
Dennis Hofheinz
Alon Rosen (Eds.)

LN
CS

 1
18

92

17th International Conference, TCC 2019
Nuremberg, Germany, December 1–5, 2019
Proceedings, Part II

Theory
of Cryptography

Lecture Notes in Computer Science 11892

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Dennis Hofheinz • Alon Rosen (Eds.)

Theory
of Cryptography
17th International Conference, TCC 2019
Nuremberg, Germany, December 1–5, 2019
Proceedings, Part II

123

Editors
Dennis Hofheinz
Karlsruhe Institute of Technology
Karlsruhe, Germany

Alon Rosen
IDC Herzliya
Herzliya, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-36032-0 ISBN 978-3-030-36033-7 (eBook)
https://doi.org/10.1007/978-3-030-36033-7

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-36033-7

Preface

The 17th Theory of Cryptography Conference (TCC 2019) was held during December
1–5, 2019, at the DB Museum in Nuremberg, Germany. It was sponsored by the
International Association for Cryptologic Research (IACR). The general chair of the
conference was Dominique Schröder.

The conference received 147 submissions, of which the Program Committee
(PC) selected 43 for presentation. Each submission was reviewed by at least three PC
members, often more. The 35 PC members (including PC chairs), all top researchers in
our field, were helped by 171 external reviewers, who were consulted when appro-
priate. These proceedings consist of the revised version of the 43 accepted papers. The
revisions were not reviewed, and the authors bear full responsibility for the content
of their papers.

As in previous years, we used Shai Halevi’s excellent Web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions. We made extensive use of the interaction
feature supported by the review software, where PC members could anonymously
interact with authors. This was used to ask specific technical questions, such as sus-
pected bugs. We felt this approach helped us prevent potential misunderstandings and
improved the quality of the review process.

This year’s TCC was extended from three to four days of talks, and the lengths
of the presentations were accordingly extended from 20 to 25 minutes.

This was the sixth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, published at TCC 2008: “Incrementally Verifiable
Computation or Proofs of Knowledge Imply Time/Space Efficiency” by Paul Valiant.
This paper was selected for demonstrating the power of recursive composition of
proofs of knowledge and enabling the development of efficiently verifiable proofs of
correctness for complex computations. The authors were invited to deliver a talk at
TCC 2019. The conference also featured two other invited talks, by Rachel Lin and by
Omer Reingold.

A Best Young Researcher Paper Award was given to Henry Corrigan-Gibbs and
Dmitry Kogan for their paper “The Function-Inversion Problem: Barriers and
Opportunities.”

We are greatly indebted to many people who were involved in making TCC 2019 a
success. First of all, a big thanks to the most important contributors: all the authors who
submitted papers to the conference. Next, we would like to thank the PC members for
their hard work, dedication, and diligence in reviewing the papers, verifying the cor-
rectness, and in-depth discussion. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering

questions, often under time pressure. For running the conference itself, we are very
grateful to the general chair, Dominique Schröder. We appreciate the sponsorship from
the IACR, Deloitte, Siemens, Syss, and HGS. We also wish to thank
Friedrich-Alexander-Universität Erlangen-Nürnberg and Nuremberg Campus of
Technology for their support. Finally, we are thankful to the TCC Steering Committee
as well as the entire thriving and vibrant TCC community.

October 2019 Dennis Hofheinz
Alon Rosen

vi Preface

TCC 2019

The 17th Theory of Cryptography Conference

Nuremberg, Germany,
December 1–5, 2019

General Chair

Dominique Schröder University of Erlangen-Nuremberg, Germany

Program Co-chairs

Dennis Hofheinz Karlsruhe Institute of Technology
Alon Rosen IDC Herzliya

Program Committee

Adi Akavia Haifa University, Israel
Joël Alwen Wickr, USA
Benny Applebaum Tel Aviv University, Israel
Gilad Asharov JP Morgan AI Research, USA
Nir Bitansky Tel Aviv University, Israel
Chris Brzuska Aalto University, Finland
Kai-Min Chung Institute of Information Science, Academia Sinica,

Taiwan
Ran Cohen BU and Northeastern University, USA
Geoffroy Couteau Karlsruhe Institute of Technology, Germany
Dana Dachman-Soled University of Maryland, USA
Nico Döttling CISPA, Saarbrücken, Germany
Marc Fischlin Technische Universität Darmstadt, Germany
Siyao Guo NYU Shanghai, China
Julia Hesse Technische Universität Darmstadt, Germany
Pavel Hubáček Charles University Prague, Czech Republic
Abhishek Jain Johns Hopkins University, USA
Bhavana Kanukurthi Indian Institute of Science, India
Eike Kiltz Ruhr-Universität Bochum, Germany
Susumu Kiyoshima NTT Secure Platform Laboratories, Japan
Venkata Koppula Weizmann Institute of Science, Israel
Mohammad Mahmoody University of Virginia, USA
Nikolaos Makriyannis Technion, Israel
Pratyay Mukherjee Visa Research, San Francisco, USA
Jörn Müller-Quade Karlsruhe Institute of Technology, Germany

Ryo Nishimaki NTT Secure Platform Laboratories, Japan
Omer Paneth MIT, USA
Antigoni Polychroniadou JP Morgan AI Research, USA
Mariana Raykova Google, Inc., New York, USA
Ron Rothblum IDC Herzliya, Israel
Noah Stephens-Davidowitz MIT, USA
Prashant Vasudevan UC Berkeley, USA
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Yu Yu Shanghai Jiaotong University, China

External Reviewers

Masayuki Abe
Hamza Abusalah
Divesh Aggarwal
Shashank Agrawal
Thomas Agrikola
Prabhanjan Ananth
Daniel Apon
Benedikt Auerbach
Marshall Ball
Laasya Bangalore
Carsten Baum
Amos Beimel
Wasilij Beskorovajnov
Dan Boneh
Zvika Brakerski
Anne Broadbent
Brandon Broadnax
Ran Canetti
Ignacio Cascudo
David Cash
Leo de Castro
Hubert Chan
Nishanth Chandran
Xing Chaoping
Yilei Chen
Yu Chen
Wutichai Chongchitmate
Arka Rai Choudhuri
Hao Chung
Michele Ciampi
Deepesh Data
Akshay Degwekar

Frédéric Dupuis
Naomi Ephraim
Xiong (Leo) Fan
Pooya Farshim
Serge Fehr
Ariel Gabizon
Tommaso Gagliardoni
Chaya Ganesh
Romain Gay
Federico Giacon
Aarushi Goel
Huijing Gong
Rishab Goyal
Vipul Goyal
Alex Bredariol Grilo
Adam Groce
Josh Grochow
Roland Gröll
Chun Guo
Iftach Haitner
Mohammad Hajiabadi
Carmit Hazay
Kuan-Yi Ho
Thibaut Horel
Shih-Han Hung
Vincenzo Iovino
Aayush Jain
Stanislaw Jarecki
Zhengfeng Ji
Haodong Jiang
Zhengzhong Jin
Seny Kamara

Shuichi Katsumata
Sam Kim
Fuyuki Kitagawa
Michael Klooss
Alexander Koch
Konrad Kohbrok
Lisa Kohl
Ilan Komargodski
Yashvanth Kondi
Mukul Kulkarni
Ashutosh Kumar
Sai Lakshmi
Rio LaVigne
Eysa Lee
Yi Lee
Max Leibovich
Xin Li
Xiao Liang
Tai-Ning Liao
Wei-Kai Lin
Qipeng Liu
Tianren Liu
Yi-Kai Liu
Zhen Liu
Alex Lombardi
Julian Loss
Steve Lu
Fermi Ma
Sven Maier
Monosij Maitra
Giulio Malavolta
Yacov Manevich

viii TCC 2019

Nathan Manohar
Daniel Masny
Noam Mazor
Jeremias Mechler
Nikolas Melissaris
Takaaki Mizuki
Ameer Mohammed
Tamer Mour
Marta Mularczyk
Matthias Nagel
Ariel Nof
Bhavana Obbattu
Maciej Obremski
Eran Omri
Michele Orru
Jiaxin Pan
Sikhar Patranabis
Udi Peled
Naty Peter
Oxana Poburinnaya
Sihang Pu
Erick Purwanto
Willy Quach
Samuel Ranellucci
Divya Ravi

Joao Ribeiro
Silas Richelson
Miruna Rosca
Paul Rösler
Pratik Sarkar
Santanu Sarkar
Peter Scholl
Rebecca Schwerdt
Sven Schäge
Adam Sealfon
Mahdi Sedaghat
Sruthi Sekar
Ido Shahaf
Devika Sharma
Sina Shiehian
Kazumasa Shinagawa
Omri Shmueli
Jad Silbak
Yifan Song
Nick Spooner
Akshayaram Srinivasan
Igors Stepanovs
Pierre-Yves Strub
Shi-Feng Sun
Siwei Sun

Xiaoming Sun
Björn Tackmann
Katsuyuki Takashima
Justin Thaler
Junichi Tomida
Rotem Tsabary
Dominique Unruh
Bogdan Ursu
Alexandre Wallet
Yuyu Wang
Mor Weiss
Daniel Wichs
David Wu
Keita Xagawa
Sophia Yakoubov
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Kevin Yeo
Eylon Yogev
Fan Zhang
Jiapeng Zhang
Vassilis Zikas
Giorgos Zirdelis
Akin Ünal

TCC 2019 ix

Contents – Part II

Succinct Arguments in the Quantum Random Oracle Model. 1
Alessandro Chiesa, Peter Manohar, and Nicholas Spooner

Delegating Quantum Computation in the Quantum Random Oracle Model . . . 30
Jiayu Zhang

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 61
Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing,
and Edoardo Persichetti

Attribute Based Encryption for Deterministic Finite Automata from DLIN . . . 91
Shweta Agrawal, Monosij Maitra, and Shota Yamada

CPA-to-CCA Transformation for KDM Security . 118
Fuyuki Kitagawa and Takahiro Matsuda

New Approaches to Traitor Tracing with Embedded Identities 149
Rishab Goyal, Venkata Koppula, and Brent Waters

A Unified and Composable Take on Ratcheting . 180
Daniel Jost, Ueli Maurer, and Marta Mularczyk

Continuously Non-malleable Secret Sharing for General Access Structures . . . 211
Gianluca Brian, Antonio Faonio, and Daniele Venturi

Interactive Non-malleable Codes . 233
Nils Fleischhacker, Vipul Goyal, Abhishek Jain,
Anat Paskin-Cherniavsky, and Slava Radune

Stronger Lower Bounds for Online ORAM . 264
Pavel Hubáček, Michal Koucký, Karel Král, and Veronika Slívová

Adaptively Secure Garbling Schemes for Parallel Computations 285
Kai-Min Chung and Luowen Qian

Statistical Difference Beyond the Polarizing Regime 311
Itay Berman, Akshay Degwekar, Ron D. Rothblum,
and Prashant Nalini Vasudevan

Estimating Gaps in Martingales and Applications to Coin-Tossing:
Constructions and Hardness . 333

Hamidreza Amini Khorasgani, Hemanta K. Maji,
and Tamalika Mukherjee

Fully Homomorphic NIZK and NIWI Proofs . 356
Prabhanjan Ananth, Apoorvaa Deshpande, Yael Tauman Kalai,
and Anna Lysyanskaya

Lower and Upper Bounds on the Randomness Complexity of Private
Computations of AND. 386

Eyal Kushilevitz, Rafail Ostrovsky, Emmanuel Prouff, Adi Rosén,
Adrian Thillard, and Damien Vergnaud

Leveraging Linear Decryption: Rate-1 Fully-Homomorphic Encryption
and Time-Lock Puzzles . 407

Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta

Compressible FHE with Applications to PIR . 438
Craig Gentry and Shai Halevi

Permuted Puzzles and Cryptographic Hardness . 465
Elette Boyle, Justin Holmgren, and Mor Weiss

Linear-Size Constant-Query IOPs for Delegating Computation 494
Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur,
Michael Riabzev, and Nicholas Spooner

On the (In)security of Kilian-Based SNARGs . 522
James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma,
and Ron D. Rothblum

Incrementally Verifiable Computation via Incremental PCPs. 552
Moni Naor, Omer Paneth, and Guy N. Rothblum

Author Index . 577

xii Contents – Part II

Contents – Part I

Algebraically Structured LWE, Revisited . 1
Chris Peikert and Zachary Pepin

Lattice Trapdoors and IBE from Middle-Product LWE 24
Alex Lombardi, Vinod Vaikuntanathan, and Thuy Duong Vuong

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 55
Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee

Obfuscated Fuzzy Hamming Distance and Conjunctions from Subset
Product Problems . 81

Steven D. Galbraith and Lukas Zobernig

A Black-Box Construction of Fully-Simulatable, Round-Optimal
Oblivious Transfer from Strongly Uniform Key Agreement 111

Daniele Friolo, Daniel Masny, and Daniele Venturi

Synchronous Consensus with Optimal Asynchronous Fallback Guarantees . . . 131
Erica Blum, Jonathan Katz, and Julian Loss

Predicate Encryption from Bilinear Maps and One-Sided
Probabilistic Rank . 151

Josh Alman and Robin Hui

Optimal Bounded-Collusion Secure Functional Encryption 174
Prabhanjan Ananth and Vinod Vaikuntanathan

From FE Combiners to Secure MPC and Back . 199
Prabhanjan Ananth, Saikrishna Badrinarayanan, Aayush Jain,
Nathan Manohar, and Amit Sahai

(Pseudo) Random Quantum States with Binary Phase 229
Zvika Brakerski and Omri Shmueli

General Linear Group Action on Tensors: A Candidate
for Post-quantum Cryptography . 251

Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun

Composable and Finite Computational Security of Quantum
Message Transmission . 282

Fabio Banfi, Ueli Maurer, Christopher Portmann, and Jiamin Zhu

On Fully Secure MPC with Solitary Output . 312
Shai Halevi, Yuval Ishai, Eyal Kushilevitz, Nikolaos Makriyannis,
and Tal Rabin

Secure Computation with Preprocessing via Function Secret Sharing 341
Elette Boyle, Niv Gilboa, and Yuval Ishai

Efficient Private PEZ Protocols for Symmetric Functions 372
Yoshiki Abe, Mitsugu Iwamoto, and Kazuo Ohta

The Function-Inversion Problem: Barriers and Opportunities 393
Henry Corrigan-Gibbs and Dmitry Kogan

On the Complexity of Collision Resistant Hash Functions:
New and Old Black-Box Separations . 422

Nir Bitansky and Akshay Degwekar

Characterizing Collision and Second-Preimage Resistance in Linicrypt. 451
Ian McQuoid, Trevor Swope, and Mike Rosulek

Efficient Information-Theoretic Secure Multiparty Computation
over Z=pkZ via Galois Rings . 471

Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero,
and Chen Yuan

Is Information-Theoretic Topology-Hiding Computation Possible?. 502
Marshall Ball, Elette Boyle, Ran Cohen, Tal Malkin, and Tal Moran

Channels of Small Log-Ratio Leakage and Characterization of Two-Party
Differentially Private Computation . 531

Iftach Haitner, Noam Mazor, Ronen Shaltiel, and Jad Silbak

On Perfectly Secure 2PC in the OT-Hybrid Model 561
Bar Alon and Anat Paskin-Cherniavsky

Author Index . 597

xiv Contents – Part I

Succinct Arguments in the Quantum
Random Oracle Model

Alessandro Chiesa1(B), Peter Manohar2, and Nicholas Spooner1

1 University of California, Berkeley, USA
{alexch,nick.spooner}@berkeley.edu

2 Carnegie Mellon University, Pittsburgh, USA
pmanohar@cs.cmu.edu

Abstract. Succinct non-interactive arguments (SNARGs) are highly
efficient certificates of membership in non-deterministic languages. Con-
structions of SNARGs in the random oracle model are widely believed
to be post-quantum secure, provided the oracle is instantiated with a
suitable post-quantum hash function. No formal evidence, however, sup-
ports this belief.

In this work we provide the first such evidence by proving that the
SNARG construction of Micali is unconditionally secure in the quantum
random oracle model. We also prove that, analogously to the classical
case, the SNARG inherits the zero knowledge and proof of knowledge
properties of the PCP underlying the Micali construction. We thus obtain
the first zero knowledge SNARG of knowledge (zkSNARK) that is secure
in the quantum random oracle model.

Our main tool is a new lifting lemma that shows how, for a rich class
of oracle games, we can generically deduce security against quantum
attackers by bounding a natural classical property of these games. This
means that in order to prove our theorem we only need to establish clas-
sical properties about the Micali construction. This approach not only
lets us prove post-quantum security but also enables us to prove explicit
bounds that are tight up to small factors.

We additionally use our techniques to prove that SNARGs based
on interactive oracle proofs (IOPs) with round-by-round soundness are
unconditionally secure in the quantum random oracle model. This result
establishes the post-quantum security of many SNARGs of practical
interest.

Keywords: Succinct arguments · Quantum random oracle model ·
Probabilistically checkable proofs

1 Introduction

The design and analysis of cryptographic primitives that are plausibly secure
against quantum attackers is an increasingly important goal. The expected
advent of quantum computers demands the cryptography community to be pre-
pared well in advance, so much so that the National Institute of Standards and
c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 1–29, 2019.
https://doi.org/10.1007/978-3-030-36033-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_1

2 A. Chiesa et al.

Technology (NIST) is already in the process of selecting, from among many pro-
posals, a new set of cryptography standards that are “post-quantum” [50]. The
proposals involve schemes for key agreement, public-key encryption, and digital
signatures, and are intended to eventually replace existing standards based on
the hardness of factoring or discrete logarithms.

In this paper we study the post-quantum security of a cryptographic prim-
itive that has recently received much attention across theoretical and applied
communities: succinct arguments [33]. These are argument systems [19] for non-
deterministic languages where the communication complexity between the prover
and verifier is sublinear in the size of the non-deterministic witness.1 This notion
originates in seminal works of Kilian [43] and Micali [49], which construct suc-
cinct arguments for languages in NTIME(T (n)) where communication complexity
is poly(λ, log T (n)) and the time complexity of the verifier is poly(λ, n, log T (n));
here λ is the security parameter.

Researchers have studied many aspects of succinct arguments in the
last two decades, leading to numerous constructions with different tradeoffs
[62], efficient realizations in code [18,24,39,46,55–57], real-world deployments
[29,51], and standardization efforts [67]. A particularly useful feature is that
many succinct arguments can be made zero knowledge with minimal overhead.
At present, however, most approaches to obtain efficient succinct arguments are
“pre-quantum”, since they rely on the discrete logarithm problem (and more).

A notable exception is a class of succinct arguments obtained by combin-
ing two ingredients: (a) probabilistic proof systems, which are unconditionally
secure, and (b) cryptographic hash functions, for which we have post-quantum
candidates. This class includes the succinct interactive argument of Kilian [43],
which use probabilistically checkable proofs (PCPs) [4,5,7,30] and collision-
resistant hash functions. It also includes the succinct non-interactive argument
(SNARG) of Micali [49], which uses PCPs and random oracles. More generally,
by using random oracles one can construct a SNARG from a multi-round gener-
alization of PCPs known as interactive oracle proofs (IOPs) [13,54]. All of these
succinct arguments are widely believed to be post-quantum, provided the hash
function is suitably instantiated [11].2

There is, however, no formal evidence that supports the above widely-held
belief. Since succinct arguments are a fundamental cryptographic primitive with
both theoretical and real-world applications, it is important to prove guarantees
on their post-quantum security.

1.1 SNARGs with Random Oracles

In this paper we focus our attention on the SNARG construction of Micali [49],
which is unconditionally secure in the random oracle model [10,53]. SNARGs
1 Achieving communication complexity that is sublinear in the witness size is known to
require relaxing soundness from statistical to computational, provided one assumes
standard complexity conjectures [34,35].

2 There is also a class of lattice-based succinct arguments that is plausibly post-
quantum; see Sect. 1.3.

Succinct Arguments in the Quantum Random Oracle Model 3

in the random oracle model are not only plausibly post-quantum secure but
also enjoy other desirable features. Namely, the random oracle can be heuris-
tically instantiated via hash functions that avoid expensive public-key cryp-
tographic operations. Moreover, the SNARG uses a transparent (public-coin)
setup, because the only public parameter needed to produce/verify proofs is the
choice of hash function.

We are thus interested in asking: can we establish formal evidence that the
SNARG construction of Micali is post-quantum secure? One way to establish
formal evidence is to prove security in a quantum analogue of the random ora-
cle model, as we now explain. A quantum attacker can, among other things,
evaluate a hash function in superposition when given the hash function’s code.
This enables the attacker, for instance, to find pre-images [38] or collisions [20]
faster than a classical attacker. In light of this, Boneh et al. [15] have argued
that, in the quantum setting, the correct way to model a random oracle is to
allow the attacker to query the random oracle in superposition. The resulting
model is known as the quantum random oracle model (QROM), and a line of
work has established post-quantum security within this model for a variety of
cryptographic primitives; see, e.g., [15,28,58,64,65].

Our goal is to study the SNARG construction of Micali in the quantum
random oracle model. We also study the SNARG construction of BCS [13],
which yields SNARGs of practical interest.

1.2 Our Results

The main result of this paper is establishing that the SNARG construction of
Micali [49] is unconditionally secure in the quantum random oracle model. This
is the first formal evidence that supports the widely-held belief that this con-
struction is post-quantum secure when the oracle is instantiated via a suitable
post-quantum hash function.

Theorem 1 (informal). The non-interactive argument of Micali, when based
on a PCP with soundness error ε, has soundness error O(t2ε + t3/2λ) against
quantum attackers that make t queries to a random oracle with output size λ.
This soundness error is tight up to small factors.

A key step in our proof, of independent interest, is a Lifting Lemma that
shows how, for a rich class of “oracle games”, we can generically deduce security
against quantum attackers by bounding a natural classical property of these
games, instability, that we introduce. This means that to prove Theorem1 we
only need to bound the instability of the Micali construction. This approach not
only yields the theorem but also enables us to prove explicit bounds that are
tight up to small factors.

If we base the Micali construction on suitable PCPs, we obtain new state-
ments about the existence of post-quantum non-interactive arguments. First, if
the PCP achieves (honest-verifier) zero knowledge and proof of knowledge then
through the Micali construction we obtain a zero knowledge non-interactive argu-
ment of knowledge that is unconditionally secure in the quantum random oracle

4 A. Chiesa et al.

model. This strengthens a result of Unruh [59], which assumes the existence of
a post-quantum Σ-protocol for NP. Moreover, if the PCP has polylogarithmic
query complexity and verifier running time then we obtain the first construction
of a zero knowledge succinct non-interactive argument of knowledge (zkSNARK)
that is secure in the quantum random oracle model.

Theorem 2 (informal). There exists a zero knowledge non-interactive argu-
ment of knowledge for NP in the quantum random oracle model. Moreover, the
non-interactive argument is succinct, in the sense that arguments have size λc

and can be verified in time (λ · n)c, where λ is the random oracle’s security
parameter, n is instance size, and c > 0 is a universal constant.

The above theorem is stated for NP only for simplicity. Analogously to the
classical case, a more general statement holds for all non-deterministic time
languages by relying on suitable PCPs for non-deterministic time. For example,
the PCP in [7] achieves proof of knowledge, can be made (honest-verifier) zero
knowledge [27,44], and supports non-deterministic time.

The BCS Construction. We conclude with a result that demonstrates how the
tools in this paper can be used to study the post-quantum security of protocols
that are of practical interest. Since known PCP constructions are expensive,
efficient constructions of succinct arguments in the random oracle model are
typically based on the BCS construction [13], which instead uses interactive
oracle proofs (IOPs) [13,54], a multi-round extension of PCPs. This extension
additionally captures IPs [6,37] and IPCPs [41] as special cases.

We prove that the BCS construction is unconditionally secure in the quantum
random oracle model, if applied to public-coin IOPs that have round-by-round
soundness [21]. The resulting argument inherits proof of knowledge and zero
knowledge properties of the underlying IOP.

Theorem 3 (informal). The non-interactive argument of BCS, when based
on a public-coin IOP with round-by-round soundness error ε, has soundness
error O(t2ε+ t3/2λ) against quantum attackers that make t queries to a random
oracle with output size λ. Moreover, it is an argument of knowledge if the IOP
has round-by-round proof of knowledge, and it is a (statistical) zero knowledge
argument if the IOP is honest-verifier zero knowledge.

Round-by-round proof of knowledge is a natural notion that we introduce,
analogous to round-by-round soundness, and is satisfied by many natural proto-
cols. In particular, Theorem3 enables us to deduce the post-quantum security of
succinct arguments based on well-known IPs such as the sumcheck protocol [48]
and the GKR protocol [36], as well as zkSNARKs based on recent IOPs such as
[3,11,12]. These protocols (among others) are of interest to practitioners, and
our result can be used to guide parameter choices in practice.

1.3 Related Work

Argument Systems That Use Random Oracles. Several works study the
post-quantum security of zero knowledge non-interactive arguments of knowl-

Succinct Arguments in the Quantum Random Oracle Model 5

edge that use random oracles, most notably those obtained by applying the
Fiat–Shamir transformation [31] to a post-quantum Σ-protocol. Such arguments
are used to achieve post-quantum digital signatures [9,22,42], and underlie con-
structions submitted to the NIST call for post-quantum cryptography [50].

A security reduction for the Fiat–Shamir transformation in the quantum
random oracle model has been recently achieved [26,47]. Obtaining a security
reduction had been elusive, as the classical approach of rewinding the adversary
to reduce to special soundness of the Σ-protocol does not work for quantum
adversaries.3 Before, researchers were only able to prove security if the underlying
Σ-protocol satisfies special properties [23,45,60], or resorted to proving security
for alternative, less efficient, constructions such as the Unruh transformation [59].

The question that we study in this paper is complementary to these prior
works. On the one hand, prior works study the security of the Fiat–Shamir
transformation given that the underlying Σ-protocol is secure against efficient
quantum attackers. On the other hand, we study protocols such as the Micali
construction and BCS construction that can be viewed as applying the Fiat–
Shamir transformation to specific public-coin protocols that are known to be
unconditionally secure in the (classical) random oracle model. In particular,
we establish unconditional security in the quantum random oracle model via
an approach that considers the protocol as a whole (similarly to the classical
analysis of these protocols).

The foregoing differences are reflected in a technical analysis that departs
from prior works. Most of the effort in this paper is establishing classical security
properties of the Micali and BCS constructions, which we then use to generically
deduce their quantum security. This approach, besides being intuitive, yields
tight bounds that can be used to guide parameter choices in practice.

Succinct Arguments Based on Lattices. Several lattice problems are pre-
sumed to remain hard even against quantum adversaries, and researchers have
relied on such problems to propose numerous cryptographic constructions that
are plausibly post-quantum. A handful of works have used lattices to achieve var-
ious notions of succinct arguments that are plausibly post-quantum. Baum et al.
[8] rely on the short integer solution (SIS) problem to obtain an argument sys-
tem for arithmetic circuits where the communication complexity grows with the
square-root of circuit size; the argument system is constant-round, public-coin,
and honest-verifier zero knowledge. Boneh et al. [16,17] and Gennaro et al. [32]
rely on lattice knowledge assumptions to construct designated-verifier SNARGs
for boolean circuits, in the preprocessing model [14]. Whether one can use lat-
tices to obtain public-coin argument systems with polylogarithmic communica-
tion complexity (as in the construction of Micali) remains an intriguing open
problem.

3 Rewinding quantum adversaries is a delicate matter [63] and, more importantly,
special soundness does not imply post-quantum soundness (relative to some oracle)
[2]. These difficulties have been circumvented by using new techniques that enable
reducing directly to the (post-quantum) soundness of the underlying Σ-protocol.

6 A. Chiesa et al.

2 Techniques

We discuss the main ideas behind our results. In Sect. 2.1 we recall the construc-
tion of Micali, and then in Sect. 2.2 we explain the challenges that arise when
trying to prove its security in the quantum random oracle model. In Sect. 2.3
we outline our approach to obtain a proof of security for the Micali construc-
tion (Theorem 1); we elaborate on our approach in Sects. 2.4 to 2.7. Finally, in
Sect. 2.8 we discuss how to further establish zero knowledge and proof of knowl-
edge; we thus obtain the first zkSNARK secure in the quantum random oracle
model (Theorem 2).

We conclude in Sect. 2.9 by explaining how our techniques extend to establish
post-quantum security for the BCS construction applied to many protocols of
practical interest (Theorem 3).

Many of the proofs/sections have been omitted from this version of the paper
due space limitations. We refer the reader to the full version of the paper for all
relevant details.

2.1 The Construction of Micali

The construction of Micali is a transformation that maps any probabilistically
checkable proof (PCP) into a corresponding non-interactive argument in the
random oracle model. (See Sect. 3.4 for the definition of a PCP, and Sect. 3.3 for
that of a non-interactive argument.) The resulting non-interactive argument is
succinct, i.e. a SNARG, provided the PCP has suitable parameters.

Let (P,V) be a PCP for a relation R with soundness error ε, proof length �
over alphabet Σ, and query complexity q. The honest prover P takes as input
an instance-witness pair (x,w) and outputs a proof string Π : [�] → Σ. The
honest verifier V takes as input the instance x, makes q probabilistic queries to
a (possibly malicious) proof string Π̃ : [�] → Σ, and then accepts or rejects.

The PCP (P,V) for R is used to construct a SNARG (P,V) for R, as follows.
The SNARG prover P takes as input an instance x and witness w. First, P

uses the random oracle h to commit to the proof string Π := P(x,w) via a Merkle
tree, obtaining a corresponding root rt. Second, P applies the random oracle h
to the root rt in order to derive randomness r for the PCP verifier V. Third, P
simulates the PCP verifier V with the proof string Π, input x, and randomness
r, in order to deduce the queried locations of Π. Finally, P assembles a SNARG
proof π that contains the root rt, answers to the queries, and an authentication
path for each answer.

Observe that the SNARG proof π is succinct because it is small (it has size
|π| = O(q · (log |Σ| + λ log �)) = Oλ(q) for �, |Σ| = 2O(λ)) and it is cheap to
validate via the algorithm described next.

The SNARG verifier V takes as input an instance x and a (possibly malicious)
SNARG proof π̃. First, V uses the random oracle h to check that each answer
in π̃ is certified by an authentication path relative to the claimed root r̃t. Next,
V applies the random oracle h to the root r̃t in order to derive randomness r̃.

Succinct Arguments in the Quantum Random Oracle Model 7

Finally, V runs the PCP verifier V on the instance x and randomness r̃, answering
V’s queries using the claimed answers in π̃.

The intuition behind the construction is that the soundness guarantee of a
PCP holds only if the proof string Π̃ to be validated is fixed before the ran-
domness r̃ for the PCP verifier is known, and for this reason the SNARG prover
must derive r̃ by hashing a commitment r̃t to Π̃.

This construction is unconditionally secure in the random oracle model
[13,49,61]:

Theorem 1. The SNARG (P,V) has soundness error O(tε + t2/2λ) against
(classical) attackers that make at most t queries to the random oracle. This
soundness error is tight up to small factors.

A SNARG obtained via the Micali construction also inherits zero knowledge
and proof of knowledge properties of the underlying PCP. We discuss these
additional properties and how we establish them in the quantum setting later
on in Sect. 2.8. We focus on soundness first.

2.2 Challenges in the Quantum Setting

Our goal is to show that the SNARG construction of Micali is unconditionally
secure in the quantum random oracle model. Suppose that P̃ is a t-query quan-
tum prover that convinces the SNARG verifier V with probability δ (over the
random oracle). We wish to construct a malicious PCP prover P̃ that, using P̃ as
a subroutine, outputs a proof string Π̃ : [�] → Σ that convinces the PCP verifier
V with related probability ε(δ, t) (here the probability is over the randomness
of P̃ and V).

A natural approach to reduce the SNARG prover P̃ to the PCP prover P̃
would be to try to adapt to the quantum setting the reduction that is used for
the classical setting. Below we recall the classical reduction, and then explain
why adapting it to the quantum case is challenging.

The Reduction for Classical Attackers. The reduction from a classical
SNARG prover P̃ to a PCP prover P̃ relies on a straightline extractor, as we
now explain.

While the SNARG prover P̃ outputs a short proof π that contains a Merkle
root and a few decommitted values, the PCP prover P̃ must output a “long”
proof string Π̃. How can P̃ obtain all this information from seeing only π? The
answer is that, when running P̃ as a subroutine, P̃ observes the queries that P̃
makes to the oracle, and these queries reveal the proof string Π̃.

This is only a caricature of how P̃ actually works, though. The reason is
that P̃ need not produce a query sequence from which P̃ can just read off a
proof string Π̃ consistent with the Merkle root in π. For example, P̃ could try
to commit to many possible proof strings “in its head”, derive the correspond-
ing randomness from each commitment, and then select which commitment to
include in π. Even worse, P̃ could try to commit to a partial proof string Π̃ via

8 A. Chiesa et al.

an incomplete Merkle tree and, because the PCP verifier inspects only a small
fraction of a proof string, hope that queries will land to leaves of the Merkle tree
that do exist.

The proof of Theorem1 shows that, despite these complications, there is a
way for P̃ to observe all queries and answers of a single execution of the SNARG
prover P̃, and then run an algorithm on these to extract a suitable proof string Π̃.

How to Deal with Quantum Attackers? If we now return to the case where
the SNARG prover P̃ is a quantum attacker, we are immediately confronted with
a severe problem. Since P̃ can query the random oracle in superposition, how
can P̃ “observe” queries and answers to the oracle? If P̃ were to just measure P̃’s
query register, P̃ may detect this and stop working. This basic problem has made
obtaining security reductions against quantum attackers that access random ora-
cles exceedingly difficult when compared to the case of classical attackers. Papers
that study the security of cryptographic primitives in the quantum random ora-
cle model have had to develop clever techniques to somehow circumvent this
problem in various settings of interest.

Most relevant to this paper is a work of Zhandry [66] that introduces com-
pressed oracles, a set of notions and techniques that enables a quantum algo-
rithm to simulate access to a random oracle for a quantum attacker. This is
achieved by replacing a random oracle h : {0, 1}m → {0, 1}n with the action of
a specially-crafted unitary O that implicitly keeps track of queries. This is a
quantum analogue of when, in the classical setting, a simulator merely observes
the queries made by the attacker and maintains a database of the query-answer
pairs. Formally, the classical simulator keeps track of a database D, which is a
partial function D : {0, 1}m ⇀ {0, 1}n. The database represents the part of the
random oracle that has been “revealed” to the attacker by answering its queries.
In the quantum setting, the state space of the quantum attacker is augmented
with registers to store the database, which (loosely) keep track of the database
D in superposition, as it evolves from query to query. Thus, while the original
oracle h operates on the state |ψA〉 of the adversary, the unitary O operates on
a bipartite state |ψA, ψD〉. This extended state represents a purification of the
mixed state of the adversary induced by choosing the oracle h at random.

One may conjecture that compressed oracles, by virtue of “exposing” a quan-
tum attacker’s queries, make proving the quantum security of the Micali con-
struction, or indeed of any construction using random oracles, straightforward.
This is, unfortunately, not the case.

For example, compressed oracles allow us to argue that, given an adversary
that outputs a convincing SNARG proof π with high probability, if we measure
the database D after the adversary terminates, then with high probability one
can find a convincing SNARG proof π in the database D. This does not allow us
to reduce to soundness of the underlying PCP, however, because to do that we
need to argue that one can extract a PCP proof Π from D (that is much longer
than the SNARG proof π) that convinces the PCP verifier with high probability.

Succinct Arguments in the Quantum Random Oracle Model 9

Nevertheless, compressed oracles are a useful starting point for this work,
and indeed a basic lemma about compressed oracles plays the role of a hybrid
in our security proof.

2.3 Outline of Our Approach

The ideas that we use in this paper to analyze the Micali construction are almost
entirely generic, and can be used to analyze any oracle game. Informally, given a
“base game” G ⊆ Ak×Bk×C, an adversary with oracle access to a random oracle
h wins the oracle game for G if it outputs a tuple (a,b, c) ∈ G where h(ai) = bi

for each i ∈ [k]. Oracle games are a natural notion that captures many games of
interest, such as finding pre-images or finding collisions. Producing a valid proof
in the Micali construction can also be cast as an oracle game, and we shall view
the soundness property as stating that the value (maximum winning probability)
of this game is small.

Our proof of quantum security consists of two main parts. First, we generi-
cally reduce the value of any oracle game to the instability of the game, a purely
classical property of the game that we introduce. Second, we analyze the insta-
bility of the oracle game induced by the Micali construction. The instability of
this oracle game is not too difficult to analyze because it is a classical quantity,
and the “hard work” is crisply, and conveniently, encapsulated within our generic
reduction. We view bounding values of oracle games via instability as the main
technical contribution of this paper.

We now elaborate on our approach: in Sect. 2.4 we recast prior work in the
language of oracle games; in Sect. 2.5 we explain what is instability and how we
use it to bound game values; in Sect. 2.6 we introduce conditional instability and
use it to prove tighter bounds on oracle game values; and in Sect. 2.7 we outline
the analysis of instability for the Micali construction.

2.4 From Oracle Games to Database Games

We begin with a sequence of three games whose values are closely related. These
games play the role of hybrids in our analysis, and are all defined relative to the
given base game G ⊆ Ak × Bk × C.

– Oracle game. This is the game defined earlier that is played in the real
world, using a random oracle h. The adversary wins if it outputs a tuple
(a,b, c) ∈ G with h(ai) = bi for each i ∈ [k].

– Simulated oracle game. The simulator of Zhandry [66] is used to run the
adversary and its final state is measured, leading to a tuple (a,b, c) and a
database D. The adversary wins if (a,b, c) ∈ G and D(ai) = bi for each
i ∈ [k]. (The oracle h : {0, 1}m → {0, 1}n is now replaced by the database
D : {0, 1}m ⇀ {0, 1}n stored by the simulator.)

– Database game. Again the simulator of Zhandry is used to run the adver-
sary, leading to a tuple (a,b, c) and a database D. However, now we ignore
(a,b, c) and only consider D. The adversary wins if there exists (a′,b′, c′) ∈ G
such that D(ai) = bi for each i ∈ [k].

10 A. Chiesa et al.

We let ω∗
O(G, t), ω∗

S(G, t), and ω∗
D(G, t) denote the values of the oracle game,

simulated oracle game, and database game against quantum adversaries that
make at most t oracle queries.

A result of Zhandry [66, Lemma 5], when stated via the notions above, shows
that

√
ω∗
O(G, t) ≤ √

ω∗
S(G, t)+

√
k/2n. Moreover, ω∗

S(G, t) ≤ ω∗
D(G, t) holds triv-

ially, because winning the simulated oracle game implies winning the database
game, by taking (a′,b′, c′) := (a,b, c). In sum:

Lemma 1. For any base game G,
√

ω∗
O(G, t) ≤

√
ω∗
D(G, t) +

√
k/2n.

The above lemma is a conceptualization of prior work, and is the starting
point for the technical contributions of this paper. In particular, the lemma
tells us that in order to bound the maximum winning probability of a quantum
adversary in an oracle game (played in the real world) it suffices to bound the
maximum winning probability of the adversary in the corresponding database
game.

See the full version of the paper for more details.

2.5 A Basic Lifting Lemma for Database Games

We describe how we use a classical quantity I(PG, t) to bound ω∗
D(G, t), the

maximum winning probability of any t-query quantum algorithm in the database
game of G. When combined with the hybrids in Sect. 2.4, this reduces the quan-
tum security of oracle games to studying I(PG, t).

Given a base game G, we let PG be the set of databases that win the database
game of G. In the classical setting, a natural way to bound the maximum win-
ning probability of the database game is to compute, for each possible database
D /∈ PG (a database that is currently losing the game), the maximum proba-
bility that adding a query-answer pair to D puts D in PG. Assuming that the
empty database is not in PG (for otherwise one can win trivially), this quantity
characterizes the probability that the adversary gets lucky and ends up with a
winning database D.

We define the instability of PG with query bound t, denoted I(PG, t), to be
the maximum probability that, for any database D containing less than t queries,
making one additional (classical) query changes whether or not D is in PG. The
foregoing argument explains that the classical value of the database game G is
bounded by t · I(PG, t). Intuitively this is because each query can increase the
probability that the database D is in PG by at most I(PG, t).

We prove that an analogous result holds for quantum adversaries as well.
We call this lemma a lifting lemma, because it enables us to use the classical
quantity of instability to prove a bound on the maximum winning probability of
quantum adversaries. The version below is a “basic” version, because we shall
ultimately need a stronger statement, as we discuss in Sect. 2.6. The result below
extends an idea of Zhandry sketched in [66, Section 4.3].

Succinct Arguments in the Quantum Random Oracle Model 11

Lemma 2 (Basic lifting lemma). For any base game G,

ω∗
D(G, t) ≤ O

(
t2 · I(PG, t)

)
.

In particular, combining the above with Lemma1, we get

ω∗
O(G, t) ≤ O

(
t2 · I(PG, t) + k/2n

)
.

Even the above basic lifting lemma is a powerful tool. For example, suppose
that G is the collision game, where the adversary wins if it outputs an oracle
collision. Then I(PG, t) < t/2n, because if D is a database with no collisions
and less than t entries, then making one more query produces a collision with
probability less than t/2n, and if D has collisions then it is not possible to make
an additional query and remove collisions. Then (since k = 2 in the collision
game) the lifting lemma immediately tells us that ω∗

O(G, t) ≤ O(t3/2n), which
shows that the probability that a t-query quantum oracle algorithm finds a
collision is bounded by O(t3/2n). This further simplifies the analysis of this fact
in [66] and matches the bound of [1] (which is tight [20]).

We now sketch the proof of the basic lifting lemma. The proof sketch differs
slightly from the actual proof, as in the actual proof we do a slightly more
complicated analysis that gives us smaller constants. The main ideas, however,
remain the same.

We let PG be the operator that projects onto databases that win the database
game G: for any basis state |D〉 in the database register, PG |D〉 = |D〉 if D ∈ PG,
and PG |D〉 = 0 if D �∈ PG; PG acts as the identity on other registers. If |φ〉 is
the final joint state of the quantum adversary and database, then ‖PG |φ〉‖2 is
the probability that D ∈ PG after measurement. We will assume that ∅ /∈ PG,
i.e., that the empty database does not win the database game of G (or else the
adversary can win by doing nothing).

We can represent any simulated quantum adversary making at most t queries
as a sequence of unitary operators U = AtOAt−1O . . . A1O applied to an initial
state |φ0, ∅〉 := |φ0〉 ⊗ |∅〉, where O is the compressed oracle and |∅〉 is the
state of the empty database. Each Ai acts non-trivially only on the registers of
the adversary being simulated and PG acts non-trivially only on the database
registers, so PG and Ai commute. So, if PG and O were to also commute, then
we could simply conclude that PGU |φ0, ∅〉 = UPG |φ0, ∅〉 = 0, i.e., that the
adversary never wins. (Here we used the fact that ∅ /∈ PG.)

However, it is not the case that PG and O commute. This should be expected
because in general an adversary can win with some positive probability. However,
if we could show that they almost commute, then we could apply the previous
argument to show that PGU |φ0, ∅〉 ≈ UPG |φ0, ∅〉 = 0; i.e., the adversary wins
with small probability. The notion of “almost” commuting we use is that the
operator norm ‖[PG,O]‖ of the commutator [PG,O] := PGO − OPG is small.

Unfortunately, for interesting games the operator norm ‖[PG,O]‖ may not
be small. For example, if G is the collision game and D is a database with a
pre-image of every y ∈ {0, 1}n but no collisions, then ‖[PG,O] |x, u,D〉‖ = 1.
Generally, this norm may be large if D has many entries.

12 A. Chiesa et al.

Query-bounded adversaries, however, cannot produce nonzero amplitudes
on databases with more entries than the query bound. Hence, intuitively we
should not consider states that correspond to large databases when bounding
the operator norm of the aforementioned commutator. We follow this intuition
by introducing the notion of a projected oracle, which acts as the compressed
oracle except that it discards databases that do not belong to a certain subset.

Definition 1. Let P be the operator that projects onto databases that belong to
a given subset P of databases. A projected oracle is an operator of the form
POP.

We thus consider the projected oracle PtOPt, where Pt is operator that
projects onto databases containing at most t queries. For adversaries that make
at most t queries, replacing O with PtOPt has no effect because the adver-
sary cannot create a database that contains more than t entries. Moreover,
‖[PG, PtOPt] |D〉‖ = 0 if D contains more than t entries, so the operator norm of
[PG, PtOPt] accounts for the action of O only on databases containing at most
t entries.

In sum, projected oracles allow us to cleanly compute the operator norm only
over databases that are reachable by an adversary making a bounded number of
queries. By carefully analyzing the action of O, we show that

‖[PG, PtOPt]‖2 ≤ O
(
I(PG, t)

)
.

We additionally prove that ‖PGU |φ0, ∅〉−UPG |φ0, ∅〉‖ ≤ t‖[PG, PtOPt]‖. Com-
bining these two inequalities yields the lifting lemma.

See Sect. 4.1 for more details.

2.6 Stronger Lifting via Conditional Instability

The lifting lemma implies that to prove soundness of the Micali construction, it
suffices to bound the instability of the Micali database game. Unfortunately, the
instability of the Micali database game is actually large, even given the query
bound. For example, suppose that D is a database containing Merkle trees for
many different proof strings, but each of these Merkle trees has (miraculously)
the same root due to collisions. Then, the probability that querying the root
yields a good randomness for the underlying PCP verifier is large, because the
answer to the query only needs to be a good random string for any one of the
many proofs that D contains.

This counterexample, however, should not be of concern because it relies on
the database having many collisions, and we have already argued that creating
even a single collision in the database is difficult. To deal with this issue, we
introduce the notion of conditional instability : I(P |Q, t). This is a refined notion
of instability that allows us to condition on events, e.g., that the database has
no collisions. Our main technical contribution is the following stronger variant
of Lemma 2.

Succinct Arguments in the Quantum Random Oracle Model 13

Definition 2. A database property P is a set of databases. The complement of
P is P̄.

Lemma 3 (Lifting lemma). For any base game G and database property Q,

ω∗
D(G, t) ≤ O

(
t2 · (

I(PG | Q̄, t) + I(Q, t)
))

.

In particular, combining the above with Lemma1, we get

ω∗
O(G, t) ≤ O

(
t2 · (

I(PG | Q̄, t) + I(Q, t)
)

+ k/2n
)
.

The above statement is an “instability analogue” of the standard fact that
for any two events E1 and E2, Pr[E1] ≤ Pr[E1 ∪ E2] ≤ Pr

[
E1 | Ē2

]
+ Pr[E2].

The proof of Lemma 3 has three steps. First, we relax the database game
PG so that the adversary wins if the database is in PG ∪ Q. Clearly, winning
the relaxed game is only easier than the original database game. Lemma2 then
implies that ω∗

D(G, t) ≤ O
(
t2 · I(PG ∪ Q, t)

)
. Finally, we show that for any two

database properties P and Q it holds that I(P ∪ Q, t) ≤ I(P | Q̄, t) + I(Q, t),
which completes the proof.

We remark that Lemma 3 cannot be proved by simply arguing that I(P, t) ≤
I(P ∪ Q, t) and then applying Lemma2. This is because I(P, t) and I(P ∪ Q, t)
are in general incomparable (see Proposition 5 for examples).

See Sect. 4.2 for more details.

2.7 Instability of the Micali Oracle Game

Armed with our lifting lemma, establishing the quantum security of the Micali
construction is now relatively straightforward. Let PMic be the database property
for the Micali game, and let P̄col be the no-collision property (the set of databases
that do not contain collisions). We show that, for a random oracle of the form
h : {0, 1}2λ → {0, 1}λ,

I(Pcol, t) < t/2λ and I(PMic | P̄col, t) < ε + O(t/2λ).

Proving each of these inequalities is merely a classical argument.

– I(Pcol, t): If D is a database containing less than t entries and has a collision,
then adding an entry to D cannot remove the collision, so the probability
that adding a new entry to D makes D have no collisions is 0. Let D be a
database containing less than t entries and no collisions. For any new query
x, adding the query-answer pair (x, y) to D for a random y will contain a
collision with probability less than t/2λ. Thus, I(Pcol, t) < t/2λ.

– I(PMic | P̄col, t): It is impossible to go from a database D in PMic to a database
D not in PMic by adding entries. Let D be a database not in PMic containing
less than t entries that contains no collisions. There are two ways to make D
in PMic: either the new query is for the randomness of the PCP verifier in the

14 A. Chiesa et al.

Micali construction, in which case this finds a good choice of randomness with
probability at most ε, or the new query extends one of the Merkle trees that
the adversary is constructing. To extend the Merkle tree the adversary must
find a pre-image, which happens with probability less than O(t/2λ). Hence,
I(PMic | P̄col, t) < ε + O(t/2λ), completing the proof.

Combining these bounds on instability with the lifting lemma completes the
proof of soundness, and completes a proof sketch for Theorem1. See the full
version of the paper for more details.

2.8 zkSNARKs in the QROM

We have so far discussed how to establish soundness of the Micali construction
in the quantum setting. We now discuss how to further establish zero knowledge
and proof of knowledge, obtaining the first zkSNARKs secure in the quantum
random oracle model (and thereby proving Theorem2).

Zero Knowledge. In the classical setting, the Micali construction achieves sta-
tistical zero knowledge provided the underlying PCP is (honest-verifier) statis-
tical zero knowledge (and leaves in the Merkle tree are suitably salted to ensure
statistical hiding of unrevealed leaves) [13,40]. In the quantum setting, an anal-
ogous statement is immediate simply because the zero knowledge property holds
against computationally unbounded verifiers that make an unbounded number of
queries to the random oracle, and any quantum verifier can be simulated by an
unbounded verifier.

Proof of Knowledge. In the classical setting, the Micali construction achieves
proof of knowledge provided the underlying PCP is a proof of knowledge [61]. The
quantum analogue of this statement, however, does not immediately follow from
our soundness analysis. Recall that our strategy was to bound the instability of
the Micali property for x /∈ L, conditioned on no collisions. But when x ∈ L
this approach will not work, because the instability of the Micali property even
conditioned on the absence of collisions is 1 (as witnessed by the existence of the
honest prover).

Nevertheless, the tools that we develop in this work are flexible enough that
we can apply them to also establish proof of knowledge. We consider the following
natural extractor strategy: run the prover until completion, and measure the
database. Then, for each entry in the database, try to extract a PCP proof
rooted at that entry, and then run the PCP extractor on this proof.

Let P be the set of databases D where there exists a root rt such that D wins
the Micali game with a SNARG proof rooted at rt, but the PCP extractor does
not extract a valid witness from the PCP proof rooted at rt. If the prover wins
the Micali game but the extractor fails, then D must be in P. We then argue
that I(P | P̄col, t) is at most k + O(t/2λ), where k is the knowledge error of the
underlying PCP. Intuitively, this is because if the PCP extractor fails to extract
a witness from the PCP proof Π rooted at rt, then Π convinces the verifier with
probability at most k, and hence the probability of finding good randomness for

Succinct Arguments in the Quantum Random Oracle Model 15

Π is at most k. Combining this with Lemma 3 implies that the probability that
the prover wins the Micali game but the extractor fails is at most O(t2k+t3/2λ).
Hence, if μ is the probability that the prover wins the Micali game, then the
probability that the extractor succeeds is at least Ω(μ − t2k − t3/2λ).

See the full version of the paper for more details.

2.9 The BCS Construction: Succinct Arguments Beyond Micali

We apply our techniques to prove post-quantum security of the BCS construc-
tion [13], when the underlying public-coin IOP satisfies a notion of soundness
achieved by many protocols of practical interest. The notion is round-by-round
soundness, and was introduced for IPs in [21] for the purposes of facilitating
proofs of security of the Fiat–Shamir transformation for correlation-intractable
hash functions. The notion can be extended in a straightforward way to any IOP,
and this is the notion that we consider in this work. We further show that if the
underlying IOP is honest-verifier zero knowledge and/or has round-by-round
proof of knowledge, then the BCS argument inherits these properties. Round-
by-round proof of knowledge is a type of knowledge property that is analogous
to round-by-round soundness (and is also achieved by many protocols of practi-
cal interest). Below we sketch our analysis; see the full version of the paper for
details.

Soundness. An IOP has round-by-round soundness if, for any partial transcript
tr of the protocol, one can tell if tr is “doomed”, i.e., that it is highly unlikely to
be accepted by the verifier when completed to a full transcript; a doomed full
transcript is never accepted by the verifier.

By the lifting lemma, in order to prove the post-quantum security of the
BCS construction it suffices to bound the conditional instability of the database
property P, where D ∈ P if D contains a partial transcript where the last
verifier message has flipped the transcript from “doomed” to “not doomed”. We
argue that I(P | P̄col, t) < ε + O(t/2λ), where ε is the round-by-round soundness
error of the IOP. The proof is similar to the proof for the Micali construction.
If D /∈ P, there are two ways to add an entry and make D ∈ P: either the
new query is for the randomness of the next verifier message in the IOP for
some doomed transcript tr, in which case we find a message that makes tr not
doomed with probability ε; or the new query extends one of the Merkle trees that
the adversary is constructing, which happens with probability less than O(t/2λ)
as this implies finding a pre-image. Hence, I(P | P̄col, t) < ε + O(t/2λ), which
completes the proof.

Zero Knowledge. As in the case of Micali, zero knowledge is straightforward,
as the BCS construction classically achieves statistical zero knowledge when the
IOP is honest-verifier zero knowledge.

Proof of Knowledge. Analogously to our analysis of the Micali construction,
we define a property Q, where D ∈ Q if D contains a partial transcript that is
in P but the BCS extractor fails to extract a valid witness. We then argue that

16 A. Chiesa et al.

I(Q | P̄col) < k+ O(t/2λ), where k is the round-by-round knowledge error of the
IOP; the proof of this fact is similar to the proof of soundness. We conclude that
if the prover causes the verifier to accept with probability at least μ, then the
probability that the extractor succeeds is at least Ω(μ − t2k − t3/2λ).

3 Preliminaries

We denote by R a binary relation of instance-witness pairs (x,w), and by L(R)
its corresponding language, which is the set {x | ∃w s.t. (x,w) ∈ R}. We denote
by f : X → Y a function from a set X to a set Y ; similarly, we denote by f : X ⇀
Y a partial function from a set X to a set Y , i.e., a function f : X → Y ∪ {⊥},
where ⊥ /∈ Y is a special symbol indicating that f(x) is undefined.

3.1 Quantum Notation

We briefly recall standard quantum notation. We let |φ〉 denote an arbitrary
quantum state, and let |x〉 denote an element of the standard (computational)
basis. The norm of a state |φ〉 is ‖|φ〉‖ :=

√〈φ|φ〉. In general, the states that
we consider will have norm 1. The operator norm of an operator A is ‖A‖,
defined to be max|φ〉:‖|φ〉‖=1‖A |φ〉‖. Note that if A is unitary then ‖A‖ = 1. The
commutator of two operators A and B is [A,B] := AB − BA. The following
proposition relates operator norms and commutators.

Proposition 1. Let A,B,C be operators with ‖B‖, ‖C‖ ≤ 1. Then

‖[A,BC]‖ ≤ ‖[A,B]‖ + ‖[A,C]‖.

Proof. By definition, [A,BC] = ABC −BCA = ABC −BAC +BAC −BCA =
[A,B]C + B[A,C]. Therefore, ‖[A,BC]‖ ≤ ‖[A,B]C‖ + ‖B[A,C]‖ ≤ ‖[A,B]‖ +
‖[A,C]‖, as ‖B‖, ‖C‖ ≤ 1.

A projector P is an idempotent linear operator (i.e., P 2 = P). Throughout,
we will only consider orthogonal projectors of the form PS :=

∑
x∈S |x〉〈x|, where

S is a set of binary strings. Measuring a state |φ〉 in the standard basis results
in an output that is in S with probability equal to ‖PS |φ〉‖2. Since all PS are
diagonal in the same basis, they commute with each other. Note that for any
non-zero orthogonal projector P it holds that ‖P‖ = 1. In particular, since
‖AB‖ ≤ ‖A‖‖B‖, we see that if A is the product of projectors and unitaries
then ‖A‖ ≤ 1.

3.2 Oracle Algorithms

Let f : {0, 1}m → {0, 1}n be a function. The standard way to model oracle
access to f in the quantum setting is via a unitary operator Of that acts as
|x, y〉 �→ |x, y ⊕ f(x)〉 for all x ∈ {0, 1}m and y ∈ {0, 1}n. We label the input and
output registers X and Y, respectively.

Succinct Arguments in the Quantum Random Oracle Model 17

A t-query quantum oracle algorithm A is specified via m,n ∈ N, t unitary
operators A1, . . . , At and an initial state |φ0〉 on four registers X,Y,S,T. The
register X is on m qubits and is for queries to the oracle; the register Y is on n
qubits and is for answers from the oracle; the register S is for the output of A;
and the register T is for scratch space of A. The initial state |φ0〉 and unitary
operators Ai need not be efficiently computable.

We write
∣∣Af

〉
to denote AtOfAt−1Of · · · A1Of |φ0〉, the final state of the

adversary before measurement. (We implicitly extend Of to act as the identity
on S,T.) We write Af to denote the random variable which is the outcome of
measuring the register S of

∣∣Af
〉

in the computational basis. This is the output
of A when accessing the oracle f .

A random oracle is a function h : {0, 1}m → {0, 1}n sampled from U(m,n),
the uniform distribution over functions from {0, 1}m to {0, 1}n. We write h ←
U(m,n) to say that h is sampled from U(m,n). In the quantum random oracle
model [15], we study Ah for h ← U(m,n).

3.3 Non-interactive Arguments in the Quantum Random Oracle
Model

Let (P,V) be two polynomial-time (classical) algorithms, known as the prover
and verifier. We say that (P,V) is a non-interactive argument in the quantum
random oracle model (QROM) with soundness error ε for a relation R if it
satisfies the following properties.

– Completeness. For every (x,w) ∈ R and function h ∈ U(2λ, λ), Ph(x,w)
outputs a (classical) proof string π for which Vh(x, π) = 1.

– Soundness. For every x �∈ L(R) and t-query quantum oracle algorithm P̃,
the probability over a function h ← U(2λ, λ) and (classical) proof string
π̃ ← P̃h that Vh(x, π̃) = 1 is at most ε(t, λ).

We say that (P,V) has argument size s if a proof π output by Ph(x,w) consists
of s(|x|) bits.

We also consider non-interactive arguments that additionally achieve proof
of knowledge and zero knowledge. The first property will hold against query-
bounded adversaries (that are otherwise all-powerful), while the second property
will hold against unbounded adversaries (and in particular need not refer to
quantum algorithms). We define both of these properties below.

Knowledge. The non-interactive argument (P,V) is an argument of knowledge
with extraction probability κ if there exists a polynomial-time quantum extractor
E such that, for every instance x and t-query quantum oracle algorithm P̃, if,
over a random oracle h ← U(2λ, λ), for π := P̃h it holds that Vh(x, π) = 1 with
probability μ, the probability that E P̃(x, 1t, 1λ) outputs a valid witness for x

is at least κ(t, μ, λ). Here the notation E P̃ denotes that E has black-box access
to P̃ as defined by Unruh [60]. Informally, this means that if P̃ = (A1, . . . , At)

18 A. Chiesa et al.

with initial state |φ0〉, then E is given an auxiliary register containing |φ0〉 and
may apply, in addition to any efficient quantum operation, any Ai to any of its
registers.

Zero Knowledge. The non-interactive argument (P,V) has (statistical) zero
knowledge if there exists a probabilistic polynomial-time simulator S such that
for every instance-witness pair (x,w) ∈ R the distributions below are statistically
close (as a function of λ):

{
(h, π)

∣
∣∣∣

h ← U(2λ, λ)
π ← Ph(x,w)

}
and

{
(h[μ], π)

∣
∣∣∣

h ← U(2λ, λ)
(μ, π) ← Sh(x)

}
.

Above, h[μ] is the function that, on input x, equals μ(x) if μ is defined on x,
or h(x) otherwise. This definition uses explicitly-programmable random oracles
[10]. (Non-interactive zero knowledge with non-programmable random oracles is
impossible for non-trivial languages [13,52].)

Succinctness for Non-deterministic Time. A zkSNARK for NTIME(T (n))
in the QROM is a non-interactive argument for NTIME(T (n)) in the QROM
such that: (a) it has (statistical) zero knowledge; (b) it has extraction probability
poly(μ, 1/t)−poly(μ, t)/2λ; (c) arguments have size poly(λ, log T (n)), the prover
runs in time poly(λ, n, T (n)), and the verifier runs in time poly(λ, n, log T (n)).

3.4 Probabilistically Checkable Proofs

A probabilistically checkable proof (PCP) for a relation R with soundness error
ε, proof length �, and alphabet Σ is a pair of polynomial-time algorithms (P,V)
for which the following holds.

– Completeness. For every instance-witness pair (x,w) ∈ R, P(x,w) outputs
a proof string Π : [�] → Σ such that Pr

[
VΠ(x) = 1

]
= 1.

– Soundness. For every instance x �∈ L(R) and proof string Π : [�] → Σ,
Pr

[
VΠ(x) = 1

] ≤ ε.

The quantities ε, �,Σ can be functions of the instance size |x|. Probabilities are
taken over the randomness of V. The randomness complexity is the number of
random bits used by V, and the query complexity q is the number of locations
of Π read by V. (Both can be functions of |x|.)

We also consider PCPs that achieve proof of knowledge and (honest-verifier)
zero knowledge. We define both of these properties below.

Proof of Knowledge. The PCP (P,V) has knowledge error k if there exists
a polynomial-time extractor E such that for every instance x and proof string
Π : [�] → Σ if Pr[V(x,Π) = 1] > k then E(x,Π) outputs a valid witness for x.

Zero Knowledge. The PCP (P,V) is (perfect) honest-verifier zero knowledge
if there exists a probabilistic polynomial-time simulator S such that for every
instance-witness pair (x,w) ∈ R the view of V(x) when given access to a proof
string sampled as Π ← P(x,w) equals the view of V(x) when given access to
S(x). In the latter case, S(x) adaptively answers queries received from V(x).

Succinct Arguments in the Quantum Random Oracle Model 19

3.5 Databases

A database mapping X to Y is a partial function D : X ⇀ Y . The sup-
port of a database D is supp(D) := {x ∈ X : D(x) �= ⊥} and its image
im(D) is {D(x) : x ∈ supp(D)}. The size of a database is the size of its sup-
port: |D| := |supp(D)|. Given two databases D and D′, we write D ⊆ D′ if
supp(D) ⊆ supp(D′) and D(x) = D′(x) for every x ∈ supp(D).

We define two operations on databases, corresponding to deletions and inser-
tions. Given a database D, input values x, x′ ∈ X, and output value y ∈ Y , we
define the two databases

(D − x)(x′) :=

{
⊥ if x = x′

D(x′) if x �= x′ and (D + [x �→ y])(x′) :=

{
y if x = x′

D(x′) if x �= x′ .

For D : {0, 1}m ⇀ {0, 1}n and t ∈ N with |D| ≤ t ≤ 2m, we define the pure
quantum state

|Dt〉 :=
∣∣x1, y1, . . . , x|D|, y|D|

〉 ⊗ |⊥, 0n〉⊗(|D|−t)

where x1, . . . , x|D| is the lexicographic ordering of supp(D) and yi := D(xi) for
each i ∈ [|D|]. We will write |D〉 for |Dt〉 when the bound t is clear from context.

3.6 Compressed Phase Oracle

The standard method to encode a function h : {0, 1}m → {0, 1}n as a quantum
operation is the unitary matrix Oh defined in Sect. 3.2, which acts as |x, y〉 �→
|x, y ⊕ h(x)〉. Another method is to encode h in the phase of a quantum state, via
the unitary matrix O′

h that acts as |x, u〉 �→ (−1)u·h(x) |x, u〉. These two encodings
are equivalent under an efficient change of basis: Oh = (Im ⊗ Hn)O′

h(Im ⊗
Hn) where Im is the identity on the first m qubits and Hn is the Hadamard
transformation on the other n qubits. Thus, choosing between the standard oracle
Oh or the phase oracle O′

h is a matter of convenience. For example, the Deutsch–
Josza algorithm [25] is easier to describe with a standard oracle, while Grover’s
algorithm [38] is easier with a phase oracle.

In this paper it is more convenient to always work with phase oracles. All
quantum query algorithms will thus have an oracle phase register U instead of
the oracle answer register Y. Moreover, since h is sampled at random from the
set of all functions from m bits to n bits, we follow Zhandry [66] and extend the
adversary’s initial state with a random superposition of all functions h, which
represents a purification of the adversary’s mixed state relative to the random
oracle.

In fact, instead of considering a superposition of functions h, we will consider
a superposition of databases D, according to the compressed oracle formalism
of [66]. Specifically, throughout this paper we will only deal with the compressed
phase oracle with m input bits and n output bits, which we denote by O. We
fix the database query bound of the compressed oracle to be t in advance. For
the purposes of this paper, we will only use the fact that O is a certain unitary

20 A. Chiesa et al.

matrix, indistinguishable from a real random oracle, whose action is given by
the following lemma. We refer the reader to [66] for more details.

Lemma 4 ([66]). The compressed phase oracle O (with query bound t) acts on
a quantum state |x, u, z,D〉, where x ∈ {0, 1}m, u ∈ {0, 1}n, z ∈ {0, 1}∗, and
D : {0, 1}m ⇀ {0, 1}n is a database with |D| ≤ t, as follows.

– If |D| = t or u = 0n, then O |x, u, z,D〉 = (−1)u·D(x) |x, u, z,D〉, where
u · ⊥ := 0.

– If D(x) = ⊥, |D| < t, and u �= 0n, then O |x, u, z,D〉 = |x, u, z〉 ⊗ |φ〉 where

|φ〉 :=
1√
2n

∑

y∈{0,1}n

(−1)u·y |D + [x �→ y]〉 .

– If D(x) �= ⊥, |D| < t, and u �= 0n, then O |x, u, z,D〉 = |x, u, z〉 ⊗ |φ〉 where

|φ〉 := (−1)u·D(x) |D〉 +
(−1)u·D(x)

√
2n

|D − x〉

+
1
2n

∑

y∈{0,1}n

(
1 − (−1)u·y − (−1)u·D(x)

)
|D − x + [x �→ y]〉 .

Given a quantum algorithm A described by unitaries A1, . . . , At and ini-
tial state |φ0〉, we write |Sim∗(A)〉 to represent the final state of A before
measurement when simulated using O as the oracle. Formally, |Sim∗(A)〉 =
AtO · · · A1O|φ0, ∅〉, where ∅ denotes that the D register holds the empty database
with t slots, and we implicitly extend each Ai to act as the identity on D.

The following lemma of [66] shows simulating A by using O as the oracle is
perfectly indistinguishable from running A with access to a random oracle.

Lemma 5 ([66, Lemma 4]). For any quantum oracle algorithm A making at
most t queries,

TrD(|Sim∗(A)〉〈Sim∗(A)|) =
1

(2n)2m
∑

h : {0,1}m→{0,1}n

∣
∣Ah

〉〈Ah
∣
∣.

I.e., |Sim∗(A)〉 purifies the mixed state of A when interacting with a random
oracle h ← U(m,n).

The notation TrD denotes the partial trace over the D (database) register, defined
as the unique linear operator such that TrD(|a〉〈a|Z ⊗ |b〉〈b|D) := 〈b|b〉 |a〉〈a|Z for
all vectors |a〉 , |b〉. Here Z denotes all the registers of the adversary.

4 A Lifting Lemma for Database Games

In this section we show how to bound the value of a (classical or quantum)
database game via the instability of the game, a purely classical quantity that

Succinct Arguments in the Quantum Random Oracle Model 21

we introduce in this paper. As we will see shortly, it is straightforward to argue
that for any base game G (Sect. 2.4), the value ωD(G, t) is at most t times the
instability of G. The goal of this section is to prove that the (quantum) value
ω∗
D(G, t) is at most t2 times the instability of G. In particular, we enable lifting

a bound on the (classical) instability of G to a bound on the (quantum) value
ω∗
D(G, t). Combining the lifting lemma with the fact that oracle games can be

generically reduced to database games (Lemma 1), we are able to establish the
post-quantum security of the Micali construction solely by analyzing classical
properties of it.

4.1 Database Properties and the Basic Lifting Lemma

A database property is a more general notion of a database game.

Definition 3. A database property P is a set of databases D : X ⇀ Y . The
negation of P, denoted P̄, is the set (X ⇀ Y) \ P.

Given a base game, we define a corresponding database property as follows.

Definition 4. The database property of a base game G ⊆ Ak × Bk × C is

PG := {D : ∃ (a,b, c) ∈ G with D(ai) = bi ∀ i ∈ [k]}.

For a base game G, the database property PG is closely related to the
database game of G. This is because winning the database game is equivalent
to the database outputted by Sim∗(A) being in PG. In particular, the following
proposition holds.

Proposition 2. For every base game G ⊆ Ak ×Bk ×C and quantum algorithm
A,

Pr[A wins G∗
D] = Pr

[
D ∈ PG

∣∣∣
(
(a,b, c),D

) ← Sim∗(A)
]
.

We define the flip probability of a pair of database properties.

Definition 5. The flip probability flip(P → Q, t) from property P to property
Q is the quantity

flip(P → Q, t) := max
D : {0,1}m⇀{0,1}n

|D|<t , D∈P
max

x/∈supp(D)
Pr
y

[
D + [x �→ y] ∈ Q]

,

and flip(∅ → Q, t) := 0.

Intuitively, this is the maximum probability over all databases D ∈ P with
less than t entries that making an additional query puts D ∈ Q. The following
properties can be obtained easily from the above definition.

Proposition 3 (Properties of the flip probability). Let P,P ′,Q,Q′ be
database properties.

22 A. Chiesa et al.

(i) If P ⊆ P ′ and Q ⊆ Q′ then flip(P → Q) ≤ flip(P ′ → Q′).
(ii) flip(P ∪ P ′ → Q) = max

(
flip(P → Q),flip(P ′ → Q)

)
.

(iii) flip(P → Q ∪ Q′) ≤ flip(P → Q) + flip(P → Q′).

The instability of a database property is the following classical quantity.

Definition 6. The instability I(P, t) of a database property P with query
bound t is the maximum probability that, for any database D containing less
than t queries, making one additional (classical) query changes whether or not
D has the property P. Formally, we let

I(P, t) := max{flip(P̄ → P, t),flip(P → P̄, t)}.

Note that instability is symmetric: I(P, t) = I(P̄, t). There is a direct argu-
ment that shows that ωD(G, t) is bounded by tI(PG, t).4 Similarly, our basic
lifting lemma shows that ω∗

D(G, t) is bounded by the instability of the database
property PG. Thus, it lifts a classical notion to prove a bound on the quantum
value of a database game.

Lemma 6 (Basic lifting lemma). For any base game G,

ω∗
D(G, t) ≤ t2 · 6I(PG, t).

Before we proceed to the proof of Lemma 6, we first introduce some quantum
notation. Recall that we let |Sim∗(A)〉 denote the final quantum state of the
simulated adversary. Using the definition of measurement, we can express the
probability that the final measured database D is in a database property P in
terms of the state |Sim∗(A)〉.
Proposition 4. For every database property P and quantum adversary A,

Pr
[
D ∈ P

∣
∣∣
(
(a,b, c),D

) ← Sim∗(A)
]

= ‖P |Sim∗(A)〉‖2,
where P := I ⊗ ∑

D∈P |D〉〈D| is the projector that maps all basis states of the
form |x, u, z〉 ⊗ |D〉 to 0 if D /∈ P, and is otherwise the identity.

We learn that in order to bound ω∗
D(G, t) it suffices to bound ‖PG |Sim∗(A)〉‖

for every A ∈ C∗
t .

Next, define Pt := I⊗∑
D:|D|≤t |D〉〈D| to be the projector that maps all basis

states of the form |x, u, z〉 ⊗ |D〉 to 0 if |D| > t, and is otherwise the identity.
The proof of Lemma 6 follows from two lemmas. The first lemma shows that

‖P |Sim∗(A)〉‖ is bounded by t‖P(PtOPt)P̄‖. Intuitively, this is because if P and
PtOPt almost commute (i.e., P and O almost commute when acting on databases
with at most t entries) then each oracle query cannot change the probability that
the database is in P by too much. The second lemma shows that ‖P(PtOPt)P̄‖2
is bounded by I(P, t). Combining the two lemmas with Proposition 4 completes
the proof of Lemma 6.
4 Let A be a classical adversary, and let Ai be the adversary obtained by stopping

A immediately before its i-th query. Then |Pr[Ai+1 wins GD] − Pr[Ai wins GD]| ≤
I(P, t) holds for each i ∈ [t] by definition of instability, and Pr[A1 wins GD] = 0
since ∅ /∈ PG. Therefore, Pr[A wins GD] ≤ tI(P, t).

Succinct Arguments in the Quantum Random Oracle Model 23

Lemma 7. Let P be a database property with ∅ /∈ P. For every A ∈ C∗
t ,

‖P |Sim∗(A)〉‖ ≤ t · ‖P(PtOPt)P̄‖.

Lemma 8. For any database property P,

‖P(PtOPt)P̄‖2 ≤ 6I(P, t).

Lemmas 7 and 8 strengthen the proof sketch outlined in Sect. 2.5. This is
because for any operator A and projector P, [P,A] = PA − AP = (PAP +
PAP̄) − (PAP + P̄AP) = PAP̄ − P̄AP, and so ‖[P,A]‖2 = ‖PAP̄‖2 + ‖P̄AP‖2.
Hence, Lemma 7 implies that ‖P |Sim∗(A)〉‖ ≤ t · ‖[P, PtOPt]‖ and Lemma 8
implies that ‖[P, PtOPt]‖2 ≤ 12I(P, t).

We now prove Lemma 7; the proof of Lemma8 can be found in the full version
of the paper.

Proof (Proof of Lemma 7). Recall that the quantum algorithm A is described
by some unitaries (A1, . . . , At) and initial state |φ0〉. We can thus describe the
quantum algorithm Sim∗(A) via the cumulative unitary U := AtOAt−1 · · · OA1O
acting on the initial state |φ0, ∅〉 where ∅ denotes the empty database. (We abuse
notation and implicitly extend Ai to act as the identity on the database register.)
The final state is |Sim∗(A)〉 := U |φ0, ∅〉.

Let U ′ := At(PtOPt)At−1 · · · (PtOPt)A1(PtOPt). We have that U ′|φ0, ∅〉 =
U |φ0, ∅〉, as applying each Pt has no effect, since the database can only have at
most t queries when Pt is applied.

For any operators C1, . . . , Ct and projector P, we have that

Ct · · · C1 = P̄CtP̄Ct−1P̄ · · · C1P̄ +
t∑

i=0

(Ct · · · Ci+1) · P · (CiP̄ · · · C1P̄). (1)

To see this, we observe that

Ct · · · C1 = (Ct · · · C2)(C1P̄) + (Ct · · · C1) · P,

which implies Eq. (1) by induction.
Let Ci = Ai(PtOPt). Then we have that

‖P |Sim∗(A)〉‖ = ‖PU ′|φ0, ∅〉‖

= ‖
(
PP̄CtP̄Ct−1P̄ · · · C1P̄ +

t∑
i=0

P(Ct · · · Ci+1) · P · (CiP̄ · · · C1P̄)
)
|φ0, ∅〉‖

≤
t∑

i=0

‖P(Ct · · · Ci+1) · P · (CiP̄ · · · C1P̄)|φ0, ∅〉‖

≤ ‖P(Ct · · · C1) · P|φ0, ∅〉‖ +

t∑
i=1

‖P(Ct · · · Ci+1)‖ · ‖P · (CiP̄ · · · C1P̄)|φ0, ∅〉‖

≤ 0 +

t∑
i=1

‖PCiP̄‖ · ‖(CiP̄ · · · C1P̄)|φ0, ∅〉‖

≤
t∑

i=1

‖PAi(PtOPt)P̄‖,

24 A. Chiesa et al.

where we use the fact that the operator norm of a product of unitaries/projectors
is at most 1, and that ∅ /∈ P. Since P and Ai commute for every i, we get
that ‖PAi(PtOPt)P̄‖ = ‖AiP(PtOPt)P̄‖ ≤ ‖Ai‖‖P(PtOPt)P̄‖ = ‖P(PtOPt)P̄‖.
Hence, ‖P |Sim∗(A)〉‖ ≤ t‖P(PtOPt)P̄‖.

4.2 Conditional Instability and the Lifting Lemma

Lemma 6 is not quite sufficient to analyze the database game that corresponds
to the Micali construction. In fact, the instability of this game is high because
we take a maximum over all bounded databases, including those which contain
collisions. If we were to only take the maximum over databases that do not
contain collisions, then the instability would be low. Moreover, the instability of
the “no collision” property is itself low.

In this section, we strengthen the results of the previous section by introduc-
ing the notion of conditional instability, which allows us to analyze the value
ω∗
D(G, t) by splitting its database property PG into subproperties and analyz-

ing the subproperties separately, analogous to conditioning in probability. In
particular, we can then analyze the Micali game by analyzing the no collision
property and the instability of the Micali database property conditioned on the
no collision property.

For the entirety of this section we will let P and Q be database properties, and
we will analyze quantities about P conditioned on Q. These results strengthen
the results of Sect. 4.1, as the previous results can be recovered by setting Q to
be the database property containing all databases.

Definition 7. Let P and Q be two database properties, and let t be a query
bound. We define

flip(P | Q, t) := flip(P̄ ∩ Q → P ∩ Q, t).

The conditional instability I(P | Q, t) is defined as

I(P | Q, t) := max{flip(P | Q, t), flip(P̄ | Q, t)}.

Before we state the lifting lemma, we observe the following properties of
instability.

Proposition 5. Let P and Q be two database properties. Then

1. I(P, t) and I(P ∪ Q, t) are incomparable.
2. flip(P | Q, t) ≤ flip(P̄ → P, t), and therefore I(P | Q, t) ≤ I(P, t).
3. I(P ∪ Q, t) ≤ I(P | Q̄, t) + I(Q, t).

Proof. To show Item 1, we give database properties P,Q such that I(P, t) >
I(P ∪ Q, t) and properties P ′,Q′ such that I(P ′, t) < I(P ′ ∪ Q′, t). Let P be the
property that D �= ∅. Then clearly I(P, t) ≥ flip(P̄ → P, t) = 1. Let Q be the
property that D = ∅. Now P ∪ Q is the set of all databases, so I(P ∪ Q, t) = 0.

Succinct Arguments in the Quantum Random Oracle Model 25

On the other hand, let P ′ = ∅ be the empty property, and let Q′ be the
property that D = ∅. Then, I(P ′, t) = 0, and I(P ′ ∪ Q′, t) = I(Q′, t) = 1.

Item 2 holds since

flip(P | Q, t) = flip(P̄ ∩ Q → P ∩ Q, t) ≤ flip(P̄ → P, t).

Finally, for Item 3 we observe that

flip(P ∪ Q → P ∪ Q, t) = flip(P̄ ∩ Q̄ → P ∪ Q, t)
≤ flip(P̄ ∩ Q̄ → P ∩ Q̄, t) + flip(P̄ ∩ Q̄ → Q, t)
≤ flip(P | Q̄, t) + flip(Q̄ → Q, t).

On the other hand,

flip(P ∪ Q → P ∪ Q, t) = flip(P ∪ Q → P̄ ∩ Q̄, t)
= max(flip(P ∩ Q̄ → P̄ ∩ Q̄, t),flip(Q → P̄ ∩ Q̄, t))
≤ max(flip(P̄ | Q̄, t),flip(Q → Q̄, t)).

Therefore, we get that I(P ∪ Q) ≤ I(P | Q̄, t) + I(Q, t).

We now state the lifting lemma.

Lemma 9 (Lifting lemma). Let G be a base game. Then for any database
property Q,

ω∗
D(G, t) ≤ t2 · 6

(
I(PG | Q̄, t) + I(Q, t)

)
.

Proof. Let P and Q be two database properties. We show that for every A ∈ C∗
t

it holds that

‖P |Sim∗(A)〉‖2 ≤ t2 · 6
(
I(P | Q̄, t) + I(Q, t)

)
.

Let R = P ∪ Q. Then by Lemmas 7 and 8 we have that

‖P |Sim∗(A)〉‖2 ≤ ‖R |Sim∗(A)〉‖2 ≤ t2 · ‖[R,PtOPt]‖2 ≤ t2 · 6I(R, t),

where the first inequality holds since P ⊆ R. Finally, we use the fact that
I(R, t) = I(P ∪ Q, t) ≤ I(P | Q̄, t) + I(Q, t), which completes the proof.

Acknowledgments. We thank Chinmay Nirkhe for taking part in early stages of this
research, and for providing valuable feedback. This research was supported in part by:
a Google Faculty Award; the UC Berkeley Center for Long-Term Cybersecurity; the
NSF Graduate Research Fellowship Program; the ARCS Foundation; and donations
from the Ethereum Foundation and the Interchain Foundation.

This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE1745016. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

26 A. Chiesa et al.

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. ACM 51(4), 595–605 (2004)

2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: Proceedings of the 55th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2014, pp. 474–483
(2014)

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Proceedings of the 24th ACM Con-
ference on Computer and Communications Security, CCS 2017, pp. 2087–2104
(2017)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998). Prelimi-
nary version in FOCS ’92

5. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS ’92

6. Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 421–429
(1985)

7. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC 1991, pp. 21–32 (1991)

8. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

9. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. Cryptology ePrint
Archive, Report 2019/532 (2019)

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73 (1993)

11. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 23

12. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4. Full version
https://eprint.iacr.org/2018/828

13. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

14. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18

Succinct Arguments in the Quantum Random Oracle Model 27

15. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

16. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their appli-
cation to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 9

17. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-
prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 8

18. Bowe, S.: bellman: a zk-snark library (2015). https://github.com/zkcrypto/
bellman

19. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

20. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

21. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018)

22. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Proceedings of the 24th ACM Conference on Computer and
Communications Security, CCS 2017, pp. 1825–1842 (2017)

23. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat–Shamir transformation in
a quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 62–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
42045-0 4

24. dalek cryptography: A pure-Rust implementation of Bulletproofs using Ristretto
(2018). https://github.com/dalek-cryptography/bulletproofs

25. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc.
R. Soc. Lond. A 439(1907), 553–558 (1992)

26. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

27. Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, M.: Low communication 2-
prover zero-knowledge proofs for NP. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 215–227. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
48071-4 15

28. Eaton, E.: Leighton-Micali hash-based signatures in the quantum random-oracle
model. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 263–
280. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9 13

29. Electric Coin Company: Zcash Cryptocurrency (2014). https://z.cash/
30. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and

the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996). Preliminary
version in FOCS ’91

31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-319-78372-7_8
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-642-42045-0_4
https://doi.org/10.1007/978-3-642-42045-0_4
https://github.com/dalek-cryptography/bulletproofs
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/3-540-48071-4_15
https://doi.org/10.1007/3-540-48071-4_15
https://doi.org/10.1007/978-3-319-72565-9_13
https://z.cash/
https://doi.org/10.1007/3-540-47721-7_12

28 A. Chiesa et al.

32. Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-SNARKs from
square span programs. In: Proceedings of the 25th ACM Conference on Computer
and Communications Security, CCS 2018, pp. 556–573 (2018)

33. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing, STOC 2011, pp. 99–108 (2011)

34. Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998)

35. Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic
prover. Comput. Complex. 11(1/2), 1–53 (2002)

36. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. J. ACM 62(4), 27:1–27:64 (2015)

37. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version
appeared in STOC ’85

38. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC
1996, pp. 212–219 (1996)

39. iden3: websnark: A fast zkSNARK proof generator written in native web assembly
(2019). https://github.com/iden3/websnark

40. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: lim-
itations, simplifications, and applications (2015). http://www.cs.virginia.edu/
∼mohammad/files/papers/ZKPCPs-Full.pdf

41. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 44

42. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Proceedings of the 25th ACM Confer-
ence on Computer and Communications Security, CCS 2018, pp. 525–537 (2018)

43. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp.
723–732 (1992)

44. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC 1997, pp. 496–505 (1997)

45. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

46. libstark: libstark: a C++ library for zkSTARK systems (2018). https://github.
com/elibensasson/libSTARK

47. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

48. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

49. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS ’94

50. NIST: Post-quantum cryptography (2016). https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography

https://github.com/iden3/websnark
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-319-78372-7_18
https://github.com/elibensasson/libSTARK
https://github.com/elibensasson/libSTARK
https://doi.org/10.1007/978-3-030-26951-7_12
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Succinct Arguments in the Quantum Random Oracle Model 29

51. O(1) Labs: Coda Cryptocurrency (2017). https://codaprotocol.com/
52. Pass, R.: On deniability in the common reference string and random oracle model.

In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 19

53. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

54. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for
delegating computation. In: Proceedings of the 48th ACM Symposium on the The-
ory of Computing, STOC 2016, pp. 49–62 (2016)

55. SCIPR Lab: libsnark: a C++ library for zkSNARK proofs (2014). https://github.
com/scipr-lab/libsnark

56. SCIPR Lab: Dizk: Java library for distributed zero knowledge proof systems (2018).
https://github.com/scipr-lab/dizk

57. SCIPR Lab: libiop: C++ library for IOP-based zkSNARKs (2019). https://github.
com/scipr-lab/libiop

58. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

59. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

60. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 3

61. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

62. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

63. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009). Preliminary version appeared in STOC ’06

64. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

65. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7&8), 557–567 (2015)

66. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

67. ZKP Standards: Zero knowledge proof standardization (2017). https://zkproof.
org/

https://codaprotocol.com/
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/3-540-68339-9_33
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/dizk
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://zkproof.org/
https://zkproof.org/

Delegating Quantum Computation
in the Quantum Random Oracle Model

Jiayu Zhang(B)

Boston University, Boston, USA
jyz16@bu.edu

Abstract. A delegation scheme allows a computationally weak client to
use a server’s resources to help it evaluate a complex circuit without leak-
ing any information about the input (other than its length) to the server.
In this paper, we consider delegation schemes for quantum circuits, where
we try to minimize the quantum operations needed by the client. We con-
struct a new scheme for delegating a large circuit family, which we call
“C+P circuits”. “C+P” circuits are the circuits composed of Toffoli gates
and diagonal gates. Our scheme is non-interactive, requires small amount
of quantum computation from the client (proportional to input length
but independent of the circuit size), and can be proved secure in the
quantum random oracle model, without relying on additional assump-
tions, such as the existence of fully homomorphic encryption. In practice
the random oracle can be replaced by an appropriate hash function or
block cipher, for example, SHA-3, AES.

This protocol allows a client to delegate the most expensive part of
some quantum algorithms, for example, Shor’s algorithm. The previous
protocols that are powerful enough to delegate Shor’s algorithm require
either many client side quantum operations or the existence of FHE. The
protocol requires asymptotically fewer quantum gates on the client side
compared to running Shor’s algorithm locally.

To hide the inputs, our scheme uses an encoding that maps one input
qubit to multiple qubits. We then provide a novel generalization of clas-
sical garbled circuits (“reversible garbled circuits”) to allow the compu-
tation of Toffoli circuits on this encoding. We also give a technique that
can support the computation of phase gates on this encoding.

To prove the security of this protocol, we study key dependent message
(KDM) security in the quantum random oracle model. KDM security was
not previously studied in quantum settings.

Keywords: Quantum computation delegation · Quantum
cryptography · Garbled circuit · Quantum random oracle · KDM
security

J. Zhang—Supported in part by NSF awards IIS-1447700 and AF-1763786.
The full version of this paper can be found at http://arxiv.org/abs/1810.05234.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 30–60, 2019.
https://doi.org/10.1007/978-3-030-36033-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_2&domain=pdf
http://arxiv.org/abs/1810.05234
https://doi.org/10.1007/978-3-030-36033-7_2

Delegating Quantum Computation in the Quantum Random Oracle Model 31

1 Introduction

In computation delegation, there is a client holding secret data ϕ and the descrip-
tion of circuit C that it wants to apply, but it doesn’t have the ability to compute
C(ϕ) itself. A delegation protocol allows the client to compute C(ϕ) with the
help from a more computationally powerful server. The delegation is private if
the server cannot learn anything about the input ϕ during the protocol. After
some communications, the client can decrypt the response from the server and
get the computation result (see Fig. 1.) This problem is important in the quan-
tum setting: it’s likely that quantum computers, when they are built, will be
expensive, and made available as a remote service. If a client wants to do some
quantum computation on secret data, a quantum computation delegation pro-
tocol is needed.

description of circuit C
Client (Quantum)

Server

C() Nothing about can
be retrieved (efficiently)

Fig. 1. Delegation of (quantum) computation

Delegation of computation is a central problem in modern cryptography,
and has been studied for a long time in classical settings. Related works include
multiparty computation, fully homomorphic encryption (FHE), etc. In the study
of delegation, there are two key aspects: privacy and authenticity. This paper
will focus on privacy.

We want the delegation protocol to be useful, efficient and secure. Previous
work falls into two classes: some protocols have information-theoretical security,
but they either can only support a small circuit class or require huge client side
quantum resources (including quantum memories, quantum gates and quantum
communications); other protocols rely on classical fully homomorphic encryption
(FHE). This raises the following question:

Is it possible to delegate quantum computation for a large circuit family, with
small amount of quantum resources on the client side, without assuming

classical FHE?

In the classical world, Yao’s garbled circuit answers this question. Garbled circuit
is also a fundamental tool in many other cryptographic tasks, like multiparty
computation and functional encryption.

Note. When designing quantum cryptographic protocols, one factor that we care
about is the “quantum resources” on the client side. The “quantum resources”

32 J. Zhang

can be defined as the sum of the cost of the following: (1) the size of quantum
memory that the client needs; (2) the number of quantum gates that the client
needs to apply; (3) the quantum communication that the client needs to make.
Note that if the input (or computation, communication) is partly quantum and
partly classical, we only consider the quantum part. Since the classical part is
usually much easier to implement than the quantum part, as long as the classical
part is polynomial, it’s reasonable to ignore it and only consider the complexity
of quantum resources. And we argue that it’s better to consider the “client
side quantum resources” instead of considering only the quantum memory size
or quantum gates: on the one hand, we do not know which type of quantum
computers will survive in the future, so it’s better to focus on the cost estimate
that is invariant to them; on the other hand, there may be some way to compose
the protocol with other protocols to reduce the memory size, or simplify the gate
set.

1.1 Our Contributions

In this paper we develop a non-interactive (1 round) quantum computation del-
egation scheme for “C+P circuits”, the circuits composed of Toffoli gates and
diagonal gates. We prove the following:

Theorem 1. It’s possible to delegate C+P circuits non-interactively and
securely in the quantum random oracle model, and the client requires O(ηNq +
N2

q) quantum CNOT gates as well as polynomial classical computation, where
Nq is the number of qubits in the input and η is the security parameter.

We will give a more formal statement in Sect. 6. The client’s quantum circuit size
can in fact be bounded by O(κNq) where κ is the key length of the cryptographic
primitives we use. Our current proof of security requires setting κ = η + 4Nq

where η is the actual security parameter. However, we conjecture the same pro-
tocol can be proven secure for κ = O(η), leading to the following conjecture:

Conjecture 1. It’s possible to delegate C+P circuits non-interactively and
securely in the quantum random oracle model, using the same protocol as
Theorem 1, and the client side quantum resources are O(ηNq) CNOT gates,
where Nq is the number of qubits in the input and η is the security parameter.

We argue that our protocol is important for three reasons: (1) The client
only needs small quantum resources. Here we say “small” to mean the quantum
resources only depend on the key length and the input size, and are independent
of the circuit size. (2) Its security can be proven in the quantum random ora-
cle model, without assuming some trapdoor one-way function. Many protocols
before, for example, [11,14] are based on classical FHE and therefore rely on
some kinds of lattice cryptographic assumptions, for example, LWE assumption.
Our protocol is based on the quantum random oracle (therefore based on hash
functions in practice), and this provides an alternative, incomparable assump-
tion on which we can base the security of quantum delegation. (3) Our protocol

Delegating Quantum Computation in the Quantum Random Oracle Model 33

introduces some new ideas and different techniques, which may be useful in the
study of other problems.

Our protocol can be applied to Shor’s algorithm. The hardest part of Shor’s
algorithm is the Toffoli part applied on quantum states, so the client can use
this protocol securely with the help of a remote quantum server.

Corollary 1. It’s possible to delegate Shor’s algorithm on input of length n
within one round of communication in the quantum random oracle model, where
the client requires O(ηn + n2) CNOT gates plus Õ(n) quantum gates. Assuming
Conjecture 1, the number of CNOT gates is O(ηn).

If the client runs the factoring algorithm by itself, the quantum operations it
needed will be ω(n2), and the exact complexity depends on the multiplication
methods.

The security proof for our protocol heavily uses the concept of KDM security,
which was not previously studied in the quantum setting. We therefore also
initiate a systematic study of KDM security in the quantum random oracle
model. We point out that although there already exists classical KDM secure
encryption scheme in the random oracle model [5], the security in the quantum
random oracle model still needs an explicit proof. We complete its proof in this
paper. Furthermore, we generalize KDM security to quantum KDM security,
and construct a protocol for it in the quantum random oracle model.

1.2 Related Work

To delegate quantum computation, people raised the concepts of blind quan-
tum computation [7] and quantum homomorphic encryption (QHE) [8]. These
two concepts are a little different but closely related: in quantum homomorphic
encryption, no interaction is allowed and the circuits to be evaluated are known
by the server. While in blind quantum computation, interactions are usually
allowed and the circuits are usually only known by the client.

The concept of blind quantum computation was first raised in [3]. And [7]
gave a universal blind quantum computation protocol, based on measurement-
based quantum computation (MBQC) [17]. What’s more, secure assisted quan-
tum computation based on quantum one-time pad (QOTP) technique was raised
in [9], with which we can easily apply Clifford gates securely but T gates are
hard to implement and require interactions.

Quantum homomorphic encryption is the homomorphic encryption for quan-
tum circuits. Based on QOTP and classical FHE, [8] studied the quantum
homomorphic encryption for circuits with low T gate complexity. Later [11]
constructed a quantum homomorphic encryption scheme for polynomial size cir-
cuits. But it still requires some quantum computing ability on the client side
to prepare the evaluation gadgets, and the size of gadgets is proportional to
the number of T gates. Recently Mahadev constructed a protocol [14], which
achieves fully quantum homomorphic encryption, and what makes this proto-
col amazing is that the client can be purely classical, which hugely reduces the
burden on the client side.

