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Abstract. In this paper, we study the problem of edge exploration of an
n node graph by a mobile agent. The nodes of the graph are unlabeled,
and the ports at a node of degree d are arbitrarily numbered 0, . . . , d−1.
A mobile agent, starting from some node, has to visit all the edges of
the graph and stop. The time of the exploration is the number of edges
the agent traverses before it stops. The task of exploration can not be
performed even for a class of cycles if no additional information, called
advice, is provided to the agent a priori. Following the paradigm of algo-
rithms with advice, this priori information is provided to the agent by
an Oracle in the form of a binary string. The Oracle knows the graph,
but does not have the knowledge of the starting point of the agent. In
this paper, we consider the following two problems of edge exploration.
The first problem is: “how fast is it possible to explore an n node graph
regardless of the size of advice provided to the agent?”

We show a lower bound of Ω(n
8
3 ) on exploration time to answer the

above question. Next, we show the existence of an O(n3) time algorithm
with O(n log n) advice. The second problem then asks the following ques-
tion: “what is the smallest advice that needs to be provided to the agent
in order to achieve time O(n3)?” We show a lower bound Ω(nδ) on size
of the advice, for any δ < 1

3
, to answer the above question.
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1 Introduction

Exploration of a network by mobile agents is a well studied problem [28] which
has various applications like treasure hunt, collecting data from some node in
the network or samples from contaminated mines where corridors along with the
crossings forms a virtual network. Many real life applications require collection of
information from edges of a network as well. In such scenarios, edge explorations
are essential to retrieve the required knowledge.

In this paper, we consider the edge exploration problem where a mobile agent,
albeit with advice, aims to explore all the edges in a network and stop when
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done. By advice we mean some prior information provided to the agent for the
exploration, by an Oracle in the form of a binary string. The length of the string
is called the size of advice. We analyze the lower bound on the exploration time
with arbitrary size of advice before providing an efficient exploration algorithm.

The network is modeled as a simple connected undirected graph G = (V,E)
consisting of n nodes. Nodes are anonymous but all the edges associated to a
node of degree d are arbitrarily numbered 0, 1, · · · , d−1 at the node. The mobile
agent starts from an arbitrary node which we call as the starting node. Before
starting the exploration, the agent knows the degree of the starting nodes. When
the agent takes the port i at a node u and reaches node v, it learns the degree
of v, and the port of the edge at v through which it reached v. The agent does
not have the capability to mark any edge or node.

The time of the exploration is the number of edges the agent traverse before
it stops. It is evident that some prior information needs to be provided to the
agent in order to complete the task of edge exploration. For example, in the class
of rings with ports numbered 0,1 in clockwise order at all the nodes, the agent
can not learn the size of the ring only by exploring edges if no prior information is
provided. Hence, it cannot distinguish between any two oriented rings of different
size k1, k2 ≥ 3. Therefore, any exploration algorithm that stops after t steps will
fail to explore all the edges a ring with size t+2 or more. In this paper we study
the problem of how much knowledge the agent needs to have a priori, in order
to explore all the edges of a given graph in given time t by any deterministic
algorithm.

Following the paradigm algorithm with advice [5,8], this prior information
is provided to the agent by an Oracle. According to the literature [21], there
are two kind of Oracles, instance Oracle and map Oracle. The entire instance of
the exploration problem, i.e., the port-numbered map of the underlying graph
and the starting node of the agent in this map is known by the instance Oracle,
where as the map Oracle knows the port-numbered map of the underlying graph
but does not know the starting node of the agent. In this work, we consider map
Oracle.

Hence to prove possibility of such an exploration, we have to show existence
of an exploration algorithm which uses advices of length at most x, one for each
graph, provided by a map Oracle and explores all the graphs in G within time
t starting from any node. On the other hand, to prove such an exploration is
impossible in time t with advice of length x, we need to show existence of at least
one graph and a starting point, such that no algorithm successfully explores all
the edges of this graph within time t with any advice of length at most x.

It is natural to investigate the trade-off between exploration time and size of
advice for edge exploration. In this paper, we provide two lower bound results,
one on exploration time, and another on the size of advice for the edge explo-
ration problem.
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2 Contribution

Our main result consists of two lower bound results, one on exploration time and
the other on size of advice. We prove that it is not possible to complete the task
of edge exploration within time o(n

8
3 ), regardless of the size of advice. Next, we

show the existence of an algorithm which works in time O(n3) with advice of
size O(n log n). We also show that the minimum size of the advice necessary to
explore all the edges of a graph in time O(n3) is Ω(nδ), for any δ < 1

3 .

