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Abstract
The tumor microenvironment is the primary 
location in which tumor cells and the host 
immune system interact. There are many 
physiological, biochemical, cellular mecha-
nisms in the neighbor of tumor which is com-
posed of various cell types. Interactions of 
chemokines and chemokine receptors can 
recruit immune cell subsets into the tumor 
microenvironment. These interactions can 
modulate tumor progression and metastasis. 
In this chapter, we will focus on chemokine 
(C-C motif) ligand 7 (CCL7) that is highly 
expressed in the tumor microenvironment of 
various cancers, including colorectal cancer, 
breast cancer, oral cancer, renal cancer, and 
gastric cancer. We reviewed how CCL7 can 
affect cancer immunity and tumorigenesis by 
describing its regulation and roles in immune 
cell recruitment and stromal cell biology.
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4.1  Physiological Roles of CCL7

Chemokines comprise a large superfamily of at 
least 46 cytokines initially described based on their 
ability to bind to seven transmembrane domain G 
protein-coupled receptors to induce directed migra-
tion of leukocyte subsets to sites of inflammatory 
site or tumor microenvironment (TME) [1]. Their 
ligands can bind to extracellular N-terminus of 
receptors and lead to phosphorylation of serine/
threonine residues on their cytoplasmic C-terminus, 
causing signaling and receptor desensitization [1]. 
Chemokine and chemokine receptor pairs not only 
mediate cellular migration but also affect many cel-
lular functions, including survival, adhesion, inva-
sion, and proliferation by regulating chemokine 
levels [2, 3]. Chemokines are classified into four 
groups (CXC, CC, C, and CX3C) based on the 
position of the first two cysteines [4, 5]. CXC che-
mokines act predominantly on neutrophils and T 
 lymphocytes while CC chemokines are active on 

Y. S. Lee 
Sungkyunkwan University School of Medicine, 
Seoul, Republic of Korea 

Y. B. Cho (*) 
Department of Surgery, Samsung Medical Center, 
Sungkyunkwan University School of Medicine, 
Seoul, Republic of Korea 

Department of Health Sciences and Technology, 
SAIHST, Sungkyunkwan University,  
Seoul, Republic of Korea
e-mail: gscyb@skku.edu

4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36667-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-36667-4_4
mailto:gscyb@skku.edu


34

various cell types, including monocytes and lym-
phocytes [6–8]. Chemokine (C-C motif) ligand 7 
(CCL7), also known as monocyte chemotactic pro-
tein 3 (MCP-3), is a member of chemokine ligand 
subfamily first characterized from osteosarcoma 
supernatant [9]. CCL7 is expressed in various types 
of cells (including stromal cells, immune cells, and 
airway smooth muscle cells) under physiological 
conditions and tumor cells under pathological con-
ditions. CCL7 is a potent chemoattractant for a 
variety of leukocytes, including monocytes, eosin-
ophils, basophils, dendritic cells (DCs), natural 
killer (NK) cells, and activated T lymphocytes [10, 
11]. CCL7 is also highly expressed in advanced 
renal cancer, gastric cancer, colorectal cancer, and 
squamous cancer cells [12–15]. Ligands for che-
mokine receptors CCR1, CCR2, CCR3, and CCR5 
can recruit macrophages to the TME [16]. 
Neutrophils and myeloid-derived suppressor cells 
(MDSCs) are recruited to the tumor through 
ligands for CCR2, CCR3, CXCR1, CXCR2, and 
CXCR4. Tregs express chemokine receptors 
CCR2, 3, 4, 6, 7, 8, and 10, CXCR3, and CXCR4 
[17–25]. Among these receptors, CCR1, CCR2, 
CCR3, and CCR5 are widely known as the main 

functional receptors of CCL7 [26–28]. In this 
chapter, we will describe the role of CCL7 and its 
receptors in TME. We will also review how CCL7 
and its receptors can affect cancer immunity and 
tumorigenesis in various types of tumor.

4.2  Opposite Role of CCL7 
Signaling in the Tumor 
Microenvironment

Cross talk between tumor cells and their environ-
ment in peripheral TME is an important factor 
that affects tumor progression. Stromal cells 
including fibroblasts, macrophages, adipocytes, 
and others are components of the TME [29, 30]. 
Interactions between stromal cells and tumor cells 
are formed by a variety of soluble factors includ-
ing inflammatory cytokines, growth factors, and 
chemokines secreted by tumor cells or stromal 
cells [31, 32]. CCL7 is an important molecular 
regulator in the reciprocal interaction between 
stromal cells and tumor cells. It not only partici-
pates in tumorigenesis (Table 4.1) but also exerts 
antitumor responses in particular contexts [33]. 

