
Solving of Eigenvalue and Singular Value
Problems via Modified Householder

Transformations on Shared Memory Parallel
Computing Systems

Andrey Andreev and Vitaly Egunov(&)

Volgograd State Technical University, Volgograd, Russia
andan2005@yandex.ru, vegunov@mail.ru

Abstract. Discusses the use of original modifications of Householder trans-
formations for solving eigenvalue and singular value problems. Shared memory
parallel computing systems are choosen as target computing systems. The
proposed modifications allow to increase the computational performance due to
the efficient use of cache memory and parallel execution of some transformation
steps, which are traditionally performed serial. Mathematical descriptions of
modified transformations are given, as well as software implementation issues
and experimental results.

Keywords: Eigenvalues � Singular values � Householder transformation �
Reflection transformation � Program performance � Cache memory � Shared
memory system

1 Introduction

Finding eigenvalue and eigenvector systems, performing singular decomposition are
widely used in solving a number of fundamental scientific and applied tasks. As an
example, one can cite the problems of modeling various dynamic systems described by
differential equations, specifically, when searching for the natural frequencies of
oscillations of a dynamic system, the problem of determining the energy spectrum of
quantum systems, image processing, etc.

The problems under consideration have a high computational complexity, which
makes them the object of research for mathematicians and software engineers. The
tasks themselves are well known. The task of finding its own decomposition is to find
vectors and values that satisfy the condition (1).

Av ¼ kv ð1Þ

In this case, vector v is called the eigenvector of the linear operator A, the value k is
eigenvalue. In general, both k and v can be complex even in the case of real A.
Algorithms for solving the problem (1) can be divided into algorithms for finding all
eigenvalues, as well as eigenvector systems, and algorithms for finding several (or
probably the only one) eigenvalues. The most widely used are the iterative algorithms,

© Springer Nature Switzerland AG 2019
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2019, CCIS 1129, pp. 131–151, 2019.
https://doi.org/10.1007/978-3-030-36592-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36592-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36592-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36592-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-36592-9_12

that develop a sequence of transformations converging to the eigenvalues, as well as
the development of a sequence of vectors converging to the eigenvectors of the linear
operator.

Akþ 1 ¼ UkAkU
�
k ð2Þ

Here Uk - unitary matrix, U�
k - conjugate transpose matrix. In the case of real

matrices, orthogonal and transposed matrices are used. All matrices Ai are similar, i.e.
their eigenvalues are equal. There are no relatively simple direct algorithms for finding
eigenvalues and eigenvector systems, however, such algorithms are known for matrices
of a special kind. As an example, triangular matrices with eigenvalues are located on
the main diagonal.

The problem of finding a singular value decomposition is to find vectors and values
that satisfy the condition (3).

A � u ¼ kv ð3Þ

Vectors u and v are called the left and right singular vectors corresponding to the
singular value k, A* is the matrix, conjugate transpose to A. The singular value
decomposition of the matrix is the decomposition of the form (4).

A ¼ URV� ð4Þ

Here A is the initial matrix, U and V areunitary matrices, R is the matrix which
elements lying on the main diagonal are singular values. In the case of real matrices,
orthogonal and transposed matrices are also used.

Most modern computing systems have a parallel architecture, as a result, currently
there are many studies on the adaptation of known algorithms for use on parallel
computing systems, as well as the study of the effectiveness of these algorithms when
used on parallel systems with different characteristics, for example [1, 2]. In this work,
we have optimized the modification of the known algorithms for solving the problems
of finding a eigenvalues and singular values on parallel systems with shared memory,
the result of these modifications reduces the time of solving these problems. The choice
of this class of parallel systems is due to their wide prevalence. The choice of the object
of research is determined by the demand for these tasks in solving various fundamental
and applied problems. In many cases, these transformations are repeated many times,
the calculations take a lot of time. Therefore, reducing the computation time seems to
be an urgent task. One more reason for the paper is the fact that the authors have been
engaged for several years in the study of issues related to the implementation of matrix
transformations on heterogeneous computational systems, including the transforma-
tions mentioned above [3–6].

132 A. Andreev and V. Egunov

2 Used Methods

One of the methods of accelerating the process of calculating eigenvalues is to bring the
original matrix of the general structure to the “almost triangular” structure, in which, in
addition to the elements of the triangular matrix, the diagonal is stored under or above
the main diagonal. Matrices of this type are called the upper or lower Hessenberg
matrix, respectively. There is a finite sequence of transformations that leads a matrix of
arbitrary structure to a Hessenberg structure with preservation of its eigenvalues. Such
matrices, along with tridiagonal matrices, are the source for many eigenvalue search
algorithms, such as, for example, the QR algorithm or the Jacobi method. Thus, it can
be concluded that the reduction of the matrix of arbitrary structure to Hessenberg’s one,
and symmetric matrix – to the tridiagonal structure, is an integral part of a large number
of algorithms for finding eigenvalues of the linear operator, and improving the effi-
ciency of methods for solving this problem leads to a decrease in the time of solving the
problem of finding eigenvalues as a whole.

In the case of singular value decomposition of matrices of General structure, one of
the most effective methods is to reduce the matrix to a dual-diagonal structure by means
of transformations (4), where in this case R is a dual-diagonal matrix, with further
application of efficient algorithms for computing the singular value decomposition of a
dual-diagonal matrix. Thus, improving the effectiveness of the methods of reduction of
matrices to dual-diagonal structure leads to reduce the run-time of singular value
decomposition in General.

