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Abstract. We study the Set Cover, Hitting Set, Piercing Set, Inde-
pendent Set, Dominating Set problems, and discrete versions (Discrete
Independent Set and Discrete Dominating Set) for geometric instances
in the plane. We focus on certain restricted classes of geometric objects,
including axis-parallel lines, strips, and rectangles. For rectangles, we
consider the cases in which the rectangles are (i) anchored on a hori-
zontal line, (ii) anchored on two lines (either two parallel lines or one
vertical and one horizontal line), and (iii) stabbed by a horizontal line.
Some versions of these problems have been studied previously; we focus
here on the open cases, for which no complexity results were known.

Keywords: Discrete Dominating Set · Discrete Independent Set ·
NP-hard · Anchored rectangles · Stabbed by a horizontal line

1 Introduction

We study several special cases of various optimization problems in the plane,
including the Set Cover (SC), Hitting Set (HS), Piercing Set (PS), Independent
Set (IS), and Dominating Set (DS) problems. In addition, we consider discrete
versions of the IS and DS problems, the Discrete Independent Set (DIS) and
Discrete Dominating Set (DDS) problems. The inputs of these two problems
are a set of objects O and a set of points P . In the DIS problem the objective
is to select maximum cardinality subset O′ ⊆ O of objects such that any two
objects in O′ do not share a point in P . On the other hand, in the DDS problem
the objective is to select a minimum collection O′ ⊆ O of objects such that the
intersection of any object in O \ O′ and an object in O′ contains a point in P .

In this paper we study various optimization problems on various types of
geometric objects as follows (see Fig. 1 for some types of objects):

➟ Line: Axis parallel lines.
➟ Strip: Axis-parallel strips.
➟ R-AHL: Rectangles anchored on a horizontal line (Fig. 1(a)).
➟ R-ATL: Rectangles anchored on two lines (Fig. 1(b)).
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➟ R-ATOL: Rectangles anchored on two orthogonal lines (Fig. 1(c)).
➟ R-SHL: Rectangles stabbing a horizontal line.

Fig. 1. (a) Rectangles anchored on a horizontal line. (b) Rectangles anchored on two
lines. (c) Rectangles anchored on two orthogonal lines.

1.1 Previous Work

The optimization problems considered in this paper are NP-hard for simple
geometric objects like unit squares [9], unit disks [9], rectangles [9], etc. The
SC problem admits a PTAS for weighted unit squares [8]. The SC and HS prob-
lems are APX-hard even for axis-parallel strips [5]. For rectangles anchored on a
horizontal line both the SC and HS problems can be solved in polynomial time
[5,11]. When the rectangles are anchored on two lines both these problems are
NP-hard [18]. Chepoi and Felsner [6] considered the IS and PS problems with
rectangles where the rectangles are intersecting an axis-monotone curve. Correa
et al. [7] studied the same problem, where the objects intersect a diagonal line. In
[17], their results were extended. They also considered the SC and HS problems
with other geometric objects as well.

In [19], the author studied the DS problem using axis-parallel rectangles
and unit squares where the objects are intersecting a straight line which makes
an angle with the x-axis. Recently, Bandyapadhyay et al. [3] gave a PTAS for
the DS problem with axis-parallel rectangles touching a line with slope -1 from
exactly one side of the line. Recently, Madireddy et al. [16] studied the DDS and
DIS problem with arbitrary radii disks and arbitrary length squares in the plane
and provide PTASes. They also showed that both DDS and DIS problems are
NP-hard for unit disks intersecting a horizontal line and for axis-parallel unit
squares intersecting a straight line with slope −1. In [20], the author studied the
SC, HS, PS, and IS problems with right angled triangles such that the triangles
intersect a straight line (either a horizontal line or a line with slope of −1).

1.2 Our Contributions

We list our contributions in Table 1.
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Table 1. Our contributions are shown in colored text (P-> polynomial time, H->
NP-hard). The results in non-colored text for which no references are given are either
trivial to show or can be derived from the other problems easily.