Table 4.1 Pro-tumoral effect of CCL7 in the tumor microenvironment

Cancer type Cancer cell types Producer (stimulator)
Recipient/signaling 
type (receptor) Physiological effects Ref.

Colorectal 
cancer

Patient sample Colorectal cancer 
cells

Autocrine (CCR1, 2, 
3, 5)

Enhances liver 
metastasis

[14]

Colorectal 
cancer

HCT116, HT29 Colorectal cancer 
cells

Autocrine (CCR3) Enhances proliferation 
and promote migration, 
metastasis

[35]

Colorectal 
cancer

LS174T, CL-188 Kupffer cells Hepatic stellate cells Enhances liver 
metastasis

[46]

Oral cancer YD-10B, YD-38, 
HSC-2, HSC-3

Cancer-associated 
fibroblast

Oral cancer cells 
(CCR1,3)

Enhances invasion [12]

Oral cancer YD-10B, YD-32, 
YD-38, HSC-2

Cancer-associated 
fibroblast

Oral cancer cells Enhances cancer 
progression

[59]

Renal cancer Patient sample Renal cancer cells Tumor-associated 
macrophage (CCR2)

Enhances brain 
metastasis

[13]

Renal cancer A498, 769P, 
786O, Caki-1, 
Caki-2

Renal cancer cells Autocrine, endocrine Enhances macrophage 
infiltration, tumor 
growth, metastasis

[34]

Gastric cancer N.D. Gastric cancer cells Autocrine Enhances lymph node 
metastasis and poor 
prognosis

[15]

Gastric cancer C57BL6 mouse 
tissues

Adipose tissue Paracrine, endocrine Enhances macrophage 
recruitment

[67]

(continued)
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Increased CCL7 levels can recruit monocytes to 
sites at the tumor periphery. This helps in the for-
mation of an environment suitable for carcinoma 
progression and promotes monocytes to complete 
phenotypic transformation. CCL7 can also recruit 
leukocytes and activate antitumor immune 
responses (Table 4.2). Here, we will focus on the 
opposite roles of CCL7 based on original cells of 
CCL7 in various tumor types.

4.2.1  Pro-tumor Effect of CCL7

4.2.1.1  Signaling Induced by Tumor- 
Derived CCL7

CCL7 can act as a tumor-induced factor that can 
promote tumor growth, invasion, and metastasis by 
autocrine in metastatic renal cell carcinoma (RCC) 

rather than in primary RCC [13]. High CCL7 
expression in RCC evokes the recruitment of 
tumor-associated macrophages (TAMs) that pres-
ent CCR2 on their surface membrane, thus increas-
ing vascular permeability. RCC cells can cross 
through blood-brain barriers to brain tissues [13]. 
microRNA Let-7d can specifically bind to the 
3′UTR (untranslated region) of CCL7 mRNA and 
modify the expression of CCL7 in a negative feed-
back manner. The expression of let- 7d is reduced in 
RCC, resulting in a large amount of CCL7 [34]. As 
a result, CCL7 plays an indirect role in RCC metas-
tasis through the let-7d-CCL7- TAM axis. Pro-
tumorigenic properties of CCL7 have also been 
confirmed in colorectal cancer (CRC) cells [14]. In 
vitro and in vivo CCL7 overexpression by lentiviral 
transduction can increase the proliferation, migra-
tion, and invasion of CRC cells [35]. In addition, by 

Cancer type Cancer cell types Producer (stimulator)
Recipient/signaling 
type (receptor) Physiological effects Ref.

