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Abstract. For time series forecasting, obtaining models is based on the use of
past observations from the same sequence. In those cases, when the model is
learning from data, there is not an extra information that discuss about the
quantity of noise inside the data available. In practice, it is necessary to deal with
finite noisy datasets, which lead to uncertainty about the propriety of the model.
For this problem, the employment of the Bayesian inference tools are preferable.
A modified algorithm used for training a long-short term memory recurrent
neural network for time series forecasting is presented. This approach was
chosen to improve the forecasting of the original series, employing an imple-
mentation based on the minimization of the associated Kullback-Leibler Infor-
mation Criterion. For comparison, a nonlinear autoregressive model
implemented with a feedforward neural network was also presented. A simula-
tion study was conducted to evaluate and illustrate results, comparing this
approach with Bayesian neural-networks-based algorithms for artificial chaotic
time-series and showing an improvement in terms of forecasting errors.

Keywords: Bayesian approximation � Time series forecasting � Nonlinear
autoregressive models � Recurrent neural networks

1 Introduction

The importance of the use of Bayesian methods as a natural methodology for imple-
mentation in Time Series Forecasting (TSF) has increased rapidly over the last decade.
In particular, this technique provides a formal way to incorporate the prior information
from the underlying process related with data generation before of its knowing. Then,
this is seen as a resource in sequential learning and decision making, where it is

© Springer Nature Switzerland AG 2019
A. D. Orjuela-Cañón et al. (Eds.): ColCACI 2019, CCIS 1096, pp. 197–208, 2019.
https://doi.org/10.1007/978-3-030-36211-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36211-9_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36211-9_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36211-9_16&amp;domain=pdf
https://doi.org/10.1007/978-3-030-36211-9_16


possible to establish a direct relation between the exact results and the small samples.
Moreover, the Bayesian paradigm takes into account all parameters and the uncertainty
of the model [1], making relevant the relation between the predictive distribution and
the sampling information, where the forecasting is allowed when all parameters are
integrated based on a posterior distribution.

Commonly, the selection of a particular model is not specified by some theory or
experience, and many adopted models can be trained with the purpose of obtaining that
information [2]. Models comparison can be implemented based on a Bayesian
framework through the so-called posterior odds, computed as the product of the prior
odds and the Bayes factor. This Bayes factor measurement is obtained from any two
models, estimated by the likelihood ratio of the marginal likelihood of two competing
hypotheses represented by the models, quantifying the support of one model over
another based on the available data.

Long short-term memory (LSTM) models are widely utilized for TSF because its
architecture based on a special sort of recurrent neural network (RNN) [3, 4]. This kind
of this artificial neural network (ANN) architecture is known due to the connections
between units, which form a directed cycle. In this way, an internal state of the network
is built up, which allows it to exhibit dynamic temporal behavior. In spite of the
feedforward architecture of this network, their internal memory can process arbitrary
sequences of inputs [5]. However, RNN are difficult to train using the stochastic
gradient descent, according to the so-called “vanishing” gradient and/or “exploding”
gradient phenomena. This limits the ability of simple RNN to learn sequences with
relatively long dependencies [6], making that its employment was reconsidered. For
this, proposals like vanilla RNN deal with the vanishing or exploding gradient problem,
but remaining the long-term dependence problem, making very difficult the training
[7]. Improving the mentioned problems, the LSTM introduces the gate mechanism to
prevent back-propagated errors from vanishing or exploding problem, which has been
shown to be more effective than conventional RNNs, preventing the overfitting and
limitations with long-term sequences [8].

Applications of this kind of ANN can be seen in the work from Zhao et al. [9],
which proposed a LSTM network for considering temporal–spatial correlation in traffic
system. That ANN was composed of many memory units, comparing this architecture
to other representative forecasting models, achieving a better performance. In addition,
Kang et al. [10] employed the mentioned RNN to analyze the effect of various inputs
settings on its performance. In [11] the authors used a model of ANN combined with a
LSTM in a similar way that a Deep Neural Network (DNN), including the autocor-
relation coefficients to improve the model accuracy and providing a better precision
than traditional ones. Some recent works as in [12], where an adaptation of a LSTM to
forecast sea surface temperature (SST) values was employed, including one day and
three days information as past inputs. Then the RNN was compared to other models
that employed information from weekly mean and monthly mean.

In this paper, a LSTM based on Bayesian Approach (LSTM-BA) method is pro-
posed to predict time series data from well-known chaotic systems. The motivation to
use this model is related to the property of this network with one full-connected layer to
obtain a regression model for prediction. Also, the LSTM layer has been utilized to
model the temporal relationship among time series data, using the Bayes information of
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the weights updated and a heuristic approach to adjust the number of training iterations.
This requires the ability to integrate a sum of terms in the log joint likelihood using the
factorized distribution. In some cases, the integral operations are not in closed form,
which is typically handled by using a lower bound showed by Wang et al. [13], where a
new method called improved Bayesian combined model.

