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Abstract. Given an edge-weighted complete graph G on 3n vertices,
the maximum-weight triangle packing problem (MWTP for short) asks
for a collection of n vertex-disjoint triangles in G such that the total
weight of edges in these n triangles is maximized. Although MWTP
has been extensively studied in the literature, it is surprising that prior
to this work, no nontrivial approximation algorithm had been designed
and analyzed for its metric case (denoted by MMWTP), where the edge
weights in the input graph satisfy the triangle inequality. In this paper,
we design the first nontrivial polynomial-time approximation algorithm
for MMWTP. Our algorithm is randomized and achieves an expected
approximation ratio of 0.66745 − ε for any constant ε > 0.

Keywords: Triangle packing · Metric · Approximation algorithm ·
Randomized algorithm · Maximum cycle cover

1 Introduction

An instance of the maximum-weight triangle packing problem (MWTP for short)
is an edge-weighted complete graph G on 3n vertices, where n is a positive inte-
ger. Given G, the objective of MWTP is to compute n vertex-disjoint triangles
such that the total weight of edges in these n triangles is maximized.

The unweighted (or edge uniformly weighted) variant, denoted MTP for
short, is to compute the maximum number of vertex-disjoint triangles in the
input graph, which is edge unweighted and is not complete.

In their classic book, Garey and Johnson [8] show that MTP is NP-hard.
Kann [14] and van Rooij et al. [16] show that MTP is APX-hard even restricted
on graphs of maximum degree 4. Chlebik and Chlebikova [5] show that unless
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P = NP, no polynomial-time approximation algorithm for MTP can achieve an
approximation ratio of 0.9929. Moreover, Guruswami et al. [9] show that MTP
remains NP-hard even restricted on chordal, planar, line or total graphs.

MTP can be easily cast as a special case of the unweighted 3-set packing
problem (U3SP for short). Recall that an instance of U3SP is a family F of
sets each of size 3 and the objective is to compute a sub-family F ′ ⊂ F of the
maximum number of disjoint sets. Hurkens and Schrijver [13] (also see Hall-
dorsson [10]) present a nontrivial polynomial-time approximation algorithm for
U3SP which achieves an approximation ratio of 2

3 −ε for any constant ε > 0. This
ratio has been improved to 3

4 − ε [6,7]. Manic and Wakabayashi [15] present a
polynomial-time approximation algorithm for the special case of MTP on graphs
of maximum degree 4; their algorithm achieves an approximation ratio of 0.833.

Analogously, MWTP can be cast as a special case of the weighted 3-set pack-
ing problem (W3SP for short). Two different algorithms both based on local
search have been designed for W3SP [1,2] and they happen to achieve the same
approximation ratio of 1

2 − ε for any constant ε > 0. For MWTP specifically,
Hassin and Rubinstein [11,12] present a better randomized approximation algo-
rithm with an expected approximation ratio of 43

83 −ε for any constant ε > 0. This
ratio has been improved to roughly 0.523 by Chen et al. [3,4] and Zuylen [17].

This paper focuses on a common special case of MWTP, namely, the metric
MWTP problem (MMWTP for short), where the edge weights in the input graph
satisfy the triangle inequality. One can almost trivially design a polynomial-
time approximation algorithm for MMWTP to achieve an approximation ratio
of 2

3 ; but surprisingly, prior to this work, no nontrivial approximation algorithm
had been designed and analyzed. In this paper, we design the first nontrivial
polynomial-time approximation algorithm for MMWTP. Our algorithm is ran-
domized and achieves an expected ratio of 0.66745− ε for any constant ε > 0. At
the high level, given an instance graph G, our algorithm starts by computing the
maximum-weight cycle cover C in G and then uses C to construct three triangle
packings T1, T2, and T3, among which the heaviest one is the output solution.
The computation of T1 and T2 is deterministic but that of T3 is randomized.

The details of the algorithm are presented in the next section. We conclude
the paper in the last Sect. 3, with some remarks.

2 The Randomized Approximation Algorithm

Hereafter, let G be a given instance of the problem, and we fix an optimal triangle
packing B of G for the following argument. Note that there are 3n vertices in
the input graph G.

