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Abstract. Infrared remote sensing images capture the information of
ground objects by their thermal radiation differences. However, the facil-
ity required for infrared imaging is not only priced high but also demands
strict testing conditions. Thus it becomes an important topic to seek
a way to convert easily-obtained optical remote sensing images into
infrared remote sensing images. The conventional approaches cannot gen-
erate satisfactory infrared images due to the challenge of this task and
many unknown parameters to be determined. In this paper, we proposed
a novel multi-branch semantic GAN (MBS-GAN) for infrared image gen-
eration from the optical image. In the proposed model, we draw on the
idea from Ensemble Learning and propose to use more than one genera-
tor to synthesize the infrared images with different semantic information.
Specially, we integrate scene classification into image transformation to
train models with scene information, which assists learned generation
models to capture more semantic characteristics. The generated images
are evaluated by PSNR, SSIM and cosine similarity. The experimental
results prove that this proposed method is able to generate images retain-
ing the infrared radiation characteristics of ground objects and performs
well in converting optical images to infrared images.

Keywords: Infrared image generation · Generative adversarial
networks · Residual neural network

1 Introduction

Infrared imaging is a technique of capturing the infrared light from objects and
converting them into visible images interpretable by a human eye. Near Infrared
light is the portion of the electromagnetic spectrum that just past the Red light.
The far infrared radiation that is also called thermal infrared radiation is heat
emitted by any object that has a temperature above absolute zero. Different
objects have different infrared reflectance which makes them look brighter or
darker in infrared images.
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Fig. 1. The transformation results of our method. As shown, our method can generate
results that are very close to groundtruth.

Compared with optical remote sensing images, infrared remote sensing
images indicate more information about the essence and distribution of ground
objects. However, the facility required for infrared imaging is not only priced
high but also demands strict testing conditions. Converting easily-obtained opti-
cal remote sensing images into infrared remote sensing images helps overcome
these restrictions.

Optical and infrared spectra provide different message. While optical images
can provide information similar to what the human eye would see, optical images
are incapable of providing useful information in situations where the illumina-
tion is poor or the weather is bad [1]. Infrared remote sensing images capture
the information of ground objects by their thermal radiation differences. So in
certain types of situations, infrared remote sensing images are useful than opti-
cal images because infrared information is independent of the quality of the
environment. Moreover, infrared remote sensing images are widely applied to
various fields such as military reconnaissance, climatology, and environmental
monitoring. Therefore, we try to generate costly infrared images by more readily
available optical images.

The challenge in our task is how to capture the infrared information from
optical images. Most current researches utilize physical features, physical model-
ing and manual setting of environmental parameters to generate infrared images.
Luo et al. [4] proposed a method that converts the infrared image into a grayscale
image and then divides it into small parts. However, since the target object can-
not be segmented completely, it is necessary to manually segment the target
object from the background. After that, the temperature and related atmo-
spheric parameters, which are used to calculate the amount of infrared radi-
ation of the target object, of each segmentation area should be set manually.
Finally, the infrared image is obtained by physical modeling. Wu et al. [5] use
the histogram to convert optical images to infrared images by learning the char-
acteristics of optical/infrared image pairs, but the method is mainly for the
conversion of specific target objects (plants, buildings). Li et al. [6] proposed
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a neural network-based infrared image generation method, which segments the
visible light image into different regions, predicts the temperature of the target
object of different materials, and then performs the radiation calculation, but
manually segmentation is needed. And the results are directly affected by the
segmentation of image. It must be mentioned that these methods have much
difficulty in processing large quantities of images simultaneously.

