
Structure-Preserving Guided Image
Filtering

Hongyan Wang, Zhixun Su(B), and Songxin Liang

School of Mathematical Sciences, Dalian University of Technology,
Dalian 116024, China
zxsu@dlut.edu.cn

Abstract. Guided filter behaves as a structure-transferring filter which
takes advantage of the guidance image. Nevertheless, it is likely to suffer
from structure information loss problem and artifacts would be intro-
duced in practical tasks, e.g., detail enhancement. We in this paper pro-
pose to deal with the structure loss problem. We modify the original
objective function and develop a re-weighted algorithm to proceed the
filtering process iteratively. The proposed filter inherits good properties
of guided filter and is more capable in avoiding structure information
loss. Many vision tasks can be benefited from the proposed filter. Few
applications we outline include flash/no-flash image restoration, image
dehazing, detail enhancement, HDR compression, and image matting.
Experimental comparisons with relative methods for these tasks demon-
strate the effectiveness of the proposed filter.
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1 Introduction

Image filtering has attracted many research attentions for years and been wit-
nessed significant advances. The goal is to remove fine-scale details or textures
and preserve sharp edges. In computer vision and graphics community, it is a
simple and fundamental tool to extract meaningful information for understand-
ing and analyzing images.

Most early proposed image filters are linear translation-invariant filters (e.g.,
Gaussian and Laplacian filters), which can be explicitly expressed by convolu-
tion operator between one input image and a specific filter kernel. They usu-
ally achieve poor performance due to their simple forms and lacking of elabo-
rate designing. To better preserve edges, bilateral filter (BF) has been proposed
in [1,30], taking both spatial and range information into consideration. By using
an additional favourable image instead of the input image, bilateral filter can
be extended to joint bilateral filter (JBF) [10,25]. However, one well-known lim-
itation of (joint) bilateral filter is that it may generate gradient reversal arti-
facts [2,11] in detail enhancement and HDR compression.
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Joint filtering techniques need an input image and a guidance image. Based on
a local linear model between the guidance image and the output, the guide filter
(GF) [14] is a representative structure-transferring filter and overcomes the gra-
dient reversal limitation. Unluckily, one trouble thing is that the guidance image
may be insufficient or unreliable locally, which may lead to unpleasing artifacts.
Shen et al. propose the concept of mutual-structure in [28] to address the struc-
ture inconsistency problem. Relying on mutual-structures that are contained in
both the input and the guidance image to generate the output, MSJF [28] is suit-
able to specific problems like joint structure extraction and joint segmentation.
It does not has structure-transferring property.

Many methods [16,19,20] have been proposed to improve guided filter [14].
However, most of them work on designing various adaptive weights or regular-
ization terms and pay little attention on the structure loss problem. Guided
filter [14] applies L2 norm distance on intensity to formulate fidelity term, lead-
ing that some meaningful structures may not be preserved well, particularly near
edges. This can be illustrated in Fig. 1. As shown in Fig. 1(b), there is noticeable
loss of structural information near the edge. This easily causes errors or artifacts
in many applications, e.g., detail enhancement.

Fig. 1. Illustration of structure loss on 1D signals. The guided filter output losses
structural information and blurs the edge. Our method is more capable of preserving
the edge and the output edge is sharper.

We in this work propose an algorithm to improve the capability of the guided
filter on avoiding structure loss. Our contribution is two-fold. First, we modify
the original objective function and develop an efficient algorithm by iterative
re-weighting mechanism. Second, we show that the proposed method benefits
many vision applications. Experimental results compared with state-of-the-art
methods demonstrate the effectiveness of our method.

2 Proposed Model and Optimization

In this section, we propose a new objective function based on the similar assump-
tion as [14]. Then we develop a numerical algorithm and give the iterated solu-
tions of the proposed method.
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2.1 Proposed Model

Given an guidance image G, the proposed method is based on the following local
model:

qi = akGi + bk,∀i ∈ Wk, (1)

where q denote the expected output, and i is the pixel index in the window Wk,
which is centered at pixel k. ak and bk are two linear transform coefficients. All
pixels in Wk are assumed to share the same ak and bk. Wk is set to be square
with 2r + 1 pixels on the side.

