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Nguyen Dinh, Miguel A. Goberna, Marco A. Lopez and Michel Volle

We introduce a robust optimization model consisting in a family of perturbation
functions giving rise to certain pairs of dual optimization problems in which the
dual variable depends on the uncertainty parameter. The interest of our approach
is illustrated by some examples, including uncertain conic optimization and infinite
optimization via discretization. The main results characterize desirable robust duality
relations (as robust zero-duality gap) by formulas involving the epsilon-minima or the
epsilon-subdifferentials of the objective function. The two extreme cases, namely, the
usual perturbational duality (without uncertainty), and the duality for the supremum
of functions (duality parameter vanishing) are analyzed in detail.

1 Introduction

Duality theory was one of Jonathan Borwein’s favorite research topics. Indeed, 14
of his papers include the term “duality” in their titles. The present article, dedicated
to Jon’s vast contribution to the subject, will refer only to four works of his, all of
these related to optimization problems posed in locally convex Hausdorff topological
vector spaces.
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Duality theorems were provided in [3] for the minimum of arbitrary families of
convex programs; the quasi-relative interior constraint qualification was introduced
in [6] in order to obtain duality theorems for various optimization problems where
the standard Slater condition fails; the same CQ was immediately used, in [5], to
obtain duality theorems for convex optimization problems with constraints given
by linear operators having finite-dimensional range together with a conical convex
constraint; finally, quite recently, in [4], duality theorems for the minimization of the
finite sum of convex functions were established, using conditions which involve the
e-subdifferential of the given functions.

In this paper, we consider a family of perturbation functions

F,: X xY, > Ry :=RU{+4o0}, withu € U,

and where X and Y,,, u € U, are given locally convex Hausdorff topological vector
spaces (briefly, IcHtvs), the index set U is called the uncertainty set of the family, X
is its decision space, and each Y, is a parameter space. Note that our model includes
a parameter space Y, depending on u € U, which is a novelty with respect to the
“classical” robust duality scheme (see [21] and references therein, where a unique
parameter space Y is considered), allowing us to cover a wider range of applications
including uncertain optimization problems under linear perturbations of the objective
function. The significance of our approach is illustrated along the paper by relevant
cases extracted from deterministic optimization with linear perturbations, uncertain
optimization without perturbations, uncertain conic optimization and infinite opti-
mization. The antecedents of the paper are described in the paragraphs devoted to
the first two cases in Section 2.

We associate with each family { F,, : u € U} of perturbation functions correspond-
ing optimization problems whose definitions involve continuous linear functionals
on the decision and the parameter spaces. We denote by Oy, 07, 0,, and 0, the null
vectors of X, its topological dual X*, Y,, and its topological dual Y, respectively.
The optimal value of a minimization (maximization, respectively) problem (P) is
denoted by inf (P) (sup (P)); in particular, we write min (P) (max (P)) whenever the
optimal value of (P) is attained. We adopt the usual convention that inf (P) = 400
(sup (P) = —o0) when the problem (P) has no feasible solution. The associated opti-
mization problems are the following:

e Linearly perturbed uncertain problems: for each (u, x*) € U x X*,

(Pu)x* : ;Ig;‘({Fu(x7Ou)_<-x ,.X)}.
e Robust counterpart of {(Py)x+}ueu :

(RP) .+ : inf {sup F,(x,0,) — <x*, x)} .

xeX uel

Denoting by Ff : X* x Y — R, where R := R U {£o00}, the Fenchel conjugate
of F,, namely,
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Fy(x*, y;) = sup {(x*,x) + (v, Yu) — Fu(x,yu)], @,y eX xYr,
(x,y)EXXY,

we now introduce the corresponding dual problems:

e Perturbational dual of (P,)y:

(Du)x* : sup —F:()C*, y:)

yieyy

Obviously,
sup (D), <inf (P,),+ < inf (RP),+,Vu € U.

e Optimistic dual of (RP),=:

(ODP),« sup —F*(x*, yb),

(u.yp)eA

where A := {(u, y}) : u € U, y* € Y;} is the disjoint union of the spaces ¥,". We
have

sup (ODP)« = sup(Dy).+ < inf (RP),-.
uel

We are interested in the following desirable robust duality properties:

e Robust duality is said to hold at x* if inf (RP),+ = sup (ODP),+,

e Strong robust duality at x* means inf (RP),+~ = max (ODP),«,

e Reverse strong robust duality at x* means min (RP),- = sup (ODP),+,
e Min-max robust duality at x* means min (RP),+ = max (ODP),-.

Each of the above desirable properties is said to be stable when it holds for any
x* € X*. The main results of this paper characterize these properties in terms of
formulas involving the e-minimizers and e-subdifferentials of the objective function
of the robust counterpart problem (RP)o; , namely, the function

p :=sup F,(-,0,).

uel

Theorem 1 characterizes robust duality at a given point x* € X* as a formula for the
inverse mapping of the e-subdifferential at x* without any convexity assumption. The
same is done in Theorem 2 to characterize strong robust duality. In the case, when
a primal optimal solution does exist we give a formula for the exact minimizers of
p — x* to characterize dual strong (resp. min-max) robust duality at x*, see Theorem 3
(resp. Theorem 4). We show that stable robust duality gives rise to a formula for the
e-subdifferential of p (Theorem 5, see also Theorem 1). The same is done for stable
strong robust duality (Theorem 6). A formula for the exact subdifferential of p
is provided in relation with robust duality at appropriate points (Theorem 7). The
most simple possible formula for the exact subdifferential of p (the so-called Basic
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Robust Qualification condition) is studied in detail in Theorem 8. All the results from
Sections 1-8 are specified for the two extreme cases (the case with no uncertainty and
the one in absence of perturbations), namely, Cases 1 and 2 in Section 2 (for the sake
of brevity, we do not give the specifications for Cases 3 and 4). It is worth noticing
the generality of the mentioned results (as they do not require any assumption on
the involved functions) and the absolute self-containment of their proofs. The use of
convexity in the data will be addressed in a forthcoming paper.

2 Special Cases and Applications

In this section, we make explicit the meaning of the robust duality of the general model
introduced in Section 1, composed by a family of perturbation functions together with
its corresponding optimization problems. We are doing this by exploring the extreme
case with no uncertainty, the extreme case in absence of perturbations, and two other
significant situations. In all these cases, we propose ad hoc families of perturbation
functions allowing to apply the duality results to given optimization problems, either
turning back to variants of well-known formulas for conjugate functions or proposing
new ones.
Let us recall the robust duality formula, inf (RP),+ = sup (ODP),-, i.e.,

inf sup {F, (x,0,) — (x*,x)} = sup —F;(x* y}). (1)
YeX ey (u,y;f)EA

We firstly study the two extreme cases: the case with no uncertainty and the one with
no perturbations.

Case 1. The case with no uncertainty: Deterministic optimization with linear per-
turbations deals with parametric problems of the form:

Py inf {f00) =[x, x]},

where f: X — Ry (ie., f € (Roo)X) is the nominal objective function and the
parameter is x* € X*. Taking a singleton uncertainty set U = {uo}, Y,, = Y and
F,, = F such that F (x,0y) = f(x) forall x € X, (1) reads

inf {F (x,09) = (", x)} = sup —F* (x*,"). @

y*er*

which is the fundamental perturbational duality formula [7, 24, 28]. Stable and
strong robust duality theorems are given in [9] (see also [11] and [20] for infinite
optimization problems).

