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Abstract. In this paper, we present an algorithm for numerical simu-
lation of the tectonic movements leading to the formation of geological
faults. We use the discrete element method, so that the media are pre-
sented as an agglomeration of elastic, visco-elastic, or elasto-plastic inter-
acting particles. This approach can naturally handle finite deformations
and can account for the structural discontinuities is the Earth crust. We
implement the algorithm using CUDA technology to simulate single sta-
tistical realization of the model, whereas MPI is used to parallelize with
respect to different statistical realizations. Obtained numerical results
show that for low dip angles of the tectonic displacements relatively nar-
row faults form, whereas high dip angles of the tectonic displacements
lead to a wide V-shaped deformation zones.
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1 Introduction

A classical definition of the geological faults is that they are discontinuities of sed-
imentary, metamorphic or magmatic rock bodies. Thus, no physical properties
are assigned to a fault; however, real geological faults have a complex structure
which includes main fault body (“fault core”) and fractured or damage zones
around [7,25]. In particular, damage zone may be highly fractured, thus, per-
meable especially for carbonates [16], or it can be an impermeable due to the
presence of deformation bonds which is typical for the sandstones [10]. Such
differences of the local permeability near faults may strongly affect the reservoir
performance [3]. Thus a detailed representation of the fault and damage zone is
required for efficient oil and gas exploration.
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Very often, to do field observations or laboratory studies of the real fault is
difficult or impossible due to some natural reasons. Thus, numerical simulation is
a reliable and efficient way to investigate the peculiarities of the structure’s form-
ing and tectonic movement process. There are numerous techniques to simulate
finite deformations in geological formations either grid-based methods such as
finite differences [11], finite elements [13], boundary elements [26] or by meshless
approaches also known as discrete elements method (DEM) [12,22]. The letter
is preferred because no predefined crack or fault geometry is needed for simu-
lation. However, particle-based methods are more computationally intense and
require calibration of the particle properties to match the mechanics of the whole
body [22]. Despite this, the particle-based methods are incredibly flexible and
can be used to generate multiple statistical realizations of the fault zones and
study statistical features of the strongly deformed and highly-distorted zones. In
our opinion, meshless methods of geological faults formation simulations can be
used to generate faults geometries in realistic environments. After that simulated
faults can be introduced in geological models which are used for seismic modeling
and imaging [17,28], moreover use advanced simulation techniques such as local
mesh refinement [18,21] allow studying seismic responses of the fine structure of
near-fault damage zones.

In this paper, we present an algorithm based on the Discrete Elements
Method (DEM). This approach is based on the media representation by a set of
discrete particles. These particles interact as stiff elastic bodies according to the
mechanical rules; i.e., elastic and frictional forces affect each particle, that leads
to the particle movement according to the Newton mechanics [14]. Computation
of the forces affecting a particle includes a high number of floating point and
logical operations; thus it is computationally intense and hard to implement on
CPU, using vectorization, etc. As a result, the efficiency of the CPU based real-
izations of DEM is low, and computation time to solve even a 2D problem may
be as long as several thousand node-hours. On the contrary, GPU architecture
is more appropriate for DEM implementation, because it can efficiently handle
a big number of flops with a small amount of memory involved in computations.

2 Discrete Elements Method

To simulate the tectonic movements causing finite deformations and geological
fault formation in the Earth’s crust we use the discrete element method, fol-
lowing [14,23]. In this approach, the media is represented as an assembly of
individual particles with a particular geometry and physical properties. Each
particle is characterized by the coordinate of its center xj , radius Rj , repulsion
and attraction bulk moduli K+

r and K−
r respectively, tangential sliding stiff-

ness Ks, and two friction coefficients μs is the static one and μd is the dynamic
friction coefficient. Having set these parameters, one may define the interaction
forces between two adjoint particles.
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2.1 Forces Computation

Consider two particles with the numbers i and j, with the coordinates xi and xj

and radii Ri and Rj respectively. Particle j acts on particle i with the normal
elastic forces:

F ji
n =

⎧
⎪⎨

⎪⎩

K−
r (Ri + Rj − ‖Xji‖)nji, Ri + Rj − ‖Xji‖ > 0, repulsion,

K+
r (Ri + Rj − ‖Xji‖)nji, 0 ≤ Ri + Rj − ‖Xji‖ ≤ r0, active bond,

0, Ri + Rj − ‖Xji‖ > r0, no bond,

(1)
where r0 is the bond length, typically chosen equal to 0.05(Ri + Rj), vector
Xji = xi −xj connects the centers of the particles and directed from particle j
to particle i, vector nji = Xji/‖Xji‖ is the unit vector directed from the centers
of particle j to the center of particle i or normal vector, because it is normal
to the contact plane. Note, that we use the model of linear elastic particles
interaction and assume that the repulsion and attraction bulk moduli coincide,
which is mainly valid for geomaterials across a wide range of scales.

