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Abstract. In this paper, we study exact, exponential-time algorithms
for a variant of the classic Longest Common Subsequence problem
called the r-Repetition Longest Common Subsequence problem (or
r-RLCS, for short): Given two sequences X and Y over an alphabet S,
find a longest common subsequence of X and Y such that each symbol
appears at most r times in the obtained subsequence. Without loss of
generality, we will assume that |X| ≤ |Y | from here on. The special
case of 1-RLCS, also known as the Repetition-Free Longest Common
Subsequence problem (RFLCS), has been studied previously; e.g., in [1],
Adi et al. presented an (exponential-time) integer linear programming-
based exact algorithm for 1-RLCS. However, they did not analyze its
time complexity, and to the best of our knowledge, there are no previous
results on the running times of any exact algorithms for this problem. In
this paper, we first propose a simple algorithm for 1-RLCS based on the
strategy used in [1] and show explicitly that its running time is bounded
by O(1.44225|X||X||Y |). Next, we provide a DP-based algorithm for r-
RLCS and prove that its running time is O((r + 1)|X|/(r+1)|X||Y |) for
any r ≥ 1. In particular, our new algorithm runs in O(1.41422|X||X||Y |)
time for 1-RLCS, which is faster than the previous one.

1 Introduction

An alphabet S is a finite set of symbols. Let X be a sequence over the alphabet S
and |X| be the length of the sequence X. For example, X = 〈x1, x2, · · · , xn〉 is
a sequence of length n, where xi ∈ S for 1 ≤ i ≤ n, i.e., |X| = n. For a sequence
X = 〈x1, x2, · · · , xn〉, another sequence Z = 〈z1, z2, · · · , zc〉 is a subsequence of
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X if there exists a strictly increasing sequence 〈i1, i2, · · · , ic〉 of indices of X
such that for all j = 1, 2, · · · , c, we have xij = zj . Then, we say that a sequence
Z is a common subsequence of X and Y if Z is a subsequence of both X and
Y . Given two sequences X and Y as input, the goal of the Longest Common
Subsequence problem (LCS) is to find a longest common subsequence of X
and Y .

The problem LCS is clearly a fundamental problem and has a long history [4,
11,14,24]. The comparison of sequences via a longest common subsequence has
been applied in several contexts where we want to find the maximum number
of symbols that appear in the same order in two sequences. The problem LCS
is considered as one of the important computational primitive, and thus has a
variety of applications such as bioinformatics [3,18,20], data compression [23],
spelling correction [19,24], and file comparison [2].

The problem LCS of two sequences has been deeply investigated, and polyno-
mial time algorithms are well-known [14,15,20,21,24]. It is possible to generalize
LCS to a set of three or more sequences; the goal is to compute a longest common
subsequence of all input sequences. This LCS of multiple sequences is NP-hard
even on binary alphabet [17] and it is not approximable within factor O(n1−ε)
on arbitrary alphabet for sequences of length n and any constant ε > 0 [18].
Furthermore, some researchers introduced a constraint on the number of symbol
occurrences in the solution. Bonizzoni, Della Vedova, Dondi, Fertin, Rizzi and
Vialette considered the Exemplar Longest Common Subsequence problem
(ELCS) [9,22]. In ELCS, an alphabet S of symbols is divided into the manda-
tory alphabet Sm and the optional alphabet So, and ELCS restricts the number
of symbol occurrences in Sm and So in the obtained solution. The problem
ELCS is APX-hard even for instances of two sequences [9]. In [10], Bonizzoni,
Della Vedova, Dondi and Pirola proposed the following Doubly-Constrained
Longest Common Subsequence problem (DCLCS): Let a sequence constraint
C be a set of sequences over an alphabet S and let an occurrence constraint Cocc

