
Flight Software and Software-Driven
Approaches to Small Satellite Networks

Robert Harvey

Contents
1 Introduction . 296
2 Flight Software and Microsats . 296
3 Role of the Flight Software Team . 298
4 Flight Software Life Cycle . 300
5 Flight Software and Processor Selection . 303
6 Software Build System Architecture . 307

6.1 Build Process Inputs . 307
6.2 Build Process Artifacts . 309

7 Flight Computer Software Design . 312
8 Flight Software and System Design . 315

8.1 Satellite Safe Mode . 316
8.2 Atomic Configuration Updates . 318
8.3 On-Orbit Software Upgrades . 319
8.4 Accountability in Operations . 320
8.5 Security . 322

9 Conclusion . 328
10 Cross-References . 328
References . 329

Abstract

There is a growing market for satellites that fall into the “Microsat” and
“Nanosat” classifications. Many of these satellites are designed and manufactured
by small groups such as in academia, startups, or small incubator teams inside
larger organizations. These environments tend to be fast-paced and will likely
eschew traditional aerospace life cycles and design paradigms in favor of rapid
prototyping, consumer electronics parts, and even on-orbit testing. Microsats

R. Harvey (*)
Planet, Inc., San Francisco, CA, USA
e-mail: Rob.harvey@planet.com

© Springer Nature Switzerland AG 2020
J. N. Pelton (ed.), Handbook of Small Satellites,
https://doi.org/10.1007/978-3-030-36308-6_87

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36308-6_87&domain=pdf
mailto:Rob.harvey@planet.com
https://doi.org/10.1007/978-3-030-36308-6_87#DOI

have somewhat different flight software implications and requirements than
traditional satellites. This chapter discusses some of the flight software aspects
of Microsats, along with design trades, processes, and the role of the flight
software group in small organizations. Certain aspects of the flight software are
called out for Microsats, including satellite safe modes, configuration updates,
on-orbit software upgrades, and security. The flight software life cycle for
Microsats is discussed in the context of a shifting and multiple-launch schedule.
The intent of the chapter is to lay out guidelines for new flight software engineers
such that while building out new Microsats, they also lay the groundwork for
launching their product at scale.

Keywords

Planet · FSW · Flight software · Satellite telemetry · Satellite constellations ·
Cubesat, Microsat

1 Introduction

At the time of this writing, Planet Labs Inc. (“Planet”) operates one of the largest
satellite constellations in history (chapter▶ “Planet’s Dove Satellite Constellation”).
Planet’s approach to satellite design and operation is a departure from traditional
methods, including a focus on using consumer-off-the-shelf (COTS) components,
leveraging the Cubesat form factor and launching early and often with primary and
secondary payload opportunities. In the beginning, this approach to satellites was
largely unverified and certainly not applied to scale. This novel approach has
implications for the flight software (FSW) and the flight software engineer, not
least of which is that the flight software engineer may be working on an aggressively
small team and the lines related to traditional functional roles may be blurred. The
intent of the chapter is to lay out the challenges that can face new flight software
engineers when working toward Microsat missions and provide a way of thinking
that can ensure mission success for Microsat designs that may eventually be
launched at scale. The content that follows is based on the author’s experience at
Planet; it is not based on any extended experience in the traditional aerospace fields.
This does not reflect the opinions of Planet Labs.

2 Flight Software and Microsats

Is flight software for Microsats different than flight software for traditional satellites?
There is an argument that Microsats are inherently the same as other satellites
(although generally smaller) and therefore the flight software should have the
same properties as any previous flight software system, regardless of design heritage.
There is assuredly much truth in this. Microsat flight software systems must address
power, thermal, and guidance concerns. They are responsible for telemetry and

296 R. Harvey

https://doi.org/10.1007/978-3-030-36308-6_64

system limit checking, as well as enabling the payload to execute on its mission.
There is a vast heritage of documentation and design for traditional flight software
that should be considered and potentially used for any Microsat mission.

However, these similarities are most pronounced when the flight software is
considered as a decomposed system, looking internally at the functional blocks
inside the flight computer itself. Taking a step back, some differences start to become
apparent: items such as shorter development life cycle, the blurred role of the flight
software engineer, the global software ecosystem for the mission, the abbreviated
and sometimes opportunistic launch schedule, the tight integration of subsystems,
and the contract manufacturing process. These items will create a different environ-
ment for the flight software engineer than traditional satellite design.

For a fleet of Microsats, the differences become even clearer. In this model it is
likely that iterative hardware design is taking place and every launch opportunity
diversifies the satellite hardware in orbit, which must be handled by flight software.
This is magnified by “tech demos” and the desire to test features in space whenever
possible (definitely not traditional). In the case that many identical satellites are
launched at once, the reality is that Microsats degrade at a faster rate and have less
redundancy which means that the functional capabilities degrade and become
diversified over time across the constellation (months to several years). This also
must be addressed in flight software.

The concept of operations for Microsats is also different. In a fast-paced launch
environment and especially with tech demos, it is likely that flight software is not
completely ready prior to launch. The reality in this case is that on-orbit software
updates must be common, reliable, and generally not exciting. It is also likely that
FSW resets may be common and may even be the preferred way to achieve a known
state in the satellite. This is a far cry from very expensive satellites where a reset may
be decided by committee and can result in expensive downtime.

The methodology for building Microsats is also different from regular (and more
costly) satellites. Traditional aerospace design will use a tremendous waterfall life
cycle, from requirements down through testing and deployment. The waterfall life
cycle itself is often a large living artifact, being copied from program to program and
tweaked as appropriate for dates and details of the new program. This development
process is intended to ensure contract value to the customer, enforce milestones for
product maturity, ensure compatibility between components developed by different
vendors, and keep complicated projects on track. In contrast, the reality for
Microsats is that they tend to be built in agile and limited resource environments
such as academia, space startups, and even small incubator groups in much larger
organizations. The designs are less complicated and the risk posture is completely
different. Requirements are often eschewed for rapid prototyping, and design doc-
umentation is often replaced with whiteboard conversations. The feeling of moving
rapidly motivates the (small) team and often is completely necessary to meet an
aggressive launch date with a new product design.

It is unfortunately the case that aggressive timelines tend to erode standard SW
engineering practices. There could also be pressure to deliver an initial (suboptimal)
working design in order to secure funding. The resulting pitfall for Microsat projects

Flight Software and Software-Driven Approaches to Small Satellite Networks 297

unfortunately is that you will eventually be successful and you will pay for your
shortcuts later. There is then an appropriate balance in Microsat development
methodology that is somewhat difficult to achieve, namely, to be lightweight, fast,
robust, and future-proof.

Regarding whether Microsat flight software is different than traditional flight
software, Microsat FSW components may be very similar to regular satellite pro-
grams, but the path to achieving mission success with Microsat FSW can be quite
different. Being aware of the above points, especially early in the development cycle,
can contribute to initial mission success, long-term company success, as well as a
smoother running organization. Some of these points will be discussed as appropri-
ate in the rest of this chapter.

3 Role of the Flight Software Team

In the lightweight planning world of Microsats, it is insightful to consider the reality
facing the flight software team. In small team environments, team members will
likely be stretched across multiple disciplines, and the “flight software team” could
be a somewhat loosely defined organization. These members of the flight software
team could have diverse experience with respect to developing software, sometimes
being non-SW subject matter experts with some coding background. It should be
noted that the earlier the team subscribes to standard software engineering practices,
the more robust the system will be to on-orbit testing, modification, new hires, and
feature requests. Standard practices would include coding for unit test, modular
design, re-factoring when needed, consistency in coding standards, and continuous
integration (CI) methods.

It is very useful to define the scope of work for the flight software team as early as
possible. Microsats are limited in volume, and it is often the case that much of the
avionics must be compressed into a few printed circuit boards in order to provide
room for the payload. This generally limits the ability to buy pre-built subsystems
which can be integrated into the satellite bus. The result is that many subsystems end
up being homegrown, and inevitably they require some form of software. Consider
Fig. 1 which shows a somewhat generic diagram for a Microsat system.

The satellite block on the left contains the avionics (top) and the payload
(bottom). The avionics are controlled by a flight control computer (FC) which
must deal with power, attitude control, GPS, and the tracking, telemetry, and control
(TT&C) radio. Note that many of the blocks are indicated with their own
Microcontroller (uC). The payload as shown has its own processor (payload com-
puter) and is shown integrated with a high-speed radio and the payload sensor
through a field-programmable gate array (FPGA). The flight control computer is
the device first thought of when discussing the responsibilities of the flight software
team. This is also the device that will have a functional block representation that is
similar to flight computers pretty much everywhere. As can be realized quite rapidly
when looking at the diagram, there are a multitude of other processors besides the FC
that could require software, and this can easily fall into the flight software group

298 R. Harvey

purview (every block in the diagram could be an independent software project).
There are some things that are less obvious but still impactful to FSW. All of the
devices with software must be software upgradeable post-launch. This includes
devices that have third-party software on them! So even without primary responsi-
bility for device software, there is still a requirement to develop a way to upgrade
software on that device.

It might seem that the payload system is developed by the payload team in
isolation, but this is not the case. There are likely to be common device drivers
(especially for sensors and I/O) and also common telemetry, message protocol, and
transfer routines. In some cases, the Microsat design does not have a clean boundary
between payload and avionics, and the various software components need to coexist
on a processor. This places a requirement on the flight software team to build
portable, robust code and to possibly consider multiple processor architectures
when architecting the code layout, repository, and build system. It may also be an
opportunity to speak with the payload engineers about coordinating software engi-
neering practices.

It is also the case that FSW responsibility may extend to the ground system (GS).
If custom radios are being used, the code might be similar between the satellite and
the ground, or maybe the communication link is the proprietary technology being
developed. In the case that the GS is from a third party, it is still likely that
communication libraries for message serialization/deserialization and telemetry
ingestion will have common components with the satellite FSW.

