
Porting CUDA-Based Molecular
Dynamics Algorithms to AMD ROCm

Platform Using HIP Framework:
Performance Analysis

Evgeny Kuznetsov1 and Vladimir Stegailov1,2,3(B)

1 National Research University Higher School of Economics, Moscow, Russia
v.stegailov@hse.ru

2 Joint Institute for High Temperatures of RAS, Moscow, Russia
3 Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Abstract. The use of graphics processing units (GPU) in computer data
processing tasks has long ceased to be an unusual event. However, now
GPU computing is nearly synonymous with CUDA, a proprietary frame-
work for developing applications for Nvidia’s GPU devices. It provides
comprehensive documentation and excellent development tools. Mean-
while, the main competitor of Nvidia in the market for the production
of GPU devices, the AMD company is developing its own Radeon Open
Compute (ROCm) platform that features an application programming
interface compatible with CUDA. The primary objective of this work is
to investigate whether ROCm provides a worthy alternative to CUDA
in the field of GPU computing. The work has two sub-objectives: the
description of the programmers experience investigation during porting
classical molecular dynamics algorithms from CUDA to ROCm platform
and performance benchmarking of initial and resulting programs on GPU
devices with modern architectures (Pascal, Vega10, Vega20).

Keywords: GPU computing · Parallel computing · CUDA · ROCm ·
Molecular dynamics

1 Introduction

Parallelization of computationally intensive algorithms on graphics accelerators
is an integral part of the development of high-performance software. There are
quite a number of libraries for developing code for graphics processors, such as
OpenMP, OpenCL, OpenACC. They allow using the same code to compile pro-
grams for both the GPU from different manufacturers and the CPU. However,
for the most part, they provide too high-level abstractions, and in tasks where
performance is critical, the only choice is specialized GPGPU language-based
programming models, such as CUDA and ROCm. Only they, due to low-level
optimizations and the use of features of each platform, allow achieving the high-
est possible performance.
c© Springer Nature Switzerland AG 2019
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2019, CCIS 1129, pp. 121–130, 2019.
https://doi.org/10.1007/978-3-030-36592-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36592-9_11&domain=pdf
http://orcid.org/0000-0002-5349-3991
https://doi.org/10.1007/978-3-030-36592-9_11


122 E. Kuznetsov and V. Stegailov

CUDA is a platform for writing applications for general-purpose comput-
ing on graphics processing units (GPGPU) designed by Nvidia. It was released
about 11 years ago and made a long path. It has mature driver and runtime sup-
port, great debugging and profiling tools, detailed documentation and samples.
Almost every algorithm that has high computational complexity and paralleliza-
tion possibility was implemented in CUDA.

In contrast, ROCm is a part of the AMD’s “Boltzmann Initiative” announced
in 2015. At the moment, ROCm is barely known platform for developing GPGPU
applications that may run only on the specific subset of AMD graphics process-
ing units [1]. It has a limited operating system (OS) support too: only a few
Linux based OS are supported [1]. Besides, it has insufficient documentation
and debugging support. So, ROCm is just at the beginning of its path and is
developing rather quickly (e.g., version 1.9 has been announced on 15 September
2018 and version 2.3 has been announced on 12 April 2019). However, already
now AMD GPUs have enough computational power to compete on equal terms
with Nvidia GPUs [2].

An appealing aspect of the ROCm platform is its open-source character that
improves portability and corresponds to the best practices of community codes
development.

Moreover, AMD’s graphics accelerators have another important advantage.
Scientific calculations mainly use double-precision floating point arithmetic,
whose performance in graphics chips is artificially limited by manufacturers to
encourage the purchase of much more expensive devices. For most AMD GPUs,
this limitation is significantly lower than that of Nvidia, which makes it possible
for enthusiasts to use devices of the middle price segment to develop high-tech
software.

This work aims to perform a readiness review of the ROCm platform to
production development by porting one real-world CUDA application on the
ROCm platform and evaluating performance differences between them.

As an example of a real-world CUDA application CoMD-CUDA is taken.
CoMD [3] is a mimi-application that represents a reference implementation of
conventional classical molecular dynamics algorithms and workloads. CoMD-
CUDA [4] is a CUDA implementation of this mini-application.

The choice of this mini-application is not accidental. The tasks of classical
molecular dynamics provide about 20–30% of the load of the largest supercom-
puters in the world [5], a significant part of which have a heterogeneous archi-
tecture and use GPUs [6]. Therefore, this class of algorithms deserves a focused
consideration.

