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Using Technology to Address Individual 
Differences in Learning

Pavlo D. Antonenko, Kara Dawson, Li Cheng, and Jiahui Wang

�Problem Definition

Each individual possesses a unique pattern of mental abilities to process vast 
amounts of information, motivation levels for performing various tasks, visuospa-
tial skills to navigate spaces and comprehend visual stimuli, and numerous other 
sets of aptitudes and traits that vary in their degree of stability over time. Recognizing 
that people think and learn differently, educators strive to design learning experi-
ences and integrate technology to support a wide range of students with important 
differences in perception, attention, cognition, affect, motivation, self-regulation, 
and so on. Individual differences in learning are defined as skills, aptitudes, prefer-
ences, and traits that serve as a source of variability among learners and influence 
learning experiences and learners’ ability to accomplish learning outcomes 
(Jonassen & Grabowski, 1993). Individual differences in learning are manifested in 
a variety of ways. Learners may express preferences for learning with different 
media (e.g., text, images) and modalities (e.g., auditory, visual, kinesthetic; Plass, 
Kalyuga, & Leutner, 2010). Learning is also moderated by cognitive differences 
such as processing speed, attention span, working memory capacity, inhibitory con-
trol (Zelazo, 2015), and a host of noncognitive variables such as interest, self-
efficacy, goal orientation, and so on (Belland, Kim, & Hannafin, 2013). Motivational, 
cognitive, and affective variables are interconnected in many intricate ways to cre-
ate each individual’s subjective experience of learning (Ainley, 2006), which makes 
the study of individual differences, as well as design, development, and application 
of appropriate educational technologies, more difficult.
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Research on individual differences in learning has a long history (Cronbach & 
Snow, 1977; Eysenck, 1969). However, using technology to support learning for all 
students remains an elusive goal. Issues with lack of student motivation and engage-
ment, frustration and boredom, and compromised learning in technology-supported 
environments continue to be pervasive and are often attributed to our inability to 
adapt instruction to reflect the differences among learners (Aleven, McLaughlin, 
Glenn, & Koedinger, 2017; Hung, 2011). A recent study exploring the technology 
decisions for inclusive middle-school science instruction revealed that while teach-
ers did consider instructional technologies for inclusive science classrooms, stu-
dents’ learning differences were not among the factors that influenced teachers’ 
technology selections (Rutt, Mumba, Chabalengula, & Ochs, 2017). Given these 
concerns, the problem addressed in this chapter is the need to conduct more research 
and development to capitalize on the affordances of twenty-first-century technology 
as well as the new and emerging assessment methods that measure dynamics of 
individual differences to design learning environments that account for variation 
among learners relative to motivation, affect, and cognition.

�Historical Overview

A number of learning theories and instructional design models have emphasized the 
notion that learning relies on students’ cognition, affect, and motivation. In 1902, 
John Dewey called for a reform in curriculum design that moves away from the 
inflexible, one-size-fits-all curricula to instructional programs that are sensitive to 
children’s needs and interests (Dewey, 1964). Across the globe, Soviet psychologist 
Lev Vygotsky developed the concept of the zone of proximal development, or the 
difference between what learners can and cannot do without the help of a more 
knowledgeable other, and introduced the idea of instructional scaffolding or chang-
ing the level of support to accommodate the cognitive potential of the child 
(Vygotsky, 1987). The study of scaffolding, and particularly adaptive scaffolding, 
remains a prominent trend in educational research and practice (Belland, Walker, 
Kim, & Lefler, 2017).