34 J. Zhang

Another viewpoint of these protocols is the computational assumptions
needed. With interactions, we can do blind quantum computation for universal
quantum circuits information theoretically (IT-) securely. But for non-interactive
protocols, [24] gave a limit for IT-secure QHE, which implies IT-secure quan-
tum FHE is impossible. But it’s still possible to design protocols for some non-
universal circuit families. [13] gave a protocol for IQP circuits, and [23] gave a
protocol for circuit with logarithmic number of T gates.

On the other hand, [8,11,14] rely on classical FHE. The current constructions
of classical FHE are all based on various kinds of lattice-based cryptosystems,
and the most standard assumption is the Learning-With-Error (LWE) assump-
tion.

Table 1 compares different protocols for quantum computation delegation.

Table 1. L is the number of gates in the circuits, Nq is the number of qubits in the
input, η is the security parameter.

Protocol Circuit class Client’s quantum resources Assumption

QOTP [9] Clifford O(Nq) Pauli operations –

[7] All O(L)
Rounds: Circuit Depth

–

[14] All O(Nq) Pauli operations FHE

[13] IQP O(Nq) –

[23] Clifford+small num-
ber of T gates

Exponential in the
number of T gates

–

This paper C+P O(ηNq)(Conjectured)
O(ηNq + N2

q)(Proved)
CNOT operations

Quantum ROM

1.3 Techniques

A Different Encoding for Hiding Quantum States with Classical Keys.
In many previous protocols, the client hides a quantum state using “quantum
one time pad”: ρ → XaZb(ρ), where a, b are two classical strings. After taking
average on a, b, the encrypted state becomes a completely mixed state. In our
protocol, we use the following mapping to hide quantum states, which maps one
qubit in the plaintext to κ qubits in the ciphertext:

Etk0,k1 : |0〉 → |k0〉 , |1〉 → |k1〉

where k0, k1 are chosen uniformly at random in {0, 1}κ and distinct.
We can prove for all possible input states, if we apply this operator on each

qubit, after taking average on all the possible keys, the final results will be
exponentially close to the completely mixed state.

Delegating Quantum Computation in the Quantum Random Oracle Model 35

Reversible Garbled Circuits. The main ingredient in our construction is
“reversible garbled circuit”. In the usual construction of Yao’s garbled table,
the server can feed the input keys into the garbled table, and get the output
keys; then in the decoding phase, it uses an output mapping to map the keys to
the result. This well-studied classical construction does not work for quantum
states. Even if the original circuit is reversible, the evaluation of Yao’s garbled
circuit is not! To use it on quantum states, besides the original garbled table,
we add another table from the output keys to the input keys. This makes the
whole scheme reversible, which means we can use it on quantum states and the
computation result won’t be entangled with auxiliary qubits. For security, we
remove the output mappings. In the context of delegation, these are kept by the
client (Fig. 2).

|kin
kin Garbled Table kout

kin Backward Table kout

|kout

Fig. 2. Reversible garbled table

Note. The proof of security of this scheme is subtle. The extra information
included to allow the reversible computation introduces encryption cycles among
the keys. We address the problem by studying key-dependent message security
in the quantum setting. We show that a KDM-secure encryption scheme exists
in the quantum random oracle model, and use this result to prove the security
of our reversible garbled circuit construction.

Phase Gates. The reversible garbled circuit allows evaluating Toffoli circuits.
To handle phase gates, instead of applying |kin〉 → |kout〉, we can make the
garbled table implement the following transformation (where m is chosen ran-
domly):

|k0〉 → |k0〉 |m〉 , |k1〉 → |k1〉 |m + 1〉 (1)

Then the server can apply a “qudit Z gate”
∑

i ωi
n |i〉 〈i| (define ωn := eiπ/n)

on the second register, where i ∈ Zn goes through all the integers in Zn. (This
operation can be done efficiently.) This will give us:

|k0〉 → ωm
n |k0〉 |m〉 , |k1〉 → ωm+1

n |k1〉 |m + 1〉

Then it applies (1) again to erase the second register. After removing the global
phase the result is the same as the output of applying a phase gate RZ(π

n) =
|0〉 〈0| + ωn |1〉 〈1|.

36 J. Zhang

1.4 Organisation

This paper is organized as follows. Section 2 contains some background for this
paper. In Sect. 3 we discuss the encoding scheme. In Sect. 4 we give our construc-
tion of the quantum computation delegation protocol for C+P circuits. In Sect. 5
we prove the security of classical KDM secure scheme in the quantum random
oracle model, as the preparation for the security proof of the main protocol.
Then in Sect. 6 we discuss the security of our protocol. Section 7.1 turns this
delegation scheme to a fully blind protocol, and Sect. 7.2 shows how to use our
protocol on Shor’s algorithm. Section 8 generalizes KDM security to quantum
settings, constructs a quantum KDM secure protocol and proves its security.
Then we discuss the open questions and complete this paper.

2 Definitions and Preliminaries

2.1 Basics of Quantum Computation

In this section we give a simple introduction for quantum computing, and clarify
some notations in this paper. For more detailed explanations, we refer to [15].

In quantum computing, a pure state is described by a unit vector in a Hilbert
space. A qubit, or a quantum bit, in a pure state, can be described by a vector
|ϕ〉 ∈ C

2. The symbols |·〉 and 〈·| are called Dirac symbols. A qudit is described
by a vector |ϕ〉 ∈ C

d.
But a quantum system isn’t necessarily in a pure state. When the quantum

system is open, we need to consider mixed states. To describe both pure and
mixed states, the state of a qubit is described by a density matrix in C

2×2.
A density matrix is a trace-one positive semidefinite complex matrix. The density
matrix that corresponds to pure state |ϕ〉 is |ϕ〉 〈ϕ|, and we abbreviate it as ϕ.

For an n-qubit state, its density matrix is in C
2n×2n

. The space of density
operators in system S is denoted as D(S). Note that we use E for the notation
of the expectation value.

A quantum operation on pure states can be described by a unitary trans-
form |ϕ〉 → U |ϕ〉. And an operation on mixed states can be described by a
superoperator ρ → E(ρ) = trR(U(ρ ⊗ |0〉 〈0|)U†)). We use calligraphic charac-
ters like D, E to denote superoperators, and use the normal characters like U,D
to denote unitary transforms. We also use Sans-serif font like X,Z,Et to denote
quantum operations: When they are used as Et |ϕ〉 they mean unitary operations
(applied on Dirac symbols without parentheses), and when used as Et(ρ) they
mean superoperators.

The quantum gates include X, Y, Z, CNOT, H, T, Toffoli and so on. What’s
more, denote RZ(θ) = |0〉 〈0| + eiθ |1〉 〈1|, where i is the imaginary unit. Denote
ωn = eiπ/n, we can write RZ(kπ/n) = |0〉 〈0|+ωk

n |1〉 〈1|. Since the i will be used
as the symbol for indexes and “inputs”, we avoid using eiπ/n in this paper, and
use ωn instead.

The trace distance of two quantum states is defined as Δ(ρ, σ) = 1
2 |ρ − σ|tr,

where | · |tr is the trace norm.

Delegating Quantum Computation in the Quantum Random Oracle Model 37

2.2 Encryption with Quantum Adversaries

A quantum symmetric key encryption scheme contains three mappings:
KeyGen(1κ) → sk, Encsk : D(M) → D(C), Decsk : D(C) → D(M) [16].

In this paper, we need to use the symmetric key encryption scheme with key
tags, which contains four mappings: KeyGen, Enc, Dec, Ver. The scheme has a
key verification procedure Ver : K × D(C) → {⊥, 1}.

A quantum symmetric key encryption scheme with key tags is correct if:

1. ∀ρ ∈ D(R ⊗ S), Esk←KeyGen(1κ) |(I ⊗ Decsk)((I ⊗ Encsk)(ρ)) − ρ|tr = negl(κ)
2. ∀ρ ∈ D(R ⊗ S), Prsk←KeyGen(1κ)(Ver(sk, (I ⊗ Encsk)(ρ)) =⊥) = negl(κ),

and Prsk←KeyGen(1κ),r←KeyGen(1κ)(Ver(r, (I ⊗ Encsk)(ρ)) = 1) = negl(κ)

Here the encryption and decryption are all on system S, and R is the reference
system.

Sometimes we also need to encrypt the messages with multiple keys, and
require that (informally) an adversary can only get the message if it knows all
the keys. In symmetric multi-key encryption scheme with key tags, KeyGen(1κ)
is the same as the symmetric single-key scheme, Enck1,k2,···ki

encrypts a message
under keys K = (k1, k2, · · · ki), Deck1,k2,···ki

decrypts a ciphertext given all the
keys k1, k2, · · · ki, and Ver(k, i, c) → {⊥, 1} verifies whether k is the i-th key used
in the encryption of c.

The next problem is to define “secure” formally. The concept of indistin-
guishability under chosen plaintext attack (IND-CPA) was introduced in [4,12].
Let’s first review the security definitions in the classical case.

Definition 1. For a symmetric key encryption scheme, consider the following
game, called “IND-CPA game”, between a challenger and an adversary A :

1. The challenger runs KeyGen(1κ) → sk and samples b ←r {0, 1}.
2. The adversary gets the following classical oracle, whose input space is M:

(a) The adversary chooses m ∈ M, and sends it into the oracle.
(b) If b = 1, the oracle outputs Enc(m). If b = 0, it outputs Enc(0|m|).

3. The adversary tries to guess b with some distinguisher D. Denote the guessing
result as b′.

The distinguishing advantage is defined by AdvIND−CPA(A , κ) = |Pr(b′ = 1|b =
1) − Pr(b′ = 1|b = 0)|.

And we call it an one-shot IND-CPA game if the adversary can only
query the oracle once. Similarly we can define the distinguishing advantage
AdvIND−CPA−oneshot(A , κ) = |Pr(b′ = 1|b = 1) − Pr(b′ = 1|b = 0)|.
Definition 2. We say a protocol is IND-CPA secure against quantum adver-
saries if for any BQP adversary A which can run quantum circuits as the dis-
tinguisher but can only make classical encryption queries, there exists a negligible
function negl such that AdvIND−CPA(A , κ) = negl(κ). And we call it one-shot
IND-CPA secure against quantum adversaries if AdvIND−CPA−oneshot(A , κ) =
negl(κ).

38 J. Zhang

Note that the “IND-CPA security against quantum adversaries” characterizes
the security of a protocol against an adversary who has the quantum computing
ability in the distinguishing phase but can only run the protocol classically.

For quantum cryptographic schemes, we use the formulation in [8].

Definition 3. For a symmetric key encryption scheme, consider the following
game, called “qIND-CPA game”, between a challenger and an adversary A :

1. The challenger runs KeyGen(1κ) → sk and samples b ←r {0, 1}.
2. The adversary gets the following oracle, whose input space is D(M):

(a) The adversary chooses ρ ∈ D(M ⊗ R). The adversary sends system M
to the oracle, and keeps R as the reference system.

(b) If b = 1, the oracle applies Enc on M and sends it to the adversary. The
adversary will hold the state (Enc ⊗ I)(ρ). If b = 0, the oracle encrypts
0|m| and the adversary gets (Enc ⊗ I)(0|m| ⊗ ρR), where ρR is the density
operator of subsystem R.

3. The adversary tries to guess b with some distinguisher D. Denote the guessing
output as b′.

The distinguishing advantage is defined by AdvqIND−CPA(A , κ) = |Pr(b′ =
1|b = 1) − Pr(b′ = 1|b = 0)|.

And we call it an one-shot qIND-CPA game if the adversary can only
query the oracle once. Similarly we can define the distinguishing advantage
AdvqIND−CPA−oneshot(A , κ) = |Pr(b′ = 1|b = 1) − Pr(b′ = 1|b = 0)|.
Definition 4. A protocol is qIND-CPA secure if for any BQP adversary A ,
there exists a negligible function negl such that AdvqIND−CPA(A , κ) = negl(κ).

What’s more, we call it one-shot qIND-CPA secure if for any
BQP adversary A , there exists a negligible function negl such that
AdvqIND−CPA−oneshot(A , κ) = negl(κ).

In the definition of qIND-CPA security, the adversary can query the encryption
oracle with quantum states, and it can also run a quantum distinguisher.

Key Dependent Message Security. In the definitions above the plaintexts do
not depend on the secret keys. There is another type of security called “key-
dependent message (KDM) security”, where the adversary can get encryptions
of the secret keys themselves. We will need to study this type of security in the
proof of our main theorem, but we defer the definitions and further discussions
to Sect. 5.

2.3 Delegation of Quantum Computation, and Related Problems

There are three similar concepts: delegation of quantum computation, quantum
homomorphic encryption [8] and blind quantum computation [3,7].

The differences of these three concepts are whether the interaction is allowed,
and which party knows the circuit. The delegation of quantum computation and

Delegating Quantum Computation in the Quantum Random Oracle Model 39

blind quantum computation protocols are interactive. For quantum homomor-
phic encryption, the interaction is not allowed. If we focus on non-interactive
protocols, their difference is which party knows the circuit: in blind quantum
computation, the circuit is only known by the client but not the server; in homo-
morphic encryption, the circuit is known by the server but not necessarily known
by the client. In our paper, we use “delegation of quantum computation” to mean
that the circuit is known by both parties but the input is kept secret.

A non-interactive quantum computation delegation protocol BQC on circuit
family F = {Fn} contains 4 mappings:

BQC.KeyGen(1κ, 1N , 1L) → (sk): The key generation algorithm takes the key
length κ, input length N and circuit length L and returns the secret key.

BQC.EncC
sk : D(M) → D(C). Given the encryption key and the public circuit in

F = ∪{Fn}, this algorithm maps inputs to ciphertexts.
BQC.EvalC : D(C) → D(C′). This algorithm maps ciphertexts to some other

ciphertexts, following the instructions which may be contained in C.
BQC.Decsk : D(C′) → D(M′). This algorithm decrypts the ciphertexts and stores

the outputs in M.

Here we put N,L into the KeyGen algorithm, which are needed in our protocol.
We put C on the superscript to mean the circuit is known by both parties.

Definition 5. The security (IND-CPA, qIND-CPA, etc) of the non-interactive
delegation of computation protocol is defined to be the security of its encryption
scheme (KeyGen,Enc).

2.4 Quantum Random Oracle Model

A classical random oracle is an oracle of a random function H : {0, 1}κ → {0, 1}κ

which all parties can query with classical inputs. It returns independent random
value for different inputs, and returns fixed value for the same input. In practice,
a random oracle is usually replaced by a hash function.

A quantum random oracle allows the users to query it with quantum states:
the users can apply the map H : |a〉 |b〉 → |a〉 |H(a) ⊕ b〉 on its state. The quan-
tum random oracle was raised in [6]. It becomes the security proof model for
many post-quantum cryptographic scheme [?]. On the other hand, the applica-
tion of the quantum random oracle in quantum cryptographic problems is not
very common, and as far as we know, our work is the first application of it in
the delegation-stype problems.

The security definitions in the quantum random oracle model are the same
as Definitions 2 and 4. Here we assume the adversary can only make polynomial
number of random oracle queries, but the queries can be quantum states. Then by
the “Random Oracle Methodology” we can conjecture the protocol is also secure
in the standard model, when the random oracle is replaced by a hash function in
practice. As with proofs in the classical random oracle model, interpreting these
security claims is subtle, since there exist protocols that are secure in the random
oracle model but insecure in any concrete initialization of hash function [?].

40 J. Zhang

This paper focuses on the quantum cryptographic protocols in the quan-
tum random oracle model. As far as we know, the assumption of a quantum
random oracle is incomparable to any trapdoor assumption. We do not know
any construction of public key encryption based on solely quantum random ora-
cle. What’s more, in our proof, the random oracle doesn’t need to be “pro-
grammable” [?].

2.5 Garbled Table

We make a simple introduction of Yao’s garbled table [22] here. The garbled
table construction will be the foundation of our protocol.

Garbled table is a powerful technique for the randomized encoding of func-
tions. When constructing the garbled circuit of some circuit C, the client picks
two keys for each wire, and denotes them as kw

b , where b ∈ {0, 1}, and w is the
index of the wire.

The garbled table is based on a symmetric key encryption scheme with key
tags. For gate g, suppose its input wires are w1, w2, and the output wire is v.
The client constructs the following table:

Enck
w1
0 ,k

w2
0

(kv
g(0,0)) (2)

Enck
w1
0 ,k

w2
1

(kv
g(0,1)) (3)

Enck
w1
1 ,k

w2
0

(kv
g(1,0)) (4)

Enck
w1
1 ,k

w2
1

(kv
g(1,1)) (5)

And it picks a random permutation in S4 to shuffle them.
If the server is given the garbled table for some gate, and given a pair of

input keys, it can evaluate the output keys: it can try each row in the garbled
table and see whether the given keys pass the verification. If they pass, use them
to decrypt this row and get the output keys.

By providing the input keys and the garbled table for each gate in the circuit,
the server can evaluate the output keys for the whole circuit. And in the ran-
domized encoding problem the client also provides the mapping from the output
keys to the corresponding values on some wires: kw

b → b, for some set of ws.
The server can know the output values on these revealed wires, but the values
on other wires are hidden. This construction has wide applications in classical
world, for example, it allows an NC0 client to delegate the evaluation of a circuit
to the server.

3 The Encoding for Hiding Quantum States
with Classical Keys

Let’s first discuss the encoding operator, Et, to “hide” the quantum states. For
each qubit in the input, the client picks two random different keys k0, k1 ∈ {0, 1}κ

and encodes the input qubit with the following operator:

Etk0,k1 : |0〉 → |k0〉 , |1〉 → |k1〉

Delegating Quantum Computation in the Quantum Random Oracle Model 41

The dimensions of two sides are not the same, but we can add some auxiliary
qubits on the left side. As long as k0, k1 are distinct, this operator is unitary.

For pure quantum state |ϕ〉 =
∑

αi1i2···iN
|i1i2 · · · iN 〉, given key set K =

{kn
i }, where n ∈ [N], i ∈ {0, 1}, if we apply this operator on each qubit, using

keys {kn
0 , kn

1 } for the n-th qubit, we get:

EtK |ϕ〉 =
∑

αi1i2···in
|k(1)

i1
k
(2)
i2

· · · k(N)
in

〉

The following lemma shows that if the keys are long enough, chosen randomly
and kept secret, this encoding is statistically secure, in other words, the mixed
state after we take average on all the possible keys, is close to the completely
mixed state with exponentially small distance:

Lemma 1. Suppose ρ ∈ D(S ⊗ R), S = (C2)⊗N . Suppose we apply the Et
operation on system S with key length κ, after taking average on all the valid
keys, we get

σ =
1

(2κ(2κ − 1))N

∑

∀n∈[N],kn
0 ,kn

1 ∈{0,1}κ,kn
0 �=kn

1

(EtS{kn
i } ⊗ I)(ρ)

then we have Δ(σ, (1
2κN I) ⊗ trS(ρ)) ≤ (12)κ−4N

Thus such an encoding keeps the input secure against unbounded adversaries.
We put the detailed proof in the full version of this paper.

Since Et is a unitary mapping, given K and EtK(ρ), we can apply the inverse
of Et and get ρ: Et−1

K (EtK(ρ)) = ρ. Note that when applying Et we enlarge the
space by appending auxiliary qubits, and when applying Et−1 we remove these
auxiliary qubits.

Fact 1. Et can be implemented with only CNOT operations.

Proof. First implement mapping |0〉 → |0κ〉 , |1〉 → |k0 ⊕ k1〉. This can be done
by CNOT the input into the places where k0 ⊕ k1 has bit value 1. Then apply X
gates on the places where k0 has bit value 1. This will xor k0 into these registers
and complete the mapping |0〉 → |k0〉 , |1〉 → |k1〉.
The quantum computation delegation protocol that we will discuss in the next
section will use this encoding.

4 A Quantum Computation Delegation Protocol
for C+P Circuits

In this section, we use Et encoding and a new technique called “reversible garbled
circuit” to design a quantum computation delegation protocol.

42 J. Zhang

4.1 C+P Circuits and the Relation to Toffoli Depth

[19] defined “almost classical” circuits. Here we rename it to “C+P” circuits,
abbreviating “classical plus phase”.

Definition 6 ([19]). C+P is the family of quantum circuits which are composed
of Toffoli gates and diagonal gates.

We can prove it’s possible to decompose this type of circuits into simpler gates.
We put the proof in the full version of this paper.

Proposition 1. Any C+P circuit can be decomposed to Toffoli gates and single
qubit phase gates. Furthermore, it can be approximated by Toffoli gates and single
qubit phase gates of the form RZ(π

n) = |0〉 〈0| + ωn |1〉 〈1| , n ∈ N+, where ωn is
the nth root of unity. To approximate a circuit of length L of Toffoli gates and
single qubit phase gates to precision ε, we only need Toffoli gates and phase gates
in the form of RZ(π

2d), d ∈ [D], where D = Θ(log L
ε).

We consider D as a fixed value in this paper. Since ε depends exponentially on
D, a small D in practice should be enough and it will at most add a logarithmic
term in the complexity.

{C+P, H} is a complete basis for quantum circuits. Our work implies a delega-
tion scheme whose round complexity equals the H-depth of a given circuit. Previ-
ous works on quantum computation delegation generally focused on {Clifford, T}
basis. (The exception is [13], which works for IQP circuits.) With the exception
of Mahadev’s FHE-based scheme [14], their complexity of client side quantum
gates increases with the circuit’s T-depth.

As far as we know, there is no general way to transform a Toffoli circuit into
the {Clifford, T} basis such that its T depth is smaller than the Toffoli depth
of the original circuit, without blowing up the circuit width exponentially. We
formalize this statement as a conjecture:

Conjecture 2. For any polynomial time algorithm that transforms Toffoli circuits
into the {Clifford, T} basis, there exists a sequence of inputs with increasing
Toffoli depths for which the algorithm’s outputs have T depth Ω(d), where d
denotes the Toffoli depths of the original circuits.

Working with the {C+P, H} basis allows us to design efficient protocols for
delegating Shor’s algorithm (which has low H-depth). Previously, this was only
possible using FHE-based schemes.

4.2 Protocol Construction

We now describe our protocol that supports our main results. This protocol gets
a public description of a C+P circuit as well as a secret quantum state.

The idea comes from Yao’s Garbled Circuit construction. We have discussed
the construction in Sect. 2.5. The garbled circuit construction is commonly used
for randomized encodings of classical circuits, but it’s not applicable to quantum

Delegating Quantum Computation in the Quantum Random Oracle Model 43

circuits. In this paper we will show how to do the reversible garbling for C+P
circuits. Let’s first discuss the ideas briefly.

One big difference of classical operations and quantum operations is in quan-
tum world, the operations have to be reversible. Firstly, we will consider the
garbling of Toffoli gates. In classical world, the garbled tables can contain non-
reversible gates, for example, AND gate, OR gate. But in quantum world, we
have to start with the Toffoli gate, which is reversible, and contains 3 input wires
and 3 output wires.

However, even if the underlying circuit is reversible, if we try to use the
classical garbled table construction on a quantum circuit, the garbled circuits
is still not reversible, and it’s not possible to use it to implement the quantum
operations. Note that we need two levels of reversibility here: the circuit to be
garbled needs to be reversible, and the garbled circuit itself has to be reversible
too, even if it calls the random oracle as a black box.

Thus we propose a new garbling technique, which is a reversible garbling of
reversible circuits: when constructing the garbled tables, instead of just creating
one table for each gate, the client can construct two tables, in one table it
encrypts the output keys with the input keys, and in the other table it encrypts
the input keys with the output keys! This construction will make the garbled
circuit reversible: we will show, the garbled circuit evaluation mapping can be
applied on quantum states unitarily.

But another problem arises: If we simply replace the garbled circuit in the
randomized encoding problem with “reversible garbled circuit”, it’s not secure
any more. But it turns out, if we remove the output mapping, it becomes
secure again, under some reasonable assumptions. And that gives us a delegation
protocol.

The full protocol is specified in Protocol 1. Below we give more details.

Reversible Garbling of Toffoli Gates. First recall that in the classical gar-
bled circuit, the evaluation operation on each garbled gate takes the input keys,
decrypts the table and computes the corresponding output keys:

kin → kout

This mapping is classical, and there is a standard way to transform a classi-
cal circuit to a quantum circuit, by introducing auxiliary output registers, and
keeping the input:

U : |kin〉 |c〉 garbled gate−−−−−−−−→ |kin〉 |kout ⊕ c〉 (6)

We use the second register as the output register, and c is its original value. This
mapping computes the output keys from the garbled table and xors them to the
second register.

This mapping is unitary, and we can also put superpositions on the left-hand
side of (6). However, when it is used directly on quantum states, the inputs and
outputs will be entangled together. Explicitly, for a specific Toffoli gate, we use

44 J. Zhang

kw1
u , kw2

v , kw3
w to denote the keys of the input wires w1, w2, w3 which correspond

to the input (u, v, w); for the output part the keys are kv1
u , kv2

v , kv3
w . If we apply

(6) directly, we get:

U : |kw1
u 〉 |kw2

v 〉 |kw3
w 〉 |c1〉 |c2〉 |c3〉

→ |kw1
u 〉 |kw2

v 〉 |kw3
w 〉 |kv1

u ⊕ c1〉 |kv2
v ⊕ c2〉 |kv3

w⊕uv ⊕ c3〉
But what we need is the following mapping:

U : |kw1
u 〉 |kw2

v 〉 |kw3
w 〉 → |kv1

u 〉 |kv2
v 〉 |kv3

w⊕uv〉 (7)

Which means, we need to disentangle and erase the input registers from the
output registers. Note that, again, both sides should be understood as super-
positions of different keys. And recall that for each Toffoli gate there are eight
possible combinations of input keys, and this mapping should work for all the
eight combinations.

To erase the input from the output, we can use two mappings: |kin〉 |0〉 →
|kin〉 |kout〉 and |kin〉 |kout〉 → |0〉 |kout〉. Both operations have the same form as
Eq. (6). (For the second step, we could view the kout as the input, kin as c,
and get |kout〉 |kin ⊕ kin〉) So we can use two garbled tables for this “reversible
garbled table”!

Assume CL is some multiple key encryption scheme with key tags. The client
puts the encryption outputs CL.Enckin

(kout) into a table (there are eight rows
in this table), and shuffles them randomly; this is the forward table. And it
puts the encryption outputs CL.Enckout

(kin) into a table and shuffles to get the
backward table. This construction will allow the server to implement (7), even
on superpositions of input keys.

We note that we do not need to consider the detailed operations for decrypt-
ing each garbled table, and the existence of such operations comes from quantize
the classical mapping as (6).

For the encoding of the inputs, recall that in the usual garble table construc-
tion, the client encrypts each bit in the inputs with the mapping:

0 → k0, 1 → k1 (8)

To make it quantum, instead of replacing the classical bits with the correspond-
ing keys, the client uses Et operator to hide the inputs. And we notice that (8)
is a special case of Et where the input is classical.

Phase Gates. Now the protocol works for Toffoli gates. But what if there are
phase gates?

From Proposition 1, we only need to consider the single qubit phase gates in
the form of RZ(π

n), n ∈ Z+. Suppose we want to implement such a gate on some
wire, where the keys are k0, k1, corresponding to values 0 and 1, as discussed in
the last subsection.

To implement RZ(π
n), the client first picks a random integer m ∈ Zn. What it is

going to do is to create a table of two rows, put CL.Enck0(m) and CL.Enck1(m+1)

Delegating Quantum Computation in the Quantum Random Oracle Model 45

into the table and shuffle it. When the server needs to evaluate RZ(π
n), it will first

decrypt the garbled table and write the output on an auxiliary register |0〉. So it
can implement the following transformation:

|k0〉 → |k0〉 |m〉 , |k1〉 → |k1〉 |m + 1〉 (9)

This step is similar to implementing Eq. (6).
Then it applies a “qudit Z gate”

∑
i ωi

n |i〉 〈i| on the second register, where
i ∈ Zn goes through all the integers in Zn.(This operation can be done efficiently.)
This will give us:

|k0〉 → ωm
n |k0〉 |m〉 , |k1〉 → ωm+1

n |k1〉 |m + 1〉
Then it applies (9) again to erase the second register. After removing the global
phase the result is the same as the output of applying a phase gate RZ(π

n) =
|0〉 〈0| + ωn |1〉 〈1|.

What’s more, since m is chosen randomly the garbled gate won’t reveal the
keys. (This fact is contained in the security proof.)

4.3 Protocol Design

In this section we formalize this garbled circuit based quantum computation
delegation protocol. Let’s call it GBC.

We index the wires in the circuit as follows: If two wires are separated by a
single qubit phase gate, we consider them as the same wire; otherwise (separated
by a Toffoli gate, or disjoint), they are different wires. Suppose we have already
transformed the circuit using Fact 1 so that there is no controlled phase gate.
For a circuit with N input bits and L gates, the number of wires is at most
N + 3L.

Protocol 1. The protocol GBC, with CL being the underlying classical encryp-
tion scheme, for a circuit C which is composed of Toffoli gates and phase gates
in the form of RZ(π

n), is defined as:

Key Generation GBC.KeyGen(1κ, 1N , 1L): Sample keys K = (kl
b), kl

b ←
CL.KeyGen(1κ), b ∈ {0, 1}, l ∈ [N + 3L].

Encryption GBC.EncC
K(ρ): Output (EtKin

(ρ),TABC
CL(K)). (Note that with the

reference system, the first part is (I ⊗ EtKin
)(ρRS).)

Evaluation GBC.EvalC(c), where c = (ρq, tabs): Output EvalTABC
CL(ρq, tabs)

Decryption GBC.DecK(σ): Suppose the output keys in K are Kout. Apply the
map Et−1

Kout
(·) on σ and return the result.

TABC
CL(K) and EvalTABC

CL(ρq, tabs) appeared in this protocol are defined as fol-
lows:

Protocol 2. TABC
CL(K), where K is the set of keys:

Suppose circuit C is composed of gates (gi)L
i=1. This algorithm returns

(tabgi
)L
i=1, where tabg is defined as follows:

46 J. Zhang

1. If g is a Toffoli gate: Suppose g has controlled input wires w1, w2 and target
wire w3, and the corresponding output wires are v1, v2, v3. Suppose the cor-
responding keys in K are {kw

b }, w ∈ {w1, w2, w3, v1, v2, v3}, b ∈ {0, 1}:
Create table1 as follows: For each triple u, v, w ∈ {0, 1}3, add the following
as a row:

CL.Enckw1
u ,kw2

v ,kw3
w

(kv1
u ||kv2

v ||kv3
w⊕uv)

and pick a random permutation in S8 to shuffle this table.
Create table2 as follows: For each triple u, v, w ∈ {0, 1}3, add the following
as a row:

CL.Enck
v1
u ,k

v2
v ,k

v3
w⊕uv

(kw1
u ||kw2

v ||kw3
w)

and pick another random permutation in S8 to shuffle this table.
Return (table1, table2)

2. If g is a phase gate, Suppose g is a phase gate RZ(π
n) on wire w:

Sample m0 ←r Zn, m1 = m0+1. Create table1 as follows: For each u ∈ {0, 1},
add the following as a row:

CL.Enckw
u
(mu)

and pick a random permutation in S2 to shuffle this table.
Return table1.

Protocol 3. EvalTABC
CL(ρ, tab): Suppose circuit C is composed of gates (gi)L

i=1.
For each gate g in C, whose corresponding garbled gate is tabg in tab:

If g is a Toffoli gate, with input wires w1, w2, w3, output wires v1, v2, v3:
Suppose tabg = (tab1, tab2), where tab1 is the table from input keys to output
keys, and tab2 is from output keys to input keys. Suppose ρ ∈ D(Sg ⊗ S ′), where
Sg is the system that is currently storing the keys on the input wires of g, and
S ′ is the remaining systems:

1. Introduce three auxiliary registers and denote the system as S′
g. Use tab1 to

apply the following mapping on Sg, as discussed in the Sect. 4.2:

|kw1
u 〉 |kw2

v 〉 |kw3
w 〉 |0〉 |0〉 |0〉 → |kw1

u 〉 |kw2
v 〉 |kw3

w 〉 |kv1
u 〉 |kv2

v 〉 |kv3
w⊕uv〉

2. Use tab2 to apply the following mapping on Sg ⊗ S ′
g, as discussed in the

Sect. 4.2:

|kw1
u 〉 |kw2

v 〉 |kw3
w 〉 |kv1

u 〉 |kv2
v 〉 |kv3

w⊕uv〉 → |0〉 |0〉 |0〉 |kv1
u 〉 |kv2

v 〉 |kv3
w⊕uv〉

3. Remove system Sg, rename S ′
g as Sg. Denote the final state as the new ρ.

If g is a phase gate on wire w in the form of RZ(π
n), : Suppose ρ ∈ D(Sg ⊗ S ′),

where Sg is the system that stores the keys on the input wire of g, and S′ is the
remaining systems:

1. Use tabg to implement the mapping |kw〉 |0〉 → |kw〉 |m〉, where m is the
decrypted output.

Delegating Quantum Computation in the Quantum Random Oracle Model 47

2. Apply
∑

i ωi
n |i〉 〈i| on the system of m.

3. Use tabg to implement the mapping |kw〉 |m〉 → |kw〉 |0〉.
The following two theorems summarize its correctness and efficiency:

Theorem 2. Protocol GBC is a correct non-interactive quantum computation
delegation protocol for C+P circuits.

Theorem 3. In GBC protocol, the quantum resources required on the client side
are O(κNq) CNOT gates, where κ stands for the key length used in the protocol,
Nq is the size of quantum states in the input, which are independent of the size
of the circuit.

Here we use Nq instead of N because we want to consider the case where some
part of the input is classical and some part of it is quantum. To make the protocol
secure we may need to choose κ depending on Nq. This is discussed with more
details in Sect. 6.

This means the quantum resources of this protocol are independent of the cir-
cuit to be evaluated! In practice the size of the circuit may be a large polynomial
of the input size, and our protocol will not be affected by this.

4.4 Structure of the Security Proofs

The structure of the security proofs is as follows. First we study the key depen-
dent message security in the quantum world, and design a protocol which we
call the KDMP protocol. Note that this part is not about the garbling scheme.

Then for the garbling scheme, we first state Proposition 2, which is the IND-
CPA security of our garbling scheme. And we state a lemma about the security
of the garbling scheme, which is the Lemma 2. The proofs use a reduction to the
security of the KDMP protocol. And the proofs are in the full version.

Then we prove the security of our garbling scheme (Theorem 6) from
Proposition 2 and Lemma 2. This part is given in the main content.

5 KDM Security of Classical Encryption Against
Quantum Attack

As we can see, in GBC protocol there are encryption cycles. So to make the
protocol secure, for the underlying encryption scheme CL, the usual security
definition is not enough and we need at least KDM security. In this section, we
will first discuss the key dependent message security (KDM security) in quan-
tum world, and give an encryption scheme KDMP that is KDM-secure against
quantum adversaries. These results will be the foundation for the security proof
of the GBC protocol.

In classical world, KDM security was discussed in several papers, for example,
[2,5]. [5] gave a classical KDM secure encryption scheme in the random oracle
model, and [2] constructed KDM secure protocols in the standard model, based
on some hard problems, for example, Learning-With-Error.

48 J. Zhang

5.1 KDM Security in the Classical World

As a part of the preliminaries, we repeat the definition of the security game of
the classical KDM security [2,5].

Definition 7. The KDM-CPA game is defined similar to the IND-CPA game,
except that (1) in the first step the challenger runs KeyGen(1κ) for N times to
generate K = {ski}i∈[N], N is less than a polynomial of the security parameter.
(2) the client is allowed to query the encryption oracle with a function f ∈ F ,
a message m, and an index i of the keys, and the encryption oracle returns
Encski

(f(K,m)) or Encski
(0|f(K,m)|), depending on b. Note that the outputs of

functions in F should be fixed-length, otherwise |f(K,m)| is not well-defined.

5.2 KDM Security in the Quantum World

The attack for the KDM security can be adaptive, which means, the adversary
can make encryption queries after it receives some ciphertexts. But in our work
we only need to consider the non-adaptive setting. What’s more, we only need to
consider the symmetric key case. To summarize, the game between the adversary
and the challenger can be defined as:

Definition 8 (naSymKDM Game). The symmetric key non-adaptive KDM
game naSymKDM for function family F against a quantum adversary A in the
quantum random oracle model with parameters (κ,L, T, q) is defined as follows.

1. The challenger chooses bit b ←r {0, 1} and samples K = {ski}L
i=1, ski ←

KeyGen(1κ).
2. The adversary and the challenger do the following T times, non-adaptively,

which means, the challenger will only send out the answers in step (b) after
it has received all the queries:
(a) The adversary picks index i, function f ∈ F and message msg ∈ {0, 1}∗,

and sends them to the challenger. The size of msg should be compatible
with f .

(b) If b = 1, the challenger gives c = Encski
(f(K,msg)) to the adversary. If

b = 0, the challenger gives c = Encski
(0|f(K,msg)|).

3. The adversary tries to guess b using distinguisher D and outputs b′. Here D is
a quantum operation and can query the oracle with quantum states. Suppose
D will query the random oracle for at most q times.

f can also query the random oracle, and it only makes queries on classical states.
What’s more, the output of functions in F should have a fixed length, otherwise
|f(K,m)| will not be well-defined.

The guessing advantage is defined as AdvnaSymKDM
F (A(L,T,q), κ) = |Pr(b′ =

1|b = 1) − Pr(b′ = 1|b = 0)|.

Delegating Quantum Computation in the Quantum Random Oracle Model 49

Definition 9. A symmetric key encryption scheme is nonadaptive KDM secure
for circuit family F against quantum adversaries in the quantum random oracle
model if for any BQP adversary,

AdvnaSymKDM
F (A(L(κ),T (κ),q(κ)), κ) = negl(κ)

Where L(κ), T (κ), q(κ) are polynomial functions that may depend on the adver-
sary.

5.3 A KDM Secure Protocol in the Quantum Random Oracle
Model

In the quantum random oracle model, we can give a construction of the classical
KDM secure encryption scheme KDMP. Here “classical” means the encryption
and decryption are purely classical. But the distinguisher may query the quan-
tum random oracle in superposition.

Protocol 4. We can construct a symmetric KDM secure encryption scheme
KDMP that has key tags in the quantum random oracle model, where we denote
the random oracle as H:

KDMP.KeyGen(1κ): Output sk ←r {0, 1}κ

KDMP.Encsk(m): R1, R2 ←r {0, 1}κ, output ciphertext c = (R1,H(sk||R1) ⊕ m)
and key tag (R2,H(sk||R2))

KDMP.Decsk(c): Output H(sk||c1) ⊕ c2, where c1 and c2 are from c = (c1, c2).
KDMP.Ver(k, tag): Suppose tag = (tag1, tag2), output 1 if H(k||tag1) = tag2,

and ⊥ otherwise.

Since the execution of this protocol is classical, the correctness can be proved
classically and is obvious. We refer to [5] here and write it out explicitly for
convenience.

Theorem 4 (Correctness). KDMP is a correct symmetric key encryption
scheme with key tags in the quantum random oracle model.

The security under classical random oracle model has been proven. But here we
study the quantum random oracle, so although the protocol is almost the same,
we still need a new proof.

Theorem 5 (Security). Define F [q′] as the set of classical functions that query
the random oracle at most q′ times. For any adversary which can query the
random oracle quantumly at most q times, we have

AdvnaSymKDM
KDMP,F [q′] (A(L,T,q), κ) ≤ poly(q, q′, L, T)2−0.5κ

where poly is a fixed polynomial.

We put the proof in the full version of this paper.

50 J. Zhang

6 Security of GBC Protocol

In this section we discuss the security of protocol GBC. First we need to construct
a classical encryption scheme CL as its underlying scheme. The construction is
very similar to the KDMP scheme, except that this is multi-key and the KDMP
scheme is single-key. We will use it as the underlying scheme of GBC.

6.1 Construction of the Underlying Classical Encryption Scheme

Protocol 5. The underlying multi-key encryption scheme CL is defined as:

CL.KeyGen(1κ): Output sk ←r {0, 1}κ

CL.Enck1,k2,k3(m): R1, R2, R3, R4, R5, R6 ←r {0, 1}κ, output

(R1, R2, R3,H(k1||R1) ⊕ H(k2||R2) ⊕ H(k3||R3) ⊕ m), (10)
((R4,H(k1||R4)), (R5,H(k2||R5)), (R6,H(k3||R6))) (11)

where H is the quantum random oracle.
CL.Deck1,k2,k3(c): Suppose c = (R1, R2, R3, c4). Output (H(k1||R1)⊕H(k2||R2)⊕

H(k3||R3) ⊕ c4).
CL.Ver(k, i, c): Suppose the ith key tag in c is tagi = (Ri, r). Output 1 if r =

H(k||Ri), and ⊥ otherwise.

We choose not to define and discuss the security of this scheme, but use it as
a “wrapper” of the KDMP scheme. In the security proof we will “unwrap” its
structure and base the proof on the security of KDMP scheme.

6.2 Security of GBC Against Classical or Quantum Attack

In this subsection we give the security statements of GBC. First, we can show,
when used on classical inputs, GBCCL is secure:

Proposition 2. GBCCL, where CL is defined as Protocol 5, is one-shot IND-CPA
secure against quantum adversary (that is, secure when used to encrypt one clas-
sical input) in the quantum random oracle model. Explicitly, if the distinguisher
that the adversary uses makes at most q queries to the quantum random oracle,
the input size is N and the size of circuit C is L,

AdvIND−CPA−oneshot
GBCC

CL
(A , κ) ≤ poly(q,N,L)2−0.5κ

Where poly is a fixed polynomial that does not depend on A or the parameters.

The detailed proof is in the full version of this paper.
But we meet some difficulty when we try to prove the qIND-CPA security

(that is, the security for quantum inputs). We leave it as a conjecture:

Conjecture 3. GBCCL is one-shot qIND-CPA secure in the quantum random ora-
cle model.

Delegating Quantum Computation in the Quantum Random Oracle Model 51

But if we use a longer key, we can prove its security.

Theorem 6. For any BQP adversary A , there exists a negligible function negl
such that:

AdvqIND−CPA−oneshot
GBCCL

(A , κ) = negl(κ − 4Nq)

where Nq is the size of quantum states in the input.

In other words, denote GBC′ as the protocol of taking κ = η + 4Nq as the key
length in the GBC protocol, we can prove GBC′ is one-shot qIND-CPA secure
with respect to security parameter η. So we prove:

Theorem 7. There exists a delegation protocol for C+P gate set that is one-shot
qIND-CPA secure in the quantum random oracle model, and the client requires
O(ηNq +N2

q) quantum CNOT gates as well as polynomial classical computation,
where Nq is the number of qubits in the input and η is the security parameter.

Although we don’t have a proof for Conjecture 3, we conjecture it is true, since
this protocol seems to be a very natural generalization from classical to quantum.
We leave it as an open problem. The main obstacle here is its security cannot be
reduced to the semantic security of classical garbled circuits easily: the adversary
gets many superpositions of keys. We have to prove it using different techniques,
which leads to Theorem 6.

From Theorem 6 we know when we take κ ≥ 4Nq and consider κ − 4Nq as
the security parameter the security has been proved. So when the circuit size
L = ω(N2

q) the quantum resources for the client to run this protocol are smaller
than running the circuit itself anyway.

What’s more, although our proof requires the quantum random oracle model,
we conjecture that this protocol is still secure when we replace the random oracle
with practical hash functions or symmetric key encryption schemes:

Conjecture 4. When we replace the quantum random oracle in GBCCL with prac-
tical hash functions or symmetric key encryption schemes, such as versions of
SHA-3 or AES with appropriate input and output sizes, the security statements
still hold.

6.3 Security Proof

IND-CPA Security of Protocol 1. The proof of Proposition 2 is postponed
into the full version of this paper. The proof is based on Theorem 5, which is
about KDM security of Protocol 4. The structure of our scheme, when used
classically, can be seen as a special case of the KDM function. But the definition
of IND-CPA security for protocol GBC is still different from the KDM game
security: in GBC we are trying to say the inputs of Et are hidden, but KDM
security is about the encrypted messages in the garbled table. So it doesn’t
follow from the security of KDMP protocol trivially.

52 J. Zhang

Discussions of the qIND-CPA Security. To prove Theorem 6, we use a dif-
ferent security proof technique, which enables us to base the qIND-CPA advan-
tage on the IND-CPA advantage and a classical “hard-to-compute” lemma. This
technique enables us to argue about the security of a quantum protocol using
only security results in the classical settings.

We need to prove the keys that are not “revealed” are “hard to compute”.
Then we expand the expression of the qIND-CPA advantage, write it as the sum
of exponential number of terms and we can observe that their forms are the
same as the probability of “computing the unrevealed keys”. We can prove these
terms are all exponentially small, thus we get a bound for the whole expression.

Lemma 2. For any C+P circuit C, |C| = L, any adversary that uses distin-
guisher D which can query the quantum random oracle q times (either with
classical or quantum inputs), given the reversible garbled table and input keys
corresponding to one input, it’s hard to compute the input keys corresponding to
other input. Formally, for any i �= j, |ϕi〉, we have

EK ER tr((EtK |j〉)†D(EtK(|i〉 〈i|) ⊗ ϕi ⊗ TABC
CL(K,R))(EtK |j〉))

≤ poly(q,N,L)2−0.5κ (12)

where poly is a fixed polynomial that does not depend on A or the parameters,
N is the size of inputs, and R denotes the randomness used in the computation
of TABC

CL(K), including the random oracle outputs, the random paddings and
the random shuffling. And TABC

CL(K,R) is the output of TABC
CL(K) using ran-

domness R, and since R is given as a parameter there will be no randomness
inside.

Note that since we have already fixed all the randomness, TABC
CL(K,R) is pure.

We also note that this can be seen as a classical lemma since |i〉, |j〉 are all in
computational basis. We postpone the proof into the full version.

Let’s prove Theorem 6 from Proposition 2 and Lemma 2. We will expand the
the expression of the input state and qIND-CPA advantage, and each term in
the cross terms can be bounded by (12).

Proof (of Theorem 6). First, suppose the state that the adversary uses is |ϕ〉 =∑
i ci |i〉 |ϕi〉, where i is in the input system, i ∈ I where I is the set of non-zero

term (ci �= 0), |I| ≤ 2Nq and |ϕi〉 is in the reference system. Additionally assume
cis are all real numbers and | |i〉 |ϕi〉 | = 1. We can only consider pure states since
we can always write a mixed state as a probability ensemble of pure states.

Then we can assume the distinguisher D is a unitary operation D on the
output and auxiliary qubits, followed by a measurement on a specific output
qubit. So we can write D(ρ) = trR(D(ρ⊗|0〉 〈0|)D†), where |0〉 〈0| stands for big
enough auxiliary qubits. Let’s use Eproj(ρ) to denote the operation of projecting
ρ onto the computational basis. Denote the projection operator onto the |0〉 〈0|

Delegating Quantum Computation in the Quantum Random Oracle Model 53

space as P0, we have

AdvqIND−CPA−oneshot
GBC (A , κ) (13)

=|Pr(D(EK GBC.EncK(ϕ)) = 1)) − Pr(D(EK GBC.EncK(0N)) = 1)| (14)
≤|Pr(D(EK ER(ρ)) = 1)) − Pr(D(EK ER(Eproj(ρ))) = 1)|+

|Pr(D(EK GBC.EncK(Eproj(ϕ))) = 1)) − Pr(D(EK GBC.EncK(0N)) = 1)|
(15)

Here we write ρ := (EtK ⊗ I)(ϕ) ⊗ TAB(K,R).
Let’s first compute the first term.

|Pr(D(EK ER(ρ)) = 1)) − Pr(D(EK ER(Eproj(ρ))) = 1))| (16)

=| tr(P0(EK ER D(ρ ⊗ |0〉 〈0|)D†)) − tr(P0(EK ER D(Eproj(ρ) ⊗ |0〉 〈0|)D†))|
(17)

The first term inside can be expanded as

EK ER D(ρ ⊗ |0〉 〈0|)D† (18)

=EK ER D((EtK ⊗ I)(ϕ) ⊗ TAB(K,R) ⊗ |0〉 〈0|)D† (19)

=EK ER D((EtK ⊗ I)((
∑

i

ci |i〉 |ϕi〉)(
∑

i

c†
i 〈i| 〈ϕi|))

(EtK ⊗ I)† ⊗ TAB(K,R) ⊗ |0〉 〈0|)D† (20)

Denote |xi〉 = EtK |i〉 ⊗ |ϕi〉, we can simplify the expression:

(20) =EK ER D(
∑

i

ci |xi〉
∑

i

c†
i 〈xi| ⊗ TAB(K,R) ⊗ |0〉 〈0|)D† (21)

=EK ER D(
∑

i

|ci|2 |xi〉 〈xi| ⊗ TAB(K,R) ⊗ |0〉 〈0|)D†

+ EK ER D(
∑

i�=j

cic
†
j |xi〉 〈xj | ⊗ TAB(K,R) ⊗ |0〉 〈0|)D† (22)

=EK ER D(Eproj(ρ) ⊗ |0〉 〈0|)D†

+ EK ER D(
∑

i�=j

cic
†
j |xi〉 〈xj | ⊗ TAB(K,R) ⊗ |0〉 〈0|)D† (23)

Substitute it into (17), we get

(17)

=|EK ER tr(P0D(
∑

i�=j

cic
†
j |xi〉 〈xj | ⊗ TAB(K, R) ⊗ |0〉 〈0|)D†)| (24)

=|
∑

i�=j

cic
†
j EK ER(〈xj | 〈TAB(K, R)| 〈0| D†P0D(|xi〉 |TAB(K, R)〉 |0〉)| (25)

54 J. Zhang

≤
√∑

i�=j

c2i c
†
j

2
√∑

i�=j

|EK ER 〈0| 〈TAB(K, R)| 〈xj | D†P0D |xi〉 ⊗ |TAB(K, R)〉 |0〉 |2 (26)

≤
√∑

i�=j

EK ER |(〈0| ⊗ 〈TAB(K, R)| 〈xj |)D†P0D(|xi〉 ⊗ |TAB(K, R)〉 |0〉)|2 (27)

The magic of this technique actually happens between (24) and (25): first we
move

∑
i�=j cic

†
j out by linearity, then after rotating terms inside the trace, an

expression which talks about applying D on some state becomes an expression
for the probability of applying {D†P0D,D†P1D} on |xi〉 and getting |xj〉.

By Lemma 2, consider the operation E defined as follows: expand the space
and apply D, make a measurement with operators {P0, P1}, and apply D†. Let
E0 = D†P0D(· ⊗ |0〉 〈0|)D†P0D, and E1 = D†P1D(· ⊗ |0〉 〈0|)D†P1D. We have:

EK ER(tr((EtK |j〉)†E0(EtK(i) ⊗ ϕi ⊗ TAB(K,R))EtK |j〉)) (28)

+ tr((EtK |j〉)†E1(EtK(|i〉 〈i|) ⊗ ϕi ⊗ TAB(K,R))EtK |j〉)) (29)

≤poly(q,N,L)2−0.5κ (30)

With this, we can bound the inner part of (27) further:

EK ER |(〈0| ⊗ 〈TAB(K,R)| 〈xj |)D†P0D(|xi〉 ⊗ |TAB(K,R)〉 |0〉)|2 (31)

=EK ER |(〈0| ⊗ 〈TAB(K,R)| ((EtK |j〉) ⊗ |ϕj〉)†

D†P0D(EtK |i〉 ⊗ |ϕi〉) ⊗ |TAB(K,R)〉 |0〉)|2 (32)

≤EK ER tr((EtK |j〉)†E0(EtK(|i〉 〈i|) ⊗ ϕi ⊗ TAB(K,R) ⊗ |0〉 〈0|)EtK |j〉) (33)

≤poly(q,N,L)2−0.5κ (34)

Substitute it back into (27), we will know

|Pr(D(EK ER(ρ)) = 1) − Pr(D(EK ER(Eproj(ρ))) = 1)| (35)

≤2Nqpoly(q,N,L)2−0.25κ (36)

The second term in (15) can be bounded by Proposition 2. Eproj(ρ) is a classical
state so we have

|Pr(D(EK GBC.EncK(Eproj(ϕ))) = 1) − Pr(D(EK GBC.EncK(0N)) = 1)|
≤poly(q,N,L)2−κ

Combining these two inequalities we have

AdvqIND−CPA−oneshot
GBC (A , κ) ≤ poly(q,N,L)2−0.25(κ−4Nq)

6.4 Standard Model

In the last section we prove the security in the quantum random oracle model.
In practice, the random oracle can usually be replaced with hash functions, and

Delegating Quantum Computation in the Quantum Random Oracle Model 55

we claim that our protocol is not an exception (Conjecture 4). In our protocol,
it’s more natural to use a symmetric key encryption scheme directly: the usage
of the random oracle in our protocol is on the symmetric multi-key encryption
scheme with key tags, and the key verification can be replaced with the “point-
and-permute” technique from the classical garbled circuit.

When using symmetric key encryption instead of the random oracle, since in
our protocol we use affine functions in KDM game, we need at least that the sym-
metric key encryption is secure against quantum adversaries under KDM game
for affine functions. Although this is a strong assumption, it’s still reasonable in
practice.

7 Applications

7.1 Blind Quantum Computation for C+P Circuits

Protocol 1 is a quantum computation delegation protocol. But since the circuit
can be put into inputs, we can turn it into a blind quantum computation protocol,
where the server doesn’t know either input state or the circuit to be applied.
If we only want to hide the type of gates in the circuit, our original protocol
actually already achieves it. But if we also want to hide the circuit topology, we
need to do more. The adversaries should only know the fact that the circuit is
a C+P circuit, the input size and an upper bound on the circuit size. In this
subsection we are going to construct a universal machine U such that for all the
C+P circuit C, C(ρ) = U(C, ρ). What’s more, we want U to be in C+P so that
we can use our protocol on U .

Suppose the size of input is N and the phase gates are all in the form of
RZ(π/2d), d ∈ [D]. Then there are N3 + ND possible choices for each gate.
Thus a log(N3 + ND) bits description is enough for each gate. For the server-
side evaluation, a bad implementation may lead to N3 +ND extra cost, and we
can do a simple preprocessing on the circuit to reduce it: We can first introduce
three auxiliary wires, and convert C to a form that only contains three types
of gates: (1) RZ(π/2d) (2) a SWAP operation between a normal wire and an
auxiliary wire (3) a Toffoli gate on the auxiliary wires. After this transformation,
the number of choices of the gates is only 3N + 1 + ND. Thus we can describe
each gate by a string of length log(3N + 1 + ND). And given the description
of g, the operation of U is a series of multi-controlled gate operations, where
the control wires correspond to the gate description and the target wires are the
wires in the original circuit. And this multi-controlled multi-target operation is
also in C+P and it can be transformed to the standard form of Toffoli and phase
gates.

Since U itself is a C+P circuit, we can delegate it by applying Protocol 1.
Then the original circuit will be indistinguishable from the identity circuit, which
means we know nothing beyond some information on its size.

56 J. Zhang

7.2 Delegation of Shor’s Algorithm

Shor’s algorithm contains two parts: first we apply lots of Toffoli gates on |+〉⊗n⊗
|M〉, where M is, for example, the number to be factored, and n = log M ; then
measure, apply quantum Fourier transform and measure again. From [10,18] we
know the quantum Fourier transform is actually easy to implement: a quantum
Fourier transform on n qubits has time complexity Õ(n). The main burden of
Shor’s algorithm is the Toffoli part. ([18] contains resource estimates on the
elliptic curve version.) With this protocol we can let the server do the Toffoli
part of Shor’s algorithm without revealing the actual value of the input.

Explicitly, suppose the client wants to run Shor’s algorithm on M while also
wants to keep M secret, the client can use the following protocol:

Protocol 6 Protocol for delegation of Shor’s algorithm:
Suppose ShorToff is the Toffoli gate part of Shor’s algorithm, and its length

is L.

1. The client samples K ← GBC.KeyGen(1κ, 12n, 1L). Then the client prepares
(ρ, tab) ← GBC.EncShorToff

K (|+〉⊗n ⊗ |M〉) and sends it to the server.
2. The server evaluates GBCCL.EvalShorToff(ρ, tab) and sends it back to the client.
3. The client decrypts with GBC.DecK . Then it does quantum Fourier transform

itself and measures to get the final result.

So the quantum resources on the client side are only O(κn) CNOT gates plus
Õ(n) gates for quantum Fourier transform, and it can delegate Shor’s algorithm
to the server side securely.

Theorem 8. Protocol 6 can be used to delegate Shor’s algorithm securely and
non-interactively, in the quantum random oracle model (without assuming trap-
door one-way functions), and for n bit inputs, the amount of quantum resources
on the client side are quasi-linear quantum gates plus O(κn) CNOT gates (assum-
ing Conjecture 3, κ = η, or under the current security proof, κ = η + 4n).

For comparison, if the client runs Shor’s algorithm locally, the client needs to
perform ω(n2 log n) Toffoli gates, and the exact form depends on the multipli-
cation method it uses. Schoolbook multiplication leads to O(n3) complexity; if
it uses fast multiplication method, the complexity is still ω(n2 log n) and it has
a big hidden constant.

8 Quantum KDM Security

As a natural generalization of our discussion of KDM-security, we formalize the
quantum KDM security and construct a protocol in this section. Previously when
we discuss the KDM security the function f and message m are classical; here
we further generalize them to include quantum states and operations.

Definition 10. A symmetric key non-adaptive quantum KDM game
naSymQKDM for function family F in the quantum random oracle model is
defined as follows:

Delegating Quantum Computation in the Quantum Random Oracle Model 57

1. The challenger chooses bit b ←r {0, 1} and samples K = {ski}N
i=1, ski ←

KeyGen(1κ).
2. The adversary and the challenger repeat the following for L times,non-

adaptively, in other words, the challenger should only sends out the answers
in step (b) after it receives all the queries:
(a) The adversary picks index i, function f ∈ F and message ρ ∈ D(R⊗M),

and sends system M to the challenger.
(b) If b = 1, the challenger returns c = Encski

(f(K, ρm)) to the adversary. If
b = 0, the challenger returns c = Encski

(0|f(K,ρm)|).
3. The adversary tries to guess b with some distinguisher D, and outputs b′.

Note that F can be quantum operations and can query the random oracle with
quantum states. The output of functions in F should be fixed-lengthed, otherwise
|f(K,m)| will not be well-defined.

The guessing advantage is defined as AdvnaSymQKDM (A , κ) = |Pr(b′ =
1|b = 1) − Pr(b′ = 1|b = 0)|.
Definition 11. A symmetric key quantum encryption scheme is nonadaptively
qKDM-CPA secure for function F if for any BQP adversary A ,

AdvnaSymQKDM
F (A , κ) = negl(κ)

8.1 Protocol Design

Protocol 7. A Quantum KDM Secure Protocol in the Quantum Random Oracle
Model:

Key Generation QKDM.KeyGen(1κ): sk ← {0, 1}κ.
Encryption QKDM.Encsk(ρ): Sample a, b ∈r {0, 1}N , where N is the length of

inputs.
Output (XaZb(ρ),KDMP.Encsk(a, b)).

Decryption QKDM.Decsk((ρ, c)): First compute a, b ← KDMP.Decsk(c), then
output XaZb(ρ)

Theorem 9. Protocol 7 is nonadaptively qKDM-CPA secure for functions in
F [poly] in the quantum random oracle model, where F [poly] is the function family
that makes at most poly(κ) queries to the quantum random oracle.

We put its proof in the full version of this paper.

9 Open Problems

One obvious open problem in our paper is to prove Conjecture 3, the qIND-
CPA security without additional requirement on κ. We believe this is true, but
we can only prove the security when κ − 4Nq = η. And another further research
direction is to base these protocols directly on the assumptions in the standard
model, for example, the existence of hash functions or symmetric key encryp-
tion schemes that are exponentially KDM secure for affine functions against a

58 J. Zhang

quantum adversary. We can also study how to optimize this protocol, and how
efficient it is compared to other protocols based on the quantum one-time pad.
One obvious route is to make use of the optimization techniques for classical
garbled circuits.

Another open question is whether this protocol is useful in other prob-
lems than Shor’s algorithm. Lots of previous works studied quantum circuits
on {Clifford,T} gate set, and our work shows {C+P,H} is also important and
worth studying. There are not many works on converting quantum circuits into
layers of C+P gates and H gates, and it’s possible that some famous quantum
algorithms which require a lot of T gates, after converted into {C+P,H} gate set,
can have small H depth. This problem is still quite open, and further research is
needed here.

What’s more, KDM security in quantum settings is an interesting problem.
This paper gives some initial study on it, but there are still a lot of open ques-
tions. Is it possible to construct quantum KDM secure protocol in the stan-
dard model? Could quantum cryptography help us design classical KDM secure
scheme?Again, further research is needed here.

This paper also gives some new ideas on constructing secure quantum encryp-
tion schemes without using trapdoor functions. Although there is some result [24]
on the limit of information-theoretically secure quantum homomorphic encryp-
tion, in our work we use the quantum random oracle and make the circuits
available to the client, the limit doesn’t hold any more. So here comes lots of
interesting problems on the possibility and impossibility of quantum computa-
tion delegation: What is the limit for non-interactive information-theoretically
secure delegation of quantum computation, where the circuit is public/private,
with/without quantum ROM? If we allow small amount of quantum/classical
communication, does it lead to something different?

Acknowledgements. The author would like to thank Prof. Adam Smith, NSF fund-
ing and anonymous reviewers.

References

1. Aaronson, S., Cojocaru, A., Gheorghiu, A., Kashefi, E.: On the implausibility of
classical client blind quantum computing. CoRR abs/1704.08482 (2017)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

3. Arrighi, P., Salvail, L.: Blind quantum computation. Int. J. Quantum Inf. 04 (2003)
4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of

symmetric encryption, January 1997
5. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence

of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6

Delegating Quantum Computation in the Quantum Random Oracle Model 59

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

7. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation.
In: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, pp. 517–526. IEEE Computer Society, Washington,
DC, USA (2009)

8. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low
T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 609–629. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 30

9. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5(6),
456–466 (2005)

10. Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform,
June 2000

11. Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for
polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53015-3 1

12. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC 1982, pp. 365–377. ACM, New
York, NY, USA (1982)

13. Lai, C.Y., Chung, K.M.: On statistically-secure quantum homomorphic encryption.
Quantum Inf. Comput. 18, 785–794 (2018)

14. Mahadev, U.: Classical homomorphic encryption for quantum circuits. CoRR
(2017)

15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

16. Okamoto, T., Tanaka, K., Uchiyama, S.: Quantum public-key cryptosystems. In:
Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 147–165. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-44598-6 9

17. Raussendorf, R.: Measurement-based quantum computation with cluster states.
Int. J. Quantum Inf. 07(06), 1053–1203 (2009)

18. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 9

19. Selinger, P.: Quantum circuits of t-depth one. Phys. Rev. A 87, 042302 (2013)
20. Shi, Y.: Quantum and classical tradeoffs. Theoret. Comput. Sci. 344(2–3), 335–345

(2005)
21. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,

Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 8

22. Yao, A.C.: How to generate and exchange secrets. In: 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pp. 162–167, October 1986. https://
doi.org/10.1109/SFCS.1986.25

23. Ouyang, Y., Tan, S.-H., Fitzsimons, J.: Quantum homomorphic encryption from
quantum codes. Phys. Rev. A 98, 042334 (2015)

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/3-540-44598-6_9
https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

60 J. Zhang

24. Yu, L., Perez-Delgado, C.A., Fitzsimons, J.: Limitations on information theoreti-
cally secure quantum homomorphic encryption. Phys. Rev. A 90, 050303 (2014)

25. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60,
2746–2751 (1999)

Tighter Proofs of CCA Security
in the Quantum Random Oracle Model

Nina Bindel1(B), Mike Hamburg2(B), Kathrin Hövelmanns3(B),
Andreas Hülsing4(B), and Edoardo Persichetti5(B)

1 University of Waterloo, Waterloo, Canada
nlbindel@uwaterloo.ca

2 Rambus, San Francisco, USA
mhamburg@rambus.com

3 Ruhr-Universität Bochum, Bochum, Germany
kathrin.hoevelmanns@ruhr-uni-bochum.de

4 Eindhoven University of Technology, Eindhoven, The Netherlands
andreas@huelsing.net

5 Florida Atlantic University, Boca Raton, USA
epersichetti@fau.edu

Abstract. Werevisit the construction of IND-CCAsecure key encapsula-
tion mechanisms (KEM) from public-key encryption schemes (PKE). We
give new, tighter security reductions for several constructions. Our main
result is an improved reduction for the security of the U �⊥-transform of
Hofheinz, Hövelmanns, and Kiltz (TCC’17) which turns OW-CPA secure
deterministic PKEs into IND-CCA secure KEMs. This result is enabled
by a new one-way to hiding (O2H) lemma which gives a tighter bound than
previousO2H lemmas in certain settings andmightbeof independent inter-
est.We extend this result also to the case of PKEswith non-zero decryption
failure probability and non-deterministic PKEs. However, we assume that
the derandomized PKE is injective with overwhelming probability.

In addition, we analyze the impact of different variations of the U �⊥-
transform discussed in the literature on the security of the final scheme.
We consider the difference between explicit (U⊥) and implicit (U �⊥) rejec-
tion, proving that security of the former implies security of the latter. We
show that the opposite direction holds if the scheme with explicit rejection
also uses key confirmation. Finally, we prove that (at least from a theo-
retic point of view) security is independent of whether the session keys are
derived from message and ciphertext (U �⊥) or just from the message (U �⊥

m).

1 Introduction

If a general-purpose quantum computer can be built, it will break most widely-
deployed public-key cryptography. The cryptographic community is busily
designing new cryptographic systems to prepare for this risk. These systems typ-
ically consist of an algebraic structure with cryptographic hardness properties,
plus a symmetric cryptography layer which transforms the algebraic structure

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 61–90, 2019.
https://doi.org/10.1007/978-3-030-36033-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_3

62 N. Bindel et al.

into a higher level primitive like a public-key encryption (PKE) scheme, a key
encapsulation mechanism (KEM), or a signature scheme. The algebraic struc-
tures underlying these so-called “post-quantum” systems have new properties,
and the quantum threat model requires changes in the way security is analyzed.
Therefore the transformations turning the algebraic structures into cryptosys-
tems have to be freshly examined.

In this work we focus on the construction of secure KEMs. In this setting the
algebraic structures usually provide a PKE from which a KEM is derived via a
generic transform. A new property of the algebraic structures used in many post-
quantum PKEs and KEMs gives them malleable ciphertexts, so they are at risk
from chosen-ciphertext attacks (CCA) [HNP+03]. The standard defenses against
CCA are variants of the Fujisaki-Okamoto (FO) transform [FO99]. Known secu-
rity proofs for the FO transform use the random oracle model (ROM) [BR93].
This is for two reasons. First, the FO transform has a circular structure–it
chooses coins for encryption according to the message being encrypted. This
leads to obstacles which we do not know how to overcome when proving security
in the standard model. In the ROM, we circumvent this by re-programming. Sec-
ond, in the ROM a reduction learns all the adversary’s queries to the random
oracle. This allows us to formalize the intuition that an adversary must have
known a challenge plaintext to extract said plaintext.

Since we are concerned with security against quantum attackers, we
need to extend these proofs to the quantum-accessible random oracle model
(QROM) [BDF+11]. This comes with two challenges for our setting. On the one
hand, in the QROM the adversary can query all inputs in superposition. Hence,
it is no longer trivial to break the circular dependency by re-programming, which
results in security bounds that do not tightly match known attacks. On the other
hand, a reduction cannot learn the adversarial queries by simple observation any-
more. The reason is that observation of a quantum state requires a measurement
which disturbs the state. Hence, more advanced techniques are required.

1.1 Our Contribution

QROM analysis of KEMs has advanced rapidly over the past several years.
The initial solutions were loose by a factor of up to q6 [TU16,HHK17], where
q is the number of times the adversary queries the random oracle. This has
improved to q2 [SXY18,JZC+18] and finally to q [HKSU18,JZM19a,JZM19c].
Some works provide tight proofs under stronger assumptions [SXY18,XY19].
Our work provides a proof of IND-CCA security for KEMs constructed from
deterministic PKEs (Theorem 2), which is tight except for a quadratic secu-
rity loss which might be impossible to avoid [JZM19b]. For KEMs constructed
from randomized PKEs our bound is still loose by a factor of up to q
(Theorem 1). In this particular case, our bound does not essentially differ from
the bound already given in [HKSU18]. In [HKSU18], the proof given is called
“semi-modular”: it is first shown that derandomization and puncturing achieve
the stronger notion that [SXY18] requires to achieve tight security, and the tight
proof of [SXY18] is then applied to the derandomized and punctured scheme. The
strategy of [HKSU18] was deliberately chosen to deal with correctness errors:

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 63

The tight proof of [SXY18] could not trivially be generalized for non-perfect
schemes in a way such that the result still would have been meaningful for most
lattice-based encryption schemes. Our work deals with correctness errors in a
modular way by introducing an additional intermediate notion (called FFC).

At the heart of our bound is a new one-way to hiding (O2H) lemma which
gives a tighter bound than previous O2H lemmas (Lemma5). This comes at
the cost of limited applicability. O2H lemmas allow to bound the difference in
the success probability of an adversary when replacing its oracle function by a
similar function. Previous lemmas lost a factor of roughly the number of the
adversary’s queries to this oracle or its square-root. Our lemma does not incur
any such loss. On the downside, our lemma only applies if the reduction has
access to both oracle functions and if the functions only differ in one position.
See Table 1 for a comparison.

Some post-quantum schemes feature an inherent probability of decryption
failure, say δ > 0. Such failures can be used in attacks, but they also complicate
security proofs. As a result, previous bounds typically contain a term q

√
δ which

is not known to be tight. However, most of the obstacles that arise in our CCA
security proof can be avoided by assuming that encryption with a particular
public key is injective (after derandomization). This is generally the case, even
for imperfectly-correct systems; see Appendix D for a rough analysis of LWE
schemes. In that case, the adversary’s advantage is limited to the probability that
it actually finds and submits a valid message that fails to decrypt. This means
that our bounds apply to deterministic but failure-prone systems like certain
earlier BIKE [ABB+19] variants1, but our result is limited by the assumption
of injectivity.

Until today several variants of the FO-transform were proposed. We con-
sider the four basic transforms U⊥, U⊥

m, U �⊥, U �⊥
m [HHK17] and, in addition, we

study U⊥
m in the presence of key confirmation. The two most notable differ-

ences reside in the use of implicit rejection (U �⊥, U �⊥
m) versus explicit rejection

(U⊥, U⊥
m), and whether the derivation of the session key should depend on the

ciphertext (U⊥
m, U �⊥

m) or not (U⊥, U �⊥). Another important decision is the use
of key confirmation which we also partially analyze. We come to the following
results. Security with implicit rejection implies security with explicit rejection
(Theorem 3). The opposite holds if the scheme with explicit rejection also
employs key confirmation (Theorem 4). Moreover, security is independent of the
decision if the session key derivation depends on the ciphertext (Theorem 5).

Notation. We will use the following notation throughout the paper.

– For two sets X,Y , we write Y X to denote the set of functions from X to Y .
– Let H : X → Y be a (classical or quantum-accessible) random oracle. Then

we denote the programming of H at x ∈ X to some y ∈ Y as H[x → y].
– Let A be an algorithm. If A has access to a classical (resp., quantum-

accessible) oracle H, we write AH and call A an oracle (resp., quantum oracle)
algorithm.

1 After this paper was submitted, the BIKE team has changed their encryption
schemes to be randomized.

64 N. Bindel et al.

2 One-way to Hiding

ROM reductions typically simulate the random oracle in order to learn the adver-
sary’s queries. In the classical ROM, the adversary cannot learn any information
about H(x) without the simulator learning both x and H(x). In the QROM
things are not so simple, because measuring or otherwise recording the queries
might collapse the adversary’s quantum state and change its behavior. However,
under certain conditions the simulator can learn the queries using “One-way to
Hiding” (O2H) techniques going back to [Unr15]. We will use the O2H techniques
from [AHU19], and introduce a novel variant that allows for tighter results.

Consider two quantum-accessible oracles G,H : X → Y . The oracles do not
need to be random. Suppose that G and H differ only on some small set S ⊂ X,
meaning that ∀x /∈ S,G(x) = H(x). Let A be an oracle algorithm that takes
an input z and makes at most q queries to G or H. Possibly A makes them in
parallel. Therefore, suppose that the query depth, i.e., the maximum number of
sequential invocations of the oracle [AHU19], is at most d ≤ q. If AG(z) behaves
differently from AH(z), then the O2H techniques give a way for the simulator
to find some x ∈ S with probability dependent on d and q.

We will use the following three O2H lemmas.

– Lemma 1 (original O2H) is the most general: the simulator needs to provide
only G or H but it has the least probability of success.

– Lemma 3 (semiclassical O2H) has a greater probability of success, but requires
more from the simulator: for each query x, the simulator must be able to
recognize whether x ∈ S, and if not it must return G(x) = H(x).

– Lemma 5 (our new “double-sided” O2H) gives the best probability of success,
but it requires the simulator to evaluate both G and H in superposition. It
also can only extract x ∈ S if S has a single element. If S has many elements,
but the simulator knows a function f such that {f(x) : x ∈ S} has a single
element, then it can instead extract that element f(x).

We summarize the three variants of O2H as shown in Table 1. In all cases,
there are two oracles H and G that differ in some set S, and the simulator
outputs x ∈ S with some probability ε. The lemma then shows an upper bound
on the difference between AH and AG as a function of ε.

Table 1. Comparison of O2H variants

Variant Lemma Ref Oracles differ Sim. must know Bound

Original Lem. 1 [AHU19] Arbitrary H or G 2d
√

ε

Semi-classical Lem. 3 [AHU19] Arbitrary S and (H\S or G\S) 2
√

dε

Double-sided Lem. 5 this work One place H and G 2
√

ε

Arbitrary joint distribution. The O2H lemmas allow (G,H, S, z) to be random
with arbitrary joint distribution. This is stronger than (G,H, S, z) being arbi-
trary fixed objects, because the probabilities in the lemma include the choice of

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 65

(G,H, S, z) in addition to A’s coins and measurements. Also, the lemmas are
still true if the adversary consults other oracles which are also drawn from a
joint distribution with (G,H, S, z).

2.1 Original O2H

We begin with the original O2H which first appeared in [Unr15]. We use the
phrasing from [AHU19] as it is more general and more consistent with our other
lemmata.

Lemma 1 (One-way to hiding; [AHU19] Theorem 3). Let G,H : X → Y be
random functions, let z be a random value, and let S ⊂ X be a random set such
that ∀x /∈ S,G(x) = H(x). (G,H, S, z) may have arbitrary joint distribution.
Furthermore, let AH be a quantum oracle algorithm which queries H with depth
at most d. Let Ev be an arbitrary classical event. Define an oracle algorithm
BH(z) as follows: Pick i

$← {1, . . . , d}. Run AH(z) until just before its ith round
of queries to H. Measure all query input registers in the computational basis,
and output the set T of measurement outcomes. Let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)],

Pguess := Pr[S ∩ T
= ∅ : T ← BH(z)].

Then

|Pleft − Pright| ≤ 2d
√

Pguess and
∣∣∣
√

Pleft − √
Pright

∣∣∣ ≤ 2d
√

Pguess.

The same result holds with BG(z) instead of BH(z) in the definition of Pguess.

From this lemma we conclude the following result for pseudo-random functions
(PRFs, see Definition 10). It intuitively states that a random oracle makes a
good PRF, even if the distinguisher is given full access to the random oracle in
addition to the PRF oracle.

Corollary 1 (PRF based on random oracle). Let H : (K × X) → Y be
a quantum-accessible random oracle. This function may be used as a quantum-
accessible PRF Fk(x) := H(k, x) with a key k

$← K. Suppose a PRF-adversary
A makes q queries to H at depth d, and any number of queries to Fk at any
depth. Then

AdvPRF
Fk

(A) ≤ 2
√

dq/|K|.
Proof. The adversary’s goal is to distinguish (Fk,H) from (F,H), where F is
an unrelated uniformly random function. This is the same as distinguishing
(F,H[(k, x) → F (x)]) from (F,H), and the set of differences between these two
H-oracles is S := {k}×X. By Lemma 1, the distinguishing advantage is at most
2d

√
Pguess, where Pguess = Pr[∃(k′, x) ∈ Q : k′ = k], for a random round Q of

parallel queries made by AF,H .

66 N. Bindel et al.

Since AF,H has no information about k, and in expectation Q contains q/d
parallel queries, we have Pguess ≤ q/(d · |K|), so

AdvPRF
Fk

(A) ≤ 2d
√

q/(d · |K|) = 2
√

dq/|K|

as claimed. �
Note that Corollary 1 is the same as [SXY18] Lemma 2.2 and [XY19] Lemma 4,
except that it takes query depth into account.

2.2 Semi-classical O2H

We now move on to semi-classical O2H. Here B is defined in terms of punctured
oracles [AHU19], which measure whether the input is in a set S as defined next.

Definition 1 (Punctured oracle). Let H : X → Y be any function, and
S ⊂ X be a set. The oracle H\S (“H punctured by S”) takes as input a value
x. It first computes whether x ∈ S into an auxiliary qubit p, and measures p.
Then it runs H(x) and returns the result. Let Find be the event that any of the
measurements of p returns 1.

The event is called Find because if the simulator chooses to, it can immedi-
ately terminate the simulation and measure the value x ∈ S which caused the
event. The oracle is called “punctured” because if Find does not occur, H\S
returns a result independent of H’s outputs on S, as shown by the following
lemma.

Lemma 2 (Puncturing is effective; [AHU19] Lemma 1). Let G,H : X → Y
be random functions, let z be a random value, and let S ⊂ X be a random set such
that ∀x /∈ S,G(x) = H(x). (G,H, S, z) may have arbitrary joint distribution. Let
AH be a quantum oracle algorithm. Let Ev be an arbitrary classical event. Then

Pr[Ev ∧ ¬Find : AH\S(z)] = Pr[Ev ∧ ¬Find : AG\S(z)].

Also, puncturing only disturbs the adversary’s state when it is likely to Find.

Lemma 3 (Semi-classical O2H; [AHU19] Theorem 1). Let G,H : X → Y
be random functions, let z be a random value, and let S ⊂ X be a random set such
that ∀x /∈ S,G(x) = H(x). (G,H, S, z) may have arbitrary joint distribution.

Let AH be a quantum oracle algorithm which queries H with depth at most
d. Let Ev be an arbitrary classical event and let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)],

Pfind := Pr[Find : AG\S(z)] Lem. 2= Pr[Find : AH\S(z)].

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 67

Then

|Pleft − Pright| ≤ 2
√

dPfind and
∣∣∣
√

Pleft − √
Pright

∣∣∣ ≤ 2
√

dPfind.

The theorem also holds with bound
√

(d + 1)Pfind for the following alternative
definitions of Pright:

Pright := Pr[Ev : AH\S(z)]

Pright := Pr[Ev ∧ ¬Find : AH\S(z)] Lem. 2= Pr[Ev ∧ ¬Find : AG\S(z)]

Pright := Pr[Ev ∨ Find : AH\S(z)] Lem. 2= Pr[Ev ∨ Find : AG\S(z)]

We might expect that if the adversary has no information about S, then Pfind

would be at most q|S|/|X|. But this is not quite true: the disturbance caused by
puncturing gives the adversary information about S. This increases A’s chances,
but only by a factor of 4, as explained next.

Lemma 4 (Search in semi-classical oracle; [AHU19] Theorem 2). Let H :
X → Y be a random function, let z be a random value, and let S ⊂ X be a
random set. (H,S, z) may have arbitrary joint distribution. Let AH be a quantum
oracle algorithm which queries H at most q times with depth at most d.

Let BH(z) and Pguess be defined as in Lemma 1. Then

Pr[Find : AH\S(z)] ≤ 4dPguess.

In particular, if for each x ∈ X, Pr[x ∈ S] ≤ ε (conditioned on z, on other
oracles A has access to, and on other outputs of H) then

Pr[Find : AH\S(z)] ≤ 4qε.

2.3 Double-sided O2H

We augment these lemmas with a new O2H lemma which achieves a tighter
bound focusing on a special case. This focus comes at the price of limited appli-
cability. Our lemma applies when the simulator can simulate both G and H. It
also requires that S is a single element; alternatively if some function f is known
such that f(S) is a single element, it can extract f(S).

Lemma 5 (Double-sided O2H). Let G,H : X → Y be random functions, let
z be a random value, and let S ⊂ X be a random set such that ∀x /∈ S,G(x) =
H(x). (G,H, S, z) may have arbitrary joint distribution. Let AH be a quantum
oracle algorithm. Let f : X → W ⊆ {0, 1}n be any function, and let f(S) denote
the image of S under f . Let Ev be an arbitrary classical event.

68 N. Bindel et al.

IND-CPA
rPKE

OW-CPA
dPKE

Thm. 1

T
OW-CPA

FFC
dPKE

IND-CCA
KEM

Thm. 2

U �⊥

δ-correct
rPKE

FFC
dPKE

Lem. 6

T

IND-CCA
KEM U⊥

IND-CCA
KEM U �⊥

IND-CCA
KEM U⊥

m

IND-CCA
KEM U �⊥

m

IND-CCA
KEM U⊥

m+keyconf
Thm. 5

Thm. 5

Thm. 3
Thm. 4

Fig. 1. Relations of our security notions using transforms T and U �⊥ (above) and
relations between the security of different types of U -constructions (below). The solid
lines show implications which are tight with respect to powers of q and/or d, and the
dashed line shows a non-tight implication. The hooked arrows indicate theorems with
ε-injectivity constraints.

We will define another quantum oracle algorithm BG,H(z). This B runs in
about the same amount of time as A, but when A queries H, B queries both G
and H, and also runs f twice. Let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)], Pextract := Pr[BG,H(z) ∈ f(S)].

If f(S) = {w∗} is a single element, then B will only return ⊥ or w∗, and
furthermore

|Pleft − Pright| ≤ 2
√

Pextract and
∣
∣∣
√

Pleft − √
Pright

∣
∣∣ ≤ 2

√
Pextract.

Proof. See AppendixB.

Note that if S = {x∗} is already a single element, then we may take f as the
identity. In this case B will return either ⊥ or x∗.

3 KEM and PKE Security Proofs

We are now ready to get to the core of our work. All the relevant security notions
are given in AppendixA. The implications are summarized in Fig. 1.

3.1 Derandomization: IND-CPA P
QROM⇒ OW-CPA T (P, G)

The T transform [HHK17] converts a rPKE P = (Keygen,Encr,Decr) to a dPKE
T (P, G) = (Keygen,Encr1,Decr) by using a hash function G : M → R, modeled
as random oracle, to choose encryption coins, where

Encr1(pk,m) := Encr(pk,m; G(m)).

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 69

The following theorem shows that if a PKE P is IND-CPA secure2, then T(P, G)
is one-way secure in the quantum-accessible random oracle model.

Theorem 1. Let P be an rPKE with messages in M and random coins in R.
Let G : M → R be a quantum-accessible random oracle. Let A be an OW-CPA
adversary against P′ := T (P, G). Suppose that A queries G at most q times with
depth at most d.

Then we can construct an IND-CPA adversary B against P, running in about
the same time and resources as A, such that

AdvOW-CPA
P′ (A) ≤ (d + 2) ·

(
AdvIND-CPA

P (B) +
8(q + 1)

|M|
)

.

Proof. See AppendixC.

Second preimages. In the traditional definition of one-way functions, the adver-
sary wins by finding any m′ where Encr(pk,m′) = c∗, whereas in our definition
(cf. Definition 7) of OW-CPA the adversary must find m∗ itself. This only matters
if there is a second preimage, and thus a decryption failure. If P is δ-correct and
ε-injective, it is easily shown that a definition allowing second preimages adds
at most min(δ, ε) to the adversary’s OW-CPA-advantage.

Hashing the public key. Many KEMs use a variant of T which sets the coins to
G(pk,m). This is a countermeasure against multi-key attacks. In this paper we
only model single-key security, so we omit pk from the hashes for brevity. The
same also applies to the other transforms later in this paper, such as U �⊥.

3.2 Deterministic P: OW-CPA P
QROM⇒ IND-CCA U �⊥(P, F,H)

Our OW-CPA to IND-CCA conversion is in the style of [JZM19d]. However, that
bound is based on the failure probability δ of a randomized encryption algorithm,
whereas ours is based on the difficulty of finding a failure without access to the
private key. This means our theorem applies to deterministic but imperfectly-
correct algorithms, such as one of the three BIKE variants, BIKE-2 [ABB+19].
So instead we use injectivity and a game where the adversary tries to find cipher-
texts which are valid but do not decrypt correctly.

Definition 2 (Valid ciphertext). Let P = (Keygen,Encr, Decr) be a dPKE.
Call a ciphertext c “valid” for a public key pk of P if there exists m such that
c = Encr(pk,m).

We introduce a new failure-finding experiment3, to capture the probability
that the adversary can find valid ciphertexts that cause a decryption failure.
2 The theorem actually only requires a weaker notion, IND-KPA-security, in which the

challenge messages are chosen at random instead of adversarially.
3 It is a stretch to even call this an “experiment”, because it may not be possible to

efficiently determine whether the adversary succeeded. In future work we hope to
force the adversary to find failing message, but this version is simpler to integrate
into our proof.

70 N. Bindel et al.

Definition 3 (Finding Failing Ciphertext). The find-failing-ciphertexts
experiment (FFC) is shown in Fig. 2. The FFC-advantage of an adversary A
is defined by

AdvFFC
P (A) := Pr[ExptFFCP (A) → 1].

ExptFFCP (A):

1 H
$← H

2 (pk, sk) ← Keygen()
3 L ← AH(pk)
4 return [∃m ∈ M, c ∈ L : Encr(pk, m) = c ∧ Decr(sk, c) �= m]

Fig. 2. FFC experiment on a dPKE P. The instantiation of H generalizes to any number
of random oracles, including zero.

The U �⊥ transform [HHK17] converts a dPKE P = (KeygenP,Encr,Decr)
into a KEM K = (Keygen,Encaps,Decaps) using a PRF F : KF × C → K and a
hash function H : M × C → K, modeled as a random oracle. The PRF is used
for implicit rejection, returning F(prfk, c) in case of an invalid ciphertext using
a secret prfk. The U �⊥ transform is defined in Fig. 3. We also describe variants
U �⊥

m, U⊥, U⊥
m of this transform from [HHK17], which make the following changes:

– On Encaps line 3 resp. Decaps line 7, the transformations U �⊥
m and U⊥

m com-
pute H(m) resp. H(m′) instead of H(m, c) resp. H(m′, c).

– On Decaps lines 4 and 6, the transformations U⊥ and U⊥
m return ⊥ instead

of F(prfk, c). These variants also don’t need prfk as part of the private key.

The transforms U⊥ and U⊥
m are said to use explicit rejection because they return

an explicit failure symbol ⊥. U �⊥ and U �⊥
m are said to use implicit rejection.

Keygen():

1 (pk, skP) ← KeygenP()

2 prfk
$← KF

3 sk ← (skP, prfk)
4 return (pk, sk)

Encaps(pk):

1 m
$← M

2 c ← Encr(pk, m)
3 K ← H(m, c)
4 return (K, c)

Decaps(sk, c):

1 parse sk = (skP, prfk)
2 m′ ← Decr(skP, c)
3 if m′ = ⊥:
4 return F(prfk, c)
5 else if Encr(pk, m′) �= c:
6 return F(prfk, c)
7 else: return H(m′, c)

Fig. 3. Transform U �⊥(P,F) := (Keygen, Encaps, Decaps).

The next theorem states that breaking the IND-CCA security of U �⊥(P,F,H)
requires either breaking the OW-CPA security of P, causing a decapsulation

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 71

failure, or breaking the PRF used for implicit rejection. In particular, we need
P to be an ε-injective dPKE as in Definition 6.

Theorem 2. Let H : M×C → K be a quantum-accessible random oracle and F :
KF ×C → K be a PRF. Let P be an ε-injective dPKE which is independent of H.
Let A be an IND-CCA adversary against the KEM U �⊥(P,F), and suppose that A
makes at most qdec decryption queries. Then we can construct three adversaries
running in about the same time and resources as A:

– an OW-CPA-adversary B1 against P
– a FFC-adversary B2 against P, returning a list of at most qdec ciphertexts
– a PRF-adversary B3 against F

such that

AdvIND-CCA
U �⊥(P) (A) ≤ 2

√
AdvOW-CPA

P (B1) + AdvFFC
P (B2) + 2 · AdvPRF

F (B3) + ε.

In the common case that F(prfk, c) is implemented as H(prfk, c) it holds that if
A makes q queries at depth d, then

AdvPRF
F (B3)

cor. 1≤ 2
√

dq/|M |.

Proof. Our proof is by a series of games. In some later games, we will define an
outcome “draw” which is distinct from a win or loss. A draw counts as halfway
between a win and a loss, as described by the adversary’s score wi:

wi := Pr[A wins: Game i] +
1
2

Pr[Draw: Game i]

=
1
2

(1 + Pr[A wins: Game i] − Pr[A loses: Game i])

Game 0 (IND-CCA). This is the original IND-CCA game against the KEM
U �⊥(P,F,H), cf. Definition 12.

Game 1 (PRF is random). Game 1 is the same as Game 0, except the sim-
ulator replaces F(prfk, ·) with a random function R

$← KC.

We construct a PRF-adversary B3 (cf. Definition 10) which replaces its calls to
F(prfk, ·) by calls to its oracle, runs A, and outputs 1 if A wins and 0 oth-
erwise. Now, by construction Pr

k
$←K

[BF(k,·) = 1
]

= Pr[A wins: Game 0] and
Pr

R
$←KC

[AR(·) = 1
]

= Pr[A wins: Game 1]. Hence,

|w1 − w0| = AdvPRF
F (A).

Game 2 (Draw on fail or non-injective pk). Let Fail be the event that
one or more of A’s decapsulation queries D(c) fails to decrypt, meaning that
c = Encr(pk,m) for some m, but Decr(sk, c)
= m. Let NonInj be the event that
Encr(pk, ·) is not injective, and let Draw := Fail∨NonInj. In Game 2 and onward,
if Draw occurs then the game continues, but at the end it is a draw instead of
the adversary winning or losing.

72 N. Bindel et al.

Let di := Pr[Draw : Game i]. Then |w2 − w1| ≤ 1
2d2. It is important to note

that the event Draw is a well-defined classical event and does not depend on H,
even though the simulator might not be able to determine efficiently whether it
occurred.

Game 3 (Reprogram H(m, c) to R(c)). Game 3 is the same as Game 2, but
the simulator reprograms H(m, c) where c = Encr(pk,m) to return R(c).

This produces the same win and draw probabilities as Game 2 as explained next.
For each m, the value H(m,Encr(pk,m)) is changed to a uniformly, indepen-
dently random value, except when the game is already a draw:

– It is uniformly random because R is uniformly random.
– It is independent of H(m′, c) for m′
= m because Encr(pk, ·) is injective or

else the game is a draw.
– H calls R(c) only for valid ciphertexts c = Encr(pk,m′). On the other hand,

the decapsulation oracle only calls R(c′) for rejected ciphertexts c′, i.e. ones
where c′
= Encr(pk,Decr(sk, c′)). If a valid ciphertext has been rejected and
passed to R in this way, then Draw has occurred and the return value of R
does not affect wi or di.

Therefore w3 = w2 and d3 = d2.

Game 4 (Decapsulation oracle returns R(c)). Game 4 is the same as Game
3, but the simulated decapsulation oracle simply returns R(c) for all ciphertexts
other than the challenge (for which it still returns ⊥).

In fact, the decapsulation oracle was already doing this in Game 3: The original
decapsulation returns either H(m, c) with c = Encr(pk,m) or F(prfk, c), but
both of those have been reprogrammed to return R(c). Therefore w4 = w3 and
d4 = d3. As of this game, the simulator does not use the private key anymore.

Bound draw. We now want to upper bound the draw probability. Let B2 be
the algorithm which, given a public key pk, simulates Game 4 for A and outputs
a list L of all of A’s decapsulation queries. Then B2 is a FFC-adversary against P
which runs in about the same time as A and succeeds whenever a draw occurred
during the game. Consequently,

d2 = d3 = d4 ≤ AdvFFC
P (B2) + ε.

Game 5 (Change shared secret). In Game 5, the shared secret is changed to
a uniformly random value r. If b = 1, then for all m such that Encr(pk,m) = c∗,
the oracle H(m) is reprogrammed to return r. If b = 0, then H is not repro-
grammed.

If Encr(pk, ·) is injective, then this is the same distribution as Game 4, and
otherwise the game is a draw. Therefore w5 = w4.

It remains to bound A’s advantage in Game 5. The simulation still runs in
about the same time as A. Suppose at first that Encr(pk, ·) is injective, so that

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 73

the oracle H is reprogrammed only at m∗. Then the b = 0 and b = 1 cases are
now distinguished by a single return value from the H oracle. Hence, we can
consider two oracles H and H ′ := H[m∗ → r] as required by Lemma 5. Then
Lemma 5, states that there is an algorithm B1, running in about the same time
as A, such that for all H:

|Pr[Win : b = 0] − Pr[Lose : b = 1]| =
∣∣∣∣

Pr[A → 0 ∧ ¬Draw : b = 0]
−Pr[A → 0 ∧ ¬Draw : b = 1]

∣∣∣∣

=
∣
∣∣∣

Pr[AH → 0 ∧ ¬Draw]
−Pr[AH′ → 0 ∧ ¬Draw]

∣
∣∣∣

≤ 2
√

Pr[B1(pk, c) → m∗].

The same inequality holds if Encr(pk, ·) is not injective, for then the game is
always a draw and the left-hand side is zero. (The algorithm B1 still runs with
the same efficiency in that case; it just might not return m∗.) The inequality
also holds in expectation over H by Jensen’s inequality:

E
[
2
√

Pr[B1(pk, c) → m∗] : H
$← K(M×C)

]

≤ 2
√

E
[
Pr[B1(pk, c) → m∗] : H

$← K(M×C)
]

= 2
√

AdvOW-CPA
P (B1)

so that

|Pr[Win : b = 0] − Pr[Lose : b = 1]| ≤ 2
√

AdvOW-CPA
P (B1).

