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We introduce a robust optimization model consisting in a family of perturbation
functions giving rise to certain pairs of dual optimization problems in which the
dual variable depends on the uncertainty parameter. The interest of our approach
is illustrated by some examples, including uncertain conic optimization and infinite
optimization via discretization. Themain results characterize desirable robust duality
relations (as robust zero-duality gap) by formulas involving the epsilon-minima or the
epsilon-subdifferentials of the objective function. The two extreme cases, namely, the
usual perturbational duality (without uncertainty), and the duality for the supremum
of functions (duality parameter vanishing) are analyzed in detail.

1 Introduction

Duality theory was one of Jonathan Borwein’s favorite research topics. Indeed, 14
of his papers include the term “duality” in their titles. The present article, dedicated
to Jon’s vast contribution to the subject, will refer only to four works of his, all of
these related to optimization problems posed in locally convexHausdorff topological
vector spaces.
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Duality theorems were provided in [3] for the minimum of arbitrary families of
convex programs; the quasi-relative interior constraint qualification was introduced
in [6] in order to obtain duality theorems for various optimization problems where
the standard Slater condition fails; the same CQ was immediately used, in [5], to
obtain duality theorems for convex optimization problems with constraints given
by linear operators having finite-dimensional range together with a conical convex
constraint; finally, quite recently, in [4], duality theorems for the minimization of the
finite sum of convex functions were established, using conditions which involve the
ε-subdifferential of the given functions.

In this paper, we consider a family of perturbation functions

Fu : X × Yu → R∞ := R ∪ {+∞}, with u ∈ U,

and where X and Yu, u ∈ U, are given locally convex Hausdorff topological vector
spaces (briefly, lcHtvs), the index set U is called the uncertainty set of the family,X
is its decision space, and each Yu is a parameter space. Note that our model includes
a parameter space Yu, depending on u ∈ U, which is a novelty with respect to the
“classical” robust duality scheme (see [21] and references therein, where a unique
parameter space Y is considered), allowing us to cover a wider range of applications
including uncertain optimization problems under linear perturbations of the objective
function. The significance of our approach is illustrated along the paper by relevant
cases extracted from deterministic optimization with linear perturbations, uncertain
optimization without perturbations, uncertain conic optimization and infinite opti-
mization. The antecedents of the paper are described in the paragraphs devoted to
the first two cases in Section2.

We associate with each family {Fu : u ∈ U } of perturbation functions correspond-
ing optimization problems whose definitions involve continuous linear functionals
on the decision and the parameter spaces. We denote by 0X , 0∗

X
, 0u, and 0∗

u, the null
vectors of X, its topological dual X∗, Yu, and its topological dual Y ∗

u , respectively.
The optimal value of a minimization (maximization, respectively) problem (P) is
denoted by inf (P) (sup (P)); in particular, we write min (P) (max (P)) whenever the
optimal value of (P) is attained. We adopt the usual convention that inf (P) = +∞
(sup (P) = −∞) when the problem (P) has no feasible solution. The associated opti-
mization problems are the following:

• Linearly perturbed uncertain problems: for each (u, x∗) ∈ U × X∗,

(Pu)x∗ : inf
x∈X
{
Fu(x, 0u) − 〈x∗, x

〉}
.

• Robust counterpart of {(Pu)x∗ }u∈U :

(RP)x∗ : inf
x∈X

{
sup
u∈U

Fu(x, 0u) − 〈x∗, x
〉}

.

Denoting by F∗
u : X∗ × Y ∗

u → R, whereR := R ∪ {±∞}, the Fenchel conjugate
of Fu , namely,
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F∗
u (x∗, y∗

u ) := sup
(x,yu)∈X×Yu

{
〈x∗, x〉 + 〈y∗

u , yu〉 − Fu(x, yu)
}
, (x∗, y∗

u ) ∈ X∗ × Y ∗
u ,

we now introduce the corresponding dual problems:

• Perturbational dual of (Pu)x∗ :

(Du)x∗ : sup
y∗
u∈Y ∗

u

−F∗
u (x∗, y∗

u ).

Obviously,
sup (Du)x∗ ≤ inf (Pu)x∗ ≤ inf (RP)x∗ ,∀u ∈ U.

• Optimistic dual of (RP)x∗ :

(ODP)x∗ sup
(u,y∗

u )∈�

−F∗
u (x∗, y∗

u ),

where� := {(u, y∗
u

) : u ∈ U, y∗ ∈ Y ∗
u

}
is the disjoint union of the spaces Y ∗

u . We
have

sup (ODP)x∗ = sup
u∈U

(Du)x∗ ≤ inf (RP)x∗ .

We are interested in the following desirable robust duality properties:

• Robust duality is said to hold at x∗ if inf (RP)x∗ = sup (ODP)x∗ ,
• Strong robust duality at x∗ means inf (RP)x∗ = max (ODP)x∗ ,
• Reverse strong robust duality at x∗ means min (RP)x∗ = sup (ODP)x∗ ,
• Min-max robust duality at x∗ means min (RP)x∗ = max (ODP)x∗ .

Each of the above desirable properties is said to be stable when it holds for any
x∗ ∈ X∗. The main results of this paper characterize these properties in terms of
formulas involving the ε-minimizers and ε-subdifferentials of the objective function
of the robust counterpart problem (RP)0∗

X
, namely, the function

p := sup
u∈U

Fu(·, 0u).

Theorem 1 characterizes robust duality at a given point x∗ ∈ X∗ as a formula for the
inversemapping of the ε-subdifferential at x∗ without any convexity assumption. The
same is done in Theorem 2 to characterize strong robust duality. In the case, when
a primal optimal solution does exist we give a formula for the exact minimizers of
p − x∗ to characterize dual strong (resp.min-max) robust duality at x∗, seeTheorem3
(resp. Theorem 4). We show that stable robust duality gives rise to a formula for the
ε-subdifferential of p (Theorem 5, see also Theorem 1). The same is done for stable
strong robust duality (Theorem 6). A formula for the exact subdifferential of p
is provided in relation with robust duality at appropriate points (Theorem 7). The
most simple possible formula for the exact subdifferential of p (the so-called Basic
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Robust Qualification condition) is studied in detail in Theorem 8. All the results from
Sections1–8 are specified for the two extreme cases (the case with no uncertainty and
the one in absence of perturbations), namely, Cases 1 and 2 in Section2 (for the sake
of brevity, we do not give the specifications for Cases 3 and 4). It is worth noticing
the generality of the mentioned results (as they do not require any assumption on
the involved functions) and the absolute self-containment of their proofs. The use of
convexity in the data will be addressed in a forthcoming paper.

2 Special Cases and Applications

In this section,wemake explicit themeaningof the robust duality of the generalmodel
introduced in Section1, composed by a family of perturbation functions togetherwith
its corresponding optimization problems.We are doing this by exploring the extreme
case with no uncertainty, the extreme case in absence of perturbations, and two other
significant situations. In all these cases, we propose ad hoc families of perturbation
functions allowing to apply the duality results to given optimization problems, either
turning back to variants of well-known formulas for conjugate functions or proposing
new ones.

Let us recall the robust duality formula, inf (RP)x∗ = sup (ODP)x∗ , i.e.,

inf
x∈X supu∈U

{
Fu (x, 0u) − 〈x∗, x

〉} = sup
(u,y∗

u )∈�

−F∗
u

(
x∗, y∗

u

)
. (1)

We firstly study the two extreme cases: the case with no uncertainty and the one with
no perturbations.

Case 1. The case with no uncertainty: Deterministic optimization with linear per-
turbations deals with parametric problems of the form:

(P)x∗ : inf
x∈X
{
f (x) − 〈x∗, x

〉}
,

where f : X → R∞ (i.e., f ∈ (R∞)X ) is the nominal objective function and the
parameter is x∗ ∈ X∗. Taking a singleton uncertainty set U = {u0} , Yu0 = Y and
Fu0 = F such that F (x, 0Y ) = f (x) for all x ∈ X, (1) reads

inf
x∈X
{
F (x, 0Y ) − 〈x∗, x

〉} = sup
y∗∈Y ∗

−F∗ (x∗, y∗) , (2)

which is the fundamental perturbational duality formula [7, 24, 28]. Stable and
strong robust duality theorems are given in [9] (see also [11] and [20] for infinite
optimization problems).

Case 2. The case with no perturbations: Uncertain optimization without perturba-
tions deals with families of problems of the form
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(P)x∗ :
{
inf
x∈X fu(x) − 〈x∗, x〉

}

u∈U
,

where fu ∈ (R∞)X , u ∈ U , and x∗ ∈ X∗. The absence of perturbation is realized by
taking Fu such that Fu(x, yu) = fu(x) for all u ∈ U , x ∈ X and yu ∈ Yu . Assuming
dom fu �= ∅ we have

F∗
u

(
x∗, y∗

u

) =
{
f ∗
u (x∗) , if y∗

u = 0∗
u,

+∞, if y∗
u �= 0∗

u .
(3)

Then (1) writes (
sup
u∈U

fu

)∗
(x∗) = inf

u∈U f ∗
u (x∗), (4)

which amounts, for x∗ = 0∗
X
, to the inf − sup duality in robust optimization, also

called robust infimum (recall that any constrained optimization problem can be
reduced to an unconstrained one by summing up the indicator function of the feasible
set to the objective function):

inf
x∈X supu∈U

fu(x) = sup
u∈U

inf
x∈X fu(x).

Robust duality theorems without perturbations are given in [27] for a special class
of uncertain non-convex optimization problems while [11] provides robust strong
duality theorems for uncertain convex optimization problems which are expressed
in terms of the closedness of suitable sets regarding the vertical axis of X∗× R.