Generative adversarial networks [13] is an effective model for image style
transfer. The framework is good at capturing data distribution by learning from
a big dataset. Recently, many generative adversarial models come out by extend-
ing the original GANs in different ways. For example, Pix2pixGAN [14] is a
kind of conditional GAN requiring to input the real image into the generative
model and discriminative model. It mixes the GAN objective with L1 distance
to make the output near the ground truth output in an L1 sense. Zhu et al.
[11] creatively proposed the framework that contains two generative adversarial
networks. CycleGAN [11] only requires unpaired images for training rather than
paired images. The training results make it possible to translate an image from
each domain to another. StarGAN [12] is a novel model for multi-domain image-
to-image translation. It combines domain information with image information to
train just one model for multi-domain translation. With more and more research,
the existing GAN methods have been able to generate higher quality images. But
this is generally only for certain scenarios under the big data set. For example,
learning from the natural scene image in the ImageNet [15] dataset, BigGAN
[16] has been able to generate realistic and amazing results. However, for many
applications in real-life scenarios, such as infrared remote sensing and visible
light image dataset, corresponding adjustments are needed to generate satisfac-
tory images. GAN [13] is a powerful framework for image style transfer. But
for infrared images, different ground objects have their own infrared radiation
characteristics. By simply using a framework based on GAN, e.g. pix2pixGAN,
the transformation model would ignore some characteristics.

In this paper, we seek to find a method converting optical images into infrared
images based on image style transfer. In order to retain the infrared radiation
characteristics of different objects, we proposed a model that combines resid-
ual neural network and generative adversarial networks, which we named MBS-
GAN. We draw on the idea from Ensemble Learning and propose to use more
than one generator to synthesize the infrared images with different semantic
information. Specially, we integrate scene classification into image transforma-
tion to train models with scene information, which assists learned generation
models to capture more semantic characteristics. Our proposed model overcome
this weakness and our result proves that this proposed method is able to gener-
ate images retaining the infrared radiation characteristics of ground objects and
performs well in converting optical images to infrared images. Some results are
demonstrated in Fig. 1.
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2 Related Work

The problem to be solved in this paper is how to convert optical remote sensing
images into more realistic infrared remote sensing images. As mentioned before,
different ground objects have different infrared radiation characteristics. The
proposed method in this paper combines scene classification and image style
transfer. In this section, we review two methods of tasks above.

ResNet. In image classification, there are many classification models based on
deep convolutional neural networks, e.g. AlexNet [7], GooLeNet [8] and VGGNet
[9]. In most situations, the more the layers, the better the training results. Exces-
sive number of layers may cause the problem of vanishing/exploding gradients.
This problem is solved by normalized initialization and intermediate normal-
ization layers. But there is another problem that as the depth of the network
deepens, the training accuracy rate will gradually decline after getting satu-
rated. He et al. [10] proposed a deep residual learning framework to address the
degradation of training accuracy. ResNet uses building blocks to replace original
convolution layers. Short connections are used in each block to pass through all
information of the network input. Experiments on datasets, e.g. ImageNet and
CIFAR-10, shows that ResNet are easy to optimize and can solve the degradation
problem.

GANs. Goodfellow [13] proposed a novel framework that simultaneously trains
two models via an adversarial process. The framework includes a generative
model and a discriminative model. The generative model is like a team of coun-
terfeiters that produces fake currency while the discriminant model is like police
who detect the counterfeit currency. In the training process, the generative model
tries to cheat the discriminant model and the discriminant tries to identify the
fake. The competition between the two models drives them to improve their
methods until the fake currency generated by the generative model can’t be dis-
tinguished. Pix2pixGAN [14] is a conditional GAN requiring to input the real
image into the generative model and discriminative model. It mixes the GAN
objective with L1 distance to make the output near the ground truth output in an
L1 sense. The generator of pix2pixGAN uses skip connections to share low-level
information between input and output. Relying on an L1 term to force low-
frequency correctness, the discriminator of pix2pixGAN uses PatchGAN that
only penalizes small patches of an images.

3 Method

In this section, we draw on the idea from the machine learning algorithm Ensem-
ble Learning to propose our GAN promotion method. We propose to use more
than one generator to generate images to improve the performance of GAN,
similar to the idea of using multiple classifiers to make decisions in the machine
learning algorithm Boosting. We will start our research based on the current
popular pix2pixGAN.
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3.1 Multi-generator Training

Ensemble Learning [17] is a machine learning method that uses a series of clas-
sifiers to learn and uses a certain rule to integrate individual learning results to
achieve better learning outcomes than a single classifier. Based on this idea, We
propose to use multiple generators to improve the image generation quality of
GAN. The basis for dividing multiple generators and how to use multiple gen-
erators are two issues that need to be addressed. For the first question, the first
solution we think of is the semantic category. Obviously, we need to generate
images in multiple scenes, and each scene has its own unique characteristics, so it
is reasonable and simple to use different generators for different scenes according
to semantics. For the second problem, one method that is very easy to solve is to
use a classifier to classify the input and then pass the image to the appropriate
generator. So as stated above, we propose our model as shown in Fig. 2. As the
figure shows, the input image is first passed through a resnet-50 neural network
for classification, and then the image is input to the corresponding generator for
image generation and finally get the output.

