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Abstract
While most fatigue-related studies on wrought magne-
sium alloys are under uniaxial push–pull loading condi-
tion, structural members are mostly under multiaxial
stresses in real-life applications. This study addresses the
effect of load multiaxiality on the cyclic behaviour of
several wrought magnesium alloys: AZ31B, AM30,
AZ80, and ZK60 under multiaxial tension/compression–
torsion loading. In particular, the influence of the
presence of shear on normal stress response and vice
versa is studied. In addition, phase angle effects on the
stress–strain response and fatigue life are discussed.
Strain energy density (SED) is introduced as a suitable
fatigue damage parameter to connect and compare
uniaxial and multiaxial cases. It is shown that irrespective
of loading direction and/or phase angle, SED closely
correlates experimental results. Beyond strain of *0.4–
0.5%, the strain-controlled cyclic behaviour in uniaxial
push–pull is dominated by twining/de-twinning, while in
pure shear deformation is dominated by basal slip. The
effect of each of these load directions on the other in a
multiaxial loading is considered in two cases: at low axial
strain amplitudes the interaction is mutual, and at high
axial strain amplitudes axial strain dominates. It is
believed that the re-orientation of basal planes due to
twinning/de-twinning caused by axial strain favours basal
slip in twinned grains resulting in better accommodation
of shear strain. Further, three load phase angles of 0, 45,
and 90 were considered. It is observed that the phase
angle has minimal effect on life at low axial strain values;
however, at higher axial strain amplitudes out-of-phase
angle causes more damage. The re-orientation of matrix
due to twinning and rotation of the principal axis due to

phase angle shift increase the chance of different slip/twin
systems to be activated resulting in lower lives.
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Introduction

There is a variety of different commercially available mag-
nesium alloyswhich are suitable candidates for lightweighting
applications; however, they generally fall within two cate-
gories, magnesium–aluminum alloy systems and alloys which
are grain refined utilizing zirconium. Those alloys which fall
under the magnesium–aluminum description can be further
subdivided into the AZ family (aluminum–zinc), and AM
family (aluminum–manganese); whereas, the most common
Mg alloy system utilizing zirconium is ZK (or zinc–zirco-
nium). In general, aluminum is the most common alloying
element, acting to improve strength, hardness, and corrosion
resistance, normally at the cost of reduced ductility [1]. For
structural applications, an alloying content of *5–6% alu-
minum results in the best compromise of strength and ductil-
ity, thus for this particular study two varieties of alloy from the
AZ familywere investigatedAZ31 (3%Al) andAZ80 (8%Al)
[1]. Furthermore, of the AM and ZK alloy families, the com-
mercially available AM30 and ZK60 variants were those
which were selected for this particular study.

Of the wrought varieties of magnesium alloys, texture
development in the microstructure resulting from the ther-
momechanical processing is a well-documented phe-
nomenon. The effect of this texture evolution upon the
deformation behaviour and mechanical properties of AZ31
[2–6], AZ80 [7–12], AM30 [13, 14], and ZK60 [15–17]
have been explored in detail by several researchers. From a
metallurgical perspective, the role of texture has implications
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on the microstructure at both the crystallographic and grain
length scales [18]. In general, processing techniques such as
rolling, forging, extrusion, or equal channel angular pressing
(ECAP), result in appreciable textures, characterized by
irregular “elongated” grain morphologies and bi-modal grain
sizes [19]. More recently, it has been well documented that
these types of processing methods introduce a strong basal
texture where the alignment of the crystallographic axis (or
c-axis) is coincident to the local compressive direction (i.e.,
perpendicular to the working plane) [2, 8–10, 20, 21].

The cyclic response of magnesium alloys is dominated by
two different deformation mechanisms, slip and twinning
[2]. The way in which the activation of each of these de-
formation mechanisms manifests itself in the cyclic response
depends strongly on the orientation of the loading direction
relative to the predominant crystallographic orientation
resulting in an asymmetric hysteresis [22–25]. The asym-
metry in the cyclic response of wrought magnesium alloys
results from the twinning/de-twinning cyclic deformation
mechanism induced by the 86.3° crystal re-orientation of the
basal pole during tensile twinning [2, 26].

