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Abstract. In this paper, we propose a method for egomotion estimation
of an indoor mobile robot under planar motion with an RGB-D camera.
Our approach mainly deals with the corridor-like structured scenarios
and uses the prior knowledge of the environment: when at least one
vertical plane is detected using the depth data, egomotion is estimated
with one normal of the vertical plane and one point; when there are no
vertical planes, a 2-point homography-based algorithm using only point
correspondences is presented for the egomotion estimation. The proposed
method then is used in a frame-to-frame visual odometry framework. We
evaluate our algorithm on the synthetic data and show the application on
the real-world data. The experiments show that the proposed approach is
efficient and robust enough for egomotion estimation in the Manhattan-
like environments compared with the state-of-the-art methods.

Keywords: Egomotion estimation · Indoor scene · RGB-D camera ·
Planar motion · Visual odometry

1 Introduction

Egomotion estimation is an intensively discussed issue in computer vision, which
aims at understanding the six-degree-of-freedom (6-DoF) transformation (three
for the rotation and three for the translation) of the visual sensor with reference
to the input sequence of images. It has drawn a lot of attentions in numerous
applications such as augmented reality, motion control and autonomous naviga-
tion [3,4,14,20]. The term visual odometry (VO) was originally presented in the
work [18] in 2004, which is the process of evaluating the egomotion of an agent
such as mobile robot with only the input of a single or multiple cameras mounted
to it. The approaches of VO can be classified into two major categories: one is
the optical flow method based on pixel information [2,5,15], and the other is the
vision-based method [8,22]. Compared with the first one, the vision-based indi-
rect method is much more robust because of its use of discernible feature points
from image. Hence, this paper focuses on the study of feature-based egomotion
estimation method which belongs to the second one.

For a calibrated camera, it needs only five points to estimate the 6-DOF pose
between two consecutive views [17] while seven or eight points [6] are needed if
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the camera is not calibrated. Specifically, in the case of a 99-percent probability
of success and a set of data with half-rate outliers, the linear 8-point essential
matrix algorithm [7] requires about 1177 samples whereas the 5-point essential
matrix algorithm [11,13,23] only needs 145 trials. Therefore, finding an approach
with minimal points to meet the real-time requirements is necessary. To reduce
the amount of needed point correspondences between frames, some reasonable
hypotheses combining additional sensor data are needed. Consequently, based on
the availability of low-cost RGB-D cameras, we mainly investigate the motion
of the mobile robot in indoor environments where at least one plane is present
in the scene. The RGB-D camera is mounted rigidly on a mobile robot and the
robot is always under planar motion because of the flat indoor floor. So the pitch
and roll angles remain constant during the whole process. Assuming the roll and
pitch angles of the camera as known, we correct the RGB-D camera through
rotating the generated point clouds so that the values of the roll and pitch
angles are approximately equal to zeros. In this case, we just need to calculate
a three-degree-of-freedom egomotion estimation problem, which consists of two
horizontal translations and one yaw angle.

Despite of its many developments, egomotion estimation still remains some-
what challenging to be efficient and robust in structural and low-texture scenes
(e.g., wall or hallway). To solve this problem, several SLAM systems using high
geometric characteristics such as lines and planes have been proposed recently
[1,9,10,12]. While, Kim et al. [10] estimated the drift-free rotation by applying
a mean-shift algorithm with the surface normal vector distribution. However
this method required at least two orthogonal planes for demonstrating superior
rotation estimation. Kaess [9] introduced a minimal representation with planar
features using a hand-held RGB-D sensor and presented a relative plane for-
mulation, which improved the convergence for faster pose optimization. While
this method required plane extraction and matching at each frame to construct
optimization function, and additional odometry sensors were utilized to perform
plane matching, which increased the complexity for VO system.

In contrast to these methods, in this paper we obtain a rough plane-
segmentation result using only RGB-D frame, which is fast to meet the real-time
application instead of segmenting the scenes into very precise planar regions.
We directly estimate the subsequent egomotion through extracting the normal
in each plane from the inverse-depth-induced histograms. We will take differ-
ent strategies according to the prior knowledge about the 3D scenarios. The
major contributions of this work are twofold: First, if there exists at least a ver-
tical plane, we realize the pose and location estimation with the normal of the
vertical plane and one point correspondence, which is called the direction-plus-
point algorithm. Second, if the plane orientation is completely not available, we
propose an efficient 2-point minimal case algorithm for the homography-based
method to estimate the egomotion. Compared with the classical 5-pt essential
matrix estimation [17], our method just needs two matched points between views
instead of five, which speeds up the process of iterative optimization for egomo-
tion estimation. At last, we evaluate our algorithm on both synthetic and real
datasets.
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The rest of the paper is organized as follows. Section 2 describes two effi-
cient algorithms for estimating the egomotion under the weak Manhattan-world
assumption. Section 3 presents the performance of our solutions on synthetic and
real data and compares with the classical method in a quantitative evaluation.
Finally, in Sect. 4, conclusions are drawn.

