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Abstract. One of the important and universal characteristics of the net-
work performance for both a user and a network owner is the probability
of the network service availability at any time. To obtain an accurate
estimate of the probability of a particular network service availability in
the class of binary stochastic models, effective methods of structure func-
tion decomposition are used. The paper discusses the issues of obtaining
accurate estimates of the probability of network service availability for
arbitrary pairs of network nodes. Lower bound and upper bound esti-
mates for the probability of network service availability are constructed
for large dimension networks with a complex structure.

Keywords: Binary stochastic model · Availability of network
services · Alternating renewal process · Boolean algebra · Isomorphism
of properties and classes algebra

1 Introduction

Over recent decades, problems of network structures reliability belong to the
priority areas of research in the reliability theory.

Formally, the communication network is interpreted as a weighted graph
without loops. The graph can be both unoriented and oriented. Elements of the
graph are weighted by weight parameters. Weight values are usually assigned to
the edges, assuming that the nodes are absolutely reliable. Weights can be also
assigned to nodes.

For networks with renewal, the role of weight parameters is played by the fac-
tors of network elements availability. Failures of elements are caused by technical
problems and external influences.

For practice, it is important to know that any pair of network subscribers can
get a connection despite the failure of the elements (network service availability).

The availability of a network service means the ability to provide communi-
cation for any user at any time.
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A few formal definitions of the availability of network services are given below:

1. The network has the (s-t) availability property at time t, if there is at least
one simple path from node s to node t.

2. The network has the property of full availability at time t, if there is at least
one simple path for any pair of network nodes.

3. The network has the property of full availability at time t, if there is at least
one network spanning tree.

4. The network has the property of full availability at time t, if at least one
available element exists in each of the cutting sets of the network.

Of course, the definitions (2–4) are equivalent, but they represent the struc-
ture of the connectivity property of a network in different ways.

The probability of network service availability allows to objectively define
which of the compared networks is better suited to its purpose. Monitoring of
this characteristic makes it possible to make timely necessary adjustments to
the operation and development of the network.

The task of assessing the network service availability belongs to the class of
so-called “computationally hard” problems of combinatorial logic of properties
and classes. For this reason, it is not always possible to obtain an accurate
estimate of the availability of a network service for very large networks, and
upper bound and lower bound estimates are used instead of it.

Availability of networks can be characterized by assessment methodologies
[1] such as Reliability Block Diagram (RBD), Fault Tree Analysis (FTA) [2] and
so on.

Typical algorithms for computing network availability include the state enu-
meration method [3], sum of disjoint products method [4], factorization method
[5], minimal cuts method [6] and cellular automata [7,8].

In this paper formalization of the problem of assessing the probability of
network service availability in the form suitable for machine implementation is
based on the isomorphism of the Boolean properties algebra (predicates) and
the corresponding Boolean classes algebra. The predicate of the network service
availability is represented by the corresponding structure function.

We consider the problem of estimating the stationary probability of a pair
network connection. It is important to note that the concept of the network
(s-t) connectivity is closely related to transport flow tasks. The stationary prob-
ability of the network (s-t) connectivity can be considered as one of the upper
bound estimates for the stationary probability of a full network connectivity [9].
The stationary probability of a full network connectivity can be considered as a
guaranteed lower bound for the probability of connectivity of any pairs of nodes.

2 Binary Stochastic System Model

1. Let C = {1, 2, . . . , n} be an indexed finite set of the system elements.
The number |C| is called the order of the system.
Binarity means that the elements and the whole system take values in the set
B2 = {1, 2}.
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The evolution of the i-th element in time is modeled by the corresponding
alternating renewal process xi(t), i = 1, 2, . . . , n.

xi(t) = {1, if at the moment t i-th element is operable
0, otherwise

}.

We need some results of the renewal theory in a convenient interpretation.
For the i-th element, the probability to be in an accessible state at time t is
called the non-stationary availability factor and is denoted by

P{xi(t) = 1} = Pi(t), i = 1, 2, . . . , n.

As t increases, the nonstationary availability factor tends to a constant value -
the stationary availability factor of the i-th element. Its value is defined as
the ratio of the average length of the availability interval of the i-th element
to the average length of the cycle of the i-th alternating process:

lim
t→∞ P{xi(t) = 1} =

M [θxi
]

M [θxi
] + M [ξxi

]
= Pi, i = 1, 2, . . . , n.