Additionally frictional forces are taken into account if two particles are in a
contact [23]:

F ji
t =

{
−Ksδtt

ji, Ksδt ≤ μs‖F ji
n ‖, static friction,

−μd‖F ji
n ‖tji, Ksδt > μs‖F ji

n ‖, dynamic friction,
(2)

where Ks is the tangential sliding stiffness, usually considered to be equal to bulk
modulus; i.e., Ks = Kr, vector tji is the unitary tangential vector directed along
the projection of the relative velocity onto the contact plane of two particles;
i.e.,

tji = vji−(vji,nji)nji

‖vji−(vji,nji)nji‖ , vji = vi − vj . (3)

In this notations vji is the relative velocity of the particle i with respect to
particle j. Parameter δji denotes the tangential displacement of the contact
point from its initial position. Tangential forces provided by formula (2) satisfy
the Coulombs law; i.e., the static friction governs the particles interaction if
the forces as below a critical value. If the tangential forces exceed the critical
dynamical friction proportional to normal force is applied. Typically the static
friction is much higher than the dynamical one.

Additionally, an artificial dissipation is introduced in the system to prevent
elastic waves from propagating through the model and ensuring the media to
remain stable at infinite instants:

F i
d = −νvi, (4)

where ν is an artificial viscosity.
The Earth’s crust also remains under gravitational forces which are accounted

as
F i

g = Mige3, (5)

where g = 9.8 m/s is the gravitational constant, e3 = (0, 0, 1)T , and Mi is the
mass of the considered particle.
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To compute the total forces acting at a particle one needs to account the
forces due to interactions with all the neighbors, plus artificial dissipation, plus
gravitational forces, as a result, one gets:

F i =
∑

j∈J(i)

[
F ji

n + F ji
t

]
+ F i

d + F i
g, (6)

where J(i) is the set of indexes of the neighbors of i-th particle.

2.2 Time Integration

Having computed all external forces acting at j-th particle one may recompute
its position using classical mechanics principles:

M i d
2xi

dt2
= F i

(

t,xi,xj ,
dxi

dt
,
dxj

dt

)

, (7)

where dissipative F i
d and frictional forces F ji

t explicitly depend on the particles
velocities vi = dxi

dt .
To numerically resolve system of Eq. (7) we use the Verlet-like scheme with

the velocity half-step [15]. Assume coordinates, velocities, and thus forces of all
particles are known at instant t = tn = τ · n, then they can be updated to the
instant tn+1 by the rule:

(v i)n+1/2−(v i)n

τ/2 = 1
MiF

i
(
tn, (xi)n, (xj)n, (vi)n, (vj)n

)
,

(xi)n+1−(xi)n

τ = (vi)n+1/2,

(v i)n+1−(v i)n+1/2

τ/2 = 1
MiF

i
(
tn+1, (xi)n+1, (xj)n+1, (vi)n+1/2, (vj)n+1/2

)
,

j ∈ J(i).

(8)

In case of no explicit dependence of forces on the velocities the scheme is the
second order accurate, however if applied to the equation of motion for DEM,
this scheme possesses only the first order of approximation.

To ensure the stability of the finite-difference scheme we use the time step
as suggested in [15]

τ ≤ 0.2
Dmin

Vmax
, (9)

where Rmin is the minimum diameter of the particles, and Vmax is the maximal
velocity of perturbation propagation in the system.

2.3 Boundary Conditions

Proper implementation of the boundary conditions is a challenging task for the
particles-based methods. In our research, we deal with two types of boundary
conditions. First, we impose the rigid boundary condition; i.e., the surface Γs

is fixed, or its movement is prescribed. Moreover, it is stiff; thus the particles
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cannot penetrate through it. Formally, this type of boundary condition can be
stated as follows. Assume a boundary Γs = {x|x2 = xB

2 }. If a particle is close
enough to the boundary; i.e., if for the j-th particle |xj

2 − xb
2| ≤ Rj , then F jB

2 =
K−

r (Rj − |xj
2 − xb

2|).
However, numerical implementation of this condition requires extra condi-

tional operators. Thus it is worth implementing stiff-boundary as a series of
particles, to make the simulation uniform either in the interior of the domain or
near the boundary. To do so, we introduced the “boundary” particles with the
same physical properties as those of the interior particles. However, we do not
compute the forces acting on the “boundary” particles but allow the “bound-
ary” particles to move according to a prescribed law. We specify the particular
movement laws in the Sect. 4.