An important development in individual differences research occurred in 1957 
when Lee J. Cronbach reported on the outcomes of correlational research to relate 
individual differences and learning gains on different experimental treatments 
(Cronbach, 1957). This work helped lay the foundation for what is now known as 
aptitude-treatment interactions (ATI; Cronbach & Snow, 1969). A pervasive finding 
in ATI research has been that selection of effective instructional treatment depends 
on learners’ knowledge in the domain (Cronbach & Snow, 1977). This finding has 
been incorporated in instructional design models such as Gagne’s Nine Events of 
Instruction where one of the early design steps is “Stimulate recall of prior knowl-
edge” (Gagne, 1985), in the student knowledge-informed use of instructional texts 
(McNamara, Kintsch, Songer, & Kintsch, 1996), and, more recently, in the design 
of learning technologies that adapt to student knowledge of the domain (e.g., Arroyo 
et al., 2014; VanLehn et al., 2000).
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�Current Perspectives

The resurgence of interest in individual differences in the 1950s and 1960s reflected 
an increased interest of psychologists in the study of cognition that is often referred 
to as the cognitive revolution in psychology (Baars, 1986). From a cognitive per-
spective, learning with technology requires effective processing of information pre-
sented to the learner using various media or modalities. Thus, much of the cognitivist 
research in educational technology has focused on the cognitive load imposed by 
various technology-supported learning materials. Within this line of inquiry, it is 
assumed that poor learning outcomes are due to the ineffective design of learning 
materials (e.g., when images and text are not semantically related). Cognitive load 
is discussed primarily as a consequence of the design of the learning materials, and 
differences in individual learner characteristics that may impact cognition are typi-
cally not addressed (Plass et al., 2010; Wiley, Sanchez, & Jaeger, 2014). A notable 
exception is research on the expertise reversal effect that discusses the design of 
learning materials relative to differences between expert and novice learners 
(Kalyuga, 2007). Specifically, students with high prior knowledge have been found 
to experience increased extraneous cognitive load when presented with instructional 
scaffolds for the material they had already internalized, whereas low prior knowl-
edge students experienced decreased extraneous load and exhibited learning gains 
when presented with instructional scaffolding.

A complementary approach that puts learners and their characteristics front and 
center focuses on the effects of individual differences in learning with technology. 
Unlike scholarship exploring the properties of learning materials, an individual dif-
ferences approach addresses the moderating effects of individual differences among 
learners that represent a spectrum of motivational, affective, and cognitive variables 
that we have long known exist and influence learning (Eysenck, 1969). The extent 
of variation among individuals across all the cognitive, motivational, and affective 
dimensions is incredibly vast. However, scholars do agree on a number of assump-
tions about differences among individuals and their learning (Jonassen & 
Grabowski, 1993):

•	 Individual differences in learning show systematic variation in the population.
•	 Individual differences in learning have pervasive effects on cognition, emotion, 

motivation, and behavior.
•	 Individual differences in learning affect the learner’s ability to perform learning 

tasks and accomplish learning outcomes

The types of individual learner differences have been described in many different 
frameworks. For example, Jonassen and Grabowski’s (1993) taxonomy of individ-
ual differences in learning distinguishes between cognitive abilities (cognitive 
controls, cognitive styles, and learning styles), personality styles, and prior knowl-
edge. Some of the types of individual differences such as learning styles are still 
being debated (Kirschner & van Merrienboer, 2013; Pashler, McDaniel, Rohrer, & 
Bjork, 2009), whereas other variables such as prior knowledge, working memory 
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capacity, motivation, and emotional arousal have been shown to be valid and rele-
vant concepts that reflect variability among learners and serve to inform theories of 
learning and the practice of teaching (Akshoomoff et al., 2013).

Today, there is increased recognition that learning is influenced by affect and 
motivation (D’Mello & Graesser, 2011), and so a number of taxonomies have been 
devised to describe variations among learners relative to the motivation and emo-
tions they experience during learning. For instance, Pekrun (2010) discusses 
achievement emotions, topic emotions, social emotions, and epistemic emotions 
that moderate learning and cognition. Ryan and Deci’s (2004) self-determination 
theory provides a useful taxonomy of learner motivation and motivation regulation 
that describes learner motivation along a continuum from amotivation to extrinsic 
motivation (external regulation, introjected regulation, identified regulation, and 
integrated regulation) to intrinsic motivation with self-determined, intrinsic regula-
tion. These taxonomies serve as logical tools that inform the study of individual 
differences in learning and inform the design of affective, motivational, and cogni-
tive scaffolding.

