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Abstract. We study the Balanced Connected Subgraph (shortly,
BCS) problem on geometric intersection graphs such as interval,
circular-arc, permutation, unit-disk, outer-string graphs, etc. Given a
vertex-colored graph G = (V, E), where each vertex in V is colored with
either “red” or “blue”, the BCS problem seeks a maximum cardinality
induced connected subgraph H of G such that H is color-balanced , i.e.,
H contains an equal number of red and blue vertices. We study the
computational complexity landscape of the BCS problem while consid-
ering geometric intersection graphs. On one hand, we prove that the
BCS problem is NP-hard on the unit disk, outer-string, complete grid,
and unit square graphs. On the other hand, we design polynomial-time
algorithms for the BCS problem on interval, circular-arc and permu-
tation graphs. In particular, we give algorithms for the Steiner Tree

problem on both interval and circular-arc graphs, and those algorithms
are used as subroutines for solving the BCS problem on the same classes
of graphs. Finally, we present a FPT algorithm for the BCS problem on
general graphs.

Keywords: Balanced connected subgraph · Interval graphs ·
Permutation graphs · Circular-arc graphs · Unit-disk graphs ·
Outer-string graphs · NP-hard · Color-balanced · Fixed parameter
tractable

1 Introduction

The intersection graph of a collection of sets is a graph where each vertex of
the graph represents a set and there is an edge between two vertices if their
corresponding sets intersect. Any graph can be represented as an intersection
graph over some sets. Geometric intersection graph families consist of inter-
section graphs for which the underlying collection of sets are some geometric
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objects. Some of the important graph classes in this family are interval graphs
(intervals on real line), circular-arc graphs (arcs on a circle), permutation graphs
(line segments with endpoints lying on two parallel lines), unit-disk graphs (unit
disks in the Euclidean plane), unit-square graphs (unit squs in the Euclidean
plane), outer-string graphs (curves lying inside a disk, with one endpoint on the
boundary of the disk), etc. In the past several decades, geometric intersection
graphs became very popular and extensively studied due to their interesting
theoretical properties and applicability.

In this paper, we consider an interesting problem on general vertex-colored
graphs called the Balanced Connected Subgraph (shortly, BCS) problem.
A subgraph H = (V ′, E′) of G is called color-balanced if it contains an equal
number of red and blue vertices.

Balanced Connected Subgraph (BCS) Problem
Input: A graph G = (V,E), with node set V = VR ∪VB partitioned into
red nodes (VR) and blue nodes (VB).
Output: Maximum-sized color-balanced induced connected subgraph.

1.1 Previous Work

The BCS problem has been studied on various graph families such as trees,
planar graphs, bipartite graphs, chordal graphs, split graphs, etc [2]. Most of
the findings suggest that the problem is NP-hard for general graph classes, and
it is possible to design polynomial time algorithms for the restricted classes
with involved approaches. In [2], we have pointed out a connection between
the BCS problem and graph motif problem (see, e.g., [6,7,11]). In the graph
motif problem, we are given the input as a graph G = (V,E), a color function
col : V → C on the vertices, and a multiset M , called motif, of colors of C;
the objective is to find a subset V ′ ⊆ V such that the induced subgraph on
V ′ is connected and col(V ′) = M . Note that, if C = {red, blue} and the motif
has the same number of red and blues then, the solution of the graph motif
problem gives a balanced connected subgraph. Indeed, a solution to the graph
motif problem provides one balanced connected subgraph, with an impact of a
polynomial factor in the running time. However, it does not guarantee the maxi-
mum size balanced connected subgraph. Nonetheless, the NP-hardness result for
the BCS problem on any particular graph class implies the NP-hardness result
for the graph motif problem on the same class. Graph motif problem has wide
range of applications in bioinformatics [5], DNA physical mapping [8], perfect
phylogeny [4], metabolic network analysis [12], protein–protein interaction net-
works and phylogenetic analysis [3]. This problem was introduced in the context
of detecting patterns that occur in the interaction networks between chemical
compounds and/or reactions [12].
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1.2 Our Results

We present a collection of results on the BCS problem on geometric intersection
graphs, that advances the study of this problem on diverse graph families.