The algorithm starts by computing the maximum weight cycle cover C of G
in polynomial time. Obviously, w(C) ≥ w(B), since B is also a cycle cover. Let
ε be any constant such that 0 < ε < 1. A cycle C in C is short if its length is
at most � 1

ε �; otherwise, it is long. It is easy to transform each long cycle C in C
into two or more short cycles whose total weight is at least (1− ε) ·w(C). So, we
hereafter assume that we have modified the long cycles in C in this way. Then,
C is a collection of short cycles and w(C) ≥ (1 − ε) · w(B).
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We will compute three triangle packings T1, T2, T3 in G. The computation
of T1 and T2 will be deterministic but that of T3 will be randomized. Our goal
is to prove that for a constant ρ with 0 < ρ < 1, max{w(T1), w(T2), E [w(T3)]} ≥
( 23 + ρ) · w(B), where E [X] denotes the expected value of a random variable X.

2.1 Computing T1

We first compute the maximum weight matching M1 of size n (i.e., n edges) in
G. We then construct an auxiliary complete bipartite graph H1 as follows. One
part of V (H1), denoted as V \V (M1), consists of the vertices of G that are not
endpoints of M1; the vertices of the other part of V (H1), denoted as M1, one-to-
one correspond to the edges in M1. For each edge {x, e = {u, v}} in the bipartite
graph H1, where x ∈ V \V (M1) and e ∈ M1, its weight is set to w(u, x)+w(v, x).
Next, we compute the maximum weight matching M ′

1 in H1 and transform it
into a triangle packing T1 with w(T1) = w(M1) + w(M ′

1).
To compare w(T1) against w(B), we fix a constant δ with 0 ≤ δ < 1 and

classify the triangles in B into two types as follows. A triangle t in B is balanced
if the minimum weight of an edge in t is at least 1−δ times the maximum weight
of an edge in t; otherwise, it is unbalanced.

Lemma 1. Let Bb̄ be the set of unbalanced triangles in B, and γ = w(Bb̄)
w(B) . Then,

w(T1) ≥
(

2
3 + 2γδ

9−3δ

)
· w(B).

Proof. For each t in B, let at (respectively, bt) be the maximum (respectively,
minimum) weight of an edge in t. Further let a =

∑
t∈B at and b =

∑
t∈B bt.

If t ∈ Bb̄, then bt < (1 − δ)at and in turn (3 − δ)at > w(t). Thus,
∑

t∈Bb̄
at ≥

1
3−δ w(Bb̄) ≥ γ

3−δ w(B). Hence, w(B) ≤ 2a+b ≤ 3a−δ
∑

t∈Bb̄
at ≤ 3a− δγ

3−δ w(B)

and in turn a ≥
(

1
3 + δγ

9−3δ

)
w(B). Now, since w(T1) ≥ 2a, we finally have

w(T1) ≥
(

2
3 + 2γδ

9−3δ

)
· w(B). �	

2.2 Computing T2

Several definitions are in order. A partial-triangle packing in a graph is a sub-
graph P of the graph such that each connected component of P is a vertex,
edge, or triangle. A connected component C of P is a vertex-component (respec-
tively, edge-component or triangle-component) of the graph if C is a vertex
(respectively, edge or triangle). The augmented weight of P , denoted by ŵ(P ), is∑

t w(t)+2
∑

e w(e), where t (respectively, e) ranges over all triangle-components
(respectively, edge-components) of P . Intuitively speaking, if P has at least as
many vertex-components as edge-components, then we can trivially augment P
into a triangle packing P ′ (by adding more edges) so that w(P ′) is no less than
the augmented weight of P .

We classify the triangles t in B into three types as follows.
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– t is completely internal if all its vertices fall on the same cycle in C.
– t is partially internal if exactly two of its vertices fall on the same cycle in C.
– t is external if no two of its vertices fall on the same cycle in C.

An edge e of B is external if the endpoints of e fall on different cycles in
C; otherwise, e is internal. In particular, an internal edge e of B is completely
(respectively, partially) internal if e appears in a completely (respectively, par-
tially) internal triangle in B. A vertex v of G is external if it is incident to no
internal edges of B. Let Bē be the partial-triangle packing in G obtained from
B by deleting all external edges.