�Individual Differences as States and Processes

To facilitate the discussion of cognitive, affective, and motivational differences in 
learning, it may be useful to examine them along a continuum from the relatively 
stable and constant states to the highly dynamic and volatile processes. Prior knowl-
edge, metacognitive awareness, reading ability, visuospatial abilities, and working 
memory capacity are all examples of states that remain comparatively constant over 
time. On the other hand, a key characteristic of processes is that they fluctuate dur-
ing the learning task. For instance, boredom, frustration, cognitive load, stress, and 
strategy choice are dynamic processes that constantly change, reflecting situational 
and task dynamics such as relevance, difficulty of content, and design of instruc-
tional scaffolding. As is the case with many educational and psychological vari-
ables, however, true dichotomies (such as the above distinction between states and 
processes) are rare. While we believe this categorization helps with analyzing the 
causes and effects of individual differences in learning, it is also understood that (a) 
there may be great variability within both states and processes relative to their sta-
bility and volatility (e.g., an active social sciences researcher’s knowledge of statis-
tics may develop much more dynamically compared to her or his knowledge of 
geometry), and (b) states and processes are highly interactive (e.g., prior knowledge 
influences cognitive load and cognitive load impacts the development of new knowl-
edge; Kalyuga, 2007).

An important implication of discussing individual differences as states versus 
processes is measurement. Due to their relative stability, states such as prior knowl-
edge, metacognitive skills, or reading ability usually only need to be assessed once, 
using pre-task measures such as tests of prior knowledge or metacognitive awareness 
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instruments (e.g., Schraw & Dennison, 1994). However, because process variables 
such as cognitive load or affective responses fluctuate during the learning task, con-
tinuous online assessments during the task are needed to inform individualization of 
learning (Sinatra, Heddy, & Lombardi, 2015).

�Promising Directions

Advances in the assessment of individual differences in learning and recent techno-
logical innovations in dynamic web and mobile application development have 
resulted in the design of systems that adapt to individual differences at both the state 
level and the process level (e.g., Aleven et  al., 2017; D’Mello, Dieterle, & 
Duckworth, 2017).

�Addressing State-Level Differences

State-level individual differences in learning such as prior knowledge, visuospatial 
abilities, reading ability, and working memory capacity are a well-recognized phe-
nomenon (DeBra, Kobsa, & Chin, 2010). The conventional approach to addressing 
state differences is to conduct a pre-task assessment and then adjust the content dif-
ficulty, presentation of information, or navigation within the task based on the results 
of that assessment. This approach has been successfully used to design multimedia 
and hypermedia applications, games and simulations, and intelligent tutoring sys-
tems (ITSs). For example, Kalyuga (2008) demonstrated that while learners with 
higher levels of prior knowledge showed better learning results after studying ani-
mated procedural examples in transforming graphical representations of linear and 
quadratic functions in mathematics, less knowledgeable learners performed signifi-
cantly better after studying sets of static representations demonstrating main steps of 
the transformations on a single screen (Kalyuga, 2008). This expertise reversal effect 
has also been observed during learning with chemistry simulations (Homer & Plass, 
2014), hypermedia-based concept maps in biology (Amadieu, Tricot, & Marine, 
2009), and many other educational contexts. Thus, a number of learning technolo-
gies have been designed to assess student domain knowledge before instruction and 
then customized the content or the system to student’s knowledge level (Corbett, 
McLaughlin, & Scarpinatto, 2000). A number of systems have also been built to 
adapt to changes in student understanding of the content based on student successes 
and errors during learning using approaches like adaptive worked examples (Booth, 
Lange, Koedinger, & Newton, 2013), adaptive feedback (Ohlsson, 2016), and adap-
tive fading of scaffolding (Salden, Aleven, Schwonke, & Renkl, 2010). For example, 
Salden et al. (2010) found that the adaptive fading condition in their study outper-
formed two nonadaptive conditions (problem solving and fixed fading) on both the 
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immediate and the delayed posttest. Additionally, learners in the adaptive fading 
condition needed significantly fewer worked steps than those in the fixed fading 
condition, which indicates that overall the students’ knowledge levels increased 
faster in the adaptive condition.