Fig. 2. The architecture of our model. The input image will be first inputted to the
scene classifier and then go through the corresponding generator.

However, when a dataset has many different semantic classes and using a gen-
erator for each semantic category, the model structure will become very large.
So in order to optimize our model, we have to mask some constraint on the
semantics. One way to reduce semantic categories is cluster semantics because
similar semantics have some common features which can be learned by a com-
mon generator. Another simpler approach is to train a generator to find the
semantic categories that are difficult to train, ie, the generated categories with
lower metrics, and then use separate generator training for difficult categories.
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We recommend that the cluster method can be used when there are many seman-
tic categories. Otherwise, the latter can be used when there are few semantic
categories, which directly solves the problem of poor semantic generation. With
reference to the idea of Ensemble Learning and solving difficulties separately,
the quality of image generation of GAN can be improved by our multi-generator
training method.

3.2 Objective

We use the loss function of conditional GAN to guide the training process. And
the objective of a Conditional GAN in pix2pix [14] can be expressed as

LcGAN (G,D) = Ex,y[log D(x, y)] + Ex,z[log(1 − D(x,G(x, z)))] (1)

where z means a random noise, x and y represent conditional image and target
image, respectively. Meanwhile, generator G tries to minimize this objective
against an adversarial discriminator D that tries to maximize it.

For our method, let X and Y be two image domains (e.g., the optical and
infrared image domains). And the training samples from domain X and Y are
denote by {xi}Mi=1 ⊂ X and {yi}Mi=1 ⊂ Y respectively, where M is the number of
semantics and i means the ith semantic category; this shows that we will have
M generators but only one discriminator for all inputs. Here xi ⊂ X will be
inputted to corresponding generator Gi. G is expected to well learn the scheme
of image style transfer and output the images from target domain Y by the
feedback from D. So we propose our LGAN objective as:

LGAN (G,D) = EY [log D(yi)] + EX [log(1 − D(Gi(xi)))] (2)

According to [14], previous studies have found it beneficial to mix the GAN
objective with a more traditional loss, such as L2 distance [18]. And [14] propose
that using L1 distance rather than L2 as L1 encourages less blurring. Therefore,
we introduce L1 loss as:

Ll1(G) = Ex,y[
∥
∥yi − Gi(xi)

∥
∥
1
] (3)

The full objective of our proposed method is:

L = LGAN (G,D) + λLl1(G) (4)

where λ is used to control the weights of L1 loss.

4 Implementation

In this work, we focus on converting optical remote sensing images to near
infrared remote sensing images. we consider to classify the optical images
into three categories, such as water, habitation and other. We simply divide
our work into two parts for scene classification and image transformation.
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We train a scene classification model by ResNet50 and image transformation
model by pix2pixGAN.

For the scene classification model, we train it based on transfer learning. A
ResNet50 model pretrained on ImageNet dataset is preferred. Pre-trained model
can reduce training time and greatly improve the accuracy rate of training. There
are two points that we have to pay attention to in the training process. The first
one is that we have to preprocess images in our dataset. The input image size
required for ResNet50 is 224 × 224 while the size of our images is 256 × 256.
Thus, we have to crop, flip and normalize images before training. A 224× 224
crop is centrally sampled from an image or its horizonal flip. The second one
is that we have to change fully connected layers in the ResNet50 model to fit
our classification model. Cause the number of categories in ImageNet dataset
is 1000 and the number of categories in our dataset is 3. We use cross entropy
loss function and SGD. The learning rate starts from 0.001 and is divided by
10 after several epoch. Each epoch contains training and validation. The model
is set training mode in training and compute loss by the output of forward
propagation and the real labels of images. Then the parameters in the model
are updated by back propagation. The parameters of the model which gets the
highest accuracy rate in validation are returned after the whole training process.

