
implementation of sustainable development goals. Where are the synergies and
incompatibilities and how this knowledge can help society to make a transition
to qualitative growth [15].

5 Conclusion

This position paper is a call to action for the agile community to revisit the
purpose of agile, re-framing it in the 21st century context. The central argument
is built upon the idea that agile evolution is being driven mostly by compet-
itive advantage and scaling forces. From small to large teams, from teams of
teams to entire organizations, some of them becoming quasi-monopolies. These
drivers not necessarily help society achieving sustainable development goals.

Another Purpose for Agility: Sustainability 7

A multi- or trans-disciplinary approach is probably needed to rethink the major
drivers of current transformations (for agility and for sustainability) and strate-
gically use the existent agile capabilities.

References

1. Barroca, L., Dingsøyr, T., Mikalsen, M.: Agile transformation: a summary and
research agenda from the first international workshop. In: Hoda, R. (ed.) XP 2019.
LNBIP, vol. 364, pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30126-2 1

2. Becker, C., et al.: The Karlskrona manifesto for sustainability design. CoRR (2014)
3. Commission, E.: The importance of the digital economy. Official website. https://

ec.europa.eu/growth/sectors/digital-economy/importance en
4. Denning, S.: Why agile’s future is bright (2019). https://www.forbes.com/sites/

stevedenning/2019/08/25/why-the-future-of-agile-is-bright
5. Eckstein, J., Buck, J.: Company-wide Agility with Beyond Budgeting, Open Space

& Sociocracy: Survive & Trhive on Disruption: Business Agility with Agile BOSSA
nova. CreateSpace Independent Publishing Platform (2018)

6. Forsgren, N., Smith, D., Humble, J., Frazelle, J.: 2019 accelerate state of DevOps
report. Technical report (2019). http://cloud.google.com/devops/state-of-devops/

7. Grainger-Brown, J., Malekpour, S.: Implementing the sustainable development
goals: a review of strategic tools and frameworks available to organisations. Sus-
tainability 11(5), 1381 (2019). https://www.mdpi.com/2071-1050/11/5/1381

8. Hilty, L.M., Aebischer, B.: ICT for sustainability: an emerging research field. In:
Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. AISC, vol.
310, pp. 3–36. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09228-
7 1

9. Kim, G., Humble, J., Debois, P., Willis, J.: The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press, ITpro collection (2016)

10. McGrath, R., Gourlay, A.: The End of Competitive Advantage: How to Keep
Your Strategy Moving as Fast as Your Business. Harvard Business Review Press,
Brighton (2013)

11. Nations, U.: Multi-stakeholder forum on science, technology and innovation for the
sustainable development goals: summary by the co-chairs. Technical report, United
Nations, June 2016

12. de Melo, C.O., et al.: The evolution of agile software development in Brazil -
education, research, and the state-of-the-practice. J. Braz. Comput. Soc. 19(4),
523–552 (2013)

13. Olszewska, M., Heidenberg, J., Weijola, M., Mikkonen, K., Porres, I.: Quantita-
tively measuring a large-scale agile transformation. J. Syst. Softw. 117, 258–273
(2016)

14. Pelrine, J.: On understanding software agility - a social complexity point of view.
Emergence Complex. Organ. 13, 26–37 (2011)

15. Renn, O., Goble, R., Kastenholz, H.: How to apply the concept of sustainability
to a region. Technol. Forecast. Soc. Change 58(1), 63–81 (1998)

16. de Sousa, T.C., Melo, C.O.: Sustainable infrastructure, industrial ecology and eco-
innovation: positive impact on society. In: Leal Filho, W., Azul, A., Brandli, L.,
Özuyar, P., Wall, T. (eds) Industry, Innovation and Infrastructure. Encyclopedia of
the UN Sustainable Development Goals, pp. 1–10. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-71059-4

https://doi.org/10.1007/978-3-030-30126-2_1
https://doi.org/10.1007/978-3-030-30126-2_1
https://ec.europa.eu/growth/sectors/digital-economy/importance_en
https://ec.europa.eu/growth/sectors/digital-economy/importance_en
https://www.forbes.com/sites/stevedenning/2019/08/25/why-the-future-of-agile-is-bright
https://www.forbes.com/sites/stevedenning/2019/08/25/why-the-future-of-agile-is-bright
http://cloud.google.com/devops/state-of-devops/
https://www.mdpi.com/2071-1050/11/5/1381
https://doi.org/10.1007/978-3-319-09228-7_1
https://doi.org/10.1007/978-3-319-09228-7_1
https://doi.org/10.1007/978-3-319-71059-4
https://doi.org/10.1007/978-3-319-71059-4

Empirical Studies on Agile

An Empirical Study of Test-Driven
Development vs. Test-Last Development

Using Eye Tracking

Joelma Choma1(B), Eduardo M. Guerra1, Tiago Silva da Silva2,
Thomas Albuquerque2, Vanessa G. Albuquerque3, and Luciana M. Zaina4

1 National Institute for Space Research, São José dos Campos, Brazil
jh.choma@hotmail.com, guerraem@gmail.com

2 Federal University of São Paulo, São José dos Campos, Brazil
silvadasilva@gmail.com, tealbthomas@gmail.com

3 Group Being Educational, Guarulhos, Brazil
vanessa.ga@gmail.com

4 Federal University of São Carlos, Sorocaba, Brazil
lzaina@ufscar.br

Abstract. Test-Driven Development (TDD) is an iterative software
development technique in which unit tests are defined before produc-
tion code, while Test-Last Development (TLD) is a more traditional
development technique in which unit tests are written after the features
are implemented. There have been a number of empirical studies inves-
tigating the effects of TDD compared to other approaches in terms of
software quality and productivity. However, there are few investigations
in which the TDD effects are explored from the viewpoint of the develop-
ers’ experience. This paper presents an eye-tracking study carried out in
order to measure visual attention during the coding and test tasks when
developers are using TDD compared to TLD. Our preliminary findings
pointed out a similar visual effort proportion in both techniques, but a
difference regarding eye gaze behavior between them which needs to be
confirmed.

Keywords: Test-Driven Development · TDD · Test-Last
Development · TLD · Eye tracking

1 Introduction

Test-Driven Development (TDD) [3] is a technique for designing and develop-
ing software that is widely adopted by agile software development teams. TDD
was proposed by Kent Beck in the late 1990s as a key practice of the Extreme
Programming (XP). Popularized by XP, TDD has been considered a standalone
process nowadays [26]. The single most important rule in TDD is writing test
cases for what is about to code. This dynamic is referred to as “Test-First” in
which the tests are used for specification purposes in addition to verification
c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 11–24, 2019.
https://doi.org/10.1007/978-3-030-36701-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-36701-5_2

12 J. Choma et al.

and validation. By following this practice to writing unit tests before coding, the
software can be incrementally developed without a need for detailed designing
it upfront, since developers are engaged to think ahead of the functionality [17].
In Test-Last Development (TLD), tests are traditionally built after the features
are implemented only for verification and validation purposes [31].

Over the last decade, several empirical studies have investigated the effects of
TDD compared to TLD from the perspective of developer productivity and soft-
ware quality (internal and external) [14,22,37]. However, few empirical studies
have explored the TDD effects from the viewpoint of the developers’ experi-
ence [31,32]. Software development is an intellectual activity that encompasses
affective, cognitive, conative, and social aspects, going far beyond mere tech-
nical aspects [25]. Tools, techniques, methods, and development processes can
be best understood to be designed or improved when studies can capture the
involvement of the developers with different aspects related to the development
processes, modeling methods, and other tasks [12].

In this paper, we present an eye-tracking study on developers’ experience
in applying TDD and TLD. This study was performed in a user experience
lab involving eight developers with different experience levels and skills. An
eye tracker (hardware and software) was used to monitor the developer’s visual
attention via eye-movements data during implementation and test tasks using
TDD and TLD. We addressed two research question in this study:

– RQ1: How is visual attention distributed over implementation and test tasks
when developers are using TDD compared to TLD?

– RQ2: What are the differences in eye gaze behavior between TDD and TLD
presented in this study?

To answer RQ1, we choose visual effort metrics to analyze the developers’
visual attention based on the two eye gaze data: (i) number of fixations and (ii)
duration of fixations. Fixations refer to a focused state when the eye remains
still over a while. It is a voluntary movement that can last from 200–300 ms to
up to several seconds. The number of fixations indicates the number of times
that a user looked to a certain area of interest (AoI), and the fixation duration
indicates the period that a user looked to a certain AoI. To answer RQ2, we
conducted a qualitative analysis using gaze plots. A gaze plot displays a static
view of the eye gaze data for each area of interest, allowing to visualize the length
of the fixation and sequence of fixations (scan paths).

This paper is structured as follows: Sect. 2 provides related work. Section 3
describes the eye-tracking study design. Section 4 presents the study results and
their analysis. Section 5 presents the discussion, conclusions and future work.

2 Related Work

2.1 Test-Driven Development

TDD process embraces a set of successive short cycles to develop the desired
functionality by following three steps: (1) write a test for the next bit of func-
tionality you want to add; (2) write the functional code until the test passes; and

An Empirical Study of TDD vs. TLD 13

(3) refactor both new and old code to make it well-structured [3]. The refactoring
activity is strongly recommended in both TDD and TLD to change the produc-
tion and test code and make it as simple as possible, ensuring that all tests pass
[18]. Tests frameworks such as JUnit [4] were developed to enable and facilitate
the implementation of unit tests. Creating unit tests is important because they
help to ensure the system works correctly, mostly after code refactoring [10].

Most of the reported evidence on TDD refers to aspects of productivity (e.g.,
the overall time required to develop a feature), internal code quality (e.g., num-
ber of defects), and external code quality (e.g., complexity, code coverage, cou-
pling, and cohesion between objects) [36,37]. There are a number of controlled
experiments that have been done based on objective measurements [11,14,22].
However, there are still few studies in which the effects of TDD are explored
from the perceptions of developers [8,32].

Gupta and Jalote [17] evaluated the impact of TDD on activities like design-
ing, coding, and testing. Their results suggest that TDD can be more efficient
regarding development efforts and the developer’s productivity. Vu et al. [38]
examined the TDD effects regarding software quality, and their results indicated
that TDD did not outperform TLD in many quality measures. In a survey with
practitioners about efficiency and quality of test cases, George and Williams [15]
found that, for most of them, the TDD practice helps to create designs that are
less complicated and easier to understand.

Janzen and Saiedian [20] revealed in their study that mature developers are
much more likely to adopt TDD than early programmers. Scanniello et al. [32]
reported that novices tend to believe more than professionals that TDD improves
productivity. Munir et al. [26] by conducting a controlled experiment with pro-
fessional Java developers found that the majority of participants favor TLD over
TDD due to factors such as lower level of the learning curve and a minimum
effort needed to maintain and understand TLD compared to TDD.

Until now, there is no consensus on results comparing the two approaches
since each experience involves different contexts and potential influence factors
[20]. For example, Shull et al. [36] concluded that moderate evidence exists to
claim that TDD tends to improve the code’s external quality, while evidence
about productivity was inconclusive. For some researchers, TDD can decrease
productivity because the majority of the time is devoted to the creation of tests
instead of production code [24]. Some approaches involving automatic recogni-
tion systems have been proposed for conformance assessment and understanding
the development behavior underlying TDD [5]. Within this context, we believe
that understanding the dynamics of TDD and TLD from the developer’s experi-
ence can provide important insights to researchers and practitioners, for example,
improve tools or methods for training people or for supporting the development
process.

2.2 Eye-Tracking in Software Engineering

In software engineering (SE), the eye-tracking technology was introduced in the
early nineties by Crosby and Stelovsky [9] to explore the way developers were

14 J. Choma et al.

reading an algorithm written in Pascal. Ever since then, eye-trackers have evolved
in terms of effectiveness and usability. This technology has been used mainly in
human-computer interaction research [19]. Its use within research in software
engineering has been restricted because of the high cost of the devices which
still not easy to be gained by many researchers [27].

Sharafi et al. [34] described a set of experiments that used eye-trackers in
software engineering research. More recently, Obaidellah et al. [27] also pro-
vided a mapping of the studies reporting how the experiments used eye-trackers,
including information regarding experimental setup, subjects, artifacts, tasks,
metrics, and type of trackers. According to these secondary studies, most engi-
neering software researchers have used eye tracking in tasks related to model
comprehension such as UML diagrams [21,29,35], code comprehension [6,7,30],
and debugging [1,13,16].

In the agile context, Pietinen et al. [28] have investigated the interplay
between pair-programming productivity and recorded developers’ eye move-
ments. In this work, they described some problems and limitations when eye
tracking is used to study pair programming. In general, few eye-tracking studies
consider the interaction of users with external resources, those are outside the
areas of interests delimited on the computer screen.

To date, there are few studies using eye-tracking to explore more complex
tasks related to development practices and processes. Moreover, most of the
experiments involve simple tasks to be performed in a short time (10 to 30 min),
and studies exploring longer processes tend to be scarce. As far as we know, no
previous study has used eye-tracking to explore dynamic aspects of TDD.

3 Study Design

Following the Goal-Question-Metric (GQM) approach [2], the main goal of the
study was to analyze the software development using TDD and TLD for the pur-
pose of evaluating dynamic aspects with respect to the visual attention required
for implementation and test from the point of view of the researcher in the
context of user experience laboratory.

3.1 Subjects

The study participants were eight software developers from the postgraduate
program at the Brazilian National Institute for Space Research (INPE). They
were Master’s degree students from different experience levels. As presented in
Table 1, we collected the following demographic data for each participant: years
of experience in programming, years of experience in Java language, level of expe-
rience in TDD. Based on this information, we divided the participants into two
groups (TDD and TLD) to have two balanced groups in terms of programming
experience and background.

All subjects were male and had normal vision. Only one of them wore cor-
rective lenses. Before the study, the subjects signed an informed consent form

An Empirical Study of TDD vs. TLD 15

that provided an overview of the experimental procedures. However, they were
not aware of the research questions.

Table 1. Participants’ experience

Group Subject Programming Java TDD

TDD S1 3–5 years 3–5 years Beginner

S2 Over 10 years 6–10 years Beginner

S3 3–5 years 3–5 years Beginner

S4 Over 10 years Over 10 years Intermediate

TLD S5 Over 10 years 1–2 years Beginner

S6 3–5 years 1–2 years Beginner

S7 Over 10 years Over 10 years Beginner

S8 Over 10 years 6–10 years Intermediate

3.2 Study Setting

The study was conducted in a user experience laboratory using the Tobii T60
eye-tracker1 to capture different data related to eye movements and eye gaze.
Through an unobtrusive data collection, the equipment provides eye gaze data
which include timestamps, gaze positions, eye positions, pupil size, and validity
codes. In this study, we used gaze positions and timestamps to measure visual
effort. The equipment was attached and configured on a 25-in. screen (PC-1).
This first screen was used by the study subjects to perform the method imple-
mentation and testing tasks, where we previously prepared the development
environment. A Java code project using JUnit as a testing framework was cre-
ated on the Eclipse IDE2. The screen was split into three areas which displayed
the execution window of the unit tests, the method implementation, and the
test code, placed one next to the other. On a table on the right side, we provide
a 15-in. laptop (PC-2) to access the specification document and web page for
searching, displayed in overlapping pages. During the study sessions, the interac-
tions of the participants could be observed through a glass wall by the researcher
who played the role of moderator.

3.3 Tasks

The task of the participants was to create in the Java language a method to
transform a camelCase string into a list of strings with common words. That is,
given a word as input it must be necessarily a camelCase string instance, and
the output must be a list of instances of common words. Based on the pilot test,

1 https://www.tobiipro.com.
2 https://www.eclipse.org.

https://www.tobiipro.com
https://www.eclipse.org

16 J. Choma et al.

we defined four test cases. Table 2 presents the four input and output examples
that participants should implement and use as a basis for their testing. We
selected four participants to implement this task using TDD, while the remaining
participants would implement it using TLD.

Table 2. Input and output for camelCase conversion method

Test case# Inputs in camelCase Outputs in string list

1 name “name”

2 Name “name”

3 compoundName “name”, “compound”

4 recover10First “recover”, “10”, “first”

3.4 Areas of Interest (AoI)

Eye movements focus a person’s visual attention to the parts of a visual stimulus
when trying to understand and solve a given task [23]. In this study, the eye
tracker was used to recorded eye movements and detect where the subject was
looking at on the screen during the implementation and test tasks – the two
visual stimuli. As shown in Fig. 1, we defined two areas of interest: (AoI-1) area
of implementation where the developer implements the method and (AoI-2) area
of testing where the developer writes the unit tests.

Fig. 1. Areas of interest defined on the Java project

3.5 Variables

A wide variety of eye-tracking metrics has been utilized to measure the visual
effort in different types of SE tasks. Sharafi et al. [33] categorized such metrics
in four groups: (1) metrics based on fixations, (2) metrics based on saccades,

An Empirical Study of TDD vs. TLD 17

(3) metrics based on scanpaths, and (4) metrics of pupil size and blink rate.
However, the most common types of eye-tracking metrics are based on the num-
ber of fixations and the duration of fixation. The number of fixations indicates
the number of times that a user looked to a certain area of interest (AoI), while
the fixation duration indicates the period that a user looked to a certain AoI [34].

In this study, we were using six variables to cover the two areas of interest
(implementation and test), which use the main two main types of eye gaze data:
fixation count, the average fixation duration, and total fixation duration.

The variables are described as follows:

– Fixation Count on Implementation FC(I): The total number of eye fixations
on the area of interest concerning the implementation of the camelCase con-
version method. This refers to the entire method implementation.

– Fixation Count on Testing FC(T): The total number of eye fixations on the
area of interest concerning unit test writing. This refers to the entire tests
writing.

– Average Fixation Duration on Implementation AFD(I): The average length
of time of all fixations in the area of interest concerning the implementation
of the camelCase conversion method.

– Average Fixation Duration on Test AFD(T): The average length of time of
all fixations in the area of interest concerning unit test writing.

– Total Fixation Duration on Implementation TFD(I): The total length of time
of all fixations in the area of interest concerning the implementation of the
camelCase conversion method.

– Total Fixation Duration on Test TFD(T): The total length of time of all
fixations in the area of interest concerning unit test writing.

The first two measures are based on eye fixations, where a higher fixation
count indicates more effort needed by subjects to solve the task. The last four
measures are based on eye fixation duration, where the more time spent imple-
menting the method or writing the tests indicates more effort needed by subjects
to solve the task. The unit of measure is seconds.

3.6 Procedure

At the beginning of each section, the moderator performed the eye-tracker cali-
bration for each participant. During the calibration, five points are displayed on
the screen and mapped their locations with the coordinates of the participants’
eye movements. With some participants, the calibration was repeated one more
time with of purpose to achieve the highest possible accuracy.

After calibration of the equipment, the next screen displayed instructions
on the task. The moderator guided the participants regarding the task to be
performed in PC-1 and showed the requirements document and the web page
for searching located in the PC-2. The moderator clarified to the participants
that only general doubts about java syntax were allowed to be searched from
the internet. Also, it was established that, participants could only use basic Java

18 J. Choma et al.

language API classes for method development. Therefore, the use of external
components was not allowed.

Finally, the participants were told that they would have approximately one
hour to complete their tasks. After development activity, we had them fill out a
post-test questionnaire, with the objective of gathering their perceptions about
the technique used in the development (TDD or TLD) and the difficulties they
encountered during the execution of the task.

4 Results

The results of the study in terms of developers’ performance showed that only
three participants were able to complete the task successfully developing all test
cases, with one performed the tasks in 22 min (S3), while the other two took just
over an hour (S4 and S8). In the TDD group, the participant S1 did not perform
the last two test cases, and the participant S2, who had a great potential to
complete the entire task, forgot to implement the test case 2 or did not do it for
some reason still unknown. In the TLD group, the participant S6 was unable to
conclude the last test case. Unfortunately, two participants who had used TLD
(S5 and S7) were unable to complete any test cases.

Table 3 shows the time spent in minutes and the proportional time (%) spent
on each test cases (TC) performed by each participant. Proportional time for
each test case (see Table 2) was computed as a ratio of time spent on a test case
to the overall time spent on the task. By analyzing the proportion of dedicated
time, we intended to identify which test cases were easier or more difficult to
solve. However, the results indicated that the participants of the two groups had
different degrees of difficulty.

Table 3. Time spent in minutes and the proportional time (%)

Group Subject Time spent TC1 TC2 TC3 TC4

TDD S1 75 0.61 0.39 – –

S2 57 0.30 – 0.59 0.11

S3 22 0.35 0.11 0.50 0.04

S4 64 0.08 0.02 0.41 0.49

TLD S5 75 1.00 – – –

S6 76 0.21 0.09 0.22 0.48

S7 74 1.00 – – –

S8 67 0.55 0.04 0.03 0.38

An Empirical Study of TDD vs. TLD 19

4.1 Visual Attention Analysis (RQ1)

To verify how developers’ visual attention was distributed over implementation
and test tasks (RQ1), we analyzed the visual effort metrics related to the number
of fixations (FC) and the duration of fixation (AFD and TFD). Table 4 presents
the results, where the values in brackets (next to the fixation count values)
refer to the proportion of fixations in each area of interest concerning the total
fixations individually captured. The proportional fixation count for each area
was computed as a ratio of fixation count on an area to the overall fixation time
on two areas. On average, in terms of fixation count, participants in both groups
had approximately 76.2% visual effort on the area of implementation and 23.8%
visual effort on the test area.

As for AFD(I), we found lower fixation gaze time by participant S3 the one
who solved the task faster using TDD. Participant S8 using TLD had the longest
fixation time in the implementation area. Concerning AFD(T), two participants
using TDD (S1 and S3) and two participants using TLD (S5 and S6) had a longer
fixation time in the test area than implementation area. However, concerning
total fixations duration (TFD), all participants in the two groups had a longer
total fixation gaze duration in the area of implementation. The visual effort of
the participant S6 using TLD was almost twice as high as the other participants,
both in the implementation and in the test.

When analyzing the TFD(I) results of the two subjects who successfully
completed the task almost within the same time (S4 and S8), we found both
developers had a similar total fixation gaze duration in the area of implementa-
tion. However, the total fixation duration in the test area of the participant who
used TDD (S4) was significantly lower than the participant who used TLD (S8).

Table 4. Number of fixations and the duration of fixation metrics

Group Subject FC(I) FC(T) AFD(I) AFD(T) TFD(I) TFD(T)

TDD S1 2414 (59.6%) 1636 (40.4%) 0.23 0.33 584.16 359.19

S2 2667 (71.6%) 1058 (28.4%) 0.13 0.04 668.66 169.71

S3 1177 (64.1%) 659 (35.9%) 0.05 0.07 251.2 122.45

S4 3632 (96.4%) 137 (3.6%) 0.22 0.17 899.67 29.03

TLD S5 1143 (86.9%) 173 (13.1%) 0.1 0.15 135.8 19.9

S6 5492 (77.3%) 1613 (22.7%) 0.09 0.17 1680.5 488.57

S7 3324 (77.0%) 993 (23.0%) 0.17 0.17 779.02 221.66

S8 4329 (81.4%) 988 (18.6%) 0.25 0.14 982.41 241.07

FC-Fixation Count|AFD-Average Fixation Duration|TFD-Total Fixation Duration
I - Implementation of the method | T - Test code

20 J. Choma et al.

Fig. 2. Static view of the eye gaze for implementation and test from TDD and TLD.

4.2 Qualitative Analysis (RQ2)

To verify differences in eye gaze behavior by comparing TDD and TLD (RQ2),
we only analyzed the gaze plots of the two subjects who completed the task
successfully in similar timing (S3 and S4), respectively using TDD and TLD.
Figure 2 shows two gaze plots for each developer. The first two gaze plots display
the static views after 20 min of developing, and the last two plots display the
static views in the final time of completion of tasks. As shown in the gaze plots,
the circles represent the fixation dots, which the radius is proportional with the
fixation duration, while the lines represent the eye movements (saccades) which
connect fixation dots.

When comparing TDD and TLD plots, we found two different behavior.
The interaction between both implementation and test tasks seems to be more
intense in TDD than TLD. That is, the fixation dots cover the two AoIs more
uniformly in the gaze plots of TDD. While, in the TLD, the gaze plots showed
a larger space not filled between the two AoIs, which to allow us to notice that
implementation and tests were worked in separate times.

5 Discussion and Conclusion

The study was designed to be completed in less than 60 min to avoid the fatigue
effect [30]. With more time, maybe more subjects could have been able to com-
plete their tasks. We sought to balance the distribution of the subjects based
on their experience levels. However, when analyzing the performance of par-
ticipants, we noticed that each subject had its own pace of development and
different skills for problem-solving. We observed that different experience levels,
preferences, and reasoning processes could impact on rhythms and patterns of
development, as pointed out by Wang and Erdogmus [39]. Furthermore, pro-
grammers tend to define the best way to work in a given context.

An Empirical Study of TDD vs. TLD 21

We analyzed the subjects’ behaviors individually by using descriptive statis-
tics rather than inferential one because the sample was small. We recognized that
the low number of participants did not favor ensuring well-balanced groups, since
in the TLD group, for instance, only one developer was able to solve the task
successfully. To mitigate this threat, we could increase the statistical power of
the study. However, finding experienced TDD practitioners who are available to
participate in this kind of research is a challenge [5].

As for the distribution of visual attention (RQ1), the fixation count results
suggest that, on average, the implementation and testing effort have similar
proportion in both development techniques (TDD and TLD). At first glance,
the average duration of the fixations seems to be directly related to the subjects’
skills. The subject with the best performance (S3) had a low fixation gaze time
in the two areas of interest. However, something that caught our attention was
the fact that this particular participant had declared experience of fewer than
5 years (both programming and Java) and to be a beginner in TDD. In the post-
test questionnaire, this participant stated had no problem with implementing
TDD. He further stated that TDD helped him in the implementation of the
proposed tasks since he was induced to implement it in parts, completing the
tasks without drawbacks.

Another participant who completed the task using TDD (S4) is a more expe-
rienced programmer and with an intermediate knowledge in TDD. However,
his fixation gaze time was higher than the fixation gaze time of the S3. In the
post-test questionnaire, he also stated no problem during the tasks. Within the
same group, by comparing the two subjects (S3 and S4), we noticed that the
participant with more experience in TDD had a low number of fixations and
also a smaller total fixation duration in the area of the test (AoI2). Analyzing
the individual behavior, we could see that S4 had a greater effort in writing the
tests at the beginning of the development. However, this effort was softened over
time, and then his focus turned to the implementation of the method. Neverthe-
less, further investigations will be needed to verify if this fact is related to the
experience background with TDD.

About the difference in eye gaze behavior between TDD and TLD (RQ2),
we found differences by observing static views of two of the participants. How-
ever, such behavior needs to be verified in future work by considering a larger
sampling. If such behavior is confirmed as a pattern between the two techniques,
we can try to investigate the impact of each technique from the point of view of
cognitive effort, for example.

Overall, existing studies when comparing TDD and TLD focus their anal-
yses on the final results of the code and whether the tests were written first
or not. In contrast to this, we are interested in understanding the dynamics of
the development process underlying the two techniques. Thus, we focused on the
dynamic part of the development process and the developers’ activity during the
tasks. The main contribution of this study is to characterize the TDD and TLD
techniques from the developers’ experience. This paper presents our preliminary
results in this direction.

22 J. Choma et al.

In future work, more studies are needed to confirm the findings on devel-
opment patterns meet when we analyzed the eye gaze data using gaze plots.
Further, we intend to analyze the developers’ visual attention considering the
external resources available in the study environment such as the requirements
specification document and searching sources.

Acknowledgment. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. Also,
we would like to thank the support granted by Brazilian funding agency FAPESP
(grant 2014/16236-6 and 2014/25779-3, São Paulo Research Foundation).

References

1. Barik, T., et al.: Do developers read compiler error messages? In: Proceedings of
the 39th International Conference on Software Engineering, pp. 575–585. IEEE
Press (2017)

2. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach.
Encyclopedia of Software Engineering, pp. 528–532 (1994)

3. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional,
Boston (2002)

4. Beck, K.: JUnit Pocket Guide: Quick Look-up and Advice. O’Reilly Media Inc.,
Sebastopol (2004)

5. Becker, K., Pedroso, B.D.S.C., Pimenta, M.S., Jacobi, R.P.: Besouro: a framework
for exploring compliance rules in automatic TDD behavior assessment. Inf. Softw.
Technol. 57, 494–508 (2015)

6. Bednarik, R., Tukiainen, M.: Analysing and interpreting quantitative eye-tracking
data in studies of programming: phases of debugging with multiple representations.
In: Proceedings of the 19th Annual Workshop of the Psychology of Programming
Interest Group (PPIG 2007), Joensuu, Finland, pp. 158–172. Citeseer (2007)

7. Busjahn, T., et al.: Eye movements in code reading: relaxing the linear order. In:
Proceedings of the 23rd International Conference on Program Comprehension, pp.
255–265. IEEE (2015)

8. Choma, J., Guerra, E.M., da Silva, T.S.: Developers’ initial perceptions on TDD
practice: a thematic analysis with distinct domains and languages. In: Garbajosa,
J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 68–85. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 5

9. Crosby, M.E., Stelovsky, J.: How do we read algorithms? A case study. Computer
23(1), 25–35 (1990)

10. Deng, C., Wilson, P., Maurer, F.: FitClipse: a fit-based eclipse plug-in for exe-
cutable acceptance test driven development. In: Concas, G., Damiani, E., Scotto,
M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 93–100. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73101-6 13

11. Desai, C., Janzen, D., Savage, K.: A survey of evidence for test-driven development
in academia. ACM SIGCSE Bull. 40(2), 97–101 (2008)

12. Fagerholm, F., Münch, J.: Developer experience: concept and definition. In: Pro-
ceedings of the International Conference on Software and System Process, pp.
73–77. IEEE Press (2012)

https://doi.org/10.1007/978-3-319-91602-6_5
https://doi.org/10.1007/978-3-540-73101-6_13

An Empirical Study of TDD vs. TLD 23

13. Fritz, T., Begel, A., Müller, S.C., Yigit-Elliott, S., Züger, M.: Using psycho-
physiological measures to assess task difficulty in software development. In: Pro-
ceedings of the 36th International Conference on Software Engineering, pp. 402–
413. ACM (2014)

14. Fucci, D., et al.: An external replication on the effects of test-driven development
using a multi-site blind analysis approach. In: Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, p.
3. ACM (2016)

15. George, B., Williams, L.: A structured experiment of test-driven development. Inf.
Softw. Technol. 46(5), 337–342 (2004)

16. Goswami, A., Walia, G., McCourt, M., Padmanabhan, G.: Using eye tracking to
investigate reading patterns and learning styles of software requirement inspectors
to enhance inspection team outcome. In: Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
p. 34. ACM (2016)

17. Gupta, A., Jalote, P.: An experimental evaluation of the effectiveness and effi-
ciency of the test driven development. In: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, pp. 285–294.
IEEE Computer Society (2007)

18. Ivo, A.A.S., Guerra, E.M.: ReTest: framework for applying TDD in the develop-
ment of non-deterministic algorithms. In: Silva da Silva, T., Estácio, B., Kroll, J.,
Mantovani Fontana, R. (eds.) WBMA 2016. CCIS, vol. 680, pp. 72–84. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55907-0 7

19. Jacob, R.J., Karn, K.S.: Eye tracking in human-computer interaction and usability
research: ready to deliver the promises. In: The Mind’s Eye, pp. 573–605. Elsevier
(2003)

20. Janzen, D.S., Saiedian, H.: A leveled examination of test-driven development accep-
tance. In: Proceedings of the 29th International Conference on Software Engineer-
ing (ICSE 2007), pp. 719–722. IEEE (2007)

21. Jeanmart, S., Gueheneuc, Y.G., Sahraoui, H., Habra, N.: Impact of the visitor
pattern on program comprehension and maintenance. In: Proceedings of the 3rd
International Symposium on Empirical Software Engineering and Measurement,
pp. 69–78. IEEE Computer Society (2009)

22. Jeffries, R., Melnik, G.: Guest editors’ introduction: TDD-the art of fearless pro-
gramming. IEEE Softw. 24(3), 24–30 (2007)

23. Kanwisher, N., Wojciulik, E.: Visual attention: insights from brain imaging. Nat.
Rev. Neurosci. 1(2), 91 (2000)

24. Khanam, Z., Ahsan, M.N.: Evaluating the effectiveness of test driven development:
advantages and pitfalls. Int. J. Appl. Eng. Res. 12(18), 7705–7716 (2017)

25. Kuusinen, K., Petrie, H., Fagerholm, F., Mikkonen, T.: Flow, intrinsic motivation,
and developer experience in software engineering. In: Sharp, H., Hall, T. (eds.) XP
2016. LNBIP, vol. 251, pp. 104–117. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33515-5 9

26. Munir, H., Wnuk, K., Petersen, K., Moayyed, M.: An experimental evaluation of
test driven development vs. test-last development with industry professionals. In:
Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering, p. 50. ACM (2014)

27. Obaidellah, U., Al Haek, M., Cheng, P.C.H.: A survey on the usage of eye-tracking
in computer programming. ACM Comput. Surv. (CSUR) 51(1), 5 (2018)

https://doi.org/10.1007/978-3-319-55907-0_7
https://doi.org/10.1007/978-3-319-33515-5_9
https://doi.org/10.1007/978-3-319-33515-5_9

24 J. Choma et al.

28. Pietinen, S., Bednarik, R., Tukiainen, M.: Shared visual attention in collaborative
programming: a descriptive analysis. In: Proceedings of the Workshop on Cooper-
ative and Human Aspects of Software Engineering, pp. 21–24. ACM (2010)

29. Porras, G.C., Guéhéneuc, Y.G.: An empirical study on the efficiency of differ-
ent design pattern representations in UML class diagrams. Empirical Softw. Eng.
15(5), 493–522 (2010)

30. Rodeghero, P., McMillan, C., McBurney, P.W., Bosch, N., D’Mello, S.: Improving
automated source code summarization via an eye-tracking study of programmers.
In: Proceedings of the 36th International Conference on Software Engineering, pp.
390–401. ACM (2014)

31. Romano, S., Fucci, D., Scanniello, G., Turhan, B., Juristo, N.: Results from an
ethnographically-informed study in the context of test driven development. In:
Proceedings of the 20th International Conference on Evaluation and Assessment
in Software Engineering, p. 10. ACM (2016)

32. Scanniello, G., Romano, S., Fucci, D., Turhan, B., Juristo, N.: Students’ and profes-
sionals’ perceptions of test-driven development: a focus group study. In: Proceed-
ings of the 31st Annual ACM Symposium on Applied Computing, pp. 1422–1427.
ACM (2016)

33. Sharafi, Z., Shaffer, T., Sharif, B., Guéhéneuc, Y.G.: Eye-tracking metrics in soft-
ware engineering. In: 2015 Asia-Pacific Software Engineering Conference (APSEC),
pp. 96–103. IEEE (2015)

34. Sharafi, Z., Soh, Z., Guéhéneuc, Y.G.: A systematic literature review on the usage
of eye-tracking in software engineering. Inf. Softw. Technol. 67, 79–107 (2015)

35. Sharif, B., Maletic, J.I.: An eye tracking study on the effects of layout in under-
standing the role of design patterns. In: 2010 IEEE International Conference on
Software Maintenance (ICSM), pp. 1–10. IEEE (2010)

36. Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., Erdogmus, H.: What do
we know about test-driven development? IEEE Softw. 27(6), 16–19 (2010)

37. Turhan, B., Layman, L., Diep, M., Erdogmus, H., Shull, F.: How effective is
test-driven development. In: Making Software: What Really Works, and Why We
Believe It, pp. 207–217 (2010)

38. Vu, J.H., Frojd, N., Shenkel-Therolf, C., Janzen, D.S.: Evaluating test-driven devel-
opment in an industry-sponsored capstone project. In: Proceedings of the Sixth
International Conference on Information Technology: New Generations, pp. 229–
234. IEEE (2009)

39. Wang, Y., Erdogmus, H.: The role of process measurement in test-driven devel-
opment. In: Zannier, C., Erdogmus, H., Lindstrom, L. (eds.) XP/Agile Universe
2004. LNCS, vol. 3134, pp. 32–42. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27777-4 4

https://doi.org/10.1007/978-3-540-27777-4_4
https://doi.org/10.1007/978-3-540-27777-4_4

On the Mapping of Underlying Concepts
of a Combined Use of Lean

and User-Centered Design with Agile
Development: The Case Study
of the Transformation Process

of an IT Company

Cassiano Moralles1(B) , Matheus Vaccaro1 , Maximilian Zorzetti1 ,
Eliana Pereira2, Cássio Trindade1, Bruna Prauchner1, Sabrina Marczak1,

and Ricardo Bastos1

1 MunDDoS Research Group – PPGCC – School of Technology, Pontif́ıcia
Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil

{cassiano.mora,matheus.vaccaro,maximilian.zorzetti,
bruna.prauchner}@acad.pucrs.br,

{cassio.trindade,sabrina.marczak,bastos}@pucrs.br
2 Instituto Federal do Rio Grande do Sul (IFRS), Porto Alegre, RS, Brazil

eliana.pereira@restinga.ifrs.edu.br

Abstract. The agile development of software requires new approaches
to serve users and end customers. The combination of Lean and User-
Centered Design with Agile gives software development a competitive
advantage. Given the novelty and scarcity of studies on such combined
use in software development, as part of our long-term research that aims
to develop a maturity model to accelerate the transformation from agile
to the use of the combined approaches, we posed as our first step to iden-
tify what are the underlying concepts involved on the use of agile, lean,
and user-centered design. We first conducted multiple literature reviews
to identify the concepts for each of the individual approaches to then
conduct an empirical study in order to identify what is considered useful
by two software teams of a multinational IT company that are going
through such a transformation for about 6months. Our study revealed
that there are concepts from literature not yet considered in practice and
the other way around, there are practiced concepts not found in liter-
ature. For now, we hypothesize that this is due to the early maturing
process of the studied teams. We believe that this is an initial contri-
bution that can be of help for other teams enduring this challenging
transformation process. Our research will next investigate how the three
approaches relate to one another in order to provide a unique and con-
solidated combined model of concepts that will further be used as the
skeleton of our maturity model.

Keywords: Agile development · Lean · User-Centered Design ·
Organizational transformation · Empirical study

c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 25–40, 2019.
https://doi.org/10.1007/978-3-030-36701-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_3&domain=pdf
http://orcid.org/0000-0002-8552-5847
http://orcid.org/0000-0002-1431-9288
http://orcid.org/0000-0001-5255-6295
https://doi.org/10.1007/978-3-030-36701-5_3

26 C. Moralles et al.

1 Introduction

The adoption of agile methodologies has become an industry standard in the
past years. Although these methodologies prepare teams to be more adaptive
and to keep a closer contact with clients and customers, some authors (e.g.,
[19]) argue that agile needs to be combined with other approaches in order to
provide better guidance for agile teams to improve their understanding of the
problem at hand so as to provide more aligned solutions and to keep the customer
engaged. To that end, Pivotal Software, Inc.1 (henceforth referred to as Pivotal)
has developed a three-pronged approach to software development: Pivotal Labs.

Pivotal Labs [8] combines certain aspects of Extreme Programming (XP)
[1,2], Lean [12,13], and User-Centered Design (UCD) [4,11,15]. Ideas and prac-
tices from each of these methodologies are used to tackle different aspects of
software development: XP handles the technical activities; Lean mitigates the
risk of building the wrong software; and UCD guarantees the software solves
an end-user real problem. Software development teams that have adopted this
approach show increased productivity and efficacy [16,17], while in our study
experience also reporting increased levels of satisfaction and happiness at work.