Likewise, for the same adversary B1,

|Pr[Win : b = 1] − Pr[Lose : b = 0]| ≤ 2
√

AdvOW-CPA
P (B1).

Since b is either 0 or 1 each with probability 1
2 , we have by the triangle inequality:

|Pr[Win] − Pr[Lose]| ≤ 2
√

AdvOW-CPA
P (B1)

so that
∣∣w5 − 1

2

∣∣ ≤
√

AdvOW-CPA
P (B1).

Summing up the differences in the previous games, we have
∣∣∣
∣w0 − 1

2

∣∣∣
∣ ≤

√
AdvOW-CPA

P (B1) +
1
2
AdvFFC

P (B2) +
ε

2
+ AdvPRF

F (B3)

and finally

AdvIND-CCA
U �⊥(P) (A) ≤ 2

√
AdvOW-CPA

P (B1) + 2 · AdvPRF
F (B3) + AdvFFC

P (B2) + ε.

This completes the proof of Theorem 2. �

74 N. Bindel et al.

Tightness. This bound is essentially tight, since breaking the one-wayness of P
and finding decryption failures are both known to result in attacks. Breaking the
PRF harms security if and only if implicit rejection is more secure than explicit
rejection. For a correct P the bound boils down to the first two terms of the
sum. The square-root loss arises from OW being a weaker security notion than
IND [MW18], i.e., harder to break, and recent results [JZM19b] suggest that the
square-root loss might be unavoidable in the quantum setting.

3.3 Decryption Failures

When the dPKE is constructed by derandomizing an rPKE, we can also bound
the FFC advantage.

Lemma 6. Let P = (Keygen,Encr,Decr) be a δ-correct rPKE with messages
in M and randomness in R. Let G : M → R be a random oracle, so that
T (P, G) := (Keygen,Encr1,Decr) is a derandomized version of P. Suppose that
T (P, G) is ε-injective. Let A be a FFC adversary against T (P, G) which makes
at most q queries at depth d to G and returns a list of at most qdec ciphertexts.
Then

AdvFFC
T (P,G)(A) ≤ ((4d + 1)δ +

√
3ε) · (q + qdec) + ε.

Proof. See AppendixE.

Note that if ε is negligible, and if the adversary can recognize which ciphertexts
will fail, then this is a Grover bound.

4 Explicit Rejection and Key Confirmation

We now turn to systems with explicit rejection or key confirmation. The next the-
orem shows that the transform U⊥ (with explicit rejection) never yields KEMs
that are more secure than KEMs constructed via U �⊥ (with implicit rejection).

Theorem 3 (Explicit → implicit). Let P be a dPKE. Let A be an IND-CCA
adversary against U �⊥(P,F,H). Then there is an IND-CCA adversary B against
U⊥(P,H), running in about the same time and resources as B, such that

AdvIND-CCA
U �⊥(P,F,H)(A) = AdvIND-CCA

U⊥(P,H)(B).

Proof. The only difference between U⊥(P,H) and U �⊥(P,F,H) is that where
the former would reject a ciphertext c by returning ⊥, the latter instead returns
F(prfk, c). So the adversary B can simply choose a random PRF key prfk, run A,
and output A’s result. B forwards all of A’s queries to its oracles and returns the
responses with the only difference that in case the decapsulation oracle returns
⊥, B returns F(prfk, c). The algorithm B perfectly simulates the IND-CCA game
for U �⊥(P,F,H) and hence A succeeds with the same success probability as in
the original game. �

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 75

On the other hand, explicit rejection is secure if key confirmation is used. Key
confirmation refers to adding a hash of the message to the cipher text. Let
τ be the number of bits desired for the key-confirmation tag. For a PKE P =
(Keygen,Encr,Decr) define the transform C(P,Ht, τ) := (Keygen,Encr1,Decr1)
using a random oracle Ht : M → {0, 1}τ as in Fig. 4.

Encr1(pk, m):

1 c ← Encr(pk, m)
2 t ← Ht(m)
3 return (c, t)

Decr1(sk, (c, t)):

1 m′ ← Decr(skP, c)
2 if Ht(m

′) �= t:
3 return ⊥
4 return m′

Fig. 4. Transform C(P, Ht, τ) := (Keygen, Encr1, Decr1).

Theorem 4 (Implicit → explicit with key confirmation). Let P be an
ε-injective dPKE. Consider the KEM K1 := U⊥

m(C(P,Ht, τ),Hs) obtained from
P applying the C-transform with random oracle Ht : M → {0, 1}τ and the
U⊥

m-transform with independent random oracle Hs : M → {0, 1}ς . Let K2 :=
U �⊥

m(P,F,H) be the KEM obtained from P applying the U �⊥
m-transform with ran-

dom oracle H : M → {0, 1}ς+τ .
If A is an IND-CCA-adversary against K1 which makes qdec decapsulation

queries, then it is also an IND-CCA-adversary against K2 and there is a PRF-
adversary B against F which uses about the same time and resources as A, such
that:

AdvIND-CCA
K1

(A) ≤ 2 · AdvIND-CCA
K2

(A) +
qdec
2τ−1

+ 2 · AdvPRF
F (B) + 2ε.

Proof. Deferred to AppendixF.

Finally, we can show that hashing m is equivalent to hashing (m, c) in the next
theorem.

Theorem 5 (Um ↔ U). Let P be a dPKE. Let K1 = U⊥(P,H1) and K2 =
U⊥

m(P,H2). Then K1 is IND-CCA secure if and only if K2 is IND-CCA secure. In
other words, if there is an adversary A against one, then there is an adversary B
against the other, running in about the same time and with the same advantage.

The same is true for U �⊥ and U �⊥
m.

Proof. This is a simple indifferentiability argument. In both the encapsulation
and decapsulation functions, the IND-CCA experiment against K1 only calls
H1(m, c) when c = Encr(pk,m). So to simulate the K1-experiment playing in
an IND-CCA experiment against K2 (with oracle H2 : M → K), sample fresh
random oracle H

$← K(M,C) and set

H1(m, c) :=
{

H2(m), if c = Encr(pk,m),
H(m, c), otherwise.

76 N. Bindel et al.

This exactly simulates the IND-CCA experiment against K1. In the other direc-
tion, to simulate the IND-CCA experiment against K2 it suffices to redirect H2(m)
to H1(m,Encr(pk,m)).

The same technique works for U �⊥ and U �⊥
m. It also works for security

notions other than IND-CCA, such as OW-CCA, OW-qPVCA, etc. (see for exam-
ple [JZC+18]). �

Acknowledgements. Part of this work was done while the authors were participating
in the 2019 Oxford Post-Quantum Cryptography Workshop. Special thanks to Daniel
J. Bernstein, Edward Eaton and Mark Zhandry for helpful discussions; and to the
anonymous TCC reviewers for their helpful comments and corrections.

This work was supported by the European Union PROMETHEUS project (Horizon
2020 Research and Innovation Program, grant 780701) and the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
(EXC 2092 CASA, 390781972).

References

[ABB+19] Aragon, N., et al.: BIKE: bit flipping key encapsulation (2019). https://
bikesuite.org

[AHU19] Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using
semi-classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part II. LNCS, vol. 11693, pp. 269–295. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 10

[BDF+11] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C.,
Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25385-0 3

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, New
York (1993). https://doi.org/10.1145/168588.168596

[FO99] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1 34

[HHK17] Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part
I. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2 12

https://bikesuite.org
https://bikesuite.org
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 77

[HKSU18] Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. Cryptology ePrint Archive,
Report 2018/928 (2018). https://eprint.iacr.org/2018/928

[HNP+03] Howgrave-Graham, N., et al.: The impact of decryption failures on the
security of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 226–246. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 14

[JZC+18] Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key
encapsulation mechanism in the quantum random oracle model, revisited.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96878-0 4

[JZM19a] Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit
rejection in the quantum random oracle model. In: Lin, D., Sako, K. (eds.)
PKC 2019, Part II. LNCS, vol. 11443, pp. 618–645. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17259-6 21

[JZM19b] Jiang, H., Zhang, Z., Ma, Z.: On the non-tightness of measurement-based
reductions for key encapsulation mechanism in the quantum random oracle
model. Cryptology ePrint Archive, Report 2019/494 (2019). https://eprint.
iacr.org/2019/494

[JZM19c] Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsu-
lation mechanism in the quantum random oracle model. In: Ding, J., Stein-
wandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 227–248. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 13

[JZM19d] Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsu-
lation mechanism in the quantum random oracle model. Cryptology ePrint
Archive, Report 2019/134 (2019). https://eprint.iacr.org/2019/134

[MW18] Micciancio, D., Walter, M.: On the bit security of cryptographic primitives.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol.
10820, pp. 3–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 1

[NC00] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge (2000)

[SXY18] Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation
mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 520–551.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 17

[TU16] Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto
and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II.
LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 8

https://eprint.iacr.org/2018/928
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-030-17259-6_21
https://eprint.iacr.org/2019/494
https://eprint.iacr.org/2019/494
https://doi.org/10.1007/978-3-030-25510-7_13
https://eprint.iacr.org/2019/134
https://doi.org/10.1007/978-3-319-78381-9_1
https://doi.org/10.1007/978-3-319-78381-9_1
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8

78 N. Bindel et al.

[Unr15] Unruh, D.: Revocable quantum timed-release encryption. J.
ACM 62(6), 49:1–49:76 (2015). https://doi.org/10.1145/2817206.
http://doi.acm.org/10.1145/2817206

[XY19] Xagawa, K., Yamakawa, T.: (Tightly) QCCA-secure key-encapsulation
mechanism in the quantum random oracle model. In: Ding, J., Steinwandt,
R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 249–268. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25510-7 14

[Zha19] Zhandry, M.: How to record quantum queries, and applications to quantum
indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part II. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7 9

A Security Notions and Definitions

In this section we recall the definition of KEMs and PKEs. Additionally, we recall
the respective security notions that are needed in this paper. We begin with a
definition of random oracles following [BDF+11] and summarized in Fig. 5.

Classical random oracle OH(x):

1. qH ← qH + 1
2. return H(x)

Quantum random oracle OH(
∑

x,t,z ψx,t,z |x, t, z〉):

1. qH ← qH + 1
2. return

∑
x,t,z ψx,t,z |x, t ⊕ H(x), z〉

Fig. 5. Definition of the classical and quantum random oracle

Definition 4 (Public-Key Encryption Schemes). A randomized public-key
encryption scheme (rPKE) is defined over a finite message space M, a ciphertext
space C, a secret key space SK and a public key space PK. It consists of a triple
of algorithms P = (Keygen,Encr, Decr) defined as follows.

– Keygen() → (pk, sk) is a randomized algorithm that returns a secret key sk ∈
SK and a public key pk ∈ PK.

– Encr(pk,m) → c is a randomized algorithm that takes as input a public key
pk and a message m ∈ M, and outputs a ciphertext c ∈ C.

– Decr(sk, c) → {m′,⊥} is a deterministic algorithm that takes as input a secret
key sk ∈ SK and a ciphertext c ∈ C and returns either a message m′ ∈ M or
a failure symbol ⊥ /∈ M.

A deterministic public-key encryption scheme (dPKE) is defined the same way,
except that Encr is a deterministic algorithm.

https://doi.org/10.1145/2817206
http://doi.acm.org/10.1145/2817206
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 79

Definition 5 (Correctness and failure probability of PKEs). A PKE P =
(Keygen,Encr,Decr) is δ-correct if

E
[

max
m∈M

Pr[Decr(sk,Encr(pk,m))
= m] : (pk, sk) ← Keygen()
]

≤ δ.

We call δ the decryption failure probability of P. We say P is correct if δ = 0.

Note that this definition works for a deterministic or randomized PKE, but for
a deterministic PKE the term maxm∈M Pr[Decr(sk,Encr(pk,m)) is either 0 or
1 for each keypair.

Definition 6 (Injectivity of PKEs). A dPKE P = (Keygen,Encr,Decr) is
ε-injective if

Pr
[
Encr(pk,m) is not injective : (pk, sk) ← Keygen(),H $← H

]
≤ ε.

We say P is injective if ε = 0. We say that an rPKE is injective if for all public
keys pk, all m
= m′ and all coins r, r′, we have Encr(pk,m, r)
= Encr(pk,m′, r′).

Definition 7 (OW-CPA Advantage). Let P = (Keygen,Encr,Decr) be a dPKE
or rPKE. The one-way under chosen-plaintext attacks (OW-CPA) experiment is
shown in Fig. 6. The OW-CPA-advantage of an adversary A is defined as

AdvOW-CPA
P (A) := Pr[ExptOW-CPA

P (A) → 1].

Note that some papers, e.g., [JZM19c], define OW-CPA-advantage this way, and
some, e.g., [HHK17], instead use the looser condition that Encr(pk,m′) = c∗,
particularly if Encr is deterministic. We use the definition in Fig. 6 because it is
more convenient for our proofs of Theorems 1 and 2.

Definition 8 (IND-CPA Advantage). Let P = (Keygen,Encr, Decr) be an
rPKE. The indistinguishability under chosen-plaintext attacks (IND-CPA) exper-
iment is shown in Fig. 6. The IND-CPA-advantage of an adversary A = (A1,A2)
is defined as

AdvIND-CPA
P (A) := 2

∣
∣∣∣Pr[ExptIND-CPA

P (A) → 1] − 1
2

∣
∣∣∣.

Note that IND-CPA is unachievable for dPKEs, because A can just test which
message encrypts to c∗.

A weakening of IND-CPA is IND-KPA where the challenge messages are chosen
by the experiment.

Definition 9 (IND-KPA Advantage). Let P = (Keygen,Encr, Decr) be an
rPKE. The indistinguishability under known-plaintext attack (IND-KPA) experi-
ment is shown in Fig. 6. The IND-KPA-advantage of an adversary A is defined as

AdvIND-KPA
P (A) := 2

∣∣
∣∣Pr[ExptIND-KPA

P (A) → 1] − 1
2

∣∣
∣∣.

80 N. Bindel et al.

ExptOW-CPA
P (A):

1 H
$← H

2 (pk, sk) ← Keygen()

3 m∗ $← M
4 c∗ ← Encr(pk, m∗)
5 m′ ← AH(pk, c∗)
6 return [m∗ = m′]

ExptIND-CPA
P (A):

1 H
$← H

2 (pk, sk) ← Keygen()
3 (st, m0, m1) ← AH

1 (pk)

4 b
$← {0, 1}

5 c∗ ← Encr(pk, m∗
b)

6 b′ ← AH
2 (pk, m0, m1, c

∗, st)
7 return [b = b′]

ExptIND-KPA
P (A):

1 H
$← H

2 (pk, sk) ← Keygen()
3 m0, m1 ← M
4 b

$← {0, 1}
5 c∗ ← Encr(pk, m∗

b)
6 b′ ← AH(pk, m0, m1, c

∗)
7 return [b = b′]

Fig. 6. OW-CPA, IND-CPA, and IND-KPA of a PKE P. The instantiation of H gener-
alizes to any number of random oracles, including zero.

Clearly IND-CPA ⇒ IND-KPA as any IND-KPA adversary can be used to break
IND-CPA using it as A2 and simulating A1 by just sampling random messages.

Definition 10 (PRF Advantage). Let F : KF × X → Y be a pseudorandom
function (PRF). We define the PRF-advantage of an adversary A as

AdvPRF
F (A) =

∣∣∣∣∣
Pr

k
$←K

[
AF(k,·) = 1

]
− Pr

R
$←Y X

[
AR(·) = 1

]
∣∣∣∣∣
.

Definition 11 (Key Encapsulation Mechanism). A KEM K defined over
the message space M, the public key space PK, the secret key space SK, and
the key space K, is a triple of algorithms K = (Keygen,Encaps, Decaps) defined
as follows.

– Keygen() → (pk, sk) is a randomized algorithm that returns a public key
pk ∈ PK and a secret key sk ∈ SK.

– Encaps(pk) → (c, κ) is a randomized algorithm that takes as input a public
key pk and outputs a ciphertext c as well as a key κ ∈ K.

– Decaps(sk, c) → κ or ⊥ is a deterministic algorithm that takes as input a
secret key sk ∈ SK and a ciphertext c and returns a key κ ∈ K or a failure
symbol ⊥ /∈ K.

As before, we use H to denote the space of functions from which the random
hash function is randomly sampled if a proof for K is being given in the ROM.

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 81

Definition 12 (IND-CCA Advantage). Let K be a KEM. The security exper-
iment ExptIND-CCA

K (A) is defined in Fig. 7 for an adversary A against K, given
access to a (quantum-accessible) random oracle H and a classical decapsulation
oracle D.

We define the advantage of a classical (resp., quantum) adversary A against
a KEM K in the classical (resp., quantum-accessible) random oracle model as

AdvIND-CCA
K (A) =

∣∣
∣∣Pr

[
ExptIND-CCA

K (A) = 1
]

− 1
2

∣∣
∣∣ .

ExptIND-CCA
K (A):

1 H
$← H

2 (pk, sk) ← Keygen()
3 (c∗, k∗

0) ← Encaps(pk)

4 k∗
1

$← K
5 b

$← {0, 1}
6 b′ ← AH,D(pk, c∗, k∗

b)
7 return [b = b′]

Classical decapsulation oracle D(c):

1 if c = c∗: return ⊥
2 return Decaps(sk, c)

Fig. 7. IND-CCA security experiment in the (Q)ROM against an adversary A

B Proof of Lemma5

Lemma 5 (Double-sided O2H). Let G,H : X → Y be random functions, let
z be a random value, and let S ⊂ X be a random set such that ∀x /∈ S,G(x) =
H(x). (G,H, S, z) may have arbitrary joint distribution. Let AH be a quantum
oracle algorithm. Let f : X → W ⊆ {0, 1}n be any function, and let f(S) denote
the image of S under f . Let Ev be an arbitrary classical event.

We will define another quantum oracle algorithm BG,H(z). This B runs in
about the same amount of time as A, but when A queries H, B queries both G
and H, and also runs f twice. Let

Pleft := Pr[Ev : AH(z)], Pright := Pr[Ev : AG(z)], Pextract := Pr[BG,H(z) ∈ f(S)].

If f(S) = {w∗} is a single element, then B will only return ⊥ or w∗, and
furthermore

|Pleft − Pright| ≤ 2
√

Pextract and
∣∣∣
√

Pleft − √
Pright

∣∣∣ ≤ 2
√

Pextract.

Proof. The outline of our proof is to use the compressed oracle framework
from [Zha19] to instantiate a new random oracle B : W → {0, 1}. On query
x, the simulator returns H(x) if B(f(x)) = 0, or G(x) if B(f(x)) = 1. The
only value of B(z) that affects the result is b := B(w∗), so at the end of the

82 N. Bindel et al.

computation the compressed oracle table for B must be either the empty table
or {w∗ → b}. Our proof quantizes and simplifies this outline.

To begin, suppose that G and H are fixed and A is unitary. Consider an
algorithm BH,G

0 which runs AH and AG in superposition, with an additional
bit b signifying which oracle is being used. Then if AG behaves differently from
AH , the state of A will become entangled with b. We will use |b〉 = |+〉 :=
(|0〉 + |1〉)/√2 to signify that A is using H, and |b〉 = |-〉 := (|0〉 − |1〉)/√2 to
signify that A is using G. That is:

BH,G
0 :=

AH ⊗ |+〉 + AG ⊗ |-〉√
2

.

This B0 can be implemented as A with only the oracle queries changed. To do
this, let b start in the state (|+〉 + |-〉)/√2 = |0〉. When A queries the oracle, B0

implements the following map on |x, y, b〉:
U(|x, y, +〉) := |x, y ⊕ H(x), +〉 ,

U(|x, y, -〉) := |x, y ⊕ G(x), -〉 .

This is the same as a conditional evaluation map which queries H if b = 0 and
G if b = 1, with a Hadamard transform before and after.

Let ψH resp. ψG be the final states of AH resp. AG. The final state of BH,G
0 is

ψH ⊗ |+〉 + ψG ⊗ |-〉√
2

=
1
2

·
(

(|ψH〉 + |ψG〉) ⊗ |0〉
+(|ψH〉 − |ψG〉) ⊗ |1〉

)
.

Suppose we measure b in the computational basis. This commutes with the
final measurement of A’s state. Then, we will measure 1 with probability ε :=
‖|ψH〉 − |ψG〉‖2/4, and hence,

‖|ψH〉 − |ψG〉‖ = 2
√

ε.

This 2
√

ε is the claimed probability bound, but we still need a way to extract w∗.
The full algorithm BH,G is the same as B0, but with a different final measurement
and another auxiliary register w ∈ {0, 1}n (i.e. a register that can represent
elements of w). The w register is initialized to 0.

We will ensure that except during queries, (b, w) will always be in the state
(0, 0) or (1, w∗). More formally, let Tw operate on the b and w registers by
Tw(|b, w〉) := |b, w ⊕ (b · w∗)〉. Therefore Tw swaps (1, 0) with (1, w∗). We will
ensure that if at some step in the computation the state of BH,G

0 is ψ, then
during the same step the state of BH,G is Tw(ψ ⊗ |0〉).

Since BH,G
0 replaces the oracle queries with U , BH,G should replace them

with Uw := Tw ◦ U ◦ T †
w. (This gives the desired result because Tw commutes

with all the steps of A except for the oracle queries.) To do this, let

Tf (|x, y, b, w〉) := |x, y, b, w ⊕ (b · f(x))〉 .

Then BH,G replaces A’s oracle queries with

Uf := Tf ◦ U ◦ T †
f .

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 83

In fact, Uf = Uw. On the subspace where x ∈ S, we have f(x) = w∗ by assump-
tion. Therefore Tf = Tw and Uf = Uw. On the orthogonal subspace where x /∈ S,
we have G(x) = H(x), so the operation U does not depend on b or w. Therefore
on that subspace, U commutes with Tf and Tw, so that Uf = U = Uw. In sum,
Uf = Uw is an efficient implementation of the oracle by BH,G.

When A completes, BH,G measures (b, w) in the computational basis. With
probability ε it measures (1, w∗), in which case it outputs w∗. Otherwise it
measures (0, 0), in which case it outputs ⊥.

The event Ev is classical and well-defined. Therefore whether it occurred is a
binary measurement on the final state of A as a density operator. By [AHU19]
Lemmas 3 and 4,

∣∣Pr[Ev : AH] − Pr[Ev : AG]
∣∣ ≤ ‖|ψ0〉 − |ψ1〉‖ ≤ 2

√
Pr[BH,G → w∗]

and likewise
∣∣∣∣

√
Pr[Ev : AH] −

√
Pr[Ev : AG]

∣∣∣∣ ≤ ‖|ψ0〉 − |ψ1〉‖ ≤ 2
√

Pr[BH,G → w∗].

This completes the proof for unitary adversaries A with a fixed H and G.
For non-unitary adversaries and for random distributions of H,G, we instead

end in a mixture of states Ψ0 resp. Ψ1, for which Euclidean distance is not appro-
priate but the Bures distance [NC00] is. By monotonicity and joint concavity of
fidelity (exactly as in [AHU19] Lemma 6 and 9), the same bound holds for the
Bures distance:

∣∣Pr[Ev : AH] − Pr[Ev : AG]
∣∣ ≤ B(Ψ0, Ψ1) ≤ 2

√
Pr[BH,G → w∗]

and likewise
∣∣
∣∣

√
Pr[Ev : AH] −

√
Pr[Ev : AG]

∣∣
∣∣ ≤ B(Ψ0, Ψ1) ≤ 2

√
Pr[BH,G → w∗].

This completes the proof in the general case. �

C Proof of Theorem1

Theorem 1. Let P be an rPKE with messages in M and random coins in R.
Let G : M → R be a quantum-accessible random oracle. Let A be an OW-CPA
adversary against P′ := T (P, G). Suppose that A queries G at most q times with
depth at most d.

Then we can construct an IND-CPA adversary B against P, running in about
the same time and resources as A, such that

AdvOW-CPA
P′ (A) ≤ (d + 2) ·

(
AdvIND-CPA

P (B) +
8(q + 1)

|M|
)

.

84 N. Bindel et al.

Proof. Let A1 be the same as A, except that at the end after choosing an output
m, it computes and discards G(m). Therefore it makes at most q + 1 queries at
depth at most d + 1. This is a formality so that returning the correct m will
count as a Find (cf. Definition 1) later in the proof. Clearly the two algorithms
A and A1 have the same OW-CPA-advantage against P′.

We actually show a slightly stronger result, constructing an IND-KPA adver-
sary B. The IND-KPA adversary B (cf. Definition 9) is given the tuple

(pk,m0,m1, c) where c = Encr(pk,mb; r).

It wants to determine whether b = 0 or b = 1. The algorithm B creates a fresh
random oracle G and runs

AG\{m0,m1}
1 (pk, c).

Suppose Find occurs, i.e., a query x ∈ {m0,m1} was asked by A to its oracle
G. Then B measures whether the query x was m0 or m1, and returns the corre-
sponding b. If Find does not occur, or if Find occurs but both m0 and m1 were
queried, then B guesses b at random.

Let G′ be the oracle such that G′(mb) = r gives the encryption coins used to
encrypt mb, but G′(m) = G(m) for all other messages m. G′ is unknown to B,
but we can still analyze A’s behavior when run with G′ instead of G.

By construction, AG′\{m0,m1}
1 cannot return mb without causing Find. Hence,

√
AdvOW-CPA

P′ (A) =
√

Pr[AG′ → mb]

=
∣∣∣
∣

√
Pr

[AG′
1 → mb

]
∣∣∣
∣ −

√

Pr
[
AG′\{m0,m1}

1 → mb ∧ ¬Find
]

︸ ︷︷ ︸
= 0

Lem. 3≤
√

(d + 2) · Pr
[
Find : AG′\{m0,m1}

1

]
.

Squaring both sides,

AdvOW-CPA
P′ (A) ≤ (d + 2) · Pr

[
Find : AG′\{m0,m1}

1

]

Lem. 2= (d + 2) · Pr
[
Find : AG\{m0,m1}

1

]

= (d + 2) · Pr [Find : B].

Now decompose Find as Findb ∨ Find¬b, where the former event means that Find
occurs and mb is measured, and latter means that Find occurs and m¬b is mea-
sured. They can both occur if A makes multiple queries simultaneously, but
AdvIND-KPA

P (B) = |Pr[Findb] − Pr[Find¬b]| regardless.
Moreover, since B measures m whenever Find occurs, we can view

G\{m0,m1} as G′′\{m¬b} := (G\{mb})\{m¬b}. Since A has no information
about m¬b except from puncturing, it holds for any m that

Pr
[
m ∈ {m¬b} : AG′′]

= 1/|M| =: ε.

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 85

By (the second statement in) Lemma 4, we have

Pr[Find¬b : B] ≤ 4(q + 1)ε =
4(q + 1)

|M| .

Hence,

AdvIND-KPA
P′ (B) = |Pr [Findb : B] − Pr [Find¬b:B]|

≥ Pr [Find : B] − 2 Pr [Find¬b : B]
≥ Pr [Find : B] − 8(q + 1)/|M|.

Taking into account that AdvIND-KPA
P (B) ≤ AdvIND-CPA

P (B) and combining these
results gives

AdvOW-CPA
P′ (A) ≤ (d + 2) ·

(
AdvIND-CPA

P (B) +
8(q + 1)

|M|
)

as claimed. �

IND vs. OW. Our B is a distinguishing adversary, not a one-way adversary. The
reason is that A can check whether a given m is the challenge message, but
if P is semantically secure then B cannot check this. Instead B would have to
pick a random query to measure, which still works using Lemma 1, but with an
additional factor of q tightness loss. That is, the one-way problem is potentially
harder for a randomized encryption scheme than for a deterministic one. The
authors discussed using a new “one-way with confirmation oracle” security game
to more tightly capture the OW vs. IND tradeoff, but decided that it is simpler
to just reduce to IND-CPA.

We also note that ordinarily distinguishing adversaries are much harder to
amplify than one-way adversaries, but B is constructed to either output with
relative certainty if Find, or to fail and guess at random. This means that its
advantage will still be high in the Micciancio-Walter notion of cryptographic
advantage [MW18]. It is likely that the 8(q + 1)/|M| could be reduced to a
4(q + 1)/|M| without this requirement.

D Why Encryption Is Usually Injective for LWE

Here we outline why we expect EncrG(pk, ·) to be an injective function for the
overwhelming majority of public keys pk in a derandomized PKE based on Learn-
ing with Errors (LWE). Consider a typical LWE PKE, where the public key has
the form (A,S = sA + e) where s and e are small of dimension n, and cipher-
texts have the form (As′ + e′, �Xs′ + e′ + encode(m)�). Encryption will fail to
be injective for some G if there are (s′

0, e
′
0) = G(m0) and (s′

1, e
′
1) = G(m1) such

that

As′
0+e′

0 = As′
1+e′

1 and �Xs′
0 + e′

0 + encode(m0)� = �Xs′
1 + e′

1 + encode(m1)� .

86 N. Bindel et al.

For correctness, the rounded component is always larger than the message space,
and is generally larger than |M |2. The unrounded component has size at least
qn which is larger still. The function (s′

0, e
′
0) → As′

0 + e′
0 is almost a universal

hash unless s′
0 has large nullity, which is highly unlikely for any secure PKE.

So the probability of collision with fewer than |M |2 message pairs is not much
bigger than q−n, which is negligible.

E Proof of Lemma6

To prove Lemma 6, we first show a result about Bernoulli variables.

Lemma 7. Let {ei : 1 ≤ i ≤ n} be a collection of n independent Bernoulli
variables. Let δ := max Pr[ei], and for each integer j let pj := Pr [

∑n
i=1 ei = j].

Then p1 ≤
√

3p0p2 + δ2 ≤ √
3p2 + δ.

Proof. Let εi := Pr[ei = 1], and without loss of generality let

δ = ε1 ≥ ε2 ≥ . . . ≥ εn

be given in descending order. Then

p0 =
n∏

i=1

(1 − εi), p1 = p0 ·
(

n∑

i=1

εi

1 − εi

)

, p2 = p0 ·
⎛

⎝
∑

i>j

εiεj

(1 − εi)(1 − εj)

⎞

⎠

so that

p21 − 3p0p2 = p20 ·
⎛

⎝
n∑

i,j=1

εiεj

(1 − εi)(1 − εj)
− 3

∑

i>j

εiεj

(1 − εi)(1 − εj)

⎞

⎠

= p20 ·
⎛

⎝
n∑

i=1

ε2i
(1 − εi)2

−
∑

i>j

εiεj

(1 − εi)(1 − εj)

⎞

⎠

≥ p20 ·
⎛

⎝
n∑

i=1

ε2i
(1 − εi)2

−
∑

i=j+1

εiεj

(1 − εi)(1 − εj)

⎞

⎠

≥ p20 ·
(

n∑

i=1

ε2i
(1 − εi)2

−
n∑

i=2

ε2i
(1 − εi)2

)

= p20 · ε21
(1 − ε1)2

≤ δ2.

Hence, p21 − 3p0p2 ≤ δ2 and p1 ≤
√

3p0p2 + δ2 as claimed. �
We are now ready to prove Lemma 6.

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 87

Lemma 6. Let P = (Keygen,Encr,Decr) be a δ-correct rPKE with messages
in M and randomness in R. Let G : M → R be a random oracle, so that
T (P, G) := (Keygen,Encr1,Decr) is a derandomized version of P. Suppose that
T (P, G) is ε-injective. Let A be a FFC adversary against T (P, G) which makes
at most q queries at depth d to G and returns a list of at most qdec ciphertexts.
Then

AdvFFC
T (P,G)(A) ≤ ((4d + 1)δ +

√
3ε) · (q + qdec) + ε.

Proof. Essentially, the idea is at follows: the adversary gets an advantage of
about 4dqδ from querying G in search of failing ciphertexts, and at most qdec(δ+
3
√

ε) from guessing blindly. The latter term comes from considering ways that
some blind guess could be a failing ciphertext: if it is the encryption of one
message, then δ is large, and if it is possibly the encryption of more than one
message (e.g., as a general “encryption failed” output), then ε is large. We will
formalize this in what follows.

Generate a keypair (pk, sk) ← Keygen() and oracle G
$← RM. Let

Ym := {r : Decr(sk,Encr(pk,m, r)) = m}
be the set of coins such that decryption of m will succeed. Let G′(m) := G(m)
if G(m) ∈ Ym, G′(m) $← R if Ym = ∅, and G′(m) $← Ym otherwise. Thus G′ is
uniformly random in the space G of oracles where decryption succeeds if possible.
Moreover, G′ is independent of the behavior of messages and ciphertexts for
T (P, G) which do not decrypt correctly.

Now, fix (sk,pk) and G′ and let

δ′ := max
m∈M

Pr[Decr(sk,Encr(pk,m))
= m]

be the failure probability for this keypair. Let DblFail be the event that some
ciphertext c is the encryption of two messages m1 and m2 such that Decr(sk, c) /∈
{m1,m2}. We define ε′ := Pr[DblFail]. Both δ′ and ε′ are independent of G′. In
addition, let Fail be the event that A wins the FFC game (see Definition 3), and
Ev := Fail ∧ ¬DblFail. By Lemma 1, it holds that

∣
∣∣∣

√
Pr[Ev : AG(pk)] −

√
Pr[Ev : AG′(pk)]

∣
∣∣∣ ≤ 2d

√
Pguess.

Since, conditioned on G′, G(m)
= G′(m) at each m with probability at most δ′

and there are q/d guesses (in expectation), it holds furthermore that

2d
√

Pguess ≤
√

4d2Pguess ≤
√

4dqδ′.

Next we define for a ciphertext c,

p1(c) := Pr[∃ unique m ∈ M : c = Encr(pk,m, G(m)) ∧ Decr(sk, c)
= m].

(It is important to note that if m exists but is not unique, then DblFail occurs.)
Furthermore, let p1 := maxc(p1(c)). Since p1(c) and p1 are independent of G′,
we have

Pr[Ev : AG′
(pk)] ≤ qdec · p1.

88 N. Bindel et al.

By Lemma 7, p1 ≤ δ′ +
√

3ε′. Plugging this in and applying the Cauchy-Schwarz
corollary

√
ab +

√
cd ≤ √

(a + c)(b + d) gives

√
Pr[Ev : AG(pk)] ≤

√
4dqδ′ +

√
qdec · (δ′ +

√
3ε′)

≤
√

((4d + 1)δ′ +
√

3ε′) · (q + qdec).

Finally, by definition of correctness and injectivity (see Definitions 5 and 6,
respectively), it holds that δ = E [δ′ : pk, G] and ε ≤ E [ε′ : pk, G]. By Jensen’s
inequality, it holds furthermore that

√
ε ≤ E

[√
ε′ : pk, G

]
. Hence,

AdvFFC
T (P,G)(A) ≤ E

[
Pr[Ev : AG(pk)] : (pk, sk) ← Keygen();G′ $← G

]
+ ε

≤ ((4d + 1)δ +
√

3ε) · (q + qdec) + ε

as claimed. �

F Proof of Theorem4

Theorem 4 (Implicit → explicit with key confirmation). Let P be an
ε-injective dPKE. Consider the KEM K1 := U⊥

m(C(P,Ht, τ),Hs) obtained from
P applying the C-transform with random oracle Ht : M → {0, 1}τ and the
U⊥

m-transform with independent random oracle Hs : M → {0, 1}ς . Let K2 :=
U �⊥

m(P,F,H) be the KEM obtained from P applying the U �⊥
m-transform with ran-

dom oracle H : M → {0, 1}ς+τ .
If A is an IND-CCA-adversary against K1 which makes qdec decapsulation

queries, then it is also an IND-CCA-adversary against K2 and there is a PRF-
adversary B against F which uses about the same time and resources as A, such
that:

AdvIND-CCA
K1

(A) ≤ 2 · AdvIND-CCA
K2

(A) +
qdec
2τ−1

+ 2 · AdvPRF
F (B) + 2ε.

Proof. The proof is by a series of games. Let wi be the probability that A wins
Game i. At some point we will have two IND-CCA games running against K1

and K2 with different values of the challenge bit b. Call these values b1 and b2,
respectively.

Game 0 (IND-CCA). This is the IND-CCA game against K1, which is the KEM
with explicit rejection and key confirmation.

Game 1 (Modify decapsulation with random function). In Game 1, the
simulator instantiates a fresh random function R, and modifies the decapsulation
oracle D to the oracle D′ shown in Fig. 8.

Tighter Proofs of CCA Security in the Quantum Random Oracle Model 89

D((c, t)):

1 if (c, t) = (c∗, t∗): return ⊥
2 m′ ← Decr(sk, c)
3 if m′ = ⊥:
4 return ⊥
5 else if (Encr(pk, m′), Ht(m

′)) �= (c, t):
6 return ⊥
7 else: return Hs(m

′)

D′((c, t)):

1 if c = c∗: return ⊥
2 m′ ← Decr(sk, c)
3 if m′ = ⊥: (k, t′) ← R(c)
4 else if Encr(pk, m′) �= c: (k, t′) ← R(c)
5 else: (k, t′) ← (Hs(m

′), Ht(m
′))

6 if t′ �= t: return ⊥
7 else: return k

Fig. 8. Decapsulation oracles for Game 0 and Game 1.

We analyze the difference between D and D′ as follows.

– If c = c∗, then D′ returns ⊥. If Encr(pk, ·) is injective, then so does D.
– Otherwise, if Encr(pk,m′) = c, then both D and D′ return Hs(m′) if

Ht(m′) = t, and ⊥ otherwise.
– Otherwise, D returns ⊥, and so does D′ unless t matches t′. Since R is

random and is only used for this purpose, this happens with probability at
most qdec/2τ .

The difference in A’s view is bound by the probability that D′ acts different
than D. So overall |w1 − w0| ≤ qdec/2τ + ε.

Game 2 (Use PRF instead of R). In Game 2, the simulator replaces R(c)
by F(prfk, ·) with a random prf key prfk.

The difference in probability of any adversary A between winning Game 1 and
Game 2 is exactly the PRF-advantage of an adversary B that works exactly as
in the analysis of Game 1 in the proof of Theorem 2. Hence it holds that

|w2 − w1| = AdvPRF
F (B)

Game 3 (Redirect to U �⊥
m(P,F,H)). Game 3 is refactored so that it simulates

the IND-CCA experiment for K2 = U �⊥
m(P,F,H) (which uses implicit rejection

and no key confirmation) for the case b2 = 0 (correct key), as follows:

– Hash redirection. The oracles Hs resp. Ht used for C resp. U⊥ are redirected
to the first ς resp. last τ bits of the hash function H of U �⊥

m(P,F,H).
– The simulator creates a challenge ciphertext c with shared secret k of length

ς +τ . It parses this as (ks, kt), and gives A a challenge ciphertext (c, kt). The
challenge shared secret is ks if b1 = 0, or random if b1 = 1.

– The decapsulation oracle D′ from Game 2 is changed to use the U �⊥
m decapsu-

lation oracle internally, as shown in Fig. 9. It is called D′′.

Note that b2 is fixed, but the adversary is still trying to determine the bit b1 of
the IND-CCA game against K1.

All the above steps do not change A’s view compared to Game 2, so w3 = w2.

90 N. Bindel et al.

D′′((c, t)):

1 r ← DecapsK2
(c)

2 if r = ⊥: return ⊥
3 parse r as (k, t′)
4 if t′ �= t: return ⊥
5 else: return k

Fig. 9. Decapsulation oracle for Game 3.

Game 4 (Redirect to U �⊥
m(P,F,H) with random keys). Game 4 is the same

as Game 3 except that it now simulates the b2 = 1 (random key) case of the
IND-CCA experiment against K2, i.e., it always sets k

$← {0, 1}ς . This means
that for the challenge ciphertext, both ks and kt will be uniformly random.

Distinguishing Game 3 from Game 4 is exactly the IND-CCA experiment for
K2. Hence,

|w4 − w3| = AdvIND-CCA
K2

(A).

In this game the shared secret k is always random, and thereby independent of
b1. Hence, the adversary has no information about b1 and so w4 = 1

2 .
Summing up the differences in winning probability from all the games we get

∣
∣∣∣w0 − 1

2

∣
∣∣∣ ≤ AdvIND-CCA

K2
(A) +

qdec
2τ

+ AdvPRF
F (B)

and AdvIND-CCA
K1

(A) is at most twice this value. This completes the proof. �

Attribute Based Encryption for
Deterministic Finite Automata from DLIN

Shweta Agrawal1(B), Monosij Maitra1, and Shota Yamada2

1 IIT Madras, Chennai, India
{shweta.a,monosij}@cse.iitm.ac.in

2 AIST, Tokyo, Japan
yamada-shota@aist.go.jp

Abstract. Waters [Crypto, 2012] provided the first attribute based
encryption scheme ABE for Deterministic Finite Automata (DFA) from
a parametrized or “q-type” assumption over bilinear maps. Obtaining
a construction from static assumptions has been elusive, despite much
progress in the area of ABE.

In this work, we construct the first attribute based encryption scheme
for DFA from static assumptions on pairings, namely, the DLIN assump-
tion. Our scheme supports unbounded length inputs, unbounded length
machines and unbounded key requests. In more detail, secret keys in our
construction are associated with a DFA M of unbounded length, cipher-
texts are associated with a tuple (x, μ) where x is a public attribute of
unbounded length and μ is a secret message bit, and decryption recovers
μ if and only if M(x) = 1.

Our techniques are at least as interesting as our final result. We
present a simple compiler that combines constructions of unbounded
ABE schemes for monotone span programs (MSP) in a black box way
to construct ABE for DFA. In more detail, we find a way to embed
DFA computation into monotone span programs, which lets us compose
existing constructions (modified suitably) of unbounded key-policy ABE
(kpABE) and unbounded ciphertext-policy ABE (cpABE) for MSP in a
simple and modular way to obtain key-policy ABE for DFA. Our con-
struction uses its building blocks in a symmetric way – by swapping the
use of the underlying kpABE and cpABE, we also obtain a construction
of ciphertext-policy ABE for DFA.

Our work extends techniques developed recently by Agrawal, Maitra
and Yamada [Crypto 2019], which show how to construct ABE that sup-
port unbounded machines and unbounded inputs by combining ABE
schemes that are bounded in one co-ordinate. At the heart of our work is
the observation that unbounded, multi-use ABE for MSP already achieve
most of what we need to build ABE for DFA.

1 Introduction

Attribute based encryption (ABE) [56] is a new paradigm of encryption that
enables fine grained access control on encrypted data. In attribute based encryp-
tion, a ciphertext of a message m is labelled with a public attribute x and
c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 91–117, 2019.
https://doi.org/10.1007/978-3-030-36033-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_4

92 S. Agrawal et al.

secret keys are labelled with a function f . Decryption succeeds to yield the
hidden message m if and only if the attribute satisfies the function, namely
f(x) = 1. ABE schemes have a rich and beautiful history [3,8,16,17,19,21,37–
39,41,43,50,56,57], with constructions for various classes of functions proven
secure under diverse assumptions.

Typically, the function f encoded in the secret key is represented as a
Boolean circuit, which necessitates issuing different keys to support different
input lengths, even to compute the same functionality. In a breakthrough work,
Waters [57] provided the first construction of ABE for regular languages: here,
the secret key is associated with a deterministic finite automaton (DFA) and
ciphertext is associated with attribute x of arbitrary length. The same secret
key can directly decrypt ciphertexts that encode inputs of varying lengths, yield-
ing the first ABE that supports a uniform model of computation. Since then,
other constructions supporting the uniform model of computation were proposed,
supporting even Turing machines [4,9,34], but all these relied on the powerful
machinery of multilinear maps [31], indistinguishability obfuscation [15,32] or
witness encryption [33], none of which are considered standard assumptions.

While the Waters construction relied on the hardness of assumptions over
bilinear maps, which are well understood, the assumption is parametrized (also
known as “q-type”), which means that the size of the assumption depends on
the queries made by the adversary. Achieving a construction of ABE for DFA
from standard static assumptions over bilinear maps has remained elusive. Very
recently, Agrawal, Maitra and Yamada [5] provided an ABE for nondetermin-
istic finite automata from the learning with errors assumption. However, their
construction makes use of highly lattice specific machinery (such as reusable gar-
bled circuits [35]) and it is unclear how to use these ideas to improve the state
of affairs in the world of pairings.

1.1 Our Results

In this work, we construct the first attribute based encryption scheme for DFA
from static assumptions on pairings, namely, the DLIN assumption. Our scheme
supports unbounded length inputs as well as unbounded length machines. In
more detail, secret keys in our construction are associated with a DFA M of
unbounded length, ciphertexts are associated with a tuple (x,m) where x is
a public attribute of unbounded length and m is a secret message bit, and
decryption recovers m if and only if M(x) = 1. Our construction also supports
unbounded key requests by the adversary. Additionally, via a simple tweak to
our construction, we also obtain the first ciphertext-policy ABE for DFA from
the DLIN assumption.

We contrast our results with prior work in Table 1. For brevity, we only com-
pare with constructions of ABE that support uniform models of computation (in
particular, handle unbounded input lengths) and rely on standard assumptions.
Other relevant work is discussed in Sect. 1.3.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 93

Table 1. Comparison with prior work supporting unbounded input length. KP and CP
indicate key-policy and ciphertext-policy respectively.

Construction Model KP or CP Number of keys Assumption

Waters [57] DFA KP Unbounded q-type assumption
on bilinear maps

Attrapadung [12] DFA KP and CP Unbounded q-type assumption
on bilinear maps

Agrawal-Singh [7] DFA KP Single LWE

Agrawal-Maitra-Yamada [5] NFA KP Unbounded LWE

Gong-Waters-Wee [36] DFA KP Unbounded kLIN

This DFA KP and CP Unbounded DLIN

1.2 Our Techniques

A natural starting point for constructing (key policy) ABE for DFA is (key pol-
icy) ABE for monotone span programs (MSP), which has been studied exten-
sively in the literature. Recall that an MSP is specified by a pair (L, ρ) of a
matrix and a labelling function where L ∈ Z

�×m
p , ρ : [�] → {0, 1}∗ for some

integer �,m. Intuitively, the map ρ labels row i with attribute ρ(i). Given a
set of attributes I as input, the MSP accepts the input iff the sub-matrix of L
restricted to attributes selected by I contains a special target vector in its row
span (please see Sect. 2.1 for the precise definition).

Step 1: Leveraging ABE for MSP. Our first observation is that DFA computation
is simple enough to be encoded into an MSP. In more detail, given a DFA machine
M and an input string x, it is possible to map the DFA M into an MSP (LM , ρM)
and the input x into a set of attributes Sx such that the MSP (LM , ρM) accepts
attributes Sx iff M(x) = 1. We exhibit such a map in Sect. 4.1 and prove the
following theorem:

Theorem 1. (Informal) Let (LM , ρM) be the MSP and Sx be the set of
attributes obtained by applying the map specified in Sect. 4.1 to M and x respec-
tively. Then, the MSP (LM , ρM) accepts attributes Sx iff M(x) = 1.

This provides a starting point for using ABE for MSP, which can be con-
structed from static assumptions, as a building block towards constructing ABE
for DFA.

Step 2: Handling Unbounded Length. While this seems promising as a first step,
the careful reader may have noticed that the above idea fails to address the pri-
mary challenge of supporting DFA, namely, that of handling inputs of unbounded
length. DFA is a uniform model of computation, which means that the same
machine must process inputs of arbitrary length. On the other hand, an MSP
can only process inputs of bounded length – in particular, the length of inputs
that an MSP can read is clearly bounded above by the number of rows in L.

94 S. Agrawal et al.

This appears to make ABE for MSP almost useless for our purposes, since
there is no way to guarantee that |x| is less than the number of rows in L
(denoted by |x| ≤ |M | in the sequel1). However, notice that since both the
inputs and the machines have unbounded length, it still holds in some cases that
|x| ≤ |M |, and if we can handle this, it still constitutes progress. More hurdles
present themselves – for instance, the syntax of ABE for DFA does not allow
the setup algorithm to know the lengths |x|, |M |, the key generation algorithm
cannot know |x| and the encrypt algorithm cannot know |M |. But this challenge
can be overcome by making use of the so called unbounded ABE schemes, as
described next.

Unbounded ABE schemes (for MSP) [23,54] are those in which the setup
algorithm places no restriction on the length of the attributes or the size of
the policies that are embedded in the ciphertexts and keys. Moreover, the key
generation and encrypt algorithms do not require knowledge of input length or
policy size respectively. While significantly more challenging to build than their
bounded counterparts, a small number of existing constructions [23,54] achieve
this property while relying on standard assumptions.

We show in Sect. 3.2 that unbounded key policy ABE schemes for MSP can
indeed be used to construct ABE for DFA so long as |x| ≤ |M |. More formally,
we define relation RKP(S, (L, ρ)) = 1 iff the span program (L, ρ) accepts the

attribute set S and RDFA≤(x,M) = M(x) ∧ (|x| ?≤ |M |). Then, we have that:

Theorem 2. (Informal) Let kpABE be a secure unbounded ABE for the relation
RKP. Then, the construction dfaABE≤ provided in Sect. 3.2 is a secure ABE for
the relation RDFA≤.

Step 3: The Trick of Agrawal, Maitra and Yamada. To construct a full fledged
ABE for DFA, our next tool is a recent trick by Agrawal, Maitra and Yamada
[5]. In [5], the authors show how to construct an ABE for nondeterministic finite
automata (NFA) that supports unbounded inputs and unbounded machines,
by running in parallel two restricted ABE for NFA schemes: one that supports
unbounded inputs but bounded machines and one that supports bounded inputs
but unbounded machines.

Our goal is to construct an ABE scheme dfaABE for the relation RDFA(x,M) =
M(x). By using the trick of [5], we can construct our dfaABE from two special ABE
schemes as follows:

1. An ABE dfaABE≤ for the relation RDFA≤(x,M) = M(x) ∧ (|x| ?≤ |M |).
2. An ABE dfaABE> for the relation RDFA>(x,M) = M(x) ∧ (|x| ?

> |M |).
It is easy to see that given constructions for the special ABE schemes

dfaABE≤ and dfaABE>, we may construct dfaABE simply by running them in
parallel. In more detail, the setup algorithm of dfaABE simply runs the setup

1 While imprecise, we use this notation here for intuition. Formally, it will turn out
to be sufficient to compare |x| with |Q|, where |Q| is the number of states in M .

Attribute Based Encryption for Deterministic Finite Automata from DLIN 95

algorithms of the underlying special ABEs and outputs the public and master
secret keys by combining their outputs, the encrypt algorithm encrypts its input
(x, μ) under both special ABEs, the key generation algorithm produces a key
under both special ABEs and the decryption algorithm invokes the decryption

of one or the other depending on whether |x| ?≤ |M |. This intuition is formalized
in Sect. 3.1, where we prove the following theorem:

Theorem 3. (Informal) Assume that dfaABE≤ and dfaABE> are secure ABE
schemes for relations RDFA≤ and RDFA> respectively. Then, the scheme dfaABE
constructed in Sect. 3.1 is a secure ABE for relation RDFA.

Step 4: Plugging the Gap with Ciphertext Policy ABE. We already constructed
an ABE for the case of |x| ≤ |M |. The case of |x| > |M | is more challenging,
since to use ABE for MSP, it is necessary that the MSP be large enough to
read the input as we have discussed above. To handle this, we simply switch
the role of key generator and encryptor! In more detail, if the encryptor could
instead embed x into an MSP and the key generator could embed M into a set
of attributes, then the dilemma of compatible sizes could be resolved and we
would be back in business. We show that this can be done; we provide a maps
in Sect. 4.2 that achieves this embedding. More formally, we prove that:

Theorem 4. Let (Lx, ρx) be the MSP and SM be the set of attributes obtained
by applying the map specified in Sect. 4.2 to x and M respectively. Then, the
MSP (Lx, ρx) accepts attributes SM iff M(x) = 1.

In order to support encryption of an MSP (Lx, ρx), we now need
an unbounded ciphertext policy ABE for MSP. In more detail, we define
RCP((L, ρ), S) = 1 iff the span program (L, ρ) accepts the attribute set S. Recall

that RDFA>(x,M) = M(x) ∧ (|x| ?
> |M |). Then, we show in Sect. 3.3 that:

Theorem 5. (Informal) Let cpABE be a secure unbounded ABE scheme for the
relation RCP. Then the construction dfaABE> provided in Sect. 3.3 is a secure
ABE for the relation RDFA>.

To summarize, our approach is based on the observation that we must only
construct an MSP of length max(|x|, |M |), where |x| is known to the encryptor
and |M | is known to the key generator (and neither know the other). When
the input vector has size |x| ≤ |M |, we embed the DFA into a monotone span
program which has number of rows proportional to |M |, and the input into a set
of attributes – this ensures that the MSP is large enough to support an input of
length |x|. We may then leverage an unbounded kpABE scheme to handle this
case. On the other hand, when |x| > |M |, we instead embed the input vector into
a monotone span program which has number of rows proportional to |x|, and
the machine into a set of attributes – this again ensures that the MSP is large
enough to support an input of size |M |. We may then leverage an unbounded
cpABE scheme to handle this case. Of course, neither party knows which case
it must support, so it simply provides information for both and leaves it to the
decryptor to make the choice!

96 S. Agrawal et al.

Step 5: Instantiating the kpABE and cpABE. Finally, we must ensure that we can
instantiate unbounded ABE schemes kpABE and cpABE for the relations RKP

and RCP that we require. While prior work provides constructions of unbounded
key policy and ciphertext policy ABE schemes for MSP, these unfortunately
cannot be plugged into our compiler out of the box. This is because our con-
struction requires the ABE schemes to support “multi-use” of attributes, i.e.
when the map ρ in the MSP is not restricted to be injective. Moreover, the ABE
schemes are required to be unbounded, as already discussed above. Finally, we
want the schemes to be proven secure from static assumptions such as DLIN, not
from q-type assumptions. Schemes achieving all these properties do not exist in
the literature to the best of our knowledge.2 Hence, we must refashion existing
schemes to satisfy this. In the full version of our paper [6], we provide construc-
tions for multi-use unbounded key policy and ciphertext policy ABE schemes by
modifying the constructions in [23]. Let RMUKP and RMUCP be the same relations
as RKP and RCP defined above, but with the requirement that the underlying
MSPs in both relations support multi-use of attributes. Then, we obtain the
following theorem:

Theorem 6. (Informal) The constructions kpABE provided in [6] (Section 5.2)
and cpABE provided in [6] (Section 5.4) are unbounded ABE schemes for the
relations RMUKP and RMUCP respectively. Security of kpABE relies on the MDDH
assumption and security of cpABE relies on the DLIN assumption.

For both KP and CP-ABE schemes, we simply modify the schemes in [23] so
that we allow multi-use of the same attribute in an MSP. However, this simple
modification ruins the original security proof given by [23] in both cases. The
reason is that the core statistical argument in the security proof does not work
any more in the multi-use setting. Intuitively, the problem is that the terms used
as “one-time pads” in the single-use setting are used multiple times in the multi-
use setting. In both KP and CP cases, we switch to weaker security notions than
adaptive security and give security proofs by taking advantage of weaker setting.

For KP-ABE scheme, we prove semi-adaptive security. To prove the secu-
rity, we first use the handy bilinear entropy expansion lemma [23] to create
an instance of a multi-use variant of the KP-ABE scheme by [50] (hereafter
denoted by LOSTW) in the semi-functional space. To give a proof, we decompose
the LOSTW secret key into smaller pieces and gradually add semi-functional
randomness to them through a hybrid argument in a way that their distribu-
tion depends on the challenge attribute, in a similar manner to [1]. Since this
step requires the knowledge of the challenge attribute, we can only prove semi-
adaptive security of the scheme. Intuitively, because of this decomposition, we
use the “one-time pad” only single time in one hybrid game and can avoid getting
into the aforementioned problem of using one-time pads multiple times. Finally,
we can use the core statistical step similarly to the case of single-use setting.

2 Only exception is the very recent construction by Kowalczyk and Wee [46]. However,
their scheme can only deal with NC1 circuit instead of general MSP and thus our
embedding of DFA into MSP cannot be used.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 97

For CP-ABE scheme, we prove the security notion that we call selective*
security, where the adversary is forced to choose its key queries and the chal-
lenge attribute after seeing the master public key. The first step of the proof is
similar to the KP-ABE case. Namely, we first use the bilinear entropy expan-
sion lemma [23] to create an instance of the LOSTW CP-ABE scheme in the
semi-functional space. However, in the next step, we cannot use the above decom-
position idea due to technical reasons, which in turn prohibits us from using the
statistical argument in the core step. We overcome this by using computational
argument instead, which uses the DLIN assumption instead. The idea of using
computational argument here was taken from some of prior works [12,13,51].

Putting together these pieces yields our final result – a key-policy ABE for
DFA that supports unbounded inputs, unbounded machines and unbounded key
requests.

Ciphertext Policy ABE for DFA. In the above description, note that our con-
struction dfaABE uses the underlying kpABE and cpABE in a symmetric way.
Thus, by swapping the use of kpABE and cpABE in our construction, we can
equivalently construct ciphertext policy ABE for DFA.

In more detail, we exchange the maps used by KeyGen and Enc in the con-
structions of dfaABE≤ and dfaABE> in Sects. 3.2 and 3.3. Please see Sect. 5 for
more details. Thus, we obtain

Theorem 7. There exists a secure key-policy and ciphertext-policy ABE for
RDFA from the DLIN assumption.

1.3 Related Work

In this section, we discuss the related work in the area, categorized by hardness
assumptions. We begin with constructions based on bilinear maps. The first
construction of ABE for DFA was given by Waters [57] as discussed above. This
scheme achieved selective security, which was improved to adaptive by Attra-
padung [12]. For span programs, there have been many constructions [2,12–
14,22–25,45,47–50,53–55,58] that achieve various tradeoffs between security
(selective versus adaptive), assumptions (static versus parametrized), underlying
mathematical structure (prime versus composite order groups), policy embed-
ding (key versus ciphertext policy) and efficiency. In this work, we are particu-
larly concerned with unbounded ABE schemes, in particular those by [23,54].

From the Learning With Errors assumption (LWE), Boyen and Li [20] pro-
vided a construction of ABE for DFA, but this was restricted to DFAs with
bounded length inputs, rendering moot the primary advantage of a DFA over cir-
cuits. Recently, Ananth and Fan [8] provided an ABE for random access machines
from LWE, but this construction is also restricted to inputs of bounded length.
Agrawal and Singh [7] constructed a primitive closely related to ABE for DFA,
namely reusable garbled DFA from LWE, but their construction is only secure
in the single key setting, namely, where the adversary is limited to requesting
a single function key. In contrast, we support unbounded key requests in this
work.

98 S. Agrawal et al.

From strong assumptions such as the existence of multilinear maps [31], wit-
ness encryption [34] or indistinguishability obfuscation [15,32], attribute based
encryption (or its more powerful generalization – functional encryption) has been
constructed even for Turing machines [4,10,44], but these are not considered
standard assumptions; indeed many candidate constructions have been broken
[11,26–30,42,52].

Also relevant to our work are the constructions of [21,40], which provide
attribute based encryption for the so called “bundling functionalities”. Here, the
size of the public parameters does not depend on the length of the input (say
�) chosen by the encryptor. However, the key generator must generate a key
for a circuit with a fixed input length (say �′), and decryption only succeeds if
� = �′. Thus, bundling functionalities do not capture the essential challenge of
supporting dynamic data sizes as discussed in [40].

1.4 Concurrent Work

We note that a concurrent work by Gong et al. [36] constructs KP-ABE scheme
for DFA relying on the k-LIN assumption. Although there is a qualitative over-
lap in our final results as shown in Table 1, the approaches and techniques in
their work are quite different from ours. They construct KP-ABE from scratch
imitating the transition function of a DFA using bilinear maps directly. This,
in turn, yields a scheme with better concrete efficiency and security than ours.
In particular, in the KP-ABE setting, our ciphertexts and keys scale as O(|x|3)
and O(|Q|2) respectively while the ciphertexts and keys in [36] scale linearly as
O(|x|) and O(|Q|) respectively. Also, our construction achieves selective* security
based on DLIN assumption, while their construction achieves selective security
and relies on the slightly weaker k-LIN assumption. On the other hand, our
scheme is a generic compiler, and has conceptual advantages: our construction is
modular and simpler and yields CP-ABE essentially for free. Further, it reduces
the question of adaptive security for DFA for both KP-ABE and CP-ABE to
that of adaptive security for unbounded KP-ABE and CP-ABE for MSP from
static assumptions.

Organization of the Paper. In Sect. 2, we provide the definitions and preliminar-
ies we require. In Sect. 3, we provide our ABE for DFA supporting unbounded
input and unbounded machines from kpABE and cpABE for monotone span pro-
grams. In Sect. 4, we describe how to encode DFA computation into a mono-
tone span program (MSP): Sect. 4.1 shows the encoding procedure for any DFA
machine to a MSP (and DFA input to attribute set) while Sect. 4.2 shows the
encoding procedure for any input string to a MSP (and DFA machine to attribute
set). In the full version of our paper [6], we instantiate our ingredient kpABE and
cpABE using techniques from [23]. In Sect. 5 we put together all ingredients to
instantiate our ABE for DFA.

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 99

Notation. We use bold letters to denote vectors and the notation [a, b] to denote
the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n].
Concatenation is denoted by the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we
use negl(n) to denote a negligible function of n. We say f(n) is polynomial if it
is O(nc) for some constant c > 0, and we use poly(n) to denote a polynomial
function of n. We use the abbreviation PPT for probabilistic polynomial-time.
We say an event occurs with overwhelming probability if its probability is 1 −
negl(n).

2.1 Definitions: Restricted Monotone Span Programs (MSP)

A monotone span program over Zp is specified by a pair (L, ρ) of a matrix and
a labelling function where

L ∈ Z
�×m
p ρ : [�] → Z

for some integer �,m. Intuitively, the map ρ labels row i with attribute ρ(i).
A span program takes as input a set of integers and accepts or rejects an

input by the following criterion. Let S = {u1, . . . , ut} ⊆ Z be a set of integers.
Intuitively, each ui represents some attribute. For the set S, we define another
set I ⊆ [�] as I = {i ∈ [�] : ρ(i) ∈ S} and LI as the submatrix of L restricted to
set of rows I, i.e. obtained by removing row j of L for any j �∈ I. We say that

(L, ρ) accepts S iff (1, 0, . . . , 0) is in the row span of LI .

We can write this also as e1 ∈ span(L�
I).

2.2 Deterministic Finite Automata

A Deterministic Finite Automaton (DFA) M is represented by the tuple
(Q,Σ, T, qst, F) where Q is a finite set of states, Σ is a finite alphabet,
T : Σ × Q → Q is the transition function (stored as a table), qst is the
start state, F ⊆ Q is the set of accepting states. We say that M accepts
x = (x1, . . . , xk) ∈ Σk if there exists a sequence of states q1, . . . , qk+1 such
that q1 = q, qi+1 ∈ T (xi, qi) for i ∈ [k] and qk+1 ∈ F . We assume w.l.o.g. that
the states are numbered as 1 to |Q|, i.e., Q = {1, 2, . . . , |Q|} with qst = 1 along
with Σ = {0, 1} and F = {|Q|}. Note that any DFA with many accepting states
can be converted to a DFA with a single accepting state3, and states may be
renumbered so that the last state is the accepting one.

3 In more detail, we may map any input x ∈ {0, 1}∗ to x‖�, where � is a special
symbol, and modify M so that we change the accepting state to be {|Q| + 1} and
add edges from the previous accepting state to |Q| + 1, where edges are labelled
with �.

100 S. Agrawal et al.

2.3 Definition: Attribute-Based Encryption

Syntax. Let R : A×B → {0, 1} be a relation where A and B denote “ciphertext
attribute” and “key attribute” spaces. An attribute based encryption scheme for
R is defined by the following PPT algorithms:

Setup(1λ) → (mpk,msk): The setup algorithm takes as input the unary repre-
sentation of the security parameter λ and outputs a master public key mpk
and a master secret key msk.

Encrypt(mpk, μ,X) → ct: The encryption algorithm takes as input a master
public key mpk, the message bit μ, and a ciphertext attribute X ∈ A. It
outputs a ciphertext ct.

KeyGen(msk,mpk, Y) → skY : The key generation algorithm takes as input the
master secret key msk, the master public key mpk, and a key attribute Y ∈ B.
It outputs a private key skY .

Decrypt(mpk, ct,X, skY , Y) → μ or ⊥: We assume that the decryption algorithm
is deterministic. The decryption algorithm takes as input the master public
key mpk, a ciphertext ct, ciphertext attribute X ∈ A, a private key skY , and
private key attribute Y . It outputs the message μ or ⊥ which represents that
the ciphertext is not in a valid form.

We require the standard correctness of decryption: for all λ, (mpk,msk) ←
Setup(1λ), X ∈ A, Y ∈ B such that R(X,Y) = 1, and skY ←
KeyGen(msk,mpk, Y), we have Decrypt(mpk,Encrypt(mpk, μ,X),X, skY , Y) = μ.

Security. We now define the security for an ABE scheme Π by the following
game between a challenger and an attacker A.

– At first, the challenger runs the setup algorithm and gives mpk to A.
– Then A may adaptively make key-extraction queries. We denote this phase
Phase1. In this phase, if A submits Y ∈ B to the challenger, the challenger
returns skY ← KeyGen(msk,mpk, Y).

– At some point, A outputs two equal length messages μ0 and μ1 and chal-
lenge ciphertext attribute X� ∈ A. X� cannot satisfy R(X�, Y) = 1 for any
attribute Y such that A already queried private key for Y .

– Then the challenger flips a random coin β ∈ {0, 1}, runs Encrypt(mpk,
μβ ,X�) → ct� and gives challenge ciphertext ct� to A.

– In Phase2, A may adaptively make queries as in Phase1 with following
added restriction: A cannot make a key-extraction query for Y such that
R(X�, Y) = 1.

– At last, A outputs a guess β′ for β.

We say that A succeeds if β′ = β and denote the probability of this event by
PrABEA,Π . The advantage of an attacker A is defined as AdvABEA,Π = |PrABEA,Π − 1

2 |.
We say that Π is adaptively secure if AdvABEA,Π is negligible for all probabilistic
polynomial time (PPT) adversary A.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 101

Weaker Security Notions. A weaker notion called selective security can be
defined as in the above game with the exception that the adversary A has to
choose the challenge ciphertext attribute X� before the setup phase but private
key queries Y1, . . . , Yk and choice of (μ0, μ1) can still be adaptive. The stronger
notion of semi-adaptive security lets the adversary output the challenge cipher-
text attribute X� after seeing the public key but before making any key requests.
The still weaker notion of very selective security requires the adversary to out-
put the challenge ciphertext attribute and private key queries at the very start
of the game. An intermediate notion to semi-adaptive and very selective, which
we term selective*, allows the adversary to receive the public parameters in the
first step, but it must specify the challenge ciphertext attribute and private key
queries after this step.

ABE for DFA. We then define ABE for DFA by specifying the relation. We
define ADFA = {0, 1}∗ and BDFA as the set of all DFA, also represented as strings
over {0, 1}∗. Furthermore, we define the relation RDFA = {ADFA×BDFA → {0, 1}}
as RDFA(x,M) = M(x).

An ABE scheme for the relation RDFA is said to be ABE for DFA. We further
define RDFA≤ = {ADFA × BDFA → {0, 1}} as

RDFA≤(x,M) = M(x) ∧ (|x| ?≤ |Q|),

where |Q| is the number of states in M . We also define RDFA> analogously.

Unbounded ABE for MSP. Here, we define unbounded ABE for MSP. There
are distinctions between “single-use” and “multi-use” as well as “key-policy”
and “ciphertext-policy”. We first define multi-use key-policy unbounded ABE
by specifying the relation RMUKP. To do so, we set AMUKP := 2Z (i.e., the set of
all subsets of Z) and BMUKP as the set of monotone span programs on Zp for some
prime p, and RMUKP(S, (L, ρ)) = 1 iff the span program (L, ρ) accepts the set
S ∈ AMUKP. An ABE for RMUKP is said to be “multi-use key-policy unbounded
ABE”.

We also define single-use key-policy unbounded ABE by specifying the rela-
tion RSUKP. We set ASUKP := 2Z and BSUKP as the set of monotone span programs
(L, ρ) such that ρ is injective. We define RSUKP(S, (L, ρ)) = 1 iff the span pro-
gram (L, ρ) accepts the set S. Finally, we can define the ciphertext variant of
the above ABE by specifying RSUCP and RMUCP, where we set AxxCP = BxxKP

and BxxCP = AxxKP for xx ∈ {SU,MU} and define the relation analogously.

Unbounded ABE for MSP with Polynomial-Valued Attributes. We
can consider a restricted variant of unbounded ABE for MSP where the value
of attributes being used is polynomially bounded. Here, we focus on the case
of multi-use and key-policy case. Other cases will be defined similarly. Here, we
define AMUKP′

and BMUKP′
as

AMUKP′
=

{
(S, 1smax) : S ⊆ Z, smax = max

s∈S
|s|

}
and

102 S. Agrawal et al.

BMUKP′
=

{
((L, ρ), 1ρmax) : (L, ρ) is a span program over Zp, ρmax = max

i∈[�]
|ρ(i)|

}

We define RMUKP′
(S, (L, ρ)) := RMUKP(S, (L, ρ)). Here, the reason why we

append 1smax to S is somewhat technical. This is to enforce the adversary in the
security definition who declares S ∈ AMUKP′

as its target to choose attributes
with polynomially bounded values. Because of the similar reason, we append
1ρmax to (L, ρ).

For ease of readability in the remainder of the paper, we will overload nota-
tion and denote AMUKP′

and BMUKP′
as AMUKP and BMUKP respectively. However,

all our constructions will satisfy the constraint of attribute values being polyno-
mially bounded.

2.4 Embedding Lemma for ABE

Here, we introduce a useful lemma that describes a sufficient criterion for impli-
cation from an ABE for a given predicate to an ABE for another predicate. The
lemma is introduced in [18] and later formally proven in [14]. The presentation
here follows that of [14] with some simplifications. The lemma is applicable to
any relation family. We consider two relation families:

RF : A × B → {0, 1}, RF′
: A′ × B′ → {0, 1}.

Suppose that there exists two efficient mappings fe : A′ → A and fk : B′ → B
which map parameters, ciphertext attributes, and key attributes, respectively,
such that for all X ′ ∈ A′, Y ′ ∈ B′,

RF′
(X ′, Y ′) = 1 ⇔ RF(fe(X ′), fk(Y ′)) = 1. (2.1)

We can then construct an ABE scheme Π ′ = {Setup′,Encrypt′,KeyGen′,
Decrypt′} for predicate RF′

from an ABE scheme Π = {Setup,Encrypt,KeyGen,
Decrypt} for predicate RF as follows. Let Setup′ = Setup and

Encrypt′(mpk, μ,X ′) = Encrypt(mpk, μ, fe(X ′)),
KeyGen′(msk,mpk, Y ′) = KeyGen(msk,mpk, fk(Y ′)),

and Decrypt′(mpk, ct,X ′, skY ′ , Y ′) = Decrypt(mpk, ct, fe(X ′), skY ′ , fk(Y ′)).

Lemma 1 (Embedding lemma [14,18]). If Π is correct and secure, then so
is Π ′. This holds for very selective, selective, selective* and adaptive security.

Intuitively, the forward and backward direction of Relation (2.1) ensure that the
correctness and the security are preserving, respectively.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 103

3 Attribute-Based Encryption for DFA

We construct an ABE scheme for DFA denoted by dfaABE = (dfaABE.Setup,
dfaABE.KeyGen, dfaABE.Enc, dfaABE.Dec). Following the notation of Sect. 2, we
achieve this by constructing an ABE scheme for the relation RDFA = {ADFA ×
BDFA → {0, 1}} which is defined as RDFA(x,M) = M(x). Recall that ADFA is the
set of all input strings and BDFA is the set of all DFA. Let |Q| be the number of
states in M . As described in Sect. 1, our construction relies on two special ABE
for DFA as follows:

1. An ABE denoted by dfaABE≤ for the relation RDFA≤ = {ADFA × BDFA →
{0, 1}} defined as:

RDFA≤(x,M) = M(x) ∧ (|x| ?≤ |Q|)

2. An ABE denoted by dfaABE> for the relation RDFA> = {ADFA × BDFA →
{0, 1}} defined as:

RDFA>(x,M) = M(x) ∧ (|x| ?
> |Q|)

It is easy to see that given constructions for dfaABE≤ and dfaABE>, we may
construct dfaABE simply by running them in parallel. This intuition is formalized
in Sect. 3.1.

Then, it suffices to construct the ingredients dfaABE≤ and dfaABE> – we
do so by leveraging existing constructions of unbounded kpABE and cpABE for
monotone span programs. Since the intuition was discussed in Sect. 1, we directly
provide the constructions in Sects. 3.2 and 3.3 respectively.

3.1 Construction of dfaABE

Below, we describe the construction of our ABE for DFA formally. We denote
our construction as dfaABE.

dfaABE.Setup(1λ): On input the security parameter 1λ, do the following:
1. Invoke dfaABE≤.Setup(1λ) and dfaABE>.Setup(1λ) to obtain

(dfaABE≤.mpk, dfaABE≤.msk) and (dfaABE>.mpk, dfaABE>.msk) respec-
tively.

2. Output dfaABE.mpk = (dfaABE≤.mpk, dfaABE>.mpk) and dfaABE.msk =
(dfaABE≤.msk, dfaABE>.msk).

dfaABE.Enc(dfaABE.mpk, μ,x): On input the master public key dfaABE.mpk, a
message bit μ, and an attribute x ∈ ADFA of unbounded polynomial length
(i.e., bounded by 2λ), do the following:
1. Compute ct1 = dfaABE≤.Enc(dfaABE≤.mpk, μ,x).
2. Compute ct2 = dfaABE>.Enc(dfaABE>.mpk, μ,x).
3. Output (ct1, ct2).

104 S. Agrawal et al.

dfaABE.KeyGen(dfaABE.msk, dfaABE.mpk,M): On input the master secret key
dfaABE.msk, the description of a DFA M ∈ BDFA do the following:
1. Compute sk1 = dfaABE≤.KeyGen(dfaABE≤.msk, dfaABE≤.mpk,M).
2. Compute sk2 = dfaABE>.KeyGen(dfaABE>.msk, dfaABE>.mpk,M).
3. Output (sk1, sk2).

dfaABE.Dec(dfaABE.mpk, dfaABE.ct,x, dfaABE.skM ,M): On input a ciphertext
encoded under attribute x and a secret key for DFA M , proceed as follows.
Let |Q| be the number of states in the machine M .
1. If |x| ≤ |Q|, compute μ1 ← dfaABE≤.Dec(dfaABE≤.mpk, ct1,x, sk1,M)

and output it.
2. If |x| > |Q|, compute μ2 ← dfaABE>.Dec(dfaABE>.mpk, ct2,x, sk2,M)

and output it.

Correctness. Correctness follows directly from the correctness of the ingredient
schemes dfaABE≤ and dfaABE>, where the former is invoked for the case that
|x| ≤ |Q| and the latter otherwise.

Security. Security of the scheme dfaABE follows directly from the security of
dfaABE≤ and dfaABE>. In more detail, we have:

Theorem 8. Assume that dfaABE≤ and dfaABE> are ABE schemes for rela-
tions RDFA≤ and RDFA> respectively, that satisfy selective/selective*/adaptive
security. Then, dfaABE is an ABE scheme for relation RDFA that satisfies selec-
tive/selective*/adaptive security.

The proof is straightforward: for the case that |x| ≤ |Q|, the theorem follows from
security of dfaABE≤, otherwise from the security of dfaABE>.

3.2 Construction of dfaABE≤

In this section, we construct the ABE scheme dfaABE≤ for the relation RDFA≤ =

{ADFA × BDFA → {0, 1}} where RDFA≤(x,M) = M(x) ∧ (|x| ?≤ |Q|). Our con-
struction is built from the following ingredients:

1. An ABE scheme for the relation RMUKP : AMUKP × BMUKP → {0, 1}. Recall
from Sect. 2, that AMUKP := 2Z is the set of attributes, BMUKP is the set
of monotone span programs and RMUKP(S, (L, ρ)) = 1 iff the span program
(L, ρ) accepts the set S ∈ AMUKP. We denote such a scheme as kpABE, and
construct it in the full version of our paper [6] (Section 5.2).

2. A map fKP
e : ADFA → AMUKP and a map fKP

k : BDFA → BMUKP so that
RMUKP(Sx, (LM , ρM)) = 1 iff RDFA≤(x,M) = 1, where Sx = fKP

e (x) and
(LM , ρM) = fKP

k (M). These maps are constructed in Sect. 4.1.

The scheme dfaABE≤ is then defined as follows.

dfaABE≤.Setup(1λ): On input the security parameter 1λ, do the following:
1. Invoke kpABE.Setup(1λ) to obtain (kpABE.mpk, kpABE.msk).

Attribute Based Encryption for Deterministic Finite Automata from DLIN 105

2. Output dfaABE≤.mpk = kpABE.mpk and dfaABE≤.msk = kpABE.msk.

dfaABE≤.Enc(dfaABE≤.mpk, μ,x): On input the master public key
dfaABE≤.mpk, a message bit μ, and an attribute x ∈ ADFA of unbounded
polynomial length (i.e. length at most 2λ), do the following:
1. Convert x to attribute Sx by computing Sx = fKP

e (x) as described in
Sect. 4.1.

2. Compute ct = kpABE.Enc(kpABE.mpk, μ, Sx) and output it.

dfaABE≤.KeyGen(dfaABE≤.msk, dfaABE≤.mpk,M): On input the master secret
key dfaABE≤.msk, the description of a DFA M ∈ BDFA do the following:
1. Convert M into an MSP (LM , ρM) by computing (LM , ρM) = fKP

k (M)
as described in Sect. 4.1.

2. Compute skM = kpABE.KeyGen
(
kpABE.msk, kpABE.mpk, (LM , ρM)

)
and

output it.

dfaABE≤.Dec(dfaABE≤.mpk, dfaABE≤.ct,x, dfaABE≤.skM ,M): On input a
ciphertext encoded under attribute x and a secret key for DFA M :
1. Compute Sx = fKP

e (x) and (LM , ρM) = fKP
k (M) as described in Sect. 4.1.

2. Compute μ ← kpABE.Dec
(
kpABE.mpk, kpABE.ct, Sx, skM , (LM , ρM)

)

and output it.

Correctness and Security. Correctness and security follow directly from the
“embedding lemma” (Lemma 1) provided in Sect. 2 by setting

A′ = ADFA, B′ = BDFA, RF ′
= RDFA≤,

A = AMUKP, B = BMUKP, RF = RMUKP

In more detail, we have the following theorem.

Theorem 9. Assume that kpABE is an ABE scheme for relation RMUKP satis-
fying selective/selective*/adaptive security. Then, dfaABE≤ is an ABE scheme
for relation RDFA≤ satisfying selective/selective*/adaptive security.

3.3 Construction of dfaABE>

In this section, we construct the ABE scheme dfaABE> for the relation RDFA> =

{ADFA × BDFA → {0, 1}} where RDFA>(x,M) = M(x) ∧ (|x| ?
> |Q|). Our con-

struction is built from the following ingredients:

1. An ABE scheme for the relation RMUCP : AMUCP × BMUCP → {0, 1}. Recall
from Sect. 2, that AMUCP is the set of all monotone span programs, BMUCP is
the set of attributes and RMUCP((L, ρ), S) = 1 iff the span program (L, ρ) ∈
AMUCP accepts the set S ∈ BMUCP. We denote such a scheme as cpABE, and
construct it in the full version of our paper [6] (Section 5.4).

2. A map fCP
e : ADFA → AMUCP and a map fCP

k : BDFA → BMUCP so that
RMUCP((Lx, ρx), SM) = 1 iff RDFA>(x,M) = 1, where (Lx, ρx) = fCP

e (x) and
SM = fCP

k (M). These maps are constructed in Sect. 4.2.

The scheme dfaABE> is then defined as follows.

106 S. Agrawal et al.

dfaABE>.Setup(1λ): On input the security parameter 1λ, do the following:
1. Invoke cpABE.Setup(1λ) to obtain (cpABE.mpk, cpABE.msk).
2. Output dfaABE>.mpk = cpABE.mpk and dfaABE>.msk = cpABE.msk.

dfaABE>.Enc(dfaABE>.mpk, μ,x): On input the master public
key dfaABE>.mpk, a message μ, and an attribute x ∈ ADFA of unbounded
polynomial length (i.e. length at most 2λ), do the following:
1. Convert x to MSP (Lx, ρx) by computing (Lx, ρx) = fCP

e (x) as described
in Sect. 4.2.

2. Compute ct = cpABE.Enc(cpABE.mpk, μ, (Lx, ρx)) and output it.

dfaABE>.KeyGen(dfaABE>.msk, dfaABE>.mpk,M): On input the master secret
key dfaABE>.msk, the description of a DFA M do the following:
1. Convert M into an attribute SM by computing SM = fCP

k (M) as
described in Sect. 4.2.

2. Compute sk = cpABE.KeyGen(cpABE.msk, cpABE.mpk, SM) and output
it.

dfaABE>.Dec(dfaABE>.mpk, dfaABE>.ct,x, dfaABE>.skM ,M): On input a
ciphertext encoded under attribute x and a secret key skM for DFA M :
1. Compute (Lx, ρx) = fCP

e (x) and SM = fCP
k (M) as described in Sect. 4.2.

2. Compute μ ← cpABE.Dec(cpABE.mpk, cpABE.ct, (Lx, ρx), skM , SM) and
output it.

Correctness and Security. Correctness and security follow exactly as in Sect. 3.2,
by considering the maps defined in Sect. 4.2 instead of Sect. 4.1. In more detail,
we have the following theorem:

Theorem 10. Assume that cpABE is an ABE scheme for relation RMUCP sat-
isfying selective/selective*/adaptive security. Then, dfaABE> is an ABE scheme
for relation RDFA> satisfying selective/selective*/adaptive security.

4 Mapping DFA Computation to Monotone Span
Programs

In this section we will describe how to encode DFA computation over a binary
alphabet Σ = {0, 1} into a monotone span program (MSP). Section 4.1 shows the
encoding procedure for any DFA machine to a MSP and further how to encode
its input to a set of attributes associated with the MSP. In a dual view, Sect. 4.2
shows the encoding procedure for any input string to a MSP while encoding the
DFA machine itself as a set of attributes associated with the MSP. For both
sections, we denote any DFA machine as M = (Q,Σ, T, qst, F) and x ∈ Σ∗ as
its input of arbitrary (polynomial) length.

Attribute Based Encryption for Deterministic Finite Automata from DLIN 107

4.1 Encoding Deterministic Finite Automata to Monotone Span
Programs

In this section, we construct two efficiently computable functions (please see
Sect. 2 for the notation):

1. fKP
e : ADFA → AMUKP to encode w ∈ ADFA as a set of attributes Sw ∈ AMUKP,

and
2. fKP

k : BDFA → BMUKP to encode M ∈ BDFA into a MSP (LM , ρM) ∈ BMUKP.

We argue that RMUKP(Sw, (LM , ρM)) = 1 iff RDFA≤(w,M) = 1, where Sw =
fKP
e (w) and (LM , ρM) = fKP

k (M).

For ease of exposition, we represent the universe of attributes in the following
form:

AMUKP := {“xi = b” | i ∈ [2λ], b ∈ {0, 1}} ∪ {“String length = i” | i ∈ [2λ]} ∪ {“Dummy”}.

We assume that these attributes are embedded into Z via an injective mapping
such as

“Dummy” �→ 0, “xi = b” �→ 3i + b “String length = i” �→ 3i + 2.

However, for maintaining intuitive notation, we make the mapping implicit. An
input string w = (w1, . . . , w�) ∈ ADFA of length � is encoded to a set of attributes
given by fKP

e (w) = Sw ∈ AMUKP as:

Sw := {“Dummy”} ∪ {“xi = wi” | i ∈ [�]} ∪ {“String length = �”}.

When we represent Sw as a set of integers, we have Sw ⊆ [4�] and thus in
particular, all the values in Sw are bounded by poly(�).

A DFA machine M = (Q,Σ, T, qst, F) ∈ BDFA is encoded into a MSP given
by fKP

k (M) = (LM , ρM) ∈ BMUKP. Here LM ∈ {0,±1}R×C with R = 1 + (2 ·
|Q| + 1) · |Q| and C = 1 + |Q| + |Q|2. The label map ρM will be implicit in
the description of the matrix LM . Before providing the construction of LM , we
define the following sub-matrices useful in the construction:

– matrix IQ denoting the |Q| × |Q| identity matrix, and

– matrices Y(b) ∈ {0,−1}|Q|×|Q|,∀b ∈ {0, 1} defined as Y(b) :=
[
y
(b)
i,j

]
such

that:

y
(b)
i,j = −1, if T (i, b) = j (i.e. there is a transition from state i to state j upon input b)

= 0, otherwise

We also denote 0Q×Q to be the all-zero matrix of size |Q| × |Q| and 0Q as the
column-vector of size |Q| containing all 0s.

We define LM and the map ρM in Table 2.

108 S. Agrawal et al.

Table 2. Encoding a DFA M to matrix LM

“Dummy” �→ 1 −10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

“x1 = 0” �→ 0Q IQ Y(0) 0Q×Q . . . 0Q×Q 0Q×Q

“x1 = 1” �→ 0Q IQ Y(1) 0Q×Q . . . 0Q×Q 0Q×Q

“x2 = 0” �→ 0Q 0Q×Q IQ Y(0) . . . 0Q×Q 0Q×Q

“x2 = 1” �→ 0Q 0Q×Q IQ Y(1) . . . 0Q×Q 0Q×Q

...
...

...
...

...
. . .

...
...

“x|Q| = 0” �→ 0Q 0Q×Q 0Q×Q 0Q×Q . . . IQ Y(0)

“x|Q| = 1” �→ 0Q 0Q×Q 0Q×Q 0Q×Q . . . IQ Y(1)

“String length = 1” �→ 0 0 . . . 0 0 . . . 01

“String length = 2” �→ 0 0 . . . 00 0 . . . 01
...

...
. . .

“String length = |Q|” �→ 0 0 . . . 00 0 . . . 01

We observe that maxi ρM (i) ≤ 4|Q|, where we regard the attributes as inte-
gers through the aforementioned injective mapping. In particular, LM is associ-
ated with attributes bounded by poly(|Q|).

The last |Q| rows pertaining to attributes “String length = i”, i ∈ [|Q|] is a
|Q| × C submatrix containing all zeros except specific locations filled with 1s in
a diagonal form as shown. We prove the following theorem.

Theorem 11. Let LM,w be the submatrix of LM restricted to the rows selected
by attribute set Sw (please see Definition 2.1). Then, for any DFA M =
(Q,Σ, T, qst, F) ∈ BDFA and any input w ∈ ADFA we have e1 ∈ span(L�

M,w)
iff (M(w) = 1 ∧ |w| ≤ |Q|).
Proof. We first prove “if” direction. For any w ∈ ADFA with |w| = � ≤ |Q|, the
submatrix LM,w of LM restricted by Sw is shown in Table 3.

Since M is a DFA, the matrix Y(b) will always have exactly one “−1” in each
of its rows. Let w = (w1, . . . , w�). To prove the theorem, we give an algorithm
which constructs a subset of rows L̂M,w of LM,w inductively that sums up to e1
iff M(w) = 1. The algorithm proceeds as follows:

On input (M,w,LM,w), it does the following:

1. Initialize L̂M,w with the first row of LM,w labelled with attribute “Dummy”.
2. For i ∈ [�], do the following:

Attribute Based Encryption for Deterministic Finite Automata from DLIN 109

Table 3. Submatrix LM,w defined by Sw and LM

“Dummy” �→ 1 −10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

“x1 = w1” �→ 0Q IQ Y(w1)

“x2 = w2” �→ 0Q IQ Y(w2)

...
...

. . .

“x� = w�” �→ 0Q IQ Y(w�)

“String length = �” �→ 0 0 . . . 0 0 . . . 01

(a) If i = 1, populate L̂M,w with second row of LM,w labelled with “x1 = w1”.
Discard the remaining |Q| − 1 rows in the block labelled with “x1 = w1”.
For the chosen row, let k1 ∈ Q be such that T (1, w1) = k1. By construc-
tion this implies y

(w1)
1,k1

= −1 in Y(w1).
(b) If i ∈ [2, �], choose the ki−1-th row in the block labelled with “xi = wi”

and add it to L̂M,w. Discard the remaining |Q| − 1 rows in the block
labelled with “xi = wi”.
For the chosen row, let ki ∈ Q be such that T (ki−1, wi) = ki. By con-
struction this implies y

(wi)
ki−1,ki

= −1 in Y(wi).

3. Add the row labelled “String length = �” to L̂M,w. Output L̂M,w and termi-
nate.

It is easy to see that the above algorithm always terminates. The first two
rows of LM,w labelled with attributes “Dummy” and “x1 = w1” are chosen in
Step 1 and Step 2(a) of the above algorithm respectively. The last row is chosen
in a natural way in Step 3 based on the length of the input string.

Aside from these, note that the way the remaining rows are added to L̂M,w

is governed by the transition function T of the DFA M . Essentially, the com-
putation of L̂M,w mirrors the computation of M on input w. In particular,
the order in which the rows are selected iteratively in Step 2 always follow
a loop invariant: at the end of the i-th iteration the chosen rows sum to a
vector vi = (1, 0, . . . , 0,−1, 0, . . . , 0), where −1 appears exactly at the ki-th
position associated with the |Q| × |Q|-sized block matrix Y(wi). Hence, when
M(w) = 1 with |w| = �, the vectors in L̂M,w at the end of the Step 2 sum to
v� = (1, 0, . . . , 0,−1). Here −1 is at position |Q| associated with Y(w�) and is
also the final state of M . By construction of LM,w, it follows that the last row
selected in Step 3 labelled with “String length = �” when added to v� results to
e1, as intended.

We then prove “only if” direction. For any w = (w1, . . . , w�) ∈ Σ� such that
M(w) �= 1 and � ≤ |Q|, note that the description of LM,w forces the first two
rows corresponding to attributes “Dummy” and “x1 = w1” to be chosen to build

110 S. Agrawal et al.

e1 progressively. For i ∈ [2, � − 1], let ki−1, ki ∈ Q be such that y
(wi)
ki−1,ki

= −1
in Y(wi). Consequently, the only choice left for selecting the next row further to
nullify the −1 in y

(wi)
ki−1,ki

is restricted to the ki-th row in the block labelled with
“xi+1 = wi+1” which again forces the emulation of M ’s computation on input
w. Since M(w) �= 1, the sum of all the rows at the end of the �-th iteration
cannot have a “ − 1” in its |Q|th position. When added to the row labelled
“String length = �”, this does not yield e1 as desired.

We then consider w = (w1, . . . , w�) ∈ Σ� such that � > |Q|. In this case, the
matrix LM,w does not have the last row in Table 3. Therefore, we cannot nullify
“−1” that appears in the rightmost block as a result of enforced emulation of
M ’s computation. Therefore, we cannot obtain e1 as desired.

4.2 Encoding DFA Input Strings to Monotone Span Programs

In this case the DFA machine M is encoded into a set of attributes SM from an
appropriately defined attribute universe while the input string x ∈ Σ∗ will be
encoded to a MSP (Lx, ρx).

We construct two efficiently computable functions:

1. fCP
e : ADFA → AMUCP to encode x ∈ ADFA into a MSP (Lx, ρx) ∈ AMUCP.

2. fCP
k : BDFA → BMUCP to encode M ∈ BDFA as a set of attributes SM ∈ BMUCP.

We argue that RMUCP(SM , (Lx, ρx)) = 1 iff RDFA>(x,M) = 1, where SM =
fCP
k (M) and (Lx, ρx) = fCP

e (x).

For ease of exposition, we represent the universe of attributes as follows:

BMUCP := {(b, i, j) | b ∈ {0, 1}, i, j ∈ [2λ]}∪{“Size = s” | s ∈ [2λ]}∪{“Dummy”}.

We assume that these attributes are embedded into Z via an injective mapping
such as

“Dummy” �→ 0, “(b, i, j)” �→ 4((i + j)2 + j) + 2b “Size = s” �→ 2s + 1,

But for maintaining intuitive notation, we make the mapping implicit.
A DFA M = (Q,Σ, T, qst, F) ∈ BDFA is encoded as a set of attributes given

by fCP
k (M) = SM ∈ BMUCP as:

SM := {“Dummy”} ∪ {(b, i, j) ∈ Σ × Q2 | T (i, b) = j} ∪ {“Size = |Q|”}.

When we represent SM as a set of integers, we have SM ⊆ [20|Q|2] and thus
in particular, all the values in SM are bounded by poly(|Q|).

An input string x = (x1, . . . , x�) ∈ ADFA of length � is encoded into a MSP
given by fCP

e (x) = (Lx, ρx) ∈ AMUCP. Here Lx ∈ {0,±1}R×C with R = 1+�3 +�
and C = 1 + � + �2. The label map ρx will be implicit in the description of
the matrix Lx. Before providing the construction of Lx, we define the following
sub-matrices useful in the construction:

Attribute Based Encryption for Deterministic Finite Automata from DLIN 111

– matrix I� denoting the � × � identity matrix and a column-vector g� =
(1, . . . , 1)
︸ ︷︷ ︸

�

�

– matrices S� and T� such that

S� := I� ⊗ g� =

⎡
⎢⎢⎢⎣

g� 0� . . . 0�

0� g� . . . 0�

...
...

. . .
...

0� 0� . . . g�

⎤
⎥⎥⎥⎦

�2×�

, where 0� is the all-zero column-vector of size �

and T� = −g� ⊗ I� = [−I�‖ . . . ‖ − I�]
� of size �2 × �.

For a fixed b ∈ {0, 1}, we say “associate [S�‖T�] with b”4 when we label the rows
of [S�‖T�] as shown in Table 4.

Table 4. Submatrix [S�‖T�] with its row label map

(b, 1, 1) �→
g� 0� . . . 0� −I�..

.

(b, 1, �) �→
(b, 2, �) �→

0� g� . . . 0� −I�.
..

(b, 2, �) �→
..
.

..

.
..
.

. . .
..
.

..

.

(b, �, 1) �→
0� 0� . . . g� −I�.

.

.

(b, �, �) �→

We also denote 0�2 , 0�2×� and 0�×� to be all-zero column-vector of size �2

and all-zero matrices of size �2 × � and �× � respectively. We now define Lx with
its rows labelled with attributes as specified in Table 5.

