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Abstract. In reverberant and noisy environments, tracking a speech
source in distributed microphone networks is a challenging problem. A
speech source tracking method based on distributed particle filter (DPF)
and average consensus algorithm (ACA) is proposed in distributed micro-
phone networks. The generalized cross-correlation (GCC) function is
used to approximate the time difference of arrival (TDOA) of speech
signals received by two microphones at each node. Next, the multiple-
hypothesis model based on multiple TDOAs is calculated as the local
likelihood function of the DPF. Finally, the ACA is applied to fuse local
state estimates from local particle filter (PF) to obtain a global consen-
sus estimate of the speech source at each node. The proposed method
can accurately track moving speech source in reverberant and noisy envi-
ronments with distributed microphone networks, and it is robust against
the node failures. Simulation results reveal the validity of the proposed
method.

Keywords: Speech source tracking · Distributed particle filter ·
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1 Introduction

The tracking of a speech source in reverberant indoor environments may help
to know the speech source’s position at all times, which becomes very impor-
tant in many audio applications, such as audio/video conference system, source
separation, beamforming and robot [1–4], and it has been an attractive research
problem. Since the room reverberation brings multi-path components into speech
signals received by microphones, and environmental noise can also pollute the
speech signals, it could bring some challenges to accurately track moving speech
source in indoor environments with microphone networks. Meanwhile, reverber-
ation and noise will generate spurious and unreliable measurements and may
lead to the tracking performance degradation for a moving speech source.
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To solve this problem, Bayesian filter based speech source tracking meth-
ods have been developed, which depict the tracking problem with a state-space
model and estimate the state of speech source with the state posterior [5–9].
These methods generally depended on estimated the time difference of arrival
(TDOA) measurements and use both a series of past measurements and current
measurements. Considering that the tracking of speech source is a nonlinear
problem, an optimal approximation for the Bayesian filter via the Monte Carlo
technique is applied in the speech source tracking, i.e., the particle filter (PF).
A state space approach using PF was presented to track acoustic source and
a general PF framework was formed in microphone networks [5]. A framework
of speaker localization and tracking based on the information theory and PF
was presented in [7]. In [8], a multiple talkers tracking method based on ran-
dom finite set PF and time-frequency masking was discussed. A nonconcurrent
multiple talkers tracking problem based upon extended Kalman particle filter
(EKPF) was proposed in [9].

However, in the methods above-mentioned, their microphone networks nor-
mally are regular geometry structure, which make these methods require a cen-
tral processing unit to collect all measurements for position estimate of the
speech source. Thus, any failures of the central processing unit may lead to
the tracking system collapse. Besides, considering the problem of node failures
and lost data in the microphone networks, constructing distributed microphone
networks with arbitrary layout and irregular geometry are suitable to perform
speech source tracking. Then, in distributed microphone networks, the tracking
methods of speech source based on distributed PF (DPF) have been discussed. In
[10], a DPF algorithm was employed for the speaker tracking in the microphone
pair network, in which an extended Kalman filter (EKF) is used to estimate
local posterior probability for sampling particles (abbreviated as DPF-EKF).
A improved distributed Gaussian PF (IDGPF) was performed to track speaker
and an optimal fusion rule was employed in distributed microphone networks, in
which a multiple-hypothesis model is modified as the likelihood function [11]. For
non-Gaussian noise environments, a speaker tracking method based on DPF was
discussed in [12]. For these methods, they employed different fusion algorithms
of distributed data and different TDOA measurements.

Taking into account adverse effects of reverberation and noise, based on the
DPF [13] and consensus fusion algorithm [14], a speech source tracking method
in reverberant environments with distributed microphone networks is proposed
in the paper. First, a dynamics model is used to describe the motion of a speech
source in a room. Next, the generalized cross-correlation (GCC) estimator is
applied to calculate multiple TDOAs of speech signals from each microphone
pair. After that, multiple-hypothesis likelihood model is employed to compute the
weights associated with particles of the local PF and the local state posterior is
estimated at each node. Finally, the decentralized computation fashion of local
posteriors is implemented by the average consensus algorithm and a global state
estimate is obtained at each node. Especially, since the data communication does
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not perform in the whole microphone network, and only occurs among the neigh-
bor nodes, the proposed method is robust against node failures and lost data.

