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Abstract. The properties of the Kalman Filter to decode elbow move-
ment from non-invasive EEG are analyzed in this article. A set of con-
figuration parameters using cross-validation are tested in order to find
the ones that reduce the estimation error. Found that selecting correctly
the number of channels and the time step used to configure the signal, it
is possible to improve the filter estimation capabilities. As there was an
apparent incidence of the variations in the recorded data used to train
the model, an investigation of how those alterations affect the estimation
precision in various data sets was made. The presented results showed
that significant variations in the velocity and acceleration of the data
set trains filters with lower accuracy than the ones built from a more
uniform set.
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1 Introduction

The interpretation and use of brain patterns related to cognitive tasks is the basis
of the Brain-Computer Interfaces (BCI ) and Brain-Machine Interfaces (BMI ).
Neural patterns related to motor control, imagination and movement intention
have been identified, and, integrated through BCI systems to control mecha-
nisms destined to movement assistance in disabled persons with a partial or
total restriction on the movement of their limbs. Examples of such devices are:
exoskeletons [9,16], prosthetic apparatus [5], wheelchairs [20] or robotic manip-
ulators [15].

Previous studies had demonstrated the possibility to decode kinematics from
EEG signals [7] and, consequently, achieve a continuous motion reconstruction.
The first attempts to create a model to reconstruct continuous motion are found
in [2], where was demonstrated that M1 cells firing rates are related to the
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movement direction in center-out hand movements. These firing rates were more
intense with executed movements in a preferred direction, gradually decreasing
as they went far. Mathematical models that establish a relationship between
the tuning of the cell and the direction were developed in [2,3]. Subsequently,
a model that includes the hand velocity was introduced by [11]. Also, a linear
model that relates the firing rate and hand position based on fitting coefficients
through training was introduced by [8].

In [18], a method for decoding 2-D hand movement from primates neural
activity through a generative model in a Bayesian approach using a Kalman Fil-
ter was introduced. This approach allowed to decode multiple kinematic variables
from invasive EEG, enhancing the estimation performance in comparison with
works that decoded kinematics from linear filters [1,9,17]. Thereupon, in [14],
the experiment was replied in humans models using surface-level EEG obtaining
similar results.

Kalman Filter was successfully applied to decode hand movement trajecto-
ries using Electrocorticography (ECoG) [13], hand velocity [10], position and
velocity of a cursor in a screen [6], and control of a robotic arm by patients
with tetraplegia [4]. Those experiments achieved the reconstruction of Cartesian
movements and did not explore the use of the Kalman Filter to decode specific
kinematic parameters in the joint dimension.

This work proposes to apply the Kalman Filter to decode the right elbow
flexion/extension movement using non-invasive EEG recordings. The filter model
is tested through cross-validation techniques determining a set of configuration
parameters optimizing the signal decoding result. Also, the response is analyzed
in a new group of data, evaluating the response according to the used data set.

2 Materials and Methods

2.1 Experimental Paradigm

This study was conducted by the protocol approved by the Ethics Committee of
Federal University of Rio de Janeiro (Approbation number: 851.521). Six healthy
right-handed volunteers (2 females and four males), without previous training
in similar procedures, were studied. During the test, the volunteer is seated on
a chair, with his arms in the rest position in a conditioned room (Fig. 1-left).

A screen was used to present the cue for the action, and the instructions
were randomly generated to avoid any anticipation in action (Fig. 1-center). The
experiment consisted of two actions indicated by a arrow (black for arm move-
ment and white for non-movement), being formed each one by 60 trials of 10 s.
Afterwards, the data was selected, extracting information for those time inter-
vals were movement was executed. Non-movement data set was not used in this
test. A movement consisted of the right elbow flexion and their return to rest
position (an action on the interval of 90◦to 150◦ approximately).
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2.2 EEG Recording and Signal Processing

The EEG was recorded continuously from scalp electrodes using the Neuron-
Spectrum system and software (Neurosoft Ltd., Ivanovo, Russia). A total of 32
passive Ag-AgCl electrodes were distributed around the scalp using a MCScap
(Medical Computer Systems Ltd., Moscow, Russia) with removable electrodes
according to a 10-10 modified system (Fig. 1-right). An additional EMG elec-
trodes monitored the muscular activity in the biceps. A MPU6050 accelerometer
located in the forearm was used to read the angular position.