2. Let the vector of the elements state

X(t) = (x1(t), x2(t), . . . , xn(t))

uniquely determine the state of the system. The corresponding function (two-
valued predicate) is called the structure function of the system:

ϕ(x1(t), . . . , xn(t)) = {1, if at the time t the system is operable
0, otherwise

}.

Formally, the role of a truth (false) set can be performed by any function of
the logic algebra, with the exception of function-constants.
Most systems have the monotonicity property, so we consider only the case
when the structure function ϕ(x1(t), . . . , xn(t)) is monotone.

3. Deterministic properties of structure functions are as follows:
(a)

n∧

i=1

xi ≤ ϕs(x1(t), . . . , xn(t)) ≤
n∨

i=1

xi

(all variables are significant).
(b) Reservation scale theorem:

ϕs(x1 ∨ x̃1, x2 ∨ x̃2, . . . , xn ∨ x̃n) ≥ ϕs(x1, x2, . . . , xn) ∨ ϕs(x̃1, x̃2, . . . , x̃n),

ϕs(x1 ∧ x̃1, x2 ∧ x̃2, . . . , xn ∧ x̃n) ≤ ϕs(x1, x2, . . . , xn) ∧ ϕs(x̃1, x̃2, . . . , x̃n).

(c) Any monotone structure function is uniquely representable in the follow-
ing form:

∨

I

fi(x1, . . . , xn) ≡ ϕs(x1, . . . , xn) ≡
∧

J

ψd
j (x1, . . . , xn),
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where:
I = {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)} - full set of first implicants of

the function ϕs(x1, . . . , xn),
J = {ψ1(x1, . . . , xn), . . . , ψr(x1, . . . , xn)} - full set of first implicants of
the function ϕd

s(x1, . . . , xn).

ϕd
s(x1, . . . , xn) = ϕ̄(x̄1, . . . , x̄n).

ψd
s (x1, . . . , xn) = ψ̄(x̄1, . . . , x̄n).

From property (c) and the properties of two dual automorphisms

H : U → U |∀Q ∈ U,H(Q) = Q̄,

D : U → U |∀Q ∈ U,D(Q) = Qd

we obtain immediate results:
∨

J

ψj(x1, . . . , xn) ≡ ϕd
s(x1, . . . , xn) ≡

∧

I

fd
i (x1, . . . , xn), (1)

∨

J

ψj(x̄1, . . . , x̄n) ≡ ϕ̄s(x1, . . . , xn) ≡
∧

I

fd
i (x̄1, . . . , x̄n), (2)

∨

I

fi(x̄1, . . . , x̄n) ≡ ϕ̄d
s(x1, . . . , xn) ≡

∧

J

ψd
j (x̄1, . . . , x̄n), (3)

∨

I1⊂I

fi(x1, . . . , xn) < ϕs(x1, . . . , xn) <
∧

J1⊂J

ψd
j (x1, . . . , xn), (4)

∨

J1⊂J

ψj(x̄1, . . . , x̄n) < ϕ̄s(x1, . . . , xn) <
∧

I1⊂I

fd
i (x̄1, . . . , x̄n). (5)

Using these properties makes it possible to construct all possible lower bounds
and upper bounds estimates for the network connectivity probability. It is suffi-
cient to use Boolean lattice inequalities from properties (4) and (5).

The axioms of Boolean algebra are consistent with the laws of intuitive logic
for sets, propositions, and object properties (predicates).

The process of system functioning is a discrete-continuous process of random
walk along a Boolean vector lattice. The time of transition from this state to the
neighboring state is neglected.

As a characteristic of system functioning quality, we consider the probability
of the network service availability

P{ϕ(x1, . . . , xn) = 1}.

The formalization of the problem of estimating the stationary probability of
pair connectivity in the form suitable for machine implementation is based on
the isomorphism of Boolean algebra of functions representing properties

UΦ = 〈x1, x2, . . . , xn;∧;∨;̄ 〉
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and the corresponding Boolean class algebra

UK = 〈P (Bn
2 );∩;∪; ′〉,

where:

{x1, . . . , xn} - generators of Boolean algebra of functions;
Bn

2 - Boolean vector lattice (vector space of network elements);
|Bn

2 | = 2n; dim(Bn
2 ) = n.

