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Abstract. The popularity of discrete-time models in applied probabil-
ity is explained as follows. They are more precise in some situations.
In other cases they can be used as approximation of the correspond-
ing continuous-time models. So, we consider two discrete-time insurance
models and study the quality of their performance. The company reli-
ability or the expected discounted costs incurred by its control can be
chosen as an objective function (target or risk measure). It is possible to
consider a finite or infinite planning horizon. The control includes rein-
surance treaties and/or bank loans. The optimal control (maximizing the
reliability or minimizing the costs) is established for the finite planning
horizon. Its asymptotic behavior, as the horizon tends to infinity, is also
investigated.
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1 Introduction

It is well known, see, e.g., [5], that almost all applied probability models arising
in insurance, finance, queuing and reliability theory, dams and inventory theory,
communications and population dynamics are of input-output type. Therefore
such a model can be described by specifying the input, output, control, plan-
ning horizon T ≤ ∞, as well as functional Ψ , reflecting the system configuration
and operation mode, and objective function evaluating the quality of system
performance. Input, output and control are some processes (deterministic or
stochastic) defined for t ≤ T , their dimensions are not necessarily the same.
So, the system state (defined by application of functional Ψ to input, output
and control) is also a process, maybe multi-dimensional. It is possible to control
input, output or the system configuration and operation mode. An objective
function (valuation criterium, target or risk measure) can be chosen in different
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ways. The most popular are reliability and cost approaches. In the first case, one
wishes to minimize the ruin probability or maximize the uninterrupted work-
ing period. In the second case, the control is named optimal if it minimizes the
(expected) costs associated with the system control or maximizes the (expected)
profit obtained by the control application. For certainty, the further discussion
will be conducted in terms of insurance models. However it is always possible to
give another interpretation to the input and output processes to get a model aris-
ing in other applications. Thus, why insurance models were chosen? Insurance
can be considered as risk management or decision making under uncertainty,
see, e.g., [13,20]. It is necessary to protect the capital or other interests of citi-
zens, enterprizes and organizations, i.e. individuals and legal entities. Moreover,
insurance has the longest history among the above mentioned applied probabil-
ity domains, see, e.g., [2]. In fact, methods for transferring or distributing risk
were practiced by Chinese and Babylonian traders already 2–3 thousands years
BC. Thus, Code of Hammurabi, c. 1750 BC, contained the laws for maritime
insurance. Mutual societies, run by their members with no external sharehold-
ers to pay were first to appear. Next step is joint stock companies. A modern
insurance company has a two-fold nature. Its primary task is indemnification
of policyholders claims. The secondary, but very important, task is dividend
payments to shareholders.

New problems have arisen in actuarial sciences during the last twenty years,
see, e.g., [5]. This period is characterized by interplay of insurance and finance,
unification of reliability and cost approaches, see, e.g., [6], as well as, considera-
tion of complex systems. Sophisticated mathematical tools are used for analysis
and optimization of insurance systems including dividends, reinsurance, capital
injections and investment.

Nowadays, discrete-time models became popular in applied probability (see,
e.g., [5]), since they are more precise in some situations. Thus, the reinsurance
treaties are usually negotiated at the end of year, the decision on dividends
payment is also based on the results of financial year. In other cases, the discrete-
time models can be used as approximation of the corresponding continuous-time
models when analytical results are unavailable, see, e.g., [12]. In such domains
as inventories or population dynamics discrete-time models have arisen from
the beginning. In insurance such models appeared later (see, e.g., [3] and [11]).
The first review on discrete-time insurance models [14] was published in 2009.
Below we develop the models proposed in [3–10]. Namely, we study the optimal
policies for performance of insurance company. As control we choose reinsurance
and bank loans.

2 Main Results

We consider the following discrete-time insurance model. Let {Xn}n≥1 be a
sequence of non-negative independent identically distributed (i.i.d.) random vari-
ables (r.v.’s) with a known distribution function F , possessing a density ϕ(s) > 0
for s > 0 and a finite expectation. Here Xk is the claim size during the k-th
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period. The initial capital (or surplus) of the company is equal to x. The pre-
mium paid at the beginning of the first period is included in the initial capital.
The other premiums will be mentioned explicitly.