2 Literature Review

According to Jon Peddie Research press release [7], discrete AMD GPUs occupy
a significant market share (Table 1). However, they are mainly used only for
games and for solving specific tasks, such as cryptocurrency mining and 3D
rendering, while they have significant potential in the field of general-purpose
computing.



Porting CUDA-Based MD Algorithms to AMD ROCm HIP 123

Table 1. Discrete GPU market share

Supplier Q2’18 Q3’18 Q3’17-Q3’18

AMD 25.7% 36.1% 27.2%

Nvidia 74.3% 63.9% 72.8%

The ROCm platform as a relatively new technology is a rare subject in the
articles devoted to performance studies of parallel algorithms on GPU. No one
has yet made a thorough comparison of the performance of the ROCm platform
with the CUDA platform. Sometimes (e.g. see [8]) this tends to be caused by
the complexity of the installation and testing processes.

When it comes to cross-platform analysis, most authors direct their atten-
tion to comparing the performance of the CUDA platform and the Open Com-
puting Language (OpenCL) heterogeneous computing framework. A thorough
research [9] was made to find out if OpenCL technology can provide efficiency
comparable to CUDA. The answer is yes, but it will require the developer to
make complex adjustments to the program execution parameters. Besides, the
process of porting CUDA application to OpenCL may be even more complicated,
but this aspect of the study was not reported.

Another limitation of the OpenCL technology is the inability to use archi-
tectural features such as AMD’s global data share and Nvidia’s inline PTX
assembly. It is a fairly common practice to have independent, optimized for each
platform implementation of bottlenecks in the program.

Interestingly enough for the purposes of this paper, the article [2] is devoted
to comparing the performance of all three GPU programming frameworks sup-
ported by the ROCm platform: HIP, OpenCL, and HC++. According to it, the
following conclusions can be drawn:

– HIP is the best performing high-level framework from choices that ROCm
support.

– HIP does not add any noticeable overhead to the workloads and the execution
times comparing to the corresponding CUDA implementation.

In addition, the authors compare the speed of the two vendor implementa-
tions of deep neural networks for the CUDA and ROCm architectures: cuDNN
and MIOpen, respectively. The implementations of both manufacturers on
devices similar in their reported single precision floating point calculation capa-
bilities showed approximately equivalent timings. In this work we present similar
results for hybrid MD algorithms.

3 Methods

A vast number of parallel algorithms and applications have been developed using
the CUDA platform. To facilitate their porting process, ROCm provides a HIP



124 E. Kuznetsov and V. Stegailov

framework [10], which provides CUDA-compatible API, as well as the hipify tool
for semi-automatic translation of CUDA runtime library calls to ROCm calls.
Moreover, the HIP platform allows executing the resulting code on both AMD
devices and Nvidia graphics accelerators. In the latter case, the functions of the
HIP library are simple wrappers over the corresponding functions of CUDA,
which allows developing code for CUDA-compatible devices with near-zero over-
head [2].

The first phase of this work is porting the CoMD-CUDA application to the
ROCm platform using the HIP library. It includes several sub-steps:

1. Using the hipify tool to translate CUDA runtime library calls.
2. Revision of the GPU kernels under the architectural features of the ROCm

platform.
3. Creation a cross-platform (AMD/Nvidia) CMake build project.

The second phase consists in analyzing the performance of the resulting appli-
cation on several graphics accelerators from AMD and Nvidia manufacturers of
the same class. The list of used video cards and their brief characteristics pre-
sented in Table 2.

Table 2. The comparison of main features of GPUs considered

RX480 Vega 56 Radeon VII GTX 1070

Manufacturer AMD AMD AMD Nvidia

Stream processors 2304 3584 3840 1920

Base frequency 1120 MHz 1156 MHz 1750 MHz 1506 MHz

Memory size 4 Gb 8 Gb 16 Gb 8 Gb

Memory type GDDR5 HBM2 HBM2 GDDR5

In case the results have an inexplicable variation in execution time, a more
thorough study of the performance drop-down by profiling is needed. More-
over, the CoMD-CUDA application is hard-wired for optimal performance for
the GK110 graphics chip. Thus, the comparison will be incomplete without opti-
mization for the architecture features of AMD GPUs. This step, in turn, requires
some sophisticated register and shared memory usage analysis [11], which is sup-
posed to be performed using the AMD architecture assembly code investigation.