There is another reality for the flight software engineer that must be considered.
The tools to test out the satellite at the board level and full-build level do not write
themselves. In a very small team, sometimes the best way to test out the hardware is
with the actual flight software, and who better to write the interface and testing tools

Fig. 1 Example satellite and ground system. (Image © 2019 Planet Labs Inc., licensed for one-time
publication)

Flight Software and Software-Driven Approaches to Small Satellite Networks 299

than the flight software team? This is not a bad scenario, but it needs to be taken into
account, and it needs an owner (flight software team or not). It should be noted that it
is rare for the on-orbit control procedures to map well to test procedures which
implies care in separating one from the other. If there is a dedicated test team
available, there may still be a FSW role to develop software components to interact
with the satellite, even if the test code is decoupled from it.

The above paradigms may seem daunting for a small team. In a completely
custom Microsat design, the processor and FPGA count can easily hit a dozen.
Software work may not be confined to just satellite components. Early knowledge of
this should be considered an opportunity:
• To ensure that all work is considered in the schedule
• To check the work against available staff
• To drive interconnect design, code architecture, and code reusability
• To revisit subsystems that might be available off the shelf

The important takeaway here is that the FSW role is not confined to the “flight
computer”: there is a larger software ecosystem that can include multiple processors,
multiple systems, and multiple disciplines. In a lightweight planning environment,
the details of all this work may not be captured, and not accounting for this work can
lead to a stressful environment.

4 Flight Software Life Cycle

Planet has launched satellites on more types of rockets than almost any commercial
company (chapter ▶ “Planet’s Dove Satellite Constellation”). The reality is that the
life cycle for any given Microsat iteration (and launch) will be overlapping with
other launches, sometimes aggressively so. This obviously impacts not only flight
software but other development groups as well. Figure 2 shows a single mission life
cycle on the top and then multiple instances of this overlapped for three launches at
the bottom.

At a high level, the top sequence is similar to any satellite program. A
Microsat program will of course have differences: the requirements phase may
be abbreviated, the day-to-day planning may be laid out using established
Agile methodologies (likely more familiar to the technical team),
the integration and test phase may be limited by access to flight simulation
capabilities, and it is almost for certain that the overall time frame will be
significantly shorter.

An impactful time for flight software (and everyone else) is when the first printed
circuit boards for flight hardware arrive in-house (start of board verification). There
is a collision of disciplines who will want to check out the boards. Flight software
will presumably have been developing software on development boards or possibly
non-form factor in-house boards. Electrical engineering will first do initial board
bringup for smoke test, power rails, etc. Almost immediately after this, there will be
the request to “talk” to the board (assuming it has a processor on it). Does the

300 R. Harvey

https://doi.org/10.1007/978-3-030-36308-6_64

software exist to do this? Be very mindful of this period in the life cycle, and
consider carefully what the expectation will be from a software standpoint and
then plan for it. This includes both satellite software and test harness software. Is
the flight software team responsible for both? How can the flight software be ready if
this is the first time that flight hardware has been available? In many cases the flight
software needs specific flight hardware in order to be written, especially for drivers.
The flight software engineer should also be cognizant of critical path timing not
accounting for development work on the actual flight hardware. Note also that there
is a distinction between test software and full flight software support for a given
device or system on the satellite. A device or subsystem may be identified as not
requiring full software support at launch, but the hardware will have to be validated
on the ground regardless.

The launch date (or more accurately the pack-out date) will be a huge driving
factor in schedule. The Microsat or possibly small fleet of Microsats will likely be
a secondary payload for the targeted launch meaning that the actual launch date
will be determined by a third party and potentially occur at a point which creates an
overly aggressive schedule. The Microsat team will have to meet the payload
integrator’s window for delivery which may mean prioritizing development to
ensure that critical systems are complete and robust while other systems are
pushed off to a future on-orbit flight software or payload software upgrade. This
may strike some readers as a disastrous or at the least irresponsible situation. How
could one possibly launch a satellite without a full software suite that has been
rigorously tested on flight hardware on the ground? This is the reality of Microsats.

Fig. 2 Flight software life cycle. (Image © 2020 Planet Labs Inc., licensed for one-time
publication)

Flight Software and Software-Driven Approaches to Small Satellite Networks 301

The goal of any flight software team should be to optimize around this reality.
This will involve a heavy focus on the on-orbit flight software update design
including a bootloader and security capabilities as well as prioritizing the truly
mission-critical components as early as possible (see section “Satellite Safe
Mode”).

Once pack-out has occurred, the flight software team will likely be working with
the satellite operations group to prepare for new concept-of-operations (con-ops)
procedures. There will also be ongoing development for flight components that have
not had full software support implemented yet (potentially newer sensors or pay-
load). Once launch has occurred, there will be possible flight software upgrades, for
issues related to bus commissioning, payload commissioning and then infant mor-
tality, experience with slow decay of components and workarounds, etc. Note that
any schedule for the program should include work after the launch and not just
terminate at launch. This is important when multiple launches are in play, discussed
next.

There is an argument to say that many of the above issues are just schedule
related. If there is time to do everything correctly, then the satellite and software will
be fully featured, and you will be done at pack-out. Except for on-orbit component
failures, this could possibly be true for a launch or two. In a growing company which
is iterating on satellite design, building out on-orbit capability, and trying to maintain
service-level agreements (SLAs), this is most assuredly not true. Consider the
bottom part of Fig. 2. Multiple launches are occurring in order to prove out hardware
design and meet SLAs, on-orbit and on-ground development is overlapped, and
many iterations of hardware are in play. Consider that critical feedback from an on-
orbit satellite design becomes available in the middle of board verification for a
future launch and new boards must be created to account for it (note that time frames
are shown such that the feedback can skip a launch). This is new, unplanned work for
multiple teams, but the schedule is fixed by the third-party launch date. Possibly
there is a critical problem with an on-orbit satellite component that must be
addressed immediately by the FSW team, but there is also an ongoing and critical
board bringup underway. The on-orbit issue will take precedence, especially if the
mission is jeopardized. Or potentially a launch date happens to occur just before the
pack-out for a subsequent launch, meaning that there is a requirement to support on-
orbit commissioning while at the same time the on-ground manufacturing phase is at
a critical juncture.

The point is that multiple-launch schedules can interact with each other in
somewhat unpredictable ways, and the time to be allotted for development is
hard to calculate. With vagaries in launch dates and idiosyncrasies in Microsat
hardware, it is rare for software development work to be complete at pack-out even
if the schedule is closely monitored, unless there are multiple teams available to
handle the different phases in the various ongoing life cycles (unlikely in a small
company). Being able to decouple software development work from the launch
schedule is actually a very important opportunity. Planning out a robust system
architecture with emphasis on mission safety and on-orbit flight upgrades will help
enable this.

302 R. Harvey

5 Flight Software and Processor Selection

In the Microsat development process, the flight software team should be participat-
ing in design discussions related to processor and sensor selection. Anything
related to software should be considered from the standpoint of software toolchains,
open-source versus closed-source code, space heritage, code reusability, and com-
plexity. There are also questions related to processor load and memory sizing that the
FSW team should be involved with. Note that when viewed as a software develop-
ment problem, a Microsat project has much in common with other systems which are
operated remotely and need to be robust against power loss and possible frequent
software updates. This includes Internet of Things (IoT) projects and even some
automotive projects. Much of the following will look familiar to people who are
experienced with those systems.

Any processor selection should be judged against a list of requirements. The
requirements should be carefully selected to meet the mission goals and maintain
mission safety. In many cases, there is no obvious choice even after the requirements
have been assessed. This means judging which requirements are most favorable to
the teams and mission. Selection of a particular processor can also be intertwined
with other devices, such as sensors (which might support a particular bus). Figuring
out the requirements for processors can be somewhat daunting; the following bullet
items lay out some informational groundwork for the process:
• Space heritage – Electronic devices which have already been proven to work

well in space are ideal choices if they are available and meet the mission
requirements. This can reduce early and unexpected mortality for Microsats. It
can also reduce the cost of performing radiation testing on critical devices. The
difficulty with space heritage parts is that they are either very expensive or
difficult to identify because of export restrictions and a lack of public documen-
tation. NASA has a published list of radiation tested parts that can be interesting
to look over (NASA n.d.). Note that “space heritage” is sometimes blindly
assumed to be a positive thing, but it is possible that a device has space heritage
but performed poorly.

• Off-the-shelf software – Selecting parts that have readily available third-party
software that can be applied to the mission can save time and allow the flight
software team to focus on other flight software projects for the satellite. As
mentioned in Role of the Flight Software Team, there will always be multiple
software targets in the spacecraft. The organizations behind the off-the-shelf
software presumably have already spent time debugging and verifying the soft-
ware and possibly also time validating the associated hardware component(s).
There are possible difficulties here, the first of which is that the third-party
software may only be sold or compatible with hardware which may not fit in
the satellite (Microsats tend to have a very constrained volume, and the payload
generally dominates with the avionics packed around it). The second is that often
only a particular component of the third-party software is desired, but it is very
difficult to decouple from the complete system or the underlying protocols. Often
this frustration will just lead designers to create the software “in-house.”

Flight Software and Software-Driven Approaches to Small Satellite Networks 303

• COTS, or not – There are radiation-hardened and radiation-tolerant electronic
parts that may be worth considering, especially in the safety-critical domain.
These will tend to be much more expensive and generally of a much older
electronics vintage (less capable) than regular consumer-off-the-shelf (COTS)
parts. In Microsats, it may be possible to use a radiation-hardenedMCU or FPGA,
but it will be unlikely to be able to use a full rad-hardened subsystem due to cost
and bulk. As Microsats will generally be majority COTS based anyway, this
option may not be useful, but it is worth considering. If there is a safety-critical
area where a rad-tolerant part is being considered, it may be useful to consider
some of the safety-critical automotive MCUs and components that are now
available. Note that the effect of radiation on COTS components is an intense
area of study (Sinclair and Dyer 2013) and may require its own team.

