
Approximating Bounded Job Start
Scheduling with Application in Royal
Mail Deliveries Under Uncertainty

Jeremy T. Bradley1, Dimitrios Letsios2(B), Ruth Misener2, and Natasha Page2

1 GBI/Data Science Group, Royal Mail, London, UK
jeremy.bradley@royalmail.com

2 Department of Computing, Imperial College London, London, UK
{d.letsios,r.misener,natasha.page17}@imperial.ac.uk

Abstract. Motivated by mail delivery scheduling problems arising in
Royal Mail, we study a generalization of the fundamental makespan
scheduling problem P ||Cmax which we call the Bounded Job Start
Scheduling Problem. Given a set of jobs, each one specified by an inte-
ger processing time pj , that have to be executed non-preemptively by
a set of m parallel identical machines, the objective is to compute a
minimum makespan schedule subject to an upper bound g ≤ m on the
number of jobs that may simultaneously begin per unit of time. We
show that Longest Processing Time First (LPT) algorithm is tightly 2-
approximate. After proving that the problem is strongly NP-hard even
when g = 1, we elaborate on improving the 2-approximation ratio for
this case. We distinguish the classes of long and short instances satis-
fying pj ≥ m and pj < m, respectively, for each job j. We show that
LPT is 5/3-approximate for the former and optimal for the latter. Then,
we explore the idea of scheduling long jobs in parallel with short jobs to
obtain solutions with tightly satisfied packing and bounded job start con-
straints. For a broad family of instances excluding degenerate instances
with many very long jobs and instances with few machines, we derive
a 1.985-approximation ratio. For general instances, we require machine
augmentation to obtain better than 2-approximate schedules. Finally, we
exploit machine augmentation and a state-of-the-art lexicographic opti-
mization method for P ||Cmax under uncertainty to propose a two-stage
robust optimization approach for bounded job start scheduling under
uncertainty attaining good trade-offs in terms of makespan and number
of used machines. We substantiate this approach numerically using Royal
Mail data.

Keywords: Bounded job start scheduling · Approximation
algorithms · Robust scheduling · Mail deliveries

1 Introduction

Royal Mail provides mail collection and delivery services for all United Kingdom
(UK) addresses. With a small van fleet of 45,000 vehicles and 90,000 drivers
c© Springer Nature Switzerland AG 2019
Y. Li et al. (Eds.): COCOA 2019, LNCS 11949, pp. 69–81, 2019.
https://doi.org/10.1007/978-3-030-36412-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36412-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-36412-0_6

70 J. T. Bradley et al.

delivering to 27 million locations in UK, efficient resource allocation is essential
to guarantee the business viability. The backbone of the Royal Mail distribution
network is a three-layer hierarchical network with 6 regional distribution centers
serving 38 mail centers. Each mail center receives, processes and distributes mail
for a large geographically-defined area via 1,250 delivery offices, each serving
disjoint sets of neighboring post codes. Mail is collected in mail centers, sorted
by region and forwarded to an appropriate onward mail center, making use of
the regional distribution centers for cross-docking purposes. From the onward
mail center it is transferred to the final delivery office destination. This process
has to be completed within 12 to 16 h for 1st class post and 24 to 36 h for 2nd
class post depending on when the initial collection takes place.

In a delivery office, post is sorted, divided into routes and delivered to
addresses using the a combination of small fleet vans and walked trolleys. Allo-
cation of delivery itineraries to vans is critical. Each delivery office has an exit
gate for vans upper bounding the number of vehicles departing per unit of time.
Thus, we deal with the problem of scheduling a set J of jobs (delivery itineraries)
each one associated with an integer processing time pj , on m parallel identical
machines (vehicles), s.t. the makespan, i.e. the last job completion time, is min-
imized. Parameter g upper bounds the number of jobs that may simultaneously
begin per unit of time. Each job has to be executed non-preemptively, i.e. by a
single machine in a continuous time interval without interruptions. We call this
problem the Bounded Job Start Scheduling Problem (BJSP).

BJSP is strongly related to the fundamental makespan scheduling problem
P ||Cmax [5]. BJSP generalizes P ||Cmax as the problems become equivalent when
g = m. Furthermore, P ||Cmax is the BJSP relaxation obtained by dropping the
BJSP constraint. Note that the P ||Cmax optimal solution is a factor Ω(m) from
the BJSP one, in the worst case. For example, take an arbitrary P ||Cmax instance
and construct a BJSP one with g = 1 by adding a large number of unit jobs.
The BJSP optimal schedule requires time intervals during which m−1 machines
are idle at each time while the P ||Cmax optimal schedule is perfectly balanced
and all machines are busy until the last job completes. On the positive side, we
may convert any ρ-approximation algorithm for P ||Cmax into 2ρ-approximation
algorithm for BJSP using naive bounds. Given that P ||Cmax admits a PTAS, we
obtain an O(n1/ε ·poly(n))-time (2+ε)-approximation algorithm for BJSP. Here,
a main goal is to obtain tighter performance guarantees. Similarly to P ||Cmax,
provably good BJSP solutions must attain low imbalance maxi{T −Ti}, where T
and Ti are the makespan and completion time of machine i, respectively. Because
of the BJSP constraint, feasible schedules may require idle machine time before
all jobs have begun. So, BJSP exhibits the additional difficulty of effectively
bounding the total idle period

