
L2R-QA: An Open-Domain Question
Answering Framework

Tieke He1, Yu Li1, Zhipeng Zou1, and Qing Wu2(B)

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210093, People’s Republic of China

hetieke@gmail.com
2 School of Economics, Nanjing 210093, People’s Republic of China

wuqing@nju.edu.cn

Abstract. Open-domain question answering has always being a chal-
lenging task. It involves information retrieval, natural language process-
ing, machine learning, and so on. In this work, we try to explore some
comparable methods in improving the precision of open-domain question
answering. In detail, we bring in the topic model in the phase of doc-
ument retrieval, in the hope of exploiting more hidden semantic infor-
mation of a document. Also, we incorporate the learning to rank model
into the LSTM to train more available features for the ranking of candi-
date paragraphs. Specifically, we combine the results from both LSTM
and learning to rank model, which lead to a more precise understanding
of questions, as well as the paragraphs. We conduct an extensive set of
experiments to evaluate the efficacy of our proposed framework, which
proves to be superior.

Keywords: Question answering · Learning to rank · Topic model

1 Introduction

Since the 1960’s, a large number of Question answering systems has been devel-
oped [1]. It addresses different types of questions on different domains from
different data sources. We focus on the answer of factoid open-domain questions
adopting Wikipedia as the knowledge source. Open-domain means the domain of
questions is not limited, and its development was limited because of the absence
of a viable knowledgebase. The emergence of Wikipedia, a simultaneously evolv-
ing collection of information on diverse topics, provides an opportunity to bridge
the gap between the open-domain questions and knowledge base. According to
Jurczyk’s analysis [9], Wikipedia performs well on different types of questions.
It is a suitable knowledge base for what, how and who questions. Especially
for what- questions, where the coverage of answers can reach 60%. And for the
other two types of questions, Wikipedia also performs better than other existing
knowledge bases. Besides, Wikipedia has diverse types of data which maintains
high coverage on numerical, personal, and objective facts.
c© Springer Nature Switzerland AG 2019
Z. Cui et al. (Eds.): IScIDE 2019, LNCS 11936, pp. 151–162, 2019.
https://doi.org/10.1007/978-3-030-36204-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36204-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-36204-1_12


152 T. He et al.

Using the large-scale collection of documents brings the challenge of open-
domain question along with machine reading at scale (MRS). Traditional reading
comprehension supposes that the input text contains the answer, while it is not
realistic for open domain QA. We need to narrow down the range of answers,
i.e., selecting the most relevant documents first and then using reading compre-
hension to process. Besides, limiting to the single knowledge source force the
model to be very precise because the answer may only appear once.

To alleviate all these problems, we propose a new open-domain question
answering framework based on Wikipedia text. We mainly follow the structure
as Zhao et al. [4] proposed to solve the problem of machine reading at scale.
However, in their framework, they use the TF-IDF for the representation of
documents, which may lose much semantic information of the documents, leading
to inaccuracy when computing the similarities between documents. In seeing this,
we try to enhance that by adopting some advanced models that better represent
these documents, i.e., Latent Semantic Indexing (LSI) for example, and then
we calculate the similarity between them to get the top 5 relevant documents
according to given questions. Also, we consider more features during the reading
comprehension phase, especially, our framework adds up the learning to rank
(LTR) as features to better encode both the paragraph and question, in order to
find the final answer more precisely. An extensive set of experiments are designed
and conducted to testify the efficacy of our proposed framework, and the results
demonstrate the superiority of it.

The main contributions of our work are as follows:

– We apply LDA on document representation in the task of large-scale docu-
ment retrieval and compare with the accuracy and efficiency while using the
tfidf model.

– We use the attention mechanism in selecting answers from candidates by using
learning to rank (LTR) model to pay more attention to answers included in
more relevant documents.

The rest of the paper is organized as follows: In Sect. 2, we introduce the
related work. Section 3 presents our framework for open-domain question answer-
ing, the methods and techniques we used are depicted in details in this section.
Section 4 describes four datasets used in our work. The details of our experi-
ments and the evaluation part are in Sect. 5. Comparison with others’ work is
also presented in this section. We conclude our work In Sect. 6, along with future
work.