We observe that we have maxi ρx(i) ≤ 20�2, where we regard the attributes
as integers through the aforementioned injective mapping. In particular, Lx is
associated with attributes bounded by poly(�).

The last � rows pertaining to attributes “Size = i”, i ∈ [�] is a � × C sub-
matrix containing all zeros except an identity matrix block I� located under the
rightmost T� with its i-th row labelled with attribute “Size = i”,∀i ∈ [�]. We
show the following.

4 For brevity, we express this as b ⇔ [S�‖T�] in the final description of Lx.

112 S. Agrawal et al.

Table 5. Encoding a string x to matrix Lx

“Dummy” �→ 1 −10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

x1 ⇔ 0�2 S� T� 0�2×� . . . 0�2×� 0�2×�

x2 ⇔ 0�2 0�2×� S� T� . . . 0�2×� 0�2×�

...
...

...
...

...
. . .

...
...

x� ⇔ 0�2 0�2×� 0�2×� 0�2×� . . . S� T�

“Size = 1” �→ 0

0�×� 0�×� 0�×� . . . 0�×� I�
...

...

“Size = �” �→ 0

Theorem 12. Let LM,x be the submatrix of Lx restricted to the rows selected
by the set SM (please see Definition 2.1). Then, for any DFA M =
(Q,Σ, T, qst, F) ∈ BDFA and any input x ∈ ADFA we have e1 ∈ span(L�

M,x)
iff

(
M(x) = 1 ∧ |x| ≥ |Q|).

Proof. We first remove all the all-zero columns from LM,x and call the remain-
ing matrix as LM,x w.l.o.g. since these columns do not influence on whether
e1 ∈ span(L�

M,x) or not. This simplification ensures that LM,x is given as shown
in Table 6. Note that the rows present in LM,x is governed by the transition
function, T of M (via the row labels in Lx). We also note that the last row in
Table 6 will be missing if we have |x| < |Q|. Therefore, the matrix Y(b) here is
the same as that was defined in Sect. 4.1. Hence, the proof follows identically to
that of Theorem 11.

Table 6. Submatrix LM,x defined by SM and Lx

“Dummy” �→ 1 −10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

x1 ⇔ 0Q IQ Y(x1)

x2 ⇔ 0Q IQ Y(x2)

...
...

. . .

x� ⇔ 0Q IQ Y(x�)

“Size = |Q|” �→ 0 0 . . . 0 0 . . . 01

Attribute Based Encryption for Deterministic Finite Automata from DLIN 113

5 Putting It All Together: ABE for DFA

In this section, we discuss instantiation of our generic construction of ABE for
DFA by putting together all the ingredients developed so far.

As we have seen in Sect. 3.1, ABE for RDFA (i.e., ABE for DFA) can be
constructed from ABE for RDFA≥ and ABE for RDFA≤. Furthermore, as we have
seen in Theorem 10 (resp., Theorem 9), ABE for RDFA> (resp., ABE for RDFA≤)
is implied by ABE for RMUCP (resp., RMUKP).

To instantiate the ABE for RMUKP, we use the construction in the full version
of our paper [6] (Section 5.2). As was shown in [6] (in Theorem 13), this construc-
tion is semi-adaptively secure under the MDDHk assumption. To instantiate the
ABE for RMUCP, we use the construction in the full version of our paper [6]
(Section 5.4). As was shown in [6] (in Theorem 14), this construction satisfies
selective* security under the DLIN assumption. Putting all pieces together, we
obtain the following theorem.

Theorem 13. There exists selective* secure key-policy ABE for RDFA from the
DLIN assumption.

Ciphertext Policy ABE for DFA. We observe that our construction dfaABE
uses the underlying kpABE and cpABE in a symmetric way. Thus, by swapping
the use of kpABE and cpABE in our construction, we can equivalently construct
ciphertext-policy ABE for DFA. Recall that analogous to ABE for MSP (Sect. 2),
the ciphertext-policy variant of ABE for DFA is defined simply by swapping the
order of the domains in the relation RDFA. In more detail, we set ACPDFA = BDFA

and BCPDFA = ADFA and define the relation RCPDFA analogously for a ciphertext
policy scheme for DFA. Thus, in a ciphertext-policy scheme, the encryptor to
encrypt a machine and the key generator to compute a key for an input x.

To modify dfaABE to be ciphertext-policy, we exchange the maps used by
KeyGen and Enc in the constructions of dfaABE≤ and dfaABE> in Sects. 3.2
and 3.3 respectively. For instance, to construct a ciphertext-policy variant of
dfaABE≤, we modify the encrypt and key generation algorithms so that:

1. The key generation algorithm receives as input an attribute x, converts it to
attributes Sx using the map defined in Sect. 4.1 and computes cpABE key for
Sx.

2. The encryption algorithm receives as input an MSP M , converts it to an MSP
(LM , ρM) using the map defined in Sect. 4.1 and computes cpABE encryption
for policy (LM , ρM).

The modification to dfaABE> is analogous. The compiler dfaABE remains the
same.

Thus, we additionally obtain the following theorem:

Theorem 14. There exists selective* secure ciphertext-policy ABE for RDFA

from the DLIN assumption.

114 S. Agrawal et al.

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS,
vol. 9563, pp. 259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49099-0 10

2. Agrawal, S., Chase, M.: Fame: fast attribute-based message encryption. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security CCS 2017 (2017)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

4. Agrawal, S., Maitra, M.: FE and iO for turing machines from minimal assumptions.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 473–512.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 18

5. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from learning with errors. In: Crypto (2019)

6. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic
finite automata from dlin. Cryptology ePrint Archive, Report 2019/645 (2019).
https://eprint.iacr.org/2019/645

7. Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from learn-
ing with errors. In: ICALP, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2017)

8. Ananth, P., Fan, X.: Attribute based encryption with sublinear decryption from
LWE. Cryptology ePrint Archive, Report 2018/273 (2018). https://eprint.iacr.org/
2018/273

9. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49096-9 6

10. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 6

11. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over ggh13. eprint 2016 (2016)

12. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

13. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

14. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 24

15. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-030-03810-6_18
https://eprint.iacr.org/2019/645
https://eprint.iacr.org/2018/273
https://eprint.iacr.org/2018/273
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-48797-6_24
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

Attribute Based Encryption for Deterministic Finite Automata from DLIN 115

16. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

17. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

18. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 28

19. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

20. Boyen, X., Li, Q.: Attribute-based encryption for finite automata from LWE. In:
Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 247–267. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 14

21. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 13

22. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

23. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

24. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

25. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7 16

26. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

27. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 20

28. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low level encoding of zero. Eprint 2016/139

29. Coron, J.S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-540-89255-7_28
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-319-26059-4_14
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-49890-3_20
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12

116 S. Agrawal et al.

30. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indis-
tinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54365-8 3

31. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

32. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013). http://eprint.iacr.org/

33. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC (2013)

34. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

35. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC, pp. 555–
564 (2013)

36. Gong, J., Waters, B., Wee, H.: ABE for DFA from k -Lin. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 25

37. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for cir-
cuits. In: STOC (2013)

38. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 25

39. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 23

40. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling func-
tionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 14

41. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

42. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report
2015/301 (2015)

43. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

44. Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and
succinct functional encryption: Improving security and efficiency, simultaneously.
Cryptology ePrint Archive, Report 2018/974 (2018). https://eprint.iacr.org/2018/
974

https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-642-38348-9_1
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://eprint.iacr.org/2018/974
https://eprint.iacr.org/2018/974

Attribute Based Encryption for Deterministic Finite Automata from DLIN 117

45. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional lin-
ear assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 524–541. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 26

46. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC 1 from k-Lin.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 3–33.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

47. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 20

48. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

49. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

50. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

51. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

52. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

53. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

54. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

55. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & #38; Communications Security CCS 2013 (2013)

56. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

57. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

58. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

CPA-to-CCA Transformation for KDM
Security

Fuyuki Kitagawa1(B) and Takahiro Matsuda2

1 NTT Secure Platform Laboratories, Tokyo, Japan
fuyuki.kitagawa.yh@hco.ntt.co.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

t-matsuda@aist.go.jp

Abstract. We show that chosen plaintext attacks (CPA) security is
equivalent to chosen ciphertext attacks (CCA) security for key-dependent
message (KDM) security. Concretely, we show how to construct a public-
key encryption (PKE) scheme that is KDM-CCA secure with respect to
all functions computable by circuits of a-priori bounded size, based only
on a PKE scheme that is KDM-CPA secure with respect to projection
functions. Our construction works for KDM security in the single user
setting.

Our main result is achieved by combining the following two steps.
First, we observe that by combining the results and techniques from the
recent works by Lombardi et al. (CRYPTO 2019), and by Kitagawa et al.
(CRYPTO 2019), we can construct a reusable designated-verifier non-
interactive zero-knowledge (DV-NIZK) argument system based on an
IND-CPA secure PKE scheme and a secret-key encryption (SKE) scheme
satisfying one-time KDM security with respect to projection functions.
This observation leads to the first reusable DV-NIZK argument system
under the learning-parity-with-noise (LPN) assumption. Then, as the
second and main technical step, we show a generic construction of a
KDM-CCA secure PKE scheme using an IND-CPA secure PKE scheme,
a reusable DV-NIZK argument system, and an SKE scheme satisfying
one-time KDM security with respect to projection functions. Since the
classical Naor-Yung paradigm (STOC 1990) with a DV-NIZK argument
system does not work for proving KDM security, we propose a new con-
struction methodology to achieve this generic construction.

Moreover, we show how to extend our generic construction and achieve
KDM-CCA security in the multi-user setting, by additionally requiring
the underlying SKE scheme in our generic construction to satisfy a weak
form of KDM security against related-key attacks (RKA-KDM security)
instead of one-time KDM security. From this extension, we obtain the
first KDM-CCA secure PKE schemes in the multi-user setting under the
CDH or LPN assumption.

Keywords: Public-key encryption · Key-dependent message security ·
Chosen ciphertext security · Designated-verifier non-interactive
zero-knowledge argument

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 118–148, 2019.
https://doi.org/10.1007/978-3-030-36033-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_5

CPA-to-CCA Transformation for KDM Security 119

1 Introduction

1.1 Background

The most basic security notion for public-key encryption (PKE) is indistinguisha-
bility against chosen plaintext attacks (IND-CPA security) [26]. Intuitively, IND-
CPA security guarantees that an adversary can obtain no information about a
message from its encryption, except for its length. However, in practice, PKE
schemes should satisfy the stronger notion of indistinguishability against cho-
sen ciphertext attacks (IND-CCA security) [37,38]. IND-CCA security implies
non-malleability [7,20], and provides security guarantees against active adver-
saries [9].

Since IND-CCA security is stronger than IND-CPA security, the existence
of IND-CCA secure PKE implies that of IND-CPA secure one. However, the
implication of the opposite direction is not known. While a partial negative
result was shown by Gertner, Malkin, and Myers [25], the question whether an
IND-CCA secure PKE scheme can be constructed from an IND-CPA secure one
has still been standing as a major open question in cryptography from both the
theoretical and practical points of view.

In the literature, a number of efforts have been made for (implicitly or explic-
itly) tackling the problem. Among them, we highlight the two very recent works
that make solid progress. Koppula and Waters [33] showed that an IND-CCA
secure PKE scheme can be constructed from an IND-CPA secure one by using a
pseudorandom generator (PRG) satisfying a special security notion. This addi-
tional primitive is called a hinting PRG. Subsequently, Kitagawa, Matsuda, and
Tanaka [30] showed that a transformation from an IND-CPA secure PKE scheme
to an IND-CCA secure one is also possible by using a secret-key encryption
(SKE) scheme satisfying one-time key-dependent message security [8] instead of
a hinting PRG.

We further study the question of CPA security vs CCA security. Many previ-
ous works focusing on this question sought an additional assumption that bridges
IND-CPA security and IND-CCA security. In this work, we tackle the question
from a somewhat different angle. Concretely, we aim at finding a security notion
under which CPA security and CCA security are equivalent. As far as we know,
such an equivalence is not known for any security notion for PKE schemes (e.g.,
leakage resilience, key-dependent message security, and selective opening secu-
rity). Finding such a security notion is an important question in the theoretical
study of public-key cryptography. Moreover, we believe that clarifying for what
types of notions CPA security and CCA security are equivalent potentially gives
us new insights for the major open question on the equivalence between IND-
CPA security and IND-CCA security.

Based on the above motivation, in this work, we study the equivalence of
CPA security and CCA security for key-dependent message (KDM) security [8].
Informally, KDM security guarantees that an encryption scheme can securely
encrypt messages that depend on its own secret key. We can see some connec-
tions between IND-CCA security and KDM-CPA security from several previous

120 F. Kitagawa and T. Matsuda

results [27,30,36], and thus KDM security can be considered as one of the best
candidates for which CPA security and CCA security could be shown equivalent.
Moreover, KDM security is important and interesting enough to be studied in
its own right since it has found a number of applications in both theoretical
and practical studies in cryptography, e.g., anonymous credentials [15], formal
methods [1], hard-disc encryption [10], fully homomorphic encryption [24], non-
interactive zero-knowledge proofs [16,17], and homomorphic secret-sharing [11].

1.2 Our Results

As noted above, we study the equivalence between CPA security and CCA secu-
rity for KDM security. Then, we obtain the following main theorem.

Theorem 1 (Informal). Assume that there exists a KDM-CPA secure PKE
scheme. Then, there exists a KDM-CCA secure PKE scheme.

We show this theorem for KDM-CPA security and KDM-CCA security in
the single user setting. The underlying scheme needs to be KDM-CPA secure
with respect to functions called projection functions (P-KDM-CPA secure). The
family of projection functions is one of the simplest classes of functions, and
KDM security with respect to this function class has been widely studied [5,10,
12,13,22]. The resulting scheme is KDM-CCA secure with respect to all functions
computable by circuits of a-priori bounded size. The achieved security notion is
the CCA-analogue of the notion called bounded KDM security by Barak, Haitner,
Hofheinz, and Ishai [6].

We obtain Theorem 1 by combining the following two steps.

Reusable DV-NIZK Based on One-Time KDM Secure SKE. A designated-
verifier non-interactive zero-knowledge (DV-NIZK) argument system is a relax-
ation of a standard NIZK argument system in the common reference string model
(CRS-NIZK, for short), and allows a verifier to have its own public/secret key
pair; The public key is used to generate a proof non-interactively, which can be
verified by using the corresponding secret key. A DV-NIZK argument system is
said to be reusable if its soundness (resp. zero-knowledge property) is maintained
even if an adversary can make multiple verification (resp. proving) queries. It
was recently shown by Lombardi, Quach, Rothblum, Wichs, and Wu [34] that a
reusable DV-NIZK argument system can be constructed from the combination
of an IND-CPA secure PKE scheme and a hinting PRG introduced by Koppula
and Waters [33].

As the first step for Theorem 1, we observe that we can construct a reusable
DV-NIZK argument system based on an IND-CPA secure PKE scheme and an
SKE scheme that is one-time KDM secure with respect to projection functions
(one-time P-KDM secure), by combining the results and techniques from the
recent works by Lombardi et al. [34] and Kitagawa et al. [30].

In fact, this is somewhat obvious from the results [30,34] and not our main
contribution. However, this observation leads to the following interesting impli-
cations. A one-time P-KDM secure SKE scheme can be constructed based on

CPA-to-CCA Transformation for KDM Security 121

the polynomial hardness of the constant-noise learning-parity-with-noise (LPN)
assumption [5]. Moreover, we can construct an IND-CPA secure PKE scheme
based on the polynomial hardness of the low-noise LPN assumption [2] or the
sub-exponential hardness of the constant-noise LPN assumption [41]. Thus, com-
bined together, our observation leads to the first reusable DV-NIZK argument
system based on either the polynomial hardness of the low-noise LPN assump-
tion or the sub-exponential hardness of the constant-noise LPN assumption.

We note that the exact same observation (i.e. a reusable DV-NIZK argument
system based on IND-CPA secure PKE and one-time P-KDM secure SKE, and
the LPN-based instantiation) was very recently made independently and con-
currently by Lombardi et al. [35].

Generic Construction of KDM-CCA Secure PKE Using Reusable DV-NIZK.
Then, as the second and main technical step for Theorem 1, we show a generic
construction of KDM-CCA secure PKE based on the following five building
blocks: an IND-CPA secure PKE scheme, an IND-CCA secure PKE scheme, a
one-time P-KDM secure SKE scheme, a garbling scheme, and a reusable DV-
NIZK argument system.

In the first step above, we show how to construct a reusable DV-NIZK argu-
ment system from an IND-CPA secure PKE scheme and a one-time P-KDM
secure SKE scheme. Also, IND-CCA secure PKE can be constructed from the
same building blocks [30]. Moreover, a garbling scheme can be constructed from
one-way functions [40], which is in turn implied by other building blocks. There-
fore, through our generic construction, we can construct a KDM-CCA secure
PKE scheme based on an IND-CPA secure PKE scheme and a one-time P-
KDM secure SKE scheme. Since both of the underlying primitives are implied
by P-KDM-CPA secure PKE, we obtain Theorem 1.

We highlight that our construction can “amplify” KDM security in terms
of not only the class of functions (from projection functions to circuits of a-
priori bounded size) but also the number of KDM-encryption queries allowed for
an adversary. Specifically, among the building blocks, the only “KDM-secure”
component is the one-time P-KDM secure SKE scheme, while our construc-
tion achieves the standard many-time KDM-CCA security. For more details, see
Sect. 2.3.

One might think that if we can use a reusable DV-NIZK argument system,
a KDM-CPA secure PKE scheme can easily be transformed into a KDM-CCA
secure one by the Naor-Yung paradigm [37]. In fact, if the goal is to achieve an
IND-CCA secure PKE scheme, then it is possible to replace a CRS-NIZK argu-
ment system in the Naor-Yung paradigm with a reusable DV-NIZK argument
system. Furthermore, Camenisch, Chandran, and Shoup [14] showed that (a
slight variant of) the Naor-Yung paradigm with a CRS-NIZK argument system
can be used to transform a KDM-CPA secure PKE scheme into a KDM-CCA
secure one. Unfortunately, however, things are not so easy if we aim at achiev-
ing KDM-CCA security using a reusable DV-NIZK argument system via the
Naor-Yung paradigm (or its existing variants). The main cause of difficulty is
that if we apply the standard Naor-Yung paradigm using a DV-NIZK argument

122 F. Kitagawa and T. Matsuda

system, the secret verification key of the DV-NIZK argument system is included
in the secret key of the resulting scheme, and a circularity involving a DV-NIZK
argument system occurs in the KDM-CCA security game. Our main technical
contribution is circumventing this difficulty. We will detail the difficulty as well
as our techniques in Sect. 2.

KDM-CCA Security in the Multi-user Setting Based on New Assumptions.
Although our main focus in this work is on showing that KDM-CPA security
and KDM-CCA security are equivalent, through the above results, we obtain
the first KDM-CCA secure PKE schemes based on the computational Diffie-
Hellman (CDH) assumption and the LPN assumption, since KDM-CPA secure
PKE schemes can be constructed under these assumptions [13,21,22]. These
schemes satisfy only KDM-CCA security in the single user setting, since so does
our generic construction, as noted earlier.

We then show how to extend our generic construction and achieve a PKE
scheme satisfying KDM-CCA security in the multi-user setting under the CDH
and LPN assumptions. This is done by requiring the underlying SKE scheme
in our generic construction to satisfy a variant of KDM security against related-
key attacks (RKA-KDM security) [4], instead of one-time KDM security. (We
also require a mild property that a secret key is a uniformly distributed ran-
dom string.) An SKE scheme satisfying our definition of RKA-KDM security
can be constructed based on the (polynomial hardness of) constant-noise LPN
assumption [4]. Moreover, we show how to construct an SKE scheme satisfy-
ing our RKA-KDM security notion based on hash encryption [13,22], which in
turn can be based on the CDH assumption. This construction is an extension
of a KDM-CPA secure PKE scheme based on batch encryption proposed by
Brakerski, Lombardi, Segev, and Vaikuntanathan [13].

Due to the space constraint, we omit the construction of an RKA-KDM secure
SKE scheme using a hash encryption scheme from the proceedings version. For
the construction, see the full version.

1.3 Related Work

Generic Constructions for KDM-CCA Secure PKE. To the best of our knowl-
edge, the only existing generic methods for constructing KDM-CCA secure PKE,
are the works by Camenisch, Chandran, and Shoup [14], by Galindo, Herrantz,
and Villar [23], and by Kitagawa and Tanaka [31]. Camenisch et al. [14] showed
how to construct a KDM-CCA secure PKE scheme from a KDM-CPA secure
PKE scheme, an IND-CCA secure PKE scheme, and a CRS-NIZK proof (or
argument) system. (We will touch it in Sect. 2.) Galindo et al. [23] showed how
to construct a KDM-CCA secure PKE scheme from an identity-based encryp-
tion scheme which satisfies so-called master-key-dependent message security, via
the transformation by Canetti, Halevi, and Katz [18]. However, the only known
instantiation of Galindo et al.’s method can achieve security against adversaries
that make an a-priori bounded number of master-key-KDM-encryption queries,

CPA-to-CCA Transformation for KDM Security 123

which is translated to KDM-CCA security against adversaries that make an a-
priori bounded number of KDM-encryption queries. Kitagawa and Tanaka [31]
showed how to construct a KDM-CCA secure PKE scheme based on a hash
proof system [19] satisfying some homomorphic property. It is not obvious how
to modify the methods of [23,31] to achieve a generic construction of a KDM-
CCA secure PKE scheme starting from a KDM-CPA secure one.

2 Technical Overview

In this section, we provide a technical overview of our main results. As men-
tioned in the introduction and will be detailed in Sect. 4, we can observe from
the previous results [30,34] that a reusable DV-NIZK argument system can be
constructed based on the combination of an IND-CPA secure PKE scheme and
a one-time KDM secure SKE scheme. Thus, in this overview, we mainly focus
on the generic construction of a PKE scheme that is KDM-CCA secure in the
single user setting using a reusable DV-NIZK argument system. (From here on,
we drop “reusable”.) We also briefly explain how to extend it into the multi-user
setting by using RKA-KDM secure SKE. We start with why we cannot achieve
such a generic construction by using the standard Naor-Yung paradigm [37].

2.1 Naor-Yung Paradigm with DV-NIZK Fails for KDM

Camenisch, Chandran, and Shoup [14] showed that the Naor-Yung paradigm
with a CRS-NIZK argument system goes through for KDM security. We first
review their construction, and then explain the problems that arise when replac-
ing the underlying CRS-NIZK argument system with a DV-NIZK argument
system.

KDM-CCA PKE by Camenisch et al. [14]. The construction uses a KDM-CPA
secure PKE scheme PKE, an IND-CCA secure PKE scheme PKE′, and a CRS-
NIZK argument system NIZK.1 Using these building blocks, we construct PKENY

as follows. A public key of PKENY consists of (pk, pkcca, crs), where pk and pkcca
are public keys of PKE and PKE′, respectively, and crs is a CRS of NIZK. The cor-
responding secret key is sk corresponding to pk. The secret key skcca correspond-
ing to pkcca is discarded and used only in the security proof. When encrypting a
message m, PKENY generates a ciphertext of the form

(
ct = Encpk(m), ctcca = Enc′

pkcca
(m), π

)
,

where Enc and Enc′ denote the encryption algorithms of PKE and PKE′, respec-
tively, and π is a proof of NIZK proving that ct and ctcca encrypt the same
message, generated by using m and random coins used to generate ct and ctcca

1 In their actual construction, a one-time signature scheme is also used. We ignore it
in this overview for simplicity, since the problem we explain below is unrelated to it.

124 F. Kitagawa and T. Matsuda

as a witness. When decrypting the ciphertext, we first check whether the proof
π is accepted or not. If π is accepted, we decrypt ct by using sk, and recover m.

Camenisch et al. showed that PKENY is KDM-CCA secure for a function class
F with respect to which the underlying PKE scheme PKE satisfies KDM-CPA
security.2

Circularity Involving DV-NIZK. We now explain why the above construction
technique by Camenisch et al. does not work if we use a DV-NIZK argument
system instead of a CRS-NIZK argument system.

If we use a DV-NIZK argument system DVNIZK instead of NIZK as a building
block of PKENY, then we need a secret key skdv of DVNIZK to verify a proof
contained in a ciphertext when decrypting the ciphertext. Thus, we have to
include skdv into the secret key of PKENY.

In this case, an encryption of a message of the form f(sk‖skdv) is given to
an adversary in the KDM-CCA security game, where f is a function chosen by
the adversary as a KDM-encryption query. Then, there is a circularity problem
involving not only encryption schemes but also DVNIZK, since when encrypting
a message f(sk‖skdv), a proof of DVNIZK is generated to guarantee that encryp-
tions of its own secret key skdv are well-formed. Even if such a circularity exists,
we can use the zero-knowledge property of DVNIZK in the security proof since
a reduction algorithm attacking the zero-knowledge property is given a secret
verification key skdv and thus can handle such a circularity. However, we cannot
use its soundness property in the security proof unless we solve the circular-
ity, because a secret verification key skdv is not directly given to an adversary
attacking the soundness of DVNIZK.

Due to this circularity problem involving a DV-NIZK argument system, it
seems difficult to achieve a KDM-CCA secure PKE scheme using a DV-NIZK
variant of the Naor-Yung paradigm.

2.2 How to Solve the Circularity Problem Involving DV-NIZK?

The circularity problem involving a DV-NIZK argument system of PKENY occurs
because in the security game, a message depending on skdv is encrypted by
encryption schemes the validity of whose ciphertexts is proved by the DV-NIZK
argument system. In order to solve this circularity problem, we have to design
a scheme so that it has an indirection that a message is not directly encrypted
by encryption schemes related to a DV-NIZK argument system.

The most standard way to add such an indirection to encryption schemes
would be to use the hybrid encryption methodology. However, it is difficult to
use the hybrid encryption methodology to construct a KDM-CCA secure scheme,
since it leads to a dead-lock in the sense that the key encapsulation mechanism
and data encapsulation mechanism could encrypt each other’s secret key in the
presence of key-dependent messages.
2 We note that in this construction, NIZK need not satisfy the simulation soundness

property [39], and we can complete the proof based on the ordinary soundness (and
zero-knowledge) property of NIZK.

CPA-to-CCA Transformation for KDM Security 125

Thus, we use a different technique. We use a garbling scheme [40] to realize
the indirection that a message is not directly encrypted by encryption schemes
related to a DV-NIZK argument system.3 Concretely, when encrypting a message
m, we first garble a circuit into which m is hardwired. Then, we encrypt each
of the labels generated together with the garbled circuit by a PKE scheme, and
then generate a proof proving that the encryptions of the labels are well-formed
by using a DV-NIZK argument system.

In order to realize the above idea using a garbling scheme, we use a one-time
KDM secure SKE scheme at the key generation to encrypt (and add to a public
key) secret key components of the building block PKE schemes. With the help
of a one-time KDM secure SKE scheme, a garbling scheme makes it possible to
simulate an encryption of the secret key without directly using the secret key
itself, and we can prove the (multi-time) KDM security of the resulting scheme,
which has the indirection.

Below, we first show the KDM-CPA variant of our construction without using
a DV-NIZK argument system. Then, we show how to extend it into a KDM-CCA
secure one.

2.3 KDM-CPA Variant of Our Construction

In the following, we show how to construct a KDM-CPA secure PKE scheme
PKE∗

kdm from a garbling scheme, a one-time KDM secure SKE scheme SKE, and
IND-CPA secure PKE schemes PKE and PKE′.

Construction Using Garbled Circuits. The key generation algorithm generates
a key pair (PK,SK) of PKE∗

kdm as follows. It first generates a secret key s =
(s1, . . . , s�s) ∈ {0, 1}�s of SKE. Next, it generates a key pair (pk′, sk′) of PKE′ and
2�s key pairs (pkj,α, skj,α)j∈[�s],α∈{0,1} of PKE. Then, it encrypts �s+1 secret keys
sk′ and (skj,sj

)j∈[�s] into ctske by SKE under the key s. The public-key PK consists
of 2�s + 1 public keys pk′ and (pkj,α)j∈[�s],α∈{0,1}, and ctske. The corresponding
secret key SK is just s. Namely, PK and SK are of the form

PK =
(

(pkj,α)j∈[�s],α∈{0,1}, pk′, ctske = Es(sk′, (skj,sj
)j∈[�s])

)
and SK = s,

respectively, where Es(·) denotes the encryption algorithm of SKE using the
key s.

When encrypting a message m under PK, PKE∗
kdm first garbles a constant

circuit Q that has m hardwired and outputs it for any input of length �s.4 This
results in a single garbled circuit Q̃ and 2�s labels (labj,α)j∈[�s],α∈{0,1}. Then,

3 The following explanations assume that the reader is familiar with a garbling scheme.
See Sect. 3.5 for its formal definition.

4 In the actual construction, we use a garbled circuit and labels that are generated
by the simulator of the garbling scheme, instead of those generated by garbling a
constant circuit. This makes the security proof simpler. We ignore this treatment
here for the simplicity of the explanation.

126 F. Kitagawa and T. Matsuda

the encryption algorithm encrypts “0-labels” labj,0 into ctj,α by pkj,α for every
j ∈ [�s] and α ∈ {0, 1}. It finally encrypts Q̃ and those encrypted labels (ctj,α)j,α

using pk′. The resulting ciphertext CT is of the form

CT = Enc′
pk′

(
Q̃, (ctj,0 = Encpkj,0(labj,0), ctj,1 = Encpkj,1(labj,0))j∈[�s]

)
,

where Enc and Enc′ are the encryption algorithms of PKE and PKE′, respectively.
We stress that for every j ∈ [n], the same label labj,0 is encrypted under both
pkj,0 and pkj,1.

When decrypting the ciphertext CT using the secret key SK = s, we first
retrieve the secret keys sk′ and (skj,sj

)j∈[�s] from ctske contained in PK. Then,
using sk′, we recover Q̃ and (ctj,α)j∈[�s],α∈{0,1}. Moreover, we recover the “0-
label” labj,0 from ctj,sj

using skj,sj
for every j ∈ [�s]. Finally, we evaluate the

recovered garbled circuit Q̃ with these �s “0-labels” by the evaluation algorithm
of the garbling scheme. This results in m, since given 0�s , Q outputs m.

Overview of the Security Proof of PKE∗
kdm. We explain how we prove the KDM-

CPA security in the single user setting of PKE∗
kdm. Specifically, we explain that no

adversary A can guess the challenge bit b with probability significantly greater
than 1/2 given an encryption of fb(SK) = fb(s), when A queries two functions
(f0, f1) as a KDM-encryption query.5

In this construction, the secret keys of PKE corresponding to s, namely
(skj,sj

)j∈[�s], are encrypted in ctske, but the rest of the secret keys (skj,1⊕sj
)j∈[�s]

are hidden from A’s view. Thus, in the security proof, we can always use the
IND-CPA security of PKE under the public keys (pkj,1⊕sj

)j∈[�s]. By combin-
ing the IND-CPA security of PKE under these keys with the security of the
garbling scheme, we can change the security game so that the encryption of
fb(s) given to A can be simulated without using s, without being noticed by
A. Concretely, in the modified security game, an encryption of fb(s) is gen-
erated as follows. We first generate Q̃ and (labj,α)j∈[�s],α∈{0,1} by garbling a
circuit computing fb, instead of a constant circuit Q in which fb(s) is hardwired.
Then, we encrypt labj,α into ctj,α by pkj,α for every j ∈ [�s] and α ∈ {0, 1}.
Finally, we encrypt Q̃ and those encrypted labels (ctj,α)j,α using pk′, and obtain
CT = Encpk′(Q̃, (ctj,0, ctj,1)j∈[�s]). We see that we now do not need s to gen-
erate CT. The explanation so far in fact works even when A makes multiple
KDM-encryption queries.

After the above change, a ciphertext CT given to A does not have any infor-
mation of s, and thus we can use the one-time KDM security of SKE. Although

5 Usually, KDM security requires that an encryption of f(SK) be indistinguishable
from that of some constant message such as 0|f(·)| instead of requiring encryptions
of f0(SK) and f1(SK) be indistinguishable, where f , f0, and f1 are functions chosen
by adversaries. However, these definitions are equivalent if a function class with
respect to which we consider KDM security contains constant functions, which is
the case in this paper.

CPA-to-CCA Transformation for KDM Security 127

the message (sk′, (skj,sj
)j∈[�s]) encrypted in ctske depends on the secret key s,

by relying on the one-time KDM security of SKE, we can further change the
security game so that ctske is generated as an encryption of some constant mes-
sage such as the all-zero string. Then, since sk′ is now hidden from A’s view, we
can argue that A’s advantage in the final game is essentially 1/2 based on the
IND-CPA security of PKE′. This completes the proof for the KDM-CPA security
of PKE∗

kdm.

Features of PKE∗
kdm. This KDM-CPA secure construction PKE∗

kdm has some
nice properties. First, all of the building blocks are implied by KDM-CPA
secure PKE. (Recall that a garbling scheme can be realized from one-way
functions [40].) Moreover, through this construction, we can transform a one-
time KDM-CPA secure scheme into a (multi-time) KDM-CPA secure PKE
scheme. Also, the resulting scheme satisfies KDM-CPA security with respect
to all functions computable by circuits of a-priori bounded size even though
the underlying KDM-CPA secure scheme needs to satisfy a much weaker form
of KDM-CPA security. Concretely, the underlying scheme needs to be only
KDM-CPA secure with respect to projection functions, since the encrypted mes-
sage (sk′, (skj,sj

)j∈[�s]) can be seen as an output of a function g(x1, . . . , x�s) =
(sk′, (skj,xj

)j∈[�s]), which can be described as a projection function of an input
x = (x1, . . . , x�s) ∈ {0, 1}�s that has (sk′, (skj,α)j∈[�s],α∈{0,1}) hardwired. From
these facts, in the single user setting, the construction PKE∗

kdm in fact improves
the previous amplification methods for KDM-CPA secure schemes [3,22,32]. In
addition, most importantly, PKE∗

kdm can be easily extended into a KDM-CCA
secure one by using a DV-NIZK argument system.

2.4 KDM-CCA Secure PKE Using DV-NIZK

We extend PKE∗
kdm into a KDM-CCA secure PKE scheme PKEkdm by the fol-

lowing two steps.
First, we use a DV-NIZK argument system DVNIZK for proving that

encrypted labels are well-formed. Concretely, we use it in the following man-
ner. When generating a key pair (PK,SK) of PKEkdm, we additionally generate a
key pair (pkdv, skdv) of DVNIZK, and add pkdv to PK. Moreover, we encrypt skdv
into ctske together with (sk′, (skj,sj

)j∈[�s]) by using s. Namely, PK is of the form

PK =
(

(pkj,α)j∈[�s],α∈{0,1}, pk′, pkdv, ctske = Es(sk′, skdv, (skj,sj
)j∈[�s])

)
.

The secret key SK is still only s = (s1, . . . , s�s) ∈ {0, 1}�s . When encrypting a
message m, we first generate Q̃ and (ctj,0, ctj,1)j∈[�s] in the same way as PKE∗

kdm.
Then, using pkdv, we generate a proof π of DVNIZK proving that ctj,0 and ctj,1
encrypt the same message for every j ∈ [�s], by using labj,0 and random coins
used to generate ctj,0 and ctj,1 as a witness.

Next, in order to make the entire part of the ciphertext non-malleable, we
require that PKE′ satisfy IND-CCA security instead of IND-CPA security, and

128 F. Kitagawa and T. Matsuda

encrypt Q̃, the encrypted labels (ctj,0, ctj,1)j∈[�s], and the proof π, using pk′ of
PKE′. Therefore, the resulting ciphertext CT is of the form

CT = Enc′
pk′

(
Q̃, (ctj,0 = Encpkj,0(labj,0), ctj,1 = Encpkj,1(labj,0))j∈[�s], π

)
.

We perform the decryption of this ciphertext in the same way as before, except
that we additionally check whether π is accepted or not by using skdv retrieved
from ctske, and if it is not accepted, the ciphertext is rejected.

As mentioned earlier (and will be detailed in Sect. 4), by combining the tech-
niques from the two recent results [30,34], a DV-NIZK argument system can be
based on the same building blocks. Moreover, an IND-CCA secure PKE scheme
can also be based on the same building blocks [30]. Thus, similarly to PKE∗

kdm, all
the building blocks of PKEkdm can be based on the combination of an IND-CPA
secure PKE scheme and a one-time KDM secure SKE scheme, which are in turn
both implied by a KDM-CPA secure PKE scheme.

Overview of the Security Proof of PKEkdm. At first glance, the circularity involv-
ing DVNIZK occurs when encrypting a key-dependent message f(SK) = f(s) =
skdv by PKEkdm, where f is a function that, given s as input, retrieves skdv from
ctske by using s and outputs skdv. This is because DVNIZK is used to generate
a proof that proves ctj,0 and ctj,1 encrypt the same label, and the labels may
contain some information of the key-dependent message f(s) since it is gener-
ated by garbling a constant circuit Q into which f(s) is hardwired. However, due
to the indirection that skdv is not encrypted by encryption schemes the validity
of whose ciphertexts is proved by the DV-NIZK argument system, we can solve
the circularity and prove the KDM-CCA security of PKEkdm by adding some
modifications to the proof for the KDM-CPA security of PKE∗

kdm explained in
the previous section.

First of all, the zero-knowledge property of DVNIZK allows us to change the
security game so that we use the simulator for the zero-knowledge property to
generate the DV-NIZK key pair (pkdv, skdv) at the key generation, and we use the
simulator also for generating a fake proof π in a ciphertext when responding to
KDM-encryption queries. Then, similarly to what we do in the proof for PKE∗

kdm,
we can change the security game so that we do not need s for responding to
KDM-encryption queries by using the security of the garbling scheme and the
IND-CPA security of PKE under public keys (pkj,1⊕sj

)j∈[�s]. However, differently
from the proof for the KDM-CPA security of PKE∗

kdm, we cannot use the one-
time KDM security of SKE immediately after this change. This is because we still
need s for responding to decryption queries. More specifically, when responding
to a decryption query, we have to decrypt the “sj-side” ciphertext ctj,sj

of PKE
using skj,sj

for every j ∈ [�s] to recover the labels of a garbled circuit.6 Thus,
before using the one-time KDM security of SKE, we change the security game

6 Strictly speaking, we also use s to retrieve (sk′, skdv, (skj,sj)j∈[�s]) from ctske. However,
we can omit this decryption process and use (sk′, skdv, (skj,sj)j∈[�s]) directly without
changing the view of an adversary, and thus we ignore this issue here.

CPA-to-CCA Transformation for KDM Security 129

so that we do not need s to respond to decryption queries by relying on the
soundness of DVNIZK.

Concretely, we change the security game so that when responding to a decryp-
tion query CT, we always decrypt the “0-side” ciphertext ctj,0 of PKE using skj,0

for every j ∈ [�s]. Although we cannot justify this change based solely on the
soundness of DVNIZK, we can justify it by combining the soundness and zero-
knowledge property of DVNIZK, the one-time KDM security of SKE, and the
IND-CCA security of PKE′ using a deferred analysis technique. This technique
of justifying changes for decryption queries using the deferred analysis origi-
nates in the context of expanding the message space of IND-CCA secure PKE
schemes [28], and was already shown to be useful in the context of KDM-CCA
security [29,31]. In fact, the indirection explained so far makes it possible to use
the deferred analysis technique.

Once we change how decryption queries are answered in this way, we can
complete the remaining part of the proof based on the one-time KDM security
of SKE and the IND-CCA security of PKE′ similarly to the proof for the KDM-
CPA security of PKE∗

kdm.

Is It Essential to Encrypt skdv into ctske? It is not essential to maintain skdv (and
sk′) in the encrypted form ctske by the key s and make SK consist only of s. In
fact, we can consider a variant of PKEkdm such that we set SK := (s, skdv, sk′).
In this case, we use 2 · �SK = 2 · (|s| + |skdv| +

∣∣sk′∣∣) key pairs of PKE, and we
generate ctske as an encryption of (skj,SKj

)j∈[�SK] by s, where SKj is the j-th bit
of SK for every j ∈ [�SK]. Even if we adopt such a construction, we can realize
an indirection that is sufficient to use the deferred analysis technique, and we
can prove its KDM-CCA security similarly to the above.

The security proof for PKEkdm is simpler than that for the above variant.
Moreover, as we will explain below, we need to encrypt skdv and sk′ and make
SK = s when considering KDM-CCA security in the multi-user setting. For these
reasons, we adopt the current construction of PKEkdm.

2.5 Extension to KDM-CCA Security in the Multi-user Setting

We finally explain how to extend the above construction PKEkdm into a scheme
that is KDM-CCA secure in the multi-user setting. In fact, we need not change
the construction at all. The only difference is that we require a weak variant of
RKA-KDM security [4] for the underlying SKE scheme SKE, instead of one-time
KDM security. We also require a mild property that a secret key is uniformly
distributed over the secret key space {0, 1}�s .

Informally, an SKE scheme is said to be RKA-KDM secure if no adversary
can guess the challenge bit b with probability significantly greater than 1/2 given
an encryption of fb(s) under the key s⊕Δ ∈ {0, 1}�s when it queries two functions
(f0, f1) and a key shift Δ ∈ {0, 1}�s as an RKA-KDM-encryption query. For our
purpose, we need a much weaker form of RKA-KDM security where all key shifts
are not chosen by an adversary, but generated uniformly at random in advance
by the challenger. We call our RKA-KDM security passive RKA-KDM security.
For its formal definition, see Definition 3 in Sect. 3.

130 F. Kitagawa and T. Matsuda

In the security proof of the KDM-CCA security in the multi-user setting of
PKEkdm, there exist n key pairs of PKEkdm for some polynomial n of the security
parameter. As the first step of the proof, we change the security game so that n
secret keys s1, . . . , sn of PKEkdm are generated by first generating a single source
key s and n key shifts (Δi)i∈[n] and then setting si := s ⊕ Δi for every i ∈ [n].
This does not at all change the distribution of the keys due to the requirement
on SKE that a secret key is distributed uniformly in the secret key space {0, 1}�s .
We next change the security game so that for every i∗ ∈ [n], an encryption of
fb(s1‖ . . . ‖sn) under the i∗-th key can be simulated from fb and n key shifts
(Δi)i∈[n] and not the source key s, where (i∗, f0, f1) is a KDM-encryption query
made by an adversary. This is possible by garbling a circuit into which fb, i∗,
and (Δi)i∈[n] are hardwired,7 while we just directly garble fb in the proof for
the single user security. Then, we can complete the rest of the security proof
in the same way as the proof of the single user security except that we use the
(passive) RKA-KDM security instead of one-time KDM security.

Differently from the single user case, it is critical that skdv and sk′ are
encrypted into ctske, and SK consists only of s. If SK is of the form (s, skdv, sk′),
it is not clear how we control the multiple secret keys even if SKE is RKA-KDM
secure.

KDM-CCA Secure PKE from New Assumptions. An SKE scheme satisfying
our definition of RKA-KDM security can be constructed based on the LPN
assumption [4]. Moreover, we show how to construct an SKE scheme satisfying
our RKA-KDM security definition based on hash encryption [13,22] which in
turn can be based on the CDH assumption. The construction is an extension of
that of a KDM-CPA secure PKE scheme based on batch encryption proposed
by Brakerski et al. [13]. For the details of the construction and its security proof,
see the full version.

In addition to RKA-KDM secure SKE schemes, all other building blocks of
our construction can be obtained based on the LPN and CDH assumptions via
KDM-CPA secure PKE schemes. Through our generic construction, we obtain
the first PKE schemes that are KDM-CCA secure in the multi-user setting based
on the LPN and CDH assumptions. Previously to our work, KDM-CCA secure
PKE schemes even in the single user setting based on these assumptions were
not known.

2.6 On the Connections with the Techniques by Barak et al. [6]

The idea of garbling a constant circuit used in this overview was previously
used by Barak et al. [6] in which they constructed a PKE scheme that is KDM-
CPA secure with respect to functions computable by circuits of a-priori bounded
size (i.e. bounded-KDM-CPA security). They used the technique of garbling a
constant circuit together with a primitive that they call targeted encryption,

7 To make this change possible, in the formal proof, we need to pad a circuit garbled
in the encryption algorithm to some appropriate size depending on n.

CPA-to-CCA Transformation for KDM Security 131

which is a special form of PKE and whose syntactical and security requirements
have some similarities with hash encryption [22]. In fact, the KDM-CPA variant
of our construction PKE∗

kdm explained in Sect. 2.3 can be described by using the
abstraction of targeted encryption in which the targeted encryption scheme is
constructed from an IND-CPA secure PKE scheme and a one-time KDM secure
SKE scheme.8

We note that although we can use the abstraction of targeted encryption
for the KDM-CPA variant of our construction, it seems difficult to use it for
our main construction of a KDM-CCA secure PKE scheme. The problem is
that if we use the abstraction of targeted encryption, we have to prove the
well-formedness of ciphertexts of the targeted encryption scheme by using the
DV-NIZK argument system. As explained in Sect. 2.5, in the security proof of
our KDM-CCA secure PKE scheme, we have to change the security game so
that when responding to a decryption query, we recover all labels from “0-side”
ciphertexts (ctj,0)j∈[�s] of the underlying IND-CPA secure PKE scheme (instead
of “si-side” ciphertexts (ctj,si

)j∈[�s]). This key-switching step is not compatible
with the syntax of targeted encryption, and it seems difficult to use a targeted
encryption scheme in a black-box way.

3 Preliminaries

In this section, we review basic notation and the definitions of cryptographic
primitives used in the paper.

3.1 Notations

N denotes the set of natural numbers, and for n ∈ N, we define [n] := {1, . . . , n}.
For a discrete finite set S, |S| denotes its size, and x

r←− S denotes choosing
an element x uniformly at random from S. For strings x and y, x‖y denotes
their concatenation. For a (probabilistic) algorithm or a function A, y ← A(x)
denotes assigning to y the output of A on input x, and if we need to specify a
randomness r used in A, we denote y ← A(x; r) (in which case the computation
of A is understood as deterministic on input x and r). λ always denotes a security
parameter. PPT stands for probabilistic polynomial time. A function f(λ) is said
to be negligible if f(λ) tends to 0 faster than λ−c for every constant c > 0. We
write f(λ) = negl(λ) to mean that f(λ) is a negligible function.

3.2 Public-Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. The key generation algorithm KG, given a security parameter 1λ

as input, outputs a public key pk and a secret key sk. The encryption algorithm

8 These connections with the techniques by Barak et al. were pointed out by the
anonymous reviewers.

132 F. Kitagawa and T. Matsuda

Enc, given a public key pk and a message m as input, outputs a ciphertext ct.
The (deterministic) decryption algorithm Dec, given a public key pk, a secret
key sk, and a ciphertext ct as input, outputs a message m (which could be
the special symbol ⊥ indicating that ct is invalid). As correctness, we require
Dec(sk,Enc(pk,m)) = m for all λ ∈ N, all (pk, sk) ← KG(1λ), and all m.

Security Notions for PKE. Next, we review the definitions of key-dependent mes-
sage security against chosen plaintext attacks/chosen ciphertext attacks (KDM-
CPA/CCA security). Note that IND-CPA/CCA security are covered as their
special cases.

Definition 1 (KDM-CCA/KDM-CPA Security). Let PKE be a PKE
scheme whose secret key and message spaces are SK and M, respectively. Let
n ∈ N, and let F be a function family with domain SKn and range M. Consider
the following F-KDM(n)-CCA game between a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates n key pairs
(
pki, ski

) ← KG(1λ) (i ∈ [n]). Then, the challenger sets
sk :=

(
sk1, . . . , skn

)
and sends

(
pk1, . . . , pkn

)
to A. Finally, the challenger

prepares an empty list Lkdm.
2. A may adaptively make the following queries.

KDM-encryption queries: A sends (j, f0, f1) ∈ [n]×F2 to the challenger.
The challenger returns ct ← Enc(pkj , fb(sk)) to A. Finally, the challenger
adds (j, ct) to Lkdm.

Decryption queries: A sends (j, ct) to the challenger. If (j, ct) ∈ Lkdm,
then the challenger returns ⊥ to A. Otherwise, the challenger returns
m ← Dec(pkj , skj , ct) to A.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is F-KDM(n)-CCA secure if for all PPT adversaries A,
we have Advkdmcpa

PKE,F,A,n(λ) := 2 · |Pr[b = b′] − 1/2| = negl(λ).
F-KDM(n)-CPA security is defined similarly, using the F-KDM(n)-CPA

game where an adversary A is not allowed to make decryption queries.

The above definition is slightly different from the standard definition where
an adversary is required to distinguish encryptions of f(sk1, . . . , skn) from
encryptions of some fixed message. However, the two definitions are equivalent
if the function class F contains a constant function, which is the case for the
function families used in this paper (see below). This formalization is easier to
work with for security proofs.

Function Families. In this paper, we will deal with the following function families
for KDM security of PKE:

P (Projection functions): A function is said to be a projection function if each
of its output bits depends on at most a single bit of its input. We denote by
P the family of projection functions.

CPA-to-CCA Transformation for KDM Security 133

Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size
= size(λ) is a polynomial, the function family such that each member in Bsize

can be described by a circuit of size size.
C (Constant functions): We denote by C the set of all constant functions. Note

that C-KDM-CCA (resp. C-KDM-CPA) security is equivalent to IND-CCA
(resp. IND-CPA) security.

3.3 Secret-Key Encryption

A secret-key encryption (SKE) scheme SKE is a three tuple (K,E,D) of PPT
algorithms. The key generation algorithm K, given a security parameter 1λ as
input, outputs a key s. The encryption algorithm E, given a key s and a message
m as input, outputs a ciphertext ct. The (deterministic) decryption algorithm
D, given a key s and a ciphertext ct as input, outputs a message m (which could
be the special symbol ⊥ indicating that ct is invalid). As correctness, we require
D(s,E(s,m)) = m for all λ ∈ N, all keys s output by K(1λ), and all m.

Security Notions for SKE. In this paper, we will deal with two types of security
notions for SKE: one-time KDM security and passive RKA-KDM security. We
review the definitions below.

One-time KDM security is a weak form of KDM-CPA security in which an
adversary is allowed to make only a single KDM-encryption query.

Definition 2 (One-Time KDM Security). Let SKE = (K,E,D) be an SKE
scheme whose key and message spaces are K and M, respectively. Let F be a
function family with domain K and range M. Consider the following one-time
F-KDM game between a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates a secret key s ← K(1λ) and sends 1λ to A.
2. A sends a function f ∈ F as a single KDM-encryption query to the chal-

lenger. If b = 1, the challenger returns ct ← E(s, f(s)) to A; Otherwise, the
challenger returns ct ← E(s, 0|f(·)|) to A. (Note that this step is done only
once.)

3. A outputs b′ ∈ {0, 1}.
We say that SKE is one-time F-KDM secure if for all PPT adversaries A,

we have AdvotkdmSKE,F,A(λ) := 2 · |Pr[b = b′] − 1/2| = negl(λ).

Remark 1 (On the Message Space of One-Time KDM Secure SKE). Unlike
ordinary IND-CPA secure encryption schemes, extending the message space of
KDM secure encryption schemes is in general not easy. Fortunately, however,
things are easy for P-KDM security. We can extend the message space of a one-
time P-KDM secure SKE scheme as much as we want, if the size of the message
space of the SKE scheme is already sufficiently large. Specifically, we can show
that if there exists a one-time P-KDM secure SKE scheme whose secret key
and message spaces are {0, 1}� and {0, 1}μ, respectively, for some polynomials

134 F. Kitagawa and T. Matsuda

� = �(λ) and μ = μ(λ) satisfying μ = Ω(� · λ), then for any polynomial μ′ =
μ′(λ), there also exists a one-time P-KDM secure SKE scheme that can encrypt
messages of length μ′.

To see this, we observe that the KDM-CPA secure construction PKE∗
kdm that

we described in Sect. 2.3, works also in the secret-key setting. Namely, if we
replace the building block IND-CPA secure PKE schemes with IND-CPA secure
SKE schemes, then the resulting SKE scheme9 is (multi-time) Bsize-KDM secure
where size = size(λ) is some polynomial that depends on the size of a constant
circuit (in which a message is hardwired). In fact, we can make the message
space of this construction arbitrarily large since by setting size appropriately, we
can hardwire a message of arbitrary length into a circuit to be garbled without
compromising the security. Moreover, we only need to assume that the underlying
one-time P-KDM secure SKE scheme can encrypt messages of length μ = Ω(� ·λ)
since it is only required to encrypt � + 1 secret keys of IND-CPA secure SKE
schemes, each of which can be assumed to be λ-bit without loss of generality.
This means that, using this construction, we can extend the message space of
a one-time P-KDM secure SKE scheme as much as we want if the scheme can
already encrypt a message of length μ = Ω(� · λ).

Next, we give a formalization of passive RKA-KDM security, which is a
weaker variant of RKA-KDM security formalized by Applebaum [4]. Recall that
the original RKA-KDM security of [4] is a slightly stronger form of standard
KDM-CPA security (albeit in the presence of a single challenge key) where we
consider an adversary that is allowed to ask encryptions of key-dependent mes-
sages, encrypted under “related” keys. In this paper, we only consider “XOR
by a constant” as related-key deriving functions, and hence give a definition
specialized to this setting. On the other hand, however, we only need a weaker
“passive” variant of RKA-KDM security where the security game is changed as
follows: (1) not the adversary but the challenger randomly chooses the related-
key deriving functions (i.e. constants for XORing in our setting), and (2) an
adversary has to make its RKA-KDM-encryption queries in one shot.

Definition 3 (Passive RKA-KDM Security). Let SKE be an SKE scheme
whose key space is {0, 1}� for some polynomial � = �(λ) and whose message space
is M. Let F be a function family with domain {0, 1}� and range M. Let n ∈ N be
an a-priori bounded polynomial. Consider the following passive F-RKA-KDM(n)

game between a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1} and generates s ←

K(λ) and Δi r←− {0, 1}� for every i ∈ [n]. Then, the challenger sends (Δi)i∈[n]

to A.
2. A sends n functions f1, . . . , fn ∈ F to the challenger. If b = 1, the challenger

computes cti ← E(s ⊕ Δi, f i(s)) for every i ∈ [n]. Otherwise, the challenger

9 If we are only interested in one-time KDM security of the resulting scheme, the
SKE-ciphertext ctske that is originally put in a public key of PKE∗

kdm can be sent as
part of a ciphertext.

CPA-to-CCA Transformation for KDM Security 135

computes cti ← E(s ⊕ Δi, 0|fi(·)|) for every i ∈ [n]. Finally, the challenger
sends

(
cti

)
i∈[n]

to A.
3. A outputs b′ ∈ {0, 1}.

We say that SKE is passively F-RKA-KDM(n) secure, if for all PPT adver-
saries A, we have AdvprkakdmSKE,F,A,n(λ) := 2 · |Pr[b = b′] − 1/2| = negl(λ).

3.4 Designated-Verifier Non-interactive Zero-Knowledge
Arguments

Here, we review the definitions for (reusable) designated-verifier non-interactive
zero-knowledge (DV-NIZK) argument systems.

Let L be an NP language associated with the corresponding NP relation R. A
DV-NIZK argument system DVNIZK for L is a three tuple (DVKG,P,V) of PPT
algorithms. DVKG is the key generation algorithm that takes a security parame-
ter 1λ as input, and outputs a public proving key pk and a secret verification key
sk. P is the proving algorithm that takes a public proving key pk, a statement
x, and a witness w as input, and outputs a proof π. V is the (deterministic)
verification algorithm that takes a secret verification key sk, a statement x, and
a proof π as input, outputs either accept or reject.

We require that DVNIZK satisfy the three requirements: Correctness, (adap-
tive) soundness, and zero-knowledge. In particular, we consider a version of
soundness which holds against adversaries that make multiple verification
queries, and a version of zero-knowledge which holds against adversaries that
make multiple challenge proving queries. A DV-NIZK argument system that
satisfies these versions of soundness and zero-knowledge is called reusable.

Formally, these requirements are defined as follows.

Correctness. We say that DVNIZK is correct if we have V(sk, x,P(pk, x, w)) =
accept for all λ ∈ N, all key pairs (pk, sk) output by DVKG(1λ), and all valid
statement/witness pairs (x,w) ∈ R.

Soundness. Consider the following soundness game between a challenger and
an adversary A.
1. First, the challenger generates (pk, sk) ← DVKG(1λ) and sends pk to A.
2. A may adaptively make verification queries. When A makes a verification

query (x, π), the challenger responds with V(sk, x, π).
3. A outputs (x∗, π∗).

We say that DVNIZK is sound if for all PPT adversaries A, we have

AdvsoundDVNIZK,A(λ) := Pr[x∗ /∈ L ∧ V(sk, x∗, π∗) = accept] = negl(λ).

Zero-Knowledge. Let S = (S1,S2) be a pair of PPT “simulator” algorithms
whose syntax is as follows.

– S1 takes a security parameter 1λ as input, and outputs a fake public key
pk, a fake secret key sk, and a trapdoor td.

– S2 takes a trapdoor td and a statement x as input, and outputs a fake
proof π.

136 F. Kitagawa and T. Matsuda

Consider the following zero-knowledge game between a challenger and an
adversary A.
1. First, the challenger chooses the challenge bit b

r←− {0, 1}. If b = 1, then
the challenger generates (pk, sk) ← DVKG(1λ); Otherwise the challenger
generates (pk, sk, td) ← S1(1λ). Then, the challenger sends (pk, sk) to A.

2. A may adaptively make proving queries. When A submits a proving query
(x,w), if (x,w) /∈ R, then the challenger returns ⊥ to A. Then, if b =
1, the challenger computes π ← P(pk, x, w); Otherwise, the challenger
computes π ← S2(td, x). Finally, the challenger returns π to A.

3. A outputs b′ ∈ {0, 1}.
We say that DVNIZK is zero-knowledge if there exists a PPT simulator S =
(S1,S2) such that for all PPT adversaries A, we have AdvzkDVNIZK,A,S(λ) :=
2 · |Pr[b = b′] − 1/2| = negl(λ).

3.5 Garbled Circuits

Here, we recall the definitions of a garbling scheme in the form we use in this
paper. We can realize a garbling scheme for all efficiently computable circuits
based on one-way functions [40].

Let {Cn}n∈N be a family of circuits where the input-length of each circuit in Cn

is n. A garbling scheme GC is a three tuple (Garble,Eval,Sim) of PPT algorithms.
Garble is the garbling algorithm that takes as input a security parameter 1λ

and a circuit C ∈ Cn, where n = n(λ) is a polynomial. Then, it outputs a
garbled circuit C̃ and 2n labels (labj,α)j∈[n],α∈{0,1}. For simplicity and without
loss of generality, we assume that the length of each labj,α is λ. Eval is the
evaluation algorithm that takes a garbled circuit C̃ and n labels (labj)j∈[n] as
input, and outputs an evaluation result y. Sim is the simulator algorithm that
takes a security parameter 1λ, the size parameter size (where size = size(λ) is a
polynomial), and a string y as input, and outputs a simulated garbled circuit C̃
and n simulated labels (labj)j∈[n].

For a garbling scheme, we require the following correctness and security prop-
erties.

Correctness. For all λ, n ∈ N, all x = (x1, . . . , xn) ∈ {0, 1}n, and all C ∈ Cn,
we require that the following two equalities hold.10

– Eval(C̃, (labj,xj
)j∈[n]) = C(x) for all (C̃, (labj,α)j∈[n],α∈{0,1}) output by

Garble(1λ, C).
– Eval(C̃, (labj)j∈[n]) = C(x) for all (C̃, (labj)j∈[n]) output by Sim(1λ, |C|,

C(x)).
Security. Consider the following security game between a challenger and an

adversary A.

10 Requiring correctness for the output of the simulator may be somewhat non-
standard. However, it is satisfied by Yao’s garbling scheme based on an IND-CPA
secure SKE scheme.

CPA-to-CCA Transformation for KDM Security 137

1. First, the challenger chooses a bit b
r←− {0, 1} and sends a security param-

eter 1λ to A.
2. A sends a circuit C ∈ Cn and an input x = (x1, . . . , xn) ∈ {0, 1}n to the

challenger. Then, if b = 1, the challenger executes (C̃, (labj,α)j∈[n],α∈{0,1})
← Garble(1λ, C) and returns (C̃, (labj,xj

)j∈[n]) to A; Otherwise, the chal-
lenger returns (C̃, (labj)j∈[n]) ← Sim(1λ, |C| , C(x)) to A.

3. A outputs b′ ∈ {0, 1}.
We say that GC is secure if for all PPT adversaries A, we have AdvgcGC,A,Sim(λ)
:= 2 · |Pr[b = b′] − 1/2| = negl(λ).

4 DV-NIZK via KDM Security

In this section, we explain how to construct a reusable DV-NIZK argument
system from the combination of an IND-CPA secure PKE scheme and a one-
time P-KDM secure SKE scheme. Specifically, we explain how the following
statement can be derived.

Theorem 2. Assume that there exist an IND-CPA secure PKE scheme and
a one-time P-KDM secure SKE scheme that can encrypt messages of length
Ω(� · λ), where � = �(λ) is the secret key length of the SKE scheme. Then, there
exists a reusable DV-NIZK argument system for all NP languages.

As mentioned in the introduction, this almost immediately follows by com-
bining the results and techniques from the recent works by Lombardi et al. [34]
and by Kitagawa et al. [30]. To see this, we first briefly review Lombardi et al.’s
work.

Lombardi et al. showed how to construct a reusable DV-NIZK argument
system for all NP languages from the combination of an IND-CPA secure PKE
scheme and a hinting PRG introduced by Koppula and Waters [33]. The main
intermediate technical tool for their construction is what they call attribute-based
secure function evaluation (AB-SFE), which can be seen as a generalization (and
simplification) of a single-key attribute-based encryption (ABE) scheme (i.e., an
ABE scheme secure in the presence of a single secret key). Lombardi et al.
formalized two kinds of security notions for AB-SFE: key-hiding and message-
hiding, each notion with strong and weak variants, resulting in total four security
notions. Using the notion of AB-SFE, they achieved their result in a modular
manner by showing the following steps:

– (DV-NIZK-from-AB-SFE): A reusable DV-NIZK argument system can be
constructed from an AB-SFE scheme satisfying strong key-hiding and weak
message-hiding.

– (Key-Hiding Enhancement): An AB-SFE scheme satisfying strong key-
hiding and weak message-hiding can be constructed from an AB-SFE scheme
satisfying weak key-hiding and weak message-hiding, by additionally assuming
a hinting PRG. This step directly uses the CPA-to-CCA security transforma-
tion for ABE using a hinting PRG by Koppula and Waters [33].

138 F. Kitagawa and T. Matsuda

– (AB-SFE-from-PKE): An AB-SFE scheme satisfying weak key-hiding and
weak message-hiding can be constructed from an IND-CPA secure PKE
scheme.

On the other hand, Kitagawa et al. [30] showed that an IND-CCA secure
PKE scheme can be constructed from the combination of an IND-CPA secure
PKE scheme and a one-time P-KDM secure SKE scheme which can encrypt
messages of length Ω(� · λ), where � denotes the secret key length of the SKE
scheme, based on the Koppula-Waters construction [33].

Kitagawa et al.’s result can be understood as showing a technique for replac-
ing a hinting PRG in the Koppula-Waters construction (and its variants) with
a one-time P-KDM secure SKE scheme. Hence, we can apply Kitagawa et al.’s
technique to the “key-hiding enhancement” step of Lombardi et al. to replace the
hinting PRG with a one-time P-KDM secure SKE scheme. This can be formally
stated as follows.

Theorem 3 (Key-Hiding Enhancement via KDM Security). Assume
that there exists an AB-SFE scheme that satisfies weak key-hiding and weak
message-hiding, and a one-time P-KDM secure SKE scheme that can encrypt
messages of length Ω(� · λ), where � = �(λ) is the secret key length of the SKE
scheme. Then, there exists an AB-SFE scheme that satisfies strong key-hiding
and weak message-hiding.

Then, Theorem 2 follows from the combination of the “DV-NIZK-from-AB-SFE”
and “AB-SFE-from-PKE” steps of Lombardi et al. [34] and Theorem 3.

We give the formal proof of Theorem 3 in the full version.

5 Generic Construction of KDM-CCA Secure PKE

In this section, we show our main result: a CPA-to-CCA transformation for
KDM security.

More specifically, we show how to construct a PKE scheme that is KDM-CCA
secure with respect to circuits whose size is bounded by an a-priori determined
polynomial size = size(λ) and in the single user setting (i.e. Bsize-KDM(1)-CCA),
from the combination of the five building block primitives: (1) an IND-CPA
secure PKE scheme, (2) an IND-CCA secure PKE scheme, (3) a reusable DV-
NIZK argument system for an NP language, (4) a garbling scheme, and (5) a
one-time P-KDM secure SKE scheme.

We have seen in Sect. 4 that a reusable DV-NIZK argument system can be
constructed from the combination of an IND-CPA secure PKE scheme and a one-
time P-KDM secure SKE scheme. Furthermore, the recent work by Kitagawa
et al. [30] showed that an IND-CCA secure PKE scheme can also be constructed
from the same building blocks. Moreover, a garbling scheme can be constructed
only from a one-way function [40], which is in turn implied by an IND-CPA
secure PKE or a one-time P-KDM secure SKE scheme. Hence, our result in this
section implies that a Bsize-KDM(1)-CCA secure PKE scheme can be constructed

CPA-to-CCA Transformation for KDM Security 139

only from an IND-CPA secure PKE scheme and a one-time P-KDM secure SKE
scheme.

Looking ahead, in the next section, we will show that the same construction
can be shown to be secure in the n-user setting (i.e. Bsize-KDM(n)-CCA secure) if
we additionally require the SKE scheme to be passively P-RKA-KDM(n) secure.

Construction. Let �m = �m(λ) be a polynomial that denotes the length of mes-
sages to be encrypted by our constructed PKE scheme. Let size = size(λ) be a
polynomial and let n ∈ N be the number of users for which we wish to achieve
Bsize-KDM(n)-CCA security.11

We use the following building blocks.

– Let PKE = (KG,Enc,Dec) be a PKE scheme whose message space is {0, 1}λ.
We denote the randomness space of Enc by R, and the secret key length by
�sk = �sk(λ).

– Let PKE′ = (KGcca,Enccca,Deccca) be a PKE scheme whose message space is
{0, 1}∗. We denote its secret key length by �′

sk = �′
sk(λ).

– Let SKE = (K,E,D) be an SKE scheme whose plaintext space is {0, 1}μ for a
polynomial μ = μ(λ) to be determined below and whose secret key space is
{0, 1}�s for some polynomial �s = �s(λ).

– Let GC = (Garble,Eval,Sim) be a garbling scheme.
– Let DVNIZK = (DVKG,P,V) be a DV-NIZK argument system for the follow-

ing NP language

L =

⎧
⎨
⎩ (pkj,α, ctj,α)j∈[�s],α∈{0,1}

∣∣∣∣∣∣
∃(labj , rj,0, rj,1)j∈[�s] s.t.

∀(j, α) ∈ [�s] × {0, 1} :
ctj,α = Enc(pkj,α, labj ; rj,α)

⎫
⎬
⎭ .

We denote the verification key length of DVNIZK by �skdv = �skdv(λ).

We require the message length μ of the underlying SKE scheme SKE to satisfy
μ = �s · �sk + �′

sk + �skdv . Finally, let pad = pad(λ, n) ≥ size be a polynomial that is
used as the size parameter for the underlying garbling scheme, and is specified
differently in Theorem 4 in this section and in Theorem 5 in Sect. 6.

Using these ingredients, we construct our proposed PKE scheme PKEkdm =
(KGkdm,Enckdm,Deckdm) whose message space is {0, 1}�m , as described in Fig. 1.

Correctness. The correctness of PKEkdm follows from that of the building blocks.
Specifically, let (PK,SK) = (((pkj,α)j,α, pkcca, pkdv, ctske), s) be a key pair output
by KGkdm, let m ∈ {0, 1}�m be any message, and let CT ← Enckdm(PK,m) be an
honestly generated ciphertext. Due to the correctness of PKE, PKE′, SKE, and
DVNIZK, each decryption/verification done in the execution of Deckdm(PK,SK,
CT) never fails, and just before the final step of Deckdm, the decryptor can recover
a garbled circuit Q̃ and the labels (labj)j , which must have been generated as

11 As noted earlier, in this section we aim at achieving the security for n = 1, and in
the next section we will consider more general n ≥ 1.

140 F. Kitagawa and T. Matsuda

Fig. 1. The proposed PKE scheme PKEkdm. The notations like (Xj,α)j,α and (Xj)j

are abbreviations for (Xj,α)j∈[�s],α∈{0,1} and (Xj)j∈[�s], respectively. (�) If D, Dec, or

Deccca returns ⊥, then we make Deckdm return ⊥ and terminate. (†) pad = pad(λ, n)
denotes the size parameter that is specified differently in each of Theorems 4 and 5.

(Q̃, (labj)j) ← Sim(1λ, pad,m). Hence, by the correctness of GC (in particular,
correctness of the evaluation of a simulated garbled circuit and labels), we have
Eval(Q̃, (labj)j) = m.

Security. The following theorem guarantees the Bsize-KDM(1)-CCA security of
the PKE scheme PKEkdm.

Theorem 4. Let �m = �m(λ) and size = size(λ) ≥ max{�s, �m} be any polyno-
mials, and let pad := size. Assume that PKE is IND-CPA secure, PKE′ is IND-
CCA secure, SKE is one-time P-KDM secure, GC is a secure garbling scheme,
and DVNIZK is a reusable DV-NIZK argument system for the NP language L.
Then, PKEkdm is Bsize-KDM(1)-CCA secure.

One might wonder the necessity of IND-CCA security for the outer PKE
scheme PKE′. Suppose the underlying garbling scheme GC has the property that
a circuit being garbled is hidden against adversaries that do not see the cor-
responding labels (which is satisfied by Yao’s garbling scheme). Then, among
the components (Q̃, (ctj,α)j,α, π), the only component that actually needs to be
encrypted is the DV-NIZK proof π, as long as all the components are “tied”
together in a non-malleable manner (say, using a one-time signature scheme).
Looking ahead, in a sequence of games argument in the security proof, we will
consider a modified game in which the key pair (pkdv, skdv) and proofs π in the

CPA-to-CCA Transformation for KDM Security 141

challenge ciphertexts are generated by the zero-knowledge simulator of DVNIZK,
and we have to bound the probability that an adversary makes a “bad” decryp-
tion query CT such that the statement/proof pair (x, π) corresponding to CT is
judged valid by V while x is actually invalid (i.e. not in L). This could be done
if DVNIZK satisfies (unbounded) simulation soundness, which is not achieved by
the DV-NIZK argument system in Sect. 4. By encrypting π with an IND-CCA
secure scheme (and relying also on the security properties of the other building
blocks), we can argue that the probability of the bad event that we would like
to bound, is negligibly close to the probability of the bad event in another mod-
ified game in which the key pair (pkdv, skdv) is generated honestly by DVKG, and
proofs π need not be generated for the challenge ciphertexts. The probability of
the bad event in such a game can be bounded by the (ordinary) soundness of
DVNIZK. For the details, see the proof below.

Proof of Theorem 4. Let A be an arbitrary PPT adversary that attacks the
Bsize-KDM(1)-CCA security of PKEkdm. We proceed the proof via a sequence of
games argument using eight games. For every t ∈ [7], let SUCt be the event that
A succeeds in guessing the challenge bit b in Game t. (Game 8 will be used only
to bound the probability of a bad event introduced later.)

Game 1: This is the original Bsize-KDM(1)-CCA game regarding PKEkdm. By
definition, we have Advkdmcca

PKEkdm,Bsize,A,1(λ) = 2 · |Pr[SUC1] − 1/2|.
Game 2: Same as Game 1, except that the challenger uses the simulator S =

(S1,S2) for the zero-knowledge property of DVNIZK for generating (pkdv, skdv)
and a proof π in generating a ciphertext in response to KDM-encryption
queries, instead of using DVKG and P. Namely, when generating PK and SK,
the challenger generates (pkdv, skdv, td) ← S1(1λ) instead of (pkdv, skdv) ←
DVKG(1λ). In addition, when A makes a KDM-encryption query (f0, f1),
the challenger computes π ← S2(td, x) instead of π ← P(pkdv, x, w), where
x = (pkj,α, ctj,α)j,α and w = (labj , rj,0, rj,1)j .
By the zero-knowledge property of DVNIZK, we have |Pr[SUC1] − Pr[SUC2]| =
negl(λ).

Game 3: Same as Game 2, except that when responding to a KDM-encryption
query, the challenger generates a garbled circuit Q̃ and labels (labj)j by gar-
bling fb. More precisely, when A makes a KDM-encryption query (f0, f1), the
challenger computes (Q̃, (labj,α)j,α) ← Garble(1λ, fb), instead of (Q̃, (labj)j)
← Sim(1λ, pad, fb(s)). Moreover, for every j ∈ [�s] and α ∈ {0, 1}, the chal-
lenger computes ctj,α ← Enc(pkj,α, labj,sj

).12

By definition, the circuit size of fb is pad = size. Hence, by the security of
GC, we have |Pr[SUC2] − Pr[SUC3]| = negl(λ).

Game 4: Same as Game 3, except that when responding to a KDM-encryption
query (f0, f1), the challenger computes ctj,1⊕sj

← Enc(pkj,1⊕sj
, labj,1⊕sj

) for
every j ∈ [�s]. Due to the change made in this game, the challenger now
computes ctj,α ← Enc(pkj,α, labj,α) for every j ∈ [�s] and α ∈ {0, 1}.

12 Note that in Game 3, the labels of the “opposite” positions, namely (labj,1⊕sj)j , are
not used. They will be used in the subsequent games.

142 F. Kitagawa and T. Matsuda

In Games 3 and 4, we do not need the secret keys (skj,1⊕sj
)j of PKE that

do not correspond to s = (s1, . . . , s�s) (though we need (skj,sj
)j for comput-

ing ctske and responding to decryption queries). Therefore, by the IND-CPA
security of PKE under the keys (pkj,1⊕sj

)j , we have |Pr[SUC3] − Pr[SUC4]| =
negl(λ).
At this point, the challenger need not use s to respond to KDM-encryption
queries. In the next game, we will ensure that the challenger does not use s
to respond to decryption queries.

Game 5: Same as Game 4, except that when responding to a decryption query,
the challenger computes the labels (labj)j of a garbled circuit by decrypting
ctj,0, instead of ctj,sj

, for every j ∈ [�s]. More precisely, for a decryption
query CT from A, the challenger returns ⊥ to A if CT ∈ Lkdm, and otherwise
responds as follows. (The change from the previous game is underlined.)
1. Compute (Q̃, (ctj,α)j,α, π) ← Deccca(pkcca, skcca,CT), and then set x :=

(pkj,α, ctj,α)j,α.
2. If V(skdv, x, π) = reject, then return ⊥ to A.
3. For every j ∈ [�s], compute labj ← Dec(pkj,0, skj,0, ctj,0).

4. Return m ← Eval(Q̃, (labj)j) to A.

(By the change made in this game, s is not needed for responding to decryption
queries.)
We define the following events in Game t ∈ {4, . . . , 8}.

BDQt: In Game t, A makes a decryption query CT /∈ Lkdm that satisfies the
following two conditions, where (Q̃, (ctj,α)j,α, π) ← Deccca(pkcca, skcca,CT):
1. V(skdv, (pkj,α, ctj,α)j,α, π) = accept.
2. There exists j∗ ∈ [�s] such that Dec(pkj∗,0, skj∗,0, ctj∗,0) �= Dec(pkj∗,1,

skj∗,1, ctj∗,1).
We call such a decryption query a bad decryption query.

Games 4 and 5 are identical unless A makes a bad decryption query in the
corresponding games. Therefore, we have |Pr[SUC4] − Pr[SUC5]| ≤ Pr[BDQ5].

Game 6: Same as Game 5, except that when generating PK, the challenger
generates ctske ← E(s, 0μ), instead of ctske ← E(s, ((skj,sj

)j , skcca, skdv)).
In Games 5 and 6, when generating PK, the challenger does not need the
secret key s of SKE except for the step of computing ctske. Furthermore, the
“message” ((skj,sj

)j , skcca, skdv) encrypted in ctske in Game 5 can be described
by a projection function of s. Thus, by the one-time P-KDM security of
SKE, we have |Pr[SUC5] − Pr[SUC6]| = negl(λ). In addition, whether A has
submitted a bad decryption query can be detected by using skcca, skdv, and
(skj,α)j,α, without using s. Thus, again by the one-time P-KDM security of
SKE, we have |Pr[BDQ5] − Pr[BDQ6]| = negl(λ).

Game 7: Same as Game 6, except that when responding to a KDM-encryption
query, the challenger computes CT ← Enccca(pkcca, 0�′

), where �′ = |Q̃|+2�s ·
|ctj,α| + |π|.

CPA-to-CCA Transformation for KDM Security 143

Recall that in the previous game, we have eliminated the information of skcca
from ctske. Thus, we can rely on the IND-CCA security of PKE′ at this point,
and straightforwardly derive |Pr[SUC6] − Pr[SUC7]| = negl(λ). Moreover, a
reduction algorithm (attacking the IND-CCA security of PKE′) can detect
whether A’s decryption query is bad by using (skj,α)j,α, skdv, and the reduc-
tion algorithm’s own decryption queries. Thus, again by the IND-CCA secu-
rity of PKE′, we have |Pr[BDQ6] − Pr[BDQ7]| = negl(λ).
We see that in Game 7, the challenge bit b is information-theoretically hidden
from A’s view. Thus, we have Pr[SUC7] = 1/2.
We need one more game to bound Pr[BDQ7].

Game 8: Same as Game 7, except that when generating PK, the challenger
uses DVKG to generate (pkdv, skdv), instead of using S1. Namely, we undo the
change made between Games 1 and 2 for generating (pkdv, skdv).13

By the zero-knowledge property of DVNIZK, we have |Pr[BDQ7] − Pr[BDQ8]| =
negl(λ).
Finally, we argue that the soundness of DVNIZK implies Pr[BDQ8] = negl(λ).
To see this, note that in Game 8, (pkdv, skdv) is now generated by DVKG. Also,
if A submits a bad decryption query CT such that (1) V(skdv, (pkj,α, ctj,α)j,α,
π) = accept and (2) Dec(pkj∗,0, skj∗,0, ctj∗,0) �= Dec(pkj∗,1, skj∗,1, ctj∗,1) for
some j∗ ∈ [�s], where (Q̃, (ctj,α)j,α, π) ← Deccca(pkcca, skcca,CT), then the
condition (2) in particular implies (pkj,α, ctj,α)j,α /∈ L. Thus ((pkj,α, ctj,α)j,α,
π) satisfies the condition of violating the soundness of DVNIZK. Note that a
reduction algorithm (attacking the soundness of DVNIZK) is not directly given
a secret verification key skdv. However, the reduction algorithm is allowed to
make verification queries, which is sufficient to perfectly simulate Game 8
for A. The reduction algorithm can also detect whether A has made a bad
decryption query by using skcca and (skj,α)j,α, and verification queries. Hence,
by the soundness of DVNIZK, we have Pr[BDQ8] = negl(λ).

From the above arguments, we see that Advkdmcca
PKEkdm,Bsize,A,1(λ) = negl(λ). Since

the choice of A was arbitrary, we can conclude that PKEkdm is Bsize-KDM(1)-CCA
secure. � (Theorem 4)

6 Multi-user KDM-CCA Security from RKA-KDM
Security

In this section, we show that for any polynomial n = n(λ), our proposed PKE
scheme PKEkdm presented in Sect. 5 can be shown to be Bsize-KDM(n)-CCA
secure, by choosing a suitable parameter for pad = pad(λ, n) and additionally
requiring the underlying SKE scheme SKE satisfies P-RKA-KDM(n) security,
and its key generation algorithm outputs a uniformly random string in the secret
key space. Formally, our result for the multi-user setting is stated as follows.

13 Note that in Games 7 and 8, π is not computed when generating CT, and thus we
need not use S2.

144 F. Kitagawa and T. Matsuda

Theorem 5. Let n = n(λ), �m = �m(λ), and size = size(λ) ≥ max{�s, �m} be
any polynomials, and let pad := size + O(�s · n). Assume that PKE is IND-CPA
secure, PKE′ is IND-CCA secure, SKE is passively P-RKA-KDM(n) secure and
its key generation algorithm outputs a string that is distributed uniformly over
{0, 1}�s , GC is a secure garbling scheme, and DVNIZK is a reusable DV-NIZK
argument system for the NP language L. Then, PKEkdm is Bsize-KDM(n)-CCA
secure.

The formal proof is given in the full version. A high-level structure of the
sequence of the games used in the proof of Theorem 5 is similar to that of
Theorem 4. The main differences are as follows.

– Before the game-hop for switching the simulator Sim of the garbling scheme
GC to the ordinary algorithm Garble, we introduce a game in which every
user’s secret key si is derived by using a randomly chosen single “main” key
s ∈ {0, 1}�s and a randomly chosen “shift” Δi ∈ {0, 1}�s , so that si := s⊕Δi.
This does not at all change the distribution of the keys due to the requirement
on SKE that a secret key is distributed uniformly in the secret key space
{0, 1}�s . This enables us to conduct the remaining game-hops as if s ∈ {0, 1}�s

is the single “main” secret key such that we need to care only its leakage to
an adversary via KDM-encryption and decryption queries.

– In the game-hop for switching the simulator Sim of GC to the ordinary gar-
bling algorithm Garble, instead of directly garbling a KDM-function fb (which
is a function of all users’ secret keys S := s1‖ . . . ‖s�

s in the n-user setting)
appearing in an adversary’s KDM-encryption query (i∗, f0, f1), we garble
some appropriately designed circuit Q with input length �s. More specifi-
cally, we garble a circuit Q that has the index i∗, the KDM-function fb, and
the shifts (Δi)i∈[n] hard-wired, and satisfies fb(S) = Q(si∗

).
– In the game-hop for erasing the information of ((ski

j,sj
)j , sk

i
cca, sk

i
dv) from

ctiske for every i ∈ [n], we rely on the passive P-RKA-KDM(n) security
of SKE (as opposed to its one-time P-KDM security). Intuitively, passive
P-RKA-KDM(n) security suffices here because each user’s secret key si is
computed as si = s ⊕ Δi where s and each Δi are chosen randomly by the
challenger, due to the change made in the first item above.

7 Putting It All Together

In this section, we summarize our results.
By combining Theorems 2 and 4, for any polynomial size = size(λ), a

Bsize-KDM(1)-CCA secure PKE scheme can be constructed from an IND-CPA
secure PKE scheme, an IND-CCA secure PKE scheme, a one-time P-KDM secure
SKE scheme, and a garbling scheme. From the result by Kitagawa et al. [30],
we can realize an IND-CCA secure PKE scheme from an IND-CPA secure PKE
scheme and a one-time P-KDM secure PKE scheme. Moreover, a garbling scheme

CPA-to-CCA Transformation for KDM Security 145

is implied by one-way functions [40], which is in turn implied by an IND-CPA
secure PKE scheme. From these, we obtain the following theorem.

Theorem 6. Assume that there exist an IND-CPA secure PKE scheme and
a one-time P-KDM secure SKE scheme that can encrypt messages of length
Ω(� ·λ), where � = �(λ) denotes the secret key length of the SKE scheme. Then,
for any polynomial size = size(λ), there exists a Bsize-KDM(1)-CCA secure PKE
scheme.

Since both an IND-CPA secure PKE scheme and a one-time P-KDM secure
SKE scheme are implied by a P-KDM(1)-CPA secure PKE scheme, we obtain
the following main theorem.

Theorem 7. (CPA-to-CCA Transformation for KDM Security) Assume
that there exists a P-KDM(1)-CPA secure PKE scheme. Then, for any polyno-
mial size = size(λ), there exists a Bsize-KDM(1)-CCA secure PKE scheme.

Similarly to Theorem 6, by combining Theorems 2 and 5, and the previous
results [30,40], we also obtain the following theorem.

Theorem 8. Let n = n(λ) be a polynomial. Assume that there exist an IND-
CPA secure PKE scheme, and a passively P-RKA-KDM(n) secure SKE scheme
that can encrypt messages of length Ω(�·λ), where � = �(λ) denotes the secret key
length of the SKE scheme, and whose secret key generation algorithm outputs
a string that is distributed uniformly over {0, 1}� . Then, for any polynomial
size = size(λ), there exists a Bsize-KDM(n)-CCA secure PKE scheme.

Note that a passively P-RKA-KDM(n) secure SKE scheme is also a one-time
P-KDM secure SKE scheme.

For any polynomials n and μ, we can construct a passively P-RKA-KDM(n)

secure SKE scheme whose message space is {0, 1}μ based on the LPN assump-
tion [4]. In addition, as shown in the full version of this paper, for any polynomials
n and μ, we can construct a P-RKA-KDM(n) secure SKE scheme whose message
space is {0, 1}μ based on the CDH assumption. The key generation algorithms
of the LPN-/CDH-based constructions output a uniformly random string as a
secret key. Since an IND-CPA secure PKE scheme can be constructed based on
the LPN and CDH assumptions, we obtain the following corollary.

Corollary 1. Let n = n(λ) and size = size(λ) be any polynomials. There
exists a Bsize-KDM(n)-CCA secure PKE scheme under either the LPN or CDH
assumption.

Acknowledgement. We thank the anonymous reviewers of TCC 2019 for helpful
comments, in particular the connections of our techniques with those by Barak et al.
[6]. A part of this work was supported by JST CREST Grant Number JPMJCR19F6.

146 F. Kitagawa and T. Matsuda

References

1. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in
the presence of key-cycles. In: di Vimercati, S.C., Syverson, P., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005).
https://doi.org/10.1007/11555827 22

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS 2003, pp. 298–307 (2003)

3. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 29

4. Applebaum, B.: Garbling XOR gates “For Free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36594-2 10

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

6. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 22

7. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

8. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

9. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

10. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

11. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 1

12. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

13. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

14. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 20

https://doi.org/10.1007/11555827_22
https://doi.org/10.1007/978-3-642-20465-4_29
https://doi.org/10.1007/978-3-642-36594-2_10
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-642-01001-9_20

CPA-to-CCA Transformation for KDM Security 147

15. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

16. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: 51st ACM STOC 2019,
pp. 1082–1090 (2019)

17. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 4

18. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

19. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

20. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC 1991, pp. 542–552 (1991)

21. Döttling, N.: Low noise LPN: KDM secure public key encryption and sample ampli-
fication. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–626. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 27

22. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 1

23. Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-
dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Mar-
tinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33167-1 36

24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM STOC
2009, pp. 169–178 (2009)

25. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol.
4392, pp. 434–455. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70936-7 24

26. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC 1982, pp. 365–377
(1982)

27. Hajiabadi, M., Kapron, B.M.: Reproducible circularly-secure bit encryption: appli-
cations and realizations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
I. LNCS, vol. 9215, pp. 224–243. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 11

28. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a
new approach for chosen ciphertext security. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 39

https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-46447-2_27
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-642-33167-1_36
https://doi.org/10.1007/978-3-540-70936-7_24
https://doi.org/10.1007/978-3-540-70936-7_24
https://doi.org/10.1007/978-3-662-47989-6_11
https://doi.org/10.1007/978-3-662-47989-6_11
https://doi.org/10.1007/978-3-642-29011-4_39

148 F. Kitagawa and T. Matsuda

29. Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Completeness of single-bit
projection-KDM security for public key encryption. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 201–219. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-16715-2 11

30. Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor functions via
key-dependent-message security. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part III. LNCS, vol. 11694, pp. 33–64. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 2

31. Kitagawa, F., Tanaka, K.: A framework for achieving KDM-CCA secure public-key
encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS,
vol. 11273, pp. 127–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03329-3 5

32. Kitagawa, F., Tanaka, K.: Key dependent message security and receiver selective
opening security for identity-based encryption. In: Abdalla, M., Dahab, R. (eds.)
PKC 2018, Part I. LNCS, vol. 10769, pp. 32–61. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 2

33. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 671–700. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 23

34. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. IACR Cryptology ePrint Archive 242
(2019). Accessed 27 Feb 2019. A preliminary version of [35]

35. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 670–700. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 22

36. Matsuda, T., Hanaoka, G.: Constructing and understanding chosen ciphertext
security via puncturable key encapsulation mechanisms. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 561–590. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6 23

37. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC 1990, pp. 427–437 (1990)

38. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

39. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS 1999, pp. 543–553 (1999)

40. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS 1986, pp. 162–167 (1986)

41. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 214–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 9

https://doi.org/10.1007/978-3-319-16715-2_11
https://doi.org/10.1007/978-3-319-16715-2_11
https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-030-03329-3_5
https://doi.org/10.1007/978-3-030-03329-3_5
https://doi.org/10.1007/978-3-319-76578-5_2
https://doi.org/10.1007/978-3-319-76578-5_2
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-662-46494-6_23
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

New Approaches to Traitor Tracing
with Embedded Identities

Rishab Goyal1(B), Venkata Koppula2, and Brent Waters3

1 University of Texas at Austin, Austin, USA
rgoyal@cs.utexas.edu

2 Weizmann Institute of Science, Rehovot, Israel
venkata.koppula@weizmann.ac.il

3 University of Texas at Austin and NTT Research, Austin, USA
bwaters@cs.utexas.edu

Abstract. In a traitor tracing (TT) system for n users, every user has
his/her own secret key. Content providers can encrypt messages using a
public key, and each user can decrypt the ciphertext using his/her secret
key. Suppose some of the n users collude to construct a pirate decod-
ing box. Then the tracing scheme has a special algorithm, called Trace,
which can identify at least one of the secret keys used to construct the
pirate decoding box.

Traditionally, the trace algorithm output only the ‘index’ associated
with the traitors. As a result, to use such systems, either a central master
authority must map the indices to actual identities, or there should be
a public mapping of indices to identities. Both these options are prob-
lematic, especially if we need public tracing with anonymity of users.
Nishimaki, Wichs, and Zhandry (NWZ) [Eurocrypt 2016] addressed this
problem by constructing a traitor tracing scheme where the identities of
users are embedded in the secret keys, and the trace algorithm, given a
decoding box D, can recover the entire identities of the traitors. We call
such schemes ‘Embedded Identity Traitor Tracing’ schemes. NWZ con-
structed such schemes based on adaptively secure functional encryption
(FE). Currently, the only known constructions of FE schemes are based
on nonstandard assumptions such as multilinear maps and iO.

In this work, we study the problem of embedded identities TT based
on standard assumptions. We provide a range of constructions based
on different assumptions such as public key encryption (PKE), bilinear
maps and the Learning with Errors (LWE) assumption. The different
constructions have different efficiency trade offs. In our PKE based con-
struction, the ciphertext size grows linearly with the number of users;
the bilinear maps based construction has sub-linear (

√
n) sized cipher-

texts. Both these schemes have public tracing. The LWE based scheme is
a private tracing scheme with optimal ciphertexts (i.e., log(n)). Finally,
we also present other notions of traitor tracing, and discuss how they
can be build in a generic manner from our base embedded identity TT
scheme.

B. Waters—Supported by NSF CNS-1908611, CNS-1414082, DARPA SafeWare and
Packard Foundation Fellowship.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 149–179, 2019.
https://doi.org/10.1007/978-3-030-36033-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_6

150 R. Goyal et al.

1 Introduction

Traitor tracing (TT) systems, as introduced by Chor, Fiat, and Naor [14], studied
the problem of identifying the users that contributed to building a rogue decoder
in a broadcast environment. In a TT system an authority runs a setup algorithm
on input a security parameter λ, and the number of users n in the system. This
results in generation of a global public key pk, a tracing key key, and n private
user keys (sk1, sk2, . . . , skn). Each private key is distributed to an authorized user
in the system with the guarantee that it can be used to decrypt any ciphertext
ct encrypting a message m under the global public key pk. The first security
property satisfied by such systems is that the message will be hidden from every
unauthorized user, that is one who does not have access to any secret key. The
most salient feature of a traitor tracing system is the presence of an additional
tracing algorithm which is used to identify corrupt/coerced users. Suppose an
attacker corrupts some subset S ⊆ {1, . . . , n} of authorized users and produces
a special decryption algorithm/device D that can decrypt the ciphertexts with
some non-negligible probability. The tracing property of the system states that
the tracing algorithm, on input the tracing key key and oracle access to device
D, outputs a set of users T where T contains at least one user from the colluding
set S (and no users outside of S).

The initial traitor tracing systems [1,2,6,8,12,14,15,19,27–30,32–34] allowed
bounded collusions; we focus on unbounded collusion [9–11,13,20,22,26,31].
While the concept of traitor tracing was originally motivated by catching cor-
rupt users in broadcast systems, the notion of traitor tracing has numerous
other applications such as transmitting sensitive information to first responders
(or military personnel etc.) on an ad-hoc deployed wireless network, accessing
and sharing encrypted files on untrusted cloud storage etc. This propels us to
study the problem of traitor traitor more finely with a dedicated focus on under-
standing the issues that prevent a wider adoptability of such systems.

One major hurdle is that, as per the traditional description of the problem,
the tracing portion (that is identifying the corrupt users) is inherently tied to
the central authority (key generator) in the system. This is due to the fact that
the authority needs to keep track of the users who have been issued private keys,
and thus it needs to maintain an explicit mapping (as a look-up table) between
the user identification information and the indices of their respective private
keys. Otherwise, the output of the tracing algorithm will simply be a subset
T of the user indices which can not be linked to actual users in the system,
thereby introducing the problem of accountability and circumventing the whole
point of tracing traitors. In addition, this not only constrains the authority to
be fully stateful (with the state size growing linear with the number of users) by
necessitating that the authority must record the user information to key index
mapping, but also restricts the authority to be the only party which can per-
form any meaningful notion of tracing if (authorized) user privacy/anonymity is

New Approaches to Traitor Tracing with Embedded Identities 151

also desired.1 Therefore, even if the TT system achieves public traceability, that
is the tracing key key can be included as part of public parameters, no third party
would be able to identify traitors in system due to lack of a public mapping as
described above.