∑
t≤r(m − |At|), where r and At are the last job

start time and set of jobs executed during [t, t + 1), respectively.
BJSP relaxes the scheduling problem with forbidden sets, i.e. non-overlapping

constraints, where subsets of jobs cannot run in parallel [10]. For the latter prob-
lem, better than 2-approximation algorithms are ruled out, unless P = NP
[10]. Even when there is a strict order between jobs in the same forbidden

Approximating Bounded Job Start Scheduling 71

set, the scheduling with forbidden sets problem is equivalent to the precedence-
constrained scheduling problem P |prec|Cmax and cannot be approximated by a
factor lower than (2−ε), assuming a variant of the unique games conjecture [12].
Also, BJSP relaxes the scheduling with forbidden job start times problem, where
no job may begin at certain time points, which does not admit constant-factor
approximation algorithms [2,3,8,9]. Despite the commonalities with the afore-
mentioned literature, to the authors’ knowledge, there is a lack of approximation
algorithms for scheduling problems with bounded job starts.

Contributions and Paper Organization. Section 2 formally defines BJSP, proves
the problem’s NP-hardness, and derives a O(log m) integrality gap for a natu-
ral integer programming formulation. Section 3 investigates Longest Processing
Time First (LPT) algorithm, i.e. the probably simplest option for BJSP, and
derives a tight 2-approximation ratio. The remainder of the paper elaborates
on improving this ratio for the special case g = 1. Section 2 shows that BJSP
remains strongly NP-hard even in this case. Note that several arguments in our
analysis can be extended to the arbitrary g case. Focusing on g = 1 allows to
avoid many floors, ceilings, and simplifies our presentation. Furthermore, any
Royal Mail instance can be converted to this case using small discretization.

Section 4 distinguishes between long and short instances. An instance 〈m,J 〉
is long if pj ≥ m for each j ∈ J and short if pj < m for all j ∈ J . This distinction
is motivated by the observation that idle time occurs mainly because of (i) simul-
taneous job completions in the former case, and (ii) limited allowable parallel job
executions in the latter case. Section 4 proves that LPT is 5/3-approximate for
long instances and optimal for short instances. A key ingredient for establishing
the ratio in the case of long instances is a concave relaxation for bounding the
idle machine time. Section 4 also obtains an improved approximation ratio for
long instances when the maximum job processing time is relatively small using
the Shortest Processing Time First (SPT) algorithm.

Greedy scheduling policies, e.g. LPT and SPT, that sequence long jobs first
and short jobs next, or vice versa, cannot achieve an approximation ratio better
than 2. Section 5 proposes the Long-Short Mixing (LSM) algorithm that devotes
a certain number of machines to long jobs and uses all remaining machines for
short jobs. By executing the two types of jobs in parallel, LSM achieves a 1.985-
approximation ratio for a broad family of instances. For degenerate instances
with many very long jobs or with few machines, we require constant-factor
machine augmentation, i.e. fm machines where f > 1 is constant, to achieve
a strictly lower than 2 approximation ratio.

Because Royal Mail delivery scheduling is subject to uncertainty, the full
paper version exploits machine augmentation and a state-of-the-art lexicographic
optimization method for P ||Cmax under uncertainty [6,11] to construct a two-
stage robust optimization approach [1,4,7] for the BJSP under uncertainty. We
substantiate the proposed approach empirically using Royal Mail data.

Section 6 concludes with a collection of intriguing future directions. Due to
space constraints, omitted proofs and parts of the paper are deferred to the full
version.

72 J. T. Bradley et al.

2 Problem Definition and Preliminary Results

An instance I = 〈m,J 〉 of the Bounded Job Start Scheduling Problem (BJSP)
is specified by a set M = {1, . . . ,m} of parallel identical machines, and a set
J = {1, . . . , n} of jobs. A machine may execute at most one job per unit of time.
Job j ∈ J is associated with an integer processing time pj . Time is partitioned
into a set D = {1, . . . , τ} of discrete time slots. Time slot t ∈ T corresponds
to time interval [t − 1, t). Each job should be executed non-preemptively, i.e.
in a continuous time interval without interruptions, by a single machine. This
interval should consist of an integer number of time slots. The remainder of the
manuscript assumes time intervals [s, t] = {s, s + 1, . . . , t} of time slots. BJSP
parameter g imposes an upper bound on the number of jobs that may begin per
unit of time. The goal is to assign each job j ∈ J to a machine and decide its
starting time so that this BJSP constraint is not violated and the makespan,
i.e. the time at which the last job completes, is minimized. Consider a feasible
schedule S with makespan T . Denote the start time of job j by sj . Job j ∈ J
must be entirely executed during the interval [sj , Cj), where Cj = sj + pj is the
completion time of j. So, T = maxj∈J {Cj}. We say that job j is alive at time
slot t if t ∈ [sj , Cj). Let At = {j : t ∈ [sj , Cj)} and Bt = {j : sj = t − 1} be
the set of alive and beginning jobs during time slot t, respectively. Schedule S is
feasible only if |At| ≤ m and |Bt| ≤ g, for all t.