Fig. 1. (Left) Volunteer disposition in front of the command screen. (Center) Descrip-
tion of the trial, referencing the on-screen image during the interval and the activity
developed by the volunteer. (Right) Location of the 32 channels around the scalp.

The signals were amplified, digitized with a sampling rate of 1000 Hz and
band-pass filtered in the 0.5–100 Hz frequency band. EEG data were processed
using the EEGLAB Matlab toolbox. Artifacts, as eye blinking and head move-
ments presented as components with homogeneous contributions, were removed
using the ICA algorithm of the EEGLAB toolbox. The signals were removed
using runica as decomposition method through the 10 s test in all the recorded
trials. Segments with high signal interference or disturb were also removed.

Due to their relationship to motor control, EEG signals in the mu band
were considered, thus, a fourth-order pass-band filter in the 8 to 13 Hz band was
applied. To obtain the movement time interval in each trial was used a muscle
activation detector in the EMG signal, utilizing the algorithm described in [19].

3 The Kalman Filter

The decoding model has as purpose to estimate the state xk in the time instant
tk. The states represent right elbow angular position, velocity and acceleration.
As a measured signal, the notation z ∈ �C is used, where C stands for the
number of EEG electrodes used to decode the elbow kinematic.

According to [18] the filter is determined assuming a linear relationship
between the state xk and the observations zk in the instant of time tk. The
generative model is then stated as:

zk = Hkxk + vk (1)

Where Hk ∈ �C×3 is a matrix that linearly relates the neural activity
captured from the EEG electrodes with the kinematics. A Gaussian noise
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vk described as a normal distribution whit zero mean and covariance matrix
Rk ∈ �C×C , vk ∼ (0,Rk).

The state xk propagates in time according to the model:

xk+1 = Akxk + wk (2)

Where Ak ∈ �3×3 is a matrix that linearly relates the kinematics between
times k and k + 1. The noise term wk is assumed to have a normal distribution
with zero mean and covariance Qk ∈ �3×3, wk ∼ (0,Qk).

3.1 Training Process

To train Ak,Hk, Rk and Qk it was assumed that the models of Eqs. 1 and 2
are invariant along time. Considering that the signals xk and zk have a length
k = 1 . . . M . Using least squares [18], the solutions for matrix A and H are
expressed as:

A = X2XT
1 (X1XT

1 )−1

H = ZXT (XXT )−1
(3)

Using the learned values of A and H the noise covariance are then deter-
mined:

Q =
(X2 − AX1) (X2 − AX1)

T

(M − 1)

R =
(Z − HX) (Z − HX)T

M

(4)

Where the matrix X ∈ �3×M correspond to the state values, matrix X1 ∈
�3×M−1 represents the state values from time interval k = 1 . . . M−1, the matrix
Z ∈ �C×M is the EEG signals from the C channels, and the matrix X2 ∈ �3,M−1

stands for the state values taken from the time interval k = 2 . . . M .
Matrices A,H, R and Q coefficients, are dependents of the training data.

They could be configured according to a set of parameters, being, the number
of channels C and the step time Δt. Different combinations of such parameters
were tested using cross-validation in a 6-folds configuration, the responses where
measured with Mean Squared Error MSE (Eq. 5) and the Correlation Coefficient
CC (Eq. 6).