For an input image p, the output q is expected to contain major structures
associated with p. Details, textures, and noise are expected to be contained in
n = p − q. Based on these assumptions, we propose the following objective
function:

E(ak, bk) =
∑

i∈Wk

(|akGi + bk − pi| + εa2
k

)
. (2)

To deal with the structure loss, L1 norm is employed in (2) to formulate the
fidelity term.

2.2 Optimization

The data term in (2) is not quadratic, making the optimization problem not a
simple linear regression problem. To solve (2), we employ iterative re-weighted
least squares (IRLS) algorithm [17] to obtain the iterative solutions of ak and bk.
IRLS solves a sequence of least square problems within an iterating framework,
and every least square problem can be penalized by the reciprocal of absolute
error of previous iteration. The cost function at t-th iteration (t ≥ 1, t ∈ N) is
defined as

E(at
k, bt

k) =
∑

i∈Wk

ωt
i(a

t
kGi + bt

k − pi)2 + ε(at
k)2, (3)

where the weight at pixel i is given by ωt
i = 1/max

{|qt−1
i − pi|, ν

}
. ν is a

parameter to avoid the zero denominator. We define the q0 as the output of the
guided filter [14].

The energy function (3) is a linear regression problem [9]. By setting the
derivatives of (3) with respect to at

k and bt
k to zero respectively, we can obtain

the iterative solutions of at
k and bt

k:

⎧
⎪⎨

⎪⎩
at

k =
1

|W |
∑

i∈Wk
ωt

iGipi − G̃t
kp̃ t

kω̃t
k

(σ̃t
k)2 + ε

,

bt
k = p̃ t

k − at
kG̃t

k,

(4)

where G̃t
k and (σ̃t

k)2 denote the weighted mean and weighted variance of G in

Wk, given by G̃t
k =

∑
i∈Wk

ωt
iGi

∑
i∈Wk

ωt
i

and (σ̃t
k)2 = 1

|W |
∑

i∈Wk
ωt

i(Gi−G̃t
k)2. p̃ t

k denotes
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the weighted mean of p and ω̃t
k denotes the mean of all the penalized weights ωt

i

in Wk, given by ω̃t
k = 1

|W |
∑

i∈Wk
ωt

i and p̃ t
k =

∑
i∈Wk

ωt
ipi

∑
i∈Wk

ωt
i

.

Similar to [14], overlapping problem appears. In each iteration, we compute
at

i and b
t

i by averaging strategy: at
i = 1

|W |
∑

k:i∈Wk
at

k and b
t

i = 1
|W |

∑
k:i∈Wk

bt
k.

The final output is calculated by qt
i = at

iGi + b
t

i.
We point out that the calculations of (4) involve G̃t

k, p̃ t
k, and σ̃t

k, which are
associated with the penalized weights ω̃t

i . This is different from the calculations
of the solutions (ak and bk) of guided filter [14], since the filtering process of [14]
is not iterative.

(a) Input/Guidance (b) GF (q0) (c) Ours

Fig. 2. Comparisons of guided filter and the proposed filter.

3 Discussions

In this section, we discuss some properties of the proposed iterative filter and
provide the expressions of our iterative kernel weights. Extension to color images
and limitations are also discussed.

3.1 Edge-Preserving Filter

In this section we analyze how does the proposed filter work. When G = p, the
equations in (4) are simplified to at

k = (σ̃t
k)2

/ (
(σ̃t

k)2 + ε
)

and bt
k = (1 − at

k) G̃t
k.

As ε is positive, for each qt
i there are two special cases:

– If (σ̃t
k)2 � ε, then at

k ≈ 0, so qt
i ≈ bt

k ≈ G̃t
k.

– If (σ̃t
k)2 � ε, then at

k ≈ 1 and bt
k ≈ 0, so qt

i ≈ Gi.