be a function Cocc : S → N, assigning an upper bound on the number of occur-
rences of each symbol in S. Given two sequences X and Y over an alphabet S, a
sequence constraint C and an occurrence constraint Cocc, the goal of DCLCS is
to find a longest common subsequence Z of X and Y , so that each sequence in C
is a subsequence of Z and Z contains at most Cocc(s) occurrences of each sym-
bol s ∈ S. Bonizzoni et al. showed that DCLCS is NP-hard over an alphabet of
three symbols [10]. Adi, Braga, Fernandes, Ferreira, Martinez, Sagot, Stefanes,
Tjandraatmadja, and Wakabayashi introduced theRepetition-Free Longest
Common Subsequence problem (RFLCS) [1]: Given two sequences X and Y
over an alphabet S, the goal of RFLCS is to find a longest common subsequence
of X and Y , where each symbol appears at most once in the obtained subse-
quence. In [1], Adi et al. proved that RFLCS is APX-hard even if each symbol
appears at most twice in each of the given sequences.

In this paper we study exact, exponential-time algorithms for RFLCS and its
variant, called the r-Repetition Longest Common Subsequence problem
(r-RLCS for short): Given two sequences X and Y over an alphabet S, the goal
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of r-RLCS is to find a longest common subsequence of X and Y , where each
symbol appears at most r times in the obtained subsequence. Without loss of
generality, we will assume that |X| ≤ |Y | from here on. The special case 1-
RLCS is identical to RFLCS. Also, it is easy to see that r-RLCS is a special
case of DCLCS when a sequence constraint C = ∅ and an occurrence constraint
Cocc(s) = r for every s ∈ S. In [1], Adi et al. presented an (exponential-time)
integer linear programming-based exact algorithm for 1-RLCS. However, they
did not analyze its time complexity, and to the best of our knowledge, there
are no previous results on the running times of any exact algorithms for this
problem. In this paper, we first propose a simple algorithm for 1-RLCS based
on the strategy used in [1] and show explicitly that its running time is bounded
by O(1.44225|X||X||Y |). Next, we provide a DP-based algorithm for r-RLCS
and prove that its running time is O((r + 1)|X|/(r+1)|X||Y |) for any r ≥ 1.
In particular, our new algorithm runs in O(1.41422|X||X||Y |) time for 1-RLCS,
which is faster than the previous one.

Related Work. Although this paper focuses on the exact exponential algo-
rithms, we here make a brief survey on previous results for RFLCS, from the
viewpoints of heuristic, approximation and parameterized algorithms. In [1], Adi
et al. introduced first heuristic algorithms for RFLCS. After that, several meta-
heuristic algorithms for RFLCS were proposed in [6,7,12]. A detailed comparison
of those metaheuristic algorithms was given in [8]. As for the approximability
of RFLCS, Adi et al. showed [1] that RFLCS admits an occmax-approximation
algorithm, where occmax is the maximum number of occurrences of each symbol
in one of the two input sequences. In [5], Blin, Bonizzoni, Dondi, and Sikora
presented a randomized fixed-parameter algorithm for RFLCS parameterized by
the size of the solution.

2 Warm-Up Algorithms

For a while, we focus on RFLCS, i.e., 1-RLCS. One can see that the following
brute-force exact algorithm for RFLCS can work clearly in O(2n · n · m) time for
two sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |: (i) We first
create all the subsequences of X, say, X1 through X2n

1. Then, (ii) we obtain a
longest common subsequence of Xi and Y for each i (1 ≤ i ≤ 2n) by using an
O(|Xi| · m)-time algorithm for LCS [20,21,24]. Finally, (iii) we find a repetition-
free longest subsequence among those 2n common subsequences obtained in (ii)
and output it. The running time of the brute-force algorithm is O(2n · n · m).

