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Abstract This paper extends recent work done by the authors in modeling length
scale-dependent damage behavior of ceramic matrix composites (CMCs) to include
effects of local anisotropy introduced by matrix cracking. This model captures
scale-dependent damage initiation and propagation behavior of the brittle matrix by
employing internal state variable (ISV) theory within a multiscale modeling frame-
work to obtain damaged matrix stress/strain constitutive relationships at each length
scale. The damage ISV captures the effects of matrix cracking and growth by using
fracture mechanics and the self-consistent scheme to determine the reduced stiffness
of the cracked matrix. Matrix cracks, which activate when stress intensity factors near
manufacturing induced cavities exceed the fracture toughness of the material, are
assumed to be transversely isotropic in the plane of the crack, and matrix anisotropy
occurs when the damaged stiffness tensor is rotated from the crack plane to the global
axes. The crack progression and temporal evolution of the damage ISV are governed
by fracture mechanics and crack growth kinetics. The model effectively captures
first matrix cracking, which is the first significant deviation from linear elasticity.
The nonlinear predictive capabilities of the material model are demonstrated for
monolithic silicon carbide (SiC) and a 2D woven five-harness satin (SHS) carbon
fiber SiC matrix (C/SiC) CMC.
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Introduction

The low density, high strength and toughness, exceptional high-temperature perfor-
mance, and gradual failure mechanisms of ceramic matrix composites (CMCs) grant
CMC:s a wide range of applicability and have made them the material of choice for
many aerospace applications [1-4]. However, because of the difficulty of accurately
modeling the complex multiscale thermomechanical behavior of CMC material sys-
tems under critical mechanical and environmental loading conditions, the inherent
benefits of CMCs are not fully exploited. Modeling the complex damage behavior
of CMCs requires a multiscale modeling framework that integrates physics-based
thermomechanical constitutive models with scale-specific damage mechanisms.

Multiscale studies have shown significant potential for modeling scale-dependent
material behavior and damage in heterogeneous composite material systems [5-7].
The strong length scale-dependent behavior of CMCs requires a multiscale model-
ing methodology to accurately model global material behavior and predict effective
composite material properties. The generalized method of cells (GMC) developed
by Aboudi et al. [8] can efficiently capture limited scale-dependent behavior and is
well suited to model composite materials. GMC exploits the periodicity of a rep-
resentative unit cell (RUC) to obtain the overall material response. The RUC con-
sists of an arbitrary number of subcells which can be assigned different material
properties to represent different composite constituents. Displacement and traction
continuity conditions are enforced in an average sense between neighboring sub-
cells, and localization/homogenization algorithms provide the relationship between
the stress/strain in each subcell and the average RUC stress/strain. This methodology
allows for an efficient and accurate semi-analytical solution, that links the behavior
of the individual constituents to the overall material behavior. The GMC framework
was extended by Liu et al. [9] into a multiscale GMC (MSGMC) framework that
is well suited to capture material behavior in woven composites which consist of
multiple length scales. In MSGMC, the GMC methodology is applied recursively to
obtain the response of multiple relevant length scale models, thus enabling concur-
rent analysis of micro-, meso-, and macroscales, which is essential for an accurate
analysis of realistic CMC weaves. This method is well suited to model CMC length
scale-dependent behavior and can be used in conjunction with thermomechanical
damage models to capture the effects of damage at each length scale.

ISV theory and continuum damage mechanics (CDM) can be used to describe
material thermomechanical behavior by deriving constitutive laws based on the ther-
modynamics of deformation and damage. Researchers have applied ISV and CDM
techniques to CMCs and have shown good agreement with experimental results
[10-12]. However, these models are most often applied at the CMC macroscale,
resulting in phenomenological and architecture-dependent models that have limited
transferability to additional material systems and architectures. The definitions of
the damage variables and other ISVs in these models satisfy thermodynamics, but
they may not capture the actual physics of damage in CMCs because the evolution
laws are often selected for mathematical tractability and to satisfy thermodynamics.
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In order to better understand CMC thermomechanical response to critical loadings,
the actual physics of scale-dependent damage in CMCs must be captured.