➥ On the hardness side, in Sect. 2, we show that the BCS problem is NP-
hard on unit-disk graphs, outer-string graphs, complete grid graphs, and unit
square graphs.
➥ On the algorithmic side, in Sect. 3, we design polynomial-time algorithms
for interval graphs (O(n4 log n) time), circular-arc graphs (O(n6 log n) time)
and permutation graphs (O(n6) time, and the result is described in the full
version1). Moreover, we give an algorithm for the Steiner Tree problem
on the interval graphs, that is used as a subroutine in the algorithm of the
BCS problem for intervals graphs. Finally, we show that the BCS problem
is fixed-parameter tractable for general graphs (2O(k)n2 log n) while parame-
terized by the number of vertices in a balanced connected subgraph.

2 Hardness Results

2.1 Unit-Disk Graphs

We show that the BCS problem is NP hard for the unit-disk graphs. We give
a reduction from the Rectilinear Steiner Tree (RST) problem [9]. In this
problem, we are given a set P of integer coordinate points in the plane and an
integer L. The goal is to find a Steiner tree T (if one exists) of length at most L.

During the reduction, we first generate a geometric intersection graph from
an instance X(P,L) of the RST problem. The vertices of this graph are having
integer coordinates and each edge is of unit length. Next, we show that this
graph is a unit-disk graph.

Reduction: Suppose we have an instance X(P,L) of the RST problem. For
any point p ∈ P , let p(x) and p(y) denote the x- and y-coordinates of p, respec-
tively. Let pt, pb, pl, and pr be the topmost (largest y-coordinate), bottom-most
(smallest y-coordinate), leftmost (smallest x-coordinate), and rightmost (largest
x-coordinate) points in P . We now take a unit integer rectangular grid graph D
on the plane such that the coordinates of the lower-left grid vertex is (pl(x), pb(y))
and upper-right grid vertex is (pr(x), pt(y)). Now we associate each point p in
P with a grid vertex dp in D having the same x- and y-coordinates of p. Now
we assign colors to the points in D. The vertices in D that are corresponding to
the points in P are colored with red and the remaining grid vertices in D are
colored with blue. We add some additional vertices to D as follows:

Observe that if there exists a Steiner tree T of length L + 1 = |P | then T
does not include any blue vertex in D. Further, if there exists a Steiner tree T
of length L + 1 = 2|P | then T contains equal number of red and blue vertices
in D. Based on this observation we consider two cases to add some additional
vertices (not necessarily forming a grid structure) to D.
1 Some results are described in the full version, because of page limitations here.
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Case 1. [L+ 1 ≥ 2|P |]: In this case the number of blue vertices in a Steiner
tree T (if exists) is more than or equals to red vertices in D. We consider
a path δ of (L − 2|P | + 1) red vertices starting and ending with vertices
r1 and rL−2|P |+1, respectively. The coordinates of ri is (pl(x) − i, pl(y)), for
1 ≤ i ≤ L − 2|P | + 1. We connect this path with D using an edge between
the vertices r1 and pl. See Fig. 1(a) for an illustration of this construction.
Let the resulting graph be G1 = D ∪ δ.

Case 2. [L+1 < 2|P |]: In this case the number of red vertices in a Steiner tree
T (if exists) is more than the number of blue vertices in D. We consider a path
δ of (2|P |−L) blue vertices starting and ending with vertices b1 and b2|P |−L,
respectively. The coordinates of bi is (pl(x) − i, pl(y)), for 1 ≤ i ≤ 2|P | − L.
We connect this path with D using an edge between the vertices b1 and pl.
We add one more red vertex r′ whose coordinates are (p2|P |−L(x)− 1, pl(y))
and connect it with b2|P |−L using an edge. See Fig. 1(b) for an illustration of
this construction. Let the resulting graph be G2 = D ∪ δ ∪ {r′}

Fig. 1. (a) Construction of the instance G1. (b) Construction of the instance G2. (Color
figure online)

This completes the construction. Clearly, the construction (either G1 or G2)
can be done in polynomial time. Now we prove the following lemma.