Breast cancer Cal51, 
mda-mb-231, 
HFFF2

Cancer-associated 
fibroblast

Breast cancer cells 
(CCR1)

Enhances proliferation [58]

Breast cancer MDA-MB-231 Astrocytes Breast cancer 
(CCR1)

Enhances self- renewal 
of tumor-initiating cells

[68]

Prostate 
cancer

LNCaP, C4-2B, 
Du-145, PC-3

Cancer-associated 
adipocytes

Prostate cancer cells 
(CCR3)

Enhances migration [66]

Lung cancer H1650 Neutrophils Lung cancer cells Enhances tumorigenic 
properties

[48]

Hepatocellular 
carcinoma

Huh-7, PLC Cancer-associated 
fibroblast

Hepatocellular 
carcinoma cells 
(CCR1,2,3,5)

Enhances metastasis [56]

Melanoma B16-F0 Tumor cell-derived 
exosomes-educated 
mesenchymal 
stromal cells

Melanoma cells 
(CCR2)

Enhances macrophage 
recruitment and tumor 
growth

[71]

Laryngeal 
squamous cell 
carcinoma

Patient sample Cancer-associated 
fibroblast

Laryngeal carcinoma 
cells (CXCR4)

Enhances 
tumor-supporting

[57]

Table 4.1 (continued)

Table 4.2 Antitumoral effect of CCL7 in the tumor microenvironment

Cancer type
Cancer cell 
types Producer (stimulator) Physiological effects Ref.

Cervical 
carcinoma

HeLa Cervical carcinoma 
cells

Enhances infiltration of macrophage, dendritic 
cells, and NK cells

[73]

Mastocytoma P815 Mastocytoma cells Enhances T cell activation and tumor rejection [74]
Melanoma B16, K1735 Melanoma cells Enhances depletion of CD4, CD8, and NK cells [75]
Pancreatic cancer Panc-1 Pancreatic cancer cells Enhances NK cell infiltration [76]
Colorectal cancer CMT93 Colorectal cancer cells Enhances immune cell infiltration [77]
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binding to CCR3, CCL7 overexpression can acti-
vate the ERK/JNK signaling pathway that con-
verges on downstream pathways of the MAPK 
cascade, thereby participating in the epithelial-
mesenchymal transition (EMT) process that is suf-
ficient to enhance cancer cell metastasis. Clinical 
studies have shown that CCL7 expression is higher 
in liver metastatic tumor tissues compared to pri-
mary CRC tissues, suggesting that CCL7 can pro-
mote CRC liver metastasis [14, 35]. In prostate 
cancer, PC3 cells can secrete more pro-metastatic 
factors, including CCL7 and TGF-β, thus acceler-
ating the growth of prostate cancer and the rate of 
bone metastasis [36].

4.2.1.2  Signaling Induced by Immune 
Cells-Derived CCL7

Immune cells in the TME can promote tumor 
angiogenesis and suppress antitumor reaction of 
several activated immune cells, thus positively 
affecting tumor development process. Chemokine 
CCL7 was initially identified as a cytokine in 
mononuclear cells [37]. It can act on a variety of 
target cells, including neutrophils, eosinophils, 
basophils, NK cells, T lymphocytes, other inflam-
matory cells, DCS, and mononuclear cells, partic-
ularly monocytes [37–39]. In the last decade, 
many studies have shown that TAMs are closely 
related to tumor progression [40]. It has been 
found that TAMs differentiated through interac-
tion with tumor cells are involved in immunosup-
pression, migration, and metastasis [41, 42]. 
Consistently with these functions of TAMs, stud-
ies using human tumor samples have shown that 
high density of TAMs with M2 phenotypes is 
closely linked to worse clinical prognosis, espe-
cially in many types of malignant tumors such as 
lung cancer, breast cancer, ovarian cancer, and 
bladder cancer [40–43]. Polarization signaling of 
TAM and TAM itself are new immunotherapeutic 
targets for malignant tumor treatment [44, 45]. 
Alcoholic liver damage is considered a high risk 
factor for colorectal cancer liver metastasis 
(CRLM) [46]. Overexpression of CCL7 in Kupffer 
cells (KCs), human liver macrophages, can create 
a favorable microenvironment for CRLM.  The 
cascade begins with CCL7 and alcohol- stimulating 

KCs which express anti- inflammatory cytokine 
[46]. These stimuli can promote the potential abil-
ity of hepatic stellate cells (HSC) and enable the 
liver to become an important component of the 
metastatic niche. In pancreatic cancer, CCL7 
mRNA levels are markedly increased after stimu-
lating monocytes with thymic stromal lymphopoi-
etin which is produced by activated 
cancer-associated fibroblast (CAF) [47]. CCL7 
secretion by monocytes contributes greatly to the 
recruitment of basophil to tumor- draining lymph 
nodes (TDLN). Neutralizing antibody of CCL7 
can partially block the recruitment of basophils to 
the TDLN.  IL-4-positive basophils show greater 
accumulation in TDLNs than in non-TDLNs. This 
is relevant to Th2 inflammatory responses, indicat-
ing poor prognosis in pancreatic cancer patients 
with high proportion of basophils [47]. CCL7 is 
also secreted irregularly by neutrophils. It can 
increase the movement of human non-small cell 
lung cancer (NSCLC) cells so that cancer cells can 
metastasize to bone tissues [48, 49].