ROCm uses Heterogeneous Compute Compiler (HCC) for compilation both
host and device code. It is based on the open-source Clang C++ compiler and
Low Level Virtual Machine (LLVM) framework [12] that provides powerful opti-
mization possibilities. For the purposes of this study, it is interesting to com-
pare HCC code generation quality with NVIDIA proprietary CUDA Compiler
(NVCC). To accomplish this goal, a side by side examination of the generated
NVCC and HCC codes are made.



Porting CUDA-Based MD Algorithms to AMD ROCm HIP 125

The selected CoMD-CUDA application is best suited for all phases of work.
It implements several different approaches to perform modeling in molecular
dynamics problems [4]. The source code contains a wide range of operations,
such as working with shared memory, double precision arithmetic, atomic oper-
ations, synchronization of threads, cross warp data exchange and asynchronous
execution, which fully covers all typical scenarios of using GPU. Thus, a com-
parison of the performance of the two platforms using the CoMD-CUDA can be
considered more relevant than when conducting synthetic tests.

Fig. 1. ERT memory bandwidth and ERT FLOPS/sec for the case of 64 threads/640
blocks.



126 E. Kuznetsov and V. Stegailov

4 Results

Since the HPC community started to pay more attention not only to peak per-
formance, but also to such parameters as memory throughput and caches, many
other metrics and models became available to evaluate the performance effec-
tiveness. In this paper we use the Berkeley lab’s Empirical Roofline Toolkit [13].
This intuitive model bounds the floating point peak computation performance,
the memory bandwidth and the arithmetic intensity, also taking into account
such effects as caching, non-uniform memory access and instruction-level par-
allelism. The results for the newest Radeon VII GPU are presented on Figs. 1
and 2.

The CUDA-version of the ERT kernel has been hipified without any prob-
lems. However the current version of HCC compiler (ROCm version 2.2) can not
properly detect FMA operation in the ERT kernel and only manual inclusion of
these assembler instruction in the kernel allowed us getting full computational
performance of Radeon VII (3 TFLOPS/sec). In this case the memory bandwidth
is maximized as well and reaches 77% of the theoretical value of 1 TB/sec.

This paper addresses the gap in the area of developing high-performance
GPGPU applications by comparing two modern GPGPU platforms: CUDA and
ROCm. Due to the novelty and insufficient prevalence of the ROCm platform,
this work also aims at examining the process of migrating existing CUDA appli-
cations to a new platform.

Despite the stated simplicity of porting CUDA applications to the ROCm
platform, some problems have been met due to the lack of full-fledged examples,
insufficient documentation and the presence of a large number of GPU kernels
optimized for the Nvidia architecture as part of CoMD-CUDA.

The process of porting a CUDA application to the ROCm platform, as well
as identification of the points that should be paid attention to, are illustrated
on Fig. 3.

CoMD-CUDA contains two interatomic potential models for MD simulations:
the standard Lennard-Jones pair potential and the EAM manybody potential.
The thread atom and cta cell methods for neighbor search are considered for the
LJ model, the wrap atom method is considered for the EAM model as well.

The performance of CoMD algorithms on AMD video cards without corre-
sponding optimizations is expected to be lower than on the Nvidia platform.
When the optimal occupancy of all stream processors of the Vega 56 accelerator
reached, its results can exceed those of GTX 1070. The results are summarized
on Figs. 4 and 5.



Porting CUDA-Based MD Algorithms to AMD ROCm HIP 127

 10

 100

 1000

 10000

 0.01  0.1  1  10  100

1531.1 GFLOPs/sec (Maximum)

L1
 - 

13
53

.8
 G

B/s

DRAM
 - 

58
2.

2 
GB/s

G
F

LO
P

s 
/ s

ec

FLOPs / Byte

(a) implicit FMA

 10

 100

 1000

 10000

 0.01  0.1  1  10  100

3078.9 GFLOPs/sec (Maximum)

L1
 - 

18
33

.4
 G

B/s

DRAM
 - 

77
2.

0 
GB/s

G
F

LO
P

s 
/ s

ec

FLOPs / Byte

(b) explicit FMA

Fig. 2. Roofline obtained on AMD Radeon VII using implicit and explicit FMA oper-
ations.



128 E. Kuznetsov and V. Stegailov

Fig. 3. Examples of the CUDA to ROCm translations made by the hipify tool. Cor-
rections of the GPU kernel due to different warp sizes of Nvidia and AMD GPUs.