Now, we are ready to explain how to construct T2 so that w(T2) ≥ ŵ(Bē).
Let C1, . . . , C� be the cycles in C, and V1, . . . , V� be their vertex sets. For each
i ∈ {1, . . . , �}, let ni = |Vi|, pi be the number of partially internal edges e in B
such that both endpoints of e appear in Ci, qi be the number of external vertices
in Ci, and Ei be the set of edges {u, v} in G with {u, v} ⊆ Vi. Obviously,
ni − 2pi − qi is a multiple of 3. For each i ∈ {1, . . . , �}, let ñi =

∑i
h=1 nh,

p̃i =
∑i

h=1 ph, and q̃i =
∑i

h=1 qh.
Although we do not know pi and qi, we easily see that 0 ≤ qi ≤ ni and 0 ≤

pi ≤ �ni−qi
2 �. So, for every j ∈ {0, 1, . . . , ni} and every k ∈ {0, 1, . . . , �ni−j

2 �}, we
compute the maximum-weight (under ŵ) partial-triangle packing Pi(j, k) in the
subgraph of G induced by Vi such that Pi(j, k) has exactly j vertex-components
and exactly k edge-components. Since |Vi| is bounded by a constant (namely,
� 1

ε �) from above, the computation of Pi(j, k) takes O(1) time.
Although we do not know p̃i and q̃i, we easily see that 0 ≤ q̃i ≤ ñi and

0 ≤ p̃i ≤ � ñi−q̃i
2 �. For every j ∈ {0, 1, . . . , ñi} and every k ∈ {0, 1, . . . , � ñi−j

2 �},
we want to compute the maximum-weight (under ŵ) partial-triangle pack-
ing P̃i(j, k) in the graph (

⋃i
h=1 Vh,

⋃i
h=1 Eh) such that P̃i(j, k) has exactly

j vertex-components and exactly k edge-components. This can be done by
dynamic programming in O(n3) time as follows. Clearly, P̃1(j, k) = P1(j, k)
for every j ∈ {0, 1, . . . , ñ1} and every k ∈ {0, 1, . . . , � ñ1−j

2 �}. Suppose that
1 ≤ i < � and we have computed P̃i(j, k) for every j ∈ {0, 1, . . . , ñi} and every
k ∈ {0, 1, . . . , � ñi−j

2 �}. For every j ∈ {0, 1, . . . , ñi+1} and every k ∈ {0, 1, . . .,
� ñi+1−j

2 �}, we can compute P̃i+1(j, k) by finding a pair (j′, k′) such that j′ ∈
{0, 1, . . . , ni+1}, k′ ∈ {0, 1, . . ., �ni+1−j′

2 �}, and ŵ(Pi+1(j′, k′)) + ŵ(P̃i(j − j′, k −
k′)) is maximized. Obviously, P̃i+1(j, k) = Pi+1(j′, k′) ∪ P̃i(j − j′, k − k′).

Finally, we have P̃�(j, k) for every j ∈ {0, 1, . . . , 3n} and every k ∈ {0, 1, . . .,
� 3n−j

2 �}. We now find a pair (j′, k′) such that j′ ∈ {0, 1, . . . , 3n}, k′ ∈ {0, 1, . . .,
� 3n−j′

2 �}, k′ ≤ j′, and ŵ(P̃�(j′, k′)) is maximized. Obviously, ŵ(P̃�(j′, k′)) ≥
ŵ(Bē). Moreover, we can easily transform P̃�(j′, k′) into a triangle packing T2 of
G with w(T2) ≥ ŵ(P̃�(j′, k′)) as follows.

1. Arbitrarily select k′ vertex-components of P̃�(j′, k′) and connect them to the
edge-components of P̃�(j′, k′) so that k′ vertex-disjoint triangles are formed.

2. Arbitrarily connect the remaining (j′ − k′) vertex-components of P̃�(j′, k′)
into j′−k′

3 vertex-disjoint triangles.
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In summary, we have shown the following lemma:

Lemma 2. We can construct a triangle packing T2 of G with w(T2) ≥ ŵ(Bē)
in O(n3) time.

2.3 Computing a Random Matching in C
We compute a random matching M in C as follows.

1. Initialize two sets L = ∅ and M = ∅.
2. For each even cycle Ci in C, perform the following three steps:

(a) Partition E(Ci) into two matchings Mi,1 and Mi,2.
(b) Select a ji ∈ {1, 2} uniformly at random.
(c) Add the edges in Mi,ji to L.

3. For each odd cycle Ci in C, perform the following five steps:
(a) Select an edge ei ∈ E(Ci) uniformly at random.
(b) Partition E(Ci)\{ei} into two matchings Mi,1 and Mi,2.
(c) Select a ji ∈ {1, 2} uniformly at random.
(d) Select an edge e′

i ∈ Mi,ji uniformly at random and add e′
i to M .

(e) Add the edges in Mi,ji\{e′
i} to L.

4. Select two thirds of edges from L uniformly at random and add them to M .

Lemma 3. Let co be the number of odd cycles in C. Then, immediately before
Step 4, |L| = 3

2 · (n − co).