For pixels located in a flat window, their intensities are approximative and
we have G̃t

k ≈ Gi. Then (σ̃t
k)2 → 0 and (σ̃t

k)2 � ε, we obtain at
k ≈ 0 and

qt
i ≈ G̃t

k. In other words, the proposed filter handles pixel in a flat window by
weighted averaging to reach the goal of smoothing. On the other hand, only
when (σ̃t

k)2 � ε, pixel centered at this window is preserved. Note that (σ̃t
k)2 is

influenced by both ωt
i and structures in the patch Wk. This means that whether

the pixel is preserved or not is determined by G, p and qt−1. That is, the criterion
“what is an edge” or “structures which are expected to be preserved” is no



118 H. Wang et al.

longer simply measured by the given parameter ε like [14]. In the t-th iteration,
pixels where p and qt−1 are approximate are assigned large weights to reach the
similar smoothing effects as guided filter, whereas pixels where p and qt−1 are
quite different are assigned small weights for proper modifications. This explains
why the proposed method is more capable of avoiding structural information
loss than guided filter. Visual comparison of guided filter and the proposed filter
is shown in Fig. 2.

3.2 Gradient-Preserving Filter

The proposed filter is able to avoid the gradient reversal artifacts. We take
detail enhancement for example and follow the algorithm based on base-detail
layers decomposition E = B + τD, where B,D,E denote the base layer, the
detail layer and the enhanced image, respectively. τ is a parameter to control
the magnification of details.

In practice, the base layer B is generated by filtering on the input image p,
and the detail layer D can be viewed as D = p − B. This relationship ensures
that ∂D = ∂p − ∂B. If B can not be consistent with the input signal p and
further leads to ∂D · ∂p < 0, the gradient reversal artifacts would appear in the
enhanced signal after magnifying the detail layer D.

Theoretically, the local linear model (1) indicates that ∂B is at
k times of ∂p

when p ≡ G. For at
k, we have at

k = σ̃2
k

/
(σ̃2

k + ε) and it is less than 1. Then we
further have ∂D = ∂p − ∂B = (1 − at

k)∂p and ∂D · ∂p ≥ 0.
An example of 1D signal is shown in Fig. 3. As can be seen in Fig. 3(c),

our final enhanced signal avoids gradient reversal artifacts safely and does not
introduce over-sharpened artifacts in the enhanced signal.

Fig. 3. The proposed filter is gradient-preserving. (a) Input signal and our filtering
result. (b) Detail layer. (c) The enhanced signal. The proposed method does not gener-
ate unrealistic details near edges and further produces natural enhanced signal without
over-sharpened artifacts.

3.3 Iterative Filter Kernel

The filter kernel of the proposed method varies in each iteration. The explicit
expressions of kernel weights in t-th iteration can be given by

W t
ij =

1
|W |2

∑

k:(i,j)∈Wk

M

(
(Gi − G̃t

k)(Gj − G̃t
k)

(σ̃t
k)2 + ε

+
1
ω̃t

k

)
, (5)
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where M = ωt
j + TjH

(|qt−1
j − pj | − ν

) (
pj − p̃ t

k − at
k(Gj − G̃t

k)
)
, and Tj =

sgn(qt−1
j − pj)/(qt−1

j − pj)2. We use sgn(·) to denote sign function and H(·)
to denote heaviside step function (outputting ones for positive values and zeros
otherwise).

(5) can be proved by the Chain Rule and a series of careful algebraic manip-
ulations. Here we visually show several kernels in Fig. 4.