Case 3. Conic optimization problem with uncertain constraints: Consider the
uncertain problem

(P) :
{
inf
x∈X f (x) s.t. Hu(x) ∈ −Su

}

u∈U
,

where, for each u ∈ U , Su is an ordering convex cone in Yu, Hu : X → Yu , and
f ∈ (R∞)X .Denote by S+

u := {y∗
u ∈ Y ∗

u : 〈y∗
u , yu

〉 ≥ 0,∀yu ∈Su
}
the dual cone of Su .

Problems of this type arise, for instance, in the production planning of firms
producing n commodities from uncertain amounts of resources by means of tech-
nologies which depend on the available resources (e.g., the technology differs when
the energy is supplied by either fuel gas or a liquid fuel). The problem associated
with each parameter u ∈ U consists of maximizing the cash-flow c (x1, ..., xn) of
the total production, with xi denoting the production level of the i-th commodity,
i = 1, .., n. The decision vector x = (x1, ..., xn) must satisfy a linear inequality sys-
tem Aux ≤ bu,where thematrix of technical coefficients Au ismu × n and bu ∈ R

mu ,

for some mu ∈ N. Denoting by iRn+ the indicator function of Rn+ (i.e., iRn+(x) = 0,
when x ∈ R

n+, and iRn+(x) = +∞, otherwise), the uncertain production planning
problem can be formulated as
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(P) :
{
inf
x∈Rn

f (x) = −c(x)+iRn+(x) s.t. Aux − bu ∈ −R
mu+

}

u∈U
,

with the space Yu = R
mu depending on the uncertain parameter u.

For each u ∈ U , define the perturbation function

Fu(x, yu) =
{
f (x), if Hu(x) + yu ∈ −Su,
+∞, else.

On the one hand, (RP)0∗
X
collapses to the robust counterpart of (P) in the sense of

robust conic optimization with uncertain constraints:

(RP) : inf
x∈X f (x) s.t. Hu(x) ∈ −Su, ∀u ∈ U.

On the other hand, it is easy to check that

F∗
u (x∗, y∗

u ) =
{(

f + y∗
u ◦ Hu

)∗
(x∗), if y∗

u ∈ S+
u .

+∞, else,

(ODP)0∗
X
is nothing else than the optimistic dual in the sense of uncertain conic

optimization:

(ODP) : sup
u∈U,y∗

u∈S+
u

inf
x∈X
{
f (x) + 〈y∗

u , Hu(x)
〉}

(a special case when Yu = Y , Su = S for all u ∈ U is studied in [12, p. 1097] and
[21]). Thus,

• Robust duality holds at 0∗
X means that inf (RP) = sup (ODP),

• Strong robust duality holds at 0∗
X means that

inf { f (x) : Hu(x) ∈ −Su,∀u ∈ U } = max
u∈U
y∗u∈S+

u

inf
x∈X
{
f (x) + 〈y∗

u , Hu(x)
〉}

.

Conditions for having such an equality are provided in [12, Theorem 6.3], [13,
Corollaries 5, 6], for the particular case Yu = Y for all u ∈ U .

Strong robust duality and uncertain Farkas lemma: We focus again on the case
where Yu = Y and Su = S for all u ∈ U . For a given r ∈ R, let us consider the
following statements:

(i) Hu(x) ∈ −S, ∀u ∈ U =⇒ f (x) ≥ r ,
(ii) ∃u ∈ U, ∃y∗

u ∈ S+ such that f (x) + 〈y∗
u , Hu(x)

〉 ≥ r, ∀x ∈ X.

Then, it is true that the strong robust duality holds at 0∗
X if and only if [(i) ⇐⇒ (i i)]

for each r ∈ R,which can be seen as an uncertain Farkas lemma. For details see [12,
Theorem 3.2] (also [13, Corollary 5 and Theorem 1] ).
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It isworth noticing thatwhen return to problem (P), a given robust feasible solution
x is a minimizer if and only if f (x) ≤ f (x) for any robust feasible solution x . So,
a robust (uncertain) Farkas lemma (with r = f (x̄)) will lead automatically to an
optimality test for (P). Robust conic optimization problems are studied in [2] and [25].
Case 4. Discretizing infinite optimization problems: Let f ∈ (R∞)X and gt ∈
R

X for all t ∈ T (a possibly infinite index set). Consider the set U of non-empty
finite subsets of T, interpreted as admissible perturbations of T, and the parametric
optimization problem

(P) :
{
inf
x∈X f (x) s.t. gt(x) ≤ 0, ∀t ∈ S

}

S∈U
.

Consider the parameter space Ys := R
S (depending on S) and the perturbation func-

tion FS : X × R
S → R∞ such that, for any x ∈ X and μ :=(μs)s∈S ∈RS,

FS (x, μ) =
{
f (x), if gs(x) ≤ −μs, ∀s ∈ S,

+∞, else.

We now interpret the problems associated with the family of function perturbations
{FS : S ∈ U } . One has Y ∗

s = R
S and

F∗
S

(
x∗, λ

) =
⎧
⎨

⎩

(
f +∑

s∈S
λsgs

)∗
(x∗), if λ ∈ R

S+,

+∞, else.

The robust counterpart at 0∗
X ,

(RP)0∗
X

: inf f (x) s.t. gt(x) ≤ 0 for all t ∈ T,

is a general infinite optimization problem while the optimistic dual at 0∗
X is

(ODP)0∗
X

: sup
S∈U,λ∈RS+

{

inf
x∈X

(

f (x) +
∑

s∈S
λsgs(x)

)}

,

or, equivalently, the Lagrange dual of (RP)0∗
X
, i.e.,

(ODP)0X∗ : sup
λ∈R(T )

+

{

inf
x∈X

(

f (x) +
∑

t∈T
λt gt(x)

)}

,

where, for each λ = (λt )t∈T ∈ R
(T )
+ (the subspace of RT formed by the functions λ

whose support, suppλ := {t ∈ T : λt �= 0} , is finite),
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∑

t∈T
λt gt (x) : =

{ ∑

t∈suppλ
λt gt(x), if λ �= 0,

0, if λ = 0.

Following [14, Section8.3], we say that (RP)0∗
X
is discretizable if there exists a

sequence (Sr )r∈N ⊂ U such that

inf (RP)0∗
X

= lim
r

inf { f (x) : gt(x) ≤ 0, ∀t ∈ Sr } , (5)

and it is reducible if there exists S ∈ U such that

inf (RP)0∗
X

= inf { f (x) : gt(x) ≤ 0, ∀t ∈ S} .

Obviously, inf (RP)0∗
X

= −∞ entails that (RP)0∗
X
is reducible which, in turn, implies

that (RP)0∗
X
is discretizable.

Discretizable and reducible problems are important in practice. Indeed, on the one
hand, discretization methods generate sequences (Sr )r∈N ⊂ U satisfying (5) when
(RP)0∗

X
is discretizable; discretization methods for linear and nonlinear semi-infinite

programs have been reviewed in [15, Subsection 2.3] and [23], while a hard infinite
optimization problem has been recently solved via discretization in [22]. On the
other hand, replacing the robust counterpart (a hard semi-infinite program when the
uncertainty set is infinite) of a given uncertainty optimization problem, when it is
reducible, by a finite subproblem allows many times to get the desired tractable
reformulation (see e.g., [1] and [8]).

Example 1 (Discretizing linear infinite optimization problems) Consider the prob-
lems introduced inCase 4 above,with f (·) := 〈c∗, ·〉 and gt (x) := 〈a∗

t , ·
〉− bt ,where

c∗, a∗
t ∈ X∗ and bt ∈ R, for all t ∈ T . Then, (RP)0∗

X
collapses to the linear infinite

programming problem

(RP)0∗
X

: inf
〈
c∗, x

〉
s.t.

〈
a∗
t , x
〉 ≤ bt , ∀t ∈ T,

whose feasible set we denote by A. So, inf (RP)0∗
X

= inf x∈X {〈c∗, x〉 + i A (x)} . We
assume that A �= ∅.

Given S ∈ U and μ, λ ∈RS,

FS (x, μ) =
{ 〈c∗, x〉 , if

〈
a∗
s , x
〉 ≤ bs − μs, ∀s ∈ S,

+∞, else,
(6)

and

F∗
S

(
x∗, λ

) =
{∑

s∈S
λsbs, if

∑

s∈S
λsa∗

s = x∗−c∗ and λs ≥ 0 , ∀s ∈ S,

+∞, else.
(7)

Hence, (ODP)0∗
X
collapses to the so-called Haar dual problem [16] of (RP)0∗

X
,
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(ODP)0∗
X

: sup

⎧
⎨

⎩
−
∑

t∈supp λ

λt bt : −
∑

t∈supp λ

λt a
∗
t =c∗, λ ∈ R

(T )
+

⎫
⎬

⎭
,

i.e.,

sup (ODP)0∗
X

= − inf
S∈U,λ∈RS+

{
∑

s∈S
λsbs :

∑

s∈S
λsa

∗
s = − c∗

}

. (8)

From (8), if inf (RP)0∗
X

= max (ODP)0∗
X

∈ R, then there exist S ∈ U and λ ∈RS+
such that ∑

s∈S
λs
(
a∗
s ,bs
)= − (c∗, inf (RP)0∗

X

)
. (9)

Let AS := {x ∈ X : 〈a∗
s , x
〉 ≤ bs, ∀s ∈ S

}
. Given x ∈ AS, from (9),

0 ≥
∑

s∈S
λs
(〈
a∗
s , x
〉− bs

)= − 〈c∗, x
〉+ inf (RP)0∗

X
.