• Common build systems – There will be multiple processors in the design, with
the possibility of multiple manufacturers, different CPU cores, and different build
systems and environments. It is very advantageous to limit the number of build
tools and environments that are required to build all of the software targets for the
satellite. This should only be done as appropriate, but it is much better to select a
single, slightly suboptimal solution for multiple use cases and then to try and
drive down on optimal and unique processors at every opportunity. Note that this
is a “soft” requirement, in that it is intended to allow for smoother development,
higher efficiency across the team, and possibly a lighter load on the team when it
comes to supporting build and artifact publishing infrastructure. Over the long
term, this can be a very appropriate choice.

• Debug capabilities – The software team should understand the debug options
available for the processors that are being selected. At the least, this should
include JTAG support which can be used for debugging as well as boundary
scan verification during manufacturing. There may be other debug options that
are desired, potentially some kind of embedded trace module. The debug options
for very high-speed devices and memory could be more complex, but this should
be considered when choosing these devices.

• Board support packages (BSP) – A significant portion of the work in flight
software is in writing drivers. Processors which have a comprehensive board
support package for a board that might have similar characteristics to the flight
hardware can be very beneficial. Note that there are two levels for drivers, there
are the peripherals that are pinned out of the chip (UART, I2C, ADC, etc.), and
then there are the drivers for all the sensors and actuators that are connected to the
processor. The availability of a hardware abstraction layer (HAL) is also benefi-
cial since this can make porting between operating systems and processors easier
(see section “Flight Computer Software Design”).

• Processor speed – It is necessary to select a processor that is powerful enough to
execute all its required functions in a timely manner. This will be a function of the
processor’s clock speed, as well as memory access timing and any hardware
acceleration that is relevant (floating point units, cryptographic cores, DSP
instructions, etc.). It is highly valuable to run processor intensive algorithms on
third-party development boards to try and benchmark throughput requirements

304 R. Harvey

for possible processor candidates. Also be aware that repeated access to devices
on a communication bus, and the addition of new devices, can add up and impact
available throughput which can be aggravated when sensors are unavailable
(failed or disconnected) and device access time-outs start accumulating. This
can cascade and cause throughput problems if not handled appropriately. Once
there is an idea of the computation-intensive operations and the bus operations,
the processor requirement should probably be increased 50–100% for
future growth. Note that the above statements are more relevant for the flight
computer and processors which are more embedded in nature. The payload
compute system may have a different set of requirements, likely involving fast
read/write memory and bus support. Also be aware of any circumstances which
may require the control loops to run at a faster rate. This will require more
processor capability.

• Peripheral and bus options – An audit of the available processor pins should be
completed. This is more of an electrical engineering (EE) and system design role,
but it is worth mentioning. The iterative nature of Microsats is generally accu-
mulative, in that devices and capability will likely be added as opposed to
swapped. This will require more general-purpose I/O (GPIO) pins and more
traffic and addressable parts on the various communication buses. Do not select
a processor that is immediately maxed out for peripheral capability and bus I/O. It
is also useful to try and limit the types of communication buses that need to be
supported, regardless of their availability on a given processor.

• Open source versus closed source – Buying closed-source code from a vendor
may be an option for accelerating development. It may also meet some require-
ment for reliability or real-time responsiveness. Note that there is a difference
between buying source code from a third party and compiled code (libraries). Not
having the actual source code can make it difficult to debug and fix critical issues
in a timely manner. Source code from a third party may come with build
environment and seat licensing issues that can complicate development and
notably also server-side continuous integration. Open-source code is becomingly
an increasingly valid method for building out Microsat capabilities and systems.

• Avionics versus payload – It should be recognized that the requirements for the
payload computer and the flight computer are different. Although it might be
initially desirable to combine the two functions into a single processor, it may be
better to keep them separated and optimized for each function. The flight com-
puter must be reliable and continuously active. It is directly responsible for
satellite safety and this should not be compromised. The payload computer
could be shut off for extended periods and reset if there is any detected problem.
An error in the payload memory will not cause the satellite to spin up or generally
cause harmful behavior, especially if the flight computer is monitoring telemetry
from the payload system and can take appropriate action. The avionics will
likely require a less complex processor than the payload which is easier to
make robust. It is also undesirable to impact the avionics system with a payload
software change. There are other differences which are addressed in the next
bullets.

Flight Software and Software-Driven Approaches to Small Satellite Networks 305

• Internal versus external memory – Larger processors will tend to have more
complicated memory which is located externally to the chip. It may be possible to
select a smaller processor for the flight computer that has some form of internal
memory that would be more robust to layout and manufacturing issues. The
payload system will likely have much different memory requirements, including
very fast read/write access and very large data storage requirements. It should be
noted that large, fast, and complex memory devices such as solid-state drives
(SSDs) are much more prone to failure than simpler flash implementations
(Costenaro et al. 2015). It is important to realize that a memory device that is
chosen for high-speed data collection and large storage capability may not be an
appropriate place to have operating system or program memory. Note that
complex memory devices may be performing maintenance operations under the
hood with their own microcontroller (such as wear leveling). This will have its
own failure modes and again could be less robust than a simple flash
implementation.

• Error-correcting code (ECC) capability – There are many COTS processors
and memory devices with ECC. These devices are generally able to correct for a
single bit flip and detect a double bit flip. This type of technology can protect
against single-event upsets (SEU) which are one likely type of radiation damage
expected in low earth orbit (LEO) (Sinclair and Dyer 2013). Note that this is
particularly desirable for devices which are continuously on where boot CRC
checks and a reloading of random-access memory (RAM) are not taking place.
Some automotive safety-oriented processors will also be able to check memory in
I/O registers and throughout the memory pipeline, not just RAM and flash. The
use of ECC may not make the system “radiation-tolerant,” but it is a readily
available technology that can mitigate these kinds of errors, and it should be
incorporated where possible.

• Operating system (OS) selection – Processor selection will be tied to the
operating system selection. In most cases, this will be a real-time OS (RTOS).
The flight software team should be comfortable with the RTOS capabilities and
maturity with respect to the processor. Although possible, it is generally not a
good idea to start off a new program with a port of an RTOS to a new processor.
Certain processors may force a more limited set of RTOS options onto the team
which must be weighed against the perceived benefits. If multiple processors
require an RTOS, it will be beneficial to select the same RTOS as appropriate.
Note that the payload system may benefit from a different OS, maybe even an OS
without full RT support such as Linux. This might enable a better development
experience on the ground for the payload team and provide a much more feature
rich environment that is similar to a laptop or desktop. For limited processors, it
may make sense to forgo an OS entirely and generate a bare-metal implementa-
tion. This can initially be simpler and faster to get to a testable product. However,
care should be taken as bare-metal projects tend to suffer from a lack of software
structure and code entropy can take its toll as multiple developers work on the
program. There is also an assumption that a tasking infrastructure is not needed
which can become problematic as more sensors are added and delays start to pile

306 R. Harvey

up in the processing chain. In many cases, a bare-metal decision may just be
putting work off to a later date when the code will need to be re-factored and
potentially rewritten for an RTOS.

The above talking points will hopefully be useful but are not comprehensive. For any
device selection, there are the standard questions about end-of-life (EOL) time frame,
supply chain, second source, environmental limits, and process technology. There may
also be the need to radiation test critical devices. These are issues for the larger team.

The above conversation is focused on processors, but other devices (such as
sensors) which must be accessed through software should also be evaluated for
software impact. It is appropriate to standardize the possible sensors in the satellite
design. It should not be the case that there are two different kinds of temperature
sensors on different boards that could possibly be the same device. This doubles the
software work and will siphon off time that could be spent on other tasks.

When assessing processors and devices, the flight software team should always
remember to advocate for homogeneity where possible because this can have a direct
impact on the flight software team workload. Also be careful of selecting a processor
for a very specific reason such as an embedded security feature. These decisions can
influence the general software architecture and may make porting to new processors
very difficult.

6 Software Build System Architecture

As mentioned in previous chapters, the flight software team will likely be responsi-
ble for multiple processors on board the spacecraft with each requiring a different
software image. They may also be responsible for ground software and/or dictionar-
ies that are used in ground systems communicating with the spacecraft. There will
also be multiple generations of spacecraft that will need to be supported, which will
likely require different software or configuration. This is a difficult situation to
manage from a build and release standpoint, and defining an appropriate software
build architecture early on in development can be very helpful. Figure 3 demon-
strates a possible build architecture that can support multiple platforms over multiple
generations. On the left are the inputs to the build system; build artifacts are
generated as the flow moves down and to the right. The first takeaway is that the
inputs on the left are likely managed by different teams which means that a process
needs to be negotiated between teams that allows for smooth integration of new
information (data format, release management, release notes, etc.).

6.1 Build Process Inputs

The following bullet points define the input blocks on the right side of Fig. 3:
• Satellite HW Specification Database – The electrical engineering (EE) team

will be designing multiple boards for each satellite. As new generations of

Flight Software and Software-Driven Approaches to Small Satellite Networks 307

satellites are created, the board designs will change, and this information must be
transferred to the software team in some kind of reliable way. In order to fully
describe what the software must do, this database can be very detailed. It should
contain the list of all processor GPIOs and their functions, topology for commu-
nication buses and device addresses on the buses, a list of sensor devices (make
and model), mapping of power rails to devices, power rail control information,
and even resistor values where appropriate for sensor reads. This documentation
will likely be contained in a format that is easy to integrate and use with EE tools.
It will have to be exported to the platform dictionary repository. The necessity of
this information being maintained correctly and at this level of detail is often

Fig. 3 Flight software build architecture. (Image © 2011 Planet Labs Inc., licensed for one-time
publication)

308 R. Harvey

noted when the team must go back in time and investigate older designs that may
be having on-orbit issues. Note that a documentation system that does not allow
easy detection of small changes will be hard to use in any event.