3.4 Filtering Using Color Guidance Image

Section 2 presents the iterated filtering process for the case of a gray input with
a gray guidance image. However, RGB images usually contain more information
than gray images. Thus, we develop another proper algorithm for the case of
color guidance image. We rewrite model (1) in vector form:

qi = aT
k Gi + bk,∀i ∈ Wk, (6)

where (·)T denotes matrix transposing operator, Gi denotes RGB intensities at
pixel i, and ak denotes coefficient vector. Note that Gi and ak are 3×1 vectors,
while qi and bk are still scalars. Then (2) becomes

E(at
k, bt

k) =
∑

i∈Wk

ωt
i(a

t
kGi + bt

k − pi)2 + ε(at
k)T at

k, (7)

and the solutions of at
k and bt

k can be obtained by linear regression:
⎧
⎪⎨

⎪⎩

at
k =

(
Σ̃t

k + εE
)−1

[
1

|W |
∑

ωt
ipiGi − ω̃t

kp̃ t
kG̃t

k

]

bt
k = p̃ t

k − (at
k)T G̃t

k

, (8)

Fig. 4. Several iterative filtering kernels for two special cases. (a) Image patches. (b)
Kernels of guided filter (W 0) at the pixels denoted by the red dots in (a). (c)–(f) Our
iterative kernels after 1st, 4th, 7th and 10th iteration. The final kernels are capable in
preserving underlying data structure.
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where E is a 3 × 3 matrix with all one elements, and G̃t
k is a 3 × 1 weighted

averaged vector of Gi. Σ̃t
k is a 3 × 3 weighted covariance matrix, expressed as

Σ̃t
k = 1

|W |
∑

i∈Wk
ωi

(
Gi − G̃t

k

)(
Gi − G̃t

k

)T

.
After dealing with the overlapping problem, the final filter output are given

by qt
i = 1

|W |
∑

k:i∈Wk

(
(at

k)T
Gi + bt

k

)
=

(
at

i

)T
Gi + b

t

i.
We show an example in Fig. 5. By comparing the results of using gray guid-

ance and RGB guidance visually, we can see that edges in Fig. 5(c) are preserved
better than that in Fig. 5(b).

(a) Input image (b) Gray guidance (c) RGB guidance

Fig. 5. Comparisons on color guidance image and gray guidance image.

In addition, filtering a gray input with a color guidance image is also very
useful for some vision tasks, such as dehazing and image matting. These appli-
cations can be found in Sect. 4.

3.5 Limitations

The proposed method would not work well if there is complex texture patterns
contained in the image, or it is incapable of removing dense textures. We show
an example in Fig. 6. As can be seen, gradient-based RTV method [33] performs
better than the proposed method.

Input r = 8, ε = 0.22 r = 16, ε = 0.62 RTV [33]

Fig. 6. One failure example.
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4 Applications and Experimental Results

The proposed method can be applied to a variety of computer vision tasks.
Several tasks we outline in this section are flash/no-flash image restoration,
image dehazing, detail enhancement, HDR compression, and image matting.

Parameter Settings. We state parameter settings first. Empirically, we set
window radius r < 100 and the regularization parameter ε < 1. ν is set to be
0.0001 in all experiments. The number of iterations is set to be 5.

Running Time. The proposed algorithm has been implemented in MATLAB
on a PC with Intel Xeon E5630 CPU and 12 GB RAM. It takes about 0.4 s to
process a 321 × 481 gray image without code optimization. For the color case,
processing an image with the same size takes about 23.8 s.

4.1 Flash/No-Flash Image Restoration

Flash/No-Flash Denoising. The observed flash image can be viewed as a
guidance image to facilitate denoising a noisy no-flash input. Figure 7 shows an
example. The compared methods include joint BF, GF [14], and WLS [11]. As
can be seen, the results shown in Fig. 7(c) (joint BF) contain noticeable gradient
reversal artifacts. GF is incapable of preserving edges and can not produce sharp
edges in some regions (Fig. 7(d)). The results of WLS (Fig. 7(e)) contain artifacts
generated by the intensive noises. Our result is visually better than others.