Both (2) and (4) use unitary matrices as operators U and V, and orthogonal matrices
in the case of real values computations. In this paper we consider the problem of
reducing the matrix of General form to Hessenberg and dual-diagonal form in order to
further calculate its eigenvalues or singular values. As a basic method will use
Housholder reflections.

A ¼ QRQT ð5Þ

Here A is initial matrix, R is Hessenberg or dual-diagonal matrix, Q is orthogonal
matrix, representing a Housholder matrix multiplication, each matrix is uniquely
determined by the reflection vector. In [4] examines the performance of the QR –

decomposition by Householder reflections on parallel computing systems with shared
memory. In particular, multiplication by the reflection matrix on the right (QR -
decomposition) and on the left (LQ - decomposition) is considered. In the first case, the
reflection vector is determined by the columns of the original matrix, the columns are
also zeroed, in the second case, the reflection vector is determined by the rows of the
original matrix, the rows are zeroed. The variant of LQ decomposition in this case is
more preferable because of the lower probability of cache misses. A cache miss occurs
when the microprocessor tries to access data that is not present in the cache memory. In
this case, they must be loaded from the main memory. If the required data is in the
cache, it is quickly retrieved. This event is called a cache hit. Improving the perfor-
mance of the computer system is achieved when cache hits are implemented much
more often than cache misses. The frequency of cache misses in this case can be

Solving of Eigenvalue and Singular Value Problems 133

estimated as the probability of missing the required data in the cache memory during
the next iteration of the transformation applied to the column or row of the matrix. As
the data in the cache memory is loaded from the lines, the more effective from the point
of view of usage of the cache memory are algorithms in which the processing is
performed along the rows of the matrix. This algorithm is a variant of LQ – decom-
position, in contrast to the variant of QR – decomposition, in which data processing is
carried out along the columns of the matrix.

In the case of a two-way transformation (2) or (4), the situation is not so clear,
because it is necessary to multiply on both sides to preserve the eigenvalues or singular
values. Consider the reduction of the matrix of dimension n*n to the upper Hessenberg
structure. To do this, you need to perform (n − 2) steps within each:

– calculate the elements of the reflection vector on the elements of the next
column of the original matrix;

– multiply the original matrix by the reflection matrix on the right;
– multiply the original matrix by the reflection matrix on the left.

The algorithm for performing the k-th conversion step can be written as follows (6).

sk ¼ �sign akþ 1;k
� � Xn

i¼kþ 1

a2ik

 !1
2

; uk ¼ s2k � skakþ 1;k
� ��1

uTk ¼ 0; . . .; 0; akþ 1;k � sk; akþ 2;k; . . .; ank
� �

kj ¼ uku
T
k aj

aj ¼ aj � kjuk

�����j ¼ k; n ð6Þ

k0j ¼ ukbjuk

bj ¼ bj � k0ju
T
k

�����j ¼ k; n

Here a – columns of the original matrix, b – its rows, expression j ¼ k; n indicates
the range of indexes when processing rows and columns of the matrix in the current
step of the transformation. The sequence of steps in this case is as follows:

– the reflection vector is determined from the values of the elements of the k-th
column of the matrix under the main diagonal;

– multiplication by the Householder matrix on the right, which results in zero ele-
ments of k column, changes (n − 1) elements of all other columns, starting with
(k + 1); the columns of the matrix can be processed in parallel;

– multiplication by the Householder matrix on the left, which changes (n − 1) ele-
ments of all matrix rows starting from k; the matrix rows can be processed in
parallel.

To bring the matrix to a dual-diagonal structure, you need to perform more oper-
ations. This is due to the fact that the elements of the reflection vector are calculated at

134 A. Andreev and V. Egunov

both stages of the transformation. The algorithm of matrix reduction in the upper dual-
diagonal structure can be written as follows (7).

sk ¼ �sign ak;k
� � Xn

i¼k

a2ik

 !1
2

; uk ¼ s2k � skak;k
� ��1

uTk ¼ 0; . . .; 0; ak;k � sk; akþ 1;k; . . .; ank
� �

kj ¼ uku
T
k aj

aj ¼ aj � kjuk

�����j ¼ k; n ð7Þ

s0k ¼ �sign ak;kþ 1
� � Pn

i¼kþ 1
a2ki

� �1
2

; u0
k ¼ s02k � s0kak;kþ 1

� ��1

u0Tk ¼ 0; . . .; 0; ak;kþ 1 � s0k; ak;kþ 2; . . .; akn
� �

k0j ¼ ukbju
0
k

bj ¼ bj � k0ju
0T
k

�����j ¼ k; n

\n� 1

����������������

k

The sequence of actions is generally similar to the sequence of actions when
reduced to the upper Hessenberg structure, except:

– when multiplying on the right for column calculations aj in the formation of the
reflection vector are used the elements of the column under the main diagonal
together with the elements of the main diagonal;

– when multiplying on the left generates a new reflection vector based on the row
elements to the right of the main diagonal;

– the total number of steps in this case is (n − 1);
– when multiplying on the left is done fewer steps (n − 2), what the symbol indicates

k\n� 1, indicates the number of steps within which you want to perform the
conversions.

