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Chapter 4
Preandean Atacama Desert Endolithic 
Microbiology

María Cristina Casero, Victoria Meslier, Jacek Wierzchos, 
and Jocelyne DiRuggiero

4.1  �Introduction

Desert microbial communities are adapted to extreme environmental conditions and 
are particularly sensitive to climate change (IPCC 2012). In both hot and cold des-
erts, these communities are subjected to high ultraviolet (UV) and solar radiation, 
scarcity of water, intense desiccation, strong temperature fluctuations, and oligotro-
phic conditions (Wierzchos et al. 2012; Billi et al. 2017). As such, they are highly 
sensitive to perturbation and therefore of great interest for predicting the impacts of 
today’s changing climate. Microorganisms from desert communities are known as 
extremophiles. They have been used as model systems to investigate the limits of 
life (Dassarma 2006; Pikuta et al. 2007), and a number of studies have addressed 
their metabolic diversity and survival strategies (Dassarma 2006; Pointing and 
Belnap 2012; Wierzchos et al. 2018). Additionally, because the most arid deserts 
around the world (Atacama, Antarctica, Mojave, The Qaidam Basin) are analogues 
for Mars’ environment, the study of desert extremophiles might help guide our 
search for life elsewhere (Fairén et al. 2010; Foing et al. 2011; Smith et al. 2014; 
Xiao et al. 2017; Bull et al. 2018). More recently, extremophiles have gained interest 
in applied research as potential sources for high-value bioactive compounds due 
to their ability to resist extreme environmental conditions (Finore et  al. 2016; 
Stan-Lotter and Fendrihan 2017; Neifar et al. 2015).
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In the world’s arid and hyperarid deserts, microorganisms find refuge inside rock 
substrates as a survival strategy, colonizing what is known as the endolithic habitat 
(Golubic et  al. 1981; Wierzchos et  al. 2012). There are many examples of these 
endolithic microbial communities (EMCs), which are photosynthetic-based with 
primary producers supporting a diversity of heterotrophic microorganisms 
(Friedmann 1980; Friedmann et al. 1988; De Los Ríos et al. 2005, 2014; Dong et al. 
2007; Schmidt et al. 2011; Wei et al. 2015) and more specifically in the Atacama 
Desert (Wierzchos et al. 2006, 2011, 2013, 2015; DiRuggiero et al. 2013; Robinson 
et al. 2015; Crits-Christoph et al. 2016a, b; Meslier et al. 2018).

Several ecological properties of EMCs, initially proposed by (Friedmann and 
Ocampo-Friedmann 1984) and summarized by (Walker and Pace 2007) include:

	(a)	 EMCs are among the simplest microbial ecosystems.
	(b)	 EMCs are characterized by a core group of microorganisms that co-occur 

within a defined habitat.
	(c)	 The extreme endolithic environment is seeded from a relatively small reservoir 

of microorganisms highly adapted to this unique environment.
	(d)	 The composition of EMCs is influenced by biogeography and environmental 

factors such as the physical and chemical properties of substrates and climate.

Most studies of EMCs from the Preandean Depression of the Atacama Desert 
have focused on the determination of (1) the diversity, structure, and composition of 
the communities (who is there?) (Crits-Christoph et al. 2016b; Meslier et al. 2018; 
DiRuggiero et  al. 2013), (2) the physicochemical structure of the substrate, also 
called the architecture, and the spatial organization of the community within that 
substrate (where are they?) (Wierzchos et  al. 2018; Meslier et  al. 2018; Cámara 
et al. 2015), and (3) adaptation strategies at the community and/or cellular levels 
(how are they able to survive?) (Wierzchos et al. 2015; Vítek et al. 2016, 2017).

In this chapter we will focus on the diversity, structure, and composition of 
EMCs from the Preandean zone of the hyperarid Atacama Desert, emphasizing the 
need to comprehensively address the diversity of these communities while consider-
ing the principles underlying their assembly, such as low-complexity, highly adapted 
microbiota, and influences of the biogeography, climate, and rock properties.