Working memory capacity (WMC) is another important state variable that is 
known to have important effects on learning. In fact, individual differences in WMC 
are a new principle in the cognitive theory of multimedia learning, a well-known 
framework for understanding and designing multimedia learning environments 
(Wiley et  al., 2014). Many studies on multimedia and hypermedia learning have 
found that when learners are given more information, including additional informa-
tion that should be helpful for their understanding, they may actually learn less, not 
more. For example, Fenesi, Kramer, and Kim (2016) examined the relationships 
between working memory capacity (WMC) and the principles of split attention in 
multimedia learning. Undergraduate students with lower WMC performed worse 
compared with those with higher WMC when learning from the split attention con-
dition (audio, on-screen text, and images), but not when learning from the comple-
mentary condition (audio and images). This finding demonstrates that removing 
split-attention components selectively improves multimedia learning for lower 
WMC learners. A similar finding was reported in the context of learning from pagi-
nated versus long scrolling hypermedia pages (Sanchez & Wiley, 2009). While 
scrolling presentations reduced learning overall, this effect was localized to indi-
viduals lower in WMC. Adaptive learning technologies sensitive to differences in 
learners’ WMC are still rare; however, some promising research is under way. For 
example, Chang et  al. (2015) have proposed a system that employs six types of 
adaptive recommendations (e.g., suggesting note taking, summarizing, rehearsal, 
and other strategies) to remind and suggest additional learning activities to students 
based on their WMC.

Similar to WMC and prior knowledge, visuospatial abilities (VSA) represent a 
set of important state-level individual difference variables that allow us to search for 
relevant stimuli in the visual field; apprehend the forms, shapes, and positions of 
objects; form mental representations of those forms, shapes, and positions; and 
mentally manipulate them (Carroll, 1993). A recent meta-analysis demonstrated 
that when visualizations are present in learning materials, high VSA learners achieve 
significantly better learning outcomes compared to low VSA learners (effect size of 
r = 0.34). Additionally, this meta-analysis revealed that learners with low VSA can 
be supported using dynamic (i.e., animated) instead of static visualizations and 
using three-dimensional rather than two-dimensional illustrations (Höffler, 2010). 
Combined with the results of Kalyuga’s (2008) expertise reversal study described 
earlier, we can see that students who tend to benefit most from instructional anima-
tions are those who have a high level of prior knowledge even when their spatial 
ability is relatively low. These findings produce important implications for designing 
instructional adaptations based on pre-task assessment of learners’ prior knowledge 
and spatial ability states.
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�Pretraining Approaches

In addition to preassessing learners on state individual differences and designing 
variants of instructional systems or tools to accommodate the abilities, traits, and 
prior knowledge of individual students, a promising approach is to conduct pretrain-
ing on these respective variables prior to learning (Mayer, Mathias, & Wetzell, 
2002). Despite being fairly stable over long periods of time, many of the state vari-
ables are in fact malleable and can be improved using carefully designed training 
interventions. For instance, promising findings have been reported regarding work-
ing memory training interventions (Schwaighofer, Fischer, & Bühner, 2015). This 
particular meta-analysis examined 47 studies with 65 group comparisons and 
revealed positive near-transfer effects to short-term and working memory skills that 
were sustained at follow-up for immediate transfer and long-term transfer. Similarly, 
a meta-analysis of 25 years of research on spatial ability training (Uttal et al., 2013) 
revealed that overall spatial training is quite effective (r = 0.47). Spatial training 
interventions ranged from semester-long spatial visualization courses (e.g., Sorby, 
2009) to spatial training with video games with much shorter game play. For exam-
ple, Feng, Spence, and Pratt (2007) investigated the effects of video game playing 
on spatial skills, including transfer to mental rotation tasks, and found that playing 
commercial off-the-shelf action videogames like Medal of Honor can enhance spa-
tial thinking substantially, even when compared to a control group that played a 3D 
puzzle game.