Lemma 1. The instance X of the RST problem has a solution T if and only if

– For Case 1: the instance G1 has a balanced connected subgraph H with
2(L − |P | + 1) vertices.

– For Case 2: the instance G2 has a balanced connected subgraph T with 2(|P |+
1) vertices.

Proof. We prove this lemma for Case 1. The proof of Case 2 is similar.

For Case 1: Assume that X has a Steiner tree T of length L, where L+1 ≥ 2|P |.
Let U be the set of those vertices in G1 corresponds to the vertices in T . Clearly,
U contains |P | red vertices and L − |P |+ 1 blue vertices. Since L+ 1 ≥ 2|P |, to
make U balanced it needs L − |P | + 1 − |P | more red vertices. So we can add
the path δ of L−2|P |+1 red vertices to U . Therefore, U ∪ δ becomes connected
and balanced (contains L − |P | + 1 vertices in each color).
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On the other hand, assume that there is a balanced connected subgraph H
in G with (L − |P | + 1) vertices of each color. We can observe that H is a
tree and no blue vertex in H is a leaf vertex. The number of red vertices in
G1 is exactly (L − |P | + 1). So the H must pick all the (L − |P | + 1) blue
vertices that connect the vertices in G1 corresponding to P . We take the set A
of all the grid vertices corresponding to the vertices in H except the vertices
{ri; 1 ≤ i ≤ (L − 2|P | + 1)}. We output the Steiner tree T that contains the
vertex set A and edge set EA connecting the vertices of A according to the edges
in H. As |A| = 2(L − |P | + 1) − (L − 2|P | + 1) = L + 1, so we output a Steiner
tree of length L. �	

We now show that either G1 or G2 is a unit-disk graph. Let us consider the
graph G1. For each vertex v in G1 we take a unit disk whose radius is 1

2 and
center is on the vertex v. Therefore from the Lemma 1, we conclude that,

Theorem 1. The BCS problem is NP-hard for unit-disk graphs.

Extensions: The above reduction can be extended to prove that the BCS prob-
lem is NP-hard for the unit square graphs and the complete grid graphs (see the
full version of the paper).

2.2 Outer-String Graphs

We show that the BCS problem is NP-hard for the outer-string graphs. We give
a reduction from the dominating set problem that is known to be NP complete
on general graphs [10]. Given a graph G = (V,E), the dominating set problem
asks whether there exists a set U ⊆ V such that |U | ≤ k and N [U ] = V , where
N [U ] denotes neighbours of U in G including U itself.

During the reduction, we first generate a geometric intersection graph H =
(R ∪ B,E′) from an instance X(G, k) of the dominating set problem on general
graph. Next, we show that H is an outer-string graph.

Reduction: Let G = (V,E) be graph with vertex set V = {v1, v2, . . . , vn}. For
each vertex vi ∈ V we add a red vertex vi and a blue vertex v′

i in H. For each
edge (vi, vj) ∈ E, we add two edges (vi, v

′
j), (v

′
i, vj) in E′. Take a path of k red

vertices starting at r1 and ending at rk. Also take a path of n blue vertices
starting at b1 and ending at bn. Add the edges (bn, rk), (b1, v1) into E′. We add
edges between all pair of vertices in {v′

1, v
′
2, . . . v

′
n}. Our construction ends with

adding n edges (vi, v
′
i) into E′ for 1 ≤ i ≤ n. This completes the construction.

See Fig. 2 for an illustration of this construction that can be made in polynomial
time.

