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Abstract In recent years, nanotechnology has reached the limelight of research in
applications of medicine and technology. Due to its onset, huge varieties of nanopar-
ticles possessing significant characters are synthesized with broad application fields.
Even though these particles are infesting our present life; conflictual views regard-
ing their medical and biological effects are debatable. The non biodegradable nature
and nanosize are the alarming features of the nanoparticles that confront potential
threats to both environment and biomedical field on its expanding usage. NPs syn-
thesized from heavy metals like lead, mercury and tin are proclaimed as stringent
and stable compounds for degradation, hence results in environmental biohazards.
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The extensive applications of silver nanoparticles in biosensing, cosmetics, medi-
cal devices, food and clothing products inflates its human exposure and obviously
resulted in toxicity (short and long term). In vitro studies revealed various cytotoxic
effects in the cells of mammals such as brain, liver, lung, skin, reproductive organs
and vascular system. Furthermore, ingestion, inhalation or injection of nanoparticles
in intraperitoneal region resulted in toxic effect of multiple organs inclusively brain.
Accounting the metal nanoparticles biohazardous effects like ROS (Reactive oxygen
species) generation, DNA damage, protein denaturation and lipid peroxidation has
been proved on carbon based nanoparticles, organic lipid based nanoparticles, min-
eral based nanoparticles, nano diamonds, nano composites, etc. Although, nanotech-
nology has become an advent field of research nowadays, it is importing significant
environmental and health hazards thus couldn’t be beneficial to both society and
economy.

Keywords Nano particles · Toxicity · Nano composites · Bioeconomy · Human
health

1 Introduction

Existence of nanoparticles (NPs) is uncertain, over million years ago and their
employment by humans is about thousands of years. Because of the accelerated
human capacity in nanoparticle synthesis, enough attention has been directed on this
type of particles. Due to their compelling potential of usage in wide areas like elec-
trical industry, pharmaceuticals, cosmetics, medical and environmental applications,
their respective investments are also growing worldwide (Guzman et al. 2006). The
imperative fact about nanotechnology is the consideration of scientists as the lucid
step of science to integrate biology, chemistry, physics, medicine and engineering
(Chen and Mao 2007; Dahl et al. 2007; Vo-Dinh 2007; Janata 2008; Stewart et al.
2008).

The applications of nanotechnology has inclined greatly from the laboratory to
economic market with huge interest scientifically through pharma industry. The par-
ticles right from the distinct nano to sub-micron sized were engaged widely in food,
pharmaceuticals and cosmetics industries. In pharmaceutical industries nanoparticles
were employed adversely as carriers of drug delivery, imaging, diagnostic agents of
oncology and in diabetes. In the flourishing field of pharmaceuticals the nanotech-
nology are engaged with great potential through oral, dermal and injectable routes.
As per FDA, 25 nanoparticles has been approved to use in enormous drug delivery
systems, which implies its competency in treating diseases (infectious and non infec-
tious). Nanomaterials are worn in numerous forms like nanotubes, nanomembranes,
nanoparticles, nanofibers, liposomes, nanofilms etc. In pharmaceutical industries,
lipid based nanoparticles (nanolipidsomes, lipid nanoparticles, nanoemulsions, lipid
nanocapsules, lipid polymer nanoparticles), dendrimers, nanoshells and fullerenes
were extensively studied in drug delivery systems of both academics and industries.
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Apart from these, some emerging particles includes, metal nanoparticles, nanodia-
monds, carbon nanotubes, graphene nanoparticles and quantum dots, they were used
in diagnosis, drug delivery and imaging so as to achieve decisive targeting upon
organs and cells.

The probable toxicity of metals that are accounted herein was well rooted since
roman times and not new. Pedanius Dioscorides, the greek physician has previ-
ously described the probable effects of metals like mercury (Caley 1928), lead oxide
(Osbaldeston and Wood 2000), copper silicate (Wisniak 2004), poisonous effects
of Arsenic in yellow and red sulfur mines as referred by Strabo (Cilliers and Retief
2000) and demise of Alexander, the great as a consequence of drinking contaminated
water of River Styx (Atkinson and Truter 2009). In the initial part of the present cen-
tury, toxicity of metals and toxic effects of the excessive tiny particles were explored
(Donaldson et al. 2001).

Expulsion of nanoparticles from consumer’s body is pivotal. It is vital to determine
the exceeding nanoparticles to overcome adverse effects (Kantiani et al. 2010). It
was determined from the ancient times that dose of poison was ample to evoke
a response. Nonetheless, size, physicochemical properties and mode of entry of
nanoparticle will influences to determine persistence, hazard threat and biotoxicity
so as to formulate and implement safety patterns (Scott-Fordsmand et al. 2014). The
unwelcome consequences of the nanoparticle exposure are health ailments due to
cytotoxicity, genotoxicity, cancer and autoimmune diseases.

The primary concern regarding the employment of metals within living organisms
is their corroding and degrading ability results in diminished toughness, disintegra-
tion and weakening of accounted implants. Their activity would be diminished by
the curtailing effects of biocompatibility and escalation of toxic effects (Burugapalli
et al. 2016; Khodaei et al. 2016). The components like dissolved oxygen, soluble
carbonates, nitrogen and electrolytes along with some physiological fluids (proteins,
enzymes, organic acids andmacromolecules), secretory compounds of inflammatory
and fibrotic cells are responsible for progress of metal degradation which are made
possible by the inhabitance of stress, strain and frictional forces.

Concerning on the biosafety of health and environmental issues into account the
risk factors of NPs should be assessed prior to its application. Additionally, engi-
neered nanoparticles could be released into the water bodies during the manufactur-
ing and utilization processes unaviodably. Some environmental factors includes UV
radiation, dissolved organic matter, ionic strength and pH could possibly react with
the NPs, then the converted NPs make toxic effects on the concerning environment
(El Badawy et al. 2010; Levard et al. 2012).