Since the transformations are generally similar, we focus on reducing the matrix to
the Hessenberg structure, further extending the findings to the algorithm of reducing
the matrix to the dual-diagonal form.

To reduce the matrix to the lower Hessenberg structure, perform the following steps
at each step of the transformation (8).

sk ¼ �sign ak;kþ 1
� � Xn

i¼kþ 1

a2ki

 !1
2

; uk ¼ s2k � skak;kþ 1
� ��1

uTk ¼ 0; . . .; 0; ak;kþ 1 � sk; ak;kþ 2; . . .; akn
� �

Solving of Eigenvalue and Singular Value Problems 135

k0j ¼ ukbjuk

bj ¼ bj � k0ju
T
k

�����j ¼ k; n ð8Þ

kj ¼ uku
T
k aj

aj ¼ aj � kjuk

�����j ¼ k; n

In General, the same actions are performed, taking into account the following
comments:

– reflection vectors are formed on the basis of matrix row elements;
– is transformed first row, and then columns of the matrices.

All three of the above transformations (6)–(8) use the natural data parallelism
inherent in these methods to write parallel programs:

– when multiplying to the right, the matrix columns can be processed in parallel;
– when multiplying from the left, matrix rows can be processed in parallel.

A large number of publications are devoted to the analysis of these transformations.
Much attention of researchers is attracted by the solving of the eigenvalues problem for
matrices of a special kind, for example [7–9], the use of singular value decomposition
in solving various technical problems [10]. They Transformation of Hessenberg
matrices, including to obtain eigenvalue and singular value decompositions are
investigated [11, 12]. Traditionally, the attention of researchers is attracted by the
Householder reflections [1, 2, 12–16]. The main publications are devoted to the
application of this transformation to solving various problems of scientific and applied
nature, often on computer systems of a certain type. A number of works are devoted to
the effective use of cache memory when performing matrix operations [17]. In this
article, we propose original modifications of the Householder reflections, designed to
write programs for parallel computing systems with shared memory, effectively using
cache memory, thereby significantly speeding up calculations compared to traditional
computing schemes.

3 Proposed Solutions

In this section, we consider the proposed modifications of the methods described
above, designed to speed up calculations on parallel computing systems with shared
memory. In both algorithms (6) and (8) of matrix reduction to Hessenberg structure, the
same transformations are performed over the columns and rows of the matrix, only the
order of actions is changed, so these steps on parallel computing systems will be
performed at the same time. A significant difference of the presented algorithms is the
scheme of reflection vector formation. And from this point of view, the algorithm of
bringing the matrix to the lower Hessenberg structure is more preferable (8). This is due
to the fact that the formation of the reflection vector is based on the elements of the
matrix rows, in contrast to the algorithm (6), where the reflection vector is formed on

136 A. Andreev and V. Egunov

the basis of the column elements. The fact is that when using the elements of the
columns of the matrix on parallel computing systems with shared memory will generate
a greater number of cache misses. This effect has already been mentioned above.
However, due to the fact that to determine the elements of the reflection vector in the
total volume of calculations is small enough, both algorithms will have similar
efficiency.

Consider these algorithms in terms of increasing their efficiency and reducing
runtime on parallel systems with shared memory. There are several bottlenecks:

– in these algorithms, there are three serial stages at each step of the transformation,
one of the stages is the calculation of the elements of the reflection vector, although
there are implementations in which the elements of the reflection vector are pre-
computed for the next step of the transformation, described, for example, in [4];

– when multiplied by the reflection matrix on the right, the columns of the matrix are
processed, which significantly reduces the efficiency compared to the variant of
calculations based on the processing of matrix rows.

First, we consider the modernization of these algorithms, aimed at improving the
efficiency associated with the acceleration of processing columns of the original matrix.

In accordance with (6) in the process of reducing the original matrix to the upper
Hessenberg structure when multiplied by the reflection matrix on the right, during
which the next column of the original matrix is reset, the following actions are
performed:

– the elements of the reflection vector are determined based on the values of the
corresponding column of the original matrix;

– new values of matrix columns are calculated; columns can be processed in parallel,
because in this case there are no information dependencies.

In this case, the following calculations are performed during the recalculation of the
column values:

– the values of the inner products of the columns and the reflection vector are
determined;

– new values of column elements are calculated based on the obtained values of inner
products.

Both data stages are well parallelized, but due to the fact that the data is processed
along the columns, a sufficiently large value of cache misses is generated, which greatly
slows down the calculation process.

To eliminate the negative impact of cache misses, the following algorithm for
calculating the new values of the matrix columns is proposed:

– at the first stage all necessary inner products are calculated;
– at the second stage, the new values of the column elements are calculated, but since

the values of all inner products are known at this stage, the processing can be
carried out line by line, for each element of the row, use its own value of the inner
product.

