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Abstract. We introduce a two-machine flow shop scheduling problem
under linear constraints (2-FLC problem in short), in which the process-
ing times of two stages of jobs are also decision variables and satisfy
a system of linear constraints. The goal is to determine the processing
times of each job, and to schedule the jobs to the two-machine flow
shop such that the makespan, i.e., the completion time of all the jobs is
minimized. This problem can find applications in various areas, such as
industrial production and advertising planning. We study the computa-
tional complexity and algorithms for the 2-FLC problem. Particularly,
we show that although the two-machine flow shop scheduling problem
can be solved in polynomial time, the 2-FLC problem is generally NP-
hard in the strong sense. Then we consider the design and analysis of
algorithms on various settings of the 2-FLC problem. In particular, we
propose a polynomial time algorithm for the 2-FLC problem when there
is a fixed number of constraints. For the general case, we first propose
a simple 2-approximation algorithm, and then design a polynomial time
approximation scheme (PTAS).

Keywords: Flow shop scheduling · Computational complexity ·
Linear programming · Approximation algorithm

1 Introduction

This paper studies a generalization of the two-machine flow shop scheduling
problem, in which the processing times of jobs are not given in advance, but can
be determined by a system of linear constraints. Given a set of jobs and two
machines, each job must be executed on the first machine, and then executed on
the second machine, without interruption. The classical problem is to find the
schedule which has minimum makespan, i.e., the completion time of the last job.
It is usually denoted by F2||Cmax [1]. In our problem, the processing times of
jobs are not fixed and exogenously given, but are decision variables that satisfy a
set of linear constraints. We call the problem a two-machine flow shop scheduling
problem under linear constraints, and 2-FLC for short. The goal of this problem
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is to determine the processing times of the jobs, as well as finding the schedule
that has minimum makespan among all the feasible choices.

The current work can be viewed as an extension of the existing works on the
scheduling problem under linear constraints [2,3]. In these works, several single-
stage scheduling problems under linear constraints, including parallel machine
scheduling [2], related machine scheduling [3] have been introduced and stud-
ied. Under this framework, some parameters of the scheduling problem, such as
the processing times or machine speeds must satisfy a set of linear constraints.
The scheduling problem under linear constraints can be simpler or harder than
the original scheduling problem. These problems may have different computa-
tional complexities, and require different techniques in designing and analyzing
algorithms. For instance, the parallel machine scheduling where the processing
times satisfying linear constraints [2] can be solved in polynomial time if both
the number of constraints and machines are fixed constants, whereas the paral-
lel machine scheduling problem itself is NP-hard even when there are only two
machines. These results suggest us to explore various scheduling models, and
to study their complexities and design of algorithms under linear constraints.
Apart from scheduling problems, these are also some other researches on various
combinatorial optimization problems under linear constraints in the literature,
such as bin packing problem [4] and knapsack problem [5].

Next we describe some application scenarios that motivate the study of our 2-
FLC problem. We remark that the scenarios are actually the extensions of those
introduced in [2,3]. In fact, we can naturally replace the machine requirement
from parallel machines to flow-shop machines in their examples.