Case 2. The case with no perturbations: Uncertain optimization without perturba-
tions deals with families of problems of the form
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(P - {;rel)f( Ju(x) = (X*,x>} ,

uelU

where f, € (Roo)X, u € U, and x* € X*. The absence of perturbation is realized by
taking F), such that F, (x, y,) = f,(x) forallu € U, x € X and y, € Y. Assuming
dom f, # ¥ we have

s (o ox _ ) fa () Af vy =0g,
Fu (X 7yu) - {+OO, if y;k 7& Oz (3)
Then (1) writes
(sup fu> (x*) = inf f7(x®), 4
uelU uelU

which amounts, for x* = Oi, to the inf — sup duality in robust optimization, also
called robust infimum (recall that any constrained optimization problem can be
reduced to an unconstrained one by summing up the indicator function of the feasible
set to the objective function):

inf sup f,(x) = sup inf f,(x).
uel xeX

*YeX yeU

Robust duality theorems without perturbations are given in [27] for a special class
of uncertain non-convex optimization problems while [11] provides robust strong
duality theorems for uncertain convex optimization problems which are expressed
in terms of the closedness of suitable sets regarding the vertical axis of X*x R.

Case 3. Conic optimization problem with uncertain constraints: Consider the
uncertain problem

(P) : {inf F(x) st Hy(x) € —Su} ,
xeX uel

where, for each u € U, S, is an ordering convex cone in Y,, H,: X — Y, and
f € (Rx)*.Denoteby S} := {y; ey : (y,’: yu) >0,Vy, eSu} the dual cone of S,,.

Problems of this type arise, for instance, in the production planning of firms
producing n commodities from uncertain amounts of resources by means of tech-
nologies which depend on the available resources (e.g., the technology differs when
the energy is supplied by either fuel gas or a liquid fuel). The problem associated
with each parameter u € U consists of maximizing the cash-flow ¢ (xy, ..., x,,) of
the total production, with x; denoting the production level of the i-th commodity,
i =1, .., n. The decision vector x = (xy, ..., X,,) must satisfy a linear inequality sys-
tem A, x < b,, where the matrix of technical coefficients A, ism, x nand b, € R™,
for some m, € N. Denoting by ig: the indicator function of R’ (i.e., igr (x) =0,
when x € R, and i (x) = +00, otherwise), the uncertain production planning
problem can be formulated as
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P) : { inf f(x) = —c(x)+ipy (x) st Ax— b, € —Rﬁu} ,
xeR?

uel

with the space Y, = R™ depending on the uncertain parameter u.
For each u € U, define the perturbation function

| @), if Hy(x) + yu € =S4,
Fulx, yu) = {+oo, else.
On the one hand, (RP)g; collapses to the robust counterpart of (P) in the sense of
robust conic optimization with uncertain constraints:

(RP) : inf(f(x) s.t. H,(x) e —-S,, Yuel.
Xe€

On the other hand, it is easy to check that

Foryy = | (F 500 Hi) @), if 3] € ST

uit o Ju 400, else,
(ODP)y, is nothing else than the optimistic dual in the sense of uncertain conic
optimization:

(ODP) : sup inf { £ (x) + (yi, H,(x))}
uel,yreSs xeX
(a special case when Y, =Y, S, = S for all u € U is studied in [12, p. 1097] and
[21]). Thus,

e Robust duality holds at 0% means that inf (RP) = sup (ODP),
o Strong robust duality holds at 0% means that

inf {f (x) : H,(x) € =S, Yu € U} = max inf {f) +(yi, Hi)} .

Conditions for having such an equality are provided in [12, Theorem 6.3], [13,
Corollaries 5, 6], for the particular case ¥, = Y forallu € U.

Strong robust duality and uncertain Farkas lemma: We focus again on the case
where Y, =Y and S, = § for all u € U. For a given r € R, let us consider the
following statements:

() H(x) e =S, YuelU = fx)=>r,
(i) Ju e U, 3y} € S* such that f(x) + (v}, H,(x)) > r, Vx € X.

Then, it is true that the strong robust duality holds at 0% if and only if [(i) <= (ii)]
for each r € R, which can be seen as an uncertain Farkas lemma. For details see [12,
Theorem 3.2] (also [13, Corollary 5 and Theorem 1] ).
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Itis worth noticing that when return to problem (P), a given robust feasible solution
X is a minimizer if and only if f(X) < f(x) for any robust feasible solution x. So,
a robust (uncertain) Farkas lemma (with r = f(x)) will lead automatically to an
optimality test for (P). Robust conic optimization problems are studied in [2] and [25].
Case 4. Discretizing infinite optimization problems: Let f € (R,,)¥ and g, €
RX for all t € T (a possibly infinite index set). Consider the set U of non-empty
finite subsets of 7', interpreted as admissible perturbations of 7', and the parametric
optimization problem

®P): {1[61)f( f(x)st. g(x) <0, Vte S}

SeU

Consider the parameter space Y, := RS (depending on S) and the perturbation func-
tion Fs : X x RS — R, such that, for any x € X and @ :=(lhy) es eRS,

fx), if go(x) < —p,, Vs €8,

Fs v, = {—i—oo else.

We now interpret the problems associated with the family of function perturbations
{Fs:SeU}.Onehas Y = RS and

*

* : S

F§(x*, 1) = <f +s§s)‘sgs) (x*), if 2 € RY,
+0o0, else.

The robust counterpart at 0%,
(RP)q;, : inf f(x) s.t. g(x) <0 forallz €T,

is a general infinite optimization problem while the optimistic dual at 0% is

(ODP)g :  sup {inf [ f()+ ) Ag®) )¢,
seU.rerS |¥€X ses
or, equivalently, the Lagrange dual of (RP), i.e.,

(ODP)y,. : sup {;Ielf( (f(x) + ZM&(M)] )

T
)Le]RSr) teT

where, for each A = (A;),cr € Rf) (the subspace of R” formed by the functions A
whose support, suppA := {t € T : A, # 0}, is finite),



50 N. Dinh et al.

S hg(x), if A #£0,
Zk,g,(x) : = { tesuppi
teT O, lf }\. == 0

Following [14, Section8.3], we say that (RP)o;, is discretizable if there exists a
sequence (S;),cy C U such that

inf (RP)o; = liminf {f(x) : g/(x) <0, Vt € §,}, )

and it is reducible if there exists S € U such that
inf (RP)g: = inf {f(x) : g;(x) <0, V¢ € §}.

Obviously, inf (RP)¢;, = —oo entails that (RP)o; is reducible which, in turn, implies
that (RP)g; is discretizable.

Discretizable and reducible problems are important in practice. Indeed, on the one
hand, discretization methods generate sequences (S,),cy C U satisfying (5) when
(RP)qy, is discretizable; discretization methods for linear and nonlinear semi-infinite
programs have been reviewed in [15, Subsection 2.3] and [23], while a hard infinite
optimization problem has been recently solved via discretization in [22]. On the
other hand, replacing the robust counterpart (a hard semi-infinite program when the
uncertainty set is infinite) of a given uncertainty optimization problem, when it is
reducible, by a finite subproblem allows many times to get the desired tractable
reformulation (see e.g., [1] and [8]).