The undenied biocompatibility nature of NPs were contemporarily swamped off
by the biotoxicity effects. Understanding of their properties relating to biological
responses is vital so as to understand the flawless usage of nanoparticles. The mech-
anism of the nanoparticle reckons on respective factors like composition, chemical
functions, shape along with its exclusive size and charge (Goodman et al. 2004;
Roiter et al. 2009; Simon-Deckers et al. 2009; Xiao et al. 2012; Silva et al. 2014).
Moreover, probable risk of nanoparticle resides on its respective particle size below
100 nm (nanoparticle). Based on the nanoparticle nature (metal or magnetic), the
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breakdown mechanism that arise within the body results in unpredictable and note-
worthy toxic effects. Since, NPs are involving in numerous catalytic and oxida-
tive mechanisms in vivo, it is very hard to predict. Nanomaterials that exposing
reactive surfaces with very high surface area are attractive for specific objectives.
Beddoes et al. (2015) has conferred from both in vitro and in vivo examination of
human cells along with membranes and succeedingly addressed that (a) Efficient
translocation of nanoparticle through the membrane that resulting in cellular dam-
age has been made possible by small NPs, whilst nanoparticles of large size displays
active cellular uptake without toxic effects, (b) Disruption of membrane integrity
was made by nanoparticles of positive charge rather than negative charged particles.

Thenanomaterial field is very extensivewith diverge toxicity, in thepresent review,
few nanoparticle effects were highlighted as examples to predict the disturbances in
biological systems. The study of nanoparticle toxicity towards any biological sub-
stances (animals and plants) are known as nanotoxicology, which comprises in vitro
studies using cell lines of human or animal, in vivo experiments using human volun-
teers and animals, along with epidemiological data regarding the pollution of particle
and studies of workers those who are exposed to nanoparticles (during welding, min-
ing, etc.). Applications of nanoparticles are being inflated nowadays in agriculture
field in the form of agrochemicals.

Toxicity induced by nanoparticle involves in evolution of oxidative stress (free
radical or liberation of reactive oxygen species (ROS), genetic damage, inflammation
and suppression of cell division which results in apoptosis. In addition, ROS stress
accounts for fibrosis, inflammation, genotoxicity followed by carcinogenesis through
the liberation of adverse cytokines. Above all the vital mechanism of toxicity resides
on the reactive oxygen species generation, such that free radical possess detrimental
impacts over biomolecules (DNA, lipids, proteins). Numerous biological mecha-
nisms like endocytosis, phagocytosis with its processing (antigen presentation on
MHC class molecules) and passive diffusion reckon on the particle size of nanopar-
ticles (gold, silver, nickel, titanium, carbon nanotubes). The large surface area of NPs
contributes to few toxic indications of biological molecules that confers oxidation
results in DNA damage than the larger particles with similar size (Gatoo et al. 2014).
The factor that contributes the difference between nanoparticle and large particle
composed of same material are the quantum effects and its respective surface (Buzea
and Pacheco 2017). The nanosized material displayed diverge properties (physical,
chemical and mechanical) rather than the bulk sized particles. As a consequence of
the proportion of atoms found exposed on the surface of the nanoparticle correlated
with the interior surface escalates results in boost up of its physical (increased surface
area along with volume ratio, and shortened melting point) and chemical properties
(higher chemical reactivity). By the cause of the small size of the nanoparticles (gold,
palladium and platinum), the electrons confined and possess quantized spectrum of
energy, producing quantum size effects like magnetic moments.

The nanomaterials are prone to contaminate the vulnerable water ecosystem
directly or indirectly so as their possible toxicity to aquatic biota should be evaluated.
Adverse effects like inhibition of algal growth, behavioural changes associated with
severe mortality rate in water fleas (Daphnia species), damage in fish brain cells and
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changes in molecular biomarkers were explored. But, interaction of aquatic biota
with nanomaterials, and their respective destiny in water is least recognized still.
Along with the coastal progression, NiO nanoparticles separated during welding has
turned into the vital sources of coastal pollution (IARC Monographs on the Evalu-
ation of Carcinogenic Risks to Humans). These NiO nanoparticles can be enforced
as risk factors for the environment and health of human. The risk associated with
inhalation of NiO nanoparticles by mammals were well established in in vitro assays
(Oyabu et al. 2007).

Even though the nanoparticles acquire huge beneficial applications in the fields of
agriculture, environment, medical diagnosis and treatment, some hazardous effects
were also observed in animal models, human, plants, and water bodies of the envi-
ronment. The fundamental complication explored by the nanoparticles are their abil-
ity to enter into the cells and concludes in cytotoxicity to inhibit their growth and
development respectively. This chapter probes the biohazardous effects of different
nanoparticles towards various hosts and habitat. Analysing those detrimental effects
of nanoparticle would grant a wide view upon commercialization of nanoparticles
in the field of agriculture, medicine and environment.

2 Factors Responsible for the Toxicity of Nanoparticles

The shape, size, surface charge, crystallinity, aggregation and surface coating of NPs
are some of the factors responsible for the toxicity of nanoparticles.

The shape dependent toxicity is associated to the metal nanoparticles (gold, sil-
ver, nickel, titanium) and engineered particles (Carbon nanotubes). The nanoparticle
entry into the cell by endocytosis and phagocytosis have serious impact due to the
shape of the nanoparticles. For example spherical shaped nanoparticles are very prone
to endocytosis when compared to other shapes of nanoparticles (Gatoo et al. 2014).
Investigations revealed that the shape of the particle could affect the cellular level.
K+ ion channel blockage is three times higher by rod shaped Single walled nanotubes
(SWNTs) than the spherical shaped C60 fullerene (Park et al. 2003). ZnO nanorods
are confirmed to be more cytotoxic than the spherical ones (Hsiao and Huang 2011).

The size of nanoparticle is also inevitable in cytotoxic effects. Asbestos fibres
of <2 µm size could cause asbestosis, whereas asbestos with <5 µm size cause
mesothelioma and 10 µm sized asbestos would results in carcinoma (Lippmann
1990). Similarly 15 mm length TiO2 fibres are more toxic than the 5 mm length
fibres, which cause inflammatory response by alveolar macrophages in mice. Long
multi walled carbon nanotubes (MWCNTs) can cause inflammatory response in
abdominal cavity of mice than the small MWCNTs (Poland et al. 2008).

The surface charge of the nanoparticle employs vital impact over toxicity. The
charge of the nanoparticle directs huge interactions like selective absorption, blood
brain barrier integrity, plasma protein binding andmembrane permeability. For exam-
ple, negative charge carrying mammalian cell membranes improves interaction with
cationic particles with the cells to a terrific degree than the negative or neutral
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nanoparticles. Nonetheless greater cationic charge results in serious toxicity through
hemolysis and aggregation of platelets (Gatoo et al. 2014). Silica NPs which carry
positive charge are shown to induce ROS than the silica NPs with negative or neutral
charge (Bhattacharjee et al. 2010).