2 Ego-Motion Estimation

In VO, compared with the estimation of translation which is relatively simple,
the estimation of rotation deserves more attention. The majority of experimen-
tal errors are derived from the inaccurate estimation of rotation. Thus, reducing
the accumulated error caused by rotation can greatly improve the performance
of the algorithm. In this work, if there exists at least one vertical plane in the
scene, we estimate the motion by decoupling rotation and translation so that a
drift-free rotation estimation can be derived from the alignment of local Man-
hattan frames. Based on the accurate rotational motion, we can obtain a robust
estimation of translation with 1-point RANSAC approach. In addition, we pro-
pose a new 2-pt minimal-case algorithm with the simplified motion model while
no vertical planes are known.

2.1 The Plane-Plus-Point Algorithm

We design a fast plane segmentation method through using only the depth image
based on a RGB-D camera, where we extract the inverse depth induced hori-
zontal and vertical histograms to detect planes instead of segmenting the huge
point clouds directly. We view the whole indoor scenery as a composition of one
or several local Manhattan structures. We can recognize at least one local Man-
hattan coordinate frame according to the detected vertical planes at any time.
And the pose estimation is simplified when knowing the vertical direction in the
scenes. Then through aligning the measured vertical direction with the camera
coordinate system, the y-axis of the camera is parallel to the vertical planes
while the x-z-plane of the camera is parallel to the ground plane (illustrated in
Fig. 1). This alignment can make relative motion reduce to a 3-DOF motion,
which includes 1 DOF of the remaining rotation and 2 DOF of the translation
(i.e., a 3D translation vector up to scale).

In general, we can detect only one ground plane, but multiple vertical planes
which correspond to different Descartes coordinate frames may be obtained at
the same time. Therefore, we need to distinguish the dominant Manhattan frame
from the minor ones based on the specified Descartes coordinate frames attached
to the walls. For each Descartes coordinate frame, we calculate its evaluation
score according to the area of all the vertical planes in the RGB image whose
normal (in the depth image) is approximately parallel or perpendicular to each
other. Among them we choose the frame whose score is the largest as the domi-
nant local Manhattan frame.
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Fig. 1. Alignment of the camera with the
normal of the ground plane.

Fig. 2. Rotation between two successive
times.

Hence, the drift-free rotation between two successive views will be obtained as
soon as the dominant Manhattan frame has been determined at each moment. As
shown in Fig. 2, assuming the robot is in the same Manhattan structure (frame)
denoted at two different times ti and tj , we can estimate only one rotation Ri,j

of Ci with respect to Cj :
Ri,j = (Rwc

i )TRwc
j (1)

where Ci and Cj are respectively the camera coordinate frame at the continuous
time ti and tj and where Rwc

i and Rwc
j denote the rotations of Ci and Cj with

respect to the local Manhattan coordinate.
Knowing the rotation information based on Manhattan world constraints,

the translation estimation needs to be obtained through other algorithms such
as a 1-point RANSAC method. We detect and match corner points from two
successive RGB images and get the 3D points through the depth image. Then
the translation T is estimated with one 3D point correspondence:

T = P
′ − (Ri,j)TP (2)

where P and P
′

are respectively the current 3D points and the previous 3D
points.

2.2 The 2-Point Homography-Based Algorithm

In the real-world indoor environments the vertical plane is not always available.
In this case, the plane-plus-point algorithm which is proposed in the previous
section does not work. Therefore we propose a new 2-point minimal case algo-
rithm for the homography matrix based method, and we do a local refinement
between the current and previous plane according to the Manhattan assumption
to eliminate the drift if the vertical plane is detected again. Given pi = [xi, yi, 1]T

and pj = [xj , yj , 1]T , which are points on the ground plane in the first and second
camera coordinate frames, the homography constraint is defined as:

σpj = Hpi (3)
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With
H = R − t

d
NT (4)