This work is organized as follows: Section two describes LSTM with the proposed
approach (RNN-BA) using Bayesian inference-based heuristic. Section three shows
details about the architectures employed for forecasting and an experimental design.
The fourth section offers results conducted throughout chaotic time series. Section five
provides a discussion based on the used implementation. Finally, section six concludes
about this work.

2 Recurrent Neural Networks: Long-Short Term Memory

Classical feedforward neural networks, whose connections are directed and without
cycles, only maps the current input vector to output vector [14]. This represents a
disadvantage because they cannot memorize previous input data, and in addition, a
determination of an optimal time lags size cannot be obtained. The mentioned problems
are increased due to the input data must be truncated into specific length for developing
of the model, producing prediction results not desirable.

Opposite to the classical networks, the RNN allow cyclical or recurrent connec-
tions, mapping the complete historical input data to each output. At the same time,
these recurrent connections provide a special aspect to memorize information from
previous inputs that persists in the network’s internal state, influencing the network
output. This attribute is useful when noisy signals or sequences with abrupt changes are
treated, for example, chaotic series. Different applications have been developed with
this architecture, which can change of complexity according to the number of units and
connections. Likewise, for standard RNN architecture, the internal influence is given by
the number of neurons in the hidden layer, which can decline or blowing up expo-
nentially the value of the synaptic weights. This, according to the cycling behavior
established by the recurrent connections. For this, some RNN models are trained with
backpropagation through the time and real time recurrent learning for avoiding the
vanishing and exploding error problem.

The main advantages of the LSTM are to model long-term dependencies and to
determine the optimal time lags for TSF problems. These aspects are desirable for long-
term future predictions specially, due to the lack of priori knowledge between samples.
In addition, the problem of the sum of error signals increment, a proposal based on the
constant error carrousel (CEC) was proposed in a first version. The LSTM architecture
is modified, including a pair of gates, which can allow the flow from inputs to outputs.
In the enhanced version, it adds a reset gate called forget gate [8], including the notion
of memory cells as shown in Fig. 1 by the yellow blocks.

In the present proposal, a LSTM model is trained with focus on the exploration of
solutions by employing a Bayesian heuristic method. In this way, an improvement
given by the overfitting problem was searched [17]. Therefore, in order to make the
topology of LSTM as simple as possible, it is important to delete unnecessary units,
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layers and connections, thus, to optimize the training and topology of RNN, we pro-
posed a heuristic adjustment, as follows:

1� it � 2 H0 � KLð Þ ð1Þ

H0 �Np �KLþ Ix ð2Þ

where lx is the dimension of the input vector, Np is the number patterns, and H0 is the
initial value of hidden neurons. Then, a heuristic adjustment for the pair (it, Np), the
number of iterations and patterns as function of the hidden units Ho and KL (Kullback-
Leibler Information Criterion), according to the membership functions shown in Fig. 2.
Finally, an approximation for the network weights and biases was developed, where all
the model parameters were modelled as Gaussian distributions with a diagonal
covariance. An exception for latent states, which was modelled as a Gaussian distri-
bution with an almost diagonal covariance.

3 Experimental Design

Experiments with data generated from an artificial chaotic systems, which were per-
formed to obtain five common benchmark series with length of 1500 points. This
length was chosen intentionally, for determining whether this a limitation in order to
compare the model against other much simpler models with probable less overfitting.

For chaotic series, the generation of such aspect belongs to reaching the attractor.
To do this, the system was allowed to evolve after one hundred samples, achieving the

Fig. 1. Flow chart inside the LSTM RNN. (Color figure online)
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corresponding attractor. According to this, we assumed that the number of iterations
guarantees the state of the dynamic system, ending the initial transient on the attractor.
In spite of this, there are no reliability that the system will revisit future events similar
to those observed during training.

3.1 Employed Datasets

For assessment of built models, seven datasets with artificial chaotic time series were
used. Each of these series is describe next:

Mackey-Glass Series: The dataset MG17 and MG30 are by sampling the Mackay-
Glass (MG) equations, given by the expression (3), as follows:

_x tð Þ ¼ ax t � sð Þ
1� x t � sð Þc � bx tð Þ ð3Þ

with a, b, c, s setting parameters shown as follows in Table 1.

Logistic Time Series: The dataset LOG01 and LOG02 series were mapped from
logistic system and represent in (4), which is defined by:

x tþ 1ð Þ ¼ ax tð Þ 1� x tð Þ½ � ð4Þ

where a = 4, the iterations in Eq. (4) perform a chaotic time series (see Table 2).