Apart from the argumentation for the combined use of the approaches from
literature (e.g., [19]) and the reports from Pivotal customers, little is known on
how to proceed to use XP, Lean, and UCD together. There are, however, com-
parable studies presenting frameworks that integrate Agile, Lean Startup, and
Design Thinking. Grossman-Kahn and Rosensweig present Nordstrom’s Innova-
tion Labs model for innovation, Discovery by Design [7], while sharing lessons
learned from building an innovation capability from the ground up. With a great
focus on the needs of the customers and an iterative mindset, they perform rapid
experimentation, prototyping, and testing cycles based on the core mindsets and
tools from those three methodologies to create innovative products. Dobrigkeit,
de Paula, and Uflacker present a software development process called InnoDev
[5] based specifically on Scrum, Lean Startup, and Design Thinking. Its process
is divided into three phases: Design Thinking, Initial Development, and Devel-
opment; each composed of a list of activities, roles, deliverables, and techniques.
Still, to the best of our knowledge, there are no papers on how a software team
should start the journey of a combined adoption of XP, Lean, and UCD, and on
how to identify that the team is maturing.

To fill in this gap, we have set up a three-years long research project to
investigate the matter. Our main goal is to, at the end of this period, define a
maturity model to help software teams through this transformation. Secondarily,
we aim to define an assessment method (or, a health check) for identifying the
maturity the team presents at a certain moment in time. To do so, our first
step is to identify what are the underlying concepts that represent the combined

1 https://pivotal.io.

https://pivotal.io

On the Mapping of Underlying Concepts 27

use of XP, Lean, and UCD. For that, we conducted a series of literature review
studies2 to identify the concepts from literature and from Pivotal Labs3.

Given this context, in this paper we present a case study of two software
development teams from a multinational IT company named ORG (name omit-
ted for confidential reasons). Due to a recent drive to modernize the company
from the inside out, these two teams have recently adopted Pivotal Labs, having
learned the approach from Pivotal itself. As part of the partnership between our
research group and ORG, we have them stationed in a local modern software
development lab within the University campus where teams from ORG spend
3 months working in this isolated environment that was intentionally designed
to serve our research purposes and to allow the teams to work without interfer-
ence from others that have not on-boarded the transformation process yet. The
main goal of this report is to present the mapping between literature and practice
regarding the underlying concepts that relate to XP, Lean, and UCD in order
to provide initial insights to those that aim to endure the same transformation
process. As a next step, we will consolidate such concepts, from literature and
practice, into a conceptual model and, in the long run, this conceptual model
will be used as the skeleton of a maturity model.

The remainder of this paper presents the mapping between literature and our
case study teams’ experience, highlighting and discussing the differences between
both perspectives.

2 Research Method

We conducted a multiple case study [14] on the two ORG software development
teams stationed in our Software Development Lab from April to June, 2019, as
presented next.

2.1 Case Setting

ORG has software product development sites in the USA (headquarters), India,
and Brazil. With over 7,000 employees and responsible for about 1,200 software
products, the IT department started its agile transformation in 2015 and moved
to the combined use of Agile, Lean, and UCD principles in late 2017. The adopted
approach was inspired by the Pivotal Labs [8] methodology, which proposes a

2 A journal article consolidating the review on the concepts of the 3 approaches and
what maturity models are published on the topic is under review, thus we cannot
cite it for now. We would like to note that we found no maturity model addressing
the 3 approaches together nor for the combination of 2 of them, but we did find 19
models for agile maturity and 5 for lean maturity alone.

3 We developed an executive report on findings from this study that is of ORG use
only. Due to our confidential research agreement with the organization we cannot
disclose this document, but we would like to note that there is little on the matter
and that what we report in this paper is representative of what is publicly available
in blogs, websites, etc of Pivotal customers.

28 C. Moralles et al.

“team rhythm” composed of principles and ceremonies based on the 3 afore-
mentioned approaches. It also suggests the adoption of a cross-functional team,
called balanced team, composed of three main roles: Product Designer, Product
Manager, and Software Engineer. Pivotal Labs’ main goal is to help teams to
build software products that deliver meaningful value for users and their busi-
ness. Thus, it offers a framework and initial starting point for any team to discuss
its specific needs and define its own way towards software development.

We had two development teams from ORG’s Brazilian financial sector sta-
tioned in a modern software development lab inside the University’s campus.
Of the total 16 team members, we interacted with the 8 that participated in a
Pivotal hands-on immersion training in the USA. Team A is responsible for a
software product that calculates the cost of associated services offered by the
products sold by ORG and displays this information to ORG consumers. Team
B is responsible for the software product that gathers information about these
services from other ORG software products and stores them for Product A to
use. These teams spent 3 months in the USA working directly with Pivotal Labs
consultants, who played roles in the software development process as hands-on
mentors to the ORG members. Afterwards, both teams spent 3 months working
at the University’s dedicated lab, which is equipped with Pivotal Labs’ collabo-
rative work environment recommendations (e.g., single large table for pair-wise
work, large screen TV for reports and news, large whiteboards for ideas’ devel-
opment and information sharing, and a meeting room that turns into an enter-
tainment space for leisure time). This last stage is when the data collection and
analysis took place.

2.2 Data Collection and Analysis

We used 3 data sources: a questionnaire to collect the participants’ profile (name,
role, responsibilities, and time working in IT and at ORG); observations to learn
about their day to day activities; and focus group sessions to gather informa-
tion on their perceptions about the transformation, the training experience, the
benefits and challenges of the Pivotal Labs approach; and to discuss the concept
mapping between literature and what we observed them doing in practice.

Altogether, we performed six focus group sessions that lasted in average 1
hour with the 8 members that worked in the USA. Their profiles are shown
in Table 1. Meetings were voice recorded and transcribed for thematic analysis
[3,6,18]. Of those six meetings, we used two sessions for each approach. We first
presented them the concepts from their practice in order to clarify whether we
comprehended them correctly and then we presented the concepts from litera-
ture in order to identify the completeness of our observations from practice. By
discussing the literature, team members could present us with concepts that we
might have missed or misunderstood. We considered the work of Kent Beck [1,2]
as literature for XP; Lean Startup [13] and Lean Software Development [12] for
Lean; and the work of Norman [11], Brown [4], and Salah, Paige, and Cairns [15]
for UCD. We based our definition of literature on existing Pivotal work and an
initial observation of the teams. For instance, although Pivotal Labs advocates

On the Mapping of Underlying Concepts 29

Table 1. Participants’ profile

ID Role Training IT Work
Exp (years)

Company
Exp (years)

P1 Software Engineer Enabler 10 4

P2 Product Manager Enabler 19 0.5

P3 Product Designer Enabler 27 10

P4 Software Engineer Enabler 21 8

P5 Product Manager Enabler 21 6

P6 Product Designer Enabler 5 4

P7 Software Engineer Enabler 20 11

P8 Software Engineer Enabler 5 5

for the use of Lean Startup (misnaming it as only “Lean”), we observed the use
of Lean Software Development concepts, so we decided to consider it as part of
the literature for Lean.

3 Results

To facilitate the presentation of the large number of concepts that we identified
from literature and later mapped to the case study teams’ practice, we introduce
these concepts in tables, one per approach (we divided Lean into Lean Startup
and Lean Software Development, due to them being radically different). When
a concept from literature was not reported by the teams, we indicated “—”
in the Case Study table column. Similarly, the concepts identified in practice
and lacking in literature are indicated with “—” in the Literature table column.
We also organized these concepts into categories, which we name “elements”
as per the literature perspective, namely: Activity, Role, Work Product, and
Technique/Practice. An exception is the Lean Software Development approach,
which organizes itself into Principles that can be realized by Tools, which in turn
make use of Concepts as shown in Table 4.

3.1 Extreme Programming

We observed a few differences with our mapping as presented in Table 2. When
considering the Activities, the teams put aside their categorization, having
them distributed throughout the project life cycle (e.g., BDD as an strategy
to validate acceptance tests). With regards to Roles, given that ORG adopted
the concept of Balanced Teams from Pivotal Labs, there are three main roles,
namely: Product Manager, Product Designer, and Software Engineer. These
interchange job responsibilities with XP defined roles, adding them up as stated
by some team members: “The role of Product Designer encompasses more
attributions than a Designer” (P2, P5, P6). A balanced team is described as

30 C. Moralles et al.

“a global movement of people who value multidisciplinary collaboration and
iterative delivery focused on customer value as a source for innovation” [9]. This
concept is used to complement an agile team, as it places the product-focused
team members, such as product managers and designers, on equal footing with
the team’s technical-focused members through a set of core values instead of
the definition of explicitly defined roles, events, and artifacts [10]. This allows
for a Shared Context. There is also an additional role—Anchor, played by an
experienced Software Engineer who, in addition to coding full-time, acts as a
resource for the rest of the development team for supporting the resolution of
technical and non-technical issues; “The Anchor role is not necessarily played by
the most experienced team member. It is the professional who can talk about the
product and about engineering in the same language” (P1, P2), and “The Anchor
can also be the colleague who will remain in the product team for a longer time,
to become a focal point” (P7). Also, “The anchor can represent the team in a
meeting for clarifications with the user, avoiding the need to send the entire team
for this discussion” (P2). Specific to ORG is the Consultant role, who supports
the team, belongs to the Services team, and is responsible for infrastructure and
databases.

Considering the Work Products, User Stories can be proposed “at any time,
any role can propose a feature or story” (P4), however, some members explained
that “We do informally categorize them into Bugs, Features, and Chores” (P5).
“Bugs are defects that we need to fix, regardless of how they were identified, and
Features are new additions to the software product” (P3). Chores, on the other
hand, are a new specialization to indicate that something needs to be done but
does not add value to the software: “We observed some unnecessary processes,
in our opinion, and questioned the customers. No one knew what they meant.
We just decided alongside with the customers to remove them from the system.
We will do this when time allows” (P7). It is important to note that despite
its categorization, all User Stories are now driven by Problem-resolution rather
than requirements (as it has been for the past two decades): “We don’t start from
the elicitation or clarification of requirements. We now focus on discussing with
the customers and users what are the problems they have” (P8). The Product
Backlog is also specialized. The new Ice Box concept is used to indicate User
Stories that were either not prioritized yet or were put on hold for some reason,
“Any story can be put on hold in the Ice Box” (P4), “We had situations where
the business told us that a user story was necessary, but we left it in the Ice Box
after realizing it was not relevant. The project evolved and with time the user
also realized it was of no use and ended up satisfied with our decision” (P2).
Also, “We use it as a way to record ideas to avoid forgetting them” (P4, P8).

When considering the Techniques and Practices, the major mindset change
we observed is the fact that the ORG teams do not focus on Releases. They do
plan an Iteration as a means to set up expectations with users but they do not
estimate efforts or set due dates, “The term release is used only as a team control
mechanism to set the users’ expectation and provide visibility” (P3, P6). This
is possible because they are in constant contact with the users, although they

On the Mapping of Underlying Concepts 31

Table 2. Extreme Programming Literature and Case Study Mapping

Literature Element Case Study

Coding Coding
Designing —
Testing —
Listening

Activity

Interviews

— Anchor
Consultant Services Consultant
Coach Product Manager
Tester Product Designer/Software Engineer
Programmer Software Engineer
Tracker Software Engineer
Manager Product Manager
Doomsayer Product Manager
Big Boss Product Manager
Customer

Role

Product Manager

Bug Fix Bug
FeatureUser Story

Problem-based User Story
Chore
CurrentProduct Backlog Product Backlog
Ice Box

Iteration Backlog

Work
Product

—

Release Planning —

Iteration Planning
Pre-Iteration Planning Meeting (Pre-IPM)/
Iteration Planning Meeting (IPM)

Customer Approval User Feedback
Pair Programming Pair Programming
Acceptance Test-Driven Development —
Test-Driven Development Test-Driven Development
Customer Tests/
On-Site Customer —

Continuous Delivery Continuous Delivery
Refactoring/
Design Improvement Refactoring

Continuous Integration Continuous Integration
Planning Game Planning Game
Estimation by Example —
— Behavior-Driven Development (BDD)
Spike Experiments
Daily Meeting Daily Stand-Up
Stand-up Meeting Office Stand-up/Team Stand-up
Whole Team Balanced Team
Collective Ownership/
Collective Code Ownership Collective Ownership

Coding Standards S.O.L.I.D.
40 Hours per Week/Sustainable Pace Sustainable Pace
Constant Feedback Constant Feedback
Simple Design Simple Design
Metaphor Metaphor
Small Releases Small Increments
Retrospective Retrospective
— Tech Talks
— Shared Context
— Team Agreement
— Question Actual Process
—

Technique
/

Practice

Information Repository

32 C. Moralles et al.

are not On-Site Customers but “they are nearby” (P1). They also believe that a
good way to constantly collect User Feedback is by using BDD: “We use BDD
to have better communication with our users. We validate our acceptance tests,
which in turn validate the users’ perspectives” (P5). Spikes, simple programs
to explore potential solutions, often not good enough to keep, are used in a
slightly different way than proposed in literature. The ORG teams use spikes as
a resource for their experimentation of hypotheses, “We work up to 4 hours if
needed to build a spike to experiment our theories and explore possibilities” (P2).

Other smalls adjustments to concepts from literature are: instead of only writ-
ing code in accordance with rules (Coding Standards), the teams use SOLID, the
mnemonic acronym for five design principles intended to make software designs
more understandable, flexible, and maintainable—Single responsibility, Open–
closed, Liskov substitution, Interface segregation, and Dependency inversion prin-
ciple. Tech Talks meetings focus on exposing a subject of interest to the teams and
other colleagues who want to learn something new. These meetings can be of tech-
nical nature or comprise any other aspect. Team Agreement refers to any kind of
decision the team makes that will take longer than 30 min to be implemented and
therefore is worth discussing and recording. Question Actual Process is the mind-
set “we learned from Pivotal; they instigated us to be investigative all the time by
asking questions when we see fit” (P2, P5). And, finally, Information Repository
is used as a resource to maintain a shared context “where everyone has access to
information about the problems we are trying to resolve. Currently we are using
Slack to make it easier” (P3, P6).

3.2 Lean

Lean Startup. Overall, we identified that the Lean Startup (LS) concepts used
by the ORG teams are all heavily centered around conducting experiments,
as stated by a Software Engineer, “Let’s conduct an experiment to validate if
this approach will be better. If it works, let’s proceed. How do we know this?
Through experimentation.” (P7), and being able to make informed decisions,
as exemplified by a Product Manager: “The team compiled the results and sent
them to the stakeholders saying: ‘look, these are the results and this is what we’ve
learned. What are we going to do with it? Do you want to follow this approach
or the other one? The decision is yours.”’ (P2).

As part of the Activity element, we find some activities related to LS princi-
ples, e.g., Building Experiments, Measuring Results, and Learning being directly
associated with the Build Measure Learn Cycle. A similar phenomenon happens
in the Work Product section, where Iterate, Escalate, Persevere, and Give Up
are outcomes of the principle Validated Learning. The 31 techniques presented
in Table 3 were extracted from the Lean Startup book by Eric Ries [13].

We found that ORG teams use a subset of the activities mapped from the
literature. The core experimentation cycle activities related to the principles
of Build Measure Learn and Innovation Accounting are used normally, however
Formulating the Business Model and Hypotheses is approached in a different

On the Mapping of Underlying Concepts 33

Table 3. Lean Startup Literature and Case Study Mapping

Literature Element Case Study

Formulating the Business Model and Hypotheses

Activity

Understanding the Problem
Defining the Team’s Vision of the Problem
Establishing the Team’s Strategy to Solve the Problem
Mapping Everyone Affected by the Problem
(Users and Stakeholders)
Formulating Hypotheses

Build Measure Learn
(Principle)

Building Experiments
Build Measure Learn
(Principle)

Building Experiments
Measuring Results Measuring Results
Learning Learning

Innovation Accounting
(Principle)

Establish the Baseline
Innovation Accounting
(Principle)

Establish the Baseline
Tune the Engine Tune the Engine
Pivot or Persevere Pivot or Persevere

Running the Engine of Growth —
Pivot or Persevere Meeting —

Entrepreneur Role Team

Ideas (Hypotheses)

Work
Product

Ideas (Hypotheses)
Product Product
Data (Metrics and Measurements) Data (Metrics and Measurements)

Validated Learning
(Principle)

Iterate

Validated Learning
(Principle)

Iterate
Escalate —
Persevere Persevere
Give Up Give Up
— Double Down

Split Tests

Technique
/

Practice

—
Small Batches Small Batches
Triple “A” Metrics
(Actionable, Accessible, Auditable) —

Customer Development Customer Development
5 Whys 5 Whys
Customer Advisory Board —
Falsifiable Hypotheses —
Product Owner —
Accountability —
Customer Archetypes Customer Archetypes
Cross-Functional Teams Balanced Teams
Smoke Tests —
Continuous Deployment Continuous Deployment
Usability Tests —
Real-Time Monitoring & Alerting Real-Time Monitoring & Alerting
Customer Liaison Customer Liaison
Funnel Analysis —
Cohort Analysis —
Net Promoter Score —
Search Engine Marketing —
Predictive Monitoring —
Unit Tests Unit Tests
Continuous Integration Continuous Integration
Incremental Deployment Incremental Deployment
Free & Open-Source —
Cloud Computing —
Cluster Immune System —
Just-In-Time Scalability —
Refactoring Refactoring
Developer Sandbox —
Minimum Viable Product Minimum Viable Product

way, since the team’s goal is to solve the company’s problems instead of cre-
ating a sustainable business: the team focuses on understanding the problem at
hand, so that they can build a common understanding and a strategy to tackle
it. A Product Manager says: “When we are identifying a problem, we contact

34 C. Moralles et al.

the stakeholders in order to understand what the problem we’re dealing with is.
We spent the whole morning discussing everything we thought was related to the
problem, and everything that could be a problem, until we reached a final state-
ment. After that, as a team, we defined the vision and the strategy that we were
going to use to solve the problem. . . ” (P2). We did not identify the explicit usage
of Pivot or Persevere Meetings and Engines of Growth.

We did not identify any explicit categorization of roles in the literature.
Eric Ries often refers to the ones conducting the scientific method of the LS as
Entrepreneurs. In our case study, this role is taken by the Team as a whole.

Regarding Work Products, the main difference found is that the teams did
not mention Escalate as an informed decision based on the outcome of an exper-
iment, i.e., a Validated Learning outcome. A Software Engineer says that “The
decisions normally are: you can abandon that track of work; you can persevere,
and continue to work on that; you can pivot, change the direction and try to
investigate it in another way; or you can even double down on it, things are
going the right way but we want it to go faster, so we put more engineers to
work on it.” (P4) Among the 31 presented Techniques, we identified that the
team actively uses 13 of them. Most notably, we found that the concept of
Cross-functional Teams is mapped to Balanced Teams, as previously mentioned
in the XP approach (Sect. 3.1).

Lean Software Development. Most of what is presented by the Poppendiecks
[12] is used in some way by the ORG development teams as seen in Table 4. We
observed that the Iteration tool is used differently: ORG teams disregard the use
of fixed time-boxes, as “[stakeholders do not impose deadlines], unless there’s a
compliance or interlocking deadline already in-place” (P5), although a Software
Engineer adds that “stakeholders have target dates or launch windows for the
final solution, and we aim to deliver it all by then” (P4). Additionally, Iterations
have an open scope, says a Software Engineer: “We might have decided to work
on two User Stories for a given Iteration, but if something—anything—comes
up mid-iteration, we reshuffle our priorities and work on something else” (P8).

For Synchronization purposes, the teams prefer the use of spanning applica-
tion instead of matrix : upon being asked if they develop a system by sketching
out its components and then splitting the team to work on each, a Software Engi-
neer responded, “No, we make experiments—a whole slice of a solution, com-
prised of the full technology stack, to see if it works. If it does, we expand upon
it” (P4). In regards to the team’s decision making process (Making Decisions),
all decisions are made exclusively through the interpretation of experiment
results, disregarding the Poppendiecks’ intuitive decision making and simple
rules (we called this experiment-based decisions). Although an expert’s intuition
can influence the decision or open up more options, the final say comes from
experimentation, as stated by a Software Engineer: “We needed to insert a lot
of data into a database, and it was taking too long with our current technology
stack. I developed a solution using another technology stack that I was sure was
going to perform better. As I thought, it did, so we started using it” (P1).

On the Mapping of Underlying Concepts 35

Table 4. Lean Software Development Literature and Case Study Mapping

Literature Case Study

Principle Tool Concept Principle Tool Concept

Eliminate
Waste

Seeing Waste Eliminate
Waste

Seeing Waste
Value Stream Mapping Value Stream Mapping

Amplify
Learning

Feedback

Amplify
Learning

Feedback

Iteration
Negotiable Scope

Iteration
Negotiable Scope

Team Commitment Team Commitment
Fixed Time-Box —

Set-Based
Development

Constraints Set-Based
Development

Constraints
Multiple Options Multiple Options

Synchronization

Daily Build and
Smoke Test

Synchronization

Daily Build and
Smoke Test

Spanning
Application

Spanning
Application

Matrix —

Decide as Late
as Possible

Making Decisions

Intuitive Decision
Making

Decide as Late
as Possible

Making Decisions
—

Simple Rules —
— Experiment-Based

Options Thinking Options Thinking
The Last Responsible Moment The Last Responsible Moment

Deliver as Fast
as Possible

Cost of Delay Economic Model

Deliver as Fast
as Possible

Cost of Delay Economic Model

Pull Systems
Information
Radiators Pull Systems

Information
Radiators

Queueing Theory

Small Work
Packages

Queueing Theory

Small Work
Packages

Slack Slack
Steady Rate
of Service

Steady Rate
of Service

Steady Rate
of Arrival

Steady Rate
of Arrival

Empower
the Team

Expertise
Communities
of Expertise

Empower
the Team

Expertise
Communities
of Expertise

Standards Standards

Motivation

Belonging, Safety,
Competence,
and Progress

Motivation

Belonging, Safety,
Competence,
and Progress

Moderation Moderation
Purpose Purpose
Champion —

Self-Determination
Principles,
Not Practices Self-Determination

Principles,
Not Practices

Leadership Master Developer —

Build
Integrity In

Conceptual Integrity
Software
Architecture

Build
Integrity In

Conceptual Integrity
Software
Architecture

Perceived Integrity
Institutional
Memory Perceived Integrity

Institutional
Memory

Model-Driven
Design

Model-Driven
Design

Refactoring Refactoring

Testing
As-Built Test Suite

Testing
As-Built Test Suite

Customer Tests Customer Tests
Developer Tests Developer Tests

See the Whole

Measurements
Information
Measurement

See the Whole

Measurements
Information
Measurement

Contracts

Target-Cost
Contracts

—Time-And-Material
Contracts
Shared-Benefit
Contracts
Multistage
Contracts

36 C. Moralles et al.

Concerning Motivation, ORG teams do not have a champion, a person that
compels other members to work on a project. Instead, they all compel themselves
to work, as stated by a Software Engineer: “The empathy we feel for our work
colleagues motivates us to work” (P1). As for Leadership, we observed that the
ORG teams do not have leaders at all: a Software Engineer points out that
each role in the Balanced Team spearheads its respective domain (e.g., Software
Engineers lead technical discussions), but also adds that “all decisions are shared
and made by the whole team” (P4), while a Product Manager emphasizes that
“[even a rookie can make] the most experienced team member say ‘You are right,
let’s do it your way.”’ (P2). Finally, ORG teams dismiss the need for Contracts
since they work for ORG itself: “We do not sign any legal contracts. ORG decides
what problems need solving, and these eventually trickle down to us” (P2).

3.3 User-Centered Design

Table 5 shows the Phases, Activities, Work Products, and Techniques for UCD.
The Phases, shown in the left side of the activities in the table, from literature,
are related to the Double Diamond of Design Thinking. The idea is to perform
the UCD activities inside of the Finding the Problem and Finding the Solution
phases [11]. It is important to mention that we identified 77 techniques from
the literature, however, Table 5 shows only the most cited techniques and those
identified in our case study.

We found that the phases and activities of the UCD literature are the same
used by the teams. In terms of Phases, the difference is the used terminology.
We identified the Finding the Problem phase is the Discovery phase and the
Finding Solution is the Framing phase. For the Activities, the first difference
was in the Testing activity that originally (from literature) focus on validating
the solution with the final users. In the studied teams, the solution is validated
internally by the Product Designer (PD) and Product Manager (PM) roles in
the Seek Feedback activity before being validated with the final users: “The PM
and PD will validate if the solution proposed is according to what was devel-
oped by the team. PM and PD validate before reaching the user. They will either
accept or reject the story” (P4); “Sometimes we do not even have access to the
user” (P7). Another difference in terms of activities was that the teams per-
form an additional activity named Communicate Early and Often. This activity
is related to the designer’s pairing with the team members during product devel-
opment: “During implementation, the PD can pair with an engineer to ensure
that this engineer has all the understanding he needs to develop” (P4), “It is the
responsibility of the whole team to deliver the correct product” (P5).

As for UCD Work Products and Roles, we did not observe any differences
between those used in the team and the literature. The teams have the role
Product Designer and produce a small set of work products connected with
the applied techniques by them. Finally, we identify that of the 77 UCD tech-
niques listed in literature, the teams have only used 7 of them so far. They
also used 4 techniques we had not found in literature. Indeed, what we could
obverse was that although they did not use a vast amount of techniques,

On the Mapping of Underlying Concepts 37

Table 5. User-Centered Design Literature and Case Study Mapping

Literature Element Case Study

Finding the Problem and
Finding the Solution Phases

Observation
/Inspiration

Activity
Discovery and
Framing Phases

Conduct Research

Ideation Generate Solutions

Prototyping
Deliver Design
Decisions

Testing
Seek Feedback
Testing

—
Communicate Early
and Often

Designer Role Product Designer

Prototype
Work

Product
Prototype

User Journey Map

Technique
/

Practice

—
Business Model Canvas —
Scenarios —
Stakeholders Mapping —
Persona Persona
Affinity Diagram Affinity Mapping
Blueprint Blueprint
Photo Journal —
Empathy Mapping —
Mind Mapping —
Storytelling —
Card Sorting —
Prototyping Prototyping
Ethnography —
Interview Interview
Brainstorming Design Session
5 Why —
Point of View —
Questionnaire —
Usability Test —
Inspection —
Profiles —
Survey —
How Might We How Might We
— 2x2 Prioritization
— Now, Near, Next
— Integration Research
— Design Studio

they are continually searching and studying new techniques, as argued by a
Product Manager, “Techniques are things that we keep looking for, studying,
and eventually applying” (P5). The teams pointed out How Might We and
2 × 2 Prioritization as the most used techniques: “How Might We is one that
we use a lot” (P6). “We always use How Might We because it helps us think
about the value that solution will deliver” (P5). Concerning 2 × 2 Prioritization
they said: “2 × 2 to identify the pain points” (P3), “2 × 2 can be used in prob-

38 C. Moralles et al.

lems, solutions” (P5), “2 × 2 to validate with user” (P4), and “2 × 2 is used
as wild card” (P7). They also mentioned the Product Designer as responsible
for choosing better techniques for each situation: “The Product Designer has
the responsibility to attempt to identify the best technique to validate as fast as
possible the teams’ assumptions. The Product Designer tries to find the better
technique to validate the idea” (P6).

4 Discussion

Evolution is natural for software development with the adoption of new method-
ologies and technologies—the evolution of XP with the joint use of other
approaches in the industry is evidenced in our research. The shared responsibil-
ities, resulting of the multidisciplinary work, is a valid direction with increasing
complexity in software development. More specifically, a balanced team works
with no time-bound iterations (no Iteration Planning) as a mean to continuously
deliver value to the customer. To do so, the main mindset change is to now focus
on problems (Problem-based User Stories) rather than on requirements as the
starting point of customer interaction and involvement.

As for Lean, the ORG teams seem to use a subset of LS and LSD that
complements the use of one another. For instance, the teams’ Decision Making
does not use the concepts provided by LSD, instead, it uses experiment-based
decisions, which is completely rooted in LS. Following this example is the lack
of Leadership: since all decisions are experiment-driven, there is no need for a
leader or boss figure among the team.

In regards to UCD, it seems that both teams only use a subset of its available
tools, and understandably so, given how many of them there are. Not only that,
but each team uses different sets of tools for their respective problems, indicating
that there is really no be-all-end-all tool package to product design.

As a side note, we observed that both teams always seek to adapt techniques,
practices, and roles to their context: they seem to have a “drive” to strive for
the best way to do their jobs at all times. We believe this is a good indicator
for the undergoing transformation of ORG. This also leads us to leave the fol-
lowing questions up in the air: are the differences identified in our mapping an
issue? Since teams are always evolving, can our study be a good-to-have-at-hand
document for consulting?

5 Final Considerations

As part of a long-term research project that aims to define a maturity model
to help teams in their transformation to the combined use of XP, Lean, and
UCD, we report in this paper our first step: the mapping between the identified
underlying concepts from literature and those used by the observed ORG teams.
From the comparison between the results from literature and our case study
with the two teams that have been undergoing this transformation process for
about 6 months, we found that the teams’ use of Pivotal Labs is mostly aligned
with the literature, but differs in some aspects, namely:

On the Mapping of Underlying Concepts 39

• All decisions are based on experiments, disregarding the intuition of experts;
• Lack of leaders, since the team inspires itself and shares decision making

equally;
• There is an Anchor role, that bridges the understanding between business

and engineering;
• Not all UCD techniques are used, but the teams are constantly seeking out

to use new ones that might benefit their case.

This initial contribution can already be of use to software development teams
aiming to endure such transformation. By revealing the concepts from literature,
practitioners can have a broad overview of what they might have to deliberate
on and can use, and by identifying what is being used by a maturing team that
has been experiencing such transformation as part of a large multinational IT
company, practitioners can envision some adjustments that have been proven to
work so far. We note that our results are not generalizable nor are conclusive
given the exploratory nature of our case study. However, they are a first step
towards our main goal. We will continue observing other teams (there are 4
teams confirmed for the coming 6 months) in the University lab and contacting
the past observed teams every 3 months as a means to identify how they mature
throughout time. We expected to soon report on our to-be-proposed maturity
model.

Acknowledgement. We would like to thank the study participants from ORG. Also,
we thank ORG for the financial support (Brazilian Informatics Law n◦ 8.2.48 of 1991).

References

1. Beck, K.: Embracing change with extreme programming. Computer 32(10), 70–77
(1999). https://doi.org/10.1109/2.796139

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley, Upper Saddle River (2004)

3. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res.
Psychol. 3(2), 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa.
https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa.
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

4. Brown, T.: Design thinking. Harvard Bus. Rev. 86, 84–92, 141 (2008)
5. Dobrigkeit, F., de Paula, D., Uflacker, M.: InnoDev: a software development

methodology integrating design thinking, scrum and lean startup. In: Meinel,
C., Leifer, L. (eds.) Design Thinking Research. UI, pp. 199–227. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-97082-0 11

6. Gregory, P., Barroca, L., Taylor, K., Salah, D., Sharp, H.: Agile challenges in
practice: a thematic analysis. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.)
XP 2015. LNBIP, vol. 212, pp. 64–80. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18612-2 6

7. Grossman-Kahn, B., Rosensweig, R.: Skip the silver bullet: driving innovation
through small bets and diverse practices. In: Leading Through Design, p. 815
(2012)

https://doi.org/10.1109/2.796139
https://doi.org/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-3-319-97082-0_11
https://doi.org/10.1007/978-3-319-18612-2_6
https://doi.org/10.1007/978-3-319-18612-2_6

40 C. Moralles et al.

8. Pivotal Software Inc.: Pivotal Labs (2019). https://pivotal.io/labs. Accessed 18
July 2019

9. Jarrell, J., Berner, I.: Balanced Team: A Balanced Approach to Product Design
and Delivery (2014). http://www.balancedteam.org/. Accessed 18 July 2019

10. Jarrell, J., Berner, I.: Striking the Right Balance with Balanced Teams
(2019). https://content.pivotal.io/white-papers/striking-the-right-balance-with-
balanced-teams. Accessed 18 July 2019

11. Norman, D.A.: The Design of Everyday Things. Basic Books, New York (2002)
12. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.

Addison-Wesley, Boston (2003)
13. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-

tion to Create Radically Successful Businesses. Crown Business, New York (2011)
14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Softw. Eng. 14(2), 131 (2008). https://doi.org/
10.1007/s10664-008-9102-8

15. Salah, D., Paige, R.F., Cairns, P.: A systematic literature review for agile devel-
opment processes and user centred design integration. In: Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering,
London, England, pp. 5:1–5:10. ACM (2014). https://doi.org/10.1145/2601248.
2601276

16. Sedano, T.: Sustainable Software Development: Evolving Extreme Programming,
April 2017. https://doi.org/10.1184/R1/6723431.v1. https://kilthub.cmu.edu/
articles/Sustainable Software Development Evolving Extreme Programming/
6723431

17. Sedano, T., Ralph, P., Péraire, C.: Sustainable software development through over-
lapping pair rotation. In: Proceedings of the 10th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, ESEM 2016, Ciudad
Real, Spain, pp. 19:1–19:10. ACM(2016). https://doi.org/10.1145/2961111.2962590

18. Vaismoradi, M., Turunen, H., Bondas, T.: Content analysis and thematic analysis:
implications for conducting a qualitative descriptive study. Nurs. Health Sci. 15(3),
398–405 (2013). https://doi.org/10.1111/nhs.12048. https://onlinelibrary.wiley.
com/doi/pdf/10.1111/nhs.12048. https://onlinelibrary.wiley.com/doi/abs/10.
1111/nhs.12048

19. Ximenes, B.H., Alves, I.N., Araújo, C.C.: Software project management combining
agile, lean startup and design thinking. In: Marcus, A. (ed.) DUXU 2015. LNCS,
vol. 9186, pp. 356–367. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20886-2 34

https://pivotal.io/labs
http://www.balancedteam.org/
https://content.pivotal.io/white-papers/striking-the-right-balance-with-balanced-teams
https://content.pivotal.io/white-papers/striking-the-right-balance-with-balanced-teams
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/2601248.2601276
https://doi.org/10.1145/2601248.2601276
https://doi.org/10.1184/R1/6723431.v1
https://kilthub.cmu.edu/articles/Sustainable_Software_Development_Evolving_Extreme_Programming/6723431
https://kilthub.cmu.edu/articles/Sustainable_Software_Development_Evolving_Extreme_Programming/6723431
https://kilthub.cmu.edu/articles/Sustainable_Software_Development_Evolving_Extreme_Programming/6723431
https://doi.org/10.1145/2961111.2962590
https://doi.org/10.1111/nhs.12048
https://onlinelibrary.wiley.com/doi/pdf/10.1111/nhs.12048
https://onlinelibrary.wiley.com/doi/pdf/10.1111/nhs.12048
https://onlinelibrary.wiley.com/doi/abs/10.1111/nhs.12048
https://onlinelibrary.wiley.com/doi/abs/10.1111/nhs.12048
https://doi.org/10.1007/978-3-319-20886-2_34
https://doi.org/10.1007/978-3-319-20886-2_34

Mob Programming and Simultaneous
Style Pair Programming

in the Development of a Battle Royale
Game: An Action Research

Herez Moise Kattan(B)

Department of Computer Science, Institute of Mathematics and Statistics
of the University of Sao Paulo (IME-USP), Sao Paulo, Sao Paulo, Brazil

Herez@ime.usp.br, Herez@Herez.com.br, Herez@acm.org

https://www.Herez.com.br

Abstract. This paper is an Action Research about adopting Mob Pro-
gramming and Simultaneous Style Pair Programming to develop a bat-
tle royale game called Pirate Ship Battles. Mob Programming helps the
developers to learn an open-source framework for games called Phaser
and another one called Jest to automatization of the tests. The following
are two examples of insights that occurred respectively in the first and
third cycles of action research. The team collaboratively agreed to start
by learning in a Mob Programming doing the infra-structure to the tests
and also to deepen the knowledge about Phaser should help in the next
parts of the project. Another example of insight occurred in the third
cycle of this action research is about testing activity, fixing the bugs,
was observed funnier comparing with testing alone. The team reported it
was funnier testing altogether, when a mistake happens to run new code,
everybody paying attention to the projector on the fault, a ready joke.
Perhaps, because they are friends and the project is a game. Another
possible explanation about our experience of funnier testing activity in
a Mob Programming compared to testing alone is that we humans are
social beings. Concluding, the source code of the game is of excellent
quality as evaluated by CodeClimate by classifying it with grade A, the
developers enjoyed, and both approaches increased the learnings.

Keywords: Collaboration in software development · Agile practice ·
Programming teams · Programming technique · Mob Programming ·
Pair Programming · Simultaneous Style Pair Programming ·
Collaborative problem solving · Social-technical system · Action
research

1 Introduction

Nowadays, the number of new technologies need to develop modern software is
very high. There are early adopters of these new practices of Mob Programming
c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 41–57, 2019.
https://doi.org/10.1007/978-3-030-36701-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-36701-5_4

42 H. M. Kattan

and Simultaneous Style Pair Programming. However, to increase the number of
organizations investing in the creation of software accepting try to use them,
requires an impartial evaluation of the potential beneficial practices with a sci-
entific research method. Toward to adopt these software development practices
with more confident, this is important for them, because of understanding better
when using these new practices and exactly how the best way.

The motivation of the present work starts from the premise that software
development is a socio-technical system in which people develop software based
on technological tools. Collaboration among people is a relevant aspect, as well
as the interaction with the technical/technological tools involved in the process
of software development [19,21,24].

Socio-technical systems consist of social and technical/technological systems.
Both parts could be optimized together or not. In other words, they may or may
not have been designed to ensure both systems contributing together to the best
possible human and organizational results [2].

Mob Programming is a software system development and testing technique in
which programmers sit side by side, all together around the same computer. This
approach of programming all together exercises social aspects due programmers
are working on the same activity, looking at the same projector, sharing the
keyboard and mouse, making the programming activity much more social with
intense collaboration and constant communication [20].

The goal of this paper is to programming a game using social computing
in the form of open science, describing it here through action research its cre-
ation process. The team uses Mob Programming and Simultaneous Style Pair
Programming, all the interviews about the development of the game with its
source code as open source are for free on GitHub and Wiki. The game is a
Socio-Technical system because beyond its technological part has a social one
to play online on the internet. It is mandatorily a multiplayer, to make sense it
is necessary another person also enters in WebSite, login, and play with at least
one other player. The game becomes more fun the more players there are. Plac-
ing the game on GitHub is also for a socio-technical reason to encourage other
developers to collaborate with the technical part, helping in their programming,
both functional and corrective evolutions.

Action Research is a collaborative research method. In which, the members of
the studied system participate actively in a cycle of planning activities, taking
action, and evaluation of results. This research method was a natural choice,
me being part of the game development team. Follow is a description of insight
happened in the first cycle of action research.

Plan: the game is of the genre battle royale, so, we will need to program a
circle of death. Thus, this rule of the game is about the player suffering damage
if out that circle and making the player lose their life in the game every few
seconds. We also need to create a scoreboard and one a minimap.

Act: we split into two groups of Mob Programming. The first was composed
of three people Mob programming the circle of death and the second creating
the scoreboard and minimap.

Mob Programming in the Development of a Battle Royale Game 43

Observe: because of the level of difficulty of programming a circle of death
with many visual effects involved, we observed that Mob Programming was
helpful to do it.

Reflect: one possible reason to be a positive approach is because of the
complexity of the task. Another consideration is the learning need for use by the
first time o the framework ‘Phaser’ 3.0 for our team.

The team faced some challenges with the adoption of Mob Programming. We
need a room with a good projector, tables, and chairs. We need previously reserve
them exclusively for us and I that was also the coach of the team spent some time
doing this negotiation. We had a short deadline and a lot of features to deliver,
so, we decide and need, combine Mob Programming with Pair Programming
and Simultaneous Style Pair Programming. For this last challenge, I explain in
this paper some outcomes about design, user stories adaptation, and software
requirements related to this.

Now, we have a playable game. Would be amazing to get more contributors
to work with us to improve the game toward making it a commercial success. I
am trying to do it as an open science project. All the audios of the interviews,
the source code, the metrics, and data are available in our Wiki and GitHub.

Following are the Background need to fulfill understanding of this paper,
the Research Method description, Literature Review, the cycles of the Action
Research, Limitations, and Conclusion.

2 Background

The following sections presents the introductions about socio-technical systems,
mob programming, and background knowledge need to a clear understanding of
this paper.