2.1 Related Work

Exploration of unknown environments by mobile agents is an extensively studied
problem (cf. the survey [28]). We work on a model where the graph is undirected,
nodes are anonymous and the mobile agent have some information a priori.
Accordingly the mobile agent may traverse in any direction along an edge. The
agent either has restricted tank [1] and needs to return to the base for refueling
or already attached to the base with a cable of restricted length [9]. Usually in
literature, most of the works analyze the time of completing the exploration by
measuring the number of edges (counting multiple traversals) the agent traverses.
This is considered as the efficiency measure of the algorithms.

Exploring any anonymous graph and to stop when done is impossible due to
the anonymities of the nodes. As a solution, agents can have a finite number of
pebbles [2,3] to drop on nodes which helps recognizing already visited ones or
even put a stationary token at the starting node [6,27].

The problem of exploring anonymous graphs without node marking has been
studied in several literature [7,16] where the termination condition after explor-
ing all the edges is removed. Hence, in such variation of problems, the number
of edge traversal becomes meaningless, instead, finding the minimum memory
required for exploration appears to be the key.

For termination after successful exploration, further knowledge about the
graph is essential, e.g., an upper bound on its size [6,29]. These information are
usually known as advice and the approaches as algorithms with advice.

The paradigm of algorithm with advice is also extensively studied for other
problems like graph coloring, broadcasting, leader election and topology recog-
nitions where external information is provided to the nodes of a network or a
external entity like mobile agent to perform the task efficiently [10–15,17–20,22–
24,26].

In [13], the authors studied comparison of advice size in order to solve two
information dissemination problems where the number of messages exchanged
is linear. In [15], distributed construction of a minimum spanning tree in loga-
rithmic time with constant size advice is discussed. In [10], authors shows that
in order to broadcast a message from a source node in a radio network, 2-bits
labeling, which also can be view as external advice, to the nodes are sufficient.

The algorithms with advice in the context of online algorithms is studied in
[5,8,11]. In [8], online algorithm with advice is considered for a labeled weighted
graph. In [25], authors did online exploration assuming upon visiting a node
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for the first time, the searcher learns all incident edges and their respective
traversal costs. In weighted graphs, treasure hunt with advice, which is also a
variation of exploration problem, was studied in [25]. Exploration with advice
was studied for trees [14] and for general graphs in [21]. In [21] authors have
described node exploration of an anonymous graph with advice. Two kind of
Oracles are considered in this paper. Map Oracle, that knows the unlabeled
graph, but does not know the starting node of the agent, and Instance Oracle,
that knows the graph as well as the starting node of the agent. Trade-off between
exploration time and size of advice is shown for both type of oracles.

3 Lower Bound on Exploration Time

In this section, we give a lower bound on time for edge exploration on a graph.
More precisely, we show an exploration time of Ω(n

8
3 ) for exploring all the edges

of some graph regardless of the size of advice. To establish the lower bound, we
construct an n node graph ̂G such that even if the agent is provided the map
of the graph as advice, the time taken by the agent to explore all the edges is
Ω(n

8
3 ). The construction of the graph ̂G is given below.

Construction of ̂G: We use the graphs discussed in [4] as building blocks to
construct the graph for the lower bound result. For the sake of completeness, we
discuss below the construction of the graphs (discussed in [4]).

Let m > 0 be an even positive integer. Let H be a m node regular graph
with degree m

2 . In this case we take H as a complete bipartite graph with the
partition U and V of same size. Let T be any spanning tree of H with E(T )
being the spanning tree edges. Let S be the set of edges in H which are not in
E(T ). Let S = {e1, e2, · · · , es} where s = m2