Under strain-controlled fatigue testing, many researchers
have found that the response of wrought Mg alloys is influ-
enced by a number of factors including the magnitude, mode,
and direction of the loading; however, the multiaxial effects of
the loading on the cyclic response have only recently been
explored in a handful of studies. Sonsino [27] made very
preliminary remarks indicating that aluminum and magne-
sium alloys exhibited similar tendencies to steel alloys linking
ductility and sensitivity to non-proportionality in multiaxial
loading [27]. This current work aims to further build upon this
structure–properties relationship and explore the relationship
between load multiaxiality and fatigue life/cyclic behaviour
of several Mg alloys of various wrought forms.

Materials and Experimental Methods

Four different wrought magnesium alloys are presented in
this study, AZ31B extrusion forged at 250 °C, AM30 ex-
trusion, AZ80 extrusion forged at 250 °C, and ZK60 ex-
trusion forged at 250 °C. The alloys’ conditions are
commercially available extrusion form and closed die pre-
cision forgings. In general, two different types of specimens
were used in the experimental data presented here. Firstly,
flat “dogbone” shaped specimens for the monotonic and pure
axial strain-controlled tests according to the ASTM E8 and
E606 standards, respectively. Secondly, hollow thin-walled
tubular specimens were utilized for the pure shear and
multiaxial tests according to ASTM E2207-08. All tests

were performed on an Instron biaxial tension–torsion load
frame, and strain was controlled by axial or biaxial exten-
someter. Details regarding specimen geometries and test
protocols are available within the cited literature for each
alloy [3, 6, 14, 17, 28, 29].

All microstructure specimens were prepared by first
hand-sanding with 600, 800, and 1200 grit SiC paper fol-
lowed by polishing with 6, 3, 1, and 0.1 µ diamond paste
with an oil based lubricant on imperial cloth. Finally, the
samples were polished with 0.05 µ master prep colloidal
silica followed by etching with acetic-picral as mentioned in
[14]. Scanning electron microscope equipped with Quanta
field emission gun was used to analyze microstructure.

Texture analysis was performed on the polished and
etched sample using a Bruker D8-Discover equipped with an
advanced 2D area detector. The experiment was conducted
by measuring incomplete pole figures of {0001}, {10-10},
{10-11}, and {1-102} planes for tilt angle W between 0° and
75° and in axis rotation U between 0° and 360° in the back
reflection mode using CuKa radiation at 40 kV and 40 mA.
Finally, the complete pole figures (PF) were calculated based
on the measured incomplete pole figures using DIFFRAC.
Suite texture software.

Table 1 contains monotonic properties and average grain
size for all the chosen conditions for each alloy.

Figures 1 and 2 show the five loading paths for the fully
reversed fatigue experiments. Path (a) is pure shear (c),
(b) pure axial (e), (c) biaxial proportional, (d) biaxial
non-proportional (45° out of phase), and (e) biaxial
non-proportional (90° out of phase). In general, all the
experiments were strain control exclusively during cyclic
loading in the low cycle fatigue LCF (<10,000 cycles) and
changed to load control in the few tests where the response
stabilized, and the life exceeded this threshold. Failure cri-
terion was a 50% drop in the peak or valley loads/torques or
catastrophic failure (through crack), whichever occurs first.

Table 1 Summary of monotonic properties for various Mg alloys and
processing conditions

Condition rYS
[MPa]

rUTS eFAIL
[%]

Grain
size [lm]

AZ31B Forged (20 mm/s @
250 °C) [6]

221 258 12.4 9.9

AM30 Extruded (-F) [28] 164 244 15.0 8.0–25.0

AZ80 Forged (20 mm/s @
250 °C) [12]

286 385 15.3 10.0

ZK60 Forged (20 mm/s @
250 °C)

281 336 15.5 5.8
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Results and Discussion

Low Cycle Fatigue

Figure 3 illustrates the strain life response for load path
(b) and Fig. 4 for load path (a) for all alloys/conditions.