2.1 Socio-Technical Systems

The Socio-Technical Systems theory mentioned in the introduction to this article
originated in the Institute Tavistock. The researchers who created it believed it
was an advance in the design of the organizations to be more suitable for people
working.

Socio-Technical Systems has had an impact around the world for more than
50 years, so we can consider it to be a much more successful theory rather
than most organizational theories [1]. Eason used the metaphor of a half-empty
glass, and he published in 2008 his metaphor and was particularly appropriate
for Socio-Technical Systems theory at that time, an approach with enormous
potential, however, it was only partially realized [1].

I agree with the potential on Socio-Technical systems, so, I analyze here some
potentially useful aspects for the organization of the work of the programmers.
The scope of this work is aspects useful related to Mob Programming or getting
deep the understanding of the practice and its popularity among programmers

44 H. M. Kattan

when they begin to practice. In this endeavor, the state-of-the-art will deepen
the knowledge about this new software development practice.

The way people organize to work collaboratively with common or shared ends
continues to interest scientists, academics, and leaders in general. Cooperative
work is essential in microenterprises, also in the start-up phase, medium and
large governmental and non-governmental organizations.

Because the world is continually changing around us, it forces people and
organizations to look for new ways to work together to change and adapt. This
is increasingly important in the globalized service economy. We are currently
facing global challenges that affect our lives. At the same time, there is a greater
focus on innovation as people try to solve these problems. New organizational
structures arise to support entrepreneurship and new forms of work. Thus, the
concepts originally developed at the Tavistock Institute seem quite relevant and
offer possible solutions for the present day [2].

2.2 Mob Programming

The idea of Mob Programming originated from developer lunch meetings in
a presentation format, where a team member presented a code he knew [6].
Mob programming is a technique where the entire team participates around
a workstation with a single person in possession of the keyboard, mouse, and
computer [7,9].

A study of Mob Programming observed that in moments of doubt when
no team member has sufficient technical knowledge about the current issue, it is
best to separate the group and continue the work simultaneously [19,20]. Figure 1
illustrates the basic workspace setup of Mob Programming.

Fig. 1. The basic setup of Mob Programming by Zuil et al. [9].

Mob Programming in the Development of a Battle Royale Game 45

2.3 Simultaneous Style Pair Programming

A possibility to increase the productivity of pair programming is to use the par-
allelism of Concurrent Engineering [15]. Another alternative is the incorporation
of a process of pair code review.

According to Coplien et al. [14], the design is compatible with the pairing of
working together. In this way, they can produce more than the sum of the two
individually.

Figure 2 illustrates the basic workflow of the Simultaneous Style Pair Pro-
gramming excluding the Planning phase and the Rest phase because are very
difficult to draw.

Fig. 2. The basic workflow of the Simultaneous Style Pair Programming.

The Programming and Review Simultaneous in Pairs (PrsP): a pair pro-
gramming extension of Kattan [16] is also known as Simultaneous Style Pair
Programming [25] or as Pair Development. PrsP has the following definition:

“A programming activity wherein planning is at the beginning including
the pair selection, the pairing of tasks is collaboratively designed and based on
these two programmers work collaboratively in the same activity. Only in the
beginning of one activity sitting side by side to exchange experiences (this way
there are more algorithms and solutions) or communicate in the beginning, if
they are working in a distributed way (different locations). Still, in this initial
phase, they decide how to divide the task, and do not need to sit together all the
time on a single computer, or communicate at all times if they are working in a
distributed way, only when necessary and useful. Whenever possible, the work
should be performed simultaneously on separate computers. Unlike traditional
pair programming, in PrsP each programmer revises the work of the other one

46 H. M. Kattan

simultaneously using two computers if an error is found then the task returns to
the programmer fix it. In the end, they unite the work of the pair. During the rest,
it is suggested to speak or to think about the best way for the accomplishment
of the work, mindset zero defect, adoption of a process of stress reduction and
for resolution of conflicts” [16,25].

2.4 Social Computing

The internet has brought a different style of computing because it is dependent
on human interactions. Even the success of program execution often depends on
the properties of the human society in which the programmed software system
is inserted, as it is being operated by humans [5].

2.5 Action Research

In the late 1930s, Kurt Lewin and his students researched factories and neighbor-
hoods to demonstrate respectively higher productivity gains as well as employee
rights and order in the workplace respectively through democratic participation
in autocratic coercion.

Lewin, in addition to showing an effective alternative to Taylor and his Sci-
entific Management, through his Action Research provided the details of how
to develop social relations of groups and between groups to support communi-
cation and cooperation. To achieve such conditions and required relationships,
forms of leadership very different from those provided by Taylor’s literal follow-
ers and Tyler’s misinterpretation which led to a connection with Watsonian’s
‘behaviorism’ and therefore objectivist [3].

One of the summaries on forms of leadership was made by two of Lewin’s
former students, named Cartwright and Zander [4]. Action research was the
systematic research method used for all participants to seek greater effective-
ness together through democratic participation. Following is the detailing of the
research method used.

3 Research Method

Justifying the choice to do an action-research: perhaps because Mob Pro-
gramming is a way of organizing the work of group programmers, and action
research has its origins as described above in working groups, it helps to explain
such similarity between Lewin’s research and his the students we are doing here.

Of course with the difference that our workgroup is composed of programmers
while Lewis and his students research with a group of factory workers. Just as in
Lewin’s time we believe it to be a suitable research method to study the social
aspects involved in the work of a group, in our case, specifically of programmers.
Thus, we chose Action Research as a research method for the work reported
here.

Mob Programming in the Development of a Battle Royale Game 47

Action research is a collaborative research method in which members of the
studied system actively participate in a cycle of planning, action, and outcome
evaluation activities [10]. This action research is part of a project including
a extensive literature review [19]. Often research methods can be used as a
combination and toward make this contribution stronger, there are others papers
related following a mixed method called illuminated arrow [17,18].

The history of socio-technical systems is closely linked to action research. This
is more of a philosophy than a methodology. It describes a humanistic process
and set of principles that in our context is associated with technology and change.
It can be used to contribute to most problem solutions in work situations, as long
as both innovators and recipients are willing to use a democratic approach. It will
be difficult to use it successfully if the parties involved are hostile to each other,
disinterested in developing strategies and unwilling or unable to co-operate. As
the name implies, the research approach has an action component: either the
research is intended to lead to changes in the work situation or produces an
inadvertent change because action research has occurred [11].

Action research according with my experience is a way of making a systematic
process for collective reflection in social situations toward improving rationality
and justice by those who are involved in the process as well as understanding by
those involved and in the situations studied.

Action research is a form of collective self-reflexive research conducted by
participants in social situations to improve the rationality and justice of their own
social or educational practices, as well as the understanding of those practices
and situations in which practices are performed [12].

According to Rose et al., Although some variant of the? Plan-act-observe-
reflect? The cycle is at the core of most studies that use action research, the pre-
cise form depends on the approach chosen and the objectives of each search [13].

Figure 3 illustrates the spiral concerning the process of collective reflection
in terms of its cycles of plan-act-observe-reflect.

The Fig. 3 is by Kemmis et al. [12] and it illustrates the spiral of self-reflection
in terms of a spiral of self-reflective cycles of:

– Planning a change,
– Action and Observation of the process and its consequences of the change,
– Reflection on these processes and their consequences, and then
– Replanning of items,
– Act again and Observe again,
– Reflection about these processes and their consequences,
– and so on... (see Fig. 3)

The following are the action-research cycles occurred during the development
of the Socio-Technical game. Afterward, it is the analysis of results. In the end,
the conclusions are presented, summarizing the main findings.

48 H. M. Kattan

Fig. 3. The Research-Action spiral is by Kemmis et al. [12] and it illustrates the spiral of
self-reflection in terms of a spiral of self-reflective cycles of plan-act-observe-reflect-
replanning-act-observe-reflect-and so on.

4 Battle Royale Style Game Called Pirate Ship Battles

This section describes the cycles of action research during the development of a
Battle Royale game. This research was carried out during the second half of 2018
in the disciplines XP Laboratory (LabXP) and Advanced Laboratory of Agile
Methods of the Department of Computer Science of the Institute of Mathemat-
ics and Statistics of the University of Sao Paulo (IME-USP). The students of
the disciplines were the developers of this game with a Socio-Technical aspect,
multiplayer online in which to be entertaining it takes more than one player.

Since Agile Methods formalization, the software engineering education has
also been impacted with universities adapting their courses as a way to suit this
new software processes. At the University of Sao Paulo (USP), there is a dis-
cipline called XP Laboratory (LabXP). Although the name refers to eXtreme
Programming, the discipline aims at teaching agile methods in practice, consid-
ering several elements that are crucial for providing the student with real knowl-
edge and experience with agile methods. This discipline has provided extensive
studies involving students, instructors, mentors, customers, professionals, and
companies [8].

The course requires a minimum of at least eight hours per week of dedication,
and there is a lunch once a week, to allow the students to share experiences. First,
the teams watched a workshop about Mob Programming and Simultaneous Style

Mob Programming in the Development of a Battle Royale Game 49

Pair Programming with Herez Moise Kattan, the author was also a developer
and coach of the team. All the data are open source. An interview was done to
deepen the knowledge about the experience of the team members.

4.1 Context

The client requesting the game was a university extension group of the IME-USP
called University of Sao Paulo group for game development (USPGAMEDEV).
This group is composed of students and non-students of the university. It is
focused exclusively for the development of games.

The Socio-Technical game has the requirement of being developed with con-
tinuous integration and automated tests. Pirate Ship Battles is a 2D open-source
game of the genre battle royale. It began to be developed in the first half of 2018
using Node.js and the framework for Phaser games. The players control a pirate
ship in the ocean, the objective is to survive attacks of other players and for this,
it is necessary to collect boxes with ammunition that are in the waters. multi-
player is inspired by the Agar.io and Slither.io games, in addition to the most
conspicuous games of the battle royale genre, such as Fortnite and Playerunk-
nown’s Battlegrounds.

Fig. 4. The initial screen of the game, in this screen the player chooses his nickname
to be used to identify before the other players and assignment of his points. It is also
necessary to inform if you are going to play on a computer with a keyboard or are
using a mobile phone, in which case you have to check the Mobile Mode checkbox to
set the joystick to the touchscreen version touchscreen.

50 H. M. Kattan

Figure 4 shows the initial screen of the game, in this screen the player chooses
his nickname to be used to identify to the other players and the attribution of
his points. It is also necessary to inform if you are going to play on a computer
with a keyboard or are using a mobile phone, in which case you have to check the
Mobile Mode checkbox to set the joystick to the touchscreen version touchscreen.
This is the Socio-Technical aspect, the game is online, to be played with other
people and the technological part is this WebSite of the game that allows to
play online with other players and compute their points, visualize the names
and points of the opponents to know if is winning or not. Gain is hit or hits an
opponent or transposes the circle of death you can see an explosion on the ship
representing damage suffered.

The Socio-Technical game reported here in the form of this action research,
it was developed during the three cycles described below.

4.2 First Cycle

Plan: Learn how to use an open-source library called Phaser to help with game
programming. Because of the online Socio-Technical game on the internet, the
team will have to learn how to use the open-source Jest library to be able to
do the automated tests in javascript and start programming the tests and some
simpler requirements like the login screen.

Act: Split into two groups of Mob Programming. The first focusing on Phaser
and the second on the Jest. It is a small Mob with only three people in each
group. However, it was chosen to avoid a programmer to lose the concentration
if he has not the possession of the keyboard.

Observe: It helped to increase productivity by dividing the group into two
groups of three. However, in the end, we unified in one single Mob, everyone
around a single computer for share the learning with the entire team.

Figure 5 is a picture of the team using Mob Programming during the devel-
opment of the Pirate Ship Battles game. The pilot in possession of the keyboard
types while the others provided ideas, reviewed and told what was to be done.

Reflect: The group cooperatively agreed that it was a good idea to start by
learning and doing the tests and also to deepen the knowledge in Phaser should
help in the next steps of the project. Mob Programming helped a lot to col-
laboratively learn both Phaser (framework to games) and Jest (framework to
testing).

In the excerpt from the interview where Mob Programming was asked to be
useful for this, the answers were unanimous: “Yes”. The audio of the interview
is available at http://ccsl.ime.usp.br/wiki/MobProgrammingInterviews.

http://ccsl.ime.usp.br/wiki/MobProgrammingInterviews

Mob Programming in the Development of a Battle Royale Game 51

Fig. 5. Mob Programing during the development of the game Battle Royale called
Pirate Ship Battles.

4.3 Second Cycle

Plan: Since the game is of the genre battle royale it is necessary to program
a circle of death, in which the player suffers damage when crossing that circle.
Create a scoreboard and minimap.

Act: Split into Mob Programming groups. The first for programming the circle
of death and the second creating a scoreboard and minimap. Could use Simul-
taneous Style Pair Programming to reduce the time-to-benefit.

Observe: Due to the difficulty of programming the circle of death, Mob Pro-
gramming has proved to be a very effective practice here. However, due to pres-
sure of the customer per features with a short deadline. The team decides try
the Simultaneous Style Pair Programming in the development of the scoreboard
and minimap. Figure 6 shows three players playing a match, each with their com-
puter playing online, each in a different city. They played several games then and
we captured the screen to exemplify here. One can see the islands for refueling
ammunition, stones that are obstacles to increasing the level of difficulty of the
game. There is a minimap in the upper right corner. In the left corner, you can
see the scoreboard.

52 H. M. Kattan

Fig. 6. Three players playing a game. One can see the islands for refueling ammunition,
stones that are obstacles to increasing the level of difficulty of the game. There is a
minimap in the upper right corner. In the left corner, you can see the scoreboard.

Reflect: The group agreed that Mob Programming has proved to be a very
effective practice in developing the circle of death because of its complexity.
In the excerpt from the interview where Mob Programming was asked to be
useful for programming complex tasks, the answers were unanimous: “Yes, very
useful”, “All together gives more confidence”, “In the circle of death, there was
a union of skills for the task to be done”. The audio of the interview is available
at http://ccsl.ime.usp.br/wiki/MobProgrammingInterviews.

4.4 Third Cycle

Plan: Program the visual effects of damage both when the ship is shot from
an opponent and when the player crosses the circle of death. Create islands for
replenishing ammunition and rocks that strike the ship by hitting them.

Act: Split into Mob Programming groups. The first programming the visual
effects of damage both when the ship is shot from an opponent and when the
player crosses the circle of death. The second by creating islands for the replen-
ishment of ammunition and rocks that hit the ship by hitting them.

http://ccsl.ime.usp.br/wiki/MobProgrammingInterviews

Mob Programming in the Development of a Battle Royale Game 53

Observe: Automated testing has greatly facilitated new implementations of
this cycle. Figure 7 shows the explosion, which is the visual damage suffered
when a ship transits the circle of death or is hit by an opponent. In the upper
right corner, next to the minimap is the explosion, as the ship has broken the
circle of death and after a few seconds, it explodes symbolizing damage and loss
of life.

Fig. 7. Visual damage suffered when a ship transits the circle of death or is hit by an
opponent. In the upper right corner, next to the minimap is the explosion, as the ship
has broken the circle of death and after a few seconds, it explodes symbolizing damage
and loss of life.

Reflect: Mob Programming was much more fun in testing compared to testing
alone, because when something went wrong running a new code, as everyone was
seeing on the projector, it was much more fun to test altogether in the group’s
opinion as shown in Fig. 5 and in the audio of the interviews made [26].

5 Results Analysis and Discussion

The Socio-Technical game described here is in the form of open science and with
its source code also open for audits and collaborations. The source code is on
GitHub at: https://github.com/uspgamedev/Pirate-ship-battles.

https://github.com/uspgamedev/Pirate-ship-battles

54 H. M. Kattan

Figure 8 shows the game working, which is the boat navigating inside the
death circle. In the upper right corner is the Minimap. In the left side are the
scoreboard and the quantity of ammunition. The stones are to increase the dif-
ficulty level, so the player needs to avoid them. The islands are for recovery the
ammunition. If a player shoots and it reaches another boat, he/she increases
his/her points.

Fig. 8. Game in action.

During the first demonstration of the game running in the classroom on
December 5, 2018, a fact occurred characterizing that the way the game was
programmed characterizes Pirate Ship Battles as a social computing, because
it has relation with characteristics of the society in which this game is inserted
and being played by humans belonging to that society. The fact happened was
related to the Brazilian presidential elections, whose winner is nicknamed Mito
by his voters, he is favorable to the population, then one of the students entered
the WebSite of the game and logged under the nickname ’Myth’ and tried very
hard to chase and shoot at all the other players, so the entire Mob had fun
laughing at that fact, characterizing this aspect of game programming as social
computing.

Mob Programming in the Development of a Battle Royale Game 55

The result of developing using Mob Programming techniques and Simulta-
neous Style Pair Programming [22,23] is a system code of excellent quality as
shown in Fig. 9.

The CodeClimate shown in Fig. 9 is a free web platform for open source
projects for collaborative evaluation of its source code. Able to evaluate the
source code with the most popular source code management systems (such as
Git for example), only providing its address on the internet.

Fig. 9. Source code rated by A at CodeClimate.

6 Limitations

It may be difficult to make generalizations with the discoveries made through
action research [13]. I agree with Rose et al. [13] my opinion as a researcher is the
fact that the team under research got well together impacted the social aspects
studied in this research difficulting the generalizations, e.g., if have another pro-
gramming task (not as fun as programming a game) would the research results
be the same? I consider this one limitation that needs to be more investigated,
if the testing activities was funnier here because of the programming task was a
game.

Another potential weakness according to Rapoport [27] draws attention to
the risk of the researcher becoming overly involved in the situation or of being
used as a tool in organizational policy. I think the fact of I was one of the
developers and the researcher do not affect in any way the results and there
was not any organizational policy involved, it was only a game developed at the
university.

56 H. M. Kattan

7 Conclusion

The action research was adequate for this work, it helped to deepen the knowl-
edge about Mob Programming in a structured way by cycles as they appeared
the challenges of the development of the game, another positive fact is that the
action research done is auditable future, since all interviews, metrics collected,
and all game source code is 100% available on the internet.

The team reported was funnier to test altogether, when some mistake hap-
pens to run new code, everybody paying attention to the projector on the fault,
a ready joke.

The source code of the game is of excellent quality as evaluated by Code-
Climate by classifying it with note A, a possible reason for this was during the
development to have used the techniques of Mob Programming and Simultane-
ous Style Pair Programming. The Socio-technical approach proved to be effective
in this case of study collaboration techniques in software development.

Acknowledgments. This study was financed in part by the Coordenacao de Aperfe-
icoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.

References

1. Eason, K.: Sociotechnical systems theory in the 21st Century: another half-filled
glass? Published in Sense in Social Science: A collection of essays in honour of
Dr. Lisl Klein edited and published by Desmond Graves, Broughton, pp. 123–134
(2008)

2. Takala, M., Ing, D., Emery, M., Hammond, D., Metcalf, G.: Revisiting the socio-
ecological, socio-technical and socio-psychological perspectives. In: 16th Interna-
tional Federation for Systems Research (IFSR) Conversation (2012)

3. Adelman, C.: Kurt Lewin and the origins of action research. Educ. Action Res.
1(1), 7–24 (1993). https://doi.org/10.1080/0965079930010102

4. Cartwright, D., Zander, A.: Group Dynamics. Tavistock, London (1953)
5. Robertson, D., Giunchiglia, F.: Programming the social computer. Philos. Trans.

R. Soc. A 371, 20120379 (2013). https://doi.org/10.1098/rsta.2012.0379
6. Hohman, M., Slocum, A.: Mob Programming and the Transition to XP. Chigado

- IL/USA, Agosto (2001)
7. Zuill, W.: Mob Programming: A Whole Team Approach. Experience report, Agile

(2014)
8. Goldman, A., Santos, V.: Continuous Improvement of an XP Laboratory Course:

An 18 year History. Experience report, Agile (2019)
9. Zuill, W., Meadows, K.: Mob Programming - A Whole Team Approach. This book

is 95% complete (2016). Last updated on 29 Oct 2016
10. Thiollent, M.: Metodologia da pesquisa-ação, 18. edn., 136 p. Cortez, São Paulo

(2011)
11. Mumford, E.: The story of socio-technical design: reflections on its successes, fail-

ures and potential. Inf. Syst. J. 16, 317–342 (2006)
12. Kemmis, S., Mctaggart, R., Nixon, R.: The Action Research Planner: Doing Criti-

cal Participatory Action Research. Springer, Singapore (2013). https://doi.org/10.
1007/978-981-4560-67-2. ISBN 9789814560672

https://doi.org/10.1080/0965079930010102
https://doi.org/10.1098/rsta.2012.0379
https://doi.org/10.1007/978-981-4560-67-2
https://doi.org/10.1007/978-981-4560-67-2

Mob Programming in the Development of a Battle Royale Game 57

13. Rose, S., Spinks, N., Canhoto, A.I.: Management Research: Applying the Princi-
ples. Taylor & Francis (2014). ISBN 9781317819141

14. Coplien, J.O., Harrison, N.B.: Organizational Patterns of Agile Software Develop-
ment. Prentice-Hall Inc., Upper Saddle River (2004)

15. Pithon, A.J.C.: Projeto organizacional para a engenharia concorrente no ambito
das empresas virtuais. Doctoral Thesis. Escola de Engenharia da Universidade do
Minho Departamento de Producao e Sistemas, Portugal (2004)

16. Kattan, H.M.: Programming and review simultaneous in Pairs: a pair programming
extension. Master dissertation. In: Institute for Technological Research of the Sao
Paulo State (2015). https://doi.org/10.13140/RG.2.2.15831.68004

17. Kattan, H.M.: Illuminated arrow: a research method to software engineering
based on action research, systematic review and grounded theory. In: CON-
TECSI 2016, 13th International Conference on Information Systems and Technol-
ogy Management, pp. 1971–1978 (2016). https://doi.org/10.5748/9788599693124-
13CONTECSI/PS-3926. Paper submission: 1 Dec 2015 - Presented at Session4A -
AUD Systems Auditing and IT Governance 02/Jun/16-15H30

18. Kattan, H.M.: Those who fail to learn from history are doomed to repeat it. In:
Agile Processes in Software Engineering and Extreme Programming: Poster Pre-
sented in the 18th International Conference on Agile Software Development, XP
2017. Held in Cologne, Germany, 22–26 May 2017

19. Moise Kattan, H., Goldman, A.: Software development practices patterns. In:
Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
298–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6 23

20. Kattan, H.M., Oliveira, F., Goldman, A., Yoder, J.W.: Mob programming: the
state of the art and three case studies of open source software. In: Santos, V.A.,
Pinto, G.H.L., Serra Seca Neto, A.G. (eds.) WBMA 2017. CCIS, vol. 802, pp.
146–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73673-0 12

21. Kattan, H.M.: Theory of altruism on software development practices patterns. In:
Proceedings of the 19th International Conference on Agile Software Development:
Companion (XP 2018), Article 44, 4 pages. ACM, New York (2018). https://doi.
org/10.1145/3234152.3314991

22. Kattan, H.M., Soares, F., Goldman, A., Deboni, E., Guerra, E.: Swarm or pair?:
strengths and weaknesses of pair programming and mob programming. In: Pro-
ceedings of the 19th International Conference on Agile Software Development:
Companion (XP 2018), Article 43, 4 pages. ACM, New York (2018). https://doi.
org/10.1145/3234152.3234169

23. Kattan, H.M., Soares, F., Goldman, A., Deboni, E., Guerra, E.: Swarm or pair?:
strengths and weaknesses of pair programming and mob programming. In: XP
2018, Porto, Portugal, 21–25 May 2018. Poster. https://doi.org/10.13140/RG.2.2.
18105.06249

24. Kattan, H.M.: Software development practices patterns: from pair to mob pro-
gramming. In: Proceedings of the 3th Escola Regional de Engenharia de Software:
(ERES 2019). Sociedade Brasileira da Computação (SBC), Rio do Sul, SC, Brazil
(2019)

25. Kattan, H.M.: Pair Programming: a step beyond. In: Agile Methods, WBMA 2019.
Communications in Computer and Information Science, Springer, Cham (2019)

26. http://ccsl.ime.usp.br/wiki/MobProgrammingInterviews
27. Rapoport, R.N.: Three dilemmas in action research: with special reference to the

Tavistock experience. Hum. Relat. 23(6), 499–513 (1970). https://doi.org/10.1177/
001872677002300601

https://doi.org/10.13140/RG.2.2.15831.68004
https://doi.org/10.5748/9788599693124-13CONTECSI/PS-3926
https://doi.org/10.5748/9788599693124-13CONTECSI/PS-3926
https://doi.org/10.1007/978-3-319-57633-6_23
https://doi.org/10.1007/978-3-319-73673-0_12
https://doi.org/10.1145/3234152.3314991
https://doi.org/10.1145/3234152.3314991
https://doi.org/10.1145/3234152.3234169
https://doi.org/10.1145/3234152.3234169
https://doi.org/10.13140/RG.2.2.18105.06249
https://doi.org/10.13140/RG.2.2.18105.06249
http://ccsl.ime.usp.br/wiki/MobProgrammingInterviews
https://doi.org/10.1177/001872677002300601
https://doi.org/10.1177/001872677002300601

Agile in Education

Mining Undergraduate Students’ Code
Repositories: Insights from Interdisciplinary

Software Projects

Ana Paula dos Santos, Bernardo Baptista, Carlos Felipe Arantes ,
Eric Ribeiro, Patrick Rodrigues Galdino, Pedro Pongelupe Lopes,

and Marcelo Werneck Barbosa(&)

Pontifícia Universidade Católica de Minas Gerais,
Belo Horizonte, Minas Gerais, Brazil

{ana.santos,bernardo.baptista,carlos.arantes,

eric.delgado,patrick.galdino,

pedro.pongelupe}@sga.pucminas.br,

mwerneck@pucminas.br

Abstract. Due to its multidisciplinary and dynamic nature, it is challenging to
design Software Engineering (SE) educational material. To do so, universities
must consider the complex working environments; recent technologies; and tools
and skills, in order to prepare students to fulfill the expectations of the software
industry. This study was carried out in a Brazilian private university, specifically
in courses called Interdisciplinary Software Project (ISP) of the SE major. These
courses are project-based, conducted by two professors at the same time in
classroom, following a Scrum-like process. The objective of this study was to
characterize how students work and collaborate in a group environment where
agile development is used as well as how their behavior reflect on the use of
Software Configuration Management (SCM) practices. In order to achieve this
objective, the study analyzed 38 students’ code repositories. This study has found
out that students procrastinate sprint work, since 51% of the commits are per-
formed when less than 20% of the sprint time is left. We have also observed that in
87% of the groups just one member is a top contributor and would harm the
projects’ outcomes if he/she left the project. In terms of SCM practices, we have
identified that most commits comprised changes in up to three files. Moreover,
most commit messages are less than 10 words long. This could mean that students
do not commit many alterations at the same time but could make better use of
messages in order to facilitate the comprehension of alterations by other members.

Keywords: Agile learning � Mining software repositories � Software
engineering education

1 Introduction

The requirement for organizations to become more responsive to the needs of customers,
the changing conditions of competition and increasing levels of environmental turbu-
lence had driven interest in the concept of agility [1]. Agile is a concept both pertaining

© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 61–75, 2019.
https://doi.org/10.1007/978-3-030-36701-5_5

http://orcid.org/0000-0002-8998-4813
http://orcid.org/0000-0003-3993-5375
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-36701-5_5

to organizations as a whole as well as to projects and software development. In software
development, agile methods were first introduced by the Agile Manifesto, which values
(1) Individuals and interactions over processes and tools; (2) Working software over
comprehensive documentation; (3) Customer collaboration over contract negotiation;
(4) Responding to change over following a plan [2]. Probably one of the main con-
tributors to the success of agile methods is the dissatisfaction with the bureaucracy of
traditional development methodologies since they require less documentation and
promote implementation based on informal collaborations between stakeholders [3].

Agile methodologies contrast with traditional project management approaches. Some
of their practices include emphasizing continuous design, flexible scope, specifying
design features as late as possible, embracing uncertainty and customer interaction, and a
self-organized project team organization. Agile is described as iterative and incremental,
seeking to avoid the standard approaches that emphasize early design and comprehensive
documentation, fixed-scope contracts and low customer interaction [4].

Today, the innovation and quality of the software industry’s products and services
depend to a great extent on the knowledge, ability and talent applied by software
engineers [5]. Software development is generally acknowledged as an intellectually
challenging activity that typically requires team members to work collectively in order
to create a product or service that may be conceptual, changeable, and intangible [6].
Agile methods introduce substantial improvements to the teamwork within a project.
This includes a more efficient distribution of roles and responsibilities, task-based
work, workflow visualization, frequent communication between team members and
clients, and iterative reviews and improvement processes.

Several agile methods have been proposed with distinct strategies for organizing
group work, such as Scrum [7], which is the most popular agile methodology today. It
is considered a lightweight project management framework based on the empirical
process control model and characterized by frequent iterative and incremental
inspection and adaptation [8]. Scrum proposes a rotation of roles, partial deliveries of
work in short iterations (sprints), frequent task evaluation, regular meetings, organi-
zation of work in task blocks, and shared responsibility between team members [7].

Collaboration and teamwork are as important as the technical skills for the future
software engineers, because students will be involved in industrial software projects in
which they will need to work in teams [9]. The community of Software Engineering
(SE) educators recognizes the importance of preparing SE graduates for the realities of
a professional career [10] and many researchers have acknowledged the need to teach
agile software development in software engineering programs [11].

Software engineering has a multidisciplinary and dynamic nature that makes it
challenging to design its educational material [12]. While developing SE curricula,
universities must consider the complex working environments; recent technologies;
and tools and skills, in order to prepare their students to fulfill the expectations of the
software industry [12]. In order to work well in teams, software developers and SE
students need to use Software Configuration Management (SCM) to store, control the
version and evolution of different software artifacts, including software code. SCM is a
cornerstone subject in SE under graduation courses since it helps to manage the evo-
lution of software artifacts and their documentation. SCM is the discipline for con-
trolling the evolution of complex software systems, helping manage changes to artifacts

62 A. P. dos Santos et al.

and ensuring correctness and consistency of systems [13]. Researchers corroborate this
idea by stating that there is an insufficient coverage of SCM topics and, although a
configuration management course is delivered as an elective in some universities, it
should be given as a core course to ensure covering its main areas and practices.
Besides, SCM is of high importance in industry [14].

Researchers strongly recommend the development of software projects in teams
and the use of collaborative development tools in SE courses for undergraduate stu-
dents. By doing this, students become more enthusiastic to learn and experience new
approaches and tools in software development [9]. Considering this context, this study
assesses code repository data in SE undergraduate courses in a private university in
Brazil. The objective of such analysis is to characterize how students work and col-
laborate in a group environment as well as how their behavior reflect on the use of
SCM practices. These repositories are created in a course called Interdisciplinary
Software Project (ISP). It is a project-based course conducted by two professors at the
same time in a classroom. Professors assume the role of supervisors of the project,
mentors and facilitators. They have different expertise and are familiar with different
areas of the curriculum to provide students with sufficient multidisciplinary guidance
for their projects. The classes are fully devoted to building software projects [15].

The remaining sections of this paper are organized as follows. Section 2 presents
the Theoretical Background, giving emphasis to teaching agile methods and mining
software repositories. Section 3 describes the methodology used in this study.
Section 4 presents the results of this work while Sect. 5 presents our conclusions,
limitations to this study and suggestions for future work.

2 Theoretical Background

2.1 Agile Learning

Agile learning implies that learners create content and develop skills alongside teachers
in a collaborative yet competitive environment. The role of the teacher is centered on
facilitation and project direction from an informed perspective. Learners become self-
directed, team-oriented, and individually resilient lifelong learners [7]. It has long been
acknowledged that learning agile is best done through practical hands-on projects [11]
carried out in groups. Teamwork is one of the key competencies that students must
acquire to meet the needs and skills of the labor market. The capacity to work in groups
is of particular importance, as many jobs are becoming too diverse for just one person
to effectively complete [7]. It is, though, necessary to evolve the traditional current
education systems which focus and emphasize individual work, while the industrial
environment requires cooperative and collaborative work in small to large teams [9].

Due to such changes in education, the Agile Manifesto in Higher Education [16] was
developed. It defines four guiding principles for extending the agile principles into the
educational context: (a) teachers and students over administration and infrastructure,
(b) competence and collaboration over compliance and competition, (c) employability
and marketability over syllabus and marks, and (d) attitude and learning skills over
aptitude and degree. In brief, the aim of agile learning is to receive continuous feedback,

Mining Undergraduate Students’ Code Repositories 63

learn from previous iterations and improve on future iterations. Agile learning initiatives
should consider those principles.

Although several benefits derive from the adoption of the agile learning method-
ology, Masood, Hoda and Blincoe [11] identified some constraints students face while
applying agile practices in a university course. These constraints include difficulties in
setting up common time for all team members to work together, limited availability of
customer due to busy schedule and the modifications the students introduced to adapt
agile practices to suit the university context, such as daily stand-ups with reduced
frequency and combining sprint meetings.

2.2 Mining Software Repositories

With the shift of focus from software product characteristics to more team-based issues,
and the increased attention given to people and their work practices during software
development, repositories have played an increasingly important role in providing arti-
facts to enable various explorations [6]. Software projects accumulate a wealth of
information over projects’ lives, which can shed light on software engineers’ coding
habits that would cause defects or indicate a developer’s special proficiency [17]. His-
torical and valuable information stored in software repositories provide a great oppor-
tunity to acquire knowledge and help in monitoring complex projects and products
without interfering with development activities and deadlines [18]. Software repositories
such as source control and bug repositories are commonly used to record information
about the evolution and progress of the software. The SE community analyzes and
explores the rich data available in software repositories to uncover interesting and
actionable information about software systems [19]. In particular, repositories have
gained prominence as sources of information for those studying team behaviors, enabling
researchers to study software practitioners’ involvement in detail, and performance in
development and maintenance activities [6].

The Mining Software Repositories (MSR) research field, one of the interesting and
fastest growing fields within software engineering, focuses on extracting and analyzing
the heterogeneous data available in software repositories to uncover interesting, useful,
and actionable information about software system and projects. It is aimed to explore
the potential of this valuable data in order to better understand and manage projects and
also to produce high reliable software system delivered on time and within estimated
budget [18]. As so, code repositories contain a wealth of implicit information that can
be used to answer many questions about a project’s development process, such as who
worked on specific files, which developers collaborate, or what is the impact of a
change on a specific item.

3 Methodology

3.1 Research Questions and Hypotheses

This study can be characterized as exploratory, since it intends to provide insights into
how undergraduate software engineering students have been implementing software
and using configuration management tools in agile contexts. In order to better explain

64 A. P. dos Santos et al.

how we have analyzed students’ behavior, this study’s objective was decomposed into
research questions, presented as follows.

Procrastination relates to delays that are unjustified, that cannot be defended on
grounds of more urgent or important commitments [20]. Procrastination is formally
defined as “the voluntary delay of an intended and necessary and/or important activity,
despite expecting potential negative consequences that outweigh the positive conse-
quences of the delay” [21]. In an academic environment, higher levels of procrasti-
nation in some courses may yield lower grades. University students often have to
handle the requirements of multiple courses while also managing several competing
activities and responsibilities (inside and outside university). Since time is a limited
resource, even students who are not typically considered as procrastinators will
sometimes irrationally delay the completion of their schoolwork [22]. Thus, academic
procrastination seems to be a risk factor for students’ academic performance, physical
and mental health, as well as affective and cognitive subjective well-being [23]. In
academic agile contexts, since students are not fully allocated to projects, in our
understanding, procrastination would be equivalent to not homogeneously using the
time devoted to each Sprint, instead, leaving most of the Sprint work to be done closer
to its ending. This scenario leads to our first research question:

• RQ1: Do students leave most of the Sprint work to its end?

Github is one of the most popular social network platforms, perhaps due to the
features and functionality available on its development management tool Git. Using
Git, users can easily search through the massive amounts of code, fork code from other
users, and create branches for projects [24]. The research community has started
mining data from Github, focusing on various aspects such as its structure and col-
laboration of social coding, code quality, programming languages used, and the types
of software development undertakings [24].

Github repositories can be used to analyze a system’s Truck Factor (TF), which is
defined as “the number of people on your team that have to be hit by a truck (or quit)
before the project is in serious trouble” [25]. Systems with a low truck factor present
strong dependencies towards specific personnel, which indicates that the project has
few indispensable contributors. If such knowledgeable personnel abandon the project,
the system’s lifecycle is seriously compromised. Avelino et al. [25] investigated the
truck factor of popular Github applications. The authors found that most Github pro-
jects have a small truck factor, typically 1 or 2, which means that those projects do not
require many knowledgeable developers [24] or are personal projects. In [26], how-
ever, in which the 100-top most popular repositories within different programming
languages were analyzed, higher values of Truck Factor were found. In an academic
context, a project with a lower truck factor may indicate that few students have con-
tributed to its development. This would indicate that tasks were not evenly divided
among students and collaboration among team members was not homogeneous. This
leads us to our second research question:

• RQ2: Do all students in an agile team equally contribute to code implementation?

During software development process, changes to software artifacts are hosted in
control version systems when an action of committing, the action of software

Mining Undergraduate Students’ Code Repositories 65

developers submitting a software change to a version control system, takes place. These
changes can be documented by using commit messages or commit comments. The
purpose behind commit messages is to describe the changes and help encoding
rationale behind those changes [27]. Commit messages are important because devel-
opers use them to review, validate, understand the commits or locate and re(assign) bug
reports, and trace changes to other artifacts [27, 28]. Comments convey useful infor-
mation about the system functionalities and many methods for software engineering
tasks take comments as an important source such as code semantic analysis, code reuse
and soon. The scope of a comment means a region where the comment refers to in the
program. It contains a few statements that match the description or implement the
functionality mentioned in the comment [29]. In general, commit messages are an
important source of information, knowledge, and documentation that developers rely
upon while addressing software maintenance task [27], but commit messages some-
times are non-informative or even empty [28]. In order to facilitate group work and
software evolution, in agile educational projects, we expect students to use comments
correctly while committing changes. We also expect them to adopt good SCM prac-
tices, such as commenting each commit action with useful information as well as not
working on too many changes without committing them, which could lead to future
conflicts with changes committed by other developers. This leads us to our third
research question:

• RQ3: In agile educational projects, how do students use commit comments?

3.2 Interdisciplinary Software Projects

This study was carried out in Interdisciplinary Software Project courses of a Software
Engineering major offered by a private Brazilian university. In this major, up to the
third year, students have an ISP course each semester whose intention is to serve as a
hands-on opportunity to practice what they have learned in the current semester in other
courses. In all ISP courses, students work in groups to develop software. ISP III is
focused on Requirements Engineering. It introduces the necessity of eliciting and
developing requirements with a real client and deliver the implemented software.
ISP IV is focused on social projects while ISP V is concerned with software archi-
tecture definition and documentation and the software needs to be deployed into mobile
devices. From ISP III to ISP V, students need to follow a Scrum-like process. ISP I and
II were not included in this study since they are not aimed at implementing complete
deliverable software.

The following practices and activities are implemented in these courses:

• Students elicit requirements and document them in user stories format. Students
elaborate a Vision document that contains: the problem faced by the client, the
general scope of the project, a list of future users and a list of prioritized require-
ments documented in a user stories format (including non-functional requirements).
User stories are estimated with story points. A Product Backlog is created and
managed in Trello or a similar tool;

• Work is planned and organized in Sprints. At the first time the courses were pro-
vided, the project work was divided into 3 sprints. However, while monitoring

66 A. P. dos Santos et al.

students’ work, teachers observed that with longer sprints, students left almost all
the work to be done at the end of the sprint. So, projects are currently usually
executed in five 15-days development sprints;

• At the beginning of a Sprint, students calculate their velocity and take the top
priority stories to be implemented in that Sprint. Tasks are derived from each user
story and registered in Trello (Sprint Planning);

• During the Sprint, students need to develop requirements from the prioritized user
stories in a use case format (since this is a required competence) and implement
software according to the identified tasks;

• At the end of the Sprint, students demonstrate the implemented increment to
teachers, who act as user proxies, since the real client is not available to run
acceptance tests (Sprint Review);

• At the end of the Sprint, the group needs to reflect on how they have worked as a
team. They gather and document lessons learned (Sprint Retrospective);

• Students are assessed according to the software increment delivered, its docu-
mentation, whether or not they have gathered lessons learned and how tasks were
divided among the team. In case one student does not participate in software
implementation, his/her grade is reduced.