Several studies have reported that TiO2 (anatase form) could results in toxicity
thereby inducing DNA damage with higher lipid peroxidation in the presence of light
whereas the rutile form couldn’t results in any toxic effects (Gurr et al. 2005).

Aggregation of particles could also conveys toxicity. Aggregation of the parti-
cles mostly imparts on the size, surface charge and particle composition. For exam-
ple, aggregated carbon nanotubes (CNTs) will have more cytotoxic effect than the
dispersed ones (Wick et al. 2007).

The physiochemical properties of NPs like surface charge, chemical, magnetic,
optical and electric charge can altered by the surface coating of the particles. These
changes can eventually results in interactions with biomolecules to produce signifi-
cant nanoparticle toxicity. For example, the presence of oxygen radicals with heavy
metals and ozone on surface of nanoparticles results in ROS formation and triggers
cell inflammation. In certain cases the surface coating is essential to subside the NP
toxicity. For example, essential coating in quantumdotsmade themnon toxic because
of their hydrophobic metal core and toxic heavy metals like cadmium (Talkar et al.
2018).

3 Nanoparticles in Agriculture Field

3.1 Phytotoxicity of Nanoparticles

The efficient uptake of nanoparticle is very specific depending on the plants. The fac-
tors involved in uptake are type and physicochemical properties of the nanoparticle,
species and substrate of the plants (Arruda et al. 2015; Zuverza-Mena et al. 2017).
Translocation of nanoparticle within the plants are made by establishing complexes
between root exudates and transporter proteins (Yadav et al. 2014).Roots could intake
tiny nanoparticles through its pores (5–20 nm size) present in epidermal cell wall of
roots (apoplast) (Deng et al. 2014). Larger particles will be blocked so that small par-
ticles pass the cell walls results in capillary forces as a result of osmotic pressure and
finally reaches endodermis by diffusing through the apoplast (Lin et al. 2009; Deng
et al. 2014). In plants, nanoparticles can be uptaken by symplastic pathway through
the plasma membrane inner side. Migration of nanoparticles to neighbor cells occurs
through 20–50 nm (diameter) plasmodesmata channels (Deng et al. 2014). One more
possible way of nanoparticle entry is foliar via pores of stomata and could be translo-
cated to other parts along with roots (Hong et al. 2014). Nanoparticles (silver, zinc
oxide, iron oxide, ceria and titania)with huge range of size and composition can inter-
act with plants by means of internalization into leaves (Chichiricco and Poma 2015).
The nanoparticles react with organelles of cell and contributes in oxidative stress,
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metabolic transformations and genotoxicity (Deng et al. 2014). Even though few
nanoparticles exposes positivity on one extreme, also urges negative consequences
on another extreme. For Example CeO nanoparticles (500 mg/kg) exposed to barley
could boost up shoot biomass (300%) but no grain formation was possible (Rico
et al. 2015).

3.2 Detrimental Effects of Nanoparticle on Biochemical
Traits of Plants

Even though the plant nanoparticle interaction brings some beneficial effects, huge
studies are found available in indicating the detrimental effects of nanoparticle
towards plants. The detrimental effects upon biochemical traits involves in ROS
generation, lipid peroxidation, decline transpiration rate, disruption in mitosis, cell
wall breakdown, diminished content of chlorophyll and cutback photosynthesis (Tri-
pathi et al. 2017). Exposure of carbon-based nanoparticles (CNTs, C60) results in
cellular toxicity of rice, onion and spinach respectively (Chen et al. 2010; Shen et al.
2010; Begum and Fugetsu 2012). TiO2 exposure produces stress in cucumber (Servin
et al. 2013). Exposure of NiO nanoparticles in tomato triggers stress which was fol-
lowed bymitochondrial and cell damage (Faisal et al. 2013). TiO2 exposure produces
chloroplast damage and hence photosynthetic rate of spinach was also decreased. In
green peas the chlorophyll is greatly affected by ZnO nanoparticles (Mukherjee et al.
2014).

3.3 Unfortunate Outcomes of Nanoparticles on Plant
Morphological Changes

The morphological changes of plants include germination index (germination rate
and time), biomass of shoot and root, morphology of root tip, root elongation, etc.
(Deng et al. 2014). The phytotoxic nanoparticles includes gold, silver, copper oxide,
zinc oxide, carbon nanotubes and alumina which produce detrimental effects on
roots and shoots (Ghodake et al. 2011; Begum and Fugetsu 2012; Begum et al.
2012; Burklew et al. 2012; Dimkpa et al. 2013; Deng et al. 2014; Feichtmeier et al.
2015). Exposure of ZnO in soybean plant affects formation of seeds (Yoon et al.
2014). Gold nanoparticles exposure in tobacco plant urges necrosis in tissues (Sabo-
Attwood et al. 2012). CNTs inclusion is found to be phytotoxic against cucumber,
lettuce and red spinach by decreasing length of roots and shoot, at the same time
no unfavourable effects were recognised in soybeans and chilli (Begum et al. 2014).
By virtue of nanoparticle absorption by roots, numerous NPs contributes adverse
effects to seedling during roots and shoot elongation. Nanoparticle phytotoxicity
pertinent to inhibition of growth reveals biomass reduction, decrease in germination
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and growth of leaf, reduced elongation of root, decreased root biomass, change in root
tip morphology, and shoot growth, flowering delay and yield decrease (Tripathi et al.
2017). Silver nanoparticles exposure results in stunted germination of corn and rice
(Pokhrel and Dubey 2013; Thuesombat et al. 2014) followed by reduction of mitotic
index and fragmentations of chromosomes in onion (Kumari et al. 2009). Growth
of rice, soybean, corn and cabbage plants were adversely inhibited by the exposure
of ZnO nanoparticles (Lin and Xing 2007; Boonyanitipong et al. 2011; Xiang et al.
2015). Carbon-based nanoparticles like C60 and CNTs urges biomass reduction in
zucchini (Stampoulis et al. 2009), followed by delay in flowering and diminished
harvest (Lin et al. 2009). TiO2 exposure towards corn brings about inhibition in
growth of leaf with damage of DNA damage (Asli and Neumann 2009; Castiglione
et al. 2011).