2 Related Work

2.1 Question Answering Systems (QASs)

Question answering systems (QASs) was born to solve the “Last-Mile problem”
of the search engines. Instead of presenting an ordered list of related documents
or corresponding web links, the QASs generate the answers of the question asked



L2R-QA: An Open-Domain Question Answering Framework 153

in natural language directly, which save the time of browsing the documents to
find the answer.

Based on the type of data source, QASs can be classified as knowledge-base
question answering (KB-QA) and text-based question answering. For KB-QA,
whether using traditional methods, such as semantic parsing [2], information
extraction [15], vector modeling [3], or using deep learning methods to improve
it, such as adapting Convolutional Neural Network (CNN) on the semantic analy-
sis method [16] and vector modeling method [7], using Long Short-Term Memory
(LSTM) and Convolutional Neural Network (CNN) to classify entity relation-
ship [14] can not solve the fixed schemes and incompleteness. The incompleteness
makes the system unable to use these knowledge bases. Hence the correspond-
ing answer cannot be given. Besides, the reason for incompleteness including
real lacking raw data and not mined data cannot be determined, which adds
difficulties for optimization and improvement. On the other hand, triples used
to represent questions cannot faithfully represent the semantic structure of the
question, especially for more complicated question or its concept is rather vague.
However, answering from the raw text as text-based QA avoid these problems,
which motivate the proposal of our method.

2.2 QA with Wikipedia

Wikipedia is a collaborative, continuously growing, semi-structured knowledge
source which is usually applied to QA as the knowledge base. Jennifer leverages
the characteristics of Wikipedia to implement type independent candidate gen-
eration method for QA, which shows that Wikipedia metadata can be used to
extract candidate answers from results returned by searching without inputting
ontology. Pum-Mo Ryu makes full use of Wikipedia by using different types
of data to answer different kinds of question [5]. They suggest that infoboxes,
category structure, and definitions have their unique strength in answering fac-
toid questions, list questions and descriptive questions perspectively. And the
combination of answers from different modules using different types of semi-
structured knowledge source has been improved compared with the traditional
use of Wikipedia [6,13]. Wikipedia is also used as an auxiliary data source. Ser-
gio presents a novel architecture to solve the Cross-Lingual Question Answering
task with the use of multilingual relations encoded in Wikipedia when processing
Name-Entities in queries [8].

In our work, we treat Wikipedia as a collection of documents and use LDA
and LSI to filter the relevant documents of question from more than 5 million
items. And the result is the input of the machine comprehension of text to find
the final answer.

3 Datasets

3.1 Wikipedia

We use the processed Wikipedia provided by Danqi et al. (2017) as our knowledge
base to find answers in the full-scale experiment. The document dump includes



154 T. He et al.

the latest documents of diverse topics [13]. Based on the 2016-12-21 dump of
English Wikipedia, they used the WikiExtractor script to extract and clean
text for machine comprehension. The output document files of the extractor are
consist of a serious of articles which are represented by XML element. And each
element has two attributes: (1) id, which is the identification of the article (2)
URL, which is the link to the original Wikipedia page, including content that
contains pure text, one sentence per line. Note that the first sentence is the title
of the article.

3.2 SQuAD

The Stanford Question Answering Dataset (SQuAD) dataset is a large-scale
reading comprehension dataset generated by crowdsourcing. Rajpurkar et al.
[12] used Project Nayuki’s Wikipedia internal PageRank to get top 10000 arti-
cles from Wikipedia and sampled 536 articles randomly as the resource, and
then filtered to get 23,215 paragraphs which cover a wide range of topics. For
each paragraph, up to 5 question and answering tasked to be given based on
the content. Furthermore, the crowd workers are tasked to select the shortest
span based on the question along with the paragraph. Hence, each example in
SQuAD consist of articles and each article consists of title and paragraphs along
with human-generated questions and corresponding answers in the type of span
usually. Besides, they used two metrics in evaluation:

1. Exact match (EM), which is used to measure the percentage of matching
where the prediction matches one of the ground truth exactly.

