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Abstract. The multifrontal method is a well-established approach to parallel
sparse direct solvers of linear algebraic equations systems with sparse symmetric
positive-definite matrices. This paper discusses the approaches and challenges of
scalable parallel implementation of the numerical phase of the multifrontal
method for shared memory systems based on high-end server CPUs with dozens
of cores. The commonly used parallelization schemes are often guided by an
elimination tree, containing information about dependencies between logical
tasks in a computational loop of the method. We consider a dynamic two-level
scheme for the organization of parallel computations. This scheme employs the
task-based model with dynamic switching between solving relatively small tasks
in parallel and using parallel functions of BLAS for relatively large tasks. There
are several problems with the implementation of this scheme, including time-
consuming synchronizations and the need for smart memory management. We
found a way to improve performance and scaling efficiency using the model of
parallelism and memory management tools from the Threading Building Blocks
library. Experiments on large symmetric matrices from the SuiteSparse Matrix
Collection show that our implementation is competitive with the commercial
direct sparse solver Intel MKL PARDISO.

Keywords: Sparse direct methods - Multifrontal method - Parallel computing -
High performance computing * Threading building blocks

1 Introduction

Direct methods for solving large sparse systems of linear algebraic equations (SLAEs)
with a symmetric positive-definite (SPD) matrix are widely used in numerical simu-
lations in different subject areas. During matrix factorization, the number of nonzero
elements in the factor increases by several orders of magnitude compared to the
original matrix, which significantly affects the memory requirements and the compu-
tation time. In this regard, a special reordering procedure [13] is applied to the original
matrix, which rearranges the rows and columns of the matrix in order to reduce the
number of nonzero elements in the factor. Next, a symbolic phase of the Cholesky
decomposition is performed for the reordered SPD matrix. This numerical procedure
analyses the matrix, creates special data structures and allocates necessary memory.
The next stage of the solution is a numerical phase of the Cholesky decomposition. At
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this stage, non-zero elements of the factor are calculated. Next, the solution of two
triangular SLAEs is performed and the inverse permutation of the components of the
solution is applied [5, 6].

When solving state-of-the-art problems, each stage of the scheme described above
is very computationally intensive and requires efficient parallelization for modern
supercomputers. Appropriate algorithms have been under development over the past
decades. The parallel algorithms for distributed and shared memory systems are
implemented in Intel MKL PARDISO [12], MUMPS [2], SuperLLU [19], CHOLMOD
[4], HSL_MAS7 [9], and in other solvers that are widely used in many research
projects around the world. However, continuous improvement of multicore architec-
tures motivates further development of high-performance scalable algorithms for such
systems [1, 10, 11, 16, 22-25].

In this paper, we focus on achieving the efficiency of parallelization and using the
memory subsystem on a high-end multicore computer when performing the numerical
phase of the Cholesky decomposition. This phase is often very time-consuming, and its
parallelization is a challenging problem. The MUMPS solver was originally developed
for distributed memory systems, and then shared memory parallelism support was
added to it [15]. For this, a modification of the Geist-Ng algorithm is used, in which
prior to the start of the numerical phase the search for the layer of the elimination tree is
performed, subtrees with the root belonging to the found layer are processed inde-
pendently. Another widely used method of parallelization is the use of Direct Acyclic
Graph, where the graph describes the dependencies between the nodes of the elimi-
nation tree and the sequence of operations inside the node which results in fine-grained
parallelism. This approach is used in the HSL_MAS7 solver [10]. Earlier, we proposed
a dynamic two-level parallelization scheme for the multifrontal method that combines
task-based parallelism at the lower levels of the elimination tree and the use of parallel
BLAS functions at the upper levels when solving a limited number of large subtasks
[18]. In this paper, we address two main problems encountered in the implementation
of this scheme: moderate load balancing quality for dozens of computing cores, the
need for adaptive selection of the switching point between two ways of parallelization.
Further, it will be shown how a suitable usage of the TBB library allows us to over-
come these problems, to improve the memory management scheme, and obtain com-
petitive results with Intel MKL. PARDISO outperforming it on several matrices.

