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Preface

In the recent years, the distribution systems from the substations to the customers
are facing significant changes, due to the growing number of distributed and variable
energy generation resources and the smart grid implementation. The distribution
networks were originally designed to deliver electricity through distribution feeders
and radial lines, applying traditional planning techniques, generally sufficient to
offer a reliable service at affordable costs. However, the need for greater resilience,
power quality, and customer participation cannot be met by this design paradigm.
The abilities to dynamically optimize the operation, integrate diverse distributed
generation types, and integrate demand response and energy efficiency resources are
also needed in this modern power system era. As a result, significant research efforts
have been dedicated to the optimal expansion and operation planning of modern
distribution networks.

The smart grid implementation brings a large amount of data that can be used
to better plan an energy distribution system. The concept of smart grid is related
to a grid with high integration of technology information, telecommunication,
sensing/measurement, and automation, seeking to enhance the operation and the
ability to meet scenarios with intermittent and distributed energy resources, high
reliability requirements, low impact to the environment, and adequate to new
energy market regulations. The growing energy demand and limited capital for
investment are making the distribution system planners look to these advances in
smart grid technology in order to identify new approaches to achieve load reliability.
Although challenged by methodologies, paradigms, and traditional distribution
planning techniques, this “smart” scenario can lead to alternatives that result in
lower investment and operational costs.

The main goal when planning a distribution system is to timely meet the demand
growth in the most economical, reliable, and safe way. The planning methodology
must assure that every opportunity for savings or power quality improvement are
exploited. This is not a straightforward task even in traditional systems, since the
distribution networks are usually large in extension, with a large amount of data to
be analyzed. In addition, new regulations from authorities and the modernization of
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vi Preface

power systems highlight the importance of a constant update and improvement of
methodologies and planning techniques.

The difficulty in solving energy distribution systems planning problems, includ-
ing the operation and expansion planning, relies on the combinatorial nature and the
large solution space. Several models and techniques are proposed in the literature,
covering the allocation of new substations, reinforcement of the existing ones,
reconductoring or construction of new distribution lines, distributed generation
placement, among other problems. Usually, aspects of network reliability are later
considered, allocating protection and automated devices.

Since investments in the improvement of the distribution system are a constant
need, the development of investment plans is a routine for power utilities. In this
context, the development of models, solution techniques, and computational tools
to solve power distribution systems planning problems is of great importance for
power utilities. Extensive research have been made over the last decades, handling
problems related to the expansion and operation planning of distribution systems.
This handbook gathers the state-of-the-art research on topics related to optimization
problems in energy distribution systems, covering the classical problems and the
challenges introduced by distributed generation and smart grid resources. Several
application examples are presented and discussed, which help to understand the
importance of optimization applied to power distribution systems.

We would like to thank all the authors for their contributions, the referees for
their valuable and constructive reviews, and the publisher for helping to produce this
handbook. Panos M. Pardalos also thanks the support from the Humboldt Research
Award.

Porto Alegre, RS, Brazil Mariana Resener
Karlsruhe, Germany Steffen Rebennack
Gainesville, FL, USA Panos M. Pardalos
Porto Alegre, RS, Brazil Sérgio Haffner
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Optimal Volt/Var Control Applied
to Modern Distribution Systems

Tiago Soares Vítor, Eduardo Nobuhiro Asada,
and José Carlos de Melo Vieira Jr.

Abstract The voltage regulation in distribution systems refers to the primary
objective of maintaining customers’ voltages within an acceptable range under all
loading conditions. This function has been accomplished by the Volt/Var control—
a strategy that coordinates voltage regulating devices and reactive power controls
in order to reach a suitable operation of the system. As the modernization of the
distribution grid has become a reality, new intelligent and updated schemes for
Volt/Var control must be developed to face the recent operating scenario challenges
and to make use of the technological advances in infrastructure. Under those
circumstances, Volt/Var control has the task of achieving high quality power supply
and, at the same time, meeting strict performance goals on the grid operation.
To tackle these problems, intelligent systems are built providing a computational
efficient optimization engine. In this context, this chapter presents the Volt/Var
control, from basic concepts to advanced topics, laying the foundation for a
complete optimization framework and introducing the Volt/Var optimization as a
determinant tool to further enhance system operation objectives.

List of Symbols

ΔE% (ΔV %) Percentage of energy (voltage) reduction
ΔP (ΔQ) Active (reactive) power injection estimation errors
ΔPCLl Energy allocated to CL l

Δt Time interval
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ΔUn Maximum voltage deviation from the average line voltage Uavgn

ΔWL, ΔWU Lower and upper bounds of load energy which can be used by
CL

Ωmax
ESi

Power capability limit of ES i, MVA
ΩT Set of the three-phase nodes
θij Voltage angle difference between buses i and j

ηi Storage charge-discharge cycle efficiency at bus i

COLT C Cost of OLTC tap operation in $/tap
C R

OLT C Cost of replacing the OLTC
CPdg Cost of active power generated by DG in $/kWh
CShC Purchase cost per kvar rating of shunt capacitors
CV Rf Conservation voltage reduction factor
E1

i (E2
i ) Positive-sequence (negative-sequence) voltage of bus i

Emax
ESi,t

(E0
ESi,t

) Maximum (initial) energy stored in ES i at time t

EESi,t Energy stored in ES i at time t

Emin
ESi

, Emax
ESi

Minimum and maximum capacity of ES i

fLV UR Total line voltage unbalance rate
fT C Number of tap changes
fDGC Amount of MW curtailed on DG units (or the related cost)
fL Total active power losses
fEL Total electrical energy losses
fΔV Total voltage deviation
fΔVdaily Total daily voltage deviation
fES Energy savings
Gk Conductance of branch k

I t
k Current value of branch k during time t

Ī Demand current
kp (kq) Voltage exponent of active (reactive) load power
LS R

OLT C Residual lifespan of the OLTC
LS T

OLT C Total lifespan of the OLTC
Nbr Number of branches
Nt Number of intervals
Nbus Number of buses
Nd Number of voltage control devices
Nmax

d Maximum allowable daily operating times of the device d

N R
OLT C Number of tap operations remaining of the OLTC

N T
OLT C Estimated total operation times of the OLTC

PLoss , ELoss Power losses and energy losses
PLi (QLi ) Active (reactive) load power at bus i

PLn,i (QLn,i ) Active (reactive) load power at rated voltage and frequency at
bus i

Psystembase Kilowatt power flow results for the base case (no Volt/Var
control)
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Psystemi Kilowatt power flow results for the operation i (with Volt/Var
control)

P 0
gi (Pgi) Current available (curtailed) active power of DG unit i

P
spec
n (P calc

n ) Specified (calculated) active power injection at node n

Pmin
DGi

, Pmax
DGi

Minimum and maximum real power components of DG i

P t
DGi

(Q t
DGi

) Active (reactive) power component of DG i at hour t

P t
EVi

Active power of EV i at time t

PCLl (QCLl ) Active (reactive) power of CL l

P min
CLl

, P max
CLl

Lower and upper bounds of active power acceptable ranges of
CL l

Pmax
EVi

Maximum charging limit of EV i

PESi,t Active power produced/absorbed by ES i at time t

Pmin
ESi

, Pmax
ESi

Minimum and maximum active power rating of ES i

PFmin
DGi

, PFmax
DGi

Minimum and maximum allowable power factors of DG i

PF t
DGi

Current power factor of DG i at hour t

PFmin
S , PFmax

S Allowable power factors of the substation
PF t

S Current power factor of the substation at hour t

Q t
EVi

Reactive power injection to the grid of EV i at time t

Qmax
EVi

Capacity of maximum inverter reactive power generation of EV
i

Q
spec
n (Qcalc

n ) Specified (calculated) reactive power injection at node n

Qmin
CLl

, Qmax
CLl

Lower and upper bounds of reactive power acceptable ranges of
CL l

QESi,t Reactive power produced/absorbed by ES i at time t

R + jX Feeder impedance
Rk Resistance value of branch k

Smax
DGi

Apparent power of DG i

S t
k Complex power flowing over the branch k at hour t

S max
k Maximum allowable complex power of branch k

S t
T X Apparent power flow on substation transformer at time t

S rat
T X Substation transformer rating

ShCp Capacitor purchase cost
ShCLif etime Expected lifespan of shunt capacitors
T t

d Tap position (or number of capacitor banks) of the device d at
time t

T min
d , T max

d Tap position limits (or capacitor banks limits) for the device d

T HDi
v Total harmonic distortion of voltage at bus i

T HDmax
v Maximum distortion allowed

U2i , Umax
2 Voltage unbalance factor of bus i and maximum value of U2i

Uavgn Average line voltage of the three phases at node n

V̄G, V̄L Generator and load voltages
Vi , Vn Voltage magnitude at bus i and nominal voltage of the system
V ∗

i Desired voltage at bus i
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V t
n Voltage of node n at hour t

Vmin, Vmax Acceptable voltage limits
V t

EVi
Voltage of EV i at time t

V min
EVi

, V max
EV,i Minimum and maximum voltage values of EV i

1 Introduction

Volt/Var control is one of the most important functions in the operation of
distribution systems. According to [50], a proper selection and coordination of
equipment for controlling voltage and reactive power are major challenges faced
by power system engineering. The main objective of Volt/Var control is to keep the
steady state voltage in all buses of the system within acceptable limits. However,
enhanced goals have been added to this role in order to improve the overall system
efficiency and performance. As a result, many researchers have concentrated efforts
to develop new intelligent and advanced schemes [107]. This renewing focus opens
a wide range of possibilities for applications and improvement.

To illustrate, new paradigms have demanded updated Volt/Var control strategies
to face new operating challenges, which include power electronic devices (EDs)
and distributed energy resources (DERs) [22], and to make use of the technological
advances such as advanced metering infrastructure (AMI) and distribution manage-
ment system (DMS) [66].

Volt/Var control is a process that involves multiple voltage regulating devices
working in collaboration to achieve certain objectives [88]. The conventional
voltage devices are on-load tap changer (OLTC), step voltage regulators (SVRs)
and switchable capacitors (SCs). Essentially, the success of the Volt/Var control
depends on the proper coordination among them. An enhanced strategy is obtained
by formulating the Volt/Var control as an optimization problem. This problem is
known as Volt/Var Optimization (VVO) [8], which aim is the definition of the
system equipment control in order to reach optimized objectives such as loss
minimization, better asset utilization, conservation voltage reduction and voltage
profile improvement [3, 67, 82, 97]. In fact, Volt/Var control fits very well for
optimization. The complete design comprises not only operating goals, modeled
as objective functions, but also operating restrictions handled by the mathematical
constraints.

Several problems have been treated as Volt/Var optimization. A seminal work
recommended a centralized Volt/Var control algorithm for optimizing the distribu-
tion system management [91]. Since then, various methods have been proposed
following this principle. In general, these methods employ different optimization
procedures—which are distinguished by the formulation of the Volt/Var control
problem; the modeling of the distribution system; the evaluation of such model; and
the implementation of an optimization algorithm—to reach a central coordination
of the voltage regulating devices. But recently, great advances were incorporated
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into the centralized optimization structure enhancing its features and the capability
of dealing with Volt/Var control problems.

The Volt/Var control can result in a challenging optimization problem
due to inherent characteristics of the operation, for which the modeling may
represent: multiple objective functions, high-dimensional variables, large number
of constraints, coordination of various control devices with different time frames,
and uncertainties of Distributed Generations (DGs) and load forecasts [125].
On the other hand, selecting an adequate and rapid solution for VVO problems
is the main goal of integrated Volt/Var control optimization (IVVC) [87]. As
the problem may result in a complex optimization problem, some research
focus on specialized algorithms aiming for efficient methods and controls
[65].

The aim of this chapter is to present the optimal Volt/Var control in the context of
modern distribution systems. The remainder of this chapter is organized as follows:
Sect. 2 provides an overview of the Volt/Var control as a key function to improve
energy efficiency and quality in distribution networks; Sect. 3 presents the main
approaches of Volt/Var control from traditional to advanced; Sect. 4 is devoted to
detail the Volt/Var Optimization; Sect. 5 describes some computational aspects to
be accounted for; Sect. 6 depicts the optimal Volt/Var control through numerical
examples; and, finally, Sect. 7 concludes this chapter presenting trend challenges
and open issues concerning optimal Volt/Var control in modern distribution sys-
tems.

2 Volt/Var Control Definition

Volt/Var control refers to the technique of using voltage regulating devices and
reactive power controls to maintain steady state voltage levels within the acceptable
ranges along the feeder, considering various loading conditions. Power distribution
utilities are responsible for this task, who has as a goal to provide reliable high-
quality power supply.

2.1 Volt/Var Control Objectives

Although there are many important objectives, three well-established ones are
highlighted in this subsection due to their relation with quality and efficiency in the
power distribution supply, namely: voltage profile improvement, loss reduction and
conservation voltage reduction. Improved VVO solutions should care about these
objectives [66].
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2.1.1 Voltage Profile Improvement

Voltage is a fundamental parameter to evaluate the quality of electrical service.
Standards define the voltage limits for normal and abnormal conditions (emergency,
after outage, etc. for a period of time). If voltage levels are out of acceptable
operating ranges, the following issues can occur [21]:

• poor operation of the power system;
• reduced performance of the equipment;
• damage to utility equipment and customer loads;
• safety hazard;
• trigger protection equipment.

To accomplish the voltage regulation, the planning and operation design of the
distribution system must consider the maximum allowed voltage drops for the
selection and setting of the equipment (OLTCs, SVRs and SCs). The simple two-bus
power system shown in Fig. 1 will be considered to illustrate the voltage drop in a
distribution system [43].

The demand current Ī is related to the consumed power PL+jQL and the voltage
V̄L at the load by the expression:

Ī = PL − jQL

V̄ ∗
L

, (1)

so, by Kirchhoff’s voltage law and taking the load voltage as the reference for the
phase angles, the voltage drop ΔV on the feeder will be given by:

V̄G − V̄L = (R + jX)Ī

= RPL + XQL

VL

+ j
XPL − RQL

VL

≡ ΔV + jδV . (2)

For a small power flow, the component in quadrature δV is small and the voltage
drop might be approximated by ΔV , the component of the voltage drop in phase
with the load voltage. Therefore, the voltage drop depends on the power consumed

Generator Feeder Load

R + jX

PL+jQL

IVG

-ΔV

-jδV

VL

VG

VL

(a) (b)

VG - VL = (R + jX ) I = ΔV + jδV 

Fig. 1 A simple two-bus power system: (a) one-line diagram; (b) components of the voltage drop
along the feeder
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by the loads, and the resistance and reactance of the lines, which cause active and
reactive power losses. Since loads vary throughout the day and season to season, this
causes voltage fluctuations [101]. During peak loading periods, the voltage along
the feeder may drop significantly, and at lighter usage periods the voltage rises.
Therefore, the effect of varying loads must be considered in the Volt/Var control
scheme.

There are others indirect ways that improve the voltage profile (e.g., balancing
of the loads on the primary feeders, using lines with increased conductor cross-
section, etc.) [32]. However, the most common and economical way of improving
the overall voltage regulation of the distribution system is to apply voltage regulating
equipment and capacitors at the substation and along the feeders [50]. The voltage
ratio of the transformers can be adjusted to enhance the voltage profile of the feeder,
meanwhile capacitors can be switched to compensate the reactive power demand
reducing the voltage drops.

2.1.2 Loss Reduction

During the process of delivering energy to customers, electrical losses happen in the
system’s components (lines, transformers, capacitors, etc.). In general, losses may
be divided into two types: power losses and energy losses [14]. The power losses
at the peak time restrict meeting the demand and causes increase on generation
capacity.

The reduction of energy losses benefits both utility and customers in terms of
saving costs. On the one hand, utility would purchase less amount of energy to serve
customers, but on the other hand, extra energy would be available in the system to
be sold by the utility. Also, loss reduction can result in better voltage profile in the
feeder, which improves the quality of service.

Referring to Fig. 1 again, the line (or feeder) losses can be given as the difference
between the supplied power SG = V̄GĪ∗ and the consumed power SL = V̄LĪ∗,
expressed as:

SLoss,F ≡ ΔSG,L = (SG − SL)

= (V̄G − V̄L)Ī∗ = (R + jX)Ī Ī∗

= RI 2 + jXI 2 ≡ PLoss,F + jQLoss,F , (3)

where PLoss,F and QLoss,F are the active and reactive terms of the power losses.
The active power losses can also be written as:

PLoss,F = (I 2
R + I 2

X)R , (4)

where IR and IX are the active and reactive components of the current.
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Then, energy losses can be estimated in kilowatt-hours by using the rectangular
integration method as in [34]:

ELoss =
Ni∑

i=1

P i
Loss + P i+1

Loss

2
× Δt , (5)

where Ni is the number of intervals of the period of interest T , P i
Loss and P i+1

Loss are
the active losses at times i and i + 1, respectively, and Δt is the period between the
times i and i + 1.

Based on (3), there are two ways of reducing active losses on a feeder: by
replacing lines with reduced resistance and/or reducing currents in lines. The first
option requires greater investments than the second one. It involves, for illustration,
selecting line with larger cross-sectional area of lines, reconfiguring the network,
etc. [93].

Nevertheless, the other way of reducing technical losses is to decrease the
absolute value of the line current by reducing its reactive component IX in (4) [1].
This is accomplished by switching capacitors that performs the Var control part of
Volt/Var control [34, 90].

2.1.3 Conservation Voltage Reduction

Conservation voltage reduction (CVR) is a practice of reducing the voltage levels
on the network in order to promote peak demand reduction and energy savings. So,
energy efficiency is the focus agreeing with Volt/Var control objectives. Successful
real world applications have been reported in the literature showing a demand
reduction ranging from 1 to 6% in the total demand due to CVR [3]. Therefore,
CVR is a cost-effective way to save energy.

Figure 2 illustrates peak-load relief and energy savings as the response of the
system with CVR implementation in a daily operation. The load demand is reduced
from the reference (solid line) to a lower level (dotted line) relieving peak-load and
saving energy (area enclosed by the lines).

CVR effects can be evaluated by the CVR factor (CV Rf ), which is defined as
the energy savings (Esaving) caused by 1% reduction of the voltage, as it follows
[95]:

CV Rf = ΔE%

ΔV %
, (6)

where ΔE% and ΔV % are the percentage of energy and voltage reduction,
respectively.

Normally the loads in medium voltage (MV) networks are modeled as voltage
dependent, and the models are those that fit in the constant impedance or constant
current models for CVR effectiveness. Such loads can be represented by the
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exponential model, which describes the voltage-dependent behavior as [82]:

PLi = PLn,i

(
Vi

Vn

)kp

(7)

QLi = QLn,i

(
Vi

Vn

)kp

, (8)

where PLi and QLi are the active and reactive load power at bus number i, PLn,i and
QLn,i are the active and reactive load power at the rated voltage and frequency at
bus i, Vi is the voltage magnitude at bus i, Vn is the nominal voltage of the system,
and kp and kq are the voltage exponents of active and reactive load power.

Effective CVR implementation requires cost-benefit analyses. There are different
methodologies to access CVR effects trying to simulate the energy-savings before
its application. The main issue for the accurate assessment of CVR benefits is the
changing behavior of the loads according to voltage variation. Additionally, load
composition is not known for most of the feeders and it changes with time [95].
Moreover, a proper coordination among voltage and reactive power controls must
be designed to carry out CVR with further capability of dealing with DG penetration
and accommodating emerging smart monitoring and control technologies in distri-
bution systems. For these reasons, the authors in [112] summarized the technical
issues related to CVR into three aspects:

• coordination of different Volt/Var devices to reduce voltage in a reliable and
optimal way;

• assessment and verification of CVR effects;
• coordination between CVR and DG.

Utilities can benefit from CVR in terms of [112]: peak-load relief, net loss
reduction, and social welfare increase. However, due to the reduced energy usage
by consumers, the utilities may lose revenues, as their rate structures are based on
delivering a certain amount of energy [115]. Therefore, incentives are needed to
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repay utilities for the lost revenue from the energy savings and to ensure return on
investment in CVR.

2.2 Equipment

A proper coordination among the available control equipment (OLTC, SVRs
and SCs) is the key for fulfilling Volt/Var objectives. Traditionally, conventional
controllers operate locally these equipment to follow standards and to minimize
power losses. This is case of the automatic capacitors banks operated by time or
by combination of other measurements. However, in order to improve the control
results, elaborated automation system must be devised.

The automatic voltage regulation is provided by equipment at the substation
and along the feeders. At the substation, the core regulation is performed by the
substation power transformer. Operating with an OLTC, it automatically controls
the voltage levels for the secondary bus voltage and the reactive power flow through
the transformer. Alternatively, voltage regulators can be installed at the substation to
perform the voltage regulation of the secondary bus or at the head of the feeder. In
general, the substation bus regulation provides a three-phase baseline voltage level.
For the feeder voltage regulation, single-phase regulators are commonly employed
to deal with the unbalanced voltages. The three-phase regulation is also possible by
making connections among single-phase SVRs or using the three-phase one, which
is “gang-operated” (the taps of all windings change at the same time). Capacitor
banks are economical mean of supplying reactive power and minimizing system
losses. They indirectly control voltage by decreasing voltage drop along the feeder.

2.2.1 On-Load Tap Changer Transformer

The load tap-changer (LTC) equips the transformer with tap terminals for turn-ratio
control, i.e., the transformer ratio can be changed switching more or less of the
transformer winding into the circuit [101]. For the on-load tap changer (OLTC)
type, its mechanism permits the operation of the transformer without interruption of
service. OLTC has a more complicated duty than the no-load tap changer (NLTC)
type, being, accordingly, more expensive [21].

The substation transformer is a core type three-phase with gang-operated LTC—
all three phases have the same tap positions and change simultaneously [21]—that
typically works in the range of ±10% of the regulated voltage in discrete levels.
The tap-changing can be done manually or automatically in order to maintain a
consistent voltage profile to the whole network.
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2.2.2 Step Voltage Regulator

The step voltage regulator (SVR) is a voltage control device. It consists of an
autotransformer with adjustable taps (or steps) in the series winding to boost or
buck the voltage at the regulated bus. The voltage change in the SVR output is
obtained by changing the taps of the series winding, which can be done under
load [50]. The voltage induced in this winding can be added to or subtracted from
the primary voltage, depending on the reversing switch position, enabling ±10%
regulation range in 32 steps usually, each step representing 5/8% change in voltage.

SVRs can be located at the substation bus or along the feeders. Single-phase
SVRs regulate voltage per phase dealing with unbalanced voltages or when the
phases are differently loaded. To obtain three-phase regulation, it is possible to make
connections—wye, delta or open delta—among single-phase SVRs to form a three-
phase regulator. Likewise, a three-phase SVR can be installed.

2.2.3 Shunt Capacitor

Shunt capacitors are widely used for Volt/Var control, being applied at various points
of the distribution feeders to improve efficiency and performance. Specially, they
inject reactive power into the system in order to reduce losses, free up capacity,
reduce voltage drop, and correct power factor [100]. Based on IEEE Std 1036-
2010 [37], shunt capacitors represent an effective means for supplying the reactive
power while minimizing system losses.

These devices are connected in parallel with the load, modifying the network
characteristics by their capacitive reactance. They present low cost and flexibility of
installation and operation as principal advantages [50].

Capacitor banks are controlled discretely by being switched on or off of the sys-
tem [70]. The reactive power is provided locally, the inductive load is compensated
bringing the power factor closer to unity, nearby the load. This decreases the total
current along the feeder that flows from the substation to the load, i.e., it relieves
feeder of wattless current. Accordingly, the reduced current releases feeder capacity,
lowers the I 2R line losses, and leads to a smaller voltage drop.

The injection of reactive power causes a reduction in the voltage drop, which
results, in general, an indirectly or approximate voltage control capacity. For this
reason, shunt capacitors are also used to boost the local voltage level within
allowable limits as the load varies.

3 Main Approaches for Volt/Var Control

In general, the Volt/Var control in distribution systems can be divided into the
following three main approaches [108]: Traditional Volt/Var control, SCADA-based
Volt/Var control and Integrated Volt/Var control.
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3.1 Traditional Volt/Var Control

Traditional Volt/Var control is conceptually the simplest and economical approach.
It is characterized by an individual, independent, and standalone controller [32],
which has a built-in intelligence that uses local measurements of voltage and
current to determine the appropriate control actions for the associated device [107].
Therefore, this approach addresses to the conventional utility voltage regulation
practices.

Standalone controllers make use of OLTC transformer, SVRs and switched
capacitor banks to achieve basic goals of the Volt/Var control, such as maintaining
feeder voltage within the acceptable range and improving power factor at load
locations.

Some advantages of this approach rely on the low cost implementation, no
need for field communication and the scalable feature [108]. However, traditional
Volt/Var control presents some issues, specially concerning the DG penetration.
Both high or low service voltage can occur due to the bidirectional power flow
caused by DG, impacting the operational schemes [57]. Other disadvantages are:
lack of coordination between Volt/Var devices (e.g., OLTC, SVRs and SCs), non-
optimal operation, no self-monitoring (which is essential to find out if capacitors are
out of service), no flexibility for handling reconfiguration of feeders, and, finally,
operator cannot override the control actions whenever needed [87, 107].

3.1.1 OLTC Control

The OLTC is controlled automatically by the automatic voltage regulator (AVR) that
senses when the regulation point is no longer within the permitted voltage range.
Then, the AVR commands the tap-changing mechanism to alter its tap position
to restore the voltage [101]. An adjustable time delay is used to reduce the effect
of transient voltage variations, outside of the dead band, avoiding unnecessary tap
position changes [102].

The line drop compensator (LDC) aids to regulate some distant bus from the
OLTC by simulating the voltage drop across the feeder. Thus, it permits to boost the
voltage at the output of the OLTC transformer ensuring the correct voltage at the
load. More details are presented in the following item.

3.1.2 SVR Control

The control mechanism of the SVR provides automatic tap changing [32]. It
responds to inputs from potential transformer (PT) and current transformer (CT)
by means of maintaining a predetermined output voltage at the load center, which
can be the output terminal of the regulator or a remote node on the feeder [45]. A
typical controller includes the voltage-regulating relay (VR) and the LDC.
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In the relay, the voltage set point is the desired voltage to be held at the center
load. There is a bandwidth for which the voltage may vary from the set point.
So, when the difference between the measured voltage and the set voltage exceeds
±one-half of the bandwidth, the regulator will change taps in order to bring the
voltage back. To prevent unnecessary tap changes due to transient or short time
change in current, a time delay is implemented before the actual tap operation [100].

The LDC is a procedure to boost the voltage at the regulator output to compensate
the voltage drop on the feeder. Thus, it regulates the voltage at the load rather than
at the regulator bus. Basically, the LDC uses an internal model with settings (R and
X) that need to be adjusted in order to match the equivalent impedance between the
regulator and the load center [45].

3.1.3 SC Control

Switchable shunt capacitors are equipped with local controllers that switch on/off
banks of capacitors based on a minimum/maximum value of a given parameter [21].
If voltage control is implemented, a voltage relay switches on the capacitor when
the voltage is bellow a minimum value or switches off when the voltage is above
a maximum value. Also, time delays and bandwidths are considered to prevent
excessive operations. Similarly, for power factor correction or maximum reduction
of losses, the load kvar (or total current) must be monitored as the means for control.
Apart of the goal to be accomplished, the control systems implemented to switch
automatically banks of shunt capacitors are similar. They comprise, basically, a
master control relay, time-delay relays and control switches. In short, automatically
controlled capacitors are switched in a similar way relative to time delays and
dead bands of the OLTC and SVR equipment [83]. On feeders with typical daily
load profiles, in which the need for capacitor kvar follows a fixed schedule, time
controlled capacitors are especially applied [100].

3.2 SCADA-Based Volt/Var Control

In this approach, the Volt/Var devices are remotely monitored and controlled by the
supervisory control and data acquisition (SCADA) system. The equipment settings
are based on real-time substation and field measurements [106]. It is also known as
rule-based Volt/Var control, because the built-in intelligence is set by predetermined
rules that incorporate successful operational experiences and system studies of the
distribution system operator (DSO). These rules are implemented by running a script
within the SCADA system.

Typically, there are two independent systems to handle separated goals [107].
The Var dispatch system controls capacitor banks to improve power factor and
reduce electrical losses, whereas the Voltage control system controls the OLTC
transformer and SVRs to maintain acceptable voltage at all locations under all load-
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ing conditions and to reduce demand and energy consumption, i.e., to implement
the CVR. There is no integration between these systems.

The main components of the SCADA-based approach are [69]:

• substation remote terminal unit (RTU);
• voltage control and/or var dispatch processor;
• switched capacitor banks and local measurement facilities;
• OLTC transformer and/or SVRs, and local measurement facilities;
• communication facilities;
• end of line voltage feedback.

A general schematic of SCADA-based Volt/Var control, including an OLTC and a
capacitor bank, is shown in Fig. 3. The substation RTU is responsible for monitoring
real and reactive powers at the substation bus (or the head of the feeder). The Var
dispatch processor contains rules to determine if capacitor switching is needed. It
sends a signal to the capacitor bank controller, through the one-way communication
link (radio), so that a command to energize or de-energize the capacitor bank may
be performed. In the same way, the Voltage control processor contains rules to
determine the raise or lower commands of the OLTC. It monitors the voltage at
the end of the feeder, through a communication link, to ensure that voltage does not
drop too much, violating the lower acceptable limit.

SCADA-based Volt/Var control is a very common approach. It improves the over-
all efficiency when compared to traditional approach, mainly because it provides
self-monitoring, operator override capability, and enhanced measurement facilities,
which permit the monitoring of strategic locations. As the visibility of remote
conditions is improved, a smaller margin of safety is needed when compared to
that built in traditional approach. Despite these advantages, the lack of adaptability
remains for changing feeder configuration, varying operating needs, and high DG
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Fig. 3 SCADA-based Volt/Var control approach [107]
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penetration. Also, the devices operation are usually not coordinated to ensure
optimal results. Other shortcomings are related to the less scalable feature and a
more complicated deployment because of the extensive communication requirement
[108].

3.3 Integrated Volt/Var Control: The Platform for VVO

Integrated Volt/Var control is the most advanced approach in Volt/Var control. This
approach performs the Volt/Var optimization, which is the ability to determine the
best set of control actions for all devices of the system (i.e., voltage regulating
devices and Var control devices) to achieve one or more operating objectives of
the utility without violating any of the operating constraints [107]. Thus, a proper
synergy between optimization techniques and the deployment of technologies can
improve the performance and efficiency of the entire distribution network operation.

Figure 4 depicts the components of the IVVC and the information exchanged
between the blocks [32, 107, 108]. To execute a coordinated optimal switching plan,
IVVC requires real-time monitoring and control of substation and feeder devices.
Basically, a centralized control collects sensory data from the meters, then it runs
Volt/Var optimization algorithms sending new setting to the Volt/Var devices in the
field via SCADA system. The overall SCADA system is involved in the integration
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of all components of the IVVC. The platform solution that supports the centralized
control of these many integrated elements is the so-called distribution management
system (DMS). That is why, this approach is also known as DMS-based Volt/Var
control.

Advanced metering infrastructure (AMI) refers to the measurement and col-
lection system that includes meters, communication networks and data reception.
It provides real-time observability of the customer service delivery points [21].
Additionally, a meter data management system (MDMS) manages the data into the
data storage and it makes analyses to extract useful information to the utility [27].

The benefit of employing a dynamic model is that the Volt/Var optimization
is always dealing with the “as-operated” network state, ensuring a control that
reflects the current operating configuration of the system [104]. The line switch
provides switch status information to accommodate resulting scenarios of feeder
reconfiguration. Also, intelligent electronic devices (IEDs) collect and transmit
operating status data of the Volt/Var devices.

In the IVVC, IEDs operate as smart meters and supervisory controllers interme-
diating the communication between devices and coordination algorithm [57]. So,
IEDs monitor voltage and status of switched capacitor banks on the feeder and
perform the switch control action. IEDs also monitor and execute the tap changes
of line voltage regulators and measure load voltage and load at these sites. Likewise
for substation capacitor banks and substation OLTC. But, in this case, there is
an important part of the SCADA system—the substation RTU—serving as a data
concentrator for all substation IEDs [114].

IVVC requires an accurate and up-to-date electrical model. DMS can interface
geographic information systems (GIS) to create an integrated view of the dis-
tribution network updating the distribution system model about permanent asset
changes (e.g., line extension, reconductoring) [116]. Besides GIS, dynamic changes
must feed the model through real-time updates via SCADA. Thus, the setting
control logic are usually based on the dynamic model of the distribution system
[106]. Moreover, temporary changes (e.g., line cuts, jumpers, manual switching),
performed by direct operator action, must also be considered in the model.

To carry out the control of the Volt/Var equipment, IVVC requires an online
power flow (OLPF) which is responsible for evaluating possible control strategies.
OLPF determines the values of all relevant variables and electrical conditions of
the whole network, such as: losses, voltage profile, etc. So, based on the power
flow results, IVVC optimizing engine determines the optimal set of control actions
to achieve the desired objectives [108]. The procedure consists in a sequence of
algorithm iterations, that is, while the engine elaborates an alternative switching
plan, the OLPF tests the effectiveness of such plan. Once the optimal coordination
is finally elaborated, the control signals are then transmitted to the field controllers
via SCADA to execute the control strategy.

Certainly, the use of a dynamic operating model in conjunction to a optimization
algorithm can achieve significant performance benefits. In fact, IVVC pursues
utility-specific objectives, which include [32, 90]:
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• keep the system within bus voltage and line/transformer loading constrains;
• keep power factor along the feeders close to unity;
• minimize power losses in lines and transformers;
• minimize the substation transformer injected active power (energy conservation),

or equivalently, minimize the sum of the power losses and the concurrent
customer demand;

• maximize the service life of the equipments;
• maximize revenue that is the difference between energy sales and energy prime

cost (the cost of production or the price to purchase energy from another
producer).

To sum up, IVVC has several advantages over the traditional approach and
SCADA-based approach [69, 107]. Because dynamic model updates automati-
cally, IVVC can adapt well to feeder reconfiguration and handle complex feeder
arrangements. Volt/Var control actions are fully coordinated reaching optimal
results. IVVC can accommodate varying operating objectives and, when needed,
change the control strategy. Therefore, it presents flexible operating objectives.
For advanced applications, IVVC can model the dynamic effects of DG and
other modern grid elements in the distribution system operation. IVVC is able to
handle high penetration of distributed energy resources (DERs) and reverse power
flows properly. Also, it is possible to control these devices as part of the optimal
Volt/Var control strategy. In other words, IVVC potentially fulfills all the ideally
characteristics for a Volt/Var control. Although IVVC presents all these advantages,
in return, it could result in high cost to implement, operate and maintain. On the
other hand, it is possible to reduce ownership costs through shared infrastructure
with SCADA, outage management systems (OMS) and DMS applications [104].

4 Statement of the Volt/Var Optimization Problem

The optimization approach has received the greatest attention due to the potential
to further enhance system operation. In the grid modernization initiatives, the
deployment of new infrastructure and technologies are followed by the imple-
mentation of updated distribution operations [2], in which the Volt/Var control is
included. Therefore, Volt/Var optimization should become much more effective than
traditional approaches [82].

Although the primary definition of the Volt/Var control is related to voltage
regulation, secondary benefits can also be explored as well in order to improve
the overall system efficiency. This is accomplished by formulating the Volt/Var
control as an optimization problem. Therefore, the voltage regulation issues become
a constraint of the problem, whereas the objectives—such as minimal electrical
losses, minimal electrical demand, and reduced energy consumption [107]—are
included in the problem formulation. This enhanced concept opens a wide range
of possibilities for the Volt/Var control.
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4.1 Application of Optimization Approach

If more elaborated objectives are considered, better performances and improved
efficiency are desired, which implies in formulating the Volt/Var control as an
optimization problem. The range of possibilities for the goals to explore are wide
and the constraints to be considered are critical for the problem.

Essentially, the success of the Volt/Var control depends on the proper coordi-
nation among the equipment. Different equipment settings will result in different
performances of the system. So, it is possible to pursue optimal results if an
optimization model, which evaluates the performance of the system from the
equipment settings, is elaborated. As a necessary condition this model should
comprise the power flow equations. Some characteristics that favor modeling the
Volt/Var optimization are:

• objective functions can represent utility goals;
• essential limitations and requirements of the operation can be modeled as

constraints;
• voltage regulating equipment and reactive controls can be handled as the control

variables;
• objective functions can be evaluated by algorithms or simulation tools;
• the control variables can be encoded as continuous or discrete;
• different techniques can be used to solve the problem;
• trial and error adjusts are avoided;
• efficient algorithms can solve the problem for real-time applications;
• system optimization is part of the smart grid strategy.

4.2 Problem Formulation

VVO consists in a coordination problem that selects an ordered combination of the
voltage and var controls so that a particular objective can be achieved optimally.
This problem is usually modeled as a mixed integer nonlinear programming
problem [55], which presents nonlinear objective functions and a mix of integer and
continuous design variables. There are also models that use integer programming
[8] and, in addition to the exact optimization methods, evolutionary computation
techniques can be used to determine the control operation [34, 97].

The optimal Volt/Var control is treated in this chapter as a single-objective
optimization problem. Although representing it as a multi-objective problem is
more realistic, the single-objective version is often used in literature and can easily
demonstrate the advantages of formulating the Volt/Var as an optimization problem.

The formal formulation of single-objective optimization problems, in the form
of definition, is presented as follows [18].



Optimal Volt/Var Control Applied to Modern Distribution Systems 19

Definition 1 (General Problem) A general single-objective optimization problem
is defined as:

minimize f (x)

subject to gi(x)≤ 0, i = 1, . . . ,m

hj (x)= 0, j = 1, . . . , p,

(9)

where x = [x1, . . . , xn]T is a n-dimensional decision vector from the universe Ω ,
which contains all possible x that can be used to satisfy an evaluation of f (x) and
its constraints.

The goal of an optimization problem is to search for an optimal feasible solution
x∗ (or a near optimum) that satisfies all constraints (g and h), providing the
best value (or an approximation) of the objective function (f ) among all feasible
solutions (x ∈ Ω). In what follows the VVO problem is represented as an
optimization problem.

4.2.1 Control Variables

VVO determines the set of actions that must be implemented to achieve optimized
Volt/Var control. These actions are related to the managing of the equipment and
controls deployed on the grid. Classically, the following variables are considered in
the problem:

• OLTC tap position;
• SVR tap position;
• Number of SC banks.

However, new proposals consider additional controls in the optimization:

• Static var compensator (SVC) [20, 97];
• Distributed static var compensator (D-STATCOM) [22];
• Shunt reactor (ShR) [97, 117];
• Operating values of automatic voltage regulator (AVR) [119];
• Voltage control at PV-buses [73, 78];
• Active power of DG [76, 77];
• Reactive power of DG [15, 76];
• Active power curtailment from DG units [71];
• Active and reactive power of microgrids [59];
• Active power injection/absorption from energy storage (ES) device [71];
• Operation state of the ES device [56];
• Reactive power injection of electric vehicle (EV) [63];
• Active and reactive power of battery energy storage system (BESS) [121, 126];
• Active and reactive power of controllable loads (CLs) [71, 126];
• Reactive power of soft open point (SOP) [52];
• Solid state transformers (SST) [98].
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The control variables are represented in the optimization problem as a set of
design parameters, x = x1, x2, . . . , xn, to be evaluated through the objective
function f (x), which can be represented by discrete or continuous variables.

4.2.2 Objective Functions

The objective function can model an utility-specific objective that might be mini-
mized (or maximized) throughout the optimization process. The objective function,
f , is dependent on x and it represents the goal of the VVO. Some examples are:

Minimization of Power Losses It has a positive impact on relieving the feeders,
reducing the voltage drop and presenting other environmental and economical
benefits.

Minimization of Active Power Losses [15]:

min fL =
Nbr∑

k=1

Gk[V 2
i + V 2

j − ViVj cos θij ] (10)

where fL represents the total active power losses, Nbr is the total number of
branches, Gk is the conductance of branch k which connects bus i and bus j , and V

and θ are voltage magnitude and voltage angle (θij = θi − θj ), respectively;

Minimization of Electrical Energy Losses [77]:

min fEL =
Nt∑

t=1

Nbr∑

k=1

Rk|I t
k |2Δt (11)

where fEL represents the total electrical energy losses, Nt is the number of intervals,
Nbr is the number of branches, Rk is the resistance value of the kth branch, I t

k is the
actual current value of the kth branch during time t , and Δt is the time interval.

Minimization of Voltage Deviation Voltage deviation is one of the indexes that
has been used to evaluate the stability of the system and the quality of power supply
[15].

Minimization of Total Voltage Deviation [15]:

min fΔV =
Nbus∑

i=1

(Vi − V ∗
i )2 (12)

where fΔV represents the total voltage deviation, Nbus is the total number of buses,
Vi is the current voltage magnitude, and V ∗

i is the desired voltage at the ith bus;
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Minimization of Total Daily Voltage Deviation [77]:

min fΔVdaily = 1

Nt

Nt∑

t=1

Nbus∑

i=1

∣∣∣∣
V t

i − V ∗
i

V ∗
i

∣∣∣∣ (13)

where fΔVdaily represents the total daily voltage deviation, Nt is the number of
intervals, Nbus is the total number of buses, Vi is the current voltage magnitude,
and V ∗

i is the desired voltage at the ith bus.

Maximization of Energy Savings Through CVR Energy saving is achieved by
lowering the voltage along the feeder to promote a reduction in energy demand [82],
with a flatter voltage profile but keeping the voltage within allowable limits [4].

Maximization of Energy Savings [4]:

max fES = 100%
Psystembase − Psystemi

Psystembase

(14)

where fES denotes the energy savings, Psystembase represents the kilowatt results
obtained after solving the base case power flow without Volt/Var control, and
Psystemi denotes the kilowatt power flow results obtained for each ith possible
operation with Volt/Var control;

Minimization of Voltage Unbalance Practical distribution systems are unbal-
anced in nature—loads are unbalanced and power delivery lines are untransposed
and multi-phase (a mix of single-phase, two-phase, three-phase and/or neutral
lines)—and the integration of single-phase DGs makes them even more unbalanced
[5]. Voltage unbalance creates negative effects causing overheating and malfunction
of equipment, and power and energy losses in the distribution grid [35].

Minimization of Total Line Voltage Unbalance Rate [110]:

min fLV UR =
∑

n∈ΩT

ΔUn

Uavgn

(15)

where fLVUR represents the total line voltage unbalance rate (LVUR), Uavgn is the
average line voltage of the three phases at node n, ΔUn is the maximum voltage
deviation from the average line voltage Uavgn , and ΩT is the set of the three-phase
nodes.

Minimization of the Number of Switching Operations Frequent switching oper-
ations of traditional devices (OLTC, SVRs and capacitor banks) may significantly
reduce the lifetime of these devices and even damage them [58]. Therefore,
deterioration due to their intensive use should be prevented by minimizing the
number of operations in order to prolong the lifetime of these devices [99].
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Minimization of the Number of Tap Changes [99]:

min fT C = 1

Nd

Nd∑

d=1

Nt∑

t=1

|T t
d − T t−1

d | (16)

where fT C represents the number of tap changes, T t
d is the tap position of the

voltage control device d at time t , Nd is the number of devices, and Nt is the number
of intervals.

Minimization of MW Curtailment on DG [11] Generators (non-firm DG) may
be accepted to be occasionally curtailed in the face of grid congestion to remove
voltage constraints. Furthermore, based on real-time electricity markets, the objec-
tive looks for minimizing the distribution system operator (DSO) payments towards
the owners of curtailed DG units.

Minimization of MW Curtailed on DG Units [11]:

min fDGC =
∑

i∈G

(P 0
gi − Pgi) (17)

where fDGC represents the amount of MW curtailed on DG units or the cost of
DSO payments towards the owners of curtailed DG, P 0

gi is the current available
active power of DG unit i, and Pgi is the curtailed active power of DG unit i.

4.2.3 Constraints

Numerous constraints are imposed on the VVO problem. If they are not satisfied,
such solutions will be infeasible, resulting in a poor operation of the distribution
system or even in an impractical control. Therefore, the objective function f (x) to
be minimized (or maximized) might be subjected to a set of inequality and equality
constraints. Some examples are:

Technical and Operational Constraints The optimization problem is subjected
mainly by technical and operational constraints which ensure security, quality and
reliability of the system operation. These constraints are essential in the Volt/Var
optimization problem.

Active and Reactive Power Flow Balances:

ΔP = P
spec
n − Pcalc

n (18)

ΔQ = Q
spec
n − Qcalc

n , (19)

where ΔP and ΔQ are the active and reactive power injection estimation errors,
P

spec
n and Pcalc

n are the specified and calculated active power injection at node n,
and Q

spec
n and Qcalc

n are the specified and calculated reactive power injection at
node n;
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Node Voltage Magnitude:

Vmin ≤ V t
n ≤ Vmax , (20)

where V t
n is the voltage of the node n at hour t , and Vmin and Vmax are the acceptable

voltage limits;

Thermal Capacity of Lines:

|S t
k | < S max

k , (21)

where |S t
k | is the absolute value of the complex power flowing over the branch k at

hour t , and S max
k is the maximum allowable complex power of branch k;

Power Flow on Substation Transformer:

S t
T X ≤ S rat

T X , (22)

where S t
T X it the apparent power flow on substation transformer at time t , and S rat

T X

is the substation transformer rating;

Tap Position Limits and Number of Capacitor Banks:

T min
d ≤ T t

d ≤ T max
d , (23)

where T t
d is the tap position (or number of capacitor banks) for each voltage control

device d at hour t , and T min
d and T max

d are the tap position limits (or capacitor banks
limits) for the device d .

Ensure Performance Improvement by Using Constraints Some constraints can
be added into the VVO problem in order to ensure a certain improvement of
economy, quality and performance during the system operation.

Substation Power Factor [91]:

PFmin
S ≤ PF t

S ≤ PFmax
S , (24)

where PFmin
S and PFmax

S are the minimum and maximum allowable power factors
of the substation, and PF t

S is its current power factor at hour t ;

Maximum Switching Operations of Devices [79]:

24∑

t=2

|T t
d − T t−1

d | ≤ Nmax
d , (25)

where T t
d is the tap position of the voltage control device d at hour t , and Nmax

d

is the maximum allowable daily operating times (MADOT) [79]—or, similarly, the
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maximum allowable daily switching operation number (MADSON) [55]—of the
device d;

Total Harmonic Distortion of Voltage [105]:

T HDi
v ≤ T HDmax

v , (26)

where T HDi
v and T HDmax

v are total harmonic distortion of voltage at bus i and the
maximum distortion allowed, respectively;

Limit on Voltage Balance Factor for all Three-Phase Buses [20]:

0 ≤ U2i = 100
E2

i

E1
i

≤ Umax
2 (27)

where U2i is the voltage unbalance factor of bus i, E1
i and E2

i are the positive-
sequence and negative-sequence voltage of bus i respectively, and Umax

2 is the
maximum value of U2i .

DER Constraints When distributed energy resources deployed in the distribution
system actively participate in the VVO, their constraints must be considered.

Active Power and Power Factor Constraints of DGs [79]:

Pmin
DGi

≤ P t
DGi

≤ Pmax
DGi

(28)

PFmin
DGi

≤ PF t
DGi

≤ PFmax
DGi

, (29)

where Pmin
DGi

and Pmax
DGi

are the minimum and maximum real power components of

the distributed generator i, P t
DGi

is its current real power at hour t . PFmin
DGi

and
PFmax

DGi
are the minimum and maximum allowable power factors of the distributed

generator i, and PF t
DGi

is its current power factor at hour t .

Active and Reactive Power Constraints of DGs [76]:

(P t
DGi

)2 + (Q t
DGi

)2 ≤ (Smax
DGi

)2 , (30)

where P t
DGi

and Qt
DGi

are the active and reactive power components of the ith DG
at hour t , respectively, and Smax

DGi
is the apparent power of the ith DG.

Electric Vehicle Constraints [63]:

V min
EVi

≤ V t
EVi

≤ V max
EVi

(31)

0 ≤ P t
EVi

≤ P max
EVi

(32)

0 ≤ −Qt
EVi

≤ −Qmax
EVi

, (33)
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where V t
EVi

is the voltage of the EV in bus i at time t , and V min
EVi

and V max
EVi

are the
minimum and maximum voltage values. P t

EVi
and Pmax

EVi
are the active power of the

ith EV at time t and the maximum charging limit of the system. Qt
EVi

and Qmax
EVi

are the reactive power injection to the grid at time t and the capacity of maximum
inverter reactive power generation of the ith EV.

Controllable Loads (CL) Constraints [126]:

P min
CLl

≤ PCLl (i) ≤ P max
CLl

(34)

Qmin
CLl

≤ QCLl (i) ≤ Qmax
CLl

(35)

ΔWL ≤ ∫ N

0 ΔPCLl (i)di ≤ ΔWU , (36)

where PCLl is the active power of the l-th CL, P min
CLl

and P max
CLl

are the lower and
upper bounds of active power acceptable ranges, QCLl is the reactive power of the l-
th CL, Qmin

CLl
and Qmax

CLl
are the lower and upper bounds of reactive power acceptable

ranges, ΔPCLl is the energy allocated to the l-th CL, ΔWL and ΔWU are the lower
and upper bounds of load energy which can be used by CL, and i and N are the
index and number of samples of control references.

Energy Storage Constraints [6]:

∑24
t=1[−ηiPESi,t Δt] ≤ Emax

ESi,t
− E0

ESi,t
(37)

∑24
t=1[ηiPESi,t Δt] ≤ E0

ESi,t
(38)

Emin
ESi

≤ EESi,t ≤ Emax
ESi

(39)

Pmin
ESi

≤ PESi,t ≤ Pmax
ESi

(40)

(PESi,t )
2 + (QESi,t )

2 ≤ (Ωmax
ESi

)2 , (41)

where ηi is the storage charge-discharge cycle efficiency at bus i, PESi,t is the active
power produced/absorbed by the energy storage (ESi,t ) at bus i at time t , Δt is 1 h
time interval, and Emax

ESi,t
and E0

ESi,t
are the maximum energy stored and the initial

energy stored of the ESi,t . The storage could be positive or negative, indicating
charging or discharging cycles respectively. EESi,t is the energy stored, and Emin

ESi

and Emax
ESi

are the minimum and maximum capacity of the energy storage. Pmin
ESi

and
Pmax

ESi
are the minimum and maximum active power rating. QESi,t is the reactive

power produced/absorbed by energy storage and Ωmax
ESi

is the power capability limit
of the energy storage, MVA.
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4.3 Dealing with Costs

Besides optimizing directly the distribution system operation, it is possible to
optimize energy or operation costs through VVO. The formulation of the objective
functions may have additional parameters that aggregate the costs related to the
objectives. These parameters quantify economically the benefits of the optimal
solutions. In general, the objective function to be optimized is as follows:

min J =
∑

i∈Ωo

Ci × foi , (42)

where J represents the objective function (which can be a sum of objectives), Ωo is
the set of objectives, and Ci is the cost related to the i-th objective foi .

There are several cost formulations in literature that deal with different objectives
and strategies. Some examples, in the context of modern distribution systems:

• minimization of the total cost of energy purchased from the distribution substa-
tion and the dispatchable DGs [56, 76];

• minimization of the total power system operation cost which include fuel cost
of generators and switching cost of equipments like tap transformers and shunt
capacitors [60];

• minimization of the total costs of network losses and generation curtailment [49];
• minimization of the total cost of energy purchased from the substation and

DG units, the cost of energy curtailment on electric vehicles, the cost of
energy injected from the energy storage devices (ESDs), and the cost of energy
curtailment on the ESDs [92].

4.3.1 Cost Evaluation of Distributed Generators

The cost of each kWh of electric energy generated by DG can be estimated
considering: investment, operation and maintenance (O&M) cost, and fuel cost.
Therefore, the hourly cost function can be expressed as [76]:

CPdg (Pdg) = a + bPdg , (43)

where CPdg (Pdg) is the cost of active power generated by the DG in $/kWh and

a = Capital cost($/kW) × Capacity(kW) × Annual rates of benefit

Lifetime(Y ear) × 365 × 24 × DG loading factor
, (44)

b = Fuel Cost($/kWh) + O&M Cost($/kWh) . (45)
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4.3.2 Cost of the Switchable Devices

The traditional Volt/Var control devices (tap transformers and shunt capacitors)
are subjected to wear-and-tear cost per adjustment. Because of the mechanical
switching, a limited number of switching operations could be performed during
their service life [60].

The purchase cost per kvar rating of shunt capacitors (CShC) can be defined
based on the capacitor purchase cost (ShCp) and its expected lifespan (ShCLif etime)
[118]:

CShC = ShCp

ShCLif etime

. (46)

OLTC control costs contain both capital investment costs and operating costs
related to components wear out and maintenance [113]. So, the cost of OLTC
tap operation in $/tap can be calculated based on the cost of replacing the OLTC
(C R

OLT C) and the number of tap operations remaining (N R
OLT C) [118]:

COLT C = C R
OLT C

N R
OLT C

, (47)

where the number of tap operations remaining depends on the residual lifespan
(LS R

OLT C ), the total lifespan (LS T
OLT C ), and the estimated total operation times

(N T
OLT C) of the OLTC:

N R
OLT C = LS R

OLT C

LS T
OLT C

N T
OLT C . (48)

5 Solving the Volt/Var Optimization Problem

The Volt/Var control problem is nondeterministic polynomial hard and combina-
torial with huge solution space [75]. Traditionally, the problem is formulated as
a nonconvex, mixed-integer nonlinear problem [55]. To point out, VVO has the
following characteristics that challenge optimization algorithms [29]:

• integer decision variables;
• nonlinear objective being an implicit function of decision variables;
• high dimension nonlinear constraints;
• non-convex objective and solution set;
• high dimension search space.

Besides that, a major goal is to develop efficient algorithms capable to solve large
problems in a real-time (or near real-time) application.



28 T. S. Vítor et al.

The remaining of this section is dedicated to: (1) present different algorithms
commonly used to solve the VVO, (2) to detail important schemes and techniques
needed to deal with the problem, and (3) to introduce real-time VVO concepts and
resources.

5.1 Metaheuristics for VVO

The choice of the right optimizer or algorithm for a given problem is crucially
important. Thus, this subsection is dedicated to present a suitable class of algorithms
for VVO problems. They are often employed in literature so as to obtain good
solutions in a reasonable timescale with a limited amount of resources.

5.1.1 Classical Methods for Optimization

Many classical methods for optimization (e.g., linear programming, mixed integer
programming, quadratic programming, etc.) can be used to solve the VVO problem
[77]. However, drawbacks may also accompany these methods, such as [23, 127]:

• specific knowledge of the problem may be required, which may not be available;
• convergence to a local optimal solution depends on initial solution;
• an algorithm efficient in solving one problem may not be efficient in solving

another problem;
• they are not efficient for problems having discrete search space;
• most algorithms tend to get stuck at suboptimal solutions.

5.1.2 Characteristics of Metaheuristic Algorithms

Metaheuristics or approximated methods present several characteristics to deal with
the difficulties mentioned before. They represent a class of approximate algorithms,
which present a dynamic and/or stochastic search procedure that can be applied
to a large number of power system problems [51]. It can be said that they are an
evolution of heuristic algorithms, which normally get entrapped into poor local
optimal solutions, while the metaheuristics present mechanisms to prevent those
situations. One interesting characteristic is the acceptance during the search process
of worsening solutions, but as an intelligent strategy to obtain better solutions.

One of the most striking characteristics is their collective (population or swarm)
based nature that enables them to find multiple optimal solutions in a run. This
population-based approach has a number of advantages [24]:

• it provides a parallel processing power achieving a computationally quick overall
search;
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• it allows to find multiple optimal solutions, facilitating the solution of multi-
modal and multi-objective optimization problems;

• it provides the ability to normalize decision variables, objective and constraint
functions within an evolving population using the population-best minimum and
maximum values.

Besides the population-based advantages, they also present some characteristics
that contribute to their robustness, such as: direct use of coding, blindness to
auxiliary information, and randomized operators [31]. Most of metaheuristics work
with a coding of the parameter set, not the parameters themselves. Many search
techniques require auxiliary information in order to work properly, but it is not
essentially required for metaheuristics. They only require an objective function or an
evaluation function that translates the quality of the solution candidates to perform
an effective evolving search. Some of them, such as the Evolutionary Algorithms
(EA) and Simulated Annealing, use random choice (probabilistic transition rules)
to guide their search. Higher probabilities are given towards regions of the search
space with a perspective of improvement.

Another interesting characteristic is the best performances for multi-modal,
nonlinear, non-separable, and non-convex search spaces compared to classical
algorithms. This happens by virtue of the capacity to explore the search space. In
the case of EA, it is possible to apply a parallel search mechanism combined with
the ability to deal with a “black box optimization problem” (i.e., they only require
coding and performance measure of the problem due to a set of actions). They can
be readily applied to really large dimensional problems and can also show very
good performance in optimizing noisy search spaces and imperfect models with
uncertainties in the parameters, which are very interesting features for real world
problems [31].

In short, the advantages of metaheuristics can be summarized in the following
characteristics [51]:

• conceptual simplicity;
• broad applicability;
• outperform classic methods on real problems;
• potential to use knowledge and hybridize with other methods;
• parallelism;
• robust to dynamic changes;
• capability for self-optimization;
• able to solve problems that have unknown solutions.

5.1.3 Basic Concepts of EAs

As an illustration of a well applied metaheuristic, a very known EA, the genetic
algorithms (GAs) will be described here. They are a popular class of search
algorithms based on the mechanics of natural selection and natural genetics [31].
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Fig. 5 General scheme of a GA [26]

The concept of GA was developed by Holland and his students and colleagues in
the 1960s and 1970s [74].

Basically, a population of individuals, which encode potential solutions to an
optimization problem, evolve over multiple generations by applying natural inspired
selection, recombination and mutation operators in such a way as to preserve
critical information. Individuals that represent better solutions are given more
chances to reproduce than those which represents poorer solutions. Thus, the
degree of adaptation of the individuals, called fitness, to their artificial environment
determines the probability of their survival for the next generation. As the search
goes forward, the population evolves to fitter and fitter solutions, and eventually it
converges [18]. The general scheme of a GA is illustrated by the flowchart in Fig. 5.

Indeed, it is important to note that Fig. 5 also outlines a general evolutionary
algorithm—a category of modern heuristic search. In general, EAs differ only in
technical details related to encoding mechanism, selection process and variation
operators [18, 26].

5.1.4 Evolutionary Optimization Methods for Solving VVO Problems

Evolutionary computation have been widely employed to solve VVO problems.
Some examples of EAs used to tackle such problems are:

• Genetic algorithm (GA) [34, 78, 97];
• Evolutionary particle swarm optimization (EPSO) [72];
• Differential evolutionary particle swarm optimization (DEEPSO) [71];
• Evolutionary programming (EP) [117].

Other optimization models based on recently developed metaheuristics are:

• Particle swarm optimization (PSO) [4, 126];
• Honey bee mating optimization (HBMO) [77];
• Bee swarm optimization (BSO) [123];
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• Ant colony optimization (ACO) [76];
• Simulated annealing (SA) [53];
• Tabu search (TS) [96];
• Differential evolution (DE) [40];
• Memetic algorithm (MA) [54];
• Shuffled frog leaping algorithm (SFLA) [61];
• Bacterial foraging algorithm (BFA) [122];
• Teaching-learning-algorithm (TLA) [80];
• Grey wolf optimization (GWO) [13];
• Harmony search (HS) [12].

5.2 Volt/Var Mapping

Volt/Var mapping is the special relation such that a given control setting is associated
with a performance of the system operation. So, the VVO problem is formulated as
a mapping from the design space Xf to the objective space Y , fo : Xf → Y , where
Xf ⊂ X ⊆ Ω represents all possible (feasible) configurations among discrete
taps of the ND devices and continuous values of the NC controls for NH hours
of operation, Ω is the universe N

NDNH R
NCNH , Y ⊂ R is the distribution system

response represented by the performance results of the objective function fo, which
is performed by the power flow evaluation associated with further calculations on
state variables (Sect. 4.2.2). Thus, the evaluation of the objective function on a
decision vector x ∈ Xf produces an objective value y ≡ f (x) ∈ Y .

For 24 h of operation and considering only traditional devices, the cardinality of
the controls’ combinations in the entire solution space X is given by Mohapatra et
al. [75]:

|X| =
(NT ap∏

i=1

nti

NCap∏

j=1

nsj

)24

(49)

where NT ap is the number of tap transformers, NCap is the number of capacitor
banks, nti is the number of taps of the transformer i, and nsj is the number of
switched units of the capacitor bank j .

5.2.1 Encoding

The solution candidates, called individuals, must be represented appropriately. Each
individual is a decision vector that encodes the optimization problem’s variables
using a particular data structure.

In fact, the encoding mechanism can be interpreted by two points of view in
VVO. On one hand, the encoding of the decision variables is part of the problem
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formulation. This means that the controls must be clearly defined and modeled.
On the other hand, considering the algorithm procedures, a proper data structure
is required to represent the controls’ settings and allow their manipulation. So, the
encoding of the problem is also part of the strategy to solve the VVO problem. There
are many ways to encode the decision variables. It depends on the method that is
being proposed.

It is important to note that VVO can have discrete (integer or binary) and contin-
uous control variables, as mentioned in Sect. 4.2.1. So, encoding such information
requires special attention, being crucial for the performance of EAs [89]. Some
algorithms can be able to deal directly with a certain nature of the variables, whereas
others cannot.

Binary Encoding Typically in GA, the individuals are held as binary encodings
(strings of ones and zeros) of the control variables. In general, the number of digits
depends on the number of load levels, the number of devices, and the number of
possible settings for each device.

Example for a Capacitor Representation [105]: The following substring, formed
by two segments, permits to determine the time for switching the capacitor “on”
and the duration for keeping it “on”:

turn it on → 00100|01100 ← keep it on

In this example, the capacitor is switched “on” at hour 4 and remains “on” for
the next 12 h. Another way to represent the same information is to use one bit for
each hour indicating the state of the capacitor. The result is capacitor “on” for hour
4 to hour 16:

hour1 → 000111111111111100000000 ← hour24

Representing Continuous Variables Of course, the binary representation can also
encode continuous variables. The precision depends on the number of bits used
[41]:

(UB − LB)

2n − 1
(50)

where UB and LB are domain bounds and n is the number of bits per one element
of a chromosome.

However, real representation with a binary encoding presents difficulties when
dealing with continuous search space with large dimensions [124].

Real Encoding In evolution strategies, the solution candidates are encoded as
floating point numbers instead of bit strings as in typical GA. Actually, an increasing
number of GAs use real-valued (base-10) encodings to support the natural data
structure of the problem [19]. This allows a straight way for representing VVO
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problems that have continuous control variables. Moreover, according to the authors
in [41], results showed that float point representation was faster, consistent and
provided a higher degree of precision for GA. As mentioned in Sect. 4.2.1, the
majority of the modern and advanced controls possess a continuous nature. This
makes the real encoding very attractive for VVO.

5.2.2 Dealing with Discrete Variables

A conventional strategy is to treat discrete variables as continuous. This makes the
problem ordinary for most of EAs [117]. Whenever the solution process requests
such variables, they are rounded off to the closest discrete feasible value.

Other examples of strategies to deal with discrete variables in VVO are:

• Gray code: Gray code was employed to encode discrete variables in [33]. It took
fewer iterations and consumes less CPU time than the binary GA;

• Integer representation: Discrete variables of the set of solutions were mapped
through an integer representation in [82]. An integer string was used instead of
binary coding to represent value of variables in [78];

• Approximation: The binary results for the discrete control variables are approx-
imated considering a vector of continuous values based on their percentage
distribution in the interval [0, 1] and converted to binary [4];

• Penalty-based: The discrete variables are treated as continuous variables by
incorporating sinusoidal functions with a penalty parameter into the objective
function of the problem [30].

5.2.3 Dealing with Multiple Objectives

Formulating real-world VVO problems may demand more than one objective to
optimize. For example, a complete improvement of voltage could mean not only
the reduction of the voltage deviation along the feeder, but also the reduction of the
voltage unbalance [110]. In other words, there are two objectives to be accounted
for.

The most intuitive approach to deal with multiple objectives is the weighted sum
approach, which transforms the multi-objective optimization problem into a scalar
optimization problem [18]. Basic mechanisms of metaheuristic algorithms can be
applied directly without any modification.

Also known as weighted aggregation approach, the objective functions are added
together using weighting coefficients in the following form:

min
k∑

i=1

ωifi(x) (51)
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where ωi are the weighting coefficients, x = [x1, x2, . . . , xn]T is the vector of
decision variables, and fi : 
n → 
, i = 1, 2, . . . , k are the objective functions.

Another very common strategy to handle multiple objectives in VVO is by using
the fuzzy optimization method, devised from Fuzzy Theory [120]. In the fuzzy
optimization, objective functions are modeled by membership functions and then
the overall objective changes into the minimization of the combined value of all
membership values. In other words, the result is a fuzzy decision value expressed
by the sum of all membership values. So, Eq. (51) turns into:

min
k∑

i=1

μfi(x) (52)

where μfi(x) is the membership function that models the objective fi(x). To
illustrate, this objective can be expressed as trapezoidal membership function [77]:

μfi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 fi(x) ≤ f min
i ,

0 fi(x) ≥ f max
i ,

f max
i −fi(x)

f max
i −f min

i

f min
i ≤ fi(x) ≤ f max

i

(53)

where f min
i and f max

i are the minimum and maximum values for the objective
function.

Therefore, fuzzy variables can be used to describe the imprecise linguistic
expressions related to the VVO objectives [53]:

• the voltage deviation on the secondary bus must be kept “as small as possible”;
• the reactive power flow through the main transformer must be kept “as small as

possible”;
• the total real power loss on feeders must be kept “as little as possible”;
• the total switching operation numbers of LTC and capacitors in a day must be

kept “as few as possible”.

Of course, different membership function shapes can be considered for the
objectives. However, the authors in [7] concluded that the bell-shaped membership
function produced the best results. Also, there are several ways to combine the single
fuzzified values of the objectives. It is possible to combine them, for example, by
their sum [53], their minimum (intersection) [77], or their product [7]. An advantage
in fuzzy approach is that the objectives are normalized in a way that does not require
the use of weighting coefficients [7].

Most solutions for VVO are based on converting the multi-objective problem
into a single-objective one by using the weighted aggregation approach or fuzzy
optimization method [15]. It is a simplification of the optimization process that
makes the VVO easy to implement and efficient for a proper set of settings (weights
or membership function parameters).
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5.2.4 Handling Constraints

A common approach to deal with constraints is to introduce a penalty term into the
objective function to penalize constraint violations [54, 80, 102]. For example, if
the voltage limits in VVO are violated, the corresponding solution is punished by a
penalty value. Thus, throughout the evolution process, infeasible solutions tend to be
evolved or replaced by better ones (i.e., solutions that better satisfy the constraints
in this case). Obviously, a feasible solution must result in no penalty at all.

VVO is naturally a constrained optimization problem (see Sect. 4.2.3). The
following formulation is often used in VVO problems in order to express the
complete fitness value—evaluation value of individuals—in which the penalty
values are added to the objective function [5]:

ff it (x) = fo(x) +
q∑

i=1

αif
i
c (x) (54)

where f i
c (x) is the ith constraint function, q is the number of constraints, and αi is

the penalty weight that receives a large number if constraint is not satisfied or zero,
otherwise.

Moreover, the penalty function can also be adaptive (i.e., its weight parameter
changes throughout the iterations) and the constraint function term can be replaced
by a function that measures the degree of constraint violation [33].

Therefore, another way to represent penalty functions is weighing down infea-
sible solutions by increasing their fitness values in proportion to their degree of
constraint violation [6]. Several penalty functions can be used such as linear penalty
functions, quadratic penalty functions or exponential penalty functions, as shown in
Fig. 6 [58]. The variable to be dealt with could be a control variable, a state variable
or any variable of interest.

In addition, for some VVO problems, “death penalty” is sufficient to approach
feasible regions [110]. This technique is very easy to implement, and because of this
it is frequently used. The algorithm rejects infeasible individuals (i.e., individuals
with some constraint violation) whenever they are generated. Hence, recursive calls
are made, until a feasible solution is found. The drawback of this approach is the
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elimination of solution candidates which may be obtained from a modification of
the corresponding infeasible solution.

5.2.5 Stochastic Modeling of Renewable

The integration of RES-based DG—i.e., DG based on renewable energy sources
(RES)—introduces uncertainties to the distribution systems due to the variable
nature of the primary energy source, i.e., the stochastic variations of the
weather conditions influence the generation availability, causing the variation
or limiting the available generation. Due to this reason, stochastic models of
renewable resources must be developed in order to represent such influence
[44]. Moreover, daily load demand is also stochastic due to the heterogeneity
of consumers (diverse commercial, residential and industrial consumer types)
[62].

The deterministic approaches are not sufficient for this kind of analysis, once
the deterministic load flow (DLF) takes into account specific values of power
generations and load demands of a fixed network configuration to calculate system
states and power flows [16]. In order to address the stochastic behavior of variables,
probabilistic analysis can be applied to properly capture uncertainties and to provide
a more realistic response of their impact on the distribution network operation
[44]. The aim of the probabilistic load flow (PLF) is to take into account these
uncertainties by requiring some input variables with probability density functions
(PDFs), or cumulative distribution functions (CDFs), to characterize the distribution
functions of output random variables, such as node voltages, line flows, etc.
[16].

The different techniques applied to solve the probabilistic load flow can be
classified into [61]:

• Analytical methods: e.g. convolution methods;
• Approximate techniques: e.g. First Order Second Moment (FOSM) method and

Point Estimate Method (PEM);
• Numerical methods: e.g. Monte Carlo simulation (MCS).

Particularly, the load demand and RES generation uncertainties can be modeled
through Monte Carlo sampling as a scenario-based stochastic framework. Then,
EAs can be applied to solve the series of equivalent deterministic scenarios [80].
There are other examples and strategies using EAs to solve the probabilistic load
flow by modeling the uncertainties via analytical methods [33] and approximate
techniques [61, 62, 123].

Therefore, Volt/Var control is a complex problem that requires probabilistic
analysis of distribution systems to cope with the load/generation uncertainty effects.
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5.3 Towards the Real-Time VVO

Time considerations are essential to classify VVO schemes. Basically, time-interval
and time-computing of the control strategy will determine the kind of VVO scheme.

5.3.1 Single Time Snapshot versus Time-Series Simulation

Power flow simulations can be carried out basically in two modes: snapshot or
time-series [86]. The snapshot mode is that when the power flow is calculated
for a specific operating condition at a certain time. On the other hand, time-
series takes into account a series of operating conditions in time order, i.e.,
it performs sequential-time power flow simulations. For that, it requires more
information about the system, such as: load shapes, generation curves and control
functions. In general, time-series simulation is carried out as a daily simula-
tion.

Although fixed load model, as a static snapshot problem, has been the focus of
many works [48], its applicability does not correspond to practical systems. In fact,
load demands vary from time to time. So, advanced applications require optimal
coordination scheme considering time-varying load demand [25]. Moreover, in the
context of modern distribution systems, the time-dependent nature of RES, which
produces variable energy output at different timing, can also be considered in the
time-interval control strategy [6].