In order to perform this study, students were asked to provide a link to their code
repositories. Data was obtained from those repositories and was transferred to a
database, which contains the information needed to perform this study. This is in
compliance with [30], who said that own datasets are used in half of the papers
reviewed instead of publicly accessible datasets.

Table 1 shows the number of repositories analyzed according to the semester each
course was taken.

4 Results and Discussions

This section presents and discusses the results obtained with the analyses of the code
repositories. Results are presented according to each research question described
previously.

4.1 Procrastination

The first research question (RQ1) was related to student procrastination. The study aims
at identifying whether students leave most of the Sprint work to its end. In order to

Table 1. Number of repositories analyzed.

2017/01 2017/02 2018/01 2018/02 2019/01 Total

ISP III 1 3 5 0 4 13
ISP IV 0 6 4 4 1 15
ISP V 0 0 1 6 3 10
Total 1 9 10 10 8 38

Mining Undergraduate Students’ Code Repositories 67

answer this question, since sprints have different durations in all three ISP courses, we
calculated for each commit, the percentage of sprint time left to the sprint ending. As
so, when a commit is performed on the same day as the sprint starts, the percentage of
time left equals 100%. Figure 1 shows the number of commits performed versus the
percentage of time remaining for the end of the corresponding sprint. As it can be
observed, the majority of commits (around 51% - 934 out of 1805) are performed when
less than 20% of the time is left. This corroborates the existence of procrastination
among students and that students do not equally distribute their work effort throughout
the sprint.

In agile projects, where the development team is completely allocated to one
project, the team is fully dedicated to implement the project’s tasks. However, in an
academic project, students are not fully allocated to just one project or assignment.
Anyway, it is expected that they make good use of their time to carry out as many tasks
and deliver as many requirements as they can. Since agile projects do not work with a
fixed scope, requirements are implemented according to the team’s velocity as well as
to the requirements’ priorities. If students did not procrastinate much, more require-
ments could be delivered and, in terms of students’ learning process, they might have
more opportunities to put into practice what they have learned.

4.2 Team Work and Collaboration

The second research question (RQ2) was related to student teamwork and collabora-
tion. The study aims at identifying whether students in a team equally contribute to
code implementation. In order to answer this question, we have calculated the truck
factor for each project, as suggested in [25]. Table 2 shows the number of projects, for
each type of IPS course, distributed according to the calculated Truck Factor.

Fig. 1. Procrastination. Number of commits and percentage of time remaining to sprint end.

68 A. P. dos Santos et al.

As it can be observed, most of the projects have a Truck Factor equal to 1. This
means that in most groups just one member is essential to the outcomes of the project.
In an agile educational context, this could mean that one student is assuming most of
the development work or even that students are not equally distributing the projects’
tasks among them. This result may be analyzed coupled with the result obtained in
terms of procrastination. The higher number of commits performed closer to the end of
the sprint might indicate that most members are working just on the last days of the
sprint, leaving the work at its beginning to just one or two members. This result
indicates that teachers should pay even more attention to students’ participation and
that students should be taught how to manage and distribute their tasks.

Since ISP projects can have different numbers of members, we have also calculated
the percentage of members that were classified as top contributors, according to the
Truck Factor algorithm. Figure 2 shows this distribution. In more than 76% of the
projects, less than 40% of the team (by summing the number of repositories in the first
two columns) were identified as top contributors according to the algorithm. Teams are
composed from 2 to 5 members.

Table 2. Number of projects according to their Truck Factor.

TF = 1 TF = 2 TF = 3 TF = 4 TF = 5

ISP III 10 3 0 0 0
ISP IV 13 2 0 0 0
ISP V 7 3 0 0 0
Total 30 8 0 0 0

7

22

5
2 2

0

5

10

15

20

25

0-20 20-40 40-60 60-80 80-100

Number of projects x % of project team
identified as Truck Factor

% of project team identified as Truck Factor

N
um

be
r o

f p
ro

je
ct

s

Fig. 2. Percentage of members classified as top contributors (truck factor).

Mining Undergraduate Students’ Code Repositories 69

4.3 Commit Messages

The third research question (RQ3) was related to the use of good SCM practices,
especially those corresponding to committing files. The study aims at identifying
whether students take longer to perform a commit, leaving a great amount of work to be
committed at the same time, which could increase the probability of conflicts. Besides,
agile projects are grounded on practices such as continuous delivery and integration
and automated testing that demand the repository code be constantly checked. In order
to answer this question, we have analyzed the number of files committed at the same
time as well as the content of each commit comment.

There is no standard definition of what a commit granularity of a change is, or
whether it is too small or too large. Researchers usually classify changes into 3 cate-
gories: number of modified, added, and removed files [31]. In order to assess whether
or not students commit many changes at the same time, we have counted the number of
changes (file insertions, alterations and deletions) performed together with each com-
mit. It is possible to observe that students have followed the guideline of committing
few files at the same time, not performing many alterations that would be committed at
the same time, increasing the chances of conflicts. Out of the 2,414 commits analyzed,
55.17% have included changes in up to three files. On the other hand, only 54 have
changed more than 100 files and only 15 of these 54 commits have changed more than
1,000 files. A closer look at these commits revealed that they comprised the inclusion
or deletion of complete component libraries (Fig. 3).

Mostly because of the number and nature of daily activities by software developers,
commit messages can be non-informative or practically empty. One possible explana-
tion for the lack of descriptive/useful commit messages is the consideration that details
about the changes and changed code units generated with line-based differencing tools

682

371
279 316 341

425

0

200

400

600

800

1 2 3 4 to 5 6 to 10 More than
10

N
um

be
r o

f C
om

m
its

Number of Changes

Changes per Commit

Fig. 3. Changes per commit

70 A. P. dos Santos et al.

are enough for understanding the change [27]. In order to assess if students are writing
useful commit messages, we have counted the words in each commit. Figure 4 shows
the distribution of comments’ length. We can see that most commit messages are less
than 10 words long. This results is in accordance with [31], who found out in a similar
study that the median number of words in commit messages ranged from 4 to 10
depending on the project, and in all projects the commit messages were less than 25
words at least 75% of the time.

Since agile projects are not based on comprehensive documentation and, usually,
other different types of documentation are demanded, being clear and complete in
commit messages could help build a set of information that might be retrieved in case
of need or when an evolution is planned.

In an attempt to automatically generate commit messages, the study [28] found out
that nearly half of the commit messages begin with a verb followed by a direct object.
Authors observed that most used verbs are: add, create, make, implement, fix, remove,
update, upgrade, use, move, change. Figure 5 shows a word cloud with the top 25
words obtained from commit messages in our study. Our findings corroborate those of
[28] since the words used most frequently are verbs that reflect the actions developers
take: merging, adding, creating, among others.

0%

10%

20%

30%

40%

50%

60%

1 to 05 06 to 10 11 to 15 16 to 20 21 to 25 More
than 25

Pe
rc

en
ta

ge
 o

f C
om

m
its

Number of Words

ISP III

ISP IV

ISP V

Fig. 4. Comments’ length

Mining Undergraduate Students’ Code Repositories 71

5 Conclusions

The objective of this study was to characterize how students work and collaborate in a
group environment where agile development is used as well as how their behavior
reflect on the use of SCM practices. We have analyzed code repositories created in
Interdisciplinary Software Project (ISP) courses, project-based courses conducted by
two or three professors at the same time in a classroom with the objective of producing
software in an agile way. More specifically, this study aimed at assessing whether or
not students procrastinate their work, which in an agile context means that they do not
equally distribute their effort throughout iterations. Moreover, we have analyzed
whether few students assume most of the work to be done and the use of some SCM
practices, which also could impact team performance in agile projects.

This study has found out that students do really procrastinate sprint work, since the
majority of commits (around 51%) are performed when less than 20% of the sprint time
is left. We have also observed that most students’ projects presented a Truck Factor
equal to 1. This means that in most groups (86.84%) just one member is a top con-
tributor and would harm the projects’ outcomes if the/she left the project. In other
words, just one or two students are assuming most of the development work or even
that some students have a poor contribution to projects’ success. The analyses of
commit messages revealed that most commits comprised changes in up to three files.
Moreover, most commit messages are less than 10 words long. This could mean that
students do not commit many alterations at the same time but could make better use of
commit messages in order to facilitate the comprehension of alterations by other
members.

Fig. 5. Word cloud for commit comments

72 A. P. dos Santos et al.

5.1 Limitations and Threats to Validity

As limitations to this study, we could highlight that this study analyzes only code
repositories in one Software Engineering major in Brazil. Comparing these results with
ones obtained in different courses or majors could shed light into differences among
countries or student profiles. Besides, we have only relied on information persisted in
code repositories. The use of qualitative methods such as interviews or focus groups
could be used to better comprehend and validate the information obtained through this
study, which could lead to different or additional results.

Besides, we could only rely on information already available in code repositories.
For instance, we have not considered the work-in-progress (WIP) and size of the
tasks/stories (estimations), since this information was not available in such repositories.
Although developers are oriented to continually commit their work to avoid conflicts,
due to the absence of information on stories size, we cannot affirm whether commits
appearing closer to the end of the sprint are due to procrastination or just opportunity or
efficiency.

5.2 Contributions and Future Work

This study has some contributions. To agile practitioners, this study shows that agile
teachers or instructors should emphasize some agile practices in their courses. Pro-
crastination is not an attitude that should be avoided in agile teams. Agile team
members should use their time as best as they can and should be focused on software
development and delivery all the time. Besides, team members should be more worried
on better distributing tasks among team members. In fact, students should display a
more proactive attitude towards identifying the undone tasks that could be done by
them.

This work opens up some opportunities for future work. The study has identified
some improvements for agile teachers that could be implemented in these ISP courses.
Besides, assessing how specific students evolve and perform from ISP III course to
ISP V could lead to interesting results. Above all, it should be highlighted that ISP
courses are a great opportunity for students to learn not only about software devel-
opment but also to develop soft skills related to teamwork, collaboration and negoti-
ation. Previous research [11] has identified some constraints students face while
applying agile practices in university courses such as difficulties in setting up common
time for everyone to work together, customer availability and adaptation of agile
practices. Besides, this study stimulates professors to try and avoid the pitfalls of letting
students, working in part-time projects, to be really agile, and benefit from it, since they
are not always co-located (in space and time), and not focused only in a single project
or assignment. For instance, professors should stimulate the use of alternative com-
munication tools (e.g. virtual daily meetings software). Taking this into account, we are
aware that improving ISP courses considering the outcomes of this study will lead to an
even more enriching experience to students.

Mining Undergraduate Students’ Code Repositories 73

References

1. Power, D.J., Sohal, A.S., Rahman, S.-U.: Critical success factors in agile supply chain
management - an empirical study. Int. J. Phys. 31, 247–265 (2001)

2. Beck, K., et al.: Manifesto for agile software development. Agil. Alliance 2009, 2006 (2001)
3. Rubin, E., Rubin, H.: Supporting agile software development through active documentation.

Requir. Eng. 16, 117–132 (2011). https://doi.org/10.1007/s00766-010-0113-9
4. Serrador, P., Pinto, J.K.: Does Agile work? - a quantitative analysis of agile project success.

Int. J. Proj. Manag. 33, 1040–1051 (2015). https://doi.org/10.1016/j.ijproman.2015.01.006
5. Colomo-palacios, R., Casado-lumbreras, C., Soto-acosta, P., García-peñalvo, F.J., Tovar-

caro, E.: Competence gaps in software personnel: a multi-organizational study. Comput.
Hum. Behav. 29, 456–461 (2013). https://doi.org/10.1016/j.chb.2012.04.021

6. Licorish, S.A., Macdonell, S.G.: Exploring software developers’ work practices: task
differences, participation, engagement, and speed of task resolution. Inf. Manag. 54, 364–
382 (2017). https://doi.org/10.1016/j.im.2016.09.005

7. Noguera, I., Guerrero-rold, A., Masó, R.: Collaborative agile learning in online environ-
ments: strategies for improving team regulation and project management. Comput. Educ.
116, 110–129 (2018). https://doi.org/10.1016/j.compedu.2017.09.008

8. Cubric, M.: An agile method for teaching agile in business schools. Int. J. Manag. Educ. 11,
119–131 (2013). https://doi.org/10.1016/j.ijme.2013.10.001

9. Raibulet, C., Fontana, F.A.: Collaborative and teamwork software development in an
undergraduate software engineering course. J. Syst. Softw. 144, 409–422 (2018). https://doi.
org/10.1016/j.jss.2018.07.010

10. Fornaro, R.J., Heil, M.R., Tharp, A.L.: Reflections on 10 years of sponsored senior design
projects: Students win - clients win! J. Syst. Inf. Technol. 80, 1209–1216 (2007). https://doi.
org/10.1016/j.jss.2006.09.052

11. Masood, Z., Hoda, R., Blincoe, K.: Adapting agile practices in university contexts. J. Syst.
Softw. 144, 501–510 (2018). https://doi.org/10.1016/j.jss.2018.07.011

12. Alarifi, A., Zarour, M., Alomar, N., Alshaikh, Z.: SECDEP: software engineering curricula
development and evaluation process using SWEBOK. Inf. Softw. Technol. 74, 114–126
(2016). https://doi.org/10.1016/j.infsof.2016.01.013

13. Mohan, K., Xu, P., Cao, L., Ramesh, B.: Improving change management in software
development: integrating traceability and software configuration management. Decis.
Support Syst. 45, 922–936 (2008). https://doi.org/10.1016/j.dss.2008.03.003

14. Moreno, A.M., Sanchez-segura, M., Medina-dominguez, F., Carvajal, L.: Balancing
software engineering education and industrial needs. J. Syst. Softw. 85, 1607–1620
(2012). https://doi.org/10.1016/j.jss.2012.01.060

15. Nelson, M.A.V., Carneiro, R.V., Costa, M.R.: Interdisciplinary software projects as an active
methodology to practice for the profession. In: 2017 IEEE/ACM 1st International Workshop
on Software Engineering Curricula for Millennials, pp. 28–32. IEEE, Buenos Aires (2017).
https://doi.org/10.1109/secm.2017.8

16. Kamat, V.: Agile manifesto in higher education. In: 2012 IEEE Fourth International
Conference on Technology for Education, pp. 231–232. IEEE (2012). https://doi.org/10.
1109/t4e.2012.49

17. Olatunji, S.O., Idrees, S.U., Al-ghamdi, Y.S., Al-ghamdi, J.S.A.: Mining software
repositories – a comparative analysis. Int. J. Comput. Sci. Netw. Secur. 10, 161–174 (2014)

74 A. P. dos Santos et al.

http://dx.doi.org/10.1007/s00766-010-0113-9
http://dx.doi.org/10.1016/j.ijproman.2015.01.006
http://dx.doi.org/10.1016/j.chb.2012.04.021
http://dx.doi.org/10.1016/j.im.2016.09.005
http://dx.doi.org/10.1016/j.compedu.2017.09.008
http://dx.doi.org/10.1016/j.ijme.2013.10.001
http://dx.doi.org/10.1016/j.jss.2018.07.010
http://dx.doi.org/10.1016/j.jss.2018.07.010
http://dx.doi.org/10.1016/j.jss.2006.09.052
http://dx.doi.org/10.1016/j.jss.2006.09.052
http://dx.doi.org/10.1016/j.jss.2018.07.011
http://dx.doi.org/10.1016/j.infsof.2016.01.013
http://dx.doi.org/10.1016/j.dss.2008.03.003
http://dx.doi.org/10.1016/j.jss.2012.01.060
http://dx.doi.org/10.1109/secm.2017.8
http://dx.doi.org/10.1109/t4e.2012.49
http://dx.doi.org/10.1109/t4e.2012.49

18. Siddiqui, T., Ahmad, A.: Data mining tools and techniques for mining software repositories:
a systematic review. In: Aggarwal, V.B., Bhatnagar, V., Mishra, D.K. (eds.) Big Data
Analytics. AISC, vol. 654, pp. 717–726. Springer, Singapore (2018). https://doi.org/10.
1007/978-981-10-6620-7_70

19. Sun, X., Li, B., Leung, H., Li, B., Li, Y.: MSR4SM: using topic models to effectively mining
software repositories for software maintenance tasks. Inf. Softw. Technol. 66, 1–12 (2015).
https://doi.org/10.1016/j.infsof.2015.05.003

20. Wessel, J., Bradley, G.L., Hood, M.: Comparing effects of active and passive procrasti-
nation: a field study of behavioral delay. Pers. Individ. Dif. 139, 152–157 (2019). https://doi.
org/10.1016/j.paid.2018.11.020

21. Grund, A., Fries, S.: Understanding procrastination: a motivational approach. Pers. Individ.
Dif. 121, 120–130 (2018). https://doi.org/10.1016/j.paid.2017.09.035

22. Kljajic, K., Gaudreau, P.: Does it matter if students procrastinate more in some courses than
in others? A multilevel perspective on procrastination and academic achievement. Learn.
Instr. 58, 193–200 (2018). https://doi.org/10.1016/j.learninstruc.2018.06.005

23. Grunschel, C., Schwinger, M., Steinmayr, R., Fries, S.: Effects of using motivational
regulation strategies on students’ academic procrastination, academic performance, and well-
being. Learn. Individ. Differ. 49, 162–170 (2016). https://doi.org/10.1016/j.lindif.2016.06.
008

24. Hu, Y., Wang, S., Ren, Y., Choo, K.R.: User influence analysis for Github developer social
networks. Expert Syst. Appl. 108, 108–118 (2018). https://doi.org/10.1016/j.eswa.2018.05.
002

25. Ferreira, M., Ferreira, K., Valente, M.T.: A comparison of three algorithms for computing
truck factors. In: IEEE International Conference on Program Comprehension (2017)

26. Ferreira, J.J.M., Fernandes, C.I., Ratten, V.: A co-citation bibliometric analysis of strategic
management research. Scientometrics 109, 1–32 (2016). https://doi.org/10.1007/s11192-
016-2008-0

27. Linares-vásquez, M., Cortés-coy, L.F., Aponte, J., Poshyvanyk, D., College, T.:
ChangeScribe : a tool for automatically generating commit messages. In: IEEE/ACM 37th
IEEE International Conference on Software Engineering, Florence, pp. 709–712 (2015)
https://doi.org/10.1109/icse.2015.229

28. Jiang, S., Mcmillan, C.: Towards automatic generation of short summaries of commits. In:
2017 IEEE/ACM 25th International Conference on Program Comprehension, pp. 320–323.
IEEE (2017). https://doi.org/10.1109/icpc.2017.12

29. Chen, H., Huang, Y., Liu, Z., Chen, X., Zhou, F., Luo, X.: Automatically detecting the
scopes of source code comments. J. Syst. Softw. 153, 45–63 (2019). https://doi.org/10.1016/
j.jss.2019.03.010

30. Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., Haesen, R.: Mining
software repositories for comprehensible software fault prediction models 81, 823–839
(2008). https://doi.org/10.1016/j.jss.2007.07.034

31. Casalnuovo, C.: Toward generating commit messages for software repositories, University
of Delaware (2013)

Mining Undergraduate Students’ Code Repositories 75

http://dx.doi.org/10.1007/978-981-10-6620-7_70
http://dx.doi.org/10.1007/978-981-10-6620-7_70
http://dx.doi.org/10.1016/j.infsof.2015.05.003
http://dx.doi.org/10.1016/j.paid.2018.11.020
http://dx.doi.org/10.1016/j.paid.2018.11.020
http://dx.doi.org/10.1016/j.paid.2017.09.035
http://dx.doi.org/10.1016/j.learninstruc.2018.06.005
http://dx.doi.org/10.1016/j.lindif.2016.06.008
http://dx.doi.org/10.1016/j.lindif.2016.06.008
http://dx.doi.org/10.1016/j.eswa.2018.05.002
http://dx.doi.org/10.1016/j.eswa.2018.05.002
http://dx.doi.org/10.1007/s11192-016-2008-0
http://dx.doi.org/10.1007/s11192-016-2008-0
http://dx.doi.org/10.1109/icse.2015.229
http://dx.doi.org/10.1109/icpc.2017.12
http://dx.doi.org/10.1016/j.jss.2019.03.010
http://dx.doi.org/10.1016/j.jss.2019.03.010
http://dx.doi.org/10.1016/j.jss.2007.07.034

Initial Assessment of Agile Development
in the Undergraduate Curricula

Nicolas Paez(B) , Alejandro Oliveros , and Diego Fontdevila

Universidad Nacional de Tres de Febrero, Caseros, Argentina
nicopaez@computer.org

{aoliveros,dfontdevila}@untref.edu.ar

Abstract. Agile is the most popular approach for software development
nowadays, present in many companies and also in academia. Many uni-
versities have included agile in their curricula but there are no formal
studies focused in the Argentinean Universities. In this study we aim to
make an initial assessment of the state of Agile Education in the con-
text of the Information Technology and Computer Science programs in
Argentina. With this goal we conducted a survey in a national conference
of Systems Engineering. Our results confirm that Agile is present in the
curricula but in most cases it is only covered from a theoretical point of
view. We also identified some situations that suggest a lack of depth in
the way some practices are taught.

Keywords: Agile · Software Engineering · Education

1 Introduction

Agile Software Development has been growing constantly since the publication
of the Agile Manifesto in 2001. The software industry has globally embraced
Agile [1] and many universities around the world have included Agile-related
topics in the Information Systems and Computer Science programs [2–4]. Even
more, some studies have reported very positive results using Agile in capstone
courses [5,6]. Classical textbooks on Software Engineering like the works of Press-
man and Sommerville have included Agile topics for several editions. ACM has
also included Agile in its curricular recommendations for Software Engineering
and Information Technology [7]. In Argentina many software companies have
adopted Agile methods too [8] and practitioners have generated different com-
munity spaces to learn and share experiences using agile [9,10]. Even though
some professors have reported experiences with good results teaching Agile in
their courses [11,12], the regulations and guidance for the accreditation of Infor-
mation Technology and Computer Science programs do not mention Agile meth-
ods at all [13]. At the time of this writing, there are no formal studies of the
current situation of Agile Education in Argentina and this is the motivation for
our study. The research questions that guide our work are:

c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 76–84, 2019.
https://doi.org/10.1007/978-3-030-36701-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_6&domain=pdf
http://orcid.org/0000-0002-0453-4259
http://orcid.org/0000-0002-2251-9052
http://orcid.org/0000-0002-6786-3404
https://doi.org/10.1007/978-3-030-36701-5_6

Initial Assessment of Agile Development in the Undergraduate Curricula 77

– Q1: Are Agile methods part of the Information Technology and Computer
Science programs in Argentina?

– Q2: Which are the most common agile practices taught in Information Tech-
nology and Computer Science programs?

The rest of this article is organized as follows: Sect. 2 reviews related work,
Sect. 3 describes the study and the methodology used, Sect. 4 presents the results
and relevant findings, Sect. 5 lists the threats to validity and finally Sect. 6
presents our conclusions and future lines of work.

2 Related Work

The search for agile and education produced results from two very different
related topics. One is teaching agile software development, the other one is
using agile principles and techniques as a teaching approach, independent of
the subject matter. This study is focused on the first topic, that is: teaching
agile software development.

There are several studies around the world about teaching agile software
development. Paasivaara et al. [14] reported an experience using Lego blocks to
teach Scrum in Finland. Von Wangenheim et al. [15] developed an educational
game called Scrumia for teaching Scrum in computing courses in Brazil. Persson
et al. [16] proposed an adaptation of the Scrum framework to suit the particular
needs of the learning context of university courses in Sweden. Kropp and Meier
[17] described some interesting findings in their research on teaching agile in
Switzerland. They highlight the importance of integrating agile software devel-
opment not only theoretically but also putting it into practice, and they make
a proposal for this based on their experience. There are also several reports on
the use of agile methods in capstone projects [4–6].

Beyond experience reports, there are some studies reporting evolution and/or
state of the art in particular regions which is somewhat similar to our goal. A
similar study to ours was carried out in Thailand by Chookittikul et al. [3]. The
researchers performed interviews in several leading universities in Thailand to
understand how agile methods were incorporated into computer science curric-
ula. A broad study on Agile evolution in Brazil was conducted by Melo et al.
[18] which covered industry, education and research but this study did not cover
usage of specific practices.

In our search we did not find any study in Argentina focused on understand-
ing the incorporation of agile development education in Universities. We did
find some articles reporting experiences of teaching agile. Uva et al. [19] have
developed a proposal for documenting capstone projects developed with Agile
processes. Levy et al. [20] have reported the use of Scrum for developing soft-
ware projects in a Software Engineering course at UNLP. Scott et al. [12] have
reported several experiences teaching Scrum in Software Engineering courses at
UNICEN. We published our own experience teaching Agile Practices using a
flipped classroom approach at UNTREF [11].

78 N. Paez et al.

3 Methodology and Study Description

To perform this initial assessment, we conducted a survey among the partici-
pants of the 6th National Congress of Informatics Engineering and Information
Systems (CoNaIISI 2018) [21]. This congress is annually organized by RIISIC
[22] (Red de Carreras de Ingenieŕıa en Informática/Sistemas de Información del
CONFEDI). The 6th edition was on November 2018 and it was hosted at Univer-
sidad CAECE in Mar del Plata City. The congress had almost 500 participants.
The questionnaire used was structured in the following way:

– The first part included demographic questions about: academic institution,
percentage of approved courses and professional experience.

– The second part contained the questions about methodologies, in which the
participants were asked to mark the methodologies they had studied.

– The third part had a double-entry matrix question where participants were
asked to mark how deeply they had studied a set of agile practices. The
possible answers were: (a) Did not study it at the university, (b) I studied it
at the university but only from a conceptual viewpoint and (c) I studied it
at the university and did some practice.

To select the practices to include in our study we considered the set of
practices defined in our umbrella project, previously published in [23]. The
resulting set of practices to study is: Automated Tests, Continuous Delivery,
Continuous Integration, Iterative Development, Test-Driven Development, Pair-
Programming and Retrospectives.

To host the survey, we used Google Forms, an online tool that supports the
edition and publication of online forms. It also provides some reports and the
possibility of exporting results to a spreadsheet. Using this tool, we did the
following:

1. We created the survey questionnaire in Google Forms.
2. We printed several copies of the survey questionnaire.
3. We attended the conference with the copies of the survey questionnaire in

paper and with an iPad. This way we gave the respondents the chance to fill
the survey online or in paper.

4. We personally instructed each respondent before they started filling the sur-
vey and we asked them to answer exclusively considering what they had
studied at the university.

4 Results and Findings

We collected 62 data points from 14 different institutions1. Most of the partic-
ipants (68%) responded they had taken more than 50% of the courses of their

1 The whole list of institutions is available at https://doi.org/10.6084/m9.figshare.
9730328.

https://doi.org/10.6084/m9.figshare.9730328
https://doi.org/10.6084/m9.figshare.9730328

Initial Assessment of Agile Development in the Undergraduate Curricula 79

programs (we considered these students and graduates as advanced students).
Figure 1 shows the details of the distribution of percentage of student progress
based on the number of courses.

Fig. 1. Percentage of student progress in terms of courses

Regarding professional work experience, more than 50% of the partici-
pants indicated some experience. Figure 2 shows the distribution of their work
experience.

Fig. 2. Work experience

Since Software Engineering courses covering methodology topics are usu-
ally located in the second half of the programs we considered appropriate to
simultaneously analyze: (a) the whole sample and (b) only advanced students
(respondents that have completed at least 50% of the courses in their program).
Table 1 shows the results for the question about software development methods
studied, detailing results for the whole sample and the advanced students. This
was a multiple-choice question where we asked participants to select all the items
they studied at the university.

80 N. Paez et al.

Table 1. Software development methods.

Development methods Whole sample Advanced students

Agile methods (in an abstract sense) 68% 76%

Structured Analysis and Design 61% 62%

Scrum 55% 64%

Unified Process 44% 60%

Extreme Programming 31% 43%

DevOps 11% 14%

Kanban 10% 14%

None of the listed methods 13% 7%

Table 2. Agile Practices studied considering the whole sample.

Practice Not studied Theory only Theory and practice

Automated Tests 31% 37% 32%

Continuous Delivery 76% 13% 11%

Continuous Integration 50% 37% 13%

Iterative Development 19% 31% 50%

Test-Driven Development 63% 26% 11%

Pair-Programming 45% 19% 35%

Retrospectives 77% 11% 11%

Table 2 shows the results for the whole sample regarding the practices studied.
Table 3 shows the results for the advanced students sample.
The differences between Tables 2 and 3 suggest that Agile is being covered

mainly in the second part of the programs. Looking at Table 3 we see that Retro-
spectives are the least studied practice, even less than Test-Driven Development.
This situation is very curious because it is just the opposite of what has been
reported by several industry studies [23–25]: Retrospectives are usually among
the most widely used practices while Test-Driven Development is usually among
the least used practices.

When crossing the answers about software development methods with the
answers about software development practices we see two interesting findings:

– 65% of the participants reporting that they studied Scrum state they did not
study Retrospectives, which is a key practice of Scrum.

– Along the same line of reasoning we see that 58% of those that responded
they studied Extreme Programming state they did not study Test-Driven
Development, which is a core practice of Extreme Programming.

Initial Assessment of Agile Development in the Undergraduate Curricula 81

Table 3. Agile practices studied considering advance students only.

Practice Not studied Theory only Theory and practice

Iterative development 7% 31% 62%

Test automation 12% 45% 43%

Pair Programming 31% 21% 48%

Continuous Integration 38% 43% 19%

Test-Driven Development 52% 33% 14%

Infra as code 64% 21% 14%

Continuous Delivery 67% 17% 17%

Retrospective 69% 14% 17%

These findings open an interesting question regarding how Agile is been
taught in academia, it might be that many of these methods are only being
taught superficially, or that specific practices are being excluded. It might also
be that the practices have been taught but were not retained by the students.

We also noticed that most respondents who reported to have studied agile
practices are also working in the industry. That is 68% of the whole sample
answered that they studied agile and 60% of that group has working experience.
This suggest an strong relationship between knowledge of agile methods and
working at industry. But it may be that the relationship is actually between
years of study and working at industry, and the previously described relationship
is just a consequence of this one.

5 Threats to Validity

The threats to validity are presented following the categorization provided by
Wholin et al. [26]. We found threats in the following two categories:

– Internal: even when we explicitly asked respondents what they studied at the
university, it is possible that students answered based on what they learned
at work.

– External: the sample used in the study is based on answers from people
belonging to only 14 institutions and some important institutions were not
part of this sample.

6 Conclusions and Future Work

Our results show that Agile methods and practices are present in the Information
Technology and Computer Science programs, 76% of advanced students reported
having studied agile methods. This answers our first research question.

Regarding our second research question, four practices are the most studied
by advanced students (each one individually exceeds 60%): Continuous Integra-
tion, Pair-Programming, Test Automation and Iterative Development.

82 N. Paez et al.

Beyond our research questions we offer some additional findings. When ana-
lyzing concrete Agile practices, we observe that some of them are covered mainly
from a theoretical perspective without practical activities.

We also noticed that even when certain methods we reported as studied,
some associated key practices were not. This is the case of students reporting
to have studied Scrum but not Retrospectives and students reporting to have
studied Extreme Programming but not Test-Driven Development.

Some interesting issues were detected regarding the popularity of practices
in industry vs their presence in university education: while Retrospectives are
one of the most popular agile practices in the industry it is the least studied
practice in the university. Another example of this apparent issue is Test Driven
Development: it is one of the least used practices in the industry (though very
popular) but it is not among the least studied practices. These findings may
suggest that industry and academia have different perceptions regarding the
relevance of these practices or that the challenges of adoption are not aligned
with the challenges of theoretical teaching (i.e. teaching about a practice is not
the same as teaching how to perform it).

In order to have a deeper insight on the state of agile education in the Infor-
mation Technology and Computer Science programs further studies should be
conducted to gather information in two dimensions: (1) Study the topic from the
perspective of professors and institutions, (2) Study a broader set of practices.
These topics will be the focus of the future phase of our research project.

References

1. West, D., Grant, T.: Agile development: mainstream adoption has changed agility.
Forrester Res. 2, 41 (2010)

2. Rodriguez, M.C., Vazquez, M.M., Tslapatas, H., De Carvalho, C.V., Jesmin, T.,
Heidmann, O.: Introducing lean and agile methodologies into engineering higher
education: the cases of Greece, Portugal, Spain and Estonia. Paper presented at
the IEEE Global Engineering Education Conference, EDUCON, pp. 720–729, April
2018. https://doi.org/10.1109/EDUCON.2018.8363302

3. Chookittikul, W., Maher, P.E., Kourik, J.L.: Agile methods in Thai higher edu-
cation and beyond. Paper presented at the 2011 24th IEEE-CS Conference on
Software Engineering Education and Training, CSEE and T 2011 - Proceedings,
p. 557. https://doi.org/10.1109/CSEET.2011.5876153

4. Rico, D.F., Sayani, H.H.: Use of agile methods in software engineering education.
Paper presented at the Proceedings - 2009 Agile Conference, AGILE 2009, pp.
174–179. https://doi.org/10.1109/AGILE.2009.13

5. Mahnic, V.: A capstone course on agile software development using scrum. IEEE
Trans. Educ. 55(1), 99–106 (2012). https://doi.org/10.1109/TE.2011.2142311

6. Lu, B., Declue, T.: Teaching agile methodology in a software engineering capstone
course. J. Comput. Sci. Coll. 26, 293–299 (2011)

7. ACM Curricula Recommendations. https://www.acm.org/education/curricula-
recommendations. Accessed 15 July 2019

https://doi.org/10.1109/EDUCON.2018.8363302
https://doi.org/10.1109/CSEET.2011.5876153
https://doi.org/10.1109/AGILE.2009.13
https://doi.org/10.1109/TE.2011.2142311
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations

Initial Assessment of Agile Development in the Undergraduate Curricula 83

8. Paez, N., Fontdevila, D., Oliveros, A.: HELENA study: initial observations of soft-
ware development practices in Argentina. In: Felderer, M., Méndez Fernández, D.,
Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS,
vol. 10611, pp. 443–449. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69926-4 34

9. Meetup Agiles Argentina. https://www.meetup.com/agiles-arg/. Accessed 15 July
2019

10. Agiles Argentina Community Page. http://www.agiles.org/argentina. Accessed 15
July 2019

11. Paez, N.: A flipped classroom experience teaching software engineering. In:
IEEE/ACM 1st International Workshop on Software Engineering Curricula for Mil-
lennials (SECM), Buenos Aires, pp. 16–20 (2017). https://doi.org/10.1109/SECM.
2017.6

12. Scott, W., Rodŕıguez, G., Soria, A., Campo, M.: Experiences in software engineer-
ing education: using scrum, agile coaching, and virtual reality. https://doi.org/10.
4018/978-1-5225-3923-0.ch050

13. Ministerio de Educación, “Resolución 786/2009,” InfoLEG Información Leg-
islativa. http://servicios.infoleg.gob.ar/infolegInternet/verNorma.do?id=154121.
Accessed 15 July 2019

14. Paasivaara, M., Heikkilä, V., Lassenius, C., Toivola, T.: Teaching students scrum
using LEGO blocks. In: 36th International Conference on Software Engineering,
ICSE Companion 2014 - Proceedings. https://doi.org/10.1145/2591062.2591169

15. Gresse von Wangenheim, C., Savi, R., Borgatto, A.: SCRUMIA–an educational
game for teaching SCRUM in computing courses. J. Syst. Softw. 86, 2675–2687.
https://doi.org/10.1016/j.jss.2013.05.030

16. Persson, M., Kruzela, I., Allder, K., Johansson, O., Johansson, P.: On the Use of
Scrum in Project Driven Higher Education

17. Kropp, M., Meier, A.: Teaching agile software development at university level: val-
ues, management, and craftsmanship. In: 26th International Conference on Soft-
ware Engineering Education and Training (CSEE&T), San Francisco, CA, pp.
179–188 (2013). https://doi.org/10.1109/CSEET.2013.6595249

18. Melo, O., Santos, C.V., Katayama, E.: The evolution of agile software development
in Brazil. J. Braz. Comput. Soc. 19, 523–552 (2013)

19. Uva, M., Daniele, M., Zorzán, F., Frutos, M., Arsaute, A.: Propuesta para doc-
umentar trabajos finales utilizando metodoloǵıas ágiles. In: IX Congreso sobre
Tecnoloǵıa en Educación & Educación en Tecnoloǵıa. La Rioja, Argentina (2014)

20. Levy, S., Romero Dapozo, J., Pasini, A.: Implementación práctica del agilismo en
proyecto de Ingenieŕıa de Software. In: XIX Concurso de Trabajos Estudiantiles
(EST 2016). Tres de Febrero, Argentina (2016)

21. Congreso Nacional de Ingenieria Informática y Sistemas de Información (2018).
https://www.conaiisi2018mdp.org/. Accessed 15 July 2019

22. Red de Ingenieria Informática y Sistemas de Información del Confedi. https://
confedi.org.ar/riisic/. Accessed 15 July 2019

23. Paez, N., Fontdevila, D., Oliveros, A.: Characterizing technical and organizational
practices in the Agile Community. In: Proceedings of CONAIISI, Salta, Argentina
(2016)

24. Paez, N., Fontdevila, D., Gainey, F., Oliveros, A.: Technical and organizational
agile practices: a Latin-American survey. In: Garbajosa, J., Wang, X., Aguiar, A.
(eds.) XP 2018. LNBIP, vol. 314, pp. 146–159. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91602-6 10

https://doi.org/10.1007/978-3-319-69926-4_34
https://doi.org/10.1007/978-3-319-69926-4_34
https://www.meetup.com/agiles-arg/
http://www.agiles.org/argentina
https://doi.org/10.1109/SECM.2017.6
https://doi.org/10.1109/SECM.2017.6
https://doi.org/10.4018/978-1-5225-3923-0.ch050
https://doi.org/10.4018/978-1-5225-3923-0.ch050
http://servicios.infoleg.gob.ar/infolegInternet/verNorma.do?id=154121
https://doi.org/10.1145/2591062.2591169
https://doi.org/10.1016/j.jss.2013.05.030
https://doi.org/10.1109/CSEET.2013.6595249
https://www.conaiisi2018mdp.org/
https://confedi.org.ar/riisic/
https://confedi.org.ar/riisic/
https://doi.org/10.1007/978-3-319-91602-6_10
https://doi.org/10.1007/978-3-319-91602-6_10

84 N. Paez et al.

25. 13th Annual State of Agile Report. Version One (2019). https://www.stateofagile.
com/ufh-i-521251909-13th-annual-state-of-agile-report. Accessed 15 July 2019

26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://www.stateofagile.com/ufh-i-521251909-13th-annual-state-of-agile-report
https://www.stateofagile.com/ufh-i-521251909-13th-annual-state-of-agile-report
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Lessons Learned from the Agile
Transformation of an Aeronautics

Computing Center

Fernando Rodrigues de Sá1,2(B) , Ricardo Godoi Vieira1 ,
and Adilson Marques da Cunha1

1 Instituto Tecnológico de Aeronáutica, Praça Marechal do Ar Eduardo Gomes,
no. 50 - Vila das Acácias, São José dos Campos, SP 12228-901, Brazil
{desa,cunha}@ita.br, desafrs@fab.mil.br, rikas.rgv@gmail.com
2 Centro de Computação da Aeronáutica de São José dos Campos,
Praça Marechal do Ar Eduardo Gomes, no. 50 - Vila das Acácias,

São José dos Campos, SP 12228-901, Brazil
http://www.ita.br

Abstract. The aim of this paper is to share the main lessons learned in
more than one year of work in the Agile Transformation of the Brazil-
ian Aeronautics Computing Center of São José dos Campos. At the
beginning of works, the intention was to support the implementation
of Scrum as a framework for software development. The first faced chal-
lenge was the paradox between Scrum, for its horizontality in the inter-
action between individuals and the military hierarchy. An update in the
Internal Regulations of this Computing Center included in its organiza-
tional structure a Project Management Office focused on advising Scrum
Teams. The Scrum Teams were also included in the organizational struc-
ture, with no hierarchical link to any sector of the Organization. Over
time, there has been an increase in people’s engagement to this work.
The year 2019 began with the reorganization of the teams, following the
Scrum Guide, and with two success stories: the construction of a Flight
Simulator and the development of a system that controls the overflight
of foreign aircraft in brazilian airspace.