Most CMCs are manufactured through chemical vapor infiltration (CVI) or melt
infiltration (MI) [13], which lead to a significant volume fraction of manufacturing
induced cavities that detrimentally affects the integrity of the finished parts. Liu et al.
[14] showed that accurately modeling the distribution of manufacturing induced cav-
ities is critical to capturing CMC behavior. They proved that the physical distribution
of cavities had a significant effect on CMC mechanical properties and concluded that
localized cavity concentrations were necessary to accurately capture CMC deforma-
tion behavior. The authors previously made use of Liu’s cavity distribution modeling
methodology and derived a fracture mechanics-informed matrix damage model using
an isotropic damage ISV to account for activation and growth of matrix cracks from
cavities [15]. The model was implemented within the MSGMC framework to account
for the multiscale nature of matrix damage initiation and propagation in CMCs and
effectively captured nonlinearity in the macroscale composite response. A key draw-
back of the model is the assumption of an isotropic damage ISV; in reality, matrix
cracking causes local anisotropy.

In this work, the previously mentioned fracture mechanics-informed damage
model is improved to account for local anisotropy due to the formation and propaga-
tion of matrix cracks. The damage variable, which is a function of the crack density
in the matrix, is determined using fracture mechanics and the self-consistent scheme
[16]. The cracked matrix is assumed to be transversely isotropic in the plane of the
crack, and matrix anisotropy occurs when the damaged stiffness tensor is rotated from
the crack plane to the global axes. Matrix cracking is activated when stress intensity
factors exceed the fracture toughness of the material and crack growth kinetics gov-
ern the growth of cracks and the progression of damage in the matrix. The model is
applied to monolithic SiC and a SHS woven C/SiC CMC using literature values for
SiC and carbon fiber material properties.

Description of Damage Model

The governing equations of the ISV approach are obtained by combining the first
and second laws of thermodynamics to obtain a dissipation inequality (Clausius—
Duhem inequality). The Helmholtz free energy, which is assumed to be completely
described by the linear thermoelastic strain potential, is taken as the scalar state
potential function. Thus, the dissipation inequality governs the evolution of internal
state variables, which can be chosen to represent specific damage mechanisms. In
this work, a damage variable, D, is chosen to represent the damaged state of the
matrix material due to cracking. The variable D is computed in the crack plane and
its temporal evolution is related to the volumetric crack density, which increases as
matrix cracks near manufacturing induced cavities activate and grow. Unlike classical
ISV methods, which propose an additional scalar potential function to derive the
damage ISV evolution laws [17, 18], this approach is grounded in the actual physics of
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matrix damage by accounting for fracture mechanics and crack growth kinetics in the
definition and evolution of the damage ISV. The stress/strain constitutive relationship
is obtained using the principle of strain equivalence for a damaged medium and by
taking the derivative of the Helmholtz free energy with respect to the elastic strain.

The damage ISV is obtained using the self-consistent scheme [16] to determine
the change in mechanical properties due to matrix cracks, which occur primarily at
manufacturing induced cavities. This methodology is applied within the MSGMC
modeling framework to allow the simulations to capture the effects of matrix crack
initiation and propagation at each length scale. The local stresses are determined using
localization algorithms as discussed in the following section, and the stress intensity
factor, K, due to the cavity is evaluated in the principal plane and compared to the
critical stress intensity factor (fracture toughness), Kic. When K; > Kjc, a crack
is activated and begins to propagate through the matrix. In multiaxial stress states,
one would expect mode II and III stress intensity factors to play a role in crack
nucleation and growth, however, due to the brittleness of the matrix material, modes
IT and III play a negligible role in the rate and direction of crack growth [19] and are
not included in the model. The matrix crack is assumed to be transversely isotropic
in the plane of the crack, and the effective modulus perpendicular to the crack face,
En, is derived as described in Ref. [20]:

~ 712
E, = (1 — 351 +W6 —4v)sz>E (1)

where 2 is the scalar volumetric crack density (2 = %13), E is the undamaged
isotropic modulus, and v is Poisson’s ratio. This change in stiffness is equated with
the stiffness change from the damage ISV to find:

7.[2
D= 5(1+V)6 =42, 2)

By differentiating Eq. 2 with respect to time, the temporal evolution of D is
determined:

72

D= 1 5—4 lez' 3
_ﬁ( +v)(5 - V)V , 3)

where [ is the characteristic crack length, and N is the number of cracks in volume
V. An expression for [ can be obtained using crack growth kinetics as in Paliwal
et al. [20].