4.2  �A Multidisciplinary Approach for Describing EMCs 
Structure, Composition, and Spatial Arrangement

The first reports on EMCs from hyperarid deserts involved the use of direct micros-
copy methods to visualize the microbe-rock interface and the endolithic settings 
(Wierzchos and Ascaso 2001 and references therein). At the time, EMCs were 
mostly characterized by their phototrophic members (prokaryotic- or eukaryotic-
based communities), because of the difficulty in identifying heterotrophic members 
solely based on their morphology (Friedmann et al. 1988; De Los Ríos et al. 2014). 
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Early identifications of the heterotrophic component of EMCs were performed 
using culture-based methods (Hirsch et  al. 1988; Siebert and Hirsch 1988), but 
because of the limitations of these methods, their diversity remained largely unex-
plored at the time. The emergence of high-throughput sequencing tools has deeply 
changed our view of microbial diversity across ecosystems, including that of the 
endolithic habitat (Walker and Pace 2007). Nowadays, characterization of EMCs, 
including those found in the Preandean area of the Atacama Desert, is routinely 
done with a multidisciplinary approach that involves sophisticated microscopy and 
molecular tools (Fig. 4.1).

The main contributions of microscopy and microanalytical tools to the study of 
EMCs have been the visualization and characterization of the microhabitat, includ-
ing the spatial distribution of the microorganisms within. Scanning electron micros-
copy in backscattered electron mode (SEM-BSE) was essential in defining the 
different endolithic microhabitats and type of colonization, enabling one to distin-
guish (1) the cryptoendolithic habitat (Golubic et al. 1981), where microorganisms 
colonized the pore spaces of the lithic substrate, (2) the chasmoendolithic habitat 
(Golubic et al. 1981) characterized by colonized cracks and fissures, and (3) the 
hypoendolithic habitat (Wierzchos et al. 2011), where the colonization is located 
underneath the lithic substrate. This method has also provided invaluable informa-
tion on the distribution of the microorganisms within each of these microhabitats 
(Wierzchos et  al. 2011, 2013, 2018; Cámara et  al. 2015; Crits-Christoph et  al. 
2016b; DiRuggiero et al. 2013; Meslier et al. 2018) and, together with computed 
tomography scanning (CT-Scan), allowed the description of the substrate’s architec-
ture (Wierzchos et al. 2018). The concept of the substrate’s architecture has been 
defined as the space available for colonization and includes the pores, fissures, and 
cracks of the substrate and how they are connected to the surface (Wierzchos et al. 
2015). The use of SEM at low temperatures (LTSEM) brought additional informa-
tion, such as cytological identification of cells in situ and the characterization of 
their ultrastructural features (Wierzchos and Ascaso 2001). Other microscopy meth-
ods such as bright field microscopy provided the identification of the major photo-
trophic members (Wierzchos and Ascaso 2001; Wierzchos et al. 2013, 2015), while 
fluorescent microscopy and confocal laser scanning microscopy (CSLM) gave us 
essential information about the metabolic status of the microorganisms inhabiting 
EMCs. In particular, these methods revealed assemblages of live and intact dead 

Fig. 4.1  Research tools used to study EMCs classified by techniques and specific goals
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cells (Wierzchos et al. 2011) and the spatial organization of cyanobacterial aggre-
gates surrounded by extracellular polymeric substances (EPSs) (Crits-Christoph 
et al. 2016a, b; Robinson et al. 2015) and embedded in a matrix of heterotrophic 
microorganisms (Wierzchos et al. 2011). Microanalytical tools such as SEM-BSE 
and energy dispersive X-ray spectroscopy (EDS) have revealed the spatial 
arrangements of microbial cells around sepiolite nodules in gypsum rocks 
(Wierzchos et al. 2015; Meslier et al. 2018). This is of great significance because 
sepiolite is a mineral with high efficiency for water retention. X-ray powder diffrac-
tion (XRD) has also provided the mineral composition of many different lithic sub-
strates, such as calcite, ignimbrite, and gypsum (Wierzchos et  al. 2015; Meslier 
et al. 2018), and Raman spectroscopy has been used to characterize the distribution 
of pigments in the endolithic microhabitat of gypsum, ignimbrite, and halite (Vítek 
et al. 2010, 2013, 2014a, b, 2016, 2017).