2. (Macro-average) F1 score, which is used to measure the average overlap
between them.

In our work, we use SQuAD which contains 87k examples in training and
evaluating periods of selecting an answer from candidate paragraphs returned
by document retrieval to complete the reading comprehension task. And the
development SQuAD containing 10k examples is used only in evaluating period
of open-domain question answering, which means giving the whole Wikipedia as
the resource to find the answer.

4 Framework

In our framework, we use information retrieval, topic model, bidirectional long
short-term memory network (BiLSTM) and feature engineering et al. to imple-
ment answering questions based on large-scale documents. Figure 1 gives an illus-
tration of our system.

4.1 Information Retrieval and Topic Model

In our work, we use LSI and LDA to replace TF-IDF used in Chen’s DrQA [4].
Which improves efficiency and accuracy.



L2R-QA: An Open-Domain Question Answering Framework 155

Fig. 1. The proposed framework L2R-QA

In the module of document retrieval, we use LDA to model the documents
extracted from the Wikipedia and the given question. The integrity process flow
is as follows.

– Use CoreNLP toolkit [10] to tokenize, name entity tags, generate lemma and
part-of-speech.

– Construct a bag-of-words model and index of the document.
– Compute TF-IDF of the document.
– Model the documents with LSI.

When retrieving relevant documents of given question, we first model the
question with LSI model generated, and then return the top 5 most relevant
documents based on the similarity between question and documents.

4.2 Paragraph Features Extraction

In our work, we use paragraph as the smallest units of data for machine com-
prehension, and apply BiLSTM to process the features of paragraph to learn the
model. We describe the details of our methods as follows.

We divide the documents returned by document retriever into paragraphs
and denotes it as Eq. 1

A = {p1, p2, · · · , pm} (1)

And tokenize the paragraphs as Eq. 2

pi = {t1, t2, · · · , tn} (2)

For each token ti, we use five methods to extract features, including four features
has been used in DrQA and additional one added by us. Hence, we introduce
the first four features briefly and the added one in details.



156 T. He et al.

– Word embedding: We used the fine-tuned word embedding based on the 300-
dimentional Glove word embedding, which consider the keywords like what,
when, who, that are crucial in QA. And denote it as Eq. 3

vembedding(pi) = E(pi) (3)

– Exact match: 3 binary features are used to indicate whether pi can match any
word in question q in original, lower-case or lemma form respectively. And
denote it as Eq. 4

vexact−match = M(pi ∈ qi) (4)

– Token features: Include three manual factors include part of speech (POS),
name entity recognition (NER) and normalized term frequency (TF), which
is denoted as Eq. 5

vtoken−feature(pi) = (POS(pi), NER(pi), TF (pi)) (5)

– Aligned question embedding: Consider the doft alignment between the words
with similar but not same word, Chen adds aligned question embedding.
Denote as Eq. 6

valign(pi) =
∑

j

ai,jE(qj) (6)

where

ai,j =
exp(α(E(pi)) · α(E(qj)))∑
j′ exp(α(E(pi)) · α(E(qj′)))

(7)

Thus, we extracted all the features to represent the topic, semantic and the
semantic structure of the paragraph, which is denoted as Pi. Hence, the repre-
sentation of article can be denoted as A =

∑m
1 pi. We also choose BiLSTM to

learn the presentation of paragraph, and update the value of hidden weights step
by step.

q = BiLSTM({q1, q2, · · · , ql}) (8)

4.3 Question Semantic Modeling

Question is usually a short sentence which has simple semantic structure and
few implicit semantic. Recurrent Neural Network can perform well on modeling
the semantic of the question, and BiLSTM can improve the performance. In
last section of our system, we tokenize question into sequences and denote it
as q = {q1, q2, · · · , qk}. We suppose that q = nonlinear({q1, q2, · · · , qk}),where
q is the semantic vector of question, and qi denotes the vector of ith word in
question. We apply another BiLSTM on question embedding as Eq. 9:

q = BiLSTM({q1, q2, · · · , ql}) (9)