The paper is organized as follows. Section 2 provides a general overview of the
multifrontal method. In Sect. 3, the main ideas of two-level task-based parallelization
of the multifrontal method for shared memory systems are described. In Sect. 4 we
propose the new parallel scheme based on Threading Building Blocks. Section 5
presents numerical results and discussion. Section 6 concludes the paper.

2 Multifrontal Method Overview

The multifrontal method [7, 8] for the numerical phase of the Cholesky decomposition
is commonly used in many sparse direct solvers, such as MUMPS, SuiteSparse and
others. The advantages of this method include the efficient use of a hierarchical
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memory system, as well as simple and local dependencies between iterations, which
creates good prospects for parallelization. The main idea of the method is to organize
computations using high-performance implementations of operations on dense sub-
matrices of the original matrix. The dependencies between operations are determined
by an elimination tree [20] which is constructed during the analysis phase. The number
of nodes in the tree corresponds to the dimension of the original matrix N, the nodes are
numbered from 1 to N, each node is associated with a column of a factor L. Edges in
the tree define the order of calculations of columns of L. The main principle is as
follows: before calculating a column associated with some node of the tree we must
calculate all columns corresponding to his child nodes. Therefore, the main compu-
tational loop of the multifrontal method performs calculations, examining the nodes of
the elimination tree in order from leaves to root. In every node a set of operations with
dense submatrices is performed (Fig. 1). First, the frontal matrix of the node is cal-
culated wusing the elements of the column of the original matrix (the
init_frontal_matrix procedure) and the updating matrices of the child nodes
(the assembly_ frontal_matrix procedure). Then, a partial dense factorization
is performed for the frontal matrix (the factorize procedure) resulting in the col-
umn of the factor and in the update matrix (the form_update_matrix procedure),
which will be used when building the frontal matrix for the parent node. A more
detailed description of the method can be found in [14, 20].

foreach node 7 of elimination tree in topological order
init_frontal matrix(£7;)
foreach child ; of i do
end for
assembly frontal matrix(F,U)
factorize(F)
form_update matrix(U;)
Li—F
0 end for

— O 00 1O\ L AWM=

Fig. 1. High-level overview of the multifrontal method

The multifrontal method can be easily parallelized using parallel implementations
of the BLAS library functions to perform operations with frontal matrices. This
approach does not scale well due to the lack of resources for parallelization in the lower
levels of the elimination tree, where frontal matrices are usually too small. Another
approach to parallelization is exploit task-based parallelism (Fig. 2), where the task is
to calculate one column of the factor L. The order of calculations and the possibility of
parallelization are determined by the elimination tree. This approach can be
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implemented using static or dynamic load balancing. In the case of static load bal-
ancing, tree nodes are assigned for processing to certain threads. When using dynamic
balancing, the nodes of the elimination tree are assigned to be executed by threads
during program execution. However, scaling efficiency is limited when processing the
nodes of the tree close to the root. This is due to the fact that the number of parallel
tasks decreases and some of the threads are not used while the dimension of frontal
matrices for the upper part of the tree increases.

1 procedure process_node(node of elimination_tree)
2 foreach child of node in elimination_tree do
3 #spawn new task

4 process_node(child)

5 end for

6 #wait for spawned tasks to complete

7 multifrontal _step(rnode)

8 end procedure

9 procedure multifrontal step(node of elimination tree)
10 i«—number of node in elimination tree

11 init_frontal matrix(F})

12 foreach child j of i do

13 U—UBUY

14 end for

15 assembly frontal matrix(F,U)

16 factorize(F)

17 form_update matrix(U;)

18 Li‘—F( 1,%)

19 end procedure

Fig. 2. The task-based parallel multifrontal method

3 Task-Based Two-Level Dynamic Parallel Algorithm

In [17, 18] we analyzed the task-based two-level algorithm. The algorithm employs
task-based parallel load balancing, highly effective on lowest levels of the elimination
tree, and switches to using parallel BLAS functions for computationally demanding
tasks at the upper levels of the tree (Fig. 3). This approach greatly improves perfor-
mance and scaling efficiency of the implementation.
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1 procedure process_node(node i of elimination_tree)
2 init_frontal matrix(F})