BJSP is strongly NP-hard because it becomes equivalent with P ||Cmax in
the special case where g = min{m,n}. Theorem 1 shows that BJSP is strongly
NP-hard also when g = 1, through a reduction from 3-Partition.

Theorem 1. BJSP is strongly NP-hard in the special case g = 1.

Theorem 2 shows that a natural integer programming formulation has non-
constant integrality gap. Thus, stronger linear programming (LP) relaxations are
required for obtaining constant-factor approximation LP rounding algorithms.

Theorem 2. A natural integer programming formulation using binary variables
indicating the start time of each job has integrality gap Ω(log m).

3 LPT Algorithm

Longest Processing Time first algorithm (LPT) schedules the jobs on a fixed
number m of machines w.r.t. the order p1 ≥ . . . ≥ pn. Recall that |At| and |Bt|
is the number of alive and beginning jobs, respectively, at time slot t ∈ D. We
say that time slot t ∈ D is available if |At| < m and |Bt| < g. LPT schedules
the jobs greedily w.r.t. their sorted order. Each job j is scheduled in the earliest
available time slot, i.e. at sj = min{t : |At| < m, |Bt| < g, t ∈ D}. Theorem 3
proves a tight approximation ratio of 2 for LPT.

Theorem 3. LPT is tightly 2-approximate for minimizing makespan.

Approximating Bounded Job Start Scheduling 73

Proof. Denote by S and S∗ the LPT and a minimum makespan schedule, respec-
tively. Let � be the job completing last in S, i.e. T = s� + p�. For each time slot
t ≤ s�, either |At| = m, or |At| < m. Since � is scheduled at the earliest available
time slot, for each t ≤ s� s.t. |At| < m, we have that |Bt| = g. Let λ be the total
length of time s.t. |At| < m in S. Because of the BJSP constraint, exactly g jobs
begin per unit of time, which implies that λ ≤ � �

g �. Therefore, schedule S has
makespan

T = s� + p� ≤ 1
m

∑

j �=�

pj + λ + p� ≤ 1
m

n∑

j=1

pj +
(⌈

�

g

⌉

+ p�

)

Denote by s∗
j the starting time of job j in S∗ and let π1, . . . , πn the job indices

ordered in non-decreasing schedule S∗ starting times, i.e. s∗
π1

≤ . . . ≤ s∗
πn

.
Because of the BJSP constraint, s∗

πj
≥ �j/g�. In addition, there exists j′ ∈ [j, n]

s.t. pπj′ ≥ pj . Thus, maxn
j′=j{s∗

πj′ + pπj′ } ≥ �j/g� + pj , for j = 1, . . . , n. Then,

T ∗ ≥ max

⎧
⎨

⎩

1
m

n∑

j=1

pj ,
n

max
j=1

{⌈
j

g

⌉

+ pj

}
⎫
⎬

⎭

We conclude that T ≤ 2T ∗.
For the tightness of the analysis, consider an instance I = 〈m,J 〉 with m(m−

1) long jobs of processing time p, where p = ω(m) and m = ω(1), m(p−m) unit
jobs, and BJSP parameter g = 1. LPT schedules the long jobs into m−1 batches,
each one with exactly m jobs. All jobs of a batch are executed in parallel for their
greatest part. In particular, the i-th job of the k-th batch is executed by machine
i starting at time slot (k − 1)p + i. All unit jobs are executed sequentially by
machine 1 starting at (m−1)p+1. Observe that S is feasible and has makespan
T = (m − 1)p + m(p − m) = (2m − 1)p − m2. The optimal solution S∗ schedules
all jobs in m batches. The k-the batch contains (m−1) long jobs and (p−m+1)
unit jobs. Specifically, the i-th long job is executed by machine i beginning at
(k−1)p+i, while all short jobs are executed consecutively by machine m starting
at (k − 1)p+m and completing at kp. Schedule S∗ is feasible and has makespan
T ∗ = mp. Because m

p → 0 and 1
m → 0, i.e. both approach zero, T → 2T ∗.
�

4 Long and Short Instances

Next, we consider two natural classes of BJSP instances, in the case where g = 1,
for which LPT achieves an approximation ratio better than 2. Instance 〈m,J 〉
is (i) long if pj ≥ m for each j ∈ J , and (ii) short if pj < m for every j ∈ J .
This section proves that LPT is 5/3-approximate for long instances and optimal
for short instances. Finally, when the longest job is relatively small compared to
the total load, we show a better than 5/3-approximation ratio for SPT in the
case of long instances.