Example 1 (Discretizing linear infinite optimization problems) Consider the prob-
lems introduced in Case 4 above, with f(-) := (c*, -) and g (x) := (af", ) — b;, where
c*,af € X* and b, € R, for all t € T. Then, (RP)g; collapses to the linear infinite
programming problem

(RP); : inf (c*,x) st. (a,x)<b, VteT,

whose feasible set we denote by A. So, inf (RP)g; = infyex {{c*, x) +ia (x)}. We
assume that A # .

Given S € U and u, A €RS5,

(c*, x), if (a;‘,x) <b;— s, Vs €S,

Fs (e, ) = {~|—oo else

(6)

and
> A, if X" Aga¥ = x*—c* and A, >0,Vs €S,

F§(x*,1) = {—Eio elssees (7

Hence, (ODP)y;, collapses to the so-called Haar dual problem [16] of (RP)os,
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(ODP)g: : sup { — Z Aby i — Z aal =c*, A E]Rf) ,

tesupp A tesupp A
i.e.,
sup (ODP)gx = — inf Asby Asa; (8)
P % SeU,reRS SEZS seZS }

From (8), if inf (RP)¢; = max (ODP)¢; € R, then there exist § € U and A eRi
such that

Z As (af,by) = — (c*, inf (RP)y ) . )

seS

Let Ag := {x € X : (a7, x) < b, Vs € S}. Given x € Ag, from (9),

0> > A ((ar. x) = b,) = — (c*. x) + inf (RP)o;.

ses

Since
inf (RP)g: < (c*,x),Vx € Ag,

inf (RP)o: = inf {(c*, x) : {a}, x) < by, Vs € S}, (10)

so that (RP)g: is reducible. Conversely, if (10) holds with inf (RP)¢; € R and
cone {(ay,b,) : t € T} + Ry (0%, 1) is weak*-closed, since inf (RP)g; < (c*, x) is
consequence of { <a;", x) <bs, Vs eS8 } , by the nonhomogeneous Farkas lemma in
IcHtvs [10] and the closedness assumption, there exist A eRfr and ueR, such that

— (c*.inf (RP)g;) = ", (al.by) +1 (0%. 1) .
seS

which implies that u = 0 and inf (RP)¢;, = max (ODP)g; . The closedness assump-
tion holds when X is finite dimensional (guaranteeing that any finitely generated
convex cone in X* x R is closed). So, as proved in [14, Theorem 8.3], a linear
semi-infinite program (RP)g: is reducible if and only if (10) holds if and only if
inf (RP); = max (ODP)g; .

We now assume thatinf (RP)o; = sup (ODP)¢; € R.By (8), there exist sequences
(S)reny C U and (A,),ey » with 27 €RY for all » € N, such that

lim 1nf Z Aibs Z)J ; =—c" ¢ = —sup(ODP)g: .
" A’€R+ SES, SES,
Denote v, := — >_ Aib,. Then,

sES,
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st (a;‘,bs)z —(c*,v,), (11)

seS,

with lim, v, = inf (RP)g;. Let A, :={xe€ X: (a},x)<b,, Vs S}, reN.
Given x € A,, from (11),

0> Z)\? ((aj,x) — bs) = —<C*,x> + v,

seS,

Since v, < (c*, x) forallx € A,,
v, < inf {(c*,x) : (af,x) <bs, Vs € Sr} < inf (RP)gy,.

Thus,

li;n inf {(c*, x) : <a;‘, x) <b,, Vs e Sr} = inf (RP)s,

i.e., (RP)g; is discretizable. Once again, the converse is true in linear semi-infinite
programming [14, Corollary 8.2.1], but not in linear infinite programming.

3 Robust Conjugate Duality

We now turn back to the general perturbation function F,: X x Y, - Ry, u € U,
andletA := {(u, y}) 1 u € U, y} € Y;*} be the disjointunion of the spaces Y. Recall
that

(RP),- : inf {sup F,(x,0,) — (x*,x)}, (12)
xeX uel
(ODP),. :  sup —F;(x*,y). (13)
(u,yeA

Define p € KX and g € KX* such that

p:=supF,(-,0,) and ¢ := inf FES(,y)). (14)
uelU (u,yj)eA

One then has
p*(x*) = —inf (RP),«, ¢q(x*) = —sup (ODP),.

g*= sup (Fr(,y;) =supF;* (.0, <p, (15)
(u,y,j)eA uel

and hence,

e Weak robust duality always holds
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pr(x*) < g™ (x*) < q(x¥), forall x* € X*. (16)

e Robust duality at x* means

pr(x") =q(x"). a7

Robust duality at x* also holds when either p*(x*) = 400 or g(x*) = —o0.
As anillustration, consider Case 4 with linear data, as in Example 1. Then, p (x) =
(c*,x) +1i4 (x),dom p = A, and so

p*(0%) = sup (—p (x)) = _}SH{W {{c*,x) +1ia ()} = —inf (RP)o; .

xeR"
Similarly, from (7),
* = f Asby Asa, =x" —
o) =t | She T = e .
seS
domg = c* 4 cone {a; : t € T} and

q(0%) = inf {be DY hal = }:—sup(ODP)0§. (18)

N
SeU,reRy s ves

3.1 Basic Lemmas

Let us introduce the necessary notations. Given a IcHtvs Z, an extended real-valued
. =7 e .
function 7 € R, and ¢ € R, the set of e-minimizers of 4 is defined by

{zeZ : h(z) <infz h + &}, if ir%fheR,

& — argmin h = g, if iI%f/’l ¢ R,

or, equivalently,

g —argminh = {z € h’l(IR{) th(z) < irzlfh + &}.

Note thate—argmin & # Jwheninf; h € Rande > 0. Various calculus rules involv-
ing ¢ —argmin have been given in [26].
The e-subdifferential of & at a point a € Z is the set (see, for instance, [19])
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e (1 €2 h@ = h@) + (2,2 —a) —&,¥z € Z), if h(a) €R,
h(a) == {@’ if h(a) ¢ R,

e ()R ) +h@ = (2 a) + e,
It can be checked that if & € EX is convex and h(a) € R, then 9°h(a) # @ for all
¢ > 0 if and only if % is lower semi-continuous at a.

The inverse of the set-valued mapping 0°h : Z = Z* is denoted by M*h : Z* =
Z. For each (g, z*) € Ry x Z*, we have

-1
(85h> (") = (M‘Eh)(z*) = ¢ —argmin (h — z%).
Denoting by 9°h*(z*) the e-subdifferential of A* at z* € Z*, namely,
on @) =z e TR @ HHE) = (D) + e,

where h**(z) := sup {(z*, z) — h*(z*)} is the biconjugate of /2, we have
z*eZ*

(M°h)(z¥) C (0°h*)(2"), V(e,2") € Ry x Z*,

with equality if and only if 7 = h**.
For each ¢ € R, we consider the set-valued mapping S° : X* = X as follows:

SE(x*) = {x e p ') : p(x) — (x*, x) < —q(x*) +8}. 19)

If g(x*) = —o0, then §¢(x*) = p~!(R). If ¢ (x*) = +o0, then §¢(x*) = 0.
Since p* < ¢, it is clear that

SE(x*) C (M®p)(x*), Ve =0, Vx* € X*. (20)

Lemma 1 Assume thatdom p # (. Then, for each x* € X*, the next statements are
equivalent:

(1) Robust duality holds at x* , i.e., p*(x*) = q(x¥),
(i) (M?p) (x*) = §°(x*), Ve =0,
(iii) 3¢ > 0 : (M®p) (x*) = S (x*), Ve €]0, &[.