Solving of Eigenvalue and Singular Value Problems 137

This process can be written as follows (9). Here and in the future, the reflection
vector formation algorithm is similar to (6) when reduced to the upper Hessenberg
structure and similar to (8) when reduced to the lower Hessenberg structure. Therefore,
except where it is really necessary, it will not be cited.

sc ¼ uku
T
kA

D ¼ diag sc0; sc1; . . .; scnð Þ

U : j½ � ¼ uk½ �

SCU ¼ UD ð9Þ

bj ¼ bj � scuj
��j ¼ k; n

k0j ¼ ukbjuk

bj ¼ bj � k0ju
T
k

�����j ¼ k; n

Before processing the columns, the vector of inner products of sc is calculated as
the product of the reflection vector uTk on the original matrix A taking into account the
scale factor uk. Next is calculation of new values of columns of the matrix, and the
computation is carried out row by row, which is much more efficient from the point of
view of using the cache memory. It should be noted that (9) uses the following
symbols: D – a diagonal matrix containing the values of inner products sc on its main
diagonal, U – a matrix whose columns are composed of a reflection vector, scu – rows
of the matrix SCU, b - rows of the matrix A. As can be seen from (9), when multiplying
the matrix both on the right and on the left, the processing is carried out row by row,
which significantly increases the efficiency of the program implementation of the
method, reducing the execution time of the program.

An algorithm for reducing the matrix to the lower Hessenberg structure using a
row-oriented scheme of processing columns of the matrix is given in (10).

k0j ¼ ukbjuk

bj ¼ bj � k0ju
T
k

�����j ¼ k; n

sc ¼ uku
T
kA

D ¼ diag sc0; sc1; . . .; scnð Þ ð10Þ

U : j½ � ¼ uk½ �

SCU ¼ UD

bj ¼ bj � scuj
��j ¼ k; n

138 A. Andreev and V. Egunov

In (9) and (10) it is not shown the formation of the reflection vector, which is
carried out similarly to (6) and (7), respectively, i.e. on the basis of columns and rows
of the matrix, respectively.

Let us now consider the modernization of the computational process associated
with the preliminary calculation of the reflection vector. In the basic version of the
algorithm, as well as in the modifications discussed above, the elements of the
reflection vector are formed in the serial part of the program. According to Amdahl’s
Law, it is serial computing that limits the acceleration of a program on parallel com-
puting systems. Accordingly, one of the ways to improve the efficiency of programs,
reduce the time of their execution, can be considered a reduction in the share of serial
calculations in the total volume of calculations.

The idea is based on the transfer of the stage of determining the elements of the
reflection vector from the serial part of the calculations to the parallel one. After
analyzing the algorithm, we can conclude that in order to form the reflection vector for
the step number (k + 1) it is not necessary to wait for the end of all calculations
associated with step number k. For a one-way transformation, this means that when you
perform step k of the algorithm to bring the matrix to the upper triangular structure by
multiplying the reflection matrix on the right, the reflection vector can be formed after
the elements of the column number (k + 1) are formed. Accordingly, when performing
the step with number k of the matrix reduction algorithm to the lower triangular
structure by multiplying the reflection matrix on the left, the reflection vector can be
formed after the formation of the elements of the row with number (k + 1). With
parallel implementation of the algorithm, this leads to some acceleration of calcula-
tions, as the share of serial calculations in the total volume of calculations decreases.

When performing a two-way transformation, this strategy does not work, because
when multiplying by the reflection matrix on the other hand, the elements on the basis
of which the reflection vector is formed will change. Thus, when reduced to the upper
Hessenberg structure, it would be erroneous to form a reflection vector based on the
values of the column obtained at the next step when multiplying on the right, since the
values of the elements of this column will change when multiplied by the reflection
matrix on the left. The same situation will be observed when the matrix is reduced to
the lower Hessenberg structure. In both cases, the reflection vector can be generated
only after the second stage of the transformation is completed in this step. It looks like
applying reflection transformations to bring the matrix to Hessenberg or dual-diagonal
structure.

Consider a transformation algorithm that includes a preliminary computation of the
reflection vector elements used to bring the matrix to the upper Hessenberg structure.
The formation of the elements of the reflection vector in this case is based on the
columns of the matrix, however, the final stage of the transformation at each step
includes the processing of rows. Obviously, all elements of the target column will be
known only after the whole step is completed. However, it is obvious that when

Solving of Eigenvalue and Singular Value Problems 139

processing the next row, the value of the next element of the target column becomes
known, which is used to form the reflection vector in the next step. Thus, it is possible
to form a reflection vector element by element, removing this stage from the serial part
of the program, increasing its efficiency.

The formal definition of the process of bringing the matrix to the upper Hessenberg
structure with a preliminary calculation of the elements of the reflection vector can be
written as follows (11).

skjjþ 1 ¼ 0

kj ¼ uku
T
k aj

aj ¼ aj � kjuk

�����j ¼ k; n

k0j ¼ ukbjuk

bj ¼ bj � k0ju
T
k

uTkþ 1 j½ � ¼ bj kþ 1½ ���j[kþ 2

skjjþ 1 ¼ skjjþ 1 þ bj kþ 1½ �2��j� kþ 2

�����������
j ¼ k; n ð11Þ

skjjþ 1 ¼ �sign akþ 2;kþ 1
� �

s
1
2
kjjþ 1;

ukjjþ 1 ¼ s2kjjþ 1 � skjjþ 1akþ 2;kþ 1

� 	�1

uTkþ 1 0 : kþ 1ð Þ½ � ¼ 0

uTkþ 1 kþ 2½ � ¼ akþ 2;kþ 1 � skjjþ 1

During the second stage of the next step of the transformation, the elements of the
reflection vector are formed in the parallel part of the program, as well as the accu-
mulation of the module skjjþ 1, necessary to calculate the scaling factor ukjjþ 1.
A subscript indicates that this value will be used in step k to process column number
j + 1. It should be noted that it was not possible to completely abandon the serial part
of the calculations, because some compensation of the value of the module skjjþ 1 after
processing all the rows is required. The code that would implement the algorithm given
in (11) would look like this. This code snippet is written in the C programming
language using OpenMP technology.