1. Industrial Production Problem. Consider a problem arises in the steel indus-
try, in which the decision maker requires certain amounts of different raw
metals (say, iron, copper, aluminum, and etc.). The raw metals are obtained
by extracting from several different types of steel. The extraction of each type
of steel can be seen as a job. This is a typical application of flow shop schedul-
ing problem on the industrial production (see, e.g., [6]). For example, each job
should undergo wire-drawing first, and then annealing, which can be regarded
as the two stages of flow-shop machines. The goal is to find a schedule of the
jobs. e.g., to finish the entire production as early as possible. In practice, the
processing time of each job depends on the processing quantities of steel that
needs to be processed. Moreover, those quantities are usually determined by
the demands of the raw metals and can be formulated as a blending problem
[7,8]. Table 1 is a concrete example.
Let xi be the processing time of steel i to be processed in the first machine
(e.g., wire-drawing), and yi be the processing time of steel i to be pro-
cessed in the second machine (e.g., annealing). In the example shown in
Table 1, the demand of iron is 56. If we assign x1 + y1 units of process-
ing time on steel 1 in total, then we can produce 24(x1 + y1) unit of
iron. Similarly, if we assign x2 + y2 units of processing time on steel 2
in total, then we can produce 8(x2 + y2) unit of iron. Then the require-
ment on the demand of iron can be represented as a linear inequality
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24(x1 + y1) + 8(x2 + y2) + 3(x3 + y4) + · · · + 2(xn + yn) ≥ 56. Moreover, the
processing time of a job in the second stage always depend on the processing
time and (amounts of steel) first stage. For example, if the processing time
(amounts) of steel 1 the first stage is x1 units, then we require exactly x1/2
units of processing time on the second machine, which can be represented as
a linear equality x1 = 2y1. Due to the environment of the machines, there are
usually some limits on the processing times of the steels on both machines.
For example, the maximum processing time of steel 1 on the first machine is
10, and the processing time of steel 1 on the second machine should be within
[2, 7]. Therefore, we have constraints x1 ≤ 10 and 5 ≤ y1 ≤ 7. Similarly, we
can write linear constraints for the demand of other required metals and other
constraints. In this problem, the decision maker needs to determine the non-
negative job processing times x1, . . . , xn, y1, . . . , yn satisfying the above linear
constraints, and then assign these jobs to the two-machine flow shop machines
such that the last completion time is minimized. This problem can be viewed
as a minimum makespan two-machine flow shop scheduling problem, where
the processing times of jobs satisfy several linear constraints.

2. Advertising Media Production and Planning Problem. The flow shop schedul-
ing problem can find application in the area of media and Internet (see, e.g.,
[9,10]). For example, deciding the sequences of the media production and
broadcast can be regarded as two stages of the flow shop machine scheduling
problem. Consider a scenario that a media production company has several
potential advertisements that need to be produced and then be broadcast.
Let xi be the entire production time (say, e.g., casting, filming and post pro-
duction) and yi be the duration of the advertisement i. Each advertisement
i must be broadcast after its production is finished, and the goal is to finish
the entire broadcast of all the advertisements as early as possible. The whole
process can be viewed as a two-machine flow shop scheduling problem. Fur-
thermore, the decision maker is required to decide the production time and
duration for the advertisements, that is, the processing times of the jobs. It
can always be represented as several linear constraints. An example of such
a problem is given in Table 2.
In Table 2, there is a budget of the production of all advertisements. Each unit
production time of advertisement 1 costs 100, each unit production time of
advertisement 2 costs 200, and so forth. The total budget constraint is no more
than 10000, and hence can be represented as 100x1 + 200x2 + · · · + 150xn ≤
10000. Moreover, the company will gain revenue 2000y1 for y1 units of broad-
casting time of advertisement 1. The company requires a total revenue at least
15000, which can be represented as 1000x1 +2000x2 + · · ·+1500xn ≥ 150000.
The production time always depending on the duration (broadcast time) of
the advertisement. For example, each unit of broadcast time of advertisement
1 requires at least 10 units of production time, which can be represented as
x1 ≥ 10y1. Similar to the first example, we can formulate the other constraints
as several linear constraints. The above-described problem can be naturally
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Table 1. Example for the industrial production problem

Composition Steel Demand

1 2 3 · · · n

Iron 24(x1 + y1) 8(x2 + y2) 3(x3 + y3) · · · 2(xn + yn) ≥ 56

Copper 3(x1 + y1) 3(x2 + y2) 3(x3 + y3) · · · 1(xn + yn) ≥ 30

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Aluminum 4(x1 + y1) 33(x2 + y2) 13(x3 + y3) · · · 100(xn + yn) ≥ 100

Relations

Steel 1 x1 − 2y1 0 0 · · · 0 = 0

Steel 2 0 2x2 − y2 0 · · · 0 = 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Steel n 0 0 0 · · · xn − 10yn = 0

Limits

Max. of 1(Stage 1) x1 0 0 · · · 0 ≤ 10

Min. of 1(Stage 2) y1 0 0 · · · 0 ≥ 2

Max. of 1(Stage 2) y1 0 0 · · · 0 ≤ 7

..