Proof. Immediately before Step 4, 2|L| = 3n − 3co and hence |L| = 3
2 · (n − co).

�	
Lemma 4. |M | = n.

Proof. Immediately before Step 4, |M | = co. So, by Lemma 3, |M | = co + (n −
co) = n after Step 4. �	
Lemma 5. For every vertex v of G, Pr[v �∈ V (M)] = 1

3 .

Proof. First consider the case where v appears in an even cycle in C. In this case,
v ∈ V (M) immediately before Step 4. So, after Step 4, Pr[v �∈ V (M)] = 1

3 .
Next consider the case where v appears in an odd cycle Ci in C. There

are two subcases, depending on whether or not v is an endpoint of the edge
ei selected in Step 3a. If v is incident to ei, then Pr[v �∈ V (Mi,ji)] = 1

2 and

Pr[v ∈ V (Mi,ji) ∧ v �∈ V (e′
i)] = 1

2 ·
(
1 − 2

ni−1

)
. Hence, Pr[v �∈ V (M) | v ∈

V (ei)] = 1
2 + 1

2 ·
(
1 − 2

ni−1

)
· 1
3 = 2ni−3

3(ni−1) . On the other hand, if v is not an
endpoint of ei, then Pr[v ∈ V (Mi,ji)] = 1 and Pr[v ∈ V (Mi,ji) ∧ v �∈ V (e′

i)] =

1 ·
(
1 − 2

ni−1

)
= ni−3

ni−1 . Thus, Pr[v �∈ V (M) | v �∈ V (ei)] = ni−3
ni−1 · 1

3 = ni−3
3(ni−1) .

Therefore, Pr[v �∈ V (M)] = 2
ni

· 2ni−3
3(ni−1) +

(
1 − 2

ni

)
· ni−3
3(ni−1) = 1

3 . �	



124 Y. Chen et al.

Lemma 6. For every edge e of C, Pr[e ∈ M ] = 1
3 .

Proof. First consider the case where e appears in an even cycle in C. In this case,
Pr[e ∈ M ] = 1

2 · 2
3 = 1

3 .
Next consider the case where e appears in an odd cycle Ci in C. There are

two subcases, depending on whether or not e is the edge ei selected in Step 3a. If
e = ei, then Pr[e �∈ M ] = 1. Hence, Pr[e �∈ M | e = ei] = 1. On the other hand,
if e �= ei, then Pr[e �∈ Mi,ji ] = 1

2 and Pr[e �= e′
i | e ∈ Mi,ji ] = 1 − 2

ni−1 = ni−3
ni−1 .

Thus, Pr[e �∈ M | e �= ei] = 1
2 · 1 + 1

2 · ni−3
ni−1 · 1

3 = 2ni−3
3(ni−1) . Therefore, Pr[e �∈ M ] =

1
ni

· 1 +
(
1 − 1

ni

)
· 2ni−3
3(ni−1) = 2

3 . �	

Lemma 7. For every vertex v of G and every edge e of C such that v and e
appear in different cycles in C, Pr[e ∈ M ∧ v �∈ V (M)] ≥ 1

9 .

Proof. Suppose that v and e appear in Ci′ and Ci′′ , respectively. We distinguish
four cases as follows.

Case 1: Both ni′ and ni′′ are even. In this case, Pr[v ∈ V (Mi′,ji′ )] = 1 and
Pr[e ∈ Mi′′,ji′′ ] = 1

2 . So, Pr[v ∈ V (Mi′,ji′ ) ∧ e ∈ Mi′′,ji′′ ] = 1
2 . Moreover, by

Lemma 3, Pr[e ∈ M ∧ v �∈ V (M) | v ∈ V (Mi′,ji′ ) ∧ e ∈ Mi′′,ji′′ ] =
( |L|−2

2
3 |L|−1)
( |L|

2
3 |L|)

=

(n−co)· 12 (n−co)
3
2 (n−co)·( 3

2 (n−co)−1) ≥ 2
9 . Thus, Pr[e ∈ M ∧ v �∈ V (M)] ≥ 2

9 · 1
2 = 1

9 .

Case 2: ni′ is even but ni′′ is odd. In this case, Pr[v ∈ V (Mi′,ji′ )] = 1 and Pr[e ∈
Mi′′,ji′′ ] = 1

2 · ni′′ −1
ni′′

= ni′′ −1
2ni′′

. Moreover, Pr[e = e′
i′′ | e ∈ Mi′′,ji′′ ] = 2

ni′′ −1 ,

Pr[e = e′
i′′ ] = 1

ni′′
, and Pr[e ∈ Mi′′,ji′′ \{e′

i′′}] = ni′′ −1
2ni′′

·
(
1 − 2

ni′′ −1

)
= ni′′ −3

2ni′′
.