Lemma 2. The instance X has a dominating set of size k if and only if H has
a balanced connected subgraph T with 2(n + k) vertices.
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Fig. 2. (a) A graph G. (b) Construction of H from G with k = 4. For the clarity of
the figure we omit the edges between each pair of vertices v′

i and v′
j , for i �= j. (c)

Intersection model of H. (Color figure online)

Proof. Assume that G has a dominating set U of size k. Now we take the sub-
graph T of H induced by {v′

i : vi ∈ U} along with the vertices {ri : 1 ≤ i ≤
k} ∪ {bj : 1 ≤ j ≤ n} ∪ {vi : 1 ≤ j ≤ n} in H. Now clearly H is connected and
balanced with 2(n + k) vertices.

On the other hand, assume that there is a balanced connected tree T in H
with (n + k) vertices of each color. The number of red vertices in H is exactly
(n+ k). So the solution must pick the blue vertices {bi : 1 ≤ i ≤ n} that connect
v1 with r1. As T has exactly (n + k) blue vertices then it T should pick exactly
k vertices from the set {v′

i : 1 ≤ i ≤ n}. The set of vertices in V corresponding
to these k vertices gives us a dominating set of size k in G. �	

We now verify that H is an outer-string graph. For an illustration see
Fig. 2(c). We draw a horizontal line y = 0. For each vertex vi ∈ H, draw the line
segment Li = (i, 0)(i, 1). For each vertex v′

j ∈ H, we draw a curve Cj , having
one endpoint on the line y = 0, in such a way that for each edge (v′

j , vi) ∈ H, Cj

bend above Li (the line segment corresponding to vi) and intersects the lines Li

from top. Also all the curves Cj ’s intersect each other. Now we add the curves
corresponding to {ri : 1 ≤ i ≤ k} ∪ {bj : 1 ≤ j ≤ n} having one endpoint on the
line y = 0 with satisfying the adjacency. Finally, using Lemma 2, we conclude:

Theorem 2. The BCS problem is NP-hard for the outer-string graphs.
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3 Algorithmic Results

3.1 Interval Graphs

In this section, we study the BCS problem on the connected interval graphs.
Given an n vertex interval graph G = (V,E), we order the vertices of G based
on the left endpoints {lv : ∀v ∈ V } of their corresponding intervals. Consider a
pair of vertices u, v ∈ V with lu ≤ lv, we define a set Su,v = {w : w ∈ V, lu ≤
lw < rw ≤ rv} ∪ {u, v}. We also consider the case when u = v, and define Su,u

in a similar fashion. Let H be a subgraph of G induced by Su,v (resp. Su,u) in
G. For any u, v ∈ V , consider Su,v and let r and b be the number of red and
blue vertices in Su,v, respectively. Without loss of generality, we may assume
that b ≤ r. The goal is to find a BCS, with cardinality 2b in H, containing
u, v ∈ V (H). Let B be the set of all blue intervals and T = B ∪ {u, v}.

We compute a connected subgraph that contains T and some extra red inter-
vals. For that, we use an algorithm for Steiner tree problem on interval graphs.

Steiner Tree on Interval Graphs: Given a simple connected interval graph
G = (V,E) and a set T ⊆ V of terminals, the minimum Steiner tree prob-
lem seeks a smallest tree that spans over T . The vertices in S = V \T
are denoted as Steiner vertices. First we describe a greedy algorithm called
Select_Steiners(G = (V,E), T ) that computes a minimum Steiner tree T ∪ D
on G.

We first partition T into m (m ∈ [n]) components {C1, . . . , Cm} sorted from
left to right based on the right endpoints of the components (note that, the
union of the intervals in each component is an interval on the real line). Let
ICi

be the rightmost interval of the i-th component Ci. We consider the first
component C1 and the neighborhood set N(IC1) of IC1 . Let Ij be the rightmost
interval in N(IC1). By rightmost, we mean that the interval having the rightmost
endpoint. We add Ij in D. Now, we recompute the components based on T ∪D.
Note, C1 ∪ Ij is now contained in one component. We repeat this produce until
T ∪ D becomes a single component. Finally we return T ∪ D as a solution.