It can be observed that the difference in life for pure axial
loading (path b) is less than those in pure shear in the LCF
regime. Several researchers [4, 29–33] have observed a
“kink” in the axial strain life curve in various wrought Mg
alloys in the regime of life between 103 and 104 cycles (0.4–
0.5%) which varies depending on both the strain path and
alloy/processing conditions. This can be observed in most of
the alloys and conditions being presented in Fig. 3 for the
pure axial load path (b). This results from a change in the
cyclic deformation mechanism being twinning/de-twinning
activity dominating the plastic deformation at strain ampli-
tudes above the kink point and dislocation slip below the
kink point. This transitional life between cyclic deformation
mechanisms coincides with a meaningful mean stress
development as the strain amplitude increases [4]. In con-
trast, the deformation mechanism in pure shear (load path a,
for shear strains <1.5%) is not twinning/de-twinning domi-
nated, and thus no distinguishable kink is observed for any
of the materials as can be seen in Fig. 4. The two different
deformation mechanisms in axial and shear cyclic loading
are corroborated by fracture surface microstructure and the

γ γ

ε ε

(a) (b)

Fig. 1 Uniaxial loading paths used for fatigue experiments a pure shear and b pure axial

γ γ γ

εε ε

(a) (b) (c)

Fig. 2 Multiaxial loading paths used for fatigue experiments c proportional (in-phase), d non-proportional 45° out of phase, e non-proportional
90° out of phase
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Fig. 3 e-N curve for pure axial load path (b)
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Fig. 4 c-N curve for pure shear load path (a)
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texture evolution as shown in Figs. 5 and 6. Figure 5 shows
twin formation in axial cyclic strain, and Fig. 6 shows slip
deformation in cyclic shear strain.

Energy as a Fatigue Damage Parameter

To establish a common background for comparing uniaxial
and multiaxial cyclic tests, strain energy density (SED) as a
measure of fatigue damage is adopted. Strain energy density
has been suggested as a suitable fatigue damage parameter
for variety of different materials [34–38], and particularly for
wrought magnesium alloys [3, 10–12, 14, 39, 40]. Given the
asymmetric and anisotropic behaviour of wrought magne-
sium alloys, SED has proven to be the most effective fatigue
correlation parameter [14]. The total SED is implemented as
a damage parameter and is constituted by its elastic and
plastic components. The plastic component is defined as the
area enveloped by the stabilized hysteresis loop. The elastic
component which accounts for mean stress is defined as the
following [41]:

DEþ
e ¼ ðrmax þ rmeanÞra

2Ecyc
Axialð Þ

Similarly for shear, the following relationship is
proposed.

DEþ
e ¼ ðsmax þ smeanÞsa

2Gcyc
Shearð Þ

where rmax is the maximum and rmean the mean axial stress
for (path b), and smax & smean are the peak and mean shear
stresses (path a) for the stabilized half-life response. Multi-
axial cyclic tests path (c–e) was performed on AZ31B
forged, AM30 extrusion, AZ80 forged, and ZK60 forged.
The total SED for each test was taken as damage parameter
to correlate with life. Figure 7 shows how well SED corre-
lates fatigue data irrespective of loading path, for pure axial,
pure shear, and multiaxial with any phase angle.

There are two separate effects which can be examined in
biaxial responses of the various alloys and material condi-
tions: primarily, the effect of the load multiaxiality, and
secondly the effect of the level of non-proportionality or the

Fig. 5 SEM images of a the fracture surface of an AZ31B sample
tested at 0.4% axial strain amplitude showing evidence of extension
twin lamellae (red arrows) near the crack initiation zone, b near the
fracture surface of sample tested at 1% with red and yellow arrows
showing the residual twins and cracks observed along twin boundaries,

respectively; (c and d) pole figures of the AM30 extrusion in
as-received condition and after cyclic axial strain amplitude of 2%,
respectively, showing the re-orientation of basal planes (0002) due to
twinning

ED

TD

RD

ED

TD

RD(0002) (0002)
(a) (c)(b)

Fig. 6 SEM images of a the fracture surface of the primary shear crack
in AZ31B tested under cyclic shear strain of 0.4% showing extensive
slip bands (red arrows) surrounding significant secondary cracks;

(b and c) pole figures of ZK60 before and after cyclic shear of 1.1%,
respectively, confirming no change in the orientation of basal planes
(0002)
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phase angle effect. Figures 8 and 9 illustrate the relationship
between axial, shear, and total SED for the investigated
alloys for a variety of phase angles with a low and high
proportionality ratio, respectively.