Games have also been found to be useful for the training of selective attention. 
Chukoskie et al. (2017) developed gaze-contingent video games that provide users 
visual and auditory feedback in real time from a remote eye tracker designed for 
in-home use. The games – Whack The Moles, Shroom Digger, and Space Race – 
require players to control the distribution of their visual attention and fixate their 
gaze on select objects based on the rules of the game. In Whack The Moles, for 
instance, players are to look at the moles as they appear out of the ground and use 
their gaze to “hit” ninja moles but avoid hitting the professor mole. Playing these 
games has helped individuals improve both the speed of attentional orienting and 
duration of fixation on task-relevant stimuli (Chukoskie, Soomro, Townsend, & 
Westerfield, 2013).

�Addressing Process-Level Differences

Unlike state differences, process-level variables fluctuate during the learning task 
and are notoriously difficult to measure and adapt to. Intelligent tutoring systems 
(ITSs) are advanced learning technologies that are well suited for adapting to pro-
cess variables. They have been developed for many different content areas (e.g., 
reading, algebra, statistics, physics, computer science, medicine). Examples of such 
systems include AnimalWatch (Beal, 2013), ALEKS (Assessment and Learning in 
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Knowledge Spaces; San Pedro, Baker, & Rodrigo, 2014), AutoTutor (Graesser, 
2016), Cognitive Tutor (Koedinger & Aleven, 2016), and MetaTutor (Duffy & 
Azevedo, 2015), among others. A recent meta-analysis compared the outcomes 
from students learning with ITSs to those learning with non-ITS learning environ-
ments (Ma, Adesope, Nesbit, & Liu, 2014). The use of ITS was associated with 
greater achievement in comparison with the traditional teacher-led, large-group 
instruction (g =  .42), non-ITS computer-based instruction (g =  .57), and learning 
with textbooks or workbooks (g = .35). Significant, positive effect sizes were found 
at all levels of education, in almost all subject domains evaluated, and whether or 
not the ITS provided feedback or modeled student misconceptions (Ma et al., 2014).

ITSs are adaptive in the sense that they change the presentation and navigation of 
learning content and the degree of system-learner interactivity (e.g., hints, ques-
tions, worked examples) based on the user model or data on the current level of 
learner knowledge, cognitive and metacognitive strategies used in the system, types 
of errors produced, and emotional responses and, more generally, based on learner 
actions in the system. Data on students’ cognitive, affective, and engagement pro-
cesses are collected during the learning task using a variety of strategies and tech-
nologies. Traditionally, online assessment has relied on experience sampling 
(Csikszentmihalyi & Larson, 2014), a method of providing learners with a brief 
self-report measure delivered in the ITS or on their smartphone asking them to indi-
cate the amount of mental effort, level of engagement, boredom, confusion, or the 
types of emotions they are currently experiencing. The experience sampling meth-
odology (ESM) allows collection of dynamic, online data relative to the variations 
in learners’ self-reports of engagement, cognitive load, and other relevant process 
variables. For example, Kane et al. (2007) conducted an ESM study of undergradu-
ate students focusing on the relation between working memory capacity (WMC) 
and the experience of mind wandering in their daily life. Personal digital assistants 
notified students eight times daily for a week to report immediately whether their 
thoughts had wandered from their current activity and to describe their psychologi-
cal and physical context. They found that during challenging activities requiring 
concentration and effort, higher-WMC subjects maintained on-task thoughts better 
and mind-wandered less than did lower-WMC subjects. An apparent but untested 
implication of this study is that low-WMC learners need to be provided with adap-
tive scaffolding to reduce the detrimental effects of mind wandering or uninten-
tional lapses of attention.

