
Chapter 7
Revisiting Urban Economics
for Understanding Urban Data

Marc Barthelemy

Abstract The recent availability of data about cities and urban systems opens the
exciting possibility of a ‘new Science of Cities’. Urban morphogenesis, activity and
residence location choice,mobility, urban sprawl and the evolution of urban networks
are just a few of the important processes that can be discussed now from a quantitative
point of view. Here, we will discuss how a data-informed approached can elaborate
on urban economics models in order to get predictions in agreement with empirical
observations. We will illustrate this approach on the polycentric organization of
activity in cities and how it evolves when their population grow.

7.1 Introduction

With the availability of large amounts of urban data, we can now hope to bridge
the gap between theoretical models and empirical observations. This will help us
to provide a quantitative understanding of the phenomenon under study. In the case
of a system as complex as a city, the hope is to construct solid, scientific founda-
tions of urban systems (see Batty 2013; Barthelemy 2016). This effort is necessarily
interdisciplinary (and this is not always easy, see O’Sullivan and Manson 2015): we
have to build up on early studies in urbanism to discuss morphological patterns and
their evolution, and on quantitative geography and spatial economics to describe the
behavior of individuals, the impact of different transportation modes, and the effect
of economic variables (such as the income, the renting market).

We will illustrate this type of approach on some aspect of mobility in cities.
The strategy used is in general determined by the following main tasks: First, we
extract robust empirical facts and useful information from large amounts of data;
second, we identify the relevant mechanisms and parameters describing the behavior
of the elementary constituents of the system (in most cases individuals, but also
groups, companies or institutions). Then, using these mechanisms and parameters,
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we construct parsimonious models by combining tools and concepts from statistical
physics with ingredients from urban economics and quantitative geography. Finally,
we validate the model by data.

We will discuss empirical aspects in Sect. 7.2 with the study of the spatial struc-
ture of activities in cities. We will show how we can extract this information from
mobile phone data in Sect. 7.2.1. This same dataset can also help us in describing
mobility patterns and we will show in Sect. 7.2.2 how we can extract mesoscopic
information from these large datasets. In Sect. 7.3, we will focus on theoretical
approaches for explaining regularities observed empirically. We will start by dis-
cussing how to model the spatial distribution of activities, and then another problem
which is the effect of income on commuting. In these theoretical approach we show
that classical models fail to predict the empirical observations, therefore calling for
the need for different frameworks. These examples highlight the importance of three
essential ingredients in the modeling strategy that is used here: (i) extracting useful
mesoscopic information from large datasets, (ii) describing complex quantities by
random variables and (iii) complex actions by stochastic processes.

7.2 Empirical Studies

7.2.1 Extracting the Spatial Distribution of Activity

Cell phone networks, enable to capture large amounts of human behavioral data but
also provide information about the structure of cities and their dynamical properties.
We illustrate this point with mobile phone data recorded over two months and for 30
Spanish metropolitan areas (Louail et al. 2014, 2015). We can measure the density
of users in certain areas of the city and applying filters such as the frequency of visit
of a location and the duration of stay we can infer density of activity during the day
in cities. The type of measures that we obtain is shown in Fig. 7.1 in the case of
Vitoria and Bilbao.

We observe that there are essentially two types of cities. First we observe that
usually smaller cities have a unique activity center (Fig. 7.1, left) and correspond
to the classical image of the monocentric city organized around a central business
district. Second for larger cities we observe a more complex pattern (Fig. 7.1, right)
with more than one activity center.

In order to go further in the quantitative analysis of the spatial organization of
activities in cities we have to determine the number of activity centers, or “hotspots”.
We can see the density of users (or employment for example) as a two dimensional
surface and the hotspots are the local maxima of this surface. In order to decide if
a location can be considered as a local maximum, we introduced a parameter free
method to introduce a threshold allowing to detect hotspots. This method, described
in detail in Louail et al. (2014), relies on the Lorentz curve of the density at different
points. It is based on the observation that the curvature of the Lorentz curve is
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Fig. 7.1 Areas with large density of mobile phone users for (left) Vitoria and (right) Bilbao. The
darker the area and the larger the density of users. Figure from Louail et al. (2014)

connected to the heterogeneity of the values of the density (the surface between the
diagonal and the Lorentz curve is indeed directly related to the Gini coefficient).
This curvature of the Lorentz curve L(F) can be characterized by the slope of the
curve at F = 1 and it is therefore natural to extract from this slope a threshold (see
Fig. 7.2). This threshold (denoted by FLouBar in Fig. 7.2), is naturally larger than the
naive one given by the average. Indeed considering that every location with a value
larger than the average is a very mild determination of a hotspot and FLouBar would
give the strongest constraint.