3.4 Genotoxic Effects of Nanoparticles in Plants

Because of tiny size, NPs can migrate into cells and evoke genetic response of plants.
Numerous metal nanoparticles like, Ag, CuO, CeO, TiO2, ZnO and CNTs triggers
genotoxicity against huge plant varieties (Fava beans, Soybean, Buckwheat, Rye-
grass, Radish, Tobacco, Onion) (Kumari et al. 2011; Atha et al. 2012; Burklew et al.
2012; Chichiricco and Poma 2015; Ghosh et al. 2015). Genotoxic effects of nanopar-
ticle comprises mitotic index reduction, fragmented sticky chromosomes, gene alter-
ation, chromosomal aberrations, damage of DNA structure and decline viability of
cell (Tripathi et al. 2017). These effects were observed in garlic, onion and buckwheat
as a consequence of ZnO exposure (Kumari et al. 2011; Shaymurat et al. 2012; Lee
et al. 2013). Exposure of CuO to buckwheat and radish results in genotoxic effects
(Atha et al. 2012; Lee et al. 2013). Various chromosomal aberrations (breaking of
chromosome and nuclear blebbing) were resulted by titanium oxide nanoparticle
exposure (Pakrashi et al. 2014). Accumulation of CNTs in onion plants ascertained
both cytotoxic and genotoxic consequences, which includes alteration in morphol-
ogy of cells, affecting function of mitochondria and membrane integrity, damage of
DNA and chromosomal aberrations (Ghosh et al. 2015). CeO nanoparticles causes
adverse effects in intake of nutrition along with genetic alterations of wheat, rice and
cucumber (Hong et al. 2014; Rico et al. 2014; Zhao et al. 2014).

3.5 Depletion of Growth Nutrients in Plants Due
to Nanoparticles

The plants and plant products like fruits are being consumed mainly for its nutrients
andminerals. Exposure of nanoparticles could also results in altered nutrient content,
flavor of fruit, performance of growth and antioxidant capability (Deng et al. 2014;
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Petersen et al. 2014; Antisari et al. 2015). Hence, usage of agrichemicals composed
of nanoparticles would affect nutrients of various crops like rice, soybean, corn,
cucumber and tomato (Rico et al. 2013; Antisari et al. 2015; Zhao et al. 2014, 2015).
Numerous metal nanoparticles (TiO, Ag, Co, Fe3O4, CeO2 and Ni) exposure to
tomato plants displays depletion of compounds like Mg, P and S (Antisari et al.
2015). Exposure of CeO2 nanoparticles in rice harvest grains resulted in negotiable
nutrition values which includes least amount of starch, antioxidants, glutelin, iron,
lauric and valeric acid (Rico et al. 2013). Nanoceria exposed cucumber plants would
produce fruits with altered Mo micronutrient, sugar, phenolic contents along with
fractionation of protein (Zhao et al. 2014). Exposure of nanoceria to corn plant
urges decreased yield and curtail calcium translocation to kernals provided by cob
(Zhao et al. 2015). ZnO nanoparticles exposure to corn plants produce subtle effects
on altered nutrient contents, and reduced photosynthesis as a result of chlorophyll
content consequently reduction in yield (49%) (Zhao et al. 2015).

3.6 Transgenerational Effects in Plants by Nanoparticles

Nanoparticles can got concentrated within tissues of roots, seeds, fruits and leaves.
Uptake of nanoparticles by seeds has revealed to produce transgenerational effects
over few plants (Lin et al. 2009; Wang et al. 2013). The nanoparticles could be
disseminated to the progenies of plants through seeds even without exposure of
nanoparticles externally. C70 could be found in the rice plants even after second
generation as black aggregates adjacent to vascular system of stems and leaf tissues
(Lin et al. 2009). The second-generation tomato plants obtained after exposure of
ceria nanoparticles to parent plants were found to be uncertain with decrease in
biomass, declined transpiration of water and greater ROS amount (Wang et al. 2013).
The impact of nanoparticles on plant is given in Fig. 1.

4 Nanoparticles on Humans and Animals

4.1 BioToxicity of Nanoparticles in Humans and Animals

The nanoparticles are inappropriate in some extent that some are beneficial agricul-
turally, nevertheless those are internalized within crops and toxic towards human and
laboratory animals by some extent. The toxicity of nanoparticle on animals relies
on their size that helps in entering into the organisms, reach circulatory system,
translocation to various organs like brain, kidneys, spleen, liver finally enter cells
and organelles (Buzea et al. 2007). Those adverse effects are correlated with inflam-
mation and discrete diseases including cancer. Even though the nanotoxicology is
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Depletion in
nutrient
uptake

Genotoxicity

Fig. 1 Impacts of nanoparticles on plant growth, physicochemical and genetic activities

rather a new discipline, plenty of epidemiological investigation on toxicity of envi-
ronmental nanoparticle towards human are elderly available. Someof the toxic effects
of various nanoparticles tested against huge animalmodels and human cell lines were
tabulated (Table 1).

4.2 Factors Affecting Biotoxicity
of Nanoparticles—Physicochemical Characteristic

The determination of nanoparticle toxicity confides on the physico-chemical proper-
ties like shape, size, composition, porosity, hydrophobicity, surface area, aggregation,
magnetic properties and electric charge (Buzea et al. 2007; Li et al. 2015; Silva et al.
2015; Schlinkert et al. 2015; Teske and Detweiler 2015). Same compound derived
nanoparticles would exhibit diverse toxicity based on its distinction in size, sur-
face charge and functionalization. Nanoparticles with similar size but with different
material composition would also exhibit diverse toxicities obviously. Smaller size
nanoparticles will have greater toxicities than the larger ones (Buzea et al. 2007).
Simultaneously NPs (Titanium oxide) with same material composition but with var-
ied crystalline forms (rutile and anatase forms) could exerts divergent properties and
toxicity. Titania in rutile form (200 nm) would induce oxidative damage to DNA
and cytotoxicity in bronchial epithelial cells of human, on the other hand anatase
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form of titania could not (Gurr et al. 2005). Few NPs displays both hydrophobic
and hydrophilic properties (Garcia-Ivars et al. 2015) which are modulated by the
employed coating substances (Podila and Brown 2013) such as polyethylene gly-
col (PEG) provides hydrophilicity for the accompanying nanoparticle (Kettler et al.
2014). Charges of NPs either positive or negative charge is responsible to react with
different biological systems (Gatoo et al. 2014; Salatin et al. 2015). For example NPs
with positive charge would be attracted towards cell membranes carrying negative
charge and results in cellular intake, which couldn’t be made possible by nanoparti-
cleswith negative and neutral charge (Kettler et al. 2014). Investigations also revealed