1.3 Prerequisites

In a planar 3-SAT (P-3-SAT) problem we are given a 3-CNF formula φ with
n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm such that each clause
contains exactly 3 literals. For each variable or clause take a vertex in the plane.
A literal is present in a clause if and only if there is an edge between the two ver-
tices corresponding to the variable and the clause. Moreover, the formula should
be such that the resulting graph must be planar. The goal is now to decide
whether there is a truth assignment to the variables such that φ is satisfiable.
Lichtenstein [15] proved that this problem is NP-complete. Later on Knuth and
Raghunathan [13] considered a restricted version of the P-3-SAT problem, the
rectilinear planar 3-SAT (R-P-3-SAT) problem can be defined as follows.
For each variable or clause we take a horizontal line segment . The variable
segments are placed on a horizontal line and clause segments are connected
to these variable segments either from above or below by vertical line segments
called connections such that none of these line segments and connections inter-
sect. The goal is to decide whether there is a truth assignment to the variables
such that φ is satisfiable. Figure 2 shows an instance of the R-P-3-SAT prob-
lem. Knuth and Raghunathan [13] showed that every P-3-SAT problem instance
has an equivalent R-P-3-SAT problem instance and hence the later problem is
also NP-complete. Note that we can order the variable segments in increasing x
direction. Let Ct = (xi ∨ xj ∨ xk) be a clause that connects the variables from
above, where xi, xj , xk are ordered in the above ordering. Then we say that, xi

is a left , xj is a middle , xk is a right variable.

2 Discrete Dominating Set

2.1 Axis-Parallel Lines

We prove that the DDS-Line problem is NP-hard. The reduction is from the
minimum dominating set problem on bipartite graphs that is NP-complete [4].
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Fig. 2. An instance of R-P-3-SAT problem. Solid (resp. dotted) clause vertical seg-
ments represent that the variable is positively (resp. negatively) present in the corre-
sponding clauses. For clause C4, x1 is a left, x4 is a middle, and x5 is a right variable.

Let G(A,B,E) be a bipartite graph where the vertices of A are on a vertical line
and the vertices or B are on another vertical line to the right of A. Let 1, 2, . . . , τ
be the number of the vertices of A from top to bottom. Similarly, let 1, 2, . . . , κ
be the number of the vertices of B from top to bottom. Now for each vertex
i ∈ A, take a horizontal line hi as y = i and for each vertex j ∈ B take a vertical
line vj as x = j. Let eij = (i, j) such that i ∈ A and j ∈ B be an edge in E.
Take a point pij with coordinate (i, j) corresponding to eij at the intersection of
hi and vj . See Fig. 3 for this construction. This construction takes polynomial
time. It is observed that finding a minimum set of vertices in G that dominates
all the vertices in G is equivalent to finding a minimum set of axis-parallel lines
that dominates all the lines. Hence we conclude:

Theorem 1. DDS-Line is NP-hard.

Fig. 3. (a) An instance of a bipartite graph. (b) An instance of the DDS-Line problem
constructed from the instance in (a).

Corollary 1. The NP-hardness of the DDS-Line problem directly implies the
NP-hardness of the DDS-Strip problem by replacing each horizontal (resp verti-
cal) line by a thin horizontal (resp vertical) strip. The NP-hardness of the DDS-
Strip problem shows the NP-hardness of the DDS-R-ATOL problem. We just
take a vertical and a horizontal line both at −∞. Clearly these lines restrict the
horizontal and vertical strips at −∞.
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2.2 Rectangles Anchored on Two Lines

We prove that the DDS-R-ATL problem is NP-hard by a reduction from the
R-P-3-SAT problem (see prerequisites).
Reduction: To represent a variable gadget of the DDS-R-ATL problem, we
assume the graph G in Fig. 4. The following result on G can be proved easily.

Lemma 1. There are exactly two optimal dominating sets, D0 = {v4, v8, . . . , v8α}
and D1 = {v2, v6, . . . , v8α−2}, of vertices each with cost exactly 2α for graph G.

We choose α to be the maximum number of clause vertical connections con-
necting from clause segments to a single variable segment either from above or
from below. We encode the graph in Fig. 4 as a variable gadget of the DDS-R-
ATL problem. For each vertex, we take a rectangle and for each edge, we take a
point that is contained in exactly the rectangle corresponding to the two vertices
that form the edge. The gadget for the variable xi is shown in Fig. 5. We take 8α
rectangles Ri and 10α points Pi in two sides of a horizontal line L. The 4α rect-
angles {si

1, s
i
2, . . . , s

i
4α} and 5α points {pi

1, p
i
2, . . . , p

i
5α} are one side of L and the

4α rectangles {si
4α+1, s

i
4α+2, . . . , s

i
8α} and 5α points {pi

5α+1, p
i
5α+2, . . . , p

i
10α} are

another side L. Therefore, by Lemma 1 we conclude that for each variable gadget
there are exactly two optimal dominating set of rectangles S0

i = {si
4, s

i
8, . . . , s

i
8α}

and S1
i = {si

2, s
i
6, . . . , s

i
8α−2}; each with size exactly 2α. This represents the truth

value of the variable xi.