Furthermore, in certain situations the user information to key index mapping
might be undetermined. For example, suppose all the users in the system obtain
their private decryption keys without revealing any sensitive identification infor-
mation to the key generating authority. (Note that this can be achieved by some
sort of two party computation-based transfer between the user and authority.)
In such a scenario, it is not clear how tracing would work since the authority
would not be able to point to any user in the system as a traitor because the
key index to user identity mapping is unknown, even if the tracing algorithm
correctly outputs an index of some coerced secret key.

These observations lead to the following question—

Is it possible to embed the user identification information in the private
decryption keys such that during tracing the algorithm not only finds the

corrupted key indices, but also extracts the corresponding user identities from
the pirate decoding device?

Formally, this is captured by giving an additional parameter κ as an input to
the setup algorithm, where κ denotes the length of the user identities that can
be embedded in the private keys. The setup now outputs a master secret key
msk, instead of n private user keys, where msk is used to generate private keys
ski,id for any index-identity pair (i, id) ∈ [n]×{0, 1}κ. And the tracing algorithm
outputs a set of ‘user identities’ T ⊆ {0, 1}κ where id ∈ T indicates that id was
one of the corrupted users.2 This interpretation of traitor tracing resolves the
above issues of statefulness, third-party traceability, and maintaining a private
look-up table for providing user anonymity.

The above-stated question of traitor tracing with embedded information in
secret keys was first studied by Nishimaki, Wichs, and Zhandry [31]. Their app-
roach was to directly work with the existing private linear broadcast encryp-
tion (PLBE) framework [9], however that resulted in solutions based on non-
standard assumptions. Concretely, they assume existence of an adaptively-secure
collusion-resistant public-key functional encryption (FE) scheme with compact
ciphertexts. Currently all known instantiations are either based on multilinear
maps [16,17,21,23], or indistinguishability obfuscation [4,5]. An important open
question here is whether the above problem of embedded information traitor

1 Although the problem of statefulness can be avoided by posting the identity of all
authorized users along with their respective (decryption key) indices on a public-
bulletin board, such a solution is particularly undesirable in practice as the user
identities might include highly sensitive information such as passport information,
driving license number, etc.

2 Note that the tracing algorithm could be additionally asked to output the corre-
sponding user index along with the identity, but since the index i ∈ [n] could itself
be encoded in the identity id using only log(n) bits therefore this seems unnecessary.

152 R. Goyal et al.

tracing can be solved from standard assumptions such as one-way functions,
bilinear assumptions, learning with errors etc. In this work, we study this ques-
tion and provide a general framework for solving this problem with a wide range
of parameter choices and assumption families.

Our Results. We give new constructions for traitor tracing systems with embed-
ded identity tracing under the following assumptions.3

Public-key encryption. Our first construction is that of an embedded identity
TT scheme with public traceability that relies only on regular PKE schemes.
The ciphertext size and length of public key grows linearly in both the number
of users n as well as the length of embedded identities κ. This is a natural
generalization of the basic TT scheme based on PKE, and is provided to serve
as a baseline benchmark for comparing efficiency with other instantiations.

Bilinear maps. Second, we show that using a more algebraic approach via
bilinear maps we can build an embedded identity TT scheme with a square-
root speed-up w.r.t. the PKE-based scheme. Concretely, the size of ciphertexts
and length of public key grows linearly in

√
n and

√
κ. And the scheme still

achieves public traceability.
Learning with errors. Lastly, we build a compact embedded identity TT

scheme secure under the learning with errors (LWE) assumption. Here com-
pactness means that the size of ciphertexts and public key scales polynomially
with log(n) and κ. On the flip side, the tracing key needs to be private, that
is it only achieves private key traceability.

These are summarized in Table 1. In the next section we elaborate more on our
framework and general methodology for breaking down the problem. Below we
discuss our results in more detail.

Table 1. Embedded identity traitor tracing. The ‘Tr. Mode’ column indicates whether
tracing is public or private.

Assumption |ct| |pk| |sk| Tr. Mode Unbdd

PKE n · κ · poly(λ) n · κ · poly(λ) κ · poly(λ) Pub No

Bilinear
√

n · κ · poly(λ) √
n · κ · poly(λ) logn + κ + poly(λ) Pub No

LWE (log n + κ) · poly(λ) poly(λ) (logn + κ) · poly(λ) Priv Yes

In this work, we provide three new pathways for realizing embedded iden-
tity TT systems, and notably the first constructions relying only on standard
assumptions. Our first two constructions from public-key encryption and bilin-
ear maps are novel, where our bilinear map based scheme draws ideas from the

3 Nishimaki, Wichs, and Zhandry [31] used the term “flexible” traitor tracing to refer
to schemes where the space of identities that can be traced is exponential. Here we
call such TT systems as embedded identity TT schemes (or EITT for short).

New Approaches to Traitor Tracing with Embedded Identities 153

trace and revoke scheme of Boneh-Waters [10]. And, for building an LWE-based
solution we adapt the recently introduced Mixed Functional Encryption (Mixed
FE) schemes [13,26] in our framework to get the desired results.

Furthermore, a very important and useful piece of our approach is that it
allows us to avoid subexponential security loss in the transformation (due to
complexity leveraging) if we allow an exponential number of users in the system
and the intermediate primitives used are only selectively-secure. Particularly,
this is used in our LWE-based solution which relies on mixed FE for which most
of the current constructions are only known to achieve selective security. (For
example, the first mixed FE construction by Goyal, Koppula, and Waters [26]
and two of three follow-up constructions by Chen et al. [13] were proven to
be only selectively-secure.) Therefore, our approach also answers the question
whether adaptivity is necessary for building embedded identity TT schemes if
the system is required to support an unbounded number of users. Note that
in the prior work of Nishimaki, Wichs, and Zhandry [31], it was crucial that
they start with an ‘adaptively-secure’ FE scheme for security purposes, but here
our approach helps in bypassing the adaptivity requirement. Next, we provide a
detailed technical overview of our results.

2 Technical Overview

We start by formally defining the notion of embedded identity traitor tracing
(EITT) systems. In order to capture a broader class of traitor tracing systems,
we consider three different variants for embedded identity tracing—(1) indexed
EITT, (2) bounded EITT, and (3) full (unbounded) EITT. Although the notion
of full/unbounded EITT is the most general notion we define and therefore it is
also likely the most desirable notion, we believe that both indexed and bounded
EITT systems will also find many direct applications as will be evident later
during their descriptions. In addition, we also show direct connections between
all three notions by providing different transformations among these notions.

Next, we move on to realizing these EITT systems under standard assump-
tions. To that end, we first introduce a new intermediate primitive which we call
embedded-identity private linear broadcast encryption (EIPLBE) that we even-
tually use to build EITT schemes. As the name suggests, the notion of EIPLBE
is inspired by and is an extension of private linear broadcast encryption (PLBE)
schemes introduced in the work of Boneh, Sahai, and Waters (BSW) [9]. BSW
introduced the notion of PLBE schemes as a stepping stone towards building
general TT systems. In this work, we show that the above-stated extension of
PLBE systems can be very useful in that it leads to new solutions for the embed-
ded identity traitor tracing problem.

Finally, we provide multiple instantiations of EIPLBE schemes that are
secure under a variety of assumptions (PKE, Bilinear, and LWE). Using these
EIPLBE schemes in the aforementioned transformation, we can build various
EITT systems with appropriate efficiency metrics.

154 R. Goyal et al.

2.1 Embedded Identity Traitor Tracing Definitions

Let us first formally recall the notion of standard traitor tracing (i.e., without
embedding identities in the secret keys). A traitor tracing system consists of four
poly-time algorithms—Setup, Enc, Dec, and Trace. The setup algorithm takes as
input security parameter λ, and number of users n and generates a public key
pk, a tracing key key, and n private keys sk1, . . . , skn. The encryption algorithm
encrypts a message m using public key pk, and the decryption algorithm decrypts
a ciphertext using any one of the private keys ski. The tracing algorithm takes
tracing key key, two messages m0,m1 as input, and is given (black-box) oracle
access to a pirate decoding algorithm D.4 It outputs a set S ⊆ [n] of users
signalling that the keys skj for j ∈ S were used to create the pirate decoder D.
The security requirements are as described in the previous section.

Let us now look at how to embed identities in the private user keys such
that the tracing algorithm outputs a set of identities instead. Below we describe
the identity embedding abstractions considered in this work. Throughout this
sequel, κ denotes the length of identities embedded (that is, identity space is
{0, 1}κ).

Indexed EITT. We begin with indexed EITT as the simplest way to introduce
identity embedding functionality in the standard TT framework is as follows.
The setup algorithm takes both n and κ as inputs and outputs a master secret
key msk. Such systems will have a special key generation algorithm that takes as
input msk along with an index-identity pair (i, id) ∈ [n] × {0, 1}κ, and outputs a
user key ski,id. When the ith user requests a key then it can supply its identity
id, and the authority runs key generation on corresponding inputs to sample a
secret key for that particular user.

Encryption, decryption, and tracing algorithms remain unaffected with the
exception that the tracing algorithm outputs a set of user identities S ⊆ {0, 1}κ

instead.5 Now the IND-CPA and secure tracing requirements very naturally
extend to indexed EITT systems with one caveat that the adversary can only
obtain a user key for each index at most once in the traitor tracing game. Com-
paring this with standard TT schemes in which each corrupted user receives a
unique private key depending on its index, this constraint on set of corruptible
keys is a natural translation.

Looking carefully at the above abstraction, we observe that using such
indexed systems in practice would seem to resolve the ‘look-up table’ prob-
lem thereby allowing third party tracing, but the problem of statefulness is not

4 Traditionally, the tracing algorithm was defined to work only if the decoder box
could decrypt encryptions of random messages. However, as discussed in [24], this
definition does not capture many practical scenarios. Therefore we work with a
broader abstraction where the trace algorithm works even if the decoder can only
distinguish between encryptions of two specific messages.

5 Although one could ask the tracer to output a set of index-identity pairs instead of
only identities, this seems unnecessary as the user index can always be embedded in
its identity.

New Approaches to Traitor Tracing with Embedded Identities 155

yet completely resolved. Concretely, the key generating authority still needs to
maintain a counter (that is log(n) bits) which represents the number of keys
issued until that point. Basically each time someone queries for a secret key for
identity id, the authority generates a secret key for identity id and index being
the current counter value, and it increments the counter in parallel. This con-
straint stems from the fact that for guaranteeing correct tracing it is essential
that the adversary receives at most one key per index i ∈ [n]. Although for a
lot of applications indexed EITT might already be sufficient, it is possible that
for others this is still restrictive. To that end, we define another EITT notion to
completely remove the state as follows.

Bounded EITT. The idea behind bounded EITT is that now the input n given to
the setup algorithm represents an upper bound on the number of keys an adver-
sary is allowed to corrupt while the system still guarantees correct traceability.
And importantly, the key generation algorithm now only receives an identity id
as input instead of an index-identity pair. Thus, the authority does not need to
maintain the counter, that is it does not need to keep track of number of users
registered. Another point of emphasis is that in a Bounded EITT system if the
number of keys an attacker corrupts exceeds the setup threshold n, the attacker
may avoid being traced; however, even in this scenario tracing procedure will
not falsely indict an non-colluding user. In addition to being a useful property
in its own right, the non-false indictment property will be critical in amplifying
to Unbounded EITT.

Interestingly, we show a generic transformation from any indexed EITT
scheme to a bounded EITT scheme with only a minor efficiency loss. More
details on this transformation are provided towards the end of this section.
Looking ahead, this transformation only relies on the existence of signatures
additionally.

Unbounded EITT. Lastly the most general notion of embedded identity traitor
tracing possible is of systems in which the setup algorithm only takes κ the
length of identities as input, thus there is no upper bound on the number of
admissible corruptions set during setup time. Therefore, the adversary can pos-
sibly corrupt an arbitrary (but polynomial) number of users in the system. In
this work, we additionally provide an efficient unconditional transformation from
bounded EITT schemes to unbounded EITT schemes thereby completely solving
the embedded identity tracing problem. More details on this transformation are
also provided towards the end of this section.

Next, we move on to building the indexed EITT schemes under standard
assumptions. As discussed before, we first introduce the intermediate notion of
EIPLBE.

2.2 Embedded-Identity Private Linear Broadcast Encryption

Let us start by recalling the notion of private linear broadcast encryption
(PLBE) [9]. Syntactically, a PLBE scheme is same as a traitor tracing scheme as

156 R. Goyal et al.

in it consists of setup, key generation, encryption, decryption algorithms with the
exception that instead of tracing algorithm it provides an additional encryption
algorithm usually referred to as index-encryption algorithm. In PLBE systems,
the setup algorithm outputs a public, master secret, and index-encryption key
tuple (pk,msk, key). As in TT systems, the key generation uses master secret
key to sample user private keys skj for any given index j ∈ [n], while the
PLBE encryption algorithm uses the public key to encrypt messages. The index-
encryption algorithm on the other hand uses the index-encryption key to encrypt
messages with respect to an index i. Now such a ciphertext can be decrypted
using skj only if j ≥ i, thus one could consider such ciphertexts as encrypting
messages under the comparison predicate ‘≥i’. The security requirements are
defined in an ‘FE-like’ way; that is, if an adversary does not have a key for index
i, then index-encryption of any message m to index i should be indistinguishable
from index-encryption of m to index i+1. Additionally, public key encryptions of
any message m should also be indistinguishable from index-encryptions of same
message for index 1 (even if adversary is given all keys). And finally, index-
encryptions to index n + 1 should completely hide any information about the
encrypted message.

BSW showed that the PLBE framework could be very useful for building TT
systems. At a very high level, their main idea was to use the index-encryption
functionality to build the tracing algorithm. The tracing algorithm, given access
to a decoding algorithm D, estimates the successful decryption probability of
index-encryptions to different indices in 1 to n + 1 when decrypted using algo-
rithm D. If it finds an index i such that the probability estimates corresponding
to index-encryptions to i and i+1 are noticeably far, then the tracing algorithm
includes index i to the set of traitors. In prior works [9,26], it was shown that
such a transformation preserves IND-CPA security as well as guarantees secure
and correct tracing.

An important aspect of the tracing schema described above is that during
tracing the algorithm essentially runs a brute force search over set of user indices
{1, 2, . . . , n} to look for traitors. This turns out to be problematic if we want to
embed polynomial length identities in the secret keys. Because now the search
space for traitors is exponential which turns the above brute force search mech-
anism rather useless. Thus it is not very clear whether the PLBE framework is
an accurate abstraction for ‘embedded identity’ TT.

In this work, our intuition is to extend the PLBE framework such that it
becomes more conducive for implementing the embedded identity tracing func-
tionality in TT systems. Hence, we propose a new PLBE framework called
embedded-identity PLBE. As in PLBE, an EIPLBE scheme consists of a setup,
key generation, encryption, decryption and special-encryption algorithm. (Here
special-encryption algorithm is meant to replace/extend the index-encryption
algorithm provided in general PLBE schemes.) Semantically, the differences
between PLBE and EIPLBE are as follows. In EIPLBE, the user keys are asso-
ciated with an index-identity pair (j, id). And, special-encryptions are associated

New Approaches to Traitor Tracing with Embedded Identities 157

with a index-position-bit tuple (i, �, b), where position is a symbol in [κ] ∪ {⊥}.
The special-encryption ciphertexts can further be categorized into two types:

(� =⊥). In this case the special-encryption ciphertext for index-position-bit tuple
(i, � =⊥, b) behaves identical to a PLBE index-encryption to index i. That
is, such ciphertexts can be decrypted using skj,id as long as j ≥ i.

(� �=⊥). In this case the ciphertext can be decrypted using skj,id as long as
either j ≥ i + 1 or (j, id�) = (i, 1 − b). In words, these ciphertexts behave
same as a PLBE index-encryption to index i, except decryption by the users
corresponding to index-identity pair (i, id) is also disallowed if �th bit of their
id matches bit value b.

In short, the special-encryption algorithm (when compared with PLBE index-
encryption) provides an additional capability of disabling decryption ability of
users depending upon a single bit of their identity. The central idea behind
introducing this new capability is that it facilitates a simple mechanism for
tracing the identity bit-by-bit. The tracing algorithm runs as a two-step process
where the first phase is exactly same as in the PLBE to TT transformation
which is to trace the indices of corrupt users. This can be executed as before by
using the PLBE functionality of disabling each index one-by-one, that is estimate
successful decryption probability of encryptions to indices in 1 to n + 1 while
keeping position variable � =⊥. This is followed by the core identity tracing
phase in which the tracing algorithm performs a sub-search on each user index
i where it noticed a gap in first phase. Basically the sub-search corresponds to
picking a target index obtained during first phase, and then sequentially testing
whether the �th bit in the corrupted identity is zero or one for all positions
� ∈ [κ]. And, this is where the above additional disabling capability is used.

Next we discuss the expanded set of security properties required from
EIPLBE. More details on the above transformation are provided afterwards.

normal-hiding. Standard encryptions are indistinguishable from special-
encryptions to (1,⊥, 0).

index-hiding. Special-encryptions to (i,⊥, 0) are indistinguishable from
special-encryptions to (i+1,⊥, 0) if an adversary has no secret key for index i.

lower-ID-hiding. Special-encryptions to (i,⊥, 0) are indistinguishable from
special-encryptions to (i, �, b) if an adversary has no secret key for index i
and identity id such that id� = b.

upper-ID-hiding. Special-encryptions to (i+1,⊥, 0) are indistinguishable from
special-encryptions to (i, �, b) if an adversary has no secret key for index i and
identity id such that id� = 1 − b.

message-hiding. Special-encryptions to (n + 1,⊥, 0) hide the message
encrypted.

Building Indexed EITT from EIPLBE. The setup, key generation, encryption
and decryption algorithms for the tracing scheme are same as that for the under-
lying EIPLBE scheme. Let us now look at how to trace identities from the pirate
decoding device. As mentioned before, the tracing proceeds in two phases—(1)

158 R. Goyal et al.

index tracing, followed by (2) identity tracing. The idea is to first trace the set
of indices of the corrupted users, say Sindex ⊆ [n], and then in the second phase
for each index i ∈ Sindex, the tracer will (bit-by-bit) extract the corresponding
identity corrupted. Formally, the tracing proceeds as follows

Phase 1. For i ∈ [n + 1], do the following:
A. Compute polynomially many special-encryptions to index-position-bit

(i,⊥, 0).
B. Run decoder D on each ciphertext individually to test whether it decrypts

correctly or not. Let p̂i denote the fraction of successful decryptions.
Let Sindex denote the set of indices i of such that p̂i and p̂i+1 are noticeably
far.

Phase 2. Next, for each i ∈ Sindex and � ∈ [κ], do the following:
A. Compute polynomially many special-encryptions to index-position-bit

(i, �, 0).
B. Run decoder D on each ciphertext individually to test whether it decrypts

correctly or not. Let q̂i,� denote the fraction of successful decryptions.
Output Phase. Finally, for each i ∈ Sindex, it sets the associated traced identity

id as follows. For each � ∈ [κ], if p̂i and q̂i,� are noticeably far, then set �th bit
of id to be 0, else sets it to be 1.

Let us now see why this tracing algorithm works. In the above procedure, the
first phase (index tracing) is identical to the PLBE-based tracing algorithm.
Thus, by a similar argument it follows that if i ∈ Sindex, then it suggests that
the decoder D was created using a key corresponding to index-identity pair (i, id)
for some identity id. (This part of the argument only relies on normal-hiding,
index-hiding and message-hiding security properties.)

The more interesting component of the tracing algorithm is the identity trac-
ing phase (i.e., phase 2). The idea here is to selectively disable the decryp-
tion ability of users for a fixed index if a particular bit in their identities is
0. Recall that an adversary can not distinguish between special-encryptions to
tuple (i,⊥, 0) and (i, �, 0) as long as it does not have any secret key for (i, id)
such that id� = 0. This follows from ‘lower-ID-hiding’ property. Similarly, an
adversary can not distinguish between special-encryptions to tuple (i + 1,⊥, 0)
and (i, �, 0) as long as it does not have any secret key for (i, id) such that id� = 1.
This follows from ‘upper-ID-hiding’ property. Now whenever i ∈ Sindex we know
that p̂i and p̂i+1 are noticeably far. Also, recall that in indexed EITT tracing def-
inition the adversary is allowed to key query for at most one identity per index.
Therefore, the estimate q̂i,� will either be close to p̂i or to p̂i+1, as otherwise
one of upper/lower-ID-hiding properties will be violated. Combining all these
observations, we can prove correctness/security of the above tracing algorithm.

Next, we move to standard assumption constructions for EIPLBE schemes.

New Approaches to Traitor Tracing with Embedded Identities 159

2.3 Building EIPLBE from Standard Assumptions

In this section, we provide three different pathways for securely realizing
embedded-identity private linear broadcast encryption systems under standard
assumptions. Our first instantiation is based only on general public key encryp-
tion, and is provided to serve as a baseline benchmark for comparing efficiency
of other schemes. Our second instantiation is based on Bilinear maps, and pro-
vides a quadratic improvement over the PKE-based scheme. And finally, our
third and last instantiation is based on learning with errors, and it leads to
extremely efficient system parameters. See Table 1 for concrete efficiency com-
parison. Below we discuss these three approaches in greater detail highlighting
the main challenges and contributions. Throughout this section, we use n to
denote the maximum number of indices and κ to be the length of identities.

EIPLBE via Public Key Encryption. We first present a EIPLBE scheme
based on any PKE scheme. In this scheme, the size of the ciphertexts grows
linearly with the maximum number of indices n and the length of identities κ.
To understand the intuition behind the PKE based EIPLBE construction, let
us recall the folklore PLBE construction based on PKE.

PKE-Based PLBE Scheme. The setup algorithm chooses n PKE keys
(pki, ski)i∈[n]. A secret key for index i is simply ski. Standard encryption of
message m consists of n ciphertexts, where the ith ciphertext is an encryption
of m under public key pki. A special-encryption of m for index i∗ consists of n
ciphertexts; the first i∗ ciphertexts are encryptions of a special symbol ⊥ (under
the respective public keys) while the remaining are encryptions of m (under the
respective public keys). In summary, the ciphertext consists of n independent and
disjoint components, where each component contains one PKE sub-ciphertext.
Thus a user can perform decryption by only looking at its dedicated PKE com-
ponent in the ciphertext. And security follows directly from PKE security since
all the PKE sub-ciphertexts are independently created.

Extending This to EIPLBE. Let us now look at how to extend the simple PLBE
scheme described above to embed identities as well. Once again, we will have n
different strands, and each strand will have 2κ slots. (Here we perform a PKE
setup for each slot in each strand.) A secret key for index i and identity id can
unlock κ out of the 2κ slots of the ith strand, and using these κ unlocked com-
ponents, the decryption algorithm tries to reconstruct a message. In particular,
the secret key (i, id) can unlock each of the {(�, id�)}� slots. This is executed by
giving out the PKE secret keys associated with these slots.

To encrypt a message m, one first creates n copies of the message, and secret
shares each copy (independently) into κ shares. Let {ri,�}�∈[κ] denote the κ

shares of the ith copy. In the ith strand, the (�, 0) and (�, 1) slots encrypt the
same message ri,�. (Here the per-slot per-strand encryption is performed under
the corresponding PKE public key.) As a result, a secret key for index i and

160 R. Goyal et al.

identity id can recover all the {ri,�}� components, and therefore the decryption
algorithm can reconstruct the message m.

A special-encryption for index-position-bit tuple (i∗, �∗, b∗) is more involved.
In the first i∗ − 1 strands, it has no information about the message m (it secret
shares ⊥ and puts the shares in the 2κ slots). For all i > i∗, the ith strand is
constructed just as in the standard encryption (secret share message m into κ
shares, and put the �th share in the slots (�, 0) and (�, 1)). The i∗ strand is set
up in a more subtle way; here, the encryption algorithm again breaks down m
into κ shares {ri∗,�}�. It puts ri∗,� in slots (�, 0) and (�, 1) for all � except �∗. In
slot (�∗, b∗) it puts ⊥, and in slot (�∗, 1 − b∗) it puts ri∗,�∗ . As a result, a secret
key for index i∗ and identity id such that id�∗ = b∗ cannot recover ri∗,�∗ , and
therefore cannot reconstruct the message.

The security properties follow directly from IND-CPA security of the under-
lying PKE scheme. Consider, for instance, the index hiding property (special-
encryption to (i,⊥, 0) is indistinguishable from special-encryption to (i+1,⊥, 0)
if an adversary has no secret keys for index i). The only difference between these
two special-encryptions is the ciphertext components in the {(�, 0), (�, 1)}� slots
of ith strand. But since the adversary gets no secret keys for index i, it does not
have any secret keys to unlock these strand i slots, and hence the index-hiding
property holds. The other security properties also follow in a similar manner,
except while arguing that the scheme satisfies upper-ID-hiding security we have
to additionally use the fact that the message is randomly and independently
split in each strand.

The ciphertext size in the above construction grows linearly with both n and
κ. Next, we will see how to achieve better parameters using bilinear maps.

EIPLBE via Bilinear Maps. When studying EIPLBE, a natural question to
ask is whether it can realized generically from standard PLBE schemes. Since
we already have bilinear-map based PLBE constructions [9,10] in which the size
of ciphertext grows linearly with

√
n, thus a generic transformation from PLBE

to EIPLBE could probably lead to a bilinear-map solution for EIPLBE with
similarly efficiency. Here we consider a very natural such transformation from
PLBE to EIPLBE and discuss the challenges faced in executing this approach in
a black-box way. Starting with this black-box approach we dig deeper into the
existing PLBE schemes and extend them directly to a EIPLBE scheme. More
details follow.

Why Generic Transformation from PLBE to EIPLBE Does Not Work? Let us
first describe a simple candidate EIPLBE scheme based on PLBE. The starting
point for this transformation is the PKE-based construction described previously.
The intuition is to replace each ‘strand’ sequence in the PKE-based solution
with a single PLBE instantiation while keeping the slot structure intact. That
is, during setup the algorithm now runs PLBE setup 2κ times—once for each
slot in {(�, b)}�,b. The public/master secret key consists of the 2κ public/master
secret keys

{
pk�,b,msk�,b

}
�,b

, one from each slot (�, b) ∈ [κ] × {0, 1}. And, a

New Approaches to Traitor Tracing with Embedded Identities 161

secret key for index-identity pair (i, id) consists of κ PLBE secret keys, where
the �th key component is a secret key for index i in the (�, id�) slot (that is,
sk = {sk�}� where sk� ← KeyGen(msk�,id�

, i)). Next, let us look at encryption. A
ciphertext consists of 2κ PLBE ciphertexts {ct�,b}�,b. The (standard) encryption
algorithm splits message m into κ shares {r�}�, and then encrypts r� under the
public keys for both (�, 0) and (�, 1) slots, independently. The special-encryption
algorithm on the other hand works as follows—to encrypt m for index-position-
bit tuple (i∗, �∗, b∗), the algorithm as before splits m into κ shares {r�}�, and then
computes all but the (�∗, b∗)-slot of the ciphertext as a PLBE index-encryption
(of the corresponding share) for index i∗. And, the last remaining ciphertext
component (if any6) is a PLBE index-encryption (of the corresponding share)
for index ‘i∗ + 1’. Now decryption can be quite naturally defined. Let us next
try to analyze its security.

A careful inspection of the above scheme shows that it satisfies all requisite
security properties except one which is upper-ID-hiding security.7 Recall that
upper-ID-hiding security requires that special-encryption to (i + 1,⊥, 0) must
be indistinguishable from special-encryption to (i, �, b) if the adversary doed not
get any secret key for (i, id) such that id� = 1− b. Suppose an adversary has two
secret keys ski,id and ski+1,id, for some identity id such that id� = b. Consider
a new secret key s̃k which is equal to ski,id, except that the �th component is
set to be the �th component of ski+1,id. It turns out that this hybrid key s̃k can
decrypt a special-encryption for (i, �, b) but not for (i + 1,⊥, 0), even though
both key queries for index-identity pairs (i, id) and (i + 1, id) are permissible as
per upper-ID-hiding security game.

As exhibited by the above attack, the main issue with the above (broken)
candidate is that there is no mechanism to tie together the different components
of a particular secret key. Thus such key mixing attacks, which allow rendering
hybrid keys such as s̃k in the aforementioned attack, are unavoidable. In order
to prevent such attacks, we dive into the existing PLBE constructions with the
goal of exploiting the underlying algebraic structure for linking together the
individual PLBE secret keys coming from different subsystems.

Our Intuition and Fixing [10]. Our starting point is the trace and revoke (broad-
cast) scheme by Boneh and Waters (BW) [10]. We start by presenting a simplified
version of the BW PLBE scheme, and then use that as a building block to build
our EIPLBE scheme. Along the way we uncover a crucial bug in the security
proof provided by BW that renders their theorem as stated incorrect. In this
work, we fix the BW security proof while building our EIPLBE scheme, thereby
restoring the bilinear map based TT (also trace and revoke) schemes to their
original glory.

6 If �∗ = ⊥, then all ciphertext slots have already been filled.
7 Actually there is a pretty simple (related) attack to break the false tracing guarantee

if one uses this transformation to build an indexed EITT scheme from standard
PLBE. Here we only focus on breaking upper-ID-hiding security.

162 R. Goyal et al.

Revisiting BW Tracing Scheme. Let p, q be primes, G,GT groups of order N =
p·q with a bilinear map e : G×G → GT , and let Gp,Gq denote the subgroups of G
of orders p and q respectively. In the BW tracing scheme for n parties, any index
i ∈ [n] is represented as a pair (i1, i2) ∈ [

√
n] × [

√
n]; secret keys and special-

encryptions are for pairs (x, y) ∈ [
√

n] × [
√

n]. We say that (x1, y1) ≺ (x2, y2) if
either x1 < x2 or (x1 = x2 and y1 < y2).

The setup algorithm chooses generator g ← G and gq ← Gq, scalars
αx, rx, cx ← ZN for each x ∈ [

√
n] and sets Ex = grx , Gx = e(g, g)αx and

Hx = gcx . It chooses β ← ZN , sets Eq = gβ
q , Eq,x = gβrx

q and Gq,x = e(gq, gq)βαx .
The public key consists of {Ex, Gx, Eq, Eq,x, Gq,x,Hx}x (together with some
additional components); the master secret key consists of {αx, rx, cx}x, and
the tracing key is the public key itself. A secret key for index (x, y) is set
to be gαx+rxcy . Special-encryption of message m for index (x∗, y∗) has 4

√
n

components {Ri, Ai, Bi, Ci}i∈[
√

n]. It chooses sx ← ZN for each x ∈ [
√

n],
t ← ZN . For x > x∗, it sets Rx = Esx

q,x = gβrxsx
q , Ax = Esxt

q = gβsxt
q and

Bx = m · Gsxt
q,x = m · e(gq, gq)βαxsxt. For x = x∗, it sets Rx = Esx

x = grxsx ,
Ax = gsxt and Bx = m · Gsxt

x = m · e(g, g)αxsxt. For x < x∗, Rx, Ax, Bx

are random group elements. Next, it sets Cy as follows. For y > y∗, it sets
Cy = Ht

y = gcyt; else it sets Cy = gcyt · hp, where hp is a group element in Gp,
derived from the public parameters.

For correctness, let K = gαx+rxcy be a key for (x, y), ct = {Ri, Ai, Bi, Ci}i

an encryption of m for (x′, y′), where (x′, y′) ≺ (x, y). Consider the terms
(Rx, Ax, Bx, Cx). If x > x′, then Rx = gβrxsx

q , Ax = gβsxt
q , Bx = e(gq, gq)βαxrxsxt

for some β, sx, t. On pairing Rx with Cy, one obtains Γ1 = e(gq, gq)βrxsxtcy . Here,
note that it does not matter whether y < y′ or not, because pairing an element
in Gp with an element in Gq results in identity. Next, pairing Ax with the secret
key K results in Γ2 = e(gq, gq)βrxsxcyt+αxrxsx . Finally, note that Bx ·Γ1/Γ2 = m.
If x = x′ but y > y′, then pairing Ax and K results in Γ2 = e(g, g)rxsxcyt+αxrxsx ,
and pairing Rx and Cy results in e(g, g)rxsxcyt. Therefore Bx ·Γ1/Γ2 outputs m.

The main intuition behind the index-hiding security proof is that if an adver-
sary does not have a secret key for index i = (x, y), then the hp term multiplied
to Cy component can be undetectably added or removed. In the actual scheme,
the public parameters and the ciphertext includes some additional terms for
security purposes. Here we removed them for simplicity of exposition. Next, let
us look at how to extend BW for building an EIPLBE scheme.

Our EIPLBE Scheme Based on Bilinear Maps. Our EIPLBE scheme, at a very
high level, is inspired by the 2κ-subsystems idea (described in the attempted
generic transformation from PLBE to EIPLBE) applied to the BW scheme.
However, we will ensure that the adversary cannot mix-and-match different
secret keys. Consider 2κ different subsystems of the BW scheme, where all
the subsystems share the same {αx, rx}x∈[

√
n] values, but each subsystem has

its own {cy}y∈[
√

n] values. So, the public key has {Ex, Gx, Eq, Eq,x, Gq,x}x

(together with some additional components) as in the BW scheme, but instead
of {Hy}y∈[

√
n], it now has {Hy,�,b}y∈[

√
n],�∈[κ],b∈{0,1}, where the setup algorithm

New Approaches to Traitor Tracing with Embedded Identities 163

chooses {cy,�,b}y∈[
√

n] values for the (�, b) subsystem and sets Hy,�,b = gcy,�,b .
The secret key for index i = (x, y) and identity id consists of just one com-
ponent. The key generation algorithm combines the appropriate cy,�,b elements
(depending on id) and multiplies with rx. Let γx,y = rx · (

∑
� cy,�,id�

). The key
generation algorithm outputs gαx+γx,y as the secret key. Note that unlike the
PLBE to EIPLBE transformation, here the components from one key cannot be
mixed with the components of another key to produce a hybrid key. An alternate
view of the secret key is that it is the BW key, but with cy value being different
for each identity (for identity id, cy =

∑
� cy,�,id�

).
In the ciphertext/special-ciphertext, we have the {Rx, Ax, Bx}x∈[

√
n] compo-

nents as in the BW scheme. However, instead of {Cy}y∈[
√

n], we now have 2κ

such sets of components. During decryption, one must first combine the Cy,�,b

components depending on the identity id to obtain a term Cy, which is then
used to carry out BW-like decryption. We will now present the scheme in more
detail.

The setup algorithm chooses {cy,�,b}y∈[
√

n],�∈[κ],b∈{0,1}. It sets Hy,�,b = gcy,�,b

for each (y, �, b) ∈ [
√

n] × [κ] × {0, 1}, and the public key consists of the follow-
ing terms:

{
Ex, Gx, Eq, Eq,x, Gq,x, {Hx,�,b}�,b

}

x
, where the Ex, Gx, Eq, Eq,x, Gq,x

terms are computed as in the BW scheme (outlined above). To compute a
secret key for index (x, y) and identity id, the key generation algorithm com-
putes z = αx + rx · (

∑
i cy,i,idi

) and outputs gz as the secret key. Finally, the
special-encryption of m for index (x∗, y∗), position �∗ and bit b∗ is computed
as follows: for each x ∈ [

√
n], the encryption algorithm computes {Rx, Ax, Bx}

as in the BW scheme. In addition to these components, it computes {Cy,�,b}
components for each y ∈ [

√
n], � ∈ [κ] and b ∈ {0, 1} as follows: if (y > y∗) or

(y = y∗ and (�, b) �= (�∗, b∗))t, then Cy,�,b = Ht
y,l,b, else Cy,�,b = Ht

y,l,b ·hp, where
hp is some element in Gp computed using the public parameters.

Suppose K is a key for index (x, y) and identity id, and{
Rx, Ax, Bx, {Cx,l,b}l,b

}

x
is an encryption of m for ((x∗, y∗), �∗, b∗). Decryp-

tion works as follows: first, compute Cy =
∏

l Cy,l,idl
; next, pair Cy and Ax

to compute Γ1, pair K and Rx to compute Γ2, and output Bx · Γ1/Γ2 as the
decryption.

The full scheme and security proof is discussed in the full version of our
paper. As an alternate approach for constructing an EIPLBE scheme, one could
use a functional encryption scheme for quadratic functions. Such a scheme was
recently proposed by Baltico et al. [3]. However, one of the contributions of our
work is to fix the BW scheme, and hence we chose to provide a direct construction
for EIPLBE, based on the BW scheme. Note that in the above outline, the size
of ciphertexts grows linearly with

√
n and κ. In the main body, we optimize the

construction such that the size of ciphertexts grows linearly with both
√

n and√
κ. Finally, we will present a scheme with optimal ciphertext size with only

polylogarithmic dependence on n.

164 R. Goyal et al.

EIPLBE via Learning with Errors. In a recent work, Goyal, Koppula, and
Waters [26] gave a traitor tracing scheme with compact ciphertexts. Their scheme
is based on a new primitive called Mixed Functional Encryption (Mixed FE),
which can also be used to build an EIPLBE scheme with optimal parameters. A
Mixed FE scheme for a function class F can be seen as an extension of a secret
key FE scheme for F . It has a setup, key generation, encryption and decryp-
tion algorithm (as in a secret key FE scheme). In addition, it also has a public
encryption algorithm. For the PLBE and EIPLBE schemes, it helps to have keys
associated with messages and ciphertexts with functions. The setup algorithm
chooses a public key pk and a master secret key msk. The master secret key
can be used to generate a secret key for any message m, and can also be used
to encrypt any function f . A key for message m can decrypt an encryption of
function f if f(m) = 1. In addition, the public-encryption algorithm can also
generate ciphertexts; it only takes as input the public key pk, and outputs a
ciphertext that ‘looks like’ a secret-key encryption of the ‘all-accepting func-
tion’. For security, GKW require bounded query FE security, together with the
public/secret key mode indistinguishability.

The work of [26] showed a construction of Mixed FE for log-depth circuits. A
recent work by Chen et al. [13] showed three different constructions for the same.
To construct PLBE, [26] combined a 1-bounded Mixed FE scheme with an ABE
scheme. The PLBE encryption of a message m is simply an ABE encryption
of m for attribute x being a public-mode Mixed FE encryption. The special-
encryption of m for index i∗ is again an ABE encryption of m, but with attribute
x being a secret-key Mixed FE encryption of the (>i∗) function. Finally, to
compute a secret key for index i, the key generation algorithm first computes
a Mixed FE key k for the message i, and then computes an ABE key for a
Mixed FE decryption circuit that has k hardwired, takes a Mixed FE ciphertext
ct as input and outputs Mixed FE decryption of ct using k. Note that for this
transformation, it suffices to only have a Mixed FE scheme that allows the
comparison functionality.

Fortunately (for us), [26] (and later [13]) showed Mixed FE for a much richer
class of functions (log-depth circuits), and this will be useful for our construc-
tion. Our EIPLBE scheme will also follow the Mixed FE+ABE approach (which
is referred to as Mixed FE with messages in [13]). Instead of the comparison
function, the Mixed FE ciphertexts in our scheme will be for more expressive
functions. In particular, it suffices to have a Mixed FE scheme where the func-
tions are parameterized by (y∗, �∗, b∗), and it checks if input (y, id) either satisfies
y > y∗, or y = y∗ and id� �= b∗. Since such simple functions can be implemented
in log-depth, we can use the ABE+Mixed FE approach for building EIPLBE as
well.

2.4 Indexed Embedded-Identity TT to Bounded
Embedded-Identity TT

In this part, we discuss our transformation from a tracing scheme with indexed
key generation to one where there is no index involved, but the correct trace

New Approaches to Traitor Tracing with Embedded Identities 165

guarantee holds only if total number of keys is less than an apriori set bound. For
technical reasons we require the bounded EITT system to provide a stronger false
tracing guarantee, which states there should be no false trace even if the adver-
sary obtains an unbounded (but polynomial) number of keys. Looking ahead,
this property will be crucial for the transformation from bounded EITT to its
unbounded counterpart.

The high-level idea is to have λ different strands, and in each strand, we have
a separate indexed-system with a large enough index bound (that depends on
the bound on number of keys n). When generating a key, we choose λ random
indices (within the index bound) and generate λ different keys for the same
identity in the different strands using the respective randomly chosen indices.
Now, we will set the index bound to be n2, and as a result, at least one strand
has all distinct indices (with overwhelming probability). To (special-)encrypt
a message, we secret-share the message in the λ different strands, and encrypt
them separately. This approach satisfies the correct-trace guarantee, but does not
satisfy the false-trace guarantee. In particular, note that the false-trace guarantee
should hold even if the number of key queries is more than the query bound.
This means the underlying indexed scheme should not report a false trace even
if there are multiple identities for a index, which is a strictly stronger false-trace
guarantee for the underlying system (and our system does not satisfy it).

There is an elegant fix to this issue. Instead of generating keys for the queried
identity id, the key generation algorithm now generates a signature on id, and
generates keys for (id, σ). This fixes the false-trace issue. Even if an adversary
queries for many secret keys, if it is able to produce a decoding box that can
implicate a honest user, then that means this box is able to forge signatures,
thereby breaking the signature scheme’s security. We describe the scheme a little
more formally now.

To build a tracing scheme with bound n, the setup algorithm chooses λ
different public/secret/tracing keys for the indexed scheme with index bound
set to be n2. The setup algorithm also chooses a signature key/verification key.
It sets the λ different public keys and the verification key to be the new public
key, and similarly the master secret key has the λ different master secret keys and
the signature key. Encryption of a message m works as follows: the encryption
algorithm chooses λ shares of the message, and then encrypts the ith share under
the ith public key. To compute a secret key for identity id, the key generation
algorithm first chooses λ different indices j1, . . . , jλ. It then computes a signature
σ on id, and generates a key for (id, σ) using each of the λ master secret keys with
the corresponding indices. The tracing algorithm uses the underlying indexed
scheme’s trace algorithm to obtain a set of (id, σ) tuples. It then checks if σ is a
valid signature on id; if so, it outputs id as a traitor.

Now, suppose an adversary queries for t(< n) secret keys, and outputs a
decoding box D. Let ji,k denote the kth index chosen for the ith secret key.
With high probability, there exists an index k∗ ∈ [λ] such that the set of indices
{j1,k∗ , j2,k∗ , . . . , jt,k∗} are all distinct. As a result, using the correct-tracing guar-
antee of the underlying tracing scheme for the k∗ strand, we can extract at least
one tuple (id, σ).

166 R. Goyal et al.

Next, we need to argue the false trace guarantee. This follows mainly from
the security of the signature scheme. Suppose an adversary receives a set of
keys corresponding to an identity set I, and outputs a decoding box D. If trace
outputs an identity id /∈ I, then this means the sub-trace algorithm output a
tuple (id, σ) such that σ is a valid signature on id. As a result, σ is a forgery on
message id (because the adversary did not query for a key corresponding to id).

2.5 Bounded Embedded-Identity TT to Unbounded
Embedded-Identity TT

The final component is to transform a tracing system for bounded keys to one
with no bound on the number of keys issued. For this transformation to be effi-
cient, it is essential that the underlying bounded EITT scheme to have cipher-
texts with polylogarithmic dependence on the key bound n. The reason is that
our core idea is to have λ (bounded) EITT systems running in parallel, where
the ith system runs the bounded tracing scheme with bound ni = 2i, and if the
ciphertext size does not scale polylogarithmically with the bound ni, then this
transformation would not work.8

More formally, the setup algorithm runs the bounded system’s setup λ times,
the ith iteration run with bound ni = 2i. It sets the public key (resp. master
secret key and the tracing key) to be the λ public keys (resp. the λ different
master secret keys and the tracing keys). The encryption algorithm secret shares
the message into λ shares, and encrypts the ith share using the ith public key. The
key generation algorithm computes λ different secret keys. Finally, the tracing
algorithm runs the bounded system’s trace algorithm, one by one, until it finds a
traitor. First, note that since the adversary is polynomially bounded, if it queries
for t keys, then there exists some i∗ such that t ≤ 2i∗

< 2t. As a result, the trace
is guaranteed to find a traitor in the i∗th system, and hence it runs in time
poly(2i∗

) = poly(t). Second, since every underlying bounded system’s false trace
guarantee holds even if the adversary queries for more keys than permitted, thus
none of the premature sub-traces result in a false trace. At a very high level, the
central observation here that allows us in avoiding the need for adaptive security
is that: while tracing we simply perform the “tighest” fit search for finding the
smallest polynomial bound on keys corrupted and then carry out the tracing
procedure rather than tracing on an exponential sized space directly. Similar
techniques of combining different bounded adversary instances, and invoking the
security of the instance with just high enough security were used previously
in [7,18].

2.6 Comparing Techniques

We conclude by giving some further comparisons between the techniques we
introduce and those from the earlier work of NWZ [31]. The closest point for

8 Due to similar reasons, it is essential that the running time of all algorithms (except
possibly the tracing algorithm) grows at most polylogarithmically with n.

New Approaches to Traitor Tracing with Embedded Identities 167

comparisons are the techniques they use to trace an identity of arbitrary size κ
while keeping ciphertexts possibly smaller than κ bits. (We modify their variable
names to more closely match ours.) Here they introduce a sub-primitive called
private block linear broadcast encryption (PBLBE) which can be used as follows.
A private key for identity id = (id1, id2 · · · , idκ) will be associated with a ran-
domly chosen tag s from an exponential sized space. It is then organized into i
blocks where each block is associated with the pair (s, idj) which is embedded by
the value 2s+ idj . Given a decoding algorithm D the tracing algorithm will per-
form a search procedure on each individual block to recover the set of corrupted
tag/identity bit values on each one. The process will essentially perform a search
on the j-th block values while leaving all blocks k �= j alone. At the end, the
tracing process will look for a tag s∗ that is present in all the individual block
searches and use that to reconstruct the traitor identity. An analysis is needed
to show that such a tag exists so that one is not just stuck with fragments of
many different identities.

At a high level our indexed EITT two part structure (consisting of an index
i and identity id) is similar to the two part structure of [31] consisting of a tag
s along with the identity. However, there exists some important differences that
are closely linked to our goal of realizing embedded traitor tracing from standard
assumptions.

– First, our tracing procedure searches in a qualitatively different manner where
it first performs a search across the index space (without regard) to identity
bits and only when an index is found does it perform a dive into extracting the
identity. This is in contrast to the NWZ approach of performing tag/index
search per each identity bit, and then combining the identity bits (corre-
sponding to every unique tag) to reconstruct traitor identities. We believe
the current way is simpler and has less tracing overhead. In addition, our
indexed EITT interface is intended to be a minimalistic which in general
helps for realization from more basic assumptions as opposed to full blown
functional encryption.

– We consider indices of small range while the tag spaces of NWZ are exponen-
tial size. This enables us to access a wider class of traitor tracing realizations
from PKE and bilinear maps. There are no known PLBE schemes for expo-
nentially large identity spaces from these assumptions.

– We achieve our scheme for unbounded identities by amplifying from smaller
index sized schemes along with an analysis that finds the “tightest fit”. The
work of [31] requires adaptive security of the underlying primitive. The only
known scheme from standard assumptions that can handle exponentially large
identity space is the [13] which builds the core “Mixed FE” component from
lockable obfuscation [25,35]. It is notable that the private constrained PRF-
based construction of [13] and the earlier [26] construction of Mixed FE only
offer selective security. This suggests that adaptive security may in general
be hard to come by and developing techniques to avoid it a worthwhile goal.

Lastly, NWZ also studied the problem in the bounded collusion setting,
wherein they provided constructions from regular public-key encryption (instead

168 R. Goyal et al.

of full blown FE) where the size of ciphertexts and parameters grew at least lin-
early in the collusion size. If one sets the collusion size to be the number of users
n, then their bounded collusion constructions could be interpreted as collusion-
resistant constructions for our indexed EITT notion. However, that approach
leads to much less efficient constructions.

3 Traitor Tracing with Embedded Identities

3.1 Indexed Embedded-Identity Traitor Tracing

In this section, we will present the syntax and definitions for traitor tracing
with embedded identities where the number of users is bounded, and the key
generation is ‘indexed’.

Let T be a (indexed keygen, public/private)-embedded identity tracing
scheme for message space M = {Mλ}λ∈N

and identity space ID = {{0, 1}κ}κ∈N
.

It consists of five algorithms Setup,KeyGen,Enc,Dec and Trace with the following
syntax:

Setup(1λ, 1κ, nindx) → (msk, pk, key): The setup algorithm takes as input the
security parameter λ, the ‘identity space’ parameter κ, index space [nindx],
and outputs a master secret key msk, a public key pk, and a tracing key key.

KeyGen(msk, id ∈ {0, 1}κ, i ∈ [nindx]) → ski,id: The key generation algorithm
takes as input the master secret key, identity id ∈ {0, 1}κ and index i ∈ [nindx].
It outputs a secret key ski,id.

Enc(pk,m ∈ Mλ) → ct: The encryption algorithm takes as input a public key
pk, message m ∈ Mλ and outputs a ciphertext ct.

Dec(sk, ct) → z: The decryption algorithm takes as input a secret key sk, cipher-
text ct and outputs z ∈ Mλ ∪ {⊥}.

TraceD(key, 1y,m0,m1) → T ⊆ {0, 1}κ. The trace algorithm has oracle access
to a program D, it takes as input key (which is the master secret key msk
in a private-key tracing scheme, and the public key pk in a public tracing
algorithm), parameter y and two messages m0,m1. It outputs a set T of
index-identity pairs, where T ⊆ {0, 1}κ.

Correctness. A traitor tracing scheme is said to be correct if there exists a
negligible function negl(·) such that for all λ, κ, n ∈ N, m ∈ Mλ, identity id ∈
{0, 1}κ and i ∈ [n], the following holds

Pr

⎡

⎣Dec(sk, ct) = m :
(msk, pk, key) ← Setup(1λ, 1κ, n);

sk ← KeyGen(msk, id, i);
ct ← Enc(pk,m)

⎤

⎦ ≥ 1 − negl(λ).

Efficiency. Let T-s,T-e,T-k,T-d,T-t,S-c,S-k be functions. A (indexed key-
gen, public/private)-embedded identity tracing scheme is said to be
(T-s,T-e,T-k,T-d,T-t,S-c,S-k)- efficient if the following efficiency requirements
hold:

New Approaches to Traitor Tracing with Embedded Identities 169

– The running time of Setup(1λ, 1κ, nindx) is at most T-s(λ, κ, nindx).
– The running time of Enc(pk,m) is at most T-e(λ, κ, nindx).
– The running time of KeyGen(msk, id) is at most T-k(λ, κ, nindx).
– The running time of Dec(sk, ct) is at most T-d(λ, κ, nindx).
– The number of oracle calls made by TraceD(key, 1y,m0,m1) to decoding box

D is at most T-t(λ, κ, nindx, y).
– The size of the ciphertext output by Enc(pk,m) is at most S-c(λ, κ, nindx).
– The size of the key output by KeyGen(msk, id) is at most S-k(λ, κ, nindx).

Definition 1. A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is said to
have public tracing if the tracing algorithm Trace uses the public key.

Security. As in the traditional traitor tracing definitions, we have two security
definitions. The first security definition (IND-CPA security) states that any PPT
adversary should not distinguish between encryptions of different messages. This
definition is identical to the INDCPA definition in traditional traitor tracing. The
second definition states that if there exists a pirate decoder box, then the tracing
algorithm can trace the identity of at least one of the secret keys used to build
the decoding box, and there are no ‘false-positives’.

Definition 2 (IND-CPA security). Let T = (Setup,KeyGen,Enc,Dec,Trace)
be a (indexed keygen, public/private)-embedded identity tracing scheme. This
scheme is IND-CPA secure if for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following probability is at
most 1/2 + negl(λ):

Pr
[
A(ct) = b : (1κ, 1nindx) ← A(1λ); (msk, pk, key) ← Setup(1λ, 1κ, nindx);

b ← {0, 1}; (m0,m1) ← A(pk); ct ← Enc(pk,mb)

]

Definition 3 (Secure tracing). Let T = (Setup,KeyGen,Enc,Dec,Trace)
be a (indexed keygen, public/private)-embedded identity tracing scheme. For
any non-negligible function ε(·) and PPT adversary A, consider expt.
Expt-TT-emb-indexT

A,ε(λ) defined in Fig. 1.
Based on the above experiment, we now define the following (probabilistic)

events and the corresponding probabilities (which are a functions of λ, parame-
terized by A, ε):

– Good-Decoder : Pr[D(ct) = b : b ← {0, 1}, ct ← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr-G-DA,ε(λ) = Pr[Good-Decoder].

– Cor-Tr : T �= ∅ ∧ T ⊆ SID
Pr-Cor-TrA,ε(λ) = Pr[Cor-Tr].

– Fal-Tr : T �⊆ SID
Pr-Fal-TrA,ε(λ) = Pr[Fal-Tr].

170 R. Goyal et al.

Experiment Expt-TT-emb-indexT
A,ε(λ)

– 1κ, 1nindx ← A(1λ)
– (msk, pk, key) ← Setup(1λ, 1κ, nindx)
– (D, m0, m1) ← AO(·)(pk)
– T ← TraceD(key, 11/ε(λ), m0, m1)

Each oracle query made by the adversary A consists of an index-
identity pair (i, id) ∈ [nindx] × {0, 1}κ. Let SID the set of identities
queried by A. Here, oracle O(·) has msk hardwired and on query (i, id)
it outputs KeyGen(msk, id, i) if index i is distinct from all previous
queries made by the adversary, otherwise it outputs ⊥. In other words,
for each index i ∈ [nindx], the adversary is allowed to make at most
one key query. However, for different indices i, i′ ∈ [nindx], the identity
can be same (that is, (i, id) and (i′, id) are valid queries if i �= i′).

Fig. 1. Experiment Expt-TT-emb-index

A scheme T is said to be ind-secure if for every PPT adversary A, polynomial
q(·) and non-negligible function ε(·), there exists negligible functions negl1(·),
negl2(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), the following holds

Pr-Fal-TrA,ε(λ) ≤ negl1(λ), Pr-Cor-TrA,ε(λ) ≥ Pr-G-DA,ε(λ) − negl2(λ).

Remark 1. We want to point out that in both IND-CPA and secure tracing
games we require the adversary to output the index bound nindx in unary instead
of binary (i.e., A outputs (1κ, 1nindx) instead of (1κ, nindx)). Now since the run-
ning time of the adversary A is bounded by a polynomial, thus it can only select
a polynomially-bounded value for index bound nindx. However, the setup algo-
rithm is given the input nindx in binary. This distinction will later be useful in
our constructions and security proofs.

4 A New Framework for Embedded-Identity Traitor
Tracing

4.1 Embedded-Identity Private Linear Broadcast Encryption

We introduce the notion of embedded-identity private linear broadcast encryp-
tion (EIPLBE) as a generalization of private linear broadcast encryption scheme
which was introduced by Boneh, Sahai and Waters [9] as a framework for
constructing traitor tracing schemes. There are five algorithms in a EIPLBE
scheme—Setup,KeyGen,Enc,SplEnc,Dec. The setup algorithm outputs a master
secret key and a public key. The key generation algorithm is used to sample
private keys for index-identity pairs (j, id). The public key encryption algorithm
can be used to encrypt messages, and ciphertexts can be decrypted using any of

New Approaches to Traitor Tracing with Embedded Identities 171

the private keys via the decryption algorithm. In addition to these algorithms,
there is also a special-encryption algorithm SplEnc. This algorithm, which uses
the master secret key, can be used to encrypt messages to any index-position-
value tuple (i, �, b). A secret key for user (j, id) can decrypt a ciphertext for
index-position-value tuple (i, �, b) only if (1) j ≥ i + 1, or (2) (i, �) = (j,⊥) or
(i, id�) = (j, 1 − b).

Belowe we first provide the EIPLBE syntax, and then present the security
definitions.

Syntax. A EIPLBE scheme EIPLBE = (Setup,KeyGen,Enc,SplEnc,Dec) for mes-
sage space M = {Mλ}λ∈N

and identity space ID = {{0, 1}κ}κ∈N
has the fol-

lowing syntax.

Setup(1λ, 1κ, n) → (msk, pk, key) . The setup algorithm takes as input the secu-
rity parameter λ, the ‘identity space’ parameter κ, index space n, and outputs
a master secret key msk and a public key pk.

KeyGen (msk, id ∈ {0, 1}κ, i ∈ [n]) → sk. The key generation algorithm takes as
input the master secret key, an identity id ∈ {0, 1}κ and index i ∈ [n]. It
outputs a secret key sk.

Enc(pk,m) → ct. The encryption algorithm takes as input a public key pk,
message m ∈ Mλ, and outputs a ciphertext ct.

SplEnc(key,m, (i, �, b)) → ct. The special-encryption algorithm takes as input a
key key, message m ∈ Mλ, and index-position-value tuple (i, �, b) ∈ [n + 1] ×
([κ] ∪ {⊥}) × {0, 1}, and outputs a ciphertext ct. (Here the scheme is said to
be public key EIPLBE scheme if key = pk. Otherwise, it is said to be private
key EIPLBE scheme.)

Dec(sk, ct) → z. The decryption algorithm takes as input a secret key sk, cipher-
text ct and outputs z ∈ Mλ ∪ {⊥}.

Correctness. A EIPLBE scheme is said to be correct if there exists a negligible
function negl(·) such that for all λ, κ, n ∈ N, m ∈ Mλ, and i ∈ [n + 1], j ∈ [n],
id ∈ {0, 1}κ, � ∈ ([κ] ∪ {⊥}) and b ∈ {0, 1}, the following probabilities are at
least 1 − negl(λ):

Pr

⎡

⎣Dec(sk, ct) = m :
(msk, pk, key) ← Setup(1λ, 1κ, n)

sk ← KeyGen(msk, id, j)
ct ← Enc(pk,m)

⎤

⎦

(j ≥ i + 1) ∨(
(i, �) = (j, ⊥) ∨

(i, id�) = (j, 1 − b)

) ⇒ Pr

⎡
⎣Dec(sk, ct) = m :

(msk, pk, key) ← Setup(1λ, 1κ, n)
sk ← KeyGen(msk, id, j)

ct ← SplEnc(key, m, (i, �, b))

⎤
⎦ .

172 R. Goyal et al.

Efficiency. Let T-s,T-e,T-̃e,T-k,T-d,S-c,S-k be functions. A EIPLBE scheme
is said to be (T-s,T-e,T-̃e,T-k,T-d,S-c,S-k)- efficient if the following efficiency
requirements hold:

– The running time of Setup(1λ, 1κ, n) is at most T-s(λ, κ, n).
– The running time of Enc(pk,m) is at most T-e(λ, κ, n).
– The running time of SplEnc(key,m, (i, �, b)) is at most T-̃e(λ, κ, n).
– The running time of KeyGen(msk, id, i) is at most T-k(λ, κ, n).
– The running time of Dec(sk, ct) is at most T-d(λ, κ, n).
– The size of the ciphertexts is at most S-c(λ, κ, n).
– The size of the key is at most S-k(λ, κ, n).

q-query EIPLBE Security. Now we provide the security definitions for
EIPLBE as a generalization of the PLBE q-query security [26]. Also, see
Remark 1.

Definition 4 (q-query Normal Hiding Security). Let q(·) be any fixed
polynomial. A EIPLBE scheme is said to satisfy q-query normal hiding security
if for every stateful PPT adversary A, there exists a negligible function negl(·)
such that for every λ ∈ N, the following probability is at most 1/2 + negl(λ):

Pr

⎡

⎢
⎢
⎢
⎢
⎣

ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n) ← A(1λ)
(pk,msk, key) ← Setup(1λ, 1κ, n)

m ← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b ← {0, 1}; ct0 ← Enc(pk,m)
ct1 ← SplEnc(key,m, (1,⊥, 0))

⎤

⎥
⎥
⎥
⎥
⎦

with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query
(m, (j, �, γ)) the index j must be equal to 1.

– KeyGen Oracle: A can make at most one query for each index position j. That
is, let (j1, id1), . . . , (jk, idk) denote all the key queries made by A, then ja and
jb must be distinct for all a �= b.

Definition 5 (q-query Index Hiding Security). Let q(·) be any fixed poly-
nomial. A EIPLBE scheme is said to satisfy q-query index hiding security if for
every stateful PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N, the following probability is at most 1/2 + negl(λ):

Pr

⎡
⎢⎢⎣ASplEnc(key,·,·),KeyGen(msk,·,·)(ct) = b :

(1κ, 1n, i) ← A(1λ)
(pk,msk, key) ← Setup(1λ, 1κ, n)

m ← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b ← {0, 1}; ct ← SplEnc(key, m, (i + b, ⊥, 0))

⎤
⎥⎥⎦

with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query
(m, (j, �, γ)) the index j must be equal to either i or i + 1.

New Approaches to Traitor Tracing with Embedded Identities 173

– KeyGen Oracle: A can make at most one query for each index position j ∈ [n],
and no key query of the form (i, id). That is, let (j1, id1), . . . , (jk, idk) denote
all the key queries made by A, then ja and jb must be distinct for all a �= b.
And, ja �= i for any a.

Definition 6 (q-query Upper Identity Hiding Security). Let q(·) be any
fixed polynomial. A EIPLBE scheme is said to satisfy q-query upper identity
hiding security if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following probability is at most
1/2 + negl(λ):

Pr

⎡
⎢⎢⎢⎢⎣ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n, i, �, β) ← A(1λ)
(pk,msk, key) ← Setup(1λ, 1κ, n)

m ← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b ← {0, 1}; ct0 ← SplEnc(key, m, (i + 1, ⊥, 0))

ct1 ← SplEnc(key, m, (i, �, β))

⎤
⎥⎥⎥⎥⎦

with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query
(m, (j, �, γ)) the index j must be equal to either i or i + 1.

– KeyGen Oracle: A can make at most one query for each index position j ∈
[n], and no key query of the form (i, id) such that id� = 1 − β. That is, let
(j1, id1), . . . , (jk, idk) denote all the key queries made by A, then ja and jb

must be distinct for all a �= b. And, for every a, (ida)� �= 1 − β or ja �= i.

Definition 7 (q-query Lower Identity Hiding Security). Let q(·) be any
fixed polynomial. A EIPLBE scheme is said to satisfy q-query lower identity
hiding security if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following probability is at most
1/2 + negl(λ):

Pr

⎡
⎢⎢⎢⎢⎣ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n, i, �, β) ← A(1λ)
(pk,msk, key) ← Setup(1λ, 1κ, n)

m ← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b ← {0, 1}; ct0 ← SplEnc(key, m, (i, ⊥, 0))

ct1 ← SplEnc(key, m, (i, �, β))

⎤
⎥⎥⎥⎥⎦

with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query
(m, (j, �, γ)) the index j must be equal to i.

– KeyGen Oracle: A can make at most one query for each index position
j ∈ [n], and no key query of the form (i, id) such that id� = β. That is,
let (j1, id1), . . . , (jk, idk) denote all the key queries made by A, then ja and jb

must be distinct for all a �= b. And, for every a, (ida)� �= β or ja �= i.

174 R. Goyal et al.

Definition 8 (q-query Message Hiding Security). Let q(·) be any fixed
polynomial. A EIPLBE scheme is said to satisfy q-query message hiding security
if for every stateful PPT adversary A, there exists a negligible function negl(·)
such that for every λ ∈ N, the following probability is at most 1/2 + negl(λ):

Pr

⎡
⎢⎢⎣ASplEnc(key,·,·),KeyGen(msk,·,·)(ct) = b :

(1κ, 1n) ← A(1λ)
(pk,msk, key) ← Setup(1λ, 1κ, n)

(m0, m1) ← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b ← {0, 1}; ct ← SplEnc(key, mb, (n + 1, ⊥, 0))

⎤
⎥⎥⎦

with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query
(m, (i, �, γ)) the index i must be equal to n + 1.

– KeyGen Oracle: A can make at most one query for each index position i. That
is, let (i1, id1), . . . , (ik, idk) denote all the key queries made by A, then ia and
ib must be distinct for all a �= b.

4.2 Building Indexed EITT from EIPLBE

Construction. Consider an EIPLBE scheme EIPLBE = (EIPLBE.Setup,
EIPLBE.KeyGen,EIPLBE.Enc,EIPLBE.SplEnc,EIPLBE.Dec) for message space
M = {Mλ}λ∈N

and identity space ID = {{0, 1}κ}κ∈N
. Below we provide our

embedded identity TT construction with identical message and identity spaces.
(Here we provide a transformation for TT schemes with secret key tracing, but
the construction can be easily extended to work in the public tracing setting if
the special encryption algorithm in the underlying EIPLBE scheme is public key
as well.)

Setup(1λ, 1κ, n) → (msk, pk, key). The setup algorithm runs the EIPLBE setup as
(msk, pk, key) ← EIPLBE.Setup(1λ, 1κ, n), and outputs master secret-public-
tracing key tuple (msk, pk, key).

KeyGen(msk, id, i) → ski,id. The key generation algorithm runs the EIPLBE
key generation algorithm as ski,id ← EIPLBE.KeyGen(msk, id, i), and outputs
secret key ski,id.

Enc(pk,m) → ct. The encryption algorithm runs the EIPLBE encryption algo-
rithm as ct ← EIPLBE.Enc(pk,m), and outputs ciphertext ct.

Dec(sk, ct) → z. The decryption algorithm runs the EIPLBE decryption algorithm
as z ← EIPLBE.Dec(sk, ct), and outputs z.

New Approaches to Traitor Tracing with Embedded Identities 175

TraceD(key, 1y,m0,m1) → T. Let ε = 1/y. First, consider the Index-Trace algo-
rithm defined in Fig. 2. The sub-tracing algorithm simply tests whether the
decoder box uses the user key for index i where i is one of the inputs pro-
vided to Index-Trace. Now the tracing algorithm simply runs the Index-Trace
algorithm for all indices i ∈ [n], and for each index i where the Index-Trace
algorithm outputs 1, the tracing algorithm adds index i to the index-set
of traitors T index.9 Next, consider the ID-Trace algorithm defined in Fig. 3.
The identity-tracing algorithm takes as input the index-set T index and uses
the decoder box to find the identity of the particular indexed user. Next, the
tracing algorithm simply runs the ID-Trace algorithm for all indices i ∈ T index,
and for each index i where the ID-Trace algorithm does not output ⊥, the
tracing algorithm adds the output of the ID-Trace algorithm to the identity-set
of traitors T .
Concretely, the algorithm runs as follows:

– Set T index := ∅. For i = 1 to n:
• Compute (b, p, q) ← Index-Trace(key, 1y,m0,m1, i).
• If b = 1, set T index := T index ∪ {(i, p, q)}.

– Set T := ∅. For (i, p, q) ∈ T index:
• Compute id ← ID-Trace(key, 1y,m0,m1, (i, p, q)).
• Set T := T ∪ {id}.

– Output T .
Finally, it outputs the set T as the set of traitors.

Algorithm Index-Trace(key, 1y, m0, m1, i)

Inputs: Key key, parameter y, messages m0, m1, index i
Output: 0/1
Let ε = �1/y�. It sets N = λ ·n/ε, and count1 = count2 = 0. For j = 1
to N , it computes the following:

1. It chooses bj ← {0, 1} and computes ctj,1 ←
EIPLBE.SplEnc(key, mbj , (i, ⊥, 0)) and sends ctj,1 to D. If D
outputs bj , set count1 = count1 + 1, else set count1 = count1 − 1.

2. It chooses cj ← {0, 1} and computes ctj,2 ←
EIPLBE.SplEnc(key, mcj , (i + 1, ⊥, 0)) and sends ctj,2 to D. If D
outputs cj , set count2 = count2 + 1, else set count2 = count2 − 1.

If count1−count2
N

> ε
4n

, output (1, count1
N

, count2
N

), else output (0, ⊥, ⊥).

Fig. 2. Index-Trace

9 Technically, the set T index constains tuples of the form (i, p, q) where i is an index and
p, q are probabilities which are the estimations of successful decryption probability
at index i and i + 1 (respectively).

176 R. Goyal et al.

Algorithm ID-Trace(key, 1y, m0, m1, (i, p, q))

Inputs: Key key, parameter y, messages m0, m1, index i, probabilities
p, q
Output: id ∈ {0, 1}κ

Let ε = �1/y�. It sets N = λ · n/ε, and count� = 0 for � ∈ [κ]. For
� = 1 to κ, it proceeds as follows:

1. For j = 1 to N , it computes the following:
(a) It chooses bj ← {0, 1} and computes ctj ←

EIPLBE.SplEnc(key, mbj , (i, �, 0)) and sends ctj to D. If D out-
puts bj , set count� = count� + 1, else set count� = count� − 1.

Next, let id be an empty string. For � = 1 to κ, do the following:

1. If
p + q

2
>

count�
N

, set id� = 0. Else set id� = 1.

Finally, output id.

Fig. 3. ID-Trace

Correctness. This follows directly from correctness of the underlying EIPLBE
scheme.

Efficiency. If the scheme EIPLBE = (EIPLBE.Setup,EIPLBE.KeyGen,
EIPLBE.Enc,EIPLBE.SplEnc,EIPLBE.Dec) is a EIPLBE scheme with (T-s, T-e,
T-̃e, T-k, T-d, S-c, S-k)-efficiency, then the scheme TT = (Setup,KeyGen,
Enc,Dec,Trace) is a (indexed keygen, public/private)-embedded identity tracing
scheme with (T-s′, T-e′, T-k′,T-d′,T-t′,S-c′,S-k′)-efficiency, where the efficiency
measures are related as follows:

– T-s′(λ, κ, n) = T-s(λ, κ, n),
– T-k′(λ, κ, n) = T-k(λ, κ, n),
– T-e′(λ, κ, n) = T-e(λ, κ, n),
– T-d′(λ, κ, n) = T-d(λ, κ, n),
– T-t′(λ, κ, n, y) = (2n + κ) · λ · y · n,
– S-c′(λ, κ, n) = S-c(λ, κ, n),
– S-k′(λ, κ, n) = S-k(λ, κ, n).

Security. The security proof is included in the full version of our paper.

References

1. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.:
Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 361–376. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71677-8 24

https://doi.org/10.1007/978-3-540-71677-8_24
https://doi.org/10.1007/978-3-540-71677-8_24

New Approaches to Traitor Tracing with Embedded Identities 177

2. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public
trace and revoke from standard assumptions: extended abstract. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 2277–2293 (2017).
https://doi.org/10.1145/3133956.3134041

3. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 3

4. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

5. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6 (2012)

6. Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure codes. In:
Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85093-9 17

7. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 28

8. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 22

9. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 34

10. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, CCS 2006, Alexandria, VA, USA, 30 October–3 November 2006,
pp. 211–220 (2006)

11. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

12. Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 32

13. Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing
from LWE made simple and attribute-based. In: Beimel, A., Dziembowski, S. (eds.)
TCC 2018. LNCS, vol. 11240, pp. 341–369. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03810-6 13

14. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

15. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans. Inf. Theory
46(3), 893–910 (2000). https://doi.org/10.1109/18.841169

https://doi.org/10.1145/3133956.3134041
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-85093-9_17
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/3-540-48405-1_22
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/11426639_32
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1109/18.841169

178 R. Goyal et al.

16. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

17. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 13

18. Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-fly adap-
tation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
329–350. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 16

19. Fazio, N., Nicolosi, A., Phan, D.H.: Traitor tracing with optimal transmission rate.
In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS,
vol. 4779, pp. 71–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75496-1 5

20. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

21. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

22. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, pp.
121–130. ACM, New York (2010). https://doi.org/10.1145/1866307.1866322

23. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

24. Goyal, R., Koppula, V., Russell, A., Waters, B.: Risky traitor tracing and new dif-
ferential privacy negative results. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 467–497. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 16

25. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, pp. 612–621 (2017)

26. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: STOC (2018)

27. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-46035-7 30

28. Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054123

29. Kurosawa, K., Yoshida, T.: Linear code implies public-key traitor tracing. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 172–187. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 12

30. Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k -LWE and applications
in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 315–334. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 18

https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-662-47989-6_16
https://doi.org/10.1007/978-3-540-75496-1_5
https://doi.org/10.1007/978-3-540-75496-1_5
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1145/1866307.1866322
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-319-96884-1_16
https://doi.org/10.1007/978-3-319-96884-1_16
https://doi.org/10.1007/3-540-46035-7_30
https://doi.org/10.1007/BFb0054123
https://doi.org/10.1007/3-540-45664-3_12
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-662-44371-2_18

New Approaches to Traitor Tracing with Embedded Identities 179

31. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed
arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 14

32. Phan, D.H., Safavi-Naini, R., Tonien, D.: Generic construction of hybrid public
key traitor tracing with full-public-traceability. In: Bugliesi, M., Preneel, B., Sas-
sone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 264–275. Springer,
Heidelberg (2006). https://doi.org/10.1007/11787006 23

33. Staddon, J., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and
traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001). https://doi.
org/10.1109/18.915661

34. Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceabil-
ity schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998).
https://doi.org/10.1137/S0895480196304246

35. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, pp. 600–611 (2017)

https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/11787006_23
https://doi.org/10.1109/18.915661
https://doi.org/10.1109/18.915661
https://doi.org/10.1137/S0895480196304246

A Unified and Composable Take
on Ratcheting

Daniel Jost(B) , Ueli Maurer, and Marta Mularczyk

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{dajost,maurer,mumarta}@inf.ethz.ch

Abstract. Ratcheting, an umbrella term for certain techniques for
achieving secure messaging with strong guarantees, has spurred much
interest in the cryptographic community, with several novel protocols
proposed as of lately. Most of them are composed from several sub-
protocols, often sharing similar ideas across different protocols. Thus,
one could hope to reuse the sub-protocols to build new protocols achiev-
ing different security, efficiency, and usability trade-offs. This is especially
desirable in view of the community’s current aim for group messaging,
which has a significantly larger design space. However, the underlying
ideas are usually not made explicit, but rather implicitly encoded in a
(fairly complex) security game, primarily targeted at the overall security
proof. This not only hinders modular protocol design, but also makes the
suitability of a protocol for a particular application difficult to assess.

In this work we demonstrate that ratcheting components can be mod-
eled in a composable framework, allowing for their reuse in a modular
fashion. To this end, we first propose an extension of the Constructive
Cryptography framework by so-called global event histories, to allow for
a clean modularization even if the component modules are not fully inde-
pendent but actually subtly intertwined, as in most ratcheting protocols.
Second, we model a unified, flexibly instantiable type of strong security
statement for secure messaging within that framework. Third, we show
that one can phrase strong guarantees for a number of sub-protocols
from the existing literature in this model with only minor modifications,
slightly stronger assumptions, and reasonably intuitive formalizations.

When expressing existing protocols’ guarantees in a simulation-based
framework, one has to address the so-called commitment problem. We do
so by reflecting the removal of access to certain oracles under specific con-
ditions, appearing in game-based security definitions, in the real world
of our composable statements. We also propose a novel non-committing
protocol for settings where the number of messages a party can send
before receiving a reply is bounded.

M. Mularczyk—Research supported by the Zurich Information Security and Privacy
Center (ZISC).
c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 180–210, 2019.
https://doi.org/10.1007/978-3-030-36033-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_7&domain=pdf
http://orcid.org/0000-0002-6562-9665
https://doi.org/10.1007/978-3-030-36033-7_7

A Unified and Composable Take on Ratcheting 181

1 Introduction

1.1 Secure Messaging and Ratcheting

Secure-messaging (SM) protocols attempt to provide strong security guarantees
to two parties that communicate over an asynchronous network. Apart from pro-
tecting confidentiality and integrity of messages, the desired properties include
forward secrecy and healing from a state or randomness exposure. The latter
properties are addressed by the so-called ratcheting protocols, by having the
parties continuously update their secret keys.

The term ratcheting on its own does not carry any formal meaning; rather,
it is an umbrella term for a number of different guarantees, somehow related to
the concept of updating keys. One notable example of ratcheting is the widely-
used Signal protocol [21] with its double-ratchet algorithm, formally analyzed
in [1,7]. Furthermore, there exist protocols with much stronger guarantees, but
that require the messages to be delivered in order [8–10,24]. Protocols with the
stronger guarantee of immediate out-of-order decryption have been proposed in
[1]. While the majority of the literature considers secure communication, some
works view ratcheting as a property of key exchange instead [2,24].

A number of proposed protocols pursue similar goals, but each achieves a
slightly different trade-off between security, efficiency and usability. Moreover,
each construction comes with its own—usually fairly complex—security game,
intermediate abstractions, and primitives. This renders them hard to compare
and hinders achieving new trade-offs that would result from combining ideas from
different protocols. This motivates the goal of this work, which is to facilitate a
systematic, modular and composable analysis of secure-messaging protocols.

1.2 Composable Security

While a game-based systematization of secure messaging could certainly
address some of the aforementioned concerns, composable frameworks, such as
[4,14,18,23], provide some distinct advantages.

First, security under (universal) composition is a stronger notion: the guar-
antees are provided even if a protocol is executed in an arbitrary environment,
alongside other protocols. So far, no SM protocol provably achieves this (in
fact, even the weaker notion of security under parallel self composition has not
been analyzed). Moreover, composable frameworks facilitate modularity. One
can define components with clean abstraction boundaries (e.g., a secure chan-
nel) and use their idealized versions in a higher-level protocol (and its proof).
The overall security of the composed protocol follows from the composition the-
orem. This stands in contrast with game-based definitions, where security of the
components and the overall protocol is expressed by a number of games, and
one has to show that winning the security game for the overall protocol implies,
via reductions, winning one security game for a component. Finally, guaran-
tees expressed in a composable framework usually have more evident semantics,

182 D. Jost et al.

obtained from directly considering how a protocol is used, rather than a hypo-
thetical interaction of an adversary with a simplified game that encodes excluded
attacks.

Unfortunately, secure messaging does not render itself easily to a modular,
composable analysis. One reason for this is the difficulty in drawing the right
abstraction boundaries. Roughly, the guarantees for a channel heavily depend
on other components in the system, for example, we may want to say that the
confidentiality of a message is protected only if some memory contents do not
leak. This problem also appears in the analysis of some protocols from different
contexts (e.g. TLS [12]), which often violate the rules of modularity.

Furthermore, we encounter the so-called “commitment problem” of
simulation-based security definitions. Intuitively, the natural composable guar-
antees are too strong and provide additional security that seems to carry little
significance in practice, and that can only be achieved with (stronger) setup
assumptions and at an efficiency loss. To address this problem, a number of
approaches have been proposed—none of them, however, being able to fully satis-
factorily formalize the weaker guarantees achieved by regular schemes. First, the
notion of non-information oracles [6] has been proposed that essentially embeds
a game-base definition in a composable abstraction module. Second, a line of
work considers stronger, i.e., super-polynomial, simulators [3,22,25]. Protocols
in those models, however, still have to rely on additional setup and special prim-
itives.

1.3 Contributions

This paper makes both conceptual and technical contributions. Conceptual con-
tributions to composable security frameworks are the notion of global event
histories as well as a modeling technique for circumventing the so-called com-
mitment problem. Technical contributions include the modeling of ratcheting
(sub-)protocols in a composable framework as well as a novel protocol that
achieves adaptive security, i.e., the strongest form of composable security, under
certain restrictions.

Global Event Histories. Composable frameworks are based around the idea of
independent modules (e.g. channels, keys, or memory resources) that are con-
structed by one protocol and then used by another protocol in the next con-
struction step. However, in many settings, in particular as they occur in model-
ing ratcheting protocols, these components are subtly correlated which seems to
violate modularity. For example, a channel (one module) can become insecure
when a key (another, apparently independent module) is leaked to the adversary.

We address this problem by two conceptual ideas. First, we parameterize
resources by several (discrete) parameters—which can be thought of as a switch
with two or more positions—which can downgrade the security of a resource,
e.g. switch a channel from non-leakable (i.e. confidential) to leakable. Second,
we introduce the notion of global event histories defined for the entire real (or
ideal) world, where a history is a list of events having happened at a module (e.g.

A Unified and Composable Take on Ratcheting 183

a message being input by Alice or a message having leaked to the adversary).
A key idea is now that the switch settings of the modules can be defined by
predicates (or, more generally, multi-valued functions) of the global event history.
This allows us to draw meaningful abstraction boundaries for secure messaging,
but we believe that the concept of event histories is of independent interest and
may enable modular analyses for settings where this was previously difficult.

Formally, we use the Constructive Cryptography (CC) framework [15,18],
and in particular a slight modification of its standard instantiation to model the
event history. Since the composition theorem of CC is proved on an abstract
level, we do not need to re-prove it.

Expressing the Guarantees Provided by Ratcheting. Our goal is to capture the
guarantees provided by ratcheting (sub-)protocols in a general fashion to make
them reusable in different protocols or contexts. This is in contrast to existing
game-based definitions, which usually formalize exactly what is required by the
next sub-protocol for the overall protocol’s security proof to go through.

This goal is achieved by considering parameterized resources as described
above and modeling the goal of a (sub-)protocol as improving a certain parameter
while leaving the other parameters unchanged, independently of what they are.
One can think of a protocol improving certain switch positions (e.g. making a
channel confidential), independently of the other switch positions.

In this paper, we consider three ratcheting sub-protocols. We start with a
simple authentication protocol in the unidirectional setting which constantly
updates keys. As a more involved example, we consider the use of hierarchical
identity-based encryption to provide confidentiality. As a third example, we ana-
lyze continuous key agreement, a notion introduced by Alwen et al. [1] to abstract
the asymmetric ratcheting layer of Signal. On the way, we discover cases where
the existing game-based notions are insufficient to prove the stronger, more mod-
ular, statements that don’t fix the properties (i.e., the switch positions) of the
assumed network, but where they can be achieved by simple modifications.

Solutions to the Commitment Problem. When modeling ratcheting protocols,
we encounter the so-called commitment problem: the simulator would have to
output a simulated value (e.g. a ciphertext) which at a later stage must be
compatible with another value (e.g. a leaked key) not initially known to him.
Since this is generally impossible, we address this problem in two alternative
ways.

On one hand, we propose a technique that allows to transform many standard
SM protocols into protocols that achieve full composable security, at the expense
of an efficiency lost, as well as being restricted to only sending a bounded number
of messages before receiving a reply from the other party. We apply this tech-
nique to the HIBE protocol mentioned above and construct its fully composable
version.

On the other hand, we can retain composable statements of regular protocols
by restricting the adversary’s capabilities in the real Roughly, we observe that
game-based definitions do not encounter the commitment problem, because they

184 D. Jost et al.

disable certain sequences of oracle calls. For example, if the adversary calls the
challenge oracle to obtain a ciphertext, she cannot immediately call the expose
oracle that returns the secret key, since this would allow her to trivially win.
We give a composable semantic to such conditions by making some real-world
components secure by assumption after certain sequences of events. For example,
after a message is sent, the memory storing the secret key becomes secure.

1.4 Outline

In Sect. 3 we extend Constructive Cryptography to include the global event his-
tory. Based on this, in Sect. 4, we introduce a simple and generic type of security
statement for SM protocols. (In the full version [11] we extend it to encompass
ratcheting as a key-exchange primitive.) In Sect. 5, we demonstrate how the
security guarantees of ratcheting components can be phrased in this model. In
Sect. 6, we introduce a novel non-committing ratcheting protocol that achieves
full simulation-based security for a bounded number of messages.

2 Preliminaries: Constructive Cryptography

2.1 The Real-World/Ideal-World Paradigm

Many security definitions, and in particular most composable security frame-
works [4,14,18,23], are based on the real-world/ideal-world paradigm. The real
world models the use of a protocol, whereas the ideal world formalizes the secu-
rity guarantees that this protocol is supposed to achieve.

The security statement then affirms that the real word is “just-as-good” as the
ideal world, meaning that for all parties, no matter whether honest or adversarial,
it does not make a difference whether they live in the real or ideal world. Hence,
if the honest parties are content with the guarantees they get in the ideal world,
they can safely execute the protocol in the real world instead.

2.2 Resources

In each composable framework there is some notion of a module that exports a
well-defined interface in a black-box manner to the rest of the world. In the UC
framework such a module is called a functionality. In the Constructive Cryp-
tography (CC) framework [15,18] such a module is called a resource. One of
the main differences is that in CC a world consists entirely of resources and
the environment (called a distinguisher). So while UC distinguishes between
the real world, where the parties can only send messages to each other, and
a hybrid world, where they additionally access some ideal functionalities, in
CC everything, including communication, is a resource. For example, a security
statement about two parties using authenticated encryption to transmit a mes-
sage is phrased as a real world containing two resources—an insecure channel

A Unified and Composable Take on Ratcheting 185

Fig. 1. The assumed real-world resources of the authenticated-encryption example: an
insecure channel and a shared key. The insecure channel exports three interface A,
B, and E, understood to be controlled by the respective parties Alice, Bob, and Eve,
whereas the key resource only exports two interfaces.

and a shared key—which are then used by the protocol to construct the ideal
world consisting of a secure channel. See Fig. 1 for a description of the real-world
resources.

A resource is a reactive system that allows interaction at one or several
interfaces, i.e. upon providing an input at one of the interfaces, the system
provides an output. In this work, we only consider systems where the output
is produced at the same interface the input was given. Formally, resources are
modeled as random systems [16], where the interface address is encoded as part
of the inputs. However, a reader unfamiliar with CC may simply think of a
resource with n interfaces as n oracles that share a joint state. Note that there is
no formal notion of a party in constructive cryptography; they only give meaning
to the construction statements, by thinking of each interface being controlled by
some party. Since in this work we make statements about messaging between two
honest parties, called Alice and Bob, in the presence of a global adversary, called
Eve, we usually label the interfaces accordingly, indicating how the assignment
of interfaces to parties should be understood.

A set of resources can be composed into a single one. The interface set of
the composed resource corresponds to the union of the ones from the composed
resources. Returning to our example of authenticated encryption, in the real
world we have both an insecure channel InsecCh and a key Key, where the for-
mer has three interfaces and the latter two. The composed resource, denoted
[InsecCh,Key], is a resource with five interfaces, each of them addressed by a
tuple consisting of the resource’s name and the interface’s original name.

We describe our resources using pseudo-code (c.f. Fig. 1). The following con-
ventions are followed: each resource has an initialization procedure initializing
all the persistent variables (all other variables are understood to be volatile).
Formally this initialization is called upon invoking any arbitrary interface for
the first time. Each interface exposes one or more capabilities, each of them
described by a keyword (e.g. send in case of a channel), and the (potential
empty) list of arguments (e.g., m). Furthermore, we use the assume command,

186 D. Jost et al.

Fig. 2. Execution of the protocol in the real world by Alice and Bob (left) and the
ideal world with the simulator attached to Eve’s interface (right). The free interface
on the top is accessed directly by the environment in both worlds.

which should be understood as a shortcut for explicitly tracking the respective
condition and returning an error symbol ⊥ in case the condition is violated. In
Fig. 1, the keyword assume is used the specify that the channel is single-use.

2.3 Converters

The protocol execution in CC is modeled by converters, each of which expresses
the local computation executed by one party. (The name converter derives from
the property that a converter attached to a resource converts it into another
“ideal” one.) A converter expects to be connected to a given set of interfaces
at the “inside”, and emulates a certain set of interfaces at the “outside”. Upon
an input at one of the emulated interfaces, the converter is allowed to make a
bounded number of oracle queries to the inside interfaces (recall that a resource
always returns at the same interface it was queried), before returning a value at
the same emulated interface. For a converter prot and a resource R, we denote
by R′ := prot{I1,...,In}R the resource obtained from connecting the converter to
the subset {I1, . . . , In} of the interfaces. The resource R′ no longer exposes those
interfaces to the world, but the ones emulated by prot instead. We usually omit
specifying the set {I1, . . . , In} and just write for instance protAR, denoting that
it is connected to all of Alice’s interfaces.

2.4 The Construction Notion

Security is then defined following the real-world/ideal-world paradigm, stating
that in every environment the real world should behave the same way as the
ideal one. The real world, as depicted in Fig. 2, thereby consists of the assumed
resource R to which the converters are attached, each to a subset of the respective
party’s interfaces. The ideal world, on the other hand, consists of the constructed
resource S with a simulator (which is a converter) attached to Eve’s interfaces.

Behaving the same way is formalized using the notion of a distinguisher,
that can make oracle queries to the resource’s interfaces and then outputs a

A Unified and Composable Take on Ratcheting 187

bit, indicating whether it believes to interact with the real or ideal world. More
formally, in the special case of two honest parties Alice and Bob and a global
adversary Eve, the goal of a distinguisher D is to distinguish the real world
protA1 prot

B
2 R from the ideal world simE S. The advantage of D is defined as

ΔD
(
protA1 prot

B
2 R, simE S

)
:= Pr

[
D(simE S) = 1

] − Pr
[
D(protA1 prot

B
2 R) = 1

]
.

Let ε denote a function mapping distinguishers to values in [−1, 1]. Then, the
protocol (prot1, prot2), when attached to A and B, is said to construct S from R
within ε, and with respect to sim attached to E, if

∀D : ΔD
(
protA1 prot

B
2 R, simE S

) ≤ ε(D).

Note that we require the sets of interfaces controlled by Alice, Bob, and Eve,
respectively, to be pairwise disjoint. They however do not have to completely
partition the set of interfaces. The remaining interfaces are called free interfaces
to which the distinguisher has direct access in both worlds.

For simplicity, in this work we consider an asymptotic setting only (although
we usually do not make the asymptotics explicit) where all resources and con-
verters are assumed to be efficiently implementable. We then write

protA1 prot
B
2 R ≈ simE S,

if ΔD
(
protA1 prot

B
2 R, simE S

)
is negligible for every efficient distinguisher D, and

simply say that (prot1, prot2) constructs S from R if there exists an efficient
simulator sim achieving this.

Note that the notion of construction is analogous to the notion of secure
realization in the UC framework. In contrast to UC, however, the set of all
resource instances within a construction statement is fixed. The distinguisher
does not instantiate resources or protocols, or assign session identifiers. Dynamic
availability properties of resources can obviously still be modeled as part of the
resources themselves, though.

2.5 Composition

The notion of construction is composable, which intuitively means that if a
protocol (prot1, prot2) constructs S from R, and another protocol (prot′1, prot′2)
constructs T from S, then the combined protocol constructs T from R. This
is known as sequential composition. Additionally, if (prot1, prot2) constructs
[S1, . . . ,Si] from [R1, . . . ,Rj], for some i and j, then for every set of (efficiently
implementable) resources {T1, . . . ,Tn} it also holds that (prot1, prot2) constructs
[S1, . . . ,Si,T1, . . . ,Tn] from [R1, . . . ,Rj ,T1, . . . ,Tn], where the interfaces of the
additional resources T1, . . . ,Tn are treated as free in the construction. This prop-
erty is known as parallel composition.

Both properties are proven in [18,19] for a more abstract notion of resources
being “just-as-good”, of which the here introduced indistinguishability notion is
a special case. Together, the two properties form the equivalent to the universal
composability property of the UC framework.

188 D. Jost et al.

3 Constructive Cryptography with Events

In this section we generalize the Constructive Cryptography framework to allow
for better modularization. More specifically, we introduce another instantiation
of resources and the “just-as-good” notion, thereby inheriting the composition
theorem of CC that is proven on a more abstract level.

Motivation. Recall that SM protocols are difficult to modularize, because the
guarantees for a given message depend on the dynamically changing state of
other components in the system, such as whether the state leaked or the adver-
sary tampered with a previous message. In traditional CC, where the abstraction
boundary of a resource is just the input-output behavior, properly accounting
for those dependencies would essentially force us to model the whole SM appli-
cation as monolithic resource. In this section, we therefore extend the notions
of resources and construction to relax the abstraction boundary in a clean and
well-controlled manner, which will allow for such dependencies between different
resources. More concretely, we introduce a global event history. Each resource is
then allowed to trigger events from a predefined set (e.g. indicating that a party’s
state leaked), on which the behavior of other resources can then depend. The
event history is visible to the environment, the resources, and the simulator.1

The Global Event History. We model events as a generalization of monotone
binary outputs (MBO) introduced by Maurer et al. [17]. Roughly, an MBO of a
resource is an additional output that can change from 0 to 1 but not back. This
can be interpreted as a single event, which happens when the MBO changes to
1. We generalize this to many events by the means of a global event history.

Definition 1. Let N be a name set. The global event history E is a list of
elements of N without duplicates.

For n ∈ N , we use En as a short-hand notation to denote that n is in the
list E, and say that the event happened. Analogously, we use ¬En to denote the
complementary case. Furthermore, we denote by E +← En, the act of appending
n to the list E, if ¬En, and leaving the list unchanged otherwise.

We also introduce the natural happened-before relation on the events.

Definition 2. For n1, n2 ∈ N , we say that the event n1 precedes the event n2

in the event history E, denoted En1
≺ En2

, if either

– both events happened, i.e, En1
and En2

, and n1 is in the history before n2,
– or only n1 happened so far.

1 From a conceptual point of view, this global event history is somewhat reminiscent
of the “directory” ITI used in the recent version (as of December 2018) of UC [4] to
keep track of which parties are corrupted.

A Unified and Composable Take on Ratcheting 189

Note that saying that En1
≺ En2

is true if so far only the former one has
happened best matches the type of statement we usually want to make: for
instance, if we express the condition that a message is secure if the key has been
securely erased before the memory was leaked, then we do not need to insist
that the memory actually leaked.

Event-Aware Systems. We consider resources, converters and distinguishers
that can (1) read the global event history, and (2) append to the event history
from a fixed subset of N . That is, the global event history is an additional
component (of both the real and ideal world) that models event-awareness in
an abstract manner, rather than formalizing them as outputs that need to be
explicitly passed between components.

As a convention, we use as event-name pairs (id, label), where label is a
descriptive keyword (e.g., leaked), and id identifies the resource triggering the
event, and we use the notation E label

id . Simulators and distinguishers can trigger
events with arbitrary id’s (looking forward, e.g. a simulator will have to trigger
real-world events that do not occur in the ideal world). Still, we require that they
do not trigger events that can be triggered by any resources they are connected
to (such that, for example, a memory-leaked event really means that it did leak).

Definition 3. A simulator is compatible if it only triggers events that cannot
be triggered by the resource it is attached to. For two resources R and S, a dis-
tinguisher D is compatible if it only triggers events that cannot be triggered by
neither R nor S.

Converters implementing protocols, on the other hand, do not depend on the
event history, since an event is something that might be observable, rather than
something that is guaranteed to be observable by the honest parties.

Construction Notion. Intuitively, in the context of events, a real-world
resource R is “just-as-good” as S if these resources look the same to distinguishers
DE with read-and-write access to the global event history E . This implies that
the sequences of events must be the same in the real and in the ideal world. How-
ever, for convenience, we slightly relax this rule and introduce event renaming.
For example, if a memory is used to store a key, then the memory-read event in
the real world would have in the ideal world a better name key-received. Hence,
we use both names to denote the same event (one can think of them as aliases).
Moreover, we also allow for multiple aliases for a more fine-grained consideration
of events in the ideal world, for instance by separating a message-received event
into a successful and unsuccessful one.