For a given value of the threshold we can then count the number H of hotspots
and any result on this quantity should be robust with respect to small variations of the
thresholding procedure. For example, we plot in Fig. 7.3 the number H of hotspots
obtained by using the average for the threshold (i.e. each location with a density
larger than the average is counted as a hotspot) and by using the quantity FLouBar .

We observe on these results the existence of a robust behavior (confirmed by
studies on employment data for 9000 US cities, Louf and Barthelemy 2013)

Fig. 7.2 Lorentz curve used
for constructing a
parameter-free method for
determining hotspots. The
intersection of the slope at
F = 1 with the x-axis gives
a threshold naturally related
to the heterogeneity of the
density distribution. Figure
taken from Louail et al.
(2014)
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Fig. 7.3 Number of hotspots
H versus the population of
the city for two different
values of the threshold (the
average and the one obtained
from FLouBar ). Both
thresholds predict
consistently a sublinear
behavior. Figure taken from
Louail et al. (2014)

H ∼ Pβ

where the exponent β is usually found to be around 0.5–0.6. The number of these
hotspots thus scales sublinearly with the population size, a result that will serve as
a guide for constructing theoretical models. The spatial structure of these hotspots
is also of interest and allows us to distinguish different categories of cities, from
monocentric and “segregated” where the spatial distribution is very dependent on
land use (residential or activity), to polycentric where the spatial mixing between
land uses is much more important. These results point towards the possibility of a
new, quantitative classification of cities using high resolution spatio-temporal data.

7.2.2 A Typology of Mobility Patterns

The description of mobility patterns and their statistics is of great interest for under-
standing the functioning of a city at a large scale and the effect of infrastructures.
Surprisingly enough, there were few studies of this problem and the main source
of inspiration for many authors is the paper by Bertaud and Malpezzi (2003) who
proposed the simple typology of journey-to-work trips shown in Fig. 7.4.

The first class of cities display the type (a) of mobility patterns which correspond
to the classical idea of what happens in a monocentric city: all the flows (correspond-
ing here to the journey-to-work commute) are converging to one unique center. In (b),
Bertaud and Malpezzi proposed another type of organization where flows appear to
be “random”. In (c) we have the polycentric—or urban villages—organization with
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Fig. 7.4 A proposal for a
typology of mobility patterns
from home to work. The
journey-to-work flows are
indicated by arrows. Figure
taken from Bertaud and
Malpezzi (2003)

the existence of many activity centers with their own attraction basin. Finally, they
conclude with the possibility of observing a pattern (d) resulting from the super-
imposition of patterns (a–c). Although this typology proposal is very reasonable it
wasn’t verified empirically.

The current mobile phone data however allows to test this typology. A more gen-
eral problem with large datasets such as the one obtained with mobile phone data (or
other sources such as GPS or RFIDs), is the extraction of a clear and simple footprint
of the structure of large origin-destinationmatrices which contain the complete infor-
mation on commuting flows, but are difficult to analyze and compare. We discuss
here briefly a versatile method (Louail et al. 2015) which extracts a coarse-grained
signature of mobility networks, under the form of a 2 × 2 matrix that separates the
flows into four categories. The main idea is to separate working places in two differ-
ent categories: either a location is an activity center (i.e. a hotspot) or not.We can also
apply the method discussed above to residence places: we then obtain “residential
hotspots” for which the population density is far above the average. The commuting
flows from home to work can then be aggregated in the four different categories
shown in Fig. 7.5.

We then obtain the four numbers I,C, D, R for each city that aggregate the flows.
The quantity I represents the flow between residential hotspots and activity centers,
while R describes the flows between non-hotspots (both residential and working).
The two other quantities C and D represent flows between areas of different types.

We apply this method to origin-destination matrices extracted frommobile phone
data for journey towork trips in the 30 largest Spanish urban areas (Louail et al. 2015),
and lead to the result shown in Fig. 7.6. We observe that these cities essentially differ
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Fig. 7.5 Constructing the
four different types of
commuting flows: we
separate both homes and
working locations into
hotspots and non-hotspots.
Figure taken from Louail
et al. (2015)

Fig. 7.6 The four different
flows I, R,C, D for the 30
largest Spanish urban areas
versus their population. We
observe that large areas are
mainly determined by R and
I , the other quantities being
negligible. Figure taken from
Louail et al. (2015)

by their proportion of two types of flows: integrated (I) between residential and
employment hotspots and random flows (R), whose importance increases with city
size.