.
..
.

..

.
..
.

..

.
..
.

..

.

Max. of n (Stage 2) 0 0 0 · · · yn ≤ 15

formulated as a two-machine flow shop scheduling problem scheduling prob-
lem in which the processing times (running times of the advertisements) are
determined by a system of linear constraints.

In this paper, we study the computational complexity and algorithms for
the 2-FLC problem. First, we show that the problem is generally NP-hard in the
strong sense. It is well-known that the original two-machine flow shop scheduling
problem can be solved in O(n log n) time by Johnson’s rule [11], where n is the
number of jobs. This result suggests that the 2-FLC problem with arbitrary num-
ber of constraints has a very different complexity from the original two-machine
flow shop scheduling problem. Then we consider the design of algorithms on var-
ious settings of the 2-FLC problem. In particular, we design a polynomial time
algorithm for the 2-FLC problem when there is a fixed number of constraints.
For the general case, we first propose a simple 2-approximation algorithm, and
then design a polynomial time approximation scheme (PTAS).

The remainder of this paper is organized as follows: In Sect. 2, we give a
formal definition of the 2-FLC problem studied in this paper, and briefly review
some related literature. In Sect. 3, we study the computational complexity of the
2-FLC problem. In Sect. 4, we discuss the case with a fixed number of constraints.
In Sect. 5, we study the approximation algorithm for the general case. We provide
some concluding remarks in Sect. 6.
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Table 2. Example for the advertising media production and planning problem

Each unit time broadcast provides

ad 1 ad 2 ad 3 · · · ad n

Production budget 100x1 200x2 100x3 · · · 150xn ≤ 10000

Broadcast revenue 2000y1 3500x2 2000y3 · · · 1500yn ≥ 150000

Attractions to women 20y1 100y2 100y3 · · · 10yn ≥ 500

Attractions to men 15y1 10y2 0y3 · · · 80yn ≥ 500

Attractions to teens 30y1 0y2 30y3 · · · 100yn ≥ 200
...

...
...

...
...

...
...

Relation of ad 1 x1 − 10y1 0 0 · · · 0 ≥ 0

Relation of ad 2 0 x2 − 15y2 0 · · · 0 ≥ 0
...

...
...

...
...

...
...

Max time for ad 1 y1 0 0 · · · 0 ≤ 20

Min time for ad 1 y1 0 0 · · · 0 ≥ 10

Max time for ad 2 0 y2 0 · · · 0 ≤ 35
...

...
...

...
...

...
...

2 Problem Description

In this paper, we consider the following the two-machine flow shop scheduling
problem under linear constraints (2-FLC) problem stated below:

Definition 1. There are n jobs and two flow-shop machines. Each job has to be
processed on the first machine and then on the second machine without interrup-
tion. The processing times of job i on the first machine and the second machine
are xi and yi respectively, which are determined by k linear constraints. The
goal of the two-machine flow shop scheduling under linear constraints (2-FLC)
problem is to determine the processing times of the jobs such that they satisfy the
linear constraints and to schedule the jobs to the two flow-shop machines such
that the makespan is minimized.

Let A,C ∈ R
k×n, b ∈ R

k×1, the processing times x = {x1, ..., xn}, y =
{y1, ..., yn} should be feasible solutions to Ax + Cy ≥ b, x,y ≥ 0. It is well-
known that the two-machine flow shop scheduling problem F2||Cmax has an
optimal schedule which is a permutation schedule (see, e.g., [9]), i.e., the orders
of jobs in both machines are identical. Therefore, we can denote a schedule of our
problem as σ = {σ(1), ..., σ(n)}, where σ(i) indicates the job that is assigned
on position i in the schedule. The makespan Cmax of a schedule is thus the
completion time of job σ(n) on the second machine.