Since
inf (RP)0∗

X
≤ 〈c∗, x

〉
,∀x ∈ AS,

inf (RP)0∗
X

= inf
{〈
c∗, x

〉 : 〈a∗
s , x
〉 ≤ bs, ∀s ∈ S

}
, (10)

so that (RP)0∗
X
is reducible. Conversely, if (10) holds with inf (RP)0∗

X
∈ R and

cone
{(
a∗
t ,bt
) : t ∈ T

}+ R+
(
0∗
X , 1
)
is weak∗-closed, since inf (RP)0∗

X
≤ 〈c∗, x〉 is

consequence of
{〈
a∗
s , x
〉 ≤ bs, ∀s ∈ S

}
, by the nonhomogeneous Farkas lemma in

lcHtvs [10] and the closedness assumption, there exist λ ∈RS+ and μ∈R+ such that

− (c∗, inf (RP)0∗
X

) =
∑

s∈S
λs
(
a∗
s ,bs
)+μ

(
0∗
X , 1
)
,

which implies that μ = 0 and inf (RP)0∗
X

= max (ODP)0∗
X
. The closedness assump-

tion holds when X is finite dimensional (guaranteeing that any finitely generated
convex cone in X∗ × R is closed). So, as proved in [14, Theorem 8.3], a linear
semi-infinite program (RP)0∗

X
is reducible if and only if (10) holds if and only if

inf (RP)0∗
X

= max (ODP)0∗
X
.

Wenowassume that inf (RP)0∗
X

= sup (ODP)0∗
X

∈ R.By (8), there exist sequences

(Sr )r∈N ⊂ U and (λr )r∈N , with λr∈RSr+ for all r ∈ N, such that

lim
r

inf
λr∈RSr+

{
∑

s∈Sr
λr
sbs :

∑

s∈Sr
λr
sa

∗
s = − c∗

}

= − sup (ODP)0∗
X
.

Denote vr := −∑
s∈Sr

λr
sbs . Then,
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∑

s∈Sr
λs
(
a∗
s ,bs
)= − (c∗, vr

)
, (11)

with limr vr = inf (RP)0∗
X
. Let Ar := {x ∈ X : 〈a∗

s , x
〉 ≤ bs, ∀s ∈ S

r

}
, r ∈ N.

Given x ∈ Ar , from (11),

0 ≥
∑

s∈Sr
λr
s

(〈
a∗
s , x
〉− bs

) = − 〈c∗, x
〉+ vr .

Since vr ≤ 〈c∗, x〉 for all x ∈ Ar ,

vr ≤ inf
{〈
c∗, x

〉 : 〈a∗
s , x
〉 ≤ bs, ∀s ∈ Sr

} ≤ inf (RP)0∗
X
.

Thus,
lim
r

inf
{〈
c∗, x

〉 : 〈a∗
s , x
〉 ≤ bs, ∀s ∈ Sr

} = inf (RP)0∗
X
,

i.e., (RP)0∗
X
is discretizable. Once again, the converse is true in linear semi-infinite

programming [14, Corollary 8.2.1], but not in linear infinite programming.

3 Robust Conjugate Duality

We now turn back to the general perturbation function Fu : X × Yu → R∞, u ∈ U ,
and let� := {(u, y∗

u ) : u ∈ U, y∗
u ∈ Y ∗

u

}
be the disjoint unionof the spacesY ∗

u . Recall
that

(RP)x∗ : inf
x∈X

{
sup
u∈U

Fu (x, 0u) − 〈x∗, x
〉}

, (12)

(ODP)x∗ : sup
(u,y∗

u )∈�

−F∗
u

(
x∗, y∗

u

)
. (13)

Define p ∈ R
X
and q ∈ R

X∗
such that

p := sup
u∈U

Fu(·, 0u) and q := inf
(u,y∗

u)∈�

F∗
u (·, y∗

u ). (14)

One then has
⎧
⎨

⎩

p∗(x∗) = − inf (RP)x∗ , q(x∗) = − sup (ODP)x∗

q∗ = sup
(u,y∗

u)∈�

(
F∗
u

(·, y∗
u

))∗ = sup
u∈U

F∗∗
u (·, 0u) ≤ p, (15)

and hence,

• Weak robust duality always holds
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p∗(x∗) ≤ q∗∗(x∗) ≤ q(x∗), for all x∗ ∈ X∗. (16)

• Robust duality at x∗ means
p∗(x∗) = q(x∗). (17)

Robust duality at x∗ also holds when either p∗(x∗) = +∞ or q(x∗) = −∞.

As an illustration, consider Case 4with linear data, as in Example 1. Then, p (x) =
〈c∗, x〉 + iA (x) , dom p = A, and so

p∗ (0∗
X

) = sup
x∈Rn

(−p (x)) = − inf
x∈Rn

{〈
c∗, x

〉+ iA (x)
} = − inf (RP)0∗

X
.

Similarly, from (7),

q
(
x∗) = inf

S∈U,λ∈RS

{
∑

s∈S
λsbs :

∑

s∈S
λsa

∗
s =x∗ − c∗

}

,

dom q = c∗ + cone
{
a∗
t : t ∈ T

}
and

q
(
0∗
X

) = inf
S∈U,λ∈RS+

{
∑

s∈S
λsbs :

∑

s∈S
λsa

∗
s = − c∗

}

= − sup (ODP)0∗
X
. (18)

3.1 Basic Lemmas

Let us introduce the necessary notations. Given a lcHtvs Z , an extended real-valued

function h ∈ R
Z
, and ε ∈ R+, the set of ε-minimizers of h is defined by

ε − argmin h :=
{ {z ∈ Z : h(z) ≤ inf Z h + ε}, if inf

Z
h ∈ R,

∅, if inf
Z
h /∈ R,

or, equivalently,

ε − argmin h = {z ∈ h−1(R) : h(z) ≤ inf
Z
h + ε}.

Note that ε−argminh �= ∅when inf Z h ∈ R and ε > 0.Various calculus rules involv-
ing ε−argmin have been given in [26].

The ε-subdifferential of h at a point a ∈ Z is the set (see, for instance, [19])
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∂εh(a) :=
{ {z∗ ∈ Z∗ : h(z) ≥ h(a) + 〈z∗, z − a〉 − ε,∀z ∈ Z}, if h(a) ∈ R,

∅, if h(a) /∈ R,

=
{
z∗ ∈ (h∗)−1(R) : h∗(z∗) + h(a) ≤ 〈z∗, a〉 + ε

}
.

It can be checked that if h ∈ R
X
is convex and h(a) ∈ R, then ∂εh(a) �= ∅ for all

ε > 0 if and only if h is lower semi-continuous at a.
The inverse of the set-valued mapping ∂εh : Z ⇒ Z∗ is denoted by Mεh : Z∗ ⇒

Z . For each (ε, z∗) ∈ R+ × Z∗, we have
(
∂εh
)−1

(z∗) =
(
Mεh
)
(z∗) = ε − argmin (h − z∗).

Denoting by ∂εh∗(z∗) the ε-subdifferential of h∗ at z∗ ∈ Z∗, namely,

∂εh∗(z∗) =
{
z ∈ (h∗∗)−1(R) : h∗∗(z) + h∗(z∗) ≤ 〈z∗, z〉 + ε

}
,

where h∗∗(z) := sup
z∗∈Z∗

{〈z∗, z〉 − h∗(z∗)} is the biconjugate of h, we have

(Mεh)(z∗) ⊂ (∂εh∗)(z∗), ∀(ε, z∗) ∈ R+ × Z∗,

with equality if and only if h = h∗∗.
For each ε ∈ R+, we consider the set-valued mapping Sε : X∗ ⇒ X as follows:

Sε(x∗) := {x ∈ p−1(R) : p(x) − 〈x∗, x〉 ≤ −q(x∗) + ε
}
. (19)

If q(x∗) = −∞, then Sε(x∗) = p−1(R). If q(x∗) = +∞, then Sε(x∗) = ∅.

Since p∗ ≤ q, it is clear that

Sε(x∗) ⊂ (Mε p)(x∗), ∀ε ≥ 0, ∀x∗ ∈ X∗. (20)

Lemma 1 Assume that dom p �= ∅. Then, for each x∗ ∈ X∗, the next statements are
equivalent:

(i) Robust duality holds at x∗ , i.e., p∗(x∗) = q(x∗),
(ii) (Mε p) (x∗) = Sε(x∗), ∀ε ≥ 0,
(iii) ∃ε̄ > 0 : (Mε p) (x∗) = Sε(x∗), ∀ε ∈]0, ε̄[.
Proof [(i) ⇒ (ii)] By definition

(Mε p) (x∗) = ε − argmin(p − x∗)
= {x ∈ p−1(R) : p(x) − 〈x∗, x〉 ≤ −p∗(x∗) + ε

}
.

By (i) we thus have (Mε p) (x∗) = Sε(x∗).
[(ii) ⇒ (iii)] It is obviously true.
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[(iii) ⇒ (i)] Since p∗(x∗) ≤ q(x∗), (i) holds if p∗(x∗) = +∞. Moreover, since
dom p �= ∅, one has p∗(x∗) �= −∞. Let now p∗(x∗) ∈ R. In order to get a con-
tradiction, assume that p∗(x∗) �= q(x∗). Then p∗(x∗) < q(x∗) and there exists ε ∈
]0, ε̄[ such that p∗(x∗) + ε < q(x∗). Since inf x∈X {p(x) − 〈x∗, x〉} = −p∗(x∗) ∈
R and ε > 0, we have ε − argmin(p − x∗) �= ∅. Let us pick x ∈ (Mε p)(x∗) =
ε − argmin(p − x∗). By (iii), we have x ∈ Sε(x∗) and

−p∗(x∗) ≤ p(x) − 〈x∗, x〉 ≤ −q(x∗) + ε,

which contradicts p∗(x∗) + ε < q(x∗). �

For each ε ∈ R+, let us introduce now the following set-valued mapping
J ε : U ⇒ X :

J ε(u) := {x ∈ p−1(R) : p(x) ≤ Fu(x, 0u) + ε
}
, (21)

with the aim of making explicit the set Sε(x∗). To this purpose, given ε1, ε2 ∈ R+,
u ∈ U , and y∗

u ∈ Y ∗
u , let us introduce the set-valued mapping A(ε1,ε2)

(u,y∗
u )

: X∗ ⇒ X such
that

A(ε1,ε2)

(u,y∗
u )

(x∗) :=
{
x ∈ J ε1(u) : (x, 0u) ∈ (Mε2Fu)(x

∗, y∗
u )
}
.