We make this renaming explicit in the construction statements by defining a
surjection τ that maps events triggered by the ideal-world resource to their real-
world counterparts. (Note that in the case of duplicates caused by τ , τ(E) only
contains the first occurrence.) When referring to real-world events for specifying
ideal-world guarantees, we will sometimes use Ẽ := τ(E) as a shorthand notation.

We can now define the construction notion for two resources with events.

190 D. Jost et al.

Definition 4. We say that (prot1, prot2) constructs S from R under the event-
renaming τ , denoted

protA1 prot
B
2 R ≈̂τ simE S,

if there exists an efficient simulator sim, such that τ only renames events trig-
gered by simE S, and for all efficient event-aware distinguishers DE , compatible
for protA1 prot

B
2 and simE S the following advantage is negligible.

ΔDE (
protA1 prot

B
2 R, simE S

)

:= Pr
[
Dτ(E)(simE S) = 1

] − Pr
[
DE(protA1 prot

B
2 R) = 1

]

We stress that this construction notion satisfies the axioms of the more
abstract layer on which the composition theorem of CC is proven [18,19], and
thus composes as well.

4 Composable Guarantees for Secure Messaging

In this section we introduce the unified type of construction statement—in CC
with events—that we make about SM protocols and components thereof.

4.1 The Approach

We opt for the natural choice of an application-centric approach, where the secu-
rity of a cryptographic scheme or primitive is defined as the construction it
achieves when used in a particular application. While this approach provides
readily understandable and clean security statements, the resulting definitions
often turn out to be overly specific. For instance, the statement about an encryp-
tion scheme might hard-code a particular assumed authentic communication
network, implying that it cannot be directly combined with an authentication
scheme achieving slightly different guarantees.

Avoiding such overly specific statements is crucial for a modular treatment of
ratcheting protocols, as each sub-protocol of the prior literature achieves slightly
different guarantees. We address this problem by making parameterized con-
struction statements, where the assumed real-world resources are parameterized
by several “switches” determining their security guarantees. Formally, such a
“switch” is represented by a function of the global event history E (among oth-
ers), that dynamically defines the behavior of the resource at a given moment
in time. For instance, a leakage function L may specify to which extent a chan-
nel leaks depending on the set of events that happened so far. The goal of a
protocol is then expressed as improving certain parameters while leaving the
others unchanged, independently of what they were in the beginning. That is,
our construction statements will be of the type that a protocol constructs a
communication network with certain (stronger) guarantees, assuming a network
with certain (weaker) guarantees, where the real-world guarantees are treated
as a parameter instead of hard-coding them.

A Unified and Composable Take on Ratcheting 191

Note that in the context of ratcheting protocols, making such parameterized
statement about components—without a-priori assuming any guarantees about
the real-world—is mostly not an issue. This is due to the fact that the protocols
anyway have to be designed for the setting where the state and randomness
could leak at any time, temporarily nullifying all guarantees that the component
might try to assume from the underlying sub-protocols.

4.2 Our Channel Model

We now introduce our model of two-party communication networks. It allows us
to express flexible security guarantees, but also various usability restrictions or
guarantees, such as whether messages can be received out of order or not.

Many Single-Message Channels. We choose to model the communication net-
work between Alice and Bob as the parallel composition of many unidirectional
single-message communication channels. Besides being simpler to describe, it
allows to have simpler construction steps which only consider a subset of the
channels. On the flip side, it results in a world with an arbitrary but bounded
number of messages, as the set of resources is static in CC. This is, however,
without loss of generality as long as the protocols do not take advantage of this
upper bound. Finally, observe that this decision results in a network where mes-
sages have implicit (unprotected) sequence numbers, as for instance achieved by
TCP.

The Single-Message Channel. We model channels with authenticated data. Since
we will use the same type of channel both in the real and ideal world, the channel
must hit the right trade-off between giving enough power to the simulator but
not too much power to the real-world adversary. On a high level, the channel
interfaces and their capabilities are as follows. See Fig. 3 for the formal definition.

– The sender S can issue the command (send,m, ad). Whether she is allowed to
do so is determined by the can-send predicate S. (This predicate will mainly
be used to describe situations in which the sender does not have the necessary
keys yet.) A successful sending operation triggers the event E sent. The sender
can also query whether the channel is available for transmission.

– The adversary E can then potentially learn m through the read command.
Whether she is allowed to do so is determined by the can-leak function L,
which outputs either false (the adversary is not allowed to read m), true
(reading is allowed but triggers a leaked event E leaked), or silent (reading is
allowed). Moreover, she is always allowed to learn the length of m and the
(non-confidential) associated data ad.

– The adversary decides when receiving becomes possible, i.e., the message in
principle is delivered. Once this happens, the receiver R can try to fetch the
message. This has two possible outcomes: either he receives a message and
an according received event is triggered, or he receives ⊥ and an error event
(indexed by an error code from Errors) is triggered. Which case happens is

192 D. Jost et al.

Fig. 3. The single-message channel.

determined by the delivery function D, which takes into account the event
history and on whether the message that R tries to fetch is the same as the one
input by S (or an injected value from the adversary). The latter condition is
denoted by the flag same. The flag same is also exposed as part of the received
or error event E received(same) or Eerror(err,same), respectively.

A Unified and Composable Take on Ratcheting 193

– When the adversary decides that receiving is possible, she has two options:
schedule the delivery of (m′, ad′) (command deliver), or force an error err ∈
Errors to be triggered (command error). In the first case, she can also request
to just forward the sender’s message (if one exists), using m′ = fwd. Moreover,
for technical reasons2, she can also insist that once the receiver fetches the
message, same = false is used even if the messages match. In case the
adversary forces an error err and the outcome of receiving would anyway be a
(different) error, the existing error can either be overwritten or preserved. She
can control this by specifying a set Overw of errors that should be overwritten.

A Note on Confidentiality. In our channel, the E received(same) and Eerror(err,same)

events indicate whether the message that Eve injected was the same as the
sender’s. Since we assume that those events are in principal observable by every-
body, including the adversary, those events can partially breach confidentiality
if the communication is not properly authenticated.

However, those events are crucial to phrase the post-impersonation guaran-
tees of certain ratcheting protocols. In fact, in those protocols Eve could usually
inject her own message (after exposing the sender’s state), observe whether it
causes the communication to break down, and thereby deducing whether the
sender wanted to send the same message afterwards. Our events simply reflect
this.

4.3 Additional Resources: Memory and Randomness

An integral part of secure messaging protocols is the assumption that the parties’
state, and sometimes also randomness, can leak to the adversary. In Constructive
Cryptography everything that can be accessible by multiple parties, here the
honest party and Eve, must be modeled as a resource. As a consequence, all of our
converters will be stateless and deterministic. (Stateless means that the converter
cannot keep state between two separate invocations at the emulated interfaces.)
The statements will contain explicit memory and randomness resources instead.

We consider two types of memory resources: (1) an insecure memory
IMemid,U, and (2) a potentially secure memory Memid,U. The main differences
are that the latter one can be securely erased at any time, is parameterized in
a can-leak predicate L, and triggers a leaked event E leaked

Mem(id,U) once the content
actually leaks to the adversary. Since each event can only occur once, we thus
model it as a write-once memory. Rewritable secure memory can then be modeled
as the parallel composition of many write-once memory cells,3 where each can be

2 The simulator might need this capability, e.g., if two (abstracted away) ciphertexts
decrypt to the same message. Note that providing additional capabilities to the
adversary in the real world only strengthens the statement and directly implies the
construction where this capability is removed.

3 The memory requirement of a protocol is not determined by the number of such
write-once memories, but rather by the maximal number of them in use at any time.

194 D. Jost et al.

leaked independently4. Analogously, the randomness resource is parameterized
by a predicate L as well. If allowed, the randomness can leak (triggering E leaked

Rnd(id))
to the adversary at the moment it is used by the honest party—modeling that
it is sampled fresh at this point and is not stored. See the full version [11] for a
formal definition of both resources.

5 Unifying Ratcheting: Two Examples

In this section, we get acquainted with how the security guarantees of ratcheting
protocols can be phrased within our model. To this end, we model the guarantees
of two components of actual ratcheting protocols.

As a first example, we consider a simple authentication scheme that appears
in [8–10]. Using this example, we demonstrate how our framework allows for
a fine-grained modularization, with the overall security then directly following
from composition. As a second example, we consider the use of hierarchical
identity-based encryption, as in [9,24]. In this example, we explore a way to
work around the so-called commitment issue of composable security.

5.1 A Simple Authentication Scheme

We first consider a simple unidirectional authentication protocol, which is
designed with the strong guarantees of secure messaging in mind: the authenti-
cation guarantees should not only be forward secure but also heal after a state
or randomness exposure of either party. Slight variations of this protocol have
been used in [10] (without the hash) and [8] (using signcryption). Essentially the
same idea also appeared in [9], where, however, a stronger signature primitive
with updatable keys is considered, leading to the protocol being formalized in
the bidirectional setting.

The Protocol. In the protocol, whenever the sender wants to send a message,
a fresh signing and verification key pair is sampled. The fresh verification key
is then signed together with the message—using the prior signing key—and the
message, the verification key and the signature are transmitted. Finally, the old
signing key is securely erased and the fresh one stored instead. The receiver, on
the other hand verifies a received message with the previous verification key and
stores the new one. The scheme is depicted in Fig. 4.

Recall that we aim to make a strong construction statement that considers
how the scheme enhances any preexisting security guarantees, including confi-
dentiality. Usually preserving confidentiality is not a goal that is considered for
an authentication protocol, moreover, it is known that the authenticate-then-
encrypt approach used in old versions of TLS is not generally secure [13]. Never-
theless, we show that the scheme actually achieves this at the cost of assuming
4 Technically this leads to more fine-grained statements compared to prior work where

it was usually assumed that either the entire state leaks or not. Nevertheless, it does
not appear to incur additional significant complications.

A Unified and Composable Take on Ratcheting 195

Fig. 4. The simple scheme for unidirectional authentication.

unique signatures instead of unforgeable ones (analogous to [9]), and with a
minor modification: with each message, the sender also transmits a hash of the
previous verification key. Such a hash is also present in the protocol from [9],
and allows the receiver to check whether he is using the correct verification key.

The Guarantees. Clearly, the protocol achieves authenticity if neither party’s
state is exposed. Moreover, Bob’s state only consists of public information. If
Alice’s state gets exposed, then Eve obtains her current signing key that she can
use to impersonate Alice towards Bob at this point in time. However, this key is
useless to tamper with previous messages, even if they have not been delivered yet
(forward security). More importantly, if, for some reason, Alice’s next message
containing a fresh verification key still is delivered without modification, then
the signing key obtained by the adversary becomes useless thereby achieving the
healing property. Hence, the adversary can inject the i-th message if and only if
Alice’s state between the (i − 1)-st and i-th message got exposed, or there has
already been a successful injection before.

Expressing the scheme’s security guarantees in a game-based manner turned
out to be surprisingly involved compared to the scheme’s simplicity and how
easy it seems to intuitively describe its guarantees. Notably, to show its security,
in [10] the abstraction of a key-updating signature scheme, as well as its cor-
responding correctness and security games, have been introduced. This raises a
couple of questions: can’t we do simpler? What is the right security statement to
make about this quite simple protocol, and what happens if the channel already
provides certain authenticity or confidentiality guarantees? In the following, we
try to answer these questions.

The Construction Statement. First, note that we consider the authentica-
tion of messages directly, and do not introduce an intermediate signature notion.

196 D. Jost et al.

Secondly, we consider authenticating the i-th message only, and to this end con-
sider the (i − 1)-st message where the fresh verification key is transmitted (we
do not authenticate this message here) and the i-th message that is then signed
under the corresponding signing key. Authenticating the (i − 1)-st message, and
all others, is then taken care of by iteratively applying the protocol, with the
overall security directly implied by the composition theorem. This leads to the
following real world resources

Rauth
i :=

[
Chi−1,A→B,Chi,A→B,Randkgi,A,Memski,A, IMemvki,B

]
, (1)

where besides the two channels the sender also has a memory to store the new
signing key, and the receiver a (insecure) memory to store the verification key.
Furthermore, the sender also has an explicit randomness resource available (note
that we only need key-generation randomness, since unique signatures are deter-
ministic). The corresponding protocol converters (sigi, vrfi) that are connected
to Alice’s and Bob’s interfaces of Rauth

i , respectively, simply implement the pre-
viously described protocol. A formal description of those protocol converters can
be found in the full version [11].

The goal of the protocol is then phrased as constructing the following ideal-
world resource

Sauthi :=
[
Chi−1,A→B,Chi,A→B

]
, (2)

in which the channels can also trigger an error sig-err, indicating that the signa-
ture verification failed, in addition to the errors from the real-world counterparts.

The authentication guarantees for the i-th channel can then be expressed
via the following delivery-function, which guarantees that an injection attempt
(¬same) when the key is not known will causes a signature-verification error
sig-err, and preserves preexisting authenticity (recall that Ẽ := τ(E) denotes the
real-world’s event history):

D
Sauth
i

Ch(i,A→B)(E , same) :=

⎧
⎪⎨

⎪⎩

err if DRauth
i

Ch(i,A→B)(Ẽ , same) = err ∧ err
= msg

msg else if same ∨ E sk-known
i

sig-err else

(3)

where in a slight abuse of notation, we define a composed event E sk-known
i , which

is triggered as soon as it is not excluded that the signing key corresponding to
Bob’s verification key is known to Eve:

E sk-known
i := E injected

Ch(i−1,A→B) ∨ E leaked
Rnd(kgi,A)

∨ (E sent
Ch(i−1,A→B) ≺ E leaked

Mem(ski,A)
≺ E sent

Ch(i,A→B)

)
.

On the flip side, the scheme limits the availability of the channels to be
sequential. While sending messages in order is natural for Alice, the protocol
restricts Bob to receive them in order as well. We can express this using the
following predicates.

A Unified and Composable Take on Ratcheting 197

S
Sauth
i

Ch(i,A→B)(E) := S
Rauth
i

Ch(i,A→B)(Ẽ) ∧ E sent
Ch(i−1,A→B), (4)

R
Sauth
i

Ch(i,A→B)(E) := R
Rauth
i

Ch(i,A→B)(Ẽ) ∧ E received
Ch(i−1,A→B). (5)

Note that our model simply forces us to make this restriction explicit, whereas
this is often just hard-coded in games.5

All other parameters and predicates are preserved, e.g. L
Sauth
i

Ch(i,A→B)(E) :=

L
Rauth
i

Ch(i,A→B)(Ẽ). The security of the protocol can then be phrased as constructing
the ideal world Sauthi from the real world Rauth

i , as summarized in the following
theorem.

Theorem 1. Let Rauth
i be as in (1), and let Sauthi be as in (2), with the guarantees

and restrictions as described in (3), (4), and (5), respectively, and all others
guarantees unchanged from Rauth

i . Moreover, let τ map the event Eerror(sig-err,same)
Ch(i,A→B)

to E received(same)
Ch(i,A→B) . Then there exists an efficient simulator sim such that

sigAi vrfBi Rauth
i ≈̂τ simE Sauthi ,

if the underlying signature scheme is unforgeable with unique signatures, and the
hash function is collision resistant.

Proof. The proof is found in the full version [11]. Note that compared to a normal
signature-scheme proof it is quite involved, which is the main price we pay for
our much stronger statement.

Extending to Many Messages. So far, we only considered a world where
Alice sends two messages, of which the second is authenticated. In a realistic
setting, Alice can of course send many messages where all of them should be
authenticated. In this section, we see how the composition theorem of Construc-
tive Cryptography can be applied to directly get the desired result.

In particular, we start with a sequence of possibly unauthenticated chan-
nels Chi,A→B for i ∈ [n], where the authentication of Ch0,A→B can be seen as a
setup assumption (it is standard to assume that Alice and Bob initially share
a signing-verification key pair). Then, we iteratively apply the construction for
two channels to Ch0,A→B and Ch1,A→B, then to Ch1,A→B and Ch2,A→B, etc. (c.f.
Fig. 5). The composition theorem of CC guarantees that the composed protocol
constructs the ideal world.

Corollary 1. Let Rauth and Sauth denote the following real and ideal worlds

Rauth :=
[{

Chi,A→B
}

i∈{0,...,n},
{
Memski,A, IMemvki,B

}
i∈[n]

]
,

5 Actually, many recently proposed secure-messaging protocols do have this restriction,
which might limit their usability as pointed out by [1].

198 D. Jost et al.

Fig. 5. The first two steps constructing a sequence of authenticated channels: (1) The
protocol (sig1, vrf1) constructs a hybrid world, where the resources in the dashed box
are replaced by two channels Ch0,A→B and Ch1,A→B, where Ch1,A→B is authenticated as
long as Ch0,A→B is. (2) (sig2, vrf2) constructs the ideal world, where Ch1,A→B and Ch2,A→B

are authenticated as long as Ch0,A→B is.

and

Sauth :=
[{

Chi,A→B
}

i∈{0,...,n}
]
,

respectively. Then, there exists an efficient simulator sim such that

(sig1, . . . , sign)
A (vrf1, . . . , vrfn)B Rauth ≈ simESauth,

where for each i ∈ [n], IS
auth

Ch(i,A→B), SSauth

Ch(i,A→B), and RSauth

Ch(i,A→B) are defined as in
(3), (4), and (5), respectively.

5.2 Confidentiality from HIBE

In the following we discuss a protocol from [9] that uses hierarchical identity-
based encryption (HIBE) to add confidentiality to a sequence of channels. The
protocol was designed for a challenging setting, where we do not assume authen-
tication (as is usually done when talking about encryption). The reason is that in
secure messaging authentication cannot be guaranteed when the sender’s state
is exposed. This situation fits perfectly to our framework.

The protocol is described in the so-called sesqui-directional setting, intro-
duced in [24], meaning that the messages from both directions are considered,
but only the guarantees of one of the directions are under concern—here from
Alice to Bob. The bidirectional guarantees then follow directly from composition.

A Unified and Composable Take on Ratcheting 199

Fig. 6. The first epoch of the sesquidirectional HIBE protocol.

Hierarchical Identity-Based Encryption. A HIBE scheme consists of the
following four algorithms:

– A setup generation algorithm (mpk,msk) ← HIBE.Setup(1κ; r), generating
the root master public and secret keys, i.e. sk() = msk.

– A key-generation algorithm skid‖idn
← HIBE.Kgen(skid, idn), where (id ‖

idn) := (id1, . . . , idn−1, idn) for an identity vector id = (id1, . . . , idn−1).
– An encryption algorithm c ← HIBE.Enc(mpk, id,m; r).
– A decryption algorithm m ← HIBE.Dec(skid, c).

We require the HIBE scheme to be IND-CCA secure with certain additional
properties that are not guaranteed by IND-CCA itself, but that most schemes
do provide (see the full version [11] for details).

The Protocol Overview. On a high level, the protocol proceeds in epochs,
where in each epoch Bob sends one message to Alice, and then Alice sends a
sequence of messages to Bob. In particular, Bob’s message contains a fresh HIBE
public key mpk. For simplicity, consider the first epoch, as depicted in Fig. 6.
When Alice sends her i-th message, she encrypts it with mpk, using as the
identity (the hashes of) all ciphertexts she sent before. Whenever Bob receives
a ciphertext ci, he decrypts it, derives the secret key for the new identity (with
ci appended) and erases the old key.

In the next epoch, Bob sends a new public key mpk′, and we repeat. One
subtle issue is how to run the epochs together. Note that, for example, Bob may
send a number of public keys without receiving a response, in which case he has
to store secret keys from a number of epochs. A fresh secret key is stored for
the empty identity, and when Bob receives a ciphertext, he updates all currently
stored secret keys. This means that Alice uses for encryption of the i-th message
a truncated transcript (cr, . . . , ci−1). In order for her to compute it, Bob sends
with each public key the index r of the last message he received.

200 D. Jost et al.

Security Intuition. Intuitively, this use of HIBE allows to achieve three goals.
The first is healing, achieved by exchanging fresh keys, as in most secure-
messaging schemes. The second is forward secrecy: exposing the secret key
after the i-th message is received does not affect the confidentiality of messages
m1, . . . ,mi−1. This holds, since Bob updated all the secret keys with the iden-
tity ci in the meantime. Healing and forward secrecy could also be achieved by
a forward-secure PKE scheme. The last goal is the so-called post-impersonation
security: an active injection destroys the decryption keys, so that its leakage
exposes no messages. For this we need the hierarchy of identities. Roughly, inject-
ing a message c′

i causes Bob to update his key to sk(cr,...,c′
i)

. This key gives no
information about messages encrypted by Alice, since those will be for another
identity (cr, . . . , ci).

The Construction Statement. To formalize these guarantees as a construc-
tion statement, we first have to describe the real world in which the protocol
is executed. It consists of n channels from Alice to Bob (which the protocol
protects) and n channels in the opposite direction on which the master public
keys are transmitted. Moreover, Alice has memories to store the public keys and
the transcript, and randomness resources for the encryption. Bob, on the other
hand, has memories to store the secret keys and randomness resources for the
key generation:

Rhibe :=
[{

Chi,A→B
}

i∈[n]
,
{
Chj,B→A

}
j∈[n]

, IMempk,A,
{
Randkgj ,B

}
j∈[n]

,

{
Memtri,A, Randenci,A

}
i∈[n]

,
{
Memsk(j,i),B

}
j∈[n],i∈[n+1]}

]
, (6)

where the index i indicates that the resource is related to transmitting the
i-th message from Alice to Bob, and the index j indicates the j-th epoch.
A formal description of the pair of converters implementing the protocol
(hibe-enc, hibe-dec) can be found in the full version [11].

The goal of the protocol is to enhance the confidentiality of the channels.
Thus, the same set of channels is present in the ideal world, while the memory
and randomness resources are used up:

Shibe :=
[{

Chi,A→B
}

i∈[n]
,
{
Chj,B→A

}
j∈[n]

]
. (7)

Moreover, the ideal channels can trigger an additional error dec-err, indicating
that decryption failed (this error event corresponds to the real-world delivery
event when the adversary injects an invalid ciphertext).

We now proceed to formalize the confidentiality guarantees of Shibe by defin-
ing in which situations the i-th message might be known to the adversary:

The randomness leaked: If the encryption randomness leaked to the adversary,
i.e., E leaked

Rnd(enci,A)
, then no PKE scheme can provide (full) confidentiality.

A Unified and Composable Take on Ratcheting 201

The master public key was set by Eve:] If Alice encrypts using a master public
key (potentially) set by Eve, Eve can trivially decrypt. That is, if Alice used
the j-th master public key and E injected

Ch(j,B→A).
The secret key leaked: Assume Alice sent the i-th message during the j-th epoch,

and let sk(j,i) denote the secret key that Bob uses to decrypt that message.
If Eve learned sk(j,i), the message is obviously not confidential, which either
happens if the randomness used to generate the master secret key leaked or
a key that allows to compute sk(j,i) leaked from Bob’s memory:

E sk-leaked
i,j := E leaked

Rnd(kgj ,B)

∨ ∃k ∈ [rj , i] :
(
E leaked
Mem(sk(j,k),B)

∧ ∀� ∈ [rj , k] : ¬E injected
Ch(�,A→B)

)
,

where rj denotes the first message Bob received after sending the j-th public
key (rj is determined by the sent and received events in E). Note that the
last condition explicitly encodes the post-impersonation guarantee, meaning
that sk(j,k) is only useful as long as Eve did not destroy it by injecting her
own ciphertext. Forward-secrecy and healing, on the other hand, are encoded
implicitly by the order in which those events can happen in the real world.
We can make them more explicit by observing

E sk-leaked
i,j ⇐⇒ E sent

Ch(j,B→A) ≺ E sk-leaked
i,j ≺ E received

Ch(i,A→B),

where the former condition denotes healing and the latter forward-secrecy.

In summary, we can define the following event denoting that the i-th message
is insecure

Eexposed
i := E leaked

Rnd(enci,A)
∨ E injected

Ch(ji,B→A) ∨ E sk-leaked
i,ji ,

where ji denotes the epoch in which the i-th message has been sent (which is
computable from the order of events in E), leading to

LShibe

Ch(i,A→B)(E) :=
{
silent if Eexposed

i

false otherwise.
(8)

Notice that the above can-leak function fully overwrites any real-world guaran-
tees, and silences the leaked events. This is because in the protocol Alice stores
the communication transcript. As a consequence, when her memory leaks, the
ciphertext leaks as well, even if the assumed channel was in fact confidential.
Moreover, this leakage does not correspond to the channel leaked event.

Analogous to the authentication scheme of the previous section, the HIBE
scheme also limits the availability of the channels to be sequential, due to the
hash-transcript used as identities. Moreover, Alice can obviously only encrypt
using master public keys she received the public key. This could be made formal
using the can-send and can-receive predicates S and R, respectively.

202 D. Jost et al.

Working Around the Commitment Problem. As described so far, the
real and ideal world hibe-encAhibe-decBRhibe and simEShibe, respectively, are eas-
ily distinguishable for any simulator sim. The issue is the so-called commitment
problem of simulation based cryptography: if the distinguisher chooses to first see
a ciphertext and then leak the corresponding decryption key, this cannot be sim-
ulated, since the simulator first has to output a fake ciphertext, before getting to
know the message, and then explain it by outputting a corresponding decryption
key. For normal PKE, and especially HIBE, schemes this is impossible.

One solution would be to consider static memory corruptions, where the set
of states that can be leaked to the adversary is a parameter of the construction
statement. Such a static guarantee is however weaker than the existing game-
based definitions and, thus, thwarts our goal of developing a unified model to
express the guarantees obtained by existing protocols. We thus opt for the alter-
native solution to strengthen the real world analogous to how the games disable
certain oracles to prevent trivial impossibilities. To this end, we disallow the
adversary from obtaining the secret key sk(j,i) if this would allow to trivially
identify a fake ciphertext. That is, we assume

LRhibe

Mem(sk(j,i),B)
(E) := ¬∃k > i :

(Ecommitted
k,j ≺ Eexposed

k

)
, (9)

where Ecommitted
i,j denotes the event that the simulator commits on the i-th cipher-

text, and that it was encrypted under mpk j . More concretely, this happens if
the distinguisher

– explicitly asked for the ciphertext;
– requested a hash-transcript that depends on the ciphertext;
– requested a secret key for which the identity depends on the ciphertext;
– actively injected a ciphertext that got decrypted under a secret key whose

identity depends on the ciphertext under consideration,

leading to the following definition

Ecommitted
i,j := (ji = j) ∧

(
E leaked
Ch(i,A→B) ∨ E leaked

Mem(tri,A)
∨

(
¬E injected

Ch(i,A→B)

∧ ∃k ≥ i :
(E leaked

Mem(sk(j,k))
∨ E injected

Ch(k,A→B)

)))
,

where again ji denotes the epoch in which the i-th message has been sent.
While the construction statement loses its evident executional semantics

making those restrictions of the real world—it is no longer apparent what guar-
antees one gets when executing the protocol in the actual world where the mem-
ory leakage is obviously not restricted like this—it is analogous to game-based
notions where the adversary has to choose beforehand whether a message is a
challenge (and then prevents leaking the corresponding randomness or secret
keys), or is an insecure message just to advance the state. Phrasing it in a com-
posable framework, however, still has the advantage of modularity and reusabil-
ity, that is, each subprotocol can be proven secure independently and the overall
security directly following from the composition theorem.

A Unified and Composable Take on Ratcheting 203

Summary and Analysis. The HIBE-based scheme achieves the so far
described construction, with one exception: to provide more power to the sim-
ulator and make the construction statement provable, we need to silence the
real-world channels’ leaked events after the message is exposed, i.e, LRhibe

Ch(i,A→B) is
arbitrary, except that if Eexposed

i , it no longer evaluates to true.6
Observe that while having to silence the leakage event in the real world limits

reusability, the statement for instance is still generic enough to be composed with
the authentication scheme from the previous section: if the real world is restricted
like this (in the end, those events are just a mean to phrase dependencies and
carry no real semantics), then the signature scheme, which preserves the can-leak
predicate, and afterwards the HIBE scheme can be applied.

Overall, we have the following theorem, proven in the full version [11].
Theorem 2. Let Rhibe be as in (6) with the restrictions to work around the
commitment-problem from (9) and the restriction described above, and let Shibe
be as in (7) with the confidentiality guarantees from (8), and in-order sending
and receiving. Let τ map the event Eerror(dec-err,same)

Ch(i,A→B) to E received(same)
Ch(i,A→B) . Then there

exists an efficient simulator sim, such that

hibe-encA hibe-decB Rhibe ≈̂τ simE Shibe,

if the HIBE scheme is IND-CCA secure with our additional assumptions.

6 Adaptive Security

All protocols considered so far, and most of the ones in the literature, only achieve
a weakened construction statement, where, due to the commitment problem, we
assume that certain sequences of events cannot occur in the real world. Intu-
itively, this means that the adversary is somewhat static: for example, when she
decides to see the contents of a channel (the ciphertext, in the real world), at the
same time she decides that she will not look at the contents of certain memory
(the secret key). While this is exactly what the standard game-based definitions
guarantee, when expressed in a composable framework, it seems rather unsatis-
factory.

Hence, in this section, we consider SM schemes that tolerate a fully adaptive
adversary, i.e, allow to “explain” ciphertexts whenever needed due to leakage of
secret keys. In particular, we present a technique that, given an SM protocol
that suffers from the commitment problem, allows to construct an adaptive SM
(ASM) protocol with almost the same guarantees, but that achieves fully adap-
tive security. This comes at the cost of efficiency and being able to send only a
fixed number of messages without interaction. Applied to protocols with optimal
security [9,24], our technique enables even stronger guarantees.7 As an example,
we apply it to the HIBE protocol from Sect. 5.2.
6 This doesn’t affect Ecommitted

i,j , that only considers leakage events before Eexposed
i .

7 In game-based definitions, one can think of the “corrupt” oracle not being silenced
even if the challenge has been issued, but instead outputting the secret state corre-
sponding to the challenge bit 0.

204 D. Jost et al.

Note that while the technique we use is essentially a general compiler that
“removes” the commitment problem, formally phrasing such a theorem would be
rather cumbersome for at least two reasons. First, there is not just one game-
based definition of an SM scheme that could be lifted and, second, we require the
specific simulation technique encoded in most game-based definitions, in contrast
to the existential simulator of our constructive SM statements.

6.1 Overview

Receiver Non-committing Encryption. The technical tool we use to construct
adaptively-secure secure-messaging (ASM) schemes with optimal security is so-
called receiver non-committing encryption (RNCE), introduced by Canetti et al.
[5]. Intuitively, in RNCE schemes, key generation outputs an additional trapdoor
z, ignored by honest parties and used by the simulator. Then, there are two ways
to generate a ciphertext: (1) an “honest” ciphertext is computed in the standard
way c ← RNCE.E(pk,m) (so, as in any encryption scheme, it is a commitment to
the message), (2) a “fake” ciphertext is computed (by the simulator) without the
message, but with the secret key sk and the trapdoor z as c̃ ← RNCE.F(pk, sk, z).
Given a fake ciphertext c̃ and any message m, one can compute a secret key
s̃k ← RNCE.R(pk, sk, z, c̃,m) that explains the message-ciphertext pair (such
that RNCE.D(s̃k, c̃) = m). Moreover, the distributions (c, sk) (as in the real
world) and (c̃, s̃k) (as in the simulation) are indistinguishable. This allows to
explain a single ciphertext per public key.

The Scheme. At a high level, the authors of [5] use RNCE to construct non-
committing forward-secure public-key encryption by encrypting with a standard
forward-secure public-key scheme RNCE ciphertexts instead of messages. We
generalize this idea (and the simulation technique) to SM protocols. In particular,
we can construct an ASM scheme by taking a standard SM scheme that suffers
from the commitment problem and sending, instead of messages, their RNCE
encryptions, where each message is encrypted with a different public key. When
a message is received, the secret key is immediately deleted. (For the moment,
assume that whenever Alice sends a message, an RNCE key pair is “magically”
generated—Alice uses the public key, and the secret key immediately appears
stored in Bob’s state.) This way, the modified scheme inherits all guarantees
of the original SM scheme. Furthermore, it can be simulated in the adaptive
setting, as we will see below.

Let us now address the problem of how the RNCE keys are distributed. One
trivial solution would be to include � key pairs as part of the setup: the parties
send their � public keys at the beginning over an authenticated channel. First,
this way we can send only � messages overall. But even worse, the RNCE keys
do not heal: when the receiver is corrupted for the first time, the simulator
can explain all messages sent so far, but it also has to commit to all RNCE
secret keys. Hence, adaptive security is never restored. To deal with this, we use
the technique used in all SM schemes: we send with each message an update,
consisting of � fresh RNCE public keys. In particular, Alice (Bob will proceed

A Unified and Composable Take on Ratcheting 205

analogously) stores some public keys previously received from Bob. When she
sends the i-th message, she RNCE-encrypts it with one of the unused public
keys, generates � new key pairs, stores the secret keys, and sends the RNCE
ciphertext, the � public keys and i to Bob over the channel constructed by an
SM scheme. Bob stores the greatest index i he has seen so far. Whenever he
sees a message with a greater i, he ignores all RNCE public keys he has and
replaces them by the � newly received ones. Unlike in the first trivial solution,
in the above protocol adaptive security is restored as fast as possible: with the
first new message delivered from the other party.

Simulation. We give an intuition of how the above protocol can be simulated.
Assume that the SM scheme has the standard simulator, as hard-coded in most
game-based definitions. In particular, he executes the protocol, and when a mem-
ory is exposed, he shows to the distinguisher the real state. For ciphertexts
corresponding to confidential messages it shows encryptions of 0’s, while for
non-confidential ones it shows encryptions of the actual message.

In the adaptive setting, the real and the ideal world are easily distinguishable
for that simulator. This is because when a message is sent as confidential, and
later the memory is exposed, the distinguisher sees in the ideal world the encryp-
tion of 0’s. However, we can fix this with our new scheme: the new simulator
encrypts, instead of 0’s, a fake RNCE ciphertext to generate a ciphertext cor-
responding to a confidential message. When a memory is corrupted, he receives
the message (which, of course, can no longer be confidential) and computes the
fake RNCE secret key according to the fake ciphertext. RNCE guarantees that
this is indistinguishable from the real world, where we have honest ciphertext
and an honest key.

A Note on Efficiency. First, observe that using a symmetric non-committing
encryption scheme, such as the one-time pad, instead of RNCE would not work.
This is because in many SM schemes corrupting the sender has no effect on
confidentiality, implying that upon such a corruption, the simulator needs to
output a key of the symmetric non-committing scheme without knowing the
messages (which trivially breaks against a distinguisher knowing the message).

Moreover, while our construction of using nested encryption appears to be
redundant, it can be observed that using RNCE only would not suffice. This
is because SM schemes can provide certain advanced confidentiality guarantees
not achieved by RNCE alone. For example, the optimal schemes such as [9,24]
provide so-called post-impersonation guarantees: once the adversary injects a
message to Bob (after corrupting Alice) and then corrupts Bob, all messages
sent by Alice afterwards are confidential.

Limitations. Our protocol requires a fixed upper bound on the number of mes-
sages a party can send without interaction (in particular, after � messages it
needs a new set of public keys from the partner). Unfortunately, overcoming
this seems unlikely with our approach. This is due to the impossibility result

206 D. Jost et al.

by Nielsen [20]. It essentially says that a non-committing non-interactive public-
key encryption scheme requires that the length of a secret key is at least the
overall length of all messages encrypted. This means that we would need non-
committing encryption, where the public and secret keys are updated, in other
words, a non-committing equivalent of HIBE. To the best of our knowledge, this
does not exist yet.8

6.2 The Construction: Combining RNCE with HIBE

Recall that the HIBE protocol from Sect. 5.2 is designed for the sesqui-directional
setting, where it protects the confidentiality of messages sent by Alice. In the
protocol, Bob sends to Alice HIBE master public keys, which results in epochs.
In epoch j, Alice uses the j-th master public key to encrypt her messages with
the transcript as identity. In this section we consider the analogous setting for the
ASM protocol, consisting of RNCE composed with HIBE. That is, Bob sends
� RNCE keys alongside the HIBE keys, and Alice uses them to additionally
encrypt her messages.

Hence, for the ASM construction we need in the real world the additional
randomness Randrenci,A for RNCE-encrypting the i-th message and Randrkgj ,B

for generating the j-th set of � keys, compared to the real world from the HIBE
protocol. Moreover, we have memories Memrsk(j,k),B for storing the k-th RNCE
secret key, generated in epoch j, and insecure (rewritable) memories IMemrpk,A

for storing the set of RNCE public keys. Overall, the real-world resources are as
follows.

Rad-hibe :=
[
Rhibe,

{
Randrenci,A

}
i∈[n]

,
{
Randrkgj ,B

}
j∈[n]

, IMemrpk,A,

{
Memrsk(j,k),B

}
j∈[n],k∈[�]

]
, (10)

where Rhibe should be understood as the same set of resources as in Sect. 5.2. The
restrictions on those set of resources are dropped, on the other hand, since we no
longer need work around the commitment problem. This implies, however, that
we have to directly consider security of the overall compiled protocol, instead of
using the construction statement for HIBE and composition.9 A formal descrip-
tion of the converters rnce-enc and rnce-dec implementing the RNCE protocol
on top of the HIBE protocol is given in Fig. 7.

In the ideal world, we have the same 2n channels: Sad-hibe := Shibe. Most
properties of the constructed channels are the same as in the HIBE construction.
In fact, our adaptive protocol only affects (1) availability—only � messages can
8 Note that the impossibility of [20] also rules out a solution where Alice RNCE-

encrypts for Bob a new RNCE secret key, used for the next message—this secret key
would leave no space for the message.

9 In general, the simulator for the SM scheme simply does not output the secret state
from the commitment-causing memories, and our ASM simulator cannot generate it
himself, since this would be inconsistent with the rest of the SM simulation.

A Unified and Composable Take on Ratcheting 207

Fig. 7. The RNCE part of the adaptively-secure protocol in the sesqui-directional
setting.

be sent without interaction, and (2) confidentiality—we need to account for
the additional randomness and memory resources. Recall that the epoch ji in
which message i is sent by Alice is determined by the sent and received events.
With this, the restriction (1) can be expressed with the can-send and can-receive
predicate in a straightforward way.

Let us now focus on confidentiality. Recall that in the HIBE protocol, the
can-leak predicate was defined using the event Eexposed

i , denoting that the i-th
message sent by Alice is inherently insecure. We modify this event to account for

208 D. Jost et al.

the additional resources used by RNCE. Specifically, the message is exposed if
the RNCE-encryption randomness leaks: E leaked

Rnd(renci,A)
, or if the RNCE secret key

leaks. The latter happens if Bob’s key-generation randomness leaks: E leaked
Rnd(rkgji

,B),
or if the secret key memory leaks: E leaked

Mem(rsk(ji,ki),B)
, where the i-th message was

the ki-th one sent in its epoch. Overall, this leads to the following composed
event:

Eexposed-ad
i := Eexposed

i ∨ E leaked
Rnd(renci,A)

∨ E leaked
Rnd(rkgji

,B) ∨ E leaked
Mem(rsk(ji,ki),B)

.

The leakage function LSad-hibe

Ch(A→B) is then defined analogously to that of the HIBE
construction silent in case of Eexposed-ad

i , and false otherwise. We stress that
the need to include these additional cases only arises from our fine-grained mod-
eling of memory and randomness. In reality, it makes sense to consider only
one memory storing the whole secret state, only one randomness for RNCE and
HIBE encryption, and so on. In such a model, the confidentiality of our adap-
tively secure scheme and the non-adaptive one would coincide.

The security of our composed protocol is summarized in the following theo-
rem. The proof can be found in the full version [11].

Theorem 3. Let Rad-hibe be as in (10), and let Sad-hibe be as in above with
the described confidentiality guarantees, in-order sending and receiving, and the
restriction to � messages per epoch. If the HIBE scheme is IND-CCA secure
with our additional assumptions, then there exists an efficient simulator sim,
such that

rnce-encAhibe-encA rnce-decBhibe-decB Rad-hibe ≈̂τ simE Sad-hibe,

where τ is the same event mapping as in Theorem2.

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2_5

2. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9_21

3. Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concur-
rently composable security with shielded super-polynomial simulators. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 351–381.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_13

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd IEEE Symposium on Foundations of Computer Science - FOCS
2001, pp. 136–145. IEEE Computer Society (2001)

https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/978-3-319-56620-7_13

A Unified and Composable Take on Ratcheting 209

5. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_9

6. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_22

7. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2nd IEEE European Sym-
posium on Security and Privacy, EuroS and P 2017, pp. 451–466 (2017)

8. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. Cryptology ePrint Archive, Report 2018/889 (2018).
https://eprint.iacr.org/2018/889

9. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1_2

10. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2_6

11. Jost, D., Maurer, U., Marta, M.: A unified and composable take on ratcheting.
Cryptology ePrint Archive, Report 2019/694 (2019). https://eprint.iacr.org/2019/
694

12. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: (De-)constructing
TLS 1.3. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp.
85–102. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6_5

13. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How Secure Is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8_19

14. Kuesters, R., Tuengerthal, M., Rausch, D.: The IITM model: a simple and
expressive model for universal composability. Cryptology ePrint Archive, Report
2013/025 (2013). https://eprint.iacr.org/2013/025

15. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27375-9_3

16. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7_8

17. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74143-5_8

18. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Sci-
ence - ICS 2011, pp. 1–21. Tsinghua University (2011)

19. Maurer, U., Renner, R.: From indifferentiability to constructive cryptography (and
back). In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 3–24.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_1

https://doi.org/10.1007/978-3-540-30576-7_9
https://doi.org/10.1007/3-540-46035-7_22
https://eprint.iacr.org/2018/889
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://eprint.iacr.org/2019/694
https://eprint.iacr.org/2019/694
https://doi.org/10.1007/978-3-319-26617-6_5
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://eprint.iacr.org/2013/025
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-540-74143-5_8
https://doi.org/10.1007/978-3-662-53641-4_1

210 D. Jost et al.

20. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9_8

21. Open Whisper Systems. Signal protocol library for Java/Android. GitHub
repository (2017). https://github.com/WhisperSystems/libsignal-protocol-java.
Accessed 01 Oct 2018

22. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10

23. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: Proceedings 2001 IEEE Symposium
on Security and Privacy - S&P 2001, pp. 184–200, May 2001. https://doi.org/10.
1109/SECPRI.2001.924298

24. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1

25. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal com-
posability without trusted setup. In: Proceedings of the Thirty-sixth Annual
ACM Symposium on Theory of Computing, STOC 2004, pp. 242–251. ACM,
New York (2004). https://doi.org/10.1145/1007352.1007394. http://doi.acm.org/
10.1145/1007352.1007394

https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://github.com/WhisperSystems/libsignal-protocol-java
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1145/1007352.1007394
http://doi.acm.org/10.1145/1007352.1007394
http://doi.acm.org/10.1145/1007352.1007394

Continuously Non-malleable Secret
Sharing for General Access Structures

Gianluca Brian1(B), Antonio Faonio2, and Daniele Venturi1

1 Department of Computer Science, Sapienza University of Rome, Rome, Italy
brian.1615294@studenti.uniroma1.it

2 IMDEA Software Institute, Madrid, Spain

Abstract. We study leakage-resilient continuously non-malleable secret
sharing, as recently introduced by Faonio and Venturi (CRYPTO 2019).
In this setting, an attacker can continuously tamper and leak from a tar-
get secret sharing of some message, with the goal of producing a modi-
fied set of shares that reconstructs to a message related to the originally
shared value. Our contributions are two fold.

– In the plain model, assuming one-to-one one-way functions, we show
how to obtain noisy-leakage-resilient continuous non-malleability for
arbitrary access structures, in case the attacker can continuously leak
from and tamper with all of the shares independently.

– In the common reference string model, we show how to obtain a
new flavor of security which we dub bounded-leakage-resilient continu-
ous non-malleability under selective k-partitioning. In this model, the
attacker is allowed to partition the target n shares into any number
of non-overlapping blocks of maximal size k, and then can continu-
ously leak from and tamper with the shares within each block jointly.
Our construction works for arbitrary access structures, and assuming
(doubly enhanced) trapdoor permutations and collision-resistant hash
functions, we achieve a concrete instantiation for k ∈ O(log n).

Prior to our work, there was no secret sharing scheme achieving continu-
ous non-malleability against joint tampering, and the only known scheme
for independent tampering was tailored to threshold access structures.

Keywords: Secret sharing · Non-malleability · Leakage resilience

The first and third authors were supported in part by the research projects “PRIvacy-
preserving, Security, and MAchine-learning techniques for healthcare applications
(PRISMA)” and “Protect yourself and your data when using social networks”, both
funded by Sapienza University of Rome, and in part by the MIUR under grant “Dipar-
timenti di eccellenza 2018–2022” of the Computer Science Department of Sapienza
University of Rome.
The second author is supported by the Spanish Government through the projects
Datamantium (ref. RTC-2016-4930-7), SCUM (RTI2018-102043-B-I00), and ERC2018-
092822, and by the Madrid Regional Government under project BLOQUES (ref.
S2018/TCS-4339).

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 211–232, 2019.
https://doi.org/10.1007/978-3-030-36033-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_8

212 G. Brian et al.

1 Introduction

A non-malleable secret sharing for an access structure A over n parties allows
to share a secret message m into n shares s = (s1, . . . , sn), in such a way that
the following properties are guaranteed.

Privacy: No attacker given the shares belonging to an arbitrary unauthorized
subset U �∈ A of the players can infer any information on m.

Non-malleability: No attacker tampering with all of the shares via some func-
tion f ∈ F within some family of allowed1 modifications can generate a
mauled secret sharing s̃ = f(s) that reconstructs to m̃ �= m related to m.

Sometimes, non-malleability is considered together with leakage resilience. This
means that the attacker can additionally leak partial information g(s) from all
of the shares (via functions g ∈ G) before launching a tampering attack. Leakage
resilience typically comes in one of two flavors: bounded leakage (i.e,. there is a
fixed upper bound on the maximum amount of information retrieved from the
shares) or noisy leakage (i.e., the length of the retrieved information is arbitrary
as long as it does not decrease the entropy of the shares by too much).

In this work we focus on leakage-resilient continuous non-malleability with
adaptive concurrent reconstruction, as recently introduced by Faonio and
Venturi [19].2 Here, the attacker can (leak from and) tamper poly-many times
with a target secret sharing using functions f (q) ∈ F as above, and for each
tampering query q it can also choose adaptively the reconstruction set T (q) ∈ A
used to determine the reconstructed message. There are only two limitations:
First, the attacker is computationally bounded; second, the experiment stops
(we say it “self-destructs”) after the first tampering query yielding an invalid set
of shares. Both limitations are inherent for continuous non-malleability [6,19,20].

The only known scheme achieving such a strong flavor of non-malleability is
the one by Faonio and Venturi, which tolerates the families F and G of indepen-
dent tampering/leakage, i.e. for each query q we have f (q) = (f (q)

1 , . . . , f
(q)
n) ∈ F

where f
(q)
i gets as input the i-th share (and similarly g(q) = (g(q)1 , . . . , g

(q)
n) ∈ G).

The access structure A supported by their construction is the τ -threshold access
structure—i.e., any subset of at most τ players has no information about the
message—with the caveat that reconstruction works with at least τ + 2 shares,
namely a ramp secret sharing, thus leaving a minimal gap between the recon-
struction and privacy threshold. The following natural question arise:

Problem 1. Can we obtain leakage-resilient continuously non-malleable secret
sharing against independent leakage/tampering, for general access structures?

Another open question is whether leakage-resilient continuous non-
malleability is achievable for stronger tampering and leakage families F ,G, e.g.
in case the attacker can leak from and manipulate subsets of the shares jointly.
1 It is easy to see that non-malleability is impossible for arbitrary (polynomial-time)

tampering.
2 From now on, we omit to explicitly mention the feature of adaptive concurrent

reconstruction and simply talk about continuous non-malleability.

Continuously Non-malleable Secret Sharing for General Access Structures 213

Problem 2. Can we obtain leakage-resilient continuously non-malleable secret
sharing against joint leakage/tampering?

1.1 Our Contributions

We make significant progress towards solving the above problems. In particular,
our first contribution is a positive answer to Problem 1:

Theorem 1 (Informal). Assuming one-to-one one-way functions, for any
access structure A over n parties there exists a noisy-leakage-resilient continu-
ously non-malleable secret sharing scheme realizing A against independent leak-
age and tampering, in the plain model.

Our second contribution is a positive answer to Problem 2 assuming trusted
setup, in the form of a common reference string (CRS). More in details, we
put forward a new security notion for secret sharing dubbed continuous non-
malleability under selective k-partitioning. This roughly means that the attacker,
after seeing the CRS, must commit to a partition of the set [n] into β (non-
overlapping) blocks (B1, . . . ,Bβ) of size at most k; hence, the adversary can
jointly, and continuously, tamper with and leak from each collection sBi

of the
shares.3

Theorem 2 (Informal). Assuming (doubly-enhanced) trapdoor permutations
and collision-resistant hash functions, for any access structure A over n parties
there exists a bounded-leakage-resilient continuously non-malleable secret sharing
scheme realizing A against selective O(log n)-joint leakage and tampering in the
CRS model.

Prior to our work, we had secret sharing schemes unconditionally achieving
security either against joint leakage [29] or joint tampering [23,24], but nothing
was known for both even in the much simpler case of one-time non-malleability.

1.2 Related Work

Non-malleable secret sharing was introduced by Goyal and Kumar [23]. For any
τ ≤ n, they showed how to realize τ -threshold access structures, against one-time
tampering with either all of the shares independently, or jointly after partition-
ing the players into two non-overlapping blocks of size at most4 τ − 1. In a
subsequent work [24], the same authors show how to extend the result for inde-
pendent tampering to the case of arbitrary access structures; additionally, for
the case of joint tampering, they provide a new scheme realizing the n-threshold
access structure (i.e., an n-out-of-n secret sharing) in a stronger model where

3 The only restriction is that no block in the partition can contain an authorized set
of players, otherwise trivial attacks are possible.

4 An additional (artificial) requirement is that the size of the two blocks must be
different in order for their technique to work.

214 G. Brian et al.

the attacker can partition the players into two possibly overlapping blocks of
size at most n − 1. Srinivasan and Vasudevan [36] built the first non-malleable
secret sharing schemes for general access structures against independent tamper-
ing, with non-zero rate5 (in fact, even constant rate in case of threshold access
structures). Chattopadhyay et al. [9] construct non-malleable secret sharing for
threshold access structures, against affine tampering composed with joint split-
state tampering. Lin et al. [31] consider non-malleability against affine tampering
in an adaptive setting where the adversary gets to see an unauthorized subset
of the shares before launching a single tampering attack.

Badrinarayanan and Srinivasan [6] generalize non-malleability to p-time tam-
pering attacks, where p is an a-priori upper bound on the number of tampering
queries the adversary can ask. For each attempt, however, the reconstruction
set T must be chosen in advance at the beginning of the experiment. In this
model, they show how to realize arbitrary access structures against independent
tampering with all of the shares. Aggarwal et al. [2] were the first to consider
p-time non-malleability under non-adaptive concurrent reconstruction, i.e. the
attacker now can specify a different reconstruction set T (q) during the q-th tam-
pering query, although the sequence of sets T (1), . . . , T (p) must be chosen non-
adaptively. Kumar, Meka, and Sahai [29] pioneered bounded-leakage-resilient
one-time non-malleable secret sharing for general access structures, against inde-
pendent leakage and tampering with all of the shares.

In the special case of 2-threshold access structures overn = 2parties, the notion
of (leakage-resilient) non-malleable secret sharing collapses to that of split-state
(leakage-resilient) non-malleable codes [1,3–5,10,11,15,17,18,20,30,32,34].

Organization. All of our constructions rely on standard cryptographic primi-
tives, whichwe recall in Sect. 2 (togetherwith somebasic notation).The newmodel
of continuous tampering under selective partitioning is presented in Sect. 3.

Our main constructions appear in Sect. 4 (for joint tampering in the CRS
model) and Sects. 5–6 (for independent tampering in the plain model), respec-
tively; there, we also explain how to instantiate these constructions with concrete
building blocks, thus establishing Theorems 1 and 2. Finally, in Sect. 7, we con-
clude the paper with a list of open problems and interesting directions for further
research.

2 Standard Definitions

Basic Notation. For a string x, we denote its length by |x|; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we
write x ←$ X . When A is a randomized algorithm, we write y ←$ A(x) to denote
a run of A on input x (and implicit random coins r) and output y; the value y is
a random variable, and A(x; r) denotes a run of A on input x and randomness r.
An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for

5 The rate refers to the asymptotic ratio between the maximal length of a share and
that of the message.

Continuously Non-malleable Secret Sharing for General Access Structures 215

any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial
number of steps (in the size of the input).

Negligible Functions. We denote with λ ∈ N the security parameter. A function
p is a polynomial, denoted p(λ) ∈ poly(λ), if p(λ) ∈ O(λc) for some constant
c > 0. A function ν : N → [0, 1] is negligible in the security parameter (or simply
negligible) if it vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈
O(1/p(λ)) for all positive polynomials p(λ). We often write ν(λ) ∈ negl(λ) to
denote that ν(λ) is negligible.

Unless stated otherwise, throughout the paper, we implicitly assume that the
security parameter is given as input (in unary) to all algorithms.

Random Variables. For a random variable X, we write P[X = x] for the prob-
ability that X takes on a particular value x ∈ X (with X being the set where
X is defined). The statistical distance between two random variables X and
X′ defined over the same set X is defined as SD (X;X′) = 1

2

∑
x∈X |P[X =

x] − P[X′ = x]|.
Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to

denote that they are identically distributed, X ≈s Y to denote that they are
statistically close, i.e. SD (Xλ;X′

λ) ∈ negl(λ), and X ≈c Y to denote that they
are computationally indistinguishable, i.e., for all PPT distinguishers D:

|P[D(Xλ) = 1] − P[D(Yλ) = 1]| ∈ negl(λ).

We extend the notion of computational indistinguishability to the case of
interactive experiments (a.k.a. games) featuring an adversary A. In particular,
let GA(λ) be the random variable corresponding to the output of A at the end of
the experiment, where wlog. we may assume A outputs a decision bit. Given two
experiments GA(λ, 0) and GA(λ, 1), we write {GA(λ, 0)}λ∈N ≈c {GA(λ, 1)}λ∈N

as a shorthand for

|P[GA(λ, 0) = 1] − P[GA(λ, 1) = 1]| ∈ negl(λ).

The above naturally generalizes to statistical distance (in case of unbounded
adversaries). We recall a useful lemma from [12,16].

Lemma 1 ([12], Lemma 4). Let Oleak(x, g) be an oracle that upon input a
value x and a function g outputs g(x), and let X and Y be two independently
distributed random variables. For any adversary A, and for any value z, the dis-
tributions

(
X|z = AOleak(X,·),Oleak(Y,·)) and

(
Y|z = AOleak(X,·),Oleak(Y,·)) are inde-

pendently distributed.

Average Min-entropy. The min-entropy of a random variable X with domain
X is H∞(X) := − log maxx∈X P[X = x], and intuitively it measures the best
chance to predict X (by a computationally unbounded algorithm). For condi-
tional distributions, unpredictability is measured by the conditional average min-
entropy [14]: H̃∞(X|Y) := − logEy[2−H∞(X|Y=y)]. The lemma below is some-
times known as the “chain rule” for conditional average min-entropy.

216 G. Brian et al.

Lemma 2 ([14], Lemma 2.2). Let X,Y,Z be random variables. If Y has at
most 2� possible values, then H̃∞(X|Y,Z) ≥ H̃∞(X,Y|Z) − � ≥ H̃∞(X|Z) − �.
In particular, H̃∞(X|Y) ≥ H̃∞(X,Y) − � ≥ H̃∞(X) − �.

2.1 Secret Sharing Schemes

An n-party secret sharing scheme Σ in the common reference string (CRS) model
consists of polynomial-time algorithms (Init,Share,Rec) specified as follows: (i)
The randomized initialization algorithm Init takes as input the security param-
eter 1λ, and outputs a CRS ω ∈ {0, 1}∗; (ii) The randomized sharing algorithm
Share takes as input a CRS ω ∈ {0, 1}∗ and a message m ∈ M, and outputs
n shares s1, . . . , sn where each si ∈ Si; (iii) The deterministic algorithm Rec
takes as input a CRS ω ∈ {0, 1}∗ and a certain number of candidate shares, and
outputs a value in M ∪ {⊥}. Given s = (s1, . . . , sn) and a subset I ⊆ [n], we
often write sI to denote the shares (si)i∈I .

The subset of parties allowed to reconstruct the secrets by pulling their shares
together form the so-called access structure.

Definition 1 (Access structure). We say A is an access structure for n par-
ties if A is a monotone class of subsets of [n], i.e., if I1 ∈ A and I1 ⊆ I2,
then I2 ∈ A. We call sets I ∈ A authorized or qualified, and unauthorized or
unqualified otherwise.

Intuitively, a secure secret sharing scheme must be such that all qualified
subsets of players can efficiently reconstruct the secret, whereas all unqualified
subset have no information (possibly in a computational sense) about the secret.

Definition 2 (Secret sharing scheme). Let n ∈ N, and A be an access
structure for n parties. We say that Σ = (Init,Share,Rec) is a secret sharing
scheme realizing access structure A in the CRS model, with message space M
and share space S = S1 × · · · × Sn, if it is an n-party secret sharing in the CRS
model with the following properties.

(i) Correctness: For all λ ∈ N, all ω ∈ Init(1λ), all messages m ∈ M, and
for all subsets I ∈ A, we have that Rec(ω, (Share(ω,m))I) = m, with over-
whelming probability over the randomness of the sharing algorithm.

(ii) Privacy: For all PPT adversaries A = (A1,A2), we have

{PrivacyΣ,A(λ, 0)}λ∈N ≈c {PrivacyΣ,A(λ, 1)}λ∈N,

where the experiment PrivacyΣ,A(λ, b) is defined by

PrivacyΣ,A(λ, b) :=
{

ω ←$ Init(1λ); (m0,m1,U �∈ A, α1) ←$ A1(ω)
s ←$ Share(ω,mb); b′ ←$ A2(α1, sU)

}

.

If the above ensembles are statistically close (resp. identically distributed),
we speak of statistical (resp. perfect) privacy.

Continuously Non-malleable Secret Sharing for General Access Structures 217

Moreover, we say that Σ is a secret sharing scheme realizing access structure A
in the plain model, if for all λ ∈ N algorithm Init simply returns ω = 1λ.

Remark 1. In the plain model, the above definition of privacy is equivalent to
saying that for all pairs of messages m0,m1 ∈ M, and for all unqualified subsets
U �∈ A, it holds that {(Share(1λ,m0))U}λ∈N ≈c {(Share(1λ,m1))U}λ∈N.

2.2 Non-interactive Commitments

A non-interactive commitment scheme Π = (Gen,Com) is a pair of polynomial-
time algorithms specified as follows: (i) The randomized algorithm Gen takes
as input 1λ and outputs a public key pk ∈ K; (ii) The randomized algorithm
Com takes as input the public key pk and a message m ∈ M, and outputs a
commitment c = Com(pk ,m; r) ∈ C using random coins r ∈ R. The pair (m, r)
is called the opening. In the plain model, we omit the algorithm Gen and simply
set pk = 1λ.

Intuitively, a secure commitment satisfies two properties called binding and
hiding. The first property says that it is hard to open a commitment in two
different ways. The second property says that a commitment hides the underlying
message. The formal definitions follow.

Definition 3 (Binding). We say that a non-interactive commitment scheme
Π = (Gen,Com) is computationally binding if the following probability is negli-
gible for all PPT adversaries A:

P

[

m0 �= m1 ∧ Com(pk ,m0; r0) = Com(pk ,m1; r1) : pk ←$ Gen(1λ)
(m0, r0,m1, r1) ←$ A(pk)

]

.

In case the above definition holds for all unbounded adversaries, we say that Π
is statistically binding. Finally, in case the above probability is exactly 0 (i.e.,
each commitment can be opened to at most a single message), then we say that
Π is perfectly binding.

Definition 4 (Hiding). We say that a non-interactive commitment scheme
Π = (Gen,Com) is computationally hiding if the following holds for all PPT
adversaries A:

{
pk ←$ Gen(1λ); (m0,m1, α1) ←$ A1(pk)

c ←$ Com(pk ,m0); b′ ←$ A2(α1, c)

}

≈c

{
pk ←$ Gen(1λ); (m0,m1, α1) ←$ A1(pk)

c ←$ Com(pk ,m1); b′ ←$ A2(α1, c)

}

.

In case the above ensembles are statistically close (resp. identically distributed),
we speak of statistical (resp. perfect) hiding.

Note that in the plain model the above definition of hiding is equivalent to
saying that for all pairs of messages m0,m1 ∈ M the following holds:

{
c : c ←$ Com(1λ,m0)

}
λ∈N

≈c

{
c : c ←$ Com(1λ,m1)

}
λ∈N

.

218 G. Brian et al.

2.3 Non-interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-
knowledge (NIZK) proof system for R is a tuple of efficient algorithms Π =
(CRSGen,Prove,Ver) specified as follows. (i) The randomized algorithm CRSGen
takes as input the security parameter and outputs a common reference string ω;
(ii) The randomized algorithm Prove(ω, φ, (x,w)), given (x,w) ∈ R and a label
φ ∈ {0, 1}∗, outputs a proof π; (iii) The deterministic algorithm Ver(ω, φ, (x, π)),
given an instance x, a proof π, and a label φ ∈ {0, 1}∗, outputs either 0 (for
“reject”) or 1 (for “accept”). We say that a NIZK for relation R is correct if
for every λ ∈ N, all ω as output by Init(1λ), any label φ ∈ {0, 1}∗, and any
(x,w) ∈ R, we have that Ver(ω, φ, (x,Prove(ω, φ, (x,w)))) = 1.

We define two properties of a NIZK proof system. The first property says
that honest proofs do not reveal anything beyond the fact that x ∈ L.

Definition 5 (Adaptive multi-theorem zero-knowledge). A NIZK with
labels Π for a relation R satisfies adaptive multi-theorem zero-knowledge if there
exists a PPT simulator S := (S0,S1) such that the following holds:

(i) S0 outputs ω, a simulation trapdoor ζ and an extraction trapdoor ξ.
(ii) For all PPT distinguishers D, we have that

∣
∣
∣P[DProve(ω,·,(·,·))(ω) = 1 : ω ←$ Init(1λ)]

− P[DOsim(ζ,·,·,·)(ω) = 1 : (ω, ζ) ←$ S0(1λ)]
∣
∣
∣

is negligible in λ, where the oracle Osim(ζ, ·, ·, ·) takes as input a tuple
(φ, x,w) and returns S1(ζ, φ, x) iff R(x,w) = 1 (and otherwise it returns
⊥).

Groth [26] introduced the concept of simulation-extractable NIZK, which
informally states that knowledge soundness should hold even if the adversary can
see simulated proofs for possibly false statements of its choice. For our purpose,
it will suffice to consider the weaker notion of true simulation extractability, as
defined by Dodis et al. [13].

Definition 6 (True simulation extractability). Let Π be a NIZK proof
systems for a relation R, that satisfies adaptive multi-theorem zero-knowledge
w.r.t. a simulator S := (S0,S1). We say that Π is true simulation extractable if
there exists a PPT algorithm K such that every PPT adversary A has a negligible
probability of winning in the following game:

– The challenger runs (ω, ζ, ξ) ←$ S0(1λ), and gives ω to A.
– Adversary A can ask polynomially many queries of the form (φ, x,w), upon

which the challenger returns S1(ζ, φ, x) if (x,w) ∈ R and ⊥ otherwise.
– Adversary A outputs a tuple (φ∗, x∗, π∗).
– The challenger runs w ←$ K(ξ, φ∗, (x∗, π∗)).

We say that A wins iff: (a) (φ∗, x∗) was not queried in the second step; (b)
Ver(ω, φ∗, (x∗, π∗)) = 1; (c) (x∗, w) �∈ R.

Continuously Non-malleable Secret Sharing for General Access Structures 219

3 Continuous Tampering Under Selective Partitioning

In this section we define a new notion of non-malleability against joint memory
tampering and leakage for secret sharing. Our definition generalizes the one
in [19] which was tailored to threshold access structures and to independent
leakage/tampering from the shares.

Very roughly, in our model the attacker is allowed to partition the set of
share holders into β (non-overlapping) blocks with size at most k, covering the
entire set [n]. This is formalized through the notion of a k-partition.

Definition 7 (k-partition). Let n, k, β ∈ N. We call B = (B1, . . . ,Bβ) a k-
partition of [n] when: (i)

⋃β
i=1 Bi = [n]; (ii) ∀i1, i2 ∈ [β], with i1 �= i2, we have

Bi1 ∩ Bi2 = ∅; (iii) ∀i = 1, . . . , β : |Bi| ≤ k.

3.1 The Definition

To define non-malleability, we consider an attacker A playing the following game.
At the beginning of the experiment, A chooses two messages m0,m1 possibly
depending on the CRS ω of the underlying secret sharing scheme, and a k-
partition (B1, . . . ,Bβ) of the set [n]. Hence, the adversary interacts with a target
secret sharing s = (s1, . . . , sn) of either m0 or m1, via the following queries:

– Leakage queries. For each j ∈ [β], the attacker can leak jointly from the
shares sBj

. This can be done repeatedly and in an adaptive fashion, the only
limitation being that the overall amount of leakage on each block is at most
� ∈ N bits.

– Tampering queries. For each j ∈ [β], the attacker can tamper jointly the
shares sBj

. Each such query yields mauled shares (s̃1, . . . , s̃n), for which the
adversary is allowed to see the corresponding reconstructed message w.r.t. an
arbitrary reconstruction set T ∈ A that is also chosen adversarially. This can
be done for at most p ∈ N times, and in an adaptive fashion.

The above naturally yields a notion of joint bounded-leakage and tampering
admissible adversary, as defined below. Note that, in order to rule out trivial
attacks, we must require that the partition B chosen by the attacker be such
that no block of the partition is an authorized set for the underlying access
structure.

Definition 8 (Joint bounded-leakage and tampering admissible adver-
saries). Let n, k, �, p ∈ N, and fix an arbitrary message space M, sharing
domain S = S1 × · · · × Sn and access structure A for n parties. We say that
a (possibly unbounded) adversary A = (A1,A2) is k-joint �-bounded-leakage and
p-tampering admissible ((k, �, p)-BLTA for short) if it satisfies the following con-
ditions:

(i) A1 outputs two messages m0,m1 ∈ M and a k-partition B = (B1, . . . ,Bβ)
of [n] such that ∀j ∈ [β] we have Bj �∈ A.

220 G. Brian et al.

JSTamperΣ,A(λ, b):
ω ←$ Init(1λ)
(B = (B1, . . . , Bβ), m0, m1, α1) ←$ A1(ω)
s := (s1, . . . , sn) ←$ Share(ω, mb)
stop ← false

(α2, i
∗ ∈ [β]) ←$ A

Onmss(s,·,·),Oleak(s,·)
2 (α1)

Return A3(α2, sBi∗)
Oracle Oleak(s, (g1, . . . , gβ)):
Return g1(sB1), . . . , gβ(sBβ)

Oracle Onmss(s, T , (f1, . . . , fβ)):
If stop = true

Return ⊥
Else

∀i ∈ [β] : s̃Bi := fi(sBi)
s̃ = (s̃1, . . . , s̃n)
m̃ = Rec(ω, s̃T)
If m̃ ∈ {m0, m1}

Return
If m̃ = ⊥

Return ⊥
stop ← true

Else return m̃

Fig. 1. Experiment defining leakage-resilient (continuously) non-malleable secret shar-
ing under adaptive concurrent reconstruction. The instructions boxed in red are con-
sidered only for continuous non-malleability, in which case the oracle Onmss is implicitly
parameterized by the flag stop. (Color figure online)

(ii) A2 outputs a sequence of poly-many leakage queries, chosen adaptively,
(g(q)1 , . . . , g

(q)
β)q∈poly(λ) such that ∀j ∈ [β] it holds that

∑
q |g(q)j (·)| ≤ �,

where g
(q)
j :×i∈Bj

Si → {0, 1}∗.
(iii) A2 outputs a sequence of p tampering queries, chosen adaptively,

(T (q), (f (q)
1 , . . . , f

(q)
β))q∈[p] such that T (q) ∈ A, and ∀j ∈ [β] it holds that

f
(q)
j :×i∈Bj

Si →×i∈Bj
Si.

Very roughly, leakage-resilient non-malleability states that no admissible
adversary as defined above can distinguish whether it is interacting with a secret
sharing of m0 or of m1. In the definition below, the attacker is further allowed to
obtain in full the shares belonging to one of the partitions, at the end of the exper-
iment. This is reminiscent of augmented (leakage-resilient) non-malleability, as
considered in [1,11,20,25].

Definition 9 (Leakage-resilient non-malleability under selective par-
titioning). Let n, k, �, p ∈ N be parameters, and A be an access structure
for n parties. We say that Σ = (Init,Share,Rec) is an augmented �-bounded
leakage-resilient p-time non-malleable secret sharing scheme realizing A against
selective k-joint leakage and tampering in the CRS model (resp., in the plain
model)—augmented (k, �, p)-BLR-CNMSS for short—if it is an n-party secret
sharing scheme realizing A in the CRS model (resp., in the plain model) as per
Definition 2, and additionally for all (k, �, p)-BLTA adversaries A = (A1,A2) we
have: {

JSTamperΣ,A(λ, 0)
}

λ∈N
≈s

{
JSTamperΣ,A(λ, 1)

}
λ∈N

,

where, for b ∈ {0, 1}, experiment JSTamperΣ,A(λ, b) is depicted in Fig. 1.

Continuously Non-malleable Secret Sharing for General Access Structures 221

In case the above definition holds for all p(λ) ∈ poly(λ), but w.r.t. all PPT
adversaries A (i.e., ≈s is replaced with ≈c in the above equation), we call Σ
(augmented, bounded leakage-resilient) continuously non-malleable. As shown
by [19], already for the simpler case of independent tampering, it is impossible
to achieve this notion without assuming self-destruct (i.e., the oracle Onmss must
stop answering tampering queries after the first such query yielding an invalid
reconstructed message).

It is also well-known that computational security is inherent for obtain-
ing continuously non-malleable secret sharing realizing threshold access struc-
tures [6]. Unless stated otherwise, when we refer to non-malleable secret sharing
in this paper we implicitly assume security holds in the computational setting
(both for privacy and non-malleability).

On Augmented Non-malleability. When dropping the adversary A3 from
the above definition, we obtain the standard (non-augmented) notion of (leakage-
resilient, continuous) non-malleability. The theorem below, however, says that
augmented security is essentially for free whenever non-malleability is considered
together with leakage resilience. Intuitively, this is because in the reduction we
can simply simulate all leakage queries, and then ask a final leakage query which
reveals the output guess of an hypothetical distinguisher attacking augmented
non-malleability.6 A similar proof strategy was used in [29, Lemma 7]. The formal
proof appears in the full version [8].

Theorem 3. Let Σ be a (k, � + 1, p)-BLR-CNMSS realizing access structure A
for n parties in the CRS model (resp. plain model). Then, Σ is an augmented
(k, �, p)-BLR-CNMSS realizing A in the CRS model (resp. plain model).

3.2 Related Notions

We finally argue that known definitions from the literature can be cast by either
restricting, or slightly tweaking, Definition 9.

Independent Leakage and Tampering. The definition below restricts the adver-
sary to leak/tamper from/with each of the shares individually; this is sometimes
known as local or independent leakage/tampering. The condition on leakage
admissibility, though, is more general, in that the attacker can leak an arbitrary
amount of information as long as the total leakage reduces the uncertainty on
each share (conditioned on the other shares) by at most � bits.

Definition 10 (Independent noisy-leakage and tampering admissible
adversaries). Let n, �, p ∈ N, and fix an arbitrary message space M, sharing
domain S = S1 × · · · × Sn and access structure A for n parties. We say that
a (possibly unbounded) adversary A = (A1,A2) is independent �-noisy-leakage
and tampering admissible ((n, �, p)-NLTA for short) if it satisfies the following
conditions:
6 While we state the theorem for the case of bounded leakage, an identical statement

holds in the noisy-leakage setting.

222 G. Brian et al.

(i) A1 outputs two messages m0,m1 ∈ M and the partition B = ({1}, . . . , {n}).
(ii) A2 outputs a sequence of poly-many leakage queries (chosen adaptively)

(g(q)1 , . . . , g
(q)
n)q∈poly(λ) such that ∀i ∈ [n] we have g

(q)
i : Si → {0, 1}∗, and

∀m ∈ M it holds that:

H̃∞
(
Si|(Sj)j �=i, g

(1)
i (Si), · · · , g

(p)
i (Si)

)
≥ H̃∞(Si|(Sj)j �=i) − �,

where (S1, . . . ,Sn) is the random variable corresponding to Share(Init
(1λ),m).

(iii) A2 outputs a sequence of tampering queries (chosen adaptively) (T (q), (f (q)
1 ,

. . . , f
(q)
n))q∈[p] such that T (q) ∈ A, and ∀i ∈ [n] it holds that f

(q)
i : Si → Si.

When restricting Definition 9 to all PPT (n, �, poly(λ))-NLTA adversaries,
we obtain the notion of (augmented) �-noisy leakage-resilient continuously non-
malleable secret sharing against individual leakage and tampering (with adap-
tive concurrent reconstructions) [19]. Finally, if we consider n = 2 and the
threshold access structure with reconstruction parameter � = 2 (i.e., both
shares are required in order to reconstruct the message), we immediately
obtain noisy leakage-resilient continuously non-malleable codes in the split-state
model [20,34]. In what follows, we write Tamper(λ, b) to denote the random
variable in the security experiment of Definition 9 with an (n, �, p)-NLTA adver-
sary.

Leakage-Resilient Secret Sharing. Further, when no tampering is allowed (i.e.,
p = 0), we obtain the notion of leakage-resilient secret sharing [2,12,29,33,36]
as a special case. In particular, we write JSLeak(λ, b) to denote the random
variable in the security experiment of Definition 9 with a (k, �, 0)-BLTA adver-
sary, and Leak(λ, b) to denote the random variable in the security experiment
of Definition 9 with an (n, �, 0)-NLTA adversary.

Recall that, by Theorem 3, the augmented variant is without loss of generality
as long as leakage resilience holds for � ≥ 2.

4 Construction in the CRS Model

4.1 Description of the Scheme

We show how to obtain leakage-resilient continuously non-malleable secret sharing
for arbitrary access structures in the CRS model, with security against selective
joint leakage and tampering. Our construction combines a commitment scheme
(Gen,Com) (cf. Sect. 2.2), a non-interactive proof system (CRSGen,Prove,Ver) for
proving knowledge of a committed value (cf. Sect. 2.3), and an auxiliary n-party
secret sharing scheme Σ = (Share,Rec), as depicted in Fig. 2.

The main idea behind the scheme is as follows. The CRS includes the CRS ω
for the proof system and the public key pk for the commitment scheme. Given
a message m ∈ M, the sharing procedure first shares m using Share, obtaining
shares (s1, . . . , sn). Then, it commits to the i-th share si along with the position i
using randomness ri, and finally generates n−1 proofs (πi

j)j �=i for the statement

Continuously Non-malleable Secret Sharing for General Access Structures 223

Let Σ = (Share,Rec) be an auxiliary secret sharing scheme realizing access struc-
ture A, with message space M and share space S = S1 × · · · × Sn. Let (Gen,Com)
be a commitment scheme with domain {0, 1}∗, and (CRSGen,Prove,Ver) be a non-
interactive argument system for the language Lpk

com = {c ∈ {0, 1}γ : ∃i ∈ [n], s ∈ Si, r ∈
R s.t. Com(pk , i||s; r) = c} that supports labels in {0, 1}γ . Define the following secret
sharing scheme Σ∗ = (Init∗, Share∗,Rec∗) in the CRS model.

Initialization algorithm Init∗: Sample ω ←$ CRSGen(1λ) and pk ←$ Gen(1λ), and
return ω∗ = (ω, pk).

Sharing algorithm Share∗: Upon input ω∗ = (ω, pk) and a value m ∈ M, com-
pute (s1, . . . , sn) ←$ Share(m). For each i ∈ [n], generate ri ←$ R and de-
fine ci = Com(pk , i||si; ri). For each i, j ∈ [n] such that i �= j, define
πj

i ←$ Prove(ω, cj , (ci, i||si, ri)). Return the shares s∗ = (s∗
1, . . . , s

∗
n), where for each

i ∈ [n] we set s∗
i = (si, ri, (cj)j �=i, (πi

j)j �=i).
Reconstruction algorithm Rec∗: Upon input ω∗ = (ω, pk) and shares (s∗

i)i∈I parse
s∗

i = (si, ri, (ci
j)j �=i, (πi

j)j �=i) for each i ∈ I. Hence, proceed as follows:
(a) If ∃i1, i2 ∈ I and j ∈ [n] such that ci1

j �= ci2
j , output ⊥; else let the input

shares be s∗
i = (si, ri, (cj)j �=i, (πi

j)j �=i) for each i ∈ I.
(b) If ∃i ∈ I such that Com(pk , i||si; ri) �= ci, output ⊥.
(c) If ∃i, j ∈ I such that i �= j and Ver(ω, cj , (ci, π

j
i)) = 0, output ⊥.

(d) Else, output Rec((si)i∈I).

Fig. 2. Leakage-resilient continuously non-malleable secret sharing for arbitrary access
structures against selective joint leakage and tampering, in the CRS model.

ci using each time the value cj = Com(pk , j||sj ; rj) as label. The final share
of player i consists of si, along with the randomness ri used to obtain ci and
all the values (cj)j �=i and (πi

j)j �=i. The reconstruction procedure, given a set of
shares s∗

I , first checks that for each i ∈ I the commits (cj)j �=i contained in each
share are all equal, and moreover each ci is indeed obtained by committing i||si

with the randomness ri; further, it checks that all the proofs verify correctly
w.r.t. the corresponding statement and label. If any of the above checks fails,
the algorithm returns ⊥ and otherwise it outputs the same as Rec(sI).

Intuitively, our scheme can be seen as a generalization of the original con-
struction of continuously non-malleable codes in the split-state model from [20].
In particular, when n = 2, the two constructions are identical except for two
differences: (i) We commit to each share, whereas [20] uses a collision-resistant
hash function; (ii) We include the position of each share in the commitment.
Roughly speaking, the first modification is necessary in order to prove privacy
(as hash functions do not necessarily hide their inputs). The second modification
is needed in order to avoid that an attacker can permute the shares within one of
the partitions, which was not possible in the setting of independent tampering.
We establish the following result, whose proof appears in the full version [8].

224 G. Brian et al.

Theorem 4. Let n, k ∈ N, and A be any access structure for n parties. Assume
that:

(i) Σ is an n-party augmented �-bounded leakage-resilient secret sharing
scheme realizing access structure A against selective k-joint leakage in the
plain model;

(ii) (Gen,Com) is a statistically hiding and computationally binding commit-
ment scheme with commitment length γ = O(λ);

(iii) (CRSGen,Prove,Ver) is a true-simulation extractable non-interactive zero-
knowledge argument system for the language Lpk

com = {c ∈ {0, 1}γ : ∃i ∈
[n], s ∈ Si, r ∈ R s.t. Com(pk , i||s; r) = c}.

Then, the secret sharing scheme Σ∗ described in Fig. 2 is an n-party augmented
�∗-bounded leakage-resilient continuously non-malleable secret sharing scheme
realizing access structure A against selective k-joint leakage and tampering in
the CRS model, as long as � = 2�∗ + nγ + O(λ log λ).

4.2 Concrete Instantiation

Finally, we show how to instantiate Theorem4 from generic assumptions, thus
yielding the statement of Theorem 2 as a corollary. It is well known that
true-simulation extractable NIZKs can be obtained from (doubly-enhanced)
trapdoor permutations [13,21,35], whereas statistically hiding non-interactive
commitments—with commitment size O(λ) and 2−Ω(λ)-statistical hiding—can
be instantiated from collision-resistant hash functions [27].

As for the underlying leakage-resilient secret sharing, we can use the recent
construction from [29] which achieves information-theoretic security in the
stronger setting where the attacker can adaptively leak from subsets of shares
of size at most O(log n), in a joint manner. The latter clearly implies leakage
resilience against selective O(log n)-joint leakage.

5 Construction in the Plain Model

5.1 Description of the Scheme

We show how to obtain leakage-resilient continuously non-malleable secret shar-
ing for arbitrary access structures in the plain model, with security against
independent leakage and tampering attacks. Our construction combines a non-
interactive commitment scheme Com with an auxiliary n-party secret sharing
scheme Σ = (Share,Rec), as depicted in Fig. 3. The basic idea is to compute a
commitment c to the message m being shared, using random coins r; hence, we
secret share the string m||r using the underlying sharing function Share, yielding
shares (s1, . . . , sn). Hence, the final share of the i-th player is s∗

i = (c, si).
We establish the following result. Note that when n = 2, we get as a special

case the construction of split-state continuously non-malleable codes in the plain
model that was originally proposed in [34], and later simplified in [19] by relying
on noisy leakage. Our proof can be seen as a generalization of the proof strategy
in [19] to the case n > 2. We refer the reader to the full version [8] for the details.

Continuously Non-malleable Secret Sharing for General Access Structures 225

Let Com be a non-interactive commitment scheme with message space M, randomness
space R, and commitment space C. Let Σ = (Share,Rec) be an auxiliary secret sharing
scheme realizing access structure A, with message space M × R and share space S =
S1 × · · · × Sn. Define the following secret sharing scheme Σ∗ = (Share∗,Rec∗), with
message space M and share space S∗ = S∗

1 × · · · × S∗
n where for each i ∈ [n] we have

S∗
i = C × Si.

Sharing algorithm Share∗: Upon input a value m ∈ M, sample random coins
r ←$ R and compute c = Com(m; r) and (s1, . . . , sn) ←$ Share(m||r). Return the
shares s∗ = (s∗

1, . . . , s
∗
n), where for each i ∈ [n] we set s∗

i = (c, si).
Reconstruction algorithm Rec∗: Upon input shares (s∗

i)i∈I parse s∗
i = (si, ci) for

each i ∈ I. Hence, proceed as follows:
(a) If ∃i1, i2 ∈ I for which ci1 �= ci2 , return ⊥; else, let the input shares be

s∗
i = (si, c).

(b) Run m||r = Rec((si)i∈I); if the outcome equals ⊥ return ⊥.
(c) If c = Com(m; r) return m, else return ⊥.

Fig. 3. Leakage-resilient continuously non-malleable secret sharing for arbitrary access
structures against independent leakage and tampering in the plain model.

Theorem 5. Let n ∈ N, and let A be an arbitrary access structure for n parties
without singletons. Assume that:

(i) Com is a perfectly binding and computationally hiding non-interactive com-
mitment;

(ii) Σ is an n-party �-noisy leakage-resilient one-time non-malleable secret shar-
ing scheme realizing access structure A against independent leakage and
tampering in the plain model, with information-theoretic security and with
message space M such that |M| ∈ ω(log(λ)).

Then, the secret sharing scheme Σ∗ described in Fig. 3 is an n-party �∗-
noisy leakage-resilient continuously non-malleable secret sharing scheme real-
izing access structure A against independent leakage and tampering with compu-
tational security in the plain model, as long as � = �∗ + 1 + γ + O(log λ) where
γ = log |C| is the size of a commitment.

6 Statistical One-Time Non-Malleability with Noisy
Leakage

Since non-interactive, perfectly binding, commitments can be obtained in the
plain model assuming one-to-one one-way functions [22], all that remains in order
to derive Theorem 1 as a corollary of Theorem 5 is an unconditional construc-
tion of noisy-leakage resilient one-time non-malleable secret sharing for arbitrary
access structures against independent leakage and tampering. The only known
scheme achieving all these properties unconditionally is the one in [29], but
unfortunately that scheme only tolerates bounded leakage, and it is unclear how

226 G. Brian et al.

to generalize the proof to the setting of noisy leakage.7 Hence, we take a dif-
ferent approach and we instead show how to generalize a recent transformation
from [7], which is tailored to the case n = 2.

6.1 Asymmetric Noisy-Leakage-Resilient Secret Sharing

Our construction exploits so-called leakage-resilient encryption, as recently intro-
duced by Ball, Guo, and Wichs [7]. To keep the exposition more uniform, we cast
their definition in terms of a special 2-out-of-2 leakage-resilient secret sharing sat-
isfying three additional properties: (i) One of the shares is uniformly random,
and can be sampled independently from the message; (ii) The shares are almost
uncorrelated, namely the distribution of one share in isolation and conditioned
on the other share have very similar min-entropy; (iii) The size of the shares are
asymmetric, namely one share is substantially larger than the other share. Given
a 2-out-of-2 secret sharing scheme Σ = (Share,Rec), abusing notation, for any
fixed s1 ∈ S1 and m ∈ M, we write s2 ←$ Share(m, s1) for the sharing algorithm
that computes share s2 subject to (s1, s2) being a valid sharing of m.

Definition 11 (Asymmetric secret sharing). Let Σ = (Share,Rec) be a 2-
out-of-2 secret sharing scheme. We call Σ (α, σ1, σ2)-asymmetric, if it satisfies
the following properties:

(i) For any s1 ∈ S1, and any m ∈ M, it holds that Rec(s1,Share(m, s1)) = m;
(ii) For any message m ∈ M, and for all i ∈ {1, 2}, it holds that

H̃∞(Si|S3−i) ≥ log |Si| − α, where S1,S2 are the random variables cor-
responding to sampling s1 ←$ S1 and s2 ←$ Share(m, s1);

(iii) It holds that log |S1| = σ1 and log |S2| = σ2.

As for security we consider the same security experiment of a leakage-resilient
secret sharing, however, we consider a more general class of admissible adver-
saries:

Definition 12 (Independent noisy-leakage admissibility for asymmet-
ric secret sharing). Let Σ = (Share,Rec) be a 2-out-of-2 secret sharing
scheme. We say that an unbounded adversary A = (A1,A2) is independent
(�1, �2)-asymmetric noisy-leakage admissible ((�1, �2)-NLA for short) if it satis-
fies Definition 10 without property (iii), and using the following variant of prop-
erty (ii):

(ii) A2 outputs a sequence of leakage queries (chosen adaptively) (g(q))q∈[p], with
p(λ) ∈ poly(λ), such that for all i ∈ {1, 2}, and for all m ∈ M:

H̃∞
(
Si

∣
∣S3−i, g

(1)
i (Si), · · · , g

(p)
i (Si)

)
≥ H̃∞(Si|S3−i) − �i,

where S1 is uniformly random over S1 and S2 is the random variable corre-
sponding to Share(m,S1).

7 This is because [29] relies on lower bounds in communication complexity.

Continuously Non-malleable Secret Sharing for General Access Structures 227

Let Σ′ = (Share′,Rec′) be a secret sharing scheme realizing access structure A, with
message space M and share space S ′ = S ′

1 × · · · × S ′
n where S ′

i ⊆ M′′. Let Σ′′ =
(Share′′,Rec′′) be a 2-out-of-2 asymmetric secret sharing scheme with message space
M′′ and share space S ′′ = S ′′

1 × S ′′
2 . Define the following secret sharing scheme Σ =

(Share,Rec), with message space M and share space S = S1 × · · · × Sn, where for each
i ∈ [n] we have Si ⊆ (S ′′

1)n−1 × (S ′′
2)n−1.

Sharing algorithm Share: Upon input a value m ∈ M, compute
(s′

1, . . . , s
′
n) ←$ Share′(m). For each i ∈ [n] and j ∈ [n] \ {i}, sample a ran-

dom share s′′
i,j,1 ←$ S ′′

1 and compute s′′
i,j,2 ←$ Share′′(s′

i, s
′′
i,j,1). Return the shares

s = (s1, . . . , sn), where for each i ∈ [n] we set si = ((s′′
j,i,1)j �=i, (s′′

i,j,2)j �=i).
Reconstruction algorithm Rec: Upon input shares (si)i∈I with I ∈ A, parse si =

((s′′
j,i,1)j �=i, (s′′

i,j,2)j �=i). Hence, proceed as follows:
(a) Compute s′

i = Rec′′(s′′
i,nxt(i),1, s

′′
i,nxt(i),2) for i ∈ I;

(b) Return Rec′((s′
i)i∈I).

Fig. 4. Noisy-leakage-resilient one-time statistically non-malleable secret sharing for
arbitrary access structures against independent leakage and tampering in the plain
model.

Finally, we say that a 2-out-of-2 secret sharing is augmented (�1, �2)-noisy-
leakage resilient if it is secure as per Definition 9, against the class of all
unbounded adversaries that are (�1, �2)-NLA. The theorem below says that there
is an unconditional construction of such a leakage-resilient secret sharing that is
also asymmetric as per Definition 11. The proof appears in the full version [8].

Theorem 6. For any α ∈ N, and for any large enough �1, �2 ∈ poly(λ, α), there
exists σ1, σ2 ∈ poly(λ, α) and an (α, σ1, σ2)-asymmetric secret sharing scheme
Σ with message space {0, 1}α that is augmented (�1, �2)-noisy leakage resilient.

Construction. Before presenting our scheme, we establish some notation.
Given a reconstruction set I = {i1, . . . , ik}, we always assume that ij ≤ ij+1 for
j ∈ [k]. further, we define the function nxtI : I → I as:

nxtI(ij) :=
{

ij+1 j < k
i1 otherwise

and the function prvI to be the inverse of nxtI . Whenever it is clear from the
context we omit the reconstruction set I and simply write nxt and prv.

Intuitively, our construction (cf. Fig. 4) relies on a one-time non-malleable
(but not leakage resilient) secret sharing Σ′, and on an asymmetric leakage-
resilient secret sharing Σ′. The sharing of a message m is obtained by first
sharing m under Σ′, obtaining n shares (s′

1, . . . , s
′
n), and then sharing each si

independently n−1 times under Σ′′, obtaining pairs of shares (s′′
i,j,1, s

′′
i,j,2)j �=i; the

final share of party i is then set to be the collection of right shares corresponding
to i and all the left shares corresponding to the parties j �= i. We can now state
the main theorem of this section.

228 G. Brian et al.

Theorem 7. Let n ∈ N, and let A be an arbitrary access structure for n parties
without singletons. Assume that:

(i) Σ′ is an n-party one-time non-malleable secret sharing scheme realizing
access structure A against independent tampering in the plain model, with
information-theoretic security;

(ii) Σ′′ is an (α, σ1, σ2)-asymmetric augmented (�1, �2)-noisy leakage-resilient
secret sharing scheme.

Then, the secret sharing scheme Σ described in Fig. 4 is an n-party �-noisy
leakage-resilient one-time non-malleable secret sharing scheme realizing access
structure A against independent leakage and tampering with statistical security
in the plain model, as long as �1 = � + (2n − 3)α and �2 = � + (2n − 3)α + σ1.

The proof to the above theorem appears in the full version [8], here we discuss
the main intuition. Privacy of Σ follows in a fairly straightforward manner from
privacy of Σ′. In fact, recall that the shares s′′

i,j,1, with i, j ∈ [n] and i �= j, are
sampled uniformly at random and independently of s′. Thus, in the reduction
we can sample these values locally and then define the shares (su)u∈U as a
function of the shares (s′

u)u∈U . As for the proof of leakage-resilient one-time
non-malleability, the idea is to reduce to the one-time non-malleability of Σ′

and simulate the leakage by sampling dummy values for the shares s′′
i,j,1, s

′′
i,j,2.

The main challenge is to make sure that the answer to tampering query f =
(f1, . . . , fn) is consistent with the simulated leakage. To this end, in the reduction
we define the tampering function f ′ = (f ′

1, . . . , f
′
n), acting on the shares s′ =

(s′
1, . . . , s

′
n), as follows. Each function f ′

i , upon input s′
i and given the values

(s′′
i,j,1)j �=i, samples (ŝi,j,2)j �=i in such a way that for any j the reconstruction

Rec′′(si,j,1, ŝi,j,2) yields a share s′
i that is consistent with the simulated leakage

using the dummy values. Noisy-leakage resilience of Σ′′ guarantees that the
function f ′

i samples from a valid distribution (namely, a non-empty one). Note
that the function f ′

i might not be efficiently computable; however, as we are
reducing to statistical non-malleability, this is not a problem.

An additional difficulty is that the functions (f ′
t)t∈T need to communicate in

order to produce their outputs. In fact, for any t ∈ T , the function f ′
t returns a

tampered share for Σ′ that depends on the mauled share s̃prv(t),t,1 (generated by
fprv(t)). To overcome this problem, we let the reduction perform an additional
leakage query on the dummy values before tampering. Thanks to this extra
leakage, the reduction learns the values s̃prv(t),t,1 for all t ∈ T , which can be hard-
coded in the description of (f ′

t)t∈T . Here is where we rely on the asymmetric
property of Σ′′, which allows us to leak σ1 bits from the second share.

At this point, a reader familiar with [7] might notice that the two proofs
proceed very similarly. However, our proof requires extra care when bounding
the amount of leakage performed by the reduction. The key ideas are that: (i)
Each of the shares under Σ′ is shared using n − 1 independent invocations of
Σ′′; and (ii) our reconstruction procedure depends only on one of those (chosen
as function of the reconstruction set). Property (i) allows to reduce independent
leakage on n shares under Σ to independent leakage on 2 shares under Σ′′ by

Continuously Non-malleable Secret Sharing for General Access Structures 229

sampling locally the missing n−2 shares when reducing to noisy-leakage resilience
of Σ′′. Property (ii) allows to bound the amount of information the reduction
needs to simulate the tampering query to a single short leakage from each of the
shares (i.e., the value s̃prv(t),t,1 for t ∈ T).

7 Conclusions and Open Problems

We have shown new constructions of leakage-resilient continuously non-malleable
secret sharing schemes, for general access structures. Our first scheme is in the
plain model, and guarantees security against independent noisy leakage and tam-
pering with all of the shares. Our second scheme is in the CRS model, and
guarantees security against joint bounded leakage and tampering using a fixed
partition of the n shares into non-overlapping blocks of size O(log n).