3 Problem Formulation

Given:

G(Y,X) - network structure;
Y = {y1, . . . , yl} - set of network nodes;
X = {x1, . . . , xn} - set of network channels;
s, t ∈ Y - two arbitrary vertices of the network;
θxi

- random time intervals of availability of the i-th network channel;
ξxi

- random time intervals of unavailability of the i-th network channel;
pi - factor of stationary availability of the i-th channel of the network:

pi =
M [θxi

]
M [θxi

] + M [ξxi
]
, p̄i = 1 − pi = qi.

For the sake of simplicity, we will consider all nodes to be absolutely reliable.
Assumptions:

1. Dependence between random variables {θxi
} and {ξxi

}, i = 1, . . . , n, can be
neglected.

∃M [θxi
] < ∞ and ∃M [ξxi

] < ∞.

2. The vector of the network elements state uniquely determines the (s-t)-
connectivity ((s-t)-availability) of the network.

3. The network is viewed as a renewable system with fully available renewal.
4. For a given mode of information load on the network (small, medium, large),

a stationary mode is set up.
5. The network status relatively to ϕs,t-accessibility (unavailability) is deter-

mined by the resource state of its elements at a given load on the network.

Required to find the stationary probability of the network (s-t)-connectivity:

P{ϕs,t(x1, . . . , xn) = 1}.

To solve the problem, the following algorithms are proposed:

– algorithm for finding all shortest (s-t)-paths of the network;
– algorithm for finding all minimal (s-t)-cuts of the network;
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– algorithm for orthogonalization of the connectedness function in its most
compact representation.

As a result of orthogonalization, we obtain a computational scheme for esti-
mating the probability of (s-t)-connection, which is minimal from the point of
view of the computational complexity.

By assigning values pi to variables xi in the orthogonalized minimal disjunc-
tive normal form (MDNF)

ϕs,t(x1, . . . , xn) = 1,

and qi to variables with negations x̄i, we get the representation of the (s-t)-
connection probability as a function of the availability of the network elements.

4 Algorithm for Finding the Representation
of (s-t)-Connection Relation on a Graph G(Y,X)

A formal representation of (s-t)-connection relation (s, t ∈ Y ):

ϕs,t(x1, . . . , xn) =
∨

{fi}∈I

(
∧

ki∈{fi}
xki

),

where {fi} is a list of indices of the variables forming a simple (s-t)-path (the
minimal carrier of the connectedness property).

I = {{f1}, {f2}, . . . , {fm}} - complete list of all (s-t)-paths.
Let us consider an example of algorithms for finding (s-t)-paths and (s-t)-cuts

in the network graph (see Fig. 1).

Fig. 1. Graph G(Y,X).



Accurate and Interval Estimates of the Probability 21

4.1 Algorithm for Finding Network (s-t)-Paths

Input information: the logical adjacency matrix of the graph MG (see Fig. 2).

Nv = 4 - number of vertices;
Y = {y1, . . . , yl} = {y1, y2, y3, y4} - set of vertices;
Na = 5 - number of arcs;
X = {x1, . . . , xn} = {x1, x2, x3, x4, x5} - set of arcs.

Find: (s-t)-paths from y1 to y4 (s = y1, t = y4).

Fig. 2. Adjacency matrix for graph G(Y,X).

1. If the value of (s, t)-element in the logical adjacency matrix MG is not equal
0, then there is a path of length 1 from vertex s to vertex t, we store it into
memory. In this example, (y1, y4) = 0. Thus, paths of length 1 do not exist.

2. Iterations start with N = 1, where N is an iteration variable.
y
(1)
s equals to the s-th row of the matrix MG.

3. We multiply (logically) row y
(N)
s by MG and get a new row.

4. If the number of iterations N is less than the number of vertices minus one
(Nv − 1), then go to step 3, otherwise - the end of the algorithm.