MSE =
1
M

M∑

k=1

(xk − x̂k)2 (5)

CC =
∑

k(xk − x̄)(x̂k − ¯̂x)√∑
k(xk − x̄)2

∑
k(x̂k − ¯̂x)2

(6)
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Fig. 2. Error curve across volunteers according to Δt (left) and the number of channels
C (right) for ascending tasks. (Color figure online)

4 Results

4.1 Cross-validation

In the beginning, the channels were reorganized according to the coherence
respect to C3. In Fig. 2 the error curves obtained for ascending movements are
presented, testing Δt values from 1 to 200 ms, and a set of channels C from 3 to
34. The left graphics illustrate the validation (black line) and training (dashed
line) response according to the time step. Meanwhile, the right graphic presents
the MSE in training according to the number of channels considering the Δt

value. The horizontal lines present the variance through volunteers. The red
square shows a low MSE zone that is augmented at the right.

According to the results, the parameters Δt = 70 ms and C = 3 channels
were selected. This choosing was generalized in all the volunteers.

4.2 State Estimation

A new 6-fold cross-validation was performed to evaluate the filter response
according to the selected parameters. The compiled results in this section show
the response of the validation set in Fig. 3 a decoding example is presented for
an ascending (a), and a descending (b) task.

The mean response for each volunteer decoding respect to position x1, veloc-
ity x2 and acceleration x3 in ascending and descending tasks are presented in
Tables 1 and 2. The mean Frobenius norm value ‖A‖ of the trained state matrix
A is introduced to give an insight of the relationship between the matrix coeffi-
cients and the decoding response.

Was observed that lower values in ‖A‖ gives decoding responses with low
mean MSE and high mean CC. To illustrate this assertion, a dispersion graphic
collecting all volunteers MSE against their respective ‖A‖ was built in Fig. 4 for
ascending (a) and descending (b) tasks. When ‖A‖ (horizontal axis) is raising
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Fig. 3. Decoding for ascending (a) and descending (b) movements. The bold line indi-
cates the real value for position x1, velocity x2, and acceleration x3, and the dashed
line is the state estimation x̂.

Fig. 4. Dispersion graphics of MSE against ‖A‖ for ascending (a) and descending (b)
movements in the 6 volunteers.

up, their respective MSE (vertical axis), grown proportionally with minimal and
maximal limits that increases along x -axis forming a cone-shape across the plane.

Due to A was resultant from states signals xn, both magnitudes were ana-
lyzed through a dispersion graphic. In Fig. 5 are compared the norm of A against
the standard deviation of the training set states used to build it. Was observed
that in sets with higher speed and acceleration variance, the resultant ‖A‖
increased in a quasi-exponential form. However, the position state not presented
similar behavior, due to it had a lower standard deviation.

4.3 Decoding Imposed Movement

The results in the previous section showed that those volunteers whose data
set allowed to train state models with lower ‖A‖ value presents better decoding
results. To validate the decoding capabilities according to the data set, kinematic
patterns that trained a state model matrix with ‖A‖< 3 were selected. This
value was chosen as it seems to present a high decoding accuracy according to
the dispersion graphic in Fig. 5.

Thus, a proposed motion was trained with the collected data and was used
as a reference trajectory for decoding movement in a new test group. This group
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Fig. 5. Dispersion graphics comparing the Standard Deviation (σ) of the estimated
states and their resultant ‖A‖ in ascending movements.

Table 1. MSE and CC of each xn state for all the Vn volunteers for ascending move-
ments.

Volunteer V1 V2 V3 V4 V5 V6

MSE x1 0,45 0,23 0,24 0,23 0,67 1,18

x2 2,33 1,22 1,69 1,17 2,31 10,41

x3 115,5 38,88 74,77 39,41 93,13 436,69

μ 39,43 13,44 25,57 13,60 32,04 149,43

CC x1 0,56 0,53 0,51 0,75 0,54 0,33

x2 0,09 0,32 0,24 0,18 0,15 0,15

x3 −0,06 0,22 0,16 0,19 0,06 0,12

μ 0,20 0,36 0,30 0,37 0,25 0,20

‖A‖ 4,5 2,5 3,59 2,18 3,31 12,35

Table 2. MSE and CC of each xn state for all the Vn volunteers for descending
movements.