Keywords: Agile methods · Scrum · Hierarchy

1 Introduction

The adoption of agile methods at the Brazilian Aeronautics Computing Center
of São José dos Campos (Centro de Computação da Aeronáutica de São José
dos Campos - CCA-SJ) was an initiative of its systems developers. Scrum was
chosen as the development framework. However, at first, the teams did not follow
the Agile Manifesto [1]. Scrum teams were not properly formed. The Scrum

Supported by CCA-SJ.

c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 85–91, 2019.
https://doi.org/10.1007/978-3-030-36701-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_7&domain=pdf
http://orcid.org/0000-0003-3174-1023
http://orcid.org/0000-0002-4069-345X
http://orcid.org/0000-0003-2399-5066
https://doi.org/10.1007/978-3-030-36701-5_7

86 F. R. de Sá et al.

Guide [4] was not known by several team members. There were also problems in
the interaction between individuals, as there were conflicts between the military
hierarchy and the Agile Principles.

We started the Agile Transformation with an intensive work by 3 Agile
Coaches. After the first results in adopting agile methods, confidence of the
board of directors increased. In less than a year, the organizational culture was
changing and Scrum Teams were performing with success, as we could see in
our two project cases. A Project Management Office (PMO) has been created,
currently with a staff of 9 members. The planning of projects to be developed
in 2019 was based on Scrum and the new teams were formed according to the
Scrum Guide.

This article presents the journey of the CCA-SJ in this Agile Transformation.
After commencement of the work, two projects were conducted entirely based
on agile methods: a Flight Simulator [3] and a software system that controls the
overflight of foreign aircrafts in Brazilian airspace [3]. The work being done at
CCA-SJ in the adoption of agile methods is a pioneer in the Brazilian Air Force
(Força Aérea Brasileira - FAB).

The Internal Regulations was updated in order to include the PMO and the
Scrum Teams in the organizational structure of the CCA-SJ. The inclusion of
Scrum Teams in FAB’s regulations is novelty. The way in which Scrum Teams
were inserted in the Internal Regulations favored both technical and support
advisory to the teams. There was no hierarchical link between Scrum Teams
and any other sectors of the Organization.

This paper shows the last updates on the work begun in 2018, presented
at the Brazilian Workshop on Agile Methods (Workshop Brasileiro de Métodos
Ágeis - WBMA) that year [5]. The main contributions of this paper are the
lessons learned from CCA-SJ’s Agile Transformation.

2 Action Plan

De Sa et al. [5] presented an Action Plan and its objectives, in order to mitigate
the first problems encountered in the CCA-SJ Agile Transformation to allow
the use of Scrum within this strongly hierarchical environment. In this section
updates are shown for each of the objectives presented in the plan.

Technical Decisions - in the beginning, decisions within teams were made
predominantly based on hierarchy. The main actions taken to favor technical
decisions were training Product Owners (PO) and Scrum Masters (SM). The
CCA-SJ currently has 7 officers with Scrum.org’s Professional Scrum Prod-
uct Owner (PSPO) certification. The training has helped to better understand
Scrum and changed mindsets, regarding decision making within teams.

As for the Scrum Masters, after creation of PMO, people assigned to this
office were tasked to act as SM. With this came some needs for training. The
initial training was conducted by a commissioned officer from CCA-SJ, with
the following certifications: PSPO, Agile Coach, and Professional Scrum Master
(PSM I). A bidding process is underway for the certification of 4 Scrum Masters
as PSM II.

Lessons Learned from the Agile Transformation of CCA-SJ 87

Appreciation of the Military - the proposal to create a career plan within
the CCA-SJ follows the plans for 2019. The most significant changes this year
were the formation of all Scrum Teams based on the Scrum Guide and the
Internal Regulations update, with the insertion of the Scrum Teams within the
CCA-SJ organizational structure. Knowledge and skills mapping work is under-
way with the Center’s personnel. After the consolidation of this work, the next
step will be the definition of the career plan.

As for meetings with the staff, weekly meetings are held on Thursdays with
a timebox of 1 h. These meetings present the results obtained by the teams,
success stories, and relevant news presented in the main media of the FAB. In
addition, it was created a culture of publicizing and issuing certificates for major
works done by staff.

Satisfaction in Relationship with Superiors - weekly staff meetings
have become part of the CCA-SJ routine. They also address relationship issues
in the workplace. Several lectures are presented, focusing on a variety topics,
including teamwork, success, leadership, among others. After that, relationship
with superiors is changing to better.

Internal Communication Problems - the main factors contributing to
the resolution of internal communication problems addressed by [5] were the
weekly staff meetings and also the meetings held by the Commander of the
CCA-SJ with the heads of subdivisions, divisions, and advisories.

Chain of Command Support - within the CCA-SJ, the Commander of
the Center and also the head of the Technical Division are engaged in the work
related to Agile Transformation. Their participation in weekly meetings and
support for the work proposed by the PMO are making this engagement more
clear. They are also giving support to the PMO, in order to update other internal
regulations.

3 Milestones

This section presents the main events that have occurred since the beginning of
the CCA-SJ Agile Transformation work. The milestones from the second half of
2018 are shown at Fig. 1.

May 2018: PMO Implementation Committee - this event has marked
the beginning of the work. With the creation of this committee, the search for
solutions based upon Agile Methods to improve the relationship in the work-
place, internal processes, quality in software development, among others, was
institutionalized.

August 2018: Agile Coaches Certification - in August 2018, three offi-
cers were trained and certified as Agile Coaches by ICAgile. This milestone was
important for the performance of these officers within the teams and for the
CCA-SJ.

September 2018: PSPO Certification - in September 2018, the official
Scrum.org training for PSPO certification was conducted. Thus, 7 military per-
sonnel received this certification, which has increased once more the quality of
the teams, regarding the implementation of Agile Methods.

88 F. R. de Sá et al.

Fig. 1. Milestones from the second half of 2018

October 2018: Participation at WBMA - the presentation of a paper
in the 9th WBMA, entitled “Scrum in a Strongly Hierarchical Environment”, in
October 2018, has allowed the sharing of CCA-SJ’s initial experiences with the
agile community. As a result, various criticisms and experience exchanges added
value to the work in progress.

The milestones from the first half of 2019 are shown at Fig. 2.
January 2019: Scrum Team Reorganization - the Scrum Teams were

reorganized, in order to start new projects in the year of 2019. To this end, the
new Scrum Teams formation was based on the Scrum Guide.

February 2019: PMO Team Increase - at the beginning, the PMO ini-
tially had 3 officers dedicated to its activities. In addition, an officer and a civil
servant supported the decisions taken by the PMO. Since February 2019, the
PMO team has 9 members, including a psychologyst and a statistician. This
multidisciplinarity broadened PMO range of activities and helped to start new
works, such as Knowledge Management, Competency Management, obsolescence
in software systems developed by the CCA-SJ, among others.

April 2019: Delivery of the C-95M’s Fligth Simulator - on April 1st,
2019, the CCA-SJ has delivered a flight simulator for the C-95M aircraft to
a Brazilian Air Force Flight Squadron, the 1/5 GAv, headquartered in Natal-
RN. This delivery was marked in the history of the CCA-SJ, which until then
had only developed software systems. The challenge of developing hardware by
using Scrum and integrating it with software has brought much teaching to
Computing Center’s development teams. This is the first case of success in the
Agile Transformation of the CCA-SJ.

April 2019: Participation at Agile Trends - the presentation of the
lecture “A 99% cheaper flight simulator: how did the FAB accomplish this by
using Scrum?” allowed us to share an innovative experience for the CCA-SJ in
developing software-integrated hardware.

Lessons Learned from the Agile Transformation of CCA-SJ 89

Fig. 2. Milestones from the first half of 2019

April 2019: Internal Regulation Update - the new CCA-SJ Internal
Regulation, named RICA 21-183 [2], has inserted the PMO in its organizational
structure. In addition, Scrum Teams were institutionalized within the CCA-
SJ. An important aspect is that Scrum Teams have no hierarchical link with
any sector of the Organization. The main ties of Scrum Teams are: Technical
Advisory, with one of the subdivisions from the Technical Division (DT) and
Support Advisory, with the PMO.

May 2019: Scrum Trainings at CCA-SJ - with the needs for training the
new CCA-SJ Scrum Masters, it was initially decided to perform internal training,
prepared by an officer of the Organization itself. With the interest of other CCA
military personnel about this training, which was originally planned for 6 people
in just 1 class, it was taught to a total of 71 people, divided into 4 classes,
including people from other Organizations. This seek for the training has shown
the engagement and interest of the CCA-SJ staff in the Agile Transformation
work.

May 2019: AVOEM - AVOEM is the name of a system that controls
the overflight of foreign aircraft in the brazilian airspace. This project has used
Scrum from the beginning until its end. The team introduced the concept of
DevOps to the CCA-SJ, that is now being used by all teams. This is considered
the second case of success in the Agile Transformation of the CCA-SJ.

The milestones from the beginning of the second half of 2019 are shown at
Fig. 3.

August 2019: Lean Inception Training - this training was given to 12
officers, in order to increase the quality of planning for new CCA-SJ projects.

August 2019: Agile Conference - the speak “Agile Adoption in Aeronau-
tics Computing Center of Brazilian Air Force” was presented during the Agile
Conference 2019, at Washington-DC, in the Agile in Government track.

90 F. R. de Sá et al.

Fig. 3. Milestones from the beginning of the second half of 2019

August 2019: Agile Trends Gov - the lecture entitled “Agile Transfor-
mation of an Aeronautics Computing Center” was presented during the largest
agility conference in Brazil focused on the public sector.

4 Lessons Learned

This section presents the main Lessons Learned by the PMO team from the
CCA-SJ Agile Transformation process.

Transparency is the key to gaining trust - showing to the board of
directors in a transparent way what is actually happening with projects is a key
factor in gaining trust. In addition, frankly showing the staff what is happening
within the Organization increases people’s engagement as they start to feel more
valued and actually as part of the process. Transparency helped us to deal with
most of the problems addressed by [5]. It also has helped to better follow the
action plan presented in Sect. 2.

The importance of working top-down and bottom-up approaches
simultaneously - in the top-down approach, we work together with the board of
directors of the CCA-SJ, showing them the importance of the work being done,
with its results. On the other way, working the bottom-up approach empow-
ers the less ranked officers in such way that helps them to contribute with
technical decisions to their teams. Transparency also helps significantly in both
approaches. Once the board of directors is engaged, there is support from the
institution in the process, facilitating the top-down approach. In a bottom-up
approach, transformation is facilitated by people’s engagement and trust.

Reinforcing the importance of applying Scrum values, principles,
and practices - it is not enough to say that one should, for example, hold
a daily meeting. It is important that people really understand its meaning
and importance. To this end, it should always be appropriate to reinforce the

Lessons Learned from the Agile Transformation of CCA-SJ 91

application of Scrum values, principles, and practices, aiming at its better under-
standing.

A case of success becomes an example for other teams and encour-
ages changes that may occur - a case of success, when shared with other
teams, increases people’s engagement. By becoming an example, it makes other
teams seek to repeat the success now achieved. In the case of C-95M’s flight sim-
ulator, their success in the challenge of integrating software and hardware has
helped other teams to believe in processes, practices, among others. The intro-
duction of DevOps by the AVOEM team has shown other teams a more efficient
way of testing and delivering software. After that, other teams have started to
use the concepts and tools introduced by AVOEM.

5 Final Considerations

The CCA-SJ Agile Transformation continues as a work in progress. Nevertheless,
it is already possible to notice a change in the Organizational Culture.

The objectives set in the Action Plan outlined at the beginning of the work
in 2018 is evolving as its goals are being met.

The milestones presented here show that the CCA-SJ is on the right track.
The lessons learned here have become guides for the steps to come.
For the second half of 2019, new initiatives are expected to be introduced

and internalized in the CCA-SJ, such as DevOps and Lean Inception.
The Upcoming Events that we will participate are Agile Brazil and PSM

II training. During the Agile Brazil 2019, we will present the lecture entitled
“Agile Transformation of an Aeronautics Computing Center”. In October 2019,
four officers will participate in official Scrum.org PSM II training.

The authors of this article believe that the lessons learned and reported here
from the agile transformation of the CCA-SJ can be still expanded and may
represent new solutions for old, current, and future problems of any Computing
Center.

References

1. Beck, K., et al.: Manifesto for Agile Software Development (2001). https://
agilemanifesto.org

2. BRASIL: Regimento Interno do Centro de Computação da Aeronáutica de São José
dos Campos (2019)

3. Força Aérea Brasileira: NOTAER (2019). https://issuu.com/portalfab/docs
4. Schwaber, K., Sutherland, J.: The scrum guide (2017). https://www.scrum.org/

resources/scrum-guide
5. de Sá, F.R., de Resende Lucas, E.L., de Oliveira, A.D.: Scrum in a strongly hier-

archical organization. In: Tonin, G.S., Estácio, B., Goldman, A., Guerra, E. (eds.)
WBMA 2018. CCIS, vol. 981, pp. 97–102. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-14310-7 7

https://agilemanifesto.org
https://agilemanifesto.org
https://issuu.com/portalfab/docs
https://www.scrum.org/resources/scrum-guide
https://www.scrum.org/resources/scrum-guide
https://doi.org/10.1007/978-3-030-14310-7_7
https://doi.org/10.1007/978-3-030-14310-7_7

Agile Experiences in a Software Development
Extension Course at a Software Engineering

Bachelor’s Degree

Carlos Felipe Arantes(B) , Patrícia Lourenço Pereira, Soraia Lúcia da Silva,
and Tadeu dos Reis Faria

Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
{carlos.arantes,patricia.pereira}@sga.pucminas.br,

{soraialu,tadeurf}@pucminas.br

Abstract. This paper presents the results found in the application and adaptation
of an agile approach to software development in a course called “Interdisciplinary
Software Project IV” at the bachelor’s degree in Software Engineering from the
Pontifical Catholic University ofMinasGerais over two years with twenty projects
already done. In the fourth semester of the course, students have to develop a soft-
ware with a social focus. They are introduced to real customers from the commu-
nities with real problems and need to incorporate useful knowledge of the current
semester subjects into their system, with artifacts and documentation. Through the
use of the Scrum framework, it was possible to observe several adaptations made
to suit the academic context, although the practical reality of the course, and the
nature of the clients for which the projects are developed. Throughout the paper
are presented the results obtained and which can serve as an example for similar
approaches.

Keywords: Software Engineering · Agile methodology · Interdisciplinary
projects · Scrum · Education · Community-driven projects · Extension

1 Introduction

In the Bachelor of Software Engineering (SE) at the Pontifical Catholic University of
Minas Gerais (PUC Minas) there is a compulsory course from the first to the sixth
semester known as “Interdisciplinary Software Project” (ISP) in which the student
must develop a fully functional software following all the development stages, from
requirements elicitation to implementation and even maintenance, should a correction
be required. For each semester, the current courses are incorporated, enhancing the
bachelor with an interdisciplinary character that allows them to practice various con-
cepts given inside the classroom combined with a serious practice with the introduction
of clients and real needs. In this way, teachers can guide students through their journeys
inside the course by introducing good market practices and raising the status of their
work in addressing today’s social problems.

© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 92–98, 2019.
https://doi.org/10.1007/978-3-030-36701-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_8&domain=pdf
http://orcid.org/0000-0002-8998-4813
https://doi.org/10.1007/978-3-030-36701-5_8

Agile Experiences in a Software Development Extension Course 93

Specifically, the present paper brings the experiences and results of the fourth period
ISP (ISP IV) in which 20 software projects have already been developed over two years
of application of the course. They are free to choose the technology that they want to
work, considering it is in agreement with the requisites. Such languages that have been
chosen are: JavaScript, PHP, Java, C #, Python and frameworks such as Express, Zend,
Spring and .NET among others; but with the differential of dealing with the chancellor
course for the practice of the extension, in which the product realized must solve a
problem with a social character.

According to the National Extension Policy [3], one of the advances that deserve
attention concerns the institutionalization of extension. In this sense, PUCMinas’s exten-
sion policy [7] addresses excitingly the importance of extension practices performed by
the University, aiming at the development and formation of a society that somehow has
barriers in various contexts such as social exclusion, difficulty in accessing knowledge
and cultural marginalization. These support initiatives will, in some way, add to the uni-
versity extension as a whole, improving the quality and management of activities and
allowing students to deal with current societal problems generating professional and
especially human growth.

In addition to the subjects included in ISP IV and the extension nature, students
should develop their respective systems through agile methodology, applying Scrum
and adapting it accordingly. Throughout the article, the applied method and the results
of the agile approach in the practical academic environment are described.

2 Related Works

Souza, Oliveira, Grillo and Cico [10] bring that by allowing students the possibility to
put into practice the techniques studied, given the development of their ability to divide
problems, prioritize and establish chronograms; they have been given a huge gain in
technical skills, especially in management.

Souza and Pinto [11] bring in their report that the results of the application of an
agile methodology were very positive, and a huge development can be perceived in the
students throughout the experience. They specifically report that by the simplicity of the
agile method, students quickly understood how to work, divide and deliver functionality
but that team success correlates with the agile culture present in those involved.

Billa and Cira [12] propose the use of the PBL approach, known as Problem Based
Learning for Software Engineering Teaching. In this approach, students solve real prob-
lems by applying the concepts of SE, strongly connected to the same approach used with
ISP IV.

3 Theoretical Background

It is emphasized in advance that, as it has an extension course too inside the course, a
greater work is done on the importance of this type of projects, but at the same time, it is
not neglected the application and teaching of processes andmethodologies, requirements
gathering and development, good software engineering practices and project manage-
ment. In this section, the frameworks that guided and continue to guide the course as a
whole are reported.

94 C. F. Arantes et al.

3.1 Extension Practices

The university extension practice is one of the ways to develop an academic formation
that integrates theory and practice in order to establish a dialogical relationship between
systematized knowledge and society, enabling knowledge exchange between both. This
is mainly because, in extension, it is expected that there will be an academic gain for
the institution, that is, the actions developed will be internalized as methodological tests
for community work, knowledge of real society problems, professional experience for
teachers and students, development of procedures and technical standards; in short, a
two-way street for everyone involved.

The actions of this extension practice that is presented broaden the classroom space,
allowing the exchange of knowledge within and outside the academic environment and
also contributes to the renewal of pedagogical processes through exchange and partici-
pation between internal and external communities to the university, which strengthens
the University Extension Policy of PUCMinas [7]. The activities carried out in this work
contribute to the PUC Minas Institutional Development Plan [8] in enabling students to
articulate the theory of the current semester with the vivid experience, allowing also a
direct contact with society contributing to a more humane and citizen formation; and are
part of the Pedagogical Project of the Software Engineering course.Working with exten-
sion practices allows the teachers involved to rethink their activities (action-reflection -
action), improving their knowledge and methodologies.

Regarding the students, it can be said that society has been demonstrating the need for
a higher educated professionalwho has amore complete education, not only technical but
also ethical, humanistic and cultural, who can work with other areas in multidisciplinary
teams. Thus, the participation of students in these practices contributes to them acting
in society with competence, responsibility and justice, contributing to the construction
of a prosperous, solidary and fair country.

3.2 Agile Methodologies and Scrum

The ISP subject, in line with the latest practices adopted in the market, emerges students
into contact with agile methodologies. The Agile Manifesto, the artifact that defines
these methodologies, makes it clear that the valorization of individuals and interactions
is prioritized over the use of processes and tools, whichmakes themain objective to build
software over its documentation. To achieve this, customer collaboration throughout the
development becomes more necessary than contract negotiation, and the team must be
better prepared to respond to changes than following a plan [1]. Agile methods tend to
refer to source code as the sole documentation artifact [4], with the aim of solving the
problem of creating high quality software being built in a timely manner in the face of
constantly changing requirements in the business environment, bringing the need for the
development team to be adaptive and able to cope with changing requirements at any
stage of development [5].

The most commonly used agile method among students is SCRUM, a structural
framework based on empirical process control theories, which has been widely used to
manage the development of complex products since the early 1990s [9]. It employs an
iterative and incremental approach to improve predictability and risk control.

Agile Experiences in a Software Development Extension Course 95

The widely used SCRUM artifacts and events are Product Backlog, Sprint Backlog
and Sprint [2], the latter having a fixed time period, which can be from two to four weeks.
For the subject in question, teachers guide students through two-week Sprints, which
consist of Sprint Planning, Daily Scrum Meetings, development work, Sprint Review,
and Sprint Retrospective.Within this range, the software increment is built and delivered
by students, starting a new Sprint immediately after the previous one.

The SCRUM roles are Product Owner (PO), Scrum Master (SM) and Dev Team
(DT), which constitutes the “Time Scrum” [9]. The PO is responsible for maximizing
product value andmanaging Product Backlog. TheDT is staffed by professionals who do
the job of delivering a potentially reliably incremental “ready-made” product at the end
of each Sprint, which is required by the Sprint Review. SM is responsible for constantly
promoting framework knowledge by helping everyone understand the theory, practices,
rules and values of the methodology, helping to maximize the value created by DT.

Through the concepts introduced by the method, teams should be multifunctional
and self-organizing, bringing flexibility, creativity and productivity to the team, as well
as making the team not dependent on others outside the DT or dependent solely on what
is needed to develop the project and make decisions.

3.3 Interdisciplinary Software Project IV

Interdisciplinary Software Project IV (ISP IV) - course of the Department of Software
Engineering and Information Systems at PUC Minas - was approved as the extension
course of the Software Engineering bachelor’s degree at PUC Minas. Its function is to
articulate the contents of the other courses of the fourth semester around the development
of social-minded application software. The subject of software development shouldmeet
the perceptions of social need diagnosed by the Extension Coordination department,
coordinator of the bachelor, or the demands of developing programs and applications
from University extension projects. In this case, 34 h are computed in the valorization
of the extension in the course [6].

This course is fundamental for the student to practice the extension activities and
to understand the humanistic foundations aimed by PUC Minas and dealt with in the
pedagogical project of the course. The objective is to promote the transformative interac-
tion of the course with other sectors of society, constituting an indispensable component
for the formation of students and teacher qualification. The extension actions of this
course also consider the inseparability with Teaching and Research. In the interface
with the research, the methodology incorporates investigative practice. In articulation
with teaching the process happens through the mediating action between theory and
practice.

Also, it integrates, through practical bias, knowledge of other courses of the period
and several others taught in previous periods, thus promoting their interdisciplinary
content. It contributes to the formation of the egress profile, as it enables the student
to develop skills and abilities to assess real needs or problems with socially-oriented
software in the form of observing the actions/work routine of the community through
interviews (dialogued interaction) with the society, potential users and stakeholders.

The goal for the teacher is to identify potential problem situations in the community
that can be solved through a software solution and to enable students to assess needs or

96 C. F. Arantes et al.

requirements for a socially based computational solution in the form of observing the
routine actions/work of a community. The goal for the student is to develop the ability to
dialogue with the client and users to gather requirements and user profile identification,
besides the development of the solution itself. The goal for the community is to identify
with the teacher possible problem situations and provide students with details of the
problem that will serve as the basis for defining the requirements of social application
software that can solve a specific community problem.

4 Methodology

Following are the steps of the work methodology used throughout the semesters to date
in the course: (1) Identify potential communities, non-profit organizations and projects
for society given the existence of problems that can be solved via software product.
For example, these communities may be existing NGOs that have well-defined social
objectives and need to record their actions through some software; (2) Prepare students
to conduct requirements gathering in the form of observation and documentation of
the community’s work routine and dialogued interview with their stakeholders. At this
time, the teacher prepares students for a sympathetic perception of the reality of the
community by embracing their cause to provide their contributions. The character of
humanistic formation of this course is fundamental here. This software will be made
by people for people. The technological component of the software is secondary to the
needs of organizations and society; (3) Visit the community to conduct an interview
with potential users of the software, also identifying the user profile (comfort level with
technology, ease/difficulty in handling applications on the computer). The purpose of
the interview is to raise the software requirements and the needs of this community in
front of informatization. The person responsible for the entity will also be invited to
attend the classroom for a brief presentation of the organization and its demands; (4)
Describe/specify the requirements raised by creating the so-called software specifica-
tion documents; (5) Validate the document with the community or a prototype. Where
also demonstrated and explained the relationship with Scrum. This stage is already a
proposal for intervention in the community routine and needs community validation. (6)
Design and implement the software described in the Software Requirements Specifica-
tion Document that has been validated by the community; (7) Present the software to the
community for evaluation, and correction of possible defects and minor adjustments.
At this moment, the intervention proposal is implemented. If the community accepts
the intervention, it will use the software; (8) Perform usability testing with real users to
identify improvement points for the software. It is important to note that these activities
are developed in an interdisciplinary manner in the fourth period.

With the introduction of artifacts in Scrum, the Sprints were defined with an average
of fifteen days each, and students are given greater attention - and as a consequence
directly reflected in the grade obtained in the course - regarding the application of: (1)
the methodology and its artifacts; (2) the participation of the customer or their Product
Owner throughout the process; (3) the well-executed division of tasks. It is because of
the nature of the course that students are given a greater attention to good software engi-
neering practices and therefore a considerable part of the project development is closely

Agile Experiences in a Software Development Extension Course 97

connected to the techniques and to a correct and validated documentation approach. -
following agile principles - of the software.

Weekly students meet with one or more teachers of the course to explain the diffi-
culties encountered and are guided by these teachers on how to correct the deviations.
In addition, the teachers choose the backlog of each Sprint, given the scope of each
system individually. For each item prioritized for Sprint, the acceptance criteria set by
the teachers and the clients are validated. All monitoring of the project is carried out
through project management and control tools by both the teachers and the students. It
is important emphasize that the follow-up is constant. Incomplete, failed or nonexistent
use of agile methodology artifacts is considered as a review point to be worked with
students throughout all the reserved classes for the follow-up.

5 Results

The course uses software development cycle planningmechanisms that contribute to: (1)
the enrichment of teamwork skills, fostering the distribution of responsibilities and col-
laboration, whether with clients or teammates, based on software models, both through
written and oral communication; (2) work in a team; (3) lead teams and deal with people
from different realities; (4) allow students to self-evaluate and evaluate their pairs and
develop characteristics favorable to interpersonal relationships; (5) enables the decision-
making exercise on the appropriate selection of technologies for the software solution
and the development of creative and innovative solutions, since it generates a relation-
ship of trust with the customer; (6) It also gives students the opportunity to play different
roles, as they are, at different times, developers, consultants, moderators, reviewers,
researchers, instructors, technical leaders and project managers. Behold, the student
himself stimulates the development of his autonomy, driving the creation of business-
focused planning, through an application chosen by the group, always focusing on the
research of market demands and with a more humane look in the proposal of solutions
considering social realities.

Students are assessed and scored according to the documents and functionalities
produced: (1) Software SpecificationDocument; (2) Socially oriented solution; Software
usability testing report by its end-users; (3) Reports proposed by PROEX, responsible
for extension zeal at PUC Minas, through the Extension Course Management tool.
And, at the end of the course, students complete an extension practice assessment form
consisting of eleven questions and can choose from the following answers: strongly
disagree, partially disagree, undecided, partially agree, totally agree, or not applicable.
Approximately 86% totally agreed that the practice allowed the students to value the
exchange of knowledge between the University and other sectors of society. About 71%
fully agreed that it was possible to build new knowledge from the challenges presented
in practice; 70% totally agreed that acting in practice made possible the integration of
models, concepts and methodologies from various areas of knowledge. Approximately
79% fully agreed that it was possible to exercise ethical posture and respect for diversity.
About 71% fully agreed that the work carried out made it possible to verify the social
relevance of the profession, to be attentive to social, regional or local development. Over
70% fully agreed that they learned to articulate theory with lived practice, developing
professional skills and competences.

98 C. F. Arantes et al.

It is also noteworthy that throughout the semesters, there was a need for teachers
to take the roles of Product Owner and Scrum Master, given the distance from real
customers and the possible impediments caused by it. For this, teachers need to become
better acquainted with each client’s domains, the condition they are in and the needs of
each one; they become a bridge to resolve conflicts and bottlenecks with clients. But
even so, the students also incorporate some of this role of PO, given that due to the
volume of groups it does not allow very specific attention to a particular group, being
an unnecessary control, but which makes room for the student to develop autonomy and
initiative. It was also noted that the students had a high acceptance with the introduction
of technologies for managing their tasks such as Trello, Jira, Asana and Kanban among
others allowing them to deal with project management at an early beginning.

At the end of the work, the application is tested and evaluated by the community,
which is also invited to participate in the final presentation of the project togetherwith the
bachelor’s faculty. Almost 100% of the partners have approved the developed systems,
including the importance of the tool in achieving the daily activities of each organization
and in the transformative power that information technology plays in the current century
making the students trained by the coursed aware of the responsibility they carry in
building the future.

References

1. Beck, K., et al.: Manifesto for agile software development. Agil. Alliance 2009 (2001). 2006
2. CIENT, Interinstitucional Editor et al.: Difficulties in the Adoption and Use of ScrumMethod

in Brazilian Companies. As Dificuldades na Adoção e Uso de Método Scrum em Empresas
Brasileiras Utilizando Processos Plan-Driven: Estudo de Caso Múltiplo, vol. 8, pp. 66–79
(2017)

3. Extension Forum of rectors of the Brazilian public universities. National University Extension
Policy, Manaus, Brasil (2012)

4. Fraga, B.S., Barbosa, M.W.: Requirements engineering in agile methods: a systematic litera-
ture review. In: XIII Brazilian Symposium on Information Systems, June 2017, pp. 309–315
(2017)

5. De Lucia, A., Qusef, A.: Requirements engineering in agile software development. J. Emerg.
Technol. Web Intell. 2(3), 212–221 (2010)

6. Pontifícia Universidade Católica de Minas Gerais: Pedagogical project of the Computer
Engineering degree (2017)

7. PontifíciaUniversidadeCatólica deMinasGerais:UniversityExtensionPolicy of PUCMinas.
PUC Minas/Pró-Reitoria de Extensão, Belo Horizonte (2006)

8. Pontifícia Universidade Católica de Minas Gerais: Institutional Development Plan: 2012 to
2016. PUC Minas, Belo Horizonte (2011)

9. Schwaber, K., Sutherland, J.: Scrum Guide: The Definitive Guide to Scrum (2017)
10. Souza, S., Oliveira, B., Grillo, F., Cico, C.: Building digital platformswhile teaching Software

Engineering: an experience report. IX Software Engineering Education Forum. Fees (2016)
11. Souza, S., Pinto, V.: Building social applications while teaching software engineering: an

experience report. Third Congress of Graduation from São Paulo University. USP (2017)
12. Billa, C.Z., Cera,M.C.: Using problem solving to approximate theory and practice in software

engineering. V Software Engineering Education Forum. Fees (2012)

Agile Practices

Identifying Success Factors in a Legacy Systems
Reengineering Project Using Agile Methods

Everton Mateus Fernandes(B) and Thiago Schumacher Barcelos

Laboratório de Computação Aplicada – LABCOM3, Instituto Federal de Educação,
Ciência e Tecnologia de São Paulo, Guarulhos, São Paulo, Brazil

everton.mfernandes@gmail.com, tsbarcelos@ifsp.edu.br

Abstract. Systemmaintenance or extension costs, during its lifecycle, can exceed
the cost of its rewriting and can lead companies to choose a reengineering strat-
egy. On the other hand, several similarities between recommended practices for
reengineering projects and agile practices can be found in the literature. Hence,
this article aims to understand the success factors that influence the reengineering
process of legacy systems and how agile methods can influence the results. A real
project of a software development company in the city of Sao Paulo was used
as basis for a case study of a legacy system reengineering to a SOA application.
The project results were compared with the perception of the development team
through semi-structured interviews, the analysis of project artifacts and the best
practices proposed in the literature to understand whether the results mentioned
in the literature would be confirmed in practice. The obtained results reinforce the
hypothesis that reengineering projects can be more successful when developed
using agile methodologies.

Keywords: Software reengineering · Agile methods

1 Introduction

Legacy software systems are maintained as long as their maintenance and evolution
costs outweigh the replacement or rewriting costs. The cost of maintaining or extending
a system can increase due to several factors, but we can highlight architectural, docu-
mentation, design or granularity problems of its components [1, 2]. All of these factors
over time can lead to a high cost of maintenance or impossibility to implement exten-
sions and, therefore, lead to the decision to abandon the system, rewrite it or reengineer
it.

The reengineering process involves understanding a legacy system and redeploying
its functionality in order to improve the quality of functional and non-functional require-
ments [1]. The reasons for adopting a system reengineering approach can be diverse as
time/cost to create a new system, knowledge added to the existing product, adherence to
the company’s business, among others [2]. Thus, the system reengineering process aims
to rebuild the system in a new form to make its maintenance and extension costs more
sustainable.

© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 101–110, 2019.
https://doi.org/10.1007/978-3-030-36701-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-36701-5_9

102 E. M. Fernandes and T. S. Barcelos

The system reengineering process can be done iteratively, going through cycles of
requirements gathering, risk assessment, new system engineering and results evaluation
[1, 3]. In addition to the iterative and incremental cycle, several standards are proposed
in the literature for this process [1–3].

Iterative and incremental development processes have gained strength in the industry
with the adoption of agile project management and system development methodologies.
The main gains of these methodologies are the ability to deliver continuous value, flexi-
bility to change, increased confidence in code through automated testing, among others
[4].

In this article we present the results of a reengineering project of part of a legacy
Enterprise Resource Planning (ERP) system, developed and distributed by a software
development company based on São Paulo, Brazil as a case study to understand how
the reengineering practices and agile methodologies proposed in the literature affected
the project outcome. A literature review was conducted to find reported best practices
and success factors for both reengineering projects and projects using agile methods. In
Sect. 2, related works and main concepts applied in the study are presented. In order to
understand the application of the practices proposed in the literature, Sect. 3 will detail
the project, then Sect. 4 will present the interview data, Sect. 5 will show an analysis of
documental data and Sect. 6 will discuss project results through triangulation between
literature data, team perceptions obtained through interviews and document analysis.
Finally, Sect. 7 will present the conclusions of the study.

2 Related Works

2.1 Systems Reengineering

The reengineering process involves understanding a legacy system and redeploying its
functionality to improve functional and non-functional requirements [1]. To achieve the
expected results, the legacy system goes through the reverse engineering processes of
the application and subsequent reimplementation of its requirements.

Khadka et al. [5] searched for reengineering models in the literature and found vari-
ations of Plan, Do, Check and Act (PDCA) software development models focused on the
reengineering process. This process works in an iterative way, starting with understand-
ing the legacy software, designing the intended software, performing a feasibility study
and then going through cycles of choosing and applying migration, implementation and
deployment techniques.

Reengineeringprojects have factors in commonwhichhavebeen identified as success
factors raised from case studies [6]. Among them we can highlight:

• Legacy systempotential: Complexity, documentation, testing, code quality, and access
to undocumented legacy information influence the reengineering process.

• Migration strategy: The strategy should be chosen taking into consideration finan-
cial, technical and people resources. Techniques include covering old code with new
services, rewriting the logic of a monolithic system into smaller services, among
others.

Identifying Success Factors in a Legacy Systems Reengineering Project 103

• Company business process: Company engagement for the project is very important,
as usually some stakeholders are at the top hierarchical levels and have the necessary
influence to drive the project forward. Therefore it is important for reengineering to
be aligned with business needs to show value in the proposed deliverables and not just
rewrite the code.

• Budget and Resources: Depending on the size of the legacy, proposed systems change,
and business impact, the reengineering process can take more or less time, and
financial, technical, and human resources are keys to give body and structure to the
continuity of the project.

• Constant monitoring of the migration process: Monitoring committees and periodic
process reviews help keep the project course in line with company expectations and
even allow direction changes when needed.

• Testing: In the legacy system they help to document functionality and in the new
application they help to validate and guarantee deliveries in terms of performance,
reliability and safety.

• Team technical skills: The team’s technical level can directly impact on time and
quality of delivery, since it may be necessary for the team to acquire new knowledge
and expertise during the project.

2.2 Agile Methods, Practices, and Success Factors

Melo et al. [7] and Mazuco [8] identified through structured interviews the most widely
used agile methods in the Brazilian software industry and listed Scrum and a mixed
version of Scrum and XP as the most commonly used methodologies and daily meeting,
unit testing, sprint planning, product backlog and release planning as the most adopted
practices. In the mentioned works there is also consensus that the adoption of agile prac-
tices brings improvements such as increased productivity, better adaptability to changes,
improved team communication and increased quality of delivered software.

Through a systematic literature review [9] 14 factors that influence the success of
projects using agilemethodswere identified. These factorswere divided into 3 categories
and can be seen in Table 1.

Table 1. Factors that influence the success of agile projects

People Processes Technology

Competence and Expertise Agile Practices Appropriate Technical Training

Executive Support Deliver key functionality first Tests (Unit, Integration, etc.)

Team and user motivation The right amount of
documentation

Simple Design

Small Teams Strong Communication Tooling Support

User Participation Well-defined coding standards

104 E. M. Fernandes and T. S. Barcelos

3 Case Study

In order to confront the practices proposed in the literature with a real application, this
article gathered data from a reengineering project of part of a legacy Enterprise Resource
Planning (ERP) system, developed and distributed by a software development company
based onSãoPaulo, Brazil. The case studywas chosen as the research strategy; according
to Wholin et al. [10], this strategy is suitable for studying phenomena in real contexts
and also for confronting the obtained results with earlier studies or theories. The same
authors argue that analysis of multiple sources of information is important to ensure the
validity of the results. Hence, for project analysis, a triangulation strategy [11] was used
to confront literature data, documental analysis of project artifacts (Jira, Git, etc.) and
semi-structured interviews with those involved in the development phase.

The company’s legacy product consisted of a Client× Server application and a web
portal. The solution could be installed in a customer-owned environment (On Premise),
in a cloud provider infrastructure as a service (IaaS), or through software as a service
(SaaS) model provided by the software company. The backend and web services used on
the legacy system’s web portal were written in the company’s proprietary language using
a structured paradigm. Application code was shared across the entire ERP system, which
made it difficult to scale specific services. The frontend mainly used pure Javascript with
Bootstrap for validations and building interface components.

After analyzing the difficulties generated by the complexity of the legacy product,
the company compared the costs involved and potential benefits of legacy maintenance
and chose to reengineer part of the application by creating a new product based on a
fully service oriented architecture (SOA), offering it only as SaaS hosted by a third-party
vendor. The new product was still written in the same proprietary language but using the
object-oriented paradigm. Specifically, standalone ERP-isolated services were devel-
oped, providing individual scalability. Webservices stopped using SOAP and started
using REST following OpenAPI standards. For the frontend a framework based on
Angular 2 was used and the interface was completely redesigned to improve usability.

The expected gains at the start of the project were: improved code quality; a more
robust system architecture, creating an application that is easier to administer and deploy;
decreased concurrency between application functionalities, and to create a independent
product that could be offered without the need to purchase the entire ERP.