• Platform Dictionary Repositories – Each satellite variant (platform) will have a
unique set of characteristics that should be maintained in the platform dictionary
repository. This will include the definition (configuration) of the satellite hard-
ware, imported from the EE HW specification database as shown in Fig. 3. Each
platform will also have a unique set of telemetry channels and event descriptions
that must be described and maintained. The intent behind the platform dictionary
is to have a code-agnostic, single source of truth for the platform information.
This information can have its own set of tools, rules, and schema to ensure that the
data is consistent. It should be possible to generate the platform information for
each satellite variant at any time. This system can also be used to define protocols
and message structure.

• Software Repositories – The software repositories contain code, build instruc-
tions, and other collateral that is required to build the flight software and poten-
tially other software as well. This may be one or multiple repositories depending
on how the flight software team structures the code base. The software reposito-
ries are combined with the output of the platform dictionaries at build time to
create the executables that can be loaded to the various processors in the satellite
ecosystem.

• GNCController Model Output –A common model in satellite design is to use a
third-party tool to build all the guidance, navigation, and control (GNC) models
and then export the models as C code which can be integrated into the flight
software. The GNC design will generally be owned by the GNC group and not
FSW. The integration of the auto-generated code and the FSW must be well
understood, since the inputs to the guidance algorithms must be well-conditioned,
correspond to the right frame of reference, and have the right units. The output
must also be understood so that actuators can be driven appropriately. The GNC
model output may differ for satellite iterations and variants, and the GNC output
should be versioned and described. Note that it would be possible to store the
model code in the same repository if desired.

6.2 Build Process Artifacts

The intent of the build system is to generate artifacts that can be used to run and
improve the satellite ecosystem. There are two kinds of build artifacts generated in
Fig. 3, target-agnostic artifacts and executable artifacts which are target specific.
Note that the target-agnostic artifacts can be used as input for building the executable
artifacts, but they can also be exported to other teams for ingestion in other build
environments. The target-agnostic artifacts may tend to be in declarative languages
such as JSON or YAML, which can be consumed by multiple groups operating in
different coding languages and operating environments. It might be the case that the
artifacts target certain coding languages and some output artifacts can be consumed

Flight Software and Software-Driven Approaches to Small Satellite Networks 309

directly by those languages (like C headers or Python libraries). The point of having
the target-agnostic artifacts is that an update to a platform dictionary can be rolled
out and tracked across multiple systems with only a single change, not by having to
coordinate independent changes in multiple code bases. The rollout to a live system
must be orchestrated, and the satellite ecosystem must support more than one active
platform. When operating and building satellites for any length of time, it will be the
case that multiple platform definitions will always be in play. Note that the idea of
target-agnostic artifacts (or artifacts that are published and used by multiple systems)
is hardly new. The CCSDS has published documents related to this concept for many
years (CCSDS 1987, 1992).

6.2.1 Target-Agnostic Artifacts
• Telemetry dictionary – Each satellite platform will have a unique set of telem-

etry channels that are used to monitor and control its operation. Telemetry
information that is created on the satellite will generally not be self-describing
due to file size concerns and may also be in binary format. The telemetry
dictionary is used to convert machine-generated telemetry points into human-
readable data points. It is also used to describe the relationship between the
telemetry point and the hardware (source device or subsystem), provide design
context if appropriate (description), and also give the units. The telemetry dictio-
nary can be used to convert telemetry in real time (during a radio pass), potentially
into graphical displays for operators. It can be used by back-end tools to display
historical data, and it can also be used by developers to understand how to build
out automation. These scenarios will all involve different tooling and coding
languages which is why the dictionary must be code agnostic. The telemetry
dictionary will exist across the ecosystem and should be immediately indexable
by satellite platform type with multiple telemetry dictionaries existing at once.
Note that it is possible for some telemetry channels to be common across satellites
(attitude parameters, for instance). This is generally dependent on the subsystem.
How one handles the common parameters is up to the designer, either by
generating a new (but duplicated) list or by using some kind of inheritance.

• Event dictionary – The event dictionary has much in common with the telemetry
dictionary. The distinction here is that telemetry is considered time series data
(like system voltages), whereas events are one-time data (like a configuration
change, limit check warning, etc.). Events tend to have more complex data
structures associated with them which makes it appropriate to build out a separate
event system from the telemetry system. The manner in which the event dictio-
nary is used is similar to the telemetry dictionary except it will have to describe
the more complicated data structure for each event.

• Hardware (HW) configuration data – Each satellite variant should start with a
hardware configuration which will enumerate the bus layout, the individual device
hardware, and the device configuration. This will come in large part from the EE
interconnect information. It will also include physical data related to the satellite such
as sensor and actuator mounting alignments. The HW configuration information can
be pulled into the FSW build process in a similar way that device trees are used in an

310 R. Harvey

operating system (OS). A device tree is generally a binary blob that an OS knows
how to parse that describes how it is connected to external hardware (like clock
source, pin assignments, etc.). There is another important job for the HW configu-
ration information which is to be imported into the mission operations center (MOC)
satellite database with an entry for each new satellite. This database is critical to
satellite operations, especially at scale. TheMOC database will contain this hardware
information; it will detail which software version is on each processor and what the
backup software version is. It will detail the current operational mode for each
satellite, and it will provide information about security keys, power models,
calibration data, etc. Very importantly it will also track degradation of satellites
over time which can be tracked against the original HW configuration. The full
extent of the MOC database will not be described here, but when flight software is
loaded on-orbit and needs to adjust based on new or degraded hardware on a
particular satellite variant, it is likely that information will come from the MOC
database.

• Message definitions – Communication with the satellites will be through a
defined interconnect. It is useful to create and store the message definitions
such that they can be used to generate message serializers and deserializers on
both the satellite and the ground. These serializers/deserializers will be pulled into
the flight software as part of the build process. They can also be exported to
groundstation code and manufacturing code as appropriate.

6.2.2 Executable Artifacts
The executable artifacts are more recognizable than the target-agnostic artifacts. The
need to address multiple deliverables is discussed inRole of the Flight Software Team.
• Flight software for flight computer – This is the software image for the flight

computer. This will likely also include the bootloader image for the flight
controller.

• Flight software for slave microcontroller(s) (uC) – As mentioned in a previous
section, there will be many microcontrollers and possibly microprocessors in the
Microsat design that require software. The build process will have to generate all
of these software products, and it is likely that the build products will require
different tools and possibly different build environments. This may include
bootloader images for some of the processors.

• Flight software for payload – The payload computer and system will require
software. This software may or not be in the same code repository as the avionics
flight software. Depending on how the payload processor is architected, this could
include bootloader images.

• Ground tools software – This would include ground-side radio software,
groundstation software, possibly data analysis software, and maybe components
that are interoperable with mission control.

• Manufacturing tools software – This includes software that might be needed to
interface with the satellite while it is on the production line, potentially using a
different (and protected) interconnect definition that is only appropriate on the
ground.

Flight Software and Software-Driven Approaches to Small Satellite Networks 311

It should be noted that Fig. 3 shows the build inputs and artifacts but does not
indicate where the artifacts are stored. Artifacts will have to be published to
some location that makes them available to satellite operations and manufacturing
personnel while still meeting any security considerations. The above build architec-
ture is fairly complex, and it may be appropriate to leave out certain pieces until they
are needed or to implement it in a different fashion. Ultimately, there will need to be
a server level build option which can reliably, repeatedly, and automatically
execute the build, unit test, and publishing pipeline steps. However, it is still
useful to understand why the design is laid out this way in order to avoid future
problems.

7 Flight Computer Software Design

The flight computer is responsible for maintaining the satellite in a power-positive,
ground-responsive, and thermally survivable envelope. It is also responsible for
enabling the payload to succeed in its mission, through execution of time-sequenced
flight control commands, attitude adjustments, orbital maneuvers (if applicable), and
power sequencing of payload components. The flight computer must enable the
Microsat to downlink its payload data as appropriate. In general, there is the same
command and telemetry requirement as all flight computers. There is a significant
amount of existing and comprehensive literature about satellite design that should be
considered when developing the flight computer architecture (Brown 2002; Wertz et
al. 2011). There are also third-party vendors who offer flight software products
specifically for Microsats who may be able to supply part or all of the flight computer
components, allowing the team to focus on other components such as the payload
and its software.

NASA has open-sourced a comprehensive flight software suite called the “Core
Flight System” (NASA 2014, 2019). There is a wealth of experience behind this
effort, and it is very informative to investigate. There are many similarities between
the content of this section and the CFS, which is to be expected since they solve
some similar problems. The CFS is actually a superset with respect to functionality
since many different kinds of missions can be supported (including deep space),
whereas the content here is for LEO Microsats. The CFS may be appropriate as a
candidate for Microsat FSW. If one can use the CFS, many capabilities may come for
“free” at a later date when they are required. The downside to the CFS is that it can be
complex, and the initial learning curve will be steep. In the case that only certain
components are desired from CFS, it is a little difficult to separate them out from the
larger system. The CFS is also currently ported to certain operating systems which
may not be appropriate for the processor that was selected for the flight computer, or
the processor may be not be sized appropriately. Note also that the CFS does not
necessarily solve certain software problems on the satellite, such as the infrastructure
for supporting the local communication bus or integration of sensors and actuators
(highly dependent on hardware design). This will somehow have to be integrated
into the CFS system. The build system and artifacts for CFS may not match well with

312 R. Harvey

other processors or programs that the software teams are working on, including
server-side continuous integration (CI) and build. Integrating custom over-the-air
protocols may also be more work. However, it might be the case that third-party
groundstations are going to be used, and these use some kind of standard protocol
schemes, such as those defined by the Consultative Committee for Space Data
Systems (CCSDS). The CFS may be able to support some of these protocols
natively. In any event, this should all be evaluated from the point of the satellite
ecosystem and requirements.