Fig. 4. Performance of different methods (problem size 50× 50× 50)



Porting CUDA-Based MD Algorithms to AMD ROCm HIP 129

Fig. 5. Performance of the warp atom method on different problem sizes

5 Conclusion

New technologies require attention from software developers. It is essential to
provide the necessary feedback, this allows to quickly correct occurring errors
and develop the product.

AMD is the second-largest supplier of CPU and discrete GPU in the world.
Its processors have considerable potential in the field of high performance com-
puting. The significance of AMD’s ROCm platform is hard to overestimate - it
provides tools for developing cross-platform GPGPU applications that can run
on both AMD video accelerators and Nvidia devices.

ROCm is still under development, so far there have been too few examples
of its successful application. Therefore, it is necessary to discuss this technology,
develop methods for and share experiences and results of its use, as well as track
its production readiness.

To this aim, this work is going to start such a process by providing a com-
prehensive review of cross-platform ROCm framework and investigation of its
performance in a real-world scenario.

Our results show that the transfer of a real-world application from CUDA to
HIP does not requere major modifications of the code and gives the possibility to
run the application considered on AMD GPUs without performance degradation.

References

1. ROCm Install. https://rocm.github.io/ROCmInstall.html#hardware-support.
Accessed 15 Apr 2019

2. Sun, Y., et al.: Evaluating performance tradeoffs on the radeon open compute
platform. In: 2018 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS) (2018)

https://rocm.github.io/ROCmInstall.html#hardware-support


130 E. Kuznetsov and V. Stegailov

3. Mohd-Yusof, J.: Codesign molecular dynamics (CoMD) proxy app. In: Los-Alamos
National Lab, Technical report (2012)

4. Mohd-Yusof, J., Sakharnykh, N.: Optimizing CoMD: a molecular dynamics proxy
application study. In: GPU Technology Conference (GTC) (2014). http://on-dem
and.gputechconf.com/gtc/2014/presentations/S4465-optimizing-comd-molecular-
dynamics.pdf. Accessed 15 Apr 2019

5. Norman, G., et al.: Why and what supercomputers of the exaflops class are needed
in the natural sciences. Program Syst.: Theory Appl. 6(4), 243–311 (2015)

6. November 2018 — TOP500 Supercomputer Sites. https://www.top500.org/lists/
2018/11/. Accessed 15 Apr 2019

7. Peddie, J., Dow, R.: Jon Peddie Research releases its Q3, 2018 add-
in board report. https://www.jonpeddie.com/press-releases/jon-peddie-research-
releases-its-q3-2018-add-in-board-report. Accessed 15 Apr 2019

8. Turner, D., Andresen, D., Hutson, K., Tygart, A.: Application performance on the
newest processors and GPUs. In: Proceedings of the Practice and Experience on
Advanced Research Computing - PEARC (2018)

9. Fang, J., Varbanescu, A., Sips, H.: A comprehensive performance comparison of
CUDA and OpenCL. In: International Conference on Parallel Processing (2011)

10. ROCm-Developer-Tools/HIP. https://github.com/ROCm-Developer-Tools/HIP.
Accessed 15 Apr 2019

11. Aaltonen, S.: Optimizing GPU occupancy and resource usage with large thread
groups. https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thr
ead-groups/. Accessed 15 Apr 2019

12. The LLVM Compiler Infrastructure Project. https://llvm.org/. Accessed 15 Apr
2019

13. Lo, Y., et al.: Roofline model toolkit: a practical tool for architectural and program
analysis. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS 2014. LNCS,
vol. 8966, pp. 129–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17248-4 7

http://on-demand.gputechconf.com/gtc/2014/presentations/S4465-optimizing-comd-molecular-dynamics.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4465-optimizing-comd-molecular-dynamics.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4465-optimizing-comd-molecular-dynamics.pdf
https://www.top500.org/lists/2018/11/
https://www.top500.org/lists/2018/11/
https://www.jonpeddie.com/press-releases/jon-peddie-research-releases-its-q3-2018-add-in-board-report
https://www.jonpeddie.com/press-releases/jon-peddie-research-releases-its-q3-2018-add-in-board-report
https://github.com/ROCm-Developer-Tools/HIP
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://llvm.org/
https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1007/978-3-319-17248-4_7

	Porting CUDA-Based Molecular Dynamics Algorithms to AMD ROCm Platform Using HIP Framework: Performance Analysis
	1 Introduction
	2 Literature Review
	3 Methods
	4 Results
	5 Conclusion
	References