Table 1 Biotoxicity of nanoparticles against model animals and human cell lines

Nanoparticle
employed

Animal model/cell
line

Toxic effects Reference

SWCNTs Rats Interstitial
inflammation and
lesions

Lam et al. (2004)

Kidney cells of
human embryo

Cell proliferation
inhibition
Cell adhesive ability
decrease

Cui et al. (2005)

Lung fibroblast of
chinese hamster
(V79)

DNA damage Kisin et al. (2007)

Fibroblast cells of
Mouse embryo

DNA damage Yang and Watts
(2005)

Epithelial BEAS 2B
cells of human

DNA damage Lindberg (2009)

MWCNTs Mouse embryonic
stem cells

DNA damage Zhu et al. (2007)

C60 fullerenes Human lung
adenocarcinoma

DNA polymerase
inhibition (size
dependent)
Enhanced
cytotoxicity

Song et al. (2012)

Citrate capped
AgNPs

Rats Induction of
microvessel vascular
endothelial cells
inflammation
Integrity of blood
brain barrier
affliction

Trickler et al. (2010)

AgNPs Sprague Dawley rats Locomotory activity
diminishing
Injury of central
nervous system

Zhang et al. (2013)

(continued)



124 V. Ananthi et al.

Table 1 (continued)

Nanoparticle
employed

Animal model/cell
line

Toxic effects Reference

Rats Histopathological
alterations (kidney,
liver) swollen
epithelium with
cytoplasmic
vacuolization
Basement membrane
thickening
Mitochondrial cristae
destruction
Endosomes and
lysosomes filled with
AgNPs

Sarhan and Hussein
(2014)

Mice Reduced hemoglobin
content
RNA transcription
inhibition-red cell
precursors
Downregulation of
hemoglobin
level-fetal anemia
Retardation of
embryonic
development

Wang et al. (2013)

Human hepatoma
cells

Cytotoxicity Kim et al. (2009)

CoO primary human
immune cells

toxicity mediated
with oxidative stress

Chattopadhyay et al.
(2015)

MgO NPs Vein endothelial and
microvascular
endothelial cell of
human

Toxic effects on
cells, oxidative stress

Ge et al. (2011), Sun
et al. (2011)

that higher charge (positive and negative) imparts increased endocytic uptake medi-
ated by receptors than the nanoparticles with neutral charge (Kettler et al. 2014).
Toxicity of nanoparticles confides on internalization within the cells, such that gold
nanoparticles with cationic property are toxic than the nanoparticles with anionic
property (Goodman et al. 2004).

4.3 Mode of Internalization of Nanoparticles into Humans

By virtue of its tiny size, NPs could be ingested, inhaled or penetrated via the skin.
The smaller nanoparticles will have higher accumulation within tissues (Sonavane
et al. 2008). Accumulation of NPs within the body sites is resolved by its respective
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composition and functional groups on surface. By means of the gastrointestinal and
respiratory systems, the nanoparticles could hastily reaches circulatory and lymphatic
system respectively (Landsiedel et al. 2012). It was revealed from various studies that
the nanoparticles inhaled would accumulate in the lungs, some of them could reach
alveoli based on their respective size and physicochemical properties, could also be
systemic by translocating to other organ. These nanoparticles were found available
in various parts like heart, brain, liver, spleen, thyroid, kidney, colon, bones along
with lymphatic system and circulatory system (Johnston et al. 2010; Khlebtsov and
Dykman 2011; Landsiedel et al. 2012; Anderson et al. 2015; Bruinink et al. 2015;
Davidson et al. 2015; Geiser and Kreyling 2010; Gosens et al. 2015). Various types
of NPs were found in the blood of many diseased patients (Gatti and Montanari
2006). Those nanoparticles combine with the plasma present in the circulatory sys-
tem and results in the formation of protein corona which determine its toxicity and
translocation. Later on, the nanoparticles reach and thereby acquire within various
organs and tissues of heart, brain, liver, kidney, spleen, lymph nodes, bone marrow
(Landsiedel et al. 2012; Sonavane et al. 2008).

The NPs enter through ingestion reach the gastrointestinal tract and are partially
eliminated through feces, few get absorbed and found systematically (Hillyer and
Albrecht 2001). It was evident from studies of animal model (in vitro and in vivo)
that the nanoparticles could pass the placenta and reach fetus so as resulting in
detrimental effects to pregnancy and fetus (Melnik et al. 2013; Semmler-Behnke
et al. 2014; Snyder et al. 2015).

4.4 Cytotoxicity of Nanoparticles Towards Animals

Gold nanoparticle cytotoxicity depends on cell specificity and its coating upon sur-
face respectively (Cheng et al. 2013; Schlinkert et al. 2015). These NPs internalized
within the cells as a result of surface functions and by locations in mitochondria
and lysosomes (Cheng et al. 2013), nuclei (Ojea-Jimenez et al. 2012) and vacuoles
(Khlebtsov and Dykman 2011). In vivo studies of NPs in macrophages (spleen
and liver kupffer cells) shown severe inflammation and liver cells apoptosis (Cho
et al. 2009). Overexposure of silver nanoparticles in the form of wound dressings or
drugs to humans undergo a condition called argyria (blue-gray discoloration of skin)
associated with adverse toxic effects on liver (Christensen et al. 2010; Hadrup and
Lam 2014). Exposure of silver nanoparticles would results in cardiac dysfunction in
chicken, malformation of heart in fish and formation of thrombus in rats (Yu et al.
2016). Some studies represented that lungs and liver are the main targets of AgNPs
exposure (Sung et al. 2008; Takenaka et al. 2001). Exposure of AgNPs on rat liver
cells deplete antioxidant glutathione, decreased mitochondrial membrane potential
and elevated ROS mediated by oxidative stress of liver cells (Hussain et al. 2005).
Titanium oxide nanoparticle exposure develop arrhythmia in rats because of their
direct contact with cardiac tissue (Savi et al. 2014). Titanium NPs on rodents heart
tissue results in myocarditis, arrhythmia, vascular dysfunction, cardiac damage with
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dysfunction, and some inflammatory responses (Yu et al. 2016). Degradation of DNA
is possible with generation of oxygen species after copper nanoparticle exposure. As
a result of in vivo experiments using mice, exploration of copper NPs translocate to
organs like spleen, kidney and liver and finally results in inflammation of the respec-
tive organs (Magaye et al. 2012). Affirmatory effects of cerium oxide NPs on various
cell lines would results in reactive oxygen species (ROS) and apoptosis (Mittal and
Pandey 2014;Gagnon and Fromm2015).Magnetic nanoparticles (Fe, Co andNi) can
be used in vivo imaging for diagnosis, more liable for aggregation, and finally results
in inflammation followed by immune responses (Markides et al. 2012). Intravenous
administration of ultrasmall supermagnetic iron oxide nanoparticles (USPION) in
mice boost up blood clot formation followed by cardiac oxidative stress (Nemmar
et al. 2016). Elicitation of nickel nanoparticles produce severe cytotoxic effects
like oxidative stress which was followed by cell death (Magaye et al. 2012). Sil-
icon nanoparticles could produce adverse cytotoxic effects on diverse human cell
types like epithelial cells, platelets, microvascular endothelial cells, umbilical vein
endothelial cells and aortic vessel cells (Yu et al. 2016). Exposure of carbon nan-
otubes (CNTs) in rodents produce consequences like thrombus formation, damage of
placenta vessel, vasorelaxation, endothelial and cardiac dysfunction (Yu et al. 2016).
Cytotoxic effects were observed in huge range of cell types like smooth muscle cells,
blood cells, aortic endothelial cells, umbilical vein endothelial cells and microvas-
cular endothelial cells of human (Yu et al. 2016). Even though, lack of action on cell
viability or migration was observed, the platinum nanoparticle (Pt NPs) exposure
produce some extent of activity in triggering toxicity towards primary keratinocytes
and diminished metabolism of cells (Konieczny et al. 2013). Cytotoxic effects of Pt
NPs resulted in accumulation in lysosomes and liberation of Pt2+ (Asharani et al.
2010).