Where σ is a scale factor, R and t are the rotation matrix and translation vector
respectively, and N is the normal vector of the 3D plane and d is the distance
from the camera to the corresponding plane. Giving two 3D points in the world
coordinate, they will uniquely define a virtual vertical plane and the unit normal
vector of this virtual plane with respect to the ith view is n = [nx, 0, nz]T (if
they are not vertically aligned). Let t

d = [tx 0 tz]T . The homography induced by
this virtual vertical plane can be written as:

H =

⎡
⎣

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎤
⎦ −

⎡
⎣

tx
0
tz

⎤
⎦

⎡
⎣

nx

0
nz

⎤
⎦
T

, (5)

=

⎡
⎣

cos θ − nxtx 0 sin θ − nztx
0 1 0

-sin θ − nxtz 0 cos θ − nztz

⎤
⎦. (6)

There are four unknown elements of a 3 × 3 homography matrix in (6), therefore
this matrix can be parametrized as:

H =

⎡
⎣

h1 0 h2

0 1 0
h3 0 h4

⎤
⎦. (7)

In order to eliminate the scalar factor in (3), we use cross product instead and
obtain:

pj × Hpi = 0. (8)

Combining (7) and (8), we have the following relation:
⎡
⎣

xj

yj
1

⎤
⎦ ×

⎡
⎣

h1 0 h2

0 1 0
h3 0 h4

⎤
⎦

⎡
⎣

xi

yi
1

⎤
⎦ = 0. (9)

It gives us three linear equations, but cross product can also be expressed as
a skew-symmetric matrix product, and the rank of the skew-symmetric [pj ]× is
two, only two linearly independent equations are achieved. By choosing the first
two (9) can be rearranged into:

[
xiyj yj 0 0
0 0 xiyj yj

]
⎡
⎢⎢⎣

h1

h2

h3

h4

⎤
⎥⎥⎦ =

[
xjyi
yi

]
. (10)

One point correspondence gives two constrains and [h1, h2, h3, h4] can be
uniquely determined by two point correspondences if they are not vertically
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aligned. Note that, for different two point correspondences, the parameters
[d, nx, ny] of the plane which is determined by these two points are not the same.
Once [h1, h2, h3, h4] is obtained from two point correspondences, let’s consider
the following relations: ⎧

⎪⎪⎪⎨
⎪⎪⎪⎩

nxtx = cosθ − h1,

nztx = sinθ − h2,

nxtz = −sinθ − h3,

nztz = cosθ − h4,

(11)

By multiplying the first equation by the forth one and multiplying the second
equation by the third one, we obtain:

{
nxnztxtz = (cosθ − h1)(cosθ − h4),
nxnztxtz = (sinθ − h2)(−sinθ − h3),

(12)

The left part of the two equations in (12) is identical. Therefore, the following
relation can be obtained by associating the right parts:

(h1 + h4) cos θ + (h2 − h3) sin θ + h2h3 − h1h4 − 1 = 0, (13)

with:
sin2 θ + cos2 θ = 1. (14)

Using (13) and (14) we can compute cos θ and sin θ, which have two possible
solutions. The rotation of the camera motion can directly be derived from the
cos θ and the sin θ.
Then the normal vector can be obtained by dividing both sides of the first
equation of (12) by the second one:

nx

nz
=

cosθ − h1

sinθ − h2
, (15)

with:
n2
x + n2

z = 1. (16)

Finally, the translation up to scale is given by:

t = d

[
cosθ − h1

nx
0

cosθ − h4

nz

]T

. (17)

3 Experiments

To evaluate the performance of the proposed egomotion estimation method, both
the synthetic data and the real-world data are used for the experiments. The
synthetic data with ground truth is used to compare our 2-point algorithm with
another minimal solution, the 5pt-essential method [17]. The real-world datasets
are provided with two scenes, one for the laboratory building and the other for
the dormitory building. Each scene that satisfies weak Manhattan constrains is
captured by using a robot mounted with a Kinect v2.
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3.1 Test with Synthetic Data

The synthetic data sets are generated in the following setup. The scene contains
of 500 randomly sampled 3D points totally and the focal length of the camera
is set to 1000 pixels with a field of view of 50◦. The average distance from the
first camera to the scene is set to 1 and the base line between two cameras
is set to be 15% of the average scene distance. Since we focus on the indoor
robot motion estimation, the second camera is rotated around y−axis with the
relative rotation angle varying from −15◦ to 15◦. The translation is set parallel
to the ground and the moving direction is set into two situations, along the x-
axis (sideways) and along the z-axis (forward), respectively. This is similar to
Nister’s test scene in [19], which has been used in [21].