140 A. Andreev and V. Egunov

#pragma omp parallel for
for(int row = step; row < N; row++)

 {
double scalar = 0;
for(int i = (step + shift); i < N; i++)

scalar += matr[row * N + i] * vect[i];
scalar *= gamma;
for(int i = (step + shift); i < N; i++)

 {
matr[row * N + i] -= scalar * vect[i];

if (i == (step + shift))
 {

if (row > (step + 1 + shift))
vectAdd[row] = matr[row * N + i];

if (row >= (step + 1 + shift))
#pragma omp atomic

s += matr[row * N + i] * matr[row * N +
i];

 }
 }
 }

s = sqrt(s);
if (matr[(step + 1 + shift) * N + step + 1] > 0)

s = -s;
gamma = 1 / (s * s - matr[(step + 1 + shift) * N + step + 1] * s);
for (int i = 0; i < (step + 1 + shift); i++)

vectAdd[i] = 0;
vectAdd[step + 1 + shift] = matr[(step + 1 + shift) * N + (step + 1)] - s;

Despite the fact that the reflection vector is formed almost entirely in the parallel
part of the program, this code is inefficient because of the large number of checks
carried out in each thread when processing each row. In addition, #pragma omp atomic
synchronization can reduce the efficiency. The following code changes are made to
improve efficiency:

– unroll the loop by performing its first iteration outside the loop; there is no need to
check if (i == (step + shift));

– remove the check if (row > (step + 1 + shift)); the reflection vector will be cor-
rected in the serial part of the program, zeroing the necessary elements;

– remove the check if (row > = (step + 1 + shift)); the value of the module is
adjusted in the serial part of the program, subtracting from it the squares of
unnecessary elements;

– remove #pragma omp atomic synchronization, each thread accumulates a module in
its variable, their values are summed in the serial part of the program.

Solving of Eigenvalue and Singular Value Problems 141

Get the following code.

#pragma omp parallel for
for(int row = step; row < N; row++)

 {
double scalar = 0;
for(int i = (step + shift); i < N; i++)

scalar += matr[row * N + i] * vect[i];
scalar *= gamma;
matr[row * N + step + shift] -= scalar * vect[step + shift];
vectAdd[row] = matr[row * N + step + shift];
sAr[numT] += matr[row * N + step + shift] * matr[row * N + step +

shift];
for(int i = (step + shift + 1); i < N; i++)

matr[row * N + i] -= scalar * vect[i];

 }
s = 0;
for(int ii = 0; ii < nT; ii++)

s += sAr[ii];
 s -= matr[step * N + step + shift] * matr[step * N + step + shift];

if (shift > 0)
 s -= matr[(step + shift) * N + step + shift] * matr[(step + shift) * N +

step + shift];
s = sqrt(s);
if (matr[(step + 1 + shift) * N + step + 1] > 0)

s = -s;
gamma = 1 / (s * s - matr[(step + 1 + shift) * N + step + 1] * s);
for (int i = 0; i < (step + 1 + shift); i++)

vectAdd[i] = 0;
vectAdd[step + 1 + shift] = matr[(step + 1 + shift) * N + (step + 1)] - s;

The shift parameter is assumed to be 1 when performing a two-way transformation
to convert the matrix to Hessenberg structure and is assumed to be 0 when performing a
one-way transformation to convert the matrix to triangular form. It is worth noting that
before you start the transformation, you must calculate the elements of the reflection
vector used to perform the first step of the transformation.

The transformation in this case will take the form (12).

skjjþ 1 ¼ 0

kj ¼ uku
T
k aj

aj ¼ aj � kjuk

�����j ¼ k; n ð12Þ

142 A. Andreev and V. Egunov

k0j ¼ ukbjuk

bj ¼ bj � k0ju
T
k

uTkþ 1 j½ � ¼ bj kþ 1½ �
skjjþ 1 ¼ skjjþ 1 þ bj kþ 1½ �2

�����������
j ¼ k; n

skjjþ 1 ¼ skjjþ 1 � A k; kþ 1½ �2�A kþ 1; kþ 1½ �2

skjjþ 1 ¼ �sign akþ 2;kþ 1
� �

s
1
2
kjjþ 1;

ukjjþ 1 ¼ s2kjjþ 1 � skjjþ 1akþ 2;kþ 1

� 	�1

uTkþ 1 0 : kþ 1ð Þ½ � ¼ 0

uTkþ 1 kþ 2½ � ¼ akþ 2;kþ 1 � skjjþ 1

The reduction of the matrix to the lower Hessenberg structure with pre-calculated
elements of the reflection vector will be as follows (13).