Microscopy tools combined with culture-independent methods such as denatur-
ing gradient gel electrophoresis (DGGE) (Wierzchos et  al. 2013; Cámara et  al. 
2015) and, more recently, next generation sequencing (NGS) (DiRuggiero et  al. 
2013; Meslier et al. 2018; Crits-Christoph et al. 2016b; Wierzchos et al. 2015) have 
been used to characterize the phylogenetic diversity of EMCs. Pioneer studies 
revealed the discrepancies of biomass estimates between microscopy and molecular 
methods. For example, Dong et al. (2007) reported that cyanobacteria in gypsum 
endolithic communities represented 95% of the community when using micros-
copy, whereas the number fell to 40% when molecular methods were used. They 
suggested that those differences were potentially the result of contamination, the 
difficulty in isolating DNA from cyanobacteria, and the bias introduced by amplifi-
cation of the DNA by PCR (Dong et  al. 2007). Today, molecular tools such as 
amplicon sequencing of marker genes (i.e., 16S rRNA gene) and whole genome 
shotgun sequencing (WGS), combined with microscopy methods, have led to a 
more complete description of the endolithic microbiome. Habitats for these micro-
biomes include (1) the chasmoendolithic habitat of calcite (DiRuggiero et al. 2013; 
Meslier et al. 2018; Crits-Christoph et al. 2016b) and granite (Meslier et al. 2018) 
and (2) the cryptoendolithic habitat found in gypsum (Wierzchos et al. 2015; Dong 
et al. 2007; Meslier et al. 2018) and ignimbrite (Wierzchos et al. 2012; Cámara et al. 
2015; Crits-Christoph et al. 2016b; Meslier et al. 2018) (Table 4.1).

Some of the most diverse EMCs found in the Preandean Atacama Desert are that 
of gypsum from Cordón de Lila and Tilocalar (Table  4.1). Phototrophs in these 
communities included Cyanobacteria (36–83%) and algae belonging to the 
Chlorophyta class. The algae were only detected at very low abundance, first by 
microscopy (Wierzchos et al. 2015), and their occurrence was later confirmed by 
cloning of the 18S rRNA gene and by metagenome sequencing (Meslier, pers. 
com.). Major heterotrophic bacteria of the gypsum EMCs included Actinobacteria 
(10–25%) and Proteobacteria (13–30%) and at lower relative abundance Chloroflexi 
(0–11%) and Gemmatimonadetes (0–6%) (Table 4.1).

Another high diversity EMC of the Preandean area of the Atacama Desert is the 
chasmoendolithic community of calcite from the nearby Valle de la Luna area. In 
this substrate, primary producers were exclusively Cyanobacteria with a relative 
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abundance of 50 to 60%, while the heterotrophs included Actinobacteria (10–20%), 
Proteobacteria (3–5%), Chloroflexi (0–11%), and Gemmatimonadetes (0–15%) 
(Table 4.1). Using WGS Crits-Christoph et al. (2016b) identified additional hetero-
trophic bacteria with significant occurrence, such as Deinococcus–Thermus and 
Bacteroidetes.

EMCs from ignimbrite and granite were found to harbor significantly less diverse 
communities than other EMCs of the Preandean Atacama. In these substrates, 
Cyanobacteria were the only primary producers, reaching relative abundances of 
80% and 77% in ignimbrite and granite, respectively, while Proteobacteria relative 
abundances dropped below 5% in the ignimbrite community and below 1% in the 
granite community (DiRuggiero et al. 2013; Crits-Christoph et al. 2016b; Meslier 
et al. 2018). The low relative abundance of heterotrophic bacteria in these EMCs 
might be the result of phototrophs’ low metabolic activity in the harshest environ-
ments, leading to a reduced amount of fixed inorganic carbon and limiting, in turn, 
the abundance and diversity of the heterotrophic component of the community 
(Wierzchos et al. 2018; Meslier et al. 2018).

Abiotic factors promoting the diversity and composition of EMCs in the 
Preandean Atacama have been investigated by a number of multidisciplinary 
approaches (DiRuggiero et al. 2013; Wierzchos et al. 2015; Crits-Christoph et al. 
2016b; Meslier et al. 2018). These studies have shown that the rock architecture, 
i.e., the space available for colonization, embodied by the size of the cracks, fis-
sures, and pores and their connection to the surface, which is tightly linked to sub-
strate water retention capacities, were the main drivers of community structure and 
diversity. In addition, specific properties of the substrates were also found to confer 
beneficial advantages to the EMCs; these include sepiolite nodules in gypsum, 
which considerably increase the water retention capability of the substrate, or the 
high thermal conductivity of calcite, promoting dewfall formation (DiRuggiero 
et al. 2013; Wierzchos et al. 2015; Crits-Christoph et al. 2016b; Meslier et al. 2018).