Consider a feasible schedule S and let r = maxj∈J {sj} be the last job start
time. We say that S is a compact schedule if it holds that either (i) |At| = m,

74 J. T. Bradley et al.

or (ii) |Bt| = 1, for each t ∈ [1, r]. Lemma 1 shows the existence of an optimal
compact schedule and derives a lower bound on the optimal makespan.

Lemma 1. For each instance I = 〈m,J 〉, there exists a feasible compact sched-
ule S∗ which is optimal. Let J L = {j : pj ≥ m, j ∈ J }. If |J L| ≥ m, then S∗

has makespan T ∗ ≥ m−1
2 + 1

m

∑n
j=1 pj.

Next, we analyze LPT in the case of long instances. Similarly to the Lemma 1
proof, we may show that LPT produces a compact schedule S. So, we may par-
tition the interval [1, r] into a sequence P1, . . . , Pk of maximal periods satisfying
the following invariant: for each q ∈ {1, . . . , k}, either (i) |At| < m for each
t ∈ Pq, or (ii) |At| = m for each t ∈ Pq. That is, there is no pair of time slots
s, t ∈ Pq such that |As| < m and |At| = m. We say that Pq is a slack period if
Pq satisfies (i). Otherwise, we refer to Pq as a full period. For a given period Pq

of length λq, denote by Λq =
∑

t∈Pq
(m − |At|) the idle machine time. Note that

Λq = 0, for each full period Pq. Lemma 2 upper bounds the total idle machine
time of slack periods in the LPT schedule S, except the very last period Pk. In
the case where Pk is slack, the length λk of Pk is upper bounded by Lemma 3.

Lemma 2. Let k′ = k − 1. Consider a long instance I = 〈m,J 〉, with |J | ≥ m,
and the LPT schedule S. It holds that (i) λq ≤ m−1, and (ii) Λq ≤ λq(λq−1)

2 for

each slack period Pq, where q ∈ {1, . . . , k′}. Furthermore, (iii)
∑k′

q=1 Λq ≤ nm
2 .

Proof. For part (i), let Pq = [s, t] be a slack time period in S and assume for
contradiction that λq ≥ m, i.e. t ≥ s+m−1. Given that pj ≥ m for each j ∈ J ,
we have that {j : sj ∈ [s, s+m−1], j ∈ J } ⊆ As+m−1. That is, all jobs starting
during [s, s + m − 1] are alive at time s + m − 1. Since Pq is a slack period, it
holds that au < m, for each u ∈ [s, s + m − 1]. Because S is compact, it must
be the case that bu = 1, i.e. exactly g = 1 jobs begin, at each u ∈ [s, s + m − 1].
These observations imply that |As+m−1| ≥ m, which contradicts the fact that
Pq is a maximal slack period.

For part (ii), we consider the partitioning Au = A−
u + A+

u for each time slot
u ∈ Pq = [s, t], where A−

u and A+
u is the set of alive jobs at time u completing

inside Pq, i.e. Cj ∈ [s, t], and after Pq, i.e. Cj > t, respectively. Since λq ≤ m−1,
every job j beginning during Pq, i.e. sj ∈ [s, t], must complete after Pq, i.e.
Cj > t. We modify schedule S by removing every occurrence of a job j executed
inside Pq such that Cj ∈ Pq. Clearly, in the modified schedule S ′ the idle time
Λ′

q during Pq may only have increased, i.e. Λq ≤ Λ′
q. Furthermore, no job j

with sj ∈ Pq is removed. Because |Bu| = 1 for each u ∈ Pq, we have that
|Au| = |Au+1| − 1 for u = s, . . . , t. Furthermore, |At+1| = m. So,

Λ′
q =

t∑

u=s

(m − |Au|) =
t∑

u=s

[m − (t − s + 1)] =
λq−1∑

u=1

u =
λq(λq − 1)

2
.

Now, we proceed with part (iii). Consider a slack period Pq, for q ∈
{1, . . . , k′}. By part (i), λq ≤ m − 1. Because of the BJSP constraint, at most

Approximating Bounded Job Start Scheduling 75

g = 1 jobs begin at each t ∈ Pq and, thus,
∑k′

q=1 λq ≤ n − 1. So, by part (ii), the

Eq. (1) concave program upper bounds
∑k′

q=1 Λq.

max
λq

k′
∑

q=1

λq(λq − 1)
2

(1a)

1 ≤ λq ≤ m q ∈ {1, . . . , k′} (1b)
k′

∑

q=1

λq ≤ n (1c)

Assume without loss of generality that n/m is integer. If k′ ≤ n/m, by setting
λq = m, for q ∈ {1, . . . , k′}, we obtain that