Here we give a brief literature review on the flow shop scheduling and related
problems. Flow shop scheduling is one of the three basic models (open shop, flow
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shop, job shop) of multi-stage scheduling problems. The flow shop scheduling
which minimizes the makespan is usually denoted by Fm||Cmax, where m is
the number of machines. Garey et al. proved that Fm||Cmax is strongly NP-
hard for m ≥ 3 [12], and Hall proposed a PTAS algorithm for Fm||max [13].
Particularly, the two-machine flow shop scheduling problem F2||Cmax can be
solved by Johnson’s algorithm in O(n log n) time [11]. If all the jobs are processed
in the same order, then we call this schedule a permutation schedule. It has been
shown in [14] that F2||Cmax or F3||Cmax has an optimal permutation schedule.

3 Computational Complexity of 2-FLC Problem

We first study the computation complexity of 2-FLC problem. We show that
this problem is NP-hard in the strong sense, even though the original F2||Cmax

problem can be solved in polynomial time by Johnson’s algorithm.

Theorem 1. The 2-FLC problem with two machines is NP-hard in the strong
sense.

Proof. We reduce the Exact Cover by 3-Sets problem (X3C) to the 2-FLC prob-
lem. Given a ground set S with |S| = 3n (n ≥ 1) and a collection C of 3-element
subsets of S. The X3C problem is to decide if there exists a subset C′ of C with
size n, in which every element of S occurs in C′ exactly once. Let m = |C| be
the total number of subsets and assume that m > n without loss of any gener-
ality. We construct an instance of 2-FLC with m + 1 jobs. Each subset Si ∈ C
is associated with a job i that has processing times xi and yi in the two stages,
respectively. The remaining job m + 1 has processing times xm+1 = n in the
first stage and ym+1 = m − n in the second stage. The processing times are
determined by the following linear constraints:

∑

i:j∈Si

yi = 1 ∀ j ∈ S (1a)

xj = 1 − yj ∀ i = 1, . . . , m (1b)
xm+1 = n, ym+1 = m − n (1c)
x,y ≥ 0.

We show that the instance for X3C is YES if and only if there exists a schedule
of 2-FLC in which the processing times are feasible to (1) and has makepan at
most m.

First, suppose that theres exist an exact cover C ′ of S. Let xi = 0, yi = 1
if Si ∈ C ′ and xi = 1, yi = 0 otherwise, and xm+1 = n, ym+1 = m − n . Since
C ′ is an exact cover, it can be seen that the linear constraints (1) are satisfied.
By Johnson’s rule, the jobs correspond to Si ∈ C ′ are scheduled first, then
the job m + 1, and last the jobs correspond to Si �∈ C ′. Note that the number
of subsets in every exact cover is n, therefore the makespan of the schedule is
exactly n + (m − n) = m.
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Now we prove the opposite direction. Note that the job m + 1 has total
processing time n+(m−n) = m, hence the makespan of this schedule is exactly
m. The constraints in (1b) guarantees that all the xis and yis are binary, as
otherwise the makespan of the schedule must be more than m. To see this, if there
are some job k which has processing time xk ≥ yk > 0 (the case with 0 < xk < yk
is analogous), then job k must be assigned after job m + 1 by Johnson’s rule,
which leads to a schedule with makespan at least n + (m − n) + yk > m. This
contradicts to the condition that the schedule has makespan at most m. Denote
J ′ as the jobs having processing time xi = 0, yi = 1 and J̄ as the remaining
jobs, that is, the jobs have processing time xi = 1, xi = 0. Again, by Johnson’s
rule and the makespan is m, it can be seen that there is exactly n jobs in J ′. By
(1a), the subsets in C corresponds to J ′ constitute an exact cover of S. �

4 Fixed Number of Constraints

In this section, we study the case when the number of constraints is fixed.

Lemma 1. The 2-FLC problem has an optimal solution, in which each machine
has at most k jobs with nonzero processing time.