By colonizing rock substrates, EMCs find protection from the extremely intense 
solar irradiance found in hyperarid deserts (Rondanelli et  al. 2015). Additional 
adaptation strategies, in particular against the deleterious effects of UV, include 
protective cell-layering, an array of screening pigments, and lipid production by 
phototrophs (see below; Vítek et al. 2013, 2016, 2017; Wierzchos et al. 2015, 2018). 
While UV can be significantly attenuated by the substrate, the decline in visible 
light transmission occurs at a much lower rate, providing sufficient light for photo-
synthesis (Hughes and Lawley 2003; Amaral et al. 2006). Meslier et al. (2018) mea-
sured the light transmittance in several substrates from the Preandean Atacama and 
found a direct relationship between the spectral properties of the substrate and the 
depth of the colonization zone; higher light transmitting substrates (calcite, gypsum, 
and granite) showed EMCs located deeper in the substrate, while EMCs from 
ignimbrite were located closer to the surface (Meslier et al. 2018).

The recent use of metagenomics has brought insights into the adaptation of 
EMCs to their unique environment. The functional analysis of calcite and ignim-
brite EMCs revealed a broad diversity of stress response pathways, especially linked 
to survival under harsh conditions (Crits-Christoph et al. 2016b). These pathways 
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were involved in (1) carbon starvation and low-nutrient stress, (2) cold shock genes, 
(3) oxidative stress genes related to osmotic stress/desiccation tolerance, and (4) 
secondary metabolites production (Crits-Christoph et al. 2016b). Using compara-
tive metagenome analysis, the authors found that the ignimbrite community was 
significantly enriched in non-ribosomal peptide synthase (NRPS) and polyketide 
synthase (PKS) genes, suggesting a highly competitive environment for resources 
and space. The large number of gene clusters related to iron acquisition in the 
ignimbrite community also suggested iron starvation, while the presence of 
mycosporine-like gene clusters in the calcite community, but not in the ignimbrite 
community, indicated possible differences in UV radiation exposure of the EMCs 
(Crits-Christoph et al. 2016b). The differential abundances of secondary metabo-
lites demonstrate the key role played by the substrate in the molecular adaptations 
of community members. Surprisingly, pathways for nitrogen fixation were not 
found in the metagenome of any of the Atacama EMCs investigated so far (Crits-
Christoph et al. 2016a, b; Finstad et al. 2017). It is likely that the long-term accumu-
lation of nitrate in the Atacama Desert, via atmospheric deposition, provides a major 
source of nitrogen to microbial communities in the form of nitrate and ammonium 
(Michalski et al. 2004; Crits-Christoph et al. 2016b; Finstad et al. 2017).

As demonstrated by the discussion above, only a comprehensive approach to the 
study of EMCs, using a combination of methods and tools, will allow for the eluci-
dation of the mechanisms that generate and maintain their diversity.

4.3  �Supporting the Microbial Community: Photoautotrophs 
as Primary Producers

Phototrophs are essential for the survival of EMCs because they are the only pri-
mary producers in a system where the import of exogenous organic carbon is negli-
gible. As such, Cyanobacteria and microalgae carry essential functions in EMCs.

Phototrophic microorganisms perform oxygenic photosynthesis via two photo-
systems, PSI and PSII, connected by an electron transfer chain, similar to plants 
(Falkowski and Raven 2013). In oxygenic photosynthesis, photons collected by 
antenna complexes coupled to photosystems are transferred to chlorophyll mole-
cules located in the photosystem core. This photon energy is used to break water 
molecules producing reduced nicotinamide adenine dinucleotide phosphate 
(NADPH) with oxygen as a by-product. In a subsequent step, NADPH is used to 
synthesize organic carbon from carbon dioxide via the Calvin cycle. The two main 
elements required for oxygenic photosynthesis, liquid water and light, are often 
limiting factors for the chlorophototrophs inhabiting endolithic substrates in hyper-
arid deserts. Endolithic phototrophs can only perform photosynthesis during peri-
ods of time when liquid water is available and, because of high solar and UV 
radiations, they also need to use strategies to prevent photo-inhibition and photo-
oxidative damage to their photosystems (Vítek et al. 2013, 2016, 2017; Wierzchos 
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et al. 2015, 2018). While substrate colonization at greater depths inside the rock 
might give access to more retained water and increase protection against damaging 
UV irradiation, it might also decrease essential requirements for photosynthesis 
such as photosynthetic active radiation and CO2 exchange (Boison et  al. 2004; 
Rothschild et al. 1994). An example of such a strategy is the spatial arrangement of 
Cyanobacteria within Preandean EMCs habitats (Meslier et al. 2018) and will be 
discussed below.