4.5 Toxicity of Nanoparticles in Organ Development

Exposure of titanium oxide nanoparticle towards animal models would results in
reduction of sperm production, alteration of neurobehaviour, abnormality in brain
development of fetus, small fetuses, deformation of fetus and mortality (Savi et al.
2014).

4.6 Immunogenic Responses of Nanoparticles

Accumulation of AgNPs in the organs of immune system were followed by multiple
organ (thymus, spleen, liver and kidney) damage (Wen et al. 2017). The reduced
cell viability of alveolar macrophages and epithelial cells of lungs are possible on
AgNPs exposure (Soto et al. 2007) Oxidative stress along with alveolar macrophage
toxicity was observed in AgNPs by Carlson et al. (2008). Titanium oxide exposure
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would cause toxicity which comprises effects of immune system (Savi et al. 2014).
Exposure of ZnONPs on rats and mice results in cardiac inflammation and apoptosis
(Yu et al. 2016). Long term exposure of cobalt NPs were accompanied with immune
system related health effects, skin, lungs and thyroid gland (Simonsen et al. 2012).

4.7 Genotoxic Effects of Nanoparticles

Injection of gold nanoparticles on rat samples (spleen and liver) produce changes
in gene expression and results in lipid metabolism, defense response, detoxification,
circadian rhythm and cell cycle (Balasubramanian et al. 2010). Genotoxic effects,
because of chromosomal breakage is made possible by the exposure of nanoparticles
to human (Wen et al. 2017). Silver nanoparticle exposure in chicken cause geno-
toxic effects (Yu et al. 2016). Intraperitoneal injection of AgNPs in mouse results
in cytotoxic effects upon brain which are mediated by apoptosis, neurotoxicity with
oxidative stress and change in genetic expression (Rahman et al. 2009). In addition to
cytotoxic effects, some genotoxic effects were also observed in numerous cell lines
as a result of titanium dioxide nanoparticles exposure (Gurr et al. 2005; Coccini
et al. 2015; Yu et al. 2016). Zinc nanoparticle exposure to mice and rats were more
probable to produce DNA damage (Yu et al. 2016). Administration of USPION
intravenously to mice promote DNA damage (Nemmar et al. 2016). Exposure of
nickel nanoparticle would bring about genotoxic effects as a result of cytotoxicity
(Magaye et al. 2012). Alike production of cytotoxic effects by silicon nanoparticles,
genotoxic effects were also possible on human cell types like, epithelial cells, aortic
vessel cells, platelets, microvascular endothelial cells and umbilical vein endothelial
cells (Yu et al. 2016). Genotoxic effects were observed followed by cytotoxic effects
in huge range of cell types like smooth muscle cells, blood cells, umbilical vein
endothelial cells, aortic endothelial cells and dermal microvascular endothelial cells
of human (Yu et al. 2016). Exposure of platinum NPs displayed more detrimental
effect on the stability of DNA (Konieczny et al. 2013).

4.8 Tumorigenesis in Animals by Nanoparticles

Nanoparticle could be vital for greater than 6 months within the body (Lin et al.
2015). Persistence for a longer time in the body would cause tissue inflammation
injury and finally results in various diseases including cancer. The metallic nanopar-
ticles residence in tissues aids tumorigenesis (Sighinolfi et al. 2016). Various studies
are available to demonstrate the accumulation of nanoparticles within the tissues of
patients infectedwith numerous diseases like pulmonary embolism, deep vein throm-
bosis, Hodgkin’s lymphoma, prostrate cancer, renal failure, colon cancer, ulcerative
colitis, emphysema, lung cancer, liver necrosis, asthma, stroke and Crohn’s disease
(Ballestri et al. 2001; Gatti and Rivasi 2002; Gatti 2004; Gatti and Montanari 2006;
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Iannitti et al. 2010; Roncati et al. 2015a, b). Exposure of copper dust or fumes on cop-
per smelter workerswould expand cancer risk (Magaye et al. 2012). Dermal exposure
and inhalation of magnetic nanoparticle (copper and nickel) results in cancer, lung
fibrosis and skin allergies (Magaye et al. 2012). A detailed study on toxicity of CNTs
revealed that its exposure would result in fibrosis and granulomas as consequences
of carcinogenic and genotoxic effects (Aschberger et al. 2010).