In [1], Adi et al. presented the following quite simple algorithm for RFLCS:
Let S be an alphabet of symbols. Suppose that each symbol in SX ⊆ S appears
in X fewer times than Y , and SX = {s1, s2, · · · , s|SX |}. Also, let SY = S\SX and
SY = {s|SX |+1, s|SX |+2, · · · , s|S|}. (i) The algorithm creates all the subsequences,
say, X1 through XNX

, from the input sequence X such that all the symbols in

1 Here, Xi denotes the ith subsequence in 2n subsequences in any order; on the other
hand, in Sect. 3, Xi will be defined to be the ith prefix of X.
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SX occur exactly once, but all the occurrences of symbols in SY are kept in Xi

for every 1 ≤ i ≤ NX . Also, the algorithm creates all the subsequences, say,
Y1 through YNY

, from the input sequence Y such that all the symbols in SY

occur exactly once, but all the occurrences of symbols in SX are kept in Yj for
every 1 ≤ j ≤ NY . Then, (ii) we obtain a longest common subsequence of Xi

and Yj for every pair of i and j (1 ≤ i ≤ NX and 1 ≤ j ≤ NY ) by using an
O(|Xi| · |Yj |)-time algorithm for the original LCS. Finally, (iii) we find the longest
subsequence among NX ·NY common subsequences obtained in (ii), which must
be repetition-free, and output it. Clearly, the running time of this method is
O(NX · NY · n · m). In [1], Adi et al. only claimed that if the number of symbols
which appear twice or more in X and Y is bounded above by some constant, say,
c, then the running time is O(mc · n · m), i.e., RFLCS is solvable in polynomial
time. However, no upper bound on NX · NY was given in [1].

2.1 Repetition-Free LCS

In this section we consider an algorithm called ALG, based on the same strategy
as one in [1] for RFLCS: (i) We first create all the subsequences, say, X1 through
XN , from the input sequence X such that every symbol appears exactly once
in Xi for 1 ≤ i ≤ N . Then, (ii) we obtain a longest common subsequence of
Xi and Y for each i (1 ≤ i ≤ N). Finally, (iii) we find a repetition-free longest
subsequence among N common subsequences obtained in (ii) and output it.
Therefore, the running time of ALG is O(N · n · m). It is important to note that
ALG is completely the same algorithm as one proposed in [1] if SX = S and thus
SY = ∅.

A quite simple argument gives us the first upper bound on N :

Theorem 1. The running time of ALG is O(1.44668n · n · m) for RFLCS on two
sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.
Proof. Suppose that X has k symbols, s1, s2, · · · , sk, and si occurs occi times
in X for each integer i, 1 ≤ i ≤ k. Since the number N of subsequences in X
created in (i) of ALG is bounded by the number of combinations of k symbols,
the following is satisfied:

N ≤
k∏

i=1

occi.

From the inequality of arithmetic and geometric means, we have:

N ≤
(
(

k∑

i=1

occi)/k

)k

≤ (n/k)k.

Here, by setting p
def= n/k ∈ R

+, we have:

N ≤ (p)n/p = (p1/p)n.
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Note that the value of p1/p becomes the maximum when p = e, where e denotes
the Euler’s number. Therefore, N is bounded above by en/e < 1.44668n. There-
fore, the running time of ALG is O(1.44668n · n · m). 
�

By using more refined estimation, we can show a smaller upper bound on N :

Theorem 2. The running time of ALG is O(1.44225n · n · m) for RFLCS on two
sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.
Proof. Again suppose that X has k symbols, s1, s2, · · · , sk, and si occurs occi

times in X for each integer i, 1 ≤ i ≤ k. Let max1≤i≤k {occi} = occmax. Now
let Si = {xj |occj = i} for 1 ≤ i ≤ occmax. That is, Si is a set of symbols which
appear exactly i times in X. Let ni = i × |Si|. Since each symbol in Si appears
i times in X, the following equality holds:

occmax∑

i=1

ni = n. (1)

In the following, we show a smaller upper bound on N . From the fact that
ni = i × |Si|, one sees that the following equality holds:

N ≤
k∏

i=1

occi =
occmax∏

i=1

ini/i. (2)

Here, from the inequality of arithmetic and geometric means, the following is
obtained:

(
occmax∏

i=1

(
i1/i

)ni

)1/
∑occmax

i=1 ni

≤
∑occmax

i=1

(
i1/i

) · ni∑occmax

i=1 ni
. (3)

From the Eqs. (1), (2), and (3), we get:

N ≤
(∑occmax

i=1

(
i1/i

) · ni

n

)n

. (4)

Now, it is important to note that i ∈ N, i.e., i is a positive integer while p = n/k
was a positive real in the proof of the previous theorem. Therefore, by a simple
calculation, one can verify that the following is true:

max
i∈N

{
i1/i

}
= 31/3.