For training of the image transformation model, we have to concatenate the
paired images into an 256× 512 image. We alternately train the generator and
the discriminator in training. The weight of L1 loss in the objective is 100.
The models are trained using minibatch SGD and Adam [19]. The learning rate
starts from 0.0002 and is linearly decayed after the first 100 epochs. Momentum
parameters are set as β1 = 0.5 and β2 = 0.999.

5 Experiment

5.1 Dataset

A satellite imaging company called Planet recently released a dataset about
remote sensing images of Amazon basin. The dataset is used in a Kaggle compe-
tition for labeling the ground feature [20]. The chips were derived from Planet’s
full-frame analytic scene products using 4-band satellites in sun-synchronous
orbit and International Space Station orbit. Each image is 256× 256 pixels and
contains four bands of data: red, green, blue, and near infrared. In our experi-
ment, we use the data which for training in the Kaggle competition to train our
model. There are 40479 tiff image files which contains both optical information
and near infrared information.

5.2 Experimental Results of Scene Classification

In this section, we simply divide the images into three categories: water, habi-
tation and other based on their own labels. For each category, there are 2000
images for training. Here we use residual neural networks of 18, 34 and 50 layers
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to train our scene classification models. Table 1 shows the accuracy rates of scene
classification using different models and we can observe that ResNet50 produces
the highest accuracy rate.

Table 1. The accuracy rates of different ResNet models.

Model The accuracy rate

ResNet18 0.87

ResNet34 0.92

ResNet50 0.95

5.3 Experimental Results of Image Transformation

Qualitative Evaluation. Figure 1 shows the results of image transformation
from optical remote sensing images to near infrared remote sensing images. Com-
pared with the original pix2pixGAN model, the method that training models
for each scene produces better results. This method allows models to learn more
information of the scene feature. For example, the color of water in infrared
images is black. As the Fig. 3 shows, when we train our models with scene infor-
mation, the color of water is close to ground truth, and results are not well when
we simply use pix2pixGAN to train our model.

Fig. 3. Comparison of transformation between our method and pix2pixGAN.
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Table 2. Evaluation on different image transformation models

Model Category PSNR SSIM Cosine similarity

pix2pix water 24.5083 0.7448 0.9863

habitation 23.5000 0.6996 0.9903

other 24.8334 0.7258 0.9923

Our method water 25.4383 0.7580 0.9866

habitation 26.6665 0.7502 0.9906

other 25.7735 0.7547 0.9947

pix2pix overall 24.2805 0.7234 0.9897

Our method overall 25.9596 0.7543 0.9906

Quantitative Evaluation. For quantitative evaluations, we perform to eval-
uate our experiments by using standard image quality assessment, e.g. PSNR,
SSIM [21] and cosine similarity. The peak-signal-to-noise ratio (PSNR) and the
structural similarity index measure (SSIM) are widely used objective metrics due
to their low complexity and clear physical meaning. The PSNR value approaches
infinity as the MSE approaches zero. This shows that a higher PSNR value pro-
vides a higher image quality. Also means, a small value of the PSNR implies
high numerical differences between images. The SSIM is a well-known quality
metric used to measure the similarity between two images. And it is designed
by modeling any image distortion as a combination of three factors that are
loss of correlation, luminance distortion and contrast distortion [22]. The SSIM
is considered to be correlated with the quality perception of the human visual
system (HVS). Cosine similarity is a commonly used approach to match similar
vector, with the advantages of simplicity and effectiveness.

Table 2 shows the results of our method and pix2pixGAN generating images
of each category. Obviously, the results of our method have higher PSNR, SSIM
and cosine similarity scores and our method performs better than the original
pix2pixGAN model.

6 Conclusion

For the task that converts optical remote sensing images into infrared remote
sensing images, our method is able to retain features of different scenes. By
combining scene classification with image transformation, the models capture
infrared characteristics of each scene perfectly and the generated infrared images
are close to ground truth. The experimental results shows our method works
well. Although our method can achieve better results, there are cases where the
classification is wrong during experiments. In this case, the results are different
from the real infrared images and that needs further study.
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