This definition of the damage ISV is applied to obtain a transversely isotropic

damaged compliance tensor in the plane of the crack, S. In matrix form:
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where E, is the transverse modulus (E; = E), and G,,, is the cracked shear modulus,
which is assumed to follow the form G;, = ﬁ Poisson’s ratio in a cracked body is
expected to slightly increase [21], but some researchers have observed no significant
change [22] or even a decrease in Poisson’s ratio [16] after onset of cracking in a
brittle material. Due to a lack of experimental data for this material system and the
conflicting results in the literature, Poisson’s ratio is kept constant in this model. The
compliance in global axes is obtained by rotating the damaged compliance tensor
from principal axes to global axes as follows (in Einstein notation):

z{jkl = RipquSpqerkrRlsa (5)

where R is the rotation matrix whose rows are the unit vectors associated with the
principal stresses and are the basis vectors for the principal frame, and the indices
i, j...r,s range from 1 to 3. As a result of the rotation from principal axes, the
resulting compliance tensor, S,, and the corresponding stiffness tensor, C ,, are fully
anisotropic in the global frame where loads are applied.

Multiscale Modeling Framework

The improved fracture mechanics-informed damage model is implemented in the
MSGMC framework [9] to link material constitutive behavior and capture effects of
damage initiation and evolution at each relevant length scale. This model is applied
to SHS woven C/SiC CMCs in this work, but the model has application to addi-
tional 2D weave architectures and material systems, including SiC/SiC CMCs. The
MSGMC framework takes advantage of material periodicity at each length scale,
and homogenization and localization algorithms are used to traverse up and down
length scales. The response of each length scale is obtained by analyzing a RUC at
that length scale using GMC. Each RUC can consist of monolithic material subcells
or subcells which are themselves modeled using an RUC for a lower length scale.
The recursive localization and analysis of unit cells at progressively lower and lower
length scales are repeated until all unit cells contain only monolithic material con-
sisting of the base constituents, where the elastic constitutive and damage models are
applied. This methodology can accurately reproduce actual CMC thermomechanical
behavior because the behavior at each relevant length scale is obtained and linked to
the global composite response.



1504 T. Skinner et al.

In the case of a 2D woven architecture, the weave can be represented by a
macroscale RUC which is triply periodic and is discretized into NyxNgxN, sub-
cells, where Ny, Ng, and N,, correspond to the number of subcells in the 1, 2, and 3
directions, respectively (see Fig. 1). The subcells in the macroscale RUC are in turn
modeled as GMC unit cells, each consisting of various combinations of weft, warp,
overlapping, and matrix subcell stacks. By varying the arrangement of these stacks,
a wide range of woven composite architectures can be simulated. The matrix subcell
stacks consist of monolithic matrix material, so the elastic constitutive and damage
models are directly applied. The tow subcells are modeled using a doubly periodic
mesoscale (tow-level) RUC which is further discretized into Ngx N,, subcells consist-
ing of matrix and matrix/fiber subcells. The constitutive and damage models are again
applied directly to the monolithic matrix subcells and the matrix/fiber subcells are
represented using a doubly periodic microscale RUC discretized into Ngx N, fiber,
matrix, and interphase constituent subcells. The response of the microscale RUC is
obtained by homogenization after applying the constitutive and damage models to
the constituents. This homogenized microscale response is passed up through the
next length scale as the response of the matrix/fiber subcells in the tow-level RUC.
The tow-level response is obtained by homogenization and is passed up through the
next length scale to the weave level RUC where additional homogenization is per-
formed to obtain the global composite response. These localization/homogenization
algorithms allow for an accurate semi-analytical solution that can include the effects
of damage, inelasticity, and temperature at each length scale. For a detailed derivation
of the GMC and MSGMC theories, the reader is directed to Refs. [8, 9].
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Fig. 1 Schematic of repeating MSGMC unit cell for SHS woven CMC
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Results and Discussion