4.2.1.3  Signaling Induced by CAF- 
Derived CCL7

Cancer cells participate in the creation of a favor-
able microenvironment by interacting with stro-
mal cells and triggering the homing of a variety 
of cells to the tumor site. Among cells affected by 
cancer cells, CAFs have both fibroblastic and 
mesenchymal stromal cell (MSC) origin [50, 51]. 
CAFs can promote tumor growth through direct 
stimulation of cancer cell proliferation, increas-
ing angiogenesis, and recruitment of immune 
cells into TME [52]. Via interacting with tumor 
cells, activated CAFs can enhance the secretion 
of matrix metalloproteinase (MMP), chemo-
kines, and growth factors to promote tumor 
migration [53, 54]. Compared to normal fibro-
blasts, CAFs are more numerous. In addition, 
they express higher quantities of mesenchymal 
markers such as E-cadherin. Furthermore, CAFs 
can significantly increase hepatocellular carci-
noma (HCC) cell migration by inducing epithe-
lial mesenchymal transition (EMT) in HCC cells 
in vitro [55]. CAFs also have powerful effects on 
HCC metastasis in vivo. CCL7 can activate the 
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TGF-β pathway by enhancing Smad2 phosphory-
lation. Blocking the TGF-β pathway markedly 
can inhibit effects of CCL7 on HCC tumor migra-
tion and invasion [56]. This study has highlighted 
the role of CCL7 in regulating tumor progression 
by influencing the TME via the TGF-β pathway 
[56]. In a coculture system of CAF and laryngeal 
squamous cell carcinoma, CCL7 protein levels 
are elevated, accompanied by rapid tumor cell 
proliferation with increasing CXCR4 expression 
[57]. A further study showed that CAF-derived 
CCL7 mainly promoted breast cancer cell prolif-
eration by binding to its receptor CCR1 [58]. 
IL-1α secreted by oral squamous cell carcinoma 
(OSCC) can induce CCL7 release from activated 
stromal fibroblasts and stimulate CAF prolifera-
tion [59]. At the same time, CCL7 generated by 
CAF is the main promoter of OSCC cell migra-
tion and invasion. It guides cytoskeletal transfor-
mation and enhances cell dissemination and 
membrane disarrange [12, 59].

4.2.1.4  Signaling Induced by CAAs- 
Derived CCL7

It has been previously thought that obesity can 
serve as a risk factor of cancers such as breast 
cancer, prostate cancer, renal cancer, and gastro-
intestinal cancer [60]. Many studies have shown 
that cancer-associated adipocytes (CAAs) can 
produce cytokines, adipokines, chemokines, and 
MMP that can promote tumor initiation, pro-
gression, and metastasis [61, 62]. Furthermore, 
obese cancer patients show poor survival out-
comes in prostate cancer, breast cancer, and 
CRC [63–65]. Inhibition of CCL7/CCR3 axis 
blocks the ability of adipocytes to enhance tumor 
cell migration. This means that CCL7/CCR3 
interaction plays a crucial role in obese prostate 
cancer progression [66]. Increased expression of 
CCL7 can positively enhance proinflammatory 
reaction feedback loop and modulate immature 
monocytic myeloid cells mobilization in gastric 
TME [67]. Furthermore, in adipose tissue of 
obese mice, Helicobacter felis infection can 
induce macrophage accumulation and expres-
sion of CCL7 [67].