4 −m+1. Let X = x1, x2, · · · , xs be
a binary string of length s, where not all xi’s are zero. A graph HX is constructed
from H using X as follows: take two copies of H, say H1 and H2 with the bi-
partitions U1, V1 and U2, V2, respectively. For all i, 1 ≤ i ≤ s, if xi = 1, then
delete the edges ei from both H1 and H2 and cross two copies of ei between the
corresponding vertices of H1 and H2. More precisely, let ei = (u, v) be an edge
of H with port numbers p at u and port number q at v. Let u1, v1 and u2, v2
be the nodes corresponding to u, v in H1 and H2, respectively. Delete (u1, v1)
from H1 and (u2, v2) from H2, and connect two edges (u1, v2) and (u2, v1), (See
Figs. 1 and 2). The port numbers of the newly added edges are p at both u1, u2

and q at both v1 and v2.
According to the result from [4], for each edge ei = (u, v) ∈ S, there exists

some sequence Xi ∈ {0, 1}s\{0}s such that if any exploration algorithm explores
H starting from a node v0 ∈ H using a sequence of port numbers Q which
traverse the edge ei less than s times, then at least one of the edges (u1, v2) or
(u2, v1) in HXi

will remains unexplored while exploring HXi
by Q. Let H =

{HXi
: 1 ≤ i ≤ s}.

We use the above class of graphs H as building blocks to construct a graph
for our lower bound. Our constructed graph will have the property that, if every
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e1
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Fig. 1. Graph H with spanning tree edges shown in bold and non-tree edges labelled.

H1 H2

U1

V1

U2

V2

Fig. 2. The graph HX , for X = 0100. The deleted edges are shown with dots and
newly added edges with dash.

edge of the graph is not visited at least a fixed number of times, then some edge
of the graph remains unexplored.

With the above discussions, we are ready to construct our final graph ̂G. The
high level idea of the construction is as follows. We will construct ̂G consisting
of all the graphs from H = {HXi

: i ∈ [1, s]} and systematically add some extra
edges between every pair of HXi

and HXj
.

Vertices of ̂G: The vertex set V of ̂G consists of all the vertices of all the graphs
in H . Hence, |V | = (m2

4 −m+1)∗2m = O(m3). For the rest of the construction,
we denote the independent sets of HXi

as HXi
(U1),HXi

(V1),HXi
(U2),HXi

(V2)
(as shown in Fig. 3).

Edges of ̂G: For every HXi
with i ∈ [1, s], we add the edges of HXi

among
the vertices of HXi

(U1),HXi
(V1),HXi

(U2),HXi
(V2). Let these set of edges be

denoted by Ei,i. For every ordered pair (i, j) such that 1 ≤ i �= j ≤ s, we add
a set of edges to ̂G, defined as Ei,j . For every edge (u, v) with v ∈ HXi

(Vk) we
add the edge (u, v′) ∈ Ei,j with v′ ∈ HXj

(Vk) for some k ∈ {1, 2}. The edge set
E of ̂G is defined as E =

⋃

i,j∈[1,s]

Ei,j . Note that the subgraph of ̂G formed using

the edge set Ei,j and only the vertex sets HXi
(U1),HXi

(U2),HXj
(V1),HXj

(V2)
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HX1

HX1
(U1) HX1

(U2)

HX1
(V1) HX1

(V2)

. . . . . .

. . . . . .

HX2

HX2
(U1) HX2

(U2)

HX2
(V1) HX2

(V2)

. . . . . .

. . . . . .

HXs

HXs (U1) HXs (U2)

HXs (V1) HXs (V2)

. . . . . .

. . . . . .

Fig. 3. Set of vertices in ̂G

is isomorphic to HXi
. In figure Fig. 4, we show the edges corresponding to

⋃

j∈[1,s]

E1,j that are added to ̂G.

Port Numbers of ̂G: For all ordered pair (i, j), 1 ≤ i, j ≤ s, for each edge
e = (u, v) ∈ HXi

with port numbers (p, q), the port number of the corresponding
edge in Ei,j is (k m

2 + p, k m
2 + q), where k = j − i mod s.