skjjþ 1 ¼ 0

k0j ¼ ukbjuk

bj ¼ bj � k0ju
T
k

�����j ¼ k; n ð13Þ

kj ¼ uku
T
k aj

aj ¼ aj � kjuk
uTkþ 1 j½ � ¼ aj kþ 1½ �

skjjþ 1 ¼ skjjþ 1 þ aj kþ 1½ �2

����������
j ¼ k; n

skjjþ 1 ¼ skjjþ 1 � A kþ 1; k½ �2�A kþ 1; kþ 1½ �2

skjjþ 1 ¼ �sign akþ 1;kþ 2
� �

s
1
2
kjjþ 1;

ukjjþ 1 ¼ s2kjjþ 1 � skjjþ 1akþ 1;kþ 2

� 	�1

uTk 0 : kþ 1ð Þ½ � ¼ 0

uTk kþ 2½ � ¼ akþ 1;kþ 2 � skjjþ 1

Solving of Eigenvalue and Singular Value Problems 143

Finally, both approaches can be combined, obtaining an effective implementation
of the Householder transformation of to bring the matrix to Hessenberg structure in the
framework of solving the eigenvalues problem.

The modification of the Householder reflection algorithm, consisting in the row-
oriented scheme of processing of the matrix and the preliminary calculation of the
elements of the reflection vector, applied to the problem of reducing the matrix to the
upper Hessenberg structure, will be as follows (14).

skjjþ 1 ¼ 0

sc ¼ uku
T
kA

D ¼ diag sc0; sc1; . . .; scnð Þ

U : j½ � ¼ uk½ �

SCU ¼ UD

bj ¼ bj � scuj
��j ¼ k; n

k0j ¼ ukbjuk
bj ¼ bj � k0ju

T
k

uTkþ 1 j½ � ¼ bj kþ 1½ �
skjjþ 1 ¼ skjjþ 1 þ bj kþ 1½ �2

�����������
j ¼ k; n ð14Þ

skjjþ 1 ¼ skjjþ 1 � A k; kþ 1½ �2�A kþ 1; kþ 1½ �2

skjjþ 1 ¼ �sign akþ 2;kþ 1
� �

s
1
2
kjjþ 1;

ukjjþ 1 ¼ s2kjjþ 1 � skjjþ 1akþ 2;kþ 1

� 	�1

uTkþ 1 0 : kþ 1ð Þ½ � ¼ 0

uTkþ 1 kþ 2½ � ¼ akþ 2;kþ 1 � skjjþ 1

(14) does not show the formation of the reflection vector for the first step of the
transformation. Similarly, it is possible to obtain an algorithm for reducing the matrix
to the lower Hessenberg structure, however, it will not give a tangible increase in
efficiency compared to the algorithm (10), since in this case the elements of the
reflection vector are determined in accordance with the elements of the matrix, i.e. quite
effectively.

144 A. Andreev and V. Egunov

The resulting modification of the Householder reflection algorithm can be extended
to an algorithm to bring the matrix to dual-diagonal form. Moreover, a significant
increase in efficiency will be achieved both in the case of bringing the matrix to the
upper dual - diagonal and to the lower dual - diagonal structure. This is due to the fact
that in these algorithms, at each step, the calculation of the elements of the reflection
vector is carried out twice – when multiplying on the right by the elements of the
columns, when multiplying on the left by the elements of the rows. In (15), an algo-
rithm for reducing the matrix to the upper dual – diagonal structure, taking into account
the proposed modifications, in (16) - to the lower dual - diagonal structure is given.

skjjþ 1 ¼ 0

sc ¼ uku
T
kA

D ¼ diag sc0; sc1; . . .; scnð Þ

U : j½ � ¼ uk½ �

SCU ¼ UD ð15Þ

bj ¼ bj � scuj
��j ¼ k; n

s0k ¼ �sign ak;kþ 1
� � Pn

i¼kþ 1 a
2
ki

� �1
2;

u0
k ¼ s02k � s0kak;kþ 1

� ��1

u0Tk ¼ 0; . . .; 0; ak;kþ 1 � s0k; ak;kþ 2; . . .; akn
� �

k0j ¼ ukbju
0
k

bj ¼ bj � k0ju
0T
k

uTkþ 1 j½ � ¼ bj kþ 1½ �
skjjþ 1 ¼ skjjþ 1 þ bj kþ 1½ �2

�����������
j ¼ k; n

skjjþ 1 ¼ skjjþ 1�A k; kþ 1½ �2

skjjþ 1 ¼ �sign akþ 1;kþ 1
� �

s
1
2
kjjþ 1;

ukjjþ 1 ¼ s2kjjþ 1 � skjjþ 1akþ 1;kþ 1

� 	�1

uTkþ 1 0 : kÞ½ � ¼ 0

uTkþ 1 kþ 1½ � ¼ akþ 2;kþ 1 � skjjþ 1

������������������������������������

k\n� 1

Solving of Eigenvalue and Singular Value Problems 145

s0k ¼ �sign ak;k
� � Xn

i¼k

a2ki

 !1
2

; u0
k ¼ s02k � s0kak;k

� ��1

u0Tk ¼ 0; . . .; 0; ak;k � s0k; ak;kþ 1; . . .; akn
� �

sk ¼ 0

k0j ¼ ukbju
0
k

bj ¼ bj � k0ju
0T
k

uTkþ 1 j½ � ¼ bj k½ �
sk ¼ sk þ bj k½ �2

�����������
j ¼ k; n

sk ¼ sk � A k; k½ �2

sk ¼ �sign akþ 1;k
� �

s
1
2
k; uk ¼ s2k � skakþ 1;k

� ��1

uTk 0 : k½ � ¼ 0 ð16Þ

uTk kþ 1½ � ¼ akþ 1;k � sk

sc ¼ uku
T
k A

D ¼ diag sc0; sc1; . . .; scnð Þ
U : j½ � ¼ uk½ �
SCU ¼ UD

bj ¼ bj � scuj
��j ¼ k; n

�������������

k\n� 1

In (15) and (16), the calculation of the reflection vector based on the row elements
can also be made in the parallel part of the program, however, this will not give a
tangible increase in efficiency.