Recurrent neural network (RNN) can contact the context to express the seman-
tics of text and can perform well in modeling text. While LSTM pays more



L2R-QA: An Open-Domain Question Answering Framework 157

attention on the context related to the current word, i.e. the importance of
words differs in different sentences, which is also known as keyword effect. So
we need to set different weights on different words to accurately represent the
semantic features of the text as q =

∑
k wkqk . For wk, we can get Eq. 9, where

u is the shared parameters learned by BiLSTM.

wk = nonlinear(u · qk) (10)

4.4 Candidate Answers Selection

Candidate answer selection is to find the final answer from the paragraph
retrieved by the system in the first period. The framework of selecting answer
is shown in Fig. 1. Generally speaking, we combine the features of questions
and paragraph tokens and use deep learning algorithms to learn the weights.
After feature extracting and parameters learning of paragraphs, sequences and
questions, the system can represent the semantic of them very well. We use the
feature vector of tokens and questions as input and train another two BiLSTMs
to get the start token and end token of answer independently. Then the content
between the start and end token is supposed to be the final answer. To capture
the similarity between question q and paragraph p when each token being start
and end, we compute the probabilities using nonlinear terms as

Ps(m) = nonlinear(tmWsq) (11)

Pe(n) = nonlinear(tnWeq) (12)

The original method is to maximize the Ps(m)×Pe(n) t get the start and end
tokens, while we consider the effect of the paragraph using the results of learning
to rank (LTR). The answer is supposed to be contained in the paragraph, so take
paragraph as the smallest unit, the paragraph which has a higher score in LTR
is more likely to contain the correct answer. In the candidate answer selection,
we use LTR as part of weight when computing the probabilities of start and end
tokens. In other words, the tokens contained in the top paragraph in LTR are
rewarded to increase the possibility of choosing the final answer. And the reward
is ai, and the probability to be maximized changed to Eq. 13

Pi,m,n = max(aiPs(m)Pe(n)) (13)

In summary, we use information retrieval and current neural network to com-
plete the machine learning at scale task. Firstly, we tokenize the documents of
Wikipedia and question to get the valid sequences. Then use the BoW method
[17] to encode the terms and TF-IDF to calculate the importance of terms. With
the statistics of TF-IDF, we apply LDA/LSI to model the document features,
i.e, using Dirichlet Probability Model/Singular Value Decomposition to com-
pute the similarity between documents and given questions. The top 5 relevant
documents are returned as the input of reading comprehension.

In the machine reading period, we divide the document into paragraphs for
processing. With the same method used to tokenize in document retrieval period,



158 T. He et al.

and construct the features of terms manually. For each term in the paragraph, it
has the feature of word embedding vector. At the same time, we add NER and
POS tagging process to get the features. These features can specifically show the
type of words and the location of words, which can provide a basis for the neural
network to understand the semantic structure. Besides, we add LTR to improve
the importance and attention of paragraphs as shown in Fig. 2. For the generated
feature vectors, we use BiLSTM network to learn the rules corresponding to the
segmentation vectors as the final feature of the text. As for the question, we
apply another BiLSTM on tokenized text to get the semantic vector q.

In answer selection period, we use two independent neural networks to find
the starting and ending positions of the answer and use a nonlinear model to
calculate the probability that each word in the candidate answer becomes the
beginning and the end. Additionally, we also considered the influence of LTR’s
paragraph ranking on the answer.

Fig. 2. Learning to Rank in our work

5 Experiments

We introduce our experiments from three aspects: (1) document retrieval based
on LSI and LDA (2) reading comprehension of paragraphs and (3) open-domain
question answering system with the combination of (1) and (2).