The benefit of using ESM in education is that online data on affective or cogni-
tive dynamics can be collected anytime and anywhere (e.g., students reviewing 
study materials for an upcoming exam in their dorm room). However, because ESM 
relies on self-reported data, this methodology is prone to the limitations of all self-
reported data such as lack of accuracy, failure to capture important changes in cog-
nition, problems with collecting data from young children, and so on (Anderson & 
Beal, 1995; Antonenko & Keil, 2018; Gobert, Sao Pedro, Baker, Toto, & Montalvo, 
2012; Leahy, 2018). To circumvent these limitations, scholars of learning from vari-
ous disciplines have proposed a number of new methods informed by advances in 
psychology, computer science, and neuroscience. For instance, in the context of 
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measuring cognitive load, which is a process variable that constantly fluctuates dur-
ing the learning task and is difficult to measure, recent advances include the use of 
physiological techniques with a high temporal resolution, such as brain-based mea-
sures of electroencephalography (EEG; Antonenko & Keil, 2018) and functional 
near-infrared spectroscopy (fNIRS; Ayaz et al., 2012), as well as a combination of 
EEG and fNIRS (Liu, Ayaz, & Shewokis, 2017), ocular-motor measures such as eye 
tracking (Cook, Wei, & Preziosi, 2018), and multimodal measures that incorporate 
data from speech, writing, system interactions, and physiological responses (Chen, 
Zhou, & Yu, 2018).

A promising multimodal method for assessing engagement was proposed by 
D’Mello, Dieterle, & Duckworth (2017). The Advanced, Analytic, and Automated 
(AAA) approach employs machine-learned computational models to automatically 
infer mental states associated with engagement (e.g., interest, flow) from machine-
readable behavioral and physiological signals (e.g., facial expressions, eye tracking, 
clickstream data) and from aspects of the environmental context (D’Mello et al., 
2017). Other researchers have advocated for the use of sensor-free assessment that 
relies primarily on learning environment navigation data from server logs and ana-
lytic techniques that examine log data in the context of student performance relative 
to learning, problem solving, or collaboration (Antonenko, Toy, & Niederhauser, 
2012; Baker & Siemens, 2014; Rowe et al., 2017).

A lot of promising research and development has recently focused on affect-
aware and affect-adaptive learning technologies (Aleven et al., 2017; D’Mello & 
Graesser, 2014; San Pedro, Baker, & Heffernan, 2017). This line of inquiry empha-
sizes the role of such variables as frustration, boredom, confusion, engaged concen-
tration, or flow because they are frequently observed during learning and influence 
student motivation, cognitive, and metacognitive processing (e.g., D’Mello, 2013). 
For example, D’Mello, Lehman, Pekrun, and Graesser (2014) explored the effects 
of confusion on learning within the context of an ITS (AutoTutor) and research 
design as the learning content. The system used a natural language speech interface 
to afford trialogs, in which a human learner, a computer learner, and a computer 
tutor reasoned through a challenging question. The two computer agents frequently 
contradicted each other and even expressed false information during the trialog, 
which was intended to cause confusion on the part of the human learner and drive 
the human learner to bridge the cognitive disequilibrium and resolve the confusion. 
This trialog-based learning environment did indeed lead to deeper learning, but such 
enhancements occurred only when the human learner was confused (D’Mello et al., 
2014). Another work has focused on exploring relationships between positive and 
negative emotions and learning, focusing specifically on the incidence, persistence, 
and impact of boredom, frustration, confusion, delight, surprise, and engaged con-
centration (Baker, D’Mello, Rodrigo, & Graesser, 2010). They found that confusion 
and engaged concentration were the most common states within all three learning 
environments, whereas delight and surprise were rare. Boredom was very persistent 
across learning environments and was associated with poorer learning and problem 
behaviors such as gaming the system. Frustration was less persistent and less asso-
ciated with poorer learning. These findings suggest that ITSs and other learning 
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technologies should incorporate detection and adaptive scaffolding based on bore-
dom and confusion data, in addition to the more widely used data on cognitive states 
and processes.