Correctness: It is easy to verify that the graph induced by T ∪D is connected.
Now we prove the optimality of the Algorithm Select_Steiners(G = (V,E), T )
by induction. The base case is that we have to connect the first two components
C1 and C2. We choose the rightmost interval from the neighborhood of IC1 .
Note, that we have to connect C1 and therefore it is inevitable that we have to
pick an interval from N(IC1). We choose the rightmost interval (say, (I�)). Now,
if this choice already connects C2, we are done. Otherwise, C1 = C1∪I�. Now, let
us assume that we have obtained an optimal solution until step i. At step i+ 1,
we have to connect the first two components. By applying the same argument
as the base case, we choose the rightmost interval from the first component and
proceed. It is easy to verify that this algorithm runs in O(n2) time.

Now, we go back to the BCS problem. Recall that, for any pair of intervals
u, v ∈ V , our objective is to compute a BCS with vertex set T of cardinality
2b (if exists), where b and r is the number of red and blue intervals in Su,v,
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Algorithm 1. BCS_Interval(H)
1: T ← B ∪ {u, v}
2: D = Select_Steiners(H, T )
3: r′ ← number of red vertices in D ∪ {u, v}
4: b′ ← number of blue vertices in T
5: if r′ > b′ then
6: Return φ
7: if r′ = b′ then
8: Return G[D ∪ T ]
9: if r′ < b′ then

10: Return G[D ∪ T ∪ X]
where X ⊂ V (H) is the set of (b′ − r′) red vertices with X ∩ (D ∪ T ) = φ.

respectively, and b ≤ r. Let H be the subgraph of G induced by Su,v. Let R and
B denote the set of red and blue intervals in Su,v, respectively. We describe this
process in Algorithm1. We repeat this procedure for every pair of intervals and
report the solution set with the maximum number of intervals.

Correctness: We prove that our algorithm yields an optimum solution. Let G′

be such a solution. Let u and v be the intervals with leftmost endpoint and
rightmost endpoint of G′, respectively. Now we show that V (G′) = min{2r, 2b},
where r and b be the number of red and blue color vertices is Su,v, respectively.
Let us assume V (G′) �= min{2r, 2b}. Then there exists at least one blue interval
z and one red interval z′ that belong to Su,v \ V (G′). However, we know that
Su,v induces an intersection graph of intervals corresponding to the vertices
{w : w ∈ V, lu ≤ lw < rw ≤ rv} ∪ {u, v}, and G′ contain both u and v. So,
N [z] ∩ G′ �= φ, N [z′] ∩ G′ �= φ. Therefore V (G′) ∪ {z, z′} induces a balanced
connected subgraph in G. It contradicts our assumption and hence the proof.

Time Complexity: Here we use the algorithm Select_Steiners(G = (V,E), T )
as a subroutine. Using range tree the set Su,v can be obtained in O(log n) time.
Hence total running time is O(n4 log n).

Theorem 3. Let G be an interval graph whose n vertices are colored either red
or blue. Then BCS problem on G can be solved in O(n4 log n) time.

3.2 Circular-Arc Graphs

We study the BCS problem on circular-arc graphs. We are given a bicolored the
circular-arc graph G = (VR ∪ VB, E), where the set VR and VB contains a set of
red and blue arcs, respectively. With out loss of generality we assume that the
given input arcs fully cover the circle. Otherwise it becomes an interval graph
and we use the algorithm of the interval graph to get an optimal solution.