Volunteer V1 V2 V3 V4 V5 V6

MSE x1 0,02 0,04 0,04 0,02 0,02 0,02

x2 0,34 0,25 0,12 0,3 0,25 0,24

x3 21,87 27,74 7,38 22,28 15,27 23,33

μ 7,41 9,34 2,51 7,53 5,18 7,86

CC x1 0,97 0,98 0,98 0,97 0,98 0,98

x2 0,8 0,79 0,84 0,75 0,79 0,83

x3 0,65 0,54 0,5 0,49 0,57 0,58

μ 0,81 0,77 0,77 0,74 0,78 0,80

‖A‖ 8,9 9,4 3,87 7,66 6,74 8,84
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Fig. 6. Grand Average Relative Power for Training (orange) and Test (blue) groups
when the movement was executed. (Color figure online)

Fig. 7. (Left) Is presented the dispersion graphics of MSE against norm of ‖A‖ using
regulated trajectories. (Right) bar plot describes the MSE variation for each state.

consisted of a set of signals from 12 volunteers who developed the same exper-
iment without motion sensor. The proposed movement was adjusted for each
volunteer according to their mean interval of movement, that action allowed to
eliminate inter-trial variations.

Before initiating the test, EEG signals from both groups were compared to
analyze equivalence respect to the cognitive response and the movement in Fig. 6
had presented a grand average Relative Power over C3 channel in the analyzed
band from both the training (orange) and test (blue) groups in the task interval
when a motion was executed. This analysis was done according to [12], using a
relative signal the time interval t < 0 s, when the non-task cognitive state was
expected. The horizontal bars represent the movement average time interval.

In both cases, a de-synchronization in the band (ERD) was presented before
the movement onset and continues until it ends near to 5 s. Then, a synchroniza-
tion ERS was presented on the band, increasing the signal energy around 20%.
In both circumstances, this response was expected according to the literature.

In Fig. 7 is presented the decoding response for ascending trajectories. Due to
variations on each volunteer, the adjusted trajectory norm vary their magnitude.
The decoding capabilities leads to a maximum mean MSE of 2.5. Selecting an
adequate set of trajectories allowed the filter to estimate motion in all three states
with a minor error over the tested volunteers. In the right part of the figure,
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MSE variations for each state are presented. Acceleration continues presenting
the worst response over all the decoded states.

The proposed model was compared with a second test, here, trajectories
with ‖A‖> 5 from the first data set were selected to conform the imposed
trajectory, this value was chosen as it presented lower decoding precision in
Fig. 4. The response of this group is presented in Fig. 8. Due to the selection of
an intended movement composed with non-homogeneous data set, the decoding
error increased in all three states.

Fig. 8. (Left) Is presented the dispersion graphics of MSE against norm of ‖A‖ using
non-regulated trajectories. (Right) bar plot describes the MSE variation for each state.

In the Table 3 is presented a resume of the experiment. In it is described the
MSE variation across volunteers according to ‖A‖.

Table 3. MSE response with respect to the 12 volunteers.