The team was initially composed of 3 middle level developers, 1 Product Owner and
was subordinate to 1 productmanager.At the time ofwriting, the teamhad5developers, 1
DevOps analyst, 1 Tester, 1 ScrumMaster andwas under duties of 1 productmanager and
1 engineeringmanager. During the project 3 developerswere relocated to other demands.
The project started in July 2017 and lasted about 20 months, being one month to initial
understanding of the problem and 19 months to development. The initial understanding
phase served to understand the project needs and validate with customers whether the
proposed solutionwould be appropriate to them. For that, a Design Sprint weekwas held,
high fidelity prototypes were created and the minimum viable product (MVP) validated
with the customers. In the development phase, initial Sprints 1 through 5 were used to
understand the legacy software code, design the classes that would be used as the basis
for the backend and to design and develop interfaces based on validated prototypes with
customers. From Sprint 6 on the features development began. At Sprint 13, with the

Identifying Success Factors in a Legacy Systems Reengineering Project 105

input of a DevOps analyst, the production environment began to be prepared to receive
the application. Following the start of testing in an environment nearest to production,
defects and corrections began to be recorded from Sprint 19. The project matured and
at Sprint 26, which took place in November 2017, the pilot project was carried out in
first customer. With the pilot’s success the systemwent into production and new features
continued to be implemented in the product. New integrations and maintenance actions
were also registered.

4 Interviews

After 35 project sprints a semi-structured interview was conducted through an online
form with some of those involved in the development phase to understand the agile
and reengineering practices used and their impacts on the project from the team’s point
of view. Then, the content was grouped by similarity of themes using content analysis
[11]. The interviews were answered by the Product Owner and 4 developers. The main
questions are listed in Table 2, and the full content of the interviews can be accessed at
http://bit.ly/2lvUZDZ. Nine recurring themes were identified in the interviews, which
are presented below in Table 3.

Table 2. Main questions of the interview.

Q1 - What strategy was adopted to revitalize the legacy system?

Q2 - How good is the legacy system architecture?

Q3 - Did the team have all the skills and technical knowledge at the beginning of the project?
How was the knowledge acquisition during the project?

Q4 - How was the project management support?

Q5 - How was the pilot user accepting the project idea and after implementation?

Q6 - How did the team grow or shrink during the project? How did this impact throughout the
process?

Q7 - How was the user participation in the project decision making?

Q8 - Which agile practices have been adopted?

Q9 - How did agile practices contribute to the success of the project?

Q10 - How the application was documented? Is there documentation requested by the
customer?

Q12 - How did team communication influence the project?

Q13 - What types of tests were applied? Has this practice given safety and quality to the
product?

Q14 - How complex is the design of the end application?

Q15 - What is the toolset used in the application development, maintenance and deployment
process? How did this tooling evolve?

Q16 - Are coding standards defined? How does this help in the project?

http://bit.ly/2lvUZDZ

106 E. M. Fernandes and T. S. Barcelos

Table 3. Themes found in interviews

Theme Citation examples

Learning throughout the project Learning a new framework

Legacy issues and difficulties Complex code, lack of documentation

Legacy strengths Business rule adherence

Using reengineering practices Legacy code study, rules extraction

Use of agile practices Sprint planning, pair programming

Good management support Team autonomy

Project difficulties New developers adapt

Project gains More stable product

Agile practices were well accepted by the team andwere perceived positively. As key
benefits the team cited improved communication, close contact with the customer, func-
tionality deliveries that add customer value. The most mentioned practices are presented
below in Table 4.

Table 4. Most mentioned agile practices

Architectural spikes/spike solutions Retrospectives

Version control Demonstration or review meeting

Definition of done Daily meeting

Frequent deliveries Code review

Product backlog Scrum master

Task board Sprint backlog

Refactoring TDD

The use of a proprietary programming language and the adoption of the Object
Oriented paradigm were seen as an initial hindering factor for learning; on the other
hand, coding standards and automated test cases were pointed out as facilitators of
knowledge transmission and helped, in the team’s perception, to reduce the time between
the developer’s entry and the start of his work on the project. In addition, the team had
to deal with a completely new architecture by company standards. This required several
stories of study.

The team considered that the product was easy and intuitive for the end user, due to
the fact that, without training, after the pilot, about 200 users were accessing the product
in a fluid manner and with no maintenance usability issues.

Another perception of the team is that now it is easier to implement new features
and maintain the product. Automated testing brought more security to perform code
maintenance and refactoring. Serious production problems are rarely encountered and

Identifying Success Factors in a Legacy Systems Reengineering Project 107

the tests help to guarantee that the new sprint deploy won’t break the code or process in
production.

5 Document Analysis

As an indicator of the evolution of team deliveries we used the number of commits
performed per month, shown in Fig. 1, and the amount of points delivered by Sprint
presented in Fig. 2.

Fig. 1. Commits by month/year

Fig. 2. Delivered Points vs Sprint

We gathered data about the movement of team members with the product owner of
the project. Movement data included active people who joined and left the project and
people who were on vacation. The graph showing this movement is shown in Fig. 3.

Figure 4 shows the evolution of the number of test cases. The quantity of test cases
present at the end of each sprint was gathered from the version control repository.

108 E. M. Fernandes and T. S. Barcelos

Fig. 3. Staff variation per month

Fig. 4. Number of test cases per Sprint

6 Analysis of Results

In the test case chart (Fig. 4) we can notice that developers adopted the creation of
automated testing as a practice and continued to develop new test cases throughout the
project. This practice was cited in the interviews as a positive factor; besides this, it is a
recommended practice for both reengineering [6] and agile methods [9].

In some interview excerpts it was mentioned that the change and departure of devel-
opers affected the project progress, this can be reinforced by comparing the staff variation
chart bymonth (Fig. 3)with the commit chart bymonth (Fig. 1), where there is a decrease
in the number of commits in the months when developers left or when a developer went
on vacation. It is worth noting that the commit chart per month (Fig. 1) tends to return
to the previous level in the month following the staff exit, thus suggesting that a new
developer adaptation time tends to last about one month. This was considered a short
time by the team. The short adaptation time may have contributed to keeping the num-
ber of points delivered by mid-sprints to the end of the project stable even with 4 new
developers coming in and 2 leaving in the last 3 months of the project as seen in Fig. 2.

In the commit chart by month (Fig. 1) it is possible to observe a peak of commits
in November that coincides with the pilot project showing that the team had a different
approach during this period to support the demands of the project in production, but soon
the demand normalized, thus suggesting that the project in production remains stable and

Identifying Success Factors in a Legacy Systems Reengineering Project 109

does not have high demands for maintenance, a suggestion also made by those involved
in the interviews.

Based on the practices proposed in the literature, we can identify common factors
between software reengineering and agile practices. Technical expertise, testing, man-
agement support and simple design are factors mentioned in both methodologies and
were present in this reengineering project according to the interviewees. In this project,
we could see many factors that helped the good results indicated by the team. Some
of them are: choosing a migration strategy in initial sprints to support the knowledge
extraction from legacy code; the presence of executive support, budget and resources to
execute the project and alignment with the company’s business process; constant mon-
itoring of the migration process with scrum ceremonies and agile practices; applying
testing practices from the beginning; team and user motivation with constant user par-
ticipation; organization of small teams; delivering of key functionality first; producing
only the necessary amount of documentation; usage of strong communication to align
expectations and learn from each other; providing technical training during the project;
producing a simple design; usage of tooling support and well-defined coding standards.
Despite that, some difficulties were also found because the legacy system was hard to
maintain, extract information and test, did not have automated tests or good documen-
tation. However, the migration strategy was effective enough to get the knowledge from
the source code. The competence and expertise had to be obtained during the processed
supported by agile practices, and this made the project run slower than expected.

7 Conclusions

Given the similarity between a subset of successful practices in agile and reengineering
projects, as well as the suggestion to organize reengineering processes in an iterative
and incremental fashion, it is valid to suppose that reengineering projects tend to be
most successful when developed using agile methodologies. Thus, it is also possible to
conclude that the success factors of agile projects, such as technical expertise, simple
design, testing, among others, can also positively affect reengineering projects. This
hypothesis is preliminarily supported by case studies such as that presented by Galinium
and Shahbaz [6], which identified a demand for high level of communication, visibility
of progress and adaptation to change when necessary in reengineering processes. In
the case study presented in this article, based on the analyzed data we found evidence
that agile methods in fact supported the execution of the reengineering strategy, as they
allowed the team to acquire and disseminate knowledge throughout the project through
spike practices, team lectures for team and pair programming. In addition, agile practices
served to ensure that business and customer needs weremet from the outset of the project
and that customer demands were constantly prioritized.

The reengineering project was considered successful from the customer’s point of
view, as identified through testimonials given to the development team and mentioned in
the interviews. The reengineered system provided better performance andmore stability.
From the development team’s point of view, the application now has better code quality
and easiermaintenance anddevelopment of new features. For the company, the developed
product is alignedwith its strategy andmeets the needs of its customer. The project results

110 E. M. Fernandes and T. S. Barcelos

helps to reinforce the hypothesis that reengineering projects can bemore successfulwhen
developed using agile methodologies.

References

1. Demeyer, S., Ducasse, S., Nierstrasz, O.: Reengineering patterns. In: Object-OrientedReengi-
neering Patterns, pp. 1–14. Elsevier (2003). https://doi.org/10.1016/B978-155860639-5/
50006-7

2. Majthoub, M., Qutqui, M.H., Odeh, Y.: Software re-engineering: an overview. In: 2018 8th
International Conference onComputer Science and Information Technology (CSIT), Amman,
pp. 266–270. IEEE (2018). https://doi.org/10.1109/CSIT.2018.8486173

3. Sahoo, A., Kung, D., Gupta, S.: An agile methodology for reengineering object-oriented soft-
ware. Presented at the 28th International Conference on Software Engineering andKnowledge
Engineering, 1 July 2016. https://doi.org/10.18293/SEKE2016-227

4. 13th Annual State of Agile Report. https://www.stateofagile.com/#ufh-i-521251909-13th-
annual-state-of-agile-report/473508

5. Khadka,R., Saeidi,A., Idu,A., Jurrian,H., Jansen, S.: Legacy to SOAEvolution:ASystematic
Literature Review. IGI Global, Hershey (2012)

6. Galinium, M., Shahbaz, N.: Success factors model: case studies in the migration of legacy
systems to Service Oriented Architecture. In: 2012 Ninth International Conference on Com-
puter Science and Software Engineering (JCSSE), Bangkok, Thailand, pp. 236–241. IEEE
(2012). https://doi.org/10.1109/JCSSE.2012.6261958

7. de O. Melo, C., et al.: The evolution of agile software development in Brazil: education,
research, and the state-of-the-practice. J. Braz. Comput. Soc. 19, 523–552 (2013). https://doi.
org/10.1007/s13173-013-0114-x

8. Mazuco, A.S. da C.: Percepções de Práticas Ágeis em Desenvolvimento de Software:
Benefícios e Desafios (2017)

9. da Silva, K.M.B., dos Santos, S.C.: Critical factors in agile software projects according to
people, process and technology perspective. In: 2015 6th BrazilianWorkshop on Agile Meth-
ods (WBMA), Pernambuco, Brazil, pp. 48–54. IEEE (2015). https://doi.org/10.1109/WBMA.
2015.19

10. Wholin, C.P.R.,Höst,M.,Ohlsson,M., Regnell, B.,Wesslön,A.: Experimentation in Software
Engineering: An Introduction. Kluwer Academic Publishers, New York (2000)

11. Creswell, J.W., Miller, D.L.: Determining validity in qualitative inquiry. Theory Pract. 39,
124–130 (2000). https://doi.org/10.1207/s15430421tip3903_2

https://doi.org/10.1016/B978-155860639-5/50006-7
https://doi.org/10.1109/CSIT.2018.8486173
https://doi.org/10.18293/SEKE2016-227
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
https://doi.org/10.1109/JCSSE.2012.6261958
https://doi.org/10.1007/s13173-013-0114-x
https://doi.org/10.1109/WBMA.2015.19
https://doi.org/10.1207/s15430421tip3903_2

ATIMO – A Tool for Alocating Agile
Teams

Júnea Eliza Brandão Caldeira1,2 , Bruno Rafael de Oliveira Rodrigues1 ,
Sérgio Roberto Imaeda Yoshioka2 , and Fernando Silva Parreiras1(B)

1 Laboratory for Advanced Information Systems - LAIS, Faculty of Business
Sciences, FUMEC University, 30310-190 Belo Horizonte, MG, Brazil

fernando.parreiras@fumec.br
2 TOTVS S.A., Av. Raja Gabáglia, 2664 - Estoril,

Belo Horizonte, MG 30494-170, Brazil
http://www.fumec.br/lais

http://www.totvs.com.br

Abstract. It is essential for the success of a project to put together
teams that meet the project requirements with lower cost and higher
quality. Given this context, the present study developed a tool called
ATIMO that uses the optimization algorithms NSGAII, SPEA2, and
MOCell, to put agile teams together. The algorithms implemented in
ATIMO were tested by being applied to four real projects in an exper-
iment performed by a software development company. This approach
took into account the project features, the developers’ profile, and both
the project and the organization constraints. As a result, the algorithms
returned solutions with the number of resources needed to carry out
the project as well as the best qualified resources for the project with
productivity and lower cost to meet the established deadline. The algo-
rithms NSGAII, and SPEA2 presented similar results and behavior, as
the MOCell algorithm presented a better performance in computational
effort and required a larger population for its saturation.

Keywords: Human resources allocation · Multi-objective
optimization · Agile teams

1 Introduction

The allocation of resources is a critical task in software projects [4]. The deci-
sion of the project manager concerning the composition of a team that will work
on a given project may lead to the project either succeeding or failing. This
resource allocation task has aspects that must be pondered according to the
needs of the organization and the project [3], such as the skills, capacities and
experiences of each team member. However, since this is a complex and arduous
task, project managers tend to put together teams that do not satisfy the needs
and demands of a project [3]. In this regard, it becomes relevant that software
development companies increase their efficiency, productivity, and reduce their
c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 111–127, 2019.
https://doi.org/10.1007/978-3-030-36701-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_10&domain=pdf
http://orcid.org/0000-0002-4552-7178
http://orcid.org/0000-0003-2113-6794
http://orcid.org/0000-0003-0016-733X
http://orcid.org/0000-0002-9832-1501
https://doi.org/10.1007/978-3-030-36701-5_10

112 J. E. B. Caldeira et al.

costs [1]. In order to reach these goals, it is essential to properly manage the
resources assessing the performance of the teams [10]. By utilizing agile method-
ologies the work is handled collaboratively, and the teams are self-organized,
being able to dynamically adapt to changes in the customer requirements [12].

The composition of a team can be defined based on the view of managers,
who may not often consider each team member in terms of knowledge, abilities,
attitude, performance, and cost. When the goal is to analyze teams, the process,
the product, the organization, and human factors related to the project [13]
should be taken into account. As of the mapping of the team’s competences,
their profile, the managers and project leaders need to evaluate the allocation
of the teams as well as allocation to new projects, allowing the companies to
enhance the effectiveness and assertiveness of their projects.

It is possible to find studies in literature that use genetic algorithms that
enable an automatized process of allocation of resources and assist managers in
putting together their teams [5,17]. In this context, this study aims at proposing
a tool that supports managers in composing agile teams. Thus, the ATIMO
tool was developed utilizing the NSGA II, SPEA2, and MOCELL algorithms
as options for putting a team together. With the purpose of measuring the
performance of ATIMO, an experiment was conducted in a software development
company to make teams with higher quality and lower cost in three real company
scenarios.

The present study is structured as follows: Sect. 2 shows the related works, in
Sect. 3 there is the modelling of the problem, Sect. 4 presents the algorithms used
for building the tool, Sect. 5 contemplates the steps of the experiment, Sect. 6
presents and discusses the results, and finally, Sect. 8 brings the conclusions.

2 Related Work

This study extends the work of Brito et al. [5] in 2012 that proposed an approach
to solve multi-objective problems by combining optimization methods based on
Search Based Software Engineering (SBSE). To handle the problem of alloca-
tion in agile teams, they utilized the NSGAII multi-objective meta-heuristic
algorithm and the Mandani Fuzzy inference system. In the present study the
ATIMO tool was implemented based on the approach proposed by Brito et al.,
but unlike them, the SPEA2 and MOCell algorithms were also used.

Nebro et al. propose the MOCell algorithm for solving multi-objective opti-
mization problems and compare its performance to the NSGA-II and SPEA2 [2]
algorithms. A novel cellular genetic algorithm was introduced to solve multi-
objective optimization problems. The idea was to assess problems with or with-
out constraints and compare them to two state-of-the-art evolutionary multi-
objective optimizers, NSGA-II and SPEA2. The experiment carried out with
ATIMO in this work indicated that MOCell obtained more competitive results
in terms of convergence and hypervolume and overcame the two algorithms com-
pared as of the diversity of the solutions along the Pareto chart.

Connor and Shah [7] presented the results of the application of three meta-
heuristic search algorithms in solving problems in project management software.

ATIMO – A Tool for Alocating Agile Teams 113

The Simulated annealing, tabu search algorithm and genetic algorithms were
assessed in problems regarding allocation and setting out resources [7]. The
objective of this research was to measure the performance of different tech-
niques of meta-heuristic search regarding typical problems of software develop-
ment projects when allocating and setting out resources software. In the present
study, we report a tool that uses genetic algorithms to solve allocations problems
and a set of experiments that measure the performance of three studied algo-
rithms and the results point out that all of the heuristic research techniques can
be used to solve problems when allocating and putting resources together for a
software project. The comparative analysis suggested that the genetic algorithm
performed better than the other two algorithms in the study. Thus, differently
from Connor and Shah, this study dealt with selecting the human resources,
assigning them project tasks, that is, allocated the resources in the project.

3 Modelling the Problem

The solution to the problem is modelled as binary vectors in which:

– The size of the vector is the same size as of the pool of the analysts.
– 0 or 1 in a position of the vector represents whether the analyst in that

position is present or absent.

The problem has two objective functions to minimize the cost and maximize
the competences described in Eqs. 1 and 2. They are inspired by the study of
Brito et al. [5].

Min

n∑

i=1

(Wi ∗ Di + Fp) (1)

Max

n∑

i=1

(Ki ∗ Di − Fp) (2)

Fp =
Tp − Pr

Tp
∗ 100

Pr = Dp ∗
n∑

i=1

(Pi ∗ Di)

In which:

– i is the index of the analyst.
– Di is 1 if the analyst is present in the solution or 0 if it is not.
– n is the amount of analysts in the pool.
– Wi is the developer’s remuneration.
– Ki is the developer’s competence.
– Pi is the developer’s productivity
– Fp is the factor of penalization.
– Tp is the size of the project (score).

114 J. E. B. Caldeira et al.

– Dp is the number of working days available for carrying out the project.
– Pr is the total time productivity

Productivity is defined as the sum of the individual productivity of each
selected analyst, multiplied by the number of working days. The factor of penal-
ization reduces the values of the objective functions proportionally to how far the
teams’ productivity is from the target productivity (ProjectSize). Therefore, the
key converges to solutions that meet the project size demands in the available
time. This behavior differs from a linear programming, in which there are restric-
tions and the solutions that do not satisfy the conditions are eliminated. In the
evolutionary algorithms studied and implemented in jMetal [9], the restrictions
are selection criteria to find the most suitable for the next generation. Then,
between two individuals, one that does present restrictions and another one that
does not, the one who does not present restrictions will be chosen as apt for the
next generation, even if this individual’s objective functions are worse. Consid-
ering two individuals that present restrictions, the chosen one will be the person
with the lower value of restriction. Thus, the restriction used in this experiment
was:

Restriction =

{
0, if Productivity ≥ ProjectSize

ProjectSize − Productivity, else

4 Algorithms Utilized in the ATIMO Tool

The algorithms used for optimizing the teams are described as follows.

4.1 NSGA II

ATIMO – A Tool for Alocating Agile Teams 115

4.2 SPEA2

4.3 MOCELL

4.4 Parameters of the Algorithms

The main parameters of each algorithm in jMetal are:

– Population Size.
The initial population size, which is also the population size after each
iteration.

116 J. E. B. Caldeira et al.

– Number of generations.
The amount of generations in the crossover and mutation cycle.

– Forms of representation:
Binary. Every gene is represented by a bit that symbolizes the presence or
absence of the analyst in the solution.

– Crossover
For the binary form of representation, in JMetal, the following crossover meth-
ods can be applied:
PointCrossOver : one position is randomly selected. In the copy of both par-
ents, all of the positions after the score are changed and therefore results in
the children.
HUXCrossover (Half Uniform Crossover): in this approach half the different
bits among the parents are changed. To do so it is necessary to calculate the
amount of different bits. This number is divided by two and the result is the
amount of different bits changed among the copies of the parents. Likewise
are the results of the children.

5 The Experiment

In order to assess the ATIMO tool, developed for allocating resources, an exper-
iment was conducted in a software company that uses the agile methodology
- SCRUM. The experiment was carried out in one of the company’s branches
composed of 400 analysts including developers, testers, Scrum Masters, POs,
among others, as resources. The company adopts 15-day Sprints and the release
lasts for three months.

The main goal of the experiment was to compare the performance of the
multi-objective optimizer algorithms NSGAII, SPEA2, and MOCell, selected
from the literature, in the scope of allocation of agile teams for software devel-
opment. All the algorithms utilized in this work were implemented by using the
jMetal framework (Version 4.5.2)1. jMetal means meta-heuristic algorithms in
Java and it is based on Java-oriented objects, aiming to facilitate the devel-
opment of meta-heuristics to solve the Multiobjective Optimization Problems
(MOPs). jMetal provides a set of classes that can be used as building blocks
for multi-objective meta-heuristics; therefore promoting the reuse of the code,
the algorithms share the same basic components such as the implementation of
genetic operators and density estimators, enabling a fair comparison of different
meta-heuristics for possible MOPs.

The first step was to identify the parameters to be considered when mapping
the profile of the analysts. The developers were evaluated based on the following
characteristics: Competences (knowledge, abilities, attitudes, culture); Remuner-
ation, Productivity, and Assertiveness. The definition of these parameters was
based on the concepts of Knowledge, Skills, and Attitudes (KSA) [5,11] and on
the characteristics of agile teams [8]. Thus, it is possible to identify the number
of human resources needed for the company software project, considering better
qualifications and lower cost.
1 http://jmetal.sourceforge.net/.

http://jmetal.sourceforge.net/

ATIMO – A Tool for Alocating Agile Teams 117

For Knowledge, sources of formal and informal knowledge were utilized in
the performance of daily tasks. In this area, the developer’s degree of knowl-
edge concerning a range of topics were considered: technology, processes, prod-
uct, project, among others. For the skills, the ones acquired from experience
were taken into account. They were classified into categories: communication;
collaboration; creativity; autonomy; emotional intelligence; curiosity; program-
ming logic; strategic vision; leadership, and self-management. The attitudes were
classified as follows: discipline; relationship; initiative; motivation; interest, and
dedication; protagonism; commitment; mastery, and facilitator.

For each category the developer was evaluated in five levels: very low, low,
average, high, very high. The data was obtained from the assessment carried out
by the managers of the people belonging to the teams being studied along with
the Scrum Masters, and the POs.

In question of culture, the score resulting from the performance evaluation
used in the software company studied was considered as an organizational aspect
that affects performance. The information was obtained through the automatic
extraction of data from the company’s human resources management software.

As parameters of remuneration in the developers’ assessment, the data con-
cerning salary was achieved from the tool that manages the payroll upon express
authorization of the board in charge. However, for confidentiality purposes, the
information was stratified in career levels and graduated from zero to 12.

The parameters productivity and assertiveness in the developers’ evaluation
were collected based on information by Squad and Sprint provided by Scrum
Masters for the team in the Project Management Office (PMO).

Also, the mapping of the developers’ profile was conducted aiming at mapping
the profile of the professionals who work in development in the business segments
chosen for the study. This mapping was made from the parameters, compe-
tences: technical knowledge, abilities, attitude, organizational culture, remuner-
ation, productivity, and assertiveness in the projects handling. Data collection
was made by the human resources managers and the POs. The salary of each
analyst corresponding to the career level from zero to 12 was collected from
payroll management system.

The PMO team provided information about the period of a year referring to
the projects as well as the composition of each Squad, Sprint, the identification
of the analysts, the amount of days in which the analyst took part in the Sprint,
the number of points planned and delivered by the Squad. By adding the data by
Sprint, and Squad, it is possible to calculate the average speed of the Squad in
the Sprint, whereas adding the data by Squad, enables to calculate the average
speed of that Squad.

5.1 Organization of the Project Scenarios for Carrying Out the
Tests

The context of the experiment was explained to the two PMOs of the segments
chosen for the study, who selected two real project scenarios that had already

118 J. E. B. Caldeira et al.

been performed in the company. For each scenario, the effort needed for run-
ning the project was raised, effort measured in score, the time they had to
carry out the project, deadline for delivering to the customers, the technical
and behavioural requirements necessary to the human resources taking part in
the project. The score has already been normalized and each one of the three
algorithms NSGAII, SPEA2, and MOCell were executed in their variants (with
Single Point Crossover and Hux Crossover) 20 times, for the number of genera-
tions of 250 and the population ranging from: 100, 200, 300, ..., 800, 900, 1000;
for the four scenarios. The data collected from the executions of the managers
were added to this data. Afterwards, the experiment was complemented with
data from the execution of NSGAII and SPEA2 with population ranging from
1100, 1200, ..., 1500, and the MOCell with the population varying from 1100,
1200, ..., 1900, 2000.

The scenarios they proposed are described as follows.

5.2 Test Scenario I

Building accounting indicators for the Core segment to be utilized in the BI solu-
tion. The context if from a project for building indicators, metrics, and reports
for the Core segment. The project can be divided into three parts: extractors
SQL queries in the databases SQL Server and Oracle; modelling of Business
Intelligence (BI): modelling of the tables referring to the facts and dimensions,
on the basis of granularity and the relevance of the data; Dashboards: build-
ing up metrics, reports, and graphs for viewing information. Desirable knowl-
edge: average knowledge on Core, database, BI concepts, Gooddata platform. It
requires a professional with good programming logic and that is able to work
collaboratively, since it was necessary to obtain information from customers and
from other areas. Given the project size of 3800 points and the maximum dead-
line of 480 working days.

5.3 Test Scenario II

Construction of predictive analytics solution. The context is part of a solution
that can be developed in three parts: (1) Modelling of the solution according to
their specific characteristics that will serve as an input for building the machine
learning algorithm; (2) Modelling and setting of the MDM process as well as
the data models for the process input and output data storage; (3) Creating the
Web portal for displaying the prediction and management indicators.

Desirable knowledge: Angular JS, Type Script, HTML, CSS, average knowl-
edge of Core, platform of artificial intelligence ownership, database. It requires
a professional with good programming logic, initiative, self-taught, easy to get
along with, and self motivated. Because this is an innovative project, it demands
a great deal of R&D. This project has a 1.950 points size and the maximum
deadline is 360 working days.

ATIMO – A Tool for Alocating Agile Teams 119

5.4 Test Scenario III

The context of the project is the evolution of the sales portal, in this case the need
for improvement was identified concerning enhancing processes and interface
changes. The desirable knowledge is: PHP, Mobile, WEB, knowledge aboutUser
Experience (UX), Core product knowledge. In this scenario the project size is
500 points and the deadline is 120 working days.

5.5 Test Scenario IV

The context is a migration project for the Core product integration with the
Backoffice, allowing for an integration framework with the clipping model, in
which the financial solution is in charge of managing the Core solution receiv-
ables. Desirable knowledge is: Backoffice, having already taken part of a project
of integration migration in the same scope, knowledge about the involved frame-
work, deep knowledge on the current integration architecture, knowledge of
architecture, seniority, pro-activity, knowledge about the financial solution. The
project size is 300 points and the deadline is 60 working days.

5.6 Conducting the Experiments

A group of 10 Scrum Masters from segments selected for the study were invited
for the performance of the experiment. A step-by-step for carrying out the exper-
iment was elaborated. Initially, the participants were told the context of the
research and the goals of the experiment. The project scenarios to be simulated
were presented and the project parameters were defined by the PMO of the seg-
ment in question. With this information, the group was invited to go over all the
information and validate it. When the group arrived at a consensus about the
project parameters, the simulation started. The PMO attended this meeting to
clarify the Scrum Masters’ doubts.

Each participant had as objective to determine the number of analysts
required for the project as well as choosing the most suitable analysts for the
project scenarios studied, taking into consideration the most competent analysts,
with enough productivity to meet the deadline requested for delivery and that had
the lower cost, lower salary level. The participants were oriented as of the use of the
tool to support the team selection. From the scenarios presented, each participant
individually carried out the simulation picking a team for each project scenario
presented. The PMO who elaborated the scenario also carried out the simulation
previously, but the data was not considered in the results, only to assess the ade-
quacy of the experiment. 20 simulations were carried out: four scenarios and five
people per scenario. The data obtained from each simulation was recorded in a log
for subsequent analysis. After the manual simulation, the optimizer algorithms
were executed and the results were also recorded in the log.

In the experiment, the participants used the ATIMO to compose the team
according to the project scenarios described. First, they informed the overall
resources of the project such as the size of team, working days, and the skills

120 J. E. B. Caldeira et al.

required for the project, such as: technologies, database, tools, and so on. The
Fig. 1 shows the screen2 of ATIMO for this task. Next, they selected the developer
knowledge with the corresponding weight for the knowledge required for the
project. Figure 2 presents the ATIMOS screen for this task. After, ATIMO shows
the available developers with respective scores for each category of competence,
productivity, and remuneration. So, the participants selected the developer that
best met the project requirements. experiment used this simulation to compare

Fig. 1. Selection of skills required for the project

Fig. 2. Selection of developer knowledge

2 The ATIMO’s labels are in Portuguese because the experiment was applied in a
Brazilian software company.

ATIMO – A Tool for Alocating Agile Teams 121

Fig. 3. Selection of developer knowledge

with the result presented by the optimization algorithms. Figure 3 presents the
results of the experiment where each tab represents the results suggested by the
algorithms and the participant’s choice.

The main parameters of each algorithm in jMetal are: population size, the
number of generations; the amount of generations in the crossover and mutation
cycle and every gene is represented by a bit. For the binary form of representa-
tion in JMetal, the following crossover methods can be utilized: PointCrossOver :
only one position is randomly selected. When copying both parents, all the posi-
tions after the point are changed and, thus, they the children are results. HUX-
Crossover (Half Uniform Crossover): in this approach, half the different bits
among the parents are changed. Thus, it is necessary to calculate the amount
of different bits. This number is divided by two and the resulting number is the
amount of different bits changed among the copies of the parents. Likewise are
the results of the children.

In the execution of the algorithms throughout the experiment, the maximum
parameters for generations were utilized, population size, size of variables set,
crossover probability, mutation probability. Given that, the maximum of genera-
tions and the population size were parameterized according to each scenario, the
size of the variables set was the number of analysts available, the probability of
crossover was 90% and the probability of mutation was 50% out of the number
of analysts available.

In this study, the parameters were defined based on similar works carried out
identified in the literature that had consistent results. The choice of the crossover
and mutation parameters based on the works presented in [6,14–16,18]. In the
simulation, the parameters maximum number of generations and the population
size varied according to the experiment of the study. The size of variables set is
the same as of the number of analysts available for forming the team, since each
gene represents the presence or absence of the analyst in the solution. In Sect. 6,
the results obtained with this methodology are presented.

Section 6 presents the results of the variation of the population size, in
which the number of generations is fixed in 250 and the population size varies for
the studied algorithms; variation of the number of generations, in which
the population size is fixed and the number of generation varies; measuring
the performance of the algorithms, in which the execution is measured,

122 J. E. B. Caldeira et al.

population size or number of generations, in which the analysis is on
whether it is more interesting to increase the population size or the number of
generations; choice of the best of each execution, in which the analysis is
made considering only the best solution given by the algorithm in each execution:
one execution can return more than one solutions.

6 Results and Discussion

In order to present the performance of algorithms used in ATIMO tool, in this
section, it is possible to see in Tables 1, 2, 3, and 4 the comparisons of the aver-
age results presented for the algorithms configured with the bigger population,
ordered by the value of quality (the number of competence score) divided by
the cost, for the four scenarios of the experiment:

When comparing the quality and cost of the best algorithm regarding the
managers, it is noticeable the delivery of, in average, 13,44% (MOCell), 13,03%
(SPEA2), 60,11% (NSGAII), and 33,94% (NSGAII) more quality and cost than
the average managers, for the scenarios I, II, III, and IV, respectively.

Table 1. Scenario I varying the population size

Algorithm Quality/cost Quality Cost Productivity

MOCELL Binary 10.782493 572.023599 54.561947 3818.306254

SPEA2 Binary 10.631735 617.750000 58.142857 3800.862857

NSGAII Binary 10.126990 662.727273 65.515152 3853.703030

Manager 9.502051 613.400000 65.400000 3903.954000

NSGAII Binary HUXCrossover 8.027127 1015.446429 126.982143 7055.401786

MOCELL Binary HUXCrossover 7.900434 991.764706 125.588235 7005.171176

SPEA2 Binary HUXCrossover 7.872259 1027.563636 130.527273 7221.774182

Table 2. Scenario II varying the population size

Algorithm Quality/cost Quality Cost Productivity

SPEA2 Binary 11.884401 429.600000 36.200000 1944.450400

NSGAII Binary 11.631291 443.764706 38.205882 1945.612824

MOCELL Binary 11.147568 405.767760 37.401639 1942.472732

Manager 10.518975 458.400000 44.000000 2115.604000

NSGAII Binary HUXCrossover 7.543934 952.125000 126.200000 5348.226750

MOCELL Binary HUXCrossover 7.456709 886.485714 118.971429 5104.342857

SPEA2 Binary HUXCrossover 7.443610 846.000000 114.029412 4836.977647

ATIMO – A Tool for Alocating Agile Teams 123

Table 3. Scenario III varying the population size

Algorithm Quality/cost Quality Cost Productivity

NSGAII Binary 15.759171 395.351351 25.162162 301.431892

SPEA2 Binary 15.386973 405.913043 26.434783 301.546957

MOCELL Binary 13.762170 380.288820 28.673913 300.832919

Manager 9.842172 432.200000 44.600000 301.156000

NSGAII Binary HUXCrossover 7.741285 917.138889 118.722222 866.447778

SPEA2 Binary HUXCrossover 7.293457 885.250000 121.468750 860.554375

MOCELL Binary HUXCrossover 7.201363 866.833333 120.666667 856.605333

Table 4. Scenario IV varying the population size

Algorithm Quality/cost Quality Cost Productivity

SPEA2 Binary 6.404832 136.958333 21.416667 484.972917

NSGAII Binary 6.214730 152.521739 24.652174 485.479783

MOCELL Binary 5.354286 124.527344 23.738281 489.093242

Manager 4.781672 172.600000 36.800000 576.936000

SPEA2 Binary HUXCrossover 2.550990 307.440000 120.200000 1722.890000

NSGAII Binary HUXCrossover 2.504675 282.185185 112.703704 1653.634074

MOCELL Binary HUXCrossover 2.500024 300.312500 120.375000 1770.900625

Table 5. Better quality and cost of each scenario

Scenario Algorithm Productivity Quality/cost

I MOCell 3846,1 15,0625

II MOCell 1806,52 16,2105

III MOCell 300,64 18,2941

IV MOCell 482,17 7,1428

Source: research data.

As it can be seen from Tables 1, 2, 3, and 4, the quality and cost of the
algorithms executed with Hux Crossover were below the ones executed with
Single Point Crossover in all scenarios. Therefore, the focus will be only on the
results obtained from the Single Point Crossover algorithms. Besides that, it is
interesting to observe that, although MOCell has average results close to the
compared algorithms, it presents expressive results. Table 5, shows the results
with best quality and cost of each scenario and the respective algorithm. In
all the scenarios, MOCell was the algorithm that presented the best solution.
Respectively, 58,49%, 54,11%, 85,88%, and 49,38% higher than the average result
of the managers. These results were higher than the average of the best algorithm
of the scenario.

124 J. E. B. Caldeira et al.

An additional test was carried out. By setting the population size to 250
and varying the number of generations from 100 to 1.000: in scenario I, the best
algorithm was in average 16,28% (MOCell) better than the average result of the
managers. It was also noticed an improvement in MOCell rather than in the
compared algorithms when the number of generations increases. In scenarios II,
III, and IV, the best algorithm delivered 14,64% (SPEA2), 60,73% (NSGAII),
and 31,21% (SPEA2) more quality/cost than the average managers, respectively.
Thus, the evolution of the quality and cost results in each scenario varying the
number of generations was similar to the previously presented ones varying the
population size, regarding which algorithm performed best.

All the algorithms were executed in a computer with the following setting:
Intel Core i5-7200U processor CPU 2.50 GHz 2.71 GHz, RAM memory of 16 GB
executed in Windows 64 bits. The execution time spent with MOCell with a
population of 2.000 is approximately the same spent on NSGAII and SPEA2
with a population of 600 and 500, respectively.

In all of the scenarios the percentage average improvement between 100 and
1.000 of population was compared setting the number of generations to 250
with the percentage average improvement between 100 and 1.000 generations,
setting the population size in 250. In all scenarios the improvement was higher
for MOCell, compared with the other two algorithms. This proves that MOCell
is greedier by population size as well as by number of generations bigger than the
compared algorithms. In compensation, NSGAII was the least greedy. As such,
it is noticeable the advantage of investing in population instead of number of
generations. However, the increase in population in the algorithms SPEA2 and
NSGAII reflects the quadratic increase in the execution time, while the increase
in the number of generations is linear. Therefore, it makes sense to conclude
the predilection for increasing the number of generations in SPEA2 an NSGAII
instead of the population size and the inverse for MOCell.

In this study, each one of the 20 executions was numbered so that each algo-
rithm could return more than one solution. The solutions were filtered in order
to keep only the best result of each execution, the one with greater quality and
cost value. This procedure has special effect in MOCell, which returns many
solutions, as its objective is also to provide a bigger and better sample of the
Pareto front [2]. Thus, by choosing the best solution of each execution, better
quality and cost for each scenario, MOCell was in average, superior to the com-
pared algorithms in the three first scenarios and being statistically equivalent in
each execution.

By filtering the solutions in order to select the best one from each execution,
through the best quality and cost, MOCell presented superior average in the
three first scenarios and a similar result compared to the compared algorithms
in the fourth scenario. It is a characteristic of the algorithm the high variance,
since one of its objectives is to represent well the Pareto front [2]. In practical
terms, interesting results could be presented if the algorithm were executed a
few times and the best solutions were collected, as in all the scenarios the best
solution derived from this algorithm.

ATIMO – A Tool for Alocating Agile Teams 125

In addition to that, in the same work [2], the improvement of MOCell was
noticed by using a feedback approach of the non dominating population archived,
randomly replacing the population of the next iteration. This enhancement was
not contemplated in this work given that in the JMetal version adopted it was
not implemented in MOCell, but the other versions of the algorithm, names as
sMOCell and aMOCell, which were not tested in this study. Then, there is still
the possibility of the algorithm presenting better results than the ones observed
here.

Finally, based on the data verified for this scenario, the utilization of MOCell
with a population of 2.000 and by selecting the best solution from each execution
is highlighted. In case it is inserted in a scope in which it is possible to await
the result, it is also possible to collect the best solutions from many executions,
considering that these are better than the average, but presented fewer times,
regarding the total amount of executions.

The average results of managers were calculated and compared with results
of the ATIMO. With 75% of confidence, the algorithms implemented in ATIMO
outperformed the managers’. Therefore, we can confirm that ATIMO can be
used as a tool to put together agile teams in software development companies.
However, in the moment this paper was being written, the tool was still in the
testing phase to improve the results quality and usability, so it is not yet available
outside the company.

7 Threats to the Validity of Research

This study evaluated optimization algorithms in order to put agile teams
together in software projects. However, threats to validity of the research may
be considered. First, in the experiment, the parameters were not tuned. Thus,
these parameters may affect the comparison. To avoid these problems, the setup
parameters highlighted in the literature were used. Also, the indicators hypervol-
ume, coverage, and Inverted Generational Distance (IGD) were not evaluated.
In order to compensate, an empirical approach was used based on the allocation
of teams by managers.

The experiment was applied to one company and in a few projects. In order to
improve the tool, the intention is to expand the use of the tool to other projects
and other companies.