For our example first iterations are as follows.
We multiply row y

(1)
s by MG:

(0 1 3 0)

⎛

⎜⎜⎝

0 1 3 0
1 0 5 2
3 5 0 4
0 2 4 0

⎞

⎟⎟⎠ = (0; 3 ∧ 5; 1 ∧ 5; (1 ∧ 2) ∨ (3 ∧ 4)).

The result is stored in row y
(2)
s . Further, we analyze the value of the t-th

element of y
(2)
s .

In our case, it is (1 ∧ 2) ∨ (3 ∧ 4) - two shortest paths of length 2.
The value of the t-th element of y

(2)
s equals zero:

y(2)
s = (0; 3 ∧ 5; 1 ∧ 5; 0).
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Output information:
For this example, 4 shortest paths were found

ϕ14(x1, x2, x3, x4, x5) = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x1 ∧ x4 ∧ x5) ∨ (x2 ∧ x3 ∧ x5).

List of (s-t)-paths:

{f1} = {1, 2}; {f2} = {3, 4}; {f3} = {1, 4, 5}; {f4} = {2, 3, 5}.

4.2 Algorithm for Finding (s-t)-Cuts of the Network in General
Case

Input information:
MDNF representation ϕs,t(x1, . . . , xn).
Find: (s-t)-cuts of network.
The algorithm consists in finding the dual function

ϕd
s,t(x1, . . . , xn)

for ϕs,t(x1, . . . , xn), represented in MDNF.
The indices of the variables forming the first implicants of the dual function

ϕd
s,t(x1, . . . , xn) are minimal (s-t)-cuts.

ϕd
s(x1, . . . , xn) = ϕ̄(x̄1, . . . , x̄n).

J = {{ψ1}, {ψ2}, . . . {ψr} - a complete list of all (s-t)-cuts,
where {ψj} - j-th (s-t)-cut, j = 1, . . . , r.

For the given graph G(Y,X) in Fig. 1 it is necessary to find a dual function
ϕd

y1,y4
(x1, . . . , x5) and to represent it in the minimal conjunctive normal form

(MCNF). Using the result of the previous problem, we obtain a complete list of
(s-t)-cuts:

ϕd
y1,y4

(x1, . . . , x5) = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5)
= (x1 ∨ x2x4 ∨ x2x5) ∧ (x3 ∧ x2x4 ∨ x4x5) = x2x4 ∨ x1x3 ∨ x1x4x5 ∨ x2x3x5

ϕy1,y4(x1, . . . , x5) = ϕdd
y1,y4

(x1, . . . , x5)
=

∧

{ψj}∈J

(
∨

rj∈{ψj}
xrj

).

List of (s-t)-cuts:

{ψ1} = {2, 4}; {ψ2} = {1, 3} {ψ3} = {1, 4, 5}; {ψ4} = {2, 3, 5}.

4.3 Algorithm for Orthogonalization of the Connectedness Function
in General Case

Input information: MDNF (MCNF) representation

ϕs,t(x1, . . . , xn)

and
ϕd

s,t(x1, . . . , xn).

Find: Orthogonal MDNF (MCNF) ϕs,t and ϕd
s,t.
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1. Choose one of the representations

ϕs,t(x1, . . . , xn)

or
ϕd

s,t(x1, . . . , xn),

which contains the minimal number of characters (the most compact). The
selected representation is orthogonalized.

2. The generalized De Morgan formula is applied to the chosen function: for
function ϕs,t(x1, . . . , xn) represented in MDNF:

ϕs,t(x1, . . . , xn) = f1 ∨ · · · ∨ fm = f1 + f̄1f2 + f̄1f̄2f3 + · · · + f̄1 . . . f̄m−1fm,

where: fi - i-th network (s-t)-path; m - the number of network (s-t)-paths.

You can also apply the generalized De Morgan formula for orthogonalization
of the MCNF representation:

ϕs,t(x1, . . . , xn) = fd
1 ∧ · · · ∧ fd

m = fd
1 − fd

1 f̄d
2 − fd

1 fd
2 f̄d

3 − · · · − fd
1 . . . fd

m−1f̄
d
m.