Daily Load Curves The majority of applications uses load forecasting, in
the form of daily load curves, for Volt/Var control. More specifically, VVO
is typically associated with the optimal hourly adjustment of the Volt/Var
devices based on short-term load forecasting. In general, the daily load curve
is decomposed into hourly sequential of constant load levels [25]. But, it is
also possible to decompose the daily load forecast into several sequential load
levels so that the switching operations of OLTC at substations may be reduced
[34].

Short-term load forecasting refers to the prediction of load demand in electric
power systems for the time period of few hours up to 1 week. It is crucial for optimal
Volt/Var control planning. All decisions rely on this forecast as it is an input for
day-ahead scheduling. Modern load forecasting techniques are available to provide
highly accurate forecasts [105]. They can be classified into four categories [103]:

• Statistical technique;
• Artificial intelligence (AI) technique;
• Knowledge based expert systems;
• Hybrid techniques.



38 T. S. Vítor et al.

Different load profiles are obtained for a typical day in a season (winter, spring,
fall and summer) [118] and for typical consumers’ classes (residential, commercial
and industrial) [42, 65].

Furthermore, the daily operations of Volt/Var devices are greatly affected by
different types of loads and their models [94]. EV is an example of modern devices
in which the charging strategy can be defined by load profiles. The authors in
[65] considered EV load curves for different consumers (residential, workplace and
commercial) in a VVO engine.

Daily RES Generation Besides the 24-h load demand, time-varying coordination
in VVO can also consider RES generation profile [52]. RES occurs mainly in the
form of hourly active power output of solar photovoltaics (PV) [17, 97] and wind
farm (WF) generations [62, 113].

Daily Energy Prices Cost-based solutions can incorporate the daily energy price
variations to investigate an economic plan for the Volt/Var control problem [62, 76].

5.3.2 Planning and Real-Time Applications

Volt/Var control can be designed for either planning or real-time operations of power
distribution systems [28]. Scheduled (or planning) operation programs day ahead
schedule based on demand and renewable power generation forecasting processed
by robust algorithms. Whereas, in real-time operation, actions and commands
occur in short time periods based on communication signals, state-estimation
algorithms and decision support systems. Both operations are supported by the
IVVC framework.

Planning Applications Daily operation planning consists in employing day-ahead
load forecast, based on processing historical records, to feed Volt/Var Optimization
engine so that optimal control may be dispatched 1 day in advance. Also, if RES
is deployed in the distribution system, its output generation forecast must be added
as an input to the VVO engine. However, the major drawback of this approach is
related to the need of accuracy for the model. In addition, as an offline solution, it
lacks robustness to maintain optimal operation of the system for different scenarios
(uncertainty of loads, fluctuation of RES, etc.).

Real-Time Applications Distribution utilities are gradually integrating the use of
advanced metering, two-way communication and automation technologies into the
distribution systems [84]. The result is more sensors, communication, computation,
and control, transforming the conventional grid into a smart grid [9]. Consequently,
the operation of the grid is evolving towards more optimization, real-time applica-
tion, and intelligent algorithms.

With this in mind, Volt/Var control has much potential to become more advanced
as a smart grid-based [68]. According to [64] there is a gap between conventional
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VVO with offline techniques and smart-grid-based VVO which involves real-time
integrated solutions.

Besides the advanced information technologies, new control and automation
techniques are required to carry out the smart distribution system management
based on Volt/Var optimization. As mentioned, modern technologies for monitoring
and automated control are spreading in distribution systems. The deployment of
AMI has provided visibility for distribution system nodes due to its widespread
communication network and system-wide smart grid sensing devices [67]. It has
created considerable amount of data that can be used in optimization appli-
cations [68]. The analysis of smart meters data can provide power estimation
load profile to be incorporated into the power flow model calculations [36].
In other words, real-time sample values from smart meters could be used to
construct real-time load profiles [64]. Therefore, a distribution system state esti-
mation (DSSE) assists Volt/Var control by providing an accurate on-line model
[85]. Hence, advanced DMS can be responsible for finding a centralized solu-
tion that coordinates all devices in accordance to a real-time Volt/Var optimiza-
tion.

Therefore, this category of control requires a higher level of distribution system
automation and more hardware and software support [34]. The authors in [22] sum-
marized the following requirements for real-time implementation of coordinated
Volt/Var control:

• three-phase unbalanced power flow to optimize and validate the operation;
• centralized control system with DMS and support for SCADA;
• real-time data record of the advanced metering infrastructure (AMI) in the field

equipment;
• remotely controllable devices with commutable controllers;
• efficient and modern communication system.

5.3.3 The Extent of the Centralized Control

Most approaches recommended by different utilities and/or literatures recently
consist in a centralized control [65]. In fact, the coordinated Volt/Var control
searches for a centralized solution that produces systemic optimizing effects in
the distribution networks, which is not possible with only local and uncoordinated
actions [22]. For this reason, a centralized control requires a widespread communi-
cation infrastructure in the system in order to make possible the implementation of
the operations. The control and monitoring of the system is performed by the central
controller (e.g., DMS), which receives information of termination points (from AMI
and/or MDMS), execute the optimization algorithm and then transmit back the best
possible settings to the Volt/Var devices in the field through existing downstream
pipes, such as SCADA network [66].
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It is important to mention that the centralized control has two main topologies
[66, 68]:

• Network-based: the processing system is placed in a central controller unit,
which typically resides in the so called “Utility Back-Office”, and it controls
the entire network of the utility;

• Substation or feeder-based: VVO engines are located at the medium voltage
distribution substation to optimize the operation of Volt/Var components on each
feeder.

The main challenge of network-based topology would be the huge amount of
data that need to be transported from AMI to “back-office” and then from VVO to
control devices throughout distribution network substations and feeders [65]. On the
other hand, substation-based or feeder-based topology captures only required data
of AMI locally leading to decrease the risk of “data tsunami” as well as to avoid
high AMI cost [66]. Although this architecture works centrally in the substation,
from the point of view of a wide area, it is more like a decentralized control,
dealing with fewer nodes. That is why, sometimes the first topology is refereed
as Centralized-VVO, whereas, the second one as Decentralized-VVO. Anyway,
the VVO works very well for both topologies regardless of the degree of data
centralization.

5.3.4 Co-Simulation

Real-time VVO inherently depends on communication networks. A fully functional
real-time system integrates the VVO engine with the communication channel and
the monitoring platform [67]. So, a co-simulation platform for VVO applica-
tion must cover the practical integration challenges related to the communica-
tions between the field instruments and the environments where the algorithms
are executed [66]. In this case, the performance of the communication system
is considered into the co-simulation platform by its interaction with the VVO
[36].

6 Numerical Example

The purpose of the following example is to illustrate the VVO’s capability to
improve the performance and power quality of the distribution system operation
in the presence of RES-based DG.
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6.1 Statement of the Problem

6.1.1 Problem Formulation

The setting of the Volt/Var equipment for optimal system operation is determined
by the following formulation:

minimize f t
L ≡

Nbr∑

k=1

Rk |I t
k |2 (55a)

subject to ΔP = P
spec
n − Pcalc

n (55b)

ΔQ = Q
spec
n − Qcalc

n (55c)

Vmin ≤ V t
n ≤ Vmax (55d)

PFmin
S ≤ PF t

S (55e)

T min
d ≤ T t

d ≤ T max
d (55f)

where f t
L is the losses of the system at hour t , Nbr is the number of branches, Rk is

the resistance of the kth branch, I t
k is the current of the kth branch at hour t , ΔP and

ΔQ are the active and reactive power injection estimation errors, P
spec
n and Pcalc

n

are the specified and calculated active power injection at node n, Q
spec
n and Qcalc

n

are the specified and calculated reactive power injection at node n, V t
n is the voltage

of the node n at hour t , Vmin and Vmax are the acceptable voltage limits, PFmin
S is

the minimum allowable power factor of the substation, PF t
S is the current power

factor of the substation at hour t , T t
d is the setting for each Vol/Var device d at hour

t , and T min
d and T max

d are the setting limits for the device d .
The objective function outlines the goal, per hour, designed to reduce the losses

of the system (55a). Moreover, the optimization problem is subjected to constraints
which ensure security, quality and reliability of the system operation. They are:
active and reactive power injection balances (55b, 55c), node voltage magnitude
limits (55d), minimum substation power factor (55e), and control devices capacity
(55f).

6.1.2 Power Quality Standard

The service standard for the acceptable voltage limits is established by the Brazilian
National Agency for Electric Energy (ANEEL) as Vmin = 0.93 pu and Vmax = 1.05
pu [10]. These bounds refer to the connecting points in which the nominal voltage
is greater than 1 kV and less than 69 kV. The same standard also establishes that the
PF control must be carried out by permanent measurement at these voltage levels,
ensuring a PF greater than 0.92.
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6.1.3 Solution Algorithm

The solution of the proposed optimization problem is achieved by running a GA
implemented in Python. This algorithm interacts constantly with the OpenDSS for
power flow evaluations throughout the optimization process.

Power balance constraints are met internally by the OpenDSS procedures. As
the optimization algorithm selects only allowed values for the decision variables,
the control devices capacity is also satisfied. Finally, constraint violations of voltage
and PF are added as linear penalty functions weighing down infeasible solutions.

Real encoding is used in the GA. The discrete variables are treated as continuous
and, whenever requested, they are rounded off to the closest discrete value. For the
variation operators, the algorithm employs BLX-α crossover and a combination of
random and Gaussian mutation.

6.1.4 Base System

The proposed method has been tested in the IEEE 123 node test feeder [46].
The feeder’s nominal voltage is 4.16 kV. It presents unbalanced loading with
all combinations of load types, totalizing 3450 kW + 1900 kvar. This system is
characterized by voltage drop problems, representing a good test for the coordinated
operation of the voltage regulator devices.

6.1.5 Distributed Generation: PV Generation

The system must accommodate the connection of a distributed generator at bus 76. A
photovoltaic generation capacity of 1.2 MVA is considered with unity power factor.

6.1.6 Daily Curves

The daily load curve was taken from [42] and the capacity factor of photovoltaic
generation was selected from persistent clear sky condition of a typical day in
Brazilian Northeast region [39]. They are presented in Fig. 7a, b, respectively.

6.2 Case Study

6.2.1 Volt/Var Control Approaches

The Volt/Var control enhancement can be portrayed by different approaches as
the control tends to be more centralized and coordinated. Thus, the following
approaches will be considered:
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Fig. 7 Daily curves. (a) Daily load. (b) Capacity factor of DG

1. VVC-NC: It is the conventional local control of the IEEE 123 with no capacitor
(NC) in the substation. Only the voltage regulators perform the Volt/Var control
(VVC);

2. VVC-SC: A 300 kvar switched capacitor is added to the substation. So, besides
the voltage regulators, the VVC is also equipped with a switched capacitor (SC)
typically controlled based on the PF of the utility substation;

3. VVO-TD: It is the Volt/Var optimization (VVO) defined in Sect. 6.1 for reducing
losses and ensuring important constraints. The optimization problem presents
eight decision variables, which are the following traditional devices (TD):

• step voltage regulators: the tap ratio is taken from 0.90 to 1.10 pu in steps of
0.00625 pu. Specifically,

– SVR.1 is gang-operated (the taps change at the same time);
– SVR.2 is an individual phase regulator at phase A;
– SVR.3 has independent tap changing at phases A and C;
– SVR.4 has independent tap changing at all phases;

• switched capacitor: the reactive power is taken from 0 to 300 kvar in modules
of 150 kvar.

4. VVO-IVC: PV inverters can be used to absorb or inject reactive power and
so to control feeder voltage [17]. Therefore, this enhanced VVO with inverter
var control (IVC) considers the reactive power of PV inverters as an additional
decision variable to improve the power quality of the distribution grid. The
maximum injected (or absorbed) reactive power (QPV ) depends on the active
power generated by the PV plant (PPV ) and the power rating of the inverter
(SPV ). Therefore, the rating of the inverter is another constraint to be satisfied by
the VVO:

−
√

S 2
PV − (P t

PV ) 2 ≤ Qt
PV ≤

√
S 2

PV − (P t
PV ) 2 (56)
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Fig. 8 Minimum and maximum voltages among all nodes of the system for each hour. (a) VVC-
NC. (b) VVC-SC. (c) VVO-TD. (d) VVO-IVC

6.2.2 Node Voltages

The node voltages must be within the acceptable limits. This is the basic definition
of the Volt/Var control. Figure 8 shows the minimum and maximum voltages among
all nodes of the system for each hour. As can be seen, all approaches are able to
fulfill this fundamental requirement for the grid operation.

6.2.3 Substation Power Factor

Figure 9 shows the substation power factor for each control approach. In Fig. 9a,
VVC-NC presents PF below the minimum allowable limit during the period of
higher PV generation. By adding a switched capacitor in the substation, it is possible
to correct the PF. Thus, the resulting control, VVC-SC in Fig. 9a, switches ON the
capacitor when PF is below 0.92. Figure 9b proves that PF constraint are satisfied
by both VVO approaches, VVO-TD and VVO-IVC. Although the formulation only
shapes the constraint, the results point a greater PF along the day when the inverter
var control is considered into the VVO.
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Fig. 9 Substation power factor for each hour. (a) VVC. (b) VVO

6.2.4 Losses of the System

Figure 10 depicts the losses of the system for each hour. Figure 10a shows that
the losses are quite similar between VVC-NC and VVC-SC. So, considering VVC
as the base case, VVO is able to reduce the losses of the system for each hour.
Figure 10b presents the loss reduction produced by VVO when comparing with the
base case. The loss reduction of the VVO-TD is within the range of 2.37–8.65%,
whereas the VVO-IVC reaches values within the range of 3.35–10.71%. Therefore,
both VVO approaches reduce losses, but VVO-IVC achieves better loss reduction,
mainly during the higher PV generation.

6.2.5 Inverter var Control

If the active power generated from the PV panels is smaller than the PV inverter
rated power, the PV inverter can be controlled to inject or to absorb reactive power
[17]. Figure 11 indicates this principle, showing that the constraint related to the PV
inverter rated power is satisfied.

6.2.6 Conclusions

The results showed that modeling the Volt/Var control as an optimization problem
can greatly improve the performance of the distribution system operation. An
addition of a switched capacitor in the substation was needed to correct the PF,
but even so the local control (VVC) was not able to reduce the losses of the system.
On the other hand, the optimal coordination provided by the VVO achieved the
main goal of reducing losses and ensuring important constraints of the system
operation. Furthermore, the enhanced VVO, which includes the inverter var control,
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further improved the results, raising the PF close to unity and achieving better loss
reduction.

This case study did not consider the switching costs of the devices, being a
suggestion to be regarded in future works. Another important issue to highlight is
that the average of the results was obtained for 20 executions of the algorithm. It is
a common practice in the VVO to make several runs of the optimization algorithm
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and then to consider the mean value of the results. This technique aids to eliminate
the influence of the initial conditions of the problem in the results.

7 Concluding Remarks

In summary, due to the smart grid context, tackling the new paradigms on
distribution management networks depends upon updated Volt/Var control strategies
to face the new operating scenarios challenges and to make use of the technological
advances in infrastructure. Volt/Var control trend goes beyond accommodating new
smart grid features—such as ES, EV, and DER—just to minimize impacts, but
further to benefit optimally from them. So, advanced and innovative solutions may
take advantage of grid modernization systems to optimize the distribution system
performance and accomplish a variety of business goals.

7.1 Trend Challenges and Open Issues

The high penetration of DERs introduces several challenges for VVO, but, from
an envisioned perspective, it creates several opportunities because of the potential
benefits of DER. Indeed, many works have demonstrated this. Revised IEEE
1547 allows DER to provide voltage regulation capability by varying real and
reactive power [38]. Thus, the availability of DERs—generators and energy storage
technologies—can make smart grid-based VVO more affordable and practical
[68]. Furthermore, the DMS should take advantage of the advanced DER control
capabilities for improving the reliability, efficiency, performance and overall quality
of service for the electric distribution customers [109].

Studies has proven that new EV inverter technologies can enable EVs to inject
reactive power to the grid while battery is under charging operation [47]. So, this
feature is a potential advantage on VVO, leading to rise the distribution capacity,
improvement in voltage profile, power loss reduction, and minimization of switched
CBs’ operation costs [63].

Therefore, VVO solutions are moving towards using new Volt/Var control
devices [68], as shown in Sect. 4.2.1. In terms of optimization, these modern devices
deployed in the grid means more control variables to be optimized and constraints
to be met. On the one hand VVO gains more capability to accomplish its duty,
but on the other hand the optimization problem becomes more complex with high
dimension search space requiring more efficient algorithms to solve it.

Moreover, formulating real-world problems as reliable as possible means to
consider multi-objectives which are usually in conflict with each other. This kind
of formulation is known as multi-objective optimization problems (MOPs). Most
MOPs do not have a single solution, but a set of solutions which are trade-offs (or
good compromises) among the objectives [18]. This set, called Pareto optimal set,
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could represent optimal Volt/Var control solutions taking into account two or more
objectives at the same time.

A step forward towards electric utility smart grid will require advanced VVO
techniques able to work dynamically in real-time applications. With the aid of AMI,
real-time VVO could lead to a more accurate control and improve significantly the
system level of performance and efficiency [68]. Accordingly, real-time applications
demand advanced speed-up strategies for solving VVO. Besides, to achieve effective
interoperability, two-way communication network must take place.

Finally, as modern distribution systems display an increasing penetration of
RES-based DGs, VVO strategy must be robust enough to deal with the power
fluctuations of renewable generating resources so that the operations do not result
in unacceptable service levels [111]. The active outputs of renewable DGs fluctuate
dramatically due to their inherent volatility and intermittency. This could demand
management of power and voltage fluctuations. Furthermore, the VVO must also be
able to manage voltage problems caused by reverse power due to the integration of
renewables [57]. In sum, VVO has this further role of allowing increased amounts
of DG without adversely impacting power quality.

Future VVO solutions are based on an automated computed-assisted decision
making framework that fully coordinates and integrates a mix of traditional controls
and smart grid technologies in order to accomplish a comprehensive enhancement
of the grid operation. It should make progress by using grid modernization to
provide more efficient and reliable energy conservation and optimization solutions
towards the improvement of welfare produced by the use of electricity [81]. To
achieve that, the development of advanced methods and algorithms for solving VVO
should be a key challenge for distribution network planners. Although evolutionary
algorithms have been highly used to solve these problems, new intelligent strategies
and systems will be necessary in future distribution networks.

This chapter has addressed technical and operational aspects regarding the design
of optimal Volt/Var control in a centralized framework. Regulatory and market
issues have not been focused, since they could require a wider picture of the power
system.
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Abstract High penetration level of the renewable energy resources in the power
distribution network is one of the main issues of the distribution system operator
due to voltage deregulation, power losses and other control problems associ-
ated with intermittency of renewable energy resources. To resolve these prob-
lems following the increasing penetration level of distributed generators (DGs),
appropriate reactive power control of DGs, that can lead to the voltage profile
improvement and power loss minimization, should be addressed. This chapter
proposes a consensus-based distributed algorithm for the optimal reactive power
control (OPRC) of DGs in the power system. Proposed algorithm is found to
be effective to optimize the multi-objective function including power loss, and
voltage deviation of the distribution systems. The effectiveness and scalability of
the proposed algorithm have been validated by testing it on 6-bus and 162-bus
distribution systems and then comparing its results with the centralized control
scheme.
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1 Introduction

This section first describes the significance of this chapter and importance of reactive
power control. Then it talks about various control strategies available in literature
and finally proposes a new algorithm following the discussion of various control
techniques.

1.1 Research Significance

Power loss is a major problem in utility industry all over the world. In some
countries, power loss may amount to 40% of the total generation. To deal with
this serious issue, optimal reactive power control can be implemented in existing
power systems [1]. Optimal reactive power control can reduce power loss up
to 4% in the power systems with poor efficiency. Voltage deviation is another
major problem for power distribution utilities, especially on overloaded distribution
feeders. Researchers have claimed that 2004 blackout in North America was due to
extreme condition of voltage deviation [2]. Thus, a sophisticated optimal reactive
power control is very important for a reliable and efficient operation of power
system [3]. In this research, the authors include power loss, and voltage deviation
in the objective function, assuming that both quantities are very important to be
considered in the operation of power system.

Most of the existing reactive power control techniques are centralized in nature
where information from local power system is transmitted to the central controller
that computes the updated control input and sends back to the local system. This
kind of control scheme may lead to single point of failure in case the central
controller fails to operate [4]. Furthermore, in case of limited bandwidth of the
communication channel, it may cause slow communication or even loss of important
data during transmission of power system data to the central controller [5]. Due to
these issues in centralized control schemes, it is important to design a more robust
and efficient control that may solve the above mentioned issues. One of the possible
solution is to outline a distributed control that will be able to deal with these issues.

1.2 Importance of Reactive Power Control

The power loss on a large power system attributes a significant part of cost of power
system operation. The loss on the power line in a section of distribution between
two buses is, indeed, a function of the square of current flowing on the line. Amount
of current, in fact, depends on the voltage level across two buses and impedance
of the line connecting them. Thus, it can be stated that power loss on the line will
be substantially higher if the voltage difference between two ends of the line is not
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regulated [6, 7]. There are various ways to regulate the voltage of buses. Some of
the most commonly used apparatus are as follows:

1. Synchronous Condensers;
2. On-load tap changing (OLTC) transformers installed at the primary substation;
3. Voltage regulators (VR) installed along the feeders (Tap-changing auto-

transformers);
4. Capacitor banks installed along the feeder.

Synchronous condensers and capacitor banks are the sources to generate reactive
power in the power system. Reactive power generation can be used to improve the
voltage of the buses as well as minimize the power loss in the conventional power
systems [8, 9].

Today’s power system is undergoing rapid changes due to the integration
of renewable energy sources (RESs) and energy storage. Overall penetration of
RESs mainly photo-voltaic (PV) is very high and increasing in the power system,
especially, in low voltage power system [10]. As the active power generation of
PV units is mostly uncontrolled, the increase in power injection from PV units can
lead to a violation of nodal voltages at peak times [11]. Electric vehicles are also
expected to play a major role in deterioration of nodal voltages. Thus, with the
growing amount of injected power from RESs into the power system, control and
stability issues become more and more severe due to the RES intermittency [12].
These control issues in modern power system need to be resolved with improved
control of distributed generators.

Violation of nodal voltages can be significantly reduced if reactive power gener-
ation from generators, both conventional and renewable is controlled appropriately.
Reactive power generation control is even more important in this era of connection
of renewable energy sources. Thus, its control has very significant importance today.

1.3 Various Control Schemes for Reactive Power Control

Optimal reactive power control is a hot research area [13] and many optimiza-
tion techniques are developed for reactive power control such as linear pro-
gramming [14], quadratic programming [15], mixed integer programming [16],
non-linear programming [17], and computational intelligence based method [18,
19].

Recently, consensus-based control theory has been extensively analyzed in power
system applications. Authors propose a decentralized control algorithm to optimize
the power loss of a microgrid in [20]. They identify that the performance of
proposed algorithm without communication might deteriorate significantly. In [21],
authors suggest a distributed optimization technique using local communication
to minimize the voltage deviations. They prove that minimizing the voltage
deviation spontaneously reduce the power loss. However, minimization of the power
loss is not directly considered. In [22], a similar distributed control algorithm
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Fig. 1 Proposed consensus based distributed algorithm

is proposed to generate the optimal reactive power from multiple generators
in a power grid assuming that the power loss is affected by local voltages
only [22].

In this chapter, a MAS framework based distributed algorithm is proposed to
minimize the power loss, and voltage deviation, simultaneously. According to the
proposed algorithm, each Distributed Generator (DG) is assigned with one agent
that communicates with its neighboring agents and updates its local reactive power
generation according to simple rules based on consensus algorithm as shown in
Fig. 1 where a generic power system has three buses, i, j, and k. Each bus has
a bus agent (BA) that measures its local information, Pi , Qi , Vi , δi and share it
with the neighboring buses. Each BA then sends this information to Reactive Power
Control Agent (RPCA) that calculates optimized reactive power generation for each
generator bus. In the next section, problem for power loss and voltage deviation will
be formulated.

2 Problem Formulation

Optimal reactive power control of generators plays a crucial role in power distribu-
tion system operation. It can lead to voltage profile improvement as well as power
loss minimization. Therefore, the objective function to be optimized is formulated
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as Eq. (1)

min
Qi,Vi,δi

f = W1Ploss + W2Dv (1)

s.t. P i ≤ P i (2)

Q
i
≤ Qi (3)

V i ≤ V i (4)

where W1 and W2 are the weight coefficients that describe the preference of the
DGs suppliers. Ploss , and Dv are the power loss and voltage deviation, respectively.
P i, P i ,Qi , Q

i
, V i and V i are the maximum and minimum active power, reactive

power and voltage ratings of ith bus respectively.
The objective function in Eq. (1) can be minimized by optimally controlling the

reactive power generation of DGs, Qi .
First part of objective function, Ploss in a distribution system is given as (5)

Ploss =
n∑

i=1

n∑

j=1

ViVjYij cos(θij + δji) (5)

where Yij and θij are magnitude and angle of the Y bus entry. Vi and Vj are voltage
magnitudes of bus i and bus j while δji is the angle difference between them.
Voltage deviation is the sum of square of voltage difference between voltage and
its reference value for all buses as given in (6)

Dv =
n∑

i=1

(Vi − V ∗
i )2 (6)

The gradient of the objective function, f w.r.t state variable Qi can be determined
as (7)

∂f
∂Qi

= W1
∂Ploss

∂Qi
+ W2

∂Dv

∂Qi
(7)

Using the chain rule for the partial derivative, gradient for power loss and voltage
deviation can be expanded as (8)

∂f
∂Qi

= W1
{

∂Ploss

∂Vi

∂Vi

∂Qi
+∑

j∈Ni

∂Ploss

∂Vj

∂Vj

∂Qi
+ ∂Ploss

∂δi

∂δi

∂Qi
+∑

j∈Ni

∂Ploss

∂δj

∂δj

∂Qi

}+

W2
{

∂Dv

∂Vi

∂Vi

∂Qi

}

(8)
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The derivative calculation of (8) w.r.t Qi has been performed in [22, 23] and is
shown in (9)

∂f
∂Qi

= 2W1
{

Pi

Qi−V 2
i Bii

+∑
j∈Ni

Pj

−ViVj Yij sin(θij +δji )
− Qi+V 2

i Bii

Pi−V 2
i Gii

+
∑

j∈Ni

Qj +V 2
j Bjj

ViVjYij cos(θij +δji )

}+ 2W2Vi(Vi−V ∗
i )

Qi−V 2
i Bii

(9)

where Bii and Gii are imaginary and real part of Ybus elements. Ni is the set of all
buses connected with bus i.

In the next section, we will discuss the proposed consensus based algorithm
to minimize power loss and voltage deviation by generating an optimal value of
reactive power.

3 Consensus Based Distributed Algorithm

The reactive power generation from each generator in the power distribution system
is calculated iteratively as given in (10)

Qi [k + 1] = ∑
dijQi [k] − ε

∂f
∂Qi

(10)

where ε is the step size that can be adjusted to control the converging speed of the
proposed algorithm, dij is designed as (11) [24]

dij =

⎧
⎪⎪⎨

⎪⎪⎩

2
ni+nj +1 j ∈ Ni

1 −∑
j∈Ni

2
ni+nj +1 i = j

0 otherwise

(11)

where ni and nj are the numbers of agents connected to agents i and j , respectively.
Ni represents neighboring agent set of agent i. Reactive power generation from each
generator, Qi can be updated iteratively until an optimal solution of the objective
function is achieved.

Each bus is furnished with a bus agent (BA) and a reactive power control agent
(RPCA). BA is responsible for obtaining the local measurement and exchanging
the information with its neighboring buses. The exchange of information between
these BAs is active power generation, reactive power generation, bus voltage mag-
nitude and bus voltage angle. Each BA then sends this information to RCPA that
calculates a new optimal value of reactive power generation such that the objective
function may be minimized. Furthermore, communication network topology for the
MAS framework is designed in such a way that two BAs communicate with each
other only if their corresponding buses are physically connected.
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4 Simulation Results

In this section, couple of studies are presented to show the effectiveness of the
proposed control algorithm. Case study 1 investigates the performance on 6-bus
distribution system, whereas case study 2 is carried out for the 162-bus system to
validate the scalability of the proposed algorithm.

4.1 6-Bus System

The proposed algorithm is applied to a 6 bus radial distribution system as shown
in Fig. 2 where bus 1 is a slack bus and attached to the main grid. Three RESs are
placed to bus 4, 5, and 6 and have reactive power generation ranges from −0.30
to 0.56, −0.45 to 0.75 and −0.35 to 0.60, respectively. Reactive power generation
from these DGs is optimized to minimize the power loss and voltage deviation of
the system. Reference voltages for 6 buses is set to 1.04, 1.03, 1, 1, 1, and 1 in an
ascending order. Weight coefficients for power loss and voltage deviation were set
to 5 and 500, respectively.

Since the given 6-bus distribution system has three RESs on bus 4, 5 and 6,
these three RESs will contribute to minimize the objective function by regulating
their bus voltages. Optimal value of reactive power generations are achieved as
shown in Fig. 3 where reactive power from bus 4, 5 and 6 rises from 0 to their
optimal values to improve the voltage of their respective bus. Improved voltage
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Fig. 2 6-bus radial distribution network for testing the proposed algorithm
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profile of the distribution system leads to decreasing the power loss as line current
flow, Iij depends on voltage difference between two buses joining the line and
Ploss = ∑

I 2
ij Z.

Furthermore, improved voltage profile of the given distribution network is shown
in Fig. 4. It can be seen that voltage improves from 0.94 p.u to almost 1 p.u which is
the set reference voltage value. The reference voltages can be changed to any values
and the proposed distributed optimal reactive power control will generate reactive
power accordingly to achieve the set reference voltages. The proposed distributed
algorithm takes 20 iterations to converge to optimal value of voltage.

Finally, total objective function as well as individual sub-functions are shown
in Fig. 5. In the beginning of the optimization, the voltage deviation was large that
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Fig. 5 Objective function minimization with individual sub-functions

reduces to a significantly lower value after few iterations. A Similar behavior is
observed for the total objective function that decreases from 2.5 p.u. to a value below
1 p.u. Thus, a significant amount of improvement in the voltage deviation and power
loss is observed using proposed distributed consensus-based optimal reactive power
control.

4.2 162-bus System

Scalability of the proposed algorithm is validated by testing it on the modified 162-
bus interconnected distribution system, as given in [25]. This electrical system is
modified by changing the line parameters to use it as meshed distribution network.
It has 162 buses, 284 lines and 17 generators. Out of 17 generators, 16 RESs have
participated to control the reactive power generation. This 17 generator test case
system was provided courtesy of Professor Vijay Vittal and Roger Treinen of Iowa
State University. More details about the system including its line and bus data is
given in [25].

Reference voltages are used the same as given in [26]. The convergence of overall
objective function using proposed distributed algorithm is shown in Fig. 6 which
shows that objective function declined from 1.675 p.u. to 1.624 p.u by generating
optimal reactive power from RESs. It is also important to note that our proposed
algorithm converges to its optimal value within 20 iterations.

To validate the effectiveness of the proposed algorithm for a large power
distribution system, 162 bus data has been applied on Particle Swarm Optimization
(PSO) algorithm. Objective function minimization plot achieved using PSO is
shown in Fig. 7. When comparing the result from our proposed distributed algorithm
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Fig. 7 162 bus objective function minimization using PSO

with that of the centralized PSO algorithm, both algorithms converge to a uniform
optimal value. However, number of iterations taken by our distributed algorithm is
less than that of PSO. Thus, our proposed distributed consensus-based algorithm is
observed to be faster than the centralized algorithm.

5 Conclusion and Future Works

This chapter presented a distributed consensus-based control algorithm for optimal
reactive power control of multiple generators in a power distribution system. A
multi-objective function including active power loss and voltage deviation are taken
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into consideration, and the optimal reactive power control of multiple generators
is formulated as a consensus based distributed problem. The proposed algorithm is
distributed in a sense that only information exchange among neighboring buses is
needed to achieve the optimal solution, thus, the computational and communication
burden are reduced compared to the centralized algorithms.

The effectiveness and the scalability of the proposed distributed algorithm is
validated by applying it on 6-bus radial system and 162-bus large interconnected
distribution system. The achieved results are also compared with the centralized
algorithm PSO, to validate its effectiveness.

Line flow constraints and power balance constraints are highly nonlinear equa-
tions that make the optimization problem nonconvex. In case of nonconvex con-
straints, gradient based consensus algorithm may not converge to an optimal
solution. Therefore, for the sake of simplicity, nonlinear constraints such as line
flow constraints and power balance equations are not considered in this chapter. In
addition to it, the role of energy storage devices in the optimization of power loss is
not considered. This may be an interesting future work.
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Linear Model to Represent Unbalanced
Distribution Systems in Optimization
Problems

Analiza Dalla Costa, Sérgio Haffner , Mariana Resener ,
Luís Alberto Pereira, and Bibiana Maitê Petry Ferraz

Abstract This chapter presents a linear model to determine node voltages and
branch currents of unbalanced power distribution systems (PDS). The model allows
to obtain approximate solutions for the load flow problem trough the solution
of a system of linear equations, instead of using an iterative process as in the
conventional load flow. Besides, a discussion on load modeling in PDS is presented
to support the proposed model. Numerical studies are presented using a modified
version of the IEEE 34-node test feeder. The agreement of results obtained with our
linear model with corresponding results obtained through a conventional nonlinear
load flow allowed to conclude that the proposed model is not only valid but also can
give accurate results.

1 Introduction

Electrical energy is fundamental to the maintenance and growth of the modern
society, with the main activities of the electric sector being divided into generation,
transmission and distribution. The distribution system is important because it
connects electrical sources to loads located in remote centers of consumption
or rural areas. Since power distribution systems (PDS) are directly connected to
consumers, PDS must meet quality requirements concerning the supplied energy;
further, PDS are subjected to tight regulation and penalties for non-compliance with
power quality standards.

Considering the planning and operation of PDS, adequate models are required to
model and solve the problem of network operation under different conditions. Such
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models are also fundamental to solve the expansion planning problem of PDS. To
solve both types of problem, it is necessary to determine voltages and currents in all
parts of the system, with the conventional load flow being usually applied to obtain
these values. However, modeling a distribution system poses difficulties due to the
amount of data required, unbalanced operation, uncertainties of load behavior, and
the use of nonlinear equations to represent the system [23].

A further aspect to be considered when modeling distribution systems is the
presence of distributed generation (DG). Nowadays, economic incentives make it
attractive to include sources of electrical energy close to the potential consumers,
with the possibility of selling the surplus of energy [43]. Thus, unlike large
power plants, which predominantly use conventional energy resources, DGs employ
several different energy resources, especially those with low environmental impact,
such as wind, solar photovoltaic, and fuel cells [12]. The inclusion of DGs into the
network can result in benefits such as: continuity of service during a contingency,
improvements in the voltage profile, and reduction of power losses [3, 12]. On the
other hand, the operation of the PDS tends to be more complex, requiring additional
studies to determine the best mode of operation of DGs and their impacts on the
system.

In this chapter, we present a linear model to determine voltages and currents
of unbalanced distribution systems. The proposed formulation makes it possible to
obtain approximate solutions for the load flow through the solution of a system
of linear equations, without the need of an iterative process as in the conventional
nonlinear load flow. One of the advantages of simplified models of distribution
systems is that they make it easier to determine extreme operating points, with
large voltage drops, for instance. A further advantage is that classical opti-
mization techniques can be applied to solve optimization problems, thus assuring
the convergence of optimal solutions. Numerical studies are carried out using a
modified version of the IEEE 34-nodes test feeder. For the sake of validation,
results obtained with the linear model are compared with results obtained through
a conventional nonlinear load flow using the OpenDSS software [13]. Finally,
operational indexes are obtained to compare differences regarding power losses and
voltages.

In this chapter, we also analyze and discuss the models usually applied to
represent loads in PDS; we take into account the influence of the voltage variation,
which is an important aspect that is often disregarded when loads with constant
power behavior are modeled. The load dependence on voltage, as well as other
characteristics considered in the proposed model, justifies the representation of
generation sources and loads by current injections, which further helps model the
system by linear expressions and find a solution for any operation point. Moreover,
using linear models, it becomes possible to determine operation points which
methods based on the conventional load flow can hardly determine, generally points
related to high loads and significant voltage drops. Finally, the formulation presented
here can be applied to optimization problems of expansion and operation planning
of PDS.
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1.1 Bibliographic Survey

This section presents a bibliographic survey on themes related to the proposed
model, where the main studies on network modeling are commented, and the load
flow model is presented as the standard model used in the steady-state analysis
of PDS. Loads are commonly modeled by constant power injections, resulting in
a nonlinear behavior when determining voltages and currents in PDS. Modeling
loads through constant current injections is presented as an alternative to the repre-
sentation of loads in the conventional solution of the load flow. Additional models
used for the steady-state analysis of PDS are presented considering adaptations of
the conventional load flow. Besides, works which apply linear approximations for
the analysis of distribution systems are discussed. Finally, this section discusses
some problems of operation and expansion planning of PDS where the linear model
presented in this chapter can be used.

1.1.1 Network Modeling

Two models are usually applied to model power systems at steady state: (1)
conventional load flow (AC), which is widely used in steady state analysis, and (2)
linearized load flow (DC), which is widely used in optimization models related to
planning the operation and expansion of power systems. In contrast, the linearized
load flow is usually applied to high voltage transmission systems; it is not suitable
to PDS due to the high resistance/reactance (R/X) ratio [16].

In the load flow problem, loads are usually represented by constant power
injections and transmission lines and transformers are represented by impedances.
The balance equations are described by nonlinear expressions relating the power
injections to the magnitudes and phase angles of the nodal voltages [28], which
makes the implementation of optimization models of distribution systems more
complex. This complexity comes from the need for handling nonlinear constraints
relating power flows with phasors representing nodal voltages. Thus, iterative
techniques are required to solve such a problem.

The sweeping method is one of the methods used to solve the load flow problem
in radial distribution networks. This approach consists of two basic steps: (1) in the
first step, called backward sweep step, currents are initially determined considering
that all nodes have a defined voltage, usually the substation nominal voltage; (2)
in the second step, called forward sweep, voltage drops are determined and used to
update the voltages which are in turn used in the subsequent backward sweep step
to update current flows. Step (2) is repeated until convergence is reached. Given its
robustness and simplicity, the sweeping method is often used as a benchmark for
comparison with other load flow methods in power distribution systems [4, 23]. The
convergence of the sweeping method was improved by [7] using the linear principle
of proportionality to find the relation between the real and imaginary components of
the initially specified voltage, in relation to the voltage calculated at the substation
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node during the forward sweep step. This method can also be modified to solve the
load flow considering only magnitudes of voltages, thus eliminating the phase angle
in the equations which represent the network [6].

The current injection method can also be used to solve the load flow problem
in PDS. In this method, demands are represented by current injections and nodal
voltages are obtained from simple matrix calculation, so that the method can
be applied to balanced, unbalanced, radial, and meshed systems [9, 15, 31, 39].
However, an iterative process is necessary to update current injections. To make the
differences and similarities clearer, a comparison of the three-phase current injection
method (TPCIM) with the traditional Forward/Backward Sweep method (FBS) is
detailed in [11]; the main aspects of this comparison are summarized in Table 1.

As shown in Table 1, one of the advantages of the sweeping method is the
simple computational implementation. However, this method has disadvantages
when applied to large systems heavily loaded and with consequent large voltage
drops, as well as when applied to systems with meshed topology. In these cases, a
large number of iterations may be required and the method may not converge. Thus,
although the current injection method is comparatively more intricate, it guarantees
a faster convergence for systems to which the sweeping method is difficult to apply
[11].

Several authors adapted methods such as Newton-Raphson and Gauss-Seidel,
generally used to solve load flow in high and extra-high voltage systems, to apply
them to distribution networks too. Examples of these modifications are described in
[39, 44], in which the Lower-Upper decomposition is disregarded in the solution of

Table 1 Comparison of FBS with TCIM method according to [11]

Characteristics FBS TCIM

Methodology Simple Complex

Method implementation Simple Complex

Extension to systems with more Simple More complicated

conductors/phases

Controls (implementation) More complicated Simple

Convergence Manya Few (quadratic)

(number of iterations)

System with controls Considerable increase Solve without problems

in the number of iterations

Radial systems Solve without problems Solve without problems

Meshed systems Problems in the solution Solve without problems
Many loops increase the

number of iterations

Processing time Low Low

Iteration time Low High

Robustness Medium High
a Considering a system with several nodes and heavy loaded
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the load flow, thus avoiding ill-conditioning problems. In [40], a set of 3(N − 1)

equations is proposed to describe a radial distribution system with N-nodes; the
equations are then solved using the first-order Newton-Raphson technique. This
method is applicable for constant power and constant impedance loads and uses
a power injection representation.

The author of [21] treats the load flow problem as a convex optimization problem
(conic optimization). According to his approach, starting from a second-order
formulation and the definition of new variables, the load flow is solved using the
interior point method. Using a different approach for load flow analysis, the author
of [8] applied graph theory to reduce the number of equations representing the
network and, consequently, also reduce the computational effort required to find
the solution.

In [5], a method for load flow solution for radial and lightly meshed systems
is described; the method consists of two basic steps: (1) calculating the effective
power of each node during a backward sweep and (2) determination of voltages
at each node and losses of each branch during a forward sweep. This model
also includes closed paths along the system—arising by closing interconnection
switches—to make the system change from a radial topology to a lightly meshed
topology. This work takes into account the load growth, so that it can be applied
to problems concerning expansion planning of PDS, considering load models with
constant impedance (Z), constant current (I), and constant power (P), as well as
any combination of them (ZIP). According to the authors, the convergence of this
method is guaranteed for different R/X ratios and load levels.

Ahmadi and Martí [1] proposed the use of a voltage-dependent load model and
linear approximation techniques to reformulate the load flow problem. The voltage-
dependent load behavior is represented by the ZIP model where the parameters are
adjusted using the least squares technique. This approach results in a mixed system
of equations, linear for loads and nonlinear for generation sources. According to
[1], using linear approximations allows reducing the number of iterations required
to determine the system solution. Compared to a nonlinear formulation in terms of
accuracy, this method has a relative percent error of less than 0.1%.

Marti et al. [25] reformulated the load flow problem through a system of linear
equations whose solution does not require an iterative technique. Considering the
angle of the substation voltage as a reference, it is considered that the imaginary
part of the nodal voltage is much smaller than the real part and can be neglected.
Furthermore, the flow equations are linearized and the load is composed of constant
impedance and constant current. The tests of this model show an approximation
of nodal voltages obtained with nonlinear iterative techniques. However, power
losses are not discussed. Besides, [25] analyzed the suitability of the ZIP model
and the proposed model to represent loads, whose behaviors were measured in
laboratories considering voltage variation. The model described in [25] also includes
distributed generation, but only through a node with defined active and reactive
power injections. This linear model was later applied to solve problems of expansion
planning and of operation of PDS, such as optimal system reconfiguration, voltage
regulation, and optimal allocation of capacitor banks [2].
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2 Load Modeling in Distribution Systems

This section discusses different load models applied to the analysis of distribution
systems at steady state. Initially, the constant power model is addressed as the pre-
dominant model used in the solution of power flow. As many bibliographic sources
show, the constant power load model often neglects important characteristics of
loads, such as the voltage dependence. Thus, the ZIP, exponential and constant
current models are discussed as alternatives to represent loads depending on the
voltage. This aspect is theoretically assessed by analyzing the behavior of different
types of loads when the voltage varies. Further, a typical example demonstrates the
differences in the results obtained with the load flow using different load models.
Finally, the load model adopted in this work is presented and discussed.

2.1 Initial Considerations

Studies of load models in general address the operation of the system under transient
condition (dynamic models) as well as under steady state (static models) [10]. A
major difficulty to accurately represent the behavior of loads in PDS resides on
their inherent variable characteristics [41]. According to [30], the load parameters
concerning the active power vary daily during the year. In turn, these variations are
strongly influenced by the work cycle of motor-driven loads, such as air conditioning
and refrigerators.

Despite the great complexity of establishing load models in distribution net-
works, several studies have addressed this subject. For example, among others,
[27], based on a CIGRE survey made in approximately 50 countries, provided a
statistical analysis of the methods used to model loads. According to [27], loads are
normally represented as constant demands of active and reactive power; further,
the ZIP and exponential models are also common. The ZIP model consists of
a polynomial representation where the real and reactive power demands change,
respectively, linearly and squarely with the voltage [19]. The coefficients of the ZIP
model correspond to ratios of impedances, currents and constant powers [20, 42].
On the other hand, in the exponential model, the real and reactive power demands
vary exponentially with the voltage [19, 33].

The authors of [27] determined the parameters of load models from measure-
ments. Based on the results presented in [27], usual approaches used to identify
parameters of load models can be verified; in most cases, measurements are used
to determine the parameters of the models. Furthermore, 19% of the data are taken
from the available literature; the data are therefore useful to model loads when few
resources are available to collect the required data.

Although [27] shows a tendency to use the constant power load model, further
studies also highlighted the importance of using ZIP and exponential load models
to account for the influence of voltage variations on the regulation of electric loads.
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Dwyer et al. [14] addressed this aspect by analyzing the load in a substation in
Canada. This study demonstrates that 1% of voltage reduction at the substation node
leads to a reduction of the active and reactive power of the load by 1.5% and 3.4%,
respectively. The results of the mentioned study also show that the load is very
sensitive to the voltage variation, a characteristic often disregarded in the constant
power load model. Similar conclusions are also presented in other studies addressing
different types of loads, both theoretically [24] and experimentally [36].

Hajagos and Danai [18] presented a survey on the behavior of commercial,
residential, and industrial loads in distribution networks. The characteristics of the
acquired data were represented by coefficients in the ZIP model. This study also
compared three types of load representation taking into account voltage variation.
The first type used the parameters taken from the measurements of the loads in the
ZIP model. The second type represented the load as 50% constant current and 50%
constant impedance for active power, and 100% constant impedance for reactive
power. Finally, the third type considered the load as constant power. The results of
this study showed that those loads represented using the first and second models
behave in a similar way under voltage variation. On the other hand, the authors
observed that representing loads as constant power lead to a reduction of 10% in
the voltage when the load increased (the voltages were limited in the range of 0.8
to 1.0 pu). Thus, the constant power model proved less adequate to represent the
behavior of the measured loads. For lower voltage magnitudes, the constant power
model presented bigger discrepancies in the voltages compared to the other two
types. However, voltage magnitudes below 0.8 pu are uncommon during normal
operation of distribution systems.

Michels et al. [26] experimentally determined the parameters of the ZIP model
considering the following types of loads: lighting, motors, heating, and electronic
equipment. The authors experimentally determined the load parameters using a
controlled voltage source and a measurement system for energy quality analysis.
The results obtained proved that each load group presents a different sensitivity to
voltage variation. In addition, the experimental results showed a different behavior
compared to theoretical models normally used to represent some real loads.

In [32], a method for reactive power control and optimal reconfiguration is
presented and applied to a 20-kV system using different load models. Table 2
summarizes the results obtained using a constant power, constant current, and
mixed load models, where column 2 presents the configuration of the system, while
columns 3 to 6, respectively, represent the maximum voltage drop (ΔVmax), the
energy losses, the reduction of energy losses compared to initial configuration, and
the deviation from optimum.

As shown in Table 2, assuming the optimal configuration of the system, the
energy losses and the maximum voltage drop are different for each type of load
model. Comparing the three load models, the constant current model exhibits the
lowest energy losses and the lowest maximum voltage drop, for both the initial and
the optimal configuration. In addition, the results obtained using the mixed model
and the constant current model agree very well. Peponis et al. [32] also studied a
case where the system has losses of 6.87 MWh in the initial configuration; in this
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Table 2 System optimization—results for different load models [32]

Deviation from

Load model Configuration ΔVmax (%) Losses (MWh) Reduction (%) optimum (%)

Constant power Initial 16.6 3.78 0 7.26

Optimum 12.89 3.53 6.77 0

Mixed Initial 14.62 3.24 0 5.11

Optimum 11.7 3.087 4.86 0

Constant current Initial 14.01 3.189 0 4.78

Optimum 11.41 3.044 4.55 0

case, a solution was possible only for the constant current model, while voltage
instability occurred with other models. Thus, the constant current model almost
always converges in such operating conditions.

Murty et al. [29] presented a new algorithm for load flow solution based on a
sweeping method, which can be applied to unbalanced distribution systems. Loads
were modeled as constant current and constant power, with a load growth being also
considered. The results discussed in [29] were obtained with faster convergence and
fewer iterations using the constant current load model than using the constant power
model.

The works described in this Section highlighted the advantages of using voltage-
dependent load models, such as the constant current load model applied in the
formulation presented in this chapter.

2.2 Influence of Load Models on Load Flow Results

The method normally used to analyze distribution networks at steady state is the
conventional load flow. Although for this method loads are represented predomi-
nately through constant power injection, several works proved that loads in effect
depend on the voltage; this dependence is considered in the ZIP model. This section
compares the impact on the results obtained with the load flow when using the
ZIP and the constant power load models, based on the results presented in [34].
To compare the results, indices to measure the difference in voltages and power
losses were applied [38]. We accordingly defined these indices as the average of the
differences obtained by the models being compared. Thus, the voltage difference
index is given by:

εmV =
∑n

k=1 εV
i

n
, (1)
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Table 3 Differences the in 70-node system with voltage perturbations

Reference voltage (pu)

Index 0.8 0.9 1.0 1.1 1.2

Minimum voltage (pu) 0.68 0.8 0.91 1.02 1.13

Difference in voltages (%) 1.2 0.42 − 0.26 0.29

Difference in power losses (%) 49.69 32.06 12.5 9.15 −29.4

where n is the total number of nodes in the system and the relative difference is
obtained for each node using:

εV
k =

∣∣∣∣∣
V M1

k − V M2
k

V M1
k

∣∣∣∣∣ , (2)

where V M1
k is the voltage magnitude at the node k obtained from the solution of the

conventional load flow using the contant power load model and V M2
k is the voltage

magnitude at the node k obtained from the solution of the conventional load flow
using the ZIP model.

The loss difference index is defined in each system or feeder as:

εp = P loss
M1 − P loss

M2

P loss
M1

(3)

where P loss
M1 and P loss

M2 represent the total power losses obtained using the conven-
tional load flow with the constant power load model and the ZIP model, respectively.

Tests were carried out considering the initial configuration—in which the
reference voltage is equal to 1.0 pu—and applying perturbations to the voltage.
In the ZIP load model, loads were represented as 50% constant power and 50%
constant impedance. The perturbations in voltages are represented by steps of ±20%
in the reference voltage. Table 3 summarizes the main results.

According to Table 3 the loss difference indices can be as high as 49% for
a voltage reference of 0.8 pu. Thus, a significant difference exists between the
solutions obtained with a constant power model and those with the ZIP model in
the conventional load flow. Besides, the differences between voltages for each load
model are smaller for each voltage perturbation compared with the difference in
power losses, with voltage difference indices less than 1.2%.

In the linear model we present in this chapter, the constant current model is
used. For the sake of validation, the ZIP load model was considered in the solution
of the conventional load flow, since it takes into account the voltage dependence
and presents a significant difference in the power losses compared to the constant
power load model. Thus, we consider the constant power model less suitable for the
validation of the proposed formulation.
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Fig. 1 Active power versus voltage

The constant current model, adopted in this work, can be considered as having an
intermediate behavior compared to the constant power and the constant impedance
model. This intermediate behavior is illustrated in Fig. 1, where the curves of
active power versus voltage refer to the following load models: (1) 100% constant
impedance (100%Zcte); (2) 100% constant current (100%Icte); (3) 100% constant
power (100%Pcte); and (4) 50% constant power and 50% constant impedance
(50%Pcte + 50%Zcte). Besides, we obtained these curves by varying the voltage
from 0.8 to 1.2 pu. According to Fig. 1, a good agreement can be observed between
the behavior of the model with 50%Pcte + 50%Zcte and that with 100%Icte. Thus,
for the range of voltage evaluated, these models can be considered as equivalent.

2.3 Load Representation in the Proposed Formulation

As stated in Sect. 2.2, in the conventional load flow, different load models can lead
to different results for voltages and power losses. Therefore, the load model adopted
in our formulation should allow a linear approximation of distribution systems
and behave similarly to the ZIP model concerning the dependence on the voltage.
Hence, we adopted the constant current model; this choice is based on the following
characteristics:

• possibility of linear approximations in the models of distribution systems,
guaranteeing a solution for extreme operation points. The constant current
model allows an approximate representation of the system, without using an
iterative process to obtain the solution for the load flow when linearizations are
used [25]. Furthermore, current injections are easier to implement and guarantee
a faster convergence compared with the conventional load flow when dealing
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with systems with heavy loads, significant voltage drops, and also with systems
with control devices and meshed topology [11].

• good agreement with the ZIP load model. As Sect. 2.2 demonstrates, the
constant current model is similar to the ZIP model with 50% of constant
impedance and 50% of constant power.

• easy quantification and reduction of losses in models applied to the operation
and the expansion planning of distribution systems. With a linear representa-
tion of the currents, it becomes not only possible to approximate power losses
(Sect. 2.2) but also to apply the constant current model to optimization problems.
As a further advantage, a linear approximation assures the convergence to an
optimal solution using classical optimization techniques.

Considering the characteristics above, we represent loads through constant
current injections obtained from the demands of active and reactive power of each
phase.

3 Approximate Model for Distribution Systems
Representation

The model we propose here is an extension of that detailed in [35]. However,
in contrast to [35], the present network model includes unbalanced networks in
the presence of distributed generation (DG), capacitor banks (CBs), and voltage
regulators (VRs). The formulation proposed here allows an approximate solution for
the load flow through the solution of a system of linear equations; thus, no iterative
process is required.

3.1 Loads

The current demands representing loads are obtained from the active and reactive
power demands, considering that nodal voltages have nominal magnitude and zero
as phase angle for all phases.1 Hence, the current demands are defined as:

dRe
k,ph + jd Im

k,ph =
⎛

⎝ S
D
k,ph

V k,ph

⎞

⎠
∗

= P D
k,ph − jQD

k,ph, (4)

1The adjustment of the phase angle in nodal voltages and currents in branches is performed after
the solution, as described in Sect. 8.
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where dRe
k,ph and d Im

k,ph are the real and imaginary components of current demand in

phase ph of node k, S
D
k,ph is the complex power demand in phase ph of node k,

V k,ph is the voltage phasor of phase ph of node k, P D
k,ph and QD

k,ph are the active
and reactive power demand in each phase ph of node k, given in pu.

3.2 Generators

We use current injections to represent generators, for which two operation modes
are considered: PV and PQ; besides, generators can consist of single-phase, two-
phase, or three-phase units. Similarly to the current demands, we assumed that
nodal voltages have zero as phase angle for all phases. The operation modes are
characterized as follows:

• generator operating as a PQ node: in this case, the active (gRe
k,ph) and reactive

current (gIm
k,ph) injections are known and the voltage is calculated. The current

injections are obtained considering that nodal voltages have nominal magnitude
as follows:

gRe
k,ph + jgIm

k,ph =
⎛

⎝ S
G
k,ph

V k,ph

⎞

⎠
∗

V k,ph=1= P G
k,ph − jQG

k,ph, (5)

where S
G
k,ph is the complex power generation in phase ph of node k, P G

k,ph and

QG
k,ph are the active and reactive power generation in each phase ph of node k,

given in pu;
• generator operating as a PV node: in this operation mode, both the active current

injection and the voltage (V esp
k ) are specified. Thus, the reactive current injection

is calculated in order to regulate the voltage. The active current injection is
obtained according to:

gRe
k,ph = P G

k,ph

V
esp
k

, (6)

where P G
k,ph is the active power generation in phase ph of node k, given in pu.

3.3 Network Representation

The series impedance of branches and currents are represented by their real
and imaginary parts. Consider the generic branch shown in Fig. 2, with a series
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Fig. 2 Generic branch of
phase ph ......

impedance defined as:

Zkm,ph = Rkm,ph + jXkm,ph, (7)

where Rkm,ph and Xkm,ph represent the resistance and reactance of the conductor
impedance in phase ph of the branch connecting nodes k and m.

The current in branch km can be defined as:

f km,ph = f Re
km,ph + jf Im

km,ph, (8)

where f Re
km,ph and f Im

km,ph are the real and the imaginary components of the current
in phase ph of the branch between nodes k and m.

Using (7) and (8), the voltage drop in phase ph can be obtained from:

V km,ph = V k,ph − V m,ph = (Rkm,ph + jXkm,ph)(f
Re
km,ph + jf Im

km,ph), (9)

which can be rewritten as:

V km,ph = Rkm,phf
Re
km,ph − Xkm,phf

Im
km,ph + j (Rkm,phf

Im
km,ph + Xkm,phf

Re
km,ph).

(10)

Neglecting the imaginary part in (10) yields:

Vkm,ph = Vk,ph − Vm,ph ≈ Rkm,phf
Re
km,ph − Xkm,phf

Im
km,ph. (11)

An adjustment factor Kkm,ph is introduced in (11), so that the solution obtained
with the approximated model equals the exact solution for a given neighborhood of
the operation point [17]. The adjustment factor is obtained for the base case using a
conventional load flow and is defined as:

Kkm,ph = V LF
km,ph + Xkm,phf

Im
km,ph

Rkm,phf
Re
km,ph

. (12)

where Kkm,ph is the adjustment factor for the phase ph of the branch km, and
V LF

km,ph is the voltage drop in branch km, obtained from a conventional load flow
procedure.

Using (12), (11) can be rewritten as:

Vkm,ph = Vk,ph − Vm,ph ≈ Kkm,phRkm,phf Re
km,ph − Xkm,phf

Im
km,ph. (13)
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The voltage at the nodes k (Vk,ph) and m (Vm,ph) in each phase ph can be divided
in two parts, called part 1 (P1) and part 2 (P2). Thus, the following expressions can
be obtained:

Vk,ph = V P1
k,ph + V P2

k,ph, (14)

Vm,ph = V P1
m,ph + V P2

m,ph. (15)

Considering (14) and (15), the voltage drop in branch km can be defined as:

Vkm,ph = V P1
km,ph + V P2

km,ph = V P1
k,ph + V P2

k,ph −
(
V P1

m,ph + V P2
m,ph

)
. (16)

Splitting (13) into two parts and considering (16) yields:

V P1
km,ph = V P1

k,ph − V P1
m,ph = Kkm,phRkm,phf Re

km,ph, (17)

V P2
km,ph = V P2

k,ph − V P2
m,ph = −Xkm,phf

Im
km,ph. (18)

Rearranging (17) and (18), the real and imaginary components of the currents in
branches are then defined as:

f Re
km,ph = V P1

k,ph − V P1
m,ph

Kkm,phRkm,ph

, (19)

f Im
km,ph = V P2

k,ph − V P2
m,ph

−Xkm,ph

. (20)

3.4 Capacitor Banks

Shunt capacitor banks are commonly used in distribution systems for reactive power
and voltage support [23]. In the model we present here, CBs are modeled through
constant impedances connected in star. This representation allows to accurately
describe the behavior of these devices even under extreme conditions of operation,
when the voltage is largely different from the nominal value [35].

The impedance, in pu, of a shunt CB at the node k of phase ph (jXk,sh,ph) can
be defined as:

jXsh
k,ph =

∣∣V k,ph

∣∣2

(jQsh
k,ph)

∗ =
∣∣V k,ph

∣∣2

−jQsh
k,ph

, (21)

where jQk,sh,ph is the nominal reactive power per phase of the CB, and V k,sh,ph is
the voltage phasor, both in pu.
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Fig. 3 Phase ph of a generic
node with capacitor

...

Considering 1  0◦ pu as the voltage in (21) yields:

Xsh
k,ph = 1

Qsh
k,ph

. (22)

Consider now the allocation of a CB in phase ph of node k, as illustrated in
Fig. 3.

From (14), the imaginary part of the CB current (d
Im, sh
k,ph ) at the phase ph of node

k can be obtained as:

d
Im, sh
k,ph = V P1

k,ph + V P2
k,ph

−Xsh
k,ph

. (23)

3.5 Voltage Regulators

Voltage regulators (VRs) are basically used to control the voltage of feeders; they
consist of an autotransformer equipped with an on-load tap-changing mechanism.
Standard step-VRs enable voltage regulation within ±10%, divided in 32 steps plus
the neutral position, resulting in 0.625% of voltage change per step. Two types of
connections are common in practice: Type A and Type B [23]. Since Type B is the
most common connection for step-VRs, we derive here expressions for the voltage
and current only for Type B.

Three single-phase step-VRs can be connected externally to form a three-
phase VR in open-wye, grounded wye, open delta, or closed delta. In this case,
the taps of each regulator are then changed separately. In this work, we assume
that VRs of Type B are connected in wye; nevertheless, the formulation can be
extended to include other connection types. Without loss of generality, the VR
model considers that (1) the transformation is ideal (without losses); (2) the VR
is of type B; and (3) the VR has 32 steps plus the neutral position. Thus, a branch
km with a VR is represented by an ideal autotransformer with ratio akm,ph : 1,
as shown in Fig. 4. On the other hand, the transformation ratio of the VR is
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... ...

ℎ
VR

Fig. 4 Branch with an ideal VR in phase ph of the branch km

given by:

akm,ph = 1 − 0.00625tkm,ph, (24)

where tkm,ph is the tap position of the VR of phase ph, variable in the range
[−16,+16]; thus, akm,ph can vary inside the interval [1−10%, 1+10%] in discrete
steps of 0.625%.

According to Fig. 4, the difference between voltages at the nodes k and m is given
by:

ΔVph = Vm,ph − Vk,ph. (25)

From the voltage ratio of an ideal transformer, it results Vk,ph = akm,phVm,ph;
therefore (25) can be rewritten as:

ΔVph = (1 − akm,ph)Vm,ph. (26)

Inserting (24) into (26) yields:

ΔVph = 0.00625tkm,phVm,ph. (27)

Considering parts P1 and P2 of the nodal voltage, as defined in (14) and (15),
(27) can be rewritten as follows:

ΔV P1
ph = 0.00625tkm,phV

P1
m,ph. (28)

ΔV P2
ph = 0.00625tkm,phV

P2
m,ph. (29)

In addition, using the relations of an ideal transformer, the currents on the
primary (index 1) and on the secondary side (index 2) are defined as:

f Re
km2,ph = akm,phf

Re
km1,ph, (30)

f Im
km2,ph = akm,phf

Im
km1,ph, (31)
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where f Re
km1,ph and f Im

km1,ph are the real and imaginary components of the current

on the primary side of a VR installed in branch km, while f Re
km2,ph and f Im

km2,ph are
the real and imaginary components of the current on the secondary side of a VR
installed in branch km. Replacing (24) in (30) and (31) yields:

f Re
km2,ph = (1 − 0.00625tkm,ph)f

Re
km1,ph, (32)

f Im
km2,ph = (1 − 0.00625tkm,ph)f

Im
km1,ph. (33)

Applying the Kirchhoff’s Current Law (KCL) to the node m yields:

f Re
km2,ph − f Re

mn,ph = 0, (34)

f Im
km2,ph − f Im

mn,ph = 0. (35)

Inserting (32) and (33) respectively into (34) and (35), it is possible to obtain:

(1 − 0.00625tkm,ph)f
Re
km1,ph − f Re

mn,ph = 0, (36)

(1 − 0.00625tkm,ph)f
Im
km1,ph − f Im

mn,ph = 0. (37)

Rearranging the terms in (36) and (37), then the effect of a VR on the currents
can be represented as loads at the node m according to:

Δf Re
ph = f Re

km1,ph − f Re
mn,ph = 0.00625tkm,phf

Re
km1,ph, (38)

Δf Im
ph = f Im

km1,ph − f Im
mn,ph = 0.00625tkm,phf

Im
km1,ph. (39)

Considering the equations thus far derived, ideal VRs can be represented through
ideal voltage sources with amplitude depending on their tap position, plus current
demands which also depend on the tap position of the device. Therefore, the branch
presented in Fig. 4 can be represented as Fig. 5 shows. Due to the inclusion of
an ideal VR in the circuit km, ΔVph represents the voltage variation in phase
ph of node m with respect to the node k, while Δf Re

ph and Δf Im
ph represent,

respectively, the variation in the real and imaginary part of the current in phase
ph.

Fig. 5 Modified branch km

with an ideal VR in phase ph

... ...
ℎΔ ℎ

VR
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3.5.1 Non-ideal Voltage Regulators

Non-ideal VRs (with losses) can be represented by a series impedance and an ideal
VR, as shown in Fig. 6. Rkp,ph and Xkp,ph represent series impedance of the phase
ph where the VR is installed, while node p is an auxiliary node, internal to the VR.

4 Nodal Equations for a 5-Node System

To exemplify the application of the proposed linearized model, this section uses the
distribution system with five nodes and four circuits presented in Fig. 7. The circuit
between nodes 4 and 5 is a single-phase circuit (phase A). In addition, node 2 has
a three-phase capacitor bank installed, while node 5 has a single-phase capacitor
connected in phase A.

... ...

ℎ
VR

ℎ Δ ℎ

Fig. 6 Modified branch km with non-ideal VR in phase ph

ℎ ℎ

ℎ ℎ

ℎ

ℎ

ℎ

ℎ
ℎ

ℎ ℎ ℎ ℎ

ℎ ℎ

ℎ ℎℎ ℎ

ℎ

ℎ ℎ

ℎ

ℎ ℎ ℎ ℎ

Fig. 7 5-Node distribution system
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In what follows, the equations corresponding to the application of the Kirchhoff’s
Laws to the 5-node system are presented. Applying the KCL, the left side will be
the sum of the currents leaving the node and the right side will be the net current
injection (generation minus demand).

4.1 Equations for Node 1

The current balance equation for node 1 (phase A) is given by:

f Re
12,A + jf Im

12,A = gRe
1,A + jgIm

1,A. (40)

Separating the real and imaginary parts yields:

f Re
12,A = gRe

1,A, (41)

f Im
12,A = gIm

1,A. (42)

Inserting (19) and (20), respectively, into (41) and (42), the following expressions
result:

1

K12,AR12,A

V P1
1,A + −1

K12,AR12,A

V P1
2,A = gRe

1,A, (43)

−1

X12,A

V P2
1,A + 1

X12,A

V P2
2,A = gIm

1,A. (44)

The expressions for phases B and C can be analogously obtained.

4.2 Equations for Node 2

The current balance equation for node 2 (phase A) is given by:

−f Re
12,A − jf Im

12,A + f Re
23,A + jf Im

23,A + f Re
24,A + jf Im

24,A + jd
Im, sh
2,A = −dRe

2,A − jd Im
2,A.

(45)

Separating the real and imaginary parts yields:

− f Re
12,A + f Re

23,A + f Re
24,A = −dRe

2,A, (46)

− f Im
12,A + f Im

23,A + f Im
24,A + d

Im, sh
2,A = −d Im

2,A. (47)



88 A. D. Costa et al.

Inserting (19) and (20), respectively, into (46) and (47) yields:

−1

K12,AR12,A

V P1
1,A +

(
1

K12,AR12,A

+ 1

K23,AR23,A

+ 1

K24,AR24,A

)
V P1

2,A+

+ −1

K23,AR23,A

V P1
3,A + −1

K24,AR24,A

V P1
4,A = −dRe

2,A,

(48)
1

X12,A

V P2
1,A +

(
−1

X12,A

+ −1

X23,A

+ −1

X24,A

+ −1

Xsh
2,A

)
V P2

2,A+

+ 1

X23,A

V P2
3,A + 1

X24,A

V P2
4,A + −1

Xsh
2,A

V P1
2,A = −d Im

2,A.

(49)

The expressions for phases B and C are analogous to (48) and (49).

4.3 Equations for Node 3

The current balance equation for node 3 (phase A) is given by:

− f Re
23,A − jf Im

23,A = gRe
3,A + jgIm

3,A − dRe
3,A − jd Im

3,A, (50)

which can be splitted into its real and imaginary part as follows:

− f Re
23,A = gRe

3,A − dRe
3,A, (51)

− f Im
23,A = gIm

3,A − d Im
3,A. (52)

Equations (19) and (20), respectively, can be inserted into (51) and (52), resulting
in the following expressions:

−1

K23,AR23,A

V P1
2,A + 1

K23,AR23,A

V P1
3,A = gRe

3,A − dRe
3,A, (53)

1

X23,A

V P2
2,A + −1

X23,A

V P2
3,A = gIm

3,A − d Im
3,A. (54)

The expressions for phases B and C are analogous to (53) and (54).
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4.4 Equations for Node 4

The current balance equation of node 4 (phase A) is given by:

− f Re
24,A − jf Im

24,A + f Re
45,A + jf Im

45,A = −dRe
4,A − jd Im

4,A. (55)

Splitting (55) into its real and imaginary components, there results:

− f Re
24,A + f Re

45,A = −dRe
4,A, (56)

− f Im
24,A + f Im

45,A = −d Im
4,A. (57)

Introducing (19) and (20) into (56) and (57), respectively, the following
expressions are obtained:

−1

K24,AR24,A
V P1

2,A +
(

1

K24,AR24,A
+ 1

K45,AR45,A

)
V P1

4,A + −1

K45,AR45,A
V P1

5,A = −dRe
4,A,

(58)

1

X24,A

V P2
2,A +

( −1

X24,A

+ −1

X45,A

)
V P2

4,A + 1

X45,A

V P2
5,A = −d Im

4,A. (59)

Due to the unbalance caused by the presence of only phase A in the circuit
connecting nodes 4 and 5, the expressions for phase A of node 4 are different from
the expressions of phases B and C. The expressions for phase B are presented in
what follows:

− f Re
24,B − jf Im

24,B = −dRe
4,B − jd Im

4,B. (60)

Splitting (60) into its real and imaginary components yields:

− f Re
24,B = −dRe

4,B, (61)

− f Im
24,B = −d Im

4,B. (62)

Using (19) and (20), the expressions (61) and (62) can be rewritten as:

−1

K24,BR24,B
V P1

2,B + 1

K24,BR24,B
V P1

4,B = −dRe
4,B, (63)

1

X24,B

V P2
2,B + −1

X24,B

V P2
4,B = −d Im

4,B. (64)

The expressions for phase C of node 4 are analogous to (63) and (64).
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4.5 Equations for Node 5

The current balance equation for node 5 (phase A) is given by:

− f Re
45,A − jf Im

45,A + jd
Im, sh
5,A = −dRe

5,A − jd Im
5,A. (65)

Splitting (65) into its real and imaginary parts results:

− f Re
45,A = −dRe

5,A, (66)

− f Im
45,A + d

Im, sh
5,A = −d Im

5,A. (67)

Replacing (19) and (20), respectively, in (66) and (67) yields:

−1

K45,AR45,A

V P1
4,A + 1

K45,AR45,A

V P1
5,A = −dRe

5,A, (68)

1

X45,A

V P2
4,A +

(
−1

X45,A

+ −1

Xsh
5,A

)
V P2

5,A + −1

Xsh
5,A

V P1
5,A = −d Im

5,A. (69)

The expressions for phases B and C are not presented since node 5 has only the
phase A.

4.6 Matrix Formulation

In Sects. 4.1–4.5 two expressions were presented for each phase ph of each node:
the first relates the part 1 (P1) of nodal voltages to the real part of nodal current
injections; the second relates the part 2 (P2) of nodal voltages to the imaginary part
of nodal current injections. In this section we introduce a matrix formulation for the
equations previously presented.