Flash/No-Flash Deblurring. One common way for flash/no-flash deblurring
is to generate an image which both preserves the ambiance lighting and contains
clear edges and details. This process can be simply finished by the base-detail
layers decomposition model mentioned in Sect. 3.2, which may save much compu-
tation compared with existing deblurring methods. The base layer B is generated
by filtering on the no-flash image p guided by the flash image G in order to main-
tain the ambient lighting. The detail layer D is produced by D = G − Ĝ, where
Ĝ denotes a self-guidance filtered output of G. Then we can combine the base
layer B and the detail layer D to generate a blur-free image.

A challenging case is that some saturated regions may appear in the blurry
no-flash image, as shown in Fig. 8(a). Two representative blind image deblurring
methods [22,24], fail to produce clear structure around the saturated region,
as shown in Fig. 8(b)–(c). Severe artifacts can be found in these results. Even
for methods [15,23], which are specifically proposed to deal with outliers, their
deblurred results shown in Fig. 8(d)–(e) are still unpleasing. We also provide
results of several filtering methods, including joint BF, GF [14], WLS [11], L0 gra-
dient minimization [32], domain transform filter (DTF) [12], RTV [33], RGF [34],
and MSJF [28]. As shown in Fig. 8(g)–(o), ours is visually the best.
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(a) Guidance (b) Input (c) Joint BF (d) GF [14] (e) WLS [11] (f) Ours

Fig. 7. Denoising with flash/no-flash image pair. The no-flash image (input) suffers
from severe noises while the structures and edges in the flash image (guidance) are
quite clear. Compared with the results shown in (c)–(e), the proposed filtering method
produce a noise-free result with clear edges.

4.2 Image Dehazing

We follow the widely used the hazy image formation model I(x) = J(x)T (x) +
A(x)(1−T (x)), where I,J ,A, T denote the observed hazy image, the scene radi-
ance, the global atmospheric light and the medium transmission, respectively. x

(a) No-flash (b) [22] (c) [24] (d) [15] (e) [23]

(f) Flash (g) Joint BF (h) GF [14] (i) WLS [11] (j) L0 [32]

(k) DTF [12] (l) RTV [33] (m) RGF [34] (n) [28] (o) Ours

Fig. 8. Blur removal example with flash/no-flash image pair. Results shown in
(b)–(e) are restored by deblurring methods [15,22–24], respectively (blur kernel size:
33 × 33; running time of kernel estimation process: 465.7 s, 2020.6 s, 306.8 s, and
1933.4 s). Results shown in (g)–(o) require no kernel estimation process (running time:
1.6 s, 1.1 s, 7.4 s, 10.2 s, 78.4 s, 17.5 s, 6.4 s, 23.8 s and 7.8 s).
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is the pixel index. We estimate the atmospheric light A and the raw transmis-
sion map T 0(x) within the framework [13] and refine T 0(x) by filtering T 0(x)
instead of solving the matting Laplacian matrix like [13], which is very slow. As
can be seen in Fig. 9, our refined transmission map T (Fig. 9(d)) contains more
meaningful structures than T 0 (Fig. 9(b)). The final dehazed result is shown
in Fig. 9(e). The competitive dehazing methods include DCP [13], BCCR [21],
NLD [3], DehazeNet [5], and MSCNN [26]. Our result is visually comparable to
the results of conventional methods DCP, BCCR and NLD, and is a little better
than that of learning-based methods DehazeNet and MSCNN.

Fig. 9. An image dehazing example. (a) Input hazy image. (b) Raw transmission map
T 0. (c) Dehazed by (b). (d) Our refined T . (e) Dehazed by (d). (f) DCP [13]. (g)
BCCR [21]. (h) NLD [3]. (i) DehazeNet [5]. (j) MSCNN [26]. It cost about 57 s and
40 s for (f) (using matting Laplacian) and (e) (ours) to refine T 0.

4.3 Detail Enhancement and HDR Compression

Detail Enhancement. The detail enhancement algorithm has been described
in Sect. 3.2. Figure 10 shows comparisons of using GF [14], LLF [29], RTV [33],
mRTV [8], RoG [4] and the proposed filter on an example. The results shown
in Fig. 10(b)–(f) suffer from unrealistic artifacts (See close-ups). In comparison,
our method avoids to generate unrealistic artificial details (Fig. 10(g)).