�Translating Research on Individual Differences to Educator 
Practice: Universal Design for Learning

This chapter demonstrates the complexity associated with researching how technol-
ogy may be used to address state- and process-level individual differences in learn-
ing. However, an arguably more complex dilemma relates to how to help educators 
translate research on technology and individual differences to their classroom prac-
tices. Universal Design for Learning (UDL) is a framework designed to support 
educators in this endeavor. The Center for Applied Special Technology (CAST) 
developed UDL as a result of efforts to help students with individual differences 
overcome barriers to learning. It gradually evolved into a framework educators can 
use to support all students by planning for learner variability in their classrooms.

The UDL framework, derived from research in education, psychology, and neu-
roscience, includes three main principles with associated guidelines and checklists 
(Meyer, Rose, & Gordon, 2014). The three main principles relate to designing learn-
ing environment to account for multiple means of (1) engagement, (2) action and 
expression, and (3) representation. The associated guidelines and checklists provide 
action-oriented strategies for implementing each principle. For example, one guide-
line under the Representation principle includes “providing options for perception,” 
and checklist strategies include offering ways to customize how information is dis-
played and offering alternatives for auditory and visual information.

UDL is referenced in important US-based federal education policies at the K-12 
(i.e., Every Student Succeeds Act (ESSA, 2015) and the National Educational 
Technology Plan (NETP, 2016)) and postsecondary levels (i.e., the 2008 Higher 
Education Opportunity Act). It is also referenced in the 2015 Educational Technology 
Developer’s Guide for software designers published by the US Department of 
Education. The premise within all these documents relates to using UDL principles 
to minimize learning barriers and maximize student strengths by designing for 
individual differences, which UDL proposes are predictably variable across learners 
of all ages. Although UDL encompasses technology and nontechnology solutions to 
designing for individual differences, technology plays a major role in designing 
inclusive learning environments. For example, Strategic Reader, designed using 
UDL principles and Curriculum-Based Measurement (CBM) , is a technology inter-
vention that supports individual differences in developing reading skills. A recent 
experimental study demonstrates its effectiveness in supporting comprehension, 
particularly when the tool was used online (Hall, Cohen, Vue, & Ganley, 2015).

Despite strong evidence for the component parts of UDL (Meyer et al., 2014), 
evidence that UDL-designed interventions can work and support for UDL in federal 
education policy, research on how to apply the framework to implementation is still 
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emerging. A recent meta-analysis of UDL studies in PreK-12 classrooms found that 
UDL implementation varies considerably across studies, and importantly, the way 
implementation is described across studies makes it difficult to compare them or 
confirm that UDL is, indeed, being implemented at all. The meta-analysis also 
found that the success of UDL efforts, as measured by effect sizes, varied consider-
ably although results of the overall meta-analysis suggest UDL is a promising 
framework to address individual differences (Ok, Rao, Bryant, & McDougall, 2017).

The UDL Implementation and Research Network (UDL-IRN) is a relatively 
new organization developed “to support the purposeful integration of Universal 
Design for Learning (UDL) and iterative design-based thinking to support the 
learner variability that exists in all learning environments.” UDL-IRN includes 
strong focus on technology and on advancing research through its Research 
Committee which maintains a database of empirical studies on UDL (http://udl-irn.
org/udl-research/).

�Implications and Conclusions

The research on the problem of addressing individual differences among learners 
and educational technology solutions reviewed in this chapter demonstrates impor-
tant contributions that have been made to individualize learning based on learner 
differences as well as promising directions for research and development to improve 
our understanding and design for differences in state and process variables that 
impact learning.