3 foreach childj of i do

4 U—U® U,

5 end for

6 assembly frontal matrix(F,U)

7 factorize(F)

8 form_update matrix(U;)

9 Li—F %

10 end procedure

11

12 procedure two-level parallel multifrontal

13 set num_threads(MAX SYSTEM_ THREADS);
14 blas_set num_threads(1);

15 #parallel section

16 while(there are enough independent tasks)

17 i < nextTask()

18 process_node(i)

19 end while

20

21 set_num_threads(1);

22 blas_set num_threads( MAX SYSTEM THREADS);
23 while(there is a task)

24 i< nextTask();

25 process_node(i)

26 end while

27 end procedure

Fig. 3. The parallel two-level multifrontal algorithm for shared memory systems

4 Exploiting Parallelism Using the Threading Building
Blocks Library

Experiments have shown that the approach described above has two key problems.
First, the approach assumes an explicit synchronization of the threads during the
transition between levels. Such a scheme leads to the useless, from utilization of
computing resources point of view, waiting for the completion of processing the nodes
of the elimination tree. Taking into account that the second level of the described
scheme assumes the absence of parallel processing of independent nodes, this leads to
insufficient scalability when using dozens of CPU cores. Secondly, the approach
requires the selection of the switching moment between two parallelization schemes,
which intricately depends on the various characteristics of the original matrix.

In this paper, we propose a new scheme of parallelization based on the TBB library
[27]. TBB was created to develop scalable parallel applications in terms of logical
problems, not threads. In addition, Intel MKL implementation of BLAS functions also
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procedure dynamic_parallel multifrontal
set_tbb_shared_thread pool(MAX SYSTEM THREADS);

parallel foreach leaf node i of elimination_tree do
process_node(i)
p < getParentNode(i)
while p has no left unprocessed children
process_node(p)
p < getParentNode(p)
10 end while
11 end parallel foreach
12 end procedure

O Co NN AW~

Fig. 4. The dynamic parallel multifrontal algorithm for shared memory systems

supports the use of the TBB library as a thread manager. Such support and the design of
libraries allow the use of nested parallelism mechanisms for organizing the dynamic
switching from parallel processing of the elimination tree nodes to parallel BLAS
functions (Fig. 4).

The key difference of the proposed approach is the use of the TBB library paral-
lelism model. A model is a dynamic distribution of logical tasks between a shared set of
threads. Thus, the logical tasks of parallel processing of the tree nodes and parallel
BLAS functions are distributed over the total set of threads. The organization of
parallel logical tasks becomes the responsibility of the library’s task scheduler. The
work of the scheduler is decentralized and distributed among all threads. Each thread
has its own local task queue. The thread accesses the queue to get a new task when it
finishes executing the current one. If there are no tasks in the local queue, the thread
searches for the task in the queue of another thread.

Consider the work of the task scheduler in the case of a new parallel scheme. The
main thread puts all the available logical tasks of processing independent nodes in its
local queue. Threads created by the TBB library when initializing a shared set of
threads find a free logical task in the local queue of the main thread, steal and process it.
When the local thread queue is empty, the thread looks for a task in the queues of other
threads. Upon completion of the current task, the thread executes a new task for
processing the node M, if the processing of the last child node of the node M has been
completed. Parallel BLAS functions also generate new logical tasks. Thus, threads
process tree nodes and auxiliary tasks of BLAS functions in parallel, dynamically
switching between them. Thread finishes its work when it cannot find new tasks neither
in its own queue nor in the queues of other threads. The described balancing process
eliminates the need for explicit synchronization and the choice of its moment, and also
allows us to process independent nodes of the tree in parallel throughout the whole
computational loop. Also note that in the implementation of this scheme, we employed
the Intel MKL BLAS version, using TBB for multithreading. In general, this scheme
allows us to overcome two problems noted at the beginning of this section.
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Note that previous versions of the method used the following memory management
scheme for processing the elimination tree: each thread allocated the maximum
required amount of memory for any node before processing the tree. The scheme
assumed the exclusive use of previously allocated memory. The new task-based model
of parallelism cannot exploit this scheme of working with memory producing the data
race due to the task-stealing mechanism. The thread resets the memory when it takes
the task of processing a new node, waiting for another thread to finish BLAS task of
processing the actual node on the same memory, which raises the problem of data
races. To solve this problem and also improve memory usage patterns, the following
scheme of work with memory is proposed. We need logically bind the memory to the
task but not to the thread. Standard memory managers will not cope effectively with
such a scheme, as it involves frequent requests for memory allocation and deallocation.
Therefore we propose to use the TBB library’s scalable memory manager (tbb: :
scalable_allocator). One of the key features of this memory manager is
caching freed memory for potential new allocations. This reduces the number of system
calls, but increases the level of memory consumption by the application.