∑k′

q=1 λq(λq −1)/2 ≤ k′m(m−1)/2 ≤
nm/2. If k′ > n/m, we argue that the solution λq = n/m, for q ∈ {1, . . . , n/m},
and λq = 0, otherwise, is optimal for the concave program (1). In particular,
for any solution λ with 0 < λq, λq′ < m such that q
= q′, we may construct
a modified solution with higher objective value by applying Jensen’s inequality
f(λ)+f(λ′) ≤ f(λ+λ′) for any λ, λ′ ∈ [0,∞), with respect to the single variable,
convex function f(λ) = λ(λ−1)/2. If λq +λq′ ≤ m, we may set λ̃q = λq +λq′ and
λ̃q′ = 0. Otherwise, m < λq+λq′ ≤ 2m and we set λ̃q = m and λ̃q′ = λq+λq′ −m.
In both cases, λq′′ = λ̃q′′ , for each q′′ ∈ {1, . . . , k′} \ {q, q′}. Clearly, λ̃ attains
higher objective value than λ, for concave program (1).

Lemma 3. Suppose that the last period Pk is slack and let Jk be the set of jobs
beginning during Pk. Then, it holds that λk ≤ 1

m

∑
j∈Jk

pj.

Theorem 4. LPT is 5/3-approximate for long instances.

Proof. Denote the LPT and optimal schedules by S and S∗, respectively. Let
� ∈ J be a job completing last in S, i.e. T = s� + p�. Recall that LPT sorts
the jobs s.t. p1 ≥ . . . ≥ pn. W.l.o.g. we may assume that � = arg minj∈J {pj}.
Indeed, we may discard every job j > � and bound the algorithm’s performance
w.r.t. instance Ĩ = 〈m,J \ {j : j > �, j ∈ J }〉. Let S̃ and S̃∗ be the LPT and
an optimal schedule attaining makespan T̃ and T̃ ∗, respectively, for instance Ĩ.
Showing that T̃ ≤ (5/3)T̃ ∗ is sufficient for our purposes because T = T̃ and
T̃ ∗ ≤ T ∗. We distinguish two cases based on whether pn > T ∗/3, or pn ≤ T ∗/3.

In the former case, we claim that T ≤ (3/2)T ∗. Initially, observe that n ≤ 2m.
Otherwise, there would be a machine i ∈ M executing at least |S∗

i | ≥ 3 jobs,
say j, j′, j′′ ∈ J , in S∗. This machine would have last job completion time T ∗

i ≥
pj +pj′ +pj′′ > T ∗, which is a contradiction. If n ≤ m, LPT has clearly makespan
T = T ∗. So, consider that n > m. Then, some machine executes at least two
jobs in S∗, i.e. pn ≤ T ∗/2. To prove our claim, it suffices to show that sn ≤ T ∗.
Let c = max1≤j≤m{Cj} be the time at which the last among the m biggest
jobs completes. If sn ≤ c, then we have that sn ≤ max1≤j≤m{j + pj} ≤ T ∗.
Otherwise, let λ = sn − c. Because n ≤ 2m, it must be the case that λ ≤ m.
Furthermore, |At| < m and, thus, |Bt| = 1, for each t ∈ [c + 1, sn − 1]. That

76 J. T. Bradley et al.

is, exactly one job begins per unit of time during [c + 1, sn]. Due to the LPT
ordering, these are exactly the jobs {n − λ, . . . , n}. Since λ ≤ m and pj ≥ m, at
least m − k units of time of job n − k are executed from time sn and onwards,
for k ∈ {1, . . . , λ}. Thus, the total processing load which executed not earlier
than sn is μ ≥ ∑λ

k=1(m − k). On the other hand, at most m − k machines are
idle at time slot c + k, for k ∈ {1, . . . , λ}. So, the total idle machine time during
[m+1, sn − 1] is Λ ≤ ∑λ−1

k=1(m− k). We conclude that μ ≥ Λ which implies that
sn ≤ m(m−1)

2 + 1
m

∑
j∈J pj . By Lemma 1, our claim follows.

Now, consider the case pn ≤ T ∗/3. Then,

T = sn + pn =
1
m

(
sn∑

t=1

|At| +
sn∑

t=1

(m − |At|)
)

+ pn

≤ 1
m

(
n∑

i=1

pi +
�∑

q=1

Λq

)

+ pn ≤ 1
m

n∑

i=1

pi +
n

2
+ pn ≤ 5

3
T ∗.

The above inequalities hold by (i) the fact that job n completes last, (ii)
the definition of alive jobs, (iii) a simple packing argument with job pro-
cessing times and machine idle time, (iv) Lemmas 1–3, and (v) the bound
T ∗ ≥ max{ 1

m

∑
j∈J pj , n + pn, 3pn}, respectively.
�

We complement Theorem 4 with a long instance I = 〈m,J 〉 example for
which LPT is 3/2-approximate and leave closing the gap between the two as
an open question. Instance I contains m + 1 jobs, where pj = 2m − j, for
j ∈ {1, . . . , m}, and pm+1 = m. In the LPT schedule S, job j is executed at
time sj = j, for j ∈ {1, . . . , m}, and sm+1 = 2m − 1. Hence, T = 3m − 1.
An optimal schedule S∗ assigns job j to machine j + 1 at time sj = j + 1, for
j ∈ {1, . . . , m − 1}. Moreover, jobs m and m + 1 are assigned to machine 1
beginning at times sm = 1 and sm+1 = m, respectively. Clearly, T ∗ = 2m.