Proof [(i) = (ii)] By definition
(M?p) (x*) = & — argmin(p — x*)
={xep '@ : p(x) — (x*,x) < —p*(x*) +¢&}.

By (i) we thus have (M?p) (x*) = S*(x™).
[(ii)) = (ii1)] It is obviously true.
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[Giii) = (1)] Since p*(x*) < g(x*), (i) holds if p*(x*) = +o00. Moreover, since
dom p # @, one has p*(x*) # —oo. Let now p*(x*) € R. In order to get a con-
tradiction, assume that p*(x*) # ¢g(x*). Then p*(x*) < g(x*) and there exists ¢ €
10, €[ such that p*(x*) + & < g(x*). Since inf,cx {p(x) — (x*, x)} = —p*(x*) €
R and ¢ > 0, we have ¢ — argmin(p — x*) # (. Let us pick x € (M®p)(x*) =
¢ — argmin(p — x*). By (iii), we have x € $°(x*) and

—p (") = p(x) — (¥, x) £ —q(x") + &,

which contradicts p*(x*) + ¢ < g (x¥). O

For each ¢ € Ry, let us introduce now the following set-valued mapping
JE U = X:

Jew) = {x e p7'®) : p(x) < Fu(x,0,) ¢}, @21

with the aim of making explicit the set S®(x*). To this purpose, given €1, &2 € Ry,
u € U,andy;} € Y}, letus introduce the set-valued mapping AEZ‘ ’ng)) : X* = X such
that

A =[x e s @ (00 € MTF)E .

Lemma 2 For each x* € X*, 1, &, e Ry, u € U, and y} € Y}, one has

AEZI;"Z)) ()C*) c gerte (x*)

Proof Let x € J®(u) be such that (x,0,) € (M*F,)(x*, y). Then we have
F;(x*,y¥) e Rand F,(x,0,) € R. Moreover

F,(x,0,)+¢& > pkx) > F,(x,0,) € R,
implying p(x) € R and, by (15),

<—-Ffx"y)+e+e

p(-x) - (X*,X> S Fu(x70u) - (X*,X> +81
< —q(x") 4+ e+ e,

that means x € S8 (x*). a

Lemma 3 Assume that
dom F,, # ¥, Vu € U. (22)

Then, for each x* € X*, ¢ € R, n > 0, one has

sen o | U agnen.

uel — ej+ey=e+1
Yulu £1>0, £,>0
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Proof Let x € p~'(R) be such that x € S¢(x*), i.e.,
p(x) — (x*,x) < —q(x*) +e.
We then have, for any n > 0,
q(x*) < (x*,x) —p(x) +e+7n
and, by definition of ¢ and p, there exist u € U, y; € Y7 such that
Fyx% y) = (0% x) —px)+e+n < (&% x) = Fu(x,00) +e+n. (23)

Since p(x) € R, F)(x*, y}) # +oo. In fact, by (22), F;(x*, y}) € R. Similarly,
F,(x,0,) € R. Setting

oy = p(x) - Fu(-xv Ou)v oy = F;(X*s y:) + Fu(-xv Ou) - <X*3x>9
we geta; € Ry, ap € R. Actually o > 0 since, by definition of conjugate,

F:(X*’y:) = Ssup {(X*,Z)-i-(y:,yu) _Fu(zvyu)}»

zeX,yu€¥y
ie., ifz=xandy, =0,,
F;(X*, y;:) = (X*,X> - Fu(xa OM)7

so that
Fy(x*, yi)+ F,(x,0,) — (x*, x) > 0.

Then, by (23),0 < o1 + ap < ¢ + n. Consequently, there exist €1, &, € R, such that
o) <ée,ay <é&,6+e& =¢c+nNowa; < e meansthatx € J° (u) anday < &,

means that (x, 0,) € (M F,)(x*, y¥), and we have x € AEZ‘;Z)) (x*). O

For each x* € X*, ¢ € R, let us define

A =MU U A3 e

n>0 ueU g +er=e+n
Fepk
Yuctu £1>0, £,>0

=NU U frerw:@onem=rie

n>0 ueU g +e3=¢+n
Feyk
Yushu g1>0, £2>0
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3.2 Robust Duality

‘We now can state the main result on characterizations of the robust conjugate duality.

Theorem 1 (Robust duality) Assume that dom p # (. Then for each x* € X*, the
next statements are equivalent:

(i) inf (RP),+ = sup (ODP),,

(i) (M*p) (x*) = A*(x*), Ve =0,

(iii) 3¢ > 0: (M?®p) (x*) = A°(x*), Ve €]0, e[.

Proof We firstly claim that if dom p # @ then for each x* € X*, ¢ € R, it holds:
SE(x*) = AT (24)

Indeed, as dom p # @, (22) holds. It then follows from Lemma 3, §¢(x*) C A°(x*).
On the other hand, for each n > 0, one has, by Lemma 2,

£1,€2
U U alie) csman.
uel — &1+e=¢e+1
Yu€¥y g;>0, £,>0

Taking the intersection over all n > 0 we get

A (") C () ST() = 57 (),

n>0

and (24) follows. Taking into account the fact that (i) means p*(x*) = gq(x*), the
conclusions now follows from (24) and Lemma 1. O

For the deterministic optimization problem with linear perturbations (i.e., non-
uncertain case where U is a singleton), the next result is a direct consequence of
Theorem 1.

Corollary 1 (Robust duality for Case 1) Ler F: X x Y — R, be such that dom
F(-,0y) # @. Then, for each x* € X*, the fundamental duality formula (2) holds,
iLe.,

;Ielf( {F(x,0y) — (x*, x)} = sup —F*(x*, %),

yey*

if and only any if the (equivalent) conditions (ii) or (iii) in Theorem I holds, where

a0 =N U {x €X 1 (x,0y) € (M™"F) (x*,y*)}. (25)

n>0 y*e¥*
Proof Let F, = F : X xY — Ry, p = F(-,0y). In this case, one has,

Jfu)={x e X : F(x,0y) e R}, Ve >0,
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and A (x*) will take the form (25). The conclusion follows from Theorem 1. U

For uncertain optimization problem without perturbations, the following result is a
consequence of Theorem 1.