8 Conclusion

The objective of this research was to assess the performance of optimization
techniques applied to the allocation of agile teams in software development.
With this purpose, the ATIMO tool was developed, allowing for the managers
to use three optimizer algorithms NSGAII, SPEA2, and MOCell. To evaluate
the tool, an experiment was carried out in a software development company
that adopts the agile methodology in its projects. Four real company scenarios
were tested in the experiment, in which the tested algorithms proved adherent

126 J. E. B. Caldeira et al.

to the problem posed. The algorithms SPEA2 and NSGAII presented similar
results and NSGAII is less greedier, for this reason, it reaches a saturation point
with less population than SPEA2, besides having a better computational per-
formance. Therefore, the use of NSGAII for the studied cases is recommended,
even if MOCell had expressive results, although with a bigger population. Future
research can invest in assessing the performance of MOCell by using the feed-
back approach of the non dominating population archived, randomly replacing
the population of the next iteration. Another opportunity for future research
would be to invest in the study of the algorithms configuration parameters eval-
uating the approach of automation of a set of parameters to be modified during
its execution and analysis of the results achieved.

References

1. Adenso-Dı́az, B., Gonzalez-Torre, P., Garcia, V.: A capacity management model
in service industries. Int. J. Serv. Ind. Manag. 13(3), 286–302 (2002)

2. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: MOCell: a cellular
genetic algorithm for multiobjective optimization. Int. J. Intell. Syst. 24, 726–746
(2009). https://doi.org/10.1002/int.20358

3. Barreto, A., de Oliveira Barros, M., Werner, C.M.L.: Staffing a software project:
a constraint satisfaction and optimization-based approach. Comput. Oper. Res.
35(10), 3073–3089 (2008). https://doi.org/10.1016/j.cor.2007.01.010

4. Bibi, N., Ahsan, A., Anwar, Z.: Project resource allocation optimization using
search based software engineering - a framework. In: Proceedings of the 9th Inter-
national Conference on Digital Information Management (ICDIM 2014), Phitsan-
ulok, Thailand, pp. 226–229. IEEE, 29 September–1 October 2014. https://doi.
org/10.1109/ICDIM.2014.6991431

5. Britto, R., Neto, P.S., Rabelo, R., Ayala, W., Soares, T.: A hybrid approach to
solve the agile team allocation problem. In: Proceedings of IEEE Congress on
Evolutionary Computation (CEC 2012), Brisbane, Australia, pp. 1–8, 10–15 June
2012. IEEE (2012). https://doi.org/10.1109/CEC.2012.6252999

6. Cervantes, J., Stephens, C.R.: Optimal mutation rates for genetic search. In: Pro-
ceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,
pp. 1313–1320. ACM (2006)

7. Connor, A.M., Shah, A.: Resource allocation using metaheuristic search. In: Pro-
ceedings of the 4th International Conference on Computer Science and Information
Technology (CCSIT 2014), Sydney, Australia, 21–22 February 2014. https://doi.
org/10.5121/csit.2014.4230

8. Coram, M., Bohner, S.: The impact of agile methods on software project manage-
ment. In: 12th IEEE International Conference and Workshops on the Engineering
of Computer-Based Systems, ECBS 2005, pp. 363–370. IEEE (2005)

9. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42, 760–771 (2011). https://doi.org/10.1016/j.advengsoft.
2011.05.014. http://www.sciencedirect.com/science/article/pii/S096599781100
1219

10. Fagerholm, F., Ikonen, M., Kettunen, P., Münch, J., Roto, V., Abrahamsson, P.:
Performance alignment work: how software developers experience the continuous
adaptation of team performance in lean and agile environments. Inf. Softw. Tech-
nol. 64, 132–147 (2015)

https://doi.org/10.1002/int.20358
https://doi.org/10.1016/j.cor.2007.01.010
https://doi.org/10.1109/ICDIM.2014.6991431
https://doi.org/10.1109/ICDIM.2014.6991431
https://doi.org/10.1109/CEC.2012.6252999
https://doi.org/10.5121/csit.2014.4230
https://doi.org/10.5121/csit.2014.4230
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1016/j.advengsoft.2011.05.014
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://www.sciencedirect.com/science/article/pii/S0965997811001219

ATIMO – A Tool for Alocating Agile Teams 127

11. Gangani, N., McLean, G.N., Braden, R.A.: A competency-based human resource
development strategy. Perform. Improv. Q. 19(1), 127–139 (2006)

12. Hoda, R., Noble, J., Marshall, S.: Organizing self-organizing teams. In: 2010
ACM/IEEE 32nd International Conference on Software Engineering, vol. 1, pp.
285–294. IEEE (2010)

13. Ingold, D., Boehm, B., Koolmanojwong, S.: A model for estimating agile project
process and schedule acceleration. In: Proceedings of the 2013 International Con-
ference on Software and System Process, pp. 29–35. ACM (2013)

14. Khalil, E., Assaf, M., Sayyad, A.S.: Human resource optimization for bug fixing:
balancing short-term and long-term objectives. In: Menzies, T., Petke, J. (eds.)
SSBSE 2017. LNCS, vol. 10452, pp. 124–129. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66299-2 9

15. Ochoa, G.: Setting the mutation rate: scope and limitations of the 1/l heuristic.
In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 495–502. Morgan Kaufmann Publishers Inc. (2002)

16. del Sagrado, J., del Aguila, I.M., Orellana, F.J.: Multi-objective ant colony opti-
mization for requirements selection. Empir. Softw. Eng. 20(3), 577–610 (2015)

17. Sayyad, A.S., Ammar, H.: Pareto-optimal search-based software engineering (POS-
BSE): a literature survey. In: 2013 2nd International Workshop on Realizing Artifi-
cial Intelligence Synergies in Software Engineering (RAISE), pp. 21–27, May 2013.
https://doi.org/10.1109/RAISE.2013.6615200

18. Wen, F., Lin, C.M.: Multistage human resource allocation for software develop-
ment by multiobjective genetic algorithm. Open Appl. Math. J. 2, 95–103 (2008).
http://www.bentham.org/open/toamj/articles/V002/95TOAMJ.pdf

https://doi.org/10.1007/978-3-319-66299-2_9
https://doi.org/10.1007/978-3-319-66299-2_9
https://doi.org/10.1109/RAISE.2013.6615200
http://www.bentham.org/open/toamj/articles/V002/95TOAMJ.pdf

A Survey on Agile Practices
and Challenges of a Global Software

Development Team

Tatiane Lautert(B) , Adolfo Gustavo Serra Seca Neto ,
and Nádia P. Kozievitch

Universidade Tecnológica Federal do Parana (UTFPR), Curitiba, Brazil
tatianelautert@alunos.utfpr.edu.br, {adolfo,nadiap}@utfpr.edu.br

Abstract. The Agile Manifesto describes that the most efficient and
effective method of conveying information to and within a develop-
ment team is through face-to-face conversation. However that is not
always possible when teams are working in a Global Software Devel-
opment (GSD) environment. Based on this scenario, this study presents
an exploratory data analysis using survey results to explore agile prac-
tices and challenges of a global software development team that uses
Scaled Agile Framework (SAFe), which is designed for the need of larger
organizations. The goal of this study is to understand the team’s level
of knowledge in some agile practices and which types of communica-
tion are usually prioritized. As in GSD environments team members are
geographically spread across multiple regions and time zones, we aim
to identify challenges this environment can present. As a result of this
exploratory analysis, it has been identified that communication is one
of main challenges in GSD environment and that phone calls are con-
sidered to be the most efficient type of communication. Additionally, we
have also identified that professionals have different levels of confidence
in Agile practices and concluded that knowledge transfers among the
professionals could help those team members that are not confident in
some agile practices to increase their overall confidence and knowledge.

Keywords: Agile methodologies · Survey · Global Software
Development · SAFe

1 Introduction

Agile software development is based on a set of 4 values and 12 principles
described in the Agile Manifesto1. It was written in 2001 by a group of 17
practitioners interested in finding better ways of developing software that is
centered on individuals but also is able to respond to rapid changes. Agile Soft-
ware development can be described as a lightweight methodology as opposed

1 https://agilemanifesto.org/, last accessed 12 May 2019.

c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 128–143, 2019.
https://doi.org/10.1007/978-3-030-36701-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_11&domain=pdf
http://orcid.org/0000-0002-7069-6862
http://orcid.org/0000-0002-0260-5922
http://orcid.org/0000-0003-2286-9623
https://agilemanifesto.org/
https://doi.org/10.1007/978-3-030-36701-5_11

A Survey on Agile Practices and Challenges of a GSD Team 129

to heavyweight traditional software engineering processes. One of the principles
of the Agile Manifesto describes that the most efficient and effective method of
conveying information to and within a development team is through face-to-face
conversation, however that is not always possible when teams are working in a
Global Software Development (GSD) environment.

According to Herbsleb and Moitra [1], software has become a crucial com-
ponent for almost every business in recent years and developing software or
implementing changes to software that responds to markets’ demands is a com-
petitive advantage, vital for business success. Over the recent decades many
organizations began to experiment with remotely located software development
facilities and with outsourcing, seeking lower costs and skilled resources. The
authors highlight that potential benefits of GSD should not be neglected, how-
ever a number of problems are also identified and communication is one of them.
In order to respond to these rapid market demands, the IT industry has been
adopting Agile software development practices and frameworks such as Scrum,
Extreme Programming (XP), Lean, Crystal, Dynamic Systems Development
Method (DSDM), Feature Driven Development (FDD), and others.

These frameworks or methods provide guidelines which are usually tailored
for small teams and serve well for enabling the execution of their development,
coordination and communication tasks. However, these methods by themselves
do not scale to the need of larger organizations where hundreds of profession-
als are involved in the development of large and complex solutions [2]. In that
scenario, during recent years, several frameworks for scaling agile have been cre-
ated including Scaled Agile Framework (SAFe), Large-scale Scrum (LeSS) and
Disciplined Agile Delivery (DAD) as cited by Paasivaara [3].

Scaled Agile Framework (SAFe)2 was created by Dean Leffingwell and its
latest version is SAFe 4.6. It is composed of 4 different configurations, being
them: Essential SAFe, Portfolio SAFe, Large Solution SAFe and Full SAFe. Each
of these configurations have a set of organization levels (Portfolio, Large Solution,
Program and Team) and each level contains details and guidelines about roles,
activities, events, and processes applicable to each level. At the Program Level,
SAFe uses the concept of the Agile Release Train (ART) which can be described
as a virtual organization composed of around 50 to 125 people that are aligned to
a business mission and they work together to plan, commit, develop and deploy
the solutions. In SAFe’s website there is an interactive picture which contains
links that take to web pages with more details on each role, processes, activities,
and others that are part of the framework3.

In this study, a survey was conducted with a GSD team of a large finan-
cial services organization that uses SAFe. The team is composed of about 170
professionals that form two Agile Release Trains (ARTs). These professionals
are spread across multiple locations where majority of them are based in the
United States, Brazil and India. The members of each of these Scrum teams
can be located in the same region or sometimes there could be different location

2 https://www.scaledagileframework.com, last accessed 12 May 2019.
3 https://www.scaledagileframework.com/, last accessed 10-Jun-2019.

https://www.scaledagileframework.com
https://www.scaledagileframework.com/

130 T. Lautert et al.

arrangements as well. Typically, Product Owners, Development Managers, Busi-
ness Analysts and Program related roles are based in the US while Developers,
System Analysts and Technical Leads are based in Brazil or India but that is
not a fixed location arrangement.

The objective of this survey is to understand the level of knowledge of some
agile practices by these professionals, which types of communication are usually
prioritized and what challenges GSD environments can present. Additionally,
the aim is to answer the following research question:

[Q1] Professionals with more experience in agile methodologies prioritize syn-
chronous or asynchronous communication?

The data was collected through this survey and in this study an exploratory
data analysis is presented.

2 Related Work

As highlighted by Hossain et al. [6] there is a growing interest in applying agile
practices in Global Software Development (GSD) projects. In this paper the
authors conduct a systematic literature review of the primary studies that report
using Scrum practices in GSD environment and the objective of their study was
to identify various challenging factors that restrict the use of Scrum practices
in projects that are globally distributed. One of their conclusions is that Scrum
practices need to be extended or modified in order to support globally distributed
software development teams.

Fitriani et al. [5] also conducted a systematic literature review and found that
there are 30 challenges in implementing Agile Software Development. Among
these 30 challenges, the authors concluded that the most significant challenges
are team management and distributed team, followed by requirement priori-
tization, documentation, changing and over-scoping requirement, organization,
process, and progress monitoring and feedback.

Other studies that investigate Agile practices and challenges are for exam-
ple Salinas et al. [4] and Nazir et al. [7]. Both papers describe surveys. In the
first paper the authors focus on the Paraguayan software community and how
this community is adopting agile methods. They present initial concerns and
barriers of implementation of agile methods in software development companies
in Paraguay. In the second paper, the authors focus on the investigation of the
extent of agile practices adoption in regards to the Indian IT Industry concluding
that agile practices affect the cost and increase the productivity.

Similarly, in this research a survey is conducted in order to identify Agile
practices and challenges. However the focus of this work is on distributed teams
that work on a Global Software Development environment.

3 Method

The survey was conducted during the team’s Innovation and Planning Itera-
tion (IP), which is an event defined in SAFe’s framework that is dedicated for

A Survey on Agile Practices and Challenges of a GSD Team 131

Product Increment events, innovation activities, training and others. The exact
period was from 11/April/2019 to 24/April/2019. During this period the survey
was created using Microsoft Forms4 and a link to the survey was provided by
email to the team members. The survey remained open for 4 days and after that
preliminary results were presented to the team during the IP Iteration Demo
meeting.

The survey was composed of 18 questions, of which 17 were closed-ended
questions and 1 was an open-ended question. Table 1 shows details about the
types of questions in the survey.

The data was then exported to Excel format, transformed as needed and
imported into Python5 analysis library, Pandas6, so that data could be manipu-
lated as needed and visual graphs could be generated accordingly. Other Python
libraries were also used to generate different types of graphs.

We received 32 responses, which represent around 19% of the population to
whom the survey was sent to. Out of these 32 responses, 18 respondents answered
the open-ended question which was the only question for which the answer was
not mandatory among the 18 survey questions.

Table 1. Types of questions in the survey.

Question
type

Allowed multiple
answers

Answer
required

LikertN. of statements
in Likert

N. of options
in Likert

Total by
type

Open-ended NA No No NA NA 1

Close-ended Yes Yes No N/A N/A 3

Close-ended No Yes No N/A N/A 8

Close-ended No Yes Yes 10 5 1

Close-ended No Yes Yes 1 5 5

Total 18

Please note that the full list of the survey questions is in the appendix section.

4 Results

In this section, the results of each survey question is presented. The first question
was to identify the role of the respondents. Since this survey was anonymous,
those roles that have only one or two professionals were not explicitly listed,
hence these are aggregated as ‘Others’. As shown in Fig. 1 the majority of the
respondents were developers (14), followed by Quality Assurance - Tester (5),
Technical Lead and Software Analyst (4 each), Development Manager and Scrum
Master (2 each) and Other (1). No Architects and no Product Owners responded
to the survey.
4 https://forms.office.com, last accessed 18-May-2019.
5 https://www.python.org/, last accessed 18-May-2019.
6 https://pandas.pydata.org/, last accessed 18-May-2019.

https://forms.office.com
https://www.python.org/
https://pandas.pydata.org/

132 T. Lautert et al.

Fig. 1. Q1 - Roles distribution.

Question 2 was to identify how many years of experience in Agile Software
Development the respondents have. As shown in Fig. 2, it was found that 12 pro-
fessionals have from 1 to 3 years of experience, 12 have 4 to 7 years of experience,
7 have more than 8 years of experience and 1 respondent has less than 1 year of
experience.

In question 3, professionals were asked to select all Agile Methodologies they
have experience with. In Fig. 3 it is possible to see that Scrum is the most known
framework by these professionals, followed by SAFe, which seems appropriate
given the fact that SAFe is the framework used by the company as explained
previously.

In question 4, participants were asked if they had already taken any training
on any Agile methodology and it was found that 75% of the participants had
already taken training on Agile methodology while 25% have not taken any
training. Based on this result, the company could take actions to provide training
courses to those who have not taken any training yet.

Question 5 presented a Likert scale question, in which participants were asked
to assess their familiarity with Agile methodologies in a scale of extremely famil-
iarized, very familiarized, familiarized, not so familiarized or not familiarized at
all. Figure 4 shows the results of their own assessment on this topic. In general,
most participants feel they are either very familiarized or familiarized with Agile
methodologies.

A Survey on Agile Practices and Challenges of a GSD Team 133

Fig. 2. Q2 - Years of experience in Agile Methodology.

Fig. 3. Q3 - Agile Methodologies which professionals had experience with.

Question 6 presents another Likert scale question, but this time participants
were asked to assess their familiarity with SAFe. The results show that their
familiarity decreased when compared to the previous question which was more
generic as opposed to a specific framework as in question 6. However it is possible
to see that most participants, 69% in total feel they are familiarized with SAFe
(Fig. 5).

134 T. Lautert et al.

Fig. 4. Q5 - Familiarity with Agile Methodologies.

Fig. 5. Q4 - Familiarity with SAFe.

In question 7, 10 different Agile practices and terms were selected and partic-
ipants were asked to scale their confidence level on each of the selected practices
and terms. Figure 6 shows the results in percentages per level of confidence. It is
possible to see that a representative percentage of participants are not confident
with a few practices, for example: 22% of the participants are not confident and
6% are not confident at all with Behaviour Driven Development practice, 25%
are not confident and 3% are not confident at all with Test Driven Development
practice, 22% are not confident and 6% are not confident at all with Pair Pro-
gramming practice, 25% are not confident and 6% are not confident at all with
Refactoring. With these results is it also possible to see that there are partic-
ipants that feel extremely confident with some of these practice, perhaps that
can indicate that knowledge transfer among the team members can increase the
level of confidence to those who do not feel confident.

A Survey on Agile Practices and Challenges of a GSD Team 135

Fig. 6. Q7 - Confidence with Agile practices or terms.

Question 8 to 12 are all related to types of communication used by the partic-
ipants and their evaluation of efficiency to some of these communication types.
Figure 7 shows that e-mails and Skype chats are the types of communication
most prioritized by these professionals, followed by ‘Face-to-face, whenever pos-
sible’ (22) and phone calls (19). 27 out of 32 participants selected email and
Skype chats are their most prioritized type of communication. Only 1 partici-
pant selected video calls.

Figure 8 shows the biggest impediments for not communicating more via
phone, face-to-face or via video calls. Time-zone constraints and agenda conflicts
are the main causes, representing a total of 35% each.

Figure 9 shows how participants evaluate the efficiency of communication via
e-mail, Skype chat and phone calls. It is possible to see that phone calls are
considered the most efficient type of communication, followed by Skype chat
and emails being the least efficient.

In question 13, participants were asked to respond how often they discuss
project related items with the Product Owners (POs) or request feedback on
features or stories, based on the fact that the 4th Agile principal, described in
the Agile Manifesto says: ‘Business people and developers must work together
daily throughout the project’. Only 25% of the participants responded that they
have daily communication with the Product Owner, 47% responded ‘Once or
twice per iteration’, 19% responded ‘Every other iteration’ and 9% only during
the Product Increment planning, which occurs every 3 months (Fig. 10).

136 T. Lautert et al.

Fig. 7. Q8 - Types of communication prioritized.

Fig. 8. Q9 - Impediments for not having more phone, face-to-face or video calls.

A Survey on Agile Practices and Challenges of a GSD Team 137

Fig. 9. Q10 - Evaluation of communication efficiency per type.

Fig. 10. Q13 - How often teams discuss project items with PO or request feedback.

Questions 14 and 15 were related to retrospective meetings. The results show
that 97% of the respondents have a retrospective meeting once per iteration and
91% said that retrospective meetings are resulting in actionable items to bring
improvements, which is aligned with Agile principle 12 which says: ‘At regular
intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly’ (Figs. 11 and 12).

In question 16, participants were asked if and how they were planning their
capacity according to the team’s velocity. The team’s velocity in the company is
measured in story points and to track team’s capacity, a sum of story points that
each team each team member can delivery for each iteration is made. Story point
estimation is used to size stories, typically through pointing poker technique. The
results show that 44% of the respondents said their team’s capacity is usually
at 100% and 41% are usually at 80% (Fig. 13).

The last closed-ended question was related to how these professionals would
control/track budget in an Agile project. The first SAFe principle is ‘Take an
economic view’ and as per SAFe’s guidelines, economics should inform and drive

138 T. Lautert et al.

Fig. 11. Q14 - How often teams have retrospectives.

Fig. 12. Q15 - Are retrospectives resulting in actions/improvements?

decisions at all levels, from Portfolio to Development Teams, therefore it is impor-
tant that every team member has an idea of how to control budgets in an Agile
project. Figure 14 shows that 63% of the respondents were not sure how to con-
trol budget, 22% responded that it would be ‘Through planned and defined
budget to cover the life cycle of the project’, 9% responded ‘Through incremen-
tal budget aligned in each phase’ and 6% responded ‘Through initial budget
to cover MVP and the remaining budget to be discussed depending on MVP
results’.

The last question was an open-ended question. Participants were asked what
is/are the main challenge(s) of running an Agile development project with remote
teams. Since this was an open-ended question, it was decided to generated a
World Cloud graph, which is a visual representation of text data and the impor-
tance of each word is represented its size in the graph and based on the number
of times these words were mentioned on the text data. In Fig. 15 it becomes
clear that communication is considered one of the main challenges raised by the
participants.

A Survey on Agile Practices and Challenges of a GSD Team 139

Fig. 13. Q16 - Are teams planning capacity based on velocity?

Fig. 14. Q17 - How teams believe budget are controlled in Agile projects.

Regarding the research question raised in this study, which aimed to iden-
tify whether professionals with more experience in agile methodologies prioritize
synchronous or asynchronous communication, Fig. 16 shows a slightly higher
correlation between years of experience and face-to-face communication (0.5),
followed by email (0.46) and video call (0.45) communications if compared to
other types of communication, although there is no strong correlation with any
specific type of communication. There is strong correlation between types of
communication prioritized, for example those who tend to prioritize Skype chat
would also prioritize e-mail (0.99), those who tend to prioritize face-to-face com-
munication would also prioritize phone calls (0.99).

140 T. Lautert et al.

Fig. 15. Q18 - Word cloud with main challenges in running an Agile development
project with remote teams.

5 Limitations

As a limitation we can highlight that this survey has been conducted on a single
GSD organization. In the future it would be interesting to conduct a similar
survey on a different GSD organization in order to compare the results with the
present study. Additionally, the data presented in this study represent around

Fig. 16. Years of experience correlation with types of communication.

A Survey on Agile Practices and Challenges of a GSD Team 141

19% of the population to whom the survey was sent to. If more responses had
been collected the results of this study would be richer. Also, the analysis of the
open-ended question could be enriched by looking at individual responses and
conducting follow-up interviews with team members in an attempt to address
the challenges that have been reported.

6 Conclusion

With the results of this study, it is clear that communication is one of the main
challenges in running Agile projects in Global Software Development. Also, it was
possible to confirm that there is no strong correlation between years of experience
in Agile Software Development with types of communication prioritized. Results
also showed that phone calls are considered to be the most efficient type of
communication in Global Software Development environment. Additionally, it
was possible to see that professionals have different levels of confidence in Agile
practices, knowledge transfers among the professionals could help those team
members that are not confident in some agile practices to increase their overall
confidence and knowledge.

A Appendices

A.1 Agile Survey

Objective: The objective of this survey is to assess the level of knowledge in agile
practices of the professionals and how communication barriers are overcome.

1. What is your role?
Options: Developer, Scrum Master, Product Owner, QA - Tester, Tech
Lead, Software Analyst, Development Manager, Architect, Other

2. How many years of experience with Agile Software Development do you
have?
Options: 1 year or Less, 1 to 3 years, 4 to 7 years, 8 years or more

3. Which agile methodologies do you have experience with? (Select all that
apply)
Options: Scrum, Extreme Programming (XP), Lean, Crystal, Dynamic Sys-
tems Development Method (DSDM), Feature Driven Development (FDD),
Scaled Agile Framework (SAFe), Large-Scale Scrum (LeSS), Others

4. Have you ever attended any training on any Agile Methodology?
Options: Yes, No

5. How familiarized do you feel with agile methodologies?
Options: Extremely familiarized, Very familiarized, Familiarized, Not so
familiarized, not at all familiarized

6. How familiarized do you feel with Scaled Agile Framework (SAFe)?
Options: Extremely familiarized, Very familiarized, Familiarized, Not so
familiarized, not at all familiarized

142 T. Lautert et al.

7. How would you classify your degree of knowledge in each Agile Prac-
tice/Term?
Options: Extremely confident, Very confident, Confident Not so confident,
Not at all confident Practices and Terms: Iteration Planning, Retrospective,
Iteration Review, Behavior Driven Development, Test Driven Development,
Coding Standards, Estimation, Pair programming, Continuous Integration,
Refactoring

8. Which means of communication do you prioritize to interact with other
scrum teams, product owners or other teams involved in the project delivery?
Options: (Select all that apply) E-mail, Phone, Skype Chat, Video Call,
Face-to-face whenever possible

9. If the answer to the previous question was e-mail or Skype chat, what is
the biggest impediment for having more phone, face-to-face or video calls
communication?
Options: (Select all that apply) Language barrier, Time zone constraints,
Agenda conflicts (For example: not being able to find available time in the
person’s agenda to have a phone call), Others

10. How efficient would you classify communication via e-mail?
Options: Extremely efficient, Very efficient, Somewhat efficient, Not so effi-
cient, Not at all efficient

11. How efficient would you classify communication via Skype Chat?
Options: Extremely efficient, Very efficient, Somewhat efficient, Not so effi-
cient, Not at all efficient

12. How efficient would you classify communication via Phone Call?
Options: Extremely efficient, Very efficient, Somewhat efficient, Not so effi-
cient, Not at all efficient

13. How often do you discuss project related items or request feedback on fea-
tures/stories developed with your Product Owner?
Options: Almost on a daily basis, Once or twice per iteration, Every other
iteration, Only during the PI Planning

14. How often do you have retrospective meetings with your scrum team?
Options: Once per iteration, Once a month, Rarely, Never

15. Are your retrospective meetings resulting in actionable items to bring
improvements? If your team never has retrospective meetings, please select
‘Not Applicable’
Options: Yes, No, Not applicable

16. How is your team planning each iteration’s capacity according to the team’s
velocity?
Options: We are usually over 100% capacity, We are usually at 100% capac-
ity, We are usually around 80% capacity, We are usually below 80% capacity,
We are not planning capacity according to team’s velocity

17. How would you control/track the costs/budgets of an Agile project?
Options: Through planned and defined budget to cover the life cycle of the
project, Through initial budget to cover MVP and the remaining budget
to be discussed depending on MVP results, Through incremental budget
aligned in each phase, Not sure

A Survey on Agile Practices and Challenges of a GSD Team 143

18. In your opinion, what is/are the main challenge(s) of running an Agile devel-
opment project with remote teams? This is a open ended question and
response on this is optional.

References

1. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Softw. 18(2), 16–20
(2001). https://doi.org/10.1109/52.914732

2. Alqudah, M., Razali, R.: A review of scaling agile methods in large software devel-
opment. Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 828–837 (2016). https://doi.org/
10.18517/ijaseit.6.6.1374

3. Paasivaara, M.: Adopting SAFe to scale agile in a globally distributed organiza-
tion. In: 2017 IEEE 12th International Conference on Global Software Engineering
(ICGSE), Buenos Aires, pp. 36–40 (2017). https://doi.org/10.1109/ICGSE.2017.15

4. Salinas, M.N., Neto, A.G., Emer, M.C.: Concerns and limitations in agile software
development: a survey with Paraguayan companies. CoRR, abs/1710.01151 (2017)

5. Fitriani, W.R., Rahayu, P., Sensuse, D.I.: Challenges in agile software development:
a systematic literature review. In: 2016 International Conference on Advanced Com-
puter Science and Information Systems (ICACSIS), Malang, pp. 155–164 (2016).
https://doi.org/10.1109/ICACSIS.2016.7872736

6. Hossain, E., Babar, M.A., Paik, H.: Using scrum in global software development: a
systematic literature review. In: 2009 Fourth IEEE International Conference on
Global Software Engineering, Limerick, pp. 175–184 (2009). https://doi.org/10.
1109/ICGSE.2009.25

7. Nazir, N., Hasteer, N., Bansal, A.: A survey on agile practices in the Indian IT indus-
try. In: 2016 6th International Conference - Cloud System and Big Data Engineering
(Confluence), Noida, pp. 635–640 (2016). https://doi.org/10.1109/CONFLUENCE.
2016.7508196

https://doi.org/10.1109/52.914732
https://doi.org/10.18517/ijaseit.6.6.1374
https://doi.org/10.18517/ijaseit.6.6.1374
https://doi.org/10.1109/ICGSE.2017.15
https://doi.org/10.1109/ICACSIS.2016.7872736
https://doi.org/10.1109/ICGSE.2009.25
https://doi.org/10.1109/ICGSE.2009.25
https://doi.org/10.1109/CONFLUENCE.2016.7508196
https://doi.org/10.1109/CONFLUENCE.2016.7508196

A Closing Paper From the Most
Influential Researcher Over 10 Years

of WBMA

Having Fun Doing Research
on Agile Methods

Alfredo Goldman1(B), Thatiane de Oliveira Rosa1,2, and Viviane A. Santos3

1 University of São Paulo, São Paulo, SP, Brazil
{gold,thatiane}@ime.usp.br

2 Federal Institute of Education, Science and Technology of Tocantins,
Paráıso do Tocantins, TO, Brazil

3 Federal University of Pará, Tucurúı, PA, Brazil
vsantos@ufpa.br

Abstract. In this paper, we summarize the research done by the first
author on Agile Methods in Brazil in a historical setting. In the begin-
ning, Alfredo Goldman started as an enthusiast of Agile Methods, with-
out pretending to become an agile advocate. However, as he perceived
the importance of this new form of software development and in the
belief of promoting a different way of looking at software engineering,
naturally his contributions and achievements took him in this regard.
We present Goldman’s agile software development research topics, and
their respective contributions. We had the hard task to summarize more
than a decade of research in only one short text. We show the influence of
his work within Agile Methods since 2001, not only on teaching, but also
on the research field and on the Brazilian software development industry.

Keywords: Agile Methods advocate · Agility in Brazil · Historical
perspective

1 Introduction

The genesis of this paper occurred in 2001 when we started teaching the course
eXtreme Programming Laboratory at the University of São Paulo, Brazil. At
that time, we were four professors seeking on how to improve the teaching of
software engineering, using a very recent Agile Methodology to a few students.
Since then the course has evolved, and after many years, agile methods became
not only a part of our teaching but also one of our research topics.

Thanks to the support of Rebecca Wirfs-Brock, who had a close contact with
several of our former students, we started to do a historical retrospective on the
course evolution. Earlier this year we published a detailed report on the course
history as an Experience Report on Agile 2019. A good history is worth telling.

Supported by CNPq under the grant 306518/2016-3. This study was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nııvel Superior - Brasil (CAPES)
- Finance Code 001.

c© Springer Nature Switzerland AG 2019
P. Meirelles et al. (Eds.): WBMA 2019, CCIS 1106, pp. 147–164, 2019.
https://doi.org/10.1007/978-3-030-36701-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36701-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-36701-5_12

148 A. Goldman et al.

The written report and the recorded video are available on the Agile Alliance
web site1.

Among the main findings of putting together all the events that happened
on the last 18 years, we also figured out that the course was not only about
teaching. We had collaboration with industry, actions to spread Agile Methods
outside the University, and also students interested in conducting research on
Agile Methods.

In this paper, we provide an overview of how the research on Agile Methods
of the main author evolved over time. Showing several contributions and how
they are related. Initially, the research is organized in a historical way, with a
classical timeline. From it, we provide some insights about the different topics,
and also show their main impacts.

This paper comes from a lot of cooperative work involving different people,
after all, they became not only collaborators, but friends. It was a pleasure to
share every moment during the development of the research topics.

In the next section we present an overview of the contributions, and their
three main topics: Agility in Brazil, Agile Methods Education and Agile Methods
Research. Then, we provide a quantitative and qualitative analysis. We then
thank all the partners and conclude the paper.

2 Contributions

Our first paper on Agile Methods was a paper on the course itself, describing
how to teach eXtreme Programming. It appeared in 2004, the professors involved
on the course were the authors. Joseph Yoder also co-authored the paper, from
the beginning he was our big supporter.

To provide a historical overview of the contributions, we first present the
quantity of published papers in a timeline on Fig. 1. We also provide the keywords
from each paper, organized by year.

We can observe that the first paper was published with a graduate student
was in 2007. Observing the keywords, we can notice that at the beginning we were
more interest in core aspects of Agile Methods, like metrics, tracking, informative
workspaces and practices. The latter works are more focused on how to improve
Agile Methods with concepts like Technical Debt, Organizational Learning and
Group Psychology.

2.1 Agility in Brazil

In 2011, the Brazilian Symposium on Software Engineering (SBES 2011) had
completed 25 years old in Brazil. This moment of celebration was ideal to reflect
also on the progress of the agile movement in our country. Professor Alfredo
along with his colleagues and students published a paper in this symposium
presenting a brief overview of the genesis and evolution of the Agile Movement

1 https://www.agilealliance.org/author/8035953.

https://www.agilealliance.org/author/8035953

Having Fun Doing Research on Agile Methods 149

1 publication

Keywords: agile methods, extreme
programming, object-oriented metrics
and tracking

2 publications

Keywords: agile methods, open source,
distributed agile, information system,
learning process, programming exercise,
software engineer, full description

5 publications

Keywords: organizational learning, agile methods, inter-teams
knowledge sharing, competitiveness, lean software development,
theory of constraints, comparative review, agile software
development, scrum implementation, agile movement in Brazil,
educational initiatives, Brazilian agile research and state-of-the-
practice, informative workspace, agile metrics, agile tracking

1 publication

Keywords: agile software development,
extreme programming, software
engineering education, improvement
actions, axial coding, qualitative
analysis, case study, new forms of
interaction

3 publications

Keywords: agile coaching and training,
practices, interaction, inter-team knowledge
sharing, organizational conditions, informative
workspace, agile metrics, agile tracking, big
visible charts, information radiators, agile
software development, agile educational
initiatives, brazilian agile research, brazilian
agile state-of-the-practice, object-oriented
programming, history of computing

2 publications

Keywords: organizational factors, inter-
team knowledge sharing, agile methods,
agile methods adoption, organizational
characteristics, systematic review

2 publications

Keywords: technical debt, scrum,
technical debt management, agile
methods, inter-team knowledge sharing
effectiveness, practices organizational,
conditions, dtimuli, conceptual model

3 publications

Keywords: human factors, psychology,
quantitative data, statistical tests,
validation, increase mature, agile
practices, group, experiment,
requirements engineering, software
development, software startups,
grounded theory

1 publication

Keywords: technical debt, technical
debt awareness, technical debt impact,
extreme programming

2 publications

Keywords: software startups, requirements
engineering, empirical software engineering,
customer development, product validation,
continuous improvement, xp laboratory, teaching
agile methods in practice, history

2007 2010 2011 2012 2013 2014 2015 2016 2017 2019

Fig. 1. Publications timeline

in Brazil [4]. This work has 23 citations and was then extended and published
in the Journal of Brazilian Computer Socienty (JBCS) [12]. The paper has 56
citations and outlined the history of the national agile movement by presenting
its first advocates in academia and industry.

In brief, it started in 1999, when Fabio Kon, a professor at the Computer
Science Department of the Institute of Mathematics and Statistics (IME in Por-
tuguese) at the University of São Paulo (USP), attended OOPSLA and by that
time there was a great excitement around eXtreme Programming (XP). Then,
in 2000, Sardinia (Italy) was the stage for the 1st International Conference on
eXtreme Programming and Agile Processes in Software Engineering (XP’ 2000).
By that time, Fabio Kon and a few Brazilian software developers from academia
and industry also got in touch with the international agile movement. Klaus
Wuestefeld, a software developer working in the Brazilian software industry
attended XP’ 2000 and met key figures from the movement, such as Kent Beck,
Alistair Cockburn, Martin Fowler, and others.

The first agile event in Brazil was Extreme Programming Brazil 2002 that
was held in São Paulo. Similar initiatives were taken in other cities, such as Rio
de Janeiro and Recife. In 2009, Agile Brazil was created to become the conference
in Brazil joining scholars, professionals and companies around the agile methods
theme. Other events were also created in Brazil, such as Agile Trends.

150 A. Goldman et al.

2.2 Agile Methods Education

We started to contribute to the agile methods education in 2001, when Kon
returned from his post-doctoral leave in the USA, he started along with me
(Prof. Alfredo Goldman), Prof. Paulo Silva e Silva, and Prof. Carlos Eduardo
Ferreira a course on XP in which students would develop real software projects
using all the XP practices rigorously [12]. It was called XP Laboratory and after
some years, I (Alfredo) became responsible for this course.

The course teaches agile methods in practice, considering elements crucial for
providing the student with real knowledge and experience. In 2010, the course
went through changes [24]. We called it “the turning point” when we started
to systematically apply agile methods to the course itself. It was possible when
graduate students conducted empirical studies during the course as their master
or Ph.D. studies. That made a great deal of improvements, since we started to
apply practices, such as whole-class retrospectives in fishbowl format, lightning
talks at lunchtime, rotation of team members across teams, brainwriting, coding
dojos, Test Day and Refactoring Day, etc. In consequence, learning evolved and
students started to continuously share and learn about technical knowledge,
projects, agile methods, and skills.

After 18 years conducting this course, over 500 students taught to adopt
Agile Methods, 15 empirical studies conducted, 84 projects executed and over
10 companies attended. We are proud to see our former students working on Agile
Methods for companies in Brazil and all over the world, such as ThoughtWorks,
DigitalOcean, IndustrialLogic, Amazon, Xero, Genios, among many others. XP
Lab is consolidating in the world as a relevant educational initiative on Agile
Methods [5].

In our perception, there is no closed formula to successfully teach Agile Meth-
ods in all contexts over and over again. We had to adapt to several different
situations, and that is a good thing to point out. It is important to consider pro-
viding the environment and the support to the teams to work on real projects.
Also, a good advice is to apply agile practices to improve the course itself and
associate the learning environment not only for teaching, but also for research-
ing. After all these years, the most important value of Agile Methods we have put
into practice is continuous improvement, so we keep seeking ways to be better
tomorrow than today.

2.3 Agile Methods Research

Considering the work of our master and Ph.D. students regarding agile meth-
ods, in Melo et al. [12], we described an overview of the status of Brazilian
research on agile software development from 1999 to 2011. We searched in the
Lattes Database. By that time, we identified 36 researchers on agile software
development in that period, which advised 23 M.Sc. and Ph.D. students.

The studies fell into three thematic groups: introduction and adoption, use of
tools and practices, and perceptions of agile methods. Experiences from the usage
of agile software development can be identified mostly in commercial settings.

Having Fun Doing Research on Agile Methods 151

The results showed that agile methods research is growing in Brazil. More papers
are being published, both in national and international conferences, also there are
several Universities and research groups conducting research in different topics.

Now, we will describe in more details the research directed related to Profes-
sor Alfredo and his students.

Tracking Quality Metrics in Agile Projects. We know that the automated
collection of source code metrics can help agile teams to understand better the
software they are developing. The collected data can guide the adaptation of the
adopted practices and favor the continuous improvement of the project. However,
by 2007 this was not so straightforward.

Based on a bibliographic study, we selected eight of Object-Oriented (OO)
metrics and analyzed their impact on five academic projects and two government
projects. The aim was to observe and compare the evolution of these metrics in
these projects and to evaluate how the different project context factors impacted
the source code. The metrics adopted were: size and complexity metrics (LOC,
v (G) and WMC), cohesion metric (LCOM), inheritance metrics (DIT, NOC)
and coupling metrics (AC and EC). The results were published in 2007 in the
proceedings of the International Conference on Extreme Programming and Agile
Processes in Software Engineering [25].