Fig. 2. Heuristic adjustment of (it, Np) in terms of KL after each epoch.

Table 1. Parameters to generate MG time series

Series N a b c T

MG17 1500 0.2 0.1 10 17
MG30 1500 0.2 0.1 10 30
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Henon Chaotic Time Series: This time series can be constructed by following
Eq. (5), however, it presents many aspects of dynamical behavior of more complicated
chaotic systems.

x tþ 1ð Þ ¼ bþ 1� ax2 ð5Þ

where a and b were fixed as shown in Table 3. These same parameters were used in
both cases.

Lorentz Time Series: The Lorenz model is given by the Eq. (6), the data is derived
from the Lorenz system, which is given by three time-delay differential systems.
Table 4 specifies the values employed to generate the data samples.

dx
dt ¼ a y� xð Þ
dx
dt ¼ bx� y� xz
dx
dt ¼ xy� bz

8><
>: ð6Þ

Rössler Chaotic Time Series: In this example, the data was derived from the Rössler
system, which is given by three time-delay differential systems represented in
expression (7).

dx
dt ¼ �y tð Þ � z tð Þ
dx
dt ¼ x tð Þþ ay tð Þ
dx
dt ¼ bþ z tð Þ x tð Þ � cð Þ

8><
>: ð7Þ

Table 2. Parameters to generate LOG time series

Series N a X0

LOG01 1500 4 0.1
LOG02 1500 4 0.3

Table 3. Parameters to generate HEN time series

Series N a b X0 Y0
HEN01 1500 1.4 0.3 0 0
HEN02 1500 1.3 0.22 0 0

Table 4. Parameters to generate LOR time series

Series N a b c X(0) Y(0) Z(0)

LOR01 1500 0.2 0.2 5.7 12 9 2
LOR02 1500 0.42 0.42 0.42 0.1 0.1 2
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The dataset was built by using four-order Runge–Kutta method with the initial
value as shown in Table 5, and the step size was chosen as 0.01.

Ikeda Time Series: The Ikeda map was given in expression (8) as follows:

_x ¼ 1� l xcos tð Þ � ysin tð Þ½ �
_y ¼ l xcos tð Þ � ysin tð Þ½ � ð8Þ

where t ¼ 1= 1þ x2 þ y2ð Þ: This system displays chaotic behavior over a range of
values for the parameter, including the values chosen in Table 6.

In the experiments, the datasets were splitted into two parts: the training set and the
test set. In the training phase, each of the individual models was trained with optimized
parameters given by each filter. This means that every model was constructed with a
sequence of data different to the test set samples. Figure 3 shows examples from each
generated dataset for the five cases.

3.2 Neural Networks Models

The architecture of the LSTM model was composed by an input with length (ix) of 25
samples. The nonlinear gate was given by the sigmoid function and the nonlinearity
from input to output was established by a hyperbolic tangent function. The number of
epochs for training was adjusted to 50 as maximum. Learning rate was 2e-3 with a
training percent of 0.80 and 512 units in just one hidden layer, dropout rate of 1.0 and
weight decay of 1e-8.

As a way to compare the results in terms of ANN models, a nonlinear autore-
gressive model (NAR) was employed. This is an architecture that is based on feed-
forward connections as classical proposals of neural networks but with considerable
results for forecasting tasks [15–17]. The main difference is determined by the recur-
rence that is missing in this model as previously mentioned. For developing the
forecasting the expression (7) describes this model, in the way:

Table 5. Parameters to generate ROS time series

Series N a b c X(0) Y(0) Z(0)

ROS01 1500 0.2 0.2 5.7 12 9 2
ROS02 1500 0.42 0.42 0.42 0.1 0.1 2

Table 6. Parameters to generate IK time series

Series N µ X(0) Y(0)

IK01 1500 0.9 0.5 0.5
IK02 1500 0.8 0.9 0.6
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yi ¼ tanh
Xp

k¼1
aiyi�k þ b

� �
ð9Þ

where yi is the time series to be modeled, ai are the coefficients of the model, which are
called synaptic weights (wij) in other applications models. Parameter b is a bias value
used to fix the function to be found. It is possible to see nonlinearity in the hyperbolic
tangent (tanh) in (3) known as transfer function of the units or neurons in the neural
model.

For NAR model, some equivalent parameters were fixed as LSTM model. For
example, an input vector with 25 samples was used and 50 epochs for training. One
hidden layer was also employed, modifying the number of neurons from two to ten and
computing the results in an experimental mode. The resilient backpropagation algo-
rithm was employed for adjusting the synaptic weights due to its fast convergence and
low computational cost.