4.2.1.5  Signaling Induced by Other 
Cells-Derived CCL7

Astrocytes can secrete high levels of CCL7 when 
they are stimulated with cyclooxygenase 2 
(COX2) and MMP-1 [68]. The axis of COX2- 
MMP- 1/CCL7 can promote self-renewal of breast 
cancer and its brain metastasis [68]. Truncated 
CCL7 cleaved by MMP-13 can eliminate the 
action of its corresponding receptors. The cleaved 
CCL7 becomes part of the negative feedback 
loop, which in turn increases MMP-13 and oste-
olysis. Thus, malignant breast cancer 
MDA-MB-231 cells are easy to move to the bone 
[69]. CCL7 produced by bone marrow (BM) stro-
mal cells can act as a chemoattractant for human 
multiple myeloid cells via CCL7/CCR2 interac-
tion [70]. CCL7 plays a pivotal role in the recruit-
ment of macrophages by tumor cell- derived 
exosome-educated mesenchymal stromal cells 
(MSCs) via binding to CCR2 on melanoma cells 
[71]. Overexpression of CCL7 by MSCs increases 
its interaction with neighboring immune cells and 
facilitates macrophage infiltration, making 
tumor microenvironment suitable for tumor self-
renewing [72]. As shown in Fig.  4.1, CCL7-
related signaling plays a pivotal role in tumor 
microenvironment to enhance tumorigenesis.

4.2.2  Antitumor Effect of CCL7

CCL7 is generally recognized as inflammatory 
cytokine. T lymphocytes and DCs activated by 
CCL7 play an important role in mobilizing 
immune responses to resist tumor growth. 
Transduced model of CCL7 using parvovirus 
which overexpresses CCL7  in cervical cancer 
tumor shows tumor regression and immune cell 
infiltration such as NK cells and macrophages in 
xenograft model [73]. Furthermore, CCL7 over-
expression increases recruitment of leukocytes 
and triggers type I T cell-dependent reactions, 
evoking an antitumor cascade [74]. CCL7 gene 
transfer to mastocytoma cells causes reduced 
tumorigenicity, enhanced neutrophil recruitment 
to the tumor, and DC infiltration in peritumoral 
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tissue [74]. CCL7-transduced melanoma cells 
also show strongly inhibited tumor growth in 
mice [75]. Such tumor regression is partly medi-
ated via recruited CD4, CD8 T cells, and NK 
cells [75]. Another parvovirus-mediated CCL7 
overexpression model of PDAC study has shown 
that CCL7 can activate and recruit NK cells and 
monocytes to enhance antitumor responses [76]. 

In addition to controlling tumor growth, CCL7 
also impedes tumor metastasis in a mouse colon 
cancer model [77]. In brief, parvovirus-mediated 
transduction of CCL7 to cancer cells can reduce 
tumor progression through activated immune cell 
infiltration. In other words, CCL7 might be a 
strong activator of immune surveillance via 
recruiting immune cells to the TME.

Fig. 4.1 The role of CCL7 signaling in tumor microenvironment
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4.3  Immunotherapy Landscape 
and Future Direction

As described earlier, the role of CCL7 in the 
tumor microenvironment has been consistently 
investigated over the last three decades since it 
was first identified in osteosarcoma cell (MG-63) 
supernatant [9]. Because CCL7 is derived from 
various normal cells [39, 78] as well as tumor 
microenvironmental cells, its physiological roles 
in the living body are profoundly complicated. 
Since CCL7 can bind to multiple seven- 
transmembrane receptors in normal physiology 
and plays a crucial role, anti-CCL7 antibody or 
such ligand targeting may inhibit other signaling 
pathways that are crucial for sustaining normal 
homeostasis. Therefore, rather than targeting 
chemokine itself, targeting chemokine receptors 
is an ideal immunotherapeutic strategy. Many 
preclinical models and clinical trials have been 
performed to validate their roles in actual 
patient’s survival. In fact, anti-CCR4 monoclonal 
antibody and CXCR4 antagonist are already in 
the stage of clinical practice for various tumors 
[79–81]. Regarding CCL7 receptors, CCR1, 
CCR2, CCR3, and CCR5 have been investigated 
in preclinical studies. Clinical trials on CCR1, 
CCR2, and CCR5 in multiple myeloma, colorec-
tal cancer, pancreatic cancer, and breast cancer 
have also been performed [82–86]. Although the 
role of CCR3 as a receptor for CCL7 has been 
revealed in many cancer types, clinical trials on 
CCR3 have not been reported yet. Because inhib-
iting chemokine receptor shows potential clinical 
value itself or when it is combined with immune 
checkpoint inhibitors, studies on chemokine 
receptor such as CCR3 might give encouraging 
results. Therefore, strategies targeting CCL7 
receptors might be useful in the future to over-
come poor survival outcomes of patients.
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