Hence, we can bound the number N of all the possible repetition-free common
subsequences as follows:

N ≤
(∑occmax

i=1 31/3 · ni

n

)n

=
(
31/3 · ∑occmax

i=1 ni

n

)n

=
(
31/3

)n

< 1.44225n.

As a result, the running time of our algorithm is O (1.44225n · n · m). This com-
pletes the proof. 
�
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Corollary 1. There is an O(occn/occ · n · m)-time algorithm to solve RFLCS
for two sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y | if all the
occurrences of symbols in X are exactly occ.

Proof. By the assumption, occ× |Socc| = n and thus |Socc′ | = 0 for occ �= occ′.
From the inequality (4), one can easily obtain the following:

N ≤
(
occ1/occ

)n

.


�
For example, if each symbol appears exactly twice (five and six times, resp.)

in the shorter sequence X, then the running time of ALG is O (1.41422n · n · m)
(O (1.37973n · n · m) and O (1.34801n · n · m), resp.).

2.2 r-Repetition LCS, r ≥ 2

In this section we consider exact exponential algorithms for r-RLCS. First, by a
straightforward extension of the algorithm for RFLCS, we can design the follow-
ing algorithm, say, ALGr for r-RLCS: First, (i) we create all the subsequences,
say, X1 through XN , from the input sequence X such that a symbol, say, s,
appears exactly r times in Xi for 1 ≤ i ≤ N if X has more than k s’s; otherwise,
all the occurrences of s in X are included in Xi. Then, (ii) we obtain a longest
common subsequence of Xi and Y for each i (1 ≤ i ≤ N). Finally, (iii) we find
a longest subsequence among N common subsequences obtained in (ii), which
has at most r occurrences of every symbol, and output it.

Again, suppose that X has k symbols, s1, s2, · · · , sk, and si occurs occi

times in X for each integer i, 1 ≤ i ≤ k, and max1≤i≤k {occi} = occmax. Let
Si = {sj |occj = i} for 1 ≤ i ≤ occmax and ni = i × |Si|. Then, we estimate an
upper bound on N for each r:

Theorem 3. For r-RLCS on two sequences X and Y where |X| = n, |Y | = m,
and |X| ≤ |Y |, the running time of ALGr is as follows:

O

((
max
i∈N

{(
i − r−1

2

(r!)1/r

)r/i
})n

× n · m

)
.

Proof. First, the total number N of sequences created in (i) of ALGr can be
obtained as follows:

N =
k∏

i=1

(
occi

r

)
=

occmax∏

i=r+1

(
i
r

)ni/i

.

From the inequality of arithmetic and geometric means, we can obtain the fol-
lowing inequality:

(i(i − 1)(i − 2) · · · (i − r + 1))1/r ≤ (2i − r + 1)r/2
r

= i − r − 1
2

.
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Therefore, N is bounded:

occmax∏

i=r+1

(
i
r

)ni/i

≤
occmax∏

i=r+1

(
(i − r−1

2 )r

r!

)ni/i

=
occmax∏

i=r+1

((
i − r−1

2

(r!)1/r

)r/i
)ni

≤
(
max
i∈N

{(
i − r−1

2

(r!)1/r

)r/i
})n

.

This completes the proof. 
�

We have obtained the specific values of maxi∈N

{(
i− r−1

2
(r!)1/r

)r/i
}
, say, N(r),

and i for r-RLCS by its empirical implementation. Table 1 shows N(r) and i for
each r = 2, 3, · · · , 10.