5 Biohazards of Nanoparticle on Environmental Concern

The nanoparticles and their products enter the environment inevitably by means of
washing, recycling and disposing (Kohler et al. 2008). The natural ecosystems are
contaminated directly by the discharge of waste water and powder nanoparticles into
the atmosphere. Unintentional release of AgNPs also results due to the activities
like sampling, leaking and accidental release during transportation (Yu et al. 2013).
Elemental silvers are found available in various forms as native silver (Leblanc and
Lbouabi 1988; Lu et al. 2012) and as blends with metals like gold (Electrum) (Saun-
ders et al. 2008; Denditius et al. 2011). Recently, AgNPs are extensively used in our
day to day life with disinfectant sprays, outdoor paints, odour free socks, antimicro-
bial plastics and textiles. These nanoparticles reach the environment through scrapes,
ageing of the materials and periodic washing of the materials. Liquid products like
sprays and disinfectant are very rapid in entering the environment than the particles
fixed to a solid cast like textiles and paints. The nanoparticles reacted to the sewage
treatment plants could be used as fertilizers for agriculture land so as to reach the
terrestrial system or groundwater system as leachate. Once the silver nanoparticles
get released into the atmosphere, it could transport, disseminate and alter into vari-
ous forms. The humans are exposed to nanoparticles through breathing, skin contact
or eating. Environmentally exposed nanoparticles are associated with several neu-
rodegenerative diseases (Alzheimer’s disease, dementia and Parkinson’s disease)
(Calderon-Garciduenas et al. 2016; Chin-Chan et al. 2015; Gonzalez-Maciel et al.
2017). It was evident from the recent studies that the environmental polluted nanopar-
ticle can translocate to the brain (adults and child) then enter cells and organelles
and finally results in cellular damage with neurotoxicity (Gonzalez-Maciel et al.
2017). The exposure of AgNPs are manifested to affect huge number of aquatic
and terrestrial habitats. They invade the embyos of zebrafish and results in growth
interruption and abnormality. Acute and chronic studies deals with biological tox-
icities available based on organisms like algae, cladoceran and freshwater fishes.
Over all, some iron nanostructures (iron oxide, ferrihydrite, lepidocrocite, hematite,
maghemite, magnetite) are also naturally available in aquatic and terrestrial ecosys-
tem (marine, rivers, lakes, springs, soils and sediments) and could possibly results
in cytotoxic effects accompanied with ROS (Guo and Barnard 2013).
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6 Hazardous Effects of Nanoparticles Towards Aquatic
Organisms

The toxicity of various species in the aquatic system were studied by various
researchers, among them the dominant species is fish followed by crustaceans, crabs
and algal species. Their respective growth, organ development and reproductive
behavior which were analysed by various studies and were tabulated (Table 2). The
results revealed their lethality, behavioural change, toxicity and related stress. The
environmental impact of a nanoparticle resides on various physical, chemical and
biological parameters like shape, size, surface structure, surface charge, chemical
composition, solubility aggregation and dispersion of nanoparticles (Navarro et al.
2008).

6.1 Cytotoxic Effects of Nanoparticles Against Algae

Nanoparticles are curious because of their high surface which can adsorb to pol-
lutants, thereby alters its bioavailability along with the pollutants, and hence toxic
to algae. Few heavy metals (Zn, Co, Cu, Ni, Pb and Cd) possess some detrimental
effects towards algal growth, cell division, photosynthesis and primary metabolites
elimination. The cytotoxicity is influenced by factors responsible for its conceivable
mechanisms. Exposure of TiO2 nanoparticles would entraps the algal cells thereby
reducing the availability of light and subsidise toxicity to the algal cells (Aruoja
et al. 2009).When compared with dark conditions, greater cytotoxicity was observed
under light conditions. Scenedesmus obliquus produce serious ROS and increased
membrane permeability while exposed to TiO2 nanoparticles (Cherchi et al. 2011).
Hazeem et al. (2016) reported that ZnO nanoparticles impose obscure effects upon
marine algae thereby affecting its growth and chlorophyll a content during early
stages of its growth respectively. Exposure of CuO nanoparticles produce adverse
impacts on morphological, biochemical and physiological algae processes. The pro-
duction of ROS, oxidative stress results in biomolecules (protein and lipids) damage,
and finally reduced activity of glutathione activity was also happened (Melegari
et al., 2013, Babu et al. 2014). As the concentration of CuO nanoparticles increased,
metabolic activity of the cells were also decreased (Melegari et al. 2013) followed
by damage of photosynthetic pigments in the presence of light meanwhile alters
photosynthesis (Gouveia et al. 2013). The extent of DNA damage increases with
higher concentration of CuO nanoparticles (Babu et al. 2014). Moreover, Cu NPs
were found available in the cell membranes of algal cells at various sites while
investigating the lipid peroxidation of cell membranes (Manusadzianas et al. 2012;
Melegari et al. 2013). The GO exposure towards Raphidocelis subcapitata brought
some adverse effects like oxidative stress and membrane damage (Nogueira et al.
2015). The pristine graphene exposure will results in inevitable disruption of cell
wall and cell swelling (Pretti et al. 2014). The toxicity of nC60 nanoparticle was
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Table 2 Toxicity of AgNPs on fresh water organisms

Nanoparticles
employed

Organisms Toxicity observed Reference

AgNPs Danio rerio Increased rate of
operculum movement
and surface respiration,
shows respiratory
toxicity

Bilberg et al.
(2012)

Oryzias latipes Multiple malformations
during embryo
development
Decreased optic cup
pigmentation,
exophthalmia, abnormal
finfold, anal swelling,
head reduction and
pericardial edema.

Wu et al. (2010)

Pimephales promelas Enter the embryos
Induction of
concentration-dependent
increase in larval
abnormalities, mostly
edema

Laban et al.
(2010)

Zebrafish embryos Heart rate- drop
Increased mortality rate
Delay in embryo
hatching
Organ deformities

Sutherland et al.
(2010), Becker
et al. (2011)

Zebra fish Oxidative stress, DNA
damage and tumor
formation risk

Asharani et al.
(2008), Becker
et al. (2011)

Algae Inhibition of
photosynthesis

Tuominen et al.
(2013)

C60 fullerenes Daphnia magna Elevated lipid
peroxidation-cephalic
ganglion and gills

Zhu et al. (2006)

Carbon nanotubes
with fats

Daphnia sp. Acute toxic effects Roberts et al.
(2007)

Carbon nanotubes Fresh water crabs Increased mortality Templeton et al.
(2006)

CNFs Klebsormidium
flaccidum

ROS production
Promotion of physical
damage to cells and
inhibition of algae
proliferation
Induction of change in
morphology, cell death

Munk et al. (2015)

(continued)
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Table 2 (continued)