Figure 4 details a possible software architecture for the flight computer. This is a
static view of the software that demonstrates the hierarchy between components. The
blocks that are on the bottom are generally independent of the ones on top. It should
be noted that many of the blocks here are consistent with the NASA CFS diagrams
and should be consistent with almost any flight computer design. This is the
architecture for the flight computer, but note that there are many components in
the diagram that would also be applicable to microcontrollers or other processors in
the satellite. This is an opportunity for code reuse and modularity that should be
taken advantage of.

Figure 4 has several layers which are described below:
• Applications – The application layer as defined here represents the high-level

functions that the flight computer must perform. These are generally mappable to
requirements such as thermal management, power monitoring, spacecraft attitude
tolerances, and time maintenance and distribution. The flight computer must be
able to provide enough telemetry for each of these applications to be monitored
against its design and performance envelope. Note that at the software level, the
code for an application may be split among a task, an interrupt service routine,
and potentially an asynchronous messaging handler while still sharing common
data. The “Command Processor” is the externally facing consumer of messaging
which can provide protocol related capability and is a gateway to the internal
messaging bus. The “Power” application will monitor the power state of the
system and effect brownout or safety related actions as appropriate. It will also be
used to command various parts of the satellite to power on and off. The “Thermal”
application will maintain the satellite in its thermal envelop by monitoring
temperatures and activating thermal control systems as appropriate. The thermal
application will be subject to any restrictions that are being enforced by the power
application. The “Runtime Sequencer” will accept arrays of instructions from the
ground that represent sequences of future states of the spacecraft. The runtime
sequencer will ensure that the satellite state is executed as defined in the timing of
the sequences by issuing commands to the other applications. The sequences
represent the steps that the spacecraft must execute to complete some phase of the
mission (like pointing at a groundstation for downlink). Note that the runtime
sequencer should ensure that satellite changes are atomic. It must also be robust
against sequence interruption and failure.

• Services – Services as defined here are software constructs which enable the
applications to perform their jobs. Some of these may not have related require-
ments but are dictated by software design. This includes internal messaging

Flight Software and Software-Driven Approaches to Small Satellite Networks 313

buses, configuration services, telemetry and event logging services, file system
implementations, etc. Note that it is important for these services to be independent
of the satellite-specific content. It is not appropriate to build a telemetry or
configuration service that is unique to the telemetry or configuration for a given
spacecraft variant. This will allow easy portability to new satellite systems.

• Device Drivers – Device drivers will be required for all components that are
accessed through the various communication buses (such as SpaceWire, UART,
I2C, SPI, etc.). They will have command sets and register definitions which are

Fig. 4 Flight computer software architecture. (Image © 2011 Planet Labs Inc., licensed for one-
time publication)

314 R. Harvey

not local to the processor. These are distinct from devices which are natively
supported by the processor chip architecture (see peripheral drivers below). Note
that the intent would be that these device drivers are portable to other processors.
The device drivers will often have to be written by the flight software team. The
device driver layer is shown over the OS, but it is possible that applications may
be written to bypass the OS and access these devices directly. This is highly
dependent on the OS and possibly memory ramifications (allocation/deallocation,
direct memory access, etc.).

• Safety-Critical Components and OS – This layer has somewhat less of a strict
definition to it, in that the relationship between the safety specific components, the
OS, and other components may be more complicated than the simple layer
approach shown. The safety-critical components are called out explicitly because
they are some of the most important software features in the spacecraft. These
must be well-designed, robust, tested, and extremely well understood.
These features are discussed in further detail in sections “Satellite Safe Mode”
and “Security”.

• Hardware Abstraction Layer (HAL) – This layer is self-explanatory. It
abstracts the OS and the higher-level features from the specifics of the hardware
implementation. A good HAL means that porting the flight computer software
over to a new processor will be easier (e.g., if the flight computer chip is end-of-
life (EOL), design changes require a more powerful processor or potentially for a
different satellite product). The HAL may be tightly integrated into the peripheral
driver layer.

• Peripheral Drivers – The processor will require drivers for all peripherals that
are to be used to control and monitor the spacecraft. These are generally the
peripherals which are part of the processor and have associated internal registers
and pins. This code will generally be processor type specific and can many times
be available in board support packages or third-party code repositories.

The flight computer architecture as presented here is only one possible example.
When designing the system, the flight software team should always look to minimize
or eliminate blocks when appropriate (e.g., by standardizing on an external commu-
nication bus and external sensors). They should also be looking to share code
wherever appropriate among various processors.

8 Flight Software and System Design

There are many aspects of the satellite system design and larger ecosystem that
impact flight software or can be impacted by flight software. The following details
some specific cases that will be helpful when building out flight software. It is also
useful to call out some topics which deserve special attention, including satellite safe
mode, software upgrades, and security.

Flight Software and Software-Driven Approaches to Small Satellite Networks 315

8.1 Satellite Safe Mode

Microsats are generally not designed with the same redundancy and reliability as
traditional satellites. This is obviously the result of the much reduced cost. However,
they still require the concept of a “safe mode” that the satellite can enter when a fault
occurs or for a general mission safety condition. An understanding of the satellite
safe mode should be built up very early in the design process, and components
related to the safe mode should be prioritized and worked on first in order to give
them maximum runtime on the ground prior to launch.

The safe mode should involve a minimum number of subsystems and should
allow those systems to have authority over as much of the rest of the satellite as
possible. An absolute minimum set of subsystems would be the flight computer, the
power control board, and the TT&C radio (assuming no subsystem redundancy).
Focusing on these subsystems is extremely important.

Two common failures with Microsats are electronic latchups and processor
memory corruption. Latchups can often be cleared by removing power from the
device and then reapplying it. This creates two design considerations; first, the
ability to remove power from the satellite and its subsystems should extend as far
upstream as possible in the power infrastructure. Second, it is very useful to ensure
that the flight computer firmware can control power to as many subsystems as
possible (as opposed to systems being driven by a non-switchable high-level
power bus). This may allow the flight computer to detect and assert a fix, instead
of having to force a satellite-wide reset or maybe wait for a planned low-power state
(brownout) event if the latchup is exceptionally bad. It is also a good idea to ensure
that the flight software is able to actively bring the satellite into a power-on reset
(POR) state after a software reset. This means actively asserting all devices under
control into a known state, either through direct I/O pin manipulation or setting
registers in devices which are connected via communication buses. The flight
software should also be capable of actively shutting down power to subsystems in
a benign and orderly way. The firmware should be able to make assessments of
which buses it believes are healthy.

From an operational point of view, it should be possible to try and address a
device failure first through flight computer commands, then through a flight com-
puter reset, and then possibly through a full satellite reset. It should be the case that
the flight computer can request (or force) a full satellite reset in some way. From a
recovery standpoint, it may also be useful to be able to use the TT&C radio to reset
the satellite in response to a radio message, assuming that this can be done as a secure
operation.

Watchdogs should be implemented on the satellite in order to try and bring the
satellite back into a known state if there is a fault that renders one or more of the safe-
mode subsystems unreliable. Processor internal watchdog capabilities should always
be used if available. It may be desirable to implement an external hardware
watchdog of some kind. All critical systems should have a recurring requirement
to “pet” the watchdog and push off its reset function. In the case that a watchdog
triggers, the faulty system should be considered completely unreliable, and the

316 R. Harvey

watchdog system should not use that system for recovery (by design). It is useful to
have some watchdog countdown timer implementation that is reset after every
contact with the ground. Note that any system that can reset the satellite should
not have a pathological condition where it continually resets the satellite and the time
between resets is very short.

The processor assert handler also plays a role in the safe mode of the spacecraft.
The assert handler can be called from either hardware or software. The triggering of
an assert could be from an unexpected operational request or from undetected
memory errors. The assert handler should be designed using the same concepts as
the watchdog implementation, and the result of triggering an assert could be a reset
of the processor or possibly of the spacecraft. The various possible asserts should be
categorized and actions taken as appropriate.

From the flight software perspective, the reset sequence for the satellite should
be considered carefully. As noted above, resets of the flight computer and other
processors can be a useful tool for trying to bring the satellite into a known state.
As such, the path that the reset sequence takes as it executes will be an integral part
of the safe mode implementation. A processor will likely go through some kind of
bootloader code before starting the application. What happens if this bootloader
code remains active for any period of time or stays active because of an application
failure? The flight computer bootloader may be one of the most important pieces of
software that the flight software team will write. It may have to contain hardware
initialization code to ensure that the satellite is properly and safely configured. It
may have security requirements or it may have to deal with the TT&C radio. The
bootloader will have to ensure that an application that it intends to launch is
integrity checked and possibly authenticated, and it must understand what to do
when this fails. The bootloader is very importantly one of the few software
components that is generally not updated in space. There are other considerations
as well for flight software, for instance, the flight computer should prioritize and
initialize the most critical systems first and then proceed down through the less
critical systems.

Memory errors are another common form of radiation-induced error on space-
craft. Processors and FPGAs should be capable of detecting and/or fixing memory
errors at some level (for instance, with ECC). When an uncorrectable memory error
has occurred, the processor should immediately be considered suspect. One of the
safer approaches is to tie an uncorrectable ECC error into some kind of hard reset
circuitry which could be triggered through the absolute minimum amount of soft-
ware (maybe through only an interrupt service routine with no application code).
Another approach is to disable the watchdog monitoring code (ensuring watchdog
will fire) and then to try and capture as much information about the state of the
processor as possible before attempting a reset through software. This can dramat-
ically aid debug work. This is a less robust approach, but it also allows for the
possibility of shutting down high-power systems that might be active in a benign
way.