HDR Compression. Different from detail enhancement, HDR compression
aims to generate low dynamic range image by compressing the base layer at
some rate while preserving the details. We show an example in Fig. 11 compared
with some filter methods [4,11,29,32]. To display we convert the input HDR
radiance to a logarithmic scale and then map the result to [0, 1] (See Fig. 11(a)).
For each result, we show two close-ups of a highlighted area and a dark area.
The proposed method produces clean result with natural details, whereas the
other methods either suffer from aliasing or fail to compress the range properly.
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(a) Input (b) GF (c) LLF (d) RTV (e) mRTV (f) RoG (g) Ours

Fig. 10. A detail enhancement example compared with [4,8,14,29,33]. The guided filter
generates an over-enhanced results with unrealistic artifacts due to structural informa-
tion loss, as shown in (b). Our result is visually more natural with little unrealistic
artifacts than (b)–(f).

Input WLS [11] LLF [29] L0 [32] RoG [4] Ours

Fig. 11. HDR compression. Close-ups show that the proposed method compresses the
highlighted area and the dark area effectively.

4.4 Image Matting

An accurate matte can be generated from filtering a coarse binary mask with the
guidance of corresponding clear image. We compare our method with image mat-
ting methods [6,7,18,27,31]. Our result shown in Fig. 12(g) is visually compara-
ble with the results shown in Fig. 12(b)–(f). Nevertheless, the proposed method
does not require another user-assisted input but a coarse binary mask. In com-
parison, all the competitive methods require user-assisted input (either scribbles
or trimap image) for labeling.
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(a) Input (b) [18] (c) [31] (d) [6] (e) [27] (f) [7] (g) Ours

Fig. 12. An image matting example.

5 Conclusion

In this paper, we propose to modify the measurement function of fidelity term in
the objective function of guided filter to address its structural information loss
limitation and improve its capability on preserving structures. We then develop
an efficient iterative re-weighting algorithm to solve the proposed model. We
analyze the attractive properties of our method. The extension to color guidance
image (with gray input) leads the proposed filter to benefit some specific tasks,
e.g., image matting. We also outline other applications which can be benefited
from the proposed method. We expect to apply it to more practical applications.
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Science Foundation of China (No. 61572099).

References

1. Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffu-
sion. In: Sagerer, G., Posch, S., Kummert, F. (eds.) Mustererkennung, 17. DAGM-
Symposium, pp. 538–545. Springer, Heidelberg (1995). https://doi.org/10.1007/
978-3-642-79980-8 63

2. Bae, S., Paris, S., Durand, F.: Two-scale tone management for photographic look.
ACM ToG 25(3), 637–645 (2006)

3. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: CVPR, pp.
1674–1682 (2016)

4. Cai, B., Xing, X., Xu, X.: Edge/structure preserving smoothing via relativity-of-
Gaussian. In: ICIP, pp. 250–254 (2017)

5. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for
single image haze removal. IEEE TIP 25(11), 5187–5198 (2016)

6. Chen, Q., Li, D., Tang, C.K.: KNN matting. IEEE TPAMI 35(9), 2175–2188 (2013)
7. Cho, D., Tai, Y.-W., Kweon, I.: Natural image matting using deep convolutional

neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9906, pp. 626–643. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46475-6 39

8. Cho, H., Lee, H., Kang, H., Lee, S.: Bilateral texture filtering. ACM ToG 33(4),
128:1–128:8 (2014)

9. Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley series in Probability
and Mathematical Statistics, 2nd edn. Wiley, New York (1981)

https://doi.org/10.1007/978-3-642-79980-8_63
https://doi.org/10.1007/978-3-642-79980-8_63
https://doi.org/10.1007/978-3-319-46475-6_39
https://doi.org/10.1007/978-3-319-46475-6_39


126 H. Wang et al.

10. Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting.
ACM ToG 23(3), 673–678 (2004)

11. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decomposi-
tions for multi-scale tone and detail manipulation. ACM ToG 27(3), 67:1–67:10
(2008)

12. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video
processing. ACM ToG 30(4), 1–12 (2011)

13. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior.
IEEE TPAMI 33(12), 2341–2353 (2011)

14. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE TPAMI 35(6), 1397–1409
(2013)

15. Hu, Z., Cho, S., Wang, J., Yang, M.: Deblurring low-light images with light streaks.
In: CVPR, pp. 3382–3389 (2014)

16. Kou, F., Chen, W., Wen, C., Li, Z.: Gradient domain guided image filtering. IEEE
TIP 24(11), 4528–4539 (2015)

17. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a con-
ventional camera with a coded aperture. ACM ToG 26(3), 70 (2007)

18. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image mat-
ting. IEEE TPAMI 30(2), 228–242 (2008)

19. Li, Z., Zheng, J., Zhu, Z., Yao, W., Wu, S.: Weighted guided image filtering. IEEE
TIP 24(1), 120–129 (2015)

20. Liu, W., Chen, X., Shen, C., Yu, J., Wu, Q., Yang, J.: Robust guided image fil-
tering. Computing Research Repository abs/1703.09379 (2017). http://arxiv.org/
abs/1703.09379

21. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with
boundary constraint and contextual regularization. In: ICCV, pp. 617–624 (2013)

22. Pan, J., Hu, Z., Su, Z., Yang, M.: Deblurring text images via L0-regularized inten-
sity and gradient prior. In: CVPR, pp. 2901–2908 (2014)

23. Pan, J., Lin, Z., Su, Z., Yang, M.: Robust kernel estimation with outliers handling
for image deblurring. In: CVPR, pp. 2800–2808 (2016)

24. Pan, J., Sun, D., Pfister, H.: Blind image deblurring using dark channel prior. In:
CVPR, pp. 1628–1636 (2016)

25. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M.F., Hoppe, H., Toyama, K.:
Digital photography with flash and no-flash image pairs. ACM ToG 23(3), 664–672
(2004)

26. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing
via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46475-6 10

27. Shahrian, E., Rajan, D., Price, B.L., Cohen, S.: Improving image matting using
comprehensive sampling sets. In: CVPR, pp. 636–643 (2013)

28. Shen, X., Zhou, C., Xu, L., Jia, J.: Mutual-structure for joint filtering. IJCV 125(1–
3), 19–33 (2017)

29. Sylvain, P., Samuel, W.H., Jan, K.: Local laplacian filters: edge-aware image pro-
cessing with a laplacian pyramid. Commun. ACM 58(3), 81–91 (2015)

30. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV,
pp. 839–846 (1998)

31. Varnousfaderani, E.S., Rajan, D.: Weighted color and texture sample selection for
image matting. IEEE TIP 22(11), 4260–4270 (2013)

32. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization.
ACM ToG 30(6), 174:1–174:12 (2011)

http://arxiv.org/abs/1703.09379
http://arxiv.org/abs/1703.09379
https://doi.org/10.1007/978-3-319-46475-6_10


Structure-Preserving Guided Image Filtering 127

33. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative
total variation. ACM ToG 31(6), 139:1–139:10 (2012)

34. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 815–830.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9 53

https://doi.org/10.1007/978-3-319-10578-9_53

	Structure-Preserving Guided Image Filtering
	1 Introduction
	2 Proposed Model and Optimization
	2.1 Proposed Model
	2.2 Optimization

	3 Discussions
	3.1 Edge-Preserving Filter
	3.2 Gradient-Preserving Filter
	3.3 Iterative Filter Kernel
	3.4 Filtering Using Color Guidance Image
	3.5 Limitations

	4 Applications and Experimental Results
	4.1 Flash/No-Flash Image Restoration
	4.2 Image Dehazing
	4.3 Detail Enhancement and HDR Compression
	4.4 Image Matting

	5 Conclusion
	References