Our aim is to establish a strategy of bank loans minimizing the additional
costs associated with claims indemnification. In the same time a company can
use reinsurance. Below we suppose that the same reinsurance treaty is applied
each period. The next step is to choose the optimal treaty or let it vary from
one period to another.

2.1 Proportional Reinsurance

Suppose that we use a proportional reinsurance. More precisely, we apply a quota
share treaty with coefficient β > 0. That means, the direct insurer retains Z =
βX if the initial demand for indemnification is X. Accordingly, the insurance
company retains only part of premiums received from its clients. We denote this
amount by M .

One-period Case. Let us begin by treating a one-period case. It is possible
to get a bank loan at the beginning of the period, the interest rate being c, or
after the claim arrival, with the interest rate r > c. Let f1(x) be the minimal
expected costs associated with a loan.

Lemma 1. The following statement is valid.

f1(x) = −cx + min
y≥x

(cy +
r

β

∞∫

y

(s − y)ϕ(
s

β
) ds)

︸ ︷︷ ︸
G1(y)

. (1)

Moreover, there exists a constant y1 = βF−1(1 − c
r ) such that

f1(x) =

{
−cx + G1(y1) if x ≤ y1,

−cx + G1(x) otherwise.
(2)

Proof. Obviously, the interests for a loan up to level y at the beginning of the

period are c(y−x) and the company has to pay rE(Z −y)+ = r
β

∞∫
y

(s−y)ϕ( s
β ) ds

for additional loan. So, relation (1) holds. Using the formula

(

β(y)∫

α(y)

γ(y, x) dx)′
y =

β(y)∫

α(y)

γ′
y(y, x) dx + γ(y, β(y))β′(y) − γ(y, α(y))α′(y),

we get immediately

G′
1(y) = c − r

∞∫
y
β

ϕ(s) ds.
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Now the equation G′
1(y) = 0 can be rewritten as r−c = rF ( y

β ), whence it follows
that there exists a unique solution of this equation y1 = βF−1(1 − c

r ). It is due
to the fact that G′′

1(y) = r
β ϕ( y

β ) > 0. Thus, the optimal level for bank loan is

y1(x) =

{
y1 if x ≤ y1,

x otherwise,

providing the desired result (2). ��

Multi-period Case. Now, turn to multi-period case. Let α be the discount fac-
tor and fk(x) denote the minimal expected discounted k-periods costs incurred
by loans. The following result is valid.

Theorem 1. The relation

fk(x) = −cx + min
y≥x

(cy +
r

β

∞∫

y

(s − y)ϕ(
s

β
) ds + α

∞∫

0

fk−1(y + M − βs)ϕ(s) ds)

︸ ︷︷ ︸
Gk(y)

takes place. Moreover, there exists a constant yk such that the optimal bank loan
yk(x) at the beginning of the k-step process, k ≥ 2, is defined as follows

yk(x) =

{
yk if x ≤ yk,

x otherwise.

Hence,

fk(x) =

{
−cx + Gk(yk) if x ≤ yk,

−cx + Gk(x) otherwise.
(3)

The sequence {yk} is non-decreasing in k.

Proof. We use the dynamic programming (see, e.g., [1]) and carry out the proof
by induction. For k = 2 we easily obtain the relation

f2(x) = −cx + min
y≥x

(cy +
r

β

∞∫

y

(s − y)ϕ(
s

β
) ds + α

∞∫

0

f1(y + M − βs)ϕ(s) ds)

︸ ︷︷ ︸
G2(y)

called the Bellman equation. It can be rewritten as

f2(x) = −cx + min
y≥x

(G1(y) + α

∞∫

0

f1(y + M − βs)ϕ(s) ds).
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Hence, due to (2),

G′
2(y) = G′

1(y) + α

y+M−y1
β∫

0

G′
1(y + M − βs)ϕ(s) ds − αc

and

G′′
2(y) = G′′

1(y) + α

y+M−y1
β∫

0

G′′
1(y + M − βs)ϕ(s) ds > 0.

Since the function G′
2(y) is increasing, we establish inequality y1 < y2 veri-

fying that G′
2(y1) < 0. In fact,

G′
2(y1) = α[

M
β∫

0

(c − r

∞∫
y1+M−βs

β

ϕ(t) dt)ϕ(s) ds − c].