Furthermore, Pr[v �∈ V (M) | e = e′
i′′ ] = 1

3 by Lemma 5, and Pr[v �∈ V (M) ∧ e ∈
M | e ∈ Mi′′,ji′′ \{e′

i′′}] =
( |L|−2

2
3 |L|−1)
( |L|

2
3 |L|)

= (n−co)· 12 (n−co)
3
2 (n−co)·( 3

2 (n−co)−1) ≥ 2
9 . Thus, Pr[e ∈

M ∧ v �∈ V (M)] ≥ 1
3 · 1

ni′′
+ 2

9 · ni′′ −3
2ni′′

= 1
9 .

Case 3: ni′ is odd but ni′′ is even. In this case, Pr[v ∈ V (Mi′,ji′ )] = 2
ni′

· 1
2 +(

1 − 2
ni′

)
· 1 = ni′ −1

ni′
and Pr[e ∈ Mi′′,ji′′ ] = 1

2 . So, Pr[v ∈ V (Mi′,ji′ ) ∧ e ∈
Mi′′,ji′′ ] = ni′ −1

2ni′
and Pr[v �∈ V (Mi′,ji′ ) ∧ e ∈ Mi′′,ji′′ ] = 1

2ni′
. Moreover, by

Lemma 3, Pr[e ∈ M ∧ v �∈ V (M) | v ∈ V (Mi′,ji′ ) ∧ e ∈ Mi′′,ji′′ ] =
( |L|−2

2
3 |L|−1)
( |L|

2
3 |L|)

=

(n−co)· 12 (n−co)
3
2 (n−co)·( 3

2 (n−co)−1) ≥ 2
9 and Pr[e ∈ M ∧ v �∈ V (M) | v �∈ V (Mi′,ji′ ) ∧ e ∈

Mi′′,ji′′ ] = 2
3 . Thus, Pr[e ∈ M ∧ v �∈ V (M)] ≥ ni′ −1

2ni′
· 2
9 + 1

2ni′
· 2
3 ≥ 1

9 .

Case 4: Both ni′ and ni′′ are odd. In this case, Pr[v ∈ V (Mi′,ji′ )] = ni′ −1
ni′

and

Pr[e ∈ Mi′′,ji′′ ] = 1
2 · ni′′ −1

ni′′
= ni′′ −1

2ni′′
. Moreover, Pr[e = e′

i′′ | e ∈ Mi′′,ji′′ ] =
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2
ni′′ −1 , Pr[e = e′

i′′ ] = 1
ni′′

, and Pr[e ∈ Mi′′,ji′′ \{e′
i′′}] = ni′′ −1

2ni′′
·
(
1 − 2

ni′′ −1

)
=

ni′′ −3
2ni′′

. So, Pr[v �∈ V (Mi′,ji′ ) ∧ e = e′
i′ ] = 1

ni′ ni′′
, Pr[v �∈ V (Mi′,ji′ ) ∧ e ∈

Mi′′,ji′′ \{e′
i′′}] = ni′′ −3

2ni′ ni′′
, Pr[v ∈ V (Mi′,ji′ ) ∧ e = e′

i′ ] = ni′ −1
ni′ ni′′

, Pr[v ∈
V (Mi′,ji′ ) ∧ e ∈ Mi′′,ji′′ \{e′

i′′}] = (ni′ −1)(ni′′ −3)
2ni′ ni′′

. Obviously, Pr[e ∈ M ∧ v �∈
V (M) | v ∈ V (Mi′,ji′ )∧e = e′

i′′ ] = 1
3 , Pr[e ∈ M ∧v �∈ V (M) | v �∈ V (Mi′,ji′ )∧e =

e′
i′′ ] = 1, and Pr[e ∈ M ∧ v �∈ V (M) | v �∈ V (Mi′,ji′ ) ∧ e ∈ Mi′′,ji′′ \{e′

i′′}] = 2
3 .