2 Problem Formulation and Fundamental Algorithm

2.1 Problem Formulation

In a distributed microphone network with J nodes, where a node consists of
two microphones and the communication among nodes can be modeled as an
undirected graph G = (V, ε), where V = {1, 2, · · · , J} is the node set of the
network and ε ⊂ {{j, j′} |j, j′ ∈ V } is the edge set between nodes in the network.
An edge {j, j′} ⊂ ε indicates that node j and j′ can exchange information each
other. Mj = {j′ ∈ V |(j, j′) ∈ ε} is the neighbors’ set of node j.

Let the varying state xk = [xk, yk, ẋk, ẏk]T denote the speech source’s posi-
tion [xk, yk] and velocity [ẋk, ẏk] at time k in a reverberant and noisy environ-
ment, and yk denote measurement vector. The transition function fk and mea-
surement function hk are used to describe the nonlinear relationships between
xk and xk−1, between xk and yk, respectively [5,12].

xk = fk(xk−1) + uk (1)

yk = hk(xk) + vk (2)

where uk and vk are the measurement and process noise at time k, respectively,
both with known probability density functions.

The tracking problem of speech source is to estimate the state xk at time
k based on all measurements, i.e., y1:k = {y1,y2, · · · ,yk}. The Bayesian filter
for tracking problem is to recursively calculate the posterior probability density
p(xk |y1:k ) of xk based on the posterior probability p(xk−1 |y1:k−1 )

p(xk |y1:k−1 ) =
∫

p(xk |xk−1 )p(xk−1 |y1:k−1 )dxk−1 (3)

p(xk |y1:k ) =
p(yk |xk )p(xk |y1:k−1 )

p(yk |y1:k−1 )
(4)

where p(xk |xk−1 ) is the state transition density and calculated via Eq. (1);
p(yk |xk ) is the global likelihood function and computed by Eq. (2);
p(yk |y1:k−1 ) =

∫
p(yk |xk )p(xk |y1:k−1 )dxk is the normalized parameter [5,6].

2.2 Particle Filter

In the tracking of speech source, taking into account that the measurement yk is
nonlinear, the particle filter (PF) can obtain the optimal solution to Eqs. (3) and
(4) by Monte Carlo technique. Let {Xn

k}N
n=1 be sampled particles and {wn

k }N
n=1

be associated weights, respectively. The PF represents the posterior probability
p(xk |y1:k ) using weighted particles. Using the sampling importance resampling
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(SIR) filter [6], the N weighted particles are drawn from the state-transition
density p(Xn

k

∣∣Xn
k−1 ) as the proposal function, and the weight wn

k corresponding
to the n-th particle Xn

k is updated as wn
k = p(yk |Xn

k ) [5,6].
Then the p(xk |y1:k ) is written as

p(xk|y 1:k) ≈
N∑

n=1

w̃n
k δ(xk − Xn

k ) (5)

where w̃n
k is the normalized weight, i.e., w̃n

k = wn
k /

N∑
n=1

wn
k and δ(·) is the multi-

dimensional Dirac delta function.
Based on the posterior probability, the minimum mean-square error (MMSE)

estimate x̂k and covariance P̂k of xk are obtained as [6]

x̂k = E {xk |y1:k } =
N∑

n=1

w̃n
kXn

k (6)

P̂k =
N∑

n=1

w̃n
k (x̂k − Xn

k )(x̂k − Xn
k )T (7)

where E [•] is the mathematical expectation operation.