The safe mode should have a very well-understood outcome for guidance and
control. The simplest model is to shut down all active guidance, stop all actuators,

Flight Software and Software-Driven Approaches to Small Satellite Networks 317

drop into a low-power mode, stop executing on pre-stored command sequences,
and await instructions from the ground. This will put the satellite into a tumbling
state, which would have to be understood from a systems standpoint (total
possible spin-up, pathological solar panel pointing, etc.). The next level up
would be to assert some basic form of guidance to at least keep the satellite from
tumbling. Care and thought should be put into this kind of design because at some
level, an algorithm such as this will have to assume that certain sensors
and actuators are functioning correctly. If these sensors and/or actuators have
failed or are somehow calibrated incorrectly (for instance, through memory cor-
ruption), then the impact of applying a guidance mode could be disastrous. This
kind of design would expand the boundaries of the critical systems required for
safe mode.

8.2 Atomic Configuration Updates

It should be possible at any given point to have a clear understanding of the
configuration of the satellite. More importantly, the satellite should never end up
in a state where only partial configuration has been applied. This places a require-
ment on the system design to ensure that configuration changes are atomic. The
potential for partial configuration changes could occur during interrupted radio links
or if the satellite is executing pre-stored command sequences and some form of fault
occurs that aborts the set of command sequences before they are completed. The
satellite may then not execute a command sequence that was intended to restore
some background state for the spacecraft.

Configuration is used in two senses here; there is the concept of “configuration
data,” such as calibration data, satellite sensor frame data, security settings, payload
settings, current orbital parameters, guidance parameters, etc. This tends to be
longer-term data which is updated from the ground during a radio link pass. There
is also the way in which the satellite is “configured” at runtime, such as varying
power rail settings for payload and heaters, satellite pointing mode for solar panels,
etc. This generally comes from the satellite flight software design and the ongoing
execution of pre-loaded sequences to execute on the mission. Both of these types of
changes should be atomic in nature and should be revertible (if appropriate) at reset
or fault.

This idea of atomic configuration updates may seem obvious, but configuration
information can be spread across multiple systems and subsystems. It may also be
the case that certain configuration data is required to be updated more often and
considered less critical, creating the desire to implement different messages for
different configuration parameters. It may also be the case that different system
owners have devised different schemes for how they ingest configuration requests.

The amount of configuration data for a satellite, even a Microsat, is considerable.
It is unlikely that the whole configuration state can be applied at once, even if
desirable. A system-level breakdown of configuration data into manageable and

318 R. Harvey

appropriate groupings is appropriate, ideally with each element in the group then
being atomic in nature.

For configuration data, it is appropriate to create wrapper logic around configu-
ration set commands that can atomically apply new configuration (once verified) and
which more importantly can assert a known or default state at reset or fault.
Verification of the data should involve a cyclic redundancy check (CRC) or poten-
tially security-related verification (HASH) depending on how security is
implemented and should also include bounds checking where appropriate.

For runtime configuration of the satellite (pre-loaded command sequences), it is
useful to define a higher-level “manager” application that will ingest the request for
state change and act on it as appropriate (as opposed to executing some low-level
command directly). This manager function can then also contain the logic for reset or
fault cases and can restore default or safe state as appropriate.

8.3 On-Orbit Software Upgrades

As stated previously, the philosophy for Microsats should be that software upgrades
while in orbit should be reliable, possibly often and not exciting. As mentioned in
Flight Software Life Cycle, there are many reasons why the flight software may not
be ready at the time of launch. It is also the case that since full space simulation may
not be possible on the ground, lessons learned during actual on-orbit testing can only
be incorporated using on-orbit flight upgrades. Verification of payload may be even
more tied to on-orbit testing, and updates to the payload software should be
expected.

Planning out software upgrades to the satellite is one of the most important
system design questions to be answered by the flight software team. This includes
the flight computer, peripheral microcontrollers, and the payload system.

Processors should always be able to maintain at least two different images for
software, with one being active and the other idle and available for update. This
means that memory architectures should be sized appropriately for two images, as
well as multiple copies of configuration data, redundant security information where
appropriate, and room for a bootloader. Payload data should (if possible) be kept in a
separate memory device than the flight software. It will have a different use profile
and will likely require a much larger memory device which may be less tolerant of
the space environment. When updating flight software, it is useful to enforce a
design where both flight software images get updated in a ping-pong fashion such
that one is just ahead of the other in version. The advantage of this is that it reduces
the “staleness” of the software in orbit. The impact of stale software can be a tedious,
long road of sequential updates that must be executed by the satellite operations
group to bring the satellite up to date if a flight system must be reverted to a backup
copy of software that is extremely old.

Software upgrades will be somewhat sporadic with respect to the mission life
cycle and could potentially cause large peak loads on radio links and internal bus
links between processors. It is important to ensure that these links are sized

Flight Software and Software-Driven Approaches to Small Satellite Networks 319

appropriately for software upgrades and avoid the tendency to only focus on the
steady-state operation of the satellite with respect to bus and communication design.
It should not be the case that the processor selection and flight software design result
in software image sizes that are beyond or barely within the transfer capability of the
satellite uplink. It should also be taken into consideration how long the satellite may
be unable to focus on its mission while in the software upgrade mode. When
uplinking software updates to the satellite, the design should be robust against losing
the radio link, subsequently being able to resume the upload at a later time without
resending data.

In the software upgrade design, it is possible to consider both atomic upgrades of
the software and partial upgrades. An atomic upgrade would replace the entire image
with an uplinked version. This version can be tested and validated on the ground for
each satellite variant as appropriate. It is also possible to have a partial update
scheme, using a package manager or virtual container for high-level operating
systems or by uplinking a “binary diff” file that can be applied to static content on
the satellite, integrity checked, and then loaded into nonvolatile memory. Partial
upgrades can reduce bus traffic but have two downsides. The first is that a series of
partial updates applied to various satellite iterations can be hard to test, track,
automate, and revert. This can be very painful for satellite operations. The second
is that a partial upgrade does not protect against corruption of the existing content on
the satellite (for instance, through memory corruption). It is useful to be able to
minimize the software cross section that cannot be updated atomically in orbit, in
particular for unrecoverable radiation damage. In most cases, it should be possible to
update everything except the bootloader.

8.4 Accountability in Operations

In a fleet of Microsats, the level of automation in satellite operations will be quite
high. There will likely be a computing infrastructure that is monitoring the satellite
fleet and generating data analytic reports that are fed into the various organizations in
the company. The monitoring capability will be tied into an automated escalation and
alarm system. Generally there will not be live personnel monitoring the satellite
system 24/7. This automated monitoring will benefit from satellite data that is easy to
machine parse and which is consistent in time stamp. For simple time-series values
such as voltage, current, spin rates, etc., the monitoring is straightforward, and there
can be a threshold set for both warning and fault levels. However, it is also useful to
find alternative solutions for cases where the automation must perform complex
processing on the received data in order to arrive at a conclusion; this includes
having to apply some kind of waveform processing to time-series data, for instance,
trying to estimate battery charge state from historical current and voltage levels
(which may be sparse or incomplete).

The need for hardware-related telemetry on a satellite is more obvious than the
need for system-level telemetry and monitoring. In a Microsat ecosystem, there are
multiple systems in play, and each of them may be rapidly evolving, including

320 R. Harvey

mission control software, groundstation software, radio software, and satellite
software, not to mention possible changes in groundstation hardware and cloud-
computing infrastructure. When operating a fleet of Microsats, it is likely that there
are legitimate reasons for some payload windows to fail; this includes technical
reasons and also operating reasons such as aggressive time windows, operating close
to the edge of the power envelope, etc. The point is that there will always be a high
level of general noise that can make a new failure difficult to detect and isolate. Once
detected, it can become a very daunting exercise to figure out why certain operations
have not taken place if the observability of the system is poor, especially if they are
finally noted as a general downward trend in system-level performance. Observabil-
ity is then extremely important to be able to track down and diagnose issues that arise
in the program.

In general, the flight software team and all other developers should embrace this
idea of system “observability,” the notion that at any given time, it is possible to trace
how the satellite got into a particular fault state or failed to execute on its payload
mission for some interval. This “observability” should also be designed such that it is
easy to integrate into the automated monitoring system. An example of why this is
important is measuring fleet-wide system performance against a customer service-
level agreement (SLA) for a remote sensing type of mission. First, it is important to
understand that there are a very large number of reasons that payload remote sensing
data does not make it to the customer. Consider Fig. 5, which lays out how a payload
acquisition request results in product being delivered to the customer. For conven-
tion, the left half of the diagram is labeled as “Reaction Time” which is the time
between payload data request and payload data acquisition. The right half is labeled
“Latency”; this is the time between payload data acquisition and delivery to the

Fig. 5 Accountability for payload delivery. (Image © 2011 Planet Labs Inc., licensed for one-time
publication)

Flight Software and Software-Driven Approaches to Small Satellite Networks 321

customer. Both the reaction time and the latency may have SLA-related limits. For
each step in the process, there are some example failure conditions listed.

The leftmost block is the initial task request, which may fail due to an inappro-
priate area of interest (AOI), satellite resource conflict, or potentially a failure due to
an unmeetable quality of service request. Once declared acceptable, the request is
turned into a series of command sequences that must be uploaded to the satellite,
which is the next block in the sequence. There are multiple reasons that this can fail
as well, including the satellite being in safe mode, potentially a command conflict, or
the radio pass just happens to fail for equipment or planning reasons. This pattern
continues to the right until data delivery to the customer. At the system level, each
step of the process will have a non-zero failure percentage that must be observable
and monitored. As can be seen from the rest of the diagram, there are many fault
paths for the payload sequence (and many that are not shown). The intent for the
system monitoring should be twofold: first, the customer facing team must be able to
answer the question of why a particular payload sequence was not acquired, and,
second, it must be possible to rapidly track down which step in the process has
degraded. And then use that information and the observability built into the design to
understand why the SLA may be at risk.