For a function ϕd
s,t(x1, . . . , xn), presented in MDNF:

ϕd
s,t(x1, . . . , xn) = ψ1 ∨ · · · ∨ ψr = ψ1 + ψ̄1ψ2 + ψ̄1ψ̄2ψ3 + · · · + ψ̄1 . . . ψ̄r−1ψr,

where:

ψi - i-th (s-t)-cut of the network;
r - the number of (s-t)-cuts.

5 Estimation of (s-t)-Connection Probability
of Communication Network

Task definition: we have the communication network and nodes s and t (see
Fig. 3).

Fig. 3. Graph of network.
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For each channel, an availability factor is

pi = 0.8, i = 1, . . . , 12.

Required to find:

1. List of all shortest (s-t)-paths.
2. List of all shortest (s-t)-cuts.
3. Orthogonal representation form.
4. The probability of the (s-t)-connection.

To solve this problem it is necessary to construct a matrix of logical adjacency
for a given graph structure (see Fig. 4).

Fig. 4. Matrix of logical adjacency.

The adjacency matrix is the input for a corresponding computer program,
which we have used to find paths and cuts. We obtain the following result
(Tables 1 and 2).

Table 1. List of (s-t)-paths.

|{fi}| = 3 |{fi}| = 4 |{fi}| = 5

{1, 5, 11} {1, 4, 8, 12} {1, 4, 8, 9, 11}
{1, 6, 12} {1, 5, 10, 12} {2, 3, 5, 10, 12}
{2, 8, 12} {1, 6, 9, 11} {2, 3, 6, 9, 11}

{2, 3, 5, 11} {2, 5, 7, 8, 11}
{2, 3, 6, 12}
{2, 8, 9, 11}
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Table 2. List of (s-t)-cut sets.

|{ψj}| = 2 |{ψj | = 3} |{ψj}| = 4 |{ψj}| = 5

{1, 2} {1, 3, 8} {2, 4, 5, 6} {1, 3, 7, 9, 12}
{11, 12} {5, 6, 8} {6, 8, 10, 11} {2, 4, 6, 10, 11}

{5, 9, 12}

For orthogonalization we choose a function

ϕd
s,t(x1, . . . , x12),

since the representation
L(ϕd

s,t(x1, . . . , x12))

is simpler than
L(ϕs,t(x1, . . . , x12)).

The calculation formula:

h(p1, . . . , p12) = 1 − q1q2 − (1 − q1q2)q11q12
−p2(1 − q11q12)q1q3q8

−(1 − q11q12)(1 − q1q2 − p2q1q3)q5q6q8
−p1p5p8p12q2q4q6q10q11
−p2p5p8p11q1q3q7q9q12

−p11(1 − q1q2 − p2q1q3q8
−(1 − q1q2 − p2q1q3)q6q8)q5q9q12

−p1p8(1 − q11q12 − p11q9q12)q2q4q5q6
−p5p12(1 − q1q2 − p2q1q3)q6q8q10q11.

(6)

To find the probability of (s-t)-connectivity, we substitute the values of avail-
ability factors in formula received (6).

Finally, the probability of (s-t)-connectivity:

h(p1, . . . , p12) = 0,9003.

To assess and analyze the probability of availability of network services in
large-scale networks, one can use known lower and upper bound estimates. These
estimates can be constructed on the basis of the deterministic properties of the
monotonic structures.

6 Conclusion

The approach for estimating the probability of (s-t)-accessibility is proposed. It
is based on the isomorphism of properties algebra and classes algebra, also some
order considerations.

The idea is also suitable for estimating the probability of full connectivity of
large-dimensional communication networks.



26 Yu. Zaychenko et al.

The found probability of pairing and full connectivity allows you to analyze
the availability properties with changing network load.

For a comparative analysis of the network structures reliability it is necessary
to be able to calculate the probabilities of their full connectivity. The structure
with higher probability is more preferable.

In the case of excessively large network dimension, when an accurate estimate
is impossible, lower and upper bound estimates are constructed formally using
inequalities (4), (5). The error in the estimate is determined by the difference
between the boundary estimates (upper and lower).

This approach is suitable for future scientific search:

– to solve problems of designing networks with specified properties;
– to estimate an average time, when a network is steady and a service is avail-

able;
– to assess the importance of network elements [10].

The importance of an element shows the degree of its influencing the network
availability ratio when providing a network service.
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