Fig. 3. Examples of the generated datasets.
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3.3 Prediction Error Metrics

To assess the performance of the forecasting, the symmetric mean absolute error
(sMAPE) was employed as suggested in [18], and as shown in expression (10):

sMAPE ¼ 1
n

Xn
i¼1

Xt � Ftj j
Xtj j þ Ftj jð Þ=2 � 100 ð10Þ

where t is the observation time, n is the size of the test set, Xt is the original series and
Ft is the forecasted series.

Finally, the Root Mean Square Error (RMSE) was employed to obtain the error as
in [19], given by the computation in (11) as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Xt � Ftð Þ2

r
ð11Þ

where t, n, Xt and Ft are the same as in (10).

4 Results

Table 7 shows the results computed for sMAPE and RMSE average across all datasets
when the LSTM model and its modification with the Bayesian Approach (LSTM-BA)
were trained. Two horizons for this forecasting were highlighted because the best
results. As a complement, Table 8 shows the results for NAR implemented models,
where information about the neurons in the hidden layer and average for sMAPE and
RMSE from computation in all datasets are shown.

The BA approach shows a level improvement, indicating the necessity of infor-
mation from prior distribution for an adequate model with better results in terms of
prediction error. The evaluation of the results across the 10 series analyzed through its
mean value evinced, with the use of sMAPE and RMSE indices, that there was an
increment when the horizon is deeper for each series. Note that there is a little
improvement of the forecasting given by LSTM-BA approach compared with the
traditional LSTM one, which resulted from the use of a stochastic characteristic to
generate a deterministic result for long-short-term prediction.

Table 7. Mean forecast-error metrics computed by LSTM approaches employing all datasets.

Method Horizon
Forecast of 3
out-of-sample

Horizon
Forecast of 18
out-of-sample

sMAPE RMSE sMAPE RMSE

LSTM-BA 0.056 0.132 0.033 0.120
LSTM 0.057 0.138 0.039 0.135
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For the NAR model, the results remained under the results of the LSTM, showing
the advantages of RNN compared with feedforward networks. In spite of the com-
parison was not equitable due to the number of units and optimization parameters to
train the models, the results exhibit advantages of the recurrent strategies.

5 Discussion

The assessment of the obtained results, comparing the performance of the proposed
algorithm, shows a significance improvement measured either by sMAPE and RMSE
index for the LSTM-BA and LSTM ones contrasted to NAR models. According to the
literature, it is not properly justified or experimentally proven that LSTM networks are
appropriate for modeling chaotic series. However, as consequence of using the present
proposal, there was an increment of the network in terms of learning of long sequences.
This approach came from the idea that only the most recent data are important, and the
sliding time window methods are very useful for pattern recognition, for datasets with
highly dependence on the past bulk of observations.

LSTM models are powerful enough to learn the most important past behaviors and
understand whether those past samples are important features in the making prediction
process. This could not exposed by the NAR models, which, in spite of its utility in
TSF, did not have better results than the RNN proposals. As mentioned, recurrent
connections present capacity to memorize nonlinear relations between the samples,
which allow to performance the forecasting in a better way. Other aspect for the NAR
model is related with the number of neurons in the hidden layer. For both error
measures, it was exhibited that with five neurons the models presented the best per-
formance. After this number, the networks showed an overfitting incrementing the error
in the test set.

In the specific case of chaotic time series, alternative models have been worked
based on other Bayesian proposals. Examples of this, can be seen in [20], where a
Bayesian enhanced ensemble approach, or in [21] with a Bayesian enhanced modified

Table 8. Forecast-error metrics computed by NAR approaches employing all datasets.

Neurons Measures
RMSE sMAPE

2 0.465 0.099
3 0.301 0.081
4 0.336 0.085
5 0.269 0.072
6 0.299 0.077
7 0.301 0.074
8 0.311 0.076
9 0.415 0.103
10 0.329 0.078
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proposal, and in [22, 23] with BA extended and BA basic proposals, respectively. In all
these models, the results were comparable and lightly under the present ones.

The limited amount of available input and a flexible prior over a large space of
possible nonlinear models produces significant posterior uncertainty on the dynamics
and the global prediction, converging to the long-term mean with large variance. This is
due to the poor estimation of the mean error values using so little amount of data. In
order to improve the value of the results, more prior information such as the apparent
periodicity and trend of the signal must be considered.

6 Conclusions

In this paper, a proposal that includes a Bayesian heuristic approach to optimize the
training and architecture of LSTM, allowing modifying its parameters in a better way.
For this, the addition of information as the number of feedback layers, past input layers
and incorporation of self-adaptive heuristic, adjusts the training process. Furthermore,
we have shown that our model yields neural networks with higher prediction capability
for time-series data, comparing the performances of the proposed algorithm and the
existing one through the numerical experiments, using well-known benchmark series.
An alternative proposal based on NAR models was presented with low performance
compared to the LSTM ones.
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