The two major questions left over by our work are whether continuous non-
malleability against joint tampering is achievable in the plain model, or against
adaptive (rather than selective) joint tampering with the shares. Interestingly,
our proof strategy breaks down in the case of adaptive tampering, and this
holds true even assuming that the inner leakage-resilient secret sharing is secure
in the presence of adaptive joint leakage. Intuitively, the reason is that in the
reduction we must run different copies of the adversary inside the leakage oracle;
in particular, we use each block of the shares in order to simulate the answer
to all tampering queries asked by each copy of the attacker, and this is clearly
possible only if the adversary does not change the partition within each query.

It would also be interesting to achieve continuous non-malleability under joint
selective partitioning for better values of the parameter k (namely, the attacker
can tamper jointly with blocks of size super-logarithmic in n). Note that this
would follow immediately by our result if we plug in our construction a leakage-
resilient secret sharing scheme tolerating joint leakage from subsets of shares with
size ω(log n). Unfortunately, the only known secret sharing scheme achieving
joint-leakage resilience is the one in [29], and as the authors explain improving
the parameters in their construction would lead to progress on longstanding
open problems in complexity theory. We leave it open to establish whether this
holds true even in the case of selective partitioning (recall that the scheme of [29]
achieves adaptive leakage resilience), or whether the current state of affairs can
be improved in the computational setting (with or without trusted setup).

A further open question is to improve the rate of our constructions. Note
that by applying the rate compiler of [19], we do get rate-one continuously non-
malleable secret sharing for general access structures, against independent tam-
pering in the plain model. However, this is well-known to be sub-optimal in the
computational setting, where the optimal share size would be O(μ/n), with μ
being the size of the message [28]. Note that it is unclear whether the same rate
compiler works also for our construction against joint tampering under selective
partitioning. This is because the analysis in [19] crucially relies on the resilience of
the initial rate-zero non-malleable secret sharing against noisy leakage, whereas
our construction only achieves security in the bounded-leakage model.

230 G. Brian et al.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: TCC, pp. 393–417
(2016)

2. Aggarwal, D., Damg̊ard, I., Nielsen, J.B., Obremski, M., Purwanto, E., Ribeiro, J.,
Simkin, M.: Stronger leakage-resilient and non-malleable secret sharing schemes for
general access structures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 18

3. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC, pp. 459–468 (2015)

4. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

5. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 17

6. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 593–622.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 20

7. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 413–434. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 15

8. Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing for
general access structures (2019). https://eprint.iacr.org/2019/602

9. Chattopadhyay, E., Li, X.: Non-malleable codes, extractors and secret sharing for
interleaved tampering and composition of tampering. Cryptology ePrint Archive,
Report 2018/1069 (2018). https://eprint.iacr.org/2018/1069

10. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

11. Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously
non-malleable codes. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M.
(eds.) ACNS 2019. LNCS, vol. 11464, pp. 3–23. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21568-2 1

12. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 9

13. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

14. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

15. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-030-17653-2_20
https://doi.org/10.1007/978-3-030-26948-7_15
https://eprint.iacr.org/2019/602
https://eprint.iacr.org/2018/1069
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-642-15317-4_9
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14

Continuously Non-malleable Secret Sharing for General Access Structures 231

16. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS, pp.
227–237 (2007)

17. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science, pp. 434–452 (2010)

18. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: ACNS, pp. 1–19 (2018)

19. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting:
adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 448–479. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 16

20. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

21. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS, pp. 308–317 (1990)

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

23. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: STOC, pp. 685–698 (2018)
24. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.

In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–
530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 17

25. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
STOC, pp. 1128–1141 (2016)

26. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

27. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 16

28. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 12

29. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. Cryptology ePrint
Archive, Report 2018/1138 (2018). https://ia.cr/2018/1138

30. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: STOC, pp. 1144–1156 (2017)

31. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Non-malleable
secret sharing against affine tampering. CoRR abs/1902.06195 (2019). http://
arxiv.org/abs/1902.06195

32. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

33. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. Cryp-
tology ePrint Archive, Report 2019/181 (2019). https://eprint.iacr.org/2019/181

34. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 608–639. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 21

https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://ia.cr/2018/1138
http://arxiv.org/abs/1902.06195
http://arxiv.org/abs/1902.06195
https://doi.org/10.1007/978-3-642-32009-5_30
https://eprint.iacr.org/2019/181
https://doi.org/10.1007/978-3-319-96878-0_21

232 G. Brian et al.

35. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

36. Srinivasan, A., Vasudevan, P.N.: Leakage Resilient secret sharing and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 480–
509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 17

https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-030-26951-7_17

Interactive Non-malleable Codes

Nils Fleischhacker1(B), Vipul Goyal2, Abhishek Jain3,
Anat Paskin-Cherniavsky4, and Slava Radune4,5

1 Ruhr University Bochum, Bochum, Germany
mail@nilsfleischhacker.de

2 Carnegie Mellon University, Pittsburgh, USA
3 Johns Hopkins University, Baltimore, USA

4 Ariel University, Ariel, Israel
5 The Open University of Israel, Ra’anana, Israel

Abstract. Non-malleable codes (NMC) introduced by Dziembowski
et al. [ICS’10] allow one to encode “passive” data in such a manner
that when a codeword is tampered, the original data either remains com-
pletely intact or is essentially destroyed.

In this work, we initiate the study of interactive non-malleable codes
(INMCs) that allow for encoding “active communication” rather than
passive data. An INMC allows two parties to engage in an interactive
protocol such that an adversary who is able to tamper with the protocol
messages either leaves the original transcript intact (i.e., the parties are
able to reconstruct the original transcript) or the transcript is completely
destroyed and replaced with an unrelated one.

We formalize a tampering model for interactive protocols and put
forward the notion of INMCs. Since constructing INMCs for general
adversaries is impossible (as in the case of non-malleable codes), we con-
struct INMCs for several specific classes of tampering functions. These
include bounded state, split state, and fragmented sliding window tam-
pering functions. We also obtain lower bounds for threshold tampering
functions via a connection to interactive coding. All of our results are
unconditional.

1 Introduction

Error correcting codes allow a message m to be encoded into a codeword c, such
that m can always be recovered even from a tampered codeword c′ if the tam-
pering is done in a specific way. More formally, the class of tampering functions,
F , tolerated by traditional error correction codes are ones that erase or modify

N. Fleischhacker—Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.
Vipul Goyal is supported in part by NSF grant 1916939, a gift from Ripple, a gift from
DoS Networks, a JP Morgan Faculty Fellowship, and a Cylab seed funding award.
Abhishek Jain is supported in part by NSF SaTC grant 1814919 and Darpa Safeware
grant W911NF-15-C-0213.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 233–263, 2019.
https://doi.org/10.1007/978-3-030-36033-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_9

234 N. Fleischhacker et al.

only a constant fraction of the codeword c. However, no guarantees are provided
on the output of the decoding algorithm when the tampering function f /∈ F . A
more relaxed notion, error detecting codes, allows the decoder to also output a
special symbol ⊥ when m is unrecoverable from c′. But here too, the codes can
not tolerate many simple tampering functions such as a constant function.

Non-malleable Codes. The seminal work of Dziembowski, Pietrzak, and Wichs
[36] introduced the notion of non-malleable codes (NMC). Informally, an encod-
ing scheme code := (Enc,Dec) is an NMC against a class of tampering functions,
F , if the following holds: given a tampered codeword c′ = f(Enc(m)) for some
f ∈ F , the decoded message m′ = Dec(c′) is either equal to the original message
m or the original message is essentially “destroyed” and m′ is completely unre-
lated to m. In general, NMCs cannot exist for the set of all tampering functions
Fall. To see this, observe that a tampering function that simply runs the decode
algorithm to retrieve m and then encodes a message related to m trivially defeats
the requirement above. In light of this observation, a rich line of works has dealt
with constructing non-malleable codes for different classes of tampering attacks
(see Sect. 1.2 for a discussion).

While non-malleable codes have the obvious advantage that one can obtain
meaningful guarantees for a larger class of tampering functions (compared to
error correcting codes), they have also found a number of interesting applications
in cryptography. In particular, NMCs have found a number of applications in
tamper-resilient cryptography [36,40,41,60] and they have also been useful in
constructing non-malleable encryption [29]. Recently, non-malleable codes were
also used to obtain a round optimal protocol for non-malleable commitments
[53], as well to build non-malleable secret sharing schemes [51,52].

Interactive Non-malleable Codes. In this work, we seek to generalize the notion
of non-malleable codes. Regular non-malleable codes can be seen as dealing with
“passive” data in that data is encoded and, upon being tampered, the data either
remains completely intact or is essentially destroyed. Now consider the following
scenario. Two parties, each holding their own inputs are interested in running
a protocol to perform some task involving their inputs, such as computing a
joint function on them. Now, say an adversary is able to somehow get access
to their communication channel and modify messages being sent in the proto-
col. We would like to have a similar guarantee: either the original transcript of
the underlying protocol remains fully recoverable from the encoded communica-
tion, or, very informally, the original transcript is essentially “destroyed” and
any transcript possibly recovered is “unrelated” to the interaction that was orig-
inally supposed to take place. Hence, we are concerned with encoding “active
communication” rather than passive data.

An interesting special case of the above scenario could also occur in terms of
computation being performed on a piece of hardware. Suppose several different
chips on an integrated circuit board are communicating via interconnecting wires
to perform some computation on the secrets stored within them. An adversary
could tamper in some way with the communication going through those wires.

Interactive Non-malleable Codes 235

We would like to require that either the computation remains intact, or that
the original computation is “destroyed” and whatever computation takes place
is completely unrelated.

Of course, this basic idea raises a number of questions: What does it actu-
ally mean for a computation to be “unrelated” to another computation. How
much power can the tampering adversary reasonably be allowed to have? Are
we concerned with the secrecy of inputs in this setting?

In the setting of non-interactive non-malleable codes (INMCs), “unrelated” is
easily defined as independent of the original message. However, in the interactive
setting, things are a bit more complicated since there exists more than one input.
Indeed, there are multiple notions of non-malleability that we can envision in
the interactive setting. Below, we discuss possible notions of non-malleability.

Suppose, Alice and Bob are holding inputs x and y respectively and they
jointly execute a protocol that results in a transcript τ when not tampered with.
Now suppose an adversary tampers with the messages sent over the communi-
cation channel and Alice and Bob recover transcripts τ1 and τ2, respectively.
Then, our first notion of non-malleability requires that either τ1 = τ (i.e., the
original transcript remains intact) or, the distribution of τ1 should be completely
independent of the distribution of Bob’s input y.

We note that this notion still allows an adversary to simply “cut off” Bob
from the communication and essentially execute the protocol honestly, but with
a different input y′. Clearly, this is not an attack on the notion described above,
since y′ and thereby the resulting transcript τ1 is distributed completely inde-
pendently of y. Nevertheless, one might want to prevent this as well, since the
output after tampering still depends on one of the inputs.

To this end we consider a strengthening of the above basic definition where a
party must receive either the correct transcript τ or ⊥. This notion is achievable
if the tampering function is not strong enough to cut off and impersonate one
of the parties. It is easy to see that this notion is stronger than error detection:
whether or not a party receives ⊥ must not depend on the inputs (x, y), i.e. input
dependent aborts must be prevented.1

We do not explicitly model any secrecy requirements for the inputs (x, y).
We view non-malleability of codes in the interactive setting as a separate prop-
erty and as such it should be studied independently. However, our definitions
of encodings work by defining them using simulators relative to an underlying
protocol. This formalization ensures that any security properties such as secrecy
of inputs of the underlying protocol are preserved under the encoding.

Relationship to Non-malleable Codes. Consider the message transfer function-
ality where the transcript is simply the transferred message x. An interactive
non-malleable coding protocol for this functionality gives the following guaran-
tee: Bob either receives x from Alice or a value x′ unrelated to x. It is easy to
see that a one round interactive non-malleable coding protocol for this message

1 This is similar in spirit to the definition of non-malleable codes where, whether or
not the decoder gets ⊥, can also not depend upon the original message m.

236 N. Fleischhacker et al.

transfer functionality is the same as a non-malleable code (encoding message x)
for the same class of tampering functions. Indeed, the question that we consider
in our work can be seen as generalizing non-malleable codes to more complex
protocols potentially involving multiple rounds of interaction and both inputs x
and y.

Our notion of INMCs is harder to achieve in one sense since more complex
functionalities are involved, and yet, is easier to achieve in another sense since
one is allowed multiple rounds of interaction and the order of messages introduces
a natural limit on the power of an adversary, since she cannot tamper depending
on “future” messages.

Similar to non-malleable codes, INMCs are impossible to achieve for arbitrary
tampering functions. Very roughly, consider the first message of the protocol
transcript which contains non-trivial information about the input x of Alice. The
adversary at this point decodes and reconstructs this partial information about
the input x, chooses a related input x′ consistent with the partial information
and simply executes the protocol honestly with Bob from this point onwards
(cutting Alice off completely). A similar argument can also be made for the
other direction. In fact, we even rule out INMCs for a more restricted class of
threshold tampering functions using a very similar argument in Sect. 4. This
suggests that, similar to non-malleable codes, we must focus on specific function
classes for building INMCs.

One seemingly obvious approach of constructing INMCs even for multi-round
protocols would be to directly use non-malleable codes. I.e., encode each message
of an underlying protocol independently. The hope would be that this results
in an INMC that allows at least independent tampering of each message under
the same class of tampering functions as the original NMC. However, this näıve
approach fails to produce INMCs for any meaningful class of functions.

As a counter example consider the following protocol: Alice has inputs (x, y)
and sends these to Bob in two separate messages. Bob receives the messages
and outputs (x, y). With the above approach, x and y would be encoded sepa-
rately as Enc(x),Enc(y). Let f be any tampering function, such that decoding
Dec(f(Enc(x)) �= x. Such functions exist within the class of tampering functions
against which the NMC is supposed to be secure, unless the NMC is in fact error
correcting. A valid tampering function against the supposed INMC could then
tamper with the first message using f and not tamper with the second message
at all. This would result in Bob receiving z �= x and y and outputting (z, y).
Clearly (z, y) and (x, y) are related. Therefore, the protocol is not non-malleable.
This counter example works even when more complex constructions such as the
NMC against streaming space-bounded tamperings by Ball et al. [11] are used.

An interesting additional hurdle that needs to be overcome when construct-
ing INMCs when compared to non-malleable codes is inherent leakage. Because
messages in the protocol are tampered successively, a tampering function can
use conditional aborts to communicate some information to future tampering
functions. Let F be some class of tampering functions. Say a tampering func-
tion f ∈ F looks at message mi sent in round i of the protocol and aborts

Interactive Non-malleable Codes 237

unless mi is “good” in some sense. In future rounds, even if the definition of
F precludes f from having any knowledge of mi, the tampering function still
learns that mi must have been “good”, since the protocol would have otherwise
aborted. We deal with this inherent leakage by bounding the leakage and using
leakage resilient tools.

Relationship to Interactive Coding. Our notion can be seen as inspired by
the notion of interactive coding (IC) [64–66]. Essentially, INMCs are to non-
malleable codes what IC is to error correcting codes. In interactive coding, we
require that the original transcript must remain preserved in face of an adversary
tampering the message over the communication channel. INMCs only require
something weaker, namely, that either the transcript must remain preserved or
that the original transcript be destroyed and any possibly reconstructed tran-
script be independent of the inputs to the protocol.

An obvious advantage of such a weaker notion is that one could hope to
achieve it for a larger class of tampering functions compared to ICs. Indeed, ICs
are achievable only for threshold adversaries, namely, an adversary which only
tampers with a fixed threshold number of bits of the communication (typically a
constant fraction of the entire communication). All guarantees are lost in the case
an adversary tampers with more bits than allowed by this threshold. However,
as we discuss later, INMCs are achievable for adversaries which could potentially
tamper with every bit going over the communication channel. For the specific
case of threshold tampering functions, however, we are able to show that lower
bounds on the fraction of the communication that can be tampered with transfer
from ICss to INMCs.

1.1 Our Results and Techniques

In this work we initiate the study of INMCs. We formalize the tampering model
and put forward a notion of securityfor INMC. Since achieving INMC for general
adversaries is impossible, we turn our attention to specific classes of tampering
functions.

We show both positive and negative results. We first establish a negative
result for threshold tampering functions by showing that INMCs for threshold
tampering imply ICs for the same class of tampering functions, thereby transfer-
ring lower bounds from interactive coding to INMCs. We then provide several
positive results for specific classes of tampering functions by constructing general
(unconditional) compilers Σ that can encode an arbitrary underlying protocol
Π in a non-malleable fashion (for the appropriate class of tampering functions).

Threshold Tampering Functions. A threshold tampering function is not
restricted in its knowledge of the protocol transcript or in its computational
power, but can only modify a fixed fraction (say 1/4) of the bits in the tran-
script. For this class, lower bounds are known for the case of interactive coding.
Specifically Braverman and Rao [18] showed that non-adaptive IC can tolerate
tampering with at most 1/4 of the transcript, and Ghaffari, Haeupler, and Sudan

238 N. Fleischhacker et al.

[50] showed that an adaptive IC can tolerate tampering with at most 2/7 of the
transcript. When looking for stronger classes of tampering functions, the first
natural question to ask is therefore whether the weaker notion of INMCs might
allow us to circumvent these lower bounds. However, it turns out that this is not
the case.

We show that any INMC for a class of threshold tampering functions that
allows only a negligible non-malleability error in fact implies an IC for the same
class of functions in the common reference string (CRS) model and with parties
running in super-polynomial time. While the resulting IC is not efficient and
requires a CRS, it turns out that the lower bounds of Braverman and Rao [18]
and Ghaffari, Haeupler, and Sudan [50] also apply in this setting, therefore ruling
out the existence of such INMCs. This result can be found in Sect. 4. In fact,
this impossibility even holds if we apply the notion of INMC to a weaker notion
of encodings which does not imply knowledge-preservation. Recall that we are
using a strong notion of protocol encoding that ensures that security guarantees
of the underlying protocol are preserved. On the flip side, positive results for
IC only translate to the positive result for this weaker notion of INMC. Getting
meaningful positive result for our stronger INMC definition is an interesting
open problem.

Interestingly (and fortunately), the above connection only holds for threshold
tampering functions. Indeed, for the remaining families of tampering functions
we consider in this paper, IC is naturally impossible and yet we are able to get
positive results for INMC.

Bounded State Tampering Functions. For our first positive result we consider
the class of tampering functions which can keep a bounded state. In more detail,
the adversary is assumed to be arbitrarily computationally powerful, and we do
not limit the size of the memory available for computing the tampering function.
Instead, a limit is only placed on the size of the state that can be carried over
from tampering one message to tampering with the next. That is, an adversary in
this model can iteratively tamper with each message depending on some function
of all previous messages, but the size of this information is limited to some fixed
number of bits s. It is easy to see that achieving the notion of error correction
is impossible for such a tampering function family since an adversary even with
no storage can change every protocol message to an all zero string.

Adversaries with limited storage capabilities constitute a very natural model
and similar adversaries have been considered before in many settings, starting
with the work by Cachin and Maurer [19] on encryption and key exchange secure
against computationally unbounded adversaries. In a seemingly related recent
work, Faust et al. [39] studied non-malleable codes against space-bounded tam-
pering. However in their setting, a limit is placed on the size of memory available
to compute the tampering function (indeed it is meaningless to consider the state
carried over from one message to the next in the non-interactive setting).

We give an unconditional positive result for this family of tampering func-
tions: Any underlying protocol Π can be simulated by a protocol Σ which is
an INMC against bounded state tampering functions. A näıve way of trying to

Interactive Non-malleable Codes 239

construct such a compiler would be to try and encode each message of Π using
a suitable (non-interactive) non-malleable code. However, this is doomed to fail.
For a single message setting, our tampering adversary simply translates to an
unbounded general adversary for which designing non-malleable codes is known
to be impossible. Hence, getting a positive result inherently relies on making use
of additional interaction.

The key technical tool we rely on to construct our compiler is the notion of
seedless 2-non-malleable extractors introduced by Cheraghchi and Guruswami
[25] as a natural generalization of seeded non-malleable extractors [34]. However,
finding an explicit construction of such extractors was left as an open problem
by Cheraghchi and Guruswami even for the case when both the sources are
uniform. Such a construction was first given by Chattopadhyay, Goyal, and Li
[22]. The construction in [22] requires one of the sources to be (almost) uniform,
while the other source could have smaller min-entropy. We crucially rely upon
a construction of seedless 2-non-malleable extractors where at least one of the
sources could have small min-entropy. Our construction can be found in Sect. 5.

Split-State Tampering Functions. The second class we consider are split-state
tampering functions where, very roughly, the transcript is divided into two dis-
joint sets of messages and each set is tampered independently. In more detail,
the adversary can decide for each message of the protocol to be either in the first
set or the second one. To compute an outgoing message, the tampering function
takes all messages (so far) in any one set of its choice as input.

We are able to achieve interactive non-malleability for a strong class of these
tampering functions, namely c-unbalanced split-state tampering functions. A
c-unbalanced split-state tampering functions can split the transcript into two
arbitrary sets, as long as each set contains at least a 1/c fraction of the messages
(where c can be any polynomial parameter).

This notion is inspired by a corresponding notion in the non-interactive set-
ting. Split-state tampering functions for non-interactive NMC are one of the
most interesting and well studied classes of tampering functions in that setting.
It was already introduced in the seminal work of Dziembowski, Pietrzak, and
Wichs [36] and has since then been studied in a large number of works [2,3,24–
26,35,60].

We give an unconditional positive result for this family of tampering func-
tions: Any underlying protocol Π can be simulated by a protocol Σ which is
an INMC against split-state tampering functions. The key technical tool we rely
on in this case is a new notion of tamper evident n-out-of-n secret sharing we
introduce in this work. Such a secret sharing scheme essentially guarantees that
any detectable tampering with the shares can be detected when reconstructing
the secret. Our construction can be found in Sect. 6.

Sliding Window Tampering Function. In the sliding window model, the tamper-
ing function “remembers” only the last w messages. In other words, the tam-
pering function gets as input the last w (untampered) messages of the protocol
transcript to compute the tampered message. The sliding window model is very

240 N. Fleischhacker et al.

natural and has been considered in a variety of contexts, such as error correcting
codes [48] including convolution codes, streaming algorithms, and even in data
transmission protocols such as TCP [55].

Our results in fact extend to a stronger model in which we can handle what
we call fragmented sliding window tampering functions. Functions in this class
are allowed to remember any w of the previous protocol messages (rather than
just the w most recent ones). Thus in some sense, the window of message being
stored by the tampering function is not continuous but “fragmented”.

Comparing this class of functions with bounded-state tampering functions,
we can see, that here the tampering function can no longer retain some informa-
tion about all previous messages, but instead all of the information about some
previous messages. Because there is no hard bound on the size of the state, but
instead on the number of messages which potentially differ in length, this means
that the two models are incomparable.

Comparing this class with c-unbalanced split-state tampering functions, we
notice that here the maximum size of the window is fixed and does not scale
with the number of messages in the protocol. On the other hand, however, the
different sets of messages which the tampering can depend on are not required
to be disjoint. E.g., the tampering of each single protocol messages could depend
on the first message of the protocol, something that would not be possible in the
case of split-state functions.

While this model has important conceptual differences to the our split state
model, the techniques used to achieve both of them are almost identical. In
particular, essentially the same protocol as in the case of c-unbalanced split-
state tampering functions also works in this case, however the proof of security
differs slightly. Our construction can be found in Sect. 7.

A Common Approach. A common theme in all of our constructions is the follow-
ing: We only attempt to transfer a single message in a non-malleable way and
then use this message to secure the rest of the protocol. In more detail, Alice
and Bob essentially exchange a random key k possibly using multiple rounds of
interaction such that the following holds. The two parties either agree on the
correct key k or receive completely independent keys k1 and k2, (or, ⊥ which
leads them to abort the protocol). Subsequently, all future protocol messages
will be encrypted with a one-time pad and authenticated with a one-time mes-
sage authentication code using k (assuming k is long enough). This allows us to
achieve non-malleability as long as we can ensure that the tampering function
is not capable of predicting the exchanged key in any round. The reason is as
follows: as long as the key remains (almost) uniformly distributed from the point
of view of the tampering function f , the computation of f cannot depend on
the encrypted messages, and any modification of the encrypted messages would
be caught by the MAC and cause an abort independently of the inputs. The
exact way in which we are able to prevent f from gaining any knowledge of
k depends strongly upon the class of tampering functions. This leads to very
different constructions of the key-exchange phase using different technical tools.

Interactive Non-malleable Codes 241

Given the common approach described above, it may be tempting to abstract
a non-malleable key-exchange protocol as a new building block. Intuitively, this
would allow us to easily extend our construction to new classes of tampering
functions simply by designing a new key exchange protocol for said class. How-
ever, (maybe counter-intuitively) it turns out that it is very unclear how this
abstraction would work. The class of tampering functions F1 allowed for the full
INMC differs a lot from the class F2 the key-exchange would need to tolerate.
Even worse, it is not clear how F2 can be generically identified from F1. Or, the
other way round, given a key-exchange that is non-malleable relative to a class
F2, it is not clear against which class of functions the full protocol would then be
non-malleable. In fact, our constructions for split-state and for sliding-window
show that F1 can be the result of a complex interplay between the properties
of F2 and the round complexities of both the key-exchange and the original
protocol itself.

1.2 Related Works

Non-malleable Codes. To the best of our knowledge, there has been no prior work
studying non-malleable codes in the interactive setting. In the non-interactive
setting, however, there exists a large body of works studying non-malleable codes
for various classes of tampering functions as well as various variants of non-
malleable codes. We provide a brief, but non-exhaustive, survey here.

The most well-studied class in the non-interactive setting are split-state
tampering functions [2–4,24–26,35,57–60]. But other classes of tampering
functions have been studied such as tampering circuits of limited size or
depth [8,10,11,23,42], tampering functions computable by decision trees [12],
memory-bounded tampering functions [39] where the size of the available mem-
ory is a priori bounded, bounded polynomial time tampering functions [9] and
non-malleable codes against streaming tampering functions [11]. Non-malleable
codes were also generalized in several ways, such as continuously non-malleable
codes in [4,29–31,38,40,61] and locally decodable and updatable non-malleable
codes [21,32,33].

While most work on non-malleable codes deals with the information theoretic
setting, there has also been recent work [1,5,6,11] in the computational setting.
In the computational setting, the work of Chandran et al. [20] on block-wise
non-malleable codes may seem as most closely related to our setting; however,
there are important differences. Firstly, Chandran et al. do not consider the
setting where both parties may have inputs. Instead their notion is similar to the
original notion of non-malleable codes where a single fixed message is encoded.
Indeed, the entire communication is from the sender to the receiver (rather
than running an interactive bi-directional protocol between two parties). Further,
their definitions are weaker, as they inherently allow selective aborts whereas our
definitions do not suffer from this problem.

Interactive Coding. Starting with the seminal work of Schulmann [64–66], a
large body of works have studied IC schemes for two-party protocols (see, e.g.,

242 N. Fleischhacker et al.

[15,17,18,37,43–45,47,49,50,54]). Most recently, several works have also studied
IC for multiparty protocols [7,16,46,56,62] in various models.

Secure Computation without Authentication. We also mention a related work of
Barak et al. [13] on secure computation in a setting where the communication
channel among the parties may be completely controlled by a polynomial-time
adversary. The setting in their work is therefore inherently computational and
their techniques rely on using bounded concurrent secure multi-party computa-
tion and are unrelated to ours. However, our setting can indeed be seen as being
inspired by theirs.

2 Preliminaries

In this section we introduce our notation and recall some definitions needed for
our constructions and proofs.

Notation. we denote by λ the security parameter. For a distribution D, we denote
by x ←$ D the process of sampling a random variable x according to D. By U�

we denote the uniform distribution over {0, 1}�. For a set S, x ←$ S denotes
sampling from S uniformly at random. For a pair D1,D2 of distributions over a
domain X, we denote their statistical distance by

SD(D1,D2) =
1
2

∑

v∈X

∣∣∣ Pr
x←D1

[x = v] − Pr
x←D2

[x = v]
∣∣∣.

If SD(D1,D2) ≤ ε, we say that D1,D2 are ε-close. We denote by replace the
function replace : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that behaves as follows: If the
second input is a singular value s then it replaces any occurrence of same in the
first input with s. If the second input is a tuple (s1, . . . , sn) then it replaces any
occurrence of samei in the first input with si. We will write replace(D,x) for
some distribution D to denote the distribution defined by sampling d ←$ D and
applying replace(d, x).

Extractors. In our constructions we make use of two types of extractors. We first
recall the standard notion of strong two-source extractors. Two source extractors
were first implicitly introduced by Chor and Goldreich [27]. An argument due to
Barak [63] shows that any extractor with a small enough error ε is also a strong
extractor. This means we can instantiate strong extractors for example with the
two-source extractor due to Bourgain [14].

Definition 1 (Strong 2-source Extractor). A function Ext : {0, 1}n ×
{0, 1}n → {0, 1}m is a strong 2-source extractor for sources with min-entropy
k and with error ε if it satisfies the following property: If X and Y are indepen-
dent sources of length n with min-entropy k then

Pr
y ←$ Y

[SD(Ext(X, y), Um) ≥ ε] ≤ ε and Pr
x ←$ X

[SD(Ext(x, Y), Um) ≥ ε] ≤ ε.

Interactive Non-malleable Codes 243

Seedless 2-non-malleable extractors were first defined by Cheraghchi and
Guruswami [25] but their construction was left as an open problem. The def-
inition was finally instantiated by Chattopadhyay et al. [22]. Such an extrac-
tor allows to non-malleably extract an almost uniform random string from two
sources with a given min-entropy that are being tampered by a split-state tam-
pering function.

We closely follow the definition from [22].

Definition 2 (2-non-malleable Extractor). A function Ext : {0, 1}n ×
{0, 1}n → {0, 1}m is a 2-non-malleable extractor for sources with min-entropy
k and with error ε if it satisfies the following property: If X and Y are inde-
pendent sources of length n with min-entropy k and f = (f0, f1) is an arbi-
trary 2-split-state tampering function, then there exists a distribution Df over
{0, 1}m ∪ {same} which is independent of sources X and Y , such that

SD
((
Ext(X,Y),Ext(f0(X), f1(Y))

)
,
(
Um, replace(Df , Um)

)) ≤ ε

where both Um refer to the same uniform m-bit string.

Tamper Evident Secret Sharing. We will define a new notion of tamper evi-
dent secret sharing in the following. Such tamper evident secret sharing schemes
behave the same as regular secret sharing, except that we are guaranteed that
the reconstruction algorithm is able to detect any detectable tampering of the
shares that would lead to a different reconstructed message and will reject them
if they have been tampered with.

Intuitively a tampering is detectable if it meets two criteria: First it must
leave at least one of the shares unchanged, since otherwise the shares could
simply be replaced by a completely independent sharing, which is trivially unde-
tectable. Second, each tampered share must be independent of at least one of the
untampered shares, except for some bounded leakage. This is formally defined
in the following.

Definition 3 (n-out-of-n Secret Sharing). A pair of algorithms (Share,
Reconstruct) is a perfectly private, n-out-of-n secret sharing scheme with message
space {0, 1}� and share length �′, if all of the following hold.

1. Correctness: Given all shares, the secret can be reconstructed. I.e., for any
secret m ∈ {0, 1}�, it holds that Pr[Reconstruct(Share(m)) = m] = 1.

2. Statistical Privacy: Given any strict subset of shares, the secret remains
perfectly hidden. I.e., for any two secrets m0,m1 ∈ {0, 1}� and any set of
indices I � {1, . . . , n} it holds that for any (computationally unbounded) dis-
tinguisher D

Pr
�s←Share(m0)

[D((si)i∈I) = 1] = Pr
�s←Share(m1)

[D((si)i∈I) = 1] .

Definition 4 (Detectable Tampering for Secret Sharing). Let (Share,
Reconstruct) be an n-out-of-n Secret Sharing scheme, let m ∈ {0, 1}� be a mes-
sage. A tampering function f for a secret sharing (s1, . . . , sn) of m with ν bits

244 N. Fleischhacker et al.

of leakage is described by functions (f1, . . . , fn), sets of indices I in
1 , . . . , I in

n and
leakage functions (leak1, . . . , leakn) such that leaki : {0, 1}∗ → {0, 1}ν and

f(s1, . . . , sn) =
(
f1

(
(sj)j∈I in

1
, leak1

(
(sj)j �∈I in

1

))
, . . . , fn

(
(sj)j∈I in

n
, leakn

(
(sj)j �∈I in

n

)))
.

For any fixed secret sharing 	s ← Share(m) let M be the set of indices i, such
that s′

i �= si for (s′
1, . . . , s

′
n) := f(s1, . . . , sn). A tampering function f is called

detectable for 	s if it holds that for all i ∈ M we have M ∪ I in
i � {1, . . . , n}. We

define the predicate Dtct(s, f) to be 1 iff f is detectable for 	s.

This now allows us to formally define tamper evident n-out-of-n secret sharing.

Definition 5 (Tamper Evident n-out-of-n Secret Sharing). A perfectly
private secret sharing scheme (Share,Reconstruct) is said to be ε(λ)-tamper evi-
dent for up to ν bits of leakage if the reconstruction algorithm will reject shares
with overwhelming probability if they have been tampered detectably with up to ν
bits of leakage. I.e., for all m ∈ {0, 1}� and all detectable tampering functions f
with ν bits of leakage it holds that

Pr
�s←Share(m)

[Dtct(s, f) = 1 ∧ Reconstruct(f(s)) �∈ {m,⊥}] ≤ ε(λ)

Please refer to the full version of this paper for an instantiation of this notion
from XOR-based secret sharing and an information theoretic message authentica-
tion code. The concept of tamper evident secret sharing may seem superficially
similar to non-malleable secret sharing [51] but the two concepts are in fact
incomparable. The guarantee of tamper evident secret sharing is very strong,
requiring that the secret cannot be changed except to ⊥, but only holds against
a weak class of tamperings that must leave at least one share unchanged. In con-
trast, NM-secret sharing provides a weaker guarantee, namely that a tampered
secret must be unrelated, but against a stronger class of tampering functions.

3 Definitions

In this section we first formally define interactive protocols and encodings of inter-
active protocols. We then introduce our notions of non-malleability for encodings
of interactive protocols.

3.1 Interactive Protocols

We consider protocols Π between a pair of parties P0, P1 (also called Alice and
Bob, respectively, for convenience) for evaluating functionalities g = (g0, g1) of
the form gb : X ×Y → Z, where X,Y,Z are finite domains. Alice holds an input
x ∈ X, and Bob holds y ∈ Y , and the goal of the protocol is to interactively

Interactive Non-malleable Codes 245

evaluate the functionality, such that at the end of the protocol Alice outputs
g0(x, y) and Bob outputs g1(x, y). The interactive protocol consists of r rounds,
in each of which a single message is sent. Without loss of generality we assume
that the parties in Π alternate in sending their messages and that Alice always
sends the first message. Formally, an interactive protocol Π between two parties
is described by a pair of “next message” functions π0, π1 (or πA, πB) and a pair
of output functions outA and outB . The next message function πA (πB) takes
the input x (y), round number i, and message sequence sent and received by
Alice (Bob) so far transA (transB) and outputs the next message to be sent by
Alice (Bob). For simplicity of notation, we assume πA, πB always output binary
strings. Furthermore, we assume that each message output by πA, πB is always
of the same length �. The output function outA (outB) takes as input x (y) and
the final message sequence sent and received by Alice (Bob) transA (transB) and
outputs Alice’s (Bob’s) protocol output. We denote by Trans(x, y) the function
mapping inputs x, y to the transcript of an honest execution of Π between A(x)
and B(y). Note that in this setting we do not explicitly consider probabilistic
protocols. However, this is not a limitation, since any probabilistic protocol can
be written as a deterministic protocol with additional random tapes given as
input to the two parties A and B.

This now allows us to define both correctness of a protocol as well as encod-
ings of interactive protocols.

Definition 6 (Correctness). A protocol Π, is said to ε-correctly evaluate a
functionality (g0, g1) if it holds that without tampering the output of each party
outb(xb, transb) = gb(x0, x1) with probability ≥ 1 − ε.

Definition 7 (Encoding of an Interactive Protocol). An encoding Π ′ of a
protocol Π = (A,B) is defined by two simulators S0, S1 with black-box access to
stateful oracles encapsulating the next message functions of A and B respectively.
The protocol Π ′ = (SA

0 , SB
1) is an ε-correct encoding of protocol Π = (A,B) if

for all inputs x, y, Π ′ = (SA(x)
0 , S

B(y)
1) ε-correctly evaluates the functionality

(Trans(x, y),Trans(x, y)).

We note that, given a correct encoding Π ′ of protocol Π evaluating functionality
(g0, g1) it is easy to also evaluate (g0, g1). To do so, simply run Π ′ resulting in
output τ = Trans(x, y) and then evaluate outA(x, τ) and outB(y, τ) respectively.
Definition 7 slightly differs from the interactive coding literature [15,65]. In most
of the IC literature, encodings are not defined relative to a stateful oracle, but
instead relative to a next-message function oracle. This difference is significant,
because, as observed by Chung et al. [28] in the context of IC, an encoding as
defined in the IC literature can leak the parties’ inputs under adversarial errors.
I.e., security guarantees of Π are not necessarily preserved under Π ′. In con-
trast, under Definition 7, any security guarantee of Π is preserved under Π ′.
This follows from the fact that the encoding is defined using a pair of simulators
with only black-box access to A and B without the ability to know the inputs
or rewind the participants of the underlying protocol. Therefore, access to this

246 N. Fleischhacker et al.

oracle is equivalent to communicating with an actual instance of A (or B respec-
tively). Any attacker against Π – whether a man in the middle attacker or an
attacker acting as either A or B – always has at least black-box access to the
two parties. This means she can easily simulate Π ′ simply by running S0, S1

herself. Thus any attack against some arbitrary security property of Π ′ directly
corresponds to an attack against the same property of Π, implying that security
guarantees of Π are preserved under Π ′.

Protocols Under Tampering. It may appear tempting to try and define non-
malleability in the interactive setting in the same manner as regular non-
malleability by, e.g, considering tampering on the full transcript of the protocol.
Split-state tampering for an r-round protocol would then for example mean that
an adversary could separately tamper on the first n/2 and the second n/2 of
the protocol messages. However, at least in the synchronous tampering setting
we’re focusing on such a definition would be very problematic. It would allow
an adversary to tamper with the first message depending on future messages,
which themselves could depend on the first message, therefore potentially caus-
ing an infinite causal loop, even if we allow such “time-travelling” adversaries.
So instead we make the reasonable restriction that tampering on each message
must happen separately and can only depend on past messages.

We formally describe the process of executing a protocol under tampering
with a tampering function f ∈ F , from some family of tampering functions
F . First, empty sequences of sent and received messages transA = transB = ∅
are initialized. Lets assume that it is Alice’s turn to send a message in round i.
The next message function πA is evaluated to compute the next message mi :=
πA(x, i, transA). Then mi is added to Alice’s transcript transA := transA‖mi.
Next the tampering function is applied to compute the tampered message m′

i :=
f(m1, . . . ,mi) and m′

i is added to transB := transB‖m′
i. If it is Bob’s turn the

execution proceeds identically with reversed roles. Finally the output functions
of Alice and Bob are evaluated respectively as outA(x, transA), outB(y, transB).
Note that due to tampering it does not necessarily hold for the sequences of
messages transA = mA

1 , . . . ,mA
r and transB = mB

1 , . . . ,mB
r that mA

i = mB
i .

We note that this only models “synchronous” tampering, meaning that the
adversary cannot drop or delay messages or desynchronize the two parties by first
running the protocol with one party and then the other. This choice is partially
inspired by the literature on interactive coding and helps keep our definitions
simple. However, cryptographic primitives such as non-malleable commitments
have been studied in the setting where there is a non-synchronizing man-in-the-
middle adversary. We remark that even in these settings, getting a construction
for the synchronous case is often the hardest (for example, there exist general
compilers for non-malleable commitments to go from synchronous security to
non-synchronous security [67]). We leave the study of more general tampering
models for INMCs as an interesting topic for future work.

Interactive Non-malleable Codes 247

3.2 Interactive Non-malleable Codes

In the non-interactive setting, non-malleability intuitively means that after tam-
pering the result should be either the original input, or the original input should
be completely destroyed, i.e., the output should be independent of the original
input. In the interactive setting, there are two different outputs and two different
outputs and the question is which output (or pair of outputs) should be inde-
pendent from which input(s). This leads to an entire space of possible notions,
however we settle for the strongest possible – and arguably most natural – notion:
In this notion we simply call protocol-non-malleability, we require that the out-
put of Alice and Bob respectively are either the correct transcript Trans(x, y) or
⊥ and that the product distribution over the two is (almost) completely inde-
pendent of the two parties’ respective inputs x and y. It is very important that
the decisions whether to output ⊥ or not must be made independently of x and
y, since otherwise an adversary could potentially force selective aborts and thus
learn at least one bit of information about the combined input. This means that
protocol-non-malleability not only implies error detection, but is even stronger,
since in error detection the output distribution over the real output and ⊥ is not
required to be independent of the inputs.

We note, that weaker definitions may still be meaningful and are not nec-
essarily trivial. In Sect. 4 we will show that even for a much weaker notion of
protocol-non-malleability strong lower bounds exist in the case of threshold tam-
pering functions. We formally define protocol-non-malleability in the following.

Definition 8 (Protocol Non-malleability). An encoding Π ′ = (SA
0 , SB

1), of
protocol Π = (A,B) is ε-protocol-non-malleable for a family F of tampering
functions if the following holds: For each tampering function f ∈ F there exists a
distribution Df over {⊥, same}2 such that for all x, y, the product distribution of
S

A(x)
0 ’s and S

B(y)
1 ’s outputs is ε-close to the distribution replace(Df ,Trans(x, y)).

4 Lower Bounds for Threshold Tampering Functions

Threshold tampering functions are classes of tampering functions where the func-
tion is only limited in the fraction of the messages they can tamper with. For
these classes of tampering functions, lower bounds are known in the case of
interactive codes. Specifically Braverman and Rao [18] showed that non-adaptive
interactive codes can tolerate tampering with at most 1/4 of the transcript, and
Ghaffari, Haeupler, and Sudan [50] showed that an adaptive interactive code
can tolerate tampering with at most 2/7 of the transcript. A natural question to
ask is whether one can bypass these lower bounds in the case of non-malleable
interactive codes. Unfortunately, we show in the following that the known lower
bounds for interactive coding translate to identical lower bounds for negl(�)-non-
malleable interactive coding. In fact, we show that the lower bounds even apply
to a much weaker form of protocol-non-malleability, where each party’s output
by itself (rather than the product distribution of both outputs) only needs to be
independent of the other party’s input.

248 N. Fleischhacker et al.

The basic idea of this lower bound is essentially to show that a non-malleable
interactive code is also a regular interactive code. In any encoded protocol, if
the output of one party in the underlying protocol depends non-trivially on
the other party’s input (which should always be the case since otherwise the
communication is completely unnecessary) then information theoretically, the
transcript must leak this information. If the encoding was not error correcting,
then that means that there is a way for a threshold tampering function to cause
at least one of the parties to abort. Since the tampering function is unlimited in
it’s knowledge of the transcript, it can extract the information about one of the
parties’ input and depending on the function of the input thus revealed either
cause the abort or not. This would be an input dependent abort which clearly
means that the encoding is not non-malleable.

However, this straightforward approach does not work. The reason is, that
the information about the input might only be revealed in say the ith message
of protocol, while the threshold tampering function requires tampering with
earlier messages to cause the abort. But there is a way around this problem. If
we can cleanly define which message in the protocol is the first message that
reveals information about the input, then we can construct another INMC in
the CRS model, where all previous messages are pushed into the CRS. This is
possible since those messages are “almost” independent of the actual input and
it is possible for the INMC to (inefficiently) sample a consistent internal state,
once it gets the input. This means that now the information about the input
is revealed in the very first protocol message and thus the approach described
above works.

For the lower bound to translate to INMC, we therefore need that the lower
bounds for IC apply also to inefficient interactive encodings in the CRS model.
Luckily, this follows easily from the structure of the results in [18] and [50]. We
discuss the application of the bounds to the CRS model in a bit more detail in
the full version.

As mentioned above, we can in fact show this lower bound for a much weaker
form of non-malleability we formally define in the following.

Definition 9 (Weak Protocol Non-malleability). An encoding Π ′ = (SA
0 ,

SB
1), of protocol Π = (A,B) is ε-weakly-protocol-non-malleable for a family

F of tampering functions if the following holds: For each tampering function
f ∈ F and for each x (resp. y) there exists a distribution DA

f,x (resp. DB
f,y)

over {⊥, same} ∪ {0, 1}n such that for all y (resp. x), the output distribution of
S

A(x)
0 (resp. S

B(y)
1) is ε-close to the distribution replace(DA

f,x,Trans(x, y)) (resp.
replace(DB

f,y,Trans(x, y))).

It is easy to see, that this notion is strictly weaker than protocol-non-malleability
as defined in Definition 8. If a distribution Df as required by Definition 8 exists,
then DA

f,x and DB
f,y can easily be sampled by sampling from Df and throwing

away half of the output. On the other hand, since DA
f,x can depend on x, it

does not help in sampling a distribution Df that is required to be (almost)
independent of x.

Interactive Non-malleable Codes 249

Theorem 1. Let Π = (A,B) be an r-round protocol with inputs x, y ∈ {0, 1}�

such that there exists at least one triple of inputs (x∗
1, x

∗
2, y

∗) or (x∗, y∗
1 , y

∗
2) such

that Trans(x∗
1, y

∗) �= Trans(x∗
2, y

∗) or Trans(x∗, y∗
1) �= Trans(x∗, y∗

2) respectively.
Let Π ′ be an δ(�)-correct, negl(�)-weakly-protocol-nonmalleable INMC for proto-
col Π for a family F of threshold tampering functions. Then there also exists an
(computationally unbounded) interactive code Π in the CRS model for the same
protocol Π and the same family of threshold tampering functions F .

Due to space constraints, the proof of Theorem 1 is deferred to the full version
of this paper.

Applying the Lower Bound to Other Tampering Functions. It is natural
to ask whether the lower bound stated above also applies to other classes of
functions. This would be unfortunate, since it would trivially rule out INMCs
for most classes of tampering functions. However, fortunately, this is not the
case.

In the proof of Theorem 1, we explicitly use that the tampering function
at any point has complete knowledge of the full transcript so far and is com-
pletely unbounded in the resources necessary to compute the tampering. It then
follows that if the transcript information theoretically reveals anything about
the inputs, then the tampering function can extract this information and cause
a conditional abort, thus allowing for the proof to go through. In each of the
classes of tampering functions we consider in the following sections, however, the
tampering functions are restricted in one way or another in its view of the full
transcript. This means that the proof no longer applies, since even when the full
transcript contains information about the inputs, the tampering function is no
longer capable of extracting it.

In fact, we explicitly exploit this observation in each of our protocols. Our
protocols consist of an initial input-independent phase, where key material is
established. This phase is constructed in such a way that in any future round,
the established key material will be almost uniform from the point of view of
the tampering function. Using information theoretically secure encryption and
authentication we can then execute the underlying protocol in such a way that
the transcript of that execution is remains independent of the input from the
point of view of the tampering function.

5 Bounded State Tampering

The first class of tampering functions we consider are tampering functions with
bounded state. This is a very natural model in which adversaries are assumed to
be arbitrarily powerful, but there exists an a priori upper bound on the size of
the state they can hold. Similar adversaries have been considered before in many
settings, starting with the work by Cachin and Maurer [19] on encryption and key
exchange secure against computationally unbounded adversaries. Recently, in
related work, Faust et al. [39] studied non-malleable codes against space-bounded

250 N. Fleischhacker et al.

tampering. However, the notion of bounded state tampering we introduce in this
section is stronger than one would expect from näıvely extending the notion to
interactive non-malleable codes. In particular we do not limit the size of the
memory available for computing the tampering function. Instead, a limit is only
placed on the size of the state that can be carried over from tampering one
message to tampering with the next. I.e., the idea is, that an adversary in this
model can iteratively tamper with each message depending on some function of
all previous messages, but the size of this information is limited to some fixed
number of bits s. We formally define this in terms of a tampering function in
the following.

Definition 10 (Bounded State Tampering Functions). Functions of the
class of s-bounded state tampering functions Fs

bounded for an r-round interactive
protocols are defined by an r-tuple of pairs of functions ((g1, h1), . . . , (gr, hr))
where the range of the functions hi is {0, 1}s. Let m1, . . . ,mi be the messages
sent by the participants of the protocol in a partial execution. The tampering
function for the ith message is then defined as

fi(m1, . . . ,mi) := gi

(
mi, hi−1

(
mi−1, hi−2(mi−2, . . .)

))
.

5.1 Interactive Non-malleable Code for Bounded State Tampering

We devise a generic protocol-non-malleable encoding Π for bounded state tam-
pering for any two-party protocol Π0. The basic idea is to first run a key exchange
phase in which Alice and Bob exchange enough key material that they can
execute the original protocol encrypted under one-time pad and authenticated
with information theoretically secure MACs. The main challenge is to craft the
key-exchange phase in such a way, that the adversary’s limitations, i.e., having
bounded state, preclude her from both, learning any meaningful information
about the exchanged key material, as well as influencing the key material in a
meaningful way. For bounded state tampering functions, we achieve this using
2-non-malleable extractors. The idea behind this is that each party chooses two
random sources that are significantly longer than the size of the bounded state
and sends it to the other party. Both parties then apply a 2-non-malleable extrac-
tor to each pair of sources and thus extract a key they can use to secure the
following communication using information theoretic authenticated encryption.
A tampering function with bounded state will not be able to “remember” enough
information about the two sources to predict the exchanged key with a any signifi-
cant probability and thus will not be able to change the authenticated ciphertexts
without being caught. Formally this is stated in the following theorem.

Theorem 2. Let Π0 denote a correct, r-round protocol, with length-� messages.
We assume wlog that Alice sends both the first and last message in Π0 Let s ∈ N

be any bound as defined in Definition 10. Let λ′ be the target security parameter,
then we set λ = max(�, λ′). Let MAC : {0, 1}2λ × {0, 1}λ → {0, 1}λ be a 2−λ-
secure information theoretic message authentication code. Let Ext : {0, 1}n ×

Interactive Non-malleable Codes 251

Algorithm 1: Protocol Π against bounded state tampering functions
We compile Π0 into Π below. Let Ext and Π0 be as in Theorem 2. The communication proceeds in
three phases, a key exchange phase, a key confirmation phase and a protocol execution phase. All
messages in the following protocol have a fixed length. Whenever a party in the protocol aborts, she
outputs ⊥ instead of a transcript.
Key Exchange Phase: Alice chooses two strings α1, α2 and Bob chooses two strings β1, β2 all of
length n. The two parties then alternatingly send the two strings.
1. First Alice then sends α1, then Bob sends β1, Alice sends α2, and Bob finally sends β2.
2. Both parties use the extractor to extract k1 := Ext(α1, α2) and k2 := Ext(β1, β2) and set k := k1 ⊕ k2.

They then split k = kA‖kB‖kauth
1 ‖kenc

1 ‖ . . . ‖kauth
r ‖kenc

r into substrings, where |kA| = |kB | =
∣
∣kauth

i

∣
∣ = 2λ

and |kenc
i | = �.

Key Confirmation Phase: Alice and Bob verify that they agree on the exchanged key.
1. Bob chooses a random challenge cB ←$ {0, 1}λ and sends it to Alice.
2. Alice computes tB := MAC(kB , cB), chooses a challenge cA ←$ {0, 1}λ, and sends tB , cA to Bob.
3. If Vf(kB , cB , tB) = 1, then Bob sends tA := MAC(kA, cA) to Alice. Otherwise he aborts.
4. If Vf(kA, cA, tA) = 1 then Alice proceeds to the next phase. Otherwise she aborts.
Protocol Execution Phase: Both parties initialize their view of the underlying protocol as an
empty list transA = ∅ and transB = ∅. Starting with Alice’s first message Alice and Bob proceed as
follows for each message:
1. In the ith round, if it is Alice’s (resp. Bob’s) turn to send a message she invokes the next-message

function of the underlying protocol mi := π0
A(i, x, transA) (resp. mi := π0

B(i, y, transB)) and adds the
message to her view transA := transA‖mi (resp. transB := transB‖mi).

2. Next the party computes the one-time pad encryption ci := mi ⊕ kenc
i of mi as well as an

authentication tag ti := MAC(kauth
i , ci) and sends ci, ti to the other party.

3. If the authentication tag verifies, i.e., Vf(kauth
i , ci, ti) = 1 the other party decrypts mi := ci ⊕ kenc

i and
adds the message to their view, i.e., transA := transA‖mi or transB := transB‖mi.

4. Finally the underlying protocol terminates and both parties output their respective transcripts transA

or transB or ⊥ if they aborted at any point during the protocol.

{0, 1}n → {0, 1}r�+(2r+4)λ be a 2-non-malleable extractor for sources with min-
entropy n − (s + λ) and with error ε. Then there exists a r + 7-round encoding
Π of Π0 that is 5ε + 4 · 2−λ-protocol-non-malleable against Fs

bounded.

Note that the required extractor can be instantiated using the construction
of Chattopadhyay et al. [22], while the MAC can be instantiated with a family
of pair-wise independent hash functions.

Proof of Theorem 2. The protocol Π is specified in Algorithm 1. We need to
argue that the protocol is correct and protocol-non-malleable.

Correctness: The correctness of Π follows from the fact that the extractor is
deterministic and the message authentication code is correct. Since the extractor
is deterministic, both parties will extract the same string k. The correctness of
the message authentication code then implies neither party will ever abort during
the protocol. Further, since the one-time pad is correct it follows that messages
of the underlying protocol will always be decrypted correctly and thus both
parties are faithfully executing an honest instance of Π0. Thus at the end of the
protocol the collected transcripts correspond to an honest execution of Π0.

Protocol-Non-malleability: Let f be an s-bounded state tampering function
described by ((g1, h1), . . . , (gr, hr)). To prove that the coding scheme is protocol-
non-malleable, we need to prove that a distribution Df as in Definition 8 exist.

252 N. Fleischhacker et al.

Algorithm 2: Sampler of distribution Df for Algorithm 1
1. Sample four strings α1, α2, β1, β2 ←$ {0, 1}n.
2. Apply the tampering function to the messages as α′

1 := f1(α1), β′
1 := f2(α1, β1), α′

2 := f3(α1, β1, α2),
α′
2 := f4(α1, β1, α2, β2) and extract k1 := Ext(α1, α2) and k2 := Ext(β1, β2) as well as k′

1 := Ext(α′
1, α

′
2)

and k′
2 := Ext(β′

1, β
′
2). Set k := k1 ⊕ k′

2 and k′ := k′
1 ⊕ k2.

3. If k′ �= k output (⊥, ⊥) and stop.
4. If k′ = k, then simulate a protocol execution tampered with f as follows

(a) Replace all messages with random strings of appropriate length and apply the tampering function
to those messages.

(b) If for any index 7 < i < r + 7 it holds that mi �= fi(m1, . . . , mi) output (⊥, ⊥) and stop.
(c) If it holds that mr+7 �= fr+7(m1, . . . , mr+7) output (same, ⊥) and stop.

5. If the simulated interaction completed successfully, output (same, same).

The Distribution Df . When sampling from Df we need to deal with the problem
that in addition to the s bits of state f can keep by design, it can learn additional
information by making use of conditional aborts. I.e., in round i the function gi

can force an abort in the protocol unless the message sent in round i is “good”.
In any future round j > i, even if it’s s bit state does not retain any information
about mi the function gj therefore “remembers” that mi must have been “good”,
since otherwise the protocol would have aborted.

Technically the tampering function can use conditional aborts to leak an
arbitrary amount of information. However, this comes at the expense of having
to abort with high probability. Let 1 − δ(λ) be the probability of f causing
either party to abort before the last message in the protocol is sent. Then this
allows the tampering function to leak at most log δ−1(λ) additional bits to future
rounds. Note that causing an abort by tampering with the very last message
cannot add any additional leakage, since there are no more future rounds to
consider. Further note, that either party aborting before the last message is sent
automatically causes both parties to output ⊥ in the synchronized setting.

We use the above observation to sample from Df by sampling differently
depending on δ(λ). If δ(λ) ≤ 2−λ, the distribution Df is sampled by simply
outputting (⊥,⊥). Clearly this distribution is 2−λ close to the real distribution,
since f causes both Alice and Bob to abort and output ⊥ with probability at least
1−2−λ. If δ > 2−λ, the distribution Df is sampled as shown in Algorithm 2. The
difference between Df and the real tampered transcript distribution is captured
by the event in which the sampler aborts the execution in steps 4b or 4c, but
the real execution continues. To see why Df is close to the tampered transcript
distribution, consider the four cases.

1. The tampering function did not change (α1, α2) or (β1, β2): This is
the simplest case. Note that the tampering function may store a bounded
function of the messages seen so far. That is, the tampering function stores
γ = h4(β2, h3(α2, h2(β1, h1(α1)))) where hi denotes a memory bounded function
as described above. We claim that given γ and up to log δ−1(λ) = λ many bits
of additional leakage due to conditional aborts, (k1, k2) and hence k is 2ε-close
to uniform. This follows from the property of strong extractors. Conditioned on
γ and the leakage, the sources (α1, α2) are still independent and have sufficient
min-entropy. This may not be immediately apparent, since future tampering can
depend on γ, which technically constitutes joint leakage over (α1, α2). However,

Interactive Non-malleable Codes 253

we can see that this particular joint leakage is not an issue for a 2-nonmalleable
extractor by switching to a different but equivalent viewpoint. If we fix h1(α1),
then α1 is no longer uniformly distributed but it is still a source with a distribu-
tion with at least n − s bits of min-entropy. This is ensured by the fixed upper
bound on the size of the leakage. From this viewpoint, since h1(α1) is fixed, γ is
no longer joint leakage over (α1, α2) but merely bounded leakage over α2. The
same applies to additional potential leakage due to conditional aborts, leaving
us with a source α1 with at least n − (s + λ) bits of min-entropy. Similarly, the
same holds for sources (β1, β2).

Now it follows that if the tampering function changes any message in the
protocol execution phase, the MAC verification will fail (up to the error 2−λ)
causing the receiving party to abort. Unless the tampered message was the one
sent in round r + 7 this in turn automatically causes the other party to abort
as well (corresponding to step 4b). If the tampered message was the one sent in
round r +7 then only Bob would abort (corresponding to step 4c). Furthermore,
by the property of one-time pads, the probability of the tampering function
changing any message is independent of the message itself.

2. The tampering function changed (α1, α2) (i.e., changed at least one of
them) but not (β1, β2): We claim that k1 := Ext(α1, α2) is ε-close to uniform
given γ and up to λ many bits of additional leakage due to conditional aborts,
k′
1 := Ext(α′

1, α
′
2), and (β1, β2). This follows from the fact that k1 is ε-close to

uniform given k′
1, γ and λ bits of leakage (by the property of 2-non-malleable

extractors), and, that (β1, β2) are independent of (α1, α2). This also implies that
k1 is ε-close to uniform given γ, k′

1, (β1, β2), k2, and λ bits of leakage since k2 is
entirely determined by (β1, β2). This in turn implies that k1 is ε-close to uniform
given γ, k′

1, (β1, β2), k2, k′
2, and λ bits of leakage since k′

2 = k2. This implies that
k = k1 ⊕ k′

2 is ε-close to uniform conditioned on γ, k′
1, (β1, β2), k2 and leakage.

This finally implies that k is ε-close to uniform conditioned on γ, k′ = k′
1⊕k2 and

leakage. Thus, the MAC verification will fail for Alice in the key confirmation
phase (up to the error 2−λ) causing both parties to output ⊥.

3. The tampering function changed (β1, β2) but not (α1, α2): This case is
symmetric to the previous case.

4. The tampering function changed both (α1, α2) and (β1, β2): The only
difference between this case and case 2 is that now k′

2 may not be equal to k2.
As in the previous case, k1 is almost uniform given γ, k′

1, (β1, β2), k2 and leakage.
But note that k′

2 is entirely determined by (β1, β2), γ and the (fixed) tampering
function. Hence, k1 is almost uniform given γ, k′

1, (β1, β2), k2, k′
2 and leakage.

Overall using a union bound over the errors of the extractor and the MAC,
we get an upper bound on the statistical distance between Df and the outputs
of a real execution of 5ε + 4 · 2−λ. ��

6 Split-State Tampering

Split-state tampering functions are one of the most interesting and well studied
families of tampering functions for regular non-malleable codes and were already

254 N. Fleischhacker et al.

considered by Dziembowski, Pietrzak, and Wichs [36] in their seminal paper. A 2-
split-state tampering function independently tampers on two fixed disjoint parts
of a codeword. Transferring this idea to the interactive setting is straightforward.
We can divide the transcript of a protocol into two disjoint sets of messages and
allow the tampering function to tamper independently on those two sets.

However, we are actually able to achieve protocol non-malleability for a
stronger class, namely c-unbalanced split-state tampering functions. In the reg-
ular split state setting, the encoding scheme determines the “split”. In contrast,
a c-unbalanced split-state tampering function can split the transcript into two
arbitrary sets, as long as each set contains at least a 1/c fraction of the messages.

Definition 11 (c-Unbalanced Split-State Tampering Functions). Func-
tions of the class of c-unbalanced 2-split-state tampering functions Fc

strong-split

for an r-round interactive protocols are defined by an r-tuple of functions
(g1, . . . , gr) and two disjoint sets I0, I1 such that min(|I0| , |I1|) ≥ r/c and
I0 ∪ I1 = {1, . . . , r}. Let m1, . . . ,mi denote the messages sent by the partici-
pants of the protocol in a partial execution. The tampering function for message
mi is then

fi(m1, . . . ,mi) :=

{
gi((mj)j∈I0,j≤i) if i ∈ I0

gi((mj)j∈I1,j≤i) if i ∈ I1

As a special case functions in F2
strong-split must split the messages into two equal

size sets. These functions are also alternatively simply called split-state tamper-
ing functions, since the split is not unbalanced.

6.1 INMC for Split-State Tampering

We devise a generic protocol-non-malleable encoding Π for c-unbalanced split-
state tampering functions for any two-party protocol Π0. The basic idea of the
encoding will seem similar to the protocol for bounded state tampering functions,
however the instantiation is quite different. We again first run a key exchange
phase in which enough key material is exchanged to execute the original protocol
encrypted under one-time pad and authenticate all messages with information
theoretically secure MACs. The main difference is in the implementation of the
key exchange phase. Unlike before, where we relied on non-malleable extractors,
we use a notion of tamper-evident n-out-of-n secret sharing in this case. The idea
behind this is that both parties contribute to the key material k = Ext(k1, k2)
and share their part of the key-material into many shares that are sent in sepa-
rate messages. If we are able to enforce that the tampering function must jointly
tamper with almost all of the messages in the key-exchange phase to be able
to predict the key with any significant probability, then we can scale the key
exchange phase to make sure that such a function would not be c-unbalanced.
The tamper-evidence of the secret sharing scheme allows us to ensure that either
party’s shares must be tampered with jointly to learn anything about the recon-
structed secret. However, this is not enough. We must also ensure that the other
party’s messages must also be tampered jointly. We achieve this via a use of

Interactive Non-malleable Codes 255

MACs with “successively revealed keys.” I.e., each message must be authenti-
cated using a key that is only revealed if one has knowledge of all of the other
party’s previous messages. In this way, each message is “chained” to the other
party’s previous messages and any successful tampering must necessarily tamper
with the full key-exchange phase in a joint manner.

Theorem 3. Let Π0 denote a correct, r-round protocol, with length-� messages.
Let (Share,Reconstruct) be a �((c−1)(r+5)+1)/2�-out-of-�((c−1)(r+5)+1)/2�
perfectly private, ε′-tamper evident secret sharing scheme for up to λ/2 bits of
leakage with message length �′′ and share length �′ Let λ′ be the target security
parameter, then we set λ = max(�, �′, λ′). Let MAC : {0, 1}2λ × {0, 1}λ be a 2−λ-
secure information theoretic message authentication code. Let Ext : {0, 1}�′′ ×
{0, 1}�′′ → {0, 1}r�+(2r+4)λ be a strong two-source extractor for sources with min-
entropy �′′ − λ/2 with error ε′′. We assume without loss of generality that Alice
sends both the first and last message in Π0 Then for any c there exists a c(r+5)-
round encoding Π of Π0 that is ε(λ) = 2ε′+3ε′′+(c−1)(r+5)+3)·2−λ/2+2−λ+1-
non-malleable against Fc

strong-split.

The tamper evident secret sharing scheme can be instantiated using the construc-
tion described in the full version of this paper, the MAC can be instantiated with
a family of pairwise-independent hash functions and the strong 2-source extrac-
tor can be instantiated with the extractor due to Bourgain [14].

Proof of Theorem 3. The protocol Π is specified in Algorithm 3. We need to
argue that the protocol is correct and protocol-non-malleable.

Correctness: The correctness of Π follows from the correctness of the secret
sharing scheme and the message authentication code. The correctness of the
secret sharing scheme implies that when no tampering takes place, Bob and
Alice will both reconstruct the correct string k1 or k2 respectively. Thus, they
will compute the same key k. Combined with the correctness of the message
authentication code, this means that neither party will ever abort during the
protocol. Further, since the one-time pad is correct it follows that messages of
the underlying protocol will always be decrypted correctly and thus both parties
are faithfully executing an honest instance of Π0. Thus at the end of the protocol
the collected transcripts correspond to an honest execution of Π0.

Protocol Non-malleability: Let f be a c-unbalanced split state tampering func-
tion described by (g1, . . . , gc(r+5)) and I0, I1 (refer to Definition 11). To prove
that the coding scheme is protocol-non-malleable, we show that a distributions
Df as in Definition 8 exists.

The Distribution Df : When sampling from Df we again need to deal with the
problem that the tampering function can communicate information through con-
ditional aborts. I.e., in round i with i ∈ Ib, the function gi can force an abort in
the protocol unless the message sent in round i is “good”. In any future round

256 N. Fleischhacker et al.

Algorithm 3: Protocol Π against c-unbalanced split-state tampering functions
We compile Π0 into Π below. Let (Share,Reconstruct), and Π0 be as in Theorem 3. The
communication proceeds in three phases, a key exchange phase, a key confirmation phase, and a
protocol execution phase. All messages in the following protocol have a fixed length. Whenever a party
in the protocol aborts, she outputs ⊥ instead of the transcript.
Key Exchange Phase: The number of rounds in the key exchange phase depends on the number of
rounds r of the underlying protocol and on the parameter c that determines how unbalanced the
states are allowed to be. Let d = �((c − 1)(r + 5) + 1)/2	.
1. Alice and Bob choose �′′-bit strings k1, k2 ←$ {0, 1}�′′

respectively and secret share them into d shares
each as sA

1 , . . . , sA
d ← Share(k1) and sB

1 , . . . , sB
d ← Share(k2).

2. Alice chooses d random strings rA
1,1, . . . , r

A
1,d ←$ {0, 1}2λ and sends mA

1 = (rA
1,1, . . . , r

A
1,d) to Bob.

3. For every 1 ≤ i ≤ d Alice and Bob proceed as follows
(a) Bob chooses d − i + 1 random string rB

i,i, . . . , r
B
i,d ←$ {0, 1}2λ, computes the tag

tB
i := MAC(rA

1,i ⊕ . . . ⊕ rA
i,i, s

B
i) and sends mB

i = (sB
i , rB

i,i, . . . , r
B
i,d, tB

i) to Alice.
(b) Alice verifies that Vf(rA

1,i ⊕ · · · ⊕ rA
i,i, s

B
i , tB

i) = 1 and aborts otherwise.
(c) Alice chooses d − i random strings rA

i+1,i+1, . . . , r
A
i+1,d ←$ {0, 1}2λ (note that once i = d this means

no random string at all), computes the tag tA
i := MAC(rB

1,i ⊕ . . . ⊕ rB
i,i, s

A
i) and sends

mA
i+1 = (sA

i , rA
i+1,i+1, . . . , r

A
i+1,d, tA

i) to Bob.
(d) Bob verifies that Vf(rB

1,i ⊕ · · · ⊕ rB
i,i, s

A
i , tA

i) = 1 and aborts otherwise.
4. Once all the shares have been exchanged, Alice reconstructs k′

2 := Reconstruct(sB
1 , . . . , sB

d). If k′
2 = ⊥,

she aborts. Otherwise she extracts k = Ext(k1, k
′
2). Bob reconstructs k′

1 := Reconstruct(sA
1 , . . . , sA

d). If
k′
1 = ⊥, he aborts. Otherwise he extracts k = Ext(k′

1, k2).
5. Both parties then split k = kA‖kB‖kauth

1 ‖kenc
1 ‖ . . . ‖kauth

r ‖kenc
r into substrings, where

|kA| = |kB | =
∣
∣kauth

i

∣
∣ = 2λ and |kenc

i | = �.
Key Confirmation Phase: Alice and Bob verify that they agree on the exchanged key.
1. Bob chooses a random challenge cB ←$ {0, 1}� and sends it to Alice.
2. Alice computes tB := MAC(kB , cB), chooses a challenge cA ←$ {0, 1}�, and sends tB , cA to Bob.
3. If Vf(kB , cB , tB) = 1, Bob computes tA := MAC(kA, cA) and sends tA to Alice. Otherwise he aborts.
4. If Vf(kA, cA, tA) = 1, Alice proceeds to the next phase. Otherwise she aborts.
Protocol Execution Phase: Both parties initialize their view of the underlying protocol as a empty
lists transA = transB = ∅. For each protocol message the parties then proceed as follows:
1. In the ith round, if it is Alice’s (resp. Bob’s) turn to send a message she invokes the next-message

function of the underlying protocol mi := π0
A(i, x, transA) (resp. mi := π0

B(i, y, transB)) and adds the
message to her view transA := transA‖mi (resp. transB := transB‖mi).

2. Next the party computes the one-time pad encryption ci := mi ⊕ kenc
i of mi as well as an

authentication tag ti := MAC(kauth
i , ci) and sends ci, ti to the other party.

3. If Vf(kauth
i , ci, ti) = 1 the other party decrypts mi := ci ⊕ kenc

i and adds the message to their view, i.e.,
transA := transA‖mi or transB := transB‖mi.

Finally the underlying protocol terminates and both parties output their respective transcripts transA

or transB or ⊥ if they aborted at some point.

j > i, even if j ∈ I1−b the function gj therefore has the information that the
message in round i must have been “good”. This implies leakage between the
two split states. To deal with this problem we sample differently depending on
the probability of f causing an abort during a protocol execution. Let 1 − δ(λ)
be the probability of f causing either party to abort before the last message in
the protocol is sent. If δ(λ) ≤ 2−λ/2, the distribution Df is sampled by simply
outputting (⊥,⊥). Clearly this distribution is 2−λ/2 ≤ ε(n) close to the real
distribution, since f causes both parties to abort and output ⊥ with probability
at least 1 − 2−λ/2. If δ > 2−λ/2, the distribution Df is sampled as shown in
Algorithm 4.

Analysis. It remains to show that Df is 2ε′+3ε′′+(c−1)(r+5)+3)·2−λ/2+2−λ+1

close to the tampered transcript distribution. We first note that the protocol Π
overall has ((c−1)(r+5)+1)+r+4 = c(r+5) rounds, of which (c−1)(r+5)+2
form the key exchange phase, 3 the key confirmation phase, and r the protocol
execution phase. We therefore have that |Ib| ≤ (1−1/c) ·c(r+5) ≤ (c−1)(r+5).

Interactive Non-malleable Codes 257

Algorithm 4: Sampler of distribution Df for Algorithm 3
1. Sample k1, k2 ←$ {0, 1}�′′

and share them as sA
1 , . . . , sA

d ← Share(k1) and sB
1 , . . . , sB

d ← Share(k2).
2. Sample d2 + d strings rA

1,1, . . . , r
A
1,d, rA

2,2, . . . , r
A
2,d, . . . , rA

d,d ←$ {0, 1}2λ

rB
1,1, . . . , r

B
1,d, rB

2,2, . . . , r
B
2,d, . . . , rB

d,d ←$ {0, 1}2λ.

3. Let mA
i := (rA

1,1, . . . , r
A
1,d) and apply the tampering function as m̄A

i = (r̄A
1,1, . . . , r̄

A
1,d) := g1(m

A
1).

4. For 1 ≤ i ≤ d perform the following steps
(a) Compute tB

i := MAC(r̄A
1,i ⊕ · · · ⊕ r̄A

i,i, s
B
i) and let mB

i := (sB
i , rB

i,i, . . . , r
B
i,d, tB

i).
(b) Apply the tampering function as m̄B

i = (s̄B
i , r̄B

i,i, . . . , r̄
B
i,d, t̄B

i) := g2i(m
A
1 , mB

1 , mA
2 , . . . , mB

i).
(c) If Vf(rA

1,i ⊕ · · · ⊕ rA
i,i, s̄

B
i , t̄B

i) = 0, output (⊥, ⊥).
(d) Compute tA

i := MAC(r̄B
1,i ⊕ · · · ⊕ r̄B

i,i, s
A
i) and let mA

i+1 := (sA
i , rA

i+1,i+1, . . . , r
A
i+1,d, tA

i).
(e) Apply the tampering function as m̄A

i+1 = (s̄A
i , r̄A

i+1,i+1, . . . , r̄
A
i+1,d, t̄A

i) := g2i+1(m
A
1 , mB

1 , . . . , mA
i+1).

(f) If Vf(rB
1,i ⊕ . . . ⊕ rB

i,i, t̄
A
i , s̄A

i) = 0, output (⊥, ⊥).
5. Reconstruct k̄1 := Reconstruct(s̄A

1 , . . . , s̄A
d) and k̄2 := Reconstruct(s̄B

1 , . . . , s̄B
d). If k̄1 = ⊥ or k̄2 = ⊥,

output (⊥, ⊥).
6. If Ext(k1, k2) �= Ext(k̄1, k2) or Ext(k1, k2) �= Ext(k1, k̄2), stop and output (⊥, ⊥).
7. Else, if Ext(k̄1, k2) = Ext(k1, k̄2) = Ext(k1, k2), simulate a protocol execution tampered with f

(a) Replace all messages with random strings of appropriate length and apply the tampering function
to those messages.

(b) If for any index 2d + 4 < i < c(r + 5) it holds that mi �= fi(m1, . . . , mi) then output (⊥, ⊥).
(c) If mc(r+5) �= fc(r+5)(m1, . . . , mc(r+5)) then output (same, ⊥), otherwise output (same, same).

As noted above, we need to deal with leakage due to conditional aborts for every
message being tampered. I.e., the tampered message m̄i in round i with i ∈ Ib

can, in addition to all previous messages in Ib, also depend on some joint leakage
over all previous messages in I1−b due to conditional aborts, simply by observing
that the protocol has not aborted.

Claim 4. The tampered message m̄i in round i with i ∈ Ib can depend on at
most λ/2 bits of joint leakage over {mj |j ∈ I1−b ∧ j ≤ i}.
Proof. We know that f does not cause an abort with probability at least
δ(λ) = 2−λ/2. Therefore, the tampering function gi learns at most log δ−1(λ) =
log 2λ/2 = λ/2 bits of joint leakage over previous messages in I1−b. ��

We will argue that conditioned on the protocol not having aborted and the
complete view of any tampering function gi in the key confirmation and protocol
execution phase the key k = Ext(k1, k̄2) computed by Alice in the key exchange
phase remains ε′′ close to uniform. For this we first note that up to step 5 in
Algorithm 4 the sampler acts identically to a real execution of the protocol.

Lemma 5. If Alice, or respectively Df , does not abort during the key exchange
phase, then k̄2 = k2 except with probability ε′ + (d + 1) · 2−λ/2.

Due to space constraints, the proof of Lemma 5 is deferred to the full version. A
completely symmetric argument can be made for k̄1 = k1, where otherwise Bob
aborts with probability 1 − ε′ − (d + 1) · 2−λ/2, causing Alice to also abort. This
means that if Alice does not abort, we have that k = Ext(k1, k̄2) = Ext(k̄1, k2) =
Ext(k1, k2) with probability at least 1 − 2(ε′ − (d + 1) · 2−λ/2).2

2 Note that the tampering function cannot influence the values k1, k2 at all since they
are sampled independently of the protocol transcript.

258 N. Fleischhacker et al.

Now, consider how much information about k1 and k2 a tampering function gi

can learn. Let Ib be the set of indices, such that i ∈ Ib. Clearly, gi has complete
knowledge of all shares sB

j with 2j ∈ Ib and all shares sA
j with 2j + 1 ∈ Ib.

Further, gi receives joint leakage over shares in I1−b simply by observing the
fact that the protocol has not yet aborted. This leakage is however bounded
by Claim 4 by λ/2 bits. By the perfect privacy of the secret sharing scheme, it
follows that λ/2 bits of joint leakage over all shares can reveal at most λ/2 bits
of the secret.

Since a set of indices with |Ib| ≥ 2d+1 would be too large for a c-unbalanced
split state tampering function, Ib cannot possibly contain all the shares. Thus,
the maximum amount of information the tampering function gi can gain about
k1 and k2 is exactly one of the two strings and λ/2 bits of the other string.
Since Ext is a strong 2-source extractor for sources with min-entropy �′′ − λ/2,
this implies that in this case with probability at least 1 − ε′′ the extracted key-
material remains ε′′ close to uniform. Overall, this means that with probability
at least 1 − 2 · (ε′ + (d + 1) · 2−λ/2) − ε′′, k remains ε′′ close to uniform from the
point of view of any tampering function gi.

To recap, if any of the key-shares are tampered with in such a way that
the original keys are not reconstructed, then the sampling algorithm will always
output (⊥,⊥), while the parties in the real protocol will do so with probability
at least 1 − 2 · (ε′ + (d + 1) · 2−λ/2). If the shares were not tampered with and
thus k = Ext(k̄1, k2) = Ext(k1, k̄2) = Ext(k1, k2), then since k is distributed
ε′′-close to uniform – the random messages in the simulated protocol execution
phase are distributed ε′′ close to a real protocol execution. Now, if f tampers
with any message of the key-confirmation or protocol-execution phase except for
the very last one, then the sampling algorithm always outputs (⊥,⊥), whereas
if only the very last message is tampered with the sampling algorithm outputs
(same,⊥). In a real protocol execution when tampering with any message, the
information theoretic MAC must be computed almost independently of k, since k
remains ε′′ close to uniform. Therefore, if any message is tampered with in a real
protocol execution, the receiving party will abort with probability 1 − 2−λ − ε′′,
causing both parties to output ⊥, except if it only happens in the very last
message, where only Bob will abort with probability 1 − 2−λ − ε′′ and output
⊥ and Alice will retain the correct transcript. On the other hand, if no message
is tampered with, the sampling algorithm outputs (same, same) and both Alice
and Bob in a real protocol execution retain the correct transcript. This follows
since in this case Alice and Bob agree on a key. Overall a union bound then gives
us an upper bound on the statistical distance between Df and the distribution
of both parties’ outputs in a real execution of 2ε′ +3ε′′ +2(d+1) ·2−λ/2 +2−λ−1.
With d = �((c − 1)(r + 5) + 1)/2�, this leads to the claimed bound of ε(λ) =
2ε′ + 3ε′′ + ((c − 1)(r + 5) + 3) · 2−λ/2 + 2−λ+1. ��

7 Fragmented Sliding Window Tampering

The sliding window model is a very natural restriction of algorithms and is con-
sidered in a variety of contexts, in particular also for error correcting codes [48].

Interactive Non-malleable Codes 259

The idea of the sliding window is that an adversary can only watch a stream of
data through a window of fixed size. In the context of interactive non-malleable
codes this means that the tampering function “remembers” only the last w mes-
sages. That is, the tampering function gets as input the last w (untampered)
messages of the protocol transcript to compute the tampered message.

We in fact consider a stronger class of functions that we call fragmented
sliding window. Functions with a fragmented window of size w can depend on
any w previous messages, not just the last w. In a sense the adversary is still
watching the transcript through a fixed size window, it can freely choose which
fragments of the window remain transparent and which ones become opaque.

Comparing this class with c-unbalanced split-state tampering functions, we
note that the size of the window is now fixed and does not scale with the number
of messages. On the other hand the different sets of messages tampering can
depend on are no longer required to be disjoint. E.g., the tampering of each
single message could depend on the first message of the protocol, something
that would not be possible in the case of split-state functions.

Definition 12 (Fragmented Sliding Window Tampering Functions).
Functions of the class of w-size fragmented sliding window tampering func-
tions Fw

frag for an r-round interactive protocols are defined by an r-tuple of
functions (g1, . . . , gr) and an r-tuple of sets (S1, . . . , Sr) such that S1 = ∅,
Si ⊆ Si−1 ∪ {i − 1} and |Si| ≤ w for 1 < i ≤ r. Let m1, . . . ,mi be the messages
sent by the participants of the protocol in a partial execution. The tampering
function for message mi is then defined as fi(m1, . . . ,mi) := gi

(
mi, (mj)j∈Si

)
.

7.1 INMC for Fragmented Sliding Window Tampering

Even though there are important conceptual differences between fragmented
sliding window tampering functions and c-unbalanced split-state tampering
functions, essentially identical protocol can be used to achieve protocol-non-
malleability for fragmented sliding window tampering functions. The difference
is how the key exchange phase scales. The window-size is fixed and does not
depend on the round complexity of the protocol. This means that d – the num-
ber of shares Alice and Bob split their keys into – must scale with w instead of
the underlying protocol’s round complexity.

Theorem 6. Let Π0 denote a correct, r-round protocol, with length-� messages.
Let (Share,Reconstruct) be a w + 2-out-of-w + 2 perfectly private, ε′-tamper evi-
dent secret sharing scheme for up to λ′/2 bits of leakage with message length
�′′ and share length �′ Let λ′ be the target security parameter, then we set
λ = max(�, �′, λ′). Let MAC : {0, 1}2λ × {0, 1}λ → {0, 1}λ be a 2−λ-secure infor-
mation theoretic message authentication code. Let Ext : {0, 1}�′′ → r�+(2r+4)λ
be a strong two-source extractor for sources with min-entropy �′′ − λ/2 with
error ε′′. We assume wlog that Alice sends both the first and last message in
Π0. Then for any w there exists a r + 2w + 8-round encoding Π of Π0 that is
ε(λ) = 3 · 2−λ + 2ε′(λ) + 2ε′′-protocol non-malleable against Fw

frag.

260 N. Fleischhacker et al.

Due to space constraints, the proof of Theorem 6 is deferred to the full version
of this paper.

Acknowledgments. We would like to thank the anonymous reviewers for TCC 2019
for suggesting a stronger and more natural notion of non-malleability. We would also
like to thank Ran Gelles for helpful comments on an earlier version of our writeup.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 15

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: 47th ACM STOC, pp. 459–468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: 46th ACM STOC, pp. 774–783 (2014)

4. Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Contin-
uous non-malleable codes in the 8-split-state model. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 531–561. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 18

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

6. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and permu-
tations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 375–397.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 16

7. Alon, N., Braverman, M., Efremenko, K., Gelles, R., Haeupler, B.: Reliable commu-
nication over highly connected noisy networks. In: 35th ACM PODC, pp. 165–173
(2016)

8. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes
for small-depth circuits. In: 59th FOCS, pp. 826–837 (2018)

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable
codes against bounded polynomial time tampering. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 501–530. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 17

10. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

11. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
618–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 20

12. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. Cryptology
ePrint Archive, Report 2019/379 (2019)

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-030-17653-2_18
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-030-17653-2_17
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20

Interactive Non-malleable Codes 261

13. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 22

14. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. Number Theory 1(01), 1–32 (2005)

15. Brakerski, Z., Kalai, Y.T.: Efficient interactive coding against adversarial noise. In:
53rd FOCS, pp. 160–166 (2012)

16. Braverman, M., Efremenko, K., Gelles, R., Haeupler, B.: Constant-rate coding
for multiparty interactive communication is impossible. In: 48th ACM STOC, pp.
999–1010 (2016)

17. Braverman, M., Gelles, R., Mao, J., Ostrovsky, R.: Coding for interactive com-
munication correcting insertions and deletions. In: ICALP 2016, pp. 61:1–61:14
(2016)

18. Braverman, M., Rao, A.: Towards coding for maximum errors in interactive com-
munication. In: 43rd ACM STOC, pp. 159–166 (2011)

19. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-
saries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

20. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. In: ICALP 2016, pp. 31:1–31:14 (2016)

21. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016-A. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 14

22. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: 48th ACM STOC, pp. 285–298 (2016)

23. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: 49th ACM STOC, pp. 1171–1184 (2017)

24. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th FOCS, pp. 306–315 (2014)

25. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

26. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. IEEE Trans. Inf.
Theory 62(3), 1097–1118 (2016)

27. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity (extended abstract). In: 26th FOCS, pp. 429–
442 (1985)

28. Chung, K.M., Pass, R., Telang, S.: Knowledge-preserving interactive coding. In:
54th FOCS, pp. 449–458 (2013)

29. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS,
vol. 9562, pp. 306–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 13

30. Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously
non-malleable codes. Cryptology ePrint Archive, Report 2019/055 (2019)

31. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46494-6 22

https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22

262 N. Fleischhacker et al.

32. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds
for leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 13

33. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46494-6 18

34. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: 41st ACM STOC, pp. 601–610 (2009)

35. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

36. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS 2010, pp.
434–452 (2010)

37. Efremenko, K., Gelles, R., Haeupler, B.: Maximal noise in interactive communica-
tion over erasure channels and channels with feedback. In: ITCS 2015, pp. 11–20
(2015)

38. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: ACNS 2018, pp. 121–139 (2018)

39. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63715-0 4

40. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

41. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–
603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 26

42. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

43. Franklin, M., Gelles, R., Ostrovsky, R., Schulman, L.J.: Optimal coding for stream-
ing authentication and interactive communication. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 258–276. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 15

44. Gelles, R., Haeupler, B.: Capacity of interactive communication over erasure chan-
nels and channels with feedback. SIAM J. Comput. 46(4), 1449–1472 (2017)

45. Gelles, R., Haeupler, B., Kol, G., Ron-Zewi, N., Wigderson, A.: Towards optimal
deterministic coding for interactive communication. In: 27th SODA, pp. 1922–1936
(2016)

46. Gelles, R., Kalai, Y.T.: Constant-rate interactive coding is impossible, even in
constant-degree networks. Electronic Colloquium on Computational Complexity
(ECCC), TR17-095 (2017)

47. Gelles, R., Moitra, A., Sahai, A.: Efficient and explicit coding for interactive com-
munication. In: 52nd FOCS, pp. 768–777 (2011)

https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-642-40084-1_15

Interactive Non-malleable Codes 263

48. Gelles, R., Ostrovsky, R., Roytman, A.: Efficient error-correcting codes for sliding
windows. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.)
SOFSEM 2014. LNCS, vol. 8327, pp. 258–268. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-04298-5 23

49. Ghaffari, M., Haeupler, B.: Optimal error rates for interactive coding II: Efficiency
and list decoding. In: 55th FOCS, pp. 394–403 (2014)

50. Ghaffari, M., Haeupler, B., Sudan, M.: Optimal error rates for interactive coding
I: adaptivity and other settings. In: 46th ACM STOC, pp. 794–803 (2014)

51. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: 50th ACM STOC, pp.
685–698 (2018)

52. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–
530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 17

53. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
48th ACM STOC, pp. 1128–1141 (2016)

54. Haeupler, B.: Interactive channel capacity revisited. In: 55th FOCS, pp. 226–235
(2014)

55. Jacobson, V., Braden, R., Borman, D.: RFC1323: TCP extensions for high perfor-
mance. http://www.ietf.org/rfc/rfc1323.txt

56. Jain, A., Kalai, Y.T., Lewko, A.B.: Interactive coding for multiparty protocols. In:
ITCS 2015, pp. 1–10 (2015)

57. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 344–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 11

58. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 589–617. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 19

59. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: 49th ACM STOC, pp. 1144–1156 (2017)

60. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

61. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 608–639. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 21

62. Rajagopalan, S., Schulman, L.J.: A coding theorem for distributed computation.
In: 26th ACM STOC, pp. 790–799 (1994)

63. Rao, A.: An exposition of Bourgain’s 2-source extractor. Electronic Colloquium on
Computational Complexity (ECCC), TR07-034 (2007)

64. Schulman, L.J.: Communication on noisy channels: a coding theorem for computa-
tion. In: 33rd FOCS, pp. 724–733 (1992)

65. Schulman, L.J.: Deterministic coding for interactive communication. In: 25th ACM
STOC, pp. 747–756 (1993)

66. Schulman, L.J.: Coding for interactive communication. IEEE Trans. Inf. Theory
42(6), 1745–1756 (1996)

67. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51st FOCS, pp. 531–540 (2010)

https://doi.org/10.1007/978-3-319-04298-5_23
https://doi.org/10.1007/978-3-319-04298-5_23
https://doi.org/10.1007/978-3-319-96884-1_17
http://www.ietf.org/rfc/rfc1323.txt
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-319-96878-0_21

Stronger Lower Bounds for Online ORAM

Pavel Hubáček(B) , Michal Koucký , Karel Král , and Veronika Sĺıvová

Computer Science Institute of Charles University,
Malostranské náměst́ı 25, 118 00 Praha 1, Czech Republic
{hubacek,koucky,kralka,slivova}@iuuk.mff.cuni.cz

Abstract. Oblivious RAM (ORAM), introduced in the context of soft-
ware protection by Goldreich and Ostrovsky [JACM’96], aims at obfus-
cating the memory access pattern induced by a RAM computation. Ide-
ally, the memory access pattern of an ORAM should be independent
of the data being processed. Since the work of Goldreich and Ostro-
vsky, it was believed that there is an inherent Ω(log n) bandwidth over-
head in any ORAM working with memory of size n. Larsen and Nielsen
[CRYPTO’18] were the first to give a general Ω(log n) lower bound for
any online ORAM, i.e., an ORAM that must process its inputs in an
online manner.

In this work, we revisit the lower bound of Larsen and Nielsen, which
was proved under the assumption that the adversarial server knows
exactly which server accesses correspond to which input operation. We
give an Ω(log n) lower bound for the bandwidth overhead of any online
ORAM even when the adversary has no access to this information. For
many known constructions of ORAM this information is provided implic-
itly as each input operation induces an access sequence of roughly the
same length. Thus, they are subject to the lower bound of Larsen and
Nielsen. Our results rule out a broader class of constructions and specif-
ically, they imply that obfuscating the boundaries between the input
operations does not help in building a more efficient ORAM.

As our main technical contribution and to handle the lack of structure,
we study the properties of access graphs induced naturally by the mem-
ory access pattern of an ORAM computation. We identify a particular
graph property that can be efficiently tested and that all access graphs
of ORAM computation must satisfy with high probability. This property
is reminiscent of the Larsen-Nielsen property but it is substantially less
structured; that is, it is more generic.

Keywords: Oblivious RAM · Bandwidth overhead · Lower bound

This research was supported in part by the Grant Agency of the Czech Repub-
lic under the grant agreement no. 19-27871X, by the Charles University projects
PRIMUS/17/SCI/9 and UNCE/SCI/004, Charles University grant SVV-2017-260452,
and by the Neuron Fund for the support of science.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 264–284, 2019.
https://doi.org/10.1007/978-3-030-36033-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_10&domain=pdf
http://orcid.org/0000-0002-6850-6222
http://orcid.org/0000-0003-0808-2269
http://orcid.org/0000-0002-6557-9354
http://orcid.org/0000-0003-4514-9098
https://doi.org/10.1007/978-3-030-36033-7_10

Stronger Lower Bounds for Online ORAM 265

1 Introduction

Oblivious simulation of RAM machines, initially studied in the context of soft-
ware protection by Goldreich and Ostrovsky [11], aims at protecting the memory
access pattern induced by computation of a RAM from an eavesdropper. In the
present day, such oblivious simulation might be needed when performing a com-
putation in the memory of an untrusted server.1 Despite using encryption for
protecting the content of each memory cell, the memory access pattern might
still leak sensitive information. Thus, the memory access pattern should be obliv-
ious of the data being processed and, optimally, depend only on the size of the
input.

Constructions. The strong guarantee of obliviousness of the memory access
pattern comes at the cost of additional overhead. A trivial solution which scans
the whole memory for each memory access induces linear bandwidth overhead,
i.e., the multiplicative factor by which the length of a memory access pattern
increases in the oblivious simulation of a RAM with n memory cells. Given its
many practical applications, an important research direction is to construct an
ORAM with as low overhead as possible. The foundational work of Goldreich and
Ostrovsky [11] already gave a construction with bandwidth overhead O(log3(n)).
Subsequent results introduced various improved approaches for building ORAMs
(see [1,4–6,9,11–13,17,22,25,26,28,29] and the references therein) leading to the
recent construction of Asharov et al. [2] with bandwidth overhead O(log n) for
the most natural setting of parameters.

Lower-Bounds. It was a folklore belief that an Ω(log n) bandwidth overhead is
inherent based on a lower bound presented already in the initial work of Goldre-
ich and Ostrovsky [11]. However, the Goldreich-Ostrovsky result was recently
revisited in the work of Boyle and Naor [3], who pointed out that the lower
bound actually holds only in a rather restricted “balls and bins” model where
the ORAM is not allowed to read the content of the data cells it processes. In
fact, Boyle and Naor showed that any general lower bound for offline ORAM
(i.e., where each memory access of the ORAM can depend on the whole sequence
of operations it needs to obliviously simulate) implies non-trivial lower bounds
on sizes of sorting circuits which seem to be out of reach of the known tech-
niques in computational complexity. The connection between offline ORAM
lower bounds and circuit lower bounds was extended to read-only online ORAMs
(i.e., where only the read operations are processed in online manner) by Weiss
and Wichs [30] who showed that lower bounds on bandwidth overhead for read-
only online ORAMs would imply non-trivial lower bounds for sorting circuits or
locally decodable codes.

The first general Ω(log n) lower bound for bandwidth overhead in online
ORAM (i.e., where the ORAM must process sequentially the operations it has to
obliviously simulate) was given by Larsen and Nielsen [18]. The core of their lower

1 Protecting the memory access of a computation is particularly relevant in the light
of the recent Spectre [16] and Meltdown [19] attacks.