The system of nodal equations can be described by the following linear system,
with one of such system being required for each phase of the feeder:

MphVph = Iph, (70)

where Mph is a matrix formed by submatrices of nodal modified admittances, Vph

is the vector of parts 1 and 2 of nodal voltages, and Iph is the vector of the real and
imaginary parts of the net current injections.
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The matrix Mph is composed of four submatrices:

Mph =
[

Eph 0ph

Fph Hph

]
, (71)

and the vector Vph is composed of two subvectors defined as:

Vph =
[

VP1
ph

VP2
ph

]
, (72)

while the vector Iph is also composed of two subvectors:

Iph =
[

gRe
ph − dRe

ph

gIm
ph − dIm

ph

]
. (73)

In what follows, the expressions of the components of Eqs. (71)–(73) are
presented.

4.6.1 Equations for Phase A

For phase A, the submatrices of (71) are of 5 × 5 dimension, as this phase is present
in all nodes of the feeder. The submatrix 0A formed by zeros and the submatrix EA

is given by:

EA =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
K12,AR12,A

−1
K12,AR12,A

0 0 0
−1

K12,AR12,A
E22,A

−1
K23,AR23,A

−1
K24,AR24,A

0

0 −1
K23,AR23,A

1
K23,AR23,A

0 0

0 −1
K24,AR24,A

0 E44,A
−1

K45,AR45,A

0 0 0 −1
K45,AR45,A

1
K45,AR45,A

⎤
⎥⎥⎥⎥⎥⎥⎦

, (74)

the elements of the diagonal E22,A and E44,A being defined as:

E22,A = 1

K12,AR12,A

+ 1

K23,AR23,A

+ 1

K24,AR24,A

, (75)

E44,A = 1

K24,AR24,A

+ 1

K45,AR45,A

. (76)
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The submatrix FA is given by:

FA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 −1
Xsh

2,A

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1
Xsh

5,A

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (77)

Submatrix HA is defined as:

HA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−1
X12,A

1
X12,A

0 0 0
1

X12,A
H22,A

1
X23,A

1
X24,A

0

0 1
X23,A

−1
X23,A

0 0

0 1
X24,A

0 H44,A
1

X45,A

0 0 0 1
X45,A

−1
X45,A

+ −1
Xsh

5,A

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (78)

where:

H22,A = −1

X12,A

+ −1

X23,A

+ −1

X24,A

+ −1

Xsh
2,A

, (79)

H44,A = −1

X24,A

+ −1

X45,A

. (80)

The subvectors in (72) are of 5 × 1 dimension. The subvectors VP1
A and VP2

A are
given by:

VP1
A =

⎡

⎢⎢⎢⎢⎢⎣

V P1
1,A

V P1
2,A

V P1
3,A

V P1
4,A

V P1
5,A

⎤

⎥⎥⎥⎥⎥⎦
, (81a)

VP2
A =

⎡

⎢⎢⎢⎢⎢⎣

V P2
1,A

V P2
2,A

V P2
3,A

V P2
4,A

V P2
5,A

⎤

⎥⎥⎥⎥⎥⎦
. (81b)
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The subvectors in (73) are 5 × 1. The subvectors gRe
A − dRe

A and gIm
A − dIm

A are
defined as:

gRe
A − dRe

A =

⎡
⎢⎢⎢⎢⎢⎣

gRe
1,A

−dRe
2,A

gRe
3,A − dRe

3,A

−dRe
4,A

−dRe
5,A

⎤
⎥⎥⎥⎥⎥⎦

, (82a)

gIm
A − dIm

A =

⎡
⎢⎢⎢⎢⎢⎣

gIm
1,A

−d Im
2,A

gIm
3,A − d Im

3,A

−d Im
4,A

−d Im
5,A

⎤
⎥⎥⎥⎥⎥⎦

. (82b)

4.6.2 Equations for Phases B e C

Regarding phases B and C, the submatrices of (71) are 4 × 4, since phases B and C

are not present at node 5. Thus, the submatrix EB is defined as:

EB =

⎡
⎢⎢⎢⎢⎣

1
K12,AR12,B

−1
K12,BR12,B

0 0
−1

K12,AR12,B
E22,B

−1
K23,BR23,B

−1
K24,BR24,B

0 −1
K23,AR23,A

1
K23,AR23,A

0

0 −1
K24,BR24,B

0 1
K24,BR24,B

⎤
⎥⎥⎥⎥⎦

, (83)

where:

E22,B = 1

K12,BR12,B
+ 1

K23,BR23,B
+ 1

K24,BR24,B
. (84)

The submatrix 0B is formed by zeros, while submatrix FB is given by:

FB =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 −1
Xsh

2,B

0 0

0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (85)
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The elements of the submatrix HB are defined as:

HB =

⎡

⎢⎢⎢⎢⎣

−1
X12,B

1
X12,B

0 0
1

X12,B

−1
X12,B

+ −1
X23,B

+ −1
X24,B

+ −1
Xsh

2,B

1
X23,B

1
X24,B

0 1
X23,B

−1
X23,B

0

0 1
X24,B

0 −1
X24,B

⎤

⎥⎥⎥⎥⎦
. (86)

The subvectors of (72) for phase B have dimension 4×1. Besides, the subvectors
VP1

B and VP2
B are given by:

VP1
B =

⎡
⎢⎢⎢⎣

V P1
1,B

V P1
2,B

V P1
3,B

V P1
4,B

⎤
⎥⎥⎥⎦ , (87a)

VP2
B =

⎡

⎢⎢⎢⎣

V P2
1,B

V P2
2,B

V P2
3,B

V P2
4,B

⎤

⎥⎥⎥⎦ . (87b)

The subvectors in (73) are of 4 × 1 dimension. The subvectors gRe
B − dRe

B and
gIm

B − dIm
B are given by:

gRe
B − dRe

B =

⎡

⎢⎢⎢⎣

gRe
1,B

−dRe
2,B

gRe
3,B − dRe

3,B

−dRe
4,B

⎤

⎥⎥⎥⎦ , (88a)

gIm
B − dIm

B =

⎡

⎢⎢⎢⎣

gIm
1,B

−d Im
2,B

gIm
3,B − d Im

3,B

−d Im
4,B

⎤

⎥⎥⎥⎦ . (88b)

The expression for phase C are analogous to (83)–(88b).

5 Matrix Nodal Formulation

Using the equations presented in Sects. 4.6.1 and 4.6.2, it is possible to establish
a general rule for the formation of the submatrices in (71) and subvectors in
(72)–(73). Considering these equations, the application of nodal analysis leads
to the following linear system of equations to be written for each phase of the
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network:

[
Eph 0ph

Fph Hph

][
VP1

ph

VP2
ph

]
=
[

gRe
ph − dRe

ph

gIm
ph − dIm

ph .

]
(89)

The system of Eq. (89) can be solved in two steps. In the first step, VP1
ph is

determined using:

EphVP1
ph = gRe

ph − dRe
ph . (90)

In the second step, VP1
ph is known and VP2

ph is obtained through the following
expression:

HphVP2
ph = gIm

ph − dIm
ph − FphVP1

ph . (91)

The equations for the submatrices Eph, Fph, and Hph in (89) are presented in
what follows. The submatrix 0ph is a square n × n matrix, where n is the number of
nodes in the feeder which contains phase ph, with all elements in 0ph being zero.

5.1 Submatrix Eph

The submatrix Eph is square and n × n, being n the number of nodes in the system
containing phase ph. Thus, this submatrix can be defined as:

Eph =

⎡

⎢⎢⎢⎣

E11,ph E12,ph · · · E1n,ph

E21,ph E22,ph · · · E2n,ph

...
...

. . .
...

En1,ph En2,ph · · · Enn,ph

⎤

⎥⎥⎥⎦ , (92)

in which the diagonal elements are given by:

Eii,ph =
∑

j∈Ωi,ph

1

Kij,phRij,ph

, (93)

where Ωi,ph is the set of all nodes connected to node i through phase ph. On the
other hand, the off-diagonal elements in (92) are given by:

Eij,ph =
{ −1

Kij,phRij,ph
, if j ∈ Ωi,ph

0, otherwise.
(94)
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5.2 Submatrix Fph

The submatrix Fph is diagonal with dimension n×n, where n is the number of nodes
in which phase ph is present; Fph is defined as:

Fph =

⎡

⎢⎢⎢⎣

F11,ph 0 · · · 0
0 F22,ph · · · 0
...

...
. . .

...

0 0 · · · Fnn,ph

⎤

⎥⎥⎥⎦ , (95)

where:

Fii,ph =
{ −1

Xsh
i,ph

, if Xsh
i,ph = 0

0, otherwise.
(96)

5.3 Submatrix Hph

The submatrix Hph is square and its order is equal to the number of nodes in which
phase ph is present. This submatrix is given by:

Hph =

⎡

⎢⎢⎢⎣

H11,ph H12,ph · · · H1n,ph

H21,ph H22,ph · · · H2n,ph

...
...

. . .
...

Hn1,ph Hn2,ph · · · Hnn,ph

⎤

⎥⎥⎥⎦ , (97)

where the diagonal elements are given by:

Hii,ph =
∑

j∈Ωi,ph

1

Xij,ph

. (98)

On the other hand, the elements outside the main diagonal of (97) are given by:

Hij,ph =
{ −1

Xij,ph
, if j ∈ Ωi,ph

0, otherwise.
(99)
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5.4 Subvectors of Vph

The dimension of the subvectors VP1
ph and VP2

ph is equal to the number of nodes in
which phase ph is present and are defined as:

VP1
ph =

⎡

⎢⎢⎢⎢⎣

V P1
1,ph

V P1
2,ph

...

V P1
n,ph

⎤

⎥⎥⎥⎥⎦
, (100a)

VP2
ph =

⎡
⎢⎢⎢⎢⎣

V P2
1,ph

V P2
2,ph

...

V P2
n,ph

⎤
⎥⎥⎥⎥⎦

. (100b)

5.5 Subvectors of Iph

The subvectors gRe
ph − dRe

ph and gIm
ph − dIm

ph have dimension n × 1, where n is the
number of nodes in which phase ph is present. These subvectors can be defined as:

gRe
ph − dRe

ph =

⎡
⎢⎢⎢⎢⎣

gRe
1,ph − dRe

1,ph

gRe
2,ph − dRe

2,ph

...

gRe
n,ph − dRe

n,ph

⎤
⎥⎥⎥⎥⎦

, (101a)

gIm
ph − dIm

ph =

⎡

⎢⎢⎢⎢⎣

gIm
1,ph − d Im

1,ph

gIm
2,ph − d Im

2,ph

...

gIm
n,ph − d Im

n,ph

⎤

⎥⎥⎥⎥⎦
. (101b)

6 Nodal Equations for the 6-Node System with Ideal VR

To illustrate the application of the proposed linearized model to a feeder with VR,
one node (node 6) and one ideal VR have been included into the system in Fig. 7,
thus resulting the system illustrated in Fig. 8, which has now six nodes.

Considering the VR model discussed in Sect. 3.5, the system in Fig. 8 can be
represented as Fig. 9 shows.
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ℎ

Fig. 8 Distribution system with 6 nodes and an ideal VR

ℎ Δ ℎ

Fig. 9 Modified 6-node distribution system with ideal VR

Since equations for nodes 3 to 5 are analogous to those already presented in
Sects. 4.3 to 4.5, we do not present them here. In addition, equations for node 1 and
super node 6 − 2 are presented only for phase A; equations for phases B and C can
be analogously obtained.

6.1 Equations for Node 1

The current balance equation for node 1 is given by:

f Re
16,A + jf Im

16,A = gRe
1,A + jgIm

1,A. (102)
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Splitting (102) into its real and imaginary parts yields:

f Re
16,A = gRe

1,A, (103)

f Im
16,A = gIm

1,A. (104)

After inserting (19) and (20) into (103) and (104), the following expressions
result:

1

K16,AR16,A

V P1
1,A + −1

K16,AR16,A

V P1
6,A = gRe

1,A, (105)

−1

X16,A

V P2
1,A + 1

X16,A

V P2
6,A = gIm

1,A. (106)

For phases B and C, the expressions are analogous to the expressions developed
for phase A.

6.2 Equations for Super Node 6 − 2

The current balance for super node 6 − 2 is given by:

Δf Re
A + jΔf Im

A − f Re
16,A − jf Im

16,A + f Re
23,A + jf Im

23,A + f Re
24,A + jf Im

24,A + jd
Im, sh
2,A =

= −dRe
2,A − jd Im

2,A.

(107)

which, splitted into its real and imaginary parts, results in:

Δf Re
A − f Re

16,A + f Re
23,A + f Re

24,A = −dRe
2,A, (108)

Δf Im
A − f Im

16,A + f Im
23,A + f Im

24,A + d
Im, sh
2,A = −d Im

2,A, (109)

where Δf Re
A and Δf Im

A are given by:

Δf Re
A = 0.00625t62,phf

Re
16,A, (110)

Δf Im
A = 0.00625t62,Af Im

16,A. (111)
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Inserting (110) and (111), respectively, into (108) and (109) yields:

0.00625t62,Af Re
16,A − f Re

16,A + f Re
23,A + f Re

24,A = −dRe
2,A, (112)

0.00625t62,Af Im
16,A − f Im

16,A + f Im
23,A + f Im

24,A + d
Im, sh
2,A = −d Im

2,A. (113)

Putting (19) into (112), and (20) and (23) into (113), the following expressions
are obtained:

( −1

K16,AR16,A

+ 0.00625t62,A

K16,AR16,A

)
V P1

1,A +
(

1

K16,AR16,A

+ −0.00625t62,A

K16,AR16,A

)
V P1

6,A +

+
(

1

K23,AR23,A

+ 1

K24,AR24,A

)
V P1

2,A + −1

K23,AR23,A

V P1
3,A + −1

K24,AR24,A

V P1
4,A =

= −dRe
2,A, (114)

(
1

X16,A

+ −0.00625t62,A

X16,A

)
V P2

1,A +
( −1

X16,A

+ 0.00625t62,A

X16,A

)
V P2

6,A +

+
(

−1

X23,A

+ −1

X24,A

+ −1

Xsh
2,A

)
V P2

2,A + 1

X23,A

V P2
3,A + 1

X24,A

V P2
4,A + −1

Xsh
2,A

V P1
2,A =

= −d Im
2,A. (115)

The voltage equation for the super node 6 − 2 can now be written as:

ΔV P1
A + ΔV P2

A = V P1
2,A + V P2

2,A − (V P1
6,A + V P2

6,A), (116)

and splitting (116) into parts P1 and P2 yields:

ΔV P1
A = V P1

2,A − V P1
6,A, (117)

ΔV P2
A = V P2

2,A − V P2
6,A, (118)

where ΔV P1
A and ΔV P2

A are given by:

ΔV P1
A = 0.00625t62,AV P1

2,A, (119)

ΔV P2
A = 0.00625t62,AV P2

2,A. (120)
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Putting (119) and (120), respectively, into (117) and (118) and rearranging these
two expressions, the following can be obtained:

V P1
6,A + V P1

2,A(0.00625t62,A − 1) = 0, (121)

V P2
6,A + V P2

2,A(0.00625t62,A − 1) = 0. (122)

For phases B and C of super node 6 − 2, the expressions are analogous to those
developed for phase A.

6.3 Matrix Formulation

The previous sections outlined a nodal analysis of the 6-node system in Fig. 9. On
the other hand, concerning the system in Fig. 7, two equations for each phase of the
nodes 1, 3, 4 and 5 were defined: the first connects the part 1 (P1) of nodal voltages
with the real part of the nodal net current injection, while the second connects part
2 (P2) of nodal voltages with the imaginary part of the nodal net current injection.

Moreover, two voltage equations were obtained for each phase ph, (121) and
(122), and two balance equations for super node 6 − 2, these being analogous to
the balance equations for other nodes of the system. In the matrix formulation, the
voltage equation for the super node 6 − 2 appears in the line corresponding to the
balance equation of node 6; in contrast, the balance equation for the super node 6−2
appears in the line corresponding to the balance equation of node 2.

6.3.1 Equations for Phase A

The submatrices EA, 0A, FA and HA in (89) are 6 × 6, since phase A is present in all
nodes of the system. Due to the VR, the equations presented in Sect. 4.6 have to be
modified according to:

EA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
K16,AR16,A

−1
K16,AR16,A

0 0 0 0

0 1 E23,A 0 0 0
E31,A E32,A E33,A

−1
K23,AR23,A

−1
K24,AR24,A

0

0 0 −1
K23,AR23,A

1
K23,AR23,A

0 0

0 0 −1
K24,AR24,A

0 E55,A E56,A

0 0 0 0 −1
K45,AR45,A

E66,A

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (123)
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where the diagonal elements E33,A, E55,A and E66,A are given by:

E33,A = 1

K23,AR23,A

+ 1

K24,AR24,A

, (124)

E55,A = 1

K24,AR24,A

+ 1

K45,AR45,A

, (125)

E66,A = 1

K45,AR45,A

, (126)

and the elements E23,A, E31,A, E32,A and E56,A are given by:

E23,A = 0.00625t62,A − 1, (127)

E31,A = −1

K16,AR16,A

+ 0.00625t62,A

K16,AR16,A

, (128)

E32,A = 1

K16,AR16,A

+ −0.00625t62,A

K16,AR16,A

, (129)

E56,A = −1

K45,AR45,A

. (130)

The submatrix 0A is consists of only zeros. In addition, the submatrix FA is given
by:

FA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −1
Xsh

2,A

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −1
Xsh

5,A

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (131)
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The elements of submatrix HA are given by:

HA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
X16,A

1
X16,A

0 0 0 0

0 1 0.00625t62,A − 1 0 0 0
H31,A H32,A H33,A

1
X23,A

1
X24,A

0

0 0 1
X23,A

−1
X23,A

0 0

0 0 1
X24,A

0 H55,A
1

X45,A

0 0 0 0 1
X45,A

−1
X45,A

+ −1
Xsh

5,A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (132)

where:

H31,A = 1

X16,A

+ −0.00625t62,A

X16,A

, (133)

H32,A = −1

X16,A

+ 0.00625t62,A

X16,A

, (134)

H33,A = −1

X23,A

+ −1

X24,A

+ −1

Xsh
2,A

, (135)

H55,A = −1

X24,A

+ −1

X45,A

. (136)

The subvectors VP1
A and VP2

A in (89) are 6 × 1 and are given by:

VP1
A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V P1
1,A

V P1
6,A

V P1
2,A

V P1
3,A

V P1
4,A

V P1
5,A

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (137a)

VP2
A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

V P2
1,A

V P2
6,A

V P2
2,A

V P2
3,A

V P2
4,A

V P2
5,A

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (137b)
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The subvectors gRe
A − dRe

A and gIm
A − dIm

A in (89) are 6 × 1 and defined as:

gRe
A − dRe

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

gRe
1,A

0
−dRe

2,A

gRe
3,A − dRe

3,A

−dRe
4,A

−dRe
5,A

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (138a)

gIm
A − dIm

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

gIm
1,A

0
−d Im

2,A

gIm
3,A − d Im

3,A

−d Im
4,A

−d Im
5,A

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (138b)

6.3.2 Equations for Phases B and C

For phases B and C, the submatrices Eph, 0ph, Fph and Hph in (89) are 5 × 5, since
phases B and C are not connected to node 5, but only to nodes 1 to 4. The main
modifications in the equations presented in Sect. 4.6, which are necessary due to the
inclusion of the VR. The submatrix EB is given by:

EB =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
K16,BR16,B

−1
K16,BR16,B

0 0 0

0 1 0.00625t62,B − 1 0 0
E31,B E32,B E33,B

−1
K23,BR23,B

−1
K24,BR24,B

0 0 −1
K23,AR23,A

1
K23,AR23,A

0

0 0 −1
K24,BR24,B

0 1
K24,BR24,B

⎤
⎥⎥⎥⎥⎥⎥⎦

, (139)

where the elements E31,B , E32,B and E33,B are given by:

E31,B = −1

K16,BR16,B

+ 0.00625t62,B

K16,BR16,B

, (140)

E32,B = 1

K16,BR16,B
+ −0.00625t62,B

K16,BR16,B
, (141)

E33,B = 1

K23,BR23,B

+ 1

K24,BR24,B

. (142)



Linear Model to Represent Unbalanced Distribution Systems in Optimization Problems 105

The submatrix 0B is composed of zeros. In addition, the submatrix FB is given
by:

FB =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 −1
Xsh

2,B

0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (143)

The elements of submatrix HB are defined as:

HB =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
X16,B

1
X16,B

0 0 0

0 1 0.00625t62,B − 1 0 0
H31,B H32,B H33,B

1
X23,B

1
X24,B

0 0 1
X23,B

−1
X23,B

0

0 0 1
X24,B

0 −1
X24,B

⎤
⎥⎥⎥⎥⎥⎥⎦

. (144)

where:

H31,B = 1

X16,B

+ −0.00625t62,B

X16,B

, (145)

H32,B = −1

X16,B

+ 0.00625t62,B

X16,B

, (146)

H33,B = −1

X23,B

+ −1

X24,B

+ −1

Xsh
2,B

. (147)

The subvectors VP1
B and VP2

B in (89), for phase B, have dimension 5 × 1 and are
given by:

VP1
B =

⎡

⎢⎢⎢⎢⎢⎣

V P1
1,B

V P1
6,B

V P1
2,B

V P1
3,B

V P1
4,B

⎤

⎥⎥⎥⎥⎥⎦
, (148a)



106 A. D. Costa et al.

VP2
B =

⎡

⎢⎢⎢⎢⎢⎣

V P2
1,B

V P2
6,B

V P2
2,B

V P2
3,B

V P2
4,B

⎤

⎥⎥⎥⎥⎥⎦
. (148b)

The subvectors gRe
B − dRe

B and gIm
B − dIm

B in (89) are 5 × 1 and given by:

gRe
B − dRe

B =

⎡

⎢⎢⎢⎢⎢⎣

gRe
1,B

0
−dRe

2,B

gRe
3,B − dRe

3,B

−dRe
4,B

⎤

⎥⎥⎥⎥⎥⎦
, (149a)

gIm
B − dIm

B =

⎡

⎢⎢⎢⎢⎢⎣

gIm
1,B

0
−d Im

2,B

gIm
3,B − d Im

3,B

−d Im
4,B

⎤

⎥⎥⎥⎥⎥⎦
. (149b)

The expressions for phase C are analogous to the expressions developed for
phase B.

7 Modifications to Consider Nodes with Controlled Voltage

In order to consider nodes with controlled voltage, the submatrices and subvectors
previously presented have to be modified. Special attention is given to nodes where
the voltage is regulated by a three-phase synchronous generator, as in this case, the
power injections of all phases should be as balanced as possible.2

7.1 Modifications to Consider the Reference Node

In the model we present in this chapter, one of the nodes is chosen to close the
current balance, similarly to the conventional load flow where a node is chosen

2Current imbalances in the phases of synchronous generators can cause additional losses in the
stator and rotor leading to excessive temperature rise and thus potential damage to the windings;
besides, imbalances can increase mechanical stress and produce vibrations in the structural parts.
Therefore, in practice, protection devices limit imbalances to 5%.
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to close the power balance. For medium voltage feeders, the substation node is
usually chosen. To consider the known voltage at the reference node, for each phase

ph, the specified voltage is assigned to part 1
(
V P1

k,ph = V
esp
k

)
and zero to part 2

(
V P2

k,ph = 0
)

. This modification is done before the solution of (90) and (91) is found.

For the system in Fig. 7, node 1 is chosen to close the current balance. Thus,
in what follows, the modifications in the elements in the line corresponding to
node 1 of submatrices and subvectors in (89), given in Sect. 4.6, are described. The
submatrices 0ph and Fph are not modified. For phase A, the submatrix EA defined
in (74) becomes:

EA =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
−1

K12,AR12,A
E22,A

−1
K23,AR23,A

−1
K24,AR24,A

0

0 −1
K23,AR23,A

1
K23,AR23,A

0 0

0 −1
K24,AR24,A

0 E44,A
−1

K45,AR45,A

0 0 0 −1
K45,AR45,A

1
K45,AR45,A

⎤

⎥⎥⎥⎥⎥⎥⎦
, (150)

where the elements of the diagonal E22,A e E44,A are given by:

E22,A = 1

K12,AR12,A

+ 1

K23,AR23,A

+ 1

K24,AR24,A

, (151)

E44,A = 1

K24,AR24,A

+ 1

K45,AR45,A

. (152)

For phase A, (78) becomes:

HA =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1

X12,A
H22,A

1
X23,A

1
X24,A

0

0 1
X23,A

−1
X23,A

0 0

0 1
X24,A

0 H44,A
1

X45,A

0 0 0 1
X45,A

−1
X45,A

+ −1
Xsh

5,A

⎤

⎥⎥⎥⎥⎥⎥⎦
, (153)

where:

H22,A = −1

X12,A

+ −1

X23,A

+ −1

X24,A

+ −1

Xsh
2,A

, (154)

H44,A = −1

X24,A

+ −1

X45,A

. (155)

The submatrices Eph and Hph of phases B and C are modified analogously to
phase A.
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The subvectors gRe
A − dRe

A and gIm
A − dIm

A are given by:

gRe
A − dRe

A =

⎡
⎢⎢⎢⎢⎢⎣

V
esp
1

−dRe
2,A

gRe
3,A − dRe

3,A

−dRe
4,A

−dRe
5,A

⎤
⎥⎥⎥⎥⎥⎦

, (156a)

gIm
A − dIm

A =

⎡

⎢⎢⎢⎢⎢⎣

0
−d Im

2,A

gIm
3,A − d Im

3,A

−d Im
4,A

−d Im
5,A

⎤

⎥⎥⎥⎥⎥⎦
. (156b)

The subvectors gRe
ph − dRe

ph and gIm
ph − dIm

ph of phases B and C are analogously
modified.

7.2 Modifications to Consider Voltage-Controlled Generation
Nodes

For DGs to control the voltage at the node to which they are connected (PV node),

part 1 of nodal voltage is determined
(
V P1

k,ph

)
through (90). When the part 1 for the

PV node is determined, part 2
(
V P2

k,ph

)
can then be calculated by subtracting the part

1 of the nodal voltage from the specified voltage, that is V P2
k,ph = V

esp
k −V P1

k,ph. This
modification is undertaken before solving (91).

The system in Fig. 7 has one DG connected at the node 3. Considering this DG
operating as a PV node, modifications are necessary in the elements in the line
corresponding to the node 3 of the submatrices and subvectors in (91), given in
Sect. 4.6. For phase A, (78) becomes:

HA =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1

X12,A
H22,A

1
X23,A

1
X24,A

0

0 0 1 0 0
0 1

X24,A
0 H44,A

1
X45,A

0 0 0 1
X45,A

−1
X45,A

+ −1
Xsh

5,A

⎤
⎥⎥⎥⎥⎥⎥⎦

, (157)
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where:

H22,A = −1

X12,A

+ −1

X23,A

+ −1

X24,A

+ −1

Xsh
2,A

, (158)

H44,A = −1

X24,A

+ −1

X45,A

. (159)

For the submatrix Hph related to phases B and C, the modifications are the same.
The submatrix Fph needs no modifications.

The subvector gIm
A − dIm

A is given by:

gIm
A − dIm

A =

⎡

⎢⎢⎢⎢⎢⎣

0
−d Im

2,A

V
esp
3 − V P1

3,A

−d Im
4,A

−d Im
5,A

⎤

⎥⎥⎥⎥⎥⎦
. (160)

For the subvectors gIm
ph − dIm

ph of phases B and C the same modifications apply.
It is worth mentioning that, after obtaining the nodal voltages, the current

injections (real and imaginary parts) of the reference node and PV nodes can be
easily obtained.

7.3 Modifications to Consider Nodes with Synchronous
Generators

When a synchronous generator is connected to an unbalanced three-phase system,
the injected or absorbed reactive power is different in each phase. However, the
automatic voltage regulators (AVRs) of the generator usually monitors only a single
voltage, which can be the voltage of one of the phases, or a function of the
voltages of all phases, such as the average phase voltage, or the positive sequence
voltage [37]. Therefore, AVRs do not regulate each phase voltage individually; they
rather act to maintain the specified terminal voltage by injecting or absorbing the
same reactive power into each phase of the synchronous generator.

In the proposed model, voltages are initially obtained considering that the
imaginary part of current injections at the PV node is different in each phase. Thus,
the imaginary part of current injection is obtained for each phase of the node where
the DG is connected; these current injections, which can be different for each phase,
lead to the specified voltage (V

esp
k ) for all phases at this node. In a second step, the

imaginary part of current injections at the PV node is modified to be equal to the
mean value of the imaginary current injections previously obtained for each phase;
this mean value is then assigned to all three phases. Subsequently, voltages are once
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again calculated considering this information. Different voltages may result for each
phase, however they will be close to the specified voltage (V

esp
k ).

8 Three-Phase Voltages and Currents Calculation

In the formulation presented so far, we assumed that nodal voltages have zero as
phase angle. Thus, after the solution is obtained for all phases, the nodal voltages
and the currents in branches have to be adjusted. This adjustment in nodal voltages
is done considering the operator a = 1  120o through the following equations:

V k,A = V P1
k,A + V P2

k,A, (161)

V k,B = a2
(
V P1

k,B + V P2
k,B

)
, (162)

V k,C = a
(
V P1

k,C + V P2
k,C

)
. (163)

The currents in branches are adjusted using the following equations:

f km,A = f Re
km,A + jf Im

km,A, (164)

f km,B = a2
(
f Re

km,B + jf Im
km,B

)
, (165)

f km,C = a
(
f Re

km,C + jf Im
km,C

)
. (166)

9 Tests and Results

This Section presents numerical studies obtained using a modified version of
the IEEE 34-node test feeder [22]. The proposed model was implemented in
MATLAB and the results obtained with the proposed linear model (LM) have been
compared with the solution of the nonlinear load flow (LF) obtained using the
OpenDSS software [13]. To compare the results, indices to measure the difference
in voltages and power losses are used. The voltage difference index is defined
as:

ε̄V
ph(%) =

∑n
k=1 εV

k,ph

n
100, (167)

where n is the total number of nodes of the system and εV
k,ph is the relative difference

in voltages, determined for each phase ph and each node k through the following
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expression:

εV
k,ph =

∣∣∣∣∣
Vk,ph − V LF

k,ph

V LF
k,ph

∣∣∣∣∣ , (168)

where V LF
k,ph is the voltage of phase ph at the node k obtained from the solution

of the LF; Vk,ph is the voltage of phase ph at the node k obtained using the
LM.

The difference in power losses is obtained comparing the total power losses of
the system obtained using the LF and the LM; this difference in percentage is given
by:

εloss(%) = Ploss − P LF
loss

P LF
loss

100, (169)

where P LF
loss are the total power losses obtained from the solution of the LF and Ploss

are the total power losses obtained from the solution of the LM; Ploss is determined
as follows:

Ploss = Ploss,A + Ploss,B + Ploss,C, (170)

where the power losses Ploss,ph of each phase ph are obtained from:

Ploss,ph =
nb∑

km=1

Ploss,km,ph, (171)

with nb being the number of branches in the system. The power losses Ploss,km,ph

of each phase ph of each branch km are obtained from:

Ploss,km,ph = Rkm,ph(f
Re
km,ph)2 + Rkm,ph(f

Im
km,ph)2. (172)

9.1 Modified IEEE 34-Nodes Test Feeder

Figure 10 illustrates the modified IEEE 34-node test feeder. This three-phase
unbalanced system operates at 24.9 kV with a nominal load of 1.77 MW and
1.07 Mvar. Furthermore, in the solution of the LF using OpenDSS, loads were
modeled as defined in [22]; it is worth mentioning that the test feeder contains loads
modeled as constant impedance, as constant current, and also as constant power.
The modifications we implemented are:
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Fig. 10 34-Node system

• loads connected between phases have been transformed into equivalent loads
connected between phase and ground;

• branches downstream node 832 have been modeled as an equivalent load at the
node 832;

• loads distributed along a given branch have been reconnected at the terminals of
the branch, with each terminal receiving half of the load.

• line capacitances have been neglected;
• each VR is replaced by an ideal VR and a branch with impedance of 0.001 +

j0.01 pu.

In the linear model we present in this chapter, the series impedance of the
branches are approximated by the difference between the self impedance and the
mutual impedances of the respective phases according to:

Zkm,A = Zkm,AA − Zkm,AB + Zkm,AC

2
, (173)

Zkm,B = Zkm,BB − Zkm,AB + Zkm,BC

2
, (174)

Zkm,C = Zkm,CC − Zkm,BC + Zkm,AC

2
, (175)

where Zkm,A, Zkm,B and Zkm,C are the approximations of the series impedances
of phases A, B, and C of the branch km, which are used in the linear model
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Table 4 Series impedances of each phase of the branches of the 34-node feeder used in the linear
model

Configuration Zkm,A[ �
km

] Zkm,B [ �
km

] Zkm,C[ �
km

]
300 0.6992 + j0.4937 0.6931 + j0.5210 0.6957 + j0.5386

301 1.0537 + j0.5001 1.0470 + j0.5245 1.0498 + j0.5434

302 1.7395 + j0.9230 – –

303 – 1.7395 + j0.9230 –

304 – 1.1941 + j0.8831 –

to represent the network. For the modified 34-node test feeder, the approximate
impedances are presented in Table 4. The line configurations 302, 303 and 304 [22]
have no mutual impedances as they are single-phase lines, thus Zkm,A = Zkm,AA,
Zkm,B = Zkm,BB , and Zkm,C = Zkm,CC .

The base case was defined assuming that no CB or DG is installed and that
the voltage regulators VR1 and VR2 operate at the neutral tap position in all three
phases. For this base case, we obtained the adjustment factors Kkm,ph using (12) for
each phase of each branch. These adjustment factors are then used in the subsequent
tests.

To validate the proposed model, it was tested under different operation points,
with new devices being added to modify the base case. The following test cases
were considered:

• Case I: VR1 is operating with taps 12, 5 and 5 in phases A, B, and C,
respectively; VR2 is operating with taps 13, 11, and 12 in phases A, B, and
C, respectively; a 300-kvar three-phase CB at the node 844 and a 450 kvar
three-phase CB at the node 848 were included. In this case, the reactive power
compensation and VR taps are those suggested in [22].

• Case II: both VRs are operating at the neutral tap position in all three phases,
and eight three-phase CBs distributed in the system, each one with 133.85 kvar,
were included at the following nodes: 808, 816, 828, 854, 858, 844, 848, and
836. In this case, the reactive power compensation is approximately equivalent
to the total reactive power demanded by the loads.

• Case III: both VRs are operating at the neutral tap position in all three phases. In
this case, a DG was connected at the node 830 and is operating in the PQ mode,
with a maximum active power generation of 1 MW and unity power factor. In
addition, three-phase CBs of 300 kvar and 450 kvar were included at nodes 844
and 848, respectively.

• Case IV: both VRs are operating at the neutral tap position in all phases. In
addition, a synchronous DG was connected at the node 830 operating in the PV
mode, with a maximum active power generation of 1 MW and specified voltage
of 1.0 pu. Three-phase CBs of 300 and 450 kvar were included at nodes 844 and
848, respectively.

The parameters used in the base case and the four test cases are summarized in
Table 5.
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Table 5 Summary of the test cases

Base case

VRs t8501 850,A

= t8501 850,B = t8501 850,C = 0
t8321 832,A = t8321 832,B

= t8321 832,C = 0

CBs (kvar)

DG (kW)

Case I

VRs t8501 850,A = 12 t8321 832,A = 13

t8501 850,B = 5 t8321 832,B = 11

t8501 850,C = 5 t8321 832,C = 12

CBs (kvar) Qsh
844,A = Qsh

844,B = Qsh
844,C = −100 Qsh

848,A = Qsh
848,B = Qsh

848,C = −150

DG (kW)

Case II

VRs t8501 850,A = t8501 850,B =
t8501 850,C = 0

t8321 832,A = t8321 832,B =
t8321 832,C = 0

CBs (kvar) Qsh
k,A = Qsh

k,B = Qsh
k,C = −44.62 where k =

808, 816, 828, 854, 858, 844, 848, 836

DG (kW)

Case III

VRs t8501 850,A = t8501 850,B =
t8501 850,C = 0

t8321 832,A = t8321 832,B =
t8321 832,C = 0

CBs (kvar) Qsh
844,A = Qsh

844,B = Qsh
844,C = −100 Qsh

848,A = Qsh
848,B = Qsh

848,C = −150

DG (kW) P G
830,A = P G

830,B = P G
830,C = 333.33 pf = 1

Case IV

VRs t8501 850,A = t8501 850,B =
t8501 850,C = 0

t8321 832,A = t8321 832,B =
t8321 832,C = 0

CBs (kvar) Qsh
844,A = Qsh

844,B = Qsh
844,C = −100 Qsh

848,A = Qsh
848,B = Qsh

848,C = −150

GD (kW) P G
830,A = P G

830,B = P G
830,C = 333.33 V

esp
830 = 1.00 pu

9.2 Comparison of Results

To further investigate the accuracy of the proposed linear model, we compared the
results obtained with our model with results obtained with the conventional load
flow using the OpenDSS software [13]. The results for the voltage difference indices
(167) and power losses difference indices (169) are summarized in Table 6. In this
table, columns 2 to 4 show the voltage difference indices for phases A, B, and C,
respectively, while column 5 presents the loss difference index.

In the base case, the nodal voltages obtained using the linear model (LM) and
the load flow (LF) are equal because the linearization was done around the same
operation point as in the base case.3 From the results in Table 6, a very good
agreement emerges between the results obtained using the LM and using the LF. For

3The difference is zero since the adjustment factor Kkm,ph is obtained for the same operation point.
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Table 6 Differences in
indices ε̄V

ph(%) and εloss(%)

for the modified 34-node test
feeder

Case ε̄V
A (%) ε̄V

B (%) ε̄V
C (%) εloss(%)

Base 0.000 0.000 0.000 −3.469

I 0.532 0.067 0.720 −3.763

II 0.203 0.181 0.199 −0.098

III 0.593 0.216 0.237 −6.737

IV 0.330 0.045 0.033 −3.372

Fig. 11 Voltage profiles—Case I

instance, the voltage difference indices are less than 0.7% and the biggest difference
in power losses is approximately −6.7%.

An analysis of the results in Table 6 reveals that, even in the base, differences
can be observed in the power losses.4 In general, the LM underestimates the power
losses. The fact that the losses obtained through both models are close indicates that
currents in branches are also close, even though the load models are different in the
LM and LF.

To better illustrate the quality of the solutions achieved, we compared the voltage
profiles obtained with the proposed model with those obtained through the nonlinear
load flow. Figures 11, 12, 13 and 14 show the voltage profiles for the test cases I, II,
III, and IV, respectively. The voltages of the base case are also shown, to demonstrate
the improvements in the voltage profile when VRs, CBs, and DGs are included in
the system. The gaps in the voltage profiles indicate that the node in the gap has no
branch in the respective phase.

4Note that the adjustment factors Kkm,ph are calculated so that no differences arise in the voltage
magnitudes of the base case; yet the power losses are not corrected.
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Fig. 12 Voltage profiles—Case II

Fig. 13 Voltage profiles—Case III

The profile of node voltages when VRs operate at different taps can be observed
in Fig. 11. This figure confirms the importance of VRs to the voltage regulation of
distribution systems, since a significant improvement in voltage magnitudes can be
achieved. In addition, small divergences between voltages obtained using the LM
and the LF can be seen, the indices of voltage difference for Case I being less than
1.03%, for example.

The impacts of the inclusion of CBs in the magnitudes of node voltages can
be observed in Fig. 12. In this case, the total reactive power of CBs approximately
equals the reactive power demanded by the loads. Also in this case, a very good
agreement can be observed between the voltages obtained using the LM and those
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Fig. 14 Voltage profiles—Case IV

obtained with the LF. According to Table 6, the indices for the voltage difference is
lower than 0.3%.

Regarding Case III, where a DG at the node 830 operate in the PQ mode, the
voltage difference index for this node resulted in 0.6% for phase A, 0.3% for phase
B, and 0.2% for phase C. On the other hand, in Case IV, the DG operates in the PV
mode with specified voltage of 1.0 pu at the node 830 (where the DG is connected),
as can be confirmed in Fig. 14. The voltage magnitudes at the node 830 obtained
using the LM were 0.9794 (phase A), 1.0075 (phase B), and 1.0145 (phase C),
while using the LF, the voltage magnitudes are 0.9765 (phase A), 1.0078 (phase
B), and 1.0157 (phase C). The resulting reactive power of the DG is 79.1 kvar
(absorbing) using the LM, and 1.3 kvar (injecting) using the LF. Thus, the results
of both models agree very well.

The results presented so far confirm that the proposed model can appropriately
predict the system response to the imposed disturbances. Further, the results are
very close to those obtained using the OpenDSS, in which different load models are
considered. It is worth mentioning that the operation points in all cases considered
are quite different from the operation point of the base case, which is the operation
point around which the LM was developed.

10 Conclusions

This chapter presented a linear load flow formulation for unbalanced distribution
systems. The proposed model can solve the load flow problem considering the
presence of voltage regulators, capacitor banks, and distributed generation. Using
a linear model, a solution for the load flow problem is guaranteed even for extreme
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operation points, in which conventional load flow may not converge. In addition,
the proposed formulation can be applied to optimization models to solve expansion
planning problems of power distribution systems. Using a linear formulation, the
convergence to the optimal solution is guaranteed using classical optimization
techniques.

To assess and validate the proposed formulation, we used a modified version of
the IEEE 34-node test feeder. A comparison of results obtained using the proposed
linear model with corresponding results obtained using the nonlinear load flow
confirmed that the model is not only valid but also able to give accurate results.
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Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.
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Convex Optimization for the Optimal
Power Flow on DC Distribution Systems

Alejandro Garcés

Abstract Most of renewable energy technologies and energy storage devices are
operated in dc. Indeed, solar photovoltaic generation and batteries require a dc/ac
converter in order to be integrated into a conventional ac distribution grid. Dc
distribution emerges a suitable alternative that reduces the losses and increases
reliability in modern smartgrids. Classical methodologies such as the optimal power
flow require to be adapted to this new scenario. However, just as in the case of ac
grids, the power flow in dc distribution grids is non-linear non-convex. Therefore,
convex approximations are required in order to guarantee convergence and global
optimality. Several approximations can be proposed including second order cone
optimization, semidefinite programming and linealization. These approximations
are analyzed theoretically and numerically in this chapter.

1 Introduction

DC-microgrids and dc-distribution are emerging technologies that promise to
change the form as we conceive medium and low voltage networks [1]. They have
well documented advantages in terms of efficiency, controlability and reliability
[2]. In addition, they can integrate efficiently renewable energy resources and
energy storage devices that are intrinsically dc; for example, batteries, super
magnetic energy storage, super capacitors and solar energy [3]. All these devices
are integrated to the grid by using power electronic converters which are controlled
as constant power devices. A constant power generate a non-linear behavior since
the current is given by i = p/v, this type of relation is non-linear but also non-
convex and require a judicious analysis.

Here, we use the name dc-grid for both, dc-microgrids and dc-distribution since
both share similar features from the operative point of view [4]. Dc-grids are usually
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operated in hierarchical structures with a primary, secondary and tertiary control
[5]. Primary control is local and search for stability while secondary control, which
can be local, distributed or centralized, tries to maintain a suitable voltage profile.
Tertiary control [6] is a usually centralized algorithm, which search for the optimal
operation of the grid. This control is also known as optimal power flow (OPF) and
is the methodology to be studied in this chapter.

Dc-grids can be operated in grid connected operation or island operation. In this
chapter, we are interested in the grid mode in which there is a slack node which
maintains a constant voltage. As aforementioned, each nodal element is integrated
by a power electronic converter which maintains a fixed power defined by the
OPF. However, this power can be changed between well defined limits such that
pmin ≤ pk ≤ pmax . These limits are given by technical characteristics of the
distributed resource (generation, load or storage). For example, a solar panel can
have a constraint such as 0 ≤ p ≤ pmax where pmax is given by the actual
solar radiation in a particular time. Controlled loads can also have these type of
constraints [7]. Our objective is therefore to determine the optimal values of the
power pk for each node in order to minimize the power loss and fulfilling physical
constrains.

It is important to emphasize that optimal power flow in dc grids is different from
the well known dc power flow in ac systems [8]. The latter is a linearization of
the ac equations whereas the problem studied in this chapter, is related to grids
that are actually dc and non-linear due to the constant power terminals. However,
the optimal power flow problem in dc grids has similar challenges to the problem
in ac grids, because the model is non-convex and quadratic. The problem in ac
grids has been investigated for decades in the power systems community and
recently, it has attracted the attention of the control and mathematical communities
due to its practical importance and mathematical complexity. In [9] and [10] a
complete revision of the problem for ac grids was presented, including theoretical
and practical challenges.

1.1 Why Convexity Matters

As aforementioned, the OPF is a non-linear optimization model that acts as tertiary
control in dc-grids. Being a control, we expect two main features of the optimization
algorithm: convergence and global optimality. The former refers to the capability of
the algorithm to achieve an optimal solution in a finite and well defined lapse of
time; the latter refers to the capability to obtain global optimum.

There are many results related to the convergence of the gradient method as well
as the interior point methods for convex optimization problems [11]. Perhaps the
most famous result is the Nesterov’s proof of convergence for the gradient method
[12] and for minimizing self-concordant functions guaranteing the convergence
of the interior point methods in convex problems. Therefore, convex optimization
problems can be solved efficiently in practice allowing real-time operation [13].
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On the other hand, global optimum is important in real-time operation in which it
is desired to reduce the human intervention. There is a strong theoretical background
that guarantees global optimality in convex optimization problems. Uniqueness can
be also guarantee in strictly-convex optimization problems. This aspect will be
discussed later in this chapter.

Most of the non-linear programming problems in power systems applications
are non-convex. However, it is possible to define convex approximations to the
original problem. In this chapter, we study three convex approximations namely:
linearization of the power flow equations, semidefinite programming and second
order cone optimization.

1.2 Outline of the Chapter

The rest of the chapter is organized as follows: in Sect. 2, the model of the OPF
for dc-grid is presented. We call this model as the non-linear OPF. The main
results of convex optimization methods are briefly presented in Sect. 3. After that,
a linear approximation as well as semidefinite programming and second order cone
approximations are presented in Sects. 4, 5 and 6 respectively. Numerical results are
analyzed in Sect. 7 followed by conclusions and relevant references.

2 Brief Review of Convex Optimization

Before presenting the model for the optimal power flow in dc-grids, let us
review some basic concepts related to convex optimization. This review is far to
be complete but gives the main elements for understanding the approximations
presented latter in this chapter. Interested reader is refer to [13] for a more complete
review of convex optimization theory.

Definition 1 We say that a set Ω ⊂ R
n is convex if for any x, y ∈ Ω we have that

(1 − λ)x + λy ∈ Ω (1)

for all λ ∈ R, 0 ≤ λ ≤ 1.

Intuitively, this means that all points in line segments inside the set, belong to the
set. Figure 1 shows examples of convex and non-convex sets.

Some optimization problems may seem simple but in reality hide a high
mathematical complexity. This complexity is closely related to the geometry of the
feasible set. Therefore, we must be very careful when defining whether a set is
convex or not. Consider the following examples
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x1

x2

B

x1

x2

A

Fig. 1 Example of a convex set ΩA and a non-convex set ΩB . In the second case, there are points
in the line segment x1–x2 which are outside the set

x

y

x2 + y2 ≤ 1

x

y

x2 + y2 = 1

x

y

x2 + y2 ≥ 1

Fig. 2 Example of three different sets defined in R
2. ΩA is convex while ΩB and ΩC are not

Example 1 Convex and not convex sets: Consider the following sets in the plane:

ΩA =
{
(x, y) :

√
x2 + y2 ≤ 1

}
(2)

ΩB =
{
(x, y) :

√
x2 + y2 = 1

}
(3)

ΩC =
{
(x, y) :

√
x2 + y2 ≥ 1

}
(4)

In this case, ΩA is convex while ΩB and ΩC are non-convex. This can be easily
concluded by a simple inspection on the corresponding plot (see Fig. 2). However,
in a more general case we need to resort to the definition. Consider two different
points a = (xa, ya) and b = (xb, yb) which belongs to ΩA, this means:

√
x2
a + y2

a ≤ 1 (5)
√

x2
b + y2

b ≤ 1 (6)
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notice that these constraints can be represented as function of the Eucledean norm,
as follows:

‖a‖ ≤ 1 (7)

‖b‖ ≤ 1 (8)

therefore, we can use the triangular inequality given by (9):

‖a + b‖ ≤ ‖a‖ + ‖b‖ (9)

now consider an intermediate point c = λa + (1 − λ)b which fulfills the following
conditions:

‖c‖ = ‖λa + (1 − λ)b‖ (10)

≤ λ ‖a‖ + (1 − λ) ‖b‖ (11)

≤ λ(1) + (1 − λ)(1) (12)

= 1 (13)

consequently, c ∈ ΩA and the set is convex.
For demonstrating that ΩB and ΩC are not convex, is enough to gener-

ate a numerical counter example, for instance a = (
√

2/2,
√

2/2) and b =
(
√

2/2,
√

2/2).

Example 2 In general, quadratic equalities are not convex. Consider the set B =
{x(x − 1) = 0} which consists in only two points B = {0, 1}. This is a binary set
and hence, it is non-convex.

Our objective is to study problems whose feasible domain is a convex set. This
domain is given by several constrains, therefore, it is useful to consider the following
lemma

Lemma 1 (see [14]) The intersection of convex sets is also a convex set

Therefore, it is enough to check that each constraint define a convex set.
However, we can have equality and inequality constraints and the former requires a
more strict condition, namely to be an affine space defined as1

Ω = {
x ∈ R

n : Ax = b
}

(14)

where A is a constant matrix and b a vector with suitable dimensions. Notice the
difference between a linear space and a affine space. Ω in (14) is a linear space

1There are more general definitions of affine spaces, however, this simple definition is enough for
our purposes.
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a) b)

(x1,y1)

(x2,y2)

(x1,y1)

(x2,y2)

Fig. 3 Comparison between a convex and a non-convex function. In the case (a) we can draw a
line between point (x1, y1) and the point (x2, y2) but there are some parts of the function which
are above the line segment (i.e the function is non-convex). In the case (b) we can see that every
point in the line segment is below the function itself (i.e the function is convex)

if and only if b = 0. As a consequence of that, all linear space are affine, but the
opposite is not true. Let us analyze now the convexity of real valued functions

Definition 2 A real-valued function f : Rn → R is convex if its domain is convex
and for any two points x, y ∈ R

n we have that

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) (15)

for all λ ∈ R such that 0 ≤ λ ≤ 1.

Graphically, a convex function is a real valued function in which it is possible to
draw a line above the function for a given interval as depicted in Fig. 3

Convex functions and convex sets are related by the epigraph defined by

Eg(x, y) = {
(x, t) ∈ R

n × R : g(x) ≤ t
}

(16)

This set allows us to check convexity in an optimization model by checking the
convexity of the inequality constraints thanks to the following lemma

Lemma 2 (see [13]) A function g is convex if and only if its epigraph is convex.

As a consequence of this, we can ensure a constraint of the form g(x) ≤ 0
generates a convex set Eg(x, y); with these simple definitions, we are ready for the
formal definition of convex optimization model:

Definition 3 A convex optimization model is defined as

Minimize f (x) (17)

x ∈ Ω (18)

where f is a convex functions and Ω is a convex set.
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a) b)

H1

H2

Fig. 4 Example of functions with global or local optima: (a) function with local optima H , (b)
function with a global optimum

As aforementioned, convex optimization models have many theoretical and
practical features which are suitable for optimization in power distribution grids.
One of this important features is the guarantee of the global optimum.

Definition 4 A point x̃ is a local optimum of a minimization problem if there exist
an open set H such that x̃ ∈ H and f (x) ≥ f (x̃),∀x ∈ H . If H includes the
complete feasible space then the optimum is global.

Figure 4 shows the case of a non-convex function which has two minimum
points. The convex case however, have a global minimum. This is because the
second function is convex.

Theorem 1 (see [13]) Consider a convex function f : Rn → R defined in a convex
domain Ω . In this case, every local minimum is also global.

From the numerical point of view, there are many results about the convergence
of the algorithms for convex optimization. These algorithms include the gradient
method, Newton’s method and interior point. Fortunately, there are many available
software and toolboxes that solves efficiently convex optimization models. Readers
interested in the convergence of the algorithms for convex optimization models, can
consult [11] and [14].

3 Modelling the Optimal Power Flow Problem

Let us consider a dc-grid with different distributed resources and controlled loads
as shown in Fig. 5. Define 0 as the slack node (i.e the node that maintains a constant
voltage v0) and k = {1, 2, . . . , N} the rest of the nodes, corresponding to distributed
resources integrated with power electronic converters, which maintain a constant
power pk . The nodal admittance matrix is defined as gkm, where step nodes (such as
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Fig. 5 Schematic representation of a dc-grid. All components are integrated through a power
electronic converter which controls pk . Currents are entering to the node

3 in the figure) can be eliminated by a Kron’s reduction [15]. We do not make any
assumption about the radiality of the grid allowing meshed dc-grids. However, the
graph that represents the grid must be connected in order to guarantee the admittance
matrix is non-singular.

Under these considerations, nodal currents have a non-linear relation given by

pk

vk

= gk0v0 +
N∑

m=1

gkmvm (19)

where gkm represents the corresponding entries in the admittance matrix and vk, pk

are the voltage and power respectively.
Each distributed resource (load or generation) has some degree of flexibility that

allows to optimize the operation point. For example, the solar panel connected
in Node 1 could inject power in an interval given by 0 ≤ p1 ≤ p1max where
p1max is the maximum power given by the available solar radiation (the same can
be said for the panel connected to Node 5). The fuel cell however, have physical
constraints in both, the minimum and the maximum power p4min ≤ p4 ≤ p4max .
Finally, controlled loads have a negative power that can be limited by the same
type of constraint. In conclusion, any distributed resource can be modeled as a box
constraint pk(min) ≤ pk ≤ pk(max).
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Our objective is to minimize power loss in the grid by the following non-linear
optimization model

Model 1 (Optimal Power Flow in DC-Grids)

Minimize PL = g00v
2
0 + 2

N∑

m=1

g0mv0vm +
N∑

k=1

N∑

m=1

gkmvkvm (20)

subjectto
pk

vk

= gk0v0 +
N∑

m=1

gkmvm ∀k ∈ {1, . . . , N}
(21)

|vk − 1| ≤ δ ∀k ∈ {1, . . . , N}
(22)

pk(min) ≤ pk ≤ pk(max) ∀k ∈ {1, . . . , N}
(23)

where PL is the power loss, δ is the maximum deviation of the nodal voltages and
pk(max), pk(min) are the maximum and minimum capability of distributed resources
which includes distributed generation (solar or wind), controlled loads and storage.

Notice that the objective function (20) is convex since gkm forms a symmetric
positive definite matrix. Inequality constraints are also convex, including (22) which
can be reformulated as a linear inequality.2 Nevertheless, Constraint (21) is a non-
affine equality equation that makes the problem non-convex. This constraint cannot
be transformed into a quadratically constrainted quadratic optimization model due
to the presence of constant power loads. Therefore, the model remains non-convex
even for the case of only one load (See the examples in Sect. 2).

Different approximations have been presented to solve this problem. In the next
sections, we study three main approaches, namely: Second order cone optimization
[16], semi-definite programming [17] and linearization [18].

4 Second Order Cone Approximation

Second order cone optimization is an active research area in power systems
applications after the seminal paper of Low [19] for dc grids. This methodology
has demonstrated to be very efficient in the case of dc-distribution. In some cases, it
can lead to the optimum of the original problem. In other cases, it gives a very close

2we maintain the absolute value representation for the sake of simplicity. Notice also that any
software for disciplined convex programming, such as cvx and cvxpy, allows to include effortless
norm constraints.
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approximation which is valid for practical applications. Let us start by some basic
definitions taken from [16].

Definition 5 (SOC) A second order cone optimization model is a convex optimiza-
tion problem that can be represented as

MinimizecT x

‖Aix + bi‖ ≤ αT
i x + βi ∀i (24)

where ‖·‖ is the Euclidean norm, Ai are real matrices, c, bi, αi are vectors and βi

are scalars.

Many problems can be represented as SOC, a particular case is the hyperbolic
constraint defined as follows:

xy ≥ wT w (25)

x ≥ 0 (26)

y ≥ 0 (27)

where w is a decision vector and x, y are decision variables. This constraint is
equivalent to:

∥∥∥∥
(

2w

x − y

)∥∥∥∥ ≤ x + y (28)

let’s see the step-by-step procedure

(
2w

x − y

)T (
2w

x − y

)
≤ (x + y)2 (29)

4wT w + (x − y)2 ≤ (x + y)2 (30)

4wT w + x2 − 2xy + y2 ≤ x2 + 2xy + y2 (31)

4wT w ≤ 4xy (32)

wT w ≤ xy (33)

With this in mind, it is possible to obtain a SOC approximation to the load flow
equations. Consider Equation (21) and define a new variable wkm = vmvk which
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transforms this equation in an affine space in variables wkm, as follows:

pk = gk0vkv0 +
N∑

m=1

gkmvkvm (34)

pk = gk0wk0 +
N∑

m=1

gkmwkm (35)

Now, the non-convexity is in the definition of wkm which can be squared as follows

wkm = vmvk (36)

wkmwkm = vmvkvmvk (37)

‖wkm‖2 = wkkwmm (38)

now we relax this hyperbolic constraint in order to obtain SOC constrains

‖wkm‖2 ≤ wkkwmm (39)
∥∥∥∥

(
2wkm

wkk − wmm

)∥∥∥∥ ≤ wkk + wmm (40)

Therefore, the optimal power flow (Model 1) can be represented as the following
convex model:

Model 2 (SOC Approximation) Second order cone approximation for the power
flow in dc-distribution

Minimize PL = g00w00 + 2
N∑

m=1

g0mw0m +
N∑

k=1

N∑

m=1

gkmwkm (41)

subjectto pk = gk0wk0 +
N∑

m=1

gkmwkm ∀k ∈ {1, . . . , N}
(42)

|wkk − 1| ≤ δs ∀k ∈ {1, . . . , N}
(43)

pk(min) ≤ pk ≤ pk(max) ∀k ∈ {1, . . . , N}
(44)

∥∥∥∥
(

2wkm

wkk − wmm

)∥∥∥∥ ≤ wkk + wmm ∀k ∈ {1, . . . , N}
(45)
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This approximated model is completely formulated in terms of new variables
wkm, however, it is straightforward to recuperate the original voltages by using the
definition. Section 7 will compare the results.

5 Semidefinite Approximation

Semidefinite programming (SDP) is another possibility for convexification of Model
1. In this approach, we change from the space of the vectors R

n to a bigger
linear space, namely, the space of the matrices. This space have better geometric
characteristics that allow a semidefinite approximation. However, this change has as
a disadvantage, a higher computational requirements for the new problem (this will
be discussed latter in Sect. 7). Let us start with some basic definitions

Definition 6 A semidefinite programming model is represented as follows:

Minimize Tr(CX)

subjetto : AX = B (46)

X � 0

where � represents the Loewner partial order defined by the convex cone of positive
semi-definite matrices and T r is the trace of the corresponding matrix.

It is easy to see that a constraint X � 0 is convex and AX = B is affine which
makes the entire problem convex.

Now for the optimal power flow problem, we define a new variable wkm = vkvm

just as in the case of SOC transforming the problem as follows

pk = gk0wk0 +
N∑

m=1

gkmwkm (47)

wkm = vkvm (48)

Now, the second constraint can be represented as a matrix W = vvT . Notice
this matrix is possitive definite and has rank = 1. Therefore, the constraint can be
represented as

W � 0 (49)

rank(W) = 1 (50)

at this point, the problem is completely equivalent to Model 1 and hence, non-
convex. However, by relaxing the last constraint rank(W) = 1 we obtain a convex
optimization model with semidefinite constraints.
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Model 3 (SDP Approximation) Semidefinite approximation for the power flow in
dc-distribution

Minimize PL = T race(G · W) (51)

subjectto pk = diag(G · W) (52)

|wkk − 1| ≤ δs (53)

pk(min) ≤ pk ≤ pk(max) ∀k ∈ {1, · · · , N} (54)

W � 0 (55)

This type of models can be solved efficiently by different toolboxes for convex
optimization, such as cvx [20]. The original variables can be obtained by a simple
eigenvalue decomposition as follows

v ≈ √
σmφm (56)

were σm is the maximum eigenvalue associated to W and φm is the corresponding
eigenvector. In most of the practical cases, the eigenvalues are all close to zero
except σm. The accuracy of the approximation depends on this characteristics since
all-except one eigenvalues must be equal to zero in order to be a rank 1 matrix. More
details in Sect. 7.

6 Linearization

A simple but effective way to convexify Model 1 is through linearization. Equation
(21) can be seen as a Manifold M represented by a set of algebraic equations. The
tangent space TvM around 1p.u is given by the following affine space

pk = gk0v0 +
N∑

m=1

gkm(vk + vm − 1) (57)

this approximation is unique (see [21] page 270 for more details about manifold
theory and linearizations).

Example 3 Consider a simple dc distribution system with two terminals shown in
Fig. 6a. The non-linear representation of the grid is given by Eq. (21) which is a
non-linear space as depicted in Fig. 6. This equation can be linearized around 1pu

using a simple Taylor expansion. In this case, the manifold M is only one equation
but the idea is easily generalized to the n-dimensional case.

This simple approximation leads the following convex quadratic model



134 A. Garcés

v0 v
ac

dc
dc

dc

gi0

i= p/v
a)

v

p

M = {p/v= g(v− v0)}
g(v− v0)

1pu

b)

Fig. 6 Schematic example of a linearization. (a) dc power distribution with two nodes. (b)
Linearization of the equations that represents the power flow

Model 4 (Linear Approximation) Linear approximation of the power flow for dc
distribution systems.

Minimize PL = g00v
2
0 + 2

N∑

m=1

g0mv0vm +
N∑

k=1

N∑

m=1

gkmvkvm (58)

subjectto pk = gk0v0 +
N∑

m=1

gkm(vk + vm − 1) ∀k ∈ {1, . . . , N}
(59)

|vk − 1| ≤ δ ∀k ∈ {1, . . . , N}
(60)

pk(min) ≤ pk ≤ pk(max) ∀k ∈ {1, . . . , N}
(61)

This model is also convex and in fact easier to solve compared to previous
models. However, its accuracy is reduced compared to these models.

7 Results

A 10-nodes dc-distribution system is used for evaluate each of the studied approxi-
mations. The grid is depicted in Fig. 7 and parameters are given in Table 1.

Models 2, 3 and 4 were evaluated using cvx, a package for specifying and
solving convex programs [20]; the source code can be obtained in [22]. Results are
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Fig. 7 Graph of the studied
microgrid
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Table 1 Parameters of the
test microgrid

Node 1 Node 2 rkm(pu) Pmin(pu) Pmax(pu)

1 2 0.0050 0.00 0.30

2 3 0.0015 −1.80 −1.00

2 4 0.0020 −2.30 −2.00

4 5 0.0018 0.00 3.00

2 6 0.0023 0.00 2.00

6 7 0.0017 0.00 0.50

7 8 0.0021 0.00 1.30

7 9 0.0013 −3.00 −1.00

3 10 0.0015 0.00 2.25

summarized in Table 2. Since the models are convex, these results does not depend
on the software used.

Performance of each model is compared in Table 3. In terms of speed, the linear
approximation (Model 4) is the fastest while semidefinite programming (Model 3)
is the slowest. The average elapsed time for Model 4 was 0.31 s while for Model 3
was 2.7 s. Model 2 had an intermediate performance with an average time of 0.40 s.
This performance is expected due to the complexity and number of variables of each
Model.

A way to evaluate the accuracy of each Model consist in using the obtained
voltages and calculate the nodal powers. The difference between these power
and the power given by the model is a measure of accuracy. For Model 2 this
error was 4 × 10−4 while for linearization it was 0.0050. In general, all models
exhibit good performance, however, second order cone optimization has the best
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Table 2 Results for each approximation

Node VSOC VSDP VLIN PSOC PSDP PLIN

1 1.0000 1.0000 1.0000 0.1851 0.2325 0.1716

2 0.9991 0.9988 0.9991 0.2997 0.2804 0.2900

3 0.9988 0.9985 0.9989 −1.0002 −1.0129 −1.0051

4 0.9977 0.9974 0.9977 −2.0002 −2.0074 −2.0024

5 1.0000 0.9998 1.0001 1.3070 1.3047 1.3042

6 1.0000 0.9997 1.0001 0.6855 0.6903 0.7018

7 0.9995 0.9992 0.9996 0.4997 0.4622 0.4887

8 0.9999 0.9998 1.0001 0.2125 0.2484 0.2385

9 0.9982 0.9979 0.9983 −1.0002 −1.0061 −1.0055

10 1.0000 0.9998 1.0001 0.8172 0.8122 0.8182

Table 3 Comparison of
performance for each convex
approximation

Parameter Model 2 Model 3 Model 4

Elapsed time 0.45 s 2.7 s 0.31 s

Error 4 × 10−4 0.0012 0.0050

tradeoff between accuracy and speed. However, the linear model is enough for many
practical applications with a error less than 5% and a very fast calculation which can
be suitable for real time operation problems.

8 Conclusions

This chapter presented some basic introduction to convex optimization with appli-
cations to the optimal power flow in dc-distribution. Three different convex
approximations were analyzed, namely: second order cone optimization, semidef-
inite programming and Linearization. The three models demonstrated to be highly
accurate with low computational time. Linearization shown to be faster although
it was less accurate compared to the other two models. Semidefinite programming
was the most accurate with a high computational effort. Second order cone
optimization was less accurate with a moderate computational cost. As a general
conclusion, SOC is the most suitable alternative when accuracy is an issue, but
a simple linearization allowed a faster implementation with a reasonable error
(less than 5%).
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Energy Storage System Sitting and Sizing
for Renewable Support

Luciane Neves Canha, Camilo Alberto Sepúlveda Rangel,
and Olatunji Matthew Adeyanju

Abstract This chapter addresses the Energy Storage System (ESS) sitting and
sizing problem for renewable support. It is divided into four major subtitles in order
to give the reader an introduction of the issue by providing fundamental information
and theorical background to show the basic concepts for solving the intended
problem, and discusses perspectives to encourage the reader for further research.
Also, it solves two practical examples using specific optimization tools. In the
first part of the chapter, ESS applications for Renewable Support is presented with
general introduction to renewable energy system and its limitations. Subsequently,
the ESS technologies with different characteristics are described and possible
applications of ESS are presented from the perspective of the utility, medium and
large-business, and off and micro-grid scale applications. The second part presents
the optimization methods that is used in ESS sizing and sitting problems. These
methods consider heuristic and meta-heuristic approaches with a major focus on
evolutionary algorithms. An optimization formulation and ESS modelling for given
power system application considering specific objective function and constraints
are also presented. In the third part, future applications of the ESS, together with
set of possible subjects that can expand the ESS field of research are presented.
Finally, the fourth part presents two practical examples of ESS support problem
using HOMER proprietary software and a Genetic Algorithms, respectively. Based
on the ESS specifications and types, performance is examined for selected scenarios
of network architecture. In both solution procedures, the algorithms established the
size of ESS for optimal technical and economic performance for the distribution
system.
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1 ESS Applications for Renewable Support

1.1 What Is Renewable Energy?

Renewable energy is energy from any source that has natural replenishing ability but
are generally limited in quantity per unit time. Figure 1 presents common renewable
energy sources that are been explored for mankind benefit today.

Most of the renewable energy shown in Fig. 1 depend on sunlight, directly or
indirectly. For example, air movement occurs because of the differential heating
of the sun on the Earth’s surface and it causes precipitation to be formed as
the air is lifted, resulting into wind and hydro energy production. Also, solar
energy is the direct energy from the sun which is usually harnessed using solar
panels or collectors. Generally, plants depend on sunlight to produce their foods—a
process known as photosynthesis. The energy stored in these plants because of their
interaction with sunlight is known as Biomass energy. An example of renewable
source which does not depend on sunlight is the geothermal energy. It occurs due
to the radioactive decomposition due to heat reactions in the earth’s crust. Another
example is the tidal energy which is formed due to a conversion of gravitational
energy—mainly found in the surge of ocean waters when there is rise and fall of
tides. In [1], several forms of renewable energy and their production processes are
well detailed.

Renewable energy or energy from renewable sources may be deployed in
different scales (domestic, commercial, industrial and utility-scales) whether as
a stand-alone or as grid-connected forms. In today’s power grid development
and operation planning, high integration of renewable energy is in perspective
and are considered based on benefits such as safety and cleaner environment,
reduction of greenhouse effect and carbon-emission, reduction of energy cost,
voltage stabilization and loss reduction among others [2].

1.1.1 Limitations of Energy from Renewables Sources

Even with the attractive benefits that renewable energy presents, its increasing level
in the power grid may result into unstable and unreliable operation. This is because,
renewable sources are characterized with intermittent and fluctuating features which
increases its production uncertainties. It may be possible to generate large amount
of useful energy from a renewable source but may be impossible to generate that
amount when and how it is needed. For example, large amount of wind energy can
result in unpredictable variability and power imbalance in order of GW. This is a
major challenge to maintaining stable power grid operation (See Fig. 2). Generation-

•Hydro •Wind Solar •Biomass •Geotherm
al Tidal

Fig. 1 Renewable energy sources [1]
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load imbalance will lead to variation in voltage level especially, at the location where
the wind source is connected, and in a major way, load voltage fluctuation affects
power system voltage stability [3].

To address these challenges, Energy Storage Systems (ESS) are considered an
important option to support power grid with significant level of renewable energy
inclusion [4, 5]. In the following section, an overview of ESS technology is briefly
discussed.

1.2 Introduction to ESS Technology

EES technology works by transforming electrical energy to an electro-potential
energy in storable form using storage devices. The stored energy can be transformed
back into electricity and used when required [6, 7]. Regardless of the conversion
process involved, typical ESS system can be arranged according to the block
presented in Fig. 3.

Fig. 2 Comparison of wind generation to load demand [3]
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Fig. 3 Typical energy storage system and primary power components [8]



142 L. N. Canha et al.

In Fig. 3, the ESS follows three main bi-directional processes which are; the
source, converter and storage components. Depending on the supply source (e.g.,
AC or DC), energy is stored and reserved when power flows from the AC source
through the power conversion system (if AC) and to the storage device, and vice
versa when energy is needed for use. A generic battery storage system is made up
of key components which include power conversion system, control and monitoring
system, and the battery itself. Monitoring and control systems manages and ensures
safe and maximum performance of the entire storage system. Another function is
that it prevents the batteries from either overcharging or over drained (i.e., it controls
the charge and discharge of the battery). For the grid use, the DC power from the
Battery is transformed into AC power using power converter [8]. Some common
ESS types and their parameters are presented in the following section.

1.2.1 Types and Parameters of ESS Technology

Today, several ESS technologies have been designed and used for power system
applications (See Fig. 4) [9–11]. A brief discussion on each is presented as follows.

Flow Battery (FB) It utilizes a non-toxic and non-hazardous recyclable electrolyte
that provides thousands of cycles of power with little maintenance. It is charac-
terized with high energy storage and flexible control capability when compared to
typical fixed cell storages.