2.3 Time Difference of Arrival

The time difference of arrival (TDOA) measurements are calculated from the
generalized cross-correlation (GCC) function Rk,j(τ) between two microphone
signals of node j. The Rk,j(τ) based on the phase transform is given as [5,15]

Rk,j(τ) =
∫

X1
j (f)X2∗

j (f)∣∣X1
j (f)X2∗

j (f)
∣∣ej2πfτdf (8)

where X1
j (f) and X2

j (f) denote the frequency domain signals received by micro-
phone pair, and superscript ∗ denotes the complex conjugation.

The TDOA measurement estimate τ̂ j
k at node j corresponds to the large peak

of the Rk,j(τ), written as

τ̂ j
k = argmax

τ∈[−τjmax,τjmax]

(Rk,j(τ)) (9)

where τ jmax is the maximal TDOA at node j.
However, in reverberant and noisy environments, only considering a TDOA

estimate from the largest peak of Rk,j(τ) in Eq. (9) may bring ambiguous TDOA
estimates, which can lead to spurious estimates of the speech source’s posi-
tion. Generally, taking multiple TDOA estimates from local largest peak of
Rk,j(τ) has become popularly in speech source tracking problem [11,12]. Cal-
culate Uk TDOA estimates to constitute local measurement of node j, i.e.,

yj
k =

[
τ̂ j
k,1, τ̂

j
k,2, · · · , τ̂ j

k,Uk

]T

, where τ̂ j
k,i (i = 1, 2, · · · , Uk) is taken from the i-th

largest local peak of Rk,j(τ).
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3 Speech Source Tracking Based on DPF

3.1 Speech Source Dynamical Model

The Langevin model [5] is used to be speech source dynamical model, which
describe the varying speech source’s motion in indoor environments. It is
assumed to be independent in each Cartesian coordinate, written as

xk =
[
I2 aT ⊗ I2
0 a ⊗ I2

]
xk−1 +

[
bT ⊗ I2 0

0 b ⊗ I2

]
uk−1 (10)

where T is the discrete time interval, I2 is the second-order identity matrix, ⊗ is
the Kronecker product operation, uk−1 is the time-uncorrelated Gaussian noise
vector, a = exp(−βΔT ) and b = v̄

√
1 − a2, where β and v̄ are the rate constant

and steady-state velocity parameter, respectively. Setting suitable values for β
and v̄ can simulate the realistic speech source motion.

3.2 Distributed Particle Filter Based on Average Consensus
Algorithm

In [13], a distributed particle filter (DPF) is presented to achieve a consensus-
based calculation of posterior parameters from the local PF at each node in the
distributed network. All posterior parameters are assumed as Gaussian probabil-
ity density. Then the global state posterior is calculated based on local posterior
parameters via distributed data fusion algorithm.

In the distributed microphone network with J nodes, the local measurements
yj

k(j = 1, 2, · · · , J) of the state xk form the measurement vector yk, written as

yk =
[
(y1

k)
T
, (y2

k)
T
, · · · , (yJ

k )
T
]T

(11)

Node j first performs a local PF and calculates a local posterior p(xk∣∣∣y1:k−1,y
j
k ) incorporating all nodes’ measurements y1:k−1 up to time k − 1 and

the local measurement yj
k. Then the Gaussian estimation of the p(xk

∣∣∣y1:k−1,y
j
k )

is computed in term of weighted particles from Eqs. (6) and (7), which are local
MMSE estimate x̂k,j and covariance estimate P̂k,j , respectively.

Next, they are propagated among the neighbor nodes in the distributed
microphone network, and fused by the typical average consensus algorithm
(ACA) [14] which performs distributed linear iterations make each node obtain
the converging average value. The consensus iteration calculation at node j can
be given as

tj(m + 1) = tj(m) + α
∑

i∈Mj

[ti(m) − tj(m)] (12)

where α denotes the weight corresponding to edge {i, j} ⊂ ε in the distributed
network, and m denotes the time index of consensus iteration. The variable
tj(m+1) will converge to the global average value at node j after M iterations.
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Finally, the global consensus posterior p(xk |y1:k ) can be obtained at each node
of the distributed microphone network.