The right-hand expression can be written in the form

α[c(F (
M

β
) − 1) − r

M
β∫

0

(1 − F (
y1 + M − βs

β
)ϕ(s) ds],

where both terms are negative.
It is also clear that

lim
y→∞G′

2(y) = c − αc + lim
y→∞(−r

∞∫
y
β

ϕ(s) ds)

+α lim
y→∞

y+M−y1
β∫

0

(c − r

∞∫
y+M−βs

β

ϕ(t) dt)ϕ(s) ds > 0

and equation G′
2(y) = 0 has a solution y2 < ∞.

Thus,

f2(x) =

{
−cx + G2(y2) if x ≤ y2,

−cx + G2(x) otherwise,

and the first step of induction is completed. In the same way, for k > 2,

fk(x) = −cx + min
y≥x

(cy +
r

β

∞∫

y

(s − y)ϕ(
s

β
) ds +

∞∫

0

fk−1(y + M − βs)ϕ(s) ds)

︸ ︷︷ ︸
Gk(y)

.
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Assuming that for k ≤ n there exist yk satisfying the relation G′
k(y) = 0 and

fk(x) =

{
−cx + Gk(yk) if x ≤ yk,

−cx + Gk(x) otherwise,

we have to prove that the same is true for k = n + 1 and yn+1 > yn.
Clearly, for k ≤ n,

f ′
k(x) =

{
−c if x ≤ yk,

−c + G′
k(x) otherwise.

Recall that G′
n(y) has the form

G′
n(y) = c − r

∞∫
y
β

ϕ(s) ds + α

∞∫

0

f ′
n−1(y + M − βs)ϕ(s) ds (4)

and

G′′
n(y) =

r

β
ϕ(

y

β
) + α

∞∫

0

f ′′
n−1(y + M − βs)ϕ(s) ds

is nonnegative.
Obviously,

G′
n+1(y) = G′

n(y) + α

∞∫

0

(f ′
n(y + M − βs) − f ′

n−1(y + M − βs))ϕ(s) ds,

therefore G′
n+1(yn) is equal to

α

∞∫

0

(f ′
n(yn + M − βs) − f ′

n−1(yn + M − βs))ϕ(s) ds.

Now, we use the expression

f ′
n(x) − f ′

n−1(x) =

⎧⎪⎨
⎪⎩

0, if x ≤ yn−1,

−G′
n−1(x), if x ∈ (yn−1, yn],

G′
n(x) − G′

n−1(x) otherwise.
(5)

That means,

G′
n+1(yn) = α

M
β∫

0

(G′
n(yn + M − βs) − G′

n−1(yn + M − βs))ϕ(s) ds
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− α

yn−yn−1+M

β∫
M
β

G′
n−1(yn + M − βs)ϕ(s) ds. (6)

Since G′
n−1(y) > 0 for y > yn−1, the second integral is positive (however it is

taken with sign minus). The first integral can be transformed as follows

M
β∫

0

(G′
n(yn + M − βs) − G′

n−1(yn + M − βs))ϕ(s) ds

= α

M
β∫

0

(

∞∫

0

(f ′
n−1(yn +2M −β(t+ s))− f ′

n−2(yn +2M −β(t+ s)))ϕ(t) dt)ϕ(s) ds.

Using the induction assumption the integral under consideration can be reduced,
step by step, to the multiple integral with integrand depending on G′

2(·)−G′
1(·)

multiplied by αn−1 and the sum of negative terms similar to the second integral
in (6) multiplied by αk, k = 2, . . . , n − 1. We omit the explicit expression due to
its bulkiness only mentioning that it is negative. Hence, it follows immediately
that fn+1(x) has also the desired form. ��
Theorem 1 enables us to treat infinite planning horizon and establish the optimal
strategy of bank loans determined by one critical level y as shows

Corollary 1. For α < 1 there exists y = lim
n→∞yn.

Proof. It follows from (3) and (4) that

G′
n(y) = V (y) + α

y−yn−1+M

β∫

0

G′
n−1(y + M − βs)ϕ(s) ds

where V (y) = G′
1(y) − αc.