The reality here is that it can be very difficult to estimate the impact of what
appears to be a small change, but (by design) it should be very easy to monitor it
once it is deployed. Changes are always being made to the system, and this must be
built in to the monitoring expectation. Early on in the design process and at regular
intervals, the team should audit the event and telemetry streams and ensure that high-
level functions in the end-to-end satellite ecosystem can be monitored easily. Each
team should also be on the lookout for changes which may derail payload delivery
and ensure that those events are reported and ingested into the automated
monitoring.

8.5 Security

A critical aspect of the satellite ecosystem is the security posture and security
implementation. The security posture for a mission will vary depending on the
perceived value and lifetime of the mission. An academic mission of a single
Microsat may have a less rigorous posture than a large satellite fleet that has ongoing
launches for replenishment (and a longer window for security practices to become
stale). The security posture will also be dictated by regulatory bodies such as NOAA
in the USA. In any event, a satellite mission should have a security plan that comes
from the security posture (requirements) which allows the security to be
implemented in a way where risks are properly assessed and appropriate measures
taken to achieve the desired level of security.

There is a reality that security design on a Microsat may not be given as much
priority as other components and subsystems in the spacecraft. This is especially
true in the early phases when basic systems are being developed, resources are
short, and there is a significant chance that the early Microsat will not even reach

322 R. Harvey

full mission status after launch. There is then a likelihood that security features
will be implemented “over time” as the design and potentially the company
become more mature. From a flight software standpoint however, it is very
beneficial to understand the eventual security capabilities early in the design
process and identify the possible impacts to the flight software design. The use of
standard security paradigms can greatly aid this process, and they should be
considered (this will also help to avoid creating security vulnerabilities). The
literature around security practices and possible implementations can be daunt-
ing, but an applicable and good starting point for a Microsat satellite design is to
understand the IP security (“IPsec”) open standard Wikipedia article and then the
various standard documents themselves (Kent 2005; Kent and Seo 2005). A good
satellite-based security document to read after IPsec is the “Space Data Link
Security Protocol-Summary of Concept and Rationale” published by CCSDS
(CCSDS 2018). This document can reinforce some of the IPsec concepts through
a satellite-based example. When choosing a security paradigm, the encrypted
and authenticated option should be preferred. Note that an interesting aspect of
the CCSDS implementation is the concept of the “authentication bit mask” which
allows for selective exclusion of some fields in the message authentication
code (MAC) which can make the application of authentication slightly more
flexible.

The CCSDS publishes many security-related documents which are worth read-
ing: the “Security Guide for Mission Planners” (CCSDS 2019a) is a good overview
of security for the whole mission. It also lays out how the various CCSDS security
documents are interrelated. The “Report on the Application of Security to CCSDS
Protocols” (CCSDS 2019b) also has great information on security for satellites.

Returning to the flight software team, the goal of the team should be to break
down security requirements into capabilities and then come up with a schedule to
implement them, preferably as soon as possible. Availability of these capabilities can
provide security to the Microsat even when the security plan is not completely
fleshed out. At a high level, these capabilities will relate to requirements for
hardware and software cryptographic capability, tamper detection, the storage of
crypto keys in nonvolatile memory, and implications for the design of communica-
tion protocols. It is easy to fall into the trap of building out mission functionality first
and then being in an awkward position trying to implement security on top of the
resulting implementation. It is best to try and avoid this.

Before examining possible security capabilities, it is worth mentioning some
concepts that can impact the flight software security design at a fundamental level.
The first is the concept of a security boundary and a cryptographic module, and the
second is the notion that the endpoints of a security paradigm may terminate in
different places on the ground.

In the context of satellite security design, establishing the security boundary
means having a clear understanding of how data and commands transition from a
trusted to an untrusted domain and vice versa. A cryptographic module defines the
perimeter within which cryptographic processing is performed, such as command
and telemetry decryption and encryption. From a flight software standpoint,

Flight Software and Software-Driven Approaches to Small Satellite Networks 323

establishing the security boundary and cryptographic module on the satellite will
help identify which devices on the satellite must have cryptographic capability and
access to keys and which do not. This may also impact how devices are
interconnected.

With a less stringent security posture, the security boundary could be defined as
being at the physical satellite boundary itself, potentially at the interface where the
satellite feeds data to/from the radios. The cryptographic module could encompass
all the devices except for the radios, so keys could be freely shared among all
devices, and one or more devices would be responsible for key management and
cryptographic operations. This model imposes fewer design constraints in terms of
satellite design and may be adequate for a satellite with a less stringent security
posture.

With a more stringent security posture, the security boundary could again be
defined as being at the physical satellite boundary itself, but with a singular sub-
system (device or devices) forming the cryptographic module responsible for key
management and cryptographic operations. While this may impose more design
constraints, it should (hopefully) provide for tighter control around the security
processing on the satellite. Having the security code separate from other satellite
functionality should also support easier auditing of the security operation. Note that
security boundaries and cryptographic modules also apply to ground systems that
perform encryption and decryption of satellite data.

It is important to understand that the endpoints for security capabilities may vary
depending on the purpose. Figure 6 indicates some possible security paradigms.
Note that these concepts are also discussed in CCSDS references (CCSDS 2011,
2019b). The point here is that there are security links that can terminate at the local
groundstation and also security links which can potentially terminate in dedicated or
cloud-based servers for the mission operations center (MOC) and payload pro-
cessing. It is therefore inappropriate to focus on a security paradigm which is only
designed for the over-the-air (OTA) datalink, for instance, and it must be the case
that secure messages can be routed from a groundstation through the ground network
to the appropriate downstream endpoint (mission control or payload processing). In
the diagram, “Mission Operations Center” represents the server or cloud-side pro-
cessing system which automatically manages the satellite constellation. The follow-
ing describes the links in Fig. 6:
1. Mission Operations Center and Satellite – The connection shown here is that of

a traditional “bent pipe” where the groundstation merely relays packets back and
forth (both telemetry and command). The groundstation may implement some
form of data link security and may have the authority for message retries.

2. Groundstation and Satellite Radio – It may be the case that the round-trip delay
between the groundstation and mission operations center is inappropriate for
certain operations, and there is a desire to implement some autonomy on the
groundstation itself. A prime example of this is adaptive coding and modulation
(ACM) where it is desired to keep the feedback loop driving the radio as tight as
possible. Automatic repeat request (ARQ) can also be done locally at the
groundstation.

324 R. Harvey

3. Groundstation and Satellite Telemetry – This is a more uncommon case, but
there may be a reason for satellite telemetry information to be available at the
groundstation. This would typically just comprise telemetry received directly
from the satellite.

4. Satellite Payload-to-Payload Pipeline – The payload data will likely be deliv-
ered directly to a cloud-computing endpoint or potentially a customer endpoint
for pipeline processing. The ground system will have to understand how to route
this information to the payload endpoint. Note that it may be the case that the
payload does not have to be encrypted at all. This will depend on business and
regulatory conditions.

8.5.1 IPsec Concepts and Capabilities
The concepts behind the IPsec model represent capabilities that will very likely need
to be implemented on the satellite. Note that implementing simple models for these
capabilities while still following best practices for the actual encryption and authen-
tication can go a long way in securing the satellite. The following list gives some
context around the capabilities that may be useful to the flight software team:

Fig. 6 Security routing endpoints. (Image © 2011 Planet Labs Inc., licensed for one-time
publication)

Flight Software and Software-Driven Approaches to Small Satellite Networks 325

• Security association (SA) – The security association is an agreement between
two entities about how they will use security capabilities and practices to com-
municate in a secure fashion. The security association for an early stage Microsat
can be simple, potentially decided entirely in advance with no runtime negotiation
and based on pre-loaded symmetric keys. The pre-loaded keys can be used
directly for encryption and authentication purposes. There should be a security
association entry for each security relationship in the system (as shown in Fig. 6).
At a minimum, the SA should have a version and detail a minimum set of
cryptographic algorithms to be used (encryption, MAC), key attributes, and a
list of valid key IDs. Alternatively for satellites desiring more flexible key
rotation, the SAs on board the satellite may be updated using a form of key
exchange to generate fresh traffic protection keys (CCSDS 2011). Consideration
needs to be given to the number of message round trips required for the estab-
lishment of an SA as this adds latency to the process.

• Security header – The security header is added to the data content and is
intended to indicate how the corresponding data should be decrypted and also
to allow for authentication of the data. The name “security header” is presented to
be generic, in that the header can be designed as appropriate for the Microsat
system. It should have similar parameters as the Encapsulating Security Payload
(ESP) from IPsec (Kent 2005) where necessary, such as the Security Parameter
Index, the initialization vector (IV), a sequence number, and an ICVor MAC. The
CCSDS document for the Data Link Security Protocol (CCSDS 2018) has both a
“security header” and a “security trailer” which when combined have similar
fields to the ESP. Since authentication is generally a good idea, combining the
CCSDS “security header” and “security trailer” may be an appropriate choice to
consider. Note that the IPsec definition is tied to IP and the CCSDS design
reference above is tied to a data link layer. It may be appropriate to create a
security header that is agnostic of protocol or communication layer.

• Security Parameter Index (SPI) – The SPI is included in the security header and
indicates which SA the content is intended to be used for. For aMicrosat, this can be
as simple as a scalar value which indicates which security association (SA) to use. It
is potentially useful to also include a version into the field in addition to the SPI.