4.3.1  �Cyanobacteria

Cyanobacteria are found in most types of illuminated environment and were 
responsible for the “Great Oxidation Event” 2.4–2.1 billion years ago (Lyons et al. 
2014). Their success as primary producers is due to several essential features 
(Whitton and Potts 2000).

	(a)	 Their temperature optimum is higher by several degrees than that of most 
eukaryotic algae (Castenholz and Waterbury 1989), allowing them to colonize 
warmer environments.

	(b)	 Desiccation and water stress tolerance made them some of the most successful 
organisms in hypersaline environments (Hu et al. 2012; Oren 2012).

	(c)	 They display high tolerance to high levels of UV light radiation (Castenholz 
and Garcia-Pichel 2012).

	(d)	 They can perform efficient photosynthetic CO2 reduction with low concentra-
tions of inorganic carbon (Pierce and Omata 1988; Raven 2012).

Most of the Cyanobacteria in EMCs from the Atacama Desert are members of 
Chroococcidiopsis (Wierzchos et  al. 2011, 2015, 2018; Vítek et  al. 2013, 2016, 
2017; DiRuggiero et  al. 2013; Cámara et  al. 2015; Crits-Christoph et  al. 2016b; 
Meslier et  al. 2018). This cyanobacterial genus from the Chroococcidiopsiales 
order (Komarek et al. 2014) is the most abundant cyanobacteria in hyperarid envi-
ronments where its adaptability to extreme conditions has been widely demon-
strated (Smith et  al. 2014). Chroococcidiopsis are often accompanied by other 
cyanobacterial taxa including members of other unicellular orders such as 
Chroococales and Synechococcales, and even members from filamentous orders 
such as Oscillatoriales and Nostocales (Table 4.2). Despite the detection of other 
cyanobacterial genus, Chroococcidiopsis is the only genus that has been consis-
tently detected in all EMCs using microscopy approaches (Table 4.2). This discrep-
ancy between molecular and microscopy methods with regard to cyanobacterial 
diversity is the result of a number of factors.

First, there is a technical factor associated with the evolution of research tools 
over the past decade, from DGGE to clone libraries and more recently to high-
throughput sequencing platforms (454 pyrosequencing, Illumina-MiSeq, Illumina 
HiSeq). Additionally, all these methods have intrinsic limitations with DNA isola-
tion, the selection of marker genes and their primers, library preparation, read 
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length, and sequencing depth. Each of these steps can introduce significant biases 
that make it very difficult to compare studies (Rastogi and Sani 2011). The analysis 
of the sequencing data may also introduce significant biases with, in particular, the 
choice of parameters in defining unique taxa and the type of database (and its ver-
sion) used for taxonomic annotation. While culture-independent methods have 
provided a large amount of sequencing information, especially during the past few 
years with NGS platforms, the increasing number of sequences in databases that 
belong to “uncultured cyanobacterium clone” seriously hinders accurate taxonomi-
cal assignments of this phylum. On the other hand, taxonomical assignment using 
microscopic methods is limited to morphologically different Cyanobacteria, their 
relative abundances in the sample, and requires a great deal of experience.

Another issue is the fact that the taxonomy and phylogeny of Cyanobacteria is 
an ongoing discussion, especially because of their antiquity, existing fossil repre-
sentatives with very similar morphology to present-day species (William Schopf 
1974; Knoll 2008), and a complex evolutionary history. Several features, in addition 
to genetic sequences, should be taken into account when defining cyanobacterial 
taxa, including morphological characteristics, ultrastructural details such as thyla-
koid structure, and type of cell division (Komarek et al. 2014). This is essential for 
accurate Cyanobacteria taxonomy assignment but is not always practical, in par-
ticular, in studies with large numbers of samples.