Corollary 2 (Robust duality for Case 2) Let (f,),cv C Rg(o be afamily of extended
real-valued functions, p = sup,.y fu be such that dom p # (. Then, for each
x* € X*, the inf — sup duality in robust optimization (4) holds, i.e.,

(sup fu> (") = inf £ (x")

uel

if and only any of the (equivalent) conditions (ii) or (iii) in Theorem 1 holds, where

Ay =U U {Fr@wnm® e}, (26)

n>0 uel &1+&=¢c+n
€120, £2>0

with
Jrw) ={x e p 'R : f,(x) > p(x) — e}

Proof Let F,(x,y,) = fu(x), forallu € U and let p = sup f,. Then, by (21),
uel

Jw)={xep'®) : fulx) = p(x) — ¢}, Ve > 0. (27)

Moreover, recalling (3), for each u € U such thatdom f, # ¥, (x*, y¥) € X* x Y,
and & > 0,
(M? f,) (x*), if yr =05,

@, else. (28)

(MSFM) (X*, y:) = {
Finally, foreach (x*, €) € X* x R, A° (x™*) takes the form as in (26). The conclusion
now follows from Theorem 1. O

4 Strong Robust Duality

We retain the notations in Section 3 and consider the robust problem (RP),« and its
robust dual problem (ODP),« given in (12) and (13), respectively. Let p and g be
the functions defined by (14) and recall the relations in (15), that is,

p*(x*) = —inf (RP),«, *q(x*) = —sup (ODP),.
q*= sup (F;(.y;)) =supF*(.0,) < p.
(uyi)ed uet
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In this section we establish characterizations of strong robust duality at x*. Recall
that the strong robust duality holds at x* means that inf (RP),» = max (ODP),,
which is the same as

u, y) € A: p*(x*) = FF(x*, y5).

For this, we need a technical lemma, but firstly, givenx* € X*, u e U, y; € Y,*, and
& > 0, let us introduce the set

& ) _ (&1,82) 1%
Bl = U ALHE)
E1+e2=¢
£120,6,20

= U |rermw: @00 em=Re )

E1+ex=¢
£120,6020

Lemma 4 Assume that dom F,, # @, for allu € U, holds and let x* € X* be such
that
g(x*)= min FJ* y0H.
uelU
Yu € Yy

Then there existu € U, y¥ € Y such that

SS(x*) — B

&
(u,yy

J(x%), Ve = 0.

Proof By Lemma 2 we have Bfu,y*)(x*) C §°(x*). Conversely, let x € S°(x*). By
the exactness of ¢ at x*, there existu € U and y; € Y,* such that

p(x) - (-X*a-x> < _F:(-X*a )’:) + €.

Since p(x) e R and dom F, # %, for all u € U, we have F;(x* yr)eR,
F,(x,0,) €R,

() = Fuw, 00) + (Fulx, 0 + Fi(x, 3 = (%)) <ee.
Consequently, there exist &1 > 0, &, > O such that &; + &; = ¢,
p(x) — F,(x,0,) < e and F,(x,0,) + F; (x*, y;) — (x*, x) < &2,

that is, x € J®(u) and (x,0,) € (M2F,)(x*,y*). Thus, x € A% (x*) c
O

(u,y%)
& * H
B(u’y;)(x ), since &1 + &, = ¢€.

Theorem 2 (Strong robust duality) Assume thatdom p # @ and let x* € X*. The
next statements are equivalent:
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(i) inf (RP),« = max (ODP),-,
(i) Ju e U, FyF ey : (M?p) (x*) = (u .) (x*) Ve >0,
(iii) 3¢ > 0, u e U,y € Y7 : (M®p) (x*) = B(, ., (x¥), Ve €]0, &[.

Proof Observe firstly that (i) means that

prax™) =q(x*) = min  Fi", y0.
uelU
Vi €Yy

As dom p # @, (22) holds, and then by Lemmas 1 and 4, (i) implies the remaining
conditions, which are equivalent to each other, and also that (iii) implies p*(x*) =

gq(x*).

‘We now prove that (iii) implies g (x*) = F*(x*, y). Assume by contradiction that
there exists ¢ > 0 such that ¢ (x*) + & < FJ(x*, y¥), and without loss of generality
one can take ¢ € 10, [, where ¢ > 0 appeared in (iii). Then, by (iii), (M?®p) (x*) =

(u ‘*)(X*)
Pickx € (M®p) (x*) = B(su.y*)(X*)- Then, thereare ey > 0,6, >0, e; + &, = ¢,

x € J®(u) and (x,0,) € (M F,)(x*, y¥). In other words,

p(X)S Fu(xvou)+€1a (29)
FH((x™, yy) + Fu(x, 0,) < (x*, x) + & (30)

It now follows from (29)—(30) that
p*(x*) > (x5 x)—px) > x* x)— F,(x,0,) — &
> (X", x) + Fy (" yy) — (7, x) —er — e = F(x, y,) — e > q(x7),
which contradicts the fact that p*(x*) = g (x™). O

In deterministic optimization with linear perturbations we get the next consequence
from Theorem 2.

Corollary 3 (Strong robust duality for Casel) Let F: X xY > Ry, p=
F (-, 0y), and assume that dom p # (. Then, for each x* € X*, the strong dual-
ity for (P) .« in Case 1 holds at x*, i.e

inf {F (x,0y) = (x*.x)} = max —F* (x*, %),

ifand only if one of the (equivalent) conditions (ii) or (iii) in Theorem 2 holds with
B, ) (x*) being replaced by

Bi.(x*):={xeX : (x,0y) € (M F)(x*, y")}. 31
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Proof 1t is worth observing that we are in the non-uncertainty case (i.e., U is a
singleton), and the set Bfu’y*)(x*) writes as in (31) for each (x*, y*) € X* x Y™,
& > 0. The conclusion follows from Theorem 2. O

In the non-perturbation case, Theorem 2 gives rise to
Corollary 4 (Strong robust duality for Case 2) Let (f,)ycv C Ré, x* e X* and
p = sup f, such that dom p # (. Then, the robust duality formula

uel

(sup i) @) = min £

uelU
holds if and only if one of the (equivalent) conditions (ii) or (iii) in Theorem 2 holds
with B(au,y*) (x*) being replaced by

By = J (Vr@nm fe), (32)

£1+e3=¢
£120,6,20

Proof Let F,(x, y,) = fu(x), p = sup f,, and, from (27) and (28) (see the proof of

uelU
Corollary 2),
U (JSl(u) n (Mfzfu)(x*)), ity =07,
Bluyy @) =1 4i0a50
@, else,

which in our situation, collapses to the set B} (x*) defined by (32). The conclusion
now follows from Theorem 2. ([

5 Reverse Strong and Min-Max Robust Duality

Given F, : X x Y, - (Ry,)X foreachu e U, p = sup F,(-,0,), and x* € X*, we

uelU
assume in this section that the problem (RP),: is finite-valued and admits an opti-
mal solution or, in other words, that argmin(p — x*) = (M°p)(x*) # #. For conve-
nience, we set

(Mp)(x*) := (M°p)(x*), S(x*):=S°(x*), and

Ay =2=N1U U {x €I : (x,0,) € (MEZF,,)(x*,y;‘)}.

n>0 uel — e1+er=n
Yutu €120, £,>0

(33)
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Theorem 3 (Reverse strong robust duality) Let x* € X* be such that
(Mp)(x*) # @ and let A(x*) be as in (33). The next statements are equivalent:

(i) min (RP),+ = sup (ODP),,

@ii) (Mp)(x*) = Ax").

Proof Since (Mp)(x*)#0, dom p#@. It follows from Theorem 1 that [(1) = (ii)].
For the converse, let us pick x € (Mp)(x*). Then by (ii), for each n > 0 there
existu e U, y; €Yy, & >0, >0suchthat ey +& =n, x € J*(u), (x,0,) €
(M® F,)(x*, y;) and we have

q(X*) < F;()C*, y;) =< (x*a X) - Fu(xa Ou) + &
< (x*,x)—px)+e +e < ptx*)+n.