Fig. 4. Structure of the graph G.

The construction of the clause gadgets in the above and below are indepen-
dent, and hence we describe the clause gadgets only for the above. For a clause
Ct that contains three variables xi, xj and xk in this order from left to right, we
take a rectangle rt and three points pti , ptj , ptk . The bottom boundary of rt, say
bt, are on the horizontal segment of Ct. In Fig. 6, we give a schematic diagram
of the clause rectangles and positions of the points corresponding to the clauses.
We now describe how rt, pti , ptj , ptk interact with the variable gadgets.
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Fig. 5. Structure of a variable gadget.

Fig. 6. Schematic diagram of the clause rectangles and position of the points (circles)
and their interaction with the variable gadget.

For each variable xi, 1 ≤ i ≤ n, sort the vertical connections from left to
right that connect to xi from clauses connecting from above. Let the clause Ct

connects to xi via l-th connection, then we say that Ct is the l-th clause for xi.
Let Ct be a clause containing the three variables xi, xj and xk in this order

from left to right. Here xi is a left variable in the clause Ct and let Ct be the l1-th
clause for xi. If xi occurs as a positive literal in Ct, then we place the point pti

on bt and inside the rectangle si
4l1+4 only. Otherwise, we place the point pti on

bt and inside the rectangle si
4l1+2 only. The interaction is similar for xj (middle

variable) and xk (right variable) by replacing l1 with l2 and l3 respectively. See
Fig. 7 for the above construction. Clearly, the above construction can be done in
polynomial time. We now prove the correctness of the above construction.

Lemma 2. The formula φ is satisfiable iff there exists a solution to D , an
instance of the DDS-R-ATL problem constructed from φ, with cost at most
2αn.

Proof. Assume that φ is satisfiable and let A : {x1, x2, . . . , xn} → {true, false}
be a satisfying assignment. For the i-th variable gadget, take the solution S0

i , if
A(xi) = true. Otherwise take S1

i . Clearly, we choose a total of 2αn rectangles
and these rectangles dominate all the variable and clause rectangles.
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Fig. 7. Structure of a clause gadget and its interaction with variable gadgets.

On the other hand, suppose that there is a solution to D with cost at most
2αn. To dominate all the half-strips in a variable gadget requires at least 2α rect-
angles (see Claim 1). Note that all the variable gadgets are disjoint. Therefore,
from each variable gadget we must choose exactly 2α rectangles (either set S0

i or
set S1

i ). Set a variable to true if S0
i is chosen in its variable gadget, otherwise set

it to false. Note that there are three points in a clause rectangle. Since the clause
rectangle is dominated, at least one of these three points is covered by the solu-
tion. Such a point is either in solution S0

i or in solution S1
i of the corresponding

variable gadget based on whether the variable is positively or negatively present
in the clause. Hence, the assignment is a satisfying assignment. �	
Theorem 2. The DDS-R-ATL problem is NP-hard.

2.3 Rectangles Stabbed by a Horizontal Line

We prove that the DDS-R-SHL problem is NP-hard. The reduction is similar
to the reduction given in Sect. 2.2. Here also we encode the graph G in Fig. 4
as a variable gadget (see Fig. 8(a)). Note that in Fig. 8(a), all the rectangles are
anchored on L except si

4α and si
8α that is stabbed in the middle by L. Clearly,

using Lemma 1, we say that for each variable gadget there are exactly two
optimal dominating sets of rectangles each with size α: S0

i = {si
4, s

i
8, . . . , s

i
8α}

and S1
i = {si

2, s
i
6, . . . , s

i
8α−2}. These two sets represent the truth value of xi.

The clause gadgets are exactly the same as the clause gadgets in Sect. 2.2.
However, here the interaction between the clause gadgets and the variable gad-
gets is different. We first reverse the connection of the clauses in the R-P-3-
SAT problem instance i.e., the clauses those connect the variables from above
(resp below) are now connect the variables from below (resp above). Now observe
that the description of the variable clause connection for the clauses that con-
nects to the variable from above in Sect. 2.2 are true here for the variable clause
connection for the clauses that connects to the variable from below. In Fig. 8,
we give a schematic diagram of the clause rectangle and position of the points
corresponding to the clauses. A similar proof of Theorem 2 concludes:

Theorem 3. The DDS-R-SHL problem is NP-hard.
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Fig. 8. (a) A variable gadget. (b) Schematic diagram of the variable and clause gadgets
and their interaction. Blue rectangles are schematically represent the variable gadgets.
(Color figure online)

3 Discrete Independent Set

3.1 Axis-Parallel Lines

We show that the DIS-LINE problem can be solved in polynomial time. We
consider the reduction in the Sect. 2.1 in the reverse reduction, which ensures
that finding a solution to the DIS-LINE problem is equivalent to finding a
solution to the maximum independent set problem in a bipartite graph. Since
the later problem can be solved in polynomial time, the DIS-LINE problem can
also be solved in polynomial time.