Lemma 2 For each x∗ ∈ X∗, ε1, ε2 ∈ R+, u ∈ U, and y∗
u ∈ Y ∗

u , one has

A(ε1,ε2)

(u,y∗
u )

(x∗) ⊂ Sε1+ε2(x∗).

Proof Let x ∈ J ε1(u) be such that (x, 0u) ∈ (Mε2Fu)(x∗, y∗
u ). Then we have

F∗
u (x∗, y∗

u ) ∈ R and Fu(x, 0u) ∈ R. Moreover

Fu(x, 0u) + ε1 ≥ p(x) ≥ Fu(x, 0u) ∈ R,

implying p(x) ∈ R and, by (15),

p(x) − 〈x∗, x〉 ≤ Fu(x, 0u) − 〈x∗, x〉 + ε1 ≤ −F∗
u (x∗, y∗

u ) + ε1 + ε2

≤ −q(x∗) + ε1 + ε2,

that means x ∈ Sε1+ε2(x∗). �

Lemma 3 Assume that
dom Fu �= ∅,∀u ∈ U. (22)

Then, for each x∗ ∈ X∗, ε ∈ R+, η > 0, one has

Sε(x∗) ⊂
⋃

u∈U
y∗u∈Y∗

u

⋃

ε1+ε2=ε+η
ε1≥0, ε2≥0

A(ε1,ε2)

(u,y∗
u )

(x∗).
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Proof Let x ∈ p−1(R) be such that x ∈ Sε(x∗), i.e.,

p(x) − 〈x∗, x〉 ≤ −q(x∗) + ε.

We then have, for any η > 0,

q(x∗) < 〈x∗, x〉 − p(x) + ε + η

and, by definition of q and p, there exist u ∈ U , y∗
u ∈ Y ∗

u such that

F∗
u (x∗, y∗

u ) ≤ 〈x∗, x〉 − p(x) + ε + η ≤ 〈x∗, x〉 − Fu(x, 0u) + ε + η. (23)

Since p(x) ∈ R, F∗
u (x∗, y∗

u ) �= +∞. In fact, by (22), F∗
u (x∗, y∗

u ) ∈ R. Similarly,
Fu(x, 0u) ∈ R. Setting

α1 := p(x) − Fu(x, 0u), α2 := F∗
u (x∗, y∗

u ) + Fu(x, 0u) − 〈x∗, x〉,

we get α1 ∈ R+, α2 ∈ R. Actually α2 ≥ 0 since, by definition of conjugate,

F∗
u (x∗, y∗

u ) = sup
z∈X,yu∈Yu

{〈x∗, z〉 + 〈y∗
u , yu〉 − Fu(z, yu)

}
,

i.e., if z = x and yu = 0u,

F∗
u (x∗, y∗

u ) ≥ 〈x∗, x〉 − Fu(x, 0u),

so that
F∗
u (x∗, y∗

u ) + Fu(x, 0u) − 〈x∗, x〉 ≥ 0.

Then, by (23), 0 ≤ α1 + α2 ≤ ε + η. Consequently, there exist ε1, ε2 ∈ R+ such that
α1 ≤ ε1, α2 ≤ ε2, ε1 + ε2 = ε + η. Now α1 ≤ ε1 means that x ∈ J ε1(u) and α2 ≤ ε2
means that (x, 0u) ∈ (Mε2Fu)(x∗, y∗

u ), and we have x ∈ A(ε1,ε2)

(u,y∗
u )

(x∗). �

For each x∗ ∈ X∗, ε ∈ R+, let us define

Aε(x∗) :=
⋂

η>0

⋃

u∈U
y∗u∈Y∗

u

⋃

ε1+ε2=ε+η
ε1≥0, ε2≥0

A(ε1,ε2)

(u,y∗
u )

(x∗)

=
⋂

η>0

⋃

u∈U
y∗u∈Y∗

u

⋃

ε1+ε2=ε+η
ε1≥0, ε2≥0

{
x ∈ J ε1(u) : (x, 0u) ∈ (Mε2Fu)(x

∗, y∗
u )
}
.
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3.2 Robust Duality

We now can state the main result on characterizations of the robust conjugate duality.

Theorem 1 (Robust duality) Assume that dom p �= ∅. Then for each x∗ ∈ X∗, the
next statements are equivalent:
(i) inf (RP)x∗ = sup (ODP)x∗ ,
(ii) (Mε p) (x∗) = Aε(x∗), ∀ε ≥ 0,
(iii) ∃ε̄ > 0 : (Mε p) (x∗) = Aε(x∗), ∀ε ∈]0, ε̄[.
Proof We firstly claim that if dom p �= ∅ then for each x∗ ∈ X∗, ε ∈ R+, it holds:

Sε(x∗) = Aε(x∗). (24)

Indeed, as dom p �= ∅, (22) holds. It then follows fromLemma 3, Sε(x∗) ⊂ Aε(x∗).
On the other hand, for each η > 0, one has, by Lemma 2,

⋃

u∈U
y∗u∈Y∗

u

⋃

ε1+ε2=ε+η
ε1≥0, ε2≥0

A(ε1,ε2)

(u,y∗
u )

(x∗) ⊂ Sε+η(x∗).

Taking the intersection over all η > 0 we get

Aε(x∗) ⊂
⋂

η>0

Sε+η(x∗) = Sε(x∗),

and (24) follows. Taking into account the fact that (i) means p∗(x∗) = q(x∗), the
conclusions now follows from (24) and Lemma 1. �

For the deterministic optimization problem with linear perturbations (i.e., non-
uncertain case where U is a singleton), the next result is a direct consequence of
Theorem 1.

Corollary 1 (Robust duality for Case 1) Let F : X × Y → R∞ be such that dom
F(·, 0Y ) �= ∅. Then, for each x∗ ∈ X∗, the fundamental duality formula (2) holds,
i.e.,

inf
x∈X
{
F(x, 0Y ) − 〈x∗, x

〉} = sup
y∈Y ∗

−F∗(x∗, y∗),

if and only any if the (equivalent) conditions (ii) or (iii) in Theorem 1 holds, where

Aε(x∗) =
⋂

η>0

⋃

y∗∈Y ∗

{
x ∈ X : (x, 0Y ) ∈ (Mε+ηF

)
(x∗, y∗)

}
. (25)

Proof Let Fu = F : X × Y → R∞, p = F(·, 0Y ). In this case, one has,

J ε(u) = {x ∈ X : F(x, 0Y ) ∈ R} , ∀ε ≥ 0,
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and Aε(x∗) will take the form (25). The conclusion follows from Theorem 1. �

For uncertain optimization problem without perturbations, the following result is a
consequence of Theorem 1.

Corollary 2 (Robust duality for Case 2) Let ( fu)u∈U ⊂ R
X∞ bea family of extended

real-valued functions, p = supu∈U fu be such that dom p �= ∅. Then, for each
x∗ ∈ X∗, the inf − sup duality in robust optimization (4) holds, i.e.,

(
sup
u∈U

fu

)∗
(x∗) = inf

u∈U f ∗
u (x∗)

if and only any of the (equivalent) conditions (ii) or (iii) in Theorem 1 holds, where

Aε(x∗) =
⋂

η>0

⋃

u∈U

⋃

ε1+ε2=ε+η
ε1≥0, ε2≥0

{
J ε1(u) ∩ (Mε2 fu)(x

∗)
}
, (26)

with
J ε1(u) = {x ∈ p−1

(R) : fu(x) ≥ p(x) − ε1}.

Proof Let Fu(x, yu) = fu(x), for all u ∈ U and let p = sup
u∈U

fu . Then, by (21),

J ε(u) = {x ∈ p−1(R) : fu(x) ≥ p(x) − ε
}
, ∀ε ≥ 0. (27)

Moreover, recalling (3), for each u ∈ U such that dom fu �= ∅, (x∗, y∗
u ) ∈ X∗ × Y ∗

u ,
and ε ≥ 0,

(MεFu)
(
x∗, y∗

u

) =
{

(Mε fu) (x∗) , if y∗
u = 0∗

u,

∅, else.
(28)

Finally, for each (x∗, ε) ∈ X∗ × R+,Aε(x∗) takes the formas in (26). The conclusion
now follows from Theorem 1. �

4 Strong Robust Duality

We retain the notations in Section3 and consider the robust problem (RP)x∗ and its
robust dual problem (ODP)x∗ given in (12) and (13), respectively. Let p and q be
the functions defined by (14) and recall the relations in (15), that is,

⎧
⎨

⎩

p∗(x∗) = − inf (RP)x∗ , q(x∗) = − sup (ODP)x∗

q∗ = sup
(u,y∗

u)∈�

(
F∗
u

(·, y∗
u

))∗ = sup
u∈U

F∗∗
u (·, 0u) ≤ p.
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In this section we establish characterizations of strong robust duality at x∗. Recall
that the strong robust duality holds at x∗ means that inf (RP)x∗ = max (ODP)x∗ ,
which is the same as

∃(u, y∗
u ) ∈ � : p∗(x∗) = F∗

u (x∗, y∗
u ).