The DPF based on the ACA is nearly not affected by changing topologies
structure and node link failures of the distributed network since in the iteration
calculations of the ACA, each node only performs the data communications
among the neighbor nodes.

3.3 Multiple-Hypothesis Likelihood Model

The particles’ weights of local PF at node j are considered as local likelihood
functions, i.e., p(yj

k |xk ), which are computed by multiple-hypothesis likelihood
model based on the Uk TDOAs. Due to reverberation and noise of indoor envi-
ronment, in local measurement yj

k, at most one TDOA τ̂ j
k,i corresponds to the

true speech source’s position. If the τ̂ j
k,i corresponds to the true position, let

f j
k,i = T , else, let f j

k,i = F . These hypotheses can be described as [9,12]
⎧⎨
⎩

H0 =
{

f j
k,i = F ; i = 1, 2, · · · Uk

}

Hi =
{

f j
k,i = T ; f j

k,g = F ; i, g = 1, 2, · · · Uk, i �= g
} (13)

where H0 indicates that none of TDOAs corresponds to the true speech source’s
position, and Hi denotes that only the i-th TDOA τ̂ j

k,i corresponds to the true
position.

Assume that the hypotheses of Eq. (13) are mutually exclusive, then local
likelihood function p(yj

k |xk ) can be given as

p(yj
k |xk ) =

Uk∑
q=0

sqp(yj
k|xk,Hq) (14)

where sq is the prior probability of the hypothesis Hq, and
Uk∑
q=0

sq = 1.

Assume that the Uk TDOAs in local measurement yj
k are mutually indepen-

dent conditioned on xk and Hq, if the TDOA τ̂ j
k,i corresponds to the true speech

source’s position, the likelihood function is defined as a Gaussian distribution;
else, it is defined as a uniform distribution over the set of admissible TDOA[−τ j max, τ j max

]
, written as [9]

{
p(yj

k |xk ,H0) = 1
(2τj max)Uk

p(yj
k |xk ,Hi) = 1

(2τj max)Uk−1 N (τ̂ j
k,i; τ

j
k(xk), σ2)

(15)

Then, the local likelihood function p(yj
k|xk) in Eq. (14) is written as

p(yj
k |xk ) = η(

s0
2τ j max

+
Uk∑
i=1

siN (τ̂ j
k,i; τ

j
k(xk), σ2)) (16)

where η = 1
(2τj max)Uk−1 .
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3.4 Speech Source Tracking Based on DPF

Based upon the above-mentioned discussions, a speech source tracking method
based on the DPF and ACA is proposed in reverberant environments with dis-
tributed microphone networks (abbreviated to DPF-ACA). First, each node cal-
culates the GCC function of speech signals received by a microphone pair and
chooses multiple TDOAs as its local measurement. Based on them, predict the
particles via the Langevin model and compute the local multiple-hypothesis like-
lihood as weights of particles for the local PF at each node. Next, estimate the
local state and corresponding covariance with representation of weighted parti-
cles. Finally, fuse all local state estimates via the average consensus algorithm,
and all nodes can obtain a global consensus estimate. The DPF-ACA algorithm
is summarized in Algorithm 1. Furthermore, since the data communications
occur only in the neighbor nodes of distributed networks, the proposed method
is robust against node failures or the data lost.

Algorithm 1. DPF and ACA Based Speech Source Tracking.
1: Calculate the GCC function Rk,j(τ) according to Eq.(8), k = 1, 2, · · · ,K,

∀j ∈ V, j = 1, 2, · · · , J , where K denotes the maximal time index;
2: Choose Uk TDOAs to form local measurement yj

k;

3: Predict particles
{
X̃n

k,j

}N

n=1
by broadcasting

{
Xn

k−1,j

}N

n=1
according to

Eq. (10);

4: Compute the local weights
{

wn
k,j

}N

n=1
according to Eq. (16);

5: Normalize the weights: w̃n
k,j = wn

k,j/
N∑

n=1
wn

k,j ;