Several adaptation strategies to water stress have been described for 
Chroococcidiopsis. For one, Chroococcidiopsis belongs to the group of anhydrobi-
otic cyanobacteria. These cyanobacteria cope with the lack of water by entering an 
ametabolic state involving structural, physiological, and molecular changes 
(Feofilova 2003). Another adaptation to the scarcity of water is the production of 

Table 4.2  Cyanobacterial taxa in endolithic microbial communities from the Preandean area of 
the Atacama Desert and the approaches used for their detection

Order Genus
Tools used for 
cyanobacterial detection Substrate References
Molecular Microscopy

Chroococcidiopsiales Chroococcidiopsis X X Gyp Ca 
Ign Gr

[1] [2] [3] [4] 
[5] [6] [7]

Chroococcales Gloeocapsa X Ca [2]
Halothece X Gyp Ca [1]

Synechococcales Acaryochloris X Ca [2]
Synechococcus X Gyp Ca [1]

Oscillatoriales Aerosakkonema X Gyp Ca 
Ign Gr

[1]

Phormidium X Ca [5]
Nostocales Anabaena X Gyp Ca [5]

Abbreviations: Gyp gypsum, Ca calcite, Ign ignimbrite, Gr granite. [1] Meslier et al. (2018), [2] 
Crits-Christoph et al. (2016b), [3] Cámara et al. (2015), [4] Wierzchos et al. (2015), [5] DiRuggiero 
et al. (2013), [6] Wierzchos et al. (2012) [7] Dong et al. (2007)
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EPSs providing a depository for water and stabilizing desiccation-related enzymes 
and molecules (Wright et al. 2006).

To protect themselves from the damaging effects of UV radiation, 
Chroococcidiopsis from EMCs of the Preandean Depression synthesize 
UV-absorbing and/or screening compounds. One such compound, the sunscreen 
pigment scytonemin, has been detected in the EPS sheath of EMCs from gypsum 
from the Preandean Depression and other hyperarid regions of the Atacama Desert 
(Wierzchos et al. 2015; Vítek et al. 2014a, 2016). It has also been hypothesized that 
the simultaneous exposure to both desiccation and UV radiation may further induce 
scytonemin biosynthesis (Fleming and Castenholz 2007). Recently, a novel light-
adaptation strategy was discovered in Cyanobacteria inhabiting ignimbrite rocks 
(Vítek et al. 2017). The authors attributed the shift in carotenoid composition (red-
shift of ʋ1 (C=C) band) in the cyanobacteria to a light-dependent change in carot-
enoid conjugation that would mediate a non-photochemical quenching mechanism 
(Kirilovsky and Kerfeld 2016). Since Cyanobacteria are major components of 
EMCs, and are most often located in the upper part of the endolithic microhabitat, 
the strategies developed by this phylum to deal with extreme environmental condi-
tions constitute a benefit for the entire community.

4.3.2  �Eukaryotic Phototrophs

Eukaryotic microalgae constitute a basic component of the world’s ecosystems as 
they contribute to about 40% of global productivity (Andersen 1992). Apart from 
their important role in marine ecosystems, they are found as important primary 
producers in desert soils (Lewis and Lewis 2005) and in lithic microhabitats as free-
living organisms (Meyer et al. 1988; Robinson et al. 2015; Wierzchos et al. 2015; 
Vítek et  al. 2016) or as photobionts of lichens (Palmer Jr and Friedmann 1990; 
Wierzchos et al. 2011).

While most endolithic communities in the Preandean Depression do not harbor 
microalgae, their occurrence has been reported in gypsum from the Cordón de Lila 
depression (Wierzchos et al. 2015). The authors suggested that while these algae 
have morphological similarity with three genera of Chlorophyta (Spongiochloris, 
Deasonia, and Neochloris), they also have novel features, in situ and in culture, and 
therefore should be classified as a new genus of the Chlorophyceae class. Similar to 
Cyanobacteria, EMCs’ algae show special strategies to deal with environmental 
stresses such as the accumulation of photoprotective carotenoids and storage lipids 
(Wierzchos et al. 2015; Vítek et al. 2016). In gypsum, both carotenoid and storage 
lipids increased in algal cells with their closeness to the surface of the substrate 
where solar radiation is the highest (Wierzchos et  al. 2015; Vítek et  al. 2016). 
Carotenogenesis has also been attributed to photoprotection against high solar radi-
ation (Oren et al. 1995) and also as a strategy to mitigate high salinity and nutrition 
stresses in other aerial microalgae (Aburai et al. 2015; Oren et al. 1995; Hanagata 
and Dubinsky 1999). In gypsum of Cordón de Lila, the algae were located in the 
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upper part of the substrate (with first red and then green cells) followed by 
Cyanobacteria. This very special arrangement suggests that they may act as a pro-
tective barrier for the community against the harmful effects of high levels of solar 
radiation because of their high carotenoids content (Vítek et al. 2017).