For this, we need a technical lemma, but firstly, given x∗ ∈ X∗, u ∈ U , y∗
u ∈ Y ∗

u , and
ε ≥ 0, let us introduce the set

Bε
(u,y∗

u )
(x∗) =

⋃

ε1+ε2=ε
ε1�0,ε2�0

A(ε1,ε2)

(u,y∗
u )

(x∗)

=
⋃

ε1+ε2=ε
ε1�0,ε2�0

{
x ∈ J ε1(u) : (x, 0u) ∈ (Mε2Fu)(x

∗, y∗
u )
}
.

Lemma 4 Assume that dom Fu �= ∅, for all u ∈ U, holds and let x∗ ∈ X∗ be such
that

q(x∗) = min
u ∈ U
y∗
u ∈ Y ∗

u

F∗
u (x∗, y∗

u ).

Then there exist u ∈ U, y∗
u ∈ Y ∗

u such that

Sε(x∗) = Bε
(u,y∗

u )
(x∗), ∀ε ≥ 0.

Proof By Lemma 2 we have Bε
(u,y∗

u )
(x∗) ⊂ Sε(x∗). Conversely, let x ∈ Sε(x∗). By

the exactness of q at x∗, there exist u ∈ U and y∗
u ∈ Y ∗

u such that

p(x) − 〈x∗, x〉 ≤ −F∗
u (x∗, y∗

u ) + ε.

Since p(x) ∈ R and dom Fu �= ∅, for all u ∈ U, we have F∗
u (x∗, y∗

u ) ∈ R,
Fu(x, 0u) ∈ R,

(
p(x) − Fu(x, 0u)

)
+
(
Fu(x, 0u) + F∗

u (x∗, y∗
u ) − 〈x∗, x〉

)
≤ ε.

Consequently, there exist ε1 ≥ 0, ε2 ≥ 0 such that ε1 + ε2 = ε,

p(x) − Fu(x, 0u) ≤ ε1 and Fu(x, 0u) + F∗
u (x∗, y∗

u ) − 〈x∗, x〉 ≤ ε2,

that is, x ∈ J ε1(u) and (x, 0u) ∈ (Mε2Fu)(x∗, y∗
u ). Thus, x ∈ A(ε1,ε2)

(u,y∗
u )

(x∗) ⊂
Bε

(u,y∗
u )
(x∗), since ε1 + ε2 = ε. �

Theorem 2 (Strong robust duality) Assume that dom p �= ∅ and let x∗ ∈ X∗. The
next statements are equivalent:
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(i) inf (RP)x∗ = max (ODP)x∗ ,
(ii) ∃u ∈ U, ∃y∗

u ∈ Y ∗
u : (Mε p) (x∗) = Bε

(u,y∗
u )
(x∗),∀ε ≥ 0,

(iii) ∃ε̄ > 0, ∃u ∈ U, ∃y∗
u ∈ Y ∗

u : (Mε p) (x∗) = Bε
(u,y∗

u )
(x∗),∀ε ∈]0, ε̄[.

Proof Observe firstly that (i) means that

p∗(x∗) = q(x∗) = min
u ∈ U
y∗
u ∈ Y ∗

u

F∗
u (x∗, y∗

u ).

As dom p �= ∅, (22) holds, and then by Lemmas 1 and 4, (i) implies the remaining
conditions, which are equivalent to each other, and also that (iii) implies p∗(x∗) =
q(x∗).

We nowprove that (iii) implies q(x∗) = F∗
u (x∗, y∗

u ). Assume by contradiction that
there exists ε > 0 such that q(x∗) + ε < F∗

u (x∗, y∗
u ), and without loss of generality

one can take ε ∈ ]0, ε̄[ , where ε̄ > 0 appeared in (iii). Then, by (iii), (Mε p) (x∗) =
Bε

(u,y∗
u )
(x∗).

Pick x ∈ (Mε p) (x∗) = Bε
(u,y∗

u )
(x∗). Then, there are ε1 ≥ 0, ε2 ≥ 0, ε1 + ε2 = ε,

x ∈ J ε1(u) and (x, 0u) ∈ (Mε2Fu)(x∗, y∗
u ). In other words,

p(x) ≤ Fu(x, 0u) + ε1, (29)

F∗((x∗, y∗
u ) + Fu(x, 0u) ≤ 〈x∗, x〉 + ε2. (30)

It now follows from (29)–(30) that

p∗ (x∗) ≥ 〈x∗, x〉 − p (x) ≥ 〈x∗, x〉 − Fu(x, 0u) − ε1

≥ 〈x∗, x〉 + F∗
u (x∗, y∗

u ) − 〈x∗, x〉 − ε2 − ε1 = F∗
u (x∗, y∗

u ) − ε > q(x∗),

which contradicts the fact that p∗(x∗) = q(x∗). �

In deterministic optimization with linear perturbations we get the next consequence
from Theorem 2.

Corollary 3 (Strong robust duality for Case 1) Let F : X × Y → R∞, p =
F(·, 0Y ), and assume that dom p �= ∅. Then, for each x∗ ∈ X∗, the strong dual-
ity for (P)x∗ in Case 1 holds at x∗, i.e.,

inf
x∈X
{
F (x, 0Y ) − 〈x∗, x

〉} = max
y∗∈Y ∗ −F∗ (x∗, y∗) ,

if and only if one of the (equivalent) conditions (ii) or (iii) in Theorem 2 holds with
Bε

(u,y∗
u )
(x∗) being replaced by

Bε
y∗(x∗) := {x ∈ X : (x, 0Y ) ∈ (MεF)(x∗, y∗)

}
. (31)
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Proof It is worth observing that we are in the non-uncertainty case (i.e., U is a
singleton), and the set Bε

(u,y∗
u )
(x∗) writes as in (31) for each (x∗, y∗) ∈ X∗ × Y ∗,

ε ≥ 0. The conclusion follows from Theorem 2. �

In the non-perturbation case, Theorem 2 gives rise to

Corollary 4 (Strong robust duality for Case 2) Let ( fu)u∈U ⊂ R
X∞, x∗ ∈ X∗, and

p = sup
u∈U

fu such that dom p �= ∅. Then, the robust duality formula

(
sup
u∈U

fu
)∗

(x∗) = min
u∈U f ∗

u (x∗)

holds if and only if one of the (equivalent) conditions (ii) or (iii) in Theorem 2 holds
with Bε

(u,y∗
u )
(x∗) being replaced by

Bε
u(x

∗) :=
⋃

ε1+ε2=ε
ε1�0,ε2�0

(
J ε1(u) ∩ (Mε2 fu)(x

∗)
)
. (32)

Proof Let Fu(x, yu) = fu(x), p = sup
u∈U

fu , and, from (27) and (28) (see the proof of

Corollary 2),

Bε
(u,y∗

u )
(x∗) =

⎧
⎪⎨

⎪⎩

⋃

ε1+ε2=ε
ε1�0,ε2�0

(
J ε1(u) ∩ (Mε2 fu)(x∗)

)
, if y∗

u = 0∗
u,

∅, else,

which in our situation, collapses to the set Bε
u(x

∗) defined by (32). The conclusion
now follows from Theorem 2. �

5 Reverse Strong and Min-Max Robust Duality

Given Fu : X × Yu → (R∞)X for each u ∈ U , p = sup
u∈U

Fu(·, 0u), and x∗ ∈ X∗, we

assume in this section that the problem (RP)x∗ is finite-valued and admits an opti-
mal solution or, in other words, that argmin(p − x∗) = (M0 p)(x∗) �= ∅. For conve-
nience, we set

(Mp)(x∗) := (M0 p)(x∗), S(x∗) := S0(x∗), and

A(x∗) := A0(x∗) =
⋂

η>0

⋃

u∈U
y∗u∈Y∗

u

⋃

ε1+ε2=η
ε1≥0, ε2≥0

{
x ∈ J ε1(u) : (x, 0u) ∈ (Mε2Fu)(x

∗, y∗
u )
}
.

(33)
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Theorem 3 (Reverse strong robust duality) Let x∗ ∈ X∗ be such that
(Mp)(x∗) �= ∅ and let A(x∗) be as in (33). The next statements are equivalent:
(i) min (RP)x∗ = sup (ODP)x∗ ,
(ii) (Mp)(x∗) = A(x∗).

Proof Since (Mp)(x∗) �=∅, dom p �=∅. It follows from Theorem 1 that [(i) =⇒ (ii)].
For the converse, let us pick x ∈ (Mp)(x∗). Then by (ii), for each η > 0 there
exist u ∈ U , y∗

u ∈ Y ∗
u , ε1 ≥ 0, ε2 ≥ 0 such that ε1 + ε2 = η, x ∈ J ε1(u), (x, 0u) ∈

(Mε2Fu)(x∗, y∗
u ) and we have

q(x∗) ≤ F∗
u (x∗, y∗

u ) ≤ 〈x∗, x〉 − Fu(x, 0u) + ε2

≤ 〈x∗, x〉 − p(x) + ε1 + ε2 ≤ p∗(x∗) + η.

Sinceη > 0 is arbitrarywegetq(x∗) ≤ p∗(x∗),which, togetherwith theweakduality
(see (16)), yields q(x∗) = 〈x∗, x〉 − p(x) = p∗(x∗), i.e., (i) holds and we are done.

�

In the deterministic case we obtain from Theorem 3:

Corollary 5 (Reverse strong robust duality for Case 1) Let F : X × Y → R∞,
x∗ ∈ X∗, p = F(·, 0Y ), and

A(x∗) =
⋂

η>0

⋃

y∗∈Y ∗

{
x ∈ X : (x, 0Y ) ∈ (MηF)(x∗, y∗)

}
.

Assume that (Mp)(x∗) �= ∅. Then the next statements are equivalent:
(i) min

x∈X
{F (x, 0Y ) − 〈x∗, x〉} = sup

y∗∈Y ∗
−F∗ (x∗, y∗),

(ii) (Mp)(x∗) = A(x∗).