Lead Acid Batteries (LA) They are made from a lead alloy. Compared with
nickel- and lithium-based systems, lead acid is weightier, and is less durable when
deep cycled due to its rapid ageing characteristic at increased operating temperature
and high discharge currents.

Lithium-Ion Batteries (LI) They have relatively high efficiency, light weight and
energy density. They are suitable for home use and Electric Vehicle systems.

Flywheels (FW) In this type of ESS, the kinetic energy is stored in rotating discs
which in turn rotates a generator to produce electricity. However, because of huge
losses due to friction, its discharge current is high, and as a result are only efficient
for short-duration applications.

Flow 
Batteries

Lead Acid 
Batteries

Li-on 
Batteries Flywheels

Compressed
 Air 

Energy 
Storage 

Ultra-
capacitors 

(UC)

ucting 
Magnetic
Energy 
Storage

[Supercond

(SMES]

Fig. 4 Types of ESS technology [9–11]
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Compressed Air Energy Storage (CAES) They are based on technology which
uses compressed air to power a generator that produces electricity. These types of
system require large space, such as underground tanks.

Ultra-Capacitors (UC) They are operated in similar manner with electrostatic
capacitors but can hold significantly more energy like that of conventional capaci-
tors. They are good as large uninterruptible power supply systems (UPS).

Superconducting Magnetic Energy Storage (SMES) In this device, the magnetic
field of a coil made up of a superconducting wire with minimum loss is used for
storing electricity from the grid. Its advantage is that it can emit bulk power within
a fraction of time to maintain grid balancing especially after a dip or loss of line
power event.

1.2.2 Key Properties of ESS Technology

While the technical performance capability can help determine an ESS for a given
application, the choice should be based on specific application need. This is because
an ESS which performed best in Time-shifting application may perform worse in
Off-grid or microgrid operation. From both technical and economic point of view,
combination of two or more EES technologies may be required for a given power
system application [12], however, in general, viable ESS technology choice should
meet the following key properties: economics, durability, environmental safety, and
long-duration storage capability for that application [13]. The key properties for
selecting ESS system for any application is presented in Fig. 5.

• Performance: A technical suitability factor for choosing ESS technology in
distribution network is its performance in terms of high efficiency and high
operating temperature range.

• Economics: A major requirement for ESS consideration and usage in any power
applications is its cost-effectiveness. Its acquisition, operating and maintenance
costs are expected to be minimal. Also, its proliferation and wider usage in power
systems will largely depend on the market situation.

Fig. 5 Key properties of ESS
system [13]
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• Durability: Durability of an ESS is a measure of its ability to withstand long-
term usage fading, minimum performance loss and highly competitive cycle life,
for any given application.

• Safety: Safety of personnel and environment are important factors in the
selection and deployment of ESS technology. Hence, ESS technology should be
inherently safe and non-flammable in all applications.

1.3 The Need for ESS in Power Systems

The primary reason for ESS adoption in power systems is the underlying character-
istics of electricity, high penetration of intermittent renewable resources and need
to reduce fossil-fueled energy consumption [7]. ESS is considered to influence the
system technical and economic performance and thought to shift energy market
horizon. One, based on the principle of energy reservation, energy produced if not
used immediately will become wasted. However, during power imbalance situation
when there is surplus electricity and low load, or vice-versa, system voltage or
frequency may be jeopardized. Two, ESS is deployed considering the short coming
of the long-distance link between generation and load where huge energy loss and
congestion occur arising from system adequacy issue. The generation-load link also
witnesses occasional fault events whose occurrence may not be easily predicted at
any given time [7]. This uncertainty can create some level of economic risk for the
power system stakeholders (include the operators, utilities and consumers), and the
impact created may be large or small depending on the level and or duration of
fault sustained. Consequent upon these reasons, ESS is deployed to improve system
security, reliability and continuity, since it is sited closely to the load center and
does not depend on long-distance transmission need. In this case, ESS inclusion
will permit more flexible operation including energy arbitraging, which will largely
influence the evolving Smart grid and or Electric Vehicle future.

1.4 Power System Operation and the Roles of ESS Technology

Demand Response program was primarily designed to reduce peak demand. As a
result, consumers were provided with flexibility to shift their load between peak
and off-peak situations for economic advantage. However, because this provision
suffers certain set back due to its inefficiency, a new alternative evolved with energy
storage facility where load shifting is made possible by storing energy in the off-
peak state and using it when the load is at peak. In most recent times, ESS have
been used in homes to reduce consumer’s energy bill in a time-varying energy
pricing situation [9]. In many cases, selecting the appropriate EES technologies
have been an important and challenging issues in some countries. For instance, a
specific storage system with a capacity of 27.6 GWh exists in the UK network
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and even though the technology has gained more market recognition, it has strict
restrictions on usage due to its environmental limitation [6]. Thus, it is necessary to
select storage technology in combination that is best suitable for both economic and
environmental needs.

Generally, ESS can assume specific roles considering the following application
situations [10, 14]:

• Time-shifting and energy arbitraging application.
• Demand or Time-Of-Use (TOU) tariff management.
• Renewable intermittency smoothing.
• Cost reduction and fuel efficiency for remote areas.
• Peak demand reduction
• Ancillary Services including backup for power supply
• Off-grid and microgrid stabilization
• Frequency regulation
• Support for voltage control, etc.

With consideration for ESS technology, a sustainable ESS is scalable and easily
transportable, clean and possesses longer-duration storage capability. Currently,
there exist several scalable ESS technologies being deployed for on-grid, off-
grid and microgrid applications [6]. They are selected with the confidence that
power system will become more flexibility and energy cost will become cheaper.
As such, ESS technology is expected to be resilient, cheap, and environmentally
friendly. The advantages of a given ESS technology lies in its durability, and the
possibility for recycling with appreciable number of power cycles and relatively low
maintenance cost. In any case, ESS technology with more storage capacity could
be more reliable than storages with shorter-duration solutions for efficient energy
management reasons. In addition, some ESS has been considered with an in-built
power electronics to respond to voltage and frequency variations in microgrids, off-
grids, medium and large-business and utility scale applications [13].

1.5 Opportunities for ESS in Low and Medium Voltage Systems

The potential of ESS technologies to reduce costs has been examined in [12].
Besides, several opportunities exist for ESS deployment in the power system.
For example, deploying appropriate ESS technology gives utilities options to
manage the operation of their networks more efficiently. The alternative which
ESS provides has completely downplayed the need to upgrade the distribution
infrastructures which usually incur huge investment burdens. The need to construct
extra transmission lines to meet demands is no longer necessary while significant
utilities have seen real power loss reduction in their daily operations and have had
more control of the system [9]. However, in some countries, there are policies and
regulations that guide the use of ESS systems. Certain requirements may have to be
met before ESS is permitted for deployment [15].
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The ESS application at the utility, medium and large-business and off-grid and
microgrid scales are illustrated using specific application cases in the following
section.

1.6 Specific ESS Application Cases with Illustrations

As mentioned earlier, ESS can be deployed in different scales. However, this
section discusses specific ESS application cases from the utility, medium and large-
business, and off and micro-grid scale applications perspectives.

1.6.1 From the Utility Perspective

ESS deployment is dictated by the degree of renewable energy penetration in the
network. Utilities are using ESS having long operating life to time-shift major
investments on distribution system such as the construction of new circuits and
installations of additional transformers, overload sensors, etc. Time shifting is the
process of storing electrical energy when demand is low, or supply is in excess, and
using it during demand peaks [14]. This process requires an established commu-
nication link between the utilities and ESS systems for necessary observability and
controllability reasons. As a result, energy consumption can be managed in response
to energy supplies, and energy stored during excess renewables generation can be
used when they have greater economic values [16]. Practical energy shifting case
considering ESS deployment are depicted in Figs. 6 and 7, respectively.

In Fig. 6, the utility depends on the energy from the generator (or electricity
supply from the transmission company) and PV systems to meet its time-varying
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Fig. 6 Storing excess PV energy in ESS from 9 AM to 4 PM [14]
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Fig. 7 Using ESS energy from 5 PM to 12 AM [14]

load across 24-h of the day. However, with the ESS system, excess energy produced
by the PV is stored and re-used later. As seen in Fig. 7, the energy stored in ESS
was re-used between 5 PM and 12 AM. After 9 PM for instance, there is no longer
production from the PV and a no longer necessary to depend on energy from the
generator. The excess or un-used energy have been successfully shifted to the later
time and used to supply the demands for the rest of the day. In this way, utility
will save significant energy cost because of the ESS deployment. However, ESS
deployed must be sized according to the load demand for those hours.

1.6.2 From the Company or Large Business (Such as Medium and Large
Industries) Perspective

High energy consumption can result in increasing operation cost and expenses.
Minimizing this cost is the concern of most business and enterprise for profits. For
companies that utilize renewable energy, ESS can become a solution for reducing
operating costs and energy charges and tariffs from the utilities. This will also
enhance supply during outages of electricity from the utility [16, 17]. The following
figures illustrate the demand charges reduction situation with ESS support from
R$1200 to R$900, saving R$300 per month.

Usually, demand charges consider the demand peak rather than the actual energy
consumed. By deploying ESS however, the demand peak can be shaved thereby
reducing the demand charges. Given the demand charge of R$3/kW, Fig. 8 shows
the demand charges before peak shaving at a total cost of R$1.200 per month. After
the deployment of ESS, as shown in Fig. 9, the peak was shaved (where the shaved
load is met using the ESS energy) to 300 kW which resulted into saving R$300 per
month.
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Fig. 9 Demand charge reduction after peak shaving [16]

1.6.3 From the Off-Grid and Microgrid Perspective

Electricity supply may be short and inadequate in most remote areas and many
users may seek to get energy from alternative sources such as diesel generators
which are costly and have high negative environmental disadvantages. With the
development of off-grid and microgrid with renewable energy resource mix, remote
areas can rely on independent, cheap and environmentally friendly energy supply.
In this case, ESS acts as a baseload energy source where cost of fossil fuel generator
can drastically reduce to minimum [18]. Specific case of limiting diesel generator
reliance in remote areas are presented in Figs. 10 and 11. The examples show the
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Fig. 11 Switching-off fuel-generator and using ESS energy from 5 to 8 AM and 5 PM to 12 AM

(20 24 h) [18]

case of ESS acting as load-varying source where generator is only used when ESS is
needed to be recharged. The advantages of this is related to the fact that the generator
operates at its peak efficiency and the costs of fuels and maintenance are minimized.

During the first 24-h, both generator and PV are used to meet the demand and to
fully charge the ESS systems as depicted in Fig. 10. For the next 24-h, only the PV
and ESS supply most part of the load as seen in Fig. 11. However, to determine the
overall benefit of the ESS, thorough economic analysis is needed. In the following
section, ways to understand and evaluate the economic worth of ESS are discussed.
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1.7 Evaluating the Economic Worth of ESS

Cost is a key factor when choosing ESS for a given application to meet eco-
nomic goals. In most cases, capital cost has been used to determine and justify
the economic worth of deploying ESS. However, while capital cost may be a
major factor when choosing ESS technology, Levelized Cost of ESS (LCOE)
is currently been used for evaluating long-term benefits of ESS acquisition in
a period of 25 years. The advantage of this method is that the recurring cost
of maintenance, operation and replacement in a long-period situation are easily
evaluated and compared with the cumulative savings that is being generated
by ESS deployment. Several models exist in literature according to specific
need. A model for calculating LCOE is given in [14] and presented in Eq.
(1).

LCOE =
∑

(Ct + OMt + Cht) .(1 + rd)−t

∑
Et .(1 + rd)−t

(1)

where;

• Ct = Total capital expenditures
• OMt = Operation and maintenance costs,
• Cht = Charging cost,
• Et = Discharged electricity in MWh, and
• (1+rd)t = Discount factor, in year t.

Since determining the right choice of ESS may be quite challenging, the
factors in the following sections can help in choosing most appropriate ESS
technology for given application in addition to the ESS specifications mentioned
earlier. In Fig. 5, key parameters which represents the ESS technology suitability
for power application are presented [9]. However, since these parameters vary
significantly across technologies, the need to obtain the best choice becomes evident
considering the technical and economic values of ESS for different power system
applications. Generally, how to minimize cost, energy lost and maximize profit
is the baseline for ESS consideration in systems with high renewable energy
resources.

1.8 ESS Sitting and Sizing and Need for Optimization

Several questions will likely arise if planning for ESS for either small scale or large-
scale applications, such as:

• The cost and type of ESS storage to apply
• Timeframe to deploy ESS storage system (ranging from hours to years)
• The sizing of the ESS (in kWh or MWh)
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• ESS peak instantaneous power provision (in kW or MWh)
• ESS cycling frequency (in multiple times, daily or infrequently)
• Consideration for renewable energy support (Solar or Wind or Solar-Wind or

None)
• Type of application where the ESS will apply
• The ESS location in the system

In principle, such questions can be addressed by evaluating all individual storage
application alternatives, one by one. In practice however, the number of storage
application options can be very large. In distribution system, this number will
depend on the number of system buses and ESS to be installed, making the
alternative evaluation process time consuming. As a result, optimization methods
are essential and can be adopted to solve similar complex problems. Rather than
evaluating every possible storage alternative, the optimization tool produces storage
alternatives itself, where the evolution of a new group of options is constructed based
on the evaluation results of previous sets, thereby producing an optimal storage
alternative for given optimization objectives and constraints. The following section
provides a basic introduction to optimization techniques and algorithms used in
power system applications [6, 19].

2 Optimization Methods

Figure 12 shows the optimization methods that exist in literature and its classifi-
cations according to [20]. The two major group are deterministic and stochastic
methods. The stochastic method deals with uncertainty and perform probabilistic
solutions based on scenarios. The deterministic method is normally based on real
data and does not deal with uncertainty and risk.

2.1 Stochastic Optimization

As presented in Fig. 12, stochastic optimization is divided into two major groups—
heuristic and meta-heuristic methods, which are closely related but with little
differences [20, 21]. Meta-heuristic (also known as modern heuristic) optimization
have been widely applied to power systems [22]. The following section briefly
discusses the heuristic method and provide a detail optimization approach of meta-
heuristic optimization in the subsequent.

2.1.1 Heuristic Optimization

According to [21], heuristics solution method is based on trial and error approach.
This technique is useful to solve complex optimization problems with the possibility
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of need a comparative short time, although might not guarantee an optimal solution.
The low processing times make these methods advantageous to many engineers.
Sometimes, this technique may not perform well especially while trying to find
optimal points to a complex combinatorial optimization problem, however some
good solution points can be easily and quickly reached. In other words, an
approximate solution may be found for any complex optimization problem. Its main
objective is to generate some quick and good solution for a given problem in a
reasonable time. The best solution may not be met, or the solution algorithm may
just approximate the exact solution. Superior and more robust to the heuristics are
the Meta-heuristics which have been developed in recent times. In literatures, both
heuristics and meta-heuristics have been used interchangeably but it is important to
note their differences, practical use and application limitations.

2.1.2 Meta-heuristic Optimization

Meta-heuristics are optimization algorithms or techniques that are developed with
more robustness for solving complex optimization problems. The solution provided
by this method is more satisfactory since it can meet optimal solution points though
in significant time scale. According to [21], meta-heuristics generally performs
better than ordinary heuristics. The meta-heuristic approach adopts specific ran-
domization trade-offs and local search. With randomization, transiting from the
local to global search can be realized. As highlighted in Fig. 17, Evolutionary
Algorithms (EAs) are one of the methods considered as meta-heuristic methods.
They are discussed in the following section.
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Evolutionary Algorithms (EAs)

According to [23], an evolutionary algorithm (EA) is a genetic population-based
algorithm characterized by fitness function. It is also be defined as a variation-
driven meta-heuristic optimization algorithm governed by the theory of biological
evolution, (e.g., reproduction, mutation, recombination, and selection). EAs aim to
optimize a given process so that better or new solutions are generated from existing
or old candidate solutions. EAs are associated with a fitness function which also
determines the quality of the solutions. If there exist several solutions, the best
solution among many others is determined by the fitness value associated with
the individual solution as obtained from a fitness function. Variation is usually
introduced into the fitness function to ensure that acceptable solution is found in
the current population [23]. In this way, a better solution is generated as individual
solution undergoes several changes. EAs exist in various types, and they differ in
their genetic representation, nature of the problem and details of the implementation
approach applied. An example is genetic algorithms presented in the following
section [24].

Genetic Algorithms

According to most ideologists, GA was formulated to solve optimization problems
based on the theory of natural evolution [24]. By definition, GAs are adaptive
heuristic search algorithms that are based on the evolutionary and genetic theory. In
GAs, the ideas of genetics and natural selection are employed using some intelligent
random search processes to provide solution to given optimization problems. They
adopt historical data sample to find better solution within the candidate solutions
or search space. This process involves simulation of natural systems according to
Charles Darwin theory of the fittest survival. GAs are robust and performs better
compared to other stochastic [25]. Unlike the conventional AI solution, they are not
affected with slight change in the input parameters or with significant noise level.

Unique characteristics that defines GAs are as follows:

• There is competition among individuals in a population for the purpose of mating.
• Parents with better genes have more likelihood to produce more and better

offspring than parents with poor genes.
• Successive generations become more suitable in their environment.

As soon as the population has converged and offspring with conspicuous
differences evolved from the population in initial generations, the solution algorithm
converges, giving rise to set of solutions that meet the optimization problem.

Solution Search Space
Individuals in the population represent chromosomes and their variables represent
genes, thus the solution is a chromosome which has a set of variables or genes
(See Fig. 13). By assigning fitness values to each solution space which represent the
ability of the individual member to compete, individual with the fitness value closest
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to the optimal solution is sought. This solution selection or breeding produces
offspring that are better than the parents by combining or manipulating their
chromosomes [24] (See Figs. 13, 14 and 15).

GA based on natural selection, are implemented through three major processes.
which is selection, crossover, and mutation processes.

Selection Process
Selection process performs as follow;

• it permits better individuals to replicate their genes in the next generation.
• the better the function of the individual fitness is, the better the individual.
• Fitness can be defined by a specific or multiple objective function.

Crossover Process
Crossover process analogous to mating between individuals is described as fol-
low;

• random selection operation is used to select set of individuals to produce set of
new offspring.
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• the set of new offspring produced are transferred into the population of the next
generation where new and better generations are produced by recombination as
shown in Fig. 14.

Mutation Process
Mutation is the process of introducing random modifications. Figure 15 presents the
pre and post mutation situations where the set of new individuals have their colours
flipped.

The processes of implementing the genetic algorithm is presented in the GA
algorithm flowchart presented in Fig. 16.

Swarm Optimization

Swarm optimization takes its initiative from the behavioral concept of flock of bird
or swarms of fish. The optimization problem consists of a population of swarms
that flow in trajectories driven by self and neighbors’ best abilities. This exchange
or flow of information among particles takes place through the local neighborhood
or the entire global swarm initiative [26]. In the following section, particle swarm
optimization concept is discussed.

The Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a meta-heuristic global optimization method
which is based on swarm intelligence concept [27]. The candidate solutions in PSO
are called “particles”. From a given h particles, the position of the ith particle in the
h particles can be defined by vector ui as;

ui = [ui1ui2ui3ui4 . . .uis ] (2)
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The swarm is a population of h candidate solutions and can be represented as:

u = {u1,u2,u3,u4, . . . ,uL} (3)

To search and find the optimal solution in the search space (or in an iterative
sequence), the particles trajectories will be dependent on the equation of motion as
given in Eq. (4) to update their given positions.

ui (n + 1) = ui (n) + vi (n + 1) (4)

where n and n+1 are successive iterations of the optimization algorithms and vi

is the velocity components of the ith particle in the q-dimensions. The movement
pattern of individual particles is dictated by the velocity vector. The particle
movement is governed by its inertia, cognitive and social components. The iner-
tia keeps the particle from an erratic motion such that it keeps track of its
previous direction of flow. The cognitive component explains the willingness
of the particle to remain to its initial best position, whereas, social component
is the tendency of the particle to migrate towards the best position of a local
neighbourhood or the entire swarm. Thus, the ith particle has a velocity described as
Eq. (5).

vi (n + 1) = vi (n) + c1
(
pi − ui (t)

)
r1 + c2 (g − ui (t)) r2 (5)

where pi refers to the particle personal best which is the coordinates of the existing
best solution obtained, and g is the global best. c1 and c2 are the cognitive coefficient
and social coefficient, respectively. They also refer as acceleration constants. r1 and
r2 are diagonal matrices of random numbers with a uniform distribution of [0,1].
These meta-parameters (e.g., c1 and c2) have great influence on the final result
and thus are key factors in designing efficient optimization algorithms [28, 29].
Equations (4) and (5) follow an iterative process that are repeated until an ending
condition is reached. The basic PSO algorithm can be represented by the following
process:

1. Initialization

For the h particle;

• Initialize the particle position ui(0) ∀ i ∈ 1 : h
• Initialize the particle’s best position pi(0) = ui(0)
• Evaluate the fitness function such that if f(uj(0)) ≥ f(ui(0)) ∀ i = j, then

initialize the global best as g = uj(0)

2. To meet the stopping criterion, the following steps are repeated;

• Update the particle velocity;

vi (n + 1) = vi(n) + c1 (pi − ui(t)) r1 + c2 (g − ui(t)) r2
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• Update the particle position ui(n + 1) = ui(n) + vi(n + 1)
• Evaluate the fitness function f(ui(n + 1))
• If f(ui(n + 1)) ≥ f(pi), update personal best at pi = ui(n + 1)
• If f(ui(n + 1)) ≥ f(g), update global best at g = ui(n + 1)

3. End the iteration process and present the final best solution as g

Initialization of the particle’s position and velocity
The initialization process determines the probability of the particles travelling
within the search space boundaries. This property has an influence on the solution
convergence of the optimization problem. According to literatures, the particles’
positions initialization can be governed by the following equation [30].

uij (0) ∈ R
(
uj ,min,uj ,max

)
(6)

where uj, min and uj, max determines the lower and upper limits of the jth size of
the solution space, respectively, and R is a random number generator function.
Its main function is that it increases the convergence speed of the optimization
algorithm [31]. However, caution must be taken as this may lead to the particles
violating the solution space limits, leading to the non-convergence of the algorithms,
the phenomenon known as velocity explosion [30, 32]. The initial positions are
guaranteed by making the initial velocities as small random numbers [30].

Determination of the acceleration coefficients
According to Eq. (5), the acceleration coefficients c1 and c2 determines the tendency
of the particles to migrate towards the self and global best and increasing the
social and cognitive terms. The effect of these coefficients has been investigated
in [26] relating to the convergence capability of the method and it showed that high
acceleration coefficients increases the particle’s oscillation frequency around the
optimum and low values lead to sinusoidal behaviour. The conditions to obtain the
best solution is defined as: c1 = c2 = 2.

Preventing particle’s velocity explosion
Different methods are proposed in the literatures to damp the particle’s oscillations
across the search space and enhance easy convergence. The most common methods
include velocity clamping and inertia weight inclusion concepts [28].

Velocity Clamping Concept

The velocity clamping imposes a boundary on the maximum velocity of the particle
in the search space limits. By introducing a velocity limits into the algorithm, the
following parameters are adjusted based on the following criteria;

If vij (n + 1) > vmax
j , then vij (n + 1) = vmax

j (7)

If vij (n + 1) < −vmax
j , then vij (n + 1) = −vmax

j (8)
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where vij(n + 1) is the velocity component of the ith particle in the jth direction
during (n + 1)th iteration and vmax

j is the maximum velocity. The best value of vmax
j

could be chosen as in [28] considering the difficulty to find the best value.

vmax
j = σ .

(
uj ,max − uj ,min

)

2
σ ∈ (0, 1) (9)

where σ is a constant that assumes any value between 0 and 1.

Initial Weight Rule Concept
The second method that is used to prevent the explosion of the velocity is by
introducing inertia weight ω(n + 1) to update the particle velocity [33]. The inertia
weight introduced in [33] is a constant. Studies showed that its dynamic changes
significantly influence the convergence properties of PSO. Choosing the inertia
weight greater than 1 favour global search and a value less than 1 favours local
search [34]. The velocity update rule concept is governed by the following equation:

vi (n + 1) = ω (n + 1) .vi (n) + c1
(
pi − ui (t)

)
r1 + c2 (g − ui (t)) r2 (10)

The dynamic adjustment approaches adopted in literatures for evaluating inertia
weight for a given optimization problem are presented as follows [29–31, 35].

• Chaotic descending inertia weight:

ω (n) = ω (0) − ω (nmax))
(

nmax−n
nmax

)
+ ω (nmax) z; z = 4r (1 − r) ; r ∈ R (0, 1)

(11)

• Chaotic random inertia weight:

ω (n) = 0.5r1 + 0.5z; z = 4r2 (1 − r2) ; r1, r2 ∈ R (0, 1) (12)

• Inertia weight of the global-local best:

ωij (n) = 1.1 −
(

pij (n)

gj (n)

)
(13)

• Random inertia weight:

ω (n) = 0.5 + r

2
; r ∈ R (0, 1) (14)

• Constant inertia weight:

ω(n) = ω = constant (15)
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• Linear decreasing inertia weight:

ω(n) = ωmax −
(

ωmax − ωmin

nmax

)
n (16)

The linearly decreasing inertia weight proved superior in many practical appli-
cations, adopting ωmax = 0.9 and ωmin = 0.4 [35]. In [34], a set of benchmark
functions for optimization showed a faster convergence situation with random
inertia weight, and, the chaotic descending inertia weight showed consistency in
terms of lowest average error for over 25 repeated simulations. Both constant
and linearly decreasing inertia weight strategies also lead to total lowest errors
[30].

2.2 Optimization Formulation Representation for ESS
Problems

2.2.1 ESS Modelling

Solving ESS sitting and sizing problem for DG support depends on the objective
function to minimize or maximize. Since renewable energy like solar or wind are
subject to climate variations, it is difficult to precisely determine the timescale solar
or wind generation, and to predict changes in their behavior. Consequently, energy
generation by these sources are evaluated based on probabilistic approach. Thus,
stochastic optimization considers the DG and load uncertainties and determines
where ESS should be included and managed to support DG. There are several kinds
of stochastic approaches to determine ESS site and size, but mostly they are based
on the following formulation.

2.2.2 Objective Functions and Control Variables

Depending on the problem to consider, several approaches of the ESS size and
allocation can be. In this case the control variable would be the ESS size and
location, with the “best” value that must be determined subject to the objective
formulated. Some of the objectives which can be considered in the ESS sitting
and sizing problem are minimization of power losses, operational cost, voltage
variation, Expected Energy Not Supplied (EENS), and or maximization of voltage
limits satisfaction, Consumer benefit and Utility’s profits, among others.

These objectives affect consumers, distribution companies, DG owners among
others. Depending on the affected group, some objectives that are good for one
group could have negative impact on another. For example: consumers are more
focused on electricity cost reduction but maybe unconcerned with the network
behavior especially during high system loading. Considering these aspects, an
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objective function can be defined as in Eq. (17).

Min Fo; Max Fo (17)

where Fo is the objective function, and its defined in relation to the ESS use.
The objective function can be the energy cost (Cost for energy production), losses

cost (Cost related to system losses), DG cost (Cost for installation and operation of
DG), and ESS cost (Cost for installation and operation of the ESS).

2.2.3 ESS Constraints

First, a major consideration for ESS is its charging and discharging capacities. Both
State of Charge (SOC) and Depth of Discharge (DoD) are parameters usually used
for limiting the ESS power injection. The SOC is calculated by [5, 36]:

SOCi,t = CESS,t

CESS,max
(18)

DODi,t = 1 − SOCi,t (19)

0 ≤ ∣∣PESSi,t

∣∣ ≤ PESS,max (20)

CESS,min ≤ CESS,t ≤ CESS,max (21)

CESS,t = CESS,t−1 + (
PESS,t eff

)
�t (22)

where SOCi, t is the SOC for the ith ESS; CESS, max a the rated energy capacity
(usually in MWh or kWh, and CESS, t the energy capacity for the time t); DODi, t

is the DOD for the ith ESS; the power injection/consumption made by the ith ESS
is PESSi, t, and the rated power capacity of the ESS is PESS, max (Usually in MW or
kW); the minimum and maximum energy allowed in each state of time are CESS, min

and CESS, max, respectively and the energy capacity of the ESS is CESS, t; eff is the
efficiency of charging or discharge of the ESS, and the time step of each time interval
is Δt (in seconds, minutes, or hours)

2.2.4 Network Constraints

Power Flow Formulation
A power flow analysis calculates the current injections and voltages in the dis-
tribution system, and consequently helps to quantify system loses, and voltage
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deviations. The inclusion of this formulation is important if the method considers
network constraints for ESS planning. Some methods that focus on economic
approach only (Market arbitrage and prizes) may not need a power flow formulation
[37], but for a more detailed analyses with technical impacts this maybe important.
The balance load equation considering DG and ESS is [38]:

A∑

j=1

PDj,t + Ploss,t =
B∑

i=1

PDGi,t +
C∑

i=1

PESSi,t (23)

where A, B and C, are the total number of nodes, DG units and ESS units
respectively. PDj, t is the load demand for the bus j, Ploss, t is the network losses
for each time step PDGi, t is the DG power injection located at node j, and PESSi, t is
the power input/output by the ESS at node i at time t.

Usually, for the PESSi, t, as positive value indicates discharging (power injection)
and PESSi, t, as a negative value indicates that the ESS is charging. Considering these
conditions, the real and reactive parts of the power flow equations are [37, 38]:

B∑

i=1

PDGi,t +
C∑

i=1

PESSi,t −
A∑

j=1

PDj,t = Ui

∑
Uj

(
Gij cosθij + Bij sinθij

)
(24)

B∑

i=1

QDGi,t +
C∑

i=1

QESSi,t −
A∑

j=1

QDj,t = Ui

∑
Uj

(
Gij cosθij + Bij sinθij

)
(25)

where the real and imaginary parts are the bus admittance matrix are Gij and Bij and
the angle difference between the i-th and the j-th buses is θ ij, the active and reactive
parts are P and Q, and Ui and Uj are the voltage at bus i and is j respectively. For
simplicity purposes in the calculation, the reactive injection/consumption of the ESS
and DG can be disregard.

To model the network impact, it is considered current and voltage limits in
each bus of the distribution system. The line current and voltage at the buses are
constrained by [37, 38]:

Imin ≤ Iij,t < Imax (26)

Vmin ≤ Vj,t ≤ Vmax (27)

where Imin is the minimum allowed current, Iij, t, is the current for the line ij, and
Imax is the maximum allowed current, Vmin the minimum allowed voltage, Vij, t the
voltage at bus j and Vmax the maximum allowed voltage.

The network constraints can be modelled as a linear model, which requires some
approximation, or as a nonlinear model, which requires nonlinear optimization
techniques or heuristic techniques to be solved. The power flow problem can
be solved by licensed software like, OpenDSS, DIgSilent, and other available
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proprietary power analysis software. Computer solutions are often sought based on
robustness and speed, and extra coding involving power flow can be totally avoided.

2.2.5 Forecasting Uncertainties

Considering the random behavior of renewable sources and load, the stochastic
optimization makes a probabilistic solution to forecast the uncertain and give a
possible solution. Consequently, some models create different scenarios of the
system to have critical and expected responses. These scenarios are considered for
optimization problems usually applied in planning horizons of days or years [39].

2.2.6 Load Forecasting

Gaussian cumulative distribution function can be useful in order to predict the load
behavior. The formulation is given by [39]:

fL(L) = 1√
2πσ 2

L

exp

[
− (L − μL)2

2πσ 2
L

]uc

lc

(28)

where the mean and standard deviation of the load are σ L and μL, respectively, and
maximum and minimum values of the load are lc and uc, respectively

After this formulation a curve fitting method is used for estimating the distribu-
tion parameters for simulation of the load demand on timescale basis.

2.2.7 Wind Generation

In order to represent the random characteristic of wind speed, a Weibull probability
distribution function is used. The probability density function, before and after
performing a linear transformation for the wind power, is given by [40, 41]:

fu(u) = ku

Cu

[
u

Cu

]ku−1

exp

[
−
(

u

Cu

)ku
]

(29)

fw(u) = fu

(
w − bw

aw

)[
1

aw

]
(30)

where the forecast error probability density function of wind speed is fu(u) and for
the wind power is fw(u), the wind speed, and wind power are defined as u and w and
ku, Cu, aw and bw are used for the probability function parameters.
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2.2.8 Representation of Solar Power

Solar radiation uncertainty depends strongly on weather conditions. As a result, a
clearness index is used in order to consider this parameter. The stochastic behavior
of the clearness index can be defined by a Beta distribution function as given in Eq.
(31) [42]:

fcl (kt ) = � (ak + bk)

� (ak) � (bk)
k
ak−1
t ∗ (1 − kt )

b−1 (31)

where the forecast error probability density function used for the clearness index kt,
is fcl(kt) is, ak and bk are the Beta distribution function parameters, respectively.

3 Perspectives and Future Works

The proliferation and market penetration of ESS may be gradual, then there are
many possibilities for new studies and applications. Some studies have already
been done to investigate the potential of ESS application in distribution systems,
showing excellent performance in terms of reliability, losses, voltage regulation,
and profit/cost reduction. Nevertheless, ESS support for high DG implementation in
distribution system may require a lot of time to be fully integrated in most countries.
Some countries are currently evaluating ESS use but mostly on a laboratory and not
used on consumer or utility scale [36]. Also, the development of different types
of ESS for smart grid technologies, demand side approach, and electric vehicle
use introduces researchers in power systems to more challenges which will create
new opportunities for investigating wider and future applications. In the following
section current studies and perspectives for ESS application are presented and
discussed.

3.1 Smart Grids vs. Transmission Reinforcements

The conversion of the distribution networks to fully automated infrastructure may
become costly but will delay some investment in network reinforcement. The
migration to a more distributed system with less transmission lines may happen
considering large ESS systems like CAES, to guarantee energy availability all the
time [43–45]. With these two contradictory perspectives, there is need for studies
on the costs of ESS projects and select the best alternative. Thus, multi-objective
models are prior to new investigation of ESS use in distribution systems.
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3.2 Dynamic Pricing Response and Real Time Operation
with DG Generation Prediction

With the DG behavior and demand response policies, dynamic pricing will affect
consumer and its decisions [39, 46, 47]. In this context, ESS optimization is an
approach to manage consumer behavior and match prices for generation considering
risk reductions (for DG stochastic behavior) and capacity limits. Also, the need
to reduce stochastic behavior of DG is evident as Wind and Solar Photovoltaic
generation grow around the world. Stochastic models are used to predict the random
behavior of DG to precisely determine energy available and uncertainties. The
accuracy for the real time measuring is also important in order to determine the
load behavior exactly as it is needed [43]. Thus, models with ESS for real time
control and consideration for error measurement will be interesting.

3.3 Multiple ESS System Control and Type Selection

Most studies attempt to optimize distribution systems considering a small number
of ESS units [4, 36, 43, 48]. However, considering a bigger participation of DG
and ESS units, new robust optimization models are required for ESS energy
management in order to reduce operational costs. This could be useful if the DISCO
has the control of the ESS and regulate each operation in order to guarantee a more
efficient energy supply. As suggested in literature, there are several types of ESS,
and each one has specific characteristic in terms of power capacity, costs, energy
capacity, depth of discharge, self-discharge rate, lifetime among others [36, 49, 50].
In this way, ESS type selection could be useful to consider the suitable technology
for each application in the distribution system. With the correct type selection, costs
of projects installment and operational costs may reduce.

3.4 Reconfiguration and Reliability

ESS concept can ensure system reconfiguration in order to guarantee a better
reliability [5, 48, 51]. In this case, it is important to analyze how ESS can improve
SAIFI and SAIDI indices with DG penetration, and to ensure that its use will reduce
further investment requirements for lines, switches and other protection devices.

3.5 Voltage Regulation and Ancillary Services

ESS units can be used to improve voltage profile. Recent studies carried out
optimal voltage and/or frequency control with ESS [52–55]. In this case, comparison
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of advertence of replacement or support of voltage regulator devices with ESS
was presented. Also, studies on economic incentives for frequency regulation and
regulatory framework to determine the ESS best operational use can emerge.

3.6 ESS Environmental Impact

Optimizing the ESS capacity and also selecting the best technology, considering
CO2 emissions/reductions, and other environmental impacts that may have ESS use
in the system can also become a major focus [4, 42, 56]. Environmental concern
also considers the grow of solar and wind generation, and the comparison with coal-
based technologies use. Studies also must investigate if consumer behavior match
with DISCO interests, and how economic incentives could be used to satisfy each
part involved considering systems efficiency, consumer needs, and environment.

3.7 Electric Vehicle Station and Mobility

With the growth of electric vehicles and electric vehicle stations (ESV), the ESS
potential also could be coordinated with the ESV but it must consider consumer
behavior in terms of charging and discharging, mobility interests and costs impli-
cations [40, 57, 58]. The optimal location of ESS could be affected as the ESV
grow considering that the optimal point for generation and charging could change
as the vehicle demand for energy and supply varies in a dynamic way and could
be in different points along the days. Stochastic optimization models to predict this
behavior could be useful but it is important to have historical data to investigate the
consumer perspectives.

4 Practical Examples

4.1 Example One

In the following example, a few ESS storage is proposed to be deployed at a given
distribution bus to support its installed PV system. A Hybrid Optimization Model
for Multiple Energy Resources (HOMER) proprietary software is used to find the
solution. HOMER has the capacity to simulate hybrid renewable electric generation
systems on hourly basis [59]. The ESS type and specification for the PV support are
given in [60] as presented in Table 1.
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Table 1 ESS type and specifications for PV support [60]

Description ESS type (Surrette 4KS25P)
Manufacturer Rolls/Surrette
Nominal ESS capacity 1900 Ah
Nominal ESS voltage 4 V
ESS round trip efficiency 80%
ESS min. state of charge 40%
Float life of ESS 12 years
ESS max. charge current 67.5 A
ESS max. charge rate 1 A/Ah
ESS lifetime throughput 10,569 kWh
Suggested value 10,494 kWh
Capacity ratio 0.254
Rate constant 0.528 1/h
ESS charge voltage range 2.45–2.5 V/cell @ 25 ◦C (77 ◦F)
ESS float voltage range 2.25 V/cell @ 25 ◦C (77 ◦F)
ESS self-discharge rate 5–10% per month at 25 ◦C (77 ◦F)

Table 2 Search space and possible combination of ESS for PV support

ESS search space 1 2 3 4 5 6 7

Battery strings 0 4 32 64 128 256 512
Battery per string 3 3 3 3 3 3 3
Possible combination 0 12 96 192 384 768 1536

The HOMER optimization algorithm searched the optimal size of the ESS to
support both technical and economic performance of the distribution bus. Table 2
shows the search space and possible combination of ESS for the PV support.

In Table 2, the system performance was evaluated by including and testing each
possible combination of ESS (from space 1 to 7) on the distribution bus to determine
the actual number of ESS that will result into optimal benefit.

The performance characteristic of the ESS in terms of its capacity and discharge
current is presented in Fig. 17.

Figure 17 shows how the ESS capacity decreases with the increase in the
discharge current. Literally, this information is important to determine the number
of ESS that will be needed for the PV support depending on the load to be fed;
the higher the load the higher the capacity of the ESS. To support this point, the
relationship between ESS capacity and discharge current is presented as a function
of hour rate in Fig. 18.

In Fig. 18, a load of 19.04 A can be fed by ESS capacity of 1904 Ah for up to
100 h, while a load of 456 A will be met by ESS of 459 Ah capacity for only 1 h
before the ESS reaches its discharge limit. Therefore, ESS capacity is chosen based
on the amount of load and number of hours of electricity supply. The Failure cycles
and Lifetime throughput in relation with Depth of discharge are presented in Fig. 19.
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As shown in Fig. 19, as the ESS percentage depth of discharge increases, its
failure cycles decrease but increases its lifetime throughput. For this reason, ESS
charging and discharging should stay within appropriate thresholds to enhance its
total lifespan.

Based on the ESS specifications, the network architecture for different oper-
ational scenarios is examined. Figure 20 shows the network architecture of ESS
optimization for PV support.

According to the optimization algorithms and selection, four scenarios of
network architecture which include: Grid only, Grid plus ESS, Grid plus PV and
Grid plus PV plus ESS were considered, and their performances were examined.
Under these conditions, Fig. 21 shows the unmet load for each network architecture.

As shown in Fig. 21, there were situations where significant amount of load was
not met due to capacity shortage as presented in Fig. 22. The largest unmet load was
observed with Grid plus PV architecture. There were no unmet load considering the
Grid plus PV plus ESS architecture, adding that ESS can support Grid/PV systems
to enhance supply reliability (i.e., availability and adequacy).
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Fig. 23 Network excess energy

Figure 22 shows that the Grid plus PV plus ESS has no capacity shortage
limitations. It is also worth noting that the Grid plus ESS architecture will present
capacity shortage limitation while charging the ESS and meeting the entire system
load at same time. This is because, the total power purchased from the grid is
limited to 400 kW only. However, as observed in the 66th hour, the Grid plus PV
architecture has the largest capacity shortage limitation since the maximum grid
power purchase is limited to 300 kW and PV supply at this hour is too low to
meet the total system load. Considering the intermittent nature of the PV supply,
its tendency to produce excess power in the system during low load situation is
examined as presented in Fig. 23.

Figure 23 shows that only the Grid plus PV architecture produces power in
excess in the period of 116 h. Consequently, considering the limitation of each
network architecture, only Grid plus PV plus ESS architecture satisfies all technical
performance and best economic benefit as presented in Figs. 25–28. The operation
situation of the Grid plus PV plus ESS architecture for a period of 72 h is presented
in Fig. 24.

Figure 25 presents the initial capital and total net present cost for each architec-
ture.
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In Fig. 25, the Grid plus PV plus ESS architecture has the highest initial capital
cost, however, its total net present cost is lower compared to other architectures. This
shows that in term of cost, Grid plus PV plus ESS architecture is more economical
for the period of 25 years considered in this case study. The energy cost per hour is
presented in Fig. 26.

By defining the hourly grid power price and grid sellback rate, ESS energy cost
fluctuates around $0.30/kWh for the Grid plus PV plus ESS architecture. In addition,
as presented in Fig. 27, the architecture possesses lowest levelized cost of energy.

Table 3 compares the Grid plus PV plus ESS with other architectures in terms
of present value, annual worth, return on investment, internal rate of return, simple
payback and discounted payback values

In conclusion, the optimization and deployment of ESS to support (control
and regulate) high renewable resources in the distribution system is necessary for
technical and economic reasons, and the results presented in this study has proven
so.
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4.2 Example Two

The following example attempts to reduce the cost of operation and losses of a
substation considering ESS deployment in 1 day of operation in a distribution
system with penetration of DG sources based on the ideas presented in Sect. 2. The
objective is defined by a fitness function Fit given in the following equation [55]:

Fit = CEHD + CELoss + CV Pen (32)

where CEHD is the total cost of energy for the substation, CELoss are the total loss
cost for the period under study, and CVPen are the penalties applied for violation of
voltage levels.

To determine the ESS operation, a nonlinear optimization problem is solved
considering the ESS capacity and electrical restrictions. The substation objective
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Fig. 28 Flowchart of the methodology based on [61]

Table 3 Grid plus PV plus ESS architecture comparison with others

Metric With Grid only With Grid+ESS With Grid+PV

Present worth $2,185,881 $2,294,889 $771,388
Annual worth $170,994/year $179,522/year $60,343/year
Return on investment 24.00% 29.10% 52.60%
Internal rate of return 25.60% 30.80% 58.70%
Simple payback 3.75 years 3.17 years 1.68 years
Discounted payback 4.38 years 3.63 years 1.83 years
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is a capacity minimization problem defined in Eq. (1) [61]:

min CEHD = min
24∑

j=1

CjP
HD
j �tj (33)

where Cj is the kWh cost for hour j, Δtj represents the time variation for the case
study and PHD

j is the substation capacity.
The substation capacity is defined for the ESS discharging and charging as in

Eqs. (2) and (3) respectively:

PHD
j = PL

j − PDG
j − PESS

j − PLoss
j j = 1 . . . ..24 (34)

PHD
ij = PL

ij − PDG
ij + PESS

ij − PLoss
ij j = 1 . . . ..24 (35)

where PL
ij is the load, PDG

ij is the DG power injection, PESS
ij is the ESS power, and

PLoss
ij is the power losses in the hour i and the day j.

The ESS constraints are formulated as presented in Eqs. (36)–(43) [61]:

0, 2 PCESS < PESS
ij < PCESS (36)

EESS
ij + PESS

j+1 �tj+1 > 0.2EESS
j j = 1 . . . .24 (37)

EESS
j + PESS

j+1 �tj+1 ≤ ECESS j = 1 . . . .24 (38)

24∑

j=1

∣∣∣
(
PESS

ij

∣∣∣ = 0 j = 1 . . . ..24, i = 1 . . . 365 (39)

PCESS = ECESS

tdn

(40)

σ
(
PHD

ij

)
< Desv1 j = 1 . . . .8 (41)

σ
(
PHD

ij

)
< Desv2 j = 8 . . . .16 (42)

σ
(
PHD

ij

)
< Desv3 j = 16 . . . .24 (43)

The ESS type is a NaS battery and constraint (36) is used to ensure that the ESS
State of Charge (SOC) remains at least in 20% after discharging or charging, as in
[41], and constraint (37) is used to limit the capacity and power injection of the ESS.
Constraint (38) affords that the ESS does not exceed its capacity of charging, where
the maximum capacity is ECESS. The standard deviation of the resulting power at the
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substation is denoted as σ
(
PHD

ij

)
. The constraint (39) was added to ensure that ESS

SOC final state remain the same as the initial state that started in the day (zero for
this case). Constraint (40) defines the power capacity of the ESS as the energy ESS
divided by the maximum duration of discharge/charge for the Battery (40 h for this
case). Constraints (41)–(42) were used to divide the power of the substation in three
levels during the day, in order to reduce abrupt demand variations. The time-levels
were divided into three groups, each one with a duration of 8 h. It should be noted
that the number of levels could be different in order to approximate the behavior
of the demand to a line, but for this case three levels was a good approximation.
Finally, Desv1, Desv2, Desv3 were assumed as the maximum allowable deviations
for the time-levels under consideration [61].

In a line, adapting the genetic algorithm and model based on [61], the provisioned
ESS are randomly allocated into the system until it reaches the best fitness value
for the project. The solution method determines the bus location, capacity, and
operation for the ESS. The power flow is solved using the OPENDSS software [62]
and is used COM interface with MATLAB for the Genetic algorithm solution [63].
A flowchart from Fig. 28 explain the method.

4.2.1 Test Case

The methodology is tested on the 33-node system in [64] and showed in Fig. 29.
The DG location also is the same as in [64] defined in Table 4 considering solar and
wind generation.

The real power/rated power indices for both Load and DG, are presented in Fig.
30.

A DG participation of up to 50% is considered with a power factor of 1, and
the load is reduced to 50% of its capacity as a result. Energy price is divided in
times as in [64], from 9:00 to 21:00, 0:00 to 7:00, 23:00 to 24:00, 7:00 to 9:00,
21:00 to 23:00, at 0.1876 $/kWh, 0.0608 $/kWh, 0.0608 $/kWh, and 0.1224 $/kWh,

0 1      2    3    4  5      6   7    8   10  11  12  13  14 15  16  17

25  26  27  28  29  30 31 32

18

19

20

21

22
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Fig. 29 Test system based on [64]
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Table 4 Location and Size
for the DG [64]

DG type Node location Rated active power (kW)

Wind 13 200
Wind 15 100
Solar 16 250
Wind 17 200
Solar 21 300
Solar 24 200
Solar 26 350
Wind 30 200
Wind 31 100

Fig. 30 Power/rated power relation for Load and DG [64]

respectively. The installed ESS energy capacity is bounded within 500 kWh and
2000 kWh.

The ESS capacity is deployed and tested on each system node—(from node 1 to
node 32), using sweeping process given a step of 15 kW and the total costs for each
case is evaluated. The results for the total costs for each node are shown in Fig. 31.

As presented in Fig. 31, the costs of the project reduce as the energy capacity of
the ESS increases. This is due to a reduction of the substation capacity with the ESS
use. Also, the ESS performed better for nodes that are nearest to the substation or at
the end of the feeder. In Fig. 32, the performance in terms of system energy loses is
shown.

Figure 32 shows that the nearest node (node 30) to the ESS system presented the
best performance in terms of loss reduction for ESS with the highest energy capacity
2000 kWh. It can be deduced therefore that the node closest to the ESS system will
yield the best performance in terms of cost and loss reduction as shown in Figs. 31
and 32 respectively.

Figures 33 and 34 show the performance in terms of the maximum and minimum
voltage, where the node voltages are bounded from 0.95 pu to 1.05 pu.
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Fig. 31 Estimated region of costs for the swept

Fig. 32 Estimated region of energy losses for the swept

Figure 33 shows that each case keep below the maximum 1.05 pu voltage
allowed. Nevertheless, as the ESS capacity increases and its position changes
between nodes 10 and 20, the maximum voltage was reduced.

In Fig. 34 the minimum voltage remain close to the critical value as the storage is
located close to buses 10–20. However, it should be noted that the case without ESS
presents a more critical behavior in terms of voltage (this will be presented later).
The minimum voltage approaches 1.0 pu while the ESS capacity increases and its
position changes to bus 30. Consequently, considering these performance trends,
ESS selection and deployment with highest capacity of 200 kWh favors node 30.
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Fig. 33 Estimated region of maximum voltage (pu) for the swept

Fig. 34 Estimated region of minimum voltage (pu) for the swept

In the following section, the results of the heuristic methodology considering the
GA method for ESS selection is analyzed. In this case, an elitism rate of 0.4, with
maximum of 80 generations for a population composed of 500 individuals with a
mutation rate of 1.5% are considered. After 28 generations, the solution emerged.
The solution determines the ESS with 1998 kWh of capacity to be located at bus 30.
The result is like the ones obtained using the swept process previously presented,
showing also that the GA successfully finds a good result. The selection results are
showed in Table 5. The cases considered are:

• Base Case: It is the original network without DG and ESS inclusions.
• Case A: It is the original network with DG inclusion.
• Case B: It is the original network with DG and ESS inclusions.
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Table 5 Results of the methodology

Case Vmin (pu) Vmax (pu)
Total energy
loss (kWh) Total cost ($)

% Energy
loss reduction
compared
with Base
Case

% Reduction
in total cost
compared
with Base
Case

Base Case 0.9360 0.9998 967.0 5829.4 – –
Case A 0.9499 1.0256 566.8 4136.5 41.4 29.0
Case B 0.9583 1.0220 514.7 4010.9 46.8 31.2

Fig. 35 Demand for the studied day

As shown in Table 5, the minimum voltage increases to 0.9583 pu with the ESS
inclusion, a higher value when compared with Case A and the Base Case in which
minimum voltage values remained at 0.936 pu and 0.9499 pu, respectively. In terms
of energy loss and cost reduction, Case B which included the ESS use performed
better than the Case Base and Case A, reducing the energy loss by 46.8% and total
cost by 31.2%. Consequently, the solution method of the GA for optimally selecting
the ESS capacity and location was able to minimize energy costs, losses and voltage
deviations.

Figure 35 shows the system daily demand for the three cases and improvement
in the substation behavior with the ESS use. In this case, the peak demands reduce,
and the curve trends have less variations. This is due to the reduction in the reverse
flows by the DG.

In conclusion, the results of the two given examples show the importance of ESS
selection and its performance for DG support in terms of losses, voltage, substation
capacity regulation, and operational costs reductions, by selecting accurately the
discharging/charging times for ESS operation considering capacity restrictions and
DG behavior. The results also show that heuristic methods like GA is a robust
solution method for solving optimization problems with ESS inclusion. It should
be noted, however, that the ESS installation, replacement, and operation costs, are
important aspects of the projects which were not considered in the second example.
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Also, a battery degradation model and type selection approach are important to
accurately model DG and ESS problems for a better possible outcome. Finally, the
information here presented are intended to encourage the readers to expand their
knowledge in optimization methods in power systems and increase their research in
ESS for renewable energy support.
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Distribution System Operation
with Energy Storage and Renewable
Generation Uncertainty

Alvaro González-Castellanos, David Pozo, and Aldo Bischi

Abstract The need for secure and flexible operation of distributed power systems
and the decline in prices for Li-ion batteries have made energy storage deployment
a viable option. The electric energy storage units’ characterization (including Li-ion
batteries) currently utilized for power system operation and planning models relies
on two major assumptions: the charge and discharge efficiencies are constant during
such processes, and the maximum charge and discharge rates are independent of the
system’s state of charge. This approach can lead to an over- or underestimation of
the available power and energy for supporting services such as frequency response
and load balancing; thus, threatening the overall system reliability. In this chapter,
we introduce an optimal stochastic operation model for distribution systems with
energy storage. We, firstly, present the power flow formulation for distribution
networks and derive its equivalent second-order conic reformulation. Secondly,
we introduce an ideal energy storage model and a new detailed linear model for
the state-dependent characterization of the unit’s charge and discharge processes.
Finally, we integrate the proposed model into a deterministic and stochastic
economic operation model of a distribution power grid to illustrate the benefits of a
detailed battery characterization, in comparison with the existing constant efficiency
approach. The proposed energy storage models are computationally compared on a
modified IEEE 33-bus electric distribution system.

1 Introduction

Electric distribution grids are moving from passive systems toward active ones due
to their digitization, the increase on renewable energy sources (RES) and distributed
generation (DG). Since the existing distribution systems were designed to operate
with the power flowing from the main substation to the users, the use of RES and
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DG risks violating the systems’ operating constraints via reserve flow direction [21].
Therefore, the installation of new RES in distribution systems requires an increase
in the systems’ generation flexibility to compensate for the variable nature of the
RES [25]. Additionally, non-controllable RES not only introduce stochastic load
unbalance but also voltage fluctuation issues in distribution networks [28]. Such
volatility experienced in the system forces to reserve capacity in the day-ahead
market for real-time load balancing [20].

The installation and proper use of energy storage systems would allow compen-
sating the intermittence and daily variability of RES generation by providing to
electric distribution grids, among others, the following services: minimization of
operational costs, provision of reserve capacity, peak shaving, and voltage stabiliza-
tion [29]. Energy storage systems also provide benefits for the long-term system
planning, like deferring grid reinforcements [5] and other associated compensation
technologies [24], e.g., flexible generation and reactive compensation.

To obtain the optimal economic operation of the system, it is necessary, in
addition to the above mentioned deterministic problem, to model and quantify the
uncertainty in the system’s management model. The distribution system operation
can be modeled through the use of probabilistic scenario-based stochastic program-
ming, where the scenarios represent the forecasted RES generation samples [27].
The first (day-ahead/scheduling) stage represents the purchase/sell of energy to the
electricity market and allocation of reserve capacity, as well as the commitment
of the distributed generation. The second (real-time/operation) stage depicts the
realization of the reserves (bounded by the allocated reserve capacity), and the
operation of the generation and energy storage units based on the forecasted RES
generation for the associated scenario.

The main contribution of this chapter is to outline the operation of a distribution
power network with renewable generation uncertainty and non-ideal energy storage
system while participating in the day-ahead energy and reserve market, and the real-
time market. This chapter describes the modeling of the main components of the
distribution system operation in a logical and modular way:

• Section 2 describes the power flow formulation, starting with the complete
non-convex alternating current (AC) model, followed by its second-order conic
programming approximation.

• Section 3 presents the ideal energy storage formulation and introduces the main
limitations for its application in real-time operation, deriving in a linear non-ideal
model for energy storage systems.

• Section 4 describes the deterministic unit commitment (UC) formulation for
the participation in the day-ahead market, including generation and storage
operation.

• Section 5 introduces to the unit commitment formulation the use of stochastic
information. The stochastic UC is modeled as a two-stage stochastic pro-
gramming model including the reserve allocation and realization. Each of the
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above-listed Sects. 2–5 conclude with a brief revisit to the introduced model and
its main characteristics.

• Section 6 applies the developed model to a test network, evaluating the impact
of the model selection on the optimal operation strategy (deterministic vs.
stochastic, ideal storage vs. non-ideal storage).

• Section 7 provides the main conclusions of this chapter.

2 Power Flow on a Radial Distribution Network

To describe the state of the electric distribution system in an accurate way, it is
necessary to efficiently model its power flow and capture not only the load balance
but also the voltage variation in its nodes. The set of equations that describes
them is known as the power flow equations, that in essence are the Kirchhoff laws
generalized to power grids. They are also called alternating current power flow
(AC-PF). AC-PF is a non-convex set of constraints, but it has a particular structure
in distribution networks due to their operation as a radial (tree-like) grids.

There exist many reformulations of the AC-PF that attempt to find useful math-
ematical properties on this set of equations. The classic approach is a linearization
of the AC-PF called, with an unfortunate name, linearized direct current (DC)
approximation.1 The linearized DC approximation is the most widely employed
for techno-economic studies and in electricity market applications [10]. The DC
approximation allows for a fast, albeit inaccurate, solution of the power flow
problem. However, since it does not consider the reactive power flow and voltage
drop in the network, the DC model becomes unsuitable for the study of distribution
networks.

During the last years, there has been increasing attention to new approaches
based on convexification, i.e. relaxation, of the power flow problem. A rich
literature of approximations based on convexification techniques tries to address
the characterization of the power system operation while maintaining convexity
and high computational efficiency [7], e.g., semi-definite programming (SDP) [19],
second-order conic programming (SOCP) [15] and quadratic convex (QC) [8]
relaxations, among others. Even though the SOCP relaxation is less accurate than
the SDP [18] and QC models [8], the SOCP model provides significantly faster
results than the SDP one, while providing the same lower bound on radial networks
[18], and a more intuitive formulation and interpretation of the results than its
counterparts. Therefore, the SOCP relaxation would present a stronger case for its
application in the economic operation in radial distribution networks.

1This formulation is not named in this manner because it is based on the direct (non-alternating)
type of current, but rather by the fact that its assumptions lead to the exclusion of reactive power.
Additionally, the DC approximation assumes a flat voltage profile, i.e., voltages fixed at 1 p.u., and
small differences between voltage angles.
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This section describes the full formulation of the electric power flow in distri-
bution networks. Section 2.1 introduces the general AC power flow equations, with
Sect. 2.2 deriving the second-order conic programming approximation of the power
flow in a distribution network. Finally, Sect. 2.3 points out the main inaccuracies
introduced by the convexified model when applied to radial networks.

2.1 AC Power Flow in Electric Networks

The power flowing in an electric network can be derived from the Kirchhoff’s
Voltage Law and the Kirchhoff’s Current Law. Consider the power line equivalent
circuit presented in Fig. 1.

The impedance Gnm − jBnm represents the series impedance of the power line,
while jbcha

nm its charging susceptance. The active and reactive power flowing through
the line, in per unit (p.u.) can be calculated by [12]

pnm = GnmV 2
nn + VnVm (−Gnm cos θnm + Bnm sin θnm) , (1a)

qnm = (Bnm − bcha
nm)V 2

n −VnVm (Bnm cos θnm + Gnm sin θnm) , (1b)

where θnm = θn − θm. The net power injected in a node n, generated minus
consumed, is equal to the power leaving the node through the adjacent power lines

∑

m∈N (n)

pnm =
∑

g∈G (n)

pg − P D
n , (1c)

∑

m∈N (n)

qnm =
∑

g∈G (n)

qg − QD
n , (1d)

where m ∈ N (n) are the nodes directly connected with n. The power generated by
generator g, active and reactive, are respectively given by pg and qg, while g ∈ G (n)

n m
Vn n Vm m

pnm+ jqnm

Gnm − jBnm

jbcha
nm jbcha

nm

Fig. 1 Power line π–model
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are the generators connected at n. P D
n and QD

n represent the active and reactive
power consumed by the demand at node n, respectively. The power flowing through
an electric network can be calculated by employing (1). However, due to the non-
convex nature of the trigonometric functions in (1a) and (1b), in many occasions it
is preferable to express the power flow equations with convex functions that allow
calculating the optimal network operation in a computationally efficient manner,
although the approximation may not be exact.

2.2 Second-Order Conic Programming Approximation

The power flow on a radial distribution network can be exactly reformulated by
introducing the variables cnm and snm in the rectangular formulation provided in (1)
by [11]

cnm = VnVm cos θnm (2a)

snm = VnVm sin θnm. (2b)

Replacing cnm and snm in (1a) and (1b)2

pnm = Gnmcnn−Gnmcnm+Bnmsnm, (3a)

qnm = (Bnm−bcha
nm)cnn−Gnmsnm−Bnmcnm. (3b)

Equations (3a) and (3b) linearize the expressions for the power flowing through the
lines, but in order to represent the underlying trigonometric nature of the AC power
flow it is necessary to impose additional constraints on cnm and snm. By applying
the Pythagorean identity sin2 θ + cos2 θ = 1 to (2), constraint (3c) for cnm and snm

is obtained,3 while the symmetries of the cosine and sine respectively result in (3d)
and (3e).

c2
nm + s2

nm = cnncmm (3c)

cnm = cmn, (3d)

snm = −smn. (3e)

2For the same node n: cnn = VnVncos θnn = V 2
n������ 1

cos(θn − θn) = V 2
n .

3By the Pythagorean identity: cos2 θnm + sin2 θnm = 1 → V 2
n V 2

m cos2 θnm + V 2
n V 2

m sin2 θnm =
V 2

n V 2
m → c2

nm + s2
nm = cnncmm.
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Fig. 2 Application of the
SOCP relaxation (3g), to the
Pythagorean identity (3c)

Given that (3c) represents a non-convex region, it is possible to approximate it by
replacing it with the second-order cone given by [15]

c2
nm + s2

nm ≤ cnncmm, (3f)

which is equivalent to

c2
nm + s2

nm +
(

cnn−cmm

2

)2

≤
(

cnn + cmm

2

)2

. (3g)

Figure 2 represents the approximation introduced by (3g). Where the solid line
represents the non-convex region defined by (3c) and the shaded area the convex
range of (3g).

Once the values of cnm and snm are obtained, the voltage magnitude and phase
angle at the different nodes can be recovered by

Vn = √
cnn (4a)

tan θnm = snm

cnm

, (4b)

where the phase angle θn at the substation of the radial network can be conveniently
set equal to zero to ease the calculation of the angles at the remaining nodes.

The replacement of (3c) by (3g), together with Eqs. (1c)–(1d), (3a)–(3b), and
(3d)–(3e), represent the second-order conic programming relaxation of the power
flow firstly introduced in [15]. The SOCP approximation is condensed in Model 1.

In Model 1, the active and reactive power balance at the nodes are presented by
(5a) and (5b). The demanded and generated active and reactive powers, as well as
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MODEL 1 SOCP power flow
Indexes:

n,m Node index
g Conventional generation unit index

Sets:

L Set containing every existing line (n,m)

G (n) Set containing the generators connected at n

N (n) Set containing the nodes m connected to n

Parameters:

bcha
nm Line charging susceptance of branch (n,m) [p.u.]

Gnm,Bnm Conductance and susceptance of line (n,m) [p.u.]
P D

n ,QD
n Demanded active and reactive power at n [MW, MVAr]

Sbase Base value for the apparent power [MVA]

Variables:

pg, qg Generated active and reactive power by unit g [MW, MVAr]
pnm, qnm Active and reactive power flow through line (n,m) [MW, MVAr]
cnm VnVm cos(θn − θm) [p.u.]
snm VnVm sin(θn − θm) [p.u.]

Constraints:

P D
n =

∑

g∈G (n)

pg −
∑

m∈N (n)

pnm, ∀n (5a)

QD
n =

∑

g∈G (n)

qg −
∑

m∈N (n)

qnm, ∀n (5b)

pnm = Sbase

[
Gnmcnn − Gnmcnm + Bnmsnm

]
, ∀(n,m)∈L (5c)

qnm = Sbase

[
(Bnm − bcha

nm )cnn − Gnmsnm − Bnmcnm

]
, ∀(n,m)∈L

(5d)

c2
nm + s2

nm +
(

cnn − cmm

2

)2

≤
(

cnn + cmm

2

)2

, ∀(n,m)∈L (5e)

cnm = cmn, ∀(n,m)∈L (5f)

snm = −smn, ∀(n,m)∈L . (5g)

the power flowing through the lines, are respectively given in MWand MVAr rather
than in p.u.. This change of units is done to reflect the common practice in the
economic operation of power systems with regard to the given data units [16].

The active power flowing through the line (n,m) is given in terms of its
conductance Gn,m and susceptance Bn,m by Eq. (5c), where cnm and snm are the
pair variables used to respectively represent the branch relationships VnVm cos(θn −
θm) and VnVm sin(θn − θm). Analogously, Eq. (5d) provides the reactive power
flowing through lines in terms of their conductance, susceptance and line charging
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susceptance bcha
n,m. To keep the dimensional equivalence between both sides of

expressions (5c) and (5d), the right-hand sides are multiplied by the base value
of the apparent power Sbase in MVA. The SOCP relaxation of the expression
c2
nm + s2

nm = cnncmm is given by (5e), while the trigonometric symmetries of cnm

and snm are presented in (5f) and (5g), respectively.

2.3 Limitations of the SOCP Model

By being a relaxation of the complete AC power flow formulation, the SOCP
approximation introduces a degree of error when compared to the original for-
mulation. This error becomes especially evident in the domain of variables cnm

and snm after the conic relaxation, (3f), is introduced. In Fig. 2 it can be seen
how the values that cnm and snm can take, could greatly differ from the equality
c2
nm + s2

nm = cnncmm.
As noted in Sect. 2.2, the SOCP presents an exact reformulation of the power flow

in a radial network for normal operating conditions. However, the exactness of the
formulation has been proved to be invalid under stressed network conditions such as
tight reactive generation bounds and deviations from the nominal network demand.
To overcome the inexactness of the SOCP model under high demand operation, it is
possible to introduce tightening inequalities as proposed by Kocuk et al. [18].

3 Energy Storage Model

The variability of the RES generation requires the use of energy storage to ensure
the flexible operation of the power system. An accurate model of the storage
system is necessary, not only to properly asses the flexibility gains but also to
preserve its lifetime, by operating within its technical limits. Section 3.1 describes
the modeling of an ideal energy storage system, while Sect. 3.2 introduces the
expressions for defining the technical limits and efficiencies of the non-ideal storage
system, followed by their convexification in a linear model.

3.1 Ideal Energy Storage

Electric energy storage can be modeled based on two features: the characterization
of its charging and discharging processes, and the establishing of its operational
limits. The power limits are usually given by the manufacturer concerning maximum
charging and discharging currents as a function of the C-rate. The C-rate provides
an inverse relationship with the amount of time needed for the charge and discharge
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of a battery. A battery is fully discharged in 1 h at a rate of 1C (1A of discharging
current in a battery with 1Ah capacity), while at 5C (5A/1Ah) a battery is
discharged in 12 min. 1C and 5C have been respectively selected as common charge
and discharge limits for a Li-ion battery [3]. Hence, by setting E as the battery
capacity in Ah and at constant operating voltage, the operational limits for the
battery can be set by

0 ≤ pdis
t ≤ P

dis
, (6a)

0 ≤ pcha
t ≤ P

cha
, (6b)

0 ≤ et ≤ E. (6c)

where et is the energy level at time t , while pcha
t and pdis

t are the powers transferred
from and to the electric grid, respectively. The discharge and charge power limits

are respectively set by P
dis

and P
cha

.
The energy accumulated at each period in the battery is related with the charging

and discharging power and can be modeled through a linear energy balance [23]:

et = et−1 + Δ ·
[
ηcha · pcha

t−1 − 1

ηdis · pdis
t−1

]
, (6d)

where the charge and discharge efficiencies are respectively given by ηcha and ηdis.
The parameter Δ provides the size of time discretization (in hours).

3.2 Non-ideal Energy Storage: A Li-ion Battery Model

The model mentioned above for ideal storage is a generalization of complex storage
processes, such as: electrochemical (e.g., Li-ion batteries), electromechanical (e.g.,
flywheels), or electro-thermo-mechanical (e.g., compressed air energy storage
systems). The limits of the rated power for charge and discharge, as well as the
efficiencies, cannot be considered independent values as in the ideal storage model.
For the particular case of Li-ion batteries, the maximum discharging and charging
powers are limited by the charge transfer at the battery cells, Fig. 3a and b, which is
dependent on the state-of-charge (SOC) [13]. The maximum discharging power is
limited for low SOCs by the high losses inside the cell, resulting in a voltage drop
below the cutoff value. The limitations on the charging power for higher values of
SOC correspond to cell saturation in the charge absorption process. From Fig. 3a
and b it is clear that it is not easy to choose a single value for the maximum rate of
charge and discharge.

Additionally, the energy balance presented in (6d) assumes constant efficiencies
for the charge and discharge processes. As with the power limits, the efficiencies
in electrochemical storage systems are not constant and are a function of the SOC
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Fig. 3 Maximum discharging (a) and charging (b) power, as a function of the SOC. Shadowed
areas represent feasible operation [13]

Fig. 4 Discharging (a) and charging (b) efficiencies as a function of the SOC and discharging and
charging current rate [13]

−
+

veq(SOC)

Rtot(SOC) i

+

−

vpout
plost

pdis

Fig. 5 Power flows during discharge in a battery-equivalent electric circuit

and the discharged/charged power [13]. The efficiency for both the discharging and
charging processes, Fig. 4a and b, increase for greater values of SOC and lower
power requests.

A battery can be represented as an equivalent resistive circuit, Fig. 5, during
its steady-state operation, i.e., charging/discharging processes longer than its time
constants. By considering the power flowing from the battery cell, pout, power lost
in its equivalent resistance, plost, and the power ultimately delivered to the grid, pdis,
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it is possible to obtain the following expression for the discharging efficiency ηdis

ηdis = pdis

pout , (7)

Observe that the discharging efficiency is dependent on pdis and pout. The voltage
veq changes with the SOC and with it the losses through Rtot ; effectively affecting
the value of pout needed to supply the requested demand pdis. Consequently, pdis is
dependent of the SOC. Therefore, we could replace ηdis by (7) to express pdis (the
value of importance at the electric grid level) as a function of the SOC and the pout,
only. It is possible to derive the non-linear analytical expression linking the three
variables, [pdis, SOC,pout]�, but instead of it, we propose a data-driven approach.

The values [pdis, SOC,pout]� can be represented as a linear combination of
selected sampling points [P̂ dis

i , ŜOCi, P̂
out
i ]� in the characteristic convex envelope.

This relationship can be seen in Fig. 6. Every point forming the envelope could
be obtained by using laboratory experiments or computational simulations. It is
important to observe from Fig. 6 that the non-linear relationship between the three
variables is quite similar to the proposed convex approach. In this way, the storage
discharging process can be characterized by

pout =
∑

i

P̂ out
i xi (8a)

pdis =
∑

j

P̂ dis
i xi (8b)

SOC =
∑

i

ŜOCixi (8c)

1 =
∑

i

xi (8d)

0 ≤ xi, ∀i, (8e)

where xi is an auxiliary variable related to each point.
An analogous expression to (8) can be found for representing the power entering

the cell pin, in terms of the charging efficiency ηcha and the power charged from the
grid pcha, transforming the energy balance (6d) into

et = et−1 + Δ ·
[
pin

t−1 − pout
t−1

]
, (9)

The storage operation with non-constant efficiency can be described in a linear
way by Model 2 [13]. The energy balance is given by (10a), where pbatt

t is the net
power delivered to the battery cell (positive if charging, negative if discharging), and
defined in (10b). The discharging and charging powers are respectively described by
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Fig. 6 Operating region of a Li-ion battery for (a) discharging, and (b) charging processes. The
surface represents the non-linear dependence, black dots are sampled points, and the lines between
them define the convex envelope of the sampled points [13]

Eqs. (10c)–(10d) and (10e)–(10f). The SOC as a linear combination of the sampling
points is presented by (10g), while its definition is stated in (10h). The linear
combination of the characteristic points during discharge and charge is ensured by
(10i)–(10l).