Nanoparticles
employed

Organisms Toxicity observed Reference

GO Green algae
Raphidocelis
subcapitata

Induction of ROS and
film damage, results in
toxic effects and the
density of algae

Nogueira et al.
(2015)

SWCNTs Chlorella vulgaris
Raphidocelis
subcapitata

Restrain of growth Sohn et al. (2015)

GONS, GOQD Chlorella sp. Reduced permeability of
the cell
Plasmolysis
Increase of oxidative
stress
Mitochondrial
membrane damage
Inhibition of cell
division and chlorophyll
biosynthesis

Ouyang et al.
(2015)

ZnO Chlorella vulgaris Distortion in
morphological features
Reduction in cell
viability

Suman et al.
(2015)

TiO2 and C60 Daphnia magna Accumulates within
digestive tract and other
body parts

Becker et al.
(2011), Johnston
et al. (2012)

Earthworm Delay in reproduction Hund-Rinke et al.
(2012)

TiO2 Scenedesmus
obliquus

Production of ROS and
increase in membrane
permeability

Cherchi et al.
(2011)

Nano zerovalent iron
(nZVI)

Earthworm Increased rate of
mortality

Sevcu et al.
(2011), Becker
et al. (2011)

Nanodiamonds Zebra fish Malformations in
embryo

Lin et al. (2016)

Xenopus laevis Increased embryo
malformations
decreased embryo
survival rate

Marcon et al.
(2010)

Daphnia magna Chronic toxicity of high
concentrations resulted
in reproduction
inhibition and 100%
mortality

Mendonça et al.
(2011)

MgO Zebrafish embryos Inhibition of embryo
hatchability

Ghobadian et al.
(2015)
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contributed by absorption and aggregation of the particles over the algal surface
thereby hindering Mg2+ channels and triggering photosynthetic toxicity (Tao et al.
2016). The vital factor responsible for Au nanoparticle toxicity are bioavailability
and biotoxicity. The electric charge present on its surface, for example positive charge
functional group can employ toxicity on algae as it combined with the algae. The
secondary factor that assimilate toxicity is its smaller hydrodynamic particle size
(Garcia-Cambero et al. 2013). The exposure of AgNPs towards algae results in toxic
effects including membrane adhesion, alteration in permeability and ion transport
thereby expanding the porosity of cell, interruption in phosphate management of
cell and DNA synthesis inhibition and ROS formation (Klaine et al. 2008). After
exposure of AgNPs, deformation of algal cells from spindle to round was happened,
ultimately results in cell lysis and collapse. The dose of the AgNPs is responsible for
the severity of toxicity and algal viability, even more ionic silver exhibits extreme
algal toxicity than AgNPs (He et al. 2012).

6.2 Nanoparticles Effects on Terrestrial Species

The released nanoparticles could be deposited in the terrestrial ecosystem like sewage
and soil matrix thereby absorbed so as to interact soil organisms finally results in
toxic effects. The routes of nanoparticle exposure includes nutrition absorption, body
surface contact and through water. As per the observation of Yin et al. (2011) AgNPs
coated with gummi arabicum inhibited the growth and morphological damage was
triggered on Lolium multiflorum. Few terrestrial animals like nematodes and earth-
wormswere chosen as themodels for toxicity evaluation of AgNPs in soil due to high
permeability of their skin. Exposure of AgNPs to Eisenia fetida earthworm resulted
in growth and reproductive toxicity (Shoults-Wilson et al. 2011). Feeding Acheta
domesticus (House cricket) with nanodiamond supplemented diet affected the insect
development with oxidative damage followed by feeding disturbances (Karpeta-
Kaczmarek et al. 2018). Some soil microbes which were exposed by AgNPs are
found to be extremely sensitive and toxic.

6.3 Cytotoxic Effects of Nanoparticles Against Beneficial
Microbes and Protozoa

Microorganisms are the unique nitrogen fixers and animal degraders found in nature,
by the mean time these microbes were located at the end of the food chain to com-
plete the cycle. Silver nanoparticles (AgNPs) has been acknowledged because of its
antimicrobial (antibacterial and antifungal) activity so as to be used as agrochemicals
extensively. Correspondingly, the AgNps sustenance in soil would have consequence
upon beneficial microbiota of soil like nitrogen fixing bacteria, consecutively affects



An Overview of Nanotoxicological Effects Towards Plants … 133

physicochemical characteristics of both plants and soil (Anjum et al. 2013). Addi-
tionally the AgNPs interact with the bacterial cells and are toxic that finally results in
death of microbes like E. coli (Lok et al. 2006). Exposure of inorganic nanoparticles
like TiO2, SO2 and ZnO produce toxic effects upon bacteria which found to increase
in the presence of light (Lovern and Klaper 2006). Death of microbes resulted by
the cell membrane damage are made possible by the exposure of carbon nanomem-
branes (CNMs), could also vitally confides upon harmness to ecosystem, human
health and finally resides in loss of biodiversity (Chen et al. 2017). Exposure of TiO2

nanoparticles to Saccharomyces cerevisiae under dark condition results in toxic effect
(Kasemets et al. 2009), whereas TiO2 exposure towards E. coli and Bacillus subtilis
results in growth inhibition (Erdem et al. 2015). CNMs also possibly induce ROS
associated with lipid peroxidation, DNA damage, protein denaturation and finally
cell death. The cells of protozoa could able to absorb carbon nanotubes resulting in
accumulation within the mitochondrial cells (Zhu et al. 2006).

7 Future Perspectives

The experimental data which reveals the possible interaction between plant root and
the nanoparticle is needed. Since the nanoparticles are widely consumed by human,
their physical, chemical and biological interactions have to be studied keenly. Hence
more prudential idea about interactions of nanoparticle with cells and their respective
toxicity will be recognized. There is no detailed data regarding the consequences
resulting from the chronic exposure of the nanoparticles to both environment and
living beings.

8 Conclusion

Even though the utilization of nanoparticles has elevated in consumer and economi-
cal aspects, some detrimental consequences were also being faced by plants, animals,
human and environment. This chapter explored the fragmentary views of discrep-
ancy in practicing nanoparticle based on its toxicity and environmental hazards.
If the nanoparticles are used as agrichemicals to boost up soil fertility some phy-
totoxic effects were also ascertained, which results in various diseases related to
human and animals. Over exposure of nanoparticles to the environment will also
pose catastrophic risks to the organisms residing in the environmental habitat.
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