Let n be the number of nodes of ̂G. Then n = 2sm ≥ m3

5 .
Note that by construction of H,HXi

and ̂G the degree of all the vertices in
̂G is exactly same. Suppose that the agent starts exploration from the node v1
in HX1 . Consider the following exploration sequence of the edges by the agent:
visit all the ports from 0, 1, · · · , m

2 − 1 attached at v1 one by one, i.e, for every
port i, visit the edge with port i, 0 ≤ i ≤ m

2 − 1 to reach a new vertex; come
back to v1 using the last visited edge. The above exploration sequence of edges
will visit all the edges of attached with v1 which are corresponding to the edges
attached with v1 in HXi

. Now, if we change the staring node as the node v1
in HX2 , the same exploration sequence visits all the edges of attached with v1
which are corresponding to the edges attached with v1 in HX2 . The construction
of the graph ̂G guarantees that the agent cannot distinguish between this change
in the starting node. In other words, any valid exploration algorithm for a par-
ticular graph ̂G gives a sequence of ports to be visited, that will remain same
irrespective of the starting point of the algorithm as the agent cannot distinguish
between different starting points. Therefore, any such exploration algorithm can
be uniquely coded as a sequence of outgoing port numbers and the agent follows
the ports according to this sequence in consecutive steps of exploration.

Let B be an exploration algorithm using which the agent explores all the
edges of the graph starting from v0 ∈ HXj

, for any j, 1 ≤ j ≤ s. Let U be the
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exploration sequence of outgoing port numbers corresponding to B. Note that
irrespective of the starting node, the sequence of port numbers U must visit all
the edges of ̂G, i.e., for every j, 1 ≤ j ≤ s, if the agent starts from the node
v0 ∈ H(Xj), it explores all the edges of ̂G following U . Let U = q1, q2, · · · , qw.
Following lemma will be useful to prove our main lower bound result.

Lemma 1. For any j, 1 ≤ j ≤ w, if the port qj visits an edge of Ex,y when
the starting node is v0 ∈ HXi

, for some i, 1 ≤ i ≤ s, then qj visits an edge of
Ex+t−i mod s,y+t−i mod s when the starting node is v0 ∈ HXt

.

Proof. We will prove this lemma using induction. Suppose that the agent starts
from the node v0 ∈ HXi

. According to the construction of ̂G, the port q1 must
visit an edge of some Ei,y, where 1 ≤ y ≤ s. According to the port number
assignment of the edges of ̂G, (y − i)m

2 ≤ q1 ≤ (y − i + 1)m
2 − 1. The ports from

the node v0 in H(Xt) between (y − i)m
2 and (y − i+1)m

2 −1 are the part of edge
set Et,t+y−i mod s. Therefore, if the agent starts from v0 in HXt

, then the port
q1 visits an edge of Et,t+y−i mod s, i.e., the edges of Et+i−i mod s,t+y−i mod s.
Hence the lemma is true for j = 1.

HX1

HX1
(U1) HX1

(U2)

HX1
(V1) HX1

(V2)

. . . . . .

. . . . . .

HX2

HX2
(U1) HX2

(U2)

HX2
(V1) HX2

(V2)

. . . . . .

. . . . . .

HXs

HXs (U1) HXs (U2)

HXs (V1) HXs (V2)

. . . . . .

. . . . . .

Fig. 4. A subset of edges of ̂G (
⋃

j∈[1,s]

E1,j)

Suppose that the lemma is true for any integer j ≤ f . Let qf be a port
between dm

2 and (d+1)m
2 −1, for some d and qf visits an edge of Ex,y when the

starting node is v0 ∈ HXi
. This implies that before taking the port qf , then agent

is in a vertex of HXx
and after taking the port qf , the agent reaches a vertex of

HXz
, where z = x + d mod s. Therefore, using the induction hypothesis, when

the starting node in v0 ∈ HXt
, before taking the port qf , the agent is in a vertex
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of HXx+t−i mod s
and after taking the port qf , the agent reaches a vertex of HXz′ ,

where z′ = x + t − i + d mod s.
Now, lets consider the port qf+1 when the agent starts from v0 ∈ HXi

. Let
d′ m

2 ≤ qf+1 ≤ (d′+1)m
2 −1, for some d′. Then qf+1 visits an edge of Ex′,y′ , where

x′ = x + d mod s, y′ = x + d + d′ mod s. Suppose that, when the starting
node is v0 ∈ HXt

, the port qf+1 visits an edge of Ex′′,y′′ . As, in this case, the
agent is in a vertex of HXz′ , where z′ = x + t − i + d mod s and d′ m

2 ≤ qf+1 ≤
(d′+1)m

2 −1, according to the port assignments of the edges of ̂G, x′′ = x+t−i+d
mod s and y′′ = x + t − i + d + d′ mod s, i.e., x′′ = x′ + t − i mod s and
y′′ = y′ + t − i mod s. This proves that the lemma is true for j = f + 1 and
hence the lemma is proved by induction. ��

With the above discussion, we are ready to prove our lower bound result.