Theorem 4. The DIS-Line problem can be solved in polynomial time.

3.2 Rectangles Anchored on Two Lines

We prove that the DIS-R-ATL problem is NP-hard. We give a reduction from
the R-P-3-SAT problem (see prerequisites).
Reduction: Note that, we choose α to be the maximum number of clause ver-
tical connections connecting from clause segments to a single variable segment
either from above or from below. The gadget for the variable xi is shown in
Fig. 9(a). We take 16α rectangles and 16α points in two sides of a horizon-
tal line L. The 8α rectangles {si

1, s
i
2, . . . , s

i
8α} and 8α points {pi

1, p
i
2, . . . , p

i
8α}

are one side of L and the 8α rectangles {si
8α+1, s

i
8α+2, . . . , s

i
16α} and 8α points

{pi
8α+1, p

i
8α+2, . . . , p

i
16α} are another side of L. Each pair of consecutive rectan-

gles have a point in common. Since these rectangles forms a cycle graph, where
rectangles corresponding to vertices and two rectangles share a point if and only
if there is an edge between the corresponding vertices of these two rectangles.

Observation 1. For each variable gadget there are exactly two optimal inde-
pendent sets of rectangles H0

i = {si
2, s

i
4, . . . , s

i
16α} and H1

i = {si
1, s

i
3, . . . , s

i
16α−1}

each with size exactly 8α.
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The construction of the clause gadgets in above and below are independent,
and hence we describe the clause gadgets only for above. Let Ct be a clause that
contains variables xi, xj and xk in this order from left to right. For Ct, we take
5 rectangles {st

1, s
t
2, s

t
3, s

t
4, s

t
5} and 6 points; 1 point pti corresponding to xi, 4

points p
tj
1 , p

tj
2 , p

tj
3 , p

tj
4 corresponding to xj , and 1 point ptk corresponding to xk.

The rectangle st
1 covers the points {pti , p

tj
1 , p

tj
4 }, st

2 covers {pti , p
tj
1 , p

tj
2 }, st

3 covers
{p

tj
2 , p

tj
3 }, st

4 covers {p
tj
1 , p

tj
2 , p

tj
4 , ptk}, and st

5 covers {p
tj
1 , p

tj
4 , ptk}. See Fig. 10 for

this construction. We now describe the placement of the points and rectangles
with respect to the variable gadget. We take a rectangle rt. The bottom boundary
of rt, say bt, are on the horizontal segment of Ct and it can extends to the infinity
(actually we can take horizontal line in a far enough distance such that the top
boundaries of all such rectangles touch it) in the upward direction. We take a
horizontal thin rectangular region along the top edge of rt. We place points
corresponding to the clause Ct inside this region. The rectangles corresponding
to Ct are exclusively in rt and their top boundaries are inside the region. In
Fig. 9(b), we give a schematic diagram of the clause rectangles, regions, and
positions of the points corresponding to the clauses. We now describe how the
rectangles and points corresponding to the clauses interact with the rectangles
and points corresponding to variables.

Fig. 9. (a) Structure of a variable gadget. (b) Position of the rectangles and points
(empty ellipses) corresponding to the clauses.

For each variable xi, 1 ≤ i ≤ n, sort the vertical connections from left to right
that connect to xi from clauses connecting from above. Let clause Ct connect to
xi via l-th connection, then we say that Ct is the l-th clause for the variable xi.
Assume that the clause Ct contains three variables xi, xj , and xk in this order
from left to right. We now have the following cases.

➣ Here xi is a left variable in the clause Ct and let Ct be the l1-th clause for
xi. If xi occurs as a positive literal in Ct, then we place the point pti inside
the rectangle si

8l1−5. Otherwise, we place pti inside the rectangle si
8l1−4.