Sincen > Qisarbitrary we getg (x*) < p*(x™*), which, together with the weak duality
(see (16)), yields g (x*) = (x*, x) — p(x) = p*(x¥), i.e., (i) holds and we are done.
O

In the deterministic case we obtain from Theorem 3:

Corollary 5 (Reverse strong robust duality for Case1) Let F: X x Y — R,
x* e X* p=F(,O0Oy), and

Ay =N U {x €X : (x,0y) € (M"F)(x*,y*)}.

n>0 y*e¥*

Assume that (Mp)(x*) # 3. Then the next statements are equivalent:
1) mi}l(]{F (x,0y) — (x*, x)} = sup —F* (x*, y*),
xe

yrey*
(i) (Mp)(x*) = A(x*).

Corollary 6 (Reverse strong robust duality for Case2) Let (f,)uev CRX, p =
sup f,, x* € X*, and

uelU
Ay =NU U (F@nmere),
n>0uecl &1+&e=n
£1>0, £2>0
where

7w ={x e p ® ¢ @)z po) — e,
Assume that (Mp)(x*) # (. Then the next statements are equivalent:
@) (sup fu) x*) = inlf/ [ (x™), with attainment at the first member,
uelU ue
(i) (Mp)(x*) = A(x").

Now, foreachu € U, y} € Y, x* € X*, we set

u’
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J) =" = {x € pT®) 1 Fu(x,00) = po},
(ME)G", y3) = (MOF)(*, v = argmin( F, — (7, ) = (3], 9),
and
By (x) 1= BY . (x") = {x €J) 1 (x,0,) € (MF,,)(x*,y;;)}. (34)

Theorem 4 (Min-max robust duality) Ler x* € X* be such that (Mp)(x*) # @.
The next statements are equivalent:

(i) min (RP),« = max (ODP) -,
(i) Ju e U, Jy; € Y\ : (Mp)(x*) = B yn) (x¥),
where B, yx)(x") is the set defined in (34).

Proof By Theorem 2 we know that [(i) = (ii)]. We now prove that [(ii) = (i)].
Pickx € (Mp)(x*) which is non-empty by assumption. Then by (ii), x € B, yx(x*),
which yields x € J(u) and (x,0,) € (M F,)(x*, yr). Hence,
q(x*) < Fy(x*, yy) < (x*, x) — Fu(x,0,)
< (&%, x) = plx) < p*(x¥) < q(x7),

which means that g (x*) = F(x*, y}) = (x*, x) — p(x) = p*(x*) and (i) follows.
a

Corollary 7 (Min-max robust duality for Case 1) Let F : X x Y — Ry, x* €
X*, p = F(-,0y), and for each y* € Y*,

By (x™) 1= {x €X : (x,0y) e (MF)(x*, y*)}.

Assume that (Mp)(x*) # (. The next statements are equivalent:
(1) mln{F (.X, OY) - (-x*a x)} = max _F* (-x*v y*)r
xeX y*e¥*
(i) Iy* e Y*: (Mp)(x*) = By« (x™).
Corollary 8 (Min-max robust duality for Case 2) Let (f,)ucv C RX, p=sup £,

uelU
x* € X*, and for eachu € U,

B, (x*) :=J(u) N (Mfi)(x"),

where J(u) = {x € p~'(R) : f.(x) = p(x)}. Assume that (Mp)(x*) # @. Then the
next statements are equivalent:

@) (sup fu>*(x*) = milrjl f.F(x™), with attainment at the first member,
uelU ue
i) u e U: (Mp)(x*) = B, (x*).
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6 Stable Robust Duality

Let us first recall some notations. Given F,:X xY, > Ry, ueU,

p=sup F,(-,0,)andg = ir(l]f F}(-, y¥). Remember that p*(x*) < g(x*) for each
uel ue

Yu€Yy

x* € X*. Stable robust duality means that inf (RP),~ = sup (ODP),- forall x* € X*,

or equivalently,

p*(x*) = qg(x¥), Vx* e X*.

Theorem 1 says that, if dom p # ¢, then stable robust duality holds if and only if for
each ¢ > 0 the set-valued mappings M?p, A° : X* = X coincide, where, for each
x* e X*,

(M?p)(x™) := & — argmin(p — x¥),
e =NU U [rermw:@onem=rep).

7]>0 uel e1t+er=¢e+n
JE ey
Yuc¥u g1>0, &,>0

Consequently, stable robust duality holds if and only if for each ¢ > 0, the inverse
set-valued mappings
Mp)™, (AT X = X,

coincide. Recall that (M® p)~! is nothing but the -subdifferential of p at x.
Let us now make explicit (A°) ™. To this end we need to introduce for each & > 0
the (¢-active indexes) set-valued mapping /¢ : X =% U with

Py { et o)z po—efif pwer o

@, if p(x) ¢ R.

We observe that I° is nothing but the inverse of the set-valued mapping J° : U = X
defined in (21).

Lemma 5 For each (¢, x) € Ry x X one has

@ 'm= U U proj0%Fux, 00,

n>0 &1+e2=¢+n uell (x)
£120,61 20

where proj’. :X* x Y — X* is the projection mapping proj'y.(x*, y¥) = x*.

Proof Let (¢, x,x*) € R, x X x X*. One has
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e (@) ) & x e AC(Y)

o [Y1>0.3ueU.3y; eV 3 e0) € R?  such that
el+e=¢e+n, xeJu)and (x,0,) € (ME2F,)(x*, y})
Vn > 0,3u € U, 3y} € V¥, 3(e1, e2) € R3 such that

< e1+e =¢c+n, uecl(x), and (x*, y}) € (852Fu>(x,0u)
Vn >0,3u € U,3(e1,82) € ]Ri such that

< e1+e2=¢e+n, wuel®(x), andx* € projy. (BSZFM)(x, 04)

ex*e() U L projy. (02 ) (x, 0u).

n>0 e1te2=¢e+n uecl®l (x)

£120,6120
O
Now, for each (g, x) € Ry x X, let us set
C(x) =) U U proj4. (02 F,)(x, 0,). (36)
n>0 &1+e2=¢e+n uel®l(x)
£120,61 20

Applying Theorem 1 and Lemma 5 we obtain:

Theorem 5 (Stable robust duality) Assume that dom p # (. The next statements
are equivalent:

(1) inf (RP),+ = sup (ODP), for all x* € X*,
(i) °p(x) = C*(x), V(e,x) e R, x X,
(iii) 32 > 0: 3°p(x) = C?(x), VY(e,x) €10, &[ xX.

Corollary 9 (Stable robust duality for Case 1) Ler F : X x Y — Ry, be such
that dom F (-, Oy) # 0. Let projy. :X* x Y* — X* be the projection mapping
proj - (x*, y*) = x*. Then, the next statements are equivalent:
(i) inf {F(x,Oy) — (x*,x)} — sup —F*(x*, y"), Vx* € X*,

xeX y*GY*
(i) (3°p)(x) = ﬂ”>0 projy. (0T F)(x, 0y), Y(e, x) € Ry x X,
(iii) 38 > 0: (3°p)(x) =(,0 proj v (35" F)(x, Oy), V(e, x) €]0, E[x X.