Furthermore, by Lemma 3, Pr[e ∈ M ∧ v �∈ V (M) | v ∈ V (Mi′,ji′ ) ∧ e ∈
Mi′′,ji′′ \{e′

i′′}] =
( |L|−2

2
3 |L|−1)
( |L|

2
3 |L|)

= (n−co)· 12 (n−co)
3
2 (n−co)·( 3

2 (n−co)−1) ≥ 2
9 . Thus, Pr[e ∈ M ∧ v �∈

V (M)] ≥ 1
3 · ni′ −1

ni′ ni′′
+ 1 · 1

ni′ ni′′
+ 2

3 · ni′′ −3
2ni′ ni′′

+ 2
9 · (ni′ −1)(ni′′ −3)

2ni′ ni′′
≥ 1

9 . �	

2.4 Computing T3

Fix a constant τ with 0 < τ < 1. A good triplet is a triplet (x, y; z), where {x, y}
is an edge of some cycle Ci in C and z is a vertex of some other cycle Cj in C
with i �= j such that w(x, y) ≤ (1 − τ) · (w(x, z) + w(y, z)).

To compute T3, we initialize T3 = ∅ and proceed as follows.

1. Construct an auxiliary edge-weighted and edge-labeled multi-digraph H3 as
follows. The vertex set of H3 is V (G). For each good triplet (x, y; z), H3

contains the two arcs (z, x) and (z, y), each of the two arcs has a weight of
w(x, z) + w(y, z) in H3, the label of (z, x) is y, and the label of (z, y) is x.

2. Compute the maximum-weight matching M3 in H3 (by ignoring the direction
of each arc).

3. Compute a random matching M in C as in Sect. 2.3.
4. Let N3 be the set of all arcs (z, x) ∈ M3 such that z �∈ V (M) and {x, y} ∈ M ,

where y is the label of (z, x). (Comment: Since both M and N3 are matchings,
no two arcs in N3 can share a label. Moreover, the endpoints of each edge in
M can be the heads of at most two arcs in N3.)

5. Initialize N ′
3 = N3. For every two arcs (z, x) and (z′, y) in N ′

3 such that
{x, y} ∈ M , select one of (z, x) and (z′, y) uniformly at random and delete it
from N ′

3.
6. For each (z, x) ∈ N ′

3, let T3 include the triangle t with V (t) = {x, y, z}, where
y is the label of (z, x). (Comment: By Step 5 and the comment on Step 4, the
triangles included in T3 in this step are vertex-disjoint.)

7. Let M ′ be the set of edges (x, y) in M such that neither x nor y is the head or
the label of an arc in N ′

3. Further let Z be the set of vertices z in G such that
z �∈ V (M) and z is not the tail of an edge in N ′

3. (Comment: Since |M | = n
by Lemma 4, the comment on Step 6 implies |Z| = |M ′|.)

8. Select an arbitrary one-to-one correspondence between the edges in M ′ and
the vertices in Z. For each z ∈ Z and its corresponding edge (x, y) in M ′, let
T3 include the triangle t with V (t) = {x, y, z}.

We classify external balanced triangles in B into two types as follows. An
external balanced triangle t in B is of Type 1 if for each vertex v of t, the weight
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of each edge incident to v in C is at least 1
2 (1 − 1

2δ)(1 − τ)w(t); otherwise, t is of
Type 2.

Similarly, we classify partially internal balanced triangles in B into two types
as follows. A partially internal balanced triangle t in B is of Type 1 if the weight of
each edge incident to the external vertex of t in C is at least 1

2 (1− 1
2δ)(1−τ)w(t);

otherwise, t is of Type 2.

Lemma 8. Let Be
1 be the set of Type-1 external balanced triangles in B. Further

let Bp
1 be the set of Type-1 partially internal balanced triangles in B. Then,

w(T1) ≥ 2
3w(B) + 2−3δ−6τ+3δτ

54 w(Be
1) + 2−3δ−6τ+3δτ

162 w(Bp
1).

Proof. For the analysis, we use the triangles in Be
1 ∪ Bp

1 to construct a random
matching N in C as follows.

1. Initialize N ′ = ∅. For each triangle t in B, select one edge et of t uniformly
at random and add it to N ′.

2. For each triangle t in Be
1, choose one neighbor v′

t of vt in C uniformly at
random, where vt is the vertex of t not incident to et.

3. For each triangle t in Bp
1 such that et is internal, choose one neighbor v′

t of
vt in C uniformly at random, where vt is the external vertex of t.

4. Initialize X = ∅. For each t ∈ Be
1 ∪ Bp

1 , if v′
t �∈ V (N ′), then add (vt, v

′
t) to X.

5. Let D be the digraph with vertex set V (G)\V (N ′) and arc set X. Partition X
into three matchings X1, X2, X3 in D. (Comment: Each connected component
of the underlying undirected graph of D is either a cycle of C or a graph of
maximum degree at most 3 whose simplified version is a path. Therefore, the
partition in this step can be done.)