4.4  �Diversity of Heterotrophs in Communities 
of the Preandean Depression of the Atacama Desert

Before the use of molecular tools to characterize EMCs, heterotrophic members of 
these communities received little attention compared to their phototrophic counter-
parts. This was most likely because of the difficulty in characterizing heterotrophic 
bacteria morphologically and also because of the idea that the main contributors to 
the activity and resilience of EMCs were primary producers. Indeed, heterotrophic 
microorganisms benefit from photosynthetic conversion of CO2 into organic carbon, 
provided either by Cyanobacteria or microalgae. Nonetheless, investigations of the 
diversity and community structure of EMCs have since revealed far more diverse 
heterotrophic assemblages than previously thought (Walker and Pace 2007; Dong 
et al. 2007; Lacap et al. 2011; DiRuggiero et al. 2013; Crits-Christoph et al. 2016b; 
Meslier et al. 2018), emphasizing the idea that primary producers can nurture and 
support the development of a high diversity of heterotrophic microorganisms.

In EMCs of the Preandean Atacama Desert, the most abundant heterotrophic 
phyla have been assigned to Actinobacteria, Chloroflexi, and Proteobacteria, 
although additional phyla such as Bacteroidetes, Gemmatimonadetes, Deinococcus–
Thermus, Firmicutes, Planctomycetes, and Verrucomicrobia have also been consis-
tently reported in several lithic substrates (Table 4.3) (Dong et al. 2007; DiRuggiero 
et al. 2013; Rasuk et al. 2014; Wierzchos et al. 2015; Crits-Christoph et al. 2016b; 
Meslier et al. 2018). In contrast, arid and hyperarid soils are typically dominated by 
sparse heterotrophic microorganisms with mostly members of the Actinobacteria 
phylum (Costello et al. 2009; Bull 2011; Lynch et al. 2012, 2014; Neilson et al. 
2012; Crits-Christoph et al. 2013; Schulze-Makuch et al. 2018). While the recent 
sequencing of the genome of Pseudonocardia sp. from a volcanic soil showed that 
chemoautotrophic microbes may provide organic carbon to a community, it was a 
rather specific case where trace gases from volcanic activity provided the energy 
sources for carbon fixation (Lynch et al. 2014).

In the Actinobacteria phylum, the main identified taxa included Blastococcus, 
Geodermatophilus, Modestobacter, Jatrophihabitans, Marmoricola, Microlunatus, 
Pseudonocardia, Euzebya, Solirubrobacter, Conexibacter, and Rubrobacter gen-
era, for which the relative abundances could vary greatly between substrates 
(Table 4.3). For the most part, these genera were also consistently recovered in lithic 
substrates and soils of hyperarid deserts around the world (Connon et  al. 2007; 
Lacap et  al. 2011; DiRuggiero et  al. 2013; Crits-Christoph et  al. 2013, 2016b; 
Wierzchos et al. 2015; Meslier et al. 2018; Bull et al. 2018) and recognized for their 
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ability to resist extreme desiccation (Geodermatophilus, Blastococcus, Rubrobacter), 
high UV and ionizing radiation (Geodermatophilus, Rubrobacter, Modestobacter), 
oligotrophic conditions (Modestobacter, Rubrobacter), temperature fluctuations 
(Modestobacter, Rubrobacter), high salinity (Marmoricola, Pseudonocardia), and 
high concentrations of metals (Rubrobacter) (Bull 2011; Mohammadipanah and 
Wink 2016; Idris et al. 2017; Schulze-Makuch et al. 2018; Bull et al. 2018). The 
identification and characterization of Actinobacteria from the extreme biosphere 
have been of particular interest over the past decade because of their incredible 
potential as sources of novel bioactive compounds for agricultural, pharmaceutical, 
and industrial applications (Bull 2011; Mohammadipanah and Wink 2016; Idris 
et al. 2017; Rateb et al. 2018). Indeed, some researchers argue that most of the novel 
chemical diversity will likely be discovered in the rare actinobacterial biosphere 
(Mohammadipanah and Wink 2016). Although culture-dependent methods are chal-
lenging, and only reveal a fraction of the microbial diversity in any given environ-
ment, they are necessary for the discovery and production of bioactive compounds.