MODEL 2 Linear Li-ion battery model
Indexes:

i, j Sampling indexes for the charging and discharging operation points
t Time step index

Parameters:

Δ Duration of time step in hours [h]
E Battery capacity [MWh]
P̂ out

i , P̂ in
j Sample points for the power leaving and entering the battery cell [MW]

P̂ dis
i , P̂ cha

j Sample points for the power discharged to and charged from the electric grid
[MW]

ŜOCi, ŜOCj State-of-charge sample points for the discharging and charging processes

Variables:

et , SOCt Battery energy level (absolute and relative values) on t [MWh, −]
pbatt

t Net power charged/discharge by the battery during t [MW]
pdis

t , pcha
t Discharging and charging power on t [MW]

pout
t , pin

t Power outgoing and incoming at the cells on t [MW]
xjt , ykt Auxiliary variables for the sample sets J and K

(continued)
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MODEL 2 (continued)
Constraints:

et = et−1 + Δ · pbatt
t−1, ∀t (10a)

pbatt
t = pin

t − pout
t , ∀t (10b)

pout
t =

∑

i

P̂ out
i xit , ∀t (10c)

pdis
t =

∑

i

P̂ dis
i xit , ∀t (10d)

pin =
∑

j

P̂ in
j yjt , ∀t (10e)

pcha =
∑

j

P̂ cha
j yjt , ∀t (10f)

SOCt =
∑

i

(
ŜOCi · xit +

∑

j

ŜOCj · yjt

)
, ∀t (10g)

SOCt = et /E, ∀t (10h)

1 =
∑

i

xit , ∀t (10i)

1 =
∑

j

yjt , ∀t (10j)

0 ≤ xit , ∀i, t (10k)

0 ≤ yjt , ∀j, t. (10l)

4 Deterministic Distribution Unit Commitment with Battery
Storage System

For the optimal economic operation of an electric power system, it is necessary to
schedule the production of the different generation plants and the power exchange
with adjacent systems. The unit commitment (UC) problem replicates the power
system operation scheduling, where the committed units are those which generate
electricity during a time period, i.e., they are online [1]. For a distribution system,
with distributed generation and energy storage, the general formulation of the unit
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commitment, with cost minimization, can be expressed as:

min.
∑

t

[∑
g Φ

(
pg,t , zg,t

)+ K
(
p

grid
t

)]
(11)

subject to Power Flow(t), ∀t (11a)

Energy Storage Model(t), ∀t (11b)

Generation Limits(t), ∀t (11c)

Power System Limits(t), ∀t . (11d)

In the above model, the objective (11) is to minimize, over the time horizon
of interest, the cost function for the generators operation Φ, and the economic
exchange with the main grid K . The power produced by generator g during t is
denoted by pg,t and its online status (on/off ) by zg,t . The net power exchanged with

the grid, imported minus exported, is given by p
grid
t . The main constraints of the UC

model are the power flow equations (Sect. 2), the energy storage model (Sect. 3), and
the technical constraints on the generation units and power system.

This section addresses the deterministic formulation of the UC for a distribution
network. In this context, the demand and RES generation is assumed to be
known/forecasted with enough accuracy. In the next Sect. 5, this formulation will
be expanded upon to include the variability of the users’ electricity demand and
RES.

4.1 Objective Function

The objective of the UC on a distribution network is the satisfaction of the users’
demand at the minimum operational cost. This operational cost can be divided
into two: the cost of operating the distributed generation, and the cost of purchas-
ing/selling electricity to the main grid through the interconnection substation.

4.1.1 Cost of Energy Exchange

The day-ahead electricity market usually operates with hourly time steps, during
which, the purchase/sale of electricity is done at constant power. Nonetheless,
the actual technical power system operation must balance the generation and the
demand in a prompt manner, result of the variation in demand and RES generation.
In order to provide better scheduling of the system operation, it is advisable to solve
the UC in time steps shorter than an hour [23], while maintaining the interaction
with the main grid (through the day-ahead electricity market) in the traditional
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Fig. 7 Representation of
market (h: hourly) and
operational (t : intra-hour)
time steps

hourly segments. For this purpose, an additional index h will be introduced to
represent an hourly time step, and the notation h(t) will be used to denote the hour
to which the time step t belongs. For instance, as seen in Fig. 7, the time step t = 1
belongs to h = 1, h(t = 1) = 1; whereas, h(t = 5) = 2. Additionally, since the
market operation assumes a constant power exchange, p

imp
t and p

exp
t remain at the

same value during the hourly interval, i.e.,

p
imp/exp
t = p

imp/exp
t ′ , ∀(t,t ′)∈h(t) (12)

The economic interaction with the main grid depends on two factors: the power
imported/exported, pimp/exp

t , during time t , and the price of purchase/sell, K imp/exp
h(t) .

Thus, if the electricity cost, for purchase and sell, is known for each time step, the
economic exchange with the grid can be calculated by:

K = Δ·
∑

t

[
K

imp
h(t)p

imp
t + K

exp
h(t)p

exp
t

]
, (13)

where the cost of importing and exporting electricity during the hour h(t) are
respectively denoted by K

imp
h(t) and K

exp
h(t). In order to preserve the relationship

between the prices in MWh and the exchanged power, the size of the time step
(Δ) is used to transform the imported/exported power from MW into MWh. This
dimensional transformation assumes a constant power exchange for the duration of
each time step t .

4.1.2 Cost of Generation

The cost of operating fuel-based generation units is typically composed by the cost
of fuel consumption, the startup cost and the shutdown cost [6], given by:

Φ =
∑

g,t

[
ΔΦfuel

g pg,t+φsu
g,t+φsd

g,t ], (14)
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where Φfuel
g is the fuel cost for the unit g, and φsu

g,t and φsd
g,t are respectively the

startup and shutdown costs incurred by g during the time step t , defined by:

0 ≤ φsu
g,t ≥ Φsu

g

[
zg,t − zg,t−1

]
, ∀g, t (14a)

0 ≤ φsd
g,t ≥ Φsd

g

[
zg,t−1 − zg,t

]
, ∀g, t. (14b)

It is straightforward to verify that φsu
g,t and φsd

g,t can only take values greater than
zero when the respective startup and shutdown processes are undergone.

4.2 Power Flow with Energy Storage and Renewable
Generation

Given the introduction of RES and energy storage in the system, the power flow
equations must reflect their influence in the system. The contribution of the RES
is to reduce the total load served in the power system, whereas the storage system
s can act as generator by discharging energy into the system (pbatt

s,t > 0), or as a
load when it is charging (pbatt

s,t < 0). The power contributions of these resources are
included in the power balance presented in (5a), resulting in:

P D
n,t = Γ

grid
n ·pgrid

t +
∑

g∈G (n)

pg,t+
∑

s∈S (n)

pbatt
s,t +Γ RES

n ·P RES
n,t −

∑

m∈N (n)

pnm,t , ∀n, t. (15)

In the previous nodal power balance, the set S (n) represents the storage units
connected at node n; while binary matrix parameters, Γ grid

n and Γ RES
n , indicate if in

the node n there is a connection of the distribution grid with the main grid, and if
there is RES generation, respectively.

4.3 Energy Storage Model

The set of equations characterizing the energy storage, (11b), is the same as
described in Sect. 3.2. The use of the storage system in the deterministic UC is to
allow arbitraging, i.e., to purchase and store electricity from the grid at low prices,
and discharge the stored energy when the prices increase [9].
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4.4 Generation Limits

Fuel-based generation units are constrained in the amount of power that they can
change their power production between consecutive hours. This type of limits are
referred to as ramp rates. The maximum power increase between hours for a unit g

is known as the ramp-up rate, RUg in MWh, while its maximum power reduction as
ramp-down rate, RDg also in MWh. In addition, the power plants have upper and
lower bounds for their electricity production. These limits depend on the generation
unit’s capacity. The lower and upper capacity bounds for the active power are
respectively given by P g and P g , while the limits for reactive power generation

are denoted by Q
g

and Qg. The ramp rates and capacity limits are then given by:

pg,t ≤ pg,t−1+Δzg,tRUg, ∀g, t (16a)

pg,t ≥ pg,t−1−Δzg,tRDg, ∀g, t (16b)

zg,tP g ≤ pg,t ≤ zg,tP g, ∀g, t (16c)

zg,tQg
≤ qg,t ≤ zg,tQg, ∀g, t. (16d)

It must be noted that the ramp rates and the capacity limits only affect the generation
unit g when it is operating, i.e., zg,t = 1. Furthermore, the up and down ramp rates
are scaled to the size of the intra hour time step t , by multiplying them by the
parameter Δ. The scaling of the ramp rates follows the assumption that the power
generation is constant during the time step. Hence, if the time step were to have the
duration of an hour, the scaling would be of factor 1.

4.5 Power System Limits

For a secure operation of the power system, technical limits are imposed in the
transmission of electricity though the power lines. Thermal limits (ampacity),
measured in Amperes (A), are the main constraint in distribution networks [26]. The
ampacity states the maximum current that can flow through the conductor without
damaging the insulation or the conductor itself. The current limit in a power line
(n,m)∈L as a function of cnm,t at each time step t is given in (17a) [17]. Here,
the set L is introduced to represent all the existing power lines (n,m), while the
parameter Fnm,t represents the thermal limit in A. Additionally, the voltage at node
n is limited in (17b).

F
2
nm,t ≥ (B2

nm+G2
nm)·(cnn,t−2cnm,t+cmm,t ), ∀(n,m)∈L , t (17a)

V 2
n ≤ cnn,t ≤ V

2
n, ∀n, t (17b)
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4.6 Summary for the Deterministic Unit Commitment
Formulation

As previously introduced, the objective of the UC in a distribution network is to
operate the existing distributed generation and electricity exchange with the main
grid at a minimum cost, while satisfying the users’ demand and system constraints.
The complete formulation of the deterministic unit commitment is given in Model 3.

The minimization of the generation operational cost and the economic exchange
with the main grid is stated in (18), whereas these costs are respectively defined in
(18a) and (18b). Constraint (18c) sets the constant power exchange with the main
electric grid is defined, while (18d) defines the net power exchange. The startup and
shutdown costs associated with the unit g are respectively given by (18e) and (18f).
Equation (18g) represents the nodal power balance for each time step t , including
the RES generation and storage usage. Unit g’s ramp constraints are given by (18h)
and (18i), whereas its capacity limits are set by (18j) and (18k). The voltage limits
at the nodes and the thermal rates for the power lines are given by (18l) and (18m),
respectively.

The power flow equations are included in (18n) by the addition of Model 1’s
constraints (5b)–(5g). Constraint (5a) has been replaced by (18g) to include the
storage system and the RES. The reader must notice that the power flow equations
represent the state of the system at any time. The sub-index t is included to the
Model 1 to represent this fact. Similarly, the energy storage model, Model 2, has
been included in its entirety in constraint (18o).

MODEL 3 Unit commitment with battery storage system
Indexes:

s Index for the battery storage system

Sets:

h(t) Hour containing time step t

Parameters:

Fnm Current limit for line (n,m) [p.u.]
K

imp
h ,K

exp
h Import and export cost during h [e/MWh]

P RES
n,t Active power generated by the RES resource at n during t [MW]

P g, P g Active power generation limits for g [MW]
RUg,RDg Ramp-up and ramp-down limits for g [MWh]
Q

g
,Qg Reactive power limits for g [MVAr]

V n, V n Voltage limits at n [p.u.]

Γ
grid
n , Γ RES

n Binary indicator of connection to the main grid and the RES resources at n

Φfuel Fuel consumption costs of g [e/MWh,e]
Φsu

g ,Φsd
g Costs related to g’s start-up & shut-down [e]

(continued)
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MODEL 3 (continued)
Variables:

K Total economic exchange with the grid [e]
Φ Total operational costs of generators [e]
φsu

g,t , φ
sd
g,t Start-up and shut-down cost for g on t [e]

p
grid
t Net power exchanged with the main grid during t [MW]

p
imp
t , p

exp
t Imported and exported power on t [MW]

zg,t ∈ {0, 1} On/off status of generating unit g on t

Objective:

min.Φ + K (18)

Constraints:

Φ =
∑

g,t

[
ΔΦfuel

g pg,t+φsu
g,t+φsd

g,t

]
, (18a)

K = Δ·
∑

t

[
K

imp
h(t)

p
imp
t + K

exp
h(t)

p
exp
t

]
(18b)

p
imp/exp
t = p

imp/exp
t ′ , ∀(t,t ′)∈h(t)

(18c)

p
grid
t = p

imp
t −p

exp
t , ∀t (18d)

0 ≤ φsu
g,t ≥ Φsu

g

[
zg,t − zg,t−1

]
, ∀g, t (18e)

0 ≤ φsd
g,t ≥ Φsd

g

[
zg,t−1 − zg,t

]
, ∀g, t (18f)

P D
n,t = Γ

grid
n ·pgrid

t +
∑

g∈G (n)

pg,t+
∑

s∈S (n)

pbatt
s,t +Γ RES

n ·P RES
n,t −

∑

m∈N (n)

pnm,t , ∀n, t (18g)

pg,t ≤ pg,t−1+Δzg,tRUg, ∀g, t (18h)

pg,t ≥ pg,t−1−Δzg,tRDg, ∀g, t (18i)

zg,tP g ≤ pg,t ≤ zg,tP g, ∀g, t (18j)

zg,tQg
≤ qg,t ≤ zg,tQg, ∀g, t (18k)

V 2
n ≤ cnn,t ≤ V

2
n, ∀n, t (18l)

F
2
l,t ≥ (B2

nm+G2
nm)·(cnn,t−2cnm,t+cmm,t ), ∀(n,m)∈L , t

(18m)

SOCP power flow (Model 1(t)) : (5b)–(5g), ∀t (18n)

Battery model (Model 2). (18o)
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5 Stochastic Unit Commitment

In order to supply the users’ demanded energy reliably and securely, the system
operator must be able to react to variations in the forecasted load and RES
generation [16]. The random nature of the demand and RES generation correspond
to stochastic processes, i.e., randomly generated. Such flexible operation can be
guaranteed by (1) purchasing reserve generation capacity from the main grid and
scheduling the commitment of the generation units, and (2) setting the operation
for the generation units and energy storage in a manner that would allow them to
respond, within their technical limits, to load and RES fluctuations.

Section 5.1 describes the general formulation of a two-stage optimization prob-
lem considering stochastic parameters. Whereas, Sect. 5.2 outlines the formulation
of the distribution UC under the two-stage stochastic optimization framework.
Sections 5.2.1 and 5.2.2 respectively define the scheduling and operational aspects
of purchasing reserve capacity from the main grid and flexibly operating the
generation resources. The power flow and energy storage models’ adaptation to the
stochastic framework is described in Sects. 5.2.3 and 5.2.4, respectively. Finally,
Sect. 5.3 provides a summary of the full formulation for the stochastic UC of a
distribution system.

5.1 Two-Stage Stochastic Optimization

An optimization problem containing random parameters, such as RES generation,
can be modelled as a deterministic problem in which the stochastic parameters are
represented by scenarios indexed by ω with an associated realization probability
ρω. For the optimization model, some decisions must be made before the random
event realizes, e.g., a backup generator is committed before the RES generation is
known. These decisions are known as first-stage decisions. Whereas the second-
stage decisions are the correcting or real-time actions that respond to the stochastic
realization, e.g., how much power must the backup generator produce in real time
based on the RES generation. A representation of a two-stage stochastic model is
presented in Fig. 8.

The first-stage decisions are made for each time step t and affect each of the
operative decisions made to react to the scenario realizations ω evaluated on the
different time steps. A general formulation for the two-stage stochastic optimization
model can be represented by:

min.
x

cT x + E[Q(x,ω)] (19a)

subject to : Ax ≤ b, (19b)

x ≥ 0. (19c)
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Fig. 8 First-stage scheduling decisions. Second-stage: operative decisions

where Q(x,ω) is the second-stage optimal solution of the problem (20) parame-
terized in the first-stage decision and scenario.

min.
y

qT (ω)y (20a)

subject to : T (ω)x + D(ω)y ≤ h(ω), (20b)

y ≥ 0. (20c)

The objective function (19a) is composed of the first-stage decisions’ cost cT x,
plus the expected value of the second-stage Q(x,ω) costs. The second stage
problem (20) minimizes the cost of corrective/real-time actions, y, taken once we
have observed the RES scenario realization ω, and for a given first-stage decision
x. Similarly to the first-stage problem, we could have a set of constraints, (20b),
that define the feasibility space for second-stage decisions y, whereas the first-stage
constraints are defined by (19b). The positivity in the general model of x and y is
set by (19c) and (20c).

Both problems (19) and (20) can be recast into a single deterministic model that
can be easily solved with off-the-shelf commercial solvers.

min.
x,yω

cT x +
∑

ω

ρω

(
qT
ω yω

)
(21a)

subject to : Ax ≤ b, (21b)

Tωx + Dωyω ≤ hω,∀ω (21c)

x, yω ≥ 0. (21d)



204 A. González-Castellanos et al.

where ρω is the probability of occurrence of the scenario ω, and parameters
such as T (ω), are not anymore a probability distribution function of ω, but rather a
sample was taken from it, Tω. It must be noted that each operative decision y must
be solved for each scenario, increasing accordingly the complexity of the model.
However, the model would result to have better performance than a deterministic
model where uncertainty is important. We refer to the monograph [4] for further
details in stochastic programming theory.

5.2 Stochastic Unit Commitment Formulation

In order to transform the deterministic UC model presented in Model 3 into one
that allows the allocation and use of reserves under uncertainties, it is necessary
to determine which decision variables will belong to the scheduling and which
to the operation stages. The following sections will cover the two-stage stochastic
formulation for the interaction with the main grid, generation operation, power flow,
and energy storage models.

5.2.1 Reserves Allocation and Realization

The purchase and use of reserve generation capacity from the main grid follows a
two-step process, Fig. 9. In the first step, day-ahead, the quantified needs for upward
r

up
t and downward rdw

t reserves are purchased. In case of an increase of the demand
P D

n,t,ω or decrease in RES generation P RES
n,t,ω during the real-time operation (scenario

ω) and without the possibility of the generation to respond in a promptly manner,
the system operator can increase its power consumption from the purchased quantity
p

imp
t up to the allocated amount of reserve capacity r

up
t . The increased power import

corresponds to the reserve realization r̂
up
t,ω. Unlike the reserves capacity allocation,

their realization can and must change with each scenario. Thus, they are not bound
to the hourly time steps h and are only bounded by the allocated reserved capacity.
In case of a decrease of the demand or increase of the RES generation, the downward
reserve realization r̂dw

t,ω can reduce the power import p
imp
t up to rdw

t .
Figure 10 represents the relationship between the hourly upward reserves

allocation and their scenario-based realization.4

The constraints modeling the power exchange in the day-ahead (first-stage) and
during the operation stage (second-stage) are presented in (22). The total reserve
allocation cost Υ , (22a), is given by the sum of the requested capacity r

up/dw
t and

the cost associated to it K
up/dw
h(t) . Increasing the power output by r̂

up
t,ω during the

4The downward reserve realization and allocation process is analog to that presented in Fig. 10,
but is omitted to allow better figure readability.
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Fig. 9 First-stage import/export scheduling and upward/downward reserve allocation, second-
stage upward reserve realization process

Fig. 10 First-stage energy and upward reserve allocation, second-stage upward reserve realization
process

operation stage will incur the system operator in an additional marginal cost of
K̂

up
h(t), in e/MWh, whereas reducing its consumption will provide him a marginal

revenue of K̂dw
h(t). The reserve realization cost is given by (22b).

Equation (22c) defines the net power exchanged with the grid during the
operation stage by the sum of the scheduled import and export, plus the realized
reserves. Constraints (22d) and (22e) respectively determine the upper bound for the
allocation of upward and downward reserves in terms of the scheduled power import

p
imp
t and the maximum import capacity P

imp
. The bounds for reserve allocation
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based on the market rules are presented in (22f) and (22g). The limits for the reserves
realization during the operational stage are set by (22h) and (22i). Finally, the hourly
market nature for the reserve allocation is guaranteed by (22j).

Υ = Δ ·
∑

t

(
K

r, up
h(t) r

up
t + K

r, dw
h(t) rdw

t

)
, (22a)

Θω = Δ ·
∑

t

[
K̂

r, up
h(t) r̂

up
t,ω + K̂

r, dw
h(t) r̂dw

t,ω

]
, ∀ω (22b)

p
grid
t,ω = p

imp
t −p

exp
t +r̂

up
t,ω−r̂dw

t,ω, ∀t, ω (22c)

P
imp ≥ p

imp
t + r

up
t , ∀t (22d)

0 ≤ p
imp
t − rdw

t , ∀t (22e)

0 ≤ r
up
t ≤ R

up
, ∀t (22f)

0 ≤ rdw
t ≤ R

dw
, ∀t (22g)

0 ≤ r̂
up
t,ω ≤ r

up
t , ∀t, ω (22h)

0 ≤ r̂dw
t,ω ≤ rdw

t , ∀t, ω (22i)

r
up/dw
t = r

up/dw
t ′ , ∀(t,t ′)∈h(t). (22j)

5.2.2 Generation Commitment and Operation

As the power exchange with the main grid, the use of generation resources can be
divided into a two-stage process: scheduling and operation. Figure 11 illustrates
how the scheduling (first) stage of the units is done by determining their on/off state
zg,t for the considered time horizon. Based on their status, the generation units will
be operated, together with the energy storage system, to produce the power (pg,t,ω,
qg,t,ω) required for balancing the load and the RES generation [1].

5.2.3 Power Flow Model

The power flow equations characterize the operational stage of the stochastic UC.
Consequently, the power flow equations must be considered in the second stage
of the formulation and be indexed by each probabilistic scenario. This fact is
represented in Model 4 by stating that Model 3 is a function of the scenarios ω

and in the definition of the model’s variables.
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Fig. 11 Generation stages: first-stage turned on/off during t , second-stage active and reactive
power production

5.2.4 Energy Storage Model

The energy storage model described in Sect. 3.2 is the base for the operation of the
storage system in the second stage of the stochastic UC. Therefore, the operating
variables of the storage system must be indexed not only for each time t but also for
every scenario ω, as presented in Model 4.

5.3 Summary for the Stochastic Unit Commitment
Formulation

Figure 12 presents how the different introduced models are related. As described in
Sect. 5.2, the main differences between the Model 3 and the UC stochastic model
is the allocation and use of reserves for the system operation under the different
probabilistic scenarios, as well as the differentiation of the scheduling and operating
stage for the generation units. The reserves allocation and unit commitment occur
in the first stage of the model, while the reserves realization and power production
of the generation units occur in the second stage. The power flow and energy
storage operation also take place in the second stage. Model 4 presents the two-
stage stochastic formulation of the unit commitment. The first- and second-stage
variables have been differentiated in the model. For the sake of simplicity, only
the new constraints describing the allocation and realization of reserves have been
explicitly presented. The Model 3 has been indexed by scenarios ω to represent the
fact that its constraints must consider the second stage when required.
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Fig. 12 Relationship between the presented models

MODEL 4 Stochastic distribution unit commitment with BSS
Indexes:

ω Index for probabilistic scenarios

Parameters:

K
r, up
h ,K

r, dw
h Up and down reserve allocation cost during h [e/MWh]

K̂
r, up
h , K̂

r, dw
h Up and down reserve deployment cost during h [e/MWh]

P
imp

Power import limits [MWh]

R
up

, R
dw

Up and down reserve power limits [MWh]

First-stage variables:

Φ Total scheduling costs of generators [e]
K Total economic exchange with the grid [e]
p

imp
t , p

exp
t, Imported and exported power committed day-ahead [MW]

r
up
t , rdw

t Allocated up/down reserve during t [MWh]
Υ Total reserve allocation cost [e]
zg,t ∈ {0, 1} On/off status of generating unit g on t

Second-stage variables:

cnm,t,ω |Vn,t,ω||Vm,t,ω| cos(θn,t,ω − θm,t,ω) [p.u.]
et,ω, SOCt,ω Battery energy level (absolute and relative values) during t and scenario ω

[MWh, −]
φsu

g,t,ω, φsd
g,t,ω Start-up and shut-down cost for g on t and scenario ω [e]

pg,t,ω, qg,t,ω Generated active and reactive power by unit g during t and scenario ω [MW,
MVAr]

pnm,t,ω, qnm,t,ω Active and reactive power flow through line (n,m) during t and scenario ω

[MW, MVAr]
pbatt

t,ω Net power charged/discharge by the battery during t and scenario ω [MW]

(continued)
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MODEL 4 (continued)
pdis

t,ω, pcha
t,ω Discharging and charging power during t and scenario ω [MW]

p
grid
t,ω Net power exchanged with the main grid during t and scenario ω [MW]

pout
t,ω, pin

t,ω Power outgoing and incoming at the cells during t and scenario ω [MW]
r̂

up
t,ω, r̂dw

t,ω Real-time deployed up/down reserve during t and scenario ω [MWh]
snm,t,ω |Vn,t,ω||Vm,t,ω| sin(θn,t,ω − θm,t,ω) [p.u.]
Θω Total real-time reserves deployment cost for scenario ω [e]
xj,t,ω, yk,t,ω Auxiliary variables for the sample sets J and K during t and scenario ω

Wω Total operational costs of generators for scenario ω [e]

Objective:

min. K + Υ + Φ + E
[
Θω + Wω

]
(23)

Constraints:

Φ =
∑

g,t

φsu
g,t+φsd

g,t (23a)

Wω = Δ · Φfuel
g

∑

g,t,ω

pg,t,ω (23b)

Υ = Δ ·
∑

t

(
K

r, up
h(t)

r
up
t + K

r, dw
h(t)

rdw
t

)
, (23c)

Θω = Δ ·
∑

t

[
K̂

r, up
h(t)

r̂
up
t,ω + K̂

r, dw
h(t)

r̂dw
t,ω

]
, ∀ω (23d)

p
grid
t,ω = p

imp
t −p

exp
t +r̂

up
t,ω−r̂dw

t,ω, ∀t, ω (23e)

P
imp ≥ p

imp
t + r

up
t , ∀t (23f)

0 ≤ p
imp
t − rdw

t , ∀t (23g)

0 ≤ r
up
t ≤ R

up
, ∀t (23h)

0 ≤ rdw
t ≤ R

dw
, ∀t (23i)

0 ≤ r̂
up
t,ω ≤ r

up
t , ∀t, ω (23j)

0 ≤ r̂dw
t,ω ≤ rdw

t , ∀t, ω (23k)

r
up/dw
t = r

up/dw
t ′ ∀(t,t ′) ∈ h(t)

(23l)

Stochastic Real-Time UC-BSS
(
Model 3(ω)

)
, ∀ω. (23m)
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6 Numerical Example

A modified IEEE 33-bus system is used to test different aspects of the distribution
system operation [2]. The radial distribution system, represented in Fig. 13, operates
at 12.66 kV, with an aggregated peak demand of 4.37 MVA. The system counts with
a connection to the main transmission grid at node 1, two fuel-based generators at
nodes 22 and 33, and a photovoltaic system of 1.5 MW at node 18. The capacity
of the generators 1 and 2 are respectively 1.5 and 3 MW, and their marginal cost
of generation Φfuel

g is 150 and 120 e/MWh. A lithium-ion energy storage system
with a 3 MWh capacity (power rate of 3MW, 15MW at 5C) has been placed at node
18. The network, generation and demand data, as well as the sampling points for
the storage system, are available in the online appendix [14]. Prices for the energy
exchange with the network are also available in the online appendix [14].

In order to simplify the analysis, only three scenarios for the stochastic RES
generation will be considered. The scenarios were generated through a forecast
using a seasonal ARIMA model based on surface radiation data corresponding to
the first month of the year 2017 on Desert Rock, Nevada, USA [22]. The ARIMA
method was chosen to produce a more accurate forecast, resulting in a non-smooth
generation curve for the 24 h of study (see in Fig. 14). The probabilities associated
with scenarios 1, 2, and 3 have been manually set respectively at 25, 50, and 25%.

We have tested the proposed electric distribution operation with energy storage
models in four cases described as follows:

• CASE 1–D: optimal system’s operation is solved by adopting an ideal energy
storage model (6) in a deterministic unit commitment (Model 3). The RES
generation is taken as the average forecast, i.e., the mean value between the three
scenarios. The average discharge and charge battery efficiencies are set to 86.8%
and 97.2%, respectively.

• CASE 1–S: an ideal energy storage model (6), and a stochastic unit commitment
model (Model 4) are employed.

• CASE 2–D: the solution is based on a non-ideal energy storage model (Model 2)
while using the deterministic unit commitment version for optimal operation
model of the distribution grid (Model 3).

Fig. 13 33-Bus test system
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Fig. 14 Total demand per time step and scenario of solar energy generation

• CASE 2–S: the system is optimized with the developed a non-ideal energy storage
(Model 2), and a stochastic unit commitment model (Model 4).

The results summary for the different test cases is presented in Table 1. As seen
in the table, the total costs remained almost the same for all the cases. However, it
is important to note that there is also a slight reduction in cost by using a detailed
battery model instead of the ideal one; explained by the use of the battery in regions
of higher efficiency.

Table 1 Results summary for computational test cases

CASE 1–D CASE 1–S CASE 2–D CASE 2–S

Battery model Ideal Non-ideal

Type Deterministic Stochastic Deterministic Stochastic

Total costs [e] 7909.5 7954.4 7906.2 7952.6

Computational time [s] 141.6 501.8 119.7 733.2

Total imports [MWh] 19.0 16.6 19.0 16.7

Total export [MWh] 0.0 0.0 0.0 0.0

Total realized up-reserve (ω1) [MWh] – 0.64 – 0.44

Total realized up-reserve (ω2) [MWh] – 3.0 – 3.0

Total realized up-reserve (ω3) [MWh] – 3.1 – 3.1

Total realized down-reserve (ω1) [MWh] – 0.5 – 0.4

Total realized down-reserve (ω2) [MWh] – 0.0 – 0.1

Total realized down-reserve (ω3) [MWh] – 0.0 – 0.1
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Fig. 15 Power import per case, in comparison with the normalized solar radiation and energy
import price

The purchase of energy from the main grid for the four test cases is displayed in
Fig. 15. The solar production is presented normalized to its maximum value, i.e., its
capacity factor. Similarly, energy import prices are represented in the background.
As it can be seen from the figure, the import of energy for the test cases follows
the demand throughout the day. The presence of higher radiation between 10:00
and 15:00 allows to complement the use of the fuel-based generation, reducing the
need for energy import. The import reduction around the noon hours is greater for
the test cases that considered the probabilistic scenarios, CASE 1–S and CASE 2–S;
given their consideration of the weighted effect from higher RES generation.

Figure 16 presents the energy storage operation for CASE 2–S. The use of the
storage system for each scenario follows a similar pattern, except around the noon
hours. During this time frame, the use of the storage has a direct relationship with
the amount of RES generation of each scenario; for scenario 1 there is an intense
storage usage, greater than, for instance, scenario 2. Whereas around the noon hours,
the energy storage is discharged at (almost zero) constant power in scenario 3. The
difference in the storage usage between the scenarios highlights the importance of
pairing RES with energy storage systems since they allow to balance the power
generation from RES sources.
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Fig. 16 Storage usage for CASE 2–S. Each trace represents the operation of the energy storage
system for a different stochastic scenario. In the background, average solar generation

6.1 Operation Reliability

Even though the total cost obtained, the amount of imported energy and employed
reserves are similar through the four test cases, the ideal energy storage model
employed in CASE 1–D and CASE 1–S does not take into account the variation of
the maximum power that a storage system can charge and discharge as a function
of its state of charge. The use of constant power limits could lead to infeasible
battery operation, resulting in situations where the scheduled power falls outside the
feasible operating region. Figure 17 presents the differences between the scheduled
battery energy level for each scenario and the corrected operation, i.e., with the
requested power being limited by the control system when the scheduled storage
usage surpasses the technical limits presented in Sect. 3.2. The energy deviation
(scheduled minus corrected) for scenarios 1 to 3 was of 78.8, 113.4, and 24.7kWh,
respectively representing 3.6, 6.2, and 1.0% of the scheduled energy to be stored
with the battery. Such scheduling imbalances could produce violations of the system
constraints and must be covered by the distribution system operator through the
purchase of more energy in the real-time market or utilizing the backup generation,
incurring in additional operating expenses. Therefore, it becomes of the utmost
importance the accurate modeling of the energy storage system that provides
additional flexibility and reserve for supporting reliable operation under uncertain
and intermittent RES generation.
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Fig. 17 Storage energy level for CASE 1–S. The solid line represents the scheduled level, while
the shaded area displays the realized energy level after accounting for operation infeasibilities, i.e.,
limiting the power discharge to a function of the SOC. The red area represents negative realized
values. (a) Storage energy level in scenario 1. (b) Storage energy level in scenario 2. (c) Storage
energy level in scenario 3
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Fig. 17 (continued)

6.2 Value of the Stochastic Solution

Despite the fact that the obtained total costs for the deterministic test cases and their
stochastic counterparts were similar, there exist great differences in the solutions,
e.g., the amount of imported energy around the noon hours. Such operative
differences would come with unfavorable costs increase for the distribution system
operator if it were to optimize the system based on a deterministic approach by
considering the averaged value of the forecast, and the realized RES generation
deviated greatly from it. In order to illustrate and quantify the benefits of using
a stochastic model instead of a deterministic one, we compute the value of the
stochastic solution (VSS) for CASE 2–D. The VSS is calculated as the difference
between the expected and realized costs [4]:

1. The CASE 2–D is solved with the averaged RES forecasted and the value of
its first-stage decisions will be saved, i.e., power import/export and generation
commitment. The total cost obtained will also saved as z∗

EV and its called
expected value solution (EV).

2. Next, the distribution system is optimized as a two-stage stochastic optimization
problem, Model 4, with the forecasted value of P RES

t,ω changing for each scenario,
but with the first-stage decisions fixed obtained in 1. The optimal cost for each
problem will be stored as z∗

EEV , known as the expected result of using the EV
solution. This step is equivalent to quantifying the performance of the first-stage
decisions from step 1 in the three scenarios of RES generation.
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3. Finally, the value of the stochastic solution is calculated as the difference between
the EEV and the EV: V SS = z∗

EEV − z∗
EV .

Based on these steps, z∗
EV = 7906.2e and z∗

EEV = 8000.2e. The calculated
value of the stochastic solution for the case with non-ideal energy storage is 94e (1.2
% of the total expected cost). This additional cost is the cost paid for ignoring the
probabilistic nature of the RES generation during the decision making process. The
cost difference can be explained by the inflexibility of the scheduled energy import
in the hourly time scale since it does not allow for the deployment of reserves for
the balancing of RES generation fluctuations in intra hour time steps.

7 Conclusions

In this chapter, we have presented a mixed-integer second-order cone programming
(MISOCP) formulation for the optimal operation of distribution systems with
energy storage systems and renewable generation. We have recalled to the most
conventional model of energy storage in power system literature: a generic and
ideal model. Then, we have introduced a detailed formulation of a non-ideal storage
model that capture its parameters dependence with the battery’s state-of-charge.
Although it was mainly based on electrochemical energy storage, the model is
general enough to cope with a variety of different technologies. The energy storage
model is convexified providing an accurate and simple set of linear constraints that
models the storage behavior with no compromise of the computational time. Then,
the deterministic operational model is extended to a two-stage stochastic model to
consider the uncertainty of renewable generation. Four cases are simulated based on
a 33-bus distribution network. Simulation results show that ideal modeling of energy
storage could lead to infeasible operation of the energy storage compromising the
reliability of the system. The proposed stochastic model with non-ideal energy
storage systems appears to be particularly appropriate for distribution networks
operation with uncertain RES generation.
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Network Reconfiguration in Modern
Power Distribution Networks

Aggelos S. Bouhouras, Paschalis A. Gkaidatzis, and Dimitris P. Labridis

Abstract This chapter introduces the Network Reconfiguration (NR) concept in
Distribution Networks (DNs) as an efficient scheme to face various operational
issues like reliability improvement and loss reduction. Furthermore, the potential for
utilizing NR to perform voltage profile improvement under high DG or Renewable
Energy Sources (RESs) penetration is presented. Finally, the coordination of the
NR along with the optimal siting and sizing of DG units aiming to maximize
their impact on loss reduction is also analyzed. The basic aim of this chapter is
to demonstrate how specific automation upgrade in modern DNs regarding the
replacement of manual switching equipment by automated controlled sectionalizers
or tie-switches could allow Distribution System Operators (DSOs) to integrate real
time management techniques of the DN under relatively low investment plans.
Specific examples regarding both real and benchmarked DNs are included and the
proposed algorithms are explained in detail.

1 Introduction

Modern power Distribution Networks (DNs) are experiencing significant alterna-
tions regarding both their structural and infrastructural aspects. The implementation
of the Smart Grid concept, along with the high Distributed Generation (DG) and
Renewable Energy Sources (RESs) penetration, have facilitated in upgrading the
automation level in DNs and in establishing a more de-centralised generation model.
On the one hand the installation of remote controlled elements [24], e.g. automatic
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reclosers and remote controlled circuit breakers, the enhanced metering capabilities
under the Advanced Metering Infrastructure (AMI) and Phasor Measurements Units
(PMUs) integration [29], as well as the upgraded Information and Communication
Technology (ICT) capabilities [13] have radically changed the conventional form
of the DNs by enabling the transition of their traditional passive profile to a more
active one. In this latter context, all entities interact with each other in order to
optimize their goals but at the same time they improve several operational aspects
of the network with economic benefits for all parts. On the other hand, DG and RES
penetration has reached or even exceeded saturation level in many parts of the DN,
causing unexpected issues such as overvoltage and reverse power flow [1, 12]. Under
these operating conditions, DNs undergo bidirectional power flow and its impact
on protection schemes, e.g. one direction fault indicators and fault relays, should
be faced properly to prevent the reliability level to be reduced. Additionally, the
rapid penetration of Electric Vehicles (EVs) [35], the required charging lots that are
scheduled to be installed, as well as the Battery Energy Storage Systems (BESSs)
that are promoted as efficient storage solutions, in both distributed and centralized
form, add complexity on the DN design, operation and management.

The DSOs are responsible for maintaining uninterruptible power supply via
a reliable and robust DN under the minimum cost for both themselves and
the consumers. Usually, the load growth demand along with mid or long term
interferences to the grid are faced with respective investment plans regarding the
reinforcement or the expansion of the DN [17]. Moreover, emergency situations
like short circuit faults or other kind of outages have already been studied within
a scenario case framework and based on simulations, emergency plans and guided
actions have been developed. The problem is that the intermittent behavior of the
RES generation and the time varying load demand along with the complexity added
by EVs and BESS regarding the power control in the grid, render an imperative need
for real time interventions. One of the most efficient ways to rearrange the power
flow in the DN relies on exploiting its topology. DNs operate as radial networks,
but they are designed as meshed ones. The concept here is that all main lines have
at least two feeding points, but under normal operation conditions they are fed only
by one. The other one plays the role of a standby alternative feeding source that is
ready to supply the loads, all or some of them depending on the available capacity
of the respective feeder, mainly in cases of outages. In these latter cases, appropriate
switching operations could enable the line to be fed by two feeders and still preserve
its radial structure. This intervention scheme is called Network Reconfiguration
(NR) and it has initially been performed for reliability improvement during outages.

The implementation of NR has soon attracted a lot of interest, since it was
found out that the layout alteration of the DN could change the loading level of
the network’s branches and yield voltage profile improvement and loss reduction.
This potential is further enhanced by the fact that a great number of tie-switches in
DNs enables numerous possible configurations and thus, it increases the possibility
of yielding the best needed one under various loading and operational conditions of
the network. Therefore, it could be found rational to believe that instead of adjusting
the demand and generation power uncertainties of the current modern and rather
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complex DN to the network’s fixed topology, the opposite could more efficiently
serve the Smart Grid concept towards the implementation of a more active and
self-healing grid. For example, under high RES generation and reverse power flow,
appropriate NR could mitigate the congestion of the DN and relief the branches
overloading that cause overvoltage and loss reduction. Therefore, in this case, NR
could contribute in increasing RES penetration in DNs. The same concept could
also be implemented under the high load demand during the EVs charging while it
could also be combined with the BESS operation to further exploit these potentials.

This chapter presents the concept of NR in DNs towards reliability improve-
ment and loss reduction. Initially, reliability in DNs is analyzed along with its
performance metrics, namely the reliability indices. Subsequently, the idea of NR in
order to perform fault isolation and power restoration during an outage is described
and some examples are presented. Some of the most widely utilized heuristic and
metaheuristic based approaches are in turn discussed in order to highlight both the
problem complexity and these aforementioned algorithms’ contribution to solving
the problem with less computational burden and within acceptable computational
times. Next, the potential of NR to power and energy loss reduction is explained.
Firstly, the respective section distinguishes power loss reduction from energy loss
reduction by analyzing the problem’s dependency from load variations for the latter
case. Secondly, the problem formulation along with the respective NR scheme are
analyzed for both cases and examples are given on benchmarked DNs. Finally, in
the last section the idea of applying the NR scheme in modern DNs with high DG is
examined in order to face new arising issues like reverse power flow and overvoltage
and also to analyze the schemes of NR and optimal sizing and siting of DG units for
loss reduction. At the end of the chapter the basic conclusions derived are discussed.

2 Reliability Improvement

2.1 Reliability in Distribution Networks

One of the earliest references in the reliability concept for DNs is presented by
L.B Crann in [15], where the key role of the sectionalizing switches in DNs
towards reliability improvement is explained for the first time. Moreover, reliability
is directly related to the average time for which a consumer experiences an outage.
Later on, other approaches pointed out that fault occurrence in DN follow a Marcov
chain [16] and that outages should not be considered independent to each other
[18], because under such an approach the reliability level could be underestimated.
Billinton [6, 7] was the first who tried to develop formulas to quantify both the
frequency and the duration of the interruptions, which in turn led to the formulation
of the reliability indices [34]. Reliability improvement refers to either the reduction
of the interruption frequency in a DN or to the interruption time minimization
after an outage. Obviously, the former has an impact on the latter but in order
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Fig. 1 Fault isolation and power restoration scheme in MV line

to efficiently manage the power restoration scheme, automation upgrade in DN
switching equipment is necessary. This is due to the fact that the largest number of
both sectionalizers and tie-switches is manually operated and thus the appropriate
switching operations for fault isolation and power restoration could be very time
consuming. Additionally, the guideline regarding the proper switching operation
sequence has a vital role towards reliability improvement and several on/off real
time methodologies have been presented [3, 21, 31]. In Fig. 1 a simple example
referring to the fault isolation and power restoration scheme for a single radial MV
feeder is presented, where CB refers to Circuit Breaker, NC to Normally Closed
status, NO to Normally Open status and LV to Low Voltage.

In Fig. 1a a simple representation of the DN layout for a single line is illustrated
where it is obvious that although the DN operates as a radial one it is actually
designed as a meshed one since the line has the capability for simultaneous feeding
by two respective MV feeders. In Fig. 1b the fault isolation and power restoration
scheme are presented. The idea here is to locate the fault within the shortest
possible line segment, i.e. between two adjacent MV/LV transformers, by opening
the respective sectionalizers at these respective line edges. Then, the upstream part
of the line will continue its feeding by the left MV feeder, while the loads of the
downstream part of the line will be delivered (given that the capacity of the feeder is
adequate) by the right MV feeder. In the case where the right-alternative MV feeder
lacks of enough capacity to deliver all load of the downstream line part then some
MV/LV transformers will inevitably be disconnected and their consumers will be
out of service. In this latter case, these consumers will experience an outage and for
them reliability issues will be raised.

The example shown in Fig. 1 is quite simple and the fault isolation and power
restoration scheme is quite straightforward. In most MV DNs having numerous
sectionalizers and many tie-switches the layout is more complex and therefore
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many alternative configurations of the DN could perform the power restoration for
the loads after the fault isolation. In these cases, the complexity of the problem
regarding the optimal configuration that could efficiently restore power to the
maximum possible number of consumers within the shortest time period is quite
challenging, due to the numerous possible switching operations. Usually, such
dynamic combinatorial problems with topology and operational constraints are
described as Nondeterministic Polynomial time (NP) complexity class problems
and they can be addressed by either real time operational schedules regarding
the switching operations or by distributed advanced monitoring and operational
schemes, like Multi-Agent systems [5]. Another alternative is to utilize heuristic and
metaheuristic based methodologies [2, 32], in order to come up with a relatively
efficient solution within acceptable computational time under a near-real time
approach.

2.2 Reliability Assessment in DNs

The reliability level of a DN constitutes a performance indicator on the services
provided to the consumers and thus within the liberalized energy market the
customers are expected to have choices regarding not only the energy provider
preferred but also the DSO. Thus, DSOs invest on automation upgrade and on
advanced monitoring schemes in order to be able to respond to outages and to
achieve power restoration as soon as possible. Alternatively, network reinforcements
aim in reducing the interruption frequency across the network, causing a high
reliability level that benefits both the operator and the consumers. Reliability cost is
the cost for the DSO in order to reach a predefined reliability level via investments
related to the two aforementioned approaches, while reliability worth is the benefit
for the DSO by the obtained reliability improvement. From the economic point of
view, we usually refer to cost of unreliability [20], which defines that the reliability
worth should be matched with the customers’ cost during an outage. Based on this
clarification, the feasibility study of a DSO regarding potential investment should
consider (a) the revenue after reliability improvement by the energy not supplied
and (b) the benefit due to the fact that customer interruption cost would be reduced.
In Fig. 2 the cost for both the DSO and the consumers in respect to reliability level
is presented.

From Fig. 2 it is evident that for the consumers the higher the reliability the lower
the interruption cost, since the outage time is lower, while for the DSO the case
is completely the opposite, since investments are required in order to increase the
reliability level of the DN. Still, the point where these two lines intersect, i.e. point
A in Fig. 2, indicates the minimum of the total cost curve for both the DSO and the
consumers in terms of the best tradeoff between the individual costs. In this context,
the corresponding cost indicated by point A should be considered feasible by the
DSO in order to perform investment plans for reliability improvement.
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2.3 Reliability Indices

The most widely utilized indices for the evaluation of the reliability level for a DN
are summarized as follows [34]:

• System Average Interruption Duration Index—SAIDI

SAIDI =
∑

Customer Interruption duration

Total number of Customers served
(1)

For the computation of the index value, the following formulae is used:

SAIDI =
∑

riNi

NT
= CMI

NT
(2)

where:
– ri : is the time needed for power restoration for each consumer,
– Ni : is the number of consumers that experience an outage during the examined

time period,
– NT : the total number of consumers served by the examined DN
– CMI : outage duration for the consumer that experience the interruption

• System Average Interruption Frequency Index—SAIFI

SAIFI =
∑

Customers interrupted

Total number of customers served
(3)
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For the computation of the index value, the following formulae is used:

SAIFI =
∑

Ni

NT

= CI

NT

(4)

where:
– CI : is the number of customers that experience an outage

• Customer Average Interruption Durations Index—CAIDI

CAIDI =
∑

Customer Interruption Duration

Total number of customers interrupted
= SAIDI

SAIFI
(5)

For the computation of the index value, the following formulae is used:

CAIDI =
∑

riNi

Ni

(6)

• Average Energy Not Supplied Index—AENS, or Expected Energy Not
Supplied—EENS

This index expresses the amount of energy that the consumer will fail to be
provided due to the outage. Usually it is computed as the product of the average
loading of the consumer during the outage to the duration of the outage and is
expressed in kWh/year.

2.4 Selective Automation Upgrade for Reliability Improvement

In order to highlight the impact of automation upgrade in DNs towards reliability
improvement, a simple example regarding the replacement of a small targeted
number of manual sectionalizers with automated ones will be briefly presented. The
examined real urban DN consists of five MV underground 3-phase cables and they
all feed in total 62 MV/LV (20/0.4 kV) distribution transformers, as illustrated in
Fig. 3. There are also four tie-switches at the ends of the lines in order to allow NR
in cases of outages.

In order to keep the investment cost as lower as possible, only the case
of upgrading the minimum possible number of sectionalizers will be examined
and the impact on the reliability indices will be evaluated [10]. Therefore, it is
considered that only the sectionalizers of the middle MV/LV transformer of each
line are replaced with automated ones. Under this approach, it will be possible to
immediately isolate the fault either to the first or to the second half of the faulted
line, without the need for time delays caused by manual switching operations that



226 A. S. Bouhouras et al.

Α

Β

C

D

E

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60 61 62

Tie-1

Tie-2

Tie-3

Tie-4

Fig. 3 DN with manual sectionalizers

require human interference. After the isolation of the fault, the remaining manual
switching operations have to be performed to only the half segment of the line,
meaning that (a) almost half consumers will experience almost immediate power
restoration (the healthy part of the line will be fed by an alternative feeder) and (b)
the power restoration for the faulted line segment will be performed within a very
short time period. In Fig. 4 the DN with the selected manual switches to be upgraded
is presented, while in Table 1 the input data regarding the performed simulations for
the reliability assessment are shown.

In Table 2 the simulation results (performed in Neplan© software package) [10]
regarding the reliability improvement after the targeted automation upgrade are
presented. It should be clarified that for the presented analysis only first order faults,
i.e. only one fault at line segment, have been considered. It is observed that even
under the examined limited automation upgrade with only two sectionalizers to be
replaced by automated ones, the reliability improvement is significant for all lines.
The latter is evident in both terms of SAIDI and EENS indices reduction. It should
also be clarified that, as presented in Table 1, the initial CAIDI index value coincides
with the considered time for power restoration in the initial state of the DN.
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Table 1 Reliability
assessment input data

Number of MV/LV transformer 62

DN nominal capacity (kVA) 42.44

Total line length of DN (km) 20.743

Annual fault frequency (1/km/yr) 0.1

Average time for power restoration (h) 2

Table 2 Reliability improvement after targeted automation upgrade

Reliability Initial State Automation upgrade state

Manual sectionalizers only

Targeted sectionalizer replacement
2 sectionalizers at the middle of the
line (see Fig. 4)

Indices Line A Line B Line D Line E Line A Line B Line D Line E

SAIFI (1/yr) 0.63 0.49 0.53 0.436 0.63 0.49 0.53 0.43

SAIDI (min/yr) 74.77 58.95 64.13 51.07 45.73 28.39 34.65 38.05

CAIDI (h) 2 2 2 2 1.22 0.96 1.02 1.49

EENS (MWh) 3.41 1.288 2.60 1.12 2.10 0.66 1.335 0.85
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3 Loss Reduction via Heuristic and Metaheuristic
Algorithms for Network Reconfiguration

3.1 Loss Reduction in DNs

The NR scheme that was initially utilized for reliability purposes was soon found
to be an efficient technique towards loss reduction/minimization in DNs [27]. As
in reliability improvement, the core concept here also relies on load transferring
among feeders via tie-switches. The main idea behind this approach is that under
a more efficient distribution of the network’s loads to the available feeders, the
loading of most lines could, as uniformly as possible, be also distributed among
the feeders. Thus, since the power losses are in direct relationship with the square
of the lines’ current, even a small reduction of the lines’ loading could yield
significant loss reduction. The problem of loss reduction via NR is a mixed integer
nonlinear programming problem (MINLP) with both binary and integer variables.
An objective function OF could be formed as:

OF = min
nl∑

z=1

RzI
2
z (7)

where:

– nl : is the total number of lines of the DN,
– Rz: is the resistance of line z,
– Iz: is the rms current of line z.

The OF shown in Eq. (7) could be formed based only on the voltage values of
the DN nodes, as presented in Eq. (8):

OF = min
nb∑

i,j=1
i =j

gi,j (V 2
i + V 2

j − 2ViVj cos(θi − θj )) (8)

where:

– nb: is the total number of buses of the DN,
– gi,j is the conductance between buses i and j ,
– Vi , Vj are the voltage magnitudes of buses i and j ,
– θi , θj are the voltage angles of buses i and j .
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Both of the OF variants presented in Eqs. (7) and (8) are subject to the following
constraints under the NR scheme:

• equality constraints referring to the power flow equations, as in Eqs. (9) and (10):

nb∑

i=1

{
PG,i − PD,i −

nb∑

j=1
i =j

|Vi ||Vj ||Yi,j | cos(δi,j − θi + θj )
}2 = 0 (9)

nb∑

i=1

{
QG,i − QD,i +

nb∑

j=1
i =j

|Vi ||Vj ||Yi,j | sin(δi,j − θi + θj )
}2 = 0 (10)

where:
– PG,i is the real power generation on bus i,
– QG,i is the reactive power generation on bus i,
– PD,i is the real power demand on bus i,
– QD,i is the reactive power demand on bus i,
– Yi,j is the magnitude of bus admittance element i, j ,
– δi,j is the angle of bus admittance element i, j .

• upper and lower voltage limits for the DN as defined by inequality constraint in
Eq. (11):

V min
i ≤ Vi ≤ V max

i (11)

where:
– V min

i : the lower voltage limit of bus i,
– V max

i : the upper voltage limit of bus i.
• Loading level of each branch lower than its ampacity level as defined in

inequality constraint in Eq. (12):

Iz ≤ Imax
z (12)

where:
– Iz: is the maximum thermal line limit of line z.

• DN radial structure. The switching operation of an initially open tie-switch is
expected to form a loop across the DN and thus at least one sectionalizer should
open within the loop in order to reestablish the radial structure of the DN. The
simplest formulation of this constraint is presented in Eq. (13):

nl = nb − 1 (13)
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3.2 Network Reconfiguration for Loss Reduction Based on
Heuristics

The optimal solution for the loss minimization problem via NR refers to the
identification of the proper switching operations in terms of closing a number of
initially open tie-switches and of opening a respective number of sectionalizers,
while all the constraints described earlier are satisfied. The problem here is that,
given the number of switches for a DN is m, then the possible switching operations
to be investigated are equal to 2m. The latter means that for a real DN with numerous
sectionalizers the computational burden becomes very high and the problem cannot
be solved within acceptable computational time. This is due to the fact that after a
switching operation, a load flow analysis should be performed in order to evaluate
the value of the OF and examine whether all constraints are satisfied. In Table 3 the
required time for the load flows calculations regarding three small sized DNs are
presented. It should be clarified that the time for a single load flow is approximately
25 ms, as derived by a load flow analysis software on an average PC.

Based on the data in Table 3 it is quite evident that the exhaustive search of
the solution space is very time consuming for this kind of problem. Even if the
computational time for each load flow simulation may fall down to 1/1000 of the
value utilized here, i.e. 25 μs, it is clear again that the final solution could not be
reached within a reasonable time period. This is where heuristics mechanisms come
up to give the solution.

A heuristic mechanism is a solution search strategy that relies on prior knowledge
about the problem which is used in order to facilitate the solution. Usually, this
knowledge is matched with practical judgment that is ruled by common sense and
is called heuristic rule. In general, the solution of problem by heuristics is faced as
a form of mapping the definition space D of the problem to its solution space S.
As stated earlier, the number of possible solutions for the NR problem is enormous
and thus the exhaustive search of the solution space is time consuming. Heuristics
mechanisms guide this search to specific parts of the solution space in order to
speed up the solution procedure. In Fig. 5 a graphical representation of this scheme
is illustrated.

The basic advantage of the heuristic algorithms is highlighted in Fig. 5, where
it is obvious that through the heuristic rules the solution space search is limited to
specific parts. The point though in this case is that since some parts are excluded,

Table 3 Indicative simulation time for load flow simulations regarding a pair of switching
operations

Number of sectionalizers for
DN

Number of required load flow
simulations Total simulation time (s)

13 213 203

29 229 1.33E + 07

58 258 7.2E + 15
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the algorithm cannot guarantee the global optimal regardless the performance of the
heuristic rules. Moreover, since the heuristic rules constitute decision making rules
that depend on prior knowledge about the problem, usually named as “knowledge of
engineer”, they are case dependent and their efficiency in not ensured for all possible
cases. Nevertheless, heuristics have been widely utilized for the NR problem, either
as the sole solution algorithm or by acting as subsidiary subroutine to analytical or
other optimization methodologies.

One of the first attempts to deal with the NR problems towards loss minimization
was based on two simple heuristic rules [14] that aimed to guideline NR procedure
in a specific manner that could perform both efficient loss reduction and minimum
switching operations. The first heuristic rule prioritizes the closing of the initially
open tie-switches based on the voltage difference across them, because the highest
voltage difference indicates that the respective feeders at the low and high dynamic
edges of the tie-switch experience low and heavy loading conditions respectively.
Therefore, since the NR scheme basically aims in uniformly distributing the
network’s loads to the available feeders, a good start could be the transferring
of loads between feeders with low and high loading. The second heuristic rule
indicates the sectionalizer to open across the formed loop after the tie-switch is
closed, in order to regain the radial structure of the DN. Based on this rule the
branch to open is the one carrying the minimum current within the loop, since the
respective sectionalizer opening would cause the lowest transient interruption with
the minimum impact on the DN. The implementation of the NR scheme based on
these heuristic rules is summarized in the flowchart presented in Fig. 6.

It should be noted that the threshold ε in Fig. 6 plays the role of the convergence
criterion for the algorithm implementation: a low value for this threshold indicates
that the respective feeders at the edges of the tie-switch are almost equally loaded
and thus, no load transfer between them could lead to further loss reduction.
Alternatively, the value of ε could be set to zero and in this case all tie-switches
of the DN will be examined, regarding their potential to contribute to further loss
reduction performing further NR.
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Fig. 6 Flowchart for NR
with heuristic rules START

AC load flow for initial radial 
DN

Find Tie-Switch with maximum 
ΔV, ΔVmax

is ΔVmax >ε ?  

New load flow 
analysis with 
reconfigured 

topology

Compute Voltage difference across each Tie-
Switch (initially open) 
ΔVi για i=1,2,3…(n-1)

NO

YES

Close Tie-Switch 
with ΔVmax

Run load flow analysis

Open branch within 
loop with minimum 

current

END

The presented algorithm in Fig. 6 is applied on the benchmarked 33 bus system
[23]. The layout of the DN is illustrated in Fig. 7 and the switching operations
that implement the NR scheme are presented in Table 4. The reconfigured DN is
presented in Fig. 8, in which the red circles indicate the open sectionalizers at the
respective branches. The application of the proposed NR scheme yields 33.65%
loss reduction (from 211 kW to 139.98 kW), which is the same found in other
methodologies in literature [23]. It should be stated though that under the presented
heuristic approach, only 11 load flow analyses are required instead of 233 that would
be needed if the solution space had to be exhaustively searched for the optimal
solution.
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3.3 Network Reconfiguration for Loss Reduction Based
on Metaheuristics

The proposed technique presented in the previous section is a knowledge-based
heuristic methodology that performs NR in compliance with specific rules that
are formed based on system experience [33] and is considered to be the more
straightforward of the relating techniques with the basic drawback to be the
weakness to guarantee the optimal solution for large and complex DNs. The latter
is faced by the so called meta-heuristic algorithms which are utilized for complex
optimization problems since due to their structure and formulation they solve the
problem iteratively without derivative information about the problem itself [33].
The basic advantage of the metaheuristic algorithms is that the possibility for
local minima entrapment is less than the heuristic based algorithms and under
proper parametrization they perform well providing efficient solutions. Figure 9
summarizes the NR classification methods with emphasis on metaheuristic ones
[33].

In this section the binary Particle Swarm Optimization (PSO) is presented with
the OF shown in Eq. (8). PSO is a population based algorithm initially proposed
in [22]. In PSO a swarm of particles is designated to explore the solution space.
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Table 4 Switching operations for NR based on heuristics—33 bus system

ΔV across Closing tie-switch Formed loop after Branch within formed

tie-switches (kV) with maximum ΔV closing tie-switch loop to open

1st step

(Tie 1) 0.64427 No * *

(Tie 2) 0.81897 Yes 2-19-20-21-22-12- 9–10
11-10-9-8-7-6-5-4-3-2

(Tie 3) 0.55514 No * *

(Tie 4) 0.22737 No * *

(Tie 5) 0.44180 No * *

2nd step

(Tie 1) 0.27206 No * *

(Tie 3) 0.4374 Yes 3-23-24-25-29-28- 28–29
27-26-6-5-4-3

(Tie 4) 0.5773 No * *

(Tie 5) 0.26459 No * *

3rd step

(Tie 1) 0.08963 No * *

(Tie 4) 0.24029 Yes 2-19-20-21-22-12- 14–15
13-14-15-9-8-7-6-5-4-3-2

(Tie 5) 0.16382 No * *

4th step

(Tie 1) 0.23699 No * *

(Tie 5) 0.24649 Yes 3-23-24-25-29-30 32–33
31-32-33-18-17-16-

15-9-8-7-6-5-4-3

5th step

(Tie 1) 0.23699 Yes 2-19-20-21-8-7-6-5 7–8
-4-3-2

The asterisk shows that no particular loop has been formed, since no tie-switch has closed
Bold values indicate the best solution reached at every step of the solving method

The particles’ position changes depending on their personal experience (personal
best—pbest), that of either the whole swarm (global best—gbest) in the case of
Global PSO (GPSO), or that of their neighbors’ (local best—lbest), in the case of
Local PSO (LPSO), and finally that of their previously obtained velocity, as shown
in Fig. 10.

In Eqs. (14) and (15) the expressions describing the velocity and the position
alteration of each particle are presented [22].

vi(t + 1) = χ
[
vi(t) + c1R1

(
Pi(t) − Xi(t)

)
+ c2R2

(
Pg(t) + Xi(t)

)]
(14)

Xi(t + 1) = Xi(t) + vi(t + 1) (15)
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Fig. 8 Reconfigured topology for the 33 bus system via heuristic rules

where:

– i = 1, 2, . . . , N and N : is the number of particles,
– Xi(t): the current position of particle i,
– Xi(t + 1): its future position,
– vi(t): its current velocity,
– vi(t + 1): its future velocity,
– Pi(t): its personal best, pbest,
– Pg(t): gbest or lbest,
– ci : weighting factors, also called the cognitive and social parameters, respec-

tively,
– Ri , i ∈ [1, 2]: random variables uniformly distributed within [0, 1],
– χ : the constriction coefficient or factor, formulated as:

χ = 2

|2 − (c1 + c2) −
√

(c1 + c2)2 − 4(c1 + c2)|
(16)
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The GPSO and LPSO constitute two PSO variants with advantages and draw-
backs since they either promote exploration or exploitation of the solution space.
In order to harness their aforementioned merits while neutralizing their flaws the
Unified PSO (UPSO) variant has been proposed [28]. For UPSO in Eqs. (17) and
(18), the global and local velocities of the particles are calculated using the GPSO,
Eq. (17), and the LPSO versions, Eq. (18), respectively, while in Eqs. (19a) and (19b)
the unified velocity is given. The particle position equation remains as in Eq. (15).

GVi(t + 1) = χ
[
vi(t) + c1R1

(
Pi(t) − Xi(t)

)
+ c2R2

(
Pg(t) − Xi(t)

)]
(17)

LVi(t + 1) = χ
[
vi(t) + c1R1

(
Pi(t) − Xi(t)

)
+ c2R2

(
Pl(t) − Xi(t)

)]
(18)

for u ≤ 0.5:

vi(t + 1) = uR3GVi(t + 1) + (1 − u)LVi(t + 1) (19a)

for u > 0.5:

vi(t + 1) = uGVi(t + 1) + (1 − u)R3LVi(t + 1) (19b)

where:

– u ∈ [0, 1]: is a parameter, called unification factor, and controls the influence of
the global and local velocity update. Evidently, lower values of u correspond to
distributions biased towards the LPSO, i.e. exploration, and higher values of u

towards GPSO, i.e. exploitation.
– R3: is a random variable uniformly distributed within [0, 1], is applied either to

the global, or the local velocity, depending on the value of u, infusing partial
stochasticity and enhancing in this way even further the exploration capabilities
of the technique.

As for assigning value to the unification factor, there are a lot of schemes. One
of them, called swarm partitioning, is a particle-level scheme, where the swarm is
divided in partitions consisting of a predefined number of particles. All particles in
the same partition share the same u, while each partition has a different value, i.e. a
value from the set W = {0, 0.1, . . . , 0.9, 1}. In order to avoid any search bias of the
swarm, due to the entanglement of neighborhoods and partitions, particles of the
same partitions are spread in different ring neighborhoods, by assigning particles
to partitions in a non-sequential order, such that the i-th particle is assigned to
the (1+(i-1)modk)-th partition. For example, the first k particles are assigned to
partitions 1 to k, respectively, one particle per partition. Then, it starts over by
assigning x(k+1) to partition 1, x(k+2) to partition 2, and so on.

The particle formulation for the UPSO is a vector with its dimension to be equal
to the sum of the sectionalizers and the tie-switches as presented in Eq. (20). For
each dimension a binary variable is considered with values 0 or 1 to denote the
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Table 5 NR under UPSO for 33 and 69 bus systems

NR under UPSO algorithm

Initial losses Sectionalizers Tie-switches Loss reduction Final losses

(kW) open closed reduction (%) (kW)

33 bus system 211.0 7, 9, 14, 28, 32 All 33.65 140.0

69 bus system 229.8 14, 58, 62 Tie 3, Tie4, Tie5 54.70 104.1

status of the respective switch, either open or closed.

X = [
S1, S2, . . . , Snb , T1, T2, . . . , Tw

]
(20)

where:

– Si : refers to sectionalizer,
– nb: the number of buses of the DN,
– Tj : refers to tie-switch,
– w: is the number of tie-switches of the DN.

The results after the UPSO application for NR for both 33 bus system and 69 bus
system [4] are presented in Table 5 and the initial layout of the 69 bus system in
Fig. 11 [19].

4 Power and Energy Loss Minimization under Network
Reconfiguration

4.1 Load Variation Consideration

The application of the NR scheme for loss reduction refers to seeking for the optimal
network reconfiguration given specific operating conditions for the DN in terms of
active and reactive load demand. The latter is the case of the so called snapshot of
the DN’s operation and it constitutes a reference case with fixed load composition
of the network, that allows the concept of load transferring among feeders to be
implemented. The problem though is that the final solution depends directly on the
load composition, since the solution algorithm will determine the required switching
operations to perform the NR based on load level differences among feeders and on
the layout of the network. Given an altered load composition for the DN, it is rational
to accept that the final reconfigured topology after NR could also alter. An issue is
raised here regarding the definition of the optimal solution under load variations:
if for any different operating snapshot of the DN with altered load composition a
possibility for a different optimal solution exists, then under real load variations
the topology should be continuously being reconfigured. Fortunately, this is not the
case due to the reason that, under smooth load variations, the optimal reconfigured
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topology proves to be quite fixed. Also, under more intense load variations, a fixed
reconfigured topology can be efficient enough regarding the loss reduction, even if
it is not the optimal one for every single snapshot with different load composition.
Given these clarifications, the problem under load variations is known as energy loss
reduction via NR and a simple formation of the OF is presented in Eq. (21).

OF = min
T∑

Δt=1

nl∑

z=1

RzI
2
z (21)

where:

– Δt: is the time interval for which a fixed load composition is considered
– T : is the time period for which energy loss minimization is examined
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The number of Δt intervals in Eq. (21) has a great impact on the problem’s
computational burden. For example, if T is equal to 1 day, then it is possible to
break down the problem to 24 sequential sub-problems when Δt = 1 h or even to
3600 sequential sub-problems when Δt = 1 min. Given the problem’s complexity
for a single snapshot, it becomes obvious that special attention about the assumed
number of the Δt intervals should be given.

If the load alterations between sequential time intervals, corresponding to at least
two consecutive snapshots, are considered to be performed equally and uniformly
for all loads of the DN, then the final solution concerning the reconfigured topology
is not affected. The latter means that for a different load composition with all
loads uniformly increased or reduced, the same switching operations are required to
perform the optimal NR scheme. In order to investigate the impact of load variations
to the optimal NR problem, the 33 bus system is again examined under a series of
different loading conditions regarding its load composition. The load alterations
are performed randomly because the probabilistic modelling of loads, especially
the residential ones, is well justified by the fact that electricity demand is largely
a stochastic process exhibiting diversity [25, 26]. Therefore, the load variations
for the examined DN are assumed to follow a uniform distribution [8] and the
corresponding lower and upper limits are computed as in Eqs. (22) and (23):

P lower
i = Pi

(
1 − lu

100

)
(22)

P
upper
i = Pi

(
1 + lu

100

)
(23)

where:

– P lower
i : is the lower limit of the uniform distribution interval of bus i

– P
upper
i : is the upper limit of the uniform distribution interval of bus i

– Pi : is the mean load value of node n (initial snapshot of the DN)
– lu: is the number defining the length of the uniformly distribution interval

The flowchart of the methodology that performs optimal NR under load vari-
ations is illustrated in Fig. 12. It should be clarified that the NR scheme is based
on the heuristic rules that have been presented previously in this chapter. The
proposed algorithm considers for each new scenario different load composition for
the DN and applies the heuristic rules to perform optimal NR for loss minimization.
Furthermore, the algorithm examines the performance of the optimal reconfigured
topology resulted for the initial load composition of the DN (mean load values),
regardless the actual load composition. The latter means that the algorithm computes
the loss reduction that the initial reconfigured topology yields for every different
snapshot formed by the uniform distribution. The goal here is to investigate whether
it is actually necessary to apply the NR scheme under load variations. For example,
if the initial optimal NR with the mean load values performs well concerning the
loss reduction regardless the load variations, then this solution could be considered
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Table 6 Sectionalizers operation for NR under smooth load variations for 33 bus system

Close
tie-switch Open branch

lu = ±20% participation

Open branch

lu = ±30% participation

frequency of branch (%) frequency of branch (%) to

to 10,000 scenarios to 10,000 scenarios

Tie 1 7–8 100 7–8 100

8–9 100 8–9 6.46

Tie 2 9–10 81.44 9–10 66.78

10–11 17.49 10–11 26.76

Tie 3 28–29 100 28–29 100

Tie 4 14–15 100 14–15 100

32–33 99.98 17–18 0.48

Tie 5 17–18 0.02 31–32 0.42

32–33 99.1

Table 7 Sectionalizers operation for NR under intense load variations for 33 bus system

Close
tie-switch Open branch

lu = ±40% participation

Open branch

lu = ±50% participation

frequency of branch (%) frequency of branch (%)

to 10,000 scenarios to 10,000 scenarios

Tie 1 7–8 100 7–8 100

8–9 14.44 8–9 19.82

Tie 2 9–10 55.59 9–10 46.85

10–11 29.85 10–11 32.28

11–12 0.12 11–12 1.05

Tie 3 28–29 100 28–29 100

Tie 4 14–15 100 14–15 100

16–17 0.01 16–17 0.05

Tie 5 17–18 2.13 17–18 5.37

31–32 1.40 31–32 2.52

32–33 96.46 32–33 92.06

fixed and assumed to be the near optimal under load variations. In Tables 6 and 7
the results regarding 4 values for lu, i.e. 20, 30, 40, 50, are presented. The latter
means that all loads have been considered to randomly alter within ±20%, ±30%,
±40%, ±50% from their mean initial values respectively. For each lu value 10,000
scenarios with different load composition for the 33 bus system have been produced
and for each one of them the NR scheme under the heuristic based approach has
been applied.