Proof. We first show that given any optimal solution to the 2-FLC problem, we
can construct an optimal solution that at most k jobs have nonzero processing
time in the second machine. Now we fix the permutation of jobs in an optimal
solution. Note that the jobs have same orders in both machines. To simplicity
of notation, we denote the order of the jobs as 1, . . . , n. We can construct the
following linear program:

min t (2a)

s.t.
l∑

i=1

xi +
n∑

i=l

yi ≤ t ∀ l = 1, . . . , n (2b)

n∑

i=1

ajixi + cjiyi ≥ bj ∀ j = 1, . . . , k (2c)

t, xi, yi ≥ 0 ∀ i = 1, . . . , n.

It can be seen that any optimal solution to (2) is also optimal to the 2-
FLC problem. To see this, let (x∗,y∗) be the processing times of the optimal
solution to the 2-FLC problem. Then by the (x,y) is the optimal solution to (2),
we have t = maxl=1,...,n

{∑l
i=1 xi +

∑n
i=l yi

}
≥

{∑l
i=1 x∗

i +
∑n

i=l y
∗
i

}
= C∗

max,
where C∗

max is the optimal makespan to the 2-FLC problem.
Introducing slack variables to (2b), we obtain a system of n constraints:

l∑

i=1

xi +
n∑

i=l

yi + zi = t ∀ l = 1, . . . , n. (3)
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Applying Gaussian elimination to (3), we obtain

x1 = t −
n∑

i=1

yi − z1 (4)

xi = yi−1 + zi−1 − zi ∀ i = 2, . . . , n.

Therefore, (2a) is equivalent to the following linear program:

min t (5a)

s.t. x1 + z1 = t −
n∑

i=1

yi (5b)

xi + zi = yi−1 + zi−1 ∀ i = 2, . . . , n (5c)
n∑

i=1

ajixi + cjiyi ≥ bj ∀ j = 1, . . . , k (5d)

t, xi, yi, zi ≥ 0 ∀ i = 1, . . . , n,

Now we find the optimal basic feasible solution to (5), which is also an optimal
solution to the 2-FLC problem. Note that there are at most n + k variables
among xi, yi, zi, and t can have nonzero processing time. If t = 0, then all xis
and yis are zero and the lemma is proved. Therefore, we assume that t > 0
and thus at most n + k − 1 of xi, yi, and zi have nonzero processing time. Let
S = {i ∈ {2, ..., n} | xi + zi > 0} be the subset of indices that with xi + zi is
positive. If |S| = n − 1, then at most k of the yis have nonzero processing times,
since the total number of remaining variables which can have nonzero processing
times it at most n + k − 1 − (n − 1) = k. Otherwise, |S| < n − 1 and there exists
some i such that xi + zi = 0. Note that by constraint (5c), the corresponding
yi−1 = zi−1 = 0. Now we fix the processing times of all those xi, zi and yi−1 to
be zero, and consider the linear program without these variables:

min t (6a)

s.t. x1 + z1 = t −
∑

i∈S

yi−1 (6b)

xi + zi = yi−1 + zi−1 ∀ i ∈ S (6c)
∑

i∈{1}∪S

ajixi +
∑

i∈S

cj,i−1yi−1 ≥ bj ∀ j = 1, . . . , k (6d)

t, x1, z1, xi, yi−1, zi ≥ 0 ∀ i ∈ S.

Note that the optimal solution to (5) is feasible to (6), hence the optimal solution
to (6) is still optimal to 2-FLC. We repeat the above procedure, that is, find an
optimal basic feasible solution to (6), which has at most |S| + k variables with
nonzero processing time. If at some point xi + zi is strictly greater than zero
for all i ∈ S, then we obtain an optimal basic feasible solution in which at most
|S|+k−|S| = k of the yis have nonzero processing times; otherwise we can reduce
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the size of |S| and find the optimal basic feasible solution to the reduced linear
program similar to (6), and repeat the above procedure. It can be observed that
the size of S is strictly decreasing. Therefore if the procedure continues, we must
have |S| ≤ k at some point. In that case, we obtain an optimal basic feasible
solution which has at most k of the xi + zis have nonzero processing times (note
that the xi + zi for all i �∈ S have been fixed to be zero before), and so for the
xis and yis. Therefore, there exists an optimal solution that the second machine
must have at most k nonzero processing time jobs. Fixed the processing times
on the second machine and applied the same method on the first machine, we
obtain a solution that each machine has at most k nonzero processing time jobs.