Table 1. N(r) and i for each r

r 2 3 4 5 6 7 8 9 10

N(r) 1.5884 1.66852 1.72013 1.75684 1.78453 1.80630 1.82394 1.83856 1.85091

i 5 7 9 11 13 15 17 19 21

3 DP-Based Algorithms

In this section we design a DP-based algorithm, say, DP1, for RFLCS in Sect. 3.1
and then DPr for r-RLCS in Sect. 3.2.

First we briefly review a dynamic programming paradigm for the original
LCS. For more details, e.g., see [13]. Given a sequence X = 〈x1, x2, · · · , xn〉, we
define the ith prefix of X, for i = 0, 1, · · · , n, as Xi = 〈x1, x2, · · · , xi〉. Xn = X
and X0 is the empty sequence. Let X = 〈x1, x2, · · · , xn〉 and Y = 〈y1, y2, · · · , ym〉
be sequences and let Z = 〈z1, z2, · · · , zh〉 be any longest common subsequence
of X and Y . It is well known that LCS has the following optimal-substructure
property: (1) If xn = ym, then zh = xn = yn and Zh−1 is a longest common
subsequence of Xn−1 and Ym−1. (2) If xn �= ym, then (a) zh �= xn implies that
Z is a longest common subsequence of Xn−1 and Y ; (b) zh �= ym, then Z is a
longest common subsequence of X and Ym−1.

We define L(i, j) to be the length of a longest common subsequence of Xi and
Yj . Then, the above optimal substructure of LCS gives the following recursive
formula:
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L(i, j) =

⎧
⎨

⎩

0 if i = 0 or j = 0,
L(i − 1, j − 1) + 1 if i, j > 0 and xi = yj ,
max {L(i, j − 1), L(i − 1, j)} if i, j > 0 and xi �= yj .

The DP algorithm for the original LCS computes each value of L(i, j) and stores
it into a two-dimensional table L of size n × m in row-major order.

In the case of r-RLCS, we have to count the number of occurrences of every
symbol in the prefix of Z. In the following we show a modified recursive formula
and a DP-based algorithm for r-RLCS.

3.1 Repetition-Free LCS

Suppose that X has k symbols s1, s2, · · · , sk and si occurs occi times in X
for each integer i, 1 ≤ i ≤ k. A trivial implementation of a dynamic pro-
gramming approach might be to use the DP-based algorithm for LCS for mul-
tiple sequences: We first generate all the permutations of k symbols, i.e., k!
repetition-free sequences of k symbols, say, X1 through Xk! and then obtain a
longest common subsequence of Xi, X, and Y for each i (1 ≤ i ≤ k!) by using
an O(|Xi| · n · m)-time DP-based algorithm solving LCS for multiple (three)
sequences proposed in [16]. Therefore, the total running time is O(k! · k · n · m),
which is polynomial if k is constant.

In the following we design a faster DP-based algorithm, named DP1. Let
S≥2 = {sj | occj ≥ 2}. Now suppose that |S≥2| = � and, without loss of
generality, S≥2 = {s1, s2, · · · , s�}. Then, we prepare a 0-1 “constraint” vector
of length �, say, v = (v1, v2, · · · , v�) ∈ {0, 1}�, where the pth component vp

corresponds to the pth symbol sp for 1 ≤ p ≤ �. Roughly speaking, vp = 1
means that if xi = yj = sp and sp has not appeared yet in the temporally
obtained common subsequence, then sp is allowed to be attended to the current
solution; on the other hand, vp = 0 means that sp is not allowed to be appended
to the current solution even if xi = yj = sp.

For the 0-1 constraint vector v = (v1, v2, · · · , vp, · · · , v�), we define a new
vector v|p=0 = (v′

1, v
′
2, · · · , v′

p, · · · , v′
�) where v′

i = vi for i �= p but v′
p = 0. Note

that if vp = 0 in v, then v|p=0 = v. Let 0 (1, resp.) be a �-dimensional 0-vector
(1-vector, resp.), i.e., the length of 0 (1, resp.) is � and all � components are 0
(1, resp.).