The second type of the boundary conditions is Pover = const. This condition
ensures the constant overburden pressure. Note that, condition Pover assumes
that external forces act at the upper boundary of the domain Γp(t) along the
normal direction to the boundary. This boundary is flexible, and it evolves in
time; thus, to impose the boundary condition we need to follow the elements
which form the upper boundary. This can be done, for example, by computing
Voronoi diagrams for upper elements. However, such procedures are computa-
tionally intense. To overcome this difficulty, we suggest using the flexible mem-
brane at the upper boundary [4,29]. The idea of the approach is to introduce a
layer of discrete elements so that the membrane elements are affected only by
the normal forces.

If two adjoint membrane elements are interacting

Fm,m±1
n = Kr(Rm±1 + Rm − ‖Xm,m±1‖)nm,m±1, (10)

if membrane element interacts with other elements

Fmi
n = Kr(Ri + Rm − ‖Xmi‖)nmi, Ri + Rm − ‖Xmi‖ > 0. (11)

It means that the adjoint membrane elements are bonded, and these bonds
never bake, however no bonds of friction are considered when membrane elements
interact with elements of other types. The membrane elements are ordered; thus
it is easy to approximate constant pressure condition. If a membrane element
with number m is considered then additional force, due to the pressure is

Fm
p = 2PRmn, (12)

where n is the vector normal to the boundary, which can be computed as:

n = (xm−1
2 − xm+1

2 , xm−1
1 − xm+1

1 )T ,

the direction of the normal vector is defined uniquely due to the ordering of the
membrane elements.
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2.4 Output Parameters

Numerous parameters can be obtained as a result of discrete elements simula-
tions. If rock properties are studied using uniaxial and triaxial stress tests, then
the primary attention is paid to the distribution of the braked bonds [8,19],
stresses, and normal forces distribution [9] However, at the scale of the geologi-
cal bodies a reliable parameter to determine fault zones is the strains distribution
[1,5,14,15,24]. These strains can be further translated to the changes of physical
parameters of rocks using the experimental laboratory measurements.

3 Implementation of the Algorithm

According to the general formulation of the particle-based methods, one has to
compute the forces affecting each particle due to the interaction with all other
particles. However, in geomechanical modeling by the discrete element method,
for each particle only a small number of neighboring particles directly contact
the considered one. The adjacency matrix is sparse, but it can evolve. Thus, two
related problems should be solved. First, organizing the process of adjacency
matrix construction (approximation). Second, computing forces and applying
time stepping.

To construct the adjacency matrix, we suggest using the lattice method [20].
As it follows from the Eqs. (1) and (2), only directly contacting particles affect
each other; thus, for each particle, the domain of dependence does not exceed
2Rmax + r0, where Rmax is the maximal radius of the particles. Also, due to
the stability criterion of the Verlet scheme, a single particle cannot move more
than 0.1Rmin per a single time step, where Rmin is the minimal radius over all
particles. Thus, we can introduce a grid with the lattice size equal to 2Rmax+r0,
so that each particle and all its neighbors belong to the same lattice of directly
adjoint lattice. Now we can state the rule of adjacency matrix approximation
- for each particle, all the particles belonging to the same or directly adjoint
lattices are neighbors. In this case, we overestimate the number of connected
particles but strictly simplify the process of the matrix construction.

The initial assignment of the particles to the lattices is performed by a sequen-
tial code by CPU. It is implemented particle-by-particle so that we determine
the lattice number for considered particle and add the particle number to the list
of particles for this lattice. This procedure is inapplicable under OMP of CUDA
parallelization. Thus, the GPU implementation of the reassignment of the par-
ticles to the lattices is done lattice-by-lattice. The lattices are large enough, so
that after one time step a particle may either stay in the same lattice or move
to a directly adjoint lattice. Thus, to update the list of particles for each lat-
tice, we need to check the particles which previously belonged to this lattice or
the directly adjusted one. Similar ideas are used in the molecular dynamics and
lattice Boltzmann methods but with different principles of lattices construction
[2].
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Computation of the forces and the numerical solution of the equation of
motion is implemented on GPU. The parallelization is applied particle-by-
particle so that a GPU core compute forces for one particle at a time.

4 Numerical Experiments

In this paper, we focus our attention on the effect of the direction and amplitude
of tectonic movement on the geometry of the fault and damage zone. DEM-
based simulations include uncertainties due to the particle’s positions and radii
distributions. It means that for each scenario of the tectonic movements we need
to perform a series of numerical simulations for different statistical realizations
of the particles geometry distribution.