Proof Let U ={up} and F = F,,: X xY - Ry, Y =Y,,, p = F(-,0y). Then
for each (e, x) € Ry x X,

o [two). if p) R,
! (")_{@, it p(v) ¢ R,

and

U U proi-02F)e, 00 = projy. (0°F) v, 0. 37)

g1t+er=¢ uel®l(x)
£120,612
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The conclusion now follows from (36)—(37) and Theorem 5. U

Remark 1 Condition (ii) in Corollary 9 was quoted in [17, Theorem 4.3] for all
(e, x) €]0, +o0[ xR, which is equivalent.

Corollary 10 (Stable robust duality for Case 2) Let (f,)ucv C ]Rfo, p = sup fu,
uel
and assume that dom p # (. The next statements are equivalent:

) (sup fu) (x*) = inf f*(x*), Va* € X*,
uelU uelU

(i) (0°p)(x) = C*(x), V(e,x) € Ry x X,

(iii) 3¢ > 0: (3°p)(x) = C*(x), Y(e, x) €]0, [ x X,
where C(x) is the set

co= U L @2f0@). ¥ x) eRy x X. (38)

n>0 e1+&2=c+n uel®l (x)
£120,61 20

Proof Let F, : X x Y, = R be such that F,(x, y,) = f,(x) for all u € U. Then
forany (¢,x) e Ry x X,
ro 2 [frev s f@ = pem —eit <R,
7, if p(x) ¢R,

@°F)(x,0,) = @ fi,)(x) x {0}, VY(u,e,x)eU xRy x X,

and C?(x) reads as in (38). The conclusion now follows from Theorem 5. O

7 Stable Strong Robust Duality

We retain all the notations used in the Sections 3—-6. Given (e, u) € R, x U and
Y. € Y;; we have introduced in Section4 the set-valued mapping B, .., : X* = X
defined by

Bfll,y;‘)(x*) = U {X eJ"u) : (x,0,) € (M?F,)(x*, y,’f)}

g1t+er=¢
£120,6020

Let us now define B® : X* = X by setting

Bf(x™) := U B(su’yj)(x*), Vx* e X*.
uel
yievif
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Lemma 6 For each (¢, x) € Ry x X we have

B'w= U U proiy-@2F)x, 00).

g1t+er=¢ uel®l(x)
£120,6220

Proof x* € (B)~'(x) means that there exist u € U, yieYre >0,e >0,such
that & + & =¢, x € J® (u), and (x,0,) € (M®F,)(x*, y)), or, equivalently, u €
I (x), and (x*, y¥) € (0*F,)(x, 0,). In other words, there exist u € U, y} € ¥*
such that x € Bfu’y;)(x*), thatis x € B®(x™). O

For each & > 0 let us introduce the set-valued mapping D¢ := (B®)~!. Now Lemma
6 writes

Df(x) = U U projy. (3% F,)(x, 0,), V(e,x) € Ry x X. (39)
g1+ex=¢ uell(x)
£120,6,20
Note that
C:(x) = ﬂ Df(x), Y(e,x) e Ry x X, (40)
n>0

and that D?(x) = ¥ whenever p(x) ¢ R.
We now provide a characterization of stable strong robust duality in terms of
¢-subdifferential formulas.

Theorem 6 (Stable strong robust duality) Assume that dom p # 0, and let D*
as in (39). The next statements are equivalent:
(i) inf (RP),» = max (ODP) = max —Ff(x*, yr), Yx* e X",

ey
Yu €Yy

(i) 9 p(x) = D*(x), V(e, x) e R, x X.

Proof [(i) = (ii)] Let x* € 3°p(x). Then x € (M*®p)(x*). Since strong robust
duality holds at x*, Theorem 2 says that there exist u € U, y; € Y such that x €
Bfuv),:)(x*) C Bf(x*), and finally x* € D*(x) by Lemma 6. Thus 9° p(x) C D®(x).

Now, let x* € D?(x). By Lemma 6 we have x € B®(x*) and there exist u € U,
yi e Y suchthatx € Bé,,y;)(X*)- By Lemma 2 and the definition of Bfu’y:)(x*) we
have x € §°(x*), and, by (20), x € (M?p)(x*) which means that x* € 9°p(x), and
hence, D®(x) C 9° p(x). Thus (ii) follows.

[(i) = ()] If p*(x*) = 400 then g(x*) = 400 and one has p*(x*) =
Fr(x*, y*)y = 4oo forall u € U, y* € Y*, and (i) holds. Assume that p*(x*) € R
and pick x € p~!(R) which is non-empty as dom p # @ and p*(x*) € R. Let & :=
px) + p*(x*) — (x*, x). Then ¢ > 0 and we have x* € 9° p(x). By (ii) x € D®(x)
and hence, there exist & > 0,6, >0, u € U, and y} € Y such that & + &, = ¢,
ue I*(x), (x*, y¥) € (02 F,)(x, 0,). We have
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q(x™) < Fi(x*, y;) < (x*,x) = F,(x,0,) + &
< (x*,x) — p(x)+e+& =p*(x*) (by definition of &)
< q(x"),

and finally, ¢ (x*) = F;(x*, y;) = p*(x*), which is (i). ([l

Next, as usual, we give two consequences of Theorem 6 for the non-uncertainty and
non-parametric cases.

Corollary 11 (Stable strong duality for Case 1) Let F : XxY —> Ry, p=
F(-,0y), dom p # (. The next statements are equivalent:

@) inf( {F(x, Oy) — (x*, x)} = ma;( —F*(x*, "), Vx* € X*,
X€ y*er*
(ii) 9°p(x) = projy-(3°F)(x,0,), Y(s,x) e Ry x X.

Proof This is the non-uncertainty case (i.e., the uncertainty set is a singleton) of
the general problem (RP),», with U = {up} and F,,, = F : X x ¥ — R. We have
from (37),

D?(x) = projy-(3° F)(x, Oy), V(e,x) € Ry x X. (41)

The conclusion now follows from Theorem 6. O

Corollary 12 (Stable strong duality for Case 2) Let (f,),cu C Rfo, p = sup fu,
uelU
and dom p # (. The next statements are equivalent:
1) (sup f,)*(x*) = milr]1 fii(x®), vx* e X%,
uelU ue

(i) d°p(x) = D*(x), V(e, x) € Ry x X, where

D= |J | 0%f)x), ¥, x) e Ry x X, (42)
g1+er=¢ uel®l(x)
£120,6220

and
oo fuev: fuw = pw—elit per,
@ if p(x) ¢ R.
Proof In this non-parametric situation, let F,(x, y,) = f,(x). It is easy to see that

in this case, the set D?(x) can be expressed as in (42), and the conclusion follows
from Theorem 6. O
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8 Exact Subdifferential Formulas: Robust Basic
Qualification Condition

Given F,, : X x Y, = Ry, u € U, as usual, we let p = sup F, (-, 0,),
uelU
q = ( ing F (-, yi). Again, we consider the robust problem (RP) - and its robust
u,yr)eA
dual problem (ODP),« given in (12) and (13), respectively. Note that the reverse
strong robust duality holds at x* means that, for some x € X, it holds

- P*(x*) = min (RP)« = sup F,(x,0,) — ()C*, i)
uelU

= p(X) — (x*, X) = sup (ODP)» = —q(x™). (43)
Now, let us set, for each x € X,

D(x):= D°(x) = | projy.(dF,)(x.0,). (44)

uel (x)

o= U U proj402F). 00, 45)

n>0 e1+&=n uel® (x)
£120,6220

Cx):

where 7' (x) is defined as in (35) and

_JueU:Fx,0,)=px)},if pkx) eR,
[(x) = {@, if px) ¢ R. (46)

Lemma 7 For each x € X, it holds
D(x) Cc C(x) C ap(x).