Let us assume that H be a resulting maximum balanced connected subgraph
of G, and let S denote the set of vertices in H. Since H is a connected subgraph of
G, H covers the circle either partially or entirely. We propose an algorithm that
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computes a maximum size balanced connected subgraph H of G in polynomial
time. Without loss of generality we assume that VB ≤ VR. For any arc u ∈
V , let l(u) and r(u) denote the two endpoints of u in the clockwise order of
the endpoints of the arc. To design the algorithm, we shall concentrate on the
following two cases – Case A and Case B. In Case A, we check all possible
instances while the the output set does not cover the circle fully. Then, in Case B,
we handle all those instances while the output covers the entire circle. Later, we
prove that the optimum solution lies in one of these instances. The objective is
to reach the optimum solution by exploiting these instances exhaustively.

Case A: H covers the circle partially: In this case, there must be a clique
of arcs K (|K| ≥ 1) that is not present in the optimal solution. We consider
any pair of arcs u, v ∈ V such that r(u) ≺ l(v) in the clockwise order of the
endpoints of the arcs, and consider the vertex set Su,v = {w : w ∈ V, lv ≤
lw < rw ≤ ru} ∪ {u, v}. Then, we use the Algorithm 1 to compute maximum
BCS on G[Su,v]. This process is repeated for each such pair of arcs, and report
the BCS with maximum number of arcs.

Case B: H covers the circle entirely: In this case, S must contains 2|VB |
number of arcs and in fact that is the maximum number of arcs S can opt. In
order to compute such a set S, first we add the vertices in VB to S, then consider
the vertices in VB as a set T of terminal arcs and we need to find a minimum
number of red arcs D ∈ VR to span over T . We further assume two cases.

B.1. [T ∪D covers the circle partially] This case is similar to Case A without
some extra red arcs that would be added afterwards to ensure that S contains
2|VB | arcs. Similar to Case A, we again try all possible subsets obtained by pair
of vertices u, v with r(u) ≺ l(v) and Su,v contains all blue vertices and we find
optimal Steiner tree by using Algorithm Select_Steiners(G = (V,E), T ). Then,
we add (|VR| − |D|) (where D is the set of Steiner arcs) red arcs from VR to S.

B.2. [T ∪D covers the circle entirely] First, we obtain a set C of m (for some
m ∈ [n]) components from T . We may see each component C ∈ C as an arc and
the neighborhood set N(C) as the union of the neighborhoods of the arcs con-
tained in C. Observe that, for any component C ∈ C, D contains either one arc
from N(C) that covers C, or two arcs from N(C) where none of them individu-
ally covers C. Let us consider one component C ∈ C. Let l(C) and r(C) be the
left and right end points of C, respectively. If |N(C)∩ D| = 1, we consider each
arc from N(C) separately that contains C. For each such arc I(C) ∈ N(C), we
do the following three step operations –(1) include I(C) in D, (2) remove N(C)
from the graph, (3) include two blue arcs (l(I(C)), r(C)) and (r(C), r(I(C))) in
the vertex set of the graph. Now, T = T ∪ {[l(I(C)), r(C)), (r(C), r(I(C))]}.
We give this processed graph that is an interval graph, as an input of the
Steiner tree (Algorithm Select_Steiners(G = (V,E), T )) and look for a tree
with at most (|D| − 1) Steiner red arcs. Else, when |N(C) ∩ D| = 2, we take
the arcs C� and Cr from N(C) with leftmost and rightmost endpoints, respec-
tively, in D. We do the same three step operations –(1) include C� and Cr in
D, (2) remove N(C) from the graph, (3) include two blue arcs (l(C�), l(C))),
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(r(C), r(Cr))). Now, T = T ∪ {[l(C�), l(C))), (r(C), r(Cr))]}. We give this pro-
cessed graph that is an interval graph, as an input of the Steiner tree (Algorithm
Select_Steiners(G = (V,E), T )) and look for a tree with at most (|D| − 2)
Steiner red arcs. This completes the procedure.