Theorem 1. Any exploration algorithm using any advice given by a Oracle must
take time Ω(n

8
3 ) time to explore all the edges of ̂G.

Proof. It is enough to prove the theorem for sufficiently large values of n, assum-
ing that the advice given by the Oracle is ̂G. Let B be an exploration algorithm
using which the agent explores all the edges of the graph starting from v0 ∈ HXj

,
for any i, 1 ≤ j ≤ s. Let U be the exploration sequence of port numbers corre-
sponding to B. Consider the execution of the movement of the agent along the
edges of ̂G when the starting node in v0 ∈ H(Xi), for some i. The sequence of
port numbers U can be written as U = B1.(p1).B2.(p2). · · · Bk.(pk).Bk+1, where
each B� is a sequence of port numbers corresponding to continuous movements
of the mobile agent moving according to B (B� is a sequence involving zero or
more port numbers, for each �) and p1, p2, · · · , pk, are the ports that the agent
takes to visit only the edges from Ex,y. Note that the sequence of port num-
bers W = p1, p2, · · · , pk explores all the edges of Ex,y in a scattered manner.
We can convert W to a continuous sequence of port numbers W ′ such that W ′

explores all the edges in Ex,y continuously, starting from v0 ∈ HXx
as follows.

Suppose that u1, u2, · · · , uk be the vertices from where the agent takes the ports
p1, p2, · · · , pk, respectively. Construct W ′ = C1p1C2p2 · · · Ckpk, where C1 is the
sequence of port numbers corresponding to a shortest path from v0 ∈ HXx

to u1

and C� is the sequence of port numbers corresponding to a shortest path from
the node the agent reached after taking the port p� (say, v), to u�+1. Let W ′′ be
the sequence of port number which is constructed from W ′ such that for each
i, the value of the i−th port of W ′′ is assigned as the value of the i−th port
of W ′ mod m

2 . Then W ′′ is an exploration sequence for HXx
. Since degree of

each node in the subgraph HXx
induced by the edge set EX,Y is m

2 , the length
of each of the C�’s are constant.

Hence |W ′′| ∈ O(k). Also, since W ′′ is an exploration sequence of HXx
, W ′′

must be an exploration sequence of H as well.

Claim: k ∈ O(s2).
We prove the above claim by showing that the exploration sequence W ′′

working on the graph H must visit every edge e1, · · · es at least s times. Suppose
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that W ′′ visits some edge e�′ at most s−1 times in H. Choose the starting node
of the agent as the node v0 of HXt

where �′ = t + x − i mod s.
According to Lemma 1, using the sequence of port numbers of W ′′, the

agent visits all the edges of E�′,�′′ , where �′′ = t + y − i mod s. Thus, W ′′ is an
exploration sequence for HX�′ which visits the edge e�′ in H at most s−1 times.
Therefore by the result of [4], at least one of the edge in HX�′ is not visited by
W ′′. This contradicts the fact that B is an algorithm that visits all the edges of
̂G.

Therefore |W ′′| ∈ O(s2) and hence the claim is true.
Similarly, considering all Ex,y, for 1 ≤ x, y ≤ s, it can be proved that all the

edges of ̂G must be visited at least s times. Since, the total number of edges of
the graph ̂G is s2 m2

4 ≥ m6

20 , therefore, |U | ≥ sm6

20 ≥ m8

100 ∈ Ω(n
8
3 ). ��

4 Exploration in O(n3) Time

In this section, we propose upper bound and lower bound results on size of advice
in order to explore all the edges of the graph in time O(n3).

4.1 The Algorithm

Here we propose an algorithm using which the agent explores all the edges of an
n node graph in time O(n3) with advice of size O(n log n).

Let G be any n node graph. The advice provided to the agent is a port num-
bered spanning tree of G. The spanning tree can be coded as a binary string of
size O(n log n) [21]. The agent, after receiving the advice, will decode the span-
ning tree and explores all the edges of the graph as described below.