5.1 Document Retrieval Based on LSI

First, we use gensim [11] to learn a topic distribution model from the SQLite-
formatted document library1. Based on this model, we evaluated our document
1 docs.db provided by Wikipedia’s open source Document Dump here.



L2R-QA: An Open-Domain Question Answering Framework 159

retrieval module on all the datasets which contain SQuAD and expanded Curat-
edTREC, WebQuestions, WikiMovies. Table 2 shows the examples of wiki docu-
ments found by our retriever according to the given question. And Table 4 shows
the latent semantic found by our Lsi model from the aspect of weight in question
and weight in Wikipedia documents respectively, while also taking the question
in Table 2. As for the evaluation, we use the hit probability of top 5 document,
i.e. the ratio of top 5 documents that contains the correct answer.

Table 1. Documents retrieval results

Question Wiki Documents

Who is the president of the United States? List of Presidents of New York University

Vice President of Madagascar

Vice President of Madagascar

List of United States Presidential firsts

...others

Table 2 shows the latent semantic found by our LSI model from the aspect of
weight in question and weight in Wikipedia documents respectively, while also
taking the question in Table 1 as an example. As shown in table, there are not
only words in question, but some synonyms.

Table 2. Latent semantic found by LSI model.

Score type Word Score

Weight in question President 0.949

America 0.033

Weight in Wikipedia documents President 0.949

President +0.959

Prime +0.003

Presidential +0.001

Chairman +0.001

5.2 Document Reader

Our reading model was trained and evaluated on SQuAD data set. We use the
Stanford CoreNLP toolkit to tokenize, name entity recognize and encode the
paragraphs and given questions. The obtained word vectors are sent to a three-
layer BiLSTM neural network model. In order to avoid overfitting, we set the
dropout rate of 0.3, i.e. 30% neural network units are randomly discarded in
each batch of training.



160 T. He et al.

Fig. 3. The picker of candidate answers

We evaluated our module of machine comprehension on the SQuAD test set.
We compare the results with the results of the Document Reader module in
DrQA on the SQUAD test set. As can be seen from the comparison data, our
module performed slightly better, indicating that the CTR feature we added
during the training period had a positive effect. Although the effect is not very
significant, it is not bad. The framework of selecting answer is shown in Fig. 3.
Generally speaking, we combine the features of questions and paragraph tokens
and use deep learning algorithms to learn the weights. They are encoded as
vectors, and we merge all vectors. Then there is a weight vector to learn in the
learning layer, which will be updated in the layer.

5.3 Open-Domain Question Answering System

Open-domain question answering system combines the tasks of document
retrieval and reading comprehension. According to the input question, the doc-
ument retrieval part will select five documents most relevant to the problem
in the collection of Wikipedia documents and return it to the reading part for
reading comprehension. As for reading comprehension period, documents are
first divided into paragraphs. Then we choose the most relevant paragraph and
locate the answer in it. Both the paragraph and the predictable answer will be
returned as a result. We evaluate our system on all four datasets with Wikipedia
as the single knowledge source.

According to the results of Chen’s experiments, we can see the EM indicator
has dropped significantly, from 69.5 to 70.0 respectively, which also appears
in our experiments. In the experiment of machine comprehension, the data we
give is a paragraph that is clearly related to the problem, that is, the answer
is contained in the paragraph. While for the whole system, we give the entire
collection of Wikipedia documents. The retriever module returns five documents
that are most relevant to the question, but the correct answer may not be in



L2R-QA: An Open-Domain Question Answering Framework 161

these five documents, which leads to a decline in performance. That is the reason
why we are interested in the improvement of retrieval module and make changes
on it. Also, there is still room for improvement in this part, and we still need
to work harder to move further in improving the relevance of the documents
returned by the retrieval module to the problem.

We also compare our system with DrQA on four datasets, which indicates
that both using LSI in the retrieving period and add learning to rank in read-
ing comprehension period has a positive effect. Later, we may consider a more
granular granularity. For example, the retrieval model returns paragraphs rather
than documents, so that the reading model analyzes tasks based on paragraphs
and gives predictions, or apply Learning to Rank method on sentences rather
than paragraphs. We will continue to work in this area, and hope to get better
results.