Correctness: We prove that our algorithm yields an optimum solution. The
proof of correctness follows from the way we have designed the algorithm. The
algorithm is divided into two cases. For case A, the primary objective is to con-
struct the instances from a circular-arc graph to some interval graph. Thereafter,
we can solve it optimally. Now, Case B is further divided into two sub-cases. Here
we know that all blue vertices present in optimum solution. Therefore, our goal is
to employ the Steiner tree algorithm with terminal set T = VB . Note, for B 1 we
again try all possible subsets obtained by pair of vertices u, v where r(u) ≺ l(v)
and Su,v contains all blue vertices. Note, G[Su,v] is an interval graph and VB is
the set of terminals (since we assumed, w.l.o.g, VB ≤ VR). Therefore we directly
apply the Steiner tree procedure and obtain the optimum subset for each such
pair. Indeed, this process reports the maximum BCS. In the case B 2 we mod-
ify the input graph in three step operations. Moreover, we update the expected
output size to make it coherent to the modified input instance. This process is
done for one arbitrary component of T (of size ≥ 1), which gives an interval
graph. Clearly, the choice of this component makes no impact on the size of
BCS. Thereafter, we follow the Steiner tree algorithm on this graph. Moreover,
the algorithm exploits all possible cases and reduce the graph into interval graph
without affecting the size of the BCS. Thereby, putting everything together, we
conclude the proof.

Time Complexity: For case A, we try all pairs of arcs that holds certain
condition and consider the subset (note, such subset can be computed in O(log n)
time given the clockwise order of the vertex set and a range tree where the arcs
are stored). For each such subset we use the algorithm for interval graph to
compute the maximum BCS. This whole process takes O(n6 log n) time. The
complexity of Case A dominates complexity of Case B and we get the total
running time O(n6 log n).

Theorem 4. Given an n vertex circular-arc graph G whose vertices are colored
either red or blue, the BCS problem on G can be solved in O(n6 log n) time.

3.3 FPT Algorithm

In this section, we show that the BCS problem is fixed-parameter tractable for
general graphs while parameterized by the solution size. Let G = (V,E) be a
simple connected graph, and let k be a given parameter. A family F of functions
from V to {1, 2, . . . , k} is called a perfect hash family for V if the following
condition holds. For any subset U ⊆ V with |U | = k, there is a function f ∈ F
which is injective on U , i.e., f |U is one-to-one. For any graph of n vertices and a
positive integer k, it is possible to obtain a perfect hash family of size 2O(k) log n
in 2O(k)n log n time; see [1]. Now, the k-BCS problem can be defined as follows.
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Given a bicolored (red and blue) graph G = (V,E), and a parameter k, decide
if G contains a BCS of size k.

We employ two methods to solve the k-BCS problem: (i) color coding tech-
nique, and (ii) batch procedure. Our approach is motivated by the approach of
Fellows et al. [7], where they have used these techniques to provide a FPT-
algorithm for the graph motif problem. Suppose H is a solution to the k-
BCS problem and F is a perfect hash family for V . This ensures us that at
least one function of F assigns vertices of H with k distinct labels. Therefore,
if we iterate through all functions of F and find the subsets of V of size k that
are distinctly labeled by our hashing, we are guaranteed to find H. Now, we try
to solve the following problem: Given a hash function f : V → {1, 2, . . . , k} from
perfect hash family F , decide if there is a subset U ⊆ V with |U | = k such that
G[U ] is a balanced connected subgraph of G and f |U is one-to-one.

First, we create a table, denoted by M . For a label L ⊆ {1, 2, . . . , k}
and a color-pair (b, r) of non-negative integers where b + r = |L|, we put
M [v ; L, (b, r)] = 1 if and only if there exists a subset U ⊆ V of vertices
such that the conditions holds: (i) v ∈ U , (ii) f |U = L, (iii) G[U ] is connected,
and (iv) U consisting exactly b blue vertices and r red vertices.