Thus, G′
n(y) = V (y) for y + M ≤ yn−1 and G′

n(y) ≥ V (y) otherwise, since
G′

n−1(y + M − βs) ≥ 0 if 0 ≤ s ≤ (y − yn−1 + M)β−1.
Let V (z) = 0, in other words, F (z) = c

r (1−α). Obviously, G′
n(z) ≥ V (z) = 0,

that is, yn ≤ z < ∞. Hence, there exists y = lim
n→∞yn. ��

Theorem 2. For α < 1, functions fn(x) converge uniformly, as n → ∞, to the
solution of the functional equation

f(x) = −cx + min
y≥x

[G1(y) + α

∞∫

0

f(x + M − βs)ϕ(s) ds].
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Proof. Let yn(x) be the optimal decision at the first step of the n-period process.
Then

fn(x) = −cx + min
y≥x

Gn(y) = −cx + Gn(yn(x)) ≤ −cx + Gn(yn+1(x)).

Therefore

Gn+1(yn+1(x)) − Gn(yn+1(x)) ≤ fn+1(x) − fn(x) ≤ Gn+1(yn(x)) − Gn(yn(x)).

That means,

|fn+1(x)− fn(x)| ≤ max(|Gn+1(yn(x))−Gn(yn(x))|, |Gn+1(yn+1(x))−Gn(yn+1(x))|).
The right-hand side of this inequality is bounded by max

y
|Gn+1(y) − Gn(y)|.

Put un = max
x

|fn+1(x) − fn(x)|. Since

Gn+1(y) − Gn(y) = α

∞∫

0

(fn(y + M − βs) − fn−1(y + M − βs))ϕ(s) ds,

one gets immediately

un ≤ αun−1 ≤ α2un−2 ≤ . . . ≤ αn−1u1.

Thus, if we show that u1 < ∞, then the uniform convergence of fn(x) to a limit
f(x) is obvious. It is due to the fact that, for any x, the function |fn(x)−f1(x)| ≤
|f2(x) − f1(x)| + |f3(x) − f2(x)| + . . . + |fn(x) − fn−1(x)| is majorized by the
partial sum of a geometric progression {u1α

k}k≥1.
Recall that using (5) we have

u1 ≤ max[G2(y2) + G1(y2), α · max
x≥y1

∞∫

0

(f1(x + M − βs)ϕ(s) ds].

Clearly, G2(y2) + G1(y2) < ∞. Accordingly to (2) it is possible to write

∞∫

0

f1(x + M − βs)ϕ(s) ds = βr

x+M−y1
β∫

0

ϕ(s)

∞∫
x+M−βs

β

s1ϕ(s1) ds1 ds

−r

x+M−y1
β∫

0

(x + M − βs)F (
x + M − βs

β
)ϕ(s) ds + G1(y1)F (

x + M − y1
β

)

−c(x + M)F (
x + M − y1

β
) + cβ

∞∫
x+M−y1

β

sϕ(s) ds.

Since we treat only the domain {x ≥ y1}, all the summands of the above equality
are bounded. This is due to existence of EX1 = μ < ∞.

Thus, uniform convergence of fn(x) to f(x) is established. Obviously, f(x)
satisfies the functional equation stated in the theorem. ��
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2.2 Non-proportional Reinsurance

Now we turn to the case of non-proportional reinsurance, namely, suppose that
a stop-loss treaty with retention a is applied each period. That means, instead
of the claim Xk, k ≥ 1, insurer has to pay Zk = min(Xk, a) during the k-th
period. Since the claims are supposed to be i.i.d. r.v.’s, the premiums obtained
by the insurance company are equal to

M = (1 + γ1)EX − (1 + γ2)E(X − a)+.

Here X has the same distribution function F as all Xk, k ≥ 1, whereas γ1 and
γ2 are the safety loadings of insurer and reinsurer, respectively. We assume that
F has a density ϕ(x) > 0, for x > 0, and a finite mean value.

We would like to establish the optimal policy of bank loans minimizing the
associated expected costs.

One-period Case. As previously, we begin by consideration of one-step process
establishing the form of f1(x). If insurer decides to take a loan to raise the surplus
up to level y, the expected costs are equal to c(y − x) + rE(Z1 − y)+. It is clear
that

f1(x) = −cx + min
y≥x

G1(y)

where

G1(y) = cy + D(y) with D(y) = r

∞∫

0

[min(s, a) − y]+ dF (s).

Now we can prove the following result.