��
Based on Lemma 1, we can propose a polynomial time algorithm for the

2-FLC problem when the number of constraints is a fixed number of constraints.
We summarize the algorithm as Algorithm 1 and Theorem 2.

Algorithm 1. Enumeration algorithm for 2-FLC problem with fixed k

Input: n jobs, k linear constraints Ax + Cy ≥ b
Output: the schedule to the two flow-shop machines that has the minimum makespan,

and the corresponding processing times of jobs
1: for each subset J ′ of J with k jobs do
2: for each permuation of the jobs in J ′ do
3: Let σ(1), ..., σ(k) be the permutation, i.e., the schedule of these k jobs. Solve

the following LP while setting yi = 0 for i �∈ J ′.

min t (7a)

s.t.
l∑

i=1

xσ(i) +
k∑

i=l

yσ(i) ≤ t ∀ l = 1, . . . , k (7b)

n∑

i=1

xi ≤ t (7c)

n∑

i=1

ajixi + cjiyi ≥ bj ∀ j = 1, . . . , k (7d)

yi = 0 ∀ i �∈ J ′ (7e)
t, xi, yi ≥ 0 ∀ i = 1, . . . , n.

4: if (7) is infeasible then
5: Let the processing times of jobs be the optimal solution to (7), and record

the schedule and the makespan.
6: return the schedule with the smallest makespan among all these iterations and its

corresponding processing times.

Theorem 2. The 2-FLC problem when the number of constraints is fixed has a
polynomial time algorithm with complexity O(nk+3L).

The proofs of the subsequent lemmas/theorems will be provided in Appendix.
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5 General Case: Approximation Algorithms

First we propose a simple 2-approximation algorithm for the problem. We solve
the linear program with minimum total progressing time subject to Ax = b to
obtain the processing times x, y. Then we assign the jobs with processing times
x, y by Johnson’s rule.

Theorem 3. There is a 2-approximation algorithm for the 2-FLC problem.

Now we propose a PTAS for the problem. First, we run the 2-approximation
algorithm and obtain a value Cmax. By Theorem 1, Cmax/2 and Cmax are lower
bound and upper bound of the optimal makespan of the 2-FLC problem, respec-
tively. We denote LB = Cmax/2 and UB = Cmax.

Given ε > 0, we denote the job sets (with respect to x and y) as follow:

J1 = {i ∈ J | xi ≤ yi}, L1 = {i ∈ J | xi ≤ yi, yi > εC∗
max(x,y)},

J2 = {i ∈ J | xi ≥ yi}, L2 = {i ∈ J | xi ≥ yi, xi > εC∗
max(x,y)}, (8)

where C∗
max(x,y) is the makespan of optimal schedule of F2||Cmax with pro-

cessing time x and y. Note that we have the sizes of L1 and L2 are |L1| ≤ 1/ε
and |L2| ≤ 1/ε as otherwise we have

∑n
i=1 xi > C∗

max(x,y) ≥ C∗
max or∑n

i=1 yi > C∗
max(x,y) ≥ C∗

max, which leads to a contradiction. The algorithm
first guesses the value of the optimal makespan, then guesses the set L1 and
L2 in an optimal solution (w.r.t. x∗ and y∗), as well as enumerating all the
possible permutations of these jobs. During each guess, we obtain the values of
the processing times of jobs by checking the feasibility of a specific linear pro-
gram. The jobs are then scheduled by the Johnson’s rule. The algorithm finally
returns the best schedule among all these iterations. We summarize the details
as Algorithm 2.