5 Numerical Results

5.1 Computational Infrastructure and Test Problems

The computational experiments were performed at a node of a supercomputer with 2x
Intel Xeon Gold 6152 (Skylake, 22 cores each), 44 cores overall, 192 GB RAM,
Ubuntu 18.04, Intel C++ Compiler, Intel MKL and TBB from the Intel Parallel Stu-
dio XE 2019 suite. For benchmarking purposes we used 8 large symmetric positive
definite matrices from the SuiteSparse Matrix Collection [26]. All matrices were
reordered using permutations computed using the Metis library [13] other libraries can
be also used [21, 22]. The PARDISO solver was run with default settings. According to
the documentation the iparm (24) value was set to 1 when a large number of threads
was used.

Table 1. Matrices and their parameters

Matrix Dimension | Nonzeros | Nonzeros in L
boneS10 914 898 |28 191 660 | 266 173 272
Emilia_923 923 136 120 964 171 |1 633 654 176
audikw_1 943 695 |39 297 171 |1 225 571 121
bone010_M | 986 703 | 12 437 739 | 363 650 592
bone010 986 703 |36 326 514 |1 076 191 560
StocF-1465 | 1 465 137 | 11 235 263 |1 039 392 123
Hook_1498 | 1 498 023 | 31 207 734 | 1 507 528 290
Flan_1565 |1 564 794 |59 485 419 |1 451 334 747
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5.2 Results and Discussion

First, we study performance of the two considered parallel schemes in the numerical
phase of the Cholesky decomposition. To do this, we run these schemes on 8 large
symmetric positive-definite matrices, the parameters of which are given in Table 1. In
all experiments we use 44 cores of the Skylake processor (we also make sure that using
such a large number of cores does not slow down the computations). We make each run
10 times and take the minimum time. For both schemes, we choose the appropriate
strategy of padding the matrix columns with zeros in order to increase the size of the
groups of columns with the same sparsity pattern under the upper triangle (the so-called
supernodes). For the ‘Old Scheme’, based on OpenMP, in addition, we empirically
choose a relevant moment of switching between parallel tasks solving and using par-
allel BLAS. Then we select the best results and compare them with the results of
MKL PARDISO, also tested 10 times on each matrix.

Our first observation is that the strategy of padding supernodes with zeros on large
matrices and huge number of threads affects performance of the considered algorithms.
For example, on the matrix Emilia_923 with a largest factor, the computation time of
the ‘Old Scheme’ varies from 33 s to 28 s, and the run time of the ‘New Scheme’
improves from 19 to 15 s, depending on the padding algorithm (Fig. 5).

Zero padding on the Emilia_923 matrix

8 351
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Fig. 5. Zero padding improves performance of the Cholesky decomposition. The parameter
value on the x-axis corresponds to a maximum number of zeros added to a supernode.