4 Results of Computational Experiments

The object of research was a parallel computer system with shared memory, built on
the basis of multi-core microprocessors Xeon E5-2650v3(x2) 2.3 GHz. This system is
a part of the computer cluster of Volgograd State Technical University.

146 A. Andreev and V. Egunov

Figure 1 shows the results of serial programs to bring matrices of arbitrary form to
the upper Hessenberg structure. Programs were developed in the C programming
language, the real type with double precision was used.

In Fig. 1, the following symbols are used:

– QR Column – traditional algorithm based on the classical Householder transfor-
mation (6);

– QR Column Rows Oriented – the algorithm based on the proposed row – oriented
modifications of the Householder transformation (9);

– QR Column PrevVector– the algorithm based on the proposed modification of the
Householder transformation with a preliminary calculation of the elements of the
vector reflection (11);

– QR Column Rows Oriented PrevVector– an algorithm based on the simultaneous
application of both proposed modifications of the Householder transformation (14).

– Analyzing the results presented in Fig. 1, we can draw the following conclusions:
– the least efficient is the implementation of the classical Householder transformation

(6);
– despite the fact that the option with a preliminary calculation of the elements of the

reflection vector (11) has a somewhat greater operating complexity of its serial
software implementation is somewhat more rapid implementation of the classical
transformation (6); the gain in execution time is about 5–6%; this is because in this
case more effectively interacts with the cache memory in the formation of the
elements of the vector reflection;

– the fastest is the variant with the use of row-oriented modification (9);
– the use of both modifications (14) works a little longer due to the greater operational

complexity; at the same time, the gain due to the effective formation of the
reflection vector elements in this case becomes insufficient, since the row – oriented
scheme itself is effective in terms of interaction with cache memory.

Fig. 1. Time of operation of serial variants of programs of matrix reduction to the upper
Hessenberg structure.

Solving of Eigenvalue and Singular Value Problems 147

Figure 2 shows the values of acceleration parallel implementations of the same
algorithms against the baseline algorithm (6) – a serial algorithm based on the classical
Householder transformation. The simulation was carried out on 5, 10 and 15 parallel
threads. Figure 2 shows the simulation results on five threads.

In this case, the best option is the one in which both modifications were used:

– row-oriented computing optimize the operation of the microprocessor with cache
memory;

– a preliminary calculation of the elements of a vector of reflection in the parallel
implementations reduces their share of serial calculations, reducing the time of work
of the program’s General.

Analyzing the results presented in Fig. 2, we can conclude that all the assumptions
made during the development of algorithms (9), (11) and (14) were justified and
successfully confirmed by computational experiments. On 5 parallel threads, the
operation of the basic version of the algorithm was accelerated by more than 9 times. In
the resultant acceleration contributes not only to parallelize computations on multiple
cores of the microprocessor, but also optimize the interaction with the cache memory.

Figure 3 shows the values of acceleration for parallel implementations of the same
algorithms on ten parallel threads.

It can be observed from the Fig. 3, that the proposed modifications of the basic
algorithm still have the best acceleration indicators, but their efficiency has decreased
with the increase of the number of parallel threads.

When the matrix is reduced to a dual-diagonal structure while solving the problem
of singular value decomposition, the same pattern is observed as in Figs. 1, 2 and 3.

Fig. 2. Acceleration values of parallel variants of programs to bring the matrix to the upper
Hessenberg structure in relation to the basic algorithm (6), five parallel threads.

148 A. Andreev and V. Egunov

5 Summary

According to the results of computational experiments we can conclude that the pro-
posed modification of the custom Householder reflection transformations as applied to
the solution of problems of a eigenvalues and singular values decompositions proved to
be quite efficient on parallel computational systems with shared memory. It should also
be noted that the proposed algorithms accelerate calculations not only for parallel but
also for serial implementations. It can be stated that in the case of serial implementation
it is advisable to use the proposed row-oriented reflection transformation, in the case of
parallel – row-oriented transformation with the preliminary calculation of the elements
of the reflection vector, i.e. the option in which both proposed modifications are used.
The reduction of program execution time is achieved primarily due to the effective
organization of work with cache memory, which significantly reduces the frequency of
cache misses and as a consequence significantly speeds up the calculation process.
Moreover, in the parallel implementations an additional increase in acceleration of
calculations is achieved due to the reduction of the share of serial calculations. The
results presented in this paper are original and obtained for the first time.

Acknowledgements. Work is performed with the financial support of the Russian Foundation
for Basic Research - project#18-47-340010 r_a and the financial support of the Administration of
Volgograd region.

Fig. 3. Acceleration values of parallel programs to bring the matrix to the upper Hessenberg
structure in relation to the basic algorithm (6), ten parallel threads.