Algorithm: EdgeExploration

Step 1: After receiving the tree T as advice, the agent locally labels all
the nodes of the spanning tree with unique labels from {1, 2 · · · , n}. Then it
computes n eulerian tours E1, · · · ,En from the spanning tree, where Ei is an
eulerian tour that starts and ends at the vertex i. These tours are basically
sequences of outgoing port numbers starting and ending at the same vertex i,
for different values of i.

Step 2: For each 1 ≤ i ≤ n, the agent start exploring according to the
sequence of port numbers corresponding to Ei as follows. Let p1, p2, · · · , pk, be
the sequence of port numbers corresponding to the tour Ei. The agent visits all
the port incident to the starting vertex and come back to it using the reverse
ports from the adjacent node. Then it takes port p1 and stores the port number
of the other side of the edge in a stack. Next, it visits all the edges incident to
the current node same as before, and come back to it using the reverse ports.
Then it takes port p2 and stores the port number of the other side of the edge
in a stack. The agent continue visiting the edges in this way until it get stuck
(this might happen in a case, when the agent is supposed to take the port pi

but the degree of the current node is less than pi + 1) at some node or the tour
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Ei is completed. At this point, it uses the port numbers which are stored in the
stack to backtrack to the starting point.

Since the initial position of the agent is one of the nodes 1 ≤ i ≤ n, it will
succeed visiting all the edges for at least one Ei. For each of such euler tour, the
agent visit all the edges at each vertex, hence will take O(n2) time. Since there
are n such euler tour, the time of exploration would be O(n3). Hence we will
have the following theorem.

Theorem 2. Algorithm EdgeExploration explores all the edges of the graph G
in time O(n3) with advice of size O(n log n).

4.2 Lower Bound

In this section, we prove that the size Ω(nδ) of advice is necessary, for any δ < 1
3

in order to perform edge exploration in O(n3) time. To prove this lower bound
result, we construct a class of graphs G for which if the size of the advice given
by the Oracle is o(nδ), then there exist a graph in G for which the time of edge
exploration is ω(n3). The graphs in G are constructed in similar fashion as the
graph ̂G in Sect. 3.

Let δ < 1
3 is a positive real constant. Then there exists a real constant ε,

0 < ε < 1
2 , such that δ > ε

1+ε . Also, for ε < 1
2 , there exists a real constant c < 1

2

such that ε < (1−c)
2 .

Let S = {e1, e2, · · · , es} be the set of non spanning tree edges in H, where
H is the complete bipartite graph of m (even) nodes and where each node has
degree m

2 . Let Z be any subset of S of size mε. Construct the graph GZ as
follows. Let Z = {ei1 , ei2 , · · · , eip

}, where p = mε. Construct GZ in the same
way as we have constructed ̂G (in Sect. 3) by replacing s with p and S with
Z. In other words, take one copy of each H(Xij

), for 1 ≤ j ≤ p, and connect
additional edges similarly as explained in Sect. 3 to construct sets of edges Ea,b,
where a, b ∈ {i1, · · · ip}. Note that each subset Z of S corresponds to a graph
GZ . There are

(

s
p

)

different subsets of S and hence there are
(

s
p

)

different graphs
like GZ can be constructed.

Let G = {GZ |Z ⊂ S}. Then |G | =
(m2

4 −m+1
mε

) ≥ (m2
5

mε

) ≥ (m2−ε

5 )mε ≥
m(2− c

2−ε)mε

, for large values of m. Let n be the number of nodes in each graph
of G . Then n = 2m1+ε. With this class of graphs, we are ready to prove our
lower bound result.

Theorem 3. For any δ < 1
3 , any exploration algorithm using advice of size

o(nδ log n) must take ω(n3) time on some n node graph of the class G for arbi-
trarily large n.

Proof. Suppose that there exists an algorithm A , using which the agent explores
all the edges of any graph in G using advice of size at most c

2mε log m−1. There
are at most m

c
2mε

many different binary strings possible with length at most
c
2mε log m − 1. Since |G | ≥ m(2−ε− c

2 )m
ε

, by Pigeon hole principle, for at least
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m(2−c−ε)mε

many graphs the agent must receive same advice. Suppose G ′ ⊂ G
be the set of graphs with same advice.

Let F (G ′) =
{∪{ei1 , ei2 , · · · , eip

}| Z = {ei1 , ei2 , · · · , eip
} and GZ ∈ G ′}.