8.5.2 General Concepts and Capabilities
• Software cryptography – From a software standpoint, the types of crypto-

graphic algorithms must be understood and implemented. It is useful to try and
identify cryptographic libraries which are appropriate for the processor in the
device selection phase. There is no reason that this should be done in-house. Note
that software cryptography can create a large burden on the processor that must
be accounted for. It is also an idea to ensure that there is headroom to grow on
the processor in the case that the cryptographic algorithms must change.
Cryptographic libraries can be very comprehensive and will likely contain
many more algorithms than the satellite system needs, consider removing unused
routines from the software, and also remove security algorithms that are no longer
considered secure.

326 R. Harvey

• Hardware cryptography – In the design and device selection phase, there
should have been some consideration of hardware security capabilities. This
would be either hardware implementations of cryptographic algorithms (like the
advanced encryption standard AES) or maybe hardware acceleration with floating
point libraries or digital signal processing (DSP) blocks. Note that hardware
cryptographic capabilities are not upgradeable so if the hardware is unable to
provide sufficient protection at a later date (for instance, if the key length or
cryptographic algorithm is insufficient), then the update will have to be moved to
software, or a new processor must be selected and integrated. Away of reducing
the risk of this would be selecting cryptographic algorithms and key lengths that
are thought to be secure for the expected lifetime of the satellite constellation. For
constellations with a design lifetime of many years, designing in crypto agility
can be challenging due to emerging quantum computing capabilities.

• Key storage – The flight software must be able to store the permanent keys that
are provisioned at manufacturing, and it must do this in a reliable way. In the
flight software work, the store will likely be one of the larger efforts. The key
store must be persistent, potentially duplicated for redundancy, and protected
against write failure. Note that in a Microsat, security keys are likely maintained
in flash, and flash is generally fairly robust when not written to. It is a really good
idea to not use a flash storage device that implements a flash translation layer
(FTL) under the hood. This could mean that the memory storage device is actually
moving the keys around for wear leveling, and a radiation event could be
detrimental if it disrupts this write operation. The key management scheme
should be tied into the SA that is discussed above, with each SA being associated
with at least a pair of keys. For more complex security schemes, there will likely
be a hierarchy of keys such as master keys and traffic encryption keys (CCSDS
2011) and also the notion of key life cycles and cryptoperiods. This will have to
be reflected in the key storage design.

• Protocol definitions – It is important to ensure that the security header can exist
in the protocol definitions from the start. When using third-party communication
designs, this will likely not be a problem. However, in a home brew system, there
may be some data overhead concerns if the maximum radio packet size is small.
Care should be taken as well to ensure that the security implementation (encryp-
tion) does not interfere with any message routing implementations.

• Replay protection – Protection against the replaying of previously sent com-
mands is almost as important as the authentication of commands. IPsec achieves
this through the use of a sequence number associated with each SA that is
incremented on each packet sent. The receiver tracks the sequence number for
each SA and enforces ordering to reject replayed (repeated) packets. There should
always be replay protection built into the design.

• Fallback plan – There should be a well-understood design for the security system
if there is some kind of degradation or compromise. This may be a fallback
security key or key store or potentially a different algorithm suite that is not
normally used. It should be predictable to the satellite operations group when the
fallback plan is activated.

Flight Software and Software-Driven Approaches to Small Satellite Networks 327

Having the SW/HW cryptographic capabilities, the key storage, the SA, and the
security header design will allow for implementation of a reasonable first level of
security. If these aspects are handled correctly for the initial (or early) Microsat
design, then the flight software team may only have a supporting role when the
system is scaled up to many satellites. The bulk of the extra work will be in key
management on the ground, both inside the mission operations center and the
manufacturing process.

Security must be understood in all aspects of operation, including software
upgrades and during resets and faults. Security must be active during the software
upgrade process, and a failure in the upgrade should not result in a compromised
security position (there should never be a possibility that the security is not active).
The security design should also be robust against loss of time on the satellite, and as
in any system, the security will only be as good as the weakest link.

9 Conclusion

When developing Microsat software, it is important to properly understand the scope
of work involved for the flight software team and also the development life cycle
when multiple launches are taking place. This will enable the flight software team to
develop appropriate architecture and build philosophies that allow critical software
components to be delivered in a timely fashion. The flight software team should
ensure that on-orbit software upgrades and an appropriate safe mode are well
established as early in the design process as possible. The environment in which
the flight software team operates can be challenging for long-term planning and
development. Where possible the flight software team should look to the future and
ensure that they try and position themselves for future success at scale. This includes
focusing on items such as building observability into the design, identifying security
capabilities, and being involved early on in the processor and device selection
process. A successful Microsat company could end up with a very diverse set of
satellite hardware in orbit, both from ongoing developmental improvements and
from random degradation of hardware once it gets into the space environment. The
flight software team should plan for the implications of this reality and help ensure
that the company can successfully operate a diverse fleet of satellites.

10 Cross-References

▶High Altitude Platform Systems (HAPS) and Unmanned Aerial Vehicles (UAV)
as an Alternative to Small Satellites

▶Hosted Payload Packages as a Form of Small Satellite System
▶Network Control Systems for Large-Scale Constellations
▶Overview of Small Satellite Technology and Systems Design
▶ Planet’s Dove Satellite Constellation
▶ Power Systems for Small Satellites

328 R. Harvey

https://doi.org/10.1007/978-3-030-36308-6_19
https://doi.org/10.1007/978-3-030-36308-6_19
https://doi.org/10.1007/978-3-030-36308-6_18
https://doi.org/10.1007/978-3-030-36308-6_16
https://doi.org/10.1007/978-3-030-36308-6_7
https://doi.org/10.1007/978-3-030-36308-6_64
https://doi.org/10.1007/978-3-030-36308-6_9

▶RF and Optical Communications for Small Satellites
▶ Small Satellite Antennas
▶ Small Satellite Constellations and End-of-Life Deorbit Considerations
▶ Small Satellite Radio Link Fundamentals
▶ Small Satellites and Structural Design
▶ Spectrum Frequency Allocation Issues and Concerns for Small Satellites
▶ Stability, Pointing, and Orientation

References

C.D. Brown, Elements of Spacecraft Design, Education Series (AIAA, Reston, VA, 2002)
CCSDS, SFDU Operations: System And Implementation Aspects, Report Concerning Space Data

System Standards, CCSDS 610.0-G-5, Green Book, Washington, DC, February 1987
CCSDS, Standard Formatted Data Units – A Tutorial, Report Concerning Space Data System

Standards, CCSDS 621.0-G-1, Green Book, Washington, DC, May 1992
CCSDS, Space Missions Key Management Concept, Report Concerning Space Data System

Standards, CCSDS 350.6-G-1, Green Book, Washington, DC, November 2011
CCSDS, Space Data Link Security Protocol-Summary Of Concept And Rationale, Report

Concerning Space Data System Standards, CCSDS 350.5-G-1, Green Book, Washington, DC,
June 2018

CCSDS, Security Guide for Mission Planners, Report Concerning Space Data System Standards,
CCSDS 350.7-G-2, Green Book, Washington, DC, April 2019a

CCSDS, The Application of Security to CCSDS Protocols, Report Concerning Space Data System
Standards, CCSDS 350.0-G-3, Green Book, Washington, DC, March 2019b

E. Costenaro, A. Evans, D. Alexandrescu, E. Schaefer, C. Beltrando, M. Glorieux, Radiation Effects
in SSDs, Flash Memory Summit, IROC Technologies, Santa Clara, 2015

S. Kent, IP Encapsulating Security Payload (ESP), RFC 4303, ISOC, December 2005
S. Kent, K. Seo, Security Architecture for the Internet Protocol. RFC 4301, ISOC, December 2005
NASA, core Flight System (cFS) Background and Overview. (2014), PDF File, https://cfs.gsfc.nasa.

gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf. Accessed 1 Nov 2019
NASA, Radiation Effects and Analysis – GSFC Radiation Database. NASA website (n.d.).

Retrieved from https://radhome.gsfc.nasa.gov/radhome/RadDataBase/RadDataBase.html.
Accessed 15 Dec 2019

NASA, core Flight System – A paradigm shift in flight software development. (NASA website,
September 13, 2019), https://cfs.gsfc.nasa.gov/Introduction.html. Accessed 1 Nov 2019

D. Sinclair, J. Dyer, Radiation Effects and COTS Parts in SmallSats, 27th Conference on Small
Satellites, AIAA, August, 2013

J.R. Wertz, D.F. Everett, J.J. Puschell, Space Mission Engineering: The New SMAD (Space
Technology Library, Hawthorne, 2011)

Flight Software and Software-Driven Approaches to Small Satellite Networks 329

https://doi.org/10.1007/978-3-030-36308-6_88
https://doi.org/10.1007/978-3-030-36308-6_10
https://doi.org/10.1007/978-3-030-36308-6_13
https://doi.org/10.1007/978-3-030-36308-6_104
https://doi.org/10.1007/978-3-030-36308-6_12
https://doi.org/10.1007/978-3-030-36308-6_14
https://doi.org/10.1007/978-3-030-36308-6_8
https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf
https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf
https://radhome.gsfc.nasa.gov/radhome/RadDataBase/RadDataBase.html

	Flight Software and Software-Driven Approaches to Small Satellite Networks
	1 Introduction
	2 Flight Software and Microsats
	3 Role of the Flight Software Team
	4 Flight Software Life Cycle
	5 Flight Software and Processor Selection
	6 Software Build System Architecture
	6.1 Build Process Inputs
	6.2 Build Process Artifacts
	6.2.1 Target-Agnostic Artifacts
	6.2.2 Executable Artifacts

	7 Flight Computer Software Design
	8 Flight Software and System Design
	8.1 Satellite Safe Mode
	8.2 Atomic Configuration Updates
	8.3 On-Orbit Software Upgrades
	8.4 Accountability in Operations
	8.5 Security
	8.5.1 IPsec Concepts and Capabilities
	8.5.2 General Concepts and Capabilities

	9 Conclusion
	10 Cross-References
	References