Similarly to the above, we define L(i, j,v) to be the length of a repetition-
free longest common subsequence of Xi and Yj , under the constraint vector v.
Our algorithm for RFLCS computes each value of L(i, j,v) and stores it into a
three-dimensional table L of size n × m × 2�.

Theorem 4 (Optimal substructure of RFLCS). Let X = 〈x1, x2, · · · , xn〉
and Y = 〈y1, y2, · · · , ym〉 be sequences and let Z = 〈z1, z2, · · · , zh〉 be any longest
common subsequence of X and Y . Let S≥2 = {s1, s2, · · · , s�} be a set of � symbols
such that each si occurs at least twice in X. The followings are satisfied:
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(1) If xn = ym = sq and sq �∈ S≥2, then zh = xn = ym and Zh−1 is a repetition-
free longest common subsequence of Xn−1 and Ym−1.

(2) If xn = ym = sq, sq ∈ S≥2 and vq = 1, then
(a) zh = xn = ym implies that Zh−1 is a repetition-free longest common

subsequence of Xn−1 and Ym−1 such that sq does not appear in Zh−1;
(b) zh �= xn = ym implies that Z is a repetition-free longest common subse-

quence of Xn−1 and Ym−1.
(3) If xn = ym = sq, sq ∈ S≥2 and vq = 0, then zh �= xn = ym and Z is a

repetition-free longest common subsequence of Xn−1 and Ym−1.
(4) If xn �= ym, then

(a) zh �= xn implies that Z is a repetition-free longest common subsequence
of Xn−1 and Y ;

(b) zh �= ym implies that Z is a repetition-free longest common subsequence
of X and Ym−1.

Proof.(1) If zh �= xn, then by appending xn = ym = sq to Z, we can obtain
a repetition-free common subsequence of X and Y of length h + 1 since Z
does not have a symbol sq from the supposition sq �∈ S≥2. This contradicts
the assumption that Z is a repetition-free longest common subsequence.
Therefore, zh = xn = ym holds. What we have to do is to prove that the
prefix Zh−1 is a repetition-free common subsequence of Xn−1 and Ym−1

with length h − 1. Suppose for contradiction that there exists a repetition-
free longest common subsequence Z ′ of Xn−1 and Ym−1 with length greater
h − 1. Then, by appending xn = ym = sq, we obtain a repetition-free
common subsequence of X and Y whose length is greater than h, which is
a contradiction.

(2) (a) If zh = xn = ym, then Zh−1 is a repetition-free common subsequence
of Xn−1 and Ym−1 such that sq does not appear in Zh−1. If there is a
repetition-free common subsequence Z ′ of Xn−1 and Ym−1 such that sq

does not appear in Z ′ with length greater than h − 1, then by appending
xn = ym = sq to Z ′, we can obtain a repetition-free common subsequence
of X and Y whose length is greater than h, which is a contradiction. (b) If
zh �= xn = ym, then a repetition-free common subsequence of Xn−1 and
Ym−1 must include sq and be the longest one.

(3) If vq = 0, then sp is not allowed to be included into Z. Thus, if zh �= xn =
ym, then Z is a repetition-free common subsequence of Xn−1 and Ym−1 and
it must be the longest one.

(4) (a) ((b), resp.) If zh �= xn (zh �= ym, resp.), then Z is a repetition-free
common subsequence of Xn−1 and Y (X and Ym−1, resp.). If there is a
repetition-free common subsequence Z ′ of Xn−1 and Y (X and Ym−1, resp.)
with length greater than h, then Z ′ would also be a repetition-free com-
mon subsequence of X and Y , contradicting the assumption that Z is a
repetition-free longest common subsequence of X and Y .


�
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Then, we can obtain the following recursive formula:

L(i, j,v)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0, j = 0, or v = 0,
L(i − 1, j − 1,v) + 1

if i, j > 0, xi = yj = sq, and sq �∈ S≥2

max {L(i − 1, j − 1,v|p=0) + 1, L(i − 1, j − 1,v)}
if i, j > 0, xi = yj = sp, sp ∈ S≥2, and vp = 1,

L(i − 1, j − 1,v)
if i, j > 0, xi = yj = sp, sp ∈ S≥2, and vp = 0,

max {L(i − 1, j,v), L(i, j − 1,v)}
otherwise.