The results in Table 6 indicate that for smooth load variations, i.e. within ±30%
from the mean load value, and regardless the load composition the sectionalizers
that have to be operated for the initial NR with the mean load values seem to also
participate in the vast majority of the solutions for all other snapshots. Even under
more intense load variations, as the results in Table 7 show, these sectionalizers still
keep high participation frequency to the reconfigured topology. Nevertheless, the
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Fig. 13 Schematic representation of corresponding sectionalizers to open for each tie-switch
regardless load composition for 33 bus system

analysis shows that from the 32 available sectionalizers of the 33 bus system, only
11 of them (33%) should be expected to participate in the NR scheme, regardless
the load composition of the DN. Moreover, this number could be considered further
reduced since for some of them the probability to be operated is quite low. In
Fig. 13 the layout of the 33 bus system with all participated sectionalizes for all
possible NRs is illustrated in order to highlight that, for each tie-switch, the expected
sectionalizers to open after the tie-switch operation are sectionalizers within specific
neighborhoods of the DN. Based on these results, it is up to the DSO to proceed
with selective automation upgrade to targeted sectionalizers in order to exploit
the benefits for real time NR towards energy loss reduction under relatively low
investment cost.
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Finally, in Fig. 14 the performance evaluation of the fixed NR derived by the
initial load composition with mean load values, regardless the load variations, is
presented. More specifically, for each snapshot the aforementioned NR is applied
and the difference in loss reduction in respect to the optimal NR for this snapshot
is computed. All these differences are placed in descending order and as clearly
presented the worst case refers to a difference of approximately 4.5% by the optimal
NR for this snapshot. Thus, it is rational to consider that for time periods within
which the load variations of the network’s loads are not intense, a fixed reconfigured
topology could be assumed as an efficient solution for energy loss reduction due to
low investment cost for the DSO, regarding the automation upgrade of the DN in
terms of replacing manual sectionalizers with automated ones.

The results corresponding to the 69 bus system are presented in Tables 8 and 9
and are schematically summarized in Fig. 15, in which the blue dotted frames
indicate the sectionalizers to be operated after the respective tie-switch is closed.

5 Network Reconfiguration Under DG Penetration in DNs

5.1 Overloading Mitigation in DNs due to High DG
Penetration

In general, it is expected that DG penetration in power systems has shifted power
generation to a more decentralized model, which could benefit the grid in terms
of improving the voltage profile and alleviating the lines’ loading. The increased
and without proper guideline installation of DG units has driven parts of the DNs
in saturation conditions, in which overvoltage and reverse power flow issues cause
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Table 8 Sectionalizers operation for NR under smooth load variations for 69 bus system

Close
tie-switch Open branch

lu = ±20% participation

Open branch

lu = ±30% participation

frequency of branch (%) frequency of branch (%)

to 10,000 scenarios to 10,000 scenarios

Tie 1 12–67 100 12–67 100

Tie 2 14–22 100 14–22 100

Tie 3 15–16 100 14–15 0.01

15–16 99.99

47–48 57.23 47–48 45.32

Tie 4 48–49 12.20 48–49 13.78

49–50 14.42 49–50 17.16

50–51 16.15 50–51 23.74

53–54 28.26 53–54 34.63

54–55 37.52 54–55 29.48

Tie 5 55–56 33.92 55–56 35.39

56–57 0.05

Table 9 Sectionalizers operation for NR under intense load variations for 69 bus system

Close
tie-switch Open branch

lu = ±40% participation

Open branch

lu = ±50% participation

frequency of branch (%) frequency of branch (%)

to 10,000 scenarios to 10,000 scenarios

Tie 1 12–67 100 12–67 100

Tie 2 14–22 99.96 14–22 99.26

21–22 0.04 21–22 0.74

13–14 0.22 13–14 1.09

Tie 3 14–15 0.35 14–15 1.31

15–16 99.43 15–16 97.60

47–48 38.12 47–48 34.02

Tie 4 48–49 13.80 48–49 15.08

49–50 19.33 49–50 19.15

50–51 28.75 50–51 31.75

53–54 38.73 53–54 42.47

Tie 5 54–55 24.42 54–55 20.71

55–56 33.74 55–56 31.28

56–57 3.11 56–57 5.54

power quality problems and increased power losses. The latter is usually the case
in DN with increased RES penetration either during midday and night, when the
Photovoltaic (PV) and the Wind Generation (WG) power units, respectively, are
active. Since these effects are present for specific lines-parts of the DN, it is possible
to face them by NR due to the fact that power flow allocation within the DN could
more efficiently exploit the power surplus by the DG or RES units. In Fig. 16 the
69 bus system is presented, in which the carrying capacity for branches 1-9 is 400
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Fig. 15 Schematic representation of corresponding sectionalizers to open for each tie-switch
regardless load composition for the 69 bus system

A, for branches 46–49 and 52–64 is 300 A and for all the remaining the ampacity
is 200 A [30]. It is considered that three DG units, with 500 kW and 300 kVAr
active and reactive power generation respectively, are installed as shown in Fig. 16
and thus a low DG penetration scenario is examined [11]. In Fig. 17 the carrying
current for each branch normalized to its ampacity level for the cases before and
after the DG installation is illustrated. It is observed that the DG power generation
causes for some branches reduction of their current flow, while for some other
the opposite happens. The results in Fig. 17 show no constraint violations for the
branches’ loading, but this is due to the low penetration level of the DG. Still, the
trend is evident since for high DG penetration it is high possible to experience heavy
loading conditions subject to reverse power flow. Therefore, NR could prove to be
an efficient scheme to mitigate both possible overvoltage and reverse power flow
conditions.
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The problem is addressed through a linear OF that is formed based on the indices
shown in Eqs. (24) and (25) [11]:

CCIF =
∑[(nb−1+t )]

z=1
I k
bz

Iaz

[(nb − 1 + t)] (24)

where:

– CCIF : is the current index,
– nb: is the number of buses of the DN,
– t: is the number of tie-switches of the DN
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Fig. 17 The 69 bus system branch currents before and after DG installation

– k: is the operation state of the DN, i.e. the load and generation composition for
the snapshot solved,

– z: is the line z, with i = 1, 2, . . . , [(n − 1) + t],
– Ik

bz
: is the current (rms value) of line z,

– Iaz : is the ampacity level of line z.

V CIF =
∑nb

i=1
V k

i

Vr

nb

(25)

where:

– V CIF : is the voltage index,
– V k

i : is the voltage of bus i for state k,
– Vr : is the nominal voltage of the DN.

The proposed algorithm performs the NR scheme based on the simple heuristic
rules that explained earlier in this chapter in order to optimize either the CCIF or
the V CIF index under a weighted factor approach. The flowchart of the proposed
algorithm is shown in Fig. 18. Initially the algorithm checks whether the DG
penetration has increased either the CCIF or the V CIF index and then based on
the index optimization prioritization, NR is applied. The results for 100 scenarios
concerning random allocation of 15 DG units with random power generation
between 100–850 kW (with a fixed power factor equal to 0.9) are presented in
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Fig. 18 Flowchart for NR towards CCIF and VCIF optimization due to DG penetration



250 A. S. Bouhouras et al.

CCIF with DG CCIF with DG after 
reconfiguration

CCIF without DG

VCIF improvement prioritized

CCIF improvement prioritized

VCIF with DG

VCIF with DG after reconfiguration

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

0,22
0,2

0,18
0,16
0,14
0,12

0,1
0,08
0,06
0,04

C
C

IF

DG allocation scenario DG allocation scenario

1,04

1,03

1,02

1,01

1

0,99

V
C

IF

Fig. 19 CCIF and VCIF values for 100 scenarios with DG penetration after NR

P
ow

er
 b

as
es

 [
kW

]

600

500

400

300

200

100

0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
examined scenarios

losses before reconfiguration losses after reconfiguration

Fig. 20 Loss reduction under DG penetration via NR

Fig. 19 [11]. At the left graph of Fig. 19 the NR is performed aiming to optimize
the V CIF index but as observed this scheme leads also to CCIF improvement in
most examined scenarios. When CCIF is prioritized, the algorithm applies the NR
scheme and in all cases the index is reduced yielding by this way more balanced
branch loading across the DN. For the right part of Fig. 19 the results presented
show that the voltage profile of the DN has been improved under the NR scheme for
all cases with DG penetration. Finally, the impact of improving the voltage profile
and of mitigating the branch loading is also reflected on the network’s power loss,
as presented in Fig. 20, where in all cases the reconfigured topology caused loss
reduction. The latter is important since the OF is not formed directly to express the
power loss for the DN but to reduce the branch current across the DN, that is a linear
simplified and approximating approach of the loss reduction OF .
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5.2 Optimal Siting and Sizing of DG and NR Towards Loss
Reduction in DNs

In the previous section the NR scheme is applied in DNs given the penetration of DG
in terms of siting and sizing of the DG units. In this section, the application order of
NR and the so called Optimal Distributed Generation Placement (ODGP) problem
for loss reduction is examined. The basic concept is to investigate whether it is
more efficient, in terms of higher loss reduction, to apply the NR scheme and then
the ODGP or vice versa. Both schemes are implemented by the UPSO algorithm
that has been explained in section 3.3 but for the ODGP problem the particle’s
formulation is different [12] and is presented in Fig. 21. Each particle is a nine
dimension vector for the 33 bus system, since the first 3 dimensions refer to the
3 candidate nodes of the DN for DG installation, the other 3 dimensions concern
the active power generation of each DG unit and the remaining 3 dimensions refer
to the reactive power of each DG unit. Using this approach, it becomes evident that
only three nodes of the DN are considered as candidates for DG installation and
moreover, the algorithm will determine the power generation for each installed unit.

In Table 10 the UPSO parameters are presented and they are the same either for
the ODGP or the NR scheme implementation. Using the OF shown in Eq. (8), the
NR scheme is initially applied first and then the ODGP scheme is applied in order
to further reduce power losses by defining the optimal siting and sizing of three DG
units. The concept here is to firstly exploit the current structure of the DN by NR for
potential loss reduction and then proceed in optimal DG penetration. The alternative
application order of these schemes refers to firstly perform optimal DG penetration
and then examine whether the NR could further reduce power losses. The results of
these two approaches are presented in Table 11 [9].

1 2 +1 +2 2 2 +1 2 +1 3, ,..., , , ,..., , ,c ,...,
g g g g g g gi n n n n n n nX a a a b b b c c=

a refers to DG (or node)
b refers to active power generation at respective node
c refers to reactive power generation at respective node

Fig. 21 Particle formulation in ODGP for UPSO algorithm

Table 10 UPSO parameters Parameter Value

Cognitive and social coefficient ci 2.05

Number of particles N 50

Neighborhood radius r 2

Maximum iteration number Tmax 500

Convergence tolerance 10−7
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Table 11 NR and ODGP for loss reduction

NR scheme applied 1st and ODGP scheme applied 2nd

Initial Loss reduction

losses Sectionalizers Tie-switches (%) and final
(kW) open closed – losses (kW)

NR applied 211 7, 9, 14, All – 33.65%

28, 32 – 140

Initial Active power of Reactive power Loss reduction
Losses Nodes to host each DG unit of each DG unit (%) and final
(kW) DG units (kW) (kVAr) losses (kW)

ODGP applied 140 6 681.7 317.8 87.36%

8 933.2 435.5 17.7

30 1234.3 1108.3

ODGP scheme applied 1st and NR scheme applied 2nd

Initial Active power of Reactive power Loss reduction
Losses Nodes to host of each DG unit of each DG unit (%) and final
(kW) DG units (kW) (kVAr) losses (kW)

ODGP applied 211 3 1633.3 800.2 91.37%

14 741.4 346.9 19.2

30 987.4 990.4

Initial Loss reduction
Losses Sectionalizers Tie-switches (%) and final
(kW) open closed – losses (kW)

NR applied 19.2 7, 8, Tie 1, Tie 2, – 15.38%

9, 28 Tie 3, Tie 4 – 15.4

The basic observation from the results shown in Table 11 is that, although both
approaches regarding the application order for the NR and ODGP schemes yield
almost the same final loss reduction, the application order of the schemes has an
individual impact on them. More specifically, if the NR scheme is applied firstly,
the aggregated DG penetration is approximately 2.85 GW, while if it is applied
secondly then the total DG capacity is close to 3.36 GW. The obtained difference
of approximately 500 kW could have a great impact on the total investment cost
regarding the DG penetration, thus it seems that the ODGP should be applied on
the most efficient network topology, i.e. the one after NR, in order to minimize the
installation cost.

6 Conclusions

In this chapter, the NR scheme in DNs is examined related mainly to reliability
improvement and loss reduction issues. NR is based on changing the layout of the
DN by appropriate switching operations. These operations concern the closing of
normally open tie-switches and the opening of normally closed sectionalizers within
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the performed loops. The idea behind these switching operations relies on allocating
the network’s load within its feeders in order to somehow balance overall network’s
loading level. It is expected that under a more balanced load profile both loss
reduction and voltage improvement could be achieved. Moreover, the NR technique
also enables fault isolation and power restoration after an outage in DNs which in
turn contributes in reliability improvement.

The first part of the chapter describes the importance of establishing a high
automation level in DNs in order to be able to remotely perform the required
switching operations during an outage aiming to isolate the fault within the shortest
possible line segment of the network and restore power to the maximum number
of consumers within the shortest possible time framework. A brief presentation of
the reliability assessment in DNs is presented based on the respective reliability
indices and a simple approach concerning targeted automation upgrade is analyzed.
This approach refers to limited investment interventions subject to guided switching
replacement in order to yield efficient reliability improvement subject to low cost.
An example of a real urban DN is illustrated where it is shown that the claimed
scheme is possible.

The second part of the chapter analyzes the loss reduction problem under NR
via heuristic and metaheuristic based algorithms. The distinction between these
two aforementioned algorithms is highlighted and their application on benchmarked
DNs is presented. For heuristic approaches two well established and widely utilized
heuristic rules are described while for the metaheuristic approaches a binary PSO
variant, namely the Unified PSO, is presented along with the respective results.
Subsequently, the problem of energy loss reduction is presented by explaining
how load alterations are expected to influence the NR implementation. An analysis
regarding numerous load compositions is shown in order to explain how the problem
of energy loss minimization under NR is actually faced. The results presented
indicate that even under intense load variations the expected switching operations
in order to perform optimal NR could be considered somehow previously known
based on prior knowledge for their participation frequency to the NR scheme.

Finally, the chapter also examines the potential for utilizing the NR concept
with DG penetration. On the one hand, the NR is applied under high RES or DG
penetration in order to mitigate branch overloading, reduce the current flow and
improve voltage profile via the optimization of proposed indices. On the other hand,
NR along with ODGP are treated as effective schemes for loss minimization in DNs
and their application order is investigated. It has been proven to be more efficient to
apply NR firstly, and then the optimal siting and sizing of DG units scheme, since
in this way the aggregated DG or RES capacity is lower, while the loss reduction
percentage is not affected.

The chapter succeeds to highlight the contribution of the NR scheme on several
operational issues especially within the current smart grid concept, where immediate
decisions have to be made and respective responses of the DN layout to several
challenges related with load and generation uncertainties have to be faced.
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Switch Optimization for Smart Grid
Distribution Automation

S. Chouhan and A. Feliachi

Abstract It is a daunting task to find optimum number and placement of sec-
tionalizing switches in Distribution Automation (DA) feeders. Switch optimization
is the most essential component of evaluating economic feasibility of a DA
project and one has to consider the trade-off between reliability and economics
to arrive at the answer. This chapter presents a novel iterative algorithm for the
optimal switch number and placement problem. The proposed iterative algorithm
can determine the solution faster compared to traditional switch optimization
techniques by minimizing the total interruption costs at each step of the analysis.
The proposed algorithm does not rely on varying switch capital investment and
customer interruption cost data that are usually based on outdated utility surveys.
The proposed method has been successfully implemented on Mon Power’s, a
FirstEnergy company, distribution system as part of the US Department of Energy
(DOE) funded project, West Virginia Super Circuit (WVSC). The proposed method
is also validated using IEEE 34-bus and 123-bus test feeders to demonstrate the
effectiveness of the proposed approach. The mathematical model is developed in
Matlab and the results show that the proposed iterative algorithm can drastically
reduce the search space, and can find optimal number and placement of the switches
with minimum computational effort.

1 Introduction

Improvement of the system reliability is one of the main drivers of Distri-
bution Automation (DA) technologies. It is one of the most effective strate-
gies in distribution networks to increase reliability by reducing the duration of
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the interruptions and the number of affected customers. The key aspect of DA
project is to install automated sectionalizing switches on distribution feeders
to divide them into multiple zones. The sectionalization of the feeder helps
improving reliability by isolating the faulted zone, and serving the un-faulted
zones by adjacent feeders. The first step in economic feasibility evaluation process
of DA project is the determination of number and placement of sectionalizing
switches.

The problem of determining optimal number and placement of switches has
been studied by several authors with different approaches. Many works in literature
formulated the problem as an optimization problem with objective functions such
as reliability improvement and minimization of investment cost of switches. The
reliability improvement is modeled as minimization of interruption costs. These
methods are heavily reliant on the data pertaining to interruption costs and switch
investment costs. The main problem with such data is the fact that it is not openly
available, and even if it is available, seldom the data represent the present market
conditions. Therefore, implementation of switch optimization problem using the
actual values of interruption costs and investment costs might not always result in
the correct answer.

Authors in [1] defined the problem using a combined cost function that includes
investment, maintenance, and outage costs to determine the optimal number and
location of switches using a Simulated Annealing (SA) approach. A polynomial-
time partitioning algorithm is presented in [2] that can decompose the problem
into a set of convex independent sub-problems to aid in reducing the problem
complexity. A binary array is provided as a solution of optimal locations for
deploying automated switches in the distribution feeders. A Genetic Algorithm
(GA) based approach to solve the switch optimization problem using a binary
representation model and System Average Interruption Duration Index (SAIDI)
is presented in [3]. The same authors in [3] presented a solution to determine
optimal location of switches, reclosers, and fuses by using a non-linear integer
programming method with an objective function to minimize System Average
Interruption Frequency Index (SAIFI).

An immune algorithm based approach to solve the optimal location of automated
switches is presented in [4]. The proposed approach is utilized in designing a DA
system for a real distribution system in Taiwan Power Company. The optimiza-
tion problem is modeled with an objective of minimizing sum of the customer
interruption cost and the switch capital costs. Authors in [5] solved the problem
of optimal device allocation using reactive tabu search that has an objective to
minimize estimated interruption costs.

A Simulated Annealing algorithm based approach using cost/worth analysis
is proposed in [6] to find best locations to install switches in distribution sys-
tem. A relative analysis was used in the solution that compared switch capital
costs and reliability worth. Authors in [7] used a Particle Swarm optimization
approach to solve switch optimization problem for sectionalizing switches and
circuit breakers in radial distribution systems. The work in [8] proposed a solution
for locating optimal location of automated sectionalizing switches in distribution
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systems with DG penetration. The optimization problem was formulated using a
fuzzy multi-objective function and solved using Ant Colony optimization tech-
nique.

A unique iterative algorithm is presented in this chapter that can find optimal
switch number and placement based on relative reduction in normalized customer
interruption costs. The proposed algorithm minimizes the total interruption costs at
each step of the analysis to find the solution faster compared to traditional switch
optimization techniques. This methodology greatly reduces the search space of the
problem to aid in reducing the problem complexity.

The underlying problem with many of the switch optimization methods men-
tioned above is the reliance on varying customer outage cost and switch capital
investment cost data. This could make the switch optimization solution very
subjective and unrealistic. The switch capital investment costs vary greatly based
on several factors such as manufacturer, country of deployment, and type of switch.
Therefore, the proposed economic approach isolates switch capital costs to make it
a generalized switch optimization model that can be applied to variety of switches
such as reclosers, load break switches, circuit breakers, etc., with different levels of
automation including manually operated, motor operated, and remotely operated.
The customer interruption costs are derived from customer damage functions given
in various utility surveys. The main problem with the survey data is that they are
usually outdated and sensitive to the estimation methodology used in the survey.
Thus, the usage of absolute customer interruption cost data makes determination
of optimal switch number and placement very subjective and unrealistic. In order
to solve this issue, the proposed iterative algorithm uses normalized customer
interruption costs instead.

2 Mathematical Problem Formulation

The customer interruption cost (CIC) [4] represents the outage costs incurred by
customers due to grid outages, and can be calculated using Eq. (1). The proposed
iterative algorithm makes use of CIC as it considers interruption duration, system
topology, load variations, and device random failures. It also accounts for various
customer types and associated nonlinear customer damage functions.

The initial step in the analysis is to divide the distribution feeder into a set of
Super Sections (SS). SS are also referred to as zones that can be isolated using
automated switches during a grid outage. Therefore, each SS is considered as a
potential automated switch location in the analysis. SS are formed by logically
combining a number of consecutive feeder line segments. Each SS has a load point
to represent the equivalent load of SS which is obtained by summing up individual
loads in the SS. SS must be strategically selected in a way that the created zones of
the feeder will have the ability to restore the power from adjacent feeders in the event
of outages. The restoration of the power must not violate the system constraints such
as thermal capacity constraints (conductor or equipment loading limits) and voltage
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Fig. 1 Typical radial distribution feeder

constraints (low and high voltage issues). DA feeders can be divided into SS with
un-equal circuit lengths and loadings. A typical distribution feeder that is divided
into several SS is shown in Fig. 1.

CIC =
k∑

y=1

OCy =
k∑

y=1

ξyly

(
k∑

z=1

CyzPz

)
(1)

Cyz = (
Re sz × fR

(
ryz

)+ Comz × fC

(
ryz

)+ Indz × fI

(
ryz

))
(2)

Where,

kk Total number of Super Sections
OCy Interruption cost per year due to outages in SS-y
ξ y Outage rate (failure/mile-year) of SS-y
ly Circuit length in miles of SS-y
Cyz Interruption cost of load (residential, commercial and industrial customers)

in $/kW at SS-z due to an outage at SS-y
Pz Total load in kW of SS-z
Resz Load percentage of residential customers at SS-z
Comz Load percentage of commercial customers at SS-z
Indz Load percentage of industrial customers at SS-z
fR Interruption cost function of residential customers
fC Interruption cost function of commercial customers
fI Interruption cost function of industrial customers
ryz Duration of service interruption of SS-z due to an outage at SS-y

Equation (2) represents the integrated interruption cost framework which can be
expanded to include other types of customers given the customer damage functions
are known. Customer interruption costs are mainly dependent on customer type and
outage duration. For example, the interruption cost of residential customers is far
less compared to commercial customers. The customers with high service priorities
such as hospitals, police stations, fire stations, and tele-communication data centers
have high interruption costs.
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3 Switch Optimization Iterative Algorithm

In a switch optimization problem for a distribution feeder with “n” number of SS
with “r” number of automated switch placements, the total number of possible
combinations for which the CIC is calculated is given by Eq. (3). CIC needs to
be calculated for all possible combinations of switch placements to arrive at a
global optimal solution. In the proposed iterative algorithm, the search space of
CIC calculations is significantly reduced by minimizing the total interruption cost
at each step of the analysis.

(n−1)∑

r=1

C(n−1)
r =

(n−1)∑

r=1

(n − 1)!
r! (n − 1 − r)! (3)

The determination of optimal switch number and location is achieved by the
switch optimization iterative algorithm [9] shown in Fig. 2. The steps involved in
the process are explained below,

• Step 1: Divide the DA feeder into “n” number of SS.
• Step 2: Calculate CIC for the base case feeder with zero automated switches

(CICb). Normalize this interruption cost to find cost index (CICmi0).
• Step 3: Start the iterative process with one automated switch “r” = 1.
• Step 4: Calculate CIC for all possible switch configurations with “r” switches.

The number of possible combinations is given by Eq. (3).
• Step 5: Find the lowest CIC among all the possible switch configurations

(CICmr) with “r” switches.
• Step 6: Normalize CICmr to find cost index (CICmir).
• Step 7: Calculate reduction in CICmir relative to CICmi(r-1) (CICDmir).
• Step 8: Check if CICDmir is lower than the iterative threshold (CICDmilimit).

Although this is a configurable parameter, a value of “8” is used as the threshold
in this study.

• Step 9: If the condition is FALSE, then increment the number of switches “r” by
one and repeat the process from Step 4.

• Step 10: If the condition is TRUE, then the iterative process has identified the
optimal number and placement of switches. The optimal number of switches is
“r”. The optimal placement is the placement corresponding to CICmr.

4 Test Systems

The proposed iterative algorithm for optimal switch number and placement is tested
on IEEE 34-bus and IEEE 123-bus test feeders, and Mon Power’s real distribution
network involved in the WVSC project.
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Fig. 2 Switch optimization iterative algorithm
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4.1 IEEE 34-Bus System

The IEEE 34-bus system is a perfect candidate to test the proposed algorithm as it
is a lengthy feeder and assumed to have a poor reliability. The IEEE 34-bus system
represents a real distribution feeder located in Arizona USA. The nominal voltage
is 24.9 kV and it has 33 line segments, 6 spot loads, and 19 distributed loads. The
feeder data such as spot loads, distributed loads, overhead and underground line
segment information, and equipment locations are taken from [10]. Reliability and
customer mix data are not available for this feeder. Typical values of reliability data
in terms of failure rates are used in the analysis. The customer mix is assumed
as 50% residential, 25% commercial, and 25% industrial customers for each line
segment.

Circuit topology, switch locations, tie points to adjacent feeders, and customer
distribution were taken into consideration to divide the IEEE 34-bus feeder into
seven (7) SS as shown in Fig. 3. Table 1 presents data pertaining to all the SS
including circuit length, load, and failure rate per annum per mile. It is important
to note that circuit length is different from actual feeder length. The circuit length
is calculated by summing up individual phase lengths so that the failure rate can be
applied to individual phases of the circuit. For example, a three phase line segment’s
circuit length would be three times the actual line segment’s length.

4.2 IEEE 123-Bus System

The proposed switch optimization solution is tested on the IEEE 123-bus system
to evaluate computational efficacy. The IEEE 123-bus system is the most compre-

Fig. 3 IEEE 34-bus test feeder



264 S. Chouhan and A. Feliachi

T
ab

le
1

IE
E

E
34

-b
us

an
d

IE
E

E
12

3-
bu

s
te

st
fe

ed
er

SS
da

ta

Su
pe

r
se

ct
io

n
ID

IE
E

E
34

-b
us

sy
st

em
IE

E
E

12
3-

bu
s

sy
st

em
C

ir
cu

it
le

ng
th

(m
il

es
)

L
oa

d
(k

V
A

)
Fa

il
ur

e
ra

te
/y

ea
r-

m
il

e
C

ir
cu

it
le

ng
th

(m
il

es
)

L
oa

d
(k

V
A

)
Fa

il
ur

e
ra

te
/y

ea
r-

m
il

e

SS
-1

21
.8

6
80

.1
0.

06
1.

17
33

5.
4

0.
59

SS
-2

38
.2

0
0.

0
0.

06
4.

67
14

06
.2

0.
59

SS
-3

19
.0

7
24

4.
7

0.
06

1.
02

17
8.

9
0.

59
SS

-4
37

.2
5

61
.3

0.
06

1.
23

44
9.

4
0.

59
SS

-5
9.

10
52

1.
9

0.
06

3.
47

62
6.

1
0.

59
SS

-6
6.

61
71

2.
5

0.
06

0.
31

43
8.

2
0.

59
SS

-7
4.

24
44

2.
9

0.
06

1.
85

29
0.

7
0.

59
SS

-8
N

/A
N

/A
N

/A
1.

06
26

8.
3

0.
59



Switch Optimization for Smart Grid Distribution Automation 265

Fig. 4 IEEE 123-bus test feeder

hensive test feeder which operates at a nominal voltage of 4.16 kV. The feeder has
overhead and underground line segments, unbalanced loading, voltage regulators,
and shunt capacitor banks. This test feeder is logically divided into eight (8) SS as
shown in Fig. 4. The SS data [10] used in the analysis is presented in Table 1. Similar
data assumptions are used for this test system as the IEEE 34-bus test system.

4.3 WVSC Distribution System

The proposed switch optimization algorithm was successfully implemented on two
distribution circuits in Morgantown, West Virginia in USA that were part of the
WVSC project. The geographic view of the target distribution system for the WVSC
project is illustrated in Fig. 5. The two circuits are the West Run #3 (WR#3) Stewarts
Street and the West Run #4 (WR#4) Pine View Circuits. The WR#3 circuit has five
(5) normally open tie points with adjacent circuits. Likewise, WR#4 has five (5)
normally open tie points with adjacent circuits. Therefore, both circuits have many
alternative circuits which can be utilized to provide service after a fault condition
has been successfully isolated.
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Fig. 5 Geographic view of WVSC distribution system

The West Run substation has two 138/12.5 kV transformers, each with an
installed capacity of 33.6 MVA. The Pierpont substation has two 138/12.5 kV
transformers with each having a capacity of 22.4 MVA. There are 327 distribution
transformers installed on the WR#3 circuit and 341 distribution transformers
installed on the WR#4 circuit. The sum of the capacities of the distribution
transformers installed on the WR#3 circuit is 12,942 kVA, while the sum of
the capacities of the distribution transformers installed on the WR#4 circuit is
16,670 kVA. The number of transformers, according to their installed capacities,
is illustrated in Fig. 6.

The WR#3 circuit has 5.85 miles of 3-phase, 1.28 miles of open-wye circuits
and 7.39 miles of single phase circuits. The WR#4 circuit has 6.02 miles of 3-
phase, 0.22 miles of open-wye circuits and 10.08 miles of single phase circuits.
Both the circuits are dominated by residential type loads. The WR#3 circuit has
2452 customers (2336 residential, 111 commercial and 5 industrial). Similarly,
the WR#4 circuit has 3032 customers (2804 residential, 219 commercial and 9
industrial).

The circuits are protected by Cooper Electronic Reclosers with Form-6 con-
trollers at the West Run substation. There are no other reclosers on the main line
or on the tap lines on either circuit. Table 2 presents historic reliability data in the
form of reliability indices SAIDI, Customer Average Interruption Duration Index
(CAIDI), and SAIFI for WR#3 and WR#4 circuits.
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Fig. 6 WR#3 and WR#4 distribution transformer data

Table 2 Reliability indices of WVSC circuits (major events included)

2003 2004 2005 2006 2007 2008

CAIDI
WR#3 149.00 655.48 1387.33 138.15 105.63 84.88
WR#4 177.41 285.23 1847.76 85.10 132.74 78.66

SAIDI
WR#3 192.65 198.01 2193.16 36.21 24.13 182.80
WR#4 53.81 102.58 929.50 11.11 17.89 277.28

SAIFI
WR#3 1.2892 0.3031 1.5807 0.2620 0.2484 2.1538
WR#4 0.3032 0.3594 0.5079 0.1305 0.1347 3.5252

The WR#3 and WR#4 circuits are strategically divided into 16 SS and
15 SS respectively. Each SS location is considered to be a potential location
for sectionalizing switch. The information relevant to each SS is furnished in
Table 3. The load data is only available at the substation transformer in 15-min
intervals. Therefore, it is assumed that transformer load is distributed to the feeders
evenly proportional with the feeders’ distribution transformer installed capacities.
It is assumed that customer load percentages at all SS are equal to each other, and
the customer mix at the feeder level are used as the input data. The customer load
percentages (Resz, Comz, Indz) for WR#3 and WR#4 feeder used in the analysis are
(0.95, 0.04, 0.01) and (0.92, 0.07, 0.00) respectively.
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Table 3 WVSC WR#3 and WR#4 SS data

WR#3 feeder WR#4 feeder

Super
section ID

Circuit
length
(miles)

Load
(kVA)

Failure
rate/year-
mile

Circuit
length
(miles)

Load
(kVA)

Failure
rate/year-
mile

SS-1 0.95 463 0.0356 0.82 651 0.0364
SS-2 1.20 274 0.0356 1.03 385 0.0364
SS-3 1.19 89 0.0356 1.03 125 0.0364
SS-4 0.98 164 0.0356 0.84 230 0.0364
SS-5 1.35 1249 0.0356 1.16 1755 0.0364
SS-6 2.94 1309 0.0356 5.06 3681 0.0364
SS-7 2.94 1309 0.0356 0.36 482 0.0364
SS-8 0.41 343 0.0356 1.30 960 0.0364
SS-9 1.50 683 0.0356 1.48 1307 0.0364
SS-10 1.72 930 0.0356 1.56 1240 0.0364
SS-11 1.81 882 0.0356 1.76 1875 0.0364
SS-12 2.04 1334 0.0356 1.55 2599 0.0364
SS-13 1.80 1849 0.0356 1.36 1132 0.0364
SS-14 1.58 806 0.0356 1.86 610 0.0364
SS-15 2.16 434 0.0356 2.38 1155 0.0364
SS-16 2.76 822 0.0356 N/A N/A N/A

5 Switch Optimization Results

The customer interruption costs can be derived from the customer damage functions.
The customer damage functions for different types of customers used in the analysis
are shown in Fig. 7. The analysis assumes average service duration of 240 min to
repair the fault and bring back the system to normal condition. Restoration of power
to un-faulted zones with the help of automated switches is assumed to take 1 min.
Another underlying assumption is that every SS has a back feed capability from an
adjacent feeder for power restoration during a grid outage.

The optimal switch number and placement results for IEEE 34-bus, 123-bus,
WR#3, and WR#4 test systems are presented in Fig. 8, Tables 4 and 5. The optimal
switch solution for IEEE 34-bus system is “1” and “SS-4”. The optimal switch
solution for IEEE 123-bus system is “2” and “SS-2, SS-5”. The optimal switch
solution for WR#3 feeder is “3” and “SS-6, SS-10, SS-13”. The optimal switch
solution for WR#4 feeder is “3” and “SS-5, SS-7, SS-11”. The least normalized
customer interruption cost index CICmi and relative reduction in normalized
customer cost interruption index CICDmi for a number of switch placements from
“0” to “6” are presented in Tables 4 and 5. Each row in Tables 4 and 5 represents a
single iteration of the proposed algorithm, and the iterations stop as soon as the
CICDmi index goes below the predefined threshold of “8”. All iterations from
a number of switch placements “0” to “6” are shown even beyond the optimal
solution to illustrate the working mechanism of the proposed algorithm. Increasing
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Fig. 7 Customer damage functions [1]

Fig. 8 Calculated indices for test systems

the number of switches beyond the optimal number would return minimal reduction
in total customer interruption cost as shown in Fig. 8 and is not worth exploring.

As per the solution provided by the proposed algorithm, installing one sectional-
izing switch at SS-4 on IEEE 34-bus test feeder would reduce the total interruption
cost by 69.9% compared to the base case with no switches. Similarly, installing
three sectionalizing switches at SS-6, SS-10, and SS-13 on WR#3 feeder would
reduce the total interruption cost by 74.7% compared to the base case. Increasing
the number of sectionalizing switches beyond the optimal number would result
in relative reduction of interruption costs less than 8%. Figures 3, 4, and 5 mark
optimal placement of switches for IEEE 34-bus, IEEE-123 bus, WR#3, and WR#4
feeders respectively.
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Table 4 Switch optimization results (IEEE 34-bus and 123-bus feeders)

IEEE 34-bus feeder IEEE 123-bus feeder

# of switches CICmi CICDmi
Optimal switch
location CICmi CICDmi

Optimal switch
location

0 100.0 N/A N/A 100.0 N/A N/A
1 30.1 69.9 SS4a 51.6 48.4 SS3
2 22.2 7.9 SS2, SS4 36.8 14.8 SS2, SS5a

3 16.6 5.6 SS2, SS4, SS5 30.9 5.9 SS2, SS4, SS5
4 13.0 3.5 SS2, SS3, SS4, SS5 25.6 5.3 SS1, SS2, SS4, SS5
5 11.0 2.0 SS2, SS3, SS4, SS5,

SS6
23.3 2.4 SS1, SS2, SS4, SS5,

SS6
6 9.9 1.1 SS1, SS2, SS3, SS4,

SS5, SS6
21.9 1.3 SS1, SS2, SS4, SS5,

SS6, SS7
aOptimal switch location determined by the proposed iterative algorithm

Table 5 Switch optimization results (WVSC WR#3 and WR#4 feeders)

WR#3 feeder WR#4 feeder

# of switches CICmi CICDmi
Optimal switch
location CICmi CICDmi

Optimal switch
location

0 100.0 N/A N/A 100.0 N/A N/A
1 50.3 49.7 SS9 50.3 49.7 SS8
2 34.1 16.2 SS6, SS11 34.2 16.1 SS6, SS11
3 25.3 8.8 SS6, SS10, SS13a 26.1 8.1 SS5, SS7, SS11a

4 19.9 5.4 SS5, SS7, SS11,
SS13

19.9 6.1 SS5, SS6, SS10,
SS12

5 16.9 3.0 SS4, SS6, SS9,
SS11, SS13

17.0 2.9 SS5, SS6, SS9,
SS11, SS13

6 14.4 2.5 SS4, SS6, SS8,
SS10, SS12, SS14

15.2 1.9 SS4, SS5, SS6, SS9,
SS11, SS13

aOptimal switch location determined by the proposed iterative algorithm

The number of CIC computations increases as the number of switches “r” value
increases. The “r” = 1 scenario incurs the lowest processing time as it requires a
lower number of CIC computations compared to other “r” > 1 scenarios. Therefore,
the proposed iterative algorithm starts with “r” = 1 scenario and stops as soon as
the desired solution is achieved. This strategy helps reducing the search space of
the problem. According to Eq. (3), there would be 63, 127, 32,767, and 16,383
possible combinations of switch placements on IEEE 34-bus, IEEE-123 bus, WR#3,
and WR#4 feeders respectively. The customer interruption cost CIC needs to be
computed for all the possible combinations to arrive at a global optimal solution.
However, the proposed approach cuts down the search space drastically to 21, 63,
1940, and 1470 possible combinations for these test systems and arrives at a solution
that satisfies the defined criteria for minimum reduction in customer interruption
costs. This greatly simplifies computational complexity of the problem and shows
efficacy of the proposed solution. Figure 9 shows the comparison of search space
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Fig. 9 Comparison of CIC calculations between traditional [4] and proposed switch optimization
techniques

in terms of number of CIC computations needed for traditional switch optimization
approach [4] and the proposed iterative algorithm.

6 Conclusions

An innovative iterative algorithm is presented for the optimum switch number
and placement problem pertaining to DA projects. The switch optimization is a
daunting and crucial step in the economic feasibility evaluation process of DA
project. The proposed iterative algorithm can determine the solution faster compared
to traditional switch optimization techniques by minimizing the total interruption
costs at each step of the analysis. The proposed algorithm does not rely on varying
switch capital investment and customer interruption cost data that are usually based
on outdated utility surveys. The proposed method is implemented on IEEE 34-
bus, 123-bus, and WVSC test feeders. The mathematical model is developed in
Matlab and the results show the computational robustness and efficacy of the
solution. The proposed technique significantly scales down the search space and
simplifies problem complexity that requires minimal computational effort and
time.
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Optimal Restoration of Electrical
Distribution Systems Considering
Switching Sequence

Juan Camilo López, Pedro P. Vergara, Marcos J. Rider,
and Luiz C. P. da Silva

Abstract A short literature review on optimal restoration methods applied to elec-
trical distribution systems (EDS) was presented in chapter one. On that context, this
chapter presents a mixed-integer linear programming (MILP) model for the optimal
restoration of electrical distribution systems, considering switching sequence. After
a permanent fault has been identified, the optimal service restoration determines
the status of the remote-controlled switches and the operation of the dispatchable
distributed generation (DG) units, in order to isolate the faulty zone and supply
as many customers as possible. The proposed mathematical approach considers
the switching sequence over a horizon of S discrete steps, guaranteeing that the
operational constraints of the system are not violated in every step. By considering
the switching sequence in the optimization model, the restoration time and the
number of switching operations can be controlled. Thus, the reliability and the
power quality of the system are enhanced. The use of a MILP model guarantees
convergence to the optimal solution by applying convex optimization techniques.
Tests are run using a 136-node distribution system with 28 remote controlled
switches, and dispatchable DG. Finally, a comparative analysis is used to establish
the relationship between the total un-supplied demand and the number of switching
actions along the sequence horizon.
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Notation

The main notations are reproduced below for reference.
Sets

Ωb Set of nodes
Ωg Set of dispatchable DG units
Ωs Set of discrete steps of the switching sequence
Ωl Set of circuits
Ωsw Set of switches
Ωz Set of load zones
ΩS

z Set of substations

Parameters

cU
z,s Cost of de-energizing zone z during the s

I ij Current capacity of circuit ij

I
sw
ij Current capacity of switch ij

n̂g Node in which the DG unit g is allocated
n̂z Initial node of zone z

P D
i Active demand at node i

P
DG
g Active power capacity of DG unit g

pfg Power factor limit of DG unit g

QD
i Reactive power demanded at node i

Q
DG
g Upper reactive power capacity of DG unit g

QDG
g

Lower reactive power capacity of DG unit g

Rij Resistance of circuit ij

Si kVA capacity of substation at node ẑi ∈ ΩS
z

sINI
ij Initial status of switch ij

sMAX Maximum discrete step of the switching sequence
V Upper voltage limit
V Lower voltage limit
Vnom Nominal voltage of the system
Xij Reactance of circuit ij

ẑi Zone of node i

ẑij Zone of circuit ij

zf Faulty zone zf ∈ Ωz

Continuous Variables

Iij,s Current through circuit ij at discrete step s

I
sqr
ij,s Square of Iij,s

I sw
ij,s Current through switch ij at discrete step s

I
sw,sqr
ij,s Square of I sw

ij,s

P S
i,s Active generation at node i at discrete step s
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P DG
g,s Active generation of DG unit g at discrete step s

P U
zf

Total un-supplied demand, computed after the restoration due to
the isolation of zone zf ∈ Ωz

Pij,s Active flow at circuit ij at discrete step s

P sw
ij,s Active flow at switch ij at discrete step s

QS
i,s Reactive generation at node i at discrete step s

QDG
g,s Reactive generation of DG unit g at discrete step s

Qij,s Reactive flow through circuit ij at discrete step s

Qsw
ij,s Reactive flow through switch ij at discrete step s

Vi,s Voltage magnitude at node i at discrete step s

V
sqr
i,s Square of Vi,s

Binary Variables

yij,s Status of switch ij at discrete step s, where yij,s = 1 if switch ij

is closed at discrete step s, or yij,s = 0 otherwise
xz,s Status of zone z at discrete step s, where xz,s = 1 if zone z is

energized, or xz,s = 0 otherwise
Δy+

ij,s Opening of switch ij at discrete step s, where Δy+
ij,s = 1 if

switch ij has been opened if compared with discrete step s − 1, or
Δy+

ij,s = 0 otherwise

Δy−
ij,s Closing of switch ij at discrete step s, where Δy−

ij,s = 1 if switch

ij has been closed if compared with discrete step s−1, or Δy−
ij,s =

0 otherwise.

1 Introduction

After a permanent fault has been properly identified and located by the protection
scheme, the optimal restoration of electrical distribution systems (EDS) determines
the set of sequenced operations that isolates the faulty zone and minimizes the
total unsupplied demand. The solution must satisfy a set of operational constraints,
related to the electrical and topological limits of the EDS, such as the current and
voltage magnitude limits, the operational constraints of the dispatchable DG units,
the feeder capacities, and radiality [1].

The optimal restoration of the EDS is a combinatorial optimization problem
because the remote controlled switches can be represented using binary decision
variables. Furthermore, the optimal restoration is also a non-linear programming
problem, due to the non-convex nature of the equations that represent the operation
of AC electrical networks [2].

The first computational methodologies used for solving the optimal restoration
problem relied on the operator’s experience, and step-by-step procedures [3, 4].
Further works considered the operational and topological constraints of the system,
using power flow simulations and heuristic approaches to provide restoration sched-
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ules in a reasonable computational time [5–7]. With the advent of modern heuristics
(a.k.a. meta-heuristics), these techniques have been widely used to provide quality
solutions to the restoration problem. Meta-heuristics have been used to deal with
conflicting objective functions [8], comparative studies [9], unbalanced systems
[10], large distribution networks [11] and robust approaches [12]. Fuzzy logic has
also been used in order to enhance the decision making process [13, 14].

Recently, in the context of distribution automation and smart grids, new and more
sophisticated approaches have been proposed. A specialized service restoration
algorithm is presented in [15], considering direct load control and demand response.
Authors in [16] also present a specialized restoration scheme, based on the smart-
grid infrastructure. Distributed alternatives are presented in [17–19], via multi-agent
systems. A spanning-tree search algorithm is proposed in [20] in order to restore
microgrid-based networks after a fault, considering DG and islanded operation.
The main drawback of the former methodologies is that none of them guarantee
optimality, and none of them are either flexible or easy to develop and adapt in
case of new, unexpected, network conditions (i.e., different objective functions, new
constraints or topologies).

The use of classical optimization methods—also called exact methods—has also
been studied by specialized literature. Authors in [21] have presented a mixed-
integer linear programming (MILP) model, based on a DC power flow, used to
restore critical shipboard power feeders in case of a contingency (e.g., during battle).
Furthermore, authors in [22] formulated a mixed-integer non-linear programming
(MINLP) model, with the aim of restoring unbalanced EDS. Authors in [22] have
applied an optimization solver to obtain the solution for their proposed MINLP
formulation; since the mathematical model is non-convex, the optimization solver
cannot guarantee optimality, even for small instances. Authors in [23] present
an mixed integer second-order cone programming model to solve the optimal
restoration. The model in [23] is convex and can be solved efficiently using classical
optimization techniques. Finally, a novel MILP model for the optimal restoration
of three-phase unbalanced EDS considering switching sequence and DG units was
proposed in [24]. A comprehensive review on optimal restoration methods applied
to EDS can be found in [25].

This chapter presents a MILP model used to solve the restoration problem in
EDS, which considers switching sequence and operational constraints. The solution
of the proposed MILP model determines the operation of the remote controlled
switches and dispatchable DG units in each step of the sequence horizon, in
order to isolate the faulty zone, and minimize the total un-supplied demand, while
guaranteeing a feasible operation and a final radial topology. In each step of the
sequence, a single switch would be allowed to change its status. Thus, the proposed
MILP model can be used by the system operators to efficiently restore the electrical
service after a permanent fault, or to isolate a section of the network, e.g. for
maintenance, while supplying most of the demand. Despite other enumerating,
heuristic or metaheuristic approaches, MILP models are flexible, easy to reproduce
and represent using modeling languages for mathematical programming, such
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as AMPL [26]; convergence to optimality is guaranteed by convex optimization
solvers, such are as CPLEX [27].

The main objectives of this chapter are as follows:

1. To present a precise and flexible MILP model for the optimal restoration of EDS,
considering switching sequence, operational constraints and dispatchable DG
resources. The proposed formulation has an efficient computational behavior, and
its convergence to optimality is guaranteed by convex optimization techniques.

2. To perform a comparative analysis that demonstrate the conflicting relationship
between the total un-supplied demand and the number of switching operations
along the sequenced restoration horizon.

2 Optimal Restoration of EDS Considering Switching
Sequence

After a permanent fault, the optimal restoration problem is solved to determine the
best switching sequence, with the double aim of isolating the faulty section of the
network and minimizing the un-supplied demand. Meanwhile, all the operational
constraints must be guaranteed in every step of the sequence.

The 16-node test system, shown in Fig. 1, is used to explain the proposed
sequenced restoration process. During the pre-fault status, the EDS is totally
energized, having two radial feeders (associated with sources F1 and F2), five load
zones (wherein each load zone is an interconnected section of the system, delimited
by switches), and eight remotely-controlled switches, represented by black-colored
squares, if closed; white-colored squares are used if open. If a permanent fault
occurs in any component of Zone 2, then a basic protection scheme would open the
circuit-breaker S2 in order to extinguish the fault (Step 0). However, the opening
of S2 also de-energizes zone 5 and increases the amount of un-supplied demand.
Eventually, an optimized restoration scheme determines that the demand in Zone 5
can be transferred to the feeder F1, by opening the switch S6 (step 1), followed by
the closing of the switch S8 (step 2). This load transference is carried out taking into
account the electrical and topological constraints of the system, and considering one
switch operation at a time [12].

In addition to the load transference and the switching operation, the optimal
restoration process can be enhanced by considering the contribution of the dis-
patchable DG resources at the end of the switching sequence. Finally, if none of
the aforementioned strategies are sufficient, the restoration process can de-energize
other zones of the system if necessary in order to maintain the system constraints
within their operational limits.
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Fig. 1 Sequenced restoration
after a fault in Zone 2: Step 0,
open switch S2 to extinguish
the faulty zone. Step 1, open
switch S6. Step 2, close
switch S8 in order to transfer
the demand in Zone 5 to the
feeder supplied by F1
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3 Mathematical Programming Approach

This section discusses the assumptions and the proposed mathematical model
used to represent the optimal restoration problem of EDS, considering switching
sequence and DG operation.

3.1 Assumptions

The mathematical functions used to calculate the steady-state operating point of the
EDS are based on the analytical equations of the backward/forward sweep AC load
flow algorithm presented in [28], and first used by authors in [29, 30] to solve other
related EDS planning problems. In order to formulate the optimization model the
following hypotheses are made:

1. Electrical loads in the EDS are represented as constant active and reactive power
loads.

2. The system is assumed to be balanced and represented by its single-phase
equivalent circuit.

3. All switches are considered short-length circuits with negligible impedance and
limited current capacity.

4. The sequence of switching operations is performed over a horizon of S discrete
steps.

3.2 Mixed-Integer Non-linear Programming Model

The MINLP model that represents the optimal restoration of balanced EDS,
considering the optimal switching sequence is shown in (1)–(20). Note that every
node and circuit of the network belongs to a unique zone z ∈ Ωz, wherein each zone
is a portion of the network delimited by the switching devices.

min
∑

s∈Ωs

∑

z∈Ωz

cU
z,s

(
1 − xz,s

)
(1)

subject to:

P S
i,s +

∑

g∈Ωg |
n̂g=i

P DG
g,s +

∑

j i∈Ωl

Pji,s −
∑

ij∈Ωl

(
Pij,s + Rij I

2
ij,s

)
+

∑

j i∈Ωsw

P sw
j i,s −

∑

ij∈Ωsw

P sw
ij,s = P D

i xẑi ,s ∀i ∈ Ωb, s ∈ Ωs (2)
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QS
i,s +

∑

g∈Ωg |
n̂g=i

QDG
g,s +

∑

j i∈Ωl

Qji,s −
∑

ij∈Ωl

(
Qij,s + Xij I

2
ij,s

)
+

∑

j i∈Ωsw

Qsw
j i,s −

∑

ij∈Ωsw

Qsw
ij,s = QD

i xẑi ,s ∀i ∈ Ωb, s ∈ Ωs (3)

V 2
i,s − V 2

j,s = 2(RijPij,s + XijQij,s) +
(
R2

ij + X2
ij

)
I 2
ij,s ∀ij ∈ Ωl, s ∈ Ωs (4)

I 2
ij,s = P 2

ij,s + Q2
ij,s

V 2
j,s

∀ij ∈ Ωl, s ∈ Ωs (5)

∣∣∣V 2
i,s − V 2

j,s

∣∣∣ ≤ V
2 (

1 − yij,s

) ∀ij ∈ Ωsw, s ∈ Ωs (6)

(
I sw
ij,s

)2 =
(
P sw

ij,s

)2 +
(
Qsw

ij,s

)2

V 2
j,s

∀ij ∈ Ωsw, s ∈ Ωs (7)

0 ≤ I 2
ij,s ≤ I

2
ij xẑij ,s ∀ij ∈ Ωl, s ∈ Ωs (8)

V 2xẑi ,s ≤ V 2
i,s ≤ V

2
xẑi ,s ∀i ∈ Ωb, s ∈ Ωs (9)

0 ≤
(
I

sw,s
ij

)2 ≤
(
I

sw
ij

)2
yij,s ∀ij ∈ Ωsw, s ∈ Ωs (10)

(
P S

i,s

)2 +
(
QS

i,s

)2 ≤ S
2
i ∀i ∈ ΩS

b , s ∈ Ωs (11)

0 ≤ P DG
g,sMAX ≤ P

DG
g ∀g ∈ Ωg (12)

QDG
g

≤ QDG
g,sMAX ≤ Q

DG
g ∀g ∈ Ωg (13)

∣∣∣QDG
g,sMAX

∣∣∣ ≤ P DG
g,sMAX tan

(
arccos

(
pfg
)) ∀g ∈ Ωg (14)

yij,1 − sINI
ij = Δy+

ij,1 − Δy−
ij,1 ∀ij ∈ Ωsw (15)

yij,s − yij,s−1 = Δy+
ij,s − Δy−

ij,s ∀ij ∈ Ωsw, s ∈ Ωs |s > 1 (16)
∑

ij∈Ωsw

(
Δy+

ij,s + Δy−
ij,s

)
≤ 1 ∀s ∈ Ωs (17)

∣∣∣xẑi ,s − xẑj ,s

∣∣∣ ≤ 1 − yij,s ∀ij ∈ Ωsw, s ∈ Ωs (18)

∑

ij∈Ωsw

(
yij,sMAX · xẑi ,s

MAX
) =

∑

z∈(Ωz\ΩS
z )

(
xz,sMAX

)
(19)

yij,s , xz,s ,Δy
+,−
ij,s ∈ {0, 1} ∀ij ∈ Ωsw, z ∈ Ωz, s ∈ Ωs (20)
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The objective function in (1) aims at minimizing the total cost of the un-supplied
demand, computed after deploying the restoration process. If a given zone z ∈ Ωz is
de-energized during discrete step s ∈ Ωs , then xz,s = 0, and the objective function
in (1) will increase according to the cost of de-energizing Zone z during discrete
step s, given by parameter cU

z,s .
Constraints (2) and (3) represent the active and reactive power flow balance

equations, defined for each node i ∈ Ωb and discrete step s ∈ Ωs ; these equations
considers the DG power injections. Constraint (4) and (5) represent the application
of Kirchhoff’s voltage law for each circuit of the EDS [28]. Since the impedance of
the switches is negligible, constraint (6) guarantees that the voltage drop of a closed
switch (yij,s = 1) is equal to zero. Otherwise, if the switch is open (yij,d = 0),
both nodal voltages can vary freely within their limits. Constraint (7) calculates the
current magnitude of each switch, while constraint (8) limits the current magnitude
of the energized circuits. If circuit ij ∈ Ωij is not energized, i.e., if xẑij ,s = 0, then
(8) guarantees that no current will flow through it. Similarly, constraint (9) limits
the voltage magnitude in the energized nodes. If node i ∈ Ωb is not energized, i.e.,
if xẑi ,s = 0, then no voltage will be set on it. The current limit for the switches is
given by (10). If a switch ij ∈ Ωsw is open (yij,s = 0), then no current will flow
through it. Otherwise, if yij,s = 1, the square current magnitude will be limited
by the switch current capacity. Constraint (11) limits the magnitude of the apparent
power generated at each substation i ∈ ΩS

b .
The operation of the DG units is represented by constraints (12)–(14). The active

and reactive generation capacity of each DG unit is limited by (12) and (13),
respectively. As shown by (14), each DG unit is also limited by the nominal power
factor, pfg . Note that all DGs can only operate in the final step of the restoration
process (sMAX), since they are not meant to be operated during the switching
sequence, unless the model is used to isolate a zone for maintenance.

Equations (15)–(17) represent the sequence operation of the switching devices.
Both binary auxiliary variables, Δy+

ij,s and Δy−
ij,s , represent a switching transition

from open-to-closed and closed-to-open, respectively. Constraint (17) guarantees
that no more than one transition will be made in each step of the switching horizon.
Equation (18) defines the relationship between the switch status yij,s and zone status
xz,s . If a switch ij ∈ Ωsw is closed, then both zones must share the same status, since
an energized zone cannot be connected to a de-energized zone, and vice versa.

At the final step of the restoration process, it is desired that the energized portion
of the system has a radial topology. Radiality is made possible by (19) and the power
flow balance equations (2) and (3). As shown by [31], in order to produce a radial
graph, the number of energized branches must be equal to the number of energized
load nodes. In this particular case, (19) guarantees that the number of closed and
energize switches (hence the “·” operator), must be equal to the number of energized
load zones. Finally, the binary nature of the decision variables is established by (20).
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3.3 Linearizations and Approximations

The optimization model shown in (1)–(20) is a MINLP problem due to the non-
linear relationships between the variables. MINLP problems are non-convex and
optimality can neither be guaranteed by classical optimization techniques nor by
modern heuristic approaches. Thus, in order to provide quality solutions using
convex optimization tools, such as CPLEX [27], the original MINLP is transformed
into a precise, flexible, MILP model, by using the following linearization strategies
and approximations:

3.3.1 Approximation of the Voltage Magnitude

The squared voltage magnitudes (V 2
j ) in (5) and (7) are replaced by the squared

nominal voltage of the system (V 2
nom), as indicated in (21) and (22).

I 2
ij ≈ P 2

ij + Q2
ij

V 2
nom

∀ij ∈ Ωl (21)

(
I sw
ij

)2 ≈
(
P sw

ij

)2 +
(
Qsw

ij

)2

V 2
nom

∀ij ∈ Ωsw (22)

This approximation produces a relatively low error because the voltage magni-

tude at each node is limited by a narrow interval, given by V 2 ≤ V 2
j,s ≤ V

2
, if the

node is energized.

3.3.2 Substitution of Variables

Since the current and voltage magnitudes appear as squared variables in (2)–(10),
the following substitutions are applied without loss of generality:

I
sqr
ij,s = I 2

ij,s ∀ij ∈ Ωl, s ∈ Ωs (23)

I
sw, sqr
ij,s =

(
I sw
ij,s

)2 ∀ij ∈ Ωsw, s ∈ Ωs (24)

V
sqr
i,s = V 2

i,s ∀i ∈ Ωb, s ∈ Ωs (25)

I
sqr
ij,s , I

sw, sqr
ij,s , V

sqr
i,s ≥ 0 ∀ij ∈ Ωl, i ∈ Ωb, s ∈ Ωs (26)
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3.3.3 Piece-Wise Linearization

In order to linearize the quadratic terms P 2
ij and Q2

ij in (5),
(
P sw

ij

)2
and

(
Qsw

ij

)2

in (7), and
(
P S

i

)2
and

(
QS

i

)2
in (11), a piecewise linear approximation function is

used to linearize each of them. The piece-wise linearization is an adjustable, well-
established procedure, similar to the linear approximations used in [32–34] for other
EDS optimization problems. An illustration of the piece-wise linearization function
of x2 using Λ blocks is shonw in Fig. 2.

3.3.4 Absolute Value Linear Equivalent

Considering that the inequality |y| ≤ x is identical to the combined linear
expressions −x ≤ y and y ≤ x, then the absolute values in (6), (14) and (18)
are replaced by their linear equivalents.

Fig. 2 Piece-wise linearization function of x2 using Λ blocks
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3.3.5 Binary Product Equivalent

The product between two binary variables in (19) can be assumed by the contin-
uous auxiliary variable bij,s and calculated using the following linear equivalent
equations:

yij,s + xẑi ,s − 1 ≤ bij,s ≤ 1 ∀ij ∈ Ωsw, s ∈ Ωs (27)

0 ≤ bij,s ≤ yij,s ∀ij ∈ Ωsw, s ∈ Ωs (28)

0 ≤ bij,s ≤ xẑi ,s ∀ij ∈ Ωsw, s ∈ Ωs (29)

4 Optimization Process

This section presents the proposed step-by-step procedure used to efficiently solve
the optimal restoration of EDS, considering switching sequence and DG operation.
The following procedure was programmed using the mathematical programming
language AMPL [26].

Step 1: Let sMAX be the maximum number of discretized steps. Define the faulty
zone zf ∈ Ωz and fix the zone status xzf ,s = 0. Define the initial
configuration of the system using the parameter sINI

ij ∈ {0, 1}.
Step 2: Solve the restoration problem given by (1)–(20), considering the lin-

earizations and simplifications in Sect. 3.3. If feasible, continue. Other-
wise, stop.

Step 3: Save the switching sequence and neglect redundant operations, i.e., if
the a given switch operation does not influence the value of the objetive
function, then it is redundant and it should be neglected. Save the total
cost of the un-supplied demand (objective function (1)), and the total de-
energized demand at the final step of the restoration process, using (30).

P U
zf

=
∑

i∈Ωb

P D
i

(
1 − xẑi ,sMAX

)
(30)

5 Tests and Results

The 136-node test system shown in Fig. 3 is used to demonstrate the performance
of the proposed restoration process. Circuit parameters and node demands can be
obtained in [35]. The nominal voltage is Vnom = 13.2 kV. For simplicity, the cost
of de-energizing a given zone during the switching sequence is cU

z,s = 1 · 103$US
for s < sMAX, and the cost of de-energizing a zone at the end of the restoration
process is cU

z,sMAX = 10 · 103$US. The system has two substations (source nodes
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Fig. 3 136-node real system with 16 load zones

201 and 202), 16 radial load zones, and 28 remote-controlled switches, indicated
with black-colored squares, if initially closed; and if initially open, white-colored
squares. The topology shown in Fig. 3 corresponds to the pre-fault state of the EDS.
All load zones are energized with a minimum voltage magnitude of 0.9031 p.u., at
node 75 (zone 8).

Two case studies are used to demonstrate the adaptability of the proposed
restoration process for different operative scenarios. In Case 1, the objective is to
isolate a faulty zone and maximize the supplied demand; as soon as the protective
scheme has located the fault, i.e., the faulty zone must be de-energized during the
entire restoration sequence. In contrast, the objective of Case 2 is to de-energize
a given zone for scheduled maintenance, i.e., the EDS operator would like to de-
energize a zone in the last step of the switching sequence while reducing the number
of de-energized customers in the process. In summary, for Case 1, xzf ,s = 0 ∀s ∈
Ωs , and for Case 2, xzf ,sMAX = 0. The last column of Table 1 indicates the objective
of each case study.

In Case 1, there are no DG units, and the voltage deviation limits are wider, if
compared with Case 2. Furthermore, as shown in Table 1, four dispatchable DG
units with P̄ DG

g = 500 kW, Q̄DG
g = 300 kVAr and pfg = 0.9, are available in Case

2, and the generation capacities for both substations are lower. The DG units are
located at nodes 35, 56, 83, and 74.

The optimization process in Sect. 4 was implemented using AMPL [26], and the
linearized restoration problem was solved via CPLEX [27], with a maximum gap
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Table 1 Features of the proposed case studies

Vmin Vmax S201 S202

#DG Objective[p.u.] [p.u.] [MVA] [MVA]
Case 1 0.90 1.05 15.0 12.0 0 Restoration

Case 2 0.93 1.05 12.0 10.0 4 Maintenance

of 1% as the optimality criterion, on a workstation with an Intel Core i7-4510U
(2.60 GHz) processor.

5.1 Analysis of Results

Table 2 summarizes the results of the proposed restoration process. Each line in
Table 2 indicates the simulated faulty zone (zf ), and each column represents the
maximum number of discrete steps (sMAX) used for each case study. The first
number in each row is the total de-energized demand in kW, calculated using
(30), and the second (in parenthesis) is the cost of the un-supplied demand of the
restoration process in 103U$, namely the value of the objective function (1).

In both cases, the total de-energized demand calculated after the isolation of
Zones 3, 5, 7, 8, 9, 11, and 12 are identical for all possible values of sMAX. This is
expected, because as shown in Fig. 3, the isolation of those zones is made possible
by opening only one switch without de-energizing another zone. Thus, the optimal
restoration policy after a fault in Zones 3, 5, 7, 8, 9, 11, and 12 is trivial and can be
achieved with only one step (sMAX = 1). If more than one discretized step is used
(sMAX > 1), then the cost of the un-supplied demand in Case 1 increases because
the same zone remains de-energized during all the sequence horizon. However,
the cost of the un-supplied demand in Case 2 remains unchanged because the
optimization process only de-energizes the specified zone at the last step of the
switching sequence.

The proposed restoration process shows that the isolation of Zone 6 can be
reached without de-energizing the Zone 5, if the number of discrete steps in Case 1
is set to sMAX ≥ 5, or if the number of discrete steps in Case 2 is set to sMAX ≥ 3.

The proposed restoration process shows that the isolation of Zone 4 cannot
be deployed without de-energizing Zone 16 in Case 1, due to the voltage limits.
However, if the number of discrete steps in Case 2 is set to sMAX ≥ 3, then the DG
resources increase the voltage profile and make it possible to transfer the load in
Zone 16 to another neighboring feeder by closing switch 38-99 and opening switch
29-32. The switching sequence used to isolate Zone 4 is shown in Table 3 for both
case studies. The symbols “↑” and “↓” represent the “opening” and “closure” of the
specified switch, and “–” indicates no switching action required.

Another interesting result is the isolation of Zone 6. In both cases, the proposed
restoration process minimizes the total un-supplied demand by transferring Zone
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Table 2 Total de-energized demand (P U
zf

) in kW, and the cost of the un-supplied demand in

103$US, calculated using (1)

Zone
Case 1 Case 2

sMAX = 1 sMAX = 3 sMAX = 5 sMAX = 7 sMAX = 1 sMAX = 3 sMAX = 5 sMAX = 7

3 2578.41 2578.41 2578.41 2578.41 2578.41 2578.41 2578.41 2578.41

(10.0) (12.0) (14.0) (16.0) (10.0) (10.0) (10.0) (10.0)
4 2256.98 2256.98 2256.98 2256.98 2256.98 1276.12 1276.12 1276.12

(20.0) (24.0) (28.0) (32.0) (20.0) (10.0) (10.0) (10.0)
5 906.44 906.44 906.44 906.44 906.44 906.44 906.44 906.44

(10.0) (12.0) (14.0) (16.0) (10.0) (10.0) (10.0) (10.0)
6 5226.77 5226.77 4320.33 4320.33 5226.77 4320.33 4320.33 4320.33

(30.0) (36.0) (31.0) (35.0) (30.0) (20.0) (20.0) (20.0)
7 2666.77 2666.77 2666.77 2666.77 2666.77 2666.77 2666.77 2666.77

(10.0) (12.0) (14.0) (16.0) (10.0) (10.0) (10.0) (10.0)
8 1548.18 1548.18 1548.18 1548.18 1548.18 1548.18 1548.18 1548.18

(10.0) (12.0) (14.0) (16.0) (10.0) (10.0) (10.0) (10.0)
9 1300.45 1300.45 1300.45 1300.45 1300.45 1300.45 1300.45 1300.45

(10.0) (12.0) (14.0) (16.0) (10.0) (10.0) (10.0) (10.0)
10 3300.74 2000.29 851.17 851.17 3300.74 2000.29 2000.29 2000.29

(30.0) (26.0) (20.0) (22.0) (30.0) (20.0) (20.0) (20.0)
11 524.32 524.32 524.32 524.32 524.32 524.32 524.32 524.32

(10.0) (12.0) (14.0) (16.0) (10.0) (10.0) (10.0) (10.0)
12 301.03 301.03 301.03 301.03 301.03 301.03 301.03 301.03

(10.0) (12.0) (14.0) (16.0) (10.0) (10.0) (10.0) (10.0)
13 3063.00 2538.67 2237.64 2237.64 3063.00 2538.67 2237.64 2237.64

(30.0) (26.0) (20.0) (22.0) (30.0) (20.0) (10.0) (10.0)
14 2449.57 1149.12 1149.12 1149.12 2449.57 1149.12 1149.12 1149.12

(20.0) (14.0) (16.0) (18.0) (20.0) (10.0) (10.0) (10.0)
15 1886.92 1886.92 1886.92 1886.92 1886.92 338.74 338.74 338.74

(20.0) (24.0) (28.0) (30.0) (20.0) (10.0) (10.0) (10.0)
16 980.85 980.85 980.85 980.85 980.85 980.85 980.85 980.85

(10.0) (12.0) (14.0) (16.0) (10.0) (10.0) (10.0) (10.0)
Total 28990 25865 23506 23506 28990 22430 22129 22129

(230) (246) (255) (287) (230) (170) (160) (160)

Table 3 All switching sequences used to isolate Zone 4 for every case study

sMAX

Case 1 Case 2

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

1 201-18↑ 201-40↑
3 201-18↑ – – 38-99↓ 32-29↑ 201-18↑
5 201-18↑ – – – – – – 38-99↓ 32-29↑ 201-18↑
7 201-18↑ – – – – – – – – – – 38-99↑ 32-29↑ 201-40↑
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Table 4 All switching sequences used to isolate Zone 6 for every case study

sMAX

Case 1 Case 2

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

1 201-40↑ 201-40↑
3 201-40↑ – – 62-99↓ 42-52↑ 201-40↑
5 201-40↑ 42-52↑ 38-99↓ 62-99↓ 93-94↑ – – 62-99↓ 42-52↑ 201-40↑
7 201-40↑ 42-52↑ 38-99↓ 62-99↓ 93-94↑ – – – – – – 62-99↑ 42-52↑ 201-40↑

5 to another neighboring feeder. However, as shown in Table 4, this restoration is
only possible in Case 1 if sMAX ≥ 5, while it only takes three steps in Case 2;
this difference is due to the contribution of the DG units. Note that in Case 2, the
proposed restoration process generates a temporary loop before isolating Zone 6;
since the loop is only set for two steps, the protection scheme should not be triggered
or adjusted.

Finally, the contribution of the DG resources can be seen by comparing the values
of the last row in Table 2. In spite of the narrow voltage and generation limits, the
sums of the total un-supplied demands in Case 2 are lower than the ones in Case 1
for sMAX ≥ 3. This is because the dispatchable DG resources increases the voltage
profile of the system and enhances the restoration capacity of the feeders.

As shown in Table 2, the absence of DGs in Case 1 prevents Zone 16 from being
transferred to other feeders, thus the total un-supplied demand is 2256.98 kW. On
the other hand, the use of DGs in case 3, makes possible to transfer the load in
Zone 16 to the Zone 11, if sMAX ≥ 3, and reduces the total un-supplied demand to
1276.12 kW in those instances.

6 Applicability

Centralized methods, such as the one shown in this chapter, are very flexible and
they provide cost efficient restoration solutions. However, they require powerful
centralized processors and expensive communication infrastructure. Note that com-
putational complexity grows significantly with the increasing number of switches.
Thus, a good pre-processing procedure is recommended to select only the most
convenient and reliable switches available at each restoration scenario.

The main challenge of the proposed method relies on the computational perfor-
mance when deployed in real world applications. The computational complexity of
the method can be improved by increasing the processing capacity of the computer
being used to run the solver, by reducing the number of linearization blocks Λ, or
by solving the model in two stages or trough decomposition techniques.
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7 Conclusions

In this chapter, a MILP model for the optimal restoration of EDS has been presented,
considering a discretized switching sequence horizon and the contribution of the
DG resources. The proposed optimization methodology isolates the zone wherein a
permanent fault has been identified (or for maintenance issues) and minimizes the
total un-supplied demand after the restoration process. In order to reduce the un-
supplied demand, and guarantee the operational limits of the system, the proposed
MILP model establishes the sequence of switch operations, one at a each step, and
DG outputs, along the switching horizon.