➣ Here xj is a middle variable in the clause Ct and let Ct be the l2-th clause
for xj . If xj occurs as a positive literal in Ct, then we place the point p

tj
1 , p

tj
2 ,
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Fig. 10. Structure of a clause gadget and its interaction with variable gadgets.

p
tj
3 , and p

tj
4 inside the rectangle sj

8l2−6, sj
8l2−5, sj

8l2−3, and sj
8l2−2 respectively.

Otherwise, we shift all the points one rectangle to the right.
➣ Here xk is a right variable in the clause Ct and let Ct be the l3-th clause for

xk. If xk occurs as a positive literal in Ct, then we place the point ptk inside
the rectangle sk

8l3−5. Otherwise, we place ptk inside the rectangle sk
8l3−4.

See Fig. 10 for the above construction. Clearly, the construction described
above can be done in polynomial time.

Theorem 5. The DIS-R-ATL problem is NP-hard.

Proof. We prove that formula φ is satisfiable if and only if there exists a solution
to the DIS-R-ATL problem instance D with cost 8αn + m. Assume that φ has
a satisfying assignment. From the gadget of xi, select the set H1

i if the xi is
true. Otherwise select the set H0

i . Hence we select a total of 8αn rectangles from
the variable gadget. Observe that the way we construct the clause gadget, if the
clause is satisfied then exactly one of the rectangles corresponding to each clause
is selected in an independent set. Hence we get a solution of 8αn+m rectangles.

On the other hand, assume that D has a solution with 8αn + m rectangles.
From the gadget of xi we select 8α rectangles either H0

i or H1
i . We set xi to be

true if H1
i is selected otherwise set xi to be false if H0

i is selected. We now argue
that this is a satisfying assignment of φ i.e., every clause is satisfied. Consider a
clause Ct = (xi ∨ xj ∨ xk) (a similar argument can be applied for other clauses
as well). If Ct is not satisfied, then we select the sets H0

i , H0
j , and H0

k from
the corresponding variable gadget. These rectangles prevent in selecting any
rectangle from the set of rectangles corresponding to Ct. This contradicts the
fact that the size of the solution is 8αn + m. However if one of H1

i , H1
j , and H1

k

is selected then from the set of rectangles of Ct, exactly one rectangle is selected
in a solution. Therefore, the above assignment is a satisfying assignment. �	

3.3 Rectangles Stabbed by a Horizontal Line

We prove that the DIS-R-SHL problem is NP-hard. The reduction is from the
R-P-3-SAT problem and is a composition of the two reductions in Sects. 3.2 and
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2.3. The way the gadget in Figure 8 is constructed from the gadget in Fig. 5, the
similar way we construct the variable gadget here from the gadget in Fig. 9(a).
See Fig. 11(a) for the structure of a variable gadget. Clearly, Observation 1 is
true for any variable gadget.

The clause gadgets are exactly the same as the clause gadgets in Sect. 3.2.
However here the interaction between the clause gadgets and the variable gad-
gets is different. We first reverse the connection of the clauses in the R-P-3-
SAT problem instance i.e., the clauses those connect the variables from above
(resp below) are now connect the variables from below (resp above). Now observe
that the description of the variable clause connection for the clauses that con-
nects to the variable from above in Sect. 3.2 are true here for the variable clause
connection for the clauses that connects to the variable from below. In Fig. 11(b),
we give a schematic diagram of the clause rectangle and position of the points
corresponding to the clauses. Hence a proof similar to the proof of Theorem 5
concludes:

Fig. 11. (a) Structure of a variable gadget. (b) Schematic diagram of the variable and
clause gadgets and their interaction.

Theorem 6. The DIS-R-SHL problem is NP-hard.
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References

1. Ahmadinejad, A., Zarrabi-Zadeh, H.: Finding maximum disjoint set of boundary
rectangles with application to PCB routing. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 36(3), 412–420 (2017)

2. Ahmadinejad, A., Assadi, S., Emamjomeh-Zadeh, E., Yazdanbod, S., Zarrabi-
Zadeh, H.: On the rectangle escape problem. Theor. Comput. Sci. 689, 126–136
(2017)

3. Bandyapadhyay, S., Maheshwari, A., Mehrabi, S., Suri, S.: Approximating domi-
nating set on intersection graphs of rectangles and L-frames. Comput. Geom. 82,
32–44 (2019)



436 S. Pandit

4. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett.
19(1), 37–40 (1984)

5. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric
packing and covering problems. Comput. Geom. 47(2, Part A), 112–124 (2014)

6. Chepoi, V., Felsner, S.: Approximating hitting sets of axis-parallel rectangles inter-
secting a monotone curve. Comput. Geom. 46(9), 1036–1041 (2013)
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