As the estimated translation is up to a scalar factor, we compare the angle
between the ground-truth and estimated translation vector. The errors are
defined as follows:

{
ξR = |θg − θe| ,
ξt = arccos((tTg te)/(‖tg‖‖te‖)),

(18)

where ξR is the rotation error and ξt is the translation error, the errors are similar
to [17]. The θg, tg denote the ground-truth rotation angle and translation, and
θe, te are the corresponding estimated rotation angle and translation vector,
respectively.

We evaluate each algorithm under the image noise (corner location) with a
different standard deviation and the increased (Roll, P itch) noise. The noise can
be considered as the error of the normal of the ground plane. In our experiments,
we assume that there are enough feature points lying on the ground. Half of
them are randomly generated on the ground plane and the rest are in the 3D
space above the ground plane. We use the least square solution with all the
inliers and plot the mean value of 1000 trials with different points and different
transformations.

Figures 3 and 4 shows the results of the 5pt-essential matrix algorithm and
our 2pt-homography method. The experiments show that our 2pt-homography
matrix algorithm outperforms the state-of-art 5pt-essential method, in terms
of the rotation error and the translation error. It appears that the 5pt-essential
method is more sensitive to (Pitch,Roll) noise while our 2pt-homography matrix
algorithm is more robust. Notice, when we use this algorithm for real application,
a two point RANSAC method can be used to reject outliers and the final solution
is given by the least square method with all the inliers.

3.2 Performance with Real Data

In order to show the efficiency of the proposed frame-to-frame visual odometry
framework, several real datasets taken in two different indoor corridor-like envi-
ronments using an RGB-D camera mounted on a robot have been collected, as
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Fig. 3. Rotation and translation error for forward motion. Comparing the 5pt-essential
matrix algorithm with our 2pt-homography method. Left column: Rotation error, right
column: Translation error. (a) is with varying image noise. (b) is with increased Pitch
noise and 0.5 pixel standard deviation image noise. (c) is with increased Roll noise and
0.5 pixel standard deviation image noise.

shown in Fig. 5. The scenes are full of low textured walls and the image resolu-
tion used is 960 × 540 pixels. All the experiments are run at 10 FPS on an Intel
Core i5-4460 desktop computer with 3.20 GHz CPU, without GPU acceleration.
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Fig. 4. Rotation and translation error for sideways motion. Comparing the 5pt-essential
matrix algorithm with our 2pt-homography method. Left column: Rotation error, right
column: Translation error. (a) is with varying image noise. (b) is with increased Pitch
noise and 0.5 pixel standard deviation image noise. (c) is with increased Roll noise and
0.5 pixel standard deviation image noise.
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Fig. 5. (a) The laboratory building. (b) The dormitory building. First column: Example
images in the school building. Second column: Reconstructed point cloud.

Fig. 6. Comparison between the ORB-RGBD SLAM and our proposed frame-to-frame
visual odometry framework. (a) Results on the laboratory building. (b) Results on the
dormitory building. First column: Trajectories of ORB-RGBD SLAM. Second column:
Trajectories of our method.
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We perform a comparison with the state-of-the-art ORB-SLAM2 [16]. As can
be seen in Fig. 6, the ORB-SLAM2 fails to complete the entire image sequence
because of lacking of features in low-textured walls and then do a false reloca-
tion. While our method achieves better results, the performance of our algorithm,
using only frame-to-frame camera pose estimation, can be comparable to that
of the algorithm with some non-linear refinement or loop closure detection algo-
rithms. The overall errors of our proposed method the laboratory building and
the dormitory building are only 1.21% and 1.33% respectively.

4 Conclusion

In this paper, a new method for accurate egomotion estimation of the Manhattan
Frame from a single RGB-D image of indoor scenes is proposed. The proposed
method differs from previous algorithms by using directions and points to esti-
mate the pose jointly. It firstly detects vertical planes from a large number of
RGB-D datasets if at least one vertical plane is available. The normal of the ver-
tical plane is obtained directly based on the inverse-depth induced histograms
and we estimate the pose through a novel 3-DOF VO. Secondly, we propose a
new minimal-case algorithm to estimate the egomotion if the plane orientation
is completely unknown. Finally, we propose a frame-to-frame visual odometry
framework based on our algorithms. Experiments with synthetic data and real
data validate that the proposed methods are comparable or even superior to
the state-of-the-art algorithms while maintaining a high efficiency under planar
motion. Our method is currently tested in indoor sceneries with an RGB-D cam-
era. In future work, we will try to implement the proposed algorithm with other
sensors and possibly extend to different environments.
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