6: Estimate the local state x̂k,j and corresponding covariance P̂k,j according
to Eqs. (6) and (7);

7: Fuse {x̂k,j}J
j=1 and

{
P̂k,j

}J

j=1
according to Eq. (12);

8: Calculate the global estimate at node j: x̂k,j = x̂k,j(M), P̂k,j = P̂k,j(M);

9: Sample particles
{
Xn

k,j

}N

n=1
from N (xk,j ; x̂k,j , P̂k,j);

10: return x̂k,j ,P̂k,j ;

4 Simulations and Result Discussions

4.1 Simulation Setup

In the simulation, consider that a female speech source moves in a office room,
whose moving trajectory is a curve which start point is (0.9 m, 2.65 m) and end
point is (4.1 m, 2.65 m). There are 12 omni-direction microphone pairs irregularly
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and randomly installed in the room shown in Fig. 1. In advance, the distributed
microphone network has been constructed via choosing microphones adaptively
[16]. A microphone pair is considered as a node, in which the spacing distance
of two microphones is set as 0.6 m. The communication graph of the distributed
microphone network is shown in Fig. 2, where the line between two nodes indi-
cates that they can exchange information each other. Each node has its neighbor
nodes and can communicate with neighbor node only when their communication
radius between them is less than 1.8 m. Meanwhile, the height of microphones is
set as 1.5 m, which is same as that of the speech source, and a two-dimensional
speech source tracking problem is focused in this paper.

Fig. 1. Speech source trajectory and layout of the 12 microphone pairs in X−Y plane.

In the simulation, the speech source is a female speech with a length of nearly
8 s with sampling frequency is 16 kHz. The speech signals are split as 120 frames
and the discrete time interval T is 64 ms. The speech signals captured by each
microphone are created by the well-known image method [17], which can simulate
the indoor environment acoustics under different background noise and reverber-
ations. The parameters T60 and signal noise ratio (SNR) are used to simulate dif-
ferent reverberations and different background noise, respectively. The configura-
tion of simulation parameter is as follows. For the Langevin model, the parameter
settings are v̄ = 1ms−1 and β = 10 s−1. For the PF, the sampling number of par-
ticles is N = 500 and the initial prior of the speech source state is considered as a
Gaussian distribution, with mean vector μ0 = [1.0, 2.6, 0.01, 0.01]T and covariance
Σ0 = diag([0.05, 0.05, 0.0025, 0.0025]) set randomly. For the TDOA estimates, the
number of the TDOA candidates is Uk = 4. For the multi-hypothesis likelihood,
the standard deviation of the TDOA error is σ = 50µs and the prior of H0 is
s0 = 0.25. For the average consensus algorithm, consensus iterations is M = 25.

Root Mean Square Error (RMSE) of the speech source’s position has been
employed in tracking performance evaluation widely and the average of RMSEs
(ARMSE) over Mc Monte Carlo simulations is given as
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Fig. 2. Communication graph of the distributed microphone network with 12 nodes.

ARMSE =
1

Mc

Mc∑
m=1

√√√√ 1
K

K∑
k=1

∥∥sxk
− sx̂m,k

∥∥2 (17)

where m is the cycle index of the Monte Carlo simulation running, sxk
denotes

the true position of the speech source, and sx̂m,k
is the speech source’s position

estimate of the m-th Monte Carlo simulation running.

4.2 Result Discussions

To evaluate the validation of the proposed method (DPF-ACA), some simula-
tion experiments under different SNRs and different T60 values are conducted,
comparing with the existing speech source tracking methods, i.e., [5] (abbrevi-
ated to PF), [10] (abbreviated to DPF-EKF), and [11] (abbreviated to IDGPF).
Based on the same simulation setup, all methods are evaluated in form of the
ARMSE results according to Eq. (17) averaged over Monte Carlo simulations,
where times of Monte Carlo simulations is Mc = 70.

Effect of Reverberation Time T60. Figure 3 indicates that the tracking results
of all methods under the different T60 values, i.e., T60 = {100, 150, ..., 600} ms
when the SNR is 10 dB.