Firstly, the load axes effect in biaxial loading is consid-
ered. There exists a threshold axial strain e amplitude where
axial loading will begin to dominate the cyclic response and
increase its proportion of total SED. This threshold corre-
sponds with the “kink” observed in the uniaxial e-N axial
curve where the deformation mechanism shifts from pre-
dominantly elastic and small levels of slip-based plasticity
behaviour at e < ekink to twinning/de-twinning behaviour at
strain amplitudes e > ekink. Below this threshold (e < 0.4–
0.5%), and as depicted by Fig. 8, the share of axial SED and
shear SED in total SED is the same and around ½ of the total
SED. Within this regime, the damage is equally shared by

the two axes of loading. However, for biaxial loading with
axial strain higher than the threshold (e > 0.5%), the axial
SED becomes dominant, causing the majority of damage
(e.g., close to 80% of the damage in AZ31B in Fig. 9). This
is due to twinning/de-twinning caused by axial strain above
the threshold. The re-orientation of basal planes due to
twinning/de-twinning caused by axial strain favours basal
slip in twinned grains resulting in better accommodation of
shear strain. Hence, less energy is required for accommo-
dating the shear strain as compared to the one required in the
absence of axial strain. The dominance of axial strain in
biaxial loading above the threshold is corroborated by the
cracking mechanism. Figure 10 shows a typical macroscopic
crack morphology for a failed sample under pure axial and
pure shear strain path. It can be observed that the crack path
morphology for pure shear loading (path a) is purely
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On the Load Multiaxiality Effect on the Cyclic Behaviour … 155



0.705 0.707 0.699

0.751
0.731

0.780
0.827

0.774
0.845

0.413 0.424
0.393

0.0

0.1
0.2

0.3

0.4
0.5

0.6
0.7

0.8

0.9

1.0

0 45 90 0 45 90 0 45 90 0 45 90

St
ra

in
 E

ne
rg

y 
D

en
si

ty
 [M

J/
m

^3
]

Phase Angle [°] 

Axial Shear Total

AZ31B, AZ80, ZK60, AM30

Fig. 8 Relationship between axial, shear, and total SED for the
investigated alloys for a variety of phase angles and a proportionality
ratio of e/c = 0.8 and low axial strain amplitude (for B&W version note

that from left to right, first three results are on AZ31B; second three
results are on AZ80; third three results are on ZK60; and fourth three
results are on AM30)

1.764 1.841 1.876

1.585 1.639

1.731 1.749 1.817 1.851

1.192

1.351

1.233

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 45 90 0 45 90 0 45 90 0 45 90

St
ra

in
 E

ne
rg

y 
D

en
si

ty
 [M

J/
m

^3
]

Phase Angle [°] 

Axial Shear Total

AZ31B, AZ80, ZK60, AM30

Fig. 9 Relationship between axial, shear, and total SED for the
investigated alloys for a variety of phase angles and a proportionality
ratio of e/c = 1.4 with high axial strain amplitude (for B&W version

note that from left to right, first three results are on AZ31B; second
three results are on AZ80; third three results are on ZK60; and fourth
three results are on AM30)

(a)

1 mm

(b)

1 mm

Fig. 10 Macroscopic fracture
morphology for an AZ80 failed
sample under a pure axial b pure
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156 A. Gryguć et al.



longitudinal (aligned with the tubular specimen axis) while
crack path for pure axial strain (path b) is transverse. In
biaxial loading however, as depicted by Fig. 11, when the
axial strain is above the threshold, the cracking is always
transverse (Fig. 11b), irrespective of the level of shear strain
amplitude. On the other hand, when the axial strain is below
threshold (Fig. 11a) and shear strain is large, the cracking is
longitudinal, confirming low influence of axial strain on final
failure.