Corollary 6 (Reverse strong robust duality for Case 2) Let ( fu)u∈U ⊂ R
X∞, p =

sup
u∈U

fu, x∗ ∈ X∗, and

A(x∗) :=
⋂

η>0

⋃

u∈U

⋃

ε1+ε2=η
ε1≥0, ε2≥0

(
J ε1(u) ∩ (Mε2 fu)(x

∗)
)
,

where
J ε1(u) =

{
x ∈ p−1(R) : fu(x) ≥ p(x) − ε1

}
.

Assume that (Mp)(x∗) �= ∅. Then the next statements are equivalent:

(i)
(
sup
u∈U

fu
)∗

(x∗) = inf
u∈U f ∗

u (x∗), with attainment at the first member,

(ii) (Mp)(x∗) = A(x∗).

Now, for each u ∈ U , y∗
u ∈ Y ∗

u , x
∗ ∈ X∗, we set
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J (u) := J 0(u) =
{
x ∈ p−1(R) : Fu(x, 0u) = p(x)

}
,

(MFu)(x
∗, y∗

u ) := (M0Fu)(x
∗, y∗

u ) = argmin
(
Fu − 〈x∗, ·〉 − 〈y∗

u , ·〉
)
,

and

B(u,y∗
u )
(x∗) := B0

(u,y∗
u )
(x∗) =

{
x ∈ J (u) : (x, 0u) ∈ (MFu)(x

∗, y∗
u )
}
. (34)

Theorem 4 (Min-max robust duality) Let x∗ ∈ X∗ be such that (Mp)(x∗) �= ∅.
The next statements are equivalent:

(i) min (RP)x∗ = max (ODP)x∗ ,
(ii) ∃u ∈ U, ∃y∗

u ∈ Y ∗
u : (Mp)(x∗) = B(u,y∗

u )
(x∗),

where B(u,y∗
u )
(x∗) is the set defined in (34).

Proof By Theorem 2 we know that [(i) =⇒ (ii)]. We now prove that [(ii) =⇒ (i)].
Pick x ∈ (Mp)(x∗)which is non-empty by assumption. Then by (ii), x ∈ B(u,y∗

u )
(x∗),

which yields x ∈ J (u) and (x, 0u) ∈ (MFu)(x∗, y∗
u ). Hence,

q(x∗) ≤ F∗
u (x∗, y∗

u ) ≤ 〈x∗, x〉 − Fu(x, 0u)

≤ 〈x∗, x〉 − p(x) ≤ p∗(x∗) ≤ q(x∗),

which means that q(x∗) = F∗
u (x∗, y∗

u ) = 〈x∗, x〉 − p(x) = p∗(x∗) and (i) follows.
�

Corollary 7 (Min-max robust duality for Case 1) Let F : X × Y → R∞, x∗ ∈
X∗, p = F(·, 0Y ), and for each y∗ ∈ Y ∗,

By∗(x∗) :=
{
x ∈ X : (x, 0Y ) ∈ (MF)(x∗, y∗)

}
.

Assume that (Mp)(x∗) �= ∅. The next statements are equivalent:
(i) min

x∈X
{F (x, 0Y ) − 〈x∗, x〉} = max

y∗∈Y ∗ −F∗ (x∗, y∗),

(ii) ∃y∗ ∈ Y ∗: (Mp)(x∗) = By∗(x∗).

Corollary 8 (Min-max robust duality for Case 2) Let ( fu)u∈U ⊂ R
X∞, p= sup

u∈U
fu,

x∗ ∈ X∗, and for each u ∈ U,

Bu(x
∗) := J (u) ∩ (M fu)(x

∗),

where J (u) = {x ∈ p−1(R) : fu(x) = p(x)}. Assume that (Mp)(x∗) �= ∅. Then the
next statements are equivalent:

(i)
(
sup
u∈U

fu
)∗

(x∗) = min
u∈U f ∗

u (x∗), with attainment at the first member,

(ii) ∃u ∈ U: (Mp)(x∗) = Bu(x∗).
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6 Stable Robust Duality

Let us first recall some notations. Given Fu : X × Yu → R∞, u ∈ U,

p = sup
u∈U

Fu(·, 0u) and q = inf
u∈U
y∗
u∈Y ∗

u

F∗
u (·, y∗

u ). Remember that p∗(x∗) ≤ q(x∗) for each

x∗ ∈ X∗. Stable robust dualitymeans that inf (RP)x∗ = sup (ODP)x∗ for all x∗ ∈ X∗,
or equivalently,

p∗(x∗) = q(x∗), ∀x∗ ∈ X∗.

Theorem 1 says that, if dom p �= ∅, then stable robust duality holds if and only if for
each ε ≥ 0 the set-valued mappings Mε p, Aε : X∗ ⇒ X coincide, where, for each
x∗ ∈ X∗,

(Mε p)(x∗) := ε − argmin(p − x∗),

Aε(x∗) :=
⋂

η>0

⋃

u∈U
y∗u∈Y∗

u

⋃

ε1+ε2=ε+η
ε1≥0, ε2≥0

{
x ∈ J ε1(u) : (x, 0u) ∈ (Mε2Fu)(x

∗, y∗
u )
}
.

Consequently, stable robust duality holds if and only if for each ε ≥ 0, the inverse
set-valued mappings

(Mε p)−1, (Aε)−1 : X ⇒ X∗,

coincide. Recall that (Mε p)−1 is nothing but the ε-subdifferential of p at x .
Let us nowmake explicit (Aε)−1. To this end we need to introduce for each ε ≥ 0

the (ε-active indexes) set-valued mapping I ε : X ⇒ U with

I ε(x) =
{{

u ∈ U : Fu(x, 0u) ≥ p(x) − ε
}
, if p(x) ∈ R,

∅, if p(x) /∈ R.
(35)

We observe that I ε is nothing but the inverse of the set-valued mapping J ε : U ⇒ X
defined in (21).

Lemma 5 For each (ε, x) ∈ R+ × X one has

(Aε)−1(x) =
⋂

η>0

⋃

ε1+ε2=ε+η
ε1�0,ε1�0

⋃

u∈I ε1 (x)

projuX∗∂
ε2Fu(x, 0u),

where projuX∗ :X∗ × Y ∗
u −→ X∗ is the projection mapping projuX∗(x∗, y∗

u ) = x∗.

Proof Let (ε, x, x∗) ∈ R+ × X × X∗. One has
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x∗ ∈ (Aε)−1(x) ⇔ x ∈ Aε(x∗)

⇔
{∀η > 0, ∃u ∈ U, ∃y∗

u ∈ Y ∗
u , ∃(ε1, ε2) ∈ R

2+ such that
ε1 + ε2 = ε + η, x ∈ J ε1 (u) and (x, 0u) ∈ (Mε2 Fu)(x∗, y∗

u )

⇔
{∀η > 0, ∃u ∈ U, ∃y∗

u ∈ Y ∗
u , ∃(ε1, ε2) ∈ R

2+ such that

ε1 + ε2 = ε + η, u ∈ I ε1(x), and (x∗, y∗
u ) ∈

(
∂ε2 Fu

)
(x, 0u)

⇔
{∀η > 0, ∃u ∈ U, ∃(ε1, ε2) ∈ R

2+ such that

ε1 + ε2 = ε + η, u ∈ I ε1(x), and x∗ ∈ projuX∗
(
∂ε2 Fu

)
(x, 0u)

⇔ x∗ ∈
⋂

η>0

⋃

ε1+ε2=ε+η
ε1�0,ε1�0

⋃

u∈I ε1 (x)

projuX∗(∂ε2 Fu)(x, 0u).

�

Now, for each (ε, x) ∈ R+ × X , let us set

Cε(x) :=
⋂

η>0

⋃

ε1+ε2=ε+η
ε1�0,ε1�0

⋃

u∈I ε1 (x)

projuX∗(∂
ε2Fu)(x, 0u). (36)

Applying Theorem 1 and Lemma 5 we obtain:

Theorem 5 (Stable robust duality) Assume that dom p �= ∅. The next statements
are equivalent:

(i) inf (RP)x∗ = sup (ODP)x∗ for all x∗ ∈ X∗,
(ii) ∂ε p(x) = Cε(x), ∀(ε, x) ∈ R+ × X,
(iii) ∃ε̄ > 0: ∂ε p(x) = Cε(x), ∀(ε, x) ∈ ]0, ε̄[ ×X.

Corollary 9 (Stable robust duality for Case 1) Let F : X × Y → R∞ be such
that dom F(·, 0Y ) �= ∅. Let projX∗ :X∗ × Y ∗ −→ X∗ be the projection mapping
projX∗(x∗, y∗) = x∗. Then, the next statements are equivalent:

(i) inf
x∈X

{
F(x, 0Y ) − 〈x∗, x〉

}
= sup

y∗∈Y ∗
−F∗(x∗, y∗), ∀x∗ ∈ X∗,

(ii) (∂ε p)(x) =⋂η>0 projX∗(∂ε+ηF)(x, 0Y ), ∀(ε, x) ∈ R+ × X,
(iii) ∃ε̄ > 0: (∂ε p)(x) =⋂η>0 projX∗(∂ε+ηF)(x, 0Y ), ∀(ε, x) ∈]0, ε̄[×X.

Proof Let U = {u0} and F = Fu0 : X × Y → R∞, Y = Yu0 , p = F(·, 0Y ). Then
for each (ε, x) ∈ R+ × X ,

I ε(x) =
{ {u0}, if p(x) ∈ R,

∅, if p(x) /∈ R,

and ⋃

ε1+ε2=ε
ε1�0,ε1�0

⋃

u∈I ε1 (x)

projuX∗(∂
ε2Fu)(x, 0u) = projX∗

(
∂εF
)
(x, 0Y ). (37)
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The conclusion now follows from (36)–(37) and Theorem 5. �

Remark 1 Condition (ii) in Corollary 9 was quoted in [17, Theorem 4.3] for all
(ε, x) ∈]0,+∞[×R, which is equivalent.