Theorem 5 uses a simple argument to show that LPT is optimal for short
instances.

Theorem 5. LPT is optimal for short instances.

Finally, we investigate the performance of Long Job Shortest Processing Time
First (LSPT). LSPT creates an ordering of the jobs in which (i) each long job
precedes every short job, (ii) long jobs are sorted according to Shortest Process-
ing Time First (SPT), and (iii) short jobs are sorted similarly to LPT. LSPT
schedules the jobs greedily, in the same vein with LPT, by using this new order of
jobs. For long instances, when the largest processing time pmax is relatively small
compared to the average machine load, Theorem 6 shows that LSPT achieves an
approximation ratio better than the 5/3. From a worst-case analysis viewpoint,
the main difference between LSPT and LPT is that the former requires signifi-
cantly lower idle machine time until the last job start, but at the price of much
higher difference between the last job completion times in different machines.

Theorem 6. LSPT is 2-approximate for minimizing makespan. For long
instances, SPT is (1+min{1, 1/α})-approximate, where α = (1

m

∑
j∈J pj)/pmax.

Approximating Bounded Job Start Scheduling 77

5 Parallelizing Long and Short Jobs

This section proposes Long Short Job Mixing (LSM) algorithm which is 1.985-
approximate for a broad family of instances, e.g. with at most �5m/6� jobs of
processing time (i) pj > (1 − ε)(1

m

∑
j′ pj′), or (ii) pj > (1 − ε)maxj′{j′ +

pj′}) assuming non-increasing pj ’s, for small constant ε > 0. For degenerate
instances with more than �5m/6� jobs having pj > T ∗/2, where T ∗ is the optimal
objective value, LSM requires bounded machine augmentation to achieve an
approximation ratio lower than 2. Note that there can be at most m such jobs.
For simplicity, we also assume that m = ω(1), but the approximation can be
adapted for smaller values of m. However, we require that m ≥ 7.

Algorithm Description. LSM attempts to construct a feasible schedule in which
long jobs are executed in parallel with short jobs. To this end, LSM uses mL < m
machines for executing long jobs. The remaining mS = m − mL machines are
reserved for performing only short jobs. Carefully selecting mL allows to obtain a
good trade-off in terms of (i) delaying long jobs, and (ii) achieving many short job
starts at time slots where many long jobs are executed in parallel. Here, we set
mL = �5m/6�. Before formally presenting LSM, we slightly modify the notions
of long and short jobs. In particular, we set J L = {j : pj ≥ mL, j ∈ J } and
J S = {j : pj < mL, j ∈ J }, respectively. Both J L and J S are sorted in non-
increasing order of processing times. LSM schedules jobs greedily by traversing
time slots in increasing order. Let AL

t be the set of alive long jobs at time slot
t ∈ D. For t = 1, . . . , τ , LSM proceeds as follows: (i) if |AL

t | < mL and |J L| > 0,
then the next long job begins at t, (ii) else if |J S | > 0 and mL ≤ |At| < m,
LSM schedules the next short job to start at t, (iii) otherwise, LSM considers
the next time slot. From a complementary viewpoint, the set M of machines is
partitioned into ML = {i : i ≤ mL, i ∈ M} and MS = {i > mL, i ∈ M}. LSM
prioritizes long jobs on machines ML and assigns only short jobs to machines
MS . A job may undergo processing on machine i ∈ MS only if all machines in
ML are busy. Theorem 7 analyzes LSM.

Theorem 7. LSM is 1.985-approximate (i) for instances with no more than
�5m/6� jobs s.t. pj > (1 − ε)max{ 1

m

∑
j′ pj′ ,maxj′{j′ + pj′}} for sufficiently

large ε > 0, and (ii) for general instances with 1.2-machine augmentation.

Proof. Let S be the LSM schedule and � = arg max{Cj : j ∈ J } the job com-
pleting last. That is, S has makespan T = C�. For notational convenience, given
a subset P ⊆ D of time slots, we denote by λ(P) = |P | and μ(P) =

∑
t∈P |At|

the number of time slots and executed processing load, respectively, during P .
Furthermore, let nL = |J L| and nS = |J S | be the number of long and short
jobs, respectively. We distinguish two cases: (i) � ∈ J S , or (ii) � ∈ J L.