Here is an outline of our algorithm DP1, which computes each value of
L(i, j,v) and stores it into a three-dimensional table L of size n × m × 2�: Ini-
tially, we set L(i, j,v) = 0 and pre(i, j,v) = null for every i, j, and v. Then,
the algorithm DP1 fills entries from L(1, 1,0) to L(1, 1,1), then from L(1, 2,0) to
L(1, 2,1), next from L(1, 3,0) to L(1, 3,1), and so on. After filling all the entries
in the first “two-dimensional plane” L(1, j,v), the algorithm fills all the entries
in the second two-dimensional plane L(2, j,v), and so on. Finally, DP1 fills all the
entries in the nth plane. The algorithm DP1 also maintains a three dimensional
table pre of size n×m×2� to help us construct an optimal repetition-free longest
subsequence. The entry pre(i, j,v) points to the table entry corresponding to the
optimal subproblem solution chosen when computing L(i, j,v). Further details
could be appeared in the full version of this paper.

We bound the running time of DP1:

Theorem 5. The running time of DP1 is O(2�·n·m) for RFLCS on two sequences
X and Y where |X| = n, |Y | = m, |X| ≤ |Y |, and |S≥2| = �.

Proof. The algorithm DP1 for RFLCS computes each value of L(i, j,v) and stores
it into the three-dimensional table L of size n×m×2�. Clearly, each table entry
takes O(1) time to compute. As a result, the running time of DP1 is bounded
above by O(2� · n · m). 
�
Corollary 2. The running time of DP1 is O(1.41422n ·n ·m) for RFLCS on two
sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.
Proof. Recall that the number |S≥2| of symbols which appear at least twice in
X is defined to be �. This implies that � ≤ n

2 . Therefore, 2
� ≤ 2n/2 < 1.41422n

is satisfied. 
�

3.2 r-Repetition LCS, r ≥ 2

The similar strategies of DP1 can work well for r-RLCS; we can design a DP-based
algorithm, named DPr, for r-RLCS. The running time is as follows:



Exact Algorithms for the Bounded Repetition LCS Problem 11

Theorem 6. The running time of DPr is O((r + 1)� · n · m) for r-RLCS on two
sequences X and Y where |X| = n, |Y | = m, |X| ≤ |Y |, and |S≥2| = �.

Proof. It is enough to prepare a three-dimensional table L of size n×m×(r+1)�

and each table entry takes O(1) time to compute. 
�
Corollary 3. The running time of DPr is O((r + 1)n/(r+1) · n · m) for r-RLCS
on two sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.
Proof. Clearly � ≤ n

r+1 , i.e., (r + 1)� ≤ (r + 1)n/(r+1) holds. 
�
For example, by the above corollary, the running time of our algorithm is

O(1.44225n ·n ·m) for 2-RLCS, O(1.41422n ·n ·m) for 3-RLCS, O(1.37973n ·n ·m)
for 4-RLCS and so on.

4 Conclusion

We studied a new variant of the Longest Common Subsequence problem,
called r-Repetition Longest Common Subsequence problem (r-RLCS). For
r = 1, 1-RLCS is known as the Repetition-Free Longest Common Sub-
sequence problem. We first showed that for 1-RLCS there is a simple exact
algorithm whose running time is bounded above by O(1.44225|X||X||Y |). Then,
for r-RLCS (r ≥ 1), we designed a DP-based exact algorithm whose running
time is O((r + 1)|X|/(r+1)|X||Y |). This implies that we can solve 1-RLCS in
O(1.41422|X||X||Y |) time. A promising direction for future research is to design
faster exact (exponential-time) algorithms for r-RLCS. Also, it would be impor-
tant to design approximation algorithms for r-RLCS.
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