‖A‖> 5 ‖A‖< 3

x1 x2 x3 x1 x2 x3

Vol. μ σ μ σ μ σ μ σ μ σ μ σ

V1 0,75 0,98 8,80 6,37 268,9 73,00 0,31 0,36 0,80 0,36 5,04 1,51

V2 0,71 0,76 11,22 7,65 336,4 200,81 0,30 0,29 0,84 0,31 5,28 1,63

V3 0,56 0,65 6,04 2,91 234,5 55,94 0,42 0,37 0,77 0,27 4,70 0,83

V4 0,60 0,66 6,42 2,94 249,0 50,39 0,51 0,43 0,87 0,25 5,22 1,26

V5 0,64 0,76 8,48 5,11 270,0 58,74 0,32 0,39 0,73 0,33 4,90 0,92

V6 0,28 0,36 4,80 3,16 232,6 64,06 0,30 0,28 0,64 0,32 4,72 1,09

V7 0,57 0,56 5,76 3,36 235,3 82,26 0,34 0,29 0,71 0,32 4,82 1,24

V8 0,50 0,82 6,46 5,87 238,9 68,83 0,21 0,29 0,67 0,38 4,80 1,19

V9 0,70 0,94 8,28 7,59 249,6 77,24 0,38 0,41 0,77 0,50 4,70 1,34

V10 0,79 0,78 8,24 3,72 268,8 47,22 0,59 0,28 0,84 0,17 5,16 0,76

V11 0,75 1,06 6,93 6,07 242,6 84,72 0,41 0,45 0,86 0,40 5,00 1,07

V12 0,53 0,87 7,16 5,57 237,5 52,89 0,25 0,31 0,70 0,27 4,62 0,92
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5 Discussion

The results of the previous section showed that the Kalman Filter presented
a variate capability to decode the elbow motion from non-invasive EEG, this
variability was dependent on both the configuration parameters used to configure
the signals that trained the propagation model and the data set variability.

The error curve in Fig. 2 showed an optimal interval of 50 ≤ Δt ≥ 150
ms around the 6 volunteers. Also, it was found that increasing the number of
channels for that specific interval, a decreasing of the decoding accuracy was
presented. Thus, with EEG channels C3, C5 and C1 it was possible to achieve an
optimal decoding response. The selected readings had in common their proximity
to the contra-lateral right arm control region. This results also were found for
descending movements. Presumably, the decoding algorithm required a set of
channels with a strong coherence among them; hence, tests with a major number
of electrodes may require a high-density configuration.

The error curves gave us an insight of parameter Δt influence into the state
estimation. When its values increased, it led to a diminution in the decoding error
for both ascending and descending movements. This result was similar to the
found in [18] were decoding response increased with an augment of the time step,
indicating that movements described with fewer points are closer to the linear
consideration done for the propagation model. However, decoding with high Δt

values could affect the movement control when fast response BMI systems are
required.

The results after the parameter selection showed that acceleration is the state
with the worst decoding response presenting a mean MSE up to 400 in one of the
volunteers. This result also was coincident with [18], who considered that this
state appears not to be encoded in neural firing rates. Following results in the
imposing motion decoding test showed that trained A matrix with high value
into the acceleration coefficients led to wrong responses, minimizing the precision
of the a priori prediction. Therefore, we argue that the incapacity of the filter
to estimate acceleration is more related to the state model than the biological
response of the neural firing rates, where noise caused by the derivation of the
signal is higher, and it is intensified as the movement augments their speed,
having difficulty the state model to propagate an adequate response.

The result in Tables 1, 2 and Fig. 4 showed that volunteers who presented
lower mean MSE and higher mean CC, also had lower A matrix norm value, this
result repeated in descending tasks. The relationship between both magnitudes
was linear with positive inclination, but points disperse in the plane forming a
cone, this shape is related with ‖A‖ as the dispersion plane increased along with
the value coefficients.

The results in Fig. 5 showed that increments in ‖A‖ are related to movement
variability, specifically, with an increase in the motion’s velocity and acceleration
during the test. Consequently, when matrix A was trained with high variance
trials, the resulted model in Eq. 2 will not estimate the state value correctly, to
verify this, the mean σ of the three states, the mean ‖A‖ and the mean MSE in
each volunteer are compared in Table 4, observing that volunteers who presented
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a high variation in the movement’s velocity and acceleration during the training,
presented high mean MSE. However, the algorithm response was more accurate
for decoding descending movements, even in the acceleration state, whose worst
MSE was of 27,74 for Volunteer 3.

Table 4. Mean Standard Deviation of each state compared with their respective mean
norm of matrix A and mean MSE.