As demonstrated by the results, if the number of discrete steps is increased,
more demand can be energized at the end of the restoration process. However,
the number of switching operations and the complexity of the problem are also
increased. The proposed MILP model can be used to efficiently isolate load zones,
e.g., for maintenance, considering the use of temporary loops in order to transfer
load to neighboring feeders. Finally, some applicability issues and implementation
challenges of the proposed approach have been discussed.
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Electric Distribution Network Planning
Under Uncertainty

Julio López, Marcos J. Rider, and Javier Contreras

Abstract This chapter presents a deterministic and an adaptive robust model
for the short-term network expansion planning in electric distribution networks,
considering siting and sizing of voltage regulators, capacitor banks, renewable
energy generation, energy storage systems, and existing overloaded feeders rein-
forcement. The objective function to be minimized consists of investment and
operation costs. Conventional expansion models in distribution networks are stated
as a mixed-integer non-linear mathematical programs. In this chapter, we introduce
the standard formulation and transform it into a mixed-integer linear program-
ming form. This formulation is used to solve a deterministic short-term electric
distribution network expansion planning case. Based on the deterministic formula-
tion, we expand the formulation to a two-stage tri-level adaptive robust problem
for considering load consumption and renewable-based DG uncertainties. By
using Karush–Kuhn–Tucker conditions, this model is transformed into a two-stage
bi-level adaptive robust optimization problem. A column and constraint generation
framework is used to solve the problem. Computational results are obtained from a
123-node distribution system under different conditions to assess the performance
of the proposed approach. Results show the effectiveness of the proposed method-
ology.
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1 Introduction

Nowadays, distribution companies (DISCOs) are facing multiple challenges to
meet the new needs and preferences of the consumers. DISCOs are moving from
operating passive networks to dealing with active elements such as distributed
energy resources (DERs) (e.g. microturbines, wind turbines, photovoltaic systems,
and battery energy storage systems), electric vehicles (EVs) and demand-side
management. The future electric distribution networks (EDNs) will need to deal
with these challenges in the operation of EDNs. However, we need to start to
carefully envisage future EDNs in order to consider them in the short-term planning
decisions.

DERs play an essential role in EDNs because of their potential techno-economic
advantages [17]. But the uncertainty and intermittency of DERs, as well as the
stochastic characteristics of certain types of load consumption such as plug-in EVs,
are new challenges to be faced by the EDN operators and planners, which have never
existed before.

Thus, it is indispensable to consider the uncertainty of those DERs in EDN
planning when a lot of renewable energy resources are incorporated into those
networks [23]. In this context, EDN planners need to take into consideration the
existing uncertainties in DERs. In [6], stochastic programming is used to deal
with these uncertainties. In the stochastic programming approach, Monte Carlo
strategies are frequently used to generate the necessary number of scenarios for the
sources of uncertainty such as photovoltaic generation (PVG), turbine generation
(WTG), demand consumption, energy price and EV impact based on specified
probabilities [60]. It is important to know that probability density functions are
necessary for the stochastic methods [25]. However, it is difficult to obtain the
precise probability values of those sources of uncertainty in real-world applications.
Stochastic programming techniques have been successfully applied in many fields.
However, in practice, one may not always have sufficient data to estimate the
probability density functions [56]. In comparison with stochastic optimization,
robust optimization has become a powerful approach because of its efficiency [8–
11, 13, 14, 31, 57]. In the robust optimization framework, an uncertainty set scheme
is used to represent the uncertain parameters of the stochastic sources [53] instead
of the probability density functions. The most significant advantages of the robust
approach are: i) an exact probability density function is not required and ii) the
obtained optimal solution can be maintained for all the realizations within the
uncertainty set [54].

Solutions from a single-stage robust optimization model have a tendency to be
extremely conservative. To deal with this issue, two-stage optimization, also known
as adjustable or adaptable robust optimization, has been extensively studied [12],
where the second-stage problem is associated with the decision-making after the
first-stage decisions are made and the uncertainty revealed.

According to [12], two-stage robust optimization based problems are hard
to compute, because, even the simplest ones, could be NP-hard. Three solution



Electric Distribution Network Planning Under Uncertainty 295

strategies have been studied. The first one consists of the use of algorithms, which
assume that second-stage decisions are affine functions of the uncertainty [15]. The
second type is based on Benders decomposition, where the function values of the
first-stage decisions are established in a gradual way, using the dual solutions of
the second-stage problem [16, 35, 51, 58]. These are the well-known Benders-dual
cutting plane algorithms. The third type of algorithm is a different cutting plane
strategy. This algorithm uses a master problem and a subproblem; it is based on the
fact that the algorithm iteratively adds the variables that correspond to the decision
variables of the second-stage problem and the constraints are added to from the
uncertainty parameters considering the worst-case scenario in the second stage. This
algorithm is known as the column-and-constraint generation (C&CG) method.

Traditional short-term EDN planning mainly seeks to decrease the power loss
by sitting and sizing voltage magnitude control devices, such as voltage regulators
(VRs), reactive power compensators such as capacitor banks (CBs), as well as
conductor replacement and network reconfiguration [26]. In this context, since
renewable-based DG is subject to uncertainty, integrating these DGs into EDNs
can have an impact on its operation [5]. Therefore, it is important to charac-
terize the uncertainty appropriately to find a robust integration scheme for the
renewable-based DG.

Stochastic programming has been extensively used to face renewable-based DG
uncertainties. In [40, 43], PVG or WTG generation power outputs are studied. In
[2], a voltage control methodology stochastic-based optimization, considering PVG
uncertainties is proposed. A scenario-based stochastic programming methodology,
taking into account the renewable sources and load consumption uncertainties,
is presented in [41] to solve the distribution system expansion planning problem
considering both cost and reliability functions. In [52], the sitting and sizing of both
dispatchable DG and renewable-based DG in microgrids are studied by a two-stage
robust optimization problem, which is solved using a C&CG-based algorithm.
The multi-period EDN expansion planning problem, considering load consumption
and electricity price as uncertain, is solved in [3] by a robust framework. In
[49], a multi-period and stochastic programming has been implemented for DER
integration, minimizing the emissions level, operation and maintenance costs.

According to [5], robust optimization could be more practical and manageable
in planning problems considering DERs than stochastic programming because of
the nature of the uncertainty sources. The reasons are: (1) robust optimization
needs only the variation of an uncertainty parameter to create the uncertainty set,
while stochastic optimization needs the probability distribution functions of the
uncertain parameters, (2) the optimal solution obtained from the robust optimization
problem is feasible for all the realizations within the uncertainty set, while the
optimal solution obtained from the stochastic optimization problem may be feasible
only for the scenarios considered in this problem, and (3) the solution space of
a robust optimization problem depends on the number of uncertainty parameters,
while the solution space of a stochastic optimization problem depends on the
number of uncertainty parameters and the number of scenarios [15, 19]. As stated,
uncertainty in EDNs considering renewable-based DG creates problems that are



296 J. López et al.

computationally challenging. According to literature, all authors agree that robust
optimization is an efficient method to deal with uncertainties compared with
scenario-based stochastic optimization.

Furthermore, the non-linear and non-convex framework of the AC optimal
power flow equations adds a notable challenge to the solution of this problem.
Some authors have been dealing with these features for the expansion planning
problems, e.g., [30]. However, the non-convex AC-OPF problem cannot guarantee
optimal global solutions [1]. Fortunately, the AC-OPF has a special formulation
in distribution grids that are operated in a tree-shaped network. For instance, a
second-order conic relaxation (SOCR) of the original nonconvex and nonlinear
programming can employed resulting in a second-order conic programming (SOCP)
model that can be efficiently solved [34]. Though, this is a relaxation (not exactly
the same problem), SOCP can guarantee a global solution making it appealing to
use as alternative to the nonconvex AC-OPF.

Based on the aforementioned issues, we propose an adaptive robust optimization
model for short-term EDN planning problem that considers sitting and sizing
of renewable-based DG units, particularly PV and WT units, ESSs, conductor
replacement of overloaded circuits, voltage control equipment, such as VRs, and
reactive power compensators, such as CBs, characterizing the uncertainty of load
consumption and power generation of PV and WT by an adjustable polyhedral
uncertainty set. Besides, as a result of the incorporation this adjustable polyhedral
uncertainty set, a two-stage three-level robust optimization mathematical model
is formulated, which is transformed into a two-stage two-level adaptive robust
optimization problem by using Karush–Kuhn–Tucker (KKT) conditions and solved
by employing a C&CG algorithm. The nonlinear AC power flow equations are
convexified, resulting in a mixed integer linear programming (MILP) model [5, 7,
50, 52].

The rest of this chapter is organized as follows. Section 2 introduces a detailed
deterministic model for EDN operation. The power flow formulation is presented in
Sect. 2.1. In Sect. 2.2, VR equations are modeled. In Sect. 2.3, fixed and switchable
CB equations are modeled. Equations for ESSs are presented in Sect. 2.4. Section
2.5 presents the WTG and PVG modeling equations. In Sect. 2.6, the mathematical
formulation for conductor replacement of overload feeders is presented. The objec-
tive function for the proposed deterministic model is formulated in Sect. 2.7. The
overall formulation of the deterministic model is presented in Sect. 2.8. Numerical
results for the deterministic approach are presented and discussed in Sect. 2.9. An
adaptive robust optimization framework is addressed in Sect. 3. The definition of the
uncertainty parameters for the robust problem is presented in Sect. 3.1. Section 3.1.1
presents the uncertainty set characterization. The adaptive robust formulation for
the proposed problem is presented in Sect. 3.2. The solution framework, numerical
results and discussions are presented in Sect. 3.3. Finally, some conclusions and
remarks are presented in Sect. 4.
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2 Deterministic Formulation for Short-Term EDN
Expansion Planning

2.1 Power Flow Formulation

Contrary to transmission networks, EDNs have a radial topology and are operated
radially. The analysis of an EDN requires the solution of the power flow problem to
establish the state of the system that is determined by voltage magnitudes in nodes,
current flows in feeders, energy losses and other variables of interest [37]. In this
work, the equations that represent the multi-period steady-state power flow problem
of radial networks are obtained from the “DistFlow” equations [7, 27], and can be
used to calculate the power flows at each node as follows:

∑

(jk)∈B

pjk,t −
∑

(km)∈B

(pkm,t + Rkmi2
km,t ) + pS

k,t − PD
k,t = 0 ∀k ∈ N, ∀t ∈ P

(1)
∑

(jk)∈B

qjk,t −
∑

(km)∈B

(qkm,t + Xkmi2
km,t ) + qS

k,t − QD
k,t = 0 ∀k ∈ N, ∀t ∈ P

(2)

v2
k,t − v2

m,t = 2(Rkmpkm,t + Xkmqkm,t ) + (R2
km + X2

km)i2
km,t ∀(km) ∈ B, ∀t ∈ P

(3)

i2
km,t = p2

km,t + q2
km,t

v2
m,t

∀(km) ∈ B, ∀t ∈ P

(4)

The “DistFlow” equations are used by removing the nonlinear terms from
constraints (1), (2), (3) and (4), resulting in a linear equation set for the power flow
in radial EDNs as follows:

∑

(jk)∈B

pjk,t −
∑

(km)∈B

pkm,t + pS
k,t − PD

k,t = 0 ∀k ∈ N, ∀t ∈ P (5)

∑

(jk)∈B

qjk,t −
∑

(km)∈B

qkm,t + qS
k,t − QD

k,t = 0 ∀k ∈ N, ∀t ∈ P (6)

vk,t − vm,t = 2(Rkmpkm,t + Xkmqkm,t )

v0
∀(km) ∈ B, ∀t ∈ P (7)

Thus, constraints (5)–(7) represent the convexified form of the nonlinear con-
straints (1)–(4).
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The total active power losses on the EDN are calculated as follows:

T PL =
∑

t∈P

∑

(km)∈B

Rkm

(
p2

km,t + q2
km,t

v2
m,t

)
(8)

2.2 Voltage Regulator Model

Basically, a voltage regulator (VR) is an autotransformer with an automatic chang-
ing mechanism of the tap position inside of the winding that allows us to maintain a
predetermined level of output voltage magnitude in case of load variations, and can
be operated under loading conditions.

Figure 1 shows a VR located at node m of branch km, where node m is the
non-regulated voltage magnitude node.

As observed in Fig. 1, the VR in branch km can be divided into two branches,
where one of the branches includes the tap changer and the other the VR impedance.
Note that vm is the non-regulated voltage magnitude (before the VR) and akm

varies within the range [(1 − R%
km), (1 + R%

km)], allowing regulation of ±R%
km.

On the other hand, taking into account the multi-period short-term characteristic
of the EDN problem planning, the tap position (akm) of the VR can be computed
approximately [29]. In this work, the tap position of the VR is assumed to be a
continuous variable. With these considerations, the linear equations (9) and (10)
represent the mathematical formulation to the operation and allocation of VRs in the
EDNs, where (9) allows us to compute the regulating voltage in node m (after the
VR) and (10) limits the voltage magnitude varying within the range of regulation.
Finally, αvr

km,t variable is introduced to indicate the installation of a new VR. If
αvr

km,t = 1, a VR must be installed at node k.

(1 − R%
km)vm,t ≤ ṽm,t ≤ (1 + R%

km)vm,t ∀(km) ∈ VR, ∀t ∈ P (9)

ṽm,t − vm,t ≤ ∣∣V max
m − V min

m

∣∣αvr
km,t ∀(km) ∈ VR, ∀t ∈ P (10)

αvr
km,t ∈ {0, 1} ∀k ∈ VR, ∀t ∈ P (11)

Fig. 1 Voltage regulator
model
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2.3 Capacitor Bank Model

With the aim of improving the EDNs overall efficiency and power delivery, it is
essential to reduce the total losses of the system. Total losses can be reduced by
the optimal sizing and placing of capacitor banks (CBs) at EDNs [42]. Usually,
two types of CBs are available to be installed in EDNs: (1) Fixed Capacitor Banks
(FCBs) and (2) Switchable Capacitor Banks (SCBs) [38]. FCBs are formed by
units that are always connected to the EDN, as shown in Fig. 2, whereas SCBs are
conformed by units that may be totally or partially connected to the EDN depending
on the load variability, as shown in Fig. 3.

In this work, the allocation of fixed and switchable capacitor banks is formulated
according to [39], where the reactive capacitive power injected by each installed CB
is formulated in (12) and its capacity is formulated in (13). Constraints (14) and (15)
define the type of CB (fixed or switchable) to be installed, when ncb

k,t = nmax
k is fixed

and when ncb
k,t < nmax

k is switchable. Constraint (16) guarantees that only one type of
CB (fixed or switchable) can be installed at node k. Constraints (17) and (18) define
the capacity of the fixed or switchable CBs to be installed at node k. Equations (19)
and (20) represent the binary and integer installation decision variables.

qCB
k,t = ncb

k,tQ
sp
b ∀k ∈ R, ∀t ∈ P, ∀b ∈ CB (12)

0 ≤ nmax
k ≤

∑

b∈CB

bα
fx

k,b,t +
∑

b∈CB

bαsw
k,b,t ∀k ∈ R, ∀t ∈ P (13)
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Fig. 2 Fixed capacitor model
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Fig. 3 Switchable capacitor model
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nmax
k ≤ ncb

k,t +
∑

b∈CB

bαsw
k,b,t ∀k ∈ R, ∀b ∈ CB, ∀t ∈ P (14)

0 ≤ ncb
k,t ≤ nmax

k ∀k ∈ R, ∀t ∈ P (15)
∑

b∈CB

bα
f x

k,b,t +
∑

b∈CB

bαsw
k,b,t ≤ 1 ∀k ∈ R, ∀t ∈ P (16)

∑

b∈CB

bα
f x
k,b,t ≤ 1 ∀k ∈ R, ∀t ∈ P (17)

∑

b∈CB

bαsw
k,b,t ≤ 1 ∀k ∈ R, ∀t ∈ P (18)

α
f x
k,b,t , α

sw
k,b,t ∈ {0, 1} ∀k ∈ R, ∀b ∈ CB, ∀t ∈ P (19)

ncb
k,t , n

max
k ∈ Z ∀k ∈ R, ∀t ∈ P (20)

2.4 Energy Storage System Model

By integrating renewable energy sources and ESSs into the EDN, the reliability
indexes and the capacity of the network are improved. Therefore, the EDNs are
anticipated to play an important role in fulfilling the aims of future smart grids
[48]. ESSs are considered to be the best alternatives to deal with the challenges
imposed by renewable energy sources, improving the EDN reliability indexes and
reducing the EDN operation cost at the same time. Energy storage can store the
excess of renewable energy source generation to be used when this is advantageous
from either an economic or a technical perspective [4]. Figure 4 shows a diagram of
the model of an ESS connected at node k.

ESSs have been implemented on a large scale in centralized systems using
technologies such as pumped hydro, compressed air, and megawatt-hour batteries
[21]. ESSs are adequate tools to accomplish the network support functions related
to centralized generation units and transmission infrastructure constraints [20]. The
stored energy can be consumed during peak hours, when energy is expensive and
load demand is high [36, 47]. ESSs power is defined according to the generator

Fig. 4 Energy storage
system model
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kv d
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c
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convention, i.e. the storage power is positive during discharge periods and negative
during charge periods. ESS’s characteristics such as capacity, charge/discharge rate
limits and allocation are represented in the proposed problem by Eqs. (21)–(32).

pESS
k,t = pdk,t − pck,t ∀k ∈ E, ∀t ∈ P

(21)

Pcmin
k αck,t ≤ pck,t ≤ Pcmax

k αck,t ∀k ∈ E, ∀t ∈ P
(22)

Pdmin
k αdk,t ≤ pdk,t ≤ Pdmax

k αdk,t ∀k ∈ E, ∀t ∈ P
(23)

esk,t = esk,t−1 +
(

ηckpck,t − 1

ηdk

pdk,t

)
Δt ∀k ∈ E, ∀t ∈ P : 1 < t < card(P)

(24)

esk,t = ESk,0 +
(

ηckpck,t − 1

ηdk

pdk,t

)
Δt ∀k ∈ E, ∀t ∈ P : t = 1

(25)

esk,t = ESk,0 ∀k ∈ E, t = card(P)

(26)

ESmin
k αes

k,t ≤ esk,t ≤ ESmax
k αes

k,t ∀k ∈ E, ∀t ∈ P
(27)

αck,t + αdk,t ≤ αes
k,t ∀k ∈ E, ∀t ∈ P

(28)

0 ≤ αes
k,t ≤ 1 ∀k ∈ E

(29)
∑

t∈P

αes
k,t ≤ 1 ∀k ∈ E

(30)
∑

t∈P

∑

k∈E

αes
k,t ≤ NES (31)

αck,t , αdk,t ∈ {0, 1} ∀k ∈ E, ∀t ∈ P
(32)

Constraint (21) captures the charging and discharging cycles of the ESS sepa-
rately. Constraints (22)–(23) limit extraction/injection power from the ESS respec-
tively. Equation (24) determines the stored energy of the ESS connected at node
k at period t , which depends on the previous (t − 1) state of charge and the
injected/extracted power for the time interval multiplied by their respective effi-
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ciencies. Equation (25) considers the initial stored energy, and the charge/discharge
storage efficiencies. Equation (26) is used for setting the final value of the stored
energy to a pre-specified value, which is considered equal to the initial value ESk,0.
Constraint (27) represents the maximum and minimum energy capacity that can be
stored in the ESS. This constraint includes the binary variable αes

k in its formulation,
which indicates where and when the ESS is installed, if αes

k = 1, otherwise αes
k = 0.

Constraint (30) indicates that only one ESS can be allocated at each node. The
maximum number of ESSs to be allocated in the EDN is defined by constraint (31).
No simultaneous charging and discharging is guaranteed by constraints (28)–(32).
A simultaneous charging and discharging process is unrealistic for most storage
technologies [33].

2.5 WTG and PVG Models

Installation of distributed generation (DG) in EDNs increases the overall reliability
of the networks in general. The higher the penetration of distributed generation
in the utilities, the lower the amount of power transmitted over long distances
and the lower the transmission losses [22]. When scheduling the maintenance
of the transmission and distribution systems with high penetration of distributed
generation, it is possible to perform this maintenance without loss of service in
many parts of the system. Hence, apart from distributed generation serving as a
backup power supply, it may as well be used to provide clean, cost-effective and
reliable power that will contribute to reserve margins, reduced transmission losses,
VAr support for voltage profile improvements, deferral of addition of transmission
and distribution lines and the alleviation of transmission bottlenecks is assumed
[45].

In this work, PVG and WTG unit sitting and sizing are included in the proposed
short-term EDN planning problem by the mathematical formulation in (33)–(40).

pPV
k,t =

∑

v∈PV

PV max
v α

pv

k,v,t ∀k ∈ V, ∀t ∈ P (33)

∑

t∈P

∑

v∈PV

∑

k∈V

α
pv
k,v,t ≤ NPV (34)

∑

v∈PV

α
pv
k,v,t ≤ 1 ∀k ∈ V, ∀t ∈ P (35)

pWT
k,t =

∑

w∈WT

WT max
w αwt

k,w,t ∀k ∈ W, ∀t ∈ P (36)

∑

t∈P

∑

w∈WT

∑

k∈W

αwt
k,w,t ≤ NWT (37)
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∑

w∈WT

αwt
k,w,t ≤ 1 ∀k ∈ W, ∀t ∈ P (38)

α
pv

k,v,t ∈ {0, 1} ∀k ∈ V, ∀v ∈ PV, ∀t ∈ P (39)

αwt
k,w,t ∈ {0, 1} ∀k ∈ W, ∀w ∈ WT, ∀t ∈ P (40)

where Eqs. (33) and (36) define the allocation of PVG and WTG units respec-
tively, which depends on the modules to be installed. Constraints (34) and (37)
limit the number of PVG and WTG units allocated at the EDN, respectively.
Constraints (35) and (38) define the size of the PVG and WTG plants to be allocated,
respectively, and guarantee that the model can only choose one type of module.
Finally, the binary nature of the decision variables is represented by (39) and (40).

2.6 Conductor Replacement Modeling

In our short-term EDN planning model, conductor replacement of overloaded
feeders is considered without changing the EDN topology [55]. Therefore, the
convexified mathematical model that represents it is formulated in (41)–(45).
∑

c∈C

∑

(jk)∈B

pjk,c,t −
∑

c∈C

∑

(km)∈B

pkm,c,t + pS
k,t+

pPV
k,t + pWT

k,t + pESS
k,t − P D

k,t = 0 ∀k ∈ N, ∀t ∈ P
(41)

∑

(jk)∈B

qjk,c,t −
∑

c∈C

∑

(km)∈B

qkm,c,t + qS
k,t+

qCB
k,t − QD

k,t = 0 ∀k ∈ N, ∀t ∈ P
(42)

vk,t − vm,t = 2

v0

∑

c∈C

(RcLkmpkm,c,t + XcLkmqkm,c,t ) ∀(km) ∈ B, ∀t ∈ P

(43)
∣∣pkm,c,t

∣∣ ≤ P max
c αcr

km,c,t ∀(km) ∈ B, ∀c ∈ C, ∀t ∈ P
(44)

∣∣qkm,c,t

∣∣ ≤ Qmax
c αcr

km,c,t ∀(km) ∈ B, ∀c ∈ C, ∀t ∈ P
(45)

∑

t∈P

αcr
km,c,t ≤ 1 ∀(km) ∈ B

(46)

αcr
km,c,t ∈ {0, 1} ∀(km) ∈ B, ∀c ∈ C, ∀t ∈ P

(47)
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where (41) and (42) represent the active and reactive power balance of the
reinforced feeder c in branch km, respectively. Constraint (43) represents the voltage
magnitude drop in branch km for the reinforced feeder c. The active and reactive
power flow limits of the reinforced feeders are shown in (44) and (45), respectively.
Constraint (46) imposes that only one conductor type is selected for each feeder.
The decision variable in (47) indicates the need of a feeder to be reinforced, which
can take values of 0 or 1 for each case, respectively.

2.7 Objective Function

The objective function consists of investment and operation costs. Investment costs
indicated by CINV in (48) include VR allocation (first term), fixed and switchable
CB allocation (second and third terms), ESS allocation (fourth therm), DG unit
PVG- and WTG-based allocation (fifth and sixth terms) and conductor replacement
of overloaded feeders (seventh term).

CINV =
∑

t∈P

1

(1 + r)t

∑

(km)∈VR

Γ vr
km

(
αvr

km,t − αvr
km,t−1

) +

∑

t∈P

1

(1 + r)t

∑

b∈CB

∑

k∈R

Γ cbf x

b

(
α

f x
k,b,t − α

f x
k,b,t−1

)
+

∑

t∈P

1

(1 + r)t

∑

b∈CB

∑

k∈R

Γ cbsw

b

(
αsw

k,b,t − αsw
k,b,t−1

) +

∑

t∈P

1

(1 + r)t

∑

k∈E

Γ es
k

(
αes

k,t − αes
k,t−1

) +

∑

t∈P

1

(1 + r)t

∑

v∈PV

∑

k∈V

Γ pv
v

(
α

pv

k,v,t − α
pv

k,v,t−1

)
+

∑

t∈P

1

(1 + r)t

∑

w∈WT

∑

k∈W

Γ wt
w

(
αwt

k,w,t − αwt
k,w,t−1

) +

∑

t∈P

1

(1 + r)t

∑

c∈C

∑

(km)∈B

Γ cr
c

(
αcr

km,c,t − αcr
km,c,t−1

)
(48)

On the other hand, the operation costs indicated by COP in (49) include devices
such as: ESS (first term) and DG units PVG- and WTG-based allocation (second
and third terms). The operation costs in these devices can be evaluated based on
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their sizes per hour of operation [52].

COP =
∑

t∈P

1

(1 + r)t

∑

k∈E

HtΠ
es
k αes

k,t +

∑

t∈P

1

(1 + r)t

∑

v∈PV

∑

k∈V

HtΠ
pv
v α

pv
k,v,t +

∑

t∈P

1

(1 + r)t

∑

w∈WT

∑

k∈W

HtΠ
wt
w αwt

k,w,t +
∑

t∈P

∑

k∈S

Πs
k,tp

S
k,t (49)

2.8 Deterministic Formulation

In this section, a short-term EDN planning deterministic optimization model is
presented, which is aimed at the minimization of investment and operation costs
by conductor replacement of overloaded feeders, installing VRs, CBs, PVGs, WTGs
and ESSs. Equations related to each device considered have been developed to deter-
mine its performance in the network. Then, a convexified formulation is obtained to
build an MILP optimization problem that can be solved using commercial MILP
solvers, which guarantees a global optimal solution of the problem.

The proposed MILP model in (50)–(57) defines an economic approach to
obtain the best short-term plan for an EDN, where constraint (56) represents the
active/reactive power of substation limits, controlled by the power factor. The
voltage magnitude limits are represented by (57).

min CINV + COP (50)

s.t.:

Conductor replacement: (41)−(47) (51)

WTG and PVG: (33)−(40) (52)

ESS: (21)−(32) (53)

CBs: (12)−(20) (54)

VRs: (9)−(11) (55)

−
∑

t∈P

pS
k,t tan(cos−1 φS) ≤

∑

t∈P

qS
k,t ≤

∑

t∈P

pS
k,t tan(cos−1 φ

S
) ∀k ∈ SE, ∀t ∈ P

(56)

V min
k ≤ vk,t ≤ V max

k ∀k ∈ N, ∀t ∈ P
(57)
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2.9 Numerical Results

2.9.1 Data Specifications

The effectiveness and efficiency of the proposed deterministic model is illustrated
using a 123-bus distribution test system, whose data has been taken from [44].
In this case, the expected values of the renewable energy sources generation and
load consumption are used. The annual increase rate of load consumption is 3%.
The lower and upper voltage limits are 0.95 and 1.05 p.u., respectively. The
substation lower and upper power factor limits are 0.95 and 1.0, respectively, and
the reactive power depends on the power factor and the supplied active power.
The regulation range and installation cost of VRs are assumed to be ±10% and
$26,400, respectively. The annual discount rate is set to be 5%. The planning horizon
considered is 3 years. All buses were assumed to be candidates for VRs, CBs, ESSs,
PV and WT plants placement.

Installing costs and power of CBs are reported in Table 1.
Conductors’ data and conductors’ replacement costs are shown in Table 2, which

are adapted from [46].

Table 1 Installing costs and
power of CBs

Qsp CBf x CBsw

[kVAr] [$] [$]

300 4950 7450

600 5150 7650

900 6550 9550

1200 7500 10,150

1500 8075 10,950

Table 2 Technical and
economic information about
conductor replacement

Data of conductors

Type Name R(Ω/km) X(Ω/km) Imax(A)

1 C1 1.1140 0.8762 130

2 C2 0.9963 0.7133 175

3 C3 0.7618 0.7077 235

4 C4 0.5995 0.6610 365

5 C5 0.3692 0.4150 495

6 C6 0.3209 0.3554 615

Conductor replacement costs [$]

Type C1 C2 C3 C4 C5 C6

1 – 7500 13,500 21,500 29,500 37,500

2 – – 11,000 18,500 25,500 34,000

3 – – – 14,000 22,000 29,000

4 – – – – 17,500 25,000

5 – – – – – 20,500
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Generation capacities of 150 and 50 kW are assumed for each WT unit and PV
module, respectively. The maximum number of WT units and PV modules that can
be installed at node k is set to 5 and 15, respectively. The maximum number of
WT units and PV modules that can be installed in the EDN is set to 300 for each.
Investment costs of $200×103 and $50×103 and operation costs of $300 and $400
are contemplated for each WT unit and PV module, respectively.

Investment and operation costs of $106 and $220 for each kWh are considered
for each energy storage device. The available storage is assumed to be in multiples
of 32 kWh storage capacity, with charge/discharge maximum powers set at 25%
of this capacity. The efficiencies for charging and discharging are considered to be
90% each [33]. The maximum number of ESSs that can be installed in the EDN is
set to 10.

2.9.2 Simulation Results

The proposed mathematical model has been implemented in the AMPL mathe-
matical language [28] and the solution framework has been obtained using the
optimization solver CPLEX 12.7 [32], in a Dell PowerEdge R910x64, 512 GB of
RAM and 3.3 GHz.

This case has been solved in 7 min 23 s. The objective function is $,1212,908.
Two VRs are allocated at nodes 109 in t = 2 and 44 in t = 3 with an investment cost
of $46,750. Three fixed CBs are allocated at nodes 11 (600 kVAr), 27 (900 kVAr)
and 43 (900 kVAr) in t = 2 with an investment cost of $16,553. Two PV-based DG
units are sized and sited at nodes 102 (150 kW) and 117 (100 kW) in t = 3 with
investment and operation costs of $43,192 and $1728, respectively. Two WT-based
DG units are sized and sited at nodes 53 (300 kW) and 90 (450 kW) in t = 3 with
investment and operation costs of $863,838 and $1296, respectively. There are no
ESSs allocated in the EDN. The lowest voltage magnitude value is 0.95 p.u., till the
end of the planning horizon.

Table 3 shows the proposal for conductor replacement with an investment cost of
$105,551.

In summary, the proposed deterministic model provides appropriate solutions for
the short-term EDN planning problem, where some devices are installed in the EDN
to meet the objectives under the implemented constraints.
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Table 3 Conductor
replacement

Branch Initial New Stage

k − m conductor conductor t

0–1 C3 C5 1

1–7 C3 C5 1

7–8 C3 C5 2

8–14 C3 C5 2

14–55 C3 C5 2

55–56 C3 C5 2

56–57 C3 C5 2

57–58 C3 C5 2

58–61 C3 C5 2

61–64 C3 C5 2

64–67 C3 C5 3

67–68 C3 C5 3

3 Adaptive Robust Formulation for Long-Term EDN
Expansion Planning

3.1 Robust Optimization

Real-word decision-making problems in operation and planning of electric energy
systems are highly affected by uncertainties, which are associated to energy
price, demand, intermittent generation sources, equipment availability, etc. [18].
In the proposed robust optimization model, load consumption and power output
of renewable-based DG are considered as uncertain parameters. In this context,
parameters μD

t (load consumption), μ
pv
t (PVG) and μwt

t (WTG), are uncertain
parameters representing the uncertainty of the capacity factor (taking values from 0
to 1) for each case. Therefore, terms from Eqs. (33)–(40) and (41)–(42) containing
the aforementioned uncertainties are formulated considering those parameters as
follows:

∑

c∈C

∑

(jk)∈B

pjk,c,t −
∑

c∈C

∑

(km)∈B

pkm,c,t + pS
k,t+

pPV
k,t + pWT

k,t + pESS
k,t − PD

k,tμ
D
t = 0 ∀k ∈ N, ∀t ∈ P (58)

∑

(jk)∈B

qjk,c,t −
∑

c∈C

∑

(km)∈B

qkm,c,t + qS
k,t+

qCB
k,t − QD

k,tμ
D
t = 0 ∀k ∈ N, ∀t ∈ P (59)

pPV
k,t =

∑

v∈PV

PV max
v α

pv

k,v,tμ
pv
t ∀k ∈ V, ∀t ∈ P (60)

pWT
k,t =

∑

w∈WT

WT max
w αwt

k,w,tμ
wt
t ∀k ∈ W, ∀t ∈ P (61)
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3.1.1 Uncertainty Characterization

It is important to take into account a clear definition of the uncertainty set U for
an effective representation of the uncertainty involved. In this context, to define
uncertainty set U, a polyhedral uncertainty set similar to the one used in [13, 14] is
considered for WTG and PVG, as well as load consumption. This uncertainty set
at each time period in the specified planning horizon is described by the following
constraints:

UD
t =

{
μD

t ∈ R
nD : Υ D ≤

∑

t∈P

μD
t

μ̂D
t

≤ Υ
D ; μD

t ∈
[
μD

t
, μD

t

]}
(62)

Upv
t =

{
μ

pv
t ∈ R

npv : Υ pv ≤
∑

t∈P

μ
pv
t

μ̂
pv
t

≤ Υ
pv ; μ

pv
t ∈

[
μpv

t
, μ

pv
t

]}
(63)

Uwt
t =

{
μwt

t ∈ R
nwt : Υ wt ≤

∑

t∈P

μwt
t

μ̂wt
t

≤ Υ
wt ; μwt

t ∈
[
μwt

t
, μwt

t

]}
(64)

The range of the load consumption at each time period is described by the interval[
μD

t
, μD

t

]
in (62). The added load in all consumption nodes at each time period is

constrained by the “budget of uncertainty”, Υ D and Υ
D

. Thus, a conservative level
can be achieved by these adjustable parameters. Similar uncertainty sets are defined
for the PVG in (63) and for the WTG in (64).

3.2 Adaptive Robust Optimization Problem Formulation

We assume that the uncertainty parameters in the proposed short-term EDN
planning problem (50)–(57) are associated to: (1) load consumption (μD

t ) and (2)
renewable-based DG (μPV

t and μWT
t ), respectively. Once this is specified, the

optimal short-term EDN planning can be determined for the optimal values of
variable α, considering the worst possible realizations of the uncertainty parameters.
To obtain this, an adaptive robust optimization (ARO) problem is formulated with
the following characteristics:

1. The optimal short-term EDN planning solution is obtained by minimizing
investment and operation costs for the worst-case scenario of uncertainty (65).

2. This optimal short-term EDN planning is determined by anticipating that, once
short-term EDN planning decisions are made, the worst-case uncertainty will
occur, i.e., considering a given short-term EDN planning, uncertainty parameters
will take the values that maximize operational costs given the new network
changes (66).

3. The worst-case realization of the uncertainty parameters is contemplated once the
worst case is realized in advance, so the system adapts to it. That is, considering
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that the short-term EDN planning decision variables and uncertainty parameters
are fixed, the optimal values of the remaining variables are selected so that the
objective function is minimized (67).

The aforementioned decision sequence is realistic for the short-term EDN
planning problem solution. First, the EDN planner decides the short-term expan-
sion plan to be implemented. Then, the worst-case uncertainty occurs (e.g., an
unexpected peak load consumption and/or the unavailability of some renewable
resources). Finally, the EDN operator, based on previous events, decides the most
appropriate actions in order to minimize the operation costs. The hierarchical
structure previously explained can be represented using the tri-level optimization
problem as follows:

min
ααα

CINV + δ (65)

s.t.: (11), (13)–(20), (28)–(32), (34), (35), (37)–(40), (46), (47)

δ =
{

max
μμμ∈U

ϕ

}
(66)

s.t.: (62)–(64)

ϕ =
{

min
yyy∈Ω(ααα,μμμ)

COP

}
(67)

s.t.: (9), (10), (12), (21)–(27), (43)–(45), (56)–(61)

In this tri-level optimization problem (65)–(67), set U is included, which defines
the uncertainty set and also set Ω(ααα,μμμ), which guarantees the feasibility of the
operation decision variables given the short-term EDN planning decisions and the
realizations of the uncertainty parameters.

The proposed adaptive robust optimization formulation in (65)–(67) can be
reformulated in matrix form as follows:

min
x∈X

cT x + δ (68)

s.t.:Ax ≤ b (69)

x ∈ {0, 1} (70)

δ =
{

max
μμμ∈U

ϕ

}
(71)

s.t.: Iμ = μ (72)

ϕ =
{

min
yyy∈Ω(ααα,μμμ)

dT y

}
(73)

s.t.: Gy ≤ h (74)

T x + Qy ≤ r (75)



Electric Distribution Network Planning Under Uncertainty 311

where the upper level is represented by (68)–(70), the middle level by (71) and
(72) and the lower level by (73)–(75). Vector x includes all binary variables and
vector y all continuous variables.

In the matrix form formulation, the objective function (50) is split into two parts:
(68) and (73). The upper level (68)–(70) is associated with the investment decision
constraints and the specification of binary variables ((11), (13)–(20), (28)–(32), (34),
(35), (37)–(40), (46),(47)). The middle level (71) and (72) selects the components
that are considered as uncertain, such as, load consumption and renewable-based
DG units ((62)–(64)). The lower level (73), (74) and (75) is equivalent to the
reaction of the EDN, taking into account the planning decisions and uncertainty
realization. Equation (73) selects the objective function part associated with the
operation costs (49), (74) collects all constraints of the problem that include only
continuous variables ((9), (12), (21), (24)–(26) (27), (43), (56)–(59)), whereas (75)
considers the constraints with both binary and continuous variables ((10), (22), (23),
(27), (44) (45) (60) (61)).

3.3 Solution Framework

Vector μμμ ∈ U in (68)–(75) represents the uncertainty parameters. In this context,
the variables can be grouped into two sets: (1) x ∈ X, which represents the vector
of first-stage binary decision variables whose optimal value is not subject to any
adjustment after the realization of the uncertainty parameters. The variables in
vector x define the investment decision plan and are known as the unadjustable
decision variables of the “here-and-now” decisions and (2) yyy ∈ Ω(ααα,μμμ) which
describes the vector of second-stage continuous variables whose optimal value is
conditioned by the realization of the uncertainty parameters and the optimal value
of the first-stage variables. The variables in vector yyy include the adjustable decision
variables of the “wait-and-see” decisions. Therefore, if the vector of unadjustable
binary variables is known, then, the vector of adjustable variables can be calculated
for any realization of the uncertain parameters using linear programming ((68)–(75)
with fixed binary variables). This linear program, also known as the second-stage
problem, is feasible for any realization of the uncertain parameters [33].

The proposed tri-level (min-max-min) adaptive robust optimization model (68)–
(75) represents the actions of a planner, uncertainty realizations and an operator for
the short-term EDN planning problem, which is difficult to solve, since its multilevel
structure makes it an NP-hard problem and cannot be solved using existing classical
optimization techniques.

To solve this type of problem, several algorithms exist in technical literature,
mainly based on Benders decomposition and on constraint-and-column generation
(C&CG) methods [24, 59]. In Benders decomposition-based methods, the problem
is separated into two parts: a so-called master problem (MP) and a so-called
subproblem (SP). In the solution process, dual information from the so-called
subproblem is used to compute the objective function of the so-called master pro-
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blem sequentially [16]. Moreover, the C&CG generation method uses cutting plane
approaches based on primal cuts that include only primal decision variables. C&CG
creates primal cuts that are generally more effective than the dual cuts used in
Benders decomposition, therefore, compared with the Benders decomposition-
based methods, the C&CG needs fewer iterations to converge, developing a better
computational performance [59].

In order to show in detail the C&CG algorithm, the proposed two-stage adaptive
robust optimization problem (68)–(75) that represents the short-term EDN planning
problem is rewritten in a compact matrix form:

min
x∈X

{
cT x + max

μμμ∈U
min

yyy∈Ω(ααα,μμμ)
dT y

}
(76)

s.t.:

Ax ≤ b (77)

x ∈ {0, 1} (78)

where

Ω(μ, x) = {
y : Gy ≤ h, Qy ≤ r − T x, Iμy = μ

}
(79)

To apply CC&G in the short-term EDN planning problem, the formulation in
(76)–(79) needs to be reformulated in a hierarchical framework as an MP and a SP.
The MP can be defined as follows:

min
x∈X

cT x + η (80)

s.t.:

η ≥ dT y (81)

Ax ≤ b (82)

x ∈ {0, 1} (83)

Iμ = μ (84)

Gy ≤ h (85)

T x + Qy ≤ r (86)

This MP is a relaxation of the proposed adaptive robust problem, where the
variables in vector yyy are dependent on the uncertainty realizations μμμ, which are
fixed. The solution of the MP is defined for the variables in vector xxx, yielding
a lower bound. Thus, the MP solutions are fixed in the SP solution defined
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by (87)–(90).

max
μμμ∈U

min
yyy∈Ω(ααα,μμμ)

dT y (87)

s.t.:

Iμ = μ : λ (88)

Gy ≤ h : γ1 (89)

T x + Qy ≤ r : γ2 (90)

SP (87)–(90) is a bi-level optimization problem that can be transformed into an
equivalent single-level optimization problem. In this work, Karush–Kuhn–Tucker
(KKT) conditions are used to transform the bi-level problem (87)–(90) into an
equivalent single-level problem. KKT conditions are necessary and sufficient for
optimality. Thus, we consider the Lagrangian function in (91) associated with the
bi-level (87)–(90) optimization problem for a given upper-level solution in x∗.

L (x∗, y, γ1, γ2) = dT y − λT (Iμ − μ) − γ T
1 (Gy − h) − γ T

2 (T x∗ + Qy − r)

(91)

The optimal solution to (87)–(90) must satisfy the KKT necessary optimality
conditions, as shown in (92)–(97).

∇yL (x∗, y, γ1, γ2) = d − Gγ1 − Qγ2 = 0 (92)

Iμ = μ (93)

Gy ≤ h (94)

T x + Qy ≤ r (95)

0 ≤ h − Gy ⊥ γ1 ≥ 0 (96)

0 ≤ r − T x∗ − Qy ⊥ γ2 ≥ 0 (97)

where (92) is the dual feasibility constraint, (93)–(95) are the primal feasibility
constraints and (96), and (97) are the complementarity constraints. γ1 and γ2 are the
dual variables of the problem in (87)–(90). Complementarity constraints in (96) and
(97) can be convexified to be an exact equivalent mixed-integer linear expressions
using the Big-M method, as shown in (98)–(101).

0 ≤ h − Gy ≤ Mσ (98)

0 ≤ γ1 ≤ M(1 − σ) (99)

0 ≤ r − T x∗ − Qy ≤ K(1 − ρ) (100)

0 ≤ γ2 ≤ K(1 − ρ) (101)
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where M and K are large values and σ and ρ are binary variables. Thus, the
constraints of the SP become (92)–(95) and (98)–(101), which is an MILP.

KKT conditions in (92)–(95) and (98)–(101) are included as constraints of the
bi-level SP in (87)–(90), obtaining a single-level SP as follows:

max
μμμ,yyy

dT y (102)

s.t.:

d − Gγ1 − Qγ2 = 0 (103)

Iμ = μ (104)

Gy ≤ h (105)

T x∗ + Qy ≤ r (106)

0 ≤ h − Gy ≤ Mσ (107)

0 ≤ γ1 ≤ M(1 − σ) (108)

0 ≤ r − T x∗ − Qy ≤ K(1 − ρ) (109)

0 ≤ γ2 ≤ K(1 − ρ) (110)

3.3.1 Algorithm

By taking into account the defined MP in (80)–(86) and the SP in (102)–(110), the
C&CG algorithm considered is described as follows:

Step 0 Fix the Lower Bound (LB) to LB = - ∞, the Upper Bound (UB) to UB =
+ ∞, define the tolerance (ε), define the initial value of μi ∈ [μ,μ], and
set the iteration counter i = 0.

Step 1 Solve the MP (80)–(86). Obtain the optimal solution (x∗, η∗) and update
the LB:

LB = cT x∗ + η∗

Step 2 Solve the SP (102)–(110) by considering the optimal value x∗, obtained in
Step 1 as a parameter. Obtain the optimal solution (μ∗, y∗) and update the
UB:

UB = min
{
UB, cT x∗ + dT y∗} (111)

Step 3 if (UB - UL)/UM ≤ ε then end, otherwise update i = i+1 and μ∗
i = μi−1.

Continue with Step 1.



Electric Distribution Network Planning Under Uncertainty 315

3.4 Numerical Results

3.4.1 Data Specifications

The effectiveness of the proposed adaptive robust optimization problem to solve the
short-term EDN planning problem is illustrated using the 123-bus distribution test
system. Technical and economic information about this test system were specified in
Sect. 2.9.1. The tolerance (ε) is set to 0.5%. Finally, the adjustment of constants M

and K must be taken into account considering the physical nature of the bounded
variables, so that values that are too large do not complicate the solution of the
problem.

3.4.2 Simulation Results

The proposed adaptive robust mathematical model is implemented in the AMPL
mathematical language [28] and the solution framework is obtained using the
optimization solver CPLEX 12.7 [32], in a Dell PowerEdge R910x64, 512 GB of
RAM and 3.3 GHz.

In this case study, different robustness parameters are assumed, since they cannot
have the same values in all periods in a realistic model.

Tables 4 and 5 show the decision planning considering different instances of the
robustness parameters. The lowest voltage magnitude value is 0.97 p.u., till the end
of the planning horizon. This case is solved in an average time of 28 min 12 s. in
four iterations.

Table 4 Uncertainty levels and plans

Uncertainty
VRs CBs PVG WTG ESSsμ,μ

[0.5, 1.0] Two VRs at
nodes 57 and 42

Three FCBs
(2×600 kVA,
1×300 kVA) at
nodes 49 and 69

Two PV plants
(2×100 kW) at
nodes 83 and
104

None One ESS (1×64
kW) at node
151

Costs $48,700 $13,370 $843,000 – $233,700
[0.7, 1.2] Two VRs at

nodes 57 and 42
Three FCBs
(2×600 kVA,
1×300 kVA) at
nodes 49 and 69

Two PV plants
(2×50 kW) at
nodes 83 and
104

None One ESS (1×64
kW) at node
151

Costs $48,700 $13,370 $430,000 – $233,700
[0.9, 1.1] Two VRs at

nodes 57 and 42
Three FCBs
(3×600 kVA) at
nodes 49 and 69

Two PV plants
(2×150 kW) at
nodes 83 and
104

None One ESS (1×96
kW) at node
151

Costs $48,700 $19,577 $1,112,650 – $378,300
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Table 5 Conductor
replacement

Branch Initial New

k − m conductor conductor

0–1 C3 C5

1–7 C3 C5

7–8 C3 C5

8–14 C3 C5

14–55 C3 C5

55–56 C3 C5

56–57 C3 C5

57–58 C3 C5

58–61 C3 C5

61–64 C3 C5

All the solutions found by the proposed deterministic and robust models present
plans with a main difference to highlight: the ESSs allocated by the robust model
for all instances of the robustness parameters. The total costs for each model are
$1,338,770, $997,450 and $1,638,705. Comparing these costs with the deterministic
ones, it is observed that they are similar, but the proposed robust model shows an
enhancement in the system voltage profile compared with the deterministic one,
which explains the ESS allocations and the different capacities of the devices.

For all instances of the robustness parameters, VRs, CBs, PVG plants and ESSs
are allocated in the EDN to meet the system operational requirements, such as
voltage profiles. It can be seen that the locations are the same for all instances of
the robustness parameters, but the equipment sizes associated with each location
are relatively different. The locations of the installations are similar, since the EDN
topology remains the same for all instances of the robustness parameters. However,
load consumption, wind speeds and solar irradiances vary from one occurrence
to another, which results in different sizes of the installed equipment. Conductor
reinforcements are the same for all instances, as shown in Table 5.

4 Conclusions

In this work, deterministic and two-stage adaptive robust models are proposed to
address the short-term EDN planing problem, considering VRs, CBs, WTG and
PVG based-DG, ESSs, and conductor replacement of overloaded feeders. The main
objective of the optimization is to minimize investment and operation costs, while
maximizing EDN profits along the planning horizon. The proposed deterministic
approach is based on a convexified multi-period MILP that guarantees a global
optimal solution. The proposed adjustable robust optimization-based approach is
formulated as a three-level programming problem. In order to solve the resulting
mixed-integer linear three-level program, a C&CG technique is applied. The
proposed methodology comprises the iterative resolution of an MP and an SP. Both
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problems are formulated with a suitable MILP that can be solved using commercial
solvers. The proposed adaptive robust method for the short-term EDN planning pro-
blem solution is subject to an uncertainty set associated with the load consumptions
and intermittent power output of renewable-based DG. Thus, this robust model takes
into account these uncertainties defined through a polyhedral uncertainty set. The
uncertainty level can be adjusted by the planner to develop a tradeoff between the
robustness and conservativeness of the solutions. Numerical results show that the
adjustable robust approach is able to attain optimal or high-quality solutions with a
reasonable computational effort. Therefore, the proposed short-term EDN planning
methods are more suitable to be used in practice.

Further research will explore a convex formulation without linearizations
together with a robust planning framework tool for distribution company planners,
allowing them the optimal management of distribution networks, guaranteeing
security, reliability and quality in the service to the consumers.

Acknowledgements J. López would like to thank DIUC - University of Cuenca for the economic
support in the development of this work.

Appendix

The notations used throughout this chapter are listed below.

Acronym

AMPL A Modeling Language for Mathematical Programming.

Indexes

b Index of installed CB sizes.
c Index of conductor types.
k Index of buses of the system.
km Index of branches of the system.
t Index of periods of planning.
μ Index of uncertain parameters.
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Sets

B Set of branches of the system.
C Set of conductor types.
CB Set of CBs.
E Set of candidate buses to install ESSs.
N Set of buses of the system.
P Set of periods.
R Set of candidate buses to install CBs.
SE Set of substations of the system.
U Set of uncertainties.
V Set of candidate buses to install PV plants.
VR Set of voltage regulators.
W Set of candidate buses to install WP plants.
Z Set of integer numbers.

Constants

ESk,0, ESk,T Initial/final stored energy in the storage unit at node k.
ESmin

k , ESmax
k Minimum/maximum storage capacity of the unit at node k.

Lkm Length of circuit km.
NES Maximum number of storage units to be installed in the EDN.
NPV ,NWT Maximum number of PV/WT plants to be installed in the EDN.
PV max

v ,WT max
w Active power capacity of PV module/WT unit.

Pcmin
k , P cmax

k Minimum/maximum charging power rate of the storage unit at
node k.

P max
c ,Qmax

c Minimum/maximum active/reactive power through conductor c.
Pdmin

k , Pdmax
k Minimum/maximum discharging power rate of the storage unit

at node k.
PDk,QDk Active/reactive load demand in bus k.
Q

sp
b Specified reactive power capacity of CB b.

Rc,Xc Resistance/reactance of conductor c.
R%

km Regulation % of the VR to be installed in km.
r Discount rate.
V min

k , V max
k Minimum/maximum voltage magnitude limit in bus k.

ηck, ηdk Charging/discharging storage efficiency of the storage unit at
node k.

Δt Time slot.
Γ vr

km Installation cost of VR at node km.

Γ cbf x/sw

b Installation cost of FCB/SCB with capacity type b.

Γ
pv/wt
v/w Installation cost of PV modules/WT units.

Γ es
k Installation cost of storage unit at node k.
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Γ cr
km,c Replacement cost of overloaded conductor in branch km by a

conductor c.
Πes

k Operation cost of storage unit at node k.

Π
pv/wt
v/w Operation cost of PV modules/WT units.

Πs
k Cost of energy supply by the substation at node k.

φS, φ
S

Minimum/maximum power factor at substation.

Υ D,Υ
D

Load demand uncertainty budget.
Υ pv, Υ

pv
PVG uncertainty budget.

Υ wt , Υ
wt

WTG uncertainty budget.
μD

t
, μD

t Minimum/maximum limits for load demand factor in period t .

μpv
t

, μ
pv
t Minimum/maximum limits for PVG factor in period t .

μwt
t

, μwt
t Minimum/maximum limits for WTG factor in period t .

Continuous Variables

pkm,c,t , qkm,c,t Active/reactive power flow through replaced circuit c in branch
km in period t .

pS
k,t , q

S
k, Active/reactive power in substation k in period t .

vk,t , ṽk,t Non regulated/regulated voltage magnitude in bus k in period t .
qCB
k,t Reactive capacitive power injected by the CB in bus k in period t .

pESS
k,t Active power injected or absorbed to/from the system by storage

unit k in period t .
pdk,t , pck,t Charging/discharging active power of storage unit k in period t .
esk,t Stored energy in storage unit k in period t .
pPV

k,t , pPV
k,t PV/WT active power generation at node k in period t .

μD
t , μ

pv
t , μwt

t Uncertainty parameters for load demand, PV and WT power
output in period t .

Binary and Integer Variables

αvr
km Binary variable, αvr

km = 1 if the VR is installed in branch km in period t ,
αvr

km = 0 otherwise.

α
f x/sw
k,b,t Binary variable, α

f x/sw
k,b,t = 1 if the FCB/SCB of capacity b is installed at

node k in period t , α
f x/sw

k,b,t = 0 otherwise.
αck,t Binary variable equal to 1 if the storage installed unit at node k is being

charged in period t , and equal to 0 otherwise.
αdk,t Binary variable equal to 1 if the storage installed unit at node k is being

discharged in period t , and equal to 0 otherwise.
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αes
k,t Binary variable equal to 1 if storage unit is installed at node k in period t ,

and equal to 0 otherwise.
α

pv
k,v,t Binary variable equal to 1 if PV module v is installed at node k in period

t , and equal to 0 otherwise.
αwt

k,w,t Binary variable equal to 1 if WT unit w is installed at node k in period t ,
and equal to 0 otherwise.

αcr
km,c,t Binary variable equal to 1 if conductor in branch km is replaced by

conductor c in period t , and equal to 0 otherwise.
ncb

k,t Integer variable that define the CB modules installed at node k in period
t .

nmax
k Integer variable that define the maximum CB modules to be installed at

node k.
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Phase Balancing in Power Distribution
Grids: A Genetic Algorithm with
a Group-Based Codification

Alejandro Garcés, Juan Camilo Castaño, and Miguel Angel Rios

Abstract Phase balancing is an optimization problem which can reduce power
losses in modern power distribution grids. The problem consists on phase swapping
of the loads at the feeder level in order to reduce the unbalance of the grid.
Despite being a classic problem, it is still relevant since unbalance is a common
phenomena in power distribution grids and can be intensified by the uncoordinated
use of distributed resources such as renewable energies and electric vehicles, among
other single phase loads. Being a combinatorial problem, phase balancing requires
heuristic algorithms whose codification must be carefully designed. In addition, high
penetration of renewable energies makes the problem stochastic. This chapter shows
a genetic algorithm which solves efficiently the problem, considering a detailed
model of the power flow. A novel codification is proposed based on the identification
of symmetries on the intrinsic structure of the problem by using the concept of
group, an algebraic structure that can be easily combined with the conventional
genetic algorithm. Simulations results on the IEEE test systems demonstrate the
efficiency of the proposed method.

1 The Phase Balancing Problem

Power distribution networks are usually unbalanced due to the presence of single
phase loads. Consequently, grid operators require to define right placement of
each single phase load in order to reduce technical losses, in a process known as
phase balancing [1]. This is a classic problem in power distribution optimization,
being more important in modern systems, due to the introduction of single-
phase renewable resources such as small photovoltaic systems and slow-charging
electrical vehicles [2]. The problem has been also identified in aircraft electric
systems [3].
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Power distribution systems are composed of three phases with three voltage and
current signals, which are equal in magnitude and phase shifted from each other
by 120◦, if balanced conditions are satisfied. Nevertheless, it is common to find
single phase loads connected to single-phase transformers as well as renewable
energy generation such as solar panels, and low-power wind turbines which can be
single-phase; it is also common to find unbalance loads connected to a three-phase
transformer. These situations cause power quality degradation, high power losses,
asymmetry in the voltage and current values and electricity costs rising. Slow-
charging electric vehicles are also single-phase loads that can have great impact on
the unbalance of the grid. As consequence of this, zero sequence currents are created
which increase power losses and can result in damages for the grid infrastructure
as the operational and physical constraints of the electrical components might be
exceeded.

Challenges related to renewable energies, electric vehicles and specially micro-
grids make the phase balance an important problem in modern power distribution
grids, despite being a problem relatively unnoticed in scientific literature. This
promotes the necessity of introducing new algorithms, with a stronger mathematical
formulation, to solve the phase balancing in micro-grids and power distribution
networks [4], considering the impact on the system given by the massive integration
of distributed resources. Authors in [5], considered a probabilistic operational
planning in order to optimally minimize phase unbalance in a distribution system
with a large number of single phase solar generators. As presented in [2] electric
vehicles chargers can be also subject to phase-balancing. Furthermore, in the
internal electric grid of airplanes [3] and ships [6] the phase balancing problem
has also been identified.

1.1 Mathematical Model

The phase balancing problem is closely related to the power system reconfiguration
[7]. These two methodologies modify the topology of the network improving
voltage profiles and balancing current values. However, as mentioned in [1], the
former approach has a more direct effect on the balance of the grid, since it provides
a direct way to balance a feeder in terms of phases. By considering the loads
swapping this problem can be represented as follows:

minimizePL(v, θ, x) (1)

subjectto f (v, θ, x) = 0 (2)

x ∈ Ω ⊆ B (3)

where, PL is the power losses function, f are the expressions for the power flow,
θ, V are the angles and nodal voltages, respectively, and x are the suitable swapping
actions to minimize PL. Ω represents all feasible swapping actions.
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The problem is clearly combinatorial since f is a non-linear/non-convex con-
straint and x include discrete variables. The main difficulty of this model lies not
only in its combinatorial nature, but also in the representation of the set Ω , in order
to avoid restricted actions as changes on the sequence for industrial loads or to place
two loads on the same phase. In that case, a large set of additional binary constraints
are required for representing Ω . These contraints must be included in the objective
function in order to use conventional metaheuristics. An indication function IΩ(x)

as the one defined in (4) is commonly used for this task and included directly on the
objective function as a penalization factor.

IΩ(x) =
{

0 x ∈ Ω

∞ x /∈ Ω

}
(4)

This approach has several disadvantages, despite being computationally feasible.
On the one hand, the size of the binary set is |B| = 29n where n is the number of
nodes of the system. Nonetheless, the size of the feasible set is only |Ω | = 6n. It
can be obtained that |Ω |/|B| = ln(6)/(9 × ln(2)) = 0.287 by using a logarithmic
measure. This means that the feasible connections are less than 30% of the binary
solutions.1 On the other hand, the algebraic properties of the genetic operators
under a binary representation, can result in unfeasible solutions after crossover, even
from feasible population. This is due to there is not a system of measurement for
establishing the level of “infeasibility”. The problem is clearly characterized by its
algebraic and not geometric nature. Hence, an algebraic construction is necessary in
order to have an efficient codification.

2 What is a Group?

The concept of group is the central object of abstract algebra which is basic to
the development of more complex abstractions such as rings and fields (see for
example [8] and [9] for more details). The main contribution that group theory adds
to heuristic techniques, is the possibility to reduce the feasible solution space. In
the following, a general introduction to the group concept is presented. More details
about the abstract presentation of the concept can be studied from [10] and [11].

Formally, a Group is a non-empty set G and a binary operation (◦) : G×G → G

called group product which fulfills the following axioms for any x, y, z ∈ G

• Associativity: x ◦ (y ◦ z) = (x ◦ y) ◦ z ∈ G

• Existence of an identity: there exists an element e ∈ G such that e◦x = x ◦e = x

for all x ∈ G

1In section IV, it is shown that this relation is even smaller for industrial feeders.
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• Existence of inverse: for every x ∈ G there exists an element x−1 ∈ G such that
x ◦ x−1 = x−1 ◦ x = e

Note that (◦) represents a function which combines two elements of the original
set and gives as result, an element which is part to the set too. This is defined as a
binary operation. As an example, consider the sum of real numbers: this operations
takes two real numbers and returns a real number. Hence, the real numbers with the
conventional sum as the binary operation composes a group. On the contrary, the
dot product on a linear space is not a group, since it takes two objects of the set
(vectors) and returns an object which is not a vector but a real number. Indubitably,
the elements belonging to a linear space could form a group, notwithstanding it is
necessary to establish a suitable group product. The main characteristic of groups
for genetic algorithms applications is the closure, that is, the operation between two
feasible solutions returns a feasible solution. This is made without any penalization
or artificial procedure, but by the intrinsic characterization of the algebraic structure.

2.1 The Three-Phase Group

A useful group in the engineering field is the symmetric or permutation group G3:
consider a set conformed by all different ways that an equilateral triangle can be
picked up, rotated and flipped (Fig. 1 shows the elements of this set). The element
(e) remains the triangle unchanged (it is the identity). The second and third elements
(x1, x2) move clockwise and counter-clockwise each vertex respectively, while the
fourth to sixth elements (y1, y2, y3) interchange the vertexes. It is not difficult to
see that this set is finite since there are only six possibilities. Additionally, a group

A

B

C

e

A

B

C

A

B

C

x1

C

A

B

A

B

C

x2

B

C

A

A

B

C

y1

A

C

B

A

B

C

y2

C

B

A

A

B

C

y3

B

A

C

Fig. 1 Example of a group formed by the symmetries of a triangle
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Table 1 Caley table for the
symmetric group G3

◦ e x1 x2 y1 y2 y3

e e x1 x2 y1 y2 y3

x1 x1 x2 e y3 y1 y2

x2 x2 e x1 y2 y3 y1

y1 y1 y2 y3 e x1 x2

y2 y2 y3 y1 x2 e x1

y3 y3 y1 y2 x1 x2 e
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load
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Fig. 2 Example of a group formed by the symmetries of phase balancing problem

operation (product) can be defined as the application of each transformation. Notice
that this set, with this product, fulfills all the axioms of a group.

All operations of a group can be represented by Caley’s table as given in
Table 1 for the group G3. This table gives all the possible outcomes from two
different inputs, which can be implemented computationally as a function in any
programming language. In this way, the binary operation can be translated into a
function that can be used by a heuristic algorithm.

The symmetric group is equivalent to the group of permutations of the phases
in a transformer as depicted in Fig. 2. This is equivalent relation is called a
homomorphism. In principle, all the properties of the group G3 are shared with this
group despite being quite different objects. Section 4 shows a third homomorphism
of the same group, based on a matrix representation. This allows high flexibility in
the implementation of the algorithms preserving the same mathematical structure.

On the other hand, the group can be extended to all the nodes of the grid
generating a new group. This can be interpreted mathematically as a Cartesian
product of the group. In practice, it means that the binary operation is executed
point-wise from two arrays of the same size, as follows:

(x1, x2, . . . , xn) ◦ (y1, y2, . . . , yn) = (x1 ◦ y1, x2 ◦ y2, . . . , xn ◦ yn) (5)
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This group is called the Three-phase group (Γ3 henceforth) and will be the main
structure for the proposed algorithm.

Now, let us return to the analysis of the group operation for a single load. It is
important to highlight that the set S = {e, x1, x2} under the same group operation
constitutes a group in its own, this is called a subgroup. In the example above,
the subgroup S ⊂ G3 is composed of rotations exclusively. This subgroup has
additional characteristics, for example, after three times the application of the group
operation to any element of the group, this element remains unchanged, that is
xi ◦ xi ◦ xi = x3

i = xi . Due to this characteristic, S is called a cyclic group.
The commutative law is not one of the axioms of groups; Since, in general, the

relation x ◦ y = y ◦ x is not true for all x, y ∈ G. However, if this commutative law
holds in a group S, such a group is called a commutative group or Abelian group.
These are named after the mathematician Niels Abel who made several remarkable
discoveries and was a pioneer in the study of groups [12]. In general, cyclic groups
are Abelian. This property can be easily established on S = {e, x1, x2} ⊆ G3 by
noticing the symmetry of the subgroup in Table 1.

3 Phase Balancing Problem with Group Theory
Representation

In contradistinction to the group codification, a binary representation of the problem
is possible by setting a value of 1 the case in which one load is swapped from a
phase i ∈ {A,B,C} to a new phase j ∈ {A,B,C}, and 0 if it is not swapped (see
Fig. 3). This representation has a major drawback for a heuristic algorithm, since it
can lead easily to an unfeasible solution. Notice for example that in Fig. 3, the load
in phase A is swapped simultaneously to new phase A and phase B. Nevertheless,
this representation of the problem has been used in most of the heuristics applied to
the phase balancing problem, see for example [4].

In other words, binary representation gives 9n solutions but most of the solutions
are unfeasible. In addition, an unfeasible solution can appears from two feasible
solutions after the conventional genetic operators such as crossover or mutation.
As aforementioned, additional constraints on the binary variables are required
with a penalization function which can deteriorate the performance of the genetic
algorithm.

Fig. 3 Binary representation
of the swapping action
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In a group-based heuristic, the representation is made as function of the group
structure, in this case the three-phase group Γ3 as follows:

Minimize
x,v,θ

PL(v, θ, x) (6)

f (v, θ, x) = 0 (7)

x ∈ Γ3 (8)

where Γ3 represents the Three-phase group depicted in Fig. 2 and f represents
the power flow equations. Now, notice that the power flow can be solved efficiently
by a three-phase backward forward sweep load flow for each configuration x. In fact,
we can define this as a function (both from the mathematical and computational
point of view) such that (v, θ) = φ(x). Consequently, the optimization problem
becomes an unconstrained minimization on a group:

Minimize
x

PL(φ(x), x) with x ∈ Γ3 (9)

This is done in a natural way without any penalization factor. On the other hand,
changing the sequence of the loads of industrial feeders could produce a change
in the rotation direction of motors and other industrial components. Therefore,
switching the sequence of the loads is not recommended in those cases. Notice that
the problem is reduced to ΨS = {e, x1, x2} which is a cyclic Abelian group; the size
of this group is reduced to 3n since for each node x3

i = xi . Once more, the size
of the problem is reduced from 29n to 3n. The combinatorial nature of the problem
does not change but the size of the solution space decreases considerably.

The group operation can be used in the genetic algorithm to move in the
feasible solution space. The indicator function is not required which implies that
the structure of the solution space is smoother (i.e the algorithm moves in Γ3 and
not in B

9n).
On the other hand, the objective function can be modified maintaining the same

group structure. For example, a different approach can be considered to solve the
phase balancing problem by considering the energy losses of the systems during an
interval of 24 h, therefore the optimization problem is represented as follows:

Minimize
x

24∑

i=1

PLi(φ(x), x) with x ∈ Γ3 (10)

This problem has a better physical meaning since it can include the load curve (as
depicts Fig. 4) and the expected variations on the distributed generation. However,
the complexity of the problem is the same since the set Γ3 is always the same.
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Fig. 4 Example of a load curve for a typical residential load

4 Genetic Algorithm with a Group Codification

Genetic algorithms are optimization techniques inspired by the evolutionary theory
of Charles Darwin, presented in his seminal book On The Origin of Species in 1859.
In those algorithms, each feasible solution of the studied problem is represented by
a vector arrays named pseudo chromosome, which are submitted to an evolutionary
process that determines which individual is ‘fitter’ in relation to the environment.
For the phase balancing problem the environment that the individuals must be
adapted to is represented by the function that minimize the system losses obtained
by a three-phase power flow. The proposed genetic algorithm incorporates the
following steps:

• Fitness function: Finding the optimal solution of unconstrained problems is
an approach that majority of meta-heuristic algorithm are designed to. In this
context, the fitness function measures the adaptability of the solution if a
constrained problem is considered. However, it is necessary to incorporate the
problem constraints into the objective function which is a task carried out by the
indicator function. In the group theory approach the aforementioned indicator
function is not required since the group codification allows the algorithm moves
into the feasible zone. In this way, the problem can be represented as (10)

• Selection operator: In all genetic algorithms selecting what characteristics of
the good solutions will be duplicated while the size of the population keeps
constants is a fundamental step, that is why a selection operator is required. In
this algorithm a tournament selection is proposed.

• Variation operator: Creating new solutions is a task carried out by this operator.
Its aim is incorporating diversity to the optimization process, by building unique
offsprings that inherit partially characteristics of their parents. The population
individuals submitted to this operator are created using the group codification.
Here, every feasible connection between loads and phases for every k node, given
by each element of the Γ3 group, can be formulated as an homorphism given by
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the following matrix representation:

S(k) = Rα(k) · Pβ(k) · S̃(k), ∀ k ∈ L (11)

where matrices Rα and Pβ are shown in (12) and (13) respectively.

Rα =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠
α

(12)

Pβ =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠
β

(13)

The Γ3 group elements will be represented by tensor M for every feasible
combination between α and β, where α = {0, 1, 2} and β = {0, 1}. Then,
equality (14) can be formulated for every node k.

M(k) = Rα(k) · Pβ(k) (14)

Furthermore, Fig. 5 depicts every feasible connection represented by a group
element as a result of combination between α and β in (14).

In the same way, the crossover and mutation operators are defined by the
elements of the Γ3 group, which implies that the offspring is going to belong
to the aforementioned group and those operators are closed under the binary
operation defined by the symbol ◦.

• Crossover operator: Its function is creating new offspring from two individuals
of the previous generations as it is shown Fig. 6

• Mutation operator: Producing a variation of pseudo chromosome characteristics
is a function carried out by this operator.

• Elitist operator: The aim of this operator is keeping the good solutions. The most
well known way to do this is preserving the best solution so far passing from

Fig. 5 Group elements
represented for every feasible
α − β combination
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Fig. 6 Crossover operator
using group representation.
For each node, the offspring
is given by the group
operation ◦ between each
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Algorithm 1 Genetic algorithm for phase-balancing
1: procedure GENETIC(Feeder)
2: i ← 0 � generation counter
3: ρ ← Rand(Γ3) � Initialize population randomly
4: f ← PL(ρ) � Evaluate objective function
5: fopt , ρopt ← Best(f )

6: while i ≤ Number of generations do
7: ∂ρ ← Tournament(ρ) � Selection
8: ρ ← Crossover(∂ρ, Γ3)

9: ρ ← Mutation(ρ, Γ3)

10: f ← PL(ρ)

11: fopt , ρopt ← Best(f )

12: ρ ← Variation(ρ)

13: ρ ← Elitism(ρ)

14: f ← PL(ρ)

15: fopt , ρopt ← Best(f )

16: return fopt , ρopt � Optimal solution

the current generation to the next. Here, the best solution is represented by a
chromosome which includes all nodes represented by an α − β combination.

The steps of the algorithm are summarized in Algorithm 1. The algorithm is
basically the same when the subgroup ΨS is used instead Γ3.