Members of the Chloroflexi phyla, such as Thermobaculum and Thermomicrobia, 
and various genera of Proteobacteria, mainly from the alpha-, beta-, and gamma-
proteobacteria (Methylobacterium, Ensifer, Sphingomonas, and Burkholderia) are 
known to be anoxygenic photosynthesizers (Table 4.3). However, no anoxygenic 
photosynthesizers have been found so far in EMCs from the Preandean area of the 
Atacama Desert (Crits-Christoph et al. 2016b; Frigaard 2016; Meslier et al. 2018). 
Chloroflexi relative abundances in various desert soils and lithic habitats are highly 
variable (Lacap et al. 2011; Neilson et al. 2012) and, although unique adaptive traits 
have been reported, such as atypical peptidoglycan contents, their functional role 
remains to be elucidated (Neilson et al. 2012).

Variations in the detection and relative abundances of members of the 
Proteobacteria have also been reported in desert soils and lithic communities, yet, 
some genera display several putative functional advantages for survival in hyperarid 
deserts (Drees et al. 2006; Dong et al. 2007; Connon et al. 2007; Neilson et al. 2012; 
Crits-Christoph et  al. 2013; Rasuk et  al. 2014; Makhalanyane et  al. 2015; Van 
Goethem et al. 2017). Some examples include (1) members of the Methylobacterium 
genus known to use methanol as both carbon and energy source (Makhalanyane 
et al. 2015), (2) members of the Burkholderia genus, a common soil inhabitant that 
promotes plant growth via nitrogen fixation (Coenye and Vandamme 2003; Suárez-
Moreno et al. 2012; Stopnisek et al. 2016), and (3) members of the Ensifer genus 
that harbor mineral weathering activity, such as potassium feldspar-solubilization, 
and potential nitrogen fixation (Rogel et  al. 2001; Wang et  al. 2016; Peng et  al. 
2017). Recently, the combined use of metagenomics and metatranscriptomics in 
hypoliths from the Namib Desert demonstrated the close relationship between 
active members of Cyanobacteria and alpha-Proteobacteria and their key role in 
maintaining and facilitating nutrient cycling in the community (Van Goethem et al. 
2017). While the functional contribution of Proteobacteria in EMCs of hyperarid 
deserts needs to be further investigated, it is likely that their characterization and 
isolation will be of great interest, notably for their potential production of secondary 
metabolites (Suárez-Moreno et al. 2012).
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4.5  �Future Directions of Research

Endolithic microbial communities are excellent models for microbial ecology stud-
ies because of their low complexity and containment. However, they are challenging 
to study because of the difficulties in collecting samples and because of their low 
biomass. Nevertheless, the combination of state-of-the-art microscopy and molecu-
lar methods has revealed novel and diverse communities with unique adaptations to 
their extreme environments. Despite this progress, many knowledge gaps still remain.

In particular, very little is known about the interactions between the biotic and 
abiotic components of these unique ecosystems. Greater efforts, using sophisticated 
microscopy, are needed to characterize substrate architecture, define the different 
microhabitats within each substrate, and how these are colonized by different mem-
bers of the community. Interactions between functional groups in the community 
and the role of viruses in shaping these communities should also be investigated to 
obtain a holistic picture of EMCs.

Cultivation efforts and single cell genomics will provide the opportunity to study 
the genetic diversity of EMCs members, refine taxonomic annotations, and investi-
gate the potential role of biogeography in shaping these communities. Additionally, 
having isolates at hand will allow for the production of secondary metabolites for 
agricultural, pharmaceutical, and industrial applications.

Finally, the use of omics strategies and longitudinal studies will give us insights 
into the functioning of these communities at the ecosystem level, their response to 
environmental stresses, and help us predict how resistant and resilient these micro-
bial communities might be to climate change. Because arid and hyperarid deserts, 
at the dry limit for life, are fragile ecosystems, their inhabitants will be on the front 
line of the major changes in climate ahead of us.
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