With the rise of reverberation time, it can be observed from Fig. 3 that
tracking performance of all methods becomes worse and worse. Specially, the
IDGPF method has larger errors under different T60 values. It means heavier
reverberation will bring bad TDOA estimations at each node in the distributed
microphone network. Due to taking only one TDOA from the peak of GCC
function for sampling particles in the DPF-EKF method, it has poor tracking
accuracy when T60 > 200 ms. We can find that the tracking performance of the
PF is the best when T60 changes from 100 ms to 600 ms. However, its central
processing fashion requires that the central processing unit can not have any
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failures. It can be clearly seen that the proposed method always has lower values
of ARMSE and better tacking accuracy when reverberation time T60 becomes
heavier and heavier, which indicates the proposed method is robust against the
changes of environmental reverberation.

Fig. 3. ARMSE results versus different T60 in the environment with SNR = 10 dB.

Effect of Signal Noise Ratio (SNRs). Figure 4 illustrates that the tracking
results of all methods under different SNRs, i.e., SNR = {0, 5, ..., 35} dB, when
the reverberation time T60 = 100 ms.

With the increases of SNR, we can observe from Fig. 4 that the ARSME val-
ues of all methods change smaller gradually and their tracking accuracies become
higher and higher. It can be seen that when SNR < 10 dB, the IDGPF method
and DPF-EKF method bring serious degradation of tracking performance, which
means background noise has an important influence in their tracking perfor-
mances. Although the PF has the best tracking accuracy in Fig. 4, it is limit
to the central data processing manner. Furthermore, as a distributed tracking
algorithm, when the SNR increases from 0 dB to 35 dB, ARMSE values of the
DPF-ACA are on the decline, which shows more stable and better tracking per-
formance. It implies that the proposed method is a valid tracking method for
speech source under lower SNRs environments, especially.

Effect of Node Failures. Node failures in microphone networks indicate they
can not exchange data with their own neighbor nodes, which can cause the
decline of the valid node’s number and the change of communication graph in
Fig. 2. Tracking trajectories of all tracking methods are displayed in Fig. 5 under
the environment with T60 = 100 ms and SNR = 15 dB, when there are three
fault nodes in the distributed microphone network, i.e., N.1 node, N.5 node, and
N.11 node shown in Fig. 2.

When three nodes can not communicate with their neighbor nodes in the
distributed microphone network, the number of valid nodes of network in Fig. 2
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Fig. 4. ARMSE results versus different SNRs in the environment with T60 = 100 ms.

Fig. 5. Speech source tracking results in the network with three fault nodes.

changes to 9 and there are only 9 local measurements, which could affect the
tracking performance of all tracking methods of speech source. However, it can
be observed that the DPF-ACA, PF, and DPF-EKF methods can successfully
track the moving speech source with smaller ARMSE values, which indicates the
node failures have little impact them. For the IDGPF method, it generates larger
tracking errors in tracking true trajectory of the speech source. Meanwhile, since
the DPF-ACA only executes local data exchange, the tracking performance of
the proposed method as a distributed tracking algorithm of the speech source,
is nearly unaffected by node faults and it is scalable in distributed microphone
networks.



Speech Source Tracking Based on DPF in Reverberant Environments 341

5 Conclusions

In the paper, a speech source tracking method based on the DPF and ACA in
distributed microphone networks is proposed. Each node first performs the local
PF to obtain local state posterior. Next, taking into account the environmental
noise and reverberation, the GCC-PHAT function is used to estimate multiple
TDOAs which are employed to calculate multiple-hypothesis model as weights of
particles for the local PF. Finally, the local state estimates are fused via average
consensus algorithm to acquire the global consensus estimate at each node in the
distributed microphone networks. Simulation experiments with existing speech
source tracking methods indicate that the proposed method has better tracking
performance in environments of lower SNRs and heavier reverberations. Besides,
owing to only executing communications among neighbor nodes, the proposed
method is almost unaffected by node failures.
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