In all the experiments presented below, we use the following set of parameters.
The size of the computational domain is 4000 m in horizontal and 500 m in
the vertical direction. The repulsion/attraction modulus is 16 GPa, and same
value is used for the tangential sliding stiffness. The coefficient of static friction
is 0.8, which is typical for the majority of geomaterials, whereas the dynamic
friction coefficient is 0.3, which is close to that of sandstone and limestone. We
consider the bonds length proportional to the radii of the adjoint particles; i.e.,
r0 = 0.05(Rj +Ri). We assume that the formation is buried at 3000 m; thus the
overburden pressure of 107 Pa is applied at the top boundary of the model. The
particles radii are homogeneously distributed from 1.25 to 2.5 m. So, the total
number of elements is 390000.

We consider several scenarios of dipping normal tectonic movements with
the dip angles equal to 90◦, 75◦, 60◦, 45◦, 30◦. Maximal vertical displacement is
100 m.

For each tectonic movement we simulate ten statistical realizations of the par-
ticles distributions; thus, 10 simulations are performed for each scenario. Also,
we computed extra 20 realizations for the most common movement scenario
with the dip angle equal to 60◦. Each simulation consists of two stages. First,
the elements should be compacted under the overburden pressure and gravita-
tional forces. This step takes about 60 % of the computational time. Second, the
tectonic movements are applied. The total simulation time for one experiment
(one realization) is about 8.7 h by a single GPU (NVIDIA Tesla M 2090).

We provide the strains distribution for each movement scenario in Figs. 1, 2
and 3. The main trend observed from the presented figures is that for big dip
angles; i.e., for nearly vertical displacements no narrow fault cores are formed.
When the dip angle gets smaller fault cores are formed (Fig. 1) and they are
located within a narrow zone. Moreover, for low dip angles the form of the
fault and its inclination is similar, thus might depend mainly on the medium
properties rather than on the direction of tectonic movements. To verify this
assumption, we perform clustering of the results and their statistical analysis in
the following section.
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Fig. 1. A single realizaton of hydrostatic (top) and shear (bottom) strains distribution
in the fault zone for the displacement dip equal to 30◦.
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Fig. 2. A single realizaton of hydrostatic (top) and shear (bottom) strains distribution
in the fault zone for the displacement dip equal to 60◦.
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Hydrostatic strains, dip=90
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Fig. 3. A single realizaton of hydrostatic (top) and shear (bottom) strains distribution
in the fault zone for the displacement dip equal to 90◦.

4.1 Clustering of the Results

Results of the numerical simulation tend to form narrow inclined faults if the
dipping angle is small, whereas high dipping angles cause a wide V-shape damage
zone. To quantify this observation, we applied k-means clustering of the com-
puted strains distribution. Before processing to the formal analysis, we need to
point out, that we performed two additional series of simulations (9 realizations
in each series) corresponding to the tectonic movement dip angle equal to 60◦. In
total we have 27 statistical realizations corresponding to this scenario; however,
we will still consider them as three independent series in our statistical analysis.

According to the Calinski-Harabasz Index [6] and the silhouette criterion
[27] the optimal number of clusters of the considered data is two. We applied
the k-means clustering technique to our data. We constructed clusters for each
component of the strain tensor separately, as well as for all of them together.
The panels in Fig. 4 represent the clustering results in two clusters applied to
all components of the strain tensor. One may note that the displacement sce-
narios with dip angles equal to 75◦ and 90◦ form one cluster. This confirms the
assumption that direction of the tectonic movement strictly affects the structure
of the fault and near fault damage zone.
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Fig. 4. Panels representing data clustering (two clusters) for all components of strain
tensor. Left panel (A) corresponds to the optimal clustering with minimal distance,
right panel (B) represents a case of local minimum of k-means functional. Different
colors correspond to different clusters.

5 Conclusions

We presented an algorithm for simulation of the Earth’s crust tectonic move-
ments and formation of the geological faults and near-fault damage zones. The
algorithms are based on the Discrete Elements Method, and it is implemented
using CUDA technology. We used to simulate faults formation due to different
scenarios of tectonic movements. We considered the displacements with dipping
angles varied from 30 to 90 degrees; i.e., up to vertical throw. For each scenario,
we performed simulations for some statistical realizations. According to cluster-
ing analysis shows that displacements with high (75◦ and 90◦) and low (30◦ and
45◦) dip angles form completely different geological structures. Nearly vertical
displacements, high dip angles, form wide V-shaped deformation zones, whereas
the flat displacements cause narrow fault-cores with rapidly decreasing strains
apart from the fault core. Results of the presented simulations can be used to
estimate mechanical and seismic properties of rocks in the vicinity of the faults
and applied further to construct models for seismic modeling and interpretation,
hydrodynamical simulations, history of matching simulation, etc.
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