Corollary 10 (Stable robust duality for Case 2) Let ( fu)u∈U ⊂ R
X∞, p = sup

u∈U
fu,

and assume that dom p �= ∅. The next statements are equivalent:
(i)
(
sup
u∈U

fu
)∗

(x∗) = inf
u∈U f ∗

u (x∗), ∀x∗ ∈ X∗,

(ii) (∂ε p)(x) = Cε(x), ∀(ε, x) ∈ R+ × X,
(iii) ∃ε̄ > 0: (∂ε p)(x) = Cε(x), ∀(ε, x) ∈]0, ε̄[×X,
where Cε(x) is the set

Cε(x) =
⋂

η>0

⋃

ε1+ε2=ε+η
ε1�0,ε1�0

⋃

u∈I ε1 (x)

(∂ε2 fu)(x), ∀(ε, x) ∈ R+ × X. (38)

Proof Let Fu : X × Yu → R∞ be such that Fu(x, yu) = fu(x) for all u ∈ U . Then
for any (ε, x) ∈ R+ × X ,

I ε(x) =
{{

u ∈ U : fu(x) ≥ p(x) − ε
}
, if p(x) ∈ R,

∅, if p(x) /∈ R,

(∂εFu)(x, 0u) = (∂ε fu)(x) × {0∗
u}, ∀(u, ε, x) ∈ U × R+ × X,

and Cε(x) reads as in (38). The conclusion now follows from Theorem 5. �

7 Stable Strong Robust Duality

We retain all the notations used in the Sections3–6. Given (ε, u) ∈ R+ ×U and
y∗
u ∈ Y ∗

U we have introduced in Section4 the set-valued mapping Bε
(u,y∗

u )
: X∗ ⇒ X

defined by

Bε
(u,y∗

u )
(x∗) =

⋃

ε1+ε2=ε
ε1�0,ε2�0

{
x ∈ J ε1(u) : (x, 0u) ∈ (Mε2Fu)(x

∗, y∗
u )
}
.

Let us now define Bε : X∗ ⇒ X by setting

Bε(x∗) :=
⋃

u∈U
y∗u∈Y∗

u

Bε
(u,y∗

u )
(x∗), ∀x∗ ∈ X∗.
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Lemma 6 For each (ε, x) ∈ R+ × X we have

(Bε)−1(x) =
⋃

ε1+ε2=ε
ε1�0,ε2�0

⋃

u∈I ε1 (x)

projuX∗(∂
ε2Fu)(x, 0u).

Proof x∗ ∈ (Bε)−1(x) means that there exist u ∈ U , y∗
u ∈ Y ∗

u ε1 ≥ 0, ε2 ≥ 0, such
that ε1 + ε2 = ε, x ∈ J ε1(u), and (x, 0u) ∈ (Mε2Fu)(x∗, y∗

u ), or, equivalently, u ∈
I ε1(x), and (x∗, y∗

u ) ∈ (∂ε2Fu)(x, 0u). In other words, there exist u ∈ U , y∗
u ∈ Y ∗

u
such that x ∈ Bε

(u,y∗
u )
(x∗), that is x ∈ Bε(x∗). �

For each ε ≥ 0 let us introduce the set-valued mapping Dε := (Bε)−1. Now Lemma
6 writes

Dε(x) =
⋃

ε1+ε2=ε
ε1�0,ε2�0

⋃

u∈I ε1 (x)

projuX∗(∂
ε2Fu)(x, 0u), ∀(ε, x) ∈ R+ × X. (39)

Note that
Cε(x) =

⋂

η>0

Dε+η(x), ∀(ε, x) ∈ R+ × X, (40)

and that Dε(x) = ∅ whenever p(x) /∈ R.
We now provide a characterization of stable strong robust duality in terms of

ε-subdifferential formulas.

Theorem 6 (Stable strong robust duality) Assume that dom p �= ∅, and let Dε

as in (39). The next statements are equivalent:
(i) inf (RP)x∗ = max (ODP)x∗ = max

u∈U
y∗u∈Y∗

u

−F∗
u (x∗, y∗

u ), ∀x∗ ∈ X∗,

(ii) ∂ε p(x) = Dε(x), ∀(ε, x) ∈ R+ × X.

Proof [(i) =⇒ (ii)] Let x∗ ∈ ∂ε p(x). Then x ∈ (Mε p)(x∗). Since strong robust
duality holds at x∗, Theorem 2 says that there exist u ∈ U , y∗

u ∈ Y ∗
u such that x ∈

Bε
(u,y∗

u )
(x∗) ⊂ Bε(x∗), and finally x∗ ∈ Dε(x) by Lemma 6. Thus ∂ε p(x) ⊂ Dε(x).

Now, let x∗ ∈ Dε(x). By Lemma 6 we have x ∈ Bε(x∗) and there exist u ∈ U ,
y∗
u ∈ Y ∗

u such that x ∈ Bε
(u,y∗

u )
(x∗). By Lemma 2 and the definition of Bε

(u,y∗
u )
(x∗) we

have x ∈ Sε(x∗), and, by (20), x ∈ (Mε p)(x∗) which means that x∗ ∈ ∂ε p(x), and
hence, Dε(x) ⊂ ∂ε p(x). Thus (ii) follows.

[(ii) =⇒ (i)] If p∗(x∗) = +∞ then q(x∗) = +∞ and one has p∗(x∗) =
F∗
u (x∗, y∗

u ) = +∞ for all u ∈ U , y∗
u ∈ Y ∗

u , and (i) holds. Assume that p∗(x∗) ∈ R

and pick x ∈ p−1(R) which is non-empty as dom p �= ∅ and p∗(x∗) ∈ R. Let ε :=
p(x) + p∗(x∗) − 〈x∗, x〉. Then ε ≥ 0 and we have x∗ ∈ ∂ε p(x). By (ii) x ∈ Dε(x)
and hence, there exist ε1 ≥ 0, ε2 ≥ 0, u ∈ U , and y∗

u ∈ Y ∗
u such that ε1 + ε2 = ε,

u ∈ I ε1(x), (x∗, y∗
u ) ∈ (∂ε2Fu)(x, 0u). We have
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q(x∗) ≤ F∗
u (x∗, y∗

u ) ≤ 〈x∗, x〉 − Fu(x, 0u) + ε2

≤ 〈x∗, x〉 − p(x) + ε1 + ε2 = p∗(x∗) (by definition of ε)

≤ q(x∗),

and finally, q(x∗) = F∗
u (x∗, y∗

u ) = p∗(x∗), which is (i). �

Next, as usual, we give two consequences of Theorem 6 for the non-uncertainty and
non-parametric cases.

Corollary 11 (Stable strong duality for Case 1) Let F : X×Y → R∞, p =
F(·, 0Y ), dom p �= ∅. The next statements are equivalent:
(i) inf

x∈X

{
F(x, 0Y ) − 〈x∗, x〉

}
= max

y∗∈Y ∗ −F∗(x∗, y∗), ∀x∗ ∈ X∗,

(ii) ∂ε p(x) = projX∗(∂εF)(x, 0y), ∀(ε, x) ∈ R+ × X.

Proof This is the non-uncertainty case (i.e., the uncertainty set is a singleton) of
the general problem (RP)x∗ , with U = {u0} and Fu0 = F : X × Y → R∞. We have
from (37),

Dε(x) = projX∗(∂εF)(x, 0Y ), ∀(ε, x) ∈ R+ × X. (41)

The conclusion now follows from Theorem 6. �

Corollary 12 (Stable strong duality for Case 2) Let ( fu)u∈U ⊂ R
X∞, p = sup

u∈U
fu,

and dom p �= ∅. The next statements are equivalent:
(i) (sup

u∈U
fu)∗(x∗) = min

u∈U f ∗
u (x∗), ∀x∗ ∈ X∗,

(ii) ∂ε p(x) = Dε(x), ∀(ε, x) ∈ R+ × X, where

Dε(x) =
⋃

ε1+ε2=ε
ε1�0,ε2�0

⋃

u∈I ε1 (x)

(∂ε2 fu)(x), ∀(ε, x) ∈ R+ × X, (42)

and

I ε(x) =
{{

u ∈ U : fu(x) ≥ p(x) − ε
}
if p(x) ∈ R,

∅ if p(x) /∈ R.

Proof In this non-parametric situation, let Fu(x, yu) = fu(x). It is easy to see that
in this case, the set Dε(x) can be expressed as in (42), and the conclusion follows
from Theorem 6. �
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8 Exact Subdifferential Formulas: Robust Basic
Qualification Condition

Given Fu : X × Yu → R∞, u ∈ U , as usual, we let p = sup
u∈U

Fu(·, 0u),
q := inf

(u,y∗
u)∈�

F∗
u (·, y∗

u ). Again, we consider the robust problem (RP)x∗ and its robust

dual problem (ODP)x∗ given in (12) and (13), respectively. Note that the reverse
strong robust duality holds at x∗ means that, for some x̄ ∈ X , it holds

− p∗(x∗) = min (RP)x∗ = sup
u∈U

Fu(x̄, 0u) − 〈x∗, x̄〉
= p(x̄) − 〈x∗, x̄〉 = sup (ODP)x∗ = −q(x∗). (43)

Now, let us set, for each x ∈ X ,

D(x) := D0(x) =
⋃

u∈I (x)
projuX∗(∂Fu)(x, 0u), (44)

C(x) := C0(x) =
⋂

η>0

⋃

ε1+ε2=η
ε1�0,ε2�0

⋃

u∈I ε1 (x)

projuX∗(∂
ε2Fu)(x, 0u), (45)

where I ε1(x) is defined as in (35) and

I (x) :=
{ {u ∈ U : Fu(x, 0u) = p(x)} , if p(x) ∈ R,

∅, if p(x) /∈ R.
(46)

Lemma 7 For each x ∈ X, it holds

D(x) ⊂ C(x) ⊂ ∂p(x).