With regards to the sensitivity to the level of
non-proportionality or phase angle effect, a few observations
can be made. As depicted by Fig. 8, at low value of axial
strain, there seems to be no effect of phase angle on total
SED. This is clearly seen in the case of AZ31B for e = 0.4%
and c = 0.5% where the total SED independent of the phase
angle in all three cases is 0.7 MJ/m3. For AZ80 and ZK60 at
the same biaxial loading, the maximum difference of SED
with respect to phase angles 0, 45, and 90 is 6% and 7%,
respectively. This difference for AM30 biaxial loading with
e = 0.3% and c = 0.4% is only 7%. However, at high axial
strain values, as depicted by Fig. 9, the phase angle changes
the total SED. For AZ31B, AZ80, and ZK60 biaxial loading
with e = 0.7% and c = 0.5%, the SED increases (life
decreases) as phase angle increases. For AM30 with lower
biaxial loading of e = 0.5% and c = 0.6%, again the effect of
load angle is visible. Xiong et al. [4] observed that in
extruded AZ31B non-proportional loading results in a higher
population of grains experiencing twinning/de-twinning as
well as easier activation of various sets of twins AZ31B.
These deformation induced twins can serve as sites for crack
initiation which can potentially have a detrimental effect on
fatigue life. Furthermore, the additional non-proportional
hardening that can be induced by the rotation of the principal
axis can also lead to higher cyclic energies and has the effect
of further reducing the fatigue life [37]. The AM30 alloy
behaved somewhat different, with longer life occurring at
90° than at 45°, due to the attenuation of the cyclic hard-
ening in the axial direction under non-proportional loading, a
phenomenon that as was observed by Roostaei and Jahed
[29]. The variation in SED in all alloys at high biaxial strain
amplitudes in Fig. 9 remains small and less than 12%. While

rotation of principal axes in out-of-phase loading accom-
modates more deformation mechanisms to occur, however,
limited number of slip systems in magnesium alloys limits
its detrimental effect [42].

Conclusion

The effect of multiaxiality on the cyclic behaviour was studied
for several Mg alloys of the extrusion and forge variety.
Several different loading paths were presented, uniaxial and
biaxial, with varying levels of non-proportionality. Based
upon the results, the following conclusions can be drawn:

1. A distinct kink in the e-N response under pure axial
loading for all the presented materials represents a fun-
damental shift in the cyclic deformation mechanism. This
kink is associated with the onset of domination of
twinning/de-twinning in materials response in uniaxial
and biaxial loadings. No such kink is observed in the
pure shear e-N response which is dominated by slip.

2. Strain energy density (SED) correlates all fatigue
experimental results irrespective of the axes of loading.

3. Under multiaxial loading, at strain amplitudes above a
certain “kink” threshold when sufficient plasticity is
induced, the axial component tends to dominate the
biaxial loading. Below this threshold, the sensitivity of
the response to the relative intensity of each loading axis
as well as the phase angle is quite low.

4. Under non-proportional loading, if the rotation of the
principal axis causes the axial proportion of total SED to
increase, it results in a lower fatigue life, and this was
observed in AZ31, AZ80, and ZK60 alloys.

5. In the tubular specimens utilized, the crack path beha-
viour is characterized by transverse cracking (tensile type
failure) for the majority of strain paths. The only
exceptions to this are the pure shear load path which
exhibited longitudinal cracking in the LCF regime and
helical cracking (45°) in the HCF.

6. Under multiaxial loading, fatigue cracks normally initiate
at the surface of the tubular sample regardless of the

Fig. 11 Macroscopic fracture morphology for a ZK60 failure a under 0.3% axial and 0.7% shear strain showing longitudinal crack, b under 0.6%
axial and 0.7% shear strain showing transverse crack

On the Load Multiaxiality Effect on the Cyclic Behaviour … 157



relative magnitudes of each strain component. In general,
this was true for all alloys and material conditions
investigated.

7. The transverse cracking path was relatively insensitive to
the level of non-proportionality of the loading.
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