Case � ∈ J S . We partition time slots {1, . . . , T} into five subsets. Let rL =
maxj∈J L{sj} and rS = maxj∈J S{sj} be the maximum long and short job start
time, respectively, in S. Since � ∈ J S , it holds that rL < rS . For each time
slot t ∈ [1, rL] in S, either |AL

t | = mL long jobs simultaneously run at t, or

78 J. T. Bradley et al.

not. In the latter case, it must be the case that t = sj for some j ∈ J L. On
the other hand, for each time slot t ∈ [rL + 1, s�], either |At| = m, or t = sj

for some j ∈ J S . Finally, [s�, T (S)] is exactly the interval during which job �
is executed. If FL = {t : |AL

t | = mL}, BL = {t : |AL
t | < mL, t = sj , j ∈ J L},

FS = {t : t > rL, |At| = m}, BS = {t : t > rL, |At| < m, t = sj , j ∈ J S}, then

T ≤ λ(FL) + λ(BL) + λ(FS) + λ(BS) + p�. (2)

Next, we upper bound a linear combination of λ(FL), λ(BS), and λ(FS)
taking into account the fact that certain short jobs begin during a subset B̂S ⊆
FL ∪ FS of time slots. By definition, λ(BS) ≤ nS − λ(B̂S). We claim that
λ(B̂S) ≥ (mS/mL)(λ(FL) + λ(FS)). For this, consider the time slots FL ∪ FS

as a continuous time period by disregarding intermediate BL and BS time slots.
Partition this FL∪FS time period into subperiods of equal length mL. Note that
no long job begins during FL ∪ FS and the machines in MS may only execute
small jobs in S. Because of the greedy nature of LSM and the fact that pj < mL

for j ∈ J S , there are at least mS short job starts in each subperiod. Hence, our
claim is true and we obtain that λ(BS) ≤ nS − (mS/mL)(λ(FL) + λ(FS)), or

mSλ(FL) + mSλ(FS) + mLλ(BS) ≤ mLnS . (3)

Subsequently, we upper bound a linear combination of λ(FL), λ(BL), and
λ(FS) using a simple packing argument. The part of the LSM schedule for
long jobs is exactly the LPT schedule for a long instance with nL jobs and mL

machines. If |AL
rL | < m, we make the convention that μ(BL) does not contain any

load of jobs beginning in the maximal slack period completed at time rL. Observe
that μ(FL) = mLλ(FL) and μ(FS) = mλ(FS). Additionally, by Lemma 2, we
get that μ(BL) ≥ mLλ(BL)/2, except possibly the very last slack period. Then,
by Lemma 3, μ(FL) + μ(BL) + μ(FS) ≤ ∑

j∈J pj . Hence, we obtain that

mLλ(FL) +
1
2
mLλ(BL) + mλ(FS) ≤

∑

j∈J
pj . (4)

By summing expressions (3) and (4),

(mL + mS)λ(FL) +
1

2
mLλ(BL) + (m + mS)λ(FS) + mLλ(BS) ≤

∑

j∈J
pj + mLnS .

Because m = mL + mS , if we divide by m, the last expression gives

λ(FL) +
1
2
(
mL

m
)λ(BL) + λ(FS) + (

mL

m
)λ(BS) ≤ 1

m

∑

j∈J
pj + (

mL

m
)nS (5)

Now, we distinguish two subcases based on whether λ(FS)+λ(FL) ≥ 5nS/6
or not. Obviously, λ(BL) ≤ nL. In the former subcase, inequality (3) gives that
λ(BS) ≤ (1 − 5mS

6mL)nS . Hence, using inequality (5), expression (2) becomes

Approximating Bounded Job Start Scheduling 79

T ≤ 1
m

∑

j∈J
pj + (1 − mL

2m
)nL +

[

(
mL

m
) + (1 − mL

m
)(1 − 5mS

6mL
)
]

nS + p�

For mL = �5m/6�, we have that (i) 5/6 ≤ mL/m ≤ 5/6+1/m, and (ii) mS/mL ≥
1/6−1/m
5/6+1/m . Given that m = ω(1),

T ≤ 1
m

∑

j∈J
pj + (1 − 5

12
)nL +

[
5
6

+ (1 − 5
6
)(1 − 1

5
)
]

nS + p�

Note that an optimal solution S∗ has makespan

T ∗ ≥ max

⎧
⎨

⎩

1
m

∑

j∈J
pj , n

L + nS + p�

⎫
⎬

⎭

Because the instance has both long and short jobs and � ∈ J S , it holds that
p� ≥ T ∗/2. Therefore, T ≤ (1 + 29

30 + (2930) 12) ≤ 1.985T ∗. Now, consider the
opposite subcase where λ(FL) + λ(FS) ≤ 5nS/6. Given that λ(BL) ≤ nL and
λ(BS) ≤ nS , expression (2) becomes T ≤ 11

6 (nS + nL + p�) ≤ 1.835 · T ∗.