Proof The first inclusion is easy to check. Now let x∗ ∈ C(x). For each η > 0 there
exist (ε1, ε2) ∈ R

2+, u ∈ I ε1(x), and y∗
u ∈ Y ∗

u such that ε1 + ε2 = η and (x∗, y∗
u ) ∈

(∂ε2Fu)(x, 0u). We then have F∗
u (x∗, y∗

u ) + Fu(x, 0u) − 〈x∗, x〉 ≤ ε2, p(x) ≤
Fu(x, 0u) + ε1 (as u ∈ I ε1(x)), and p∗(x∗) ≤ q(x∗) ≤ F∗

u (x∗, y∗
u ). Consequently,

p∗(x∗) + p(x) − 〈x∗, x〉 ≤ F∗
u (x∗, y∗

u ) + Fu(x, 0u) + ε1 − 〈x∗, x〉 ≤ ε1 + ε2 = η.

Since η > 0 is arbitrary we get p∗(x∗) + p(x) − 〈x∗, x〉 ≤ 0, which means that
x∗ ∈ ∂p(x). The proof is complete. �

Theorem 7 Let x ∈ p−1(R) and C(x) be as in (45). The next statements are equiv-
alent:
(i) ∂p(x) = C(x),
(ii) Reverse strong robust duality holds at each x∗ ∈ ∂p(x),
(iii) Robust duality holds at each x∗ ∈ ∂p(x).
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Proof [(i) =⇒ (ii)] Let x∗ ∈ ∂p(x). We have x∗ ∈ C(x) = (A)−1(x) (see Lemma
5 with ε = 0). Then x ∈ A(x∗) = S(x∗) (see (24) with ε = 0), and therefore,

−p∗(x∗) ≤ p(x) − 〈x∗, x〉 ≤ −q(x∗) ≤ −p∗(x∗),

−p∗(x∗) = min
z∈X {p(z) − 〈x∗, z〉} = p(x) − 〈x∗, x〉 = −q(x∗),

that means that reverse strong robust duality holds at x∗ (see (43)).
[(ii) =⇒ (iii)] is obvious.
[(iii) =⇒ (i)] By Lemma 7 it suffices to check that the inclusion “⊂” holds. Let
x∗ ∈ ∂p(x). We have x ∈ (Mp)(x∗). Since robust duality holds at x∗, Theorem 1
(with ε = 0) says that x ∈ A(x∗). Thus, x∗ ∈ A−1(x), and, by Lemma 5, x∗ ∈ C(x).

�

In the deterministic and the non-parametric cases, we get the next results from
Theorem 7.

Corollary 13 Let F : X × Y → R∞, p = F(·, 0Y ), and x ∈ p−1(R). The next
statements are equivalent:
(i) ∂p(x) = ⋂

η>0
projX∗(∂ηF)(x, 0Y ),

(ii) min
z∈X

{
F(z, 0Y ) − 〈x∗, x〉

}
= sup

y∗∈Y ∗
−F∗(x∗, y∗), ∀x∗ ∈ ∂p(x),

(iii) inf
z∈X

{
F(z, 0Y ) − 〈x∗, x〉} = sup

y∗∈Y ∗
−F∗(x∗, y∗), ∀x∗ ∈ ∂p(x).

Proof Let Fu = F : X × Y → R∞ and p = F(·, 0Y ). We then have

C(x) =
⋂

η>0

projX∗(∂ηF)(x, 0Y ), ∀x ∈ X,

(see Corollary 9) and the conclusion follows directly from Theorem 7. �

Corollary 14 Let ( fu)u∈U ⊂ R
X∞, p = sup

u∈U
fu, x ∈ p−1(R). The next statements are

equivalent:

(i) ∂

(
sup
u∈U

fu

)
(x) = C(x),

(ii) max
z∈X

{
〈x∗, z〉 − p(z)

}
= inf

u∈U f ∗
u (x∗), ∀x∗ ∈ ∂p(x),

(iii)

(
sup
u∈U

fu

)∗
(x∗) = inf

u∈U f ∗
u (x∗), ∀x∗ ∈ ∂p(x),

where
C(x) =

⋂

η>0

⋃

ε1+ε2=η
ε1�0,ε2�0

⋃

u∈I ε1 (x)

projuX∗(∂
ε2 fu)(x),∀x ∈ X. (47)
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Proof Let Fu(x, yu) = fu(x). Then it is easy to see that in this case, C(x) can be
expressed as in (47). The conclusion now follows from Theorem 7. �

Let us come back to the general case and consider the most simple subdifferential
formula one can expect for the robust objective function p = sup

u∈U
Fu(·, 0u):

∂p(x) =
⋃

u∈I (x)
projuX∗ (∂Fu) (x, 0u), (48)

where the set of active indexes at x , I (x), is defined by (46).
In Case 3 we have

p(x) =
{
f (x), if Hu(x) ∈ −Su,∀u ∈ U,

+∞, else,

I (x) = U for each x ∈ p−1(R), and (48) writes

∂p(x) =
⋃

u∈U, z∗u∈S+
u

〈z∗u ,Hu (x)〉=0

∂( f + z∗u ◦ Hu)(x),

which has been called Basic Robust Subdifferential Condition (BRSC) in
[8] (see [18, page 307] for the deterministic case). More generally, let us
introduce the following terminology:

Definition 1 Given Fu : X × Yu → R∞ for eachu ∈ U , and p = sup
u∈U

Fu(·, 0u),
we will say that Basic Robust Subdifferential Condition holds at a point
x ∈ p−1(R) if (48) is satisfied, that is ∂p(x) = D(x).

Recall that, in Example 1, p (x) = 〈c∗, x〉 + iA (x) , where A = p−1(R)

is the feasible set of the linear system. So, given x ∈ A, ∂p(x) is the sum of c∗
with the normal cone of A at x, i.e., Basic Robust Subdifferential Condition
(at x) asserts that such a cone can be expressed in some prescribed way.

Theorem 8 Let x ∈ p−1(R). The next statements are equivalent:
(i) Basic Robust Subdifferential Condition holds at x,
(ii) Min-max robust duality holds at each x∗ ∈ ∂p(x),
(iii) Strong robust duality holds at each x∗ ∈ ∂p(x).

Proof [(i) =⇒ (ii)] Let x∗ ∈ ∂p(x). We have x∗ ∈ D(x) and, by (44),
there exist u ∈ I (x) (i.e., p(x) = Fu(x, 0u)), y∗

u ∈ Y ∗
u , such that (x∗, y∗

u ) ∈
∂Fu)(x, 0u). Then,
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p∗(x∗) ≥ 〈x∗, x〉 − p(x) = 〈x∗, x〉 − Fu(x, 0u) = F∗
u (x∗, y∗

u )

≥ q(x∗) ≥ p∗(x∗).

It follows that

max
z∈X {〈x∗, z〉 − p(z)} = 〈x∗, x〉 − p(x) = F∗

u (x∗, y∗
u ) = q(x∗),

and min-max robust duality holds at x∗.
[(ii) =⇒ (iii)] It is obvious.
[(iii) =⇒ (i)] By Lemma7, it suffices to check that ∂p(x) ⊂ D(x). Let

x∗ ∈ ∂p(x). We have x ∈ (Mp)(x∗). Since strong robust duality holds at x∗,
Theorem 2 says that there exist u ∈ U , y∗

u ∈ Y ∗
u such that x ∈ B0

(u,y∗
u )(x

∗),
that means (see (34))

(x, 0u) ∈ (MFu)(x
∗, y∗

u ), (x∗, y∗
u ) ∈ (∂Fu)(x, 0u),

and by (44), x∗ ∈ D(x). �

As usual, Theorem8 gives us corresponding results for the two extreme cases:
non-uncertainty and non-perturbation cases.

Corollary 15 Let F : X × Y → R∞, p = F(·, 0Y ), and x ∈ p−1(R). The
next statements are equivalent:
(i) ∂p(x) = projX∗(∂F)(x, 0Y ),

(ii) max
z∈X

{
〈x∗, z〉 − F(z, 0Y )

}
= min

y∗∈Y ∗ F
∗(x∗, y∗), ∀x∗ ∈ ∂p(x),

(iii) p∗(x∗) = min
y∗∈Y ∗ F

∗(x∗, y∗), ∀x∗ ∈ ∂p(x).

Proof In this case we have, by (41), D(x) = projX∗(∂F)(x, 0Y ) and the
conclusion is a direct consequence of Theorem 8. �

Corollary 16 Let ( fu)u∈U ⊂ R
X∞, p = sup

u∈U
fu, x ∈ p−1(R). The next state-

ments are equivalent:
(i) ∂p(x) = ⋃

u∈I (x)
∂ fu(x),

(ii) max
z∈X

{
〈x∗, z〉 − p(z)

}
= min

u∈U f ∗
u (x∗), ∀x∗ ∈ ∂p(x),

(iii) (sup
u∈U

fu)∗(x∗) = min
y∗∈Y ∗ f ∗

u (x∗), ∀x∗ ∈ ∂p(x).

Proof In this non-parametric case, let Fu(x, yu) = fu(x), p = sup
u∈U

fu . We

have
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D(x) =
⋃

u∈I (x)
∂ fu(x), I (x) = {u ∈ U : fu(x) = p(x) ∈ R}

and Theorem 8 applies. �
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