This result is in contrast with the naive expectation of a monocentric city where
C flows dominate. For large cities “random” flows described by R are the most
important. This might be due to the fact that it is easier to move around in large cities
thanks to the various public transportation systems. We see here how the extraction
of mesoscopic patterns from large datasets forces us to reconsider our view of cities
and more particularly here the spatial organization of mobility patterns.
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7.3 Theoretical Approaches: Modelling Strategies

The empirical study of activity centers discussed above shows that their number
scales with the population of the city as

H ∼ Pβ

where β ≈ 0.5–0.6. The theoretical question is therefore simple: how can we explain
this behavior and can we predict the value of β? (or at least why do we have a
sublinear behavior with β < 1?).

In order to understand the spatial structure of cities and in particular how the
number of hotspots varies with population as discussed above, we have to model
how an individual chooses her residence and workplace. In the following we will
discuss the classical approaches to this problem and we will show that they are
unable to predict and understand the scaling of H with P . We then show how we
can integrate economical ingredient and make simplifying assumptions typical from
statistical physics in order to get a model with predictions in agreement with the
observation.

7.3.1 Classical Approaches: Krugman, Fujita and Ogawa

Wefirst followhereKrugman (1996) for a simplemodel of activity clustering in cities.
The distribution of companies is described by the density ρ(x, t) and a fundamental
quantity is the market potential given by

�(x) =
∫

dzρ(z)K (x − z)

where K (x − z) is the kernel that describes the impact (or spillover effects) of a
company located at z on the attractiveness of location x . We can compute the average
market potential � over the whole city and Krugman proposes then to describe the
evolution of company density by the following equation

∂ρ

∂t
= γ

[
�(x, t) − �

]

This nonlinear equation states that the density will increase at location where the
market potential is larger than the average. Krugman then showed that a uniform
distribution of companies ρ(x, t) = const. is unstable where the most unstable
mode is given by a quantity k∗ that depends on the details of the system such as
spillover effects (but is independent from the population size P). This means that the
activities will indeed form clusters and this simple mechanism seems to explain the
clustering of activities in cities. However, we would like to understand the scaling
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of the number of hotspots H and this model simply predicts

H ∼ Ak∗2

where A is the surface area of the city. This model is therefore unable to predict
the evolution of the spatial distribution of cities when the population grows (unless
introducing an external assumption about how the area of the city varies with the pop-
ulation). In other words, this model predicts a constant value of H that is independent
of the population P .

Another important approach for understand the spatial structure of cities was
proposed by the economists Fujita and Ogawa (1982). In this model, agents optimize
their utility and companies their profit. Focusing on agents, an agent will choose to
live in location x and work in location y such that the quantity (which corresponds
to the composite commodity) given by

Z(x, y) = w(y) − CR(x) − CT (x, y)

wherew(y) is thewagewhenworking at y,CR(x) the rent at location x , andCT (x, y)
the transportation to commute from home to work (for companies there is a similar
equation for profits). In this model and for a monocentric organization of activities,
Fujita and Ogawa choose to take CT (x, y) = t |x − y| independent of the traffic (i.e.
without any congestion effect). They were able to show that this monocentric orga-
nization is actually unstable, in particular when transportation cost per unit distance
(t) become too large. This formalism however does not allow to predict the number
of activity centers when population grows.

We saw on these two examples models that are in agreement with the qualitative
organization of the spatial structure of activity in cities, but are so far unable to provide
a quantitative prediction. Even if thesemodels are satisfying froman intellectual point
of view, as long as their predictions are not in agreement with empirical measures, we
can only place a low level of confidence in their ability to describe what is actually
happening in cities. Ideally, we would like to have a model with a minimal number
of parameters and which is able to predict a large number of unrelated empirical
facts. The model described in the following didn’t reach this level yet but at least is
a proposal for an alternate modeling of cities that is sound from an economical point
of view and in agreement with the scaling of the number of hotspots.

7.3.2 Complex Quantities as Random Variables

The problem is to compute the value of the exponent β. In this new way of mod-
elling cities (Louf and Barthelemy 2013, 2014), we integrate ingredients of urban
economics, and most importantly we replace an unknown, complex quantity by a
random one, a concept introduced in the study of the spectra of heavy atoms (Wigner
1955). More precisely, we assumed that:
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(1) At each time step, we add a new individual in the city.
(2) Each individual will optimize its own budget consisting of its wage minus

residential and transportation costs.
(3) The wage is described as a random variable.
(4) Transportation costs through congestion integrate interactions between individ-

uals.