Monolithic SiC Response

To demonstrate the improved damage model, the stress/strain response of bulk SiC
matrix material is simulated and compared to the linear elastic and isotropic dam-
age cases. Table 1 presents relevant material properties as well as the initial values
for crack density and characteristic crack length used in the simulation. The model
captures the quasi-brittle behavior of the bulk SiC matrix as shown in the simulated
stress/strain curves in Fig. 2. In both the isotropic and anisotropic damage cases,
stress increases linearly with strain until the stress intensity factor exceeds the frac-
ture toughness and cracking is activated. The crack grows rapidly, causing material
property degradation until a critical crack length is reached and failure occurs. The
maximum stress increases when the cracked matrix is modeled as an anisotropic
material and occurs at a slightly higher value of strain compared to the isotropic
damage case. Additionally, as shown in Fig. 3b, the effective stiffness of the bulk
matrix material is higher when anisotropy due to damage is considered. This is as
expected, since cracking initiates and propagates in the principal plane, which is
aligned at an angle relative to the global (loading) axes. When crack direction and
transverse isotropy are accounted for, the maximum stiffness degradation occurs
normal to the crack surface, and no degradation occurs transverse to the crack. It
is interesting to note that the stiffness of the anisotropic damaged matrix is higher
than that of the isotropic case even though damage initiates earlier and evolves more

Table 1 Material properties and model parameters used to simulate monolithic SiC
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Fig. 3 Evolution of damage and effective modulus in monolithic SiC. a Isotropic and anisotropic
damage parameters versus strain; b effective SiC modulus versus strain

rapidly in the anisotropic case than the isotropic case. This is because as the damaged
stiffness tensor in the plane of the crack is rotated from principal axes to global axes,
the reduction in stiffness for each direction will be less than that observed normal to
the crack face, and a significantly longer crack is required to release energy and have
a similar effect on global stiffness. The damage variable computed in the principal
plane in the isotropic case releases additional energy and degrades the entire stiff-
ness tensor equally without considering the effects of crack orientation or transverse
isotropy.

The damage parameter and effective damaged stiffness of the bulk SiC material
for both isotropic and anisotropic damage cases are shown in Fig. 3. After crack
activation, the crack length increases rapidly, causing a rapid increase in the damage
ISV until material failure occurs when D =~ 0.9 for the isotropic damage case, and
when D = 1 for the anisotropic case.

Woven Composite Response

The stress/strain simulation results for a SHS woven C/SiC CMC are shown in Fig. 4,
and effects of damage using isotropic and anisotropic damage are compared. Addi-
tionally, localized concentrations of manufacturing induced cavities were modeled
as explained in Ref. [14] to capture realistic CMC behavior. The simulation results
show trends that match those seen in literature. The fracture mechanics-informed
matrix microcracking damage model effectively captures first matrix cracking, which
results in deviation from linear elastic material behavior. The anisotropic damage
case predicts first matrix cracking at slightly higher stress than the isotropic damage
case and remains slightly stiffer after first matrix cracking due to the stiffer behav-
ior of the damaged matrix when cracks are modeled as transversely isotropic. The
effective woven composite modulus is presented in Fig. 5 and key matrix damage
mechanisms are indicated, illustrating the model’s ability to capture the multiscale



An Improved Fracture Mechanics-Informed Multiscale ... 1507
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physics of matrix damage in woven CMCs. The woven composite has undulating
tows, which cause local stress concentrations that accelerate crack activation and
significantly decrease effective modulus. Damage initiates in the undulating tows,
and the local tow-level damage contributes to the overall composite degradation. As
strain increases, cracks initiate and propagate in the matrix-rich interweave regions
between tows and the overall composite modulus is further degraded.
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Conclusions

An improved fracture mechanics-informed thermomechanical damage model was
implemented using internal state variable theory within a thermodynamic frame-
work. The stress/strain constitutive behavior of damaged ceramic matrix material
was derived using damage variables which capture the effects of cracking on the
stiffness tensor of the SiC matrix. The matrix cracking damage variable, which is a
function of the crack density in the matrix and is determined using fracture mechanics
and the self-consistent scheme, reduces the stiffness of the cracked matrix. Matrix
cracks, which initiate and grow from manufacturing induced cavities, are activated
when stress intensity factors exceed the fracture toughness of the material, and crack
growth kinetics govern the growth of cracks and the progression of cracking in the
matrix. Matrix cracks are assumed to be transversely isotropic in the plane of the
crack, and matrix anisotropy occurs when the damaged stiffness tensor is rotated
from the crack plane to the global axes. The model was implemented within the
MSGMC multiscale modeling framework and the nonlinear predictive capabilities
of the improved model were demonstrated for monolithic silicon carbide and a SHS
2D woven C/SiC CMC. The improved model more accurately reflects the physics of
brittle matrix cracking, and the model predictions match trends found in experimental
results from literature.
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