Proof The first inclusion is easy to check. Now let x* € C(x). For each n > 0 there
exist (g1, &) € ]Ri, u € I (x), and y; € Y such that &y + &, = n and (x*, y}) €
(02F,)(x,0,). We then have F;(x*, yi) 4+ F,(x,0,) — (x*,x) <&, pkx) =
F,(x,0,) + & (asu € I°'(x)), and p*(x*) < g(x*) < F;(x*, y;). Consequently,

prx) + p(x) = (x*,x) < F(x", y) + Fu(x,0,) + &1 — (x*,x) <&+ & =n.

Since n > 0 is arbitrary we get p*(x*) + p(x) — (x*, x) < 0, which means that
x* € dp(x). The proof is complete. (]

Theorem 7 Letx € p~'(R) and C(x) be as in (45). The next statements are equiv-
alent:

(i) dpx) = C(x),

(ii) Reverse strong robust duality holds at each x* € dp(x),

(iii) Robust duality holds at each x* € Ip(x).
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Proof [(i) = (ii)] Let x* € dp(x). We have x* € C(x) = (A)~'(x) (see Lemma
5 with e = 0). Then x € A(x*) = S(x*) (see (24) with ¢ = 0), and therefore,

—p*(x") < p(x) — (x", x) < —q(x*) < —p*(x"),
—pr(x*) = r;éi;(l{p(z) —(x*, 7)) = p(x) = (x*, x) = —q(x"),

that means that reverse strong robust duality holds at x* (see (43)).

[(iil) = (iii)] is obvious.

[(iii)) = (1)] By Lemma 7 it suffices to check that the inclusion “C” holds. Let

x* € dp(x). We have x € (Mp)(x*). Since robust duality holds at x*, Theorem 1

(with & = 0) says that x € A(x*). Thus, x* € A~ (x),and, by Lemma 5, x* € C(x).
O

In the deterministic and the non-parametric cases, we get the next results from
Theorem 7.

Corollary 13 Let F: X XY — Ru,, p = F(-,0y), and x € p~'(R). The next
statements are equivalent:

(i) 9p(x) = [ projx.(3"F)(x, Oy),

n>0
i) min {F(z,00) = (" x0)) = sup —F*(x", y), Vo € dp()
zeX yrey*
(iii) inf {F(z, Oy) — (x*, x)} = sup —F*(x*, y*), Vx* € ap(x).
zeX yrey*

Proof Let F, = F : X xY — Ry and p = F(-, Oy). We then have

C(x) =[] projy. (3" F)(x, 0y), Vx € X,
n>0

(see Corollary 9) and the conclusion follows directly from Theorem 7. (]

Corollary 14 Let (f,)uey C RX, p = sup fi, x € p~'(R). The next statements are
uelU
equivalent:

® 9 (Sup fu) (x) = C(x),

uelU
(i) max { (v, 2) = p@) ] = inf fr(), Va© € Op(),

(iii) <sup fu> (x*) = inf f(x*), Vx* € ap(x),
ucl uel
where

co=) U U projs0”f).vx e X. (47)

n>0 e1+&=n uel®l(x)
£120,6220
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Proof Let F,(x, y,) = f,(x). Then it is easy to see that in this case, C(x) can be
expressed as in (47). The conclusion now follows from Theorem 7. [l

Let us come back to the general case and consider the most simple subdifferential

formula one can expect for the robust objective function p = sup F, (-, 0,):
uelU

ap(x) = U projy. (0F,) (x, 0,), (48)

uel (x)

where the set of active indexes at x, I (x), is defined by (46).
In Case 3 we have

| fx,if H,(x) € =S,,Yu e U,
pix) = {+oo, else,
I(x) = U for each x € p~'(R), and (48) writes

op) = |J 9+ o H)W),

uel, zj} ES;L
(2, Hu (x))=0

which has been called Basic Robust Subdifferential Condition (BRSC) in
[8] (see [18, page 307] for the deterministic case). More generally, let us
introduce the following terminology:

Definition 1 Given F, : X x Y, - Ry, foreachu € U,and p = sup F,(-,0,),
uel
we will say that Basic Robust Subdifferential Condition holds at a point

x € p~L(R) if (48) is satisfied, that is dp(x) = D(x).

Recall that, in Example 1, p (x) = {(c*, x) +i4 (x), where A = p*I(R)
is the feasible set of the linear system. So, givenx € A, dp(x) is the sum of ¢*
with the normal cone of A at x, i.e., Basic Robust Subdifferential Condition
(at x) asserts that such a cone can be expressed in some prescribed way.

Theorem 8 Let x € p_1 (R). The next statements are equivalent:
(i) Basic Robust Subdifferential Condition holds at x,

(ii) Min-max robust duality holds at each x* € dp(x),

(iii) Strong robust duality holds at each x* € dp(x).

Proof [(i) = (ii)] Let x* € dp(x). We have x* € D(x) and, by (44),
there exist u € I(x) (i.e., p(x) = F,(x,0,)), y; € Y,5, such that (x*, y) €
dF,)(x,0,). Then,
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pr(x*) = (x*, x) — p(x) = (x*, x) — Fu(x,0,) = F;(x*, y3)
> q(x*) = p*(x™).

It follows that
max{(x*, 2) = p)} = (", x) = p(0) = Fi (", 3) = g,

and min-max robust duality holds at x*.

[(il) = (ii1)] It is obvious.

[(iil)) = (i)] By Lemma7, it suffices to check that dp(x) C D(x). Let
x* € dp(x). We have x € (Mp)(x*). Since strong robust duality holds at x*,
Theorem 2 says that there exist u € U, y; € Y,F such that x € B?u,y;‘;)(x*)’
that means (see (34))

(x, 0) € (ME)(xX™, y,), (X, y) € (9F,)(x, 0u),

and by (44), x* € D(x). O

As usual, Theorem 8 gives us corresponding results for the two extreme cases:
non-uncertainty and non-perturbation cases.

Corollary 15 Let F: X x Y — Ry, p = F(-,0y), and x € p~'(R). The
next statements are equivalent:
(i) 9p(x) = projx«(dF)(x, Oy),
(i) max{(x*,z) — F(z,Oy)} — min F*(x*, y*), ¥x* € ap(x),
zeX y*eY*

(iii) p*(x") = min F*(x",y"), Vx* € dp(x).

Proof In this case we have, by (41), D(x) = projy«(dF)(x, Oy) and the
conclusion is a direct consequence of Theorem 8. U

Corollary 16 Let (f,)ycu C ]Rffo, p=sup fu, x € p‘l(R). The next state-
uelU

ments are equivalent:

O px)= U afulx),

uel (x)
(i) max {(x*, z) — p(z)} = min £(x*), Yx* € 9p(x),
zeX uelU

(iii) (sup fi)*(x™) = min f7(x*), Vx* € ap(x).
uel yrer=

Proof In this non-parametric case, let F,(x, y,) = fy(x), p = sup f,. We
uel
have
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D)= |J (), I&x)={uelU : fu(x)=px) R}

uel (x)
and Theorem 8 applies. O
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