6 Conclusion

In this work, we propose an enhanced framework for the open-domain question
answering task, in which, we introduce some topic model during the document
retrieval phase, leading to a better representation of the documents, i.e., more
hidden semantic information is exploited. Moreover, we incorporate the learning
to rank model into the LSTM to train more available features for the ranking of
candidate paragraphs. Specifically, we combine the results from both LSTM and
learning to rank model, which lead to a more precise understanding of questions,
as well as the paragraphs. The result of the empirical experiment demonstrates
the efficacy of our proposed framework. We would like to test the framework
with more advanced topic models and ranking methods in the future, as well as
more knowledge bases.

Acknowledgement. The work is supported in part by the National Key Research and
Development Program of China (2016YFC0800805) and the National Natural Science
Foundation of China (61772014).

References

1. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to
databases-an introduction. Nat. Lang. Eng. 1(1), 29–81 (1995)

2. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from
question-answer pairs. In: Proceedings of EMNLP (2013)

3. Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embeddings.
Comput. Sci. (2014)

4. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading Wikipedia to answer open-
domain questions, pp. 1870–1879 (2017)

5. Chu-Carroll, J., Fan, J.: Leveraging Wikipedia characteristics for search and can-
didate generation in question answering. In: AAAI Conference on Artificial Intel-
ligence, pp. 872–877 (2011)



162 T. He et al.

6. Denoyer, L., Gallinari, P.: The Wikipedia XML corpus. In: Fuhr, N., Lalmas, M.,
Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 12–19. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73888-6 2

7. Dong, L., Wei, F., Zhou, M., Xu, K.: Question answering over freebase with multi-
column convolutional neural networks. In: Meeting of the Association for Compu-
tational Linguistics and the International Joint Conference on Natural Language
Processing, pp. 260–269 (2015)

8. Ferrández, S., Toral, A., Ferrández, Ó., Ferrández, A., Munoz, R.: Exploiting
Wikipedia and EuroWordNet to solve cross-lingual question answering. Inf. Sci.
179(20), 3473–3488 (2009)

9. Jurczyk, T., Deshmane, A., Choi, J.D.: Analysis of Wikipedia-based corpora for
question answering (2018)

10. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., Mcclosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Meeting of the
Association for Computational Linguistics: System Demonstrations (2014)

11. Řuřek, R., Sojka, P.: Gensim–statistical semantics in python (2011)
12. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for

machine comprehension of text, pp. 2383–2392 (2016)
13. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-

mun. ACM 57(10), 78–85 (2014)
14. Yan, X., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long

short term memory networks along shortest dependency path. Comput. Sci. 42(1),
56–61 (2015)

15. Yao, X., Durme, B.V.: Information extraction over structured data: question
answering with freebase. In: Meeting of the Association for Computational Lin-
guistics, pp. 956–966 (2014)

16. Yih, W.T., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph
generation: question answering with knowledge base. In: Meeting of the Association
for Computational Linguistics and the International Joint Conference on Natural
Language Processing, pp. 1321–1331 (2015)

17. Zhao, R., Mao, K.: Fuzzy bag-of-words model for document representation. IEEE
Trans. Fuzzy Syst. 26, 794–804 (2017)

https://doi.org/10.1007/978-3-540-73888-6_2

	L2R-QA: An Open-Domain Question Answering Framework
	1 Introduction
	2 Related Work
	2.1 Question Answering Systems (QASs)
	2.2 QA with Wikipedia

	3 Datasets
	3.1 Wikipedia
	3.2 SQuAD

	4 Framework
	4.1 Information Retrieval and Topic Model
	4.2 Paragraph Features Extraction
	4.3 Question Semantic Modeling
	4.4 Candidate Answers Selection

	5 Experiments
	5.1 Document Retrieval Based on LSI
	5.2 Document Reader
	5.3 Open-Domain Question Answering System

	6 Conclusion
	References