6. Select a set Y among X1, X2, X3 uniformly at random.
7. Initialize N = {et | t ∈ B\(Be

1 ∪ Bp
1)}. For each t ∈ Be

1, if (vt, v
′
t) �∈ Y , then

add et to N ; otherwise add {vt, v
′
t} to N . Similarly, for each t ∈ Bp

1 , if et is
external or (vt, v

′
t) �∈ Y , then add et to N ; otherwise add {vt, v

′
t} to N .

For each triangle t ∈ Be
1, let Et be the set of edges e in C such that e is

incident to a vertex of t. Similarly, for each triangle t ∈ Bp
1 , let Et be the set

of edges e in C such that e is incident to the external vertex of t. Consider a
t ∈ Be

1 and an e = {x, y} ∈ Et with x ∈ V (t). Obviously, Pr[x = vt] = 1
3

and Pr[y = v′
t | x = vt] = 1

2 ; hence Pr[{vt, v
′
t} = e] = 1

6 . Moreover, Pr[v′
t �∈

V (N ′)] = 1
3 and in turn Pr[{vt, v

′
t} = e ∧ v′

t �∈ V (N ′)] = 1
18 . Furthermore,

Pr[e ∈ N | {vt, v
′
t} = e ∧ v′

t �∈ V (N ′)] = 1
3 . So, Pr[e ∈ N ] = 1

3 · 1
18 = 1

54 . Now, if
t ∈ Be

1, then |Et| = 6 and in turn Pr[et �∈ N ] = 6 · 1
54 = 1

9 . On the other hand, if
t ∈ Bp

1 , then |Et| = 2 and in turn Pr[et �∈ N ] = 2 · 1
54 = 1

27 .
By the discussions in the last paragraph, E [w(N)] ≥ 1

3

∑
t∈B\(Be

1∪Bp
1 )

w(t) +
8
9 · 13

∑
t∈Be

1
w(t)+ 1

9 · 12 (1− 1
2δ)(1−τ)

∑
t∈Be

1
w(t)+ 26

27 · 13
∑

t∈Bp
1

w(t)+ 1
27 · 12 (1−

1
2δ)(1 − τ)

∑
t∈Bp

1
w(t) = 1

3w(B) + 2−3δ−6τ+3δτ
108 w(Be

1) + 2−3δ−6τ+3δτ
324 w(Bp

1). So,
w(T1) ≥ 2 · E [w(N)] ≥ 2

3w(B) + 2−3δ−6τ+3δτ
54 w(Be

1) + 2−3δ−6τ+3δτ
162 w(Bp

1). �	
Lemma 9. Let Be

2 be the set of Type-2 external balanced triangles in B to w(B).
Further let Bp

2 be the set of Type-2 partially internal balanced triangles in B.
Then, E [w(T3)] ≥ 2(1−ε)

3 w(B) + (1−δ)τ
54−18δ · w(Be

2) + (1−δ)τ
54−18δ · w(Bp

2).
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Proof. For a set F of edges in H3, let w̃(F ) denote the total weight of edges of
F in H3. Further let W2 be the total weight of triangles in Be

2 ∪ Bp
2 .

Consider an arbitrary t ∈ Be
2 ∪ Bp

2 . Since t is of Type 2, t has a vertex
vt such that some neighbor v′

t of vt in C satisfies w(vt, v
′
t) < 1

2 (1 − 1
2δ)(1 −

τ)w(t). Let zt and z′
t be the vertices in V (t)\{vt}. By the triangle inequality,

w(zt, v
′
t) ≥ 1

2w(zt, z
′
t) or w(z′

t, v
′
t) ≥ 1

2w(zt, z
′
t). Without loss of generality, we

may assume that w(zt, v
′
t) ≥ 1

2w(zt, z
′
t). We claim that (vt, v

′
t; zt) is a good triplet.