Case � ∈ J L. Recall that AL
t and BL

t are the sets of long jobs which are alive and
begin, respectively, at time slot t. Furthermore, rL = max{sj : j ∈ J L} is the
last long job starting time. Because LSM greedily uses mL machines for long jobs,
either |AL

t | = mL, or |BL
t | = 1, for each t ∈ [1, rL]. So, we may partition time

slots {1, . . . , rL} into FL = {t : |AL
t | = m} and BL = {t : |AL

t | < m, |BL
t | = 1}

and obtain T ≤ λ(FL)+λ(BL)+p�. Because mL long jobs are executed at each
time slot t ∈ FL,

λ(FL) ≤ 1
mL

⎡

⎣
∑

j∈J L

pj − μ(BL)

⎤

⎦ .

Then, Lemma 2 implies that μ(BL) ≥ nLmL/2. Furthermore, λ(BL) ≤ nL.
Therefore, by considering Lemma 3, we obtain

T ≤ m

mL

⎛

⎝ 1
m

∑

j∈J
pj

⎞

⎠ +
1
2
(nL + p�) +

1
2
p�

In the case p� ≤ T ∗/2, since T ∗ ≥ nL + p�, we obtain an approximation ratio of
(m

mL + 3
4) ≤ 1.95, when mL = �5m/6�, given that m = ω(1).

Next, consider the case p� > T ∗/2. Let J V = {j : pj > T ∗/2} be the
set of very long jobs and nV = |J V |. Clearly, nV ≤ m. By using resource
augmentation, i.e. allowing LSM to use m′ = �6m/5� machines, we guarantee
that LSM assigns at most one job j ∈ J V in each machine. The theorem follows.

80 J. T. Bradley et al.

Remark. If �5m/6� < |J V | ≤ m, LSM is not better than 2-approximate. This
can be illustrated with a simple instance consisting of only JV jobs. Assign-
ing two such jobs on the same machine is pathological. Thus, better than 2-
approximate schedules require assigning all jobs in J V to different machines.

6 Conclusion

We conclude with a collection of future directions. Because BJSP relaxes schedul-
ing problems with non-overlapping constraints, which do not admit better than
2-approximation algorithms, the existence of such an algorithm without resource
augmentation for BJSP is an intriguing open question. A positive answer combin-
ing LSM with a new algorithm for instances with many very long jobs is possible.
Analyzing the price of robustness of the proposed robust scheduling approach
may reveal new insights for effectively solving BJSP under uncertainty. Also,
machine augmentation enables more efficient BJSP solving. Integrating multiple
delivery offices in a unified setting and performing vehicle sharing on a daily
basis enables a practical implementation of machine augmentation when mail
delivery demand fluctuates.

References

1. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
2. Billaut, J.-C., Sourd, F.: Single machine scheduling with forbidden start times.

4OR 7(1), 37–50 (2009)
3. Gabay, M., Rapine, C., Brauner, N.: High-multiplicity scheduling on one machine

with forbidden start and completion times. J. Sched. 19(5), 609–616 (2016)
4. Goerigk, M., Schöbel, A.: Algorithm engineering in robust optimization. In: Klie-

mann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 245–279.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6 8

5. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

6. Letsios, D., Ruth, M.: Exact lexicographic scheduling and approximate reschedul-
ing. arXiv 1805.03437 (2018)

7. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable
robustness, linear programming recovery, and railway applications. In: Ahuja, R.K.,
Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05465-5 1

8. Mnich, M., Bevern, R.V.: Parameterized complexity of machine scheduling: 15
open problems. Comput. Oper. Res. 100, 254–261 (2018)

9. Rapine, C., Brauner, N.: A polynomial time algorithm for makespan minimization
on one machine with forbidden start and completion times. Discrete Optim. 10(4),
241–250 (2013)

https://doi.org/10.1007/978-3-319-49487-6_8
https://doi.org/10.1007/978-3-642-05465-5_1
https://doi.org/10.1007/978-3-642-05465-5_1

Approximating Bounded Job Start Scheduling 81

10. Schäffter, M.W.: Scheduling with forbidden sets. Discrete Appl. Math. 72(1–2),
155–166 (1997)

11. Skutella, M., Verschae, J.: Robust polynomial-time approximation schemes for par-
allel machine scheduling with job arrivals and departures. Math. Oper. Res. 41(3),
991–1021 (2016)

12. Svensson, O.: Hardness of precedence constrained scheduling on identical machines.
SIAM J. Comput. 40(5), 1258–1274 (2011)

	Approximating Bounded Job Start Scheduling with Application in Royal Mail Deliveries Under Uncertainty
	1 Introduction
	2 Problem Definition and Preliminary Results
	3 LPT Algorithm
	4 Long and Short Instances
	5 Parallelizing Long and Short Jobs
	6 Conclusion
	References