5 Examples

The aforementioned genetic algorithm, under the group theory codification, was
carried out several times for the energy optimization approach. Tests were per-
formed for the IEEE-test-systems of 13, 37 and 123 nodes. All parameters of these
feeders can be found in [13]. Notwithstanding, meta-heuristic algorithms were used
to solve the problem, which means that the number of iterations and the computing
time varied every time that the algorithm was carried out, therefore, results are
presented in average. Each individual of the initial population was represented by a
combination of α − β for each node. Then, the optimal point is given by the α − β

combination that produces the minimum value of losses. Furthermore, unbalance
indices for line currents in every node k for all study cases, were calculated by using
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Eq. (15) as follows:

ξk = max
i

{ |Iak − Imk |
|Imk |

,
|Ibk − Imk |

|Imk |
,
|Ick − Imk |

|Imk |
}

(15)

with

Imk = Iak + Ibk + Ick

3
(16)

Where, Iak , Ibk and Ick are the line current of each phase on node k, while Imk in
(16) corresponds to the mean value for the line current of the node k. Notice that for
balanced conditions the value of ξ must be equal to zero, i.e. the line currents are all
equal to the mean value.

5.1 IEEE 13 Nodes Test Feeder

The IEEE 13 Nodes test feeder is a small grid with spot loads in 8 of his 13 buses(see
Fig. 7). Even though this feeder is a relatively small circuit, the proposed algorithm
produces a considerable reduction of losses. Table 3 presents the value of the losses
when the systems is unbalanced and when this is balanced, among other important
results considering energy losses reduction. Furthermore, Table 2 shows the new
configurations, phase shifting, and unbalance indices for each load of the system.

Figure 8 depicts the reduction of the unbalance indices during the peak load, in all
nodes considering energy losses. It is noticed that the unbalanced index is improved
in most of the nodes, except in Node 11. However, the total effect on the system is
reduction of energy losses. This is because Node 11 has the lowest load value and
consequently, the minimum effect on the total energy losses (Table 3).

Additionally, Fig. 9 shows the energy losses reduction for the system in every
hour of one day, following the load curve of Fig. 4.

Fig. 7 IEEE 13 nodes test
feeder

650

632 633 634645646
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Table 2 IEEE 13 Nodes test feeder optimized configurations and unbalance indices

Node Configuration Phase shifting

Unbalance indices

Unbalanced system Optimized system

633 x2 BCA 0.1847 0.1686

645 x2 BCA 0.1381 0.0845

646 y3 BAC 1.0605 1.0655

652 x1 CAB 2.0000 1.9992

692 y2 CBA 0.5902 1.9992

611 x2 BCA 0.0704 0.0818

671 y1 ACB 0.2328 0.0454

675 y2 CBA 0.4617 0.4223

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

Node

Fig. 8 Change on the unbalance index during the peak load for the IEEE13 nodes test feeder.
Positive values indicate an improvement in the unbalance index

Table 3 IEEE 13 test feeder
results considering energy
losses

Unit Value

Unbalanced system losses kWh 1579.035

Balanced system losses kWh 1379.065

Total reduction % 12.664

Iterations to find the best approximation n 4

Time to find the best approximation s 250.214

5.2 IEEE 37 Nodes Test Feeder

A real underground feeder located in California is represented by the IEEE 37
Nodes test system. It has an operating voltage of 4.8 kV, and its substation voltage
regulation is two single-phase open-delta regulators, besides 25 of its 37 nodes are
highly unbalanced (see Fig. 10). Results are shown in Table 4. Also, Fig. 11 depicts
the unbalance indices reduction for the energy losses reduction. The analysis is
similar to the IEEE 13 nodes. The algorithm can increase locally the unbalance
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Table 4 IEEE 37 test feeder
results considering energy
losses

Unit Value

Unbalanced system losses kWh 488.600

Balanced system losses kWh 443.040

Total reduction % 9.324

Iterations to find the best approximation n 12

Time to find the best approximation s 298.215
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Fig. 11 Change in the unbalance index for the IEEE 37 nodes test feeder considering energy
losses. Positive values indicate an improvement in the unbalance index
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Fig. 12 Daily energy losses improvement for IEEE 37 nodes test feeder

in a particular node or in a particular time, in order to decrease the total unbalance
of the grid and, consequently, the energy losses.

Also, Fig. 12 shows the improvement of the energy losses every hour for one
day,using the load curve shown in Fig. 4.
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5.3 IEEE 123 Nodes Test Feeder

With loads in 89 out of his 123 nodes, the IEEE 123 nodes test feeder consists
on overhead and underground lines; unbalance loading with constant current,
impedance and power; four voltage regulators and shunt capacitor banks (see
Fig. 13). Table 5 shows the numerical results for energy losses improvement. In
addition, Fig. 14 presents the unbalance indices reduction and Fig. 15 the energy
losses before and after implementing the algorithm, for every hour in one day.

The obtained results show that the unbalancing of all studied test feeders was
considerable reduced (positive values) in spite of the unbalancing was minimally
increased in some nodes (negative values) . Notice that for nodes with two phase-
loads, nodes that have a single-phase, or even terminals without loads, the reduction
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Table 5 IEEE 123 test
feeder results considering
energy losses

Unit Value

Unbalanced System Losses kWh 1371.674

Balanced System Losses kWh 1284.484

Total reduction % 6.356

Iterations to find the best approximation n 24

Time to find the best approximation s 234.836
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value is zero since the swapping of the loads have negligible effect on the unbalance
index. However, it can have effect in the total energy losses.

6 Comparison Between Optimization in �3 and �S

As mentioned in previous sections, the proposed methodology can be applied
for any type of feeders. Notwithstanding, the constraint related to the change of
sequence of the loads must be considered for industrial feeders. In this way, the
set of the feasible solution is reduced to the symmetric-Abelian subgroup that was
presented in Sect. 2. Simulations were performed again, looking for a decrease
on the power losses and considering the new feasible solution space. Results are
presented in Table 6.
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Table 6 Comparison on the phase-balancing problem in the three-phase group and the three-
phase subgroup for industrial feeders

Solution space Feeder Reduction [%] Iterations Time [s]

Γ3 IEEE 13 13.3458 1494 33.0036

IEEE 37 10.1026 9601 492.7682

IEEE 123 7.3929 8487 1422.325

ΨS IEEE 13 11.7830 1143 20.4441

IEEE 37 9.8908 5525 301.5133

IEEE 123 7.2785 8823 1333.903

From Table 6, It is easy to see that the algorithm optimizing in Γ3 reduces the
losses more than the algorithm optimizing in ΨS . This happens because the size of
the solution space of Γ3 is wider and allows changes of sequence. On the other hand,
the size of the solution space of ΨS is smaller since this subgroup represents the
industrial feeders where a change of sequence is not recommended. The algorithm
moving in ΨS implies the iterations reduction and CPU time reduction. In addition,
the sizes of the solutions space of the aforementioned groups are reduced by
comparison to the traditional approach where an indicator function is required, this
is because under this approach many unfeasible solutions are considered, something
that does not happen when group codification is applied.

7 Conclusions

The use of group theory for the codification of phase-balancing problem in power
distribution grids was studied by using two different objective functions (power
losses and energy losses). Even though a modified genetic algorithm is proposed, the
presented methodology can be applied for other kinds of algorithms for other types
of algorithms. This codification allows to reduce the size of the solution space since
the algorithm moves from feasible to feasible solution, without requiring penaliza-
tion barriers or an indicator function as the conventional methodologies. In addition,
crossover and mutation operators are easily codified under this representation.

It was proposed a direct method for the phase balancing of industrial feeders,
where changes of sequence are not desired. A special subgroup representation is
obtained in these cases where the commutative law holds, which seems to improve
the convergence of the algorithm. Depth research is required for the purpose of
understanding better this property. The size of the solution space was effectively
reduced which is not possible when traditional approaches are used since they use
an indicator function that only penalizes some zones of the solution space.

The group theory embraces many concepts that can be used in power systems.
More research is required in order to explore the advantage that symmetries have
in this field. The phase-balancing problem can be described in terms of finite-
semigroups and in particular in terms of Monoids since the inverse operation is
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not really used in the genetic algorithm. Several methodologies such as particle
swarm can be used to solve the phase balancing problem with group codification.
Finally, the model can be improved by including some stochastic effects on the
current grids such as wind and solar resources. A suitable codification is required
for these stochastic effects in order to maintain the group structure of the model.

Acknowledgements This work is a partial result of the project 111077657914, funded by the
Colombian Administrative Department of Science, Technology, and Innovation (COLCIENCIAS),
contract number 031-2018.
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Deterministic and Probabilistic Models
for Energy Management in Distribution
Systems

Milad Kabirifar, Niloofar Pourghaderi, Ali Rajaei, Moein Moeini-Aghtaie,
and Amir Safdarian

Abstract Distribution network conventionally have been designed and operated
as some passive and radial networks. However, the presence of distributed energy
resources (DERs) has changed these networks’ vision into some active ones.
In this regard, new operational studies in the distribution level such as energy
management problem has brought into existence. In this regard, this chapter mainly
investigates the problem of energy management in distribution systems penetrated
by DERs. To reach this goal, different classes of energy management problem,
i.e., deterministic and stochastic models are carefully put under investigation.
Extracting the mathematical model of these algorithms, it has been discussed that
which algorithms should be applied to effectively solve the associated optimization
problem. At the end, two examples associated with stochastic modeling of energy
management problem, implemented on a sample case study, are provided to show
how this problem can be applied in active distribution networks.

Nomenclature
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b, w Network nodes
e Storage units
i Distributed generation (DG) units
l Loads
s Scenarios
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sp Upstream suppliers
t Time steps
v Electric vehicles
ω Wind turbines
p Photovoltaic(PV) units

Parameters

CU
DG DG units’ start up/shut down cost

CGCP DG units’ curtailment cost
CLoadDR Cost of load reduction
CNSD Cost of nonsupplied demand
CSupplier Cost of external suppliers
EBatCap ESSs/EVs batteries capacity
EMinCharge Minimum stored energy in ESSs/EVs
MP Electricity price of market
UP Utility price
Ni Number of DG units
Ne Number of storage units
Nl Number of loads
NL Number of feeders
Ns Number of upstream grids
Nv Number of EVs
PChargeLimit ESSs/EVs’ maximum rate of charge
PDGScenario Non-dispatchable DG’s forecasted generation
PDGMinLimit Dispatchable DG’s minimum active power
PDGMaxLimit Dispatchable DG’s maximum active power
PDischargeLimit ESSs/EVs’ maximum discharge rate
PLoadDRMaxLimit Loads’ maximum power reduction
PMarketOfferMax Maximum allowed offer
PMarketOfferMin Minimum allowed offer
PMarketBuyMax Maximum allowed bid
PMarketBuyMin Minimum allowed bid
PSMinLimit Suppliers’ minimum active power
PSMaxLimit Suppliers’ maximum active power
T Number of time periods
Z Number of scenarios
λm − 1 Lagrangian from slave in m−1 iteration
Δt Duration of time t
π Scenarios’ probability
ηc ESSs/EVs’ charging efficiency
ηd ESSs/EVs’ discharging efficiency
α, β, δ DG units cost functions’ coefficients

Variables

CDG DG units’ generation cost
CDischarge ESSs/EVs’ discharging cost
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EStored Energy stored in ESS/EVs
PBuy Power bid
pCharge ESSs/EVs’ charging power
pDischarge ESSs/EVs’ discharging power
pDG Dispatchable DGs’ power
pLoadDR Loads’ power reduction
pGCP DGs’ generation curtailment power
pNSD Non-served demands’ power
PSell Offer power
pSupplier Upstream grid power
PUtility Active power transacted with utility grid
PWind Active power generated by wind turbines
PPV Active power generated by PV units
CUtility Cost of power transacted with utility grid
xDG State of DG units
xESS/EV Discharge state of ESSs/EVs
xMarket Choice of markets
xSupplier Choosing suppliers
yESS/EV Charge state of ESSs/EVs

Sets

Ωd
DG Dispatchable DG units

Ωnd
DG Non-dispatchable DG units

Ωb
DG DG units in bus b

Ωb
E Storage units in bus b

Ωb
L Loads in bus b

Ωb
SP Upstream suppliers in bus b

Ωb
V EVs in bus b

1 Introduction

Distribution systems are going under vast changes in structure, players and cus-
tomers. Conventional distribution networks are designed as passive systems in
which the energy is delivered to customer only through upstream networks.
However presence of DERs will change the future vision of these networks into
active ones. In these systems, there are new ways to supply the loads via different
technologies of DGs and also utilizing demand response (DR) programs.

Due to growth of the new energy resources in distribution systems, the oper-
ational characteristics of these systems have been changed. Power flow reversals
toward upstream networks, fluctuations in loading of distribution feeders and also
variations in voltage of different nodes are some operational constraints which active
power distribution systems will face in near future. These call for new operational
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mechanisms and energy management strategies to effectively operate these new
systems. This chapter is mainly devoted to investigate different energy management
algorithms in distribution systems.

To better understand the problem of energy management in distribution systems,
the modeling algorithms for this problem are categorized into deterministic and
stochastic models. The modeling procedure of different elements including elec-
tricity load, different technologies of DGs and charging/discharging profiles of EVs
are explained. Then, mathematical models of energy management problem for both
of deterministic and stochastic classes are extracted. Discussing the features of these
optimization problems, different algorithms for solving these optimization problems
are addressed. Finally, the main steps for running an energy management problem
are explained by providing an example that implements this problem on a case study.
In addition, the associated results of example are discussed.

In the remained parts, Sect. 2 covers the problem of deterministic energy
management in distribution systems. By explaining the concept of this problem,
main steps for running this study is explained. Section 3 is mainly devoted to
stochastic modeling procedure of energy management problem. In this regard,
modeling procedure of renewable-based DGs along with new demands such as
EVs are discussed. After addressing main algorithms for dealing with different
uncertainties in operational studies, different stochastic algorithms for solving
the associated optimization problems are covered. Finally, the implementation
procedure of two examples is in detail addressed in Sect. 4.

2 Energy Management Deterministic Modeling

2.1 Problem Definition

The leading goal of energy management in distribution system is to find the optimal
way to utilize various DERs in the system to efficiently supply the electricity
demand of customers taking into account operational constraints of these resources,
the underlying network, and customers’ preferences.

In the literature, various deterministic approaches have been investigated to
solve the energy management problem in distribution system. Reviewing these
methods, the deterministic energy management problem can be grouped into three
main layers as depicted in Fig. 1. The input is the first layer where system’s
characteristics, customer’s preferences, renewable energy sources (RESs) output
profile, and network and DER’s operational constraints are specified. The second
layer comprises mathematical modeling of the problem and selecting a suitable
solution algorithm to solve the optimization problem. Finally, in the third layer,
decision variables including output profile of DGs, usage profile of customers,
charge/discharge rate of batteries, along with operational state of the system and
the objective function(s) value(s) is reported.
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Input Layer

Conventional DG units 
output modeling  

Extract mathematical 
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Extract mathematical 
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conventional DGs
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Report operational state 
of distribution network

Report objective 
function(s) value(s)

Fig. 1 Steps to deterministic energy management

In the following, common energy resources in distribution system are discussed
and modeled. Moreover in Sect. 2.4, mathematical model of energy management
problem in distribution system with a deterministic point of view is presented.

2.2 Modeling of Energy Resources in Distribution Networks

2.2.1 Conventional DGs Modeling

Conventional DG (CDG) units such as diesel generators and gas turbines are
counted as dispatchable sources in the grid and their active/reactive output powers
denoted as PG

i,t /Q
G
i,t , respectively, are variables determined by the system operator.

The both active and reactive generated powers of CDGs must be between minimum
and maximum allowed amounts as described by Eq. (1). UG

i,t represents the ON/OFF

status of ith CDG.

UG
i,tP

G
i,t ≤ PG

i,t ≤ UG
i,tP

G
i,t (1)

UG
i,tQ

G
i,t ≤ QG

i,t ≤ UG
i,tQ

G
i,t (2)

The fuel costs of CDGs are their major cost. This cost is mainly modeled by a
quadratic function according to Eq. (3).

CG
i,t

(
PG

i,t

)
= aG

i

(
PG

i,t

)2 + bG
i PG

i,t + cG
i (3)

Where, aG
i , bG

i , and cG
i are constants.
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Fig. 2 Output power for wind and solar generation

2.2.2 Model of Renewable Energy Resources

Electricity power generated by RESs is usually a function of meteorological data
with high uncertainty: irradiation, temperature, wind speed and so forth. For
instance, power produced by a photovoltaic (PV) panel depends on the sun path,
temperature and cloud coverage, or a wind turbine’s generated power depends
on speed of wind. These parameters and their probability distributions have to
be estimated everyday based on historical data. However, in case of deterministic
modeling, it is assumed that the forecasted data has no error. Therefore, the
electricity power produced by renewable sources in deterministic modeling is often
modeled by a given output profile [1]. An example for solar and wind power
generation in a summer day and in a distribution network located in Iran is depicted
in Fig. 2 [2]. A more comprehensive modeling of RESs respecting their intermittent
nature is presented in Sects. 3.2.1 and 3.2.2. Here, power produced by a PV panel
and a wind turbine is denoted as PPV and PW , respectively.

Moreover, power electronic inverters are utilized to connect RESs to the grid in
order to convert the DC electrical output into an AC output. These inverters are
usually, also capable of generating or consuming reactive power by themselves.
Thereby, if this option is available, the reactive power produced or consumed by
these inverters can also be considered as a decision variable for system operator
to maintain voltage regulation [3]. As an example, the reactive constraint of a PV
inverter can be modeled as follows:

P 2
PV + Q2

PV ≤ Smax
PV (4)

where, Smax
PV is the maximum capacity of the PV inverter.
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2.2.3 Electricity Loads Modeling

As mentioned before, the leading goal of an energy management system is to
supply the electricity demands of its customers efficiently and securely. Nowadays,
with advent of DR programs, demand side is counted as an important resource in
managing the energy of modern distribution systems. Therefore, a detailed modeling
of electrical loads in distribution system is crucially important.

Some loads such as commercial establishments and office buildings have limited
flexibility and it is not possible to be scheduled in acceptable ranges. These groups
of loads can be modeled as time-varying non-deferrable loads. However, there are
flexible loads in different sectors that can participate in DR programs. Industrial
loads can participate in direct load control programs. Equation (5) formulates the

direct load control. PDLC
l,t is the maximum reducible amount of load l at time

interval t.

PDLC
l,t ≤ PDLC

l,t (5)

Residential and commercial sectors consume considerable amount of power in
distribution system and therefore they are counted as effective participants of DR
programs. These sectors’ loads are classified into three types: Type 1 includes
appliances which consume fixed amount of power when they are ON, otherwise,
they don’t consume power. These loads are so-called on/off loads. Controllable
loads, such as heater and air conditioner are counted as Type 2 appliances; the
consumed power of these loads is between their minimum and maximum limits
[4]. Type 3 includes deferrable loads like dishwasher and washing machine. The
model of Type 1 and Type 2 loads are presented in the following:

PDR
a,t ≤ PDR

a,t ≤ PDR
a,t (6)

The minimum and maximum powers in the Eq. (6) are the same for Type 1 of
loads whereas these two parameters are different for Type 2 appliances. The model
of Type 3 appliances is presented in the following equations [5]:

Pa,t =
ka∑

i=1

za,t−ka+i .pa,ka−i+1 (7)

Za,t = 0, ∀t ∈ T − [αa, βa − k] (8)

∑

t∈T

za,t = 1 (9)

The set of expressions (7) ensures that the energy required for a complete
operation cycle of all appliances is provided, in which za, t is the binary variable
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denoting startup status of appliance a at period t. The total required energy of each
appliance is equal to the surface under its energy consumption profile (ECP) and
nominal power of appliance a at each time step t is obtained from the related ECP.
This power is denoted by pa, t. Moreover, it should be mentioned that ka is the
number of required time steps for complete operation of appliance a. Customers
who participate in the DR programs specify allowed start and ending times of their
responsive appliances. Responsive appliances must operate just during this time
interval, i.e. during interval

[
αn

a , βn
a

]
, which is guaranteed by Eq. (8). Finally, to

ensure the continuous operation of each appliance, set of constraints (9) are defined.
za, t is 1 if the appliance is on at the associated time interval. It should be noted that
electric vehicles (EVs) can be counted as another responsive load in distribution
system and its control model is fully described in Sect. 2.3. It is worth mentioning
that the mentioned approaches typically fall in incentive based DR programs. On
the other hand, in price based DR programs, load behavior is analyzed with respect
to electricity price. The model of load behavior in price based DR programs can be
expressed by elasticity factors according to:

PDR
l,t = Pl,t + ξ

(
π’

t − πt

)
(10)

In Eq. (10), ξ represents price elastic coefficient, and π’
t , π t are real time and

reference electricity prices, respectively.
In addition to active power, reactive power management is also of great impor-

tance in an energy management system, particularly when operational constraints
such as voltage regulation are considered. Reactive power consumption of different
kinds of loads can be modeled using a given power factor for each load. In other
words, reactive power consumption level of each load can be assumed to be
proportional to its active power consumption level. It is worth noting that loads’
power factor can vary; however considering a given fixed power factor for each load
simplifies the modeling procedure, especially in the cases in which linearization is
conducted.

2.3 Modeling of Dispersed Energy Storages

Energy storage system (ESS) is another solution to accommodate uncertainties and
variabilities caused by high integration of renewable energies in the system. By
integrating ESS into the system, redundant energy produced by renewable energies
could be stored during low demands and in the peak periods it is injected to
network. Moreover, ESS can also provide other benefits such as alleviating the RESs
uncertainty, frequency regulation and improving the reliability of the system [6].
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Operation model of an ESS is formulated in the following [7]:

SoCESS,t+1 = SoCESS,t + 1

EESS

(
ηc

ESSP c
ESS,t − Pd

ESS,t /ηd

)
(11)

0 ≤ Pc
ESS,t ≤ Pc

ESS,t (12)

0 ≤ Pd
ESS,t ≤ Pd

ESS,t (13)

SoCESS ≤ SoCESS,t ≤ SoCESS (14)

where,

SoCESS, t : State of the charge of ESS at t (0 ≤ SOCESS, t ≤ 1).
EESS : Energy capacity of ESS.

Pc
ESS,t

(
Pd

ESS,t

)
: Charge (Discharge) rates of ESS at t.

ηc
ESS

(
ηd

ESS

)
: ESS efficiency of charging (discharging).

SOCESS

(
SOCESS

)
: Maximum (Minimum) allowable SoC of ESS.

Pc
ESS,t

(
Pd

ESS,t

)
: Maximum allowable charging (discharging) of ESS.

Equation (11) represent the state of charge (SoC) balance between time intervals,
while charging rate, discharging rate and SoC limits are enforced in Eqs. (12)–(14),
respectively.

In addition to ESSs, due to environmental reasons, electric vehicle (EV) pen-
etration level in distribution system have increased dramatically in recent years.
Thus, it is required to propose an energy management model that can satisfy vehicle
owners’ preferences and requirements. EVs and particularly those with vehicle-to-
grid (V2G) system are in many ways similar to ESSs. EVs’ owners can utilize their
vehicle as an efficient storage device in the periods that the vehicles are parked in
the parking lot [7].

Technical constraint of an EV with V2G can be formulated as bellow:

SoCEV,t = SoCIni
EV + 1

EEV,t

(
ηc

EV P c
EV,t − ηd

EV Pd
EV,t

)
t = ts (15)

SoCEV,t = SoCb,t−1 + 1

EEV

(
ηc

EV P c
EV,t − ηd

EV Pd
EV,t

)
ts < t ≤ tf (16)

SoCEV,t = SoC
Rq

EV t = tf (17)

0 ≤ Pc
EV,t ≤ Pc

EV (18)
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0 ≤ Pd
EV,t ≤ Pd

EV (19)

SoCEV ≤ SoCEV,t ≤ SoCEV (20)

where,

SoCEV, t : State of the charge of EV at t (0 ≤ SoCEV, t ≤ 1).
ts : Arrival (Plug-in) time of EV.
tf : Departure time of EV.
EEV : Energy capacity of EV.
SoCIni

EV : Initial SoC of EV at arrival (plug-in) time.

SoC
Rq
EV : Required SoC of EV at departure time.

EEV : Energy capacity of EV.

Pc
EV,t

(
Pd

EV,t

)
: Charge (Discharge) rate of EV at time t.

ηc
EV

(
ηd

EV

)
: Charging (Discharging) efficiency of EV.

SoCEV

(
SoCEV

)
: Maximum (Minimum) allowable SoC of EV.

Pc
EV

(
Pd

EV

)
: Maximum allowable charging (discharging) rate of EV.

Equation (17) represents vehicle owner’s preference that the battery has to be
charged to a certain level before the specified departure time. Battery’s technical
constraints are expressed in Eqs. (18)–(20). It is important to mention that if the EV

is not available for V2G application, Pd
EV is simply considered zero.

2.4 Mathematical Model of Energy Management Optimization
Problem

2.4.1 Objective Function

Various objectives for an energy management system can be considered. The most
common objective criteria is probably operational cost of the system. In this case,
fuel cost of CDGs and cost of energy purchased from transmission system are
generally used to calculate operational cost of the grid. The objective function can
be presented by:

Min πtP
T r
t +

∑

DG

C (PG) (21)

where, π t and PT r
t is the market energy price and power purchased from transmis-

sion system, respectively. It is noteworthy to mention that distribution system can
inject its additional power into upstream network. In this condition PT r

t is negative.
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Another common objective for energy management is to minimize power loss of
the network as in [8]. Power loss in distribution network is modeled as a function
of active and reactive power (or simply squared current magnitude) flowing in
branches.

Moreover, short term peaks and variations in the net load of the system (i.e.,
the actual system demand minus the RESs output) can cause serious challenges in
balancing supply and demand in real time and require fast responding power gen-
erators which increases system’s cost. Therefore, in [9, 10], an energy management
system for peak load shaving and ramp reduction has been presented, respectively.
Net load of the system (NLt) and ramp in net load (Rt) can be calculated according
to Eq. (22).

NLt = Dt − PRen,t (22)

Rt = NLt − NLt−1 (23)

Where, Dt, and PRen, t represent aggregated load demand and renewable-based
generation in the system, respectively. A linear or quadratic cost function is often
utilized to model the imposed cost by the peak/ramp of/in the net load to the system.

Further, maximizing social welfare of customers is also a reasonable objective for
an energy management system. A concave utility function can be utilized to model
the social welfare of customers. The mentioned utility function is usually a quadratic
function of power consumption level of the associated customer [11]. Such a utility
function can also be used to model discomfort cost of customers participating in DR
programs.

Additionally, multi-criteria objectives are formed based on a linear combination
of weighted individual objectives such as the work done in [12]. In this case, a
proper weight selection is an important factor affecting the final result.

2.4.2 DER’s Constraints

Operational constraints of DERs available in the system must be considered in the
optimization problem. So, Eqs. (1)–(2) for CDGs, (4) for RESs, (5)–(10) for loads,
(11)–(14) for ESSs, and (15)–(20) for EVs, if available, are added to optimization
problem.

2.4.3 Network’s Constraints

As mentioned earlier, one of the leading goals of energy management system is the
secure and reliable operation of the network. To achieve this goal, technical issues
of distribution network must be addressed. The most common way to do so is to
solve the classic power flow (PF) to attain the operational state of the system.
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Depending on inherent characteristics of the network such as size of the network
or network’s power loss, different methods with different degree of accuracy have
been utilized to embed the power flow equations in distribution network. In many
works such as [13], only power supply-demand balance is considered, i.e., it is
assumed that all generation and loads are connected to one bus and the underlying
distribution network has been ignored. In [14], a linear approximation of AC-PF
has been developed to calculate power flows and voltage magnitudes. Since the AC-
PF problem is nonlinear, in [15, 16], second order cone programming (SOCP) and
semidefinite programming (SDP) relaxations, respectively, are used to convexify the
AC-PF problem for a single-phase distribution network. Moreover, in [17], the AC-
PF with SDP relaxation for an unbalanced three-phase network has been formulated.
As an example, branch flow model with SOCP relaxation for a radial single-phase
network which has been widely used in the literature is presented in this section [18].

A radial distribution network is mathematically modeled by a tree graph
G :− (N, ε), where N :− {0, 1, . . . , N} represents the set of nodes and ε represents
the set of lines. Node 0 is the substation connected to transmission network, and the
remaining N nodes represent load points in medium voltage level. Each node except
the substations has just one parent node An and a set of child nodes of Cn. The line
connecting node n to its parent node An is named as line n and have ε :− {1, . . . , N}.
The branch flow model [18] for a given radial distribution network, is as follow:

vAi = vi − 2 (riPi + xiQi) + li

(
r2
i + x2

i

)
∀i ∈ ε (24)

∑

j∈Ci

(
Pj − lj rj

)+ pi = Pi ∀i ∈ N (25)

∑

j∈Ci

(
Qj − lj xj

)+ qi = Qi ∀i ∈ N (26)

P 2
i + Q2

i = vi li ∀i ∈ N (27)

vi ≤ vi ≤ vi ∀i ∈ N (28)

li ≤ li ≤ li ∀i ∈ ε (29)

Where,

vn : Square of node n voltage magnitude
li : Squared line current magnitude of line n
Pi (Qi): Active (Reactive) power flow on line n
pi (qi): Active (Reactive) power injection at node n
ri (xi): Resistance (Reactance) of line n
vi

(
vi

)
: Upper (Lower) bounds of squared voltage magnitude of node n

li
(
li
)
: Upper (Lower) bound of squared line current magnitude of line n.
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Due to quadratic equality constraint (28), the power flow problem (Eqs. 25–30)
is non-convex. Second order cone programming (SOCP) can be used to convexify
this problem as below:

P 2
i + Q2

i ≤ vi li i ∈ N (30)

It is shown in [19] that under some mild conditions for networks with tree
topology, SOCP relaxation is exact.

2.4.4 Solution Method

The solution method of energy management problem is firmly dependent on the
problem’s mathematical model. Therefore, it is crucial to recognize the structure
of the optimization problem of energy management in order to efficiently solve it.
First, the objective function must be defined. As mentioned earlier, for energy man-
agement problem there can be different objectives. Second, technical constraints of
components considered in the study must be added to the optimization. Finally, a
PF model need to be utilized to address technical issues of the underlying network.

Now, according to the mathematical form of problem, an appropriate opti-
mization method needs to be applied. Problems with continuous linear objective
and constrains are pretty straightforward and various fast linear programming
(LP) approaches can be utilized to solve them. In continuous quadratic problems,
quadratic constrained programing (QCP) approaches are implemented to obtain
optimal solution. If optimization problem has nonlinear constraints, nonlinear pro-
gramming (NLP) methods should be used. However, since NLP approaches do not
guarantee global optimal solution and suffer poor convergence rates, convexification
and/or linearization methods might be necessary to convert the nonlinear problem
into a quadratic/linear optimization.

Optimization problems, including integer variables, form mixed-integer prob-
lems. Integer variables are utilized to involve on/off status of components and/or
transformer tap settings in the optimization problem. The problems can be grouped
into mixed-integer linear programing (MILP), mixed-integer quadratic constrained
programming (MIQCP) or mixed-integer nonlinear programming (MINLP) in the
case that the optimization objective and constraints are linear, quadratic or nonlinear,
respectively.

Additionally, when variables in different time slots are coupled together (e.g.
Eq. (11) in ESS model), instead of optimizing for a single snapshot, multiple
time periods should be optimized simultaneously, resulting in a multi-period (MP)
optimization problem.

Apart from many centralized methods to solve energy management optimization,
there are also distributed algorithms which do not need a central coordinator [1].
In centralized algorithms, a coordinator should collect associated information of
DERs to form the inputs of optimization problem. However, some customers may be
reluctant to inform data due to privacy concerns. In this case, distributed approaches
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can be utilized to solve the problem. Distributed algorithms are more scalable and
privacy preserving, nonetheless, they use iterative methods which need more time
for convergence.

3 Energy Management Stochastic Modeling

3.1 Problem Description

During the last years, RESs penetration in power networks has considerably
increased due to environmental concerns. However, due to the high variability
and intermittency of the primary sources (i.e., solar irradiation and wind) the high
penetration level of RESs generation could pose several problems to the operation
aspects of network [20]. Meanwhile the load demand also has great uncertainty
which will affect the reliability and operational stability of the system. As these
uncertainties significantly affect the operation of the power system, the optimization
results based on deterministic models tend to be less reliable and therefore, the
uncertainties must be addressed in the problem [21]. These uncertainties have
represented as worst case scenarios in the scheduling studies. Although the process
of data gathering and mathematical optimization are simplified in this approach,
a realistic result has not been provided which results in a conservative and costly
schedule of network. To address this issue, stochastic optimization is investigated in
this chapter to establish power system effective energy management strategy.

Figure 3 presents the typical steps for stochastic energy management of a system
comprised of DERs. DERs can be dispatchable distributed generation (DG) units,
RESs, flexible loads, and energy storage systems (ESSs) [22]. According to the
figure, in the first step required data are gathered. These data usually include the
forecasts of load and RESs’ generation and underlying network characteristics.
After that, the set of scenarios that appropriately represent the uncertainties of DERs
over the operating intervals should be created by scenario generation tools. Possible
realization of uncertain parameters and the corresponding occurrence probabilities
are included in a scenario set.

A stochastic optimization problem is addressed in the next step to determine the
optimal schedule of DERs for all operating intervals. The decision variables can
be grouped as two types. The first group of optimization variables represents the
commitment of DERs over the total time horizon, and the second types include
schedule of DERs such as generated power of dispatchable DGs, charge/discharge
patterns of storage units and load response of flexible loads for each scenario.
It should be noted that commitment plan is usually assumed to be unchanged
for defined scenarios. On the other hand, for each possible scenario, the second
category’s variables should be specified. It is worth mentioning that the schedule
of DERs should be optimized through all realized scenarios. As the result, the
optimal amount of both variable types should be determined simultaneously and
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Fig. 3 Steps of stochastic
energy management

Determine Optimal Schedule for 
DERs Scenarios

Determine Commitment of DERs

Evaluate Expected Cost

Prepare the Scenario Sets

Load and RESs Power Forecasts

Implement the Optimal Schedule

End

Stochastic Scheduling Problem

in an integrated manner. The expected cost of each optimal plan through realized
scenarios would be calculated as the amounts of all variables have been set.
The DERs’ operation costs are the main part of system operation costs. Hence,
minimization of the total expected costs can be defined as the objective of the
scheduling problem.

Once the above mentioned stochastic programming problem is solved, the
optimal plan is attained with respect to the materialized scenarios of DERs.

3.2 Modeling of Renewable Energy Resources in Distribution
Networks

Various DERs, such as CDGs, RESs, ESSs, and demand response (DR) resources
might feed an active distribution network. To consider various models of different
resources, DERs are modeled based on the associated uncertainty and dispatcha-
bility. DERs with uncertainty, such as wind farms and PV units, have intermittent
power production [23]. Dispatchable DERs like CDGs are utilized to balance
demand-supply. It should be noted that some dispatchable DERs can also be
uncertain, e.g., DR resources are controllable however the available demand for
control would be uncertain.
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Vc_in Vn Vc_off

Wind
Power

Wind Speed
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Fig. 4 Generated power of WT with respect to wind speed

RESs, mainly solar and wind have been increasingly utilized around the network
due to various advantages. However their stochastic nature cause challenges to
both system operation and planning; therefore, in order to effectively utilize these
resource the associated uncertainty should be accurately modeled. The uncertainty
modeling of the aforementioned resources is addressed in Sect. 3.3. Three main
resources including wind, solar and flexible loads are investigated in this section.
The model describing each resource is described in the following.

3.2.1 Wind Resources Modeling

Wind turbine (WT) is used to convert the kinetic energy of an air mass in motion
to electrical energy. The energy is generated if the wind speed exceeds a minimum
amount, called cut-in value. On the other hand, the rotor should be stopped in the
case that wind speed exceeds a cut-off value, in order to avoid turbine damage.
The produced power PW is the function of wind speed between cut-in and cut-
off speeds as depicted in Fig. 4. Vn is the nominal turbine speed, over which the
maximum nominal power is attained by utilizing pitch control system. In addition,
cut-in and cut-off speeds are respectively represented by Vc _ in and Vc _ off [24].
The relationship between produced power of WT and wind speed is presented as
follows:

PW =
⎧
⎨

⎩

0, V < Vc_in or V > Vc_off

Pm(V ), Vc_in ≤ V < Vn

Pn, Vn ≤ V < Vc_off

(31)

where maximum achievable power of wind speed for the values lower than Vn is
denoted by Pm(v), and Pn denotes the nominal power. For the wind speed values
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between cut-in and cut-off speeds, the generated power with respect to the wind
speed can be expressed by a continuous function, denoted by Pm(v). This continues
function can be accurately approximated by fitting different mathematical functions
like using a polynomial function as represented in Eq. (32) [24]. Considering
the wind turbine characteristics, the wind farm’s equivalent output that considers
performance can be calculated by Eq. (33), in which ηWT is the efficiency of wind
turbine and N represents the number of WTs located in the wind farm.

Pm(v) = Pn ×
(

V − Vc_in

Vn − Vc_in

)3

(32)

Ptotal = N × PW × ηWT (33)

3.2.2 Solar Resources Modeling

PV power plant system is also an important source of output in active distribution
network. The produced power of a PV power plant is dependent on the irradiance
and the operating temperature at its mounting location. According to the location
of PV power plant site, the annual solar radiation intensity can be obtained using
available database. The total output of PV power plant can be calculated using:

PPV = N η APV GT

(
1 + k

(
TC − Tavg

) )
(34)

where N is the number of installed arrays, η is the photoelectric conversion
efficiency of PV array, APV is the total array area, GT is the solar radiation
incident on the panels, TC and Tavg are the panels’ operating temperature and
mean temperature in daytime, respectively, and k is the temperature coefficient [25].
Although the photoelectric conversion efficiency of PV is dropped gradually, its
variation is ignorable during the PV life time and can be supposed to be constant.

3.2.3 Electricity Loads Modeling

The flexible loads can be utilized to address the fluctuations in day-ahead market
prices, created by fluctuating renewable energies. The absolute forecasting error
of renewable power production is expected to increase, even if relative forecasting
errors decrease. As the result, the demand can be effectively utilized for reserve
power. Activating DR programs in active distribution network add a new entity to the
distribution system. The power flow between existing entities is depicted in Fig. 5.
The remote energy management unit (REMU) schedules the flexible loads and other
DERs to efficiently operate the distribution network. In this figure Dt is the net
generated power of DGs and Lt is the net consumed power of flexible loads at each
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Fig. 5 Power flows between DERs and transmission network

time step t. Based on the amount of generation and consumption, REMU is able to
export/import electricity to/from upper level network.

A detailed model of electricity loads in distribution system is presented in Sect.
2.2.3.

3.3 Uncertainty Modeling

In contrast to the conventional power generators the produced power of PV and wind
power plants are non-dispatchable due to intermittency and variability. Generated
power of PV and wind power plants depend on the stochastic solar radiation and
wind speed, respectively. The generated power of these renewable energy resources
is exposed to significant uncertainties because of the stochastic nature of wind speed
and sun irradiance. Therefore, the energy management of distribution networks with
RESs becomes more challenging because of several types of uncertainties, such as
energy demand, wind and solar generation, and electricity price. Dealing with these
uncertainties in active distribution networks is crucial to solve possible issues and
reach the optimal management.

There are several different methods for modeling uncertainty of DERs. In
general, the methods can be categorized in to three groups. The first group is
stochastic (probabilistic) approach. This approach is based on probability distri-
bution functions (PDFs) derived from the statistical data of the variables with
uncertainty. In this regard, a set of scenarios are generated by utilizing PDF and then
a scenario reduction method is applied to realize a tradeoff between computational
burden and the accuracy of the solution. To handle the random variables, analytical
methods based on convolution form the second group. In this regard, cumulant-
based methods are the methods used to reduce the computational burden associated
with convolution [26]. Point estimate method (PEM) [27] and chance constrained
programming [28] methods are computationally more efficient in which derivatives
are applied. The third group includes interval [29], affine [30] and fuzzy arithmetic
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[31] approaches. Interval arithmetic (IA) includes all possible values associated with
the percentage uncertainties. In interval analysis technique for the output variables
the feasible bounds are obtained by considering a probable range for uncertain
parameters. In order to evaluate the noise terms, AA method considers sensitivities
of uncertain parameters [32]. Fuzzy method assigns a membership function (MF)
to parameters with uncertainty. The occurrence frequency of the random variables
has not been considered by introduced approaches in the third group; hence these
methods couldn’t model the probabilistic nature of the renewable power injections.
It should be noted that probabilistic approaches are among the most widely utilized
approaches. These methods are classified in two groups, namely numerical and
analytical. Monte Carlo Simulation (MCS) methods are categorized as numerical
approaches. In addition, PDF approximation and linearization techniques are the
basis of analytical methods. Section 3.4 provides more information around these
approaches.

In summary, one of the strongest approaches is stochastic programming [33].
In this method, several scenarios represent parameters with uncertainty and their
associated probabilities. The PEM, MCS, time series or scenario tree techniques
can generate scenarios by utilizing the associated PDFs. The goal of stochastic
programming is to find the problem’s optimal solution by considering obtained
scenarios.

3.3.1 Stochastic Uncertainty Modeling in DERs

Randomness in uncertain parameters including load and output generated power of
WTs and PV units follow a certain distribution, such as uniform normal distribution,
Weibull, Rayleigh, among others. For modeling the error of forecasted parameter,
a term which would be negative or positive is added to the forecasted parameter as
follows, in which x(t) is the forecasted value and x̃(t) is the error term.

x(t) = x(t) + x̃(t) (35)

Three steps are handled to model the uncertainty:

1. Forecasting: The historical data records are utilized to realize the statistics
regarding the volatile characteristic of solar and wind energy resources. In order
to forecast uncertainty behavior of renewable resources statistical methods are
applied and prediction information is assumed as typical probability distribution
function. Based on the meteorological characteristics of energy source under
study, in order to fit a function into the historical data various PDFs can be
utilized. Errors between the forecasted and actual data of various PDFs represent
the goodness of fit criteria. Goodness of fit criteria can be utilized to evaluate the
efficiency of the methods and determine the mostly fitted distribution function
for each set of data [34].
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2. Scenario generation: In the stochastic approaches, by utilizing the PDFs of
uncertain parameters a finite number of scenarios are generated to evaluate
energy management problem. In order to generate adequate scenarios for describ-
ing parameters with uncertainty (e.g. solar irradiation, wind speed, load, and
wholesale market prices), MCS technique is mostly used [22]. MCS utilize the
associated PDFs of uncertain parameters for scenario generation. By combining
the generated scenario sets of each uncertain parameter a scenario vector can
be formed for optimizing energy management problem. Generated scenarios by
MCS in each time slot form a time-series stochastic scenario. A scenario which
is described by a time series (e.g. the generated power of a PV unit during a day)
has a self-correlation during the time.

In order to combine generated scenarios of different uncertain parameters and
find the optimal management during time stages the scenario tree concept is
utilized. In order to combine the discrete outcome of each stochastic input to
form the larger set of scenarios, the scenario tree concept is utilized. The nodes
of scenario show the states of the random variable at particular time points. On
the other hand, branches represent various realizations of the variable, and a root
denotes the beginning point where the first-stage decisions are made. The model
of scenario tree which represents a scenario-based stochastic programming
model is depicted in Fig. 6 [35].

3. Scenario reduction: Considering all combinations of the generated scenarios
in the solving process imposes a considerable computational burden and makes
the optimization intractable to solve many scenarios [36]. In order to trade-
off between computation speed and model accuracy it is essential to reduce
generated scenarios and choose the most generic scenarios that appropriately
describe the behavior of parameters with uncertainty. There are various scenario
reduction methods, such as fast forward and backward reductions which are

t=23t=1 t=2t=0 t=24

...

...

. ..

...

. . .

. . .

. . .

. . . s = Ns

s = Ns - 1

s = 1

s = 2

Fig. 6 Scenario tree representation [35]
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presented in [37]. The best scenario reduction technique can be chosen according
to its performance accuracy and reduction time. In these techniques the low
probability scenarios are excluded. In addition, scenarios which are similar from
statistic metrics perspective are combined. The selected scenarios are similar to
the primary distribution from a probability metrics perspective. By using scenario
reduction techniques, the size of problem is significantly reduced because of
the reduced number of equations and variables. Consequently, in this condition,
the solution is efficiently obtained. Furthermore, the main features of the initial
scenario set will not be lost. It should be noted that, introducing imprecision
in the final solution can be the side effect of applying scenario generation
techniques.

Various reduction algorithms have different performance in accuracy and
computation speed aspects. These techniques are grouped to fast backward, fast
backward/forward, and fast backward/backward methods. The methods can be
selected based on the size of optimization problem required accuracy level [37].
For instance, the fast backward technique is used for problems with large scenario
tress and it has the high computational speed but low accuracy. In addition,
high accuracy but low speed of computation is provided by the forward method.
Hence, this method is used for small size problems [37].

As described above, scenarios that are similar from statistic metrics perspective
are combined. In order to combine the scenarios, clustering is an efficient tool that
can be utilized. Two main clustering approaches are hierarchical clustering and
partitional clustering. K-means algorithm is a general partitional algorithm used
for clustering. In this algorithm, the clusters are constructed around the centers of
predefined number of clusters. A various distance functions can be utilized to map
the points to the different clusters [38].

(a) Wind speed uncertainty modeling

Statistical tests have proved that the pattern of wind speed mainly closes to the
Rayleigh or Weibull distributions [39]. Among these two distributions, Rayleigh
distribution is mostly utilized to model stochastic nature of wind speed data [40].

It should be mentioned that the stochastic parameters can be correlated in time
and space. In this regard, correlation of wind farms within an area is modeled spa-
tially and this model would affect the uncertainties. However, a general assumption
is that in the time horizon around 3 of 4 days, the weather systems are independent.
In particular, wind farms that are located in far distances from each other are mostly
subject to independent environmental conditions and hence their produced energies
are independent.

(b) Solar radiation uncertainty modeling

Historical data of sun irradiance mainly fit to Beta distribution. The associated
PDF for solar irradiance s, is characterized as follows where α, β, μ, σ are shape
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parameter, scale parameter, mean value, and standard deviation respectively [41]:

F (s) =
{

Γ (α+β)
Γ (α)Γ (β)

(s)α−1(1 − s)β−1 , 0 ≤ s ≤ 1, α ≥ 0, β ≥ 0

0, ,O.W
(36)

α = μβ

1 − μ
(37)

β = (1 − μ)

(
μ (1 + μ)

σ 2 − 1

)
(38)

Based on Eq. (35) in Sect. 3.2.2 the uncertainty of ambient temperature can
be modeled by considering standard normal distribution as follow. It should be
noted that randn in Eq. (46) is a random number that is subject to standard normal
distribution.

PPV = N η APV GT

(
1 + k

(
TC + σ.randn − Tavg

) )
(39)

Other sources of uncertainty in distribution system include load, demand
response and energy price that may exist in a distribution network [33]. The
general approach for modeling the uncertainties in above mentioned parameters
is to implement appropriate PDF based on statistical data. It is worthwhile noting
that charge/discharge control of electric vehicles is counted as a demand response
resource and its associated uncertainty is caused by the randomness in the driving
pattern of the EV drivers. The EVs uncertainty can be modeled by normal PDF.

3.4 Stochastic Model of Energy Management Problem

Defining the optimal energy management in a distribution system while considering
the sources of uncertainties by adopting stochastic optimization, in the following,
stochastic model of energy management problem is at first described generally as
its outline is depicted in Fig. 7 and then, investigated in detail and solution methods
are described.

In order to efficiently utilize the DERs underlying the distribution network, the
associated DERs’ uncertainties should be considered. The stochastic energy man-
agement problem is an optimization problem that obtains the optimal strategy of the
DERs’ operation in the underlying distribution system, considering different sources
of uncertainties such as loads, RESs output power, market electricity prices, and DR
resources. Stochastic methods based on PDFs are the most widely used technique
for modeling associated uncertainties of DERs. Methods based on approximate
sampling and simulation, like PEM [27], MCS [23], and scenario trees [35], are
used with the PDFs to analyze the optimization problem probabilistically. Based
on the uncertainty modeling and the determined energy management problem,
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Utilizing MCS method and associated PDFs:
• Demand
• Electricity price
• RESs’ output power
• Demand response and storage

Stochastic energy management of DERs:
• Objective
• DER’s constraints
• Network constraints

Optimization problem

Initialize input data

Energy management output

Optimal strategy in facing each of the scenarios:
• Commitment
• DER’s schedule
• Network operation point

Fig. 7 Stochastic energy management problem overview

optimization methods based on heuristic or analytic approaches can be adopted to
determine the optimal solution.

The problem aims at optimizing an objective function, subjected to the DERs
constraints and the network limits. The energy management problem usually
attempts to minimize the system operating costs as an objective; however vari-
ous criteria, such as risk, revenue attained from participating in market, system
reliability and environmental factors can be considered in the objective function.
Depending on the DERs in the network, the objective function and associated
constraints would vary. In the following, the mathematical model of a stochastic
energy management problem of a system, including RESs, CDGs, ESSs, and various
loads is investigated.
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3.4.1 Stochastic Formulation of Energy Management Problem

(a) Objective Function

As discussed in Sect. 2.4.1, in a stochastic problem modeling the associated
objective function can be defined on the basis of operating cost, revenue, envi-
ronmental effects, reliability, and so forth. In a stochastic problem the objective
function is a sum of optimization criteria which is weighted over all scenarios. As an
example, the energy management’s objective function based on profit is presented
in the following:

max
NS∑

s=1

T∑

t=1

ρsProfits,t (40)

where,

ρs : Probability of sth scenario
Profits, t : Objective function of sth scenario at t.

It should be noted that profit is mostly dependent to the schedule of DERs with
respect to associated uncertainties. Furthermore, all variables are scenario-based
because of the uncertainty in parameters.

(b) Constraints

As discussed in Sects. 2.4.2 and 2.4.3, various operation constraints including
technical aspects of DERs and characteristics of underlying network can be consid-
ered in the optimization problem. The key point here is that for each realization of
scenarios, constraints need to be satisfied.

Due to space limitation, only power balance constraint as an example for
stochastic formulation is presented in Eq. (41).

NG∑

i=1

P
G,i
s,t +

NB∑

i=1

P
B,i
s,t +

NWT∑

i=1

P
WT,i
s,t +

NPV∑

i=1

P
PV,i
s,t =

ND∑

i=1

P
PL,i
s,t (41)

Equation (41) ensures that injected power to network by DERs is equal to the
consumed power in each scenario s at time t.

3.4.2 Probabilistic Optimization Method

The solution methodology for energy management problem by considering associ-
ated mathematical model is addressed in Sect. 2.4. In contrast to the deterministic
method presented in Sect. 2, stochastic model considers several realizations of
the stochastic parameters in form of scenarios with their associated probabilities.
Therefore, based on the problem structure, the problem could be stochastic NLP
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Fig. 8 Different categories of probabilistic methods [42]

(SNLP), SMINLP, SMILP, or SMIQCP. Stochastic energy management problem
described in Sect. 3.4.1 is a stochastic MINLP and the solution space is non-convex,
because of the nonlinearity in equality constraints. To achieve the global optimum
of this non-convex problem, either nonlinear constraints is required to be linearized
or heuristic methods need to be applied. To linearize the constraints, someone may
neglect the effect of distribution network in managing DERs or linearize the non-
linear equations. In this condition the problem is converted to stochastic MILP with
a convex solution space [42].

Various probabilistic methods can be utilized for solving the stochastic opti-
mization problem and address associated uncertainties in operation parameters. As
depicted in Fig. 8, probabilistic approaches are grouped in two common categories
described as follows [42]:

1. Numerical methods: These methods are mainly used for stochastic and nonlin-
ear problems. The most common numerical optimization method is MCS which
is applied in three types of non-sequential, pseudo-sequential, and sequential
MCSs. Sequential MCS is used to keep the features of time dependent variables.
It should be noted that non-sequential MCS is based on state sampling method.
Furthermore pseudo-sequential MCS is better than sequential MCS from the
speed point of view.

2. Analytical Methods: In these methods, mathematical equations express output
results and inputs variables. In these methods output results are related to the
stochastic input variables by handling PDFs’ arithmetic. To do so, linearization
or approximation tools are utilized. In approximation based approaches, instead
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of non-linear transformation function approximation, they approximate PDFs
associated with variables. This is due to the fact that approximating PDFs is
easier. Thus, the input variables should be appropriately sampled in order to
obtain the samples with adequate information of the input variable’s PDF [42].

4 Examples for Energy Management Problem

In this section two examples are comprehensively presented in which the energy
management of DERs in active distribution network is addressed. In the first
example, a two-stage stochastic framework for scheduling large scaled energy
sources of aggregators in an active network is proposed [35]. The second example
addresses the stochastic problem for distribution network energy scheduling in
presence of intermittency and variability of renewable energy sources [43].

The outcomes of both models are compared with the corresponding deterministic
models and critical analysis represents the efficacy of energy management of active
networks with diverse DERs by appropriate handling of associated uncertainties.

4.1 Two-Stage Stochastic Framework for Scheduling Large
Scaled Energy Sources of Aggregators

In this example a two-stage stochastic framework for scheduling large scaled energy
sources of aggregators in an active network is proposed. The proposed model
handles associated uncertainties in smart grids and considers the inherent variability
of demand, RESs, EVs, and wholesale electricity price with the aim of minimizing
the total operation cost. In this reference, an energy aggregator aggregates diverse
energy resources like DG units, DRs, ESSs and EVs around the distribution network
and attain the optimal energy resource management, considering different sources
of uncertainty. Implementing the proposed model on a real distribution network,
the outcome of the model is compared with the deterministic model. This example
is based on the proposed framework and evaluations presented in [35]. In the
following, the approach used for uncertainty modeling is introduced and the two-
stage stochastic formulations are represented. Furthermore, it should be noted that
the nomenclature for the following applied parameters are presented in Appendix.

(a) Uncertainty Representation

In the proposed model, the aggregator deals with various sources of uncertainty,
such as EVs charging/discharging power, demands, and the output power of
the renewable based generators. The model considers associated uncertainties of
parameters using stochastic scenario-based optimization model. In this regard, to
represent power system uncertainties the MCS is applied to create a big size dataset
of scenarios. PDFs of the predict errors attained from the historical data are the
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parameters of MCS. A positive/negative term is added to the forecasted parameter
(xforecasted) to consider the forecast error. The error term (xerror, s) is a noise with
zero-mean and standard deviation σ . Scenarios are depicted by xs in Eq. (42). In
this model, normal distribution functions are utilized to represent the forecast errors
of the uncertain inputs.

xs(t) = x forecasted(t) + xerror, s(t), ∀t,∀s (42)

The created scenarios in the energy management problem cause the problem to
present many parameters and variables. In order to reduce the problem size with no
lost in the main features of primary set of scenarios, the standard scenario reduction
techniques are used in the example. In these techniques the low probability scenarios
are excluded and the scenarios which are similar from statistic metrics perspectives
are combined. In this regard, a subset of scenarios is defined. This subset is the most
similar one to the primary PDF from the probability metric perspective.

As an example, considering uncertainty of resources, including forecasted solar
and wind generated power and forecasted load is depicted in Fig. 9. 5000 primary
scenarios are created and then 4850 scenarios are excluded by utilizing GAMS. As
depicted in the figure, based on the generated scenarios, the forecasted generation
of solar and wind units at 12 PM is between 2.6 and 3.0 MW.

(b) Two-Stage Stochastic Model

The objective of the optimization problem is to minimize the total expected
operation cost for the day-ahead operation, represented in Eq. (43). In the equation,
OC1, OC2 and MT represent the first-stage operation costs, second-stage operation
costs and market transactions, respectively.

Minimize E
(

OCD+1
Total

)
= OC1 + E

(
OC2 + MT

)
(43)
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OC1 is the first stage expected operation cost which is defined in Eq. (44). It
contains two main parts; the first part is associated with the dispatchable generators’
costs and the second part describes the cost of energy supplied from external source.

OC1 =
T∑

t=1

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

∑

I∈Ωd
DG

pDG (i, t) .CDG (i, t) +
Nsp∑
sp=1

pSupplier (sp, t) .CSupplier (sp, t)

⎞

⎟⎟⎟⎠ .Δt

⎤

⎥⎥⎥⎦ (44)

The second stage is the expected operation cost, OC2, expressed by Eq. (45). It
contains the cost of non-dispatchable generators, demand response, EVs and ESS
discharge power, non-served demand (NSD), and curtailed power of generation.

E
(
OC2

)
=

S∑

s=1

T∑

t=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

i∈Ωnd
DG

pDG (i, t, s) .CDG (i, t)

+
Nl∑

l=1
pLoadDR (l, t, s) .CLoadDR (l, t)

+
Ne∑

e=1
pDischarge (e, t, s) .CDischarge (e, t)

+
Nv∑

v=1
pDischarge (v, t, s) .CDischarge (v, t)

+
Nl∑

l=1
pNSD (l, t, s) .CNSD (l, t)

+
Ni∑

i=1
pGCP (i, t, s) .CGCP (i, t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.π(s).Δt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

The expected transaction cost of the market, MT, is defined as follows:

E(MT ) =
S∑

s=1

T∑

t=1

[(
pBuy(t).MP (t, s) − pSell(t).MP (t, s)

)
.π(s).Δt

]
(46)

The main decision variables of the problem are the scheduling of the dispatchable
sources’ generation and the optimal day-ahead market transactions (first stage).
These variables are made considering second stage decisions. The second stage
variables are the variation in generated power of solar and wind units and charg-
ing/discharging pattern of EVs. It is worth mentioning that the decisions variables
in first stage remain unchanged for the defined scenarios of the second stage.

The optimization is subject to different constraints described in the following:

• Operational constraints of the network

The DC PF constraints are modeled in problem as described in Eq. (47),
assuming that the distribution network is equipped with voltage regulators and
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capacitor banks for keeping nodes’ voltage in the desired level. It is assumed that
the distribution network is connected to upstream network at b = 1.

∑

i∈Ωb
DG

(pDG (i, t) − pGCP (i, t)) + ∑

sp∈Ωb
SP

pSupplier (sp, t)

+ ∑

l∈Ωb
L

(pNSD (l, t, s) + pLoadDR (l, t, s) − pLoad (l, t, s))

+ ∑

i∈Ωb
E

(
pDischarge (e, t, s) − pCharge (e, t, s)

)

+ ∑

i∈Ωb
V

(
pDischarge (v, t, s) − pCharge (v, t, s)

)

−
NL∑

b,w=1
(p (b, w, t, s) − p (w, b, t, s)) = 0 ∀b, t, s

(47)

Furthermore, the allowable line currents are retained by the following equation.

p (b,w, t, s) ≤ pMax
(b,w) ∀t, s (48)

• Dispatchable generators and the upstream grid

Allowable limits for generated active power of DG units in each period t are
formulated as Eq. (49). Moreover, the active power of external grid is limited at
each time t, which is expressed in Eq. (50).

xDG (i, t) .PDGMinLimit (i, t) ≤ pDG (i, t)

≤ xDG (i, t) .PDGMaxLimit (i, t) ∀t,∀i ∈ Ωd
DG

(49)

xSupplier (sp, t) .PSMinLimit (sp, t) ≤ pSupplier (sp, t)

≤ xSupplier (sp, t) .PSMaxLimit (sp, t) ∀t,∀sp

(50)

• ESS Constraints

The ESS’s state of charge is represented in the following:

EStored (e, t, s) = EStored (e, t-1, s) + ηc (e).pCharge (e, t, s) .Δt

− 1
ηd (e)

.pDischarge (e, t, s) .Δt ∀t,∀e,∀s
(51)

The maximum charge and discharge limits for each ESS is represented by Eqs.
(52) and (53), respectively.

pCharge (e, t, s) ≤ PChargeLimit (e, t) .yESS (e, t, s) ∀t,∀e,∀s (52)

pDischarge (e, t, s) ≤ PDischargeLimit (e, t) .xESS (e, t, s) ∀t,∀e,∀s (53)
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Moreover, charging/discharging cannot occur at the same time:

xESS (e, t, s) + yESS (e, t, s) ≤ 1 ∀t,∀e,∀s (54)

The limit for each ESS’s maximum battery capacity is presented by Eq. (55).

EStored (e, t, s) ≤ EBatCap(e) ∀t,∀e,∀s (55)

At the end of time t the ESS should be charged until the minimum stored limit
which is retained by Eq. (56).

EStored (e, t, s) ≥ EMinCh arg e (e, t) ∀t,∀e,∀s (56)

• Constraints of EVs

The technical constraints associated with EVs are the same with the ESSs’
constraints. It should be noted that some parameters are uncertain due to randomness
behavior of EVs’ drivers. The complete formulation associated with EV constraints
can be found in [35].

• DR Constraints

The proposed model for DR is based on direct load control in which, the
allowable reduction of each load is formulated as Eq. (57).

pLoadDR (l, t, s) ≤ PLoadDRMaxLimit (l, t) ∀t,∀l,∀s (57)

• Constraints of Electricity Market

The market bids/offer may be constrained by the allowable amounts.

PMarketOfferMin(t).xMarketSell(t) ≤ pSell(t)

≤ PMarketOfferMax(t).xMarketSell(t) ∀t

(58)

PMarketBuyMin(t).xMarketBuy(t) ≤ pBuy(t)

≤ PMarketBuyMax(t).xMarketBuy(t) ∀t

(59)

Furthermore, according to Eq. (60), market only accept a bid or offer at each
time t.

xMarketBuy(t) + xMarketSell(t) ≤ 1 ∀t (60)
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• Non-served demand constraint

The curtailed load at each scenario s should be lower than the existing load.

pENS (l, t, s) ≤ pLoad (l, t, s) − pLoadDR (l, t, s) ∀t,∀l,∀s (61)

• Curtailed power of generating units

The curtailed power of non-dispatchable generators should be lower than fore-
casted generation.

pGCP (i, t, s) ≤ PDGScenario (i, t, s) ∀t,∀i ∈ Ωnd
DG,∀s (62)

The proposed optimization problem is solved using Benders’ decomposition
approach. Utilizing Benders’ decomposition enhances computational efficiency.
The details around the master and slave problems can be found in [35]. Solving
the problem, the optimal stochastic solution of the problem, which represents
the total expected cost (Eq. 43) is expressed by ZS∗ and is obtained using the
proposed stochastic programming approach. On the other hand, ZD∗ is the optimal
solution of the deterministic type of the original problem. It should be noted that
the inputs of the deterministic problem are the optimal decision variables of the
original stochastic problem. The value of stochastic solution (VSS) and the expected
value of perfect information (EVPI) indices evaluate the efficacy of the stochastic
programming. The benefits of stochastic programming versus deterministic model
can be determined by utilizing the VSS index. In addition, EVPI give information
about the lost profit of decision maker because of uncertainty presence. The
formulation for calculating these indices is explained in [35].

Implementing the model on a real distribution network from Portugal, the optimal
energy resource management is obtained for the following four cases to represent
the effect of utilizing DR and storage in the energy management, considering
uncertainty alleviation. The resources that are considered in each case are:

– Case A: DR and ESS;
– Case B: Neither DR nor ESS;
– Case C: ESS but no DR;
– Case D: DR but no ESS.

Figure 10 represent the generation of dispatchable DGs for the case studies.
On the other hand, the market transaction powers are depicted in Fig. 11. For
controllable DGs, in the periods 1 to 2, 8 to 9, and 23 to 24 the most changes can be
observed. For the upstream grid in the cases B & D (i.e., with no ESS) the changes
can be seen. Since the ESS is not charged in these cases, the variations are in the
form of reducing produced power.

Figure 12 shows the values of the quality indices. The cost of stochastic and
deterministic models is also shown in this figure. It can be concluded that when ESS
and DR are available the lower cost is verified. In the case B (i.e. with no DR and
ESS) the higher costs in stochastic (47,208 m.u.) and deterministic (48,668 m.u.)
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Fig. 11 Generated power of upstream grid for the case studies [35]

models are imposed. The costs of stochastic model are the same for both cases of
C & D; however, the costs are 8.9% higher in the absence of ESS in deterministic
model. It can be concluded from case C that ESS leads to bypass a higher cost when
the deterministic approach is applied. Comparing case D to C results that the DR
is not as effective as ESS. It is because that the VSS is 11.75% higher in case D.
Therefore, the stochastic model can obtain lower expected costs without ESS.

The outcomes of energy resources’ stochastic scheduling for the cases A and
B are depicted in Fig. 13. For these cases the quantified uncertainty is equal to
6.4 MWh. This amount is the most probable value of the variable. The ESS,
discharging power of DR and EVs in case A offer an uncertainty equal to 11.3, 1.2,
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and 7.8 MWh, respectively. For ESS discharge, the minimum expected amounts are
0.5 MWh, whereas it is zero for the other two resources. The uncertainty associated
with the discharge power of parking lot in case B is 2.8 MWh and the minimum
expected amount is zero. This case study verifies that the there is no change in
market results. The market bid is equal to 2 MW during each time. This amount is
equal to the maximum bidding amount to market.
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4.2 Stochastic Energy Management with Intermittent
Resources

This example addresses the stochastic problem for distribution network energy
scheduling in presence of intermittency and variability of renewable energy sources
[43]. Moreover, the proposed model considers controllable loads and distributed
generators as well as distributed energy storage sources in the energy scheduling
problem. The model is defined as a two-stage problem with the aim of minimizing
the expected day-ahead operational cost of the network in the first stage while
considering the real-time intermittencies of renewable resources in the second
stage. Renewable energy sources are considered as wind and solar resources and
their uncertainties are modeled using scenario-based approaches. The scenarios of
uncertainties are related to the second stage and the decision variables in the first
stage are independent on the scenarios.

The objective function of the model is described in Eq. (63) which represents the
expected operational cost of the distribution network for each hour of the next day
which should be minimized. In the formulation, the scenarios associated with the
uncertainties of wind turbines’ and PV units’ output powers are addressed through
s1 and s2, respectively.

F = ∑
i

∑
t

cU
DG (i, t) +∑

s1

∑
s2

π (s1) .π (s2) .

[∑
t

cUtility

(
PUtility(t)

) +∑
i

∑
t

cDG (PDG (i, t, s1, s2))

] (63)

Based on the formulation, the operational cost is comprised of the cost of starting
up/shutting down the DG units, power transaction payment with the utility as well as
operating cost of DGs. It is supposed that the operational cost of renewable energy
sources, ESSs and EVs would be negligible. The cost of power transaction with the
utility is attained from the quantity of power transaction and the electricity price
of the utility based on Eq. (64). Furthermore, the DG units’ operational cost is
calculated using a piecewise linear cost function defined in Eq. (65). In this relation,
α(i), β(i) and δ(i) represent the cost function’s coefficients.

CUtility(t) = PUtility(t).UP(t) (64)

CDG (i, t, s1, s2) = α(i) + β(i).PDG (i, t, s1, s2) + δ(i).P 2
DG (i, t, s1, s2) (65)

The objective function is optimized considering the constraints addressed in the
following.
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The system’s power balance should be considered as Eq. (66). Based on this
equation, the production power of wind, PV, DG and ESS units should be equal to
the consumption power of loads and EVs.

∑
ω

PWind (ω, t, s1, s2) +∑
p

PPV (p, t, s1, s2) +∑
i

PDG (i, t, s1, s2) +
∑
e

[
PDischarge (e, t, s1, s2) − Pcharge (e, t, s1, s2)

]+ PUtility(t) =
∑
l

PLoad (l, t) +∑
v

PCharge (v, t) , ∀t,∀s1,∀s2

(66)

The voltage of each bus should be in its allowable limits using the following
constraint.

VMinLimit (b) ≤ V (b, t, s1, s2) ≤ VMaxLimit (b), ∀t,∀s1,∀s2 (67)

The technical constraints of DG units, ESSs and EVs should be taken into
account through the constraints (68), (69)–(72) and (73), respectively.

PDGMinLimit (i) ≤ PDG (i, t, s1, s2) ≤ PDGMaxLimit (i), ∀t,∀s1,∀s2
(68)

0 ≤ PCharge (e, t, s1, s2) ≤ PChargeLimit(e), ∀t,∀s1,∀s2 (69)

0 ≤ PDischarge (e, t, s1, s2) ≤ PDischargeLimit(e), ∀t,∀s1,∀s2 (70)

SoCMinLimit (e) ≤ SoC (e, t, s1, s2) ≤ SoCMaxLimit (e), ∀t,∀s1,∀s2
(71)

SoCRequired(e) ≤ SoC (e, T , s1, s2) , ∀s1,∀s2 (72)

0 ≤ PCharge (v, t) ≤ PChargeLimit (v, t, s1, s2) , ∀t,∀s1,∀s2 (73)

In order to verify the effectiveness of the proposed model, the model is
implemented on a modified IEEE 37-bus test feeder. Figure 14 shows the proposed
test system and different distributed energy resources dispersed along it. Taking
the uncertainties of wind turbine into account, wind turbine’s output power is fore-
casted, after that, different scenarios are generated using Monte Carlo simulations
and some scenario reduction techniques are utilized. Furthermore, PV units’ output
power is forecasted and different scenarios are generated using a normal distribution
function with a forecasted error. In this regard, for wind turbines and PV units output
power 100 independent scenarios are defined, where each has a probability of 0.01.
As an example, Fig. 15 shows 10 scenarios for PV units output power.
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In order to compare the proposed stochastic model with the deterministic one,
wind turbines’ and PV units output powers are considered as the forecasted amount
for the deterministic model, i.e. no uncertainty scenario is considered. Implementing
the stochastic and deterministic model on the test system, the results are as follows.
The expected operational cost of the network (objective function) is achieved equal
to $23,500 and $22,276 for the cases of applying deterministic and stochastic
approaches, respectively. Therefore, it can be seen that the stochastic model leads
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to the lower operational cost and is more effective than the deterministic one.
It is because that in the deterministic approach, the wind turbine and PV unit
output power are considered as the forecasted amount; therefore, the results are
more affected from the uncertainty of wind and solar resources than the stochastic
approach.

Figure 16 shows the state of charge of ESS unit for each hour of the next day,
attained from the scheduling problem. As it is shown in the figure, the difference
between the states of charge at the first hour and last hour of the day (�SoC) is much
higher in the case of deterministic approach than the case of stochastic approach.
�SoC is equal to 15.08% in the case of deterministic approach and 6.14% in the
case of stochastic approach. It is while the smaller �SoC leads to get closer to
the optimal solution. Therefore, the stochastic model provides more effective and
accurate solution.

For more analysis, the simulation is executed for a weak and the expected
operational cost of the network is attained for each day of the week as Fig. 17.
It can be observed from the figure that for all the days, the expected operational cost
in stochastic approach is lower than the deterministic one.

5 Conclusion

In this chapter, the problem of energy management in distribution systems was put
under investigation. At first, different classes of this problem, i.e. deterministic and
stochastic classes were introduced. Then, models of different elements in active
distribution networks were addressed. Based on these models, the mathematical
model of energy management optimization problem was extracted and their solution
algorithms from different aspects were discussed. Two examples about implementa-
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tion procedure of energy management problem were covered. The results confirmed
that such optimization problems in active distribution networks is inevitable and the
system operators are forced to utilize such algorithms to optimally apply different
energy resources by appropriate modeling of associated scenarios.
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