Intuitively, F (G ′) is the collection of all such edge eik
of S for which Hik

is
used in the construction of at least one graph in G ′.

Next, we claim that |F (G ′)| ≥ |G ′| 1
mε . To prove this claim, suppose otherwise.

That is, |F (G ′)| < |G ′| 1
mε . Note that each graph in G ′ is constructed using mε

different HXij
. Therefore, at most

(|F (G ′)|
mε

)

different graphs are possible in G ′.

Hence, |G ′| ≤ (|F (G ′)|
mε

) ≤ |F (G ′)|mε

< |G ′|, which is a contradiction. Therefore,
|F (G ′)| ≥ m(2−c−ε).

Let G be any graph in G ′. We consider the execution of the algorithm A
where the starting node of the agent is v0 of some HXij

in G ′.
Let U be the sequence of port numbers corresponding to A . The sequence

of port numbers U can be written as U = B1.(p1).B2.(p2). · · · .Bk.(pk), where
each Bi is a sequence of port numbers corresponding to continuous movements
of the mobile agent moving according to A (Bi is a sequence involving zero or
more port numbers, for each i) and p1, p2, · · · , pk, are the ports that the agent
takes to visit only the edges from Eix,iy

. Consider the sequence of port numbers
W = p1, p2, · · · , pk (represents a discontinuous movement of the agent) and
construct W ′ = C1p1C2p2 · · · , Ckpk, where C1 is the sequence of port numbers
corresponding to a shortest path from v0 ∈ Hix

to the end vertex of the port p1
and Ci is the sequence of port numbers corresponding to a shortest path from
the node the agent reached after taking the port pi to the end vertex of the port
pi+1. Let W ′′ be the sequence of port number which is constructed from W ′

such that for each i, the value of the i−th port of W ′′ is assigned as the value of
the i−th port of W ′ mod m

2 . We claim that the sequence of port numbers W ′′,
when applied on H, starting from v0 in H, must visit all the edges in F (G ′) at
least s times. Otherwise, suppose W ′′ visits the edge ei�

∈ F (G ′) at most s times
in H, starting from v0 in H. Note that, since ei�

∈ F (G ′), there exists a graph
GZ ∈ G such that the edge ei�

∈ Z and Z ⊂ S. Consider the exploration of the
mobile agent in GZ . Since the agent received same advice for all the graphs in
G ′ and the graphs are indistinguishable for the agent, it explores all the graphs
in G ′ using the same sequence of port numbers.

Therefore, in the exploration of GZ , if the agent starts from v0 in HXit
, such

that i� = ix + it − ij , the sequence of port numbers W ′′ visits all the edges of
Ei�,i�′ , where i� = ix + it − ij (using Lemma 1). Since W ′′ visits the edge ei�

at
most s − 1 times, by the property of Ei�,i�′ , the agent can not explore at least
one edge in HXi�

, which is a contradiction that the algorithm A explores all the
edges. This proves that |W ′′| ≥ s|F (G ′)|. Since mε copies of every graph H(Xit

)
is constructed in GZ , for every edge eit

∈ Z, by similar arguments we can prove
that |U | ≥ s|F (G ′)| · mε · mε ≥ m2

5 m(2−ε−c) · m2ε = m4+ε−c

5 . Since ε < 1−c
2 ,

therefore |U | ∈ ω(m3+3ε). Also, since n = 2m1+ε, therefore, |U | ∈ ω(n3). Note
that the size of the advice provided is o(mε log m). Since n = 2m1+ε, therefore
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the size of advice is o(n
ε

1+ε log n), i.e, o(nδ log n). Therefore, with advice of size
o(nδ log n), the time of exploration must be ω(n3). ��

5 Conclusion

The first lower bound results of Ω(n
8
3 ) time for edge exploration and the proposed

algorithm of O(n3) leaves a small gap of O(n
1
3 ) on exploration time. On the other

hand, the second lower bound result on the size of advice, compared with the
proposed algorithm also leaves a gap less than O(n

2
3+ε), for any ε > 0. Closing

up these gaps between upper and lower bounds are natural open problems which
can be addressed in the future. Another interesting problem is to study the edge
exploration problem where the advice is provided by an instance Oracle.
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