Solving of Eigenvalue and Singular Value Problems 149

References

1. Merchant, F., Vatwani, T., Chattopadhyay, A., Raha, S., Nandy, S.K., Narayan, R.: Efficient
realization of householder transform through algorithm-architecture co-design for acceler-
ation of QR Factorization. IEEE Trans. Parallel Distributed Syst. 29(8), 1707–1720 (2018)

2. Tomas Dominguez, A.E., Quintana Orti, E.S.: Fast blocking of householder reflectors on
graphics processors. In: Proceedings - 26th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2018, pp. 385–393 (2018)

3. Andreev, A., Doukhnitch, E., Egunov, V., Zharikov, D., Shapovalov, O., Artuh, S.:
Evaluation of hardware implementations of CORDIC-like algorithms in FPGA using
OpenCL kernels. In: Kravets, A., Shcherbakov, M., Kultsova, M., Iijima, T. (eds.) JCKBSE
2014. CCIS, vol. 466, pp. 228–242. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-11854-3_20

4. Egunov, V.A.: Implementation of QR and LQ decompositions on shared memory parallel
computing systems. In: Egunov, V.A., Andreev, A.E. (eds.) 2016 2nd International
Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM),
Chelyabinsk, Russia, 19–20 May 2016, 5 p. IEEE (2016)https://doi.org/10.1109/icieam.
2016.7911607

5. Getmanskiy, V., Andreev, A.E., Alekseev, S., Gorobtsov, A.S., Egunov, V., Kharkov, E.:
Optimization and parallelization of CAE software stress-strain solver for heterogeneous
computing hardware. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos,
P. (eds) CIT&DS 2017. CCIS, vol 754, pp. 562–674. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65551-2_41

6. Glinsky, B., et al.: The co-design of astrophysical code for massively parallel supercom-
puters. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp. 342–353.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7_27

7. Tian, Y.: Some results on the eigenvalue problem for a fractional elliptic equation. Boundary
Value Problems 1, 13 (2019)

8. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist, H.K.: Anasazi software for the
numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36(3), art.
no. 13 (2009). https://doi.org/10.1145/1527286.1527287

9. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B -
Condensed Matter Mat. Phys. 79(11), art. no. 115112 (2009). https://doi.org/10.1103/
physrevb.79.115112

10. Bogoya, J.M., Grudsky, S.M., Malysheva, I.S.: Extreme individual eigenvalues for a class of
large hessenberg toeplitz matrices. Operator Theory Adv. Appl. 271, 119–143 (2018)

11. Vatankhah, S.: Large-scale inversion of magnetic data using golub-kahan bidiagonalization
with truncated generalized cross validation for regularization parameter estimation. J. Earth
Space Phys. 44(4), 29–39 (2019)

12. Salam, A., Kahla, H.B.: An upper J-Hessenberg reduction of a matrix through symplectic
Householder transformations. Computers and Mathematics with Applications (2019)

13. Liu, G., Liu, Y., Guo, M., Li, P., Li, M.: Variational inference with Gaussian mixture model
and householder flow. Neural Networks 109, 43–55 (2019)

14. Li, S., Cao, G., Wei, S.: Improved measurement matrix and reconstruction algorithm for
compressed sensing. In: Proceedings of 2018 IEEE 8th International Conference on
Electronics Information and Emergency Communication, ICEIEC 2018, 8473512, pp. 136–
139 (2018)

150 A. Andreev and V. Egunov

http://dx.doi.org/10.1007/978-3-319-11854-3_20
http://dx.doi.org/10.1007/978-3-319-11854-3_20
http://dx.doi.org/10.1109/icieam.2016.7911607
http://dx.doi.org/10.1109/icieam.2016.7911607
http://dx.doi.org/10.1007/978-3-319-65551-2_41
http://dx.doi.org/10.1007/978-3-319-65551-2_41
http://dx.doi.org/10.1007/978-3-319-49956-7_27
http://dx.doi.org/10.1145/1527286.1527287
http://dx.doi.org/10.1103/physrevb.79.115112
http://dx.doi.org/10.1103/physrevb.79.115112

15. Noble, J.H., Lubasch, M., Stevens, J., Jentschura, U.D.: Diagonalization of complex
symmetric matrices: generalized Householder reflections, iterative deflation and implicit
shifts. Comput. Phys. Commun. 221, 304–316 (2017)

16. Bujanovic, Z., Karlsson, L., Kressner, D.: A householder-based algorithm for hessenberg-
triangular reduction. SIAM J. Matrix Anal. Appl. 39(3), 1270–1294 (2018)

17. Eljammaly, M., Karlsson, L., Kågström, B.: On the Tunability of a New Hessenberg
Reduction Algorithm Using Parallel Cache Assignment. In: Wyrzykowski, R., Dongarra, J.,
Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 579–589. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78024-5_50

Solving of Eigenvalue and Singular Value Problems 151

http://dx.doi.org/10.1007/978-3-319-78024-5_50

	Solving of Eigenvalue and Singular Value Problems via Modified Householder Transformations on Shared Memory Parallel Computing Systems
	Abstract
	1 Introduction
	2 Used Methods
	3 Proposed Solutions
	4 Results of Computational Experiments
	5 Summary
	Acknowledgements
	References