Lemma 2. Optimal loan level is given by y1 = min(a, F−1(1 − c
r )).

Proof. It is clear that under the stop-loss treaty with retention a the insurer
never has to pay more than a. Thus, it is unreasonable to take a loan up to level
greater than a.

Rewriting G1(y), for y ≤ a, in the form

G1(y) = cy + r

a∫

y

(s − y)ϕ(s) ds + r(a − y)P (X > a)]

we get
G′

1(y) = c − rF (y) and G′′
1(y) = rϕ(y) > 0. (7)

Therefore G′
1(y) < 0 for y < F−1(1 − c

r ). Hence, the desired result is obvious. ��
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Multi-period Case. For the multi-step case we have the following Bellman
equation

fk(x) = −cx + min Gk(y)
y≥x

with Gk(y) given by

G1(y) + α

∞∫

0

fk−1(y + M − min(s, a)) dF (s).

The following result is valid.

Theorem 3. The optimal levels yk, k ≥ 1, for the bank loans strategy at the
beginning of k-step process form an increasing sequence.

Proof. We begin by treating the case F (a) ≤ c
r , in other words, y1 ≤ a. Thus,

f1(x) = −cx +

{
G1(y1) if x ≤ y1,

G1(x) otherwise.

Therefore,

f ′
1(x) = −c +

{
0 if x ≤ y1,

G′
1(x) otherwise

and, according to (7), f ′
1(x) ≤ 0 for all x. It follows immediately, that

G′
2(y) = G′

1(y) + α

∞∫

0

f ′
1(y + M − min(s, a)) dF (s) ≤ G′

1(y).

Clearly,
G′

2(y1) ≤ G′
1(y1) = 0.

Hence, y2 ≥ y1 and initial step of induction is proved.
Now suppose that for k ≤ n we have established that there exist the critical

levels yk given by G′
k(yk) = 0. They form a non-decreasing sequence and

f ′
k(x) = −c +

{
0 if x ≤ yk,

G′
k(x) otherwise.

Moreover, we assume that G′
k(x) − G′

k−1(x) ≤ 0 for all x.
Obviously,

f ′
k(x) − f ′

k−1(x) =

⎧⎪⎨
⎪⎩

0 if x ≤ yk−1,

−G′
k−1(x) if x ∈ (yk−1, yk),

G′
k(x) − G′

k−1(x) if x ≥ yk.

(8)
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Consider

G′
n+1(x) = G′

n(x)+α

∞∫

0

(f ′
n(y+M −min(s, a))−f ′

n−1(y+M −min(s, a))) dF (s).

Due to (8) and other induction assumptions, f ′
n(x)−f ′

n−1(x) ≤ 0 for all x. That
means G′

n+1(x) ≤ G′
n(x) for all x. Taking x = yn we get the desired result

yn ≤ yn+1. The case F (a) < c
r can be treated similarly. ��

It is possible to consider the infinite planning horizon proving

Corollary 2. A functional equation

f(x) = −cx + min
y≥x

[cy +

a∫

y

r(s − y)ϕ(s) ds + r(a − y)P (X > a)

+α

∞∫

0

f(y + M − min(s, a)) dF (s)]

has a unique solution for α < 1.

The proof is omitted because the methods employed are similar to those used in
Theorem 2.

3 Conclusion

We considered two discrete-time models with bank loans and proportional (or
non-proportional) reinsurance for a finite planning horizon. It is established that
the optimal loans policy is determined by a sequence of critical levels yn, n ≥ 1.
That means, if the surplus at the beginning of the n-step process x < yn, n ≥ 1,
then optimal decision is to raise it up to level yn, otherwise the loan is not
necessary. The sequence of critical levels {yn} is bounded non-decreasing, so it
converges, as n → ∞, to the limit y if α < 1. Moreover, it is proved that the
minimal costs fn(x) converge uniformly in x to a function f(x) which is the
unique solution of a functional equation.

For α = 1 we have to choose another risk measure introducing the notion
of asymptotically optimal policy. It is possible as well to calculate the company
ruin probability for any α under the optimal loans strategy.

The next step is investigation of models stability with respect to small fluctu-
ations of system parameters and perturbations of the underlying distributions.
The books [16,17] and [18] are useful for this purpose, as well as the results
obtained in [8,15,19].
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