Volunteer V1 V2 V3 V4 V5 V6

x1(σ) 0,42 0,42 0,43 0,42 0,43 0,42

x2(σ) 1,19 0,86 1,15 0,85 1,16 1,88

x3(σ) 10,02 5,88 9,14 5,77 9,23 20,80

‖A‖ 4,70 2,87 4,02 2,44 3,45 12,91

MSE 39,43 13,44 25,57 13,60 32,04 149,43

According to these results, we believe that movement estimation had a higher
dependence of the propagation model. Through all the volunteers, was found that
the A matrix trained from movements with high variability achieved the worst
estimation values. Indeed, the optimal value of Δt = 70 ms, built A matrix
with more difficulties to propagate fast movements. Arguably, the experimental
conditions were dependent on the physical and mental conditions of the volun-
teers, as the ascending movements presented worst decoding estimations through
volunteers than the descending ones, thus, factors like the volunteer’s reaction
to the visual stimulus, fatigue, and the gravity effects during the flexion could
cause a high variation in the executed movement. Volunteers, as V2 in Table 1
presented a better signal decoding for ascending movements than, for example,
V6, being the major differences in the acceleration and velocity, that indicates a
lower regularity in the task execution by V6 as the trained filters fail to estimate
the movement.

Hence, the optimal encoding parameters searching led to finding a value set
fitted in conditions specified by the regularity of the volunteer during the exper-
iment. The proposed linear models, therefore, are not suited for high movement
variations, and, presumably, coefficients related to velocity and acceleration esti-
mation were trained to specific movement conditions.

In order to test this assessment, a state matrix from trajectories with higher
and lower regularity was built and used to decode motion from a new data set.
The results showed that a non-regulated motion led to training a model which
high decoding inaccuracy and also, presenting an increment in the MSE disper-
sion on all the tested volunteers over all states. This dispersion was analogous to
the cone shape distribution found in the posterior group, being less significant
as ‖A‖ decreases.

Consequently, a wrong state prediction during the a priori step makes the
filter more dependent of the measurement value in the a posteriori step, which
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discordance with the estimated value led the filter to avoid the convergence in
the K-gain, resulting in a reduced decoding precision. Therefore, we theorized
that models originated from non-regulated data are more sensitive to the inter-
trial EEG variance, increasing dramatically the MSE as the resulting matrix
A got higher coefficients values, making the filter unstable as it obtains larger
K-gain values.

6 Conclusion

In this work, the Kalman filter was tested to decode the elbow movement using
non-invasive EEG signals. The experimental result showed us that it is possible
to decode this movement with relative precision. An optimal configuration for the
state and measurement signals was made through a set of parameters (number
of channels and time step), allowing us to find the best estimation through
cross-validation. Were found that the decoded movement presented a precision
variation around the volunteers and that the filter decodes better the descending
task than the ascending ones.

A set of analysis was made using the optimal set of parameters and was found
that the capability to estimate different movements by the filter appears to be
affected by the trained state model. Being that, when the resultant matrix A
coefficient presented higher values, the resultant decoding error in the valida-
tion group increased. Subsequently, when propagation models were trained from
data with significant variance, it means, movements with higher variation in the
acceleration and velocity, the resultant A matrix presented high values coeffi-
cients, that subsequently, occasioned low precision estimation in the validation
data sets.

Was found that those volunteers who executed movements with high irreg-
ularity presented the worst estimation results in comparison of those that per-
formed a set of movements with low variance. Regardless, due to the form that
the experiment was conducted, is possible that the resulted propagation model
was a generalization of the most common actions executed by the volunteers,
therefore, parameters selected from cross-validation, were the ones that fitted the
most regular actions, with an estimation capability related to a specific region
inside the set of possibilities made during the experiment.

The presented results gave us an insight into how Kalman filter works and
how the training set could be configured through a rigorous selection of trials to
improve decoding results. Therefore, the information could be removed according
to the response of the volunteer, if it does not cope with the task regularity. On
the other hand, it is possible to integrate them with clustering algorithms that
detect different ranges of movement, and therefore, to allow us to train a set of
filters according to the mean speed of each range, adapting them to decode a
significant set of movements with minor estimation error.
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