Notice that, the total number of entries of this table is O(2kkn). If we
can fill all the entries of the table M , then we can just look at the entries
M [v ; {1, 2, . . . , k}, (k

2 , k
2 )], ∀v ∈ V , and if any of them is one then we can

claim that the k-BCS problem has a solution. Now we use the batch procedure
to compute M [v ; L, (b, r)] for each subset L ⊆ {1, 2, . . . k}, and for each pair
(b, r) of non-negative integers such that (b+ r) = |L|. Now, we explain the batch
procedure. Without loss of generality we assume that L = {1, 2, . . . , t}, f(v) = t,
and the color of v is red.

Batch Procedure (v, L, (b, r)):
(1) Initialize: Construct the set S of pairs (L′, (b′, r′)), where b′ + r′ = |L′|

such that L′ ⊆ {1, 2, . . . , t − 1}, b′ ≤ b, r′ ≤ r − 1 and M [u ; L′, (b′, r′)] = 1 for
some neighbour u of v.
(2) Update: If there exists two pairs {(L1, (b1, r1)), (L2, (b2, r2))} ∈ S such that
L1∩L2 = φ and (b1, r1)+(b2, r2) ≤ (b, r−1), then add (L1∪L2, (b1+b2, r1+r2))
into S. Repeat this step until unable to add any more.
(3) Decide: Set M [v ; L, (b, r)] = 1 if ({1, 2, . . . , t − 1}, (b, r − 1)) ∈ S, else 0.

Lemma 3. The batch procedure correctly computes M [v ; L, (b, r)] for all v,
L ⊆ {1, 2, . . . , k} with b + r = |L|.
Proof. Without loss of generality we assume that L = {1, 2, . . . , t}, f(v) = t
and color of v is red. We have to show that M [v ; L, (b, r)] = 1 ⇔ there exists
a connected subgraph, containing v, and having exactly b blue vertices and r
red vertices. Firstly, we assume that M [v ; L, (b, r)] = 1. So, ({1, 2, . . . , t −
1}, (b, r−1)) ∈ S. So, there must exist some neighbours {v′

1, v
′
2, . . . , v

′
l} of v such

that M [v′
1; L1, (b1, r1)] = M [v′

2; L2, (b2, r2)] = · · · = M [v′
l; Ll, (bl, rl)] = 1

with
l⋃

i=1

Li = L \ {t},
∑l

i=1 bi = b,
∑l

i=1 ri = r − 1 where L1, L2, . . . , Ll are pair-
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wise disjoint. Thus, there exists a connected subgraph containing {v, v′
1, . . . , v

′
l}

having exactly b blue vertices and r red vertices. Other direction of the proof
follows from the same idea.

Lemma 4. Given a hash function f : V → {1, 2, . . . , k}, batch procedure fill all
the entries of table M in O(24kk3n2) time.

Proof. The initialization depends on the number of the search process in the
entries correspond to the neighbour of v. Now, this number is bounded by the
size of M . The first step takes O(2kkn) time. Now the size of S can be at most
2kk. Each update takes O(22kk2) time. So step 2 takes O(23kk3) time. Now the
value of M [v ; L, (b, r)] can be decided in O(2kk) time. As the number of entries
in M is O(2kkn), so the total running time is O(24kk3n2). �	
The algorithm for the k-BCS problem is following:

1. Construct a perfect hash family F of 2O(k) log n functions in 2O(k)n log n time.

2. For each function, f ∈ F build the table M using batch procedure. For each
function f ∈ F it takes O(24kk3n2) time.

3. As each f ∈ F is perfect, by an exhaustive search through all function in F our
algorithm correctly decide whether there exists a balanced connected subgraph
of k vertices. We output yes, if and only if there is a vertex v and f ∈ F for which
the corresponding table M contains the entry one in M [v ; {1, 2, . . . , k}, (k

2 , k
2 )].

Theorem 5. The k-BCS problem can be solved in time 2O(k)n2 log n time.
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