The main contribution of this research was that the selected OO metrics
may indicate the progress or lack of progress in adopting agile practices, such as
testing and refactoring.

Investigating the Relationship Between Open Source and Agile Com-
munities. The FLOSS Competence Center (CCSL) is located in the Institute
of Mathematics and Statistics of the USP. Its aim is to understand the process
of developing free software, and to contribute to its growth. In 2010, we inves-
tigated the relationship between the Agile community and the FLOSS com-
munity. The goal was to analyze if the strengths of both communities could
be brought together to improve development in distributed environments with
changing requirements. The results were published in the proceedings of the
International Conference on Agile Software Development in 2010 [3].

We developed two questionnaires, one to the FLOSS community and the
other to the Agile community respectively. We obtained 180 valid answers to
the first form and 195 valid answers to the second one. During our research, we
mapped team characteristics, communication channels and tools, and problem
management. We realized that the FLOSS and Agile communities are slightly
different, even if both communities identified the same issues and evaluated
tools similarly. Both communities share the same issues regarding communica-
tion tools; expecting to simplify integration between developers and increase
feedback frequency. Both FLOSS and Agile projects should have better results
by using fast feedback communication channels such as face-to-face encounters
or IRC channels instead of slower channels such as e-mails to communicate with
the development team.

152 A. Goldman et al.

The main contribution of this research was to better understand similarities,
strengths, and weaknesses of FLOSS and Agile communities to develop software
in distributed environments with changing requirements.

Learning of Agile Practices. We were interested on better understanding
how to teach Agile Practices, mainly based on a very popular technique at that
time, Coding Dojos, which consists of providing a playground for developing
code. A paper with the results was published in the proceedings of the Inter-
national Conference on Agile Software Development in 2010 [2]. Its main aim
was to investigate the use of Coding Dojo to learn agile practices such as pair
programming, TDD, commits, retrospective and refactoring. The research was
performed mainly in Brazil and had 91 collaborators. Different profiles from the
collaborators were analyzed, including agile experts and beginners. Furthermore,
the relationship between the Coding Dojo sessions and the acquired knowledge
was also analyzed.

Based on the interviews, it was verified that Coding Dojo is a very effec-
tive technique for learning Agile practices, regardless of the experience. It was
also noted that the less you know the more you will learn; and the more you
participate in the sessions the more you will learn as well.

The contribution of this research was on validating Coding Dojos as an effec-
tive tool for learning.

Informative Workspace. Creating and maintaining an Informative
Workspace (IW) is an important and challenging task in the context of agile
projects, as it requires attention and balance from different aspects such as team
adaptability, continuous reflection, workspace layout, human cognition, usabil-
ity, and others. Furthermore, it can influence project communication dynamics,
team behavior, and self-directed work.

In 2010, we realized that while there were some guidelines for creating and
maintaining IW, there were few published empirical studies. In order to fill this
gap, we developed two studies that explored procedures for creating and man-
aging informative workspaces. The first study was published in 2011, in the
proceedings of the Agile Conference [14]. The aim was to present a restricted set
of heuristics to manage IW. The study was conducted in two phases, consisting
of action research with suggestions, interviews and feedbacks for the elabora-
tion of heuristics, and validation of them by the Brazilian agile community. We
present a set of seven heuristics that can help professionals to create an effective
informative workspace.

The second study is an extension of the first and was published in the proceed-
ings of the International Conference on System Sciences [15] in 2013. It was car-
ried out over two years and divided into four phases using action research, anal-
ysis of quantitative surveys, interviews and ground theory. The main goal was to
understand how agile teams could optimize the use of informative workspace. As
a result, we were able to identify WHY, HOW and WHEN the seven heuristics
identified in the first study can be used.

Having Fun Doing Research on Agile Methods 153

We believe these two studies are a guide composed by concepts, patterns,
heuristics, and valuable tips for creating and managing efficient IW.

From Manufacturing to the Agile Methods. In this research we aimed
on better understanding the relationship on the agile methods derived from the
manufacturing industry. At that time we found that researchers and practitioners
were unaware of agile approaches for software development, and there was a lack
of cumulative and reliable research in this context.

As a result, we published a paper in the Proceedings of the International
Conference on Agile Software Development [8] in 2011, where we present a com-
parative review of agile methods derived from the manufacturing industry. We
used six analytical perspectives of Abrahamsson et al. [1] for comparison pur-
poses: project management support, life-cycle coverage, type of practical guid-
ance, adaptability in current use, type of research objectives and the existence
of empirical evidence. At the end of the review, we found that agile methods
derived from the manufacturing industry cover various phases of the software
development life-cycle. However, most of these methods do not provide adequate
support for project management.

During the literature review, we found that there was only one systematic
review of empirical studies on Agile Software Development. Furthermore, we
noticed that most of the publications were not directly related to the topic of our
research. As a result, the number of publications that needed to be analyzed was
high. Thus, we needed to identify the most relevant publications to focus on. This
motivated us to classify references based on our objective. Four categories were
used to describe the status of empirical research on Lean Software Development
and Constraint Theory: case study, empirical evidence, tools and practices, and
conceptual study. Using this classification, we were able to map the number of
publications on Lean Software Development and Constraint Theory per year for
each category.

We consider that the main contribution of this research was a better under-
standing on the origin of Lean Software Development. Which allowed profes-
sionals to better perceive the properties of each agile method, and consequently
choose the most appropriate method in a more grounded and systematic manner.

Organizational Learning and Knowledge Management. In 2011, we
started to study in this area regarding agile software development (ASD). We
had noted that agile methods strongly focused on empowering the project team
in achieving its goals, but little attention was given to creating insights and
experiences to the organizational level. So, we pointed out there is a challenge
to overcome the barriers to scale the knowledge on the group level to the orga-
nizational level effectively [19]. We also studied the relationship between Scrum
implementation and Organizational Learning process (Santos et al. 2011). We
employed a qualitative research, involving key members from a company regard-
ing content and services on the Internet in Brazil, key members from an academic

154 A. Goldman et al.

project and an expert in agile methods implementation. Among the main find-
ings, we highlight that the process of Organizational Learning could be verified
through the individual members’ learning and through the changes within the
organization in management, people, process and technology. Beyond the rela-
tion established between Organizational Learning and Scrum implementation,
this study contributes to academic and practical fields by the identification of
changes occurred in type of knowledge valued, physical structure, promotion
criteria, and individual dependence decrease when implementing Scrum. It is
perceived that knowledge management, as a way of perpetuating the learning in
the organization is still a challenge for agile software organizations.

In Santos et al. [23], we studied the role of agile coaches in agile methods
implementation. An agile coach focuses on developing the potential of people and
its application to obtain valuable results faster. This work analyzed the influence
of the practices adopted by an agile consultant for enhancing overall interactions
and knowledge sharing, such as Open Space and Lightning Talks sessions. We
analyzed the influence of these practices in the organizational practices, as a
way to foster organizational learning. We found significant associations between
practices and purposes, and also crossed the level of adoption and barriers for
adoption of the practices by company experience on agile methods. Results show
that the participants recognize the positive impacts of the practices, but they are
not sufficient to change the organizational practices. Few participants continue
to adopt them in their organizations. Most of them report obstacles regard-
ing organizational conditions, such as culture and top management/leadership
support.

In [22], we employed a structural equation modeling and cross-table analysis,
to analyze the influencing factors, such as organizational strategy, and commu-
nication flow and channels, regarding inter-team knowledge sharing (KS) effec-
tiveness in agile environments. Within the surveyed companies, organizational
strategy reflects on moderate commitment towards knowledge. KS practices are
carried out to an acceptable standard. Extensive communication flow and the
use of several channels denote that agile companies are also fostering interaction
across teams. We found strong relationship between these factors and the compa-
nies’ experience on agile methods. However, the companies still need to improve
their strategy alignment to all organization levels. Thus, this study highlight the
need consider these factors when implementing activities in this area.

After employing a deep qualitative research from 2011 to 2013, we offered a
practical guidance on how to apply inter-team knowledge sharing [21]. We pro-
vided a pattern language to help agile software organizations to adopt practices
for fostering interaction among agile teams in order to share knowledge across
teams and create collective knowledge. For instance, Open Workspace helps
to stimulate face-to-face conversations across teams. Rotation of Teams’ Mem-
bers is a practice about transferring of professionals to other teams in order to
spread technical, methodological and management solutions in a sustainable way.
Pair Programming among different teams are specially adopted to level techni-
cal knowledge throughout the company. Collective Meetings foster inter-team

Having Fun Doing Research on Agile Methods 155

communication and alignment about company’s projects and goals. Finally,
Technical Presentations stimulate continuous learning and knowledge sharing
behavior. The adoption of the pattern language is affected by forces, such as
organizational culture, environment, and top management and leadership sup-
port. These forces need to be balanced to facilitate and/or reinforce the patterns.

As a result of the previous studies on this topic, we provided an understanding
of the inter-team knowledge sharing activities in agile software development orga-
nizations and its effectiveness. We observed that the companies employ different
work practices that allow knowledge sharing to occur across team boundaries.
We raised a conceptual model that explained how effective knowledge sharing
across agile teams depends on applying purposeful practices, along with orga-
nizational conditions and stimuli. This understanding suggested what is needed
to take into account when considering this topic in the organization. Also, it
presents opportunities for further studies in refining and extending the model
to other organizational contexts. Inter-team knowledge sharing reflects the way
agile software development organizations are coping with enterprise agility and
the way they consider knowledge as a resource for competitiveness [20] (with
52 citations).

Agile Methods Industry Adoption. In 2012, we surveyed agile companies in
Brazil, then we presented a report on the agile state-of-the-practice in the Brazil-
ian IT industry involving agile methods adoption, practices, perceived benefits
from adopting agile methods, main challenges, and relationships between com-
panies experience, size, and Agile adoption factors and perceptions [13].

After that, we evaluated the impact of agile methods in industrial projects
and discovered in which situations it is beneficial to apply such methods. In this
paper [12], we presented an overview of the industry adoption. Agile methods
were being widely adopted. The main reasons for this adoption were to accelerate
time to market, to enhance the ability to manage changing priorities and to
increase productivity.

The change in organizational culture appeared as an important element to
facilitate agile adoption within companies. Also, the alignment between the com-
panies values, mission, with the principles of the agile manifesto was the key
aspect to facilitate the organizational cultural change. The understanding of the
human factors and organizational change were main challenges to strengthen
and sustain agile methods in industry. The initial champions of agile methods
were developers and team leaders. In Brazil we had a bottom-up strategy, in
contrast to the top-down strategy worldwide.

When we compared the results between Brazilian and worldwide surveys [30],
we found very similar results about the benefits raised from implementing agile
methods. But different practices were used based on companies’ size and matu-
rity on agile methods. Companies with more than five years of experience used
practices such as refactoring, which is not the case for companies with less than
three years of experience. A linear adoption of technical agile practices focused
on enhancing software quality, such as TDD, refactoring, continuous integra-
tion and others, had been applied rigorously in companies more experienced in

156 A. Goldman et al.

agile methods. However, management practices were the subset of agile practices
undergoing major adjustments and even being abandoned, like the estimation
techniques.

Agile Methods Adoption on Software Development. After more than
a decade of the agile manifesto, we investigated the state of art of organiza-
tions adoption of agile methods. The aim was to find a correlation between the
characteristics of organizations and the transition process adopted for the agile
culture. We conducted a pilot systematic review, and the preliminary result was
published in the proceedings of the Agile Conference, in 2014 [27].

To guide the implementation of the systematic review, we followed the rec-
ommendations of Kitchenham and Charters [9]. The main research question was:
“Is it possible to report characteristics of organizations to the steps they take
to adopt agile methods empirically?” We developed three secondary questions,
which helped to answer the main question: 1. What are the existing generic ways
to guide an organizational agile adoption? 2. What are the main steps taken by
organizations that adopted agile methods empirically? 3. Is it possible to report
steps from empiric agile adoptions in organizations to any of the existing generic
ways?

The search was performed on the following search bases: ACM, Compendex,
Elsevier, IEEE, SpringerLink, Agile Conference and XP Conference. Initially,
4062 studies were returned. After applying the inclusion and exclusion criteria,
96 publications remained for the qualitative analysis. This was the first learned
lesson, there is plenty of published papers, it is difficult to find works related to
the research content.

As a preliminary result, we have that there are at least 17 generic ways that
can help organizations adopt agile methods. There are some success stories that
signal that adopting Scrum is a good first step towards the agile journey. Fur-
thermore, the organizational perspective can be considered a constraint for agile
adoption. Although this study was published before completing the qualitative
analysis stage of publications, it is possible to identify that its main contribution
is some directions for organizations that wish to adopt the agile culture in their
daily.

Managing Technical Debt in Agile Projects. The concept of technical debt
emerged in 1992, and it is a metaphor for immature, incomplete or inadequate
software artifacts. These debts are incurred in order to meet budget or schedule
constraints imposed by the reality of business. With this, having technical debts
is inevitable. Therefore, it is useless to try to eliminate them entirely, but it is
essential to manage them.

Two studies that analyzes the relationship between Technical debt and Agile
Methods were made. The first research was published in the proceedings of the
Agile Conference [17] in 2015. This research aimed to evaluate the technical debt
management framework proposed by Seaman and Guo [26] in a real software
development environment using Scrum.

Having Fun Doing Research on Agile Methods 157

At the time, we found that managing technical debt on projects using Scrum
was difficult because of the following reasons: It is not clear who is responsible
for minimizing technical debt; the product owner often does not understand the
need and benefits of reducing technical debt; and issues and goals related to
technical debt were neither structured nor documented.

The methodology adopted for this experiment was action research, and two
projects were selected. The following guidelines were adopted to select the can-
didate projects: ongoing projects with frequent change requests; projects using
Scrum for management; projects with evidence of unmanaged technical debt.

The experiment results are as follows. After some adjustments, the teams of
both projects recognized that the approach proposed to manage technical debt
was viable. We reduced the number of proposed metrics to two because of time
constraints and ease of use. The metrics are: Principal and the Current Amount
of Interest. Consequently, decision-making was improved by considering debts
that really needed to be paid early. During the first research phase, debt iden-
tification was improved when all Scrum roles participated. Furthermore, both
measurement and decision making were improved when the team was respon-
sible for these phases. The Product Owner in both companies understood the
importance of monitoring and prioritizing technical debt during the develop-
ment cycle. After conducting the study, both teams concluded that they would
continue to support and use the resulting approach.

The main contribution of this research was to provide real experience and
improvements to software teams that use Scrum, which may adopt the technical
debt management framework proposed by Seaman and Guo [26].

The second research was published in 2017 where we conducted an empirical
study in an academic environment. In this study, we identified the effects of
technical debt awareness, such as the influence on team behavior.

Drawing on Methods and Theories from Psychology. The first paper [6]
we published that drew directly on the psychology research field was to shortly
investigate the use of psychometrics in software engineering research. At the
time, survey research was common in software engineering research, but the sta-
tistical validation techniques created in psychological test theory were not. Since
this paper was published in 2016, the focus on psychometrics in software engi-
neering has increased and a very recent book chapter focuses on many of these
aspects [31]. There is, however, still a need to apply the methods we suggested
on a larger scale, as argued by Wagner et al. [31].

The second paper [7] drew on both novel theory from psychology in the
software engineering context, and showed an example of a more classic exper-
iment with in intervention and a control group. The theory used was a social-
psychological theory on team development from a group dynamics perspective.
We drew on the theory by Wheelan [32]. The theory comprises four different
developmental stages of all human small groups trying to reach a common goal.
We randomly divided seven student groups from the XP course at USP into an
experimental group and a control group and trained the experimental group in

158 A. Goldman et al.

group dynamics for 1.5 h. We also measured their agile practices maturity by
using the survey created by So and Scholl [28]. While we obtained great feed-
back from the students on the importance of team maturity, we did not see a
significant effect in our repeated measurements data analysis.

We speculated that 1.5 h of training was too little to push the team forward
in its psychological development, or that there are other confounding factors we
would have needed to take into account. We also state that the sample might be
too small and that we need a larger dataset to find a small effect.

Even if we could not draw many conclusions on from this paper, we still
showed an example of how to conduct an analyze classical experiment in human
factors research in software engineering that draw on both theories and statis-
tical methods from psychology. We also reported that we saw the importance
of looking at teams as a unit of analysis more, which we are happy to say has
become more prominent in software engineering research lately [16].

Software Startups. Software startups are companies that develop innovative,
software-intensive products or services [29] in a context characterized by a gen-
eral lack of resources, high reactiveness and flexibility, intense time-pressure,
uncertain conditions, and fast growth [18]. Although agile methodologies have
been seen as a natural approach to be used in software development in these
organizations, some challenges may arise. For instance, customer feedback, one
of the pillars of agile, is hindered since, in the beginning, there are no cus-
tomers for an innovative product. In an initial effort to better understand this
concept and since, by the beginning of the research, there were few studies
on software engineering practices in startups and none focused on requirements
engineering [18], we decided to focus on this aspect that is the boundary between
business and software development. Therefore, we conducted a grounded theory
study to understand how requirements engineering activities are carried out in
software startups. The research was conceived in cycles consisted of interviews
with founders and employees of software startups and data analysis based on
open and axial coding. In the first cycle, we performed 9 interviews and induc-
tively developed a model. These preliminary results were presented in the 2nd
International Workshop on Software Startups [10]. Until theoretical saturation
was reached, we performed other two cycles, totalizing 17 interviews with 23 peo-
ple involved that had experience with more than 30 startups. The final results
were published in the Information and Software Technology journal [11].

Our findings show that software startups do not follow a single specific set
of practices for requirements engineering, instead they follow a custom process
built based on set of influences: founders, software development manager, devel-
opers, business model, market, and ecosystem. Besides that, practices are similar
to those of agile methodologies with some differences regarding the lack of a cus-
tomer to have feedback on. A common practice to tackle this problem is the
figure of a product team. An internal multi-disciplinary team (or single person)
to think about the product and act as a proxy of possible customers.

Having Fun Doing Research on Agile Methods 159

During the period in which we developed this study, the software startup
research flourished. The initial paper has been cited in different empirical stud-
ies about software development, in general, and requirements engineering, in
specific, in software startups. The research also offered one of the first empirical
studies on software startups in Brazil. Finally, the study is the cornerstone of
Melegati’s next research: to improve the use of continuous experimentation, a
new trend in agile software development, in software startups. The model devel-
oped provides the set of factors that should be analyzed and acted upon to
improve the usage of this new agile practices in this context.

Effects of Technical Debt Awareness: A Classroom Study. The aim of
this research was to observe the effects of Technical Debt awareness in teams
in an academic setting. For this we followed the Extreme Programming Labo-
ratory (XP Lab) at the University of São Paulo. This study aimed to answer
the following research question (RQ): What was the impact on the team when
Technical Debt was explicitly considered? The study was applied in two editions
of XP Lab. Four teams were followed in the 2013 edition and five teams in the
2014 edition.

We conducted the study and collected data through questionnaires and inter-
views, and analyzed the source code of the projects with Sonar Qube and Code
Climate tools to identify the impact on the teams that explicitly considered
Technical Debt (TD). The teams had some similar views on the importance and
benefits of making TD explicit. A significant finding is that the teams consid-
ered it very helpful because they could see the whole landscape of the software
quality (they knew which part of the software had immature code). They also
emphasized that it was very useful to have a board where every day they could
see the health of the code. Before becoming aware of TD, the team members
reported that they sometimes incurred TD but never remembered to go back
and correct it. But after considering TD, they thought about the necessity of
incurring TD and often decided against it. Also, they could see the TD list and
so they did not forget the TD items that needed to be addressed. They discussed
more about how to implement the tasks, also they talked more about the prob-
lems of the software because they had the list of the TDs visible. This process
of thinking about incurring or not TD, discussing about it and reviewing the
TD during the project can create a culture focused on improving the software
quality. In addition, in this study we explored some ways of identifying and
monitoring TD. Our research participants found some form of a TD board very
useful for documenting TD, making it visible, and adjusting both the TD board
and their behavior accordingly. By using the TD board, they always know the
list of software deficiencies so have a constant reminder of how to organize their
work and improve the software. As a complementary aid, they may use tools to
help them to identify and monitor TD occurrence. However, it is important to
highlight that tool reports provide a static analysis of the software quality and
some TD item could not be identified using static metrics.

160 A. Goldman et al.

The results of this study could motivate teams to consider TD further, to
help developers convince leaders and directors, the decision makers, to start
considering TD. These approaches used by the XP Lab teams, such as boards,
cards and tools can help teams in companies to deal with TD. In addition, they
could define the list of TD items that are crucial to the project but hard to
identify with the tools. As a result they can define a strategy to deal with the
TD over time. As communication in the team was improved, all team members
thought more about quality, not just specific members. The “agile” culture of the
teams improved and in addition, the team believed that it was easier to show the
impact of the TD level to clients, showing that it is possible to invest some time
to improve the quality. The main results emphasize the Extreme Programming
values and helped the teams to support values such as communication at all
levels, courage to change and feedback to continuously improve the software.

The main outcome of both studies on TD was to allow to improve the Agile
Methods context of the teams, using an additional mindset which would improve
the development process.

3 Quantitative and Qualitative Analysis

In the Fig. 2 we can check the number of citations on August 2019 on Google
Scholar for each of the papers discussed above. Looking in a retrospective way,
we do not have any reasonable explanation on why some papers are cited much
more that others. A more careful analysis on the citations would be needed to
clarify this differences.

31

1

16

8

4

8

23

6

10

8

6

56

4

5

52

6

15

3

1

1

6

0

Tracking the Evolution of Object-Oriented Quality Metrics on Agile Projects

Open Source and Agile Methods: Two Worlds Closer than It Seems

Reinforcing the Learning of Agile Practices Using Coding Dojos

An Approach on Applying Organizational Learning in Agile Software…

From Manufacture to Software Development: A Comparative Review

A view towards Organizational Learning: An empirical study on Scrum…

Genesis and Evolution of the Agile Movement in Brazil - Perspective from…

How to Build an Informative Workspace? An Experience Using Data…

Uncovering Steady Advances for an Extreme Programming Course

The Influence of Practices Adopted by Agile Coaching and Training to Foster…

Designing and Managing Agile Informative Workspaces: Discovering and…

The evolution of agile software development in Brazil - Education, research,…

The Influence of Organizational Factors on Inter-team Knowledge Sharing…

Agile Methods Adoption on Software Development: A Pilot Review

Fostering effective inter-team knowledge sharing in agile software development

Managing Technical Debt in Software Projects Using Scrum: An Action…

Requirements engineering in software startups: A grounded theory approach

Useful statistical methods for human factors research in software engineering:…

Trying to Increase the Mature Use of Agile Practices by Group Development…

Effects of Technical Debt Awareness: A Classroom Study

A model of requirements engineering in software startups

Sharing techniques to continuously improve the XP Laboratory

20
07

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
19

Fig. 2. Citations number per publication

Having Fun Doing Research on Agile Methods 161

We also tried to understand the citation pattern for the Top 5 most cited
papers (Fig. 3). Again there is no evident pattern. The only clear point is that
2017 was a good year to be cited, but without any clear reason.

0

5

10

15

20

25

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f c
ita

tio
ns

Citation year

The evolution of agile software development in Brazil - Education, research, and the state-of-the-practice
Fostering effective inter-team knowledge sharing in agile software development
Tracking the Evolution of Object-Oriented Quality Metrics on Agile Projects
Genesis and Evolution of the Agile Movement in Brazil - Perspective from Academia and Industry
Reinforcing the Learning of Agile Practices Using Coding Dojos

Fig. 3. Evolution of citations number - Top 5

For the qualitative analysis we observed how the several papers were cited,
looking for top conferences like ICSE and top journals like Empirical Software

Table 1. Qualitative analysis

Paper Cited in

Fostering effective inter-team
knowledge sharing in agile software
development

Journal of Systems and Software in 2016

Agile Methods Adoption on Software
Development: A Pilot Review

Empirical Software Engineering in 2017

Managing Technical Debt in Software
Projects Using Scrum: An Action
Research

Journal of Systems and Software in 2017

The evolution of agile software
development in Brazil - Education,
research, and the state-of-the-practice

ICSE in 2017; Information and Software
Technology in 2017 and 2018

Trying to Increase the Mature Use of
Agile Practices by Group Development
Psychology Training - An Experiment

ICSE-SEIP in 2018

Requirements engineering in software
startups: A grounded theory approach

ICSE in 2018; IEEE Software in 2018 and 2019;
Empirical Software Engineering in 2019; IEEE
Transactions on Software Engineering in 2019;
Information and Software Technology in 2019

A model of requirements engineering
in software startups

Information and Software Technology in 2019

162 A. Goldman et al.

Engineering, Transactions in Software Engineering, IEEE Software, Information
ad Software Technology and Journal of Systems and Software. The main citations
are depicted on Table 1.

In summary, seven papers were cited. They were written in English, and were
published both in conferences and journals. The most cited one is very recent,
however, it studies a very popular subject. Requirements analysis for software
startups.

4 Conclusions

After taking the time to put together the experiences learned on this long jour-
ney, we have some takeaways. In the beginning, the research on Agile Methods
was more focused on small experiments, and more simple settings. Now, it is pri-
mordial to perform validations on real environments, using both qualitative and
quantitative methods combined with modern techniques of Empirical Software
Engineering.

Another takeaway is related to broadening the research, not only to consider
the developers themselves, but also the developers’ context, the stakeholders and
their interactions. Software developments depends on many more factors than
just practices, and processes, the context itself has to be taken into account.

Finally, after all these years teaching, spreading and doing research on Agile
Methods, we can affirm that we are happy with the transformation. From the
start where the Agile Manifesto was known for few programmers to now, were
Agile became mainstream. Thanks, mainly to the Agile Methods, today to be
Agile has become the norm. But, we always have to take the developers side into
account, remembering that there are technical skills that are needed, and in our
opinion, this is the next challenge to be solved. How to couple the current Agile
mindset with the developers and their needs. The solution encompasses a tight
collaboration among three main pillars: Education, Research and Practice.

There is much work to be done researching on Agile Methods, join us.

Acknowledgments. One of the main take-outs of this journey was to deeply under-
stand that research is not an activity to be done alone. So, we have to thank all the
people involved on the papers cited. So, chronologically, we want to thank: Fabio Kon,
Paulo Silva e Silva, Carlos Ferreira, Joe Yoder, Danilo Sato, Hugo Corbucci Mariana
Bravo, Renan de Melo Oliveira, Cláudia Melo, Eduardo Katayama, Viviane Santos,
Caio Silva, Frederico Oliveira, Graziela Tonin, Jorge Melegati, Lucas Gren, Diogo Pina,
Luis Gustavo Araujo Rodriguez.

References

1. Abrahamsson, P., Oza, N., Siponen, M.T.: Agile software development methods:
a comparative review1. In: Dingsøyr, T., Dyb̊a, T., Moe, N. (eds.) Agile software
development, pp. 31–59. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12575-1 3

https://doi.org/10.1007/978-3-642-12575-1_3
https://doi.org/10.1007/978-3-642-12575-1_3

Having Fun Doing Research on Agile Methods 163

2. Bravo, M., Goldman, A.: Reinforcing the learning of agile practices using coding
Dojos. In: Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.) XP 2010. LNBIP,
vol. 48, pp. 379–380. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13054-0 41

3. Corbucci, H., Goldman, A.: Open source and agile methods: two worlds closer
than it seems. In: Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.) XP
2010. LNBIP, vol. 48, pp. 383–384. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13054-0 43

4. Corbucci, H., Goldman, A., Katayama, E., Kon, F., Melo, C., Santos, V.: Gene-
sis and evolution of the agile movement in Brazil-perspective from academia and
industry. In: 2011 25th Brazilian Symposium on Software Engineering, pp. 98–107.
IEEE (2011)

5. Goldman, A., Santos, V.A.: Sharing techniques to continuously improve the XP
laboratory. In: 2019 Agile Conference (2019)

6. Gren, L., Goldman, A.: Useful statistical methods for human factors research in
software engineering: a discussion on validation with quantitative data. In: Pro-
ceedings of the 9th International Workshop on Cooperative and Human Aspects
of Software Engineering, pp. 121–124. ACM (2016)

7. Gren, L., Goldman, A.: Trying to increase the mature use of agile practices by group
development psychology training-an experiment. arXiv preprint arXiv:1904.02466
(2019)

8. Katayama, E.T., Goldman, A.: From manufacture to software development: a com-
parative review. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo, X. (eds.) XP
2011. LNBIP, vol. 77, pp. 88–101. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20677-1 7

9. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (2007)

10. Melegati, J., Goldman, A.: Requirements engineering in software startups: a
grounded theory approach. In: 2nd International Workshop on Software Startups
(2016)

11. Melegati, J., Goldman, A., Kon, F., Wang, X.: A model of requirements engineering
in software startups. Inf. Softw. Technol. 109(July 2018), 92–107 (2019). https://
doi.org/10.1016/j.infsof.2019.02.001

12. Melo, C.O., et al.: The evolution of agile software development in Brazil. J. Braz.
Comput. Soc. 19(4), 523 (2013)

13. Melo, C.d.O., Santos, V.A., Corbucci, H., Katayama, E., Goldman, A., Kon, F.:
Métodos ágeis no brasil: estado da prática em time e organizações (2012)

14. de Melo Oliveira, R., Goldman, A.: How to build an informative workspace? an
experience using data collection and feedback. In: 2011 Agile Conference, pp. 143–
146. IEEE (2011)

15. de Melo Oliveira, R., Goldman, A., Melo, C.O.: Designing and managing agile
informative workspaces: discovering and exploring patterns. In: 2013 46th Hawaii
International Conference on System Sciences, pp. 4790–4799. IEEE (2013)

16. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for
autonomous agile teams: a summary of the second international workshop at
XP2019. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 13–19. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2 2

17. Oliveira, F., Goldman, A., Santos, V.: Managing technical debt in software projects
using scrum: an action research. In: 2015 Agile Conference, pp. 50–59. IEEE (2015)

https://doi.org/10.1007/978-3-642-13054-0_41
https://doi.org/10.1007/978-3-642-13054-0_41
https://doi.org/10.1007/978-3-642-13054-0_43
https://doi.org/10.1007/978-3-642-13054-0_43
http://arxiv.org/abs/1904.02466
https://doi.org/10.1007/978-3-642-20677-1_7
https://doi.org/10.1007/978-3-642-20677-1_7
https://doi.org/10.1016/j.infsof.2019.02.001
https://doi.org/10.1016/j.infsof.2019.02.001
https://doi.org/10.1007/978-3-030-30126-2_2

164 A. Goldman et al.

18. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: a systematic mapping study. Inf.
Softw. Technol. 56(10), 1200–1218 (2014)

19. Santos, V., Goldman, A.: An approach on applying organizational learning in agile
software organizations. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo, X. (eds.)
XP 2011. LNBIP, vol. 77, pp. 324–325. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-20677-1 27

20. Santos, V., Goldman, A., De Souza, C.R.: Fostering effective inter-team knowledge
sharing in agile software development. Empir. Softw. Eng. 20(4), 1006–1051 (2015)

21. Santos, V., Goldman, A., Guerra, E., De Souza, C., Sharp, H.: A pattern language
for inter-team knowledge sharing in agile software development. In: Proceedings of
the 20th Conference on Pattern Languages of Programs, p. 20. The Hillside Group
(2013)

22. Santos, V., Goldman, A., Martins, D., Cortés, M., et al.: The influence of organiza-
tional factors on inter-team knowledge sharing effectiveness in agile environments.
In: 2014 47th Hawaii International Conference on System Sciences, pp. 4729–4738.
IEEE (2014)

23. Santos, V., Goldman, A., Roriz Filho, H.: The influence of practices adopted by
agile coaching and training to foster interaction and knowledge sharing in organiza-
tional practices. In: 2013 46th Hawaii International Conference on System Sciences,
pp. 4852–4861. IEEE (2013)

24. Santos, V.A., Goldman, A., Santos, C.D.: Uncovering steady advances for an
extreme programming course. CLEI Electron. J. 15(1), 2–2 (2012)

25. Sato, D., Goldman, A., Kon, F.: Tracking the evolution of object-oriented quality
metrics on agile projects. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.)
XP 2007. LNCS, vol. 4536, pp. 84–92. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-73101-6 12

26. Seaman, C., Guo, Y.: Measuring and monitoring technical debt. In: Advances in
Computers, vol. 82, pp. 25–46. Elsevier (2011)

27. Silva, C.C., Goldman, A.: Agile methods adoption on software development: a pilot
review. In: 2014 Agile Conference, pp. 64–65. IEEE (2014)

28. So, C., Scholl, W.: Perceptive agile measurement: new instruments for quantitative
studies in the pursuit of the social-psychological effect of agile practices. In: Abra-
hamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 83–93.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01853-4 11

29. Unterkalmsteiner, M., et al.: Software startups - a research agenda. e-Informatica
Softw. Eng. J. 10(1), 1–28 (2016)

30. VersionOne: 5th annual state of agile development survey. Technical report, Ver-
sionOne (2010)

31. Wagner, S., Mendez, D., Felderer, M., Graziotin, D., Kalinowski, M.: Challenges
in survey research. arXiv preprint arXiv:1908.05899 (2019)

32. Wheelan, S.A., Hochberger, J.M.: Validation studies of the group development
questionnaire. Small group Res. 27(1), 143–170 (1996)

https://doi.org/10.1007/978-3-642-20677-1_27
https://doi.org/10.1007/978-3-642-20677-1_27
https://doi.org/10.1007/978-3-540-73101-6_12
https://doi.org/10.1007/978-3-540-73101-6_12
https://doi.org/10.1007/978-3-642-01853-4_11
http://arxiv.org/abs/1908.05899

Author Index

Albuquerque, Thomas 11
Albuquerque, Vanessa G. 11
Arantes, Carlos Felipe 61, 92

Baptista, Bernardo 61
Barbosa, Marcelo Werneck 61
Barcelos, Thiago Schumacher 101
Bastos, Ricardo 25

Caldeira, Júnea Eliza Brandão 111
Choma, Joelma 11

da Cunha, Adilson Marques 85
da Silva, Soraia Lúcia 92
da Silva, Tiago Silva 11
de Oliveira Rodrigues, Bruno Rafael 111
de Oliveira Rosa, Thatiane 147
de Sá, Fernando Rodrigues 85
dos Reis Faria, Tadeu 92
dos Santos, Ana Paula 61

Fernandes, Everton Mateus 101
Fontdevila, Diego 76

Galdino, Patrick Rodrigues 61
Goldman, Alfredo 147
Guerra, Eduardo M. 11

Kattan, Herez Moise 41
Kozievitch, Nádia P. 128

Lautert, Tatiane 128
Lopes, Pedro Pongelupe 61

Marczak, Sabrina 25
Melo, Claudia de O. 3
Moralles, Cassiano 25

Neto, Adolfo Gustavo Serra Seca 128

Oliveros, Alejandro 76

Paez, Nicolas 76
Parreiras, Fernando Silva 111
Pereira, Eliana 25
Pereira, Patrícia Lourenço 92
Prauchner, Bruna 25

Ribeiro, Eric 61

Santos, Viviane A. 147

Trindade, Cássio 25

Vaccaro, Matheus 25
Vieira, Ricardo Godoi 85

Yoshioka, Sérgio Roberto Imaeda 111

Zaina, Luciana M. 11
Zorzetti, Maximilian 25

	Preface
	Organization
	Contents
	An Opening Paper From the Award Chair
	Another Purpose for Agility: Sustainability
	1 The Need for Agility
	2 Agile Transformations and the Risk of Commodification
	3 Agility for Broader Positive Impact and Sustainability
	4 Core Agility Capabilities at the Heart of Implementation of SDGs
	5 Conclusion
	References

	Empirical Studies on Agile
	An Empirical Study of Test-Driven Development vs. Test-Last Development Using Eye Tracking
	1 Introduction
	2 Related Work
	2.1 Test-Driven Development
	2.2 Eye-Tracking in Software Engineering

	3 Study Design
	3.1 Subjects
	3.2 Study Setting
	3.3 Tasks
	3.4 Areas of Interest (AoI)
	3.5 Variables
	3.6 Procedure

	4 Results
	4.1 Visual Attention Analysis (RQ1)
	4.2 Qualitative Analysis (RQ2)

	5 Discussion and Conclusion
	References

	On the Mapping of Underlying Concepts of a Combined Use of Lean and User-Centered Design with Agile Development: The Case Study of the Transformation Process of an IT Company
	1 Introduction
	2 Research Method
	2.1 Case Setting
	2.2 Data Collection and Analysis

	3 Results
	3.1 Extreme Programming
	3.2 Lean
	3.3 User-Centered Design

	4 Discussion
	5 Final Considerations
	References

	Mob Programming and Simultaneous Style Pair Programming in the Development of a Battle Royale Game: An Action Research
	1 Introduction
	2 Background
	2.1 Socio-Technical Systems
	2.2 Mob Programming
	2.3 Simultaneous Style Pair Programming
	2.4 Social Computing
	2.5 Action Research

	3 Research Method
	4 Battle Royale Style Game Called Pirate Ship Battles
	4.1 Context
	4.2 First Cycle
	4.3 Second Cycle
	4.4 Third Cycle

	5 Results Analysis and Discussion
	6 Limitations
	7 Conclusion
	References

	Agile in Education
	Mining Undergraduate Students’ Code Repositories: Insights from Interdisciplinary Software Projects
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Agile Learning
	2.2 Mining Software Repositories

	3 Methodology
	3.1 Research Questions and Hypotheses
	3.2 Interdisciplinary Software Projects

	4 Results and Discussions
	4.1 Procrastination
	4.2 Team Work and Collaboration
	4.3 Commit Messages

	5 Conclusions
	5.1 Limitations and Threats to Validity
	5.2 Contributions and Future Work

	References

	Initial Assessment of Agile Development in the Undergraduate Curricula
	1 Introduction
	2 Related Work
	3 Methodology and Study Description
	4 Results and Findings
	5 Threats to Validity
	6 Conclusions and Future Work
	References

	Lessons Learned from the Agile Transformation of an Aeronautics Computing Center
	1 Introduction
	2 Action Plan
	3 Milestones
	4 Lessons Learned
	5 Final Considerations
	References

	Agile Experiences in a Software Development Extension Course at a Software Engineering Bachelor’s Degree
	1 Introduction
	2 Related Works
	3 Theoretical Background
	3.1 Extension Practices
	3.2 Agile Methodologies and Scrum
	3.3 Interdisciplinary Software Project IV

	4 Methodology
	5 Results
	References

	Agile Practices
	Identifying Success Factors in a Legacy Systems Reengineering Project Using Agile Methods
	1 Introduction
	2 Related Works
	2.1 Systems Reengineering
	2.2 Agile Methods, Practices, and Success Factors

	3 Case Study
	4 Interviews
	5 Document Analysis
	6 Analysis of Results
	7 Conclusions
	References

	ATIMO – A Tool for Alocating Agile Teams
	1 Introduction
	2 Related Work
	3 Modelling the Problem
	4 Algorithms Utilized in the ATIMO Tool
	4.1 NSGA II
	4.2 SPEA2
	4.3 MOCELL
	4.4 Parameters of the Algorithms

	5 The Experiment
	5.1 Organization of the Project Scenarios for Carrying Out the Tests
	5.2 Test Scenario I
	5.3 Test Scenario II
	5.4 Test Scenario III
	5.5 Test Scenario IV
	5.6 Conducting the Experiments

	6 Results and Discussion
	7 Threats to the Validity of Research
	8 Conclusion
	References

	A Survey on Agile Practices and Challenges of a Global Software Development Team
	1 Introduction
	2 Related Work
	3 Method
	4 Results
	5 Limitations
	6 Conclusion
	A Appendices
	A.1 Agile Survey

	References

	A Closing Paper From the Most Influential Researcher Over 10 Years of WBMA
	Having Fun Doing Research on Agile Methods
	1 Introduction
	2 Contributions
	2.1 Agility in Brazil
	2.2 Agile Methods Education
	2.3 Agile Methods Research

	3 Quantitative and Qualitative Analysis
	4 Conclusions
	References

	Author Index