Figure 6 presents a comparison of the best computation time of the considered
algorithms and MKL PARDISO. Experiments have shown that the ‘Old Scheme’ loses
PARDISO, whereas the ‘New Scheme’ is ahead on matrices with a large factor size,
showing comparable or slightly worse results on the other matrices.
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Further, we investigated how the considered algorithms are scaled with an increase
in the number of threads involved in the computations. Figure 7 shows the performance
results for the matrix Emilia_923. The results show that with the use of a small number
of cores, the ‘Old Scheme’ works better due to the low overhead of the work of the
scheduler. However, with an increase in the number of cores, the ‘New Scheme’
demonstrates its advantage and continues to scale, while the computation time of the
‘Old Scheme’ ceases to decrease. Note that all the algorithms do not show good scaling
efficiency when using 44 cores, even on the large matrices from the SuiteSparse
Collection.

Best time comparison (lower is better)

B Old Scheme
25 m PARDISO 1l
I New Scheme

N
o

-
w

Computation time in seconds
=
o

w

Emilia_923 Hook_1498 audkiw_1  bone010 Flan_1565 StocF-1465 bone010_M boneS10

Matrix

Fig. 6. Computation times of the numerical phase of the Cholesky decomposition. Three
implementations are compared: Intel MKL PARDISO, the scheme based on OpenMP (‘Old
Scheme’), and the proposed scheme based on TBB (‘New Scheme’). Time is given in seconds.

Let us make sure that the ‘New Scheme’ is significantly ahead of the ‘Old Scheme’
due to the decrease in the spin-time when using a large number of cores. To do this, we
use the Intel Amplifier profiler. The results of the profiling of both implementations are
shown in Figs. 8 and 9, respectively. The profiles contain basic hotspots and allow us
to understand what the bottleneck of each algorithm is. Thus, in the ‘Old Scheme’,
more than half of the time is spent waiting for the barrier to reach when synchronizing
OpenMP threads. On the contrary, in the ‘New Scheme’, the vast majority of time is
spent on calculations in several functions of BLAS, which indicates a more efficient
implementation in terms of performance. It should be noted that the difference in the
names of the BLAS functions used in the considered algorithms is likely caused by
differences in the implementation of the parallel BLAS by means of OpenMP and TBB
inside the MKL library.
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Multithreading schemes on the Emilia_923 matrix
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Fig. 7. Computation times of the scheme based on OpenMP (‘Old Scheme’), MKL PARDISO,
and the proposed scheme based on TBB (‘New Scheme’) when factorizing the Emilia_923
matrix. The number of threads (cores) varies from 1 to 44. Time is given in seconds.

Function Module CPU Time “
__kmp_fork_barrier libiomp5.so 658.379s Kk
[MKL BLAS]@dsyrk libmkl_intel_thread.so 204.680s
__intel_avx_rep_memset omp_solver 58.498s
[MKL LAPACK]@dpotrf libmkl_intel_thread.so 54.043s
omp_driver_recursive libmkl_intel_thread.so 47.210s
[Others] 142.479s

Fig. 8. Hotspots of the ‘Old Scheme’ collected by Intel Amplifier

Function Module CPU Time ©
[MKL BLAS]@avx512_dgemm_kernel_nocopy NT_b1 libmkl_avx512.so 203.477s Kk
[MKL BLAS]@avx512_dgemm_kernel_0 libmkl_avx512.so  147.496s Kk
[vmlinux] vmlinux 31.096s
cblas_daxpyi libmkl_intel_Ip64.so 24.258s
__intel_avx_rep_memcpy tbb_solver 22.252s
[Others] 100.119s Kk

Fig. 9. Hotspots of the proposed ‘New Scheme’ collected by Intel Amplifier
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6 Conclusion

In this paper, we presented a new scheme for the organization of parallelism when
performing the numerical phase of the Cholesky decomposition for symmetric positive-
definite sparse matrices. This scheme is based on the transparent creation of logical
tasks that can encapsulate both the processing of the next node of the elimination tree,
and individual BLAS operations. It results in a flexible load balancing scheme that
allows us to dynamically assign tasks to threads, utilizing the available computational
resources. The scheme is implemented using the TBB library and uses the library’s
scalable allocators for smart memory management. The results of experiments on the
two 22-core Intel Skylake CPUs show that the performance and strong scaling effi-
ciency of the described implementation is competitive to Intel MKL PARDISO.
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