Perhaps the most important issue that researchers in educational technology and 
instructional design must address is the need to focus not only on the properties of 
learning materials (e.g., how a particular blend of technology, pedagogy, and con-
tent impacts learning) but, perhaps more importantly, how a particular educational 
technology solution affects learning relative to the important differences that exist 
among learners. A citation analysis conducted using terms “individual differences” 
or “cognitive differences” and “educational technology” revealed that (a) such stud-
ies are scarce, and (b) relevant studies are often designed and carried out by scholars 
with limited expertise in educational research (e.g., neuroscientists). Only one 
chapter in the latest edition of the Cambridge Handbook of Multimedia Learning 
explicitly focused on the issue of individual differences in multimedia learning 
(Wiley et al., 2014), with a focus on one important state-level variable – working 
memory capacity.

The most obvious contribution that addresses the issue of individual differences 
in learning is the extensive conceptual and empirical research on what we refer to in 
this chapter as state differences, that is, variables like prior knowledge, reading abil-
ity, metacognitive awareness, and so forth. This work resulted in the development of 
instructional design models and research paradigms such as aptitude-treatment 
interaction as well as educational technology products that individualize instruction 
based on state-level differences among learners. Research on adaptive learning 
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technologies such as intelligent tutoring systems (Aleven et  al., 2017) and using 
novel online assessment methodologies reflects more recent efforts to study and 
design individualized instruction technologies.

When it comes to the more dynamic individual differences variables, or what we 
referred to as process-level differences in this chapter, educational research in gen-
eral and educational technology research in particular are still rather limited. 
Educational scholars have begun to call for more rigorous research on process dif-
ferences in cognition and affect (e.g., Antonenko & Keil, 2018; Chen et al., 2018; 
D’Mello et al., 2017) for the design and study of educational technologies, but both 
empirical research and technological solutions that address process variables are 
scarce. This issue presents an important opportunity for the designers and scholars 
of technologies for learning and teaching. More translational research between neu-
roscience, cognitive psychology, educational psychology, computer science, and 
educational technology should focus on integrating physiological measures, server 
log and interaction analysis, self-reported instruments, and machine learning tech-
niques for automatized analysis to devise comprehensive multimodal assessment 
paradigms to help study and design for individual differences in learning. This inter-
disciplinary research is needed to improve the sharing and cross-fertilization of con-
ceptual frameworks, methodological approaches, and empirical findings between 
these diverse but complementary fields.

To summarize, the following implications for research may be worth addressing 
to advance the study of individuality and variation in learning and to design educa-
tional technologies that are sensitive to individual differences among learners:

•	 Acknowledge the important role of individual differences in learning and con-
duct rigorous research to understand the interplay between “system” variables 
that reflect the properties of the learning materials and “learner” variables that 
represent interindividual differences in cognition, motivation, and affect.

•	 Place more emphasis on the study of dynamic process-level differences in cogni-
tion and affect such as cognitive load, distraction, confusion, mind wandering, 
etc.

•	 Advance our understanding of the measurement techniques that can be used to 
unobtrusively assess process-level variables during the learning task.

•	 Employ the recently developed measurement paradigms and tools (e.g., NIH 
Toolbox) to explore the important interactions between:

–– State-level variables such as prior knowledge, reading ability, visuospatial 
skills, working memory capacity (verbal and visuospatial), and metacognitive 
awareness and process-level variables such as boredom and cognitive load

–– Affective, motivational, cognitive, and metacognitive variables during learn-
ing and the independent as well as combined effects they produce on the 
effectiveness and efficiency of learning, situational and sustained interest on 
the subject matter, learning self-efficacy, etc.

•	 Develop and test design strategies and solutions to address process-level indi-
vidual differences and create more nuanced learner models for adaptive learning 
technologies.
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