With the assumption (1) dynamics is introduced in this system and we do not
consider that cities are in equilibrium in contrast with many previous studies such
as the Fujita-Ogawa model (1982). With (2), we integrate ingredients coming from
urban economics that discussed for a long time the behavior of individuals. The
assumption (3) is typical from statistical physics where replacing the wage w(y)—a
complex quantity that results from a large number of interacting constituents—by
a random variable η(y) proved to be in some cases accurate (Wigner 1955). We
note here that in the original model proposed by Fujita and Ogawa (1982), wages
are endogenous variables and are an output of the model. This description leads to
complications that however forbids to make clear testable predictions. In (4), the
effect of congestion on the time spent to go from one point to another is described in
transportation economics and describes effectively interactions between individuals.
We use the generalized cost for transportation which is proportional to the time
τ(x, y) needed to go from x to y and which is given by the Bureau of Public function
(see for example Branston 1955)

τ(x, y) = d(x, y)

v

[
1 +

(
T (x, y)

C

)μ]

where T (x, y) is the traffic between these two points, C is the capacity and v the
average velocity of the road system between x and y, and μ is an exponent that
characterizes the sensitivity of the system to the congestion and is generally of order
μ ≈ 2–5 (see for example Branston 1976). This interaction is at the heart of the non-
trivial collective behavior observed in this model and characterized by non-trivial
exponent values.

Putting all these ingredients together, the model is now described by the
maximization of the following quantity:

Z(x, y) = η(y) − td(x, y)

[
1 +

(
T (x, y)

C

)μ]

(in this expression, we also note that the wage η(y) can be understood as a number
encoding the attractiveness of the location y). For this model, using mean-field argu-
ments and numerical simulations, we were able to predict that the monocentric city
is stable until a threshold P∗ for the population above which another activity center
becomes more interesting for individuals (Fig. 7.7).

This spatial splitting of the activity is driven in this model by the congestion: all
individuals choose to go to the most attractive center (from the point of view of the
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Fig. 7.7 Number of activity
centers versus the
population. For P < P∗, the
system is monocentric and
over this threshold the
activity is dispersed over H
different centers

wage), but this increases the transport cost (due to the congestion effect). Another
center, less attractive but with a smaller traffic becomes then the most interesting
working place. We can estimate this threshold and we can show that increasing the
population leads to a larger number of activity centers. More precisely we show that

H ∼
(

P

P∗

) μ

μ+1

and therefore predictsβ = μ/μ+1.This result demonstrates that independently from
the value of μ, the behavior of H is sublinear with the population, in agreement with
empirical observations. In this simplemodel, non-linear congestion effects imply that
cities undergo a ‘dynamical’ transition from a monocentric to a polycentric structure
as their population grow. Congestion is certainly not the only factor that favor the
formation of different activity centers, but these results demonstrate that it plays at
least a major role for understanding the spatial organization of cities.

Within this model we know the location of residence and work for all individuals
and we can therefore estimate other quantities such as the delay spent in traffic jams
or the CO2 emitted by cars. The predictions for these quantities are in excellent
agreement with measures for European or OCDE cities (Louf and Barthelemy 2013,
2014). On a more fundamental level, this model predicts that CO2 emitted by cars
or the total spent in cars is not a simple function of urban density. This is in sharp
contrast with the celebrated result of Newman and Kenworthy (1989), showing that
the gasoline consumption in a city is a decreasing function of the population density.
Certainly more theoretical and empirical work is needed here for understanding this
issue.

7.4 Discussion

The recent availability of large amounts of data enables us to reveal regularities in the
spatial structure and mobility patterns in cities across countries. These regularities
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suggest that common mechanisms that encompass the differences of cities exist and
govern the formation and evolution of these systems. Also, traditional assumptions
can now be tested and in some cases a whole new modeling framework is needed in
order to understand empirical observations.

Describing several (human) actions by stochastic processes and complex quan-
tities resulting from the interactions of several agents by random variables are the
key ideas that are exposed here and that allow to propose new models for under-
standing the evolution of cities. More generally, we tried to show in this paper,
through examples about mobility in cities, how a combination of empirical results,
economical ingredients, and statistical physics tools can lead to parsimoniousmodels
with predictions in agreement with observations. Obviously, many problems are left.
In particular, we have now to integrate within this framework other transportation
modes, and socio-economic factors such as the impact of the revenue on the spa-
tial structure of cities. Our hope is that this interdisciplinary theoretical approach,
informed by data, will lead to a solid understanding of systems as complex as cities.
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