To see this, first recall that (1− δ)w(z′
t, vt) ≤ w(zt, vt) because t is balanced. So,

(1− 1
2δ)w(z′

t, vt) ≤ (1+ 1
2δ)w(zt, vt)+ 1

2δw(zt, z
′
t) by the triangle inequality. Thus,

(1 − 1
2δ) (w(zt, vt) + w(zt, z

′
t) + w(z′

t, vt)) ≤ 2w(zt, vt) + w(zt, z
′
t) ≤ 2w(zt, vt) +

2w(zt, v
′
t). Hence, 1

2 (1 − 1
2δ)w(t) ≤ w(zt, vt) + w(zt, v

′
t). Therefore, w(vt, v

′
t) <

1
2 (1 − 1

2δ)(1 − τ)w(t) ≤ (1 − τ) (w(zt, vt) + w(zt, v
′
t)). Consequently, the claim

holds.
By the claim in the last paragraph, the set X of all {zt, vt} with t ∈ Be

2 ∪Bp
2

is a matching in H3. Moreover, w̃(M3) ≥ w̃(X) =
∑

t∈Be
2∪Bp

2
w(zt, vt) ≥

1−δ
3−δ

∑
t∈Be

2∪Bp
2

w(t) = 1−δ
3−δ W2, where the second inequality holds because t is

balanced and in turn w(zt, vt) ≥ 1−δ
3−δ w(t). Now, by Lemma 7, E [w̃(N3)] ≥

1
9 w̃(M3) ≥ 1−δ

27−9δ W2 and in turn E [w̃(N ′
3)] ≥ 1−δ

54−18δ W2. Obviously, w(T3) ≥
2w(M)+τ ·w̃(N ′

3) by the triangle inequality. Therefore, by Lemma 6, E [w(T3)] ≥
2
3 · w(C) + (1−δ)τ

54−18δ W2 ≥ 2(1−ε)
3 · w(B) + (1−δ)τ

54−18δ W2. �	

2.5 Analyzing the Approximation Ratio

Let Bi be the set of completely internal balanced triangles in B. For convenience,
let α1 = w(Bi)

w(B) , α2 = w(Be
1)

w(B) , α3 = w(Be
2)

w(B) , α4 = w(Bp
1 )

w(B) , and α5 = w(Bp
2 )

w(B) . Then,
γ + α1 + α2 + α3 + α4 + α5 = 1.

We choose δ = 0.08 and τ = 0.22. Then, by Lemmas 1, 2, 8, and 9, we have
the following inequalities:

w(T1)
w(B)

≥ 2
3

+
4

219
γ (1)

w(T2)
w(B)

≥ α1 +
2
3
α4 +

2
3
α5 (2)

w(T1)
w(B)

≥ 2
3

+
0.2464

27
α2 +

0.2464
81

α4 (3)

E [w(T3)]
w(B)

≥ 2(1 − ε)
3

+
2.53
657

α3 +
2.53
657

α5. (4)

Suppose that we multiply both sides of Inequalities (1), (2), (3), and (4) by
0.1288, 0.00235, 0.2578, and 0.611, respectively. Then, one can easily verify that
the summation of the left-hand sides of the resulting inequalities is

0.1288 · w(T1)
w(B)

+ 0.00235 · w(T2)
w(B)

+ 0.2578 · w(T1)
w(B)

+ 0.611 · E [w(T3)]
w(B)

,
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while the summation of the right-hand sides is at least

1.9952
3

− 1.222
3

ε + 0.00235(γ + α1 + α2 + α3 + α4 + α5).

Now, using γ + α1 + α2 + α3 + α4 + α5 = 1, we finally have

(0.3866+0.00235+0.611) ·max
{

w(T1)
w(B)

,
w(T2)
w(B)

,
E [w(T3)]

w(B)

}
≥ 2.00225

3
− 1.222

3
ε.

That is,

max {w(T1), w(T2), E [w(T3)]} ≥ (0.66745 − 0.41ε) · w(B).

In summary, we have proven the following theorem, stating that the
MMWTP problem admits a better approximation algorithm than the trivial
2
3 -approximation.

Theorem 1. For any constant 0 < ε < 0.00078, the expected approximation
ratio achieved by our randomized approximation algorithm is at least 0.66745−ε.

3 Conclusions

We studied the maximum-weight triangle packing problem on an edge-weighted
complete graph G, in which the edge weights satisfy the triangle inequality.
Although the non-metric variant has been extensively studied in the literature,
it is surprising that prior to our work, no nontrivial approximation algorithm
had been designed and analyzed for this common metric case. We designed the
first nontrivial polynomial-time approximation algorithm for MMWTP, which
is randomized and achieves an expected approximation ratio of 0.66745 − ε for
any positive constant ε < 0.00078. This improves the almost trivial deterministic
2
3 -approximation.

Perhaps more dexterous tuning of the parameters inside our algorithm could
lead to certain better worst-case performance ratio, but we doubt it will be
significantly better. New ideas are needed for the next major improvement.
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