To establish the approximation performance result of Algorithm 2, we first
state a property of a specified schedule in the classical two-machine flow shop
scheduling problem F2||Cmax, which has makespan at most 1 + ε of the optimal
solution to F2||Cmax and allows us to design a PTAS for the 2-FLC problem.
Fixed any processing times x and y for the jobs, J1, J2, L1, L2, C∗

max(x,y)
are defined as (8), S1 = J1 \ L1 = {i ∈ J | xi ≤ yi, yi ≤ εC∗

max(x,y)} and
S2 = J2 \ L2 = {i ∈ J | xi ≥ yi, xi ≤ εC∗

max(x,y)}. The lemma is described as
below.

Lemma 2. Let C ′
max(x,y) be the makespan of schedule obtained by assigning

the jobs in the order S1, L1, L2, S2 (identical for both machines), where the jobs
in L1 and L2 are scheduled according to Johnson’s rule, S1 and S2 are scheduled
arbitrarily. Then, C ′

max(x,y) ≤ (1 + ε)C∗
max(x,y).

Based on this lemma, we have the following result.

Theorem 4. Algorithm 2 is a PTAS for the 2-FLC problem.
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Algorithm 2. PTAS for 2-FLC problem
Input: n jobs, k linear constraints Ax + Cy ≥ b
Output: the schedule to the two flow-shop machines that has the minimum makespan,

and the corresponding processing times of jobs
1: Given ε ∈ (0, 1), 1et h = �1/ε� and UB, LB defined as before
2: for each subset Lh

1 and each subset Lh
2 of J , with Lh

1 ∪Lh
2 = ∅ and |Lh

1 | = |Lh
2 | = h

do
3: for each permutation σ1 = (σ1(1), . . . , σ1(h)) and each permutation σ2 =

(σ2(1), . . . , σ2(h)) of (1, . . . , h) do
4: Denote (σ1(1), . . . , σ1(h)) and (σ2(1), . . . , σ2(h)) as the jobs and the schedule

in Lh
1 and Lh

2 , respectively.
5: Set Sh = J \ (Lh

1 ∪ Lh
2 ), T = LB.

6: while T < (1 + ε)UB do
7: Check the feasibility of the following linear program (9):

Ax + Cy ≥ b (9a)
n∑

i=1

xi ≤ (1 + ε)T,
n∑

i=1

yi ≤ (1 + ε)T (9b)

∑

i∈Sh

ti +

l∑

i=1

xσ1(i) +

h∑

i=l

yσ1(i) +

h∑

i=1

yσ2(i) ≤ (1 + ε)2T ∀ l ∈ 1, . . . , h

(9c)
∑

i∈Sh

ti +
h∑

i=1

xσ1(i) +
l∑

i=1

xσ2(i) +
h∑

i=l

yσ2(i) ≤ (1 + ε)2T ∀ l = 1, . . . , h

(9d)
ti ≥ xi, ti ≥ yi ∀ i = 1, . . . , n

(9e)

yj ≤ yi, xi ≤ yi ∀ j ∈ Sh, i ∈ Lh
1

(9f)

xj ≤ xi, yi ≤ xi ∀ j ∈ Sh, i ∈ Lh
2

(9g)
xi, yi, ti ≥ 0, ∀ i = 1, . . . , n.

8: if (9) is infeasible then
9: Set T = (1 + ε)T , continue to Step 6.
10: else
11: Record the processing times x and y and T of a feasible solution to 9,

continue to Step 3.
12: return the solution with the smallest T among all these iterations and its corre-

sponding processing times, and schedule the jobs by Johnson’s rule.

6 Conclusions

We study the two-machine flow shop scheduling problem under linear constraints
in this paper. The problem is NP-hard in the strong sense, and we propose several
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optimal or approximation algorithms for various settings of it. An immediate
research question is to study the FLC problem where the number of machines is
more than 2. Furthermore, it is also interesting to consider the shop scheduling
problem under linear constraints where the machine environment is open shop
or job shop, and the shop scheduling problem with additional constraints, such
as the no-wait case.
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