266 P. Hubáček et al.

bound comprised of adapting the information transfer technique of Patrascu and
Demaine [23], originally used for proving lower bounds for data structures in the
cell probe model, to the ORAM setting. In fact, the lower bound of Larsen
and Nielsen [18] for ORAM can be cast as a lower bound for the oblivious
Array Maintenance problem and it was recently extended to other oblivious
data structures by Jacob et al. [15].

1.1 Our Results

In this work, we further develop the information transfer technique of [23] when
applied in the context of online ORAMs. We revisit the lower bound of Larsen
and Nielsen which was proved under the assumption that the adversarial server
knows exactly which server accesses correspond to each input operation. Specifi-
cally, we prove a stronger matching lower bound in a relaxed model without any
restriction on the format of the access sequence to server memory.

Note that the [18] lower bound does apply to the known constructions of
ORAMs where it is possible to implicitly separate the accesses corresponding
to individual input operations – since each input operation generates an access
sequence of roughly the same length. However, the [18] result does not rule out
the possibility of achieving sub-logarithmic overhead in an ORAM which obfus-
cates the boundaries in the access pattern (e.g. by translating input operations
into variable-length memory accesses). We show that obfuscating the boundaries
between the input operations does not help in building a more efficient ORAM. In
other words, our lower bound justifies the design choice of constructing ORAMs
where each input operation is translated to roughly the same number of probes
to server memory (common to the known constructions of ORAMs).

Besides online ORAM (i.e., the oblivious Array Maintenance problem), our
techniques naturally extend to other oblivious data structures and allow to gen-
eralize also the recent lower bounds of Jacob et al. [15] for oblivious stacks,
queues, deques, priority queues and search trees.

For online ORAMs with statistical security, our results are stated in the
following informal theorem.

Theorem 1 (Informal). Any statistically secure online ORAM with internal
memory of size m has expected bandwidth overhead Ω(log n), where n ≥ m2 is
the length of the sequence of input operations. This result holds even when the
adversarial server has no information about boundaries between probes corre-
sponding to different input operations.

In the computational setting, we consider two definitions of computational
security. Our notion of weak computational security requires that no polynomial
time algorithm can distinguish access sequences corresponding to any two input
sequences of the same length – this is closer in spirit to computational security
for ORAMs previously considered in the literature. The notion of strong com-
putational security requires computational indistinguishability even when the
distinguisher is given the two input sequences together with an access sequence

Stronger Lower Bounds for Online ORAM 267

corresponding to one of them. The distinguisher should not be able to tell which
one of the two input sequences produced the access sequence. Interestingly, our
technique (as well as the proof technique of [18] in the model with structured
access pattern) yields different lower bounds with respect to the two definitions
stated in the following informal theorem.

Theorem 2 (Informal). Any weakly computationally secure online ORAM
with internal memory of size m must have expected bandwidth overhead ω(1).
Any strongly computationally secure online ORAM with internal memory of
size m must have expected bandwidth overhead Ω(log n), where n ≥ m2 is the
length of the sequence of input operations. This result holds even when the adver-
sarial server has no information about boundaries between probes corresponding
to different input operations.

Note that even the ω(1) lower bound for online ORAMs satisfying weak
computational security is an interesting result in the light of the work of Boyle
and Naor [3]. It follows from [3] that any super-constant lower bound for offline
ORAM would imply super-linear lower bounds on size of sorting circuits – which
would constitute a major breakthrough in computational complexity (for addi-
tional discussion, see Sect. 5). Our techniques clearly do not provide lower bounds
for offline ORAMs. On the other hand, we believe that proving the ω(1) lower
bound in any meaningful weaker model would amount to proving lower bounds
for offline ORAM or read-only online ORAM which would have important impli-
cations in computational complexity.

Alternative Definitions of ORAM. Previous works considered various alter-
native definitions of ORAM. We clarify the ORAM model in which our tech-
niques yield a lower bound in Sect. 2.1 and discuss its relation to other models in
Sect. 5. As an additional contribution, we demonstrate an issue with the defini-
tion of ORAM appearing in Goldreich and Ostrovsky [11]. Specifically, we show
that the definition can be satisfied by a RAM with constant overhead and no
meaningful security. The definition of ORAM in Goldreich and Ostrovsky [11]
differs from the original definition in Goldreich [10] and Ostrovsky [21], which
do not share the issue we observed in the definition from Goldreich and Ostro-
vsky [11]. Given that the work of Goldreich and Ostrovsky [11] might serve as
a primary reference for our community, we explain the issue in Sect. 5 to help
preventing the use of the problematic definition in future works.

Persiano and Yeo [24] recently adapted the chronogram technique [8] from
the literature on data structure lower bounds to prove a lower bound for dif-
ferentially private RAMs (a relaxation of ORAMs in the spirit of differential
privacy [7] which ensures indistinguishability only for input sequences that dif-
fer in a single operation). Similarly to the work of Larsen and Nielsen [18],
the proof in [24] exploits the fact that the distinguisher knows exactly which
server accesses correspond to each input operation. However, as the chronogram
technique significantly differs from the information transfer approach, we do not
think that our techniques would directly allow to strengthen the [24] lower bound

268 P. Hubáček et al.

for differentially private RAMs and prove it in the model with an unstructured
access pattern.

1.2 Our Techniques

The structure of our proof follows a similar blueprint as the work of Larsen and
Nielsen [18]. However, we must handle new issues introduced by the more general
adversarial model. Most significantly, our proof cannot rely on any formatting
of the access pattern, whereas Larsen and Nielsen leveraged the fact that the
access pattern is split into blocks corresponding to each read/write operation. To
handle the lack of structure in the access pattern, we study the properties of the
access graph induced naturally by the access pattern of an ORAM computation.
We identify a particular graph property that can be efficiently tested and that
all access graphs of ORAM computation must satisfy with high probability. This
property is reminiscent of the Larsen-Nielsen property but it is substantially less
structured; that is, it is more generic.

The access graph is defined as follows: the vertices are timestamps of server
probes and there is an edge connecting two vertices if and only if they correspond
to two subsequent accesses to the same memory cell. We define a graph property
called �-dense k-partition. Roughly speaking, graphs with �-dense k-partitions
are graphs which may be partitioned into k disjoint subgraphs, each subgraph
having at least � edges. We show that this property has to be satisfied (with high
probability) by access graphs induced by an ORAM for any k and an appropriate
�. To leverage this inherent structure of access graph towards a lower bound on
bandwidth overhead, we prove that if a graph has �

k -dense k-partition for some �
and K different values of k then the graph must have at least Ω(� log K) edges. In
Sect. 3, we provide the formal definition of access graph and �-dense k-partitions
and prove a lower bound on the expected number of edges for a graph that has
many �-dense k-partitions.

In Sect. 4, we prove that access graphs of ORAMs have many dense parti-
tions. Specifically, using a communication-type argument we show that for Ω(n)
values of k, there exist input sequences for which the corresponding graph has
Ω(n

k)-dense k-partition with high probability. Applying the indistinguishability
of sequences of probes made by ORAM, we get one sequence for which its access
graph satisfies n

k -dense k-partition for Ω(n) values of k with high probability.
Combining the above results from Sect. 4 with the results from Sect. 3, we get
that the graph of such a sequence has Ω(n log n) edges, and thus by definition,
Ω(n log n) vertices in expectation. This implies that the expected number of
probes made by the ORAM on any input sequence of length n is Ω(n log n).

2 Preliminaries

In this section, we introduce some basic notation and recall some standard defini-
tions and results. Throughout the rest of the paper, we let [n] for n ∈ N to denote
the set {1, 2, . . . , n}. A function negl(n) : N → R is negligible if it approaches zero
faster than any inverse polynomial.

Stronger Lower Bounds for Online ORAM 269

Definition 1 (Statistical Distance). For two probability distributions X and
Y on a discrete universe S, we define statistical distance of X and Y as

SD (X,Y) =
1
2

∑

s∈S

|Pr[X = s] − Pr[Y = s]| .

We use the following observation, which characterizes statistical distance as
the difference of areas under the curve (see Fact 3.1.9 in Vadhan [27]).

Proposition 1. Let X and Y be probability distributions on a discrete universe
S, let SX = {s ∈ S : Pr[X = s] > Pr[Y = s]}, and define SY analogously. Then

SD (X,Y) = Pr[X ∈ SX] − Pr[Y ∈ SX] = Pr[Y ∈ SY] − Pr[X ∈ SY] .

We also use the following data-processing-type inequality.

Proposition 2. Let X and Y be probability distributions on a discrete universe
S. Then for any function f : S → {0, 1}, it holds that |Pr[f(X) = 1]−Pr[f(Y) =
1]| ≤ SD (X,Y).

Definition 2 (Computational indistinguishability). Two probability
ensembles, {Xn}n∈N

and {Yn}n∈N
, are computationally indistinguishable if for

every polynomial-time algorithm D there exists a negligible function negl(·) such
that

|Pr[D(Xn, 1n) = 1] − Pr[D(Yn, 1n) = 1]| ≤ negl(n) .

2.1 Online ORAM

In this section, we present the formal definition for online oblivious RAM
(ORAM) we consider in our work – we build on the oblivious cell-probe model
of Larsen and Nielsen [18].

Definition 3 (Array Maintenance Problem [18]). The Array Maintenance
problem with parameters (�, w) is to maintain an array B of � w-bit entries
under the following two operations:

– (W,a, d): Set the content of B[a] to d, where a ∈ [�], d ∈ {0, 1}w. (Write
operation)

– (R, a, d): Return the content of B[a], where a ∈ [�] (note that d is ignored).
(Read operation)

We say that a machine M implements the Array Maintenance problem with
parameters (�, w) and probability p, if for every input sequence of operations

y = (o1, a1, d1), . . . , (on, an, dn), where each oi ∈ {R,W} , ai ∈ [�], di ∈ {0, 1}w
,

and for every read operation in the sequence y, M returns the correct answer
with probability at least p.

270 P. Hubáček et al.

Definition 4 (Online Oblivious RAM). For m,w ∈ N, let RAM*(m,w)
denote a probabilistic random access machine M with m cells of internal mem-
ory, each of size w bits, which has access to a data structure, called server, imple-
menting the Array Maintenance problem with parameters (2w, w) and probability
1. In other words, in each step of computation M may probe the server on a
triple (o, a, d) ∈ {R,W} × [2w] × {0, 1}w and on every input (R, a, d) the server
returns to M the data last written in B[a]. We say that RAM∗ probes the server
whenever it makes an Array Maintenance operation to the server.

Let m,M,w be any natural numbers such that M ≤ 2w. An online Oblivious
RAM M with address range M , cell size w bits and m cells of internal memory
is a RAM∗(m,w) satisfying online access sequence, correctness, and statistical
(resp. computational) security as defined below.

Online Access Sequence: For any input sequence y = y1, . . . , yn the RAM*
machine M gets yi one by one, where each yi ∈ {R,W} × [M] × {0, 1}w.
Upon the receipt of each operation yi, the machine M generates a possi-
bly empty sequence of server probes (o1, a1, d1), . . . , (o�i , a�i , d�i), where each
(oi, ai, di) ∈ {R,W} × [2w] × {0, 1}w, and updates its internal memory state
in order to correctly implement the request yi. We define the access sequence
corresponding to yi as A(M, yi) = a1, a2, . . . , a�i . For the input sequence y,
the access sequence A(M, y) is defined as

A(M, y) = A(M, y1), A(M, y2), A(M, y3), . . . , A(M, yn).

Note that the definition of the machine M is online, and thus for each input
sequence y = y1, . . . , yn and each i ∈ [n − 1], the access sequence A(M, yi)
does not depend on yi+1, . . . , yn.

Correctness: M implements the Array Maintenance problem with parameters
(M,w) with probability at least 1 − pfail.

Statistical Security: For any two input sequences y, y′ of the same length,
the statistical distance of the distributions of access sequences A(M, y) and
A(M, y′) is at most 1

4 .
Computational Security: For computational security, we consider infinite

families of ORAM where we allow m,M,w to be functions of the length n
of the input sequence. We distinguish between the following two notions:
Weak Computational Security: For any infinite families of input

sequences {yn}n∈N and {y′
n}n∈N such that |yn| = |y′

n| ≥ n for all n ∈ N,
the probability ensembles {A(M, yn)}n∈N and {A(M, y′

n)}n∈N are com-
putationally indistinguishable.

Strong Computational Security: For any infinite families of input
sequences {yn}n∈N and {y′

n}n∈N such that |yn| = |y′
n| ≥ n for

all n ∈ N, the probability ensembles {(yn, y′
n, A(M, yn))}n∈N and

{(yn, y′
n, A(M, y′

n))}n∈N are computationally indistinguishable.

The parameters of our ORAM model from Definition 4 are depicted in Fig. 1.
We use different sizes of arrows on server and RAM side to denote the asymmetry
of the communication (the RAM sends type of operation, address, and data and

Stronger Lower Bounds for Online ORAM 271

the server returns requested data in case of a read operation and dummy value
in case of a write operation). Note that the input sequence y of ORAM consists
of a sequence of all operations, whereas the access sequence A(M, y) consists of
a sequence of addresses of all probes.

Arguably, a user of an ORAM might want the stronger notion of computa-
tional security whereas the weaker notion is closer to the past considerations.
Note that in the case of weak computational security, the adversarial distin-
guisher does not have access to the input sequences. Thus, it is restricted to
contain only constant amount of information about the whole families of input
sequences {yn}n and {y′

n}n. In contrast, in the case of strong computational
security, the adversarial distinguisher is given also the input sequences. Thus, it
is able to compute any polynomial time computable information about the input
sequences. This distinction is crucial for our results, as we are able to prove only
an ω(1) lower bound for weak security as opposed to the Ω(log n) lower bound for
strong security (see Theorems 5 and 4). Nevertheless, we believe that the known
constructions of ORAM satisfy the notion of strong computational security.

For ease of exposition, in the rest of the paper we assume perfect correctness
of the ORAM (i.e., pfail = 0). However, our lower bounds can be extended also
to ORAMs with imperfect correctness (see Remark 1). Finally, our lower bounds
hold also for semi-offline ORAMs where the ORAM machine M receives the
type and address of each operation in advance and it has to process in online
manner only the data to be written during each write operation (see Remark 2).

3 Dense Graphs

In this section, we define an efficiently testable property of graphs that we
show to be satisfied by graphs induced by the access pattern of any statistically
secure ORAM. This property implies that the overhead of such ORAM must be
logarithmic.

We say a directed graph G = (V,E) is ordered if V is a subset of integers and
for each edge (u, v) ∈ E, u < v. For a graph G = (V,E) and S, T ⊆ V , we let
E(S, T) ⊆ E be the set of edges that start in S and end in T , and for integers
a ≤ m ≤ b ∈ V we let E(a,m, b) = E({a, a+1, . . . ,m−1}, {m,m+1, . . . , b−1}).

Definition 5. A k-partition of an ordered graph G = (V = {0, 1, 2, . . . , N −
1}, E) is a sequence 0 = b0 ≤ m0 ≤ b1 ≤ m1 ≤ · · · ≤ bk = N . We say that the
k-partition is �-dense if for each i ∈ {0, . . . , k − 1}, E(bi,mi, bi+1) is of size at
least �.

There is a simple greedy algorithm running in time O(|V |2 · |E|) which tests
for given integers k, � whether a given ordered graph G = (V,E) has an �-dense
k-partition. (The algorithm looks for the k parts one by one greedily from left
to right.)

Lemma 1. Let K ⊆ N be a subset of powers of 4. Let � ∈ N be given. Let
G = ({0, . . . , N − 1}, E) be an ordered graph which for each k ∈ K has an
(�/k)-dense k-partition. Then G has at least �

2 · |K| edges.

272 P. Hubáček et al.

∈[
M

]

∈{0,
1}w

(R
/W

,
ad

dr
es
s,

da
ta
)

“o
pe
ra
ti
o
n
s”

∈[
2w

]

∈{0,
1}w

(R
/W

,
ad

dr
es
s,

da
ta
)

“ p
ro
be
s
”

R
A
M

∗ (
m
,w

)

pr
ob

ab
ili
st
ic

m
ac
hi
ne

in
te
rn

a
l
m
em

o
ry

C
el
l
si
ze
:
w

bi
ts

M
em

or
y
si
ze
:
m

ce
lls

Se
rv
er

de
te
rm

in
is
ti
c
m
ac
hi
ne

se
rv
er

m
em

o
ry

C
el
l
si
ze
:
w

bi
ts

M
em

or
y
si
ze
:
2w

ce
lls

im
pl
em

en
ts

A
rr
ay

M
ai
nt
en

an
ce

pr
ob

le
m

(2
w
,w

)
w
it
h
pr
ob

ab
ili
ty

1

im
pl
em

en
ts

A
rr
ay

M
ai
nt
en

an
ce

pr
ob

le
m

(M
,w

)
w
it
h
pr
ob

ab
ili
ty

1
−

p
fa
il

F
ig
.
1
.
S
ch

em
a

o
f
o
n
li
n
e

O
R

A
M

fr
o
m

D
efi

n
it

io
n

4
.

Stronger Lower Bounds for Online ORAM 273

Proof. We use the following claim to bound the number of edges.

Claim. Let k > k′ > 0 be integers. Let 0 = b0 ≤ m0 ≤ b1 ≤ m1 ≤ · · · ≤ bk = N
be a k-partition of G, and 0 = b′

0 ≤ m′
0 ≤ b′

1 ≤ m′
1 ≤ · · · ≤ b′

k′ = N be a
k′-partition of G. Then for at least k − k′ distinct i ∈ {0, . . . , k − 1}

E(bi,mi, bi+1) ∩
⋃

j∈{0,...,k′−1}
E(b′

j ,m
′
j , b

′
j+1) = ∅. (1)

Proof. For any j ∈ {0, . . . , k′ − 1} and (u, v) ∈ E(b′
j ,m

′
j , b

′
j+1), if (u, v) ∈

E(bi,mi, bi+1) for some i then bi < m′
j < bi+1 (as bi ≤ u < m′

j ≤ v ≤ bi+1.)
Thus, i is uniquely determined by j. Hence, E(bi,mi, bi+1) may intersect⋃

j∈{0,...,k′−1} E(b′
j ,m

′
j , b

′
j+1) only if bi ≤ m′

j < bi+1, for some j ∈ {0, . . . , k′−1}.
Thus, such an intersection occurs only for at most k′ different i. The claim fol-
lows. 	

Now we are ready to prove Lemma 1. For each k ∈ K, pick an (�/k)-dense
k-partition 0 = b0 ≤ m0 ≤ b1 ≤ m1 ≤ · · · ≤ bk = N of G and define the set of
edges Ek:

Ek =
⋃

i∈{0,...,k−1}
E(bi,mi, bi+1).

For each k ∈ K, we lower-bound
∣∣∣Ek \ ⋃

k′∈K,k′<k Ek′

∣∣∣ by �/2. Since K con-
tains powers of 4,

∑
k′∈K,k′<k k′ ≤ k/2. By the above claim, for at least k −∑

k′∈K,k′<k k′ ≥ k/2 different i ∈ {0, . . . , k − 1}, E(bi,mi, bi+1) ∩ ⋃
k′∈K,k′<k

Ek′ = ∅. By density, |E(bi,mi, bi+1)| ≥ �/k, so
∣∣∣Ek \ ⋃

k′∈K,k′<k Ek′

∣∣∣ ≥ �
k · k

2 =

�/2. Hence,
∣∣⋃

k∈K Ek

∣∣ =
∑

k∈K

∣∣∣Ek \ ⋃
k′∈K,k′<k Ek′

∣∣∣ ≥ |K| · �
2 . 	

In the following corollary, we show that the property of having many dense
partitions with some probability implies proportionally many edges. (Note that
the �log4 t� − log4 s� term corresponds exactly to the number of powers of four
between s and t.)

Corollary 1. Let �, s, t be natural numbers, where s ≤ t. Let p ∈ [0, 1] be a real.
Let G be an ordered graph picked at random from a distribution such that for
each integer k, s ≤ k ≤ t, the randomly chosen ordered graph G has (�/k)-dense
k-partition with probability at least p. Then the expected number of edges in G
is at least p�

2 · (�log4 t� − log4 s�).
Proof. Let K be the set of integers such that k ∈ K if and only if k is a power
of 4 and G has an (�/k)-dense k-partition. K is a random variable. The expected
size of K is at least p(�log4 t� − log4 s�). By Lemma 1, the expected number of
edges in G is at least �

2 · p · (�log4 t� − log4 s�). 	

274 P. Hubáček et al.

4 ORAM Lower Bound

In this section, we fix integers n,m,M,w ≥ 1 such that m ≤ √
n, n ≤ M ≤ 2w,

and an ORAM M with address range M , cell size w and m cells of internal
memory (see Definition 4). We argue that any statistically secure ORAM M
must make Ω(n log n) server probes in expectation in order to implement a
sequence of n input operations. We also show that any ORAM M satisfying
Weak Computational Security must make ω(n) server probes in expectation on
any input sequence of length n.

Definition 6. Let A(M, y) = a0, . . . , aN−1 be an access sequence of M for
some input sequence y. We define a directed graph G(A(M, y)) = (V,E) called
access graph as follows: V = {0, . . . , N − 1} and (i, j) ∈ E iff i < j and ai = aj

and for each k ∈ {i + 1, . . . , j − 1}, ak �= ai.

Notice that every vertex of an access graph has outdegree as well as indegree
at most one.

In the following, we consider input sequences of even length n ∈ N. First,
we define a sequence of alternating writes and reads at address a = 1 with data
d = 0w as Yn,0 = [(W, 1, 0w), (R, 1, 0w)]n/2. Second, for each k ∈ {

1, 2, . . . , n
2

}
,

let � =
⌊

n
2k

⌋
, we define a distribution Yn,k of input sequences as

Yn,k =(W, 1, b1,1), (W, 2, b1,2), . . . , (W, �, b1,�), (R, 1, 0w), (R, 2, 0w), . . . , (R, �, 0w),
(W, 1, b2,1), (W, 2, b2,2), . . . , (W, �, b2,�), (R, 1, 0w), (R, 2, 0w), . . . , (R, �, 0w),
. . . ,

(W, 1, bk,1), (W, 2, bk,2), . . . , (W, �, bk,�), (R, 1, 0w), (R, 2, 0w), . . . , (R, �, 0w),
(W, 1, 0w), (R, 1, 0w), (W, 1, 0w), . . . , (R, 1, 0w) ,

where each bi,j ∈ {0, 1}w is an independently uniformly chosen bit string. We
define the i-th block of writes Wi = (W, 1, bi,1), (W, 2, bi,2), . . . , (W, �, bi,�) and the
i-th block of reads Ri to be the sequence of operations (R, 1, 0w), (R, 2, 0w), . . . ,
(R, �, 0w) following right after Wi. Note that after the k-th block of reads the
sequence is padded to length n by a sequence of alternating writes and reads.
For an ORAM M, we use the notation Gn,k = G(A(M, Yn,k)) and Gn,0 =
G(A(M, Yn,0)) when M is clear from the context.

The following lemma uses only correctness of ORAM and does not depend
on its security. The proof of the lemma uses the information transfer technique
similarly to Lemma 2 in [18].

Lemma 2. Let n,m,M,w,M be as in the beginning of this section, moreover
suppose n ≥ 10 is an even integer. Let k ≥ 1 be an integer such that k ≤

n
10(m+2 log n+11) . Let A(M, Yn,k) be the access sequence of M and Gn,k be the
corresponding access graph. (Gn,k is a random variable that depends on Yn,k

and the internal randomness of M.) With probability at least 1 − 1
n , Gn,k has

(n/5k)-dense k-partition.

Stronger Lower Bounds for Online ORAM 275

Proof. By our assumption from the beginning of this section, n ≤ M , and thus
for any k ∈ {1, 2, . . . , n

2 } all sequences Yn,k have all addresses in the correct
range. Fix any k satisfying the assumptions of this lemma and set � =

⌊
n
2k

⌋
.

As defined before let Wi and Ri be the i-th block of writes and reads in Yn,k,
respectively. Let Ui be the vertices of Gn,k corresponding to Wi, and Vi be the
vertices corresponding to Ri. It suffices to prove that for each i ∈ {1, . . . , k}, the
probability that there are fewer than n/5k edges between Ui and Vi is less than
1/n2. If this holds then by the union bound the lemma follows.

For contradiction, assume there exists i ∈ {1, . . . , k} such that the probability
that there are fewer than n/5k edges between Ui and Vi is at least 1/n2. Here,
the randomness is taken over the choice of an input sequence y ← Yn,k and
the internal randomness of M. Fix such an i. Fix all the randomness except
for the choice of bi,1, . . . , bi,� in Yn,k so that Gn,k obtained from this restricted
distribution has fewer than n/5k edges between Ui and Vi with probability ≥
1/n2 over the choice of bi,1, . . . , bi,�. (This is possible by an averaging argument.)
Let B ⊆ {0, 1}w×� be the set of choices for bi,1, . . . , bi,� which give fewer than
n/5k edges between Ui and Vi in Gn,k. Clearly, |B| ≥ 2w�/n2.

We use M to construct a deterministic protocol that transmits any string
from B from Alice to Bob, two communicating parties, using at most log |B|−10
bits. That gives a contradiction as such an efficient transmission violates the
pigeon-hole principle.

On input b ∈ B to Alice, Alice sends a single message to Bob who can
determine b from the message. They proceed as follows. Both Alice and Bob
simulate M on Yn,k up until reaching Wi. All the randomness used before the
i-th block of writes Wi is fixed and known both to Alice and Bob. Then Alice
continues with the simulation of M on Wi with data bi,1, bi,2, . . . , bi,� set to
b. Once she finishes it, she sends the content of the internal memory of M to
Bob using wm bits. Then Alice continues with the simulation of M on Ri and
whenever M makes a server probe to read from a location that was written
last time during the simulation of Wi, Alice sends over the address and the
content of that cell to Bob. Overall, Alice sends at most mw + 2wn/5k bits of
communication to Bob that can be concatenated into a single message of this
size.

On receiving side, Bob uses the internal state of M communicated by Alice
to continue with the computation on Ri, while he uses the state of the server he
obtained initially before reaching Wi. He simulates all server probes by himself,
except for read operations that match the list sent by Alice, where he initially
uses the content provided by Alice. Clearly, Bob can determine b from the sim-
ulation.

As k ≤ n
10(m+2 log n+11) , mw + 2wn/5k ≤ (n/2k − 2 log n − 11) w, so mw +

2wn/5k ≤ (�− 2 log n− 10)w, hence, the number of communicated bits is mw +
2wn/5k ≤ log |B| − (2w − 2) log n − 10w, which is a contradiction. 	

Remark 1. Using good error-correcting codes (see for instance [20]), this lemma
could be generalized to the case when M implements Array Maintenance prob-
lem with probability 1 − pfail < 1, i.e., M is allowed to return a wrong value

276 P. Hubáček et al.

for each of its input read operations with a small constant probability pfail. The
graph Gn,k would still have (εn/k)-dense k-partition with 1 − 1/n probability
for some ε > 0 which depends only on the allowed failure probability pfail.

Remark 2. Note that the randomness of input sequence Yn,k is used only for
the data to be written. Moreover, the proof relies only on incompressibility of a
random string stored during the write block and it does not rely on the addresses
used to store this data. Thus, the same proof goes through even for semi-offline
ORAMs, i.e., if we allow the ORAM to know the type and address of each input
operation in y in advance. On the other hand, as our proof uses interleaved
sequences of write blocks and read blocks, it is unlikely that it would be possible
to extend it to the read-only online ORAM model of Weiss and Wichs [30].

Note that using an averaging argument we can assume that the probability in
Lemma 2 is only over the randomness of M. Thus we get the following corollary
proving for every k the existence of a single input sequence whose corresponding
access graph has n

5k -dense k-partition with high probability.

Corollary 2. For any even integer n ≥ 10 and an integer k ≥ 1 such that
k ≤ n

10(m+2 log n+11) there is an input sequence yn,k of length n such that
G(A(M, yn,k)) has a (n/5k)-dense k-partition with probability at least 1 − 1

n .

We show that by statistical security of M, this property holds for a single
input sequence and many different values of k.

Lemma 3. Let n,m,M,w,M be as in the beginning of this section, and assume
n is even and n ≥ 10. Let y be an input sequence to M of length n. If M is a sta-
tistically secure online ORAM then for every k ∈

{
1, 2, . . . ,

⌊
n

10(m+2 log n+11)

⌋}

Pr [G(A(M, y)) has an (n/5k)-dense k-partition] ≥ 3
5
.

Proof. For contradiction, suppose that for some k the probability is less than
3/5. From the statistical security of M we know that the statistical distance
SD (A(M, y), A(M, yn,k)) ≤ 1

4 where yn,k is given by Corollary 2. By Corollary 2
the sequence yn,k gives us a graph G(A(M, yn,k)) which has an (n/5k)-dense
k-partition with probability at least 1 − 1/n ≥ 9/10. Define a function f�,k on
ordered graphs that is an indicator of having an �-dense k-partition. Applying
Proposition 2 with X ← G(A(M, y)), Y ← G(A(M, yn,k)), and f = fn/5k,k, we
can conclude that G(A(M, y)) has an (n/5k)-dense k-partition with probability
at least 3/4 − 1/10 ≥ 3/5. 	

We are ready to prove our main theorem for statistically secure ORAM.

Theorem 3. There are constants c0, c1 > 0 such that for any integers m,w ≥ 1
and M ≥ n ≥ c0 where m ≤ √

n and M ≤ 2w, any statistically secure online
ORAM M with address range M , cell size w bits and m cells of internal memory
must perform at least c1n log n server probes in expectation (the expectation is
over the randomness of M) on any input sequence of length n.

Stronger Lower Bounds for Online ORAM 277

Proof. Fix an ORAM machine M. Consider any input sequence y to M of length
n. By Lemma 3 for every k, such that 1 ≤ k ≤

⌊
n

10(m+2 log n+11)

⌋
, we get that

Pr [G(A(M, y)) has an (n/5k)-dense k-partition] ≥ 3
5
.

Applying Corollary 1 with s = 1, t =
⌊

n
10(m+2 log n+11)

⌋
, � =

⌊
n
5

⌋
, and

p = 3/5, we can lower bound the expected number of edges in G(A(M, y)) by

3n

50

⌊
log4

⌊
n

10(m + 2 log n + 11)

⌋⌋
.

For n ≥ 1000,
⌊

n
10(m+2 log n+11)

⌋
≥

√
n

40 . Hence, the expected number of edges in

G(A(M, y)) is at least 3
100 · n log

√
n

40 ≥ 1
100 · n log n, provided c0 is large enough.

Since the indegree of each vertex of an access graph is at most one, the expected
number of vertices in G(A(M, y)), which is the same as the expected number of
probes in A(M, y), is at least 1

100 · n log n. 	

Next, we prove Ω(log n) lower bound for ORAMs satisfying strong compu-

tational security from Definition 4.

Lemma 4. Let m,M,w : N → N be non-decreasing functions such that for all n
large enough: m(n) ≤ √

n and n ≤ M(n) ≤ 2w(n). Let {Mn}n∈N be a sequence
of online ORAMs with address range M(n), cell size w(n) bits and m(n) cells
of internal memory which satisfy strong computational security. Let {yn}n∈N be
an infinite family of input sequences where |yn| = n, for each n ∈ N.

Then there exists n0 such that for every n ≥ n0 and for every k in the set{
1, 2, . . . ,

⌊
n

10(m(n)+2 log n+11)

⌋}
,

Pr [G(A(Mn, yn)) has an (n/5k)-dense k-partition] ≥ 3
5
.

Proof. For contradiction, assume there are infinitely many pairs of integers
(n, k), s.t. k ≤

⌊
n

10(m(n)+2 log n+11)

⌋
and that the probability that yn has an

(n/5k)-dense k-partition is less than 3/5.
Let D be an algorithm which given two input sequences y and y′ of length n

and an access sequence A(Mn, z), where z ∈ {y, y′}, does the following:

1. Compute n.
2. Compute k′ to be the number of blocks of consecutive reads of length �n/k′�

in the input sequence y′.
3. If A(Mn, z) does not have (n/5k′)-dense k′-partition D returns “1” (i.e. D

guesses that z = y).
4. Otherwise D returns “1” with probability 1/2 and “2” with probability 1/2

(i.e. D guesses at random).

278 P. Hubáček et al.

There is a polynomial time greedy algorithm determining whether the graph
G(A(Mn, z)) contains an �-dense k-partition. Thus algorithm D runs in time
polynomial in the length of the access sequence A(Mn, z).

Let yn,k be a sequence from Corollary 2. So, G(A(Mn, yn,k)) has an (n/5k)-
dense k-partition with probability at least 1−1/n ≥ 9/10. Observe that if y = yn

and y′ = yn,k then:

|Pr[D(yn, yn,k, A(Mn, yn)) = 1] − Pr[D(yn, yn,k, A(Mn, yn,k)) = 1]|

≥
(

2
5

+
3
5

· 1
2

)
−

(
1
10

+
9
10

· 1
2

)
=

3
20

.

By the assumption D returns “1” in step 3 on A(Mn, yn) with probability at
least 2/5. By Corollary 2 D answers “1” on A(Mn, yn,k) with probability at
most 1/10.

This contradicts the strong computational security of Mn as D should not
distinguish between y and y′ with non-negligible probability. 	

Theorem 4. Let m,M,w : N → N be non-decreasing functions such that for all
n large enough: m(n) ≤ √

n and n ≤ M(n) ≤ 2w(n). Let {Mn}n∈N be a sequence
of online ORAMs with address range M(n), cell size w(n) bits and m(n) cells
of internal memory which satisfy strong computational security. Let {yn}n∈N be
an infinite family of input sequences where |yn| = n, for each n ∈ N.

There are constants c0, c1 > 0, such that for any n ≥ c0, Mn must perform
in expectation at least c1n log n server probes on the input sequence yn.

Proof. The proof is identical to the proof of Theorem 3 but we use Lemma 4
instead of Lemma 3. Note that the different order of quantifiers is caused by
different order of quantifiers in Lemma 3 and in Lemma 4. 	

In the rest of this section, we prove an ω(1) lower bound for ORAMs satis-
fying weak computational security from Definition 4. Note that in the case of
weak computational security it is unclear which k should the adversary use to
distinguish y and y′. Thus, we cannot directly conclude that y has n

5k -dense k-

partition for every n and k ≤
⌊

n
10(m(n)+2 log n+11)

⌋
. On the other hand, for every

k there could be only finitely many values n such that there is an input sequence
of length n which has no n

5k -dense k-partition. This fact allows us to prove the
ω(1) lower bound for weak computational security.

Theorem 5. Let m,M,w : N → N be non-decreasing functions such that for all
n large enough: m(n) ≤ √

n and n ≤ M(n) ≤ 2w(n). Let {Mn}n∈N be a sequence
of online ORAMs with address range M(n), cell size w(n) bits and m(n) cells
of internal memory which satisfy weak computational security. Let {yn}n∈N be a
sequence of input sequences where |yn| = n, for each n ∈ N.

For any constant c1 > 0 there is a constant c0 > 0, such that for any n ≥ c0,
Mn must perform in expectation at least c1n server probes on the input sequence
yn.

Stronger Lower Bounds for Online ORAM 279

In particular there is no computationally secure online ORAM with constant
bandwidth overhead O(1).

Proof. For each n ∈ N, define k(n) to be the smallest k such that

Pr[G(A(Mn, yn)) has (n/5k)-dense k-partition] < 1/2.

Using Corollary 1 we get for each n large enough that the expected number of
edges in G(A(Mn, yn)) is at least c ·n log k(n), for some absolute constant c > 0.
It suffices to show that k(n) → ∞ as n → ∞. There cannot exist a constant
k such that Yn has (n/5k)-dense k-partition with probability less than 1

2 for
infinitely many n. Otherwise {yn}n would be computationally distinguishable
from {Yn,k}n (by the greedy algorithm which has k hard-wired). So, k(n) → ∞
as n → ∞. 	

5 Alternative Definitions for Oblivious RAM

In this section, we recall some alternative definitions for ORAM which appeared
in the literature and explain the relation of our lower bound to those models.

The Definition of Larsen and Nielsen. Larsen and Nielsen (see Defini-
tion 4 in [18]) required that for any two input sequences of equal length, the
corresponding distributions of access sequences cannot be distinguished with
probability greater than 1/4 by any algorithm running in polynomial time in the
sum of the following terms: the length of the input sequence, logarithm of the
number of memory cells (i.e., log n), and the size of a memory cell (i.e., log n
for the most natural parameters). We show that their definition implies statis-
tical closeness as considered in our work (see the statistical security property in
Definition 4). Therefore, any lower bound on the bandwidth overhead of ORAM
satisfying our definition implies a matching lower bound w.r.t. the definition of
Larsen and Nielsen [18].

To this end, let us show that if two distributions of access sequences are
not statistically close, then they are distinguishable in the sense of Larsen and
Nielsen. Assume there exist two input sequences y and y′ of equal lengths,
for which the access sequences A(M, y) and A(M, y′) have statistical distance
greater than 1/4. We define a distinguisher algorithm D that on access sequence
x outputs 1 whenever Pr[A(M, y) = x] > Pr[A(M, y′) = x], outputs 0 when-
ever Pr[A(M, y) = x] < Pr[A(M, y′) = x], and outputs a uniformly random bit
whenever Pr[A(M, y) = x] = Pr[A(M, y′) = x]. It follows from definition of D,
basic properties of statistical distance (see proposition 1), and our assumption
about the statistical distance of A(M, y) and A(M, y′) that

|Pr[D(A(M, y)) = 1] − Pr[D(A(M, y′)) = 1]| = SD (A(M, y), A(M, y′)) >
1
4

.

Note that D can be specific for the pair of the two input sequences y and y′ and
it can have all the significant information about the distributions A(M, y) and

280 P. Hubáček et al.

A(M, y′) hardwired. For example, it is sufficient to store a string describing for
each access sequence x whether it is more, less, or equally likely under A(M, y)
or A(M, y′). Even though such string is of exponential size w.r.t. the length of
the access pattern, D needs to simply access the position corresponding to the
observed access pattern to output its decision as described above. Thus, D can
run in linear time in the length of the access sequence (which is polynomial in
the length of the input sequence) and distinguishes the two access sequences
with probability greater than 1/4.

The Definition of Goldreich and Ostrovsky. Unlike the original defini-
tion of ORAM from Goldreich [10] and Ostrovsky [21], the definition of ORAM
presented in Goldreich and Ostrovsky [11] postulates an alternative security
requirement. However, the alternative definition suffers from an issue which is
not present in the original definition and which, to the best of our knowledge,
was not pointed out in the literature. In particular, the definition in [11] can be
satisfied by a dummy ORAM construction with only a constant overhead and
without achieving any indistinguishability of the access sequences. Given that
Goldreich and Ostrovsky [11] might serve as a primary reference for our com-
munity, we explain the issue in the following paragraph to help preventing the
use of the problematic definition in future works.

Recall the definition of ORAM with perfect security from Goldreich and
Ostrovsky (Definition 2.3.1.3 in [11]):

Goldreich-Ostrovsky Security: For any two input sequences y and y′, if the
length distributions |A(M, y)| and |A(M, y′)| are identical, then A(M, y) and
A(M, y′) are identical.

As we show, this requirement can be satisfied by creating an ORAM that
makes sure that on any two distinct sequences y, y′, the length distributions
|A(M, y)| and |A(M, y′)| differ. Note that no indistinguishability is required
in that case and the ORAM can then reveal the access pattern of the input
sequence.

To this end, we describe an ORAM with a constant overhead so that the
length |A(M, y)| is either 2|y| or 2|y|+1 and the distribution |A(M, y)| encodes
the sequence y. The ORAM proceeds by performing every operation yi directly
on the server followed by a read operation from address 1. After the last instruc-
tion in y, the ORAM selects a random sequence of operations r of length |y|
and if r is lexicographically smaller than y then the ORAM performs an extra
read from address 1 before terminating. Note that this ORAM can be efficiently
implemented using constant amount of internal memory by comparing the input
sequence to the randomly selected one online. Also, the machine does not need
to know the length of the sequence in advance. Finally, the length distribution
|A(M, y)| is clearly different for each input sequence y. Given that the above
definition of ORAM of Goldreich and Ostrovsky allows the dummy construction
with a constant overhead, we do not hope to extend our lower bound towards
this definition.

One could object that the above dummy ORAM exploits the fact that indis-
tinguishability of access sequences must hold only if the length distributions

Stronger Lower Bounds for Online ORAM 281

are identical. However, it is possible to construct a similar dummy ORAM with
low overhead satisfying even the following relaxation of the definition requiring
indistinguishability of access sequences corresponding to any pair of y and y′ for
which |A(M,y)| and |A(M,y′)| are statistically close (i.e., the indistinguishabil-
ity is required for a potentially larger set of access patterns):

Relaxation of Goldreich-Ostrovsky Security: For any two input sequences
y and y′, if the length distributions |A(M, y)| and |A(M, y′)| are statistically
close, then A(M, y) and A(M, y′) are statistically close.

We show there is a dummy ORAM M with a constant overhead such that for
any two input sequences y and y′ which differ in their accessed memory locations,
the statistical distance SD (|A(M, y)|, |A(M, y′)|) is at least 1

nM (where n =
|y| = |y′| and M is the size of address range).

The ORAM M works as follows. At the beginning, the ORAM picks i ∈ [n]
and r ∈ [M] uniformly at random. Then for j = 1, . . . n, it executes each of the
input operations (oj , aj , dj) directly on the server. For each j < i, it performs
two additional reads from address 1 after executing the j-th input operation.
For j = i, after the i-th input operation it performs two additional reads from
address 1 if r ≤ ai, and it performs one additional read from address 1 if r > ai.
For j > i, it performs each of the input operations without any additional read.

It is straightforward to verify that the distribution of |A(M, y)| satisfies:
for each i ∈ [n], Pr[|A(M, y)| = n + 2i] = ai

nM . Hence, for any pair y and y′

of two input sequences of length n, if the sequences of addresses accessed by
them differ then the statistical distance between the distributions of |A(M, y)|
and |A(M, y′)| is at least 1/nM . If M is polynomial in n this means that their
distance is at least 1

poly(n) . Thus, M satisfies even the stronger variant of the
definition from [11] even though its access sequence leaks the addresses from the
input sequence.

It was previously shown by Haider, Khan and van Dijk [14] that there
exists an ORAM construction which reveals all memory accesses from the input
sequence while satisfying the definition of Goldreich and Ostrovsky from [11].
However, their construction has an exponential bandwidth overhead which makes
it insufficient to demonstrate any issue with the definition of Goldreich and
Ostrovsky. Clearly, any definition of ORAM can disregard constructions with
super-linear overhead as a perfectly secure ORAM (with linear overhead) can be
constructed by simply passing over the whole server memory for each input oper-
ation. Unlike the construction of [14], our constructions of the dummy ORAMs
with constant bandwidth overhead exemplify that the definition of Goldreich
and Ostrovsky from [11] is problematic in the interesting regime of parameters.

Simulation-Based Definitions. The recent work of Asharov et al. [2] employs
a simulation-based definition parameterized by a functionality which implements
an oblivious data structure. Our lower bounds directly extend to their stronger
definition when the functionality implements Array Maintenance. Moreover, our
techniques can be adapted to give lower bounds for functionalities implementing
stacks, queues and others considered in [15].

282 P. Hubáček et al.

Weak vs. Strong Computational Security. In this work, we distinguish
between weak and strong computational security (see Definition 4). Our tech-
niques do not allow to prove matching bounds for ORAMs satisfying the two
notions and we show Ω(log n) lower bound only w.r.t. strong computational
security. Though, as we noted in Sect. 1.1, even the ω(1) lower bound for online
ORAMs satisfying weak computational security is an interesting result in the
light of the work of Boyle and Naor [3]. It follows from [3] that any super-
constant lower bound for offline ORAM would imply super-linear lower bounds
on size of sorting circuits – which would constitute a major breakthrough in
computational complexity. The main result from Boyle and Naor [3] can be
rephrased using our notation as follows.

Theorem 6 (Theorem 3.1 [3]). Suppose there exists a Boolean circuit ensem-
ble C = {C(n,w)}n,w of size s(n,w), such that each C(n,w) takes as input
n words each of size w bits, and outputs the words in sorted order. Then for
word size w ∈ Ω(log n) ∩ no(1) and constant internal memory m ∈ O(1), there
exists a secure offline ORAM (as per Definition 2.8 [3]) with total bandwidth
and computation O(n log w + s(2n/w,w)).

Moreover, the additive factor of O(n log w) follows from the transpose part of
the algorithm of [3] (see Figs. 1 and 2 in [3]). As Boyle and Naor showed in
their appendix (Remark B.3 [3]) this additive factor in total bandwidth may be
reduced to O(n) if the size of internal memory is m ≥ w. Thus, sorting circuit of
size O(nw) implies offline ORAM with total bandwidth O(n+2 n

ww) = O(n). Or
the other way around, lower bound ω(n) for total bandwidth of offline ORAM
implies ω(nw) lower bound for circuits sorting n words of size w bits, each.

We leave it as an intriguing open problem whether it is possible to prove an
Ω(log n) lower bound for online ORAMs satisfying weak computational security.

Acknowledgements. We wish to thank Oded Goldreich for clarifications regarding
the ORAM definitions in [10,11,21] and Jesper Buus Nielsen for clarifying the details
of the lower bound for computationally secure ORAMs from [18]. We are also thankful
to the anonymous TCC 2019 reviewers for insightful comments that helped us improve
the presentation of our results.

References

1. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. In: Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5–8 June 2010, pp. 181–190 (2010)

2. Asharov, G., Komargodski, I., Lin, W., Nayak, K., Peserico, E., Shi, E.:
OptORAMa: optimal oblivious RAM. IACR Cryptology ePrint Archive 2018/892
(2018)

3. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, 14–16 January 2016, pp. 357–368 (2016)

Stronger Lower Bounds for Online ORAM 283

4. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874,
pp. 62–81. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 4

5. Chung, K., Pass, R.: A simple ORAM. IACR Cryptology ePrint Archive 2013/243
(2013)

6. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 10

7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

8. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
Seattle, Washigton, USA, 14–17 May 1989, pp. 345–354 (1989)

9. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39077-7 1

10. Goldreich, O.: Towards a theory of software protection and simulation by obliv-
ious RAMs. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, USA, pp. 182–194 (1987)

11. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

12. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22012-8 46

13. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM
simulation with efficient worst-case access overhead. In: Proceedings of the 3rd
ACM Cloud Computing Security Workshop, CCSW 2011, Chicago, IL, USA, 21
October 2011, pp. 95–100 (2011)

14. Haider, S.K., Khan, O., van Dijk, M.: Revisiting definitional foundations of obliv-
ious RAM for secure processor implementations. CoRR abs/1706.03852 (2017).
http://arxiv.org/abs/1706.03852

15. Jacob, R., Larsen, K.G., Nielsen, J.B.: Lower bounds for oblivious data structures.
In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, 6–9 January 2019, pp. 2439–2447
(2019)

16. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. CoRR
abs/1801.01203 (2018). http://arxiv.org/abs/1801.01203

17. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based oblivious
RAM and a new balancing scheme. In: Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19
January 2012, pp. 143–156 (2012)

18. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp.
523–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 18

19. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–
17 August 2018, pp. 973–990 (2018)

https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
http://arxiv.org/abs/1706.03852
http://arxiv.org/abs/1801.01203
https://doi.org/10.1007/978-3-319-96881-0_18

284 P. Hubáček et al.

20. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-
Holland, Amsterdam (1977)

21. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: Proceedings of the
22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland,
USA, 13–17 May 1990, pp. 514–523 (1990)

22. Patel, S., Persiano, G., Raykova, M., Yeo, K.: PanORAMa: oblivious RAM with
logarithmic overhead. In: 59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2018, Paris, France, 7–9 October 2018, pp. 871–882 (2018)

23. Patrascu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006)

24. Persiano, G., Yeo, K.: Lower bounds for differentially private RAMs. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 404–434.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 14

25. Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., Devadas,
S.: Ring ORAM: closing the gap between small and large client storage oblivious
RAM. IACR Cryptology ePrint Archive 2014/997 (2014)

26. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. J.
ACM 65(4), 18:1–18:26 (2018)

27. Vadhan, S.P.: A Study of Statistical-Zero Knowledge Proofs. Ph.D. thesis, Mas-
sachusetts Institute of Technology, September 1999

28. Wang, X., Chan, T.H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, 12–16 October 2015,
pp. 850–861 (2015)

29. Wang, X.S., Huang, Y., Chan, T.H., Shelat, A., Shi, E.: SCORAM: oblivious RAM
for secure computation. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, 3–7 November
2014, pp. 191–202 (2014)

30. Weiss, M., Wichs, D.: Is there an oblivious RAM lower bound for online reads?
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp.
603–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 22

https://doi.org/10.1007/978-3-030-17653-2_14
https://doi.org/10.1007/978-3-030-03810-6_22

Adaptively Secure Garbling Schemes
for Parallel Computations

Kai-Min Chung1 and Luowen Qian2(B)

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
kmchung@iis.sinica.edu.tw

2 Boston University, Boston, MA, USA
luowenq@bu.edu

Abstract. We construct the first adaptively secure garbling scheme
based on standard public-key assumptions for garbling a circuit C :
{0, 1}n �→ {0, 1}m that simultaneously achieves a near-optimal online
complexity n + m + poly(λ, log |C|) (where λ is the security parameter)
and preserves the parallel efficiency for evaluating the garbled circuit;
namely, if the depth of C is d, then the garbled circuit can be evalu-
ated in parallel time d · poly(log |C|, λ). In particular, our construction
improves over the recent seminal work of [GS18], which constructs the
first adaptively secure garbling scheme with a near-optimal online com-
plexity under the same assumptions, but the garbled circuit can only be
evaluated gate by gate in a sequential manner. Our construction com-
bines their novel idea of linearization with several new ideas to achieve
parallel efficiency without compromising online complexity.

We take one step further to construct the first adaptively secure
garbling scheme for parallel RAM (PRAM) programs under standard
assumptions that preserves the parallel efficiency. Previous such con-
structions we are aware of is from strong assumptions like indistinguisha-
bility obfuscation. Our construction is based on the work of [GOS18] for
adaptively secure garbled RAM, but again introduces several new ideas
to handle parallel RAM computation, which may be of independent inter-
ests. As an application, this yields the first constant round secure compu-
tation protocol for persistent PRAM programs in the malicious settings
from standard assumptions.

1 Introduction

Garbled Circuits. The notion of garbled circuits were introduced by Yao [Yao82]
for secure computations. Yao’s construction of garbled circuits is secure in the
sense that given a circuit C and an input x, the scheme gives out a garbled circuit
C̃ and a garbled input x̃ such that it only allows adversaries to recover C(x) and
nothing else. The notion of garbled circuits has found an enormous number of

Kai-Min Chung is partially supported by the Ministry of Science and Technology,
Taiwan, under Grant no. MOST 106-2628-E-001-002-MY3 and the Academia Sinica
Career Development Award under Grant no. 23-17.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 285–310, 2019.
https://doi.org/10.1007/978-3-030-36033-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_11

286 K.-M. Chung and L. Qian

applications in cryptography. It is well established that garbling techniques is
one of the important techniques in cryptography [BHR12b,App17].

Garbled RAM. Lu and Ostrovsky [LO13] extended the garbling schemes to the
RAM settings and its applications to delegating database and secure multiparty
RAM program computation, and it has been an active area of research in garbling
ever since [GHL+14,GLOS15,GLO15,CH16,CCC+16]. Under this settings, it is
possible to reduce the size of the garbled program to grow only linearly in the
running time of the RAM program (and sometimes logarithmically in the size of
the database), instead of the size of the corresponding circuit (which must grow
linearly with the size of the database).

Parallel Cryptography. It is a well established fact that parallelism is able to
speed up computation, even exponentially for some problems. Yao’s construction
of garbled circuits is conceptually simple and inherently parallelizable. Being able
to evaluate in parallel is more beneficial in the RAM settings where the persistent
database can be very large, especially when it is applied to big data processing.
The notion of parallel garbled RAM is introduced by Boyle et al. [BCP16]. A
black-box construction of parallel garbled RAM is known from one-way function
[LO17].

Adaptively Secure Garbling. Bellare, Hoang, and Rogaway [BHR12a] showed
that in many applications of garbling, a stronger notion of adaptive security is
usually required. We note that the notion of adaptive security is tightly related
to efficiency.

For the circuit settings, the adversary is allowed to pick the input x to the
program C after he has seen the garbled version of the program C̃. In particular,
for the circuit settings, we refer to the size of C̃ as offline complexity and that
of the garbled input x̃ as online complexity. The efficiency requirement says
that the online complexity should not scale linearly with the size of the circuit1.
Constructing adaptively secure garbling schemes for circuits with small online
complexity has been an active area of investigation [HJO+16,JW16,JKK+17,
JSW17,GS18].

For the RAM settings, the adversary is allowed to adaptively pick multiple
programs Π1, ...,Πt and their respective inputs x1, ..., xt to be executed on the
same persistent database D, after he has seen the garbled version of the database
D̃, and having executed some garbled programs on the database and obtained
their outputs Πi(xi). Furthermore, he can choose his input after having seen
the garbled program. The efficiency requirement is that the time for garbling
the database, each program (and therefore the size of the garbled program) and
the respective input should depend linearly only on the size of the database,

1 Note that without this efficiency requirement, any selectively secure garbled circuit
can be trivially made adaptively secure, simply by sending everything only in the
online phase. This also holds similarly for the RAM setting.

Adaptively Secure Garbling Schemes for Parallel Computations 287

the program, and the input respectively (up to poly logarithmic factors). Adap-
tively secure garbled RAM is also known from indistinguishability obfuscation
[CCHR16,ACC+16].

Parallel Complexity of Adaptively Secure Garbling. In two recent seminal works
[GS18,GOS18], Garg et al. introduce an adaptively secure garbling scheme for
circuits with near-optimal online complexity as well as for RAM programs. How-
ever, both constructions explicitly (using a linearization technique for circuits)
or implicitly (serial execution of RAM programs) requires the evaluation process
to proceed in a strict serial manner. Note that this would cause the parallel eval-
uation time of garbled circuits to blow up exponentially if the circuit depth is
exponentially smaller than the size of the circuit. We also note that the lineariza-
tion technique is their main technique for achieving near-optimal online complex-
ity. On the other hand, such requirement seems to be at odds with evaluating
the garbled version in parallel, which is something previous works [HJO+16]
can easily achieve (however, Hemenway et al.’s construction has asymptotically
greater online complexity). It’s also not clear how to apply the techniques used in
[GOS18] for adaptive garbled RAM to garble parallel RAM (PRAM) programs.
In this work, we aim to find out whether such trade-off is inherent, namely,

Can we achieve adaptively secure garbling with parallel efficiency from
standard assumptions?

1.1 Our Results

In this work, we obtained a construction of adaptively secure garbling schemes
that allows for parallel evaluation, incurring only a logarithmic loss in the number
of processors in online complexity based on the assumption that laconic oblivious
transfer exists. Laconic oblivious transfer can be based on a variety of public-
key assumptions [CDG+17,DG17,BLSV18,DGHM18]. More formally, our main
results are:

Theorem 1. Let λ be the security parameter. Assuming laconic oblivious trans-
fer, there exists a construction of adaptively secure garbling schemes,

– for circuits C with optimal online communication complexity up to additive
poly(λ, log |C|) factors, and can be evaluated in parallel time d·poly(λ, log |C|)
given w processors, where d and w are the depth and width of circuit C respec-
tively;

– for PRAM programs on persistent database D, and can be evaluated in parallel
time T ·poly(λ, log M, log |D|, log T), where M is the number of processors and
T is the parallel running time for the original program.

This result closes the gap between parallel evaluation and online complexity
for circuits, and also is the first adaptively secure garbling scheme for parallel
RAM program from standard assumptions. Previous construction for adaptively

288 K.-M. Chung and L. Qian

secure garbled parallel RAM we are aware of is from strong assumptions like
indistinguishability obfuscation [ACC+16].

We present our construction for circuit formally in Sect. 4. Please see the full
version of our paper for the construction for PRAM.

1.2 Applications

In this section, we briefly mention some applications of our results.

Applications for Parallelly Efficient Adaptive Garbled Circuits. Our construc-
tion of parallel adaptively secure garbled circuits can be applied the same way
as already mentioned in previous works like [HJO+16,GS18], e.g. to one-time
program and compact functional encryption. Our result enables improved par-
allel efficiency for such applications.

Applications for Adaptive Garbled PRAM. This yields the first constant round
secure computation protocol for persistent PRAM programs in the malicious
settings from standard assumptions [GGMP16]. Prior works did not support
persistence in the malicious setting. As a special case, this also allows for evalu-
ating garbled PRAM programs on delegated persistent database.

2 Techniques

2.1 Parallelizing Garbled Circuits

Our starting point is to take Garg and Srinivasan’s construction of adaptively
secure garbled circuit with near-optimal online complexity [GS18] and allow it
to be evaluated in parallel. Recall that the main idea behind their construction
is to “linearize” the circuit before garbling it. Unfortunately, such transforma-
tion also ruins the parallel efficiency of their construction. We first explain why
linearization is important to achieving near-optimal online complexity.

Pebbling Game. Hemenway et al. [HJO+16] introduced the notion of somewhere
equivocal encryption, which enables us to equivocate a part of the garbled “gate”
circuits and send them in the online phase. By using such technique, online
complexity only needs to grow linearly in the maximum number of equivocated
garbled gates at the same time over the entire hybrid argument, which could be
much smaller than the length of the entire garbled circuit. Since an equivocated
gate can be opened to be any gate, the simulator can simulate the gate according
to the input chosen by the adversary, and send the simulated gate in the online
phase. The security proof involves a hybrid argument, where in each step we
change which gates we equivocate and show that this change is indistinguishable
to the adversary. At a high level, this can be abstracted into a pebbling game.

Given a directed acyclic graph with a single sink, we can put or remove a
pebble on a node if its every predecessor has a pebble on it or it has no prede-
cessors. The game ends when there is a pebble on the unique sink. The goal of

Adaptively Secure Garbling Schemes for Parallel Computations 289

the pebble game is to minimize the maximum number of pebbles simultaneously
on the graph throughout the game. In our case, the graph we need to pebble
is what is called simulation dependency graph, where nodes represent garbled
gates in the construction; and an edge from A to B represents that the input
label for a piece B is hardcoded in A, thus to turn B into simulation mode, it is
necessary to first turn A also into simulation mode. The simulation dependency
graph directly corresponds to the circuit topology. The game terminates when
the output gate is turned into simulation mode. As putting pebbles corresponds
to equivocating the circuit in the online phase, the goal of the pebbling game
also directly corresponds to the goal of minimizing online complexity.

Linearizing the Circuit. It is known that there is a strong lower bound Ω(n
log n)

for pebbling an arbitrary graph with n being the size of the graph [PTC76].
Since the circuits to be garbled can also be arbitrary, this means that the con-
structions of Hemenway et al. still have large online complexity for those “bad”
circuits. Thus, Garg and Srinivasan pointed out that some change in the simu-
lation dependency graph was required. In their work, they were able to change
the simulation dependency graph to be a line, i.e. the simulation of any given
garbled gate depends on only one other garbled gate. There’s a good pebbling
strategy using only O(log n) pebbles. On the other hand, using such technique
also forces the evaluation to proceed sequentially, which would cause the parallel
time complexity of wide circuits to blow up, in the worst case even exponentially.

We now describe how they achieved such linearization. In their work, instead
of garbling the circuit directly, they “weakly” garble a special RAM program
that evaluates the circuit. Specifically, this is done by having an external memory
storing the values of all the intermediate wires and then transforming the circuit
into a sequence of CPU step circuit, where each step circuit evaluates a gate and
performs reads and writes to the memory to store the results. The step circuits
are then garbled using Yao’s garbling scheme and the memory is protected with
one-time pad and laconic oblivious transfer (�OT). This garbling is weak since it
does not protect the memory access pattern (which is fixed) and only concerns
this specific type of program. Note that with this way, the input and output to
the circuit can be revealed by revealing the one-time pad protecting the memory
that store the circuit output, which only takes online complexity n + m.

Overview of Our Approach. A natural idea is that we can partially keep the
linear topology, for which we know a good pebbling strategy; and at the same
time, we would use M processors for each time step, each evaluating a gate in
parallel. We then store the evaluation results by performing reads and writes on
our external memory.

However, there are two challenges with this approach.

– Parallel writes. Read procedure in the original �OT scheme can be simply
evaluated in parallel for parallel reads. On the other hand, since (as we will
see later) the write procedure outputs an updated digest of the database,
some coordination is obviously required, and simply evaluating writes in serial

290 K.-M. Chung and L. Qian

would result in a blow up in parallel time complexity. Therefore, we need to
come up with a new parallel write procedure for this case.

– Pebbling complexity. Since now there are M gates being evaluated in
parallel and looking ahead, they also need to communicate with each other
to perform parallel writes, this will introduce complicated dependencies in the
graph, and in the end, we could incur a loss in online complexity. Therefore,
we must carefully layout our simulation dependency graph and find a good
pebbling strategy for that graph.

Laconic OT. As mentioned earlier, we cannot use the write procedure in laconic
oblivious transfer in a black-box way to achieve parallel efficiency. Thus, first we
will elaborate on laconic oblivious transfer. Laconic oblivious transfer allows a
receiver to commit to a large input via a short message of length λ. Subsequently,
the sender responds with a single short message (which is also referred to as
�OT ciphertext) to the receiver depending on dynamically chosen two messages
m0,m1 and a location L ∈ [|D|]. The sender’s response, enables the receiver
to recover mD[L], while m1−D[L] remains computationally hidden. Note that
the commitment does not hide the database and one commitment is sufficient
to recover multiple bits from the database by repeating this process. �OT is
frequently composed with Yao’s garbled circuits to make a long process non-
interactive. There, the messages will be chosen as input labels to the garbled
circuit.

First, we briefly recall the original construction of �OT . The novel technique
of laconic oblivious transfer was introduced in [CDG+17], where the scheme is
constructed as a Merkle tree of “laconic oblivious transfer with factor-2 compres-
sion”, which we denote as �OTconst, where the database is of length 2λ instead
of being arbitrarily large. For the read procedure, we simply start at the root
digest, traverse down the Merkle tree by using �OTconst to read out the digest
for the next layer. Such procedure is then made non-interactive using Yao’s gar-
bled circuits. For writes, similar techniques apply except that in the end, a final
garbled circuit would take another set of labels for the digests to evaluate the
updated root digest.

From the view of applying �OT to garbling RAM programs, an �OT scheme
allows to compress a large database into a small digest of length λ that binds
the entire database. In particular, given the digest, one can efficiently (in time
only logarithmic in the size of the database) and repeatedly (ask the database
holder to) read the database (open the commitment) or update the database
and obtain the (correctly) updated digest. For both cases, as the evaluation
results are returned as labels, the privacy requirement achieves “authentication”,
meaning the result has to be evaluated honestly as the adversary cannot obtain
the other label.

Now, we will describe how we solve these two challenges.

Adaptively Secure Garbling Schemes for Parallel Computations 291

Solving Parallel Writes

First Attempt. Now we address how to parallelize �OT writes, in particular
the garbled circuit evaluating the updated digest. First, we examine the task
of designing a parallel algorithm with M processors that jointly compute the
updated digest after writing M bits. At a high level, this can be done using
the following procedure: all processors start from the bottom, make their cor-
responding modifications, and hash their ways up in the tree to compute the
new digest; in each round, if two processors move to the same node, one of them
is marked inactive and moved to the end using a sorting network. This intu-
itive parallel algorithm runs in parallel time poly(log M, log |C|, λ). By plugging
such parallel algorithm back to the single write procedure for �OT , we obtain a
parallel write procedure for �OT .

However, there are some issues for online complexity when we combine this
intuitive algorithm with garbling and somewhere equivocal encryption. First, if
we garble the entire parallel write circuit using Yao’s garbling scheme, we would
have to equivocate the entire parallel write circuit in the online phase at some
point. Since the size of such circuit must be Ω(M), this leads to a large block
length and we will get high online complexity. Therefore, we will have to split
the parallel write circuit into smaller components and garble them separately
so that we can equivocate only some parts of the entire write circuit in the
online phase. However, this does not solve the problem completely, as in the
construction of parallel writes for �OT given above, inter-CPU communications
like sorting networks take place. In the end, this causes high pebbling complexity
of Ω(M). This is problematic since M can be as large as the width of the circuit.

Block-Writing �OT . To fix this issue, we note that for circuits, we can arbitrarily
specify the memory locations for each intermediate wires, and this allows us to
arrange the locations such that the communication patterns can be simplified to
the extent that we can reduce the pebbling complexity to O(log M). One such good
arrangement is moving all M updated locations into a single continuous block.

We give a procedure for handling such special case of updating the garbled
database with �OT . Recall that in �OT , memory contents are hashed together
using Merkle trees. Here, to simplify presentation, we assume the continuous
block to be an entire subtree of the Merkle tree. In this case, it’s easy to compute
the digest of the entire subtree efficiently in parallel, after which we can just
update the rest of the Merkle tree using a single standard but truncated writing
procedure with time poly(log |C|, λ), as we only need to pass and update the
digest of the root of that sub-tree; and the security proof is analogous to that of
a single write.

Pebbling Strategy. Before examining the pebbling strategy, we first give the
description of the evaluation procedure and our transformed simulation depen-
dency graph using the ideas mentioned in the previous section. In each round,
M garbled circuits take the current database digest as input and each outputs
a �OT ciphertext that allows the evaluator to obtain the input for a certain

292 K.-M. Chung and L. Qian

gate. Another garbled circuit would then take the input and evaluate the gate
and output the label for the output for that gate. In order to hash together
the output of M values for the gates we just evaluated, we use a Merkle tree of
garbled circuits where each circuit would be evaluating a �OT hash with factor-2
compression. At the end of the Merkle tree, we would obtain the digest of the
sub-tree we wish to update, which would then allow us to update the database
and compute the updated digest. We can then use the updated digest to enable
the evaluation of the next round.

Roughly, the pebbling graph we are dealing with is a line of “gadgets”, and
each gadget consists of a tree with children with an edge to their respective
parents. One illustration of such gadget can be seen in Fig. 9. One important
observation here is that in order to start putting pebbles on any gadget, one
only needs to put a pebble at the end of the previous gadget. Therefore, it’s not
hard to prove that the pebbling cost for the whole graph is the pebbling cost
for a single gadget plus the pebbling cost for a line graph, whose length is the
parallel time complexity of evaluating the circuit.

Pebbling Line Graph. Garg and Srinivasan used a pebbling strategy for pebbling
line graphs with the number of pebbles logarithmic in the length of the line graph.
Such strategy is optimal for the line graph [Ben89].

Pebbling the Gadget. For the gadget, the straightforward recursive strategy
works very well:2

1. To put a pebble at the root, we first recursively put a pebble at its two
children respectively;

2. Now we can put pebble at the root;
3. We again recursively remove the pebbles at its two children.

By induction, it’s not hard to prove that such strategy uses the number of pebbles
linear in the depth of the tree (note that at any given time, there can be at most
2 pebbles in each depth of the tree) and the number of steps is polynomial in
the size of the graph.

Putting the two strategy together, we achieve online complexity n + m +
poly(λ, log |C|, log M), where n,m is the length of the input and the output
respectively. Note that M is certainly at most |C|, so the online complexity is
in fact n + m + poly(λ, log |C|), which matches the online complexity in [GS18].

2.2 Garbling Parallel RAM

Now we expand our previous construction of garbled circuits (which is a “weak”
garbling of a special PRAM program) to garble more general PRAM programs,
employing similar techniques from the seminal work of [GOS18]. We start by

2 This strategy is similar to the second strategy in [HJO+16]. However, here the depth
of the tree is only logarithmic in the number of processors so we can prevent incurring
an exponential loss.

Adaptively Secure Garbling Schemes for Parallel Computations 293

bootstrapping the garbling scheme into an adaptive garbled PRAM with unpro-
tected memory access (UMA).

As with parallelizing adaptive garbled circuits, here we also face the issue
of handling parallel writes. Note that here the previous approach of rearrang-
ing write locations would not work since due to the nature of RAM programs,
the write locations can depend dynamically on the input. Therefore, we have to
return to our first attempt of parallel writes and splitting the parallel evalua-
tion into several circuits so that we can garble them separately for equivocation.
Again, we run into the issue of communications leading to high pebbling com-
plexity.

Solution: Parallel Checkpoints. Our idea is to instead put the parallel write
procedure into the PRAM program and use a technique called “parallel check-
points” to allow for arbitrary inter-CPU communications. At a high level, at
the end of each parallel CPU step, we store all the CPUs’ encrypted interme-
diary states into a second external memory and compute a digest using laconic
oblivious transfer. Such digest can then act like a checkpoint in parallel com-
putation, which is then used to retrieve the states back from the new database
using another garbled circuit and �OT .

Fig. 1. Transforming a toy sorting network using “parallel checkpoints.” The undashed
vertices corresponds to the step circuits that do the actual sorting.

To see how this change affects the simulation dependency graph and why it
solves the complexity issue, consider the following toy example where we have a
small sorting network, as seen in the left side of Fig. 1. Note that applying the two
pebbling strategies from [HJO+16] directly on the untransformed network will
result in an online complexity linear in either the number of processors M , or the
running time T (and in this case also a security loss exponential in T). However,
by doing the transformation as shown in Fig. 1, we can pebble this graph with
only O(log M) pebbles, by moving the pebble on the final node of each layer
forward (and we can move the pebble forward by one layer using O(log M)
pebbles). We can also see that using this change, the size of the garbled program
will only grow by a factor of 2, and the parallel running time will only grow by
a factor of log M . In general, this transformation allows us to perform arbitrary

294 K.-M. Chung and L. Qian

inter-CPU communications without incurring large losses in online complexity,
which resolves the issue.

For a more extended version of this construction, please refer to the full
version.

Pebbling Game for Parallel Checkpoints. As mentioned above, such paral-
lel checkpoints are implemented via creating a database using �OT . Thus
the same strategy for pebbling the circuit pebble graph can be directly
applied here. The key size of somewhere equivocal encryption is therefore only
poly(λ, log |D|, log M, log T).

With preprocessing and parallel checkpoints, we can proceed in a similar
way to construct adaptively secure garbled PRAM with unprotected memory
access. In order to bootstrap it from UMA to full security, the same techniques,
i.e. timed encryption and oblivious RAM compiler from [GOS18] can be used
in a similar way to handle additional complications in the RAM settings. In
particular, we argue that the oblivious parallel RAM compiler from [BCP16]
can be modified in the same way to achieve their strengthened notion of strong
localized randomness in the parallel setting and handle the additional subtleties
there. In the end, this allows us to construct a fully adaptively secure garbled
PRAM.

3 Preliminaries

3.1 Garbled Circuits

In this section, we recall the notion of garbled circuits introduced by Yao [Yao82].
We will follow the same notions and terminologies as used in [CDG+17]. A circuit
garbling scheme GC is a tuple of PPT algorithms (GCircuit,GCEval).

– C̃ ← GCircuit
(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
. It takes as input a security

parameter λ, a circuit C, a set of labels keyw,b for all the input wires w ∈ inp(C)
and b ∈ {0, 1}. This procedure outputs a garbled circuit C̃.

– y ← GCEval
(
C̃, {keyw,xw

}w∈inp(C)

)
. Given a garbled circuit C̃ and a garbled

input represented as a sequence of input labels {keyw,xw
}w∈inp(C), GCEval

outputs y.

Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}m, where m is the input length to C, we have that

Pr
[
C(x) = GCEval

(
C̃, {keyw,xw

}w∈inp(C)

)]
= 1,

where C̃ ← GCircuit
(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
.

Adaptively Secure Garbling Schemes for Parallel Computations 295

Security. We require that there is a PPT simulator GCircSim such that for any
C, x, and for {keyw,b}w∈inp(C),b∈{0,1} uniformly sampled,
(
C̃, {keyw,xw

}w∈inp(C)

) c≈
(
GCircSim

(
1λ, 1|C|, {keyw,xw

}w∈inp(C), y
)

, {keyw,xw
}w∈inp(C)

)
,

where C̃ ← GCircuit
(
1λ,C, {keyw,b}w∈inp(C),b∈{0,1}

)
and y = C(x).

Parallel Efficiency. For parallel efficiency, we require that the parallel runtime of
GCircuit on a PRAM machine with M processors is poly(λ) · |C|/M if |C| ≥ M ,
and the parallel runtime of GCEval on a PRAM machine with w processors is
poly(λ) · d, where w, d is the width and depth of the circuit respectively.

3.2 Somewhere Equivocal Encryption

In this section, we recall the definition of Somewhere Equivocal Encryption from
the work of [HJO+16].

Definition 1. A somewhere equivocal encryption scheme with block-length s,
message length n (in blocks) and equivocation parameter t (all polynomials in the
security parameter) is a tuple of PPT algorithms (KeyGen,Enc,Dec,SimEnc,
SimDec) such that:

– key ← KeyGen(1λ): It takes as input the security parameter λ and outputs a
key key.

– c̄ ← Enc(key, m̄): It takes as input a key key and a vector of messages m̄ =
m1...mn with each mi ∈ {0, 1}s and outputs a ciphertext c̄.

– m̄ ← Dec(key, c̄): It is a deterministic algorithm that takes as input a key key
and a ciphertext c̄ and outputs a vector of messages m̄ = m1...mn.

– (st, c̄) ← SimEnc((mi)i�∈I , I): It takes as input a set of indices I ⊆ [n] and a
vector of messages (mi)i�∈I and outputs a ciphertext c̄ and a state st.

– key′ ← SimKey(st, (mi)i∈I): It takes as input the state information st and a
vector of messages (mi)i∈I and outputs a key key′.

It is required to satisfy the following properties:

Correctness. For every key ← KeyGen(1λ), every m̄ ∈ {0, 1}s×n, we require that

Dec(key,Enc(key, m̄)) = m̄.

Simulation with No Holes. We require that simulation when I = ∅ is identi-
cal to the honest key generation and encryption, i.e. the distribution of (c̄, key)
computed via (st, c̄) ← SimEnc(m̄, ∅) and key ← SimKey(st, ∅) to be identical to
key ← KeyGen(1λ) and c̄ ← Enc(key, m̄).

296 K.-M. Chung and L. Qian

Fig. 2. Simulated encryption experiment

Security. For any non-uniform PPT adversary A = (A1,A2), for any I ⊆ [n]
s.t. |I| ≤ t, j ∈ [n] − I and vector (mi)i�∈I , there exists a negligible function
negl(·) s.t.

|Pr[SimEncExpt0(1λ,A) = 1] − Pr[SimEncExpt1(1λ,A) = 1]| ≤ negl(λ),

where SimEncExpt0 and SimEncExpt1 are described in Fig. 2.

Theorem 2 ([HJO+16]). Assuming the existence of one-way functions, there
exists a somewhere equivocal encryption scheme for any polynomial message-
length n, block-length s and equivocation parameter t, having key size t·s·poly(λ)
and ciphertext of size n · s · poly(λ) bits.

3.3 Parallel RAM Programs

We follow the formalization of parallel RAM (PRAM) programs used in
[LO17]. A M parallel random-access machine is a collection of M processors
CPU1, ...,CPUm, having concurrent access to a shared external memory D.

A PRAM program Π, given input x1, ..., xM , provides instructions to the
CPUs that can access to the shared memory D. The CPUs execute the program
until a halt state is reached, upon which all CPUs collectively output y1, ..., yM .3

Here, we formalize each processor as a step circuit, i.e. for each step, CPUi

evaluates the circuit CΠ
CPUi

(state,wData) = (state′,R/W, L, rData). This circuit
takes as input the current CPU state state and the data rData read from the
database, and it outputs an updated state state′, a read or write bit R/W, the
next locations to read/write L, and the data wData to write to that location. We
allow each CPU to request up to γ bits at a time, therefore here rData,wData are
both bit strings of length γ. For our purpose, we assume γ ≥ 2λ. The (parallel)
time complexity T of a PRAM program Π is the number of time steps taken to
evaluate Π before the halt state is reached.

We note that the notion of parallel random-access machine is a commonly
used extension of Turing machine when one needs to examine the concrete par-
allel time complexity of a certain algorithm.
3 Similarly, here we assume the program is deterministic. We can allow for randomized

execution by providing it random coins as input.

Adaptively Secure Garbling Schemes for Parallel Computations 297

Memory Access Patterns. The memory access pattern of PRAM program Π(x) is
a sequence (R/Wi, Li)i∈[T], each element represents at time step i, a read/write
R/Wi was performed on memory location Li.

3.4 Sorting Networks

Our construction of parallel �OT uses sorting networks, which is a fixed topology
of comparisons for sorting values on n wires. In our instantiation, n equals the
number of processors M in the PRAM model. As PRAM can simulate circuits
efficiently, on a high level, a sorting network of depth d corresponds to a parallel
sorting algorithm with parallel time complexity O(d). As mentioned previously,
the topology of the sorting network is not relevant to our construction.

Theorem 3 ([AKS83]). There exists an n-wire sorting network of depth
O(log n).

3.5 Laconic Oblivious Transfer

Definition 2 ([CDG+17]). An updatable laconic oblivious transfer (�OT)
scheme consists of four algorithms crsGen, Hash, Send, Receive, SendWrite,
ReceiveWrite.

– crs ← crsGen(1λ). It takes as input the security parameter 1λ and outputs a
common reference string crs.

– (digest, D̂) ← Hash(crs,D). It takes as input a common reference string crs
and a database D ∈ {0, 1}∗ and outputs a digest digest of the database and a
state D̂.

– e ← Send(crs, digest, L,m0,m1). It takes as input a common reference string
crs, a digest digest, a database location L ∈ N and two messages m0 and m1

of length λ, and outputs a ciphertext e.
– m ← ReceiveD̂(crs, e, L). This is a RAM algorithm with random read access

to D̂. It takes as input a common reference string crs, a ciphertext e, and a
database location L ∈ N. It outputs a message m.

– ew ← SendWrite
(
crs, digest, {Lk}k∈[M], {bk}k∈[M], {mj,c}j∈[λ],c∈{0,1}

)
. It

takes as input the common reference string crs, a digest digest, M loca-
tions {Lk}k with the corresponding bits {bk}k, and λ pairs of messages
{mj,c}j∈[λ],c∈{0,1}, where each mj,c is of length λ. It outputs a ciphertext ew.

– {mj}j∈[λ] ← ReceiveWriteD̃(crs, {Lk}k∈[M], {bk}k∈[M], ew). This is a RAM
algorithm with random read/write access to D̃. It takes as input the common
reference string crs, M locations {Lk}k∈[M] and bits to be written {bk}k∈[M]

and a ciphertext ew. It updates the state D̃ (such that D[Lk] = bk for every
k ∈ [M]) and outputs messages {mj}j∈[λ].

298 K.-M. Chung and L. Qian

It is required to satisfy the following properties:

– Correctness: For any database D of size at most poly(λ) for any polynomial
function poly(·), any memory location L ∈ [|D|], and any pair of messages
(m0,m1) ∈ {0, 1}λ × {0, 1}λ that

Pr

⎡

⎢
⎢
⎢
⎢
⎣

m = mD[L]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

crs ← crsGen(1λ)

(digest, D̂) ← Hash(crs,D)
e ← Send(crs, digest, L,m0,m1)

m ← ReceiveD̂(crs, e, L)

⎤

⎥
⎥
⎥
⎥
⎦

= 1,

where the probability is taken over the random choices made by crsGen and
Send.

– Correctness of Writes: For any database D of size at most poly(λ) for any
polynomial function poly(·), any M memory locations {Lj}j ∈ [|D|]M and
any bits {bj}j, and any pairs of messages {mj,c}j,c ∈ {0, 1}2λ2

, let D∗ be the
database to be D after making the modifications D[Lj] ← bj for j = 1, ...,M ,
we require that

Pr

⎡

⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

m′
j = mj,D[L]

∀j ∈ [λ]

∣
∣
∣
∣∣
∣
∣
∣∣
∣
∣
∣∣
∣

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)

(d∗, D̂∗) ← Hash(crs, D∗)

e ← SendWrite (crs, d, {Lk}k, {bk}k, {mj,c}j,c)

{m′
j}j ← ReceiveWriteD̃(crs, {Lk}k, {bk}k, e)

⎤

⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

= 1,

where the probability is taken over the random choices made by crsGen and
Send.

– Sender Privacy: There exists a PPT simulator �OTSim such that for any
non-uniform PPT adversary A = (A1,A2) there exists a negligible function
negl(·) s.t.

|Pr[SenPrivExptreal(1λ,A) = 1] − Pr[SenPrivExptideal(1λ,A) = 1]| ≤ negl(λ),

where SenPrivExptreal and SenPrivExptideal are described in Fig. 3.

Fig. 3. Sender privacy security game

Adaptively Secure Garbling Schemes for Parallel Computations 299

– Sender Privacy for Writes: There exists a PPT simulator �OTSimWrite
such that for any non-uniform PPT adversary A = (A1,A2) there exists a
negligible function negl(·) s.t.

|Pr[SenPrivWriteExptreal(1λ,A) = 1] − Pr[SenPrivWriteExptideal(1λ,A) = 1]| ≤ negl(λ),

where SenPrivWriteExptreal and SenPrivWriteExptideal are described in Fig. 4.
– Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algo-

rithms Send, Receive run in time poly(log |D|, λ), and the algorithms Send-
Write, ReceiveWrite run in time M · poly(log |D|, λ).

Fig. 4. Sender privacy security game for writes

It is also helpful to introduce the �OT scheme with factor-2 compression,
which is used in �OT ’s original construction [CDG+17].

Definition 3. An �OT scheme with factor-2 compression �OTconst is an �OT
scheme where the database D has to be of size 2λ.

Remark 1. The sender privacy requirement here is from [GS18]. It requires crs
to be given to the adversary before the adversary chooses his challenge instead of
after, and is therefore stronger than the original security requirement [CDG+17].
But we note that in the security proof of laconic oblivious transfer, such adaptive
security requirement can be directly reduced to adaptive security for �OTconst.
And in the construction of [CDG+17], in every hybrid, crs is generated either
truthfully, or generated statistically binding to one of 2λ possible positions.
Therefore, we will incur at most a 1/2λ loss in the security reduction, simply by
guessing which position we need to bind to in those hybrids. This also applies
to the sender privacy for parallel writes we will discuss later.

Theorem 4 ([CDG+17,DG17,BLSV18,DGHM18]). Assuming either the
Computational Diffie-Hellman assumption or the Factoring assumption or the
Learning with Errors assumption, there exists a construction of laconic oblivious
transfer.

300 K.-M. Chung and L. Qian

4 Adaptive Garbled Circuits Preserving Parallel Runtime

In this section, we construct an adaptively secure garbling scheme for circuits
that allows for parallel evaluation without compromising near-optimal online
complexity. We follow the definition of adaptive garbled circuits from [HJO+16].

Definition 4. An adaptive garbling scheme for circuits is a tuple of PPT algo-
rithms
(AdaGCircuit,AdaGInput,AdaEval) such that:

– (C̃, st) ← AdaGCircuit
(
1λ, C

)
. It takes as input a security parameter λ, a

circuit C : {0, 1}n �→ {0, 1}m and outputs a garbled circuit C̃ and state infor-
mation st.

– x̃ ← AdaGInput(st, x): It takes as input the state information st and an input
x ∈ {0, 1}n and outputs the garbled input x̃.

– y ← AdaEval(C̃, x̃). Given a garbled circuit C̃ and a garbled input x̃, AdaEval
outputs y ∈ {0, 1}m.

Correctness. For any λ ∈ N circuit C : {0, 1}n �→ {0, 1}m and input x ∈ {0, 1}n,
we have that

Pr
[
C(x) = AdaEval(C̃, x̃)

]
= 1,

where (C̃, st) ← AdaGCircuit
(
1λ, C

)
and x̃ ← AdaGInput(st, x).

Adaptive Security. There is a PPT simulator AdaGSim = (AdaGSimC,
AdaGSimIn) such that, for any non-uniform PPT adversary A = (A1,A2,A3)
there exists a negligible function negl(·) such that

|Pr[AdaGCExptreal(1λ,A) = 1] − Pr[AdaGCExptideal(1λ,A) = 1]| ≤ negl(λ),

where AdaGCExptreal and AdaGCExptideal are described in Fig. 5.

Online Complexity. The running time of AdaGInput is called the online compu-
tational complexity and |x̃| is called the online communication complexity. We
require that the online computational complexity does not scale linearly with the
size of the circuit |C|.

Furthermore, we call the garbling scheme is parallelly efficient, if the algo-
rithms are given as probabilistic PRAM programs with M processors, and the
parallel runtime of AdaGCircuit is poly(λ) · |C|/M if |C| ≥ M , the parallel run-
time of AdaGInput on a PRAM machine to be n/M · poly(λ, log |C|), and the
parallel runtime of AdaEval is poly(λ) · d if M ≥ w, where w, d is the width and
depth of the circuit respectively.

Adaptively Secure Garbling Schemes for Parallel Computations 301

Fig. 5. Adaptive security game of adaptive garble circuits

4.1 Construction Overview

First, we recall the construction of [GS18], which we will use as a starting point.
At a high level, their construction can be viewed as a “weak” garbling of a special
RAM program that evaluates the circuit.

In the ungarbled world, a database D is used as RAM to store all the wires
(including input, output, and intermediate wires). Initially, D only holds the
input and everything else is uninitialized. In each iteration, the processor takes
a gate, read two bits according to the gate, evaluate the gate, and write the
output bit back into the database. Finally, after all iterations are finished, the
output of the circuit is read from the database.

In the garbled world, the database D will be hashed as D̂ using �OT and
protected with an one-time pad r as �OT does not protect its memory content.
The evaluation process is carried out by a sequence of Yao’s garbled circuits and
laconic OT “talking” to each other. In each iteration, two read operations corre-
spond to a selectively secure garbled circuit, which on given digest as input, out-
puts two �OT read ciphertexts that the evaluator can decrypt to the input label
for the garbled gate, which is a selectively secure garbled circuit that unmasks
the input, evaluates the gate, and then unmasks the output. To store the out-
put, the garbled gate generates a �OT block-write ciphertext, which also enables
the evaluator to obtain the input labels for the updated digest in the next itera-
tion. This garbled RAM program is then encrypted using a somewhere equivocal
encryption, after which it is given to the adversary as the garbled circuit. On
given input x, we generate the protected database D̂ and compute the input
labels for the initial digest, and we give out the labels, the masked input, the
decryption key, and masks for output in the database.

This garbling is weak as in it only concerns a particular RAM program, and
it does not protect the memory access pattern, but it is sufficient for the adaptive
security requirement of garbled circuits as the pattern is fixed and public. As
we will see in the security proof that online complexity is tightly related to
the pebbling complexity of a pebbling game. The pebbling game is played on a
simulation dependency graph, where pieces of garbled circuits in the construction
correspond to nodes and hardwiring of input labels correspond to edges. As the

302 K.-M. Chung and L. Qian

input labels for every selectively secure circuit is only hardcoded in the previous
circuit, the simulation dependency is a line and there is a known good pebbling
strategy.

To parallelize this construction, we naturally wish to evaluate M gates in
parallel using a PRAM program instead of evaluating sequentially. This way,
we preserve its mostly linear structure, for which we know a good pebbling
strategy. Reading from the database is inherently parallelizable, but writing is
more problematic as the processors need to communicate with each other to
compute the updated digest and we need to be more careful.

4.2 Block-Writing Laconic OT

Recall from Sect. 2.1 that we cannot hope to use �OT as a black box in parallel,
thus we first briefly recall the techniques used in [CDG+17] to bootstrap an �OT
scheme with factor-2 compression �OTconst into a general �OT scheme with an
arbitrary compression factor.

Consider a database D with size |D| = 2d · λ. In order to obtain a hash
function with arbitrary (polynomial) compression factor, it’s natural to use a
Merkle tree to compress the database. The Hash function outputs (digest, D̂),
where D̂ is the Merkle tree and digest is the root of the tree. Using �OTconst

combined with a Merkle tree, the sender is able to traverse down the Merkle
tree, simply by using �OTconst.Send to obtain the digest for any child he wishes
to, until he reaches the block he would like to query. For writes, the sender
can read out all the relevant neighbouring digests from the Merkle tree and
compute the updated digest using the information. In order to compress the
round complexity down to 1 from d, we can use Yao’s garble circuit to garble
�OTconst.Send so that the receiver can evaluate it for the sender, until he gets
the final output. On a high level, the receiver makes the garbled circuits and
�OTconst talk to each other to evaluate the read/write ciphertexts.

As mentioned in Sect. 2.1, we wish to construct a block-write procedure such
that the following holds:

– The parallel running time should be poly(λ, log |C|);
– For near-optimal online complexity, both the size of each piece of the garbled

circuit and the pebbling complexity needs to be poly(λ, log |C|).
Note that changing the ciphertext to contain all M bits directly do not work

in this context, as now the write ciphertext would be of length Ω(M), therefore
the garbled circuit generating it must be of length Ω(M), which violates what
we wish to have. The way to fix this is to instead let the ciphertext only hold the
digest of the sub-tree, and the block write ciphertext simply needs to perform
a “partial” write to obtain the updated digest, therefore its size is no larger
than an ordinary write ciphertext. As it turns out, a tree-like structure in the
simulation dependency graph also has good pebbling complexity and we can
obtain the sub-tree digest using what we call a garbled Merkle tree, which we
will construct in the next section. This way, we resolve all the issues.

Adaptively Secure Garbling Schemes for Parallel Computations 303

Now, we first direct our attention back to constructing block-writes. For-
mally, we will construct two additional algorithms for updatable laconic oblivi-
ous transfer that handles a special case of parallel writes. As we will see later,
these algorithms can be used to simplify the construction of adaptive garbled
circuit.

– ew ← SendWriteBlock
(
crs, digest, L, d, {mj,c}j∈[λ],c∈{0,1}

)
. It takes as input

the common reference string crs, a digest digest, a location prefix L ∈ {0, 1}P

with length P ≤ log |D| and the digest of the subtree d to be written to loca-
tion L00...0, L00...1, ..., L11...1, and λ pairs of messages {mj,c}j∈[λ],c∈{0,1},
where each mj,c is of length λ. It outputs a ciphertext ew.

– {mj}j∈[λ] ← ReceiveWriteBlockD̃(crs, L, {bk}k∈[2M], ew). This is a RAM algo-
rithm with random read/write access to D̃. It takes as input the common
reference string crs, M locations {Lk}k∈[M] and bits to be written {bk}k∈[M]

and a ciphertext ew. It updates the state D̃ (such that D[Lk] = bk for every
k ∈ [M]) and outputs messages {mj}j∈[λ].

The formal construction of block-writing �OT is as follows:

– SendWriteBlock
(
crs, digest, L, d, {mj,c}j∈[λ],c∈{0,1}

)

Reinterpret the �OT Merkle tree by truncating at the |L|-th layer
Output �OT.SendWrite

(
crs, digest, L, d, {mj,c}j∈[λ],c∈{0,1}

)

– ReceiveWriteBlockD̃(crs, L, {bk}k∈[2M], ew)
Compute the digest d of database {bk}k∈[2M]

Reinterpret the �OT Merkle tree by truncating at the |L|-th layer and D̃
as the corresponding truncated version of the database
Label ← �OT.ReceiveWriteD̃(crs, L, {bk}k∈[2M], ew)
Update D̃ at block location L using data {bk}k∈[2M]

Output Label

Fig. 6. Block-writing security simulator

We require similar security and efficiency requirements for block-writing �OT .
It’s not hard to see that the update part of ReceiveWriteBlock can be evaluated
efficiently in parallel (and the call to normal ReceiveWrite only needs to run
once), and the security proof can be easily reduced to that of SendWrite, and
the security simulator is given in Fig. 6.

304 K.-M. Chung and L. Qian

4.3 Garbled Merkle Tree

We will now describe an algorithm called garbled Merkle tree. Roughly speak-
ing, a garbled Merkle tree is a binary tree of garbled circuits, where each of the
circuit takes arbitrary 2λ bits as input and outputs the labels of λ bit digest.
Looking ahead, this construction allows for exponentially smaller online com-
plexity compared to simply garbling the entire hash circuit when combined with
adaptive garbling schemes we will construct later, since its tree structure allows
for small pebbling complexity.

A garbled Merkle tree has very similar syntax as the one for garbled circuit.
It consists of 2 following PPT algorithms:

Fig. 7. Hashing sub-circuit

– GHash(1λ,H, {Keyi}i∈[|D|], {Key′
i}i∈[λ]): it takes as input a security parameter

λ, a hashing circuit H that takes 2λ bits as input and outputs λ bits, keys
{Keyi}i∈[|D|] for all bits in the database D and {Key′

i}i∈[λ] for all output bits
Keys1 ← {Key′

i}i∈[λ]

Sample {Keysi}i=2,...,|D|/λ−1

{Keysi}i=|D|/λ,...,2|D|/λ−1 ← {Keyi}i∈[|D|]
For i = 1 to |D|/λ − 1 do

C̃i ← GCircuit(1λ,C[H,Keysi], (Keys2i,Keys2i+1))
Output {C̃i}i∈[|D|/λ−1]

The circuit C here is given in Fig. 7.
– GHEval

(
{C̃i}, {labi}i∈[|D|]

)
: it takes as input the garbled circuits

{C̃i}i∈[|D|/λ−1] and input labels for the database {labi}i∈[|D|]
{Labeli}i=|D|/λ,...,2|D|/λ−1 ← {labi}i∈[|D|]
For i = |D|/λ − 1 down to 1 do
Labeli ← GCEval(C̃i, (Label2i, Label2i+1))

Output Label1

Later, we will also invoke this algorithm in garbled PRAM for creating par-
allel checkpoints.

Adaptively Secure Garbling Schemes for Parallel Computations 305

4.4 Construction

We will now give the construction of our adaptive garbled circuits. Let �OT
be a laconic oblivious transfer scheme, (GCircuit,GCEval) be a garbling scheme
for circuits, (GHash,GHEval) be a garbling scheme for Merkle trees, and SEE
be a somewhere equivocal encryption scheme with block length poly(λ, log |C|)
to be the maximum size of garbled circuits

{
C̃
eval

i,k , C̃
hash

i,j , C̃
write

i

}
, message length

2M� = O(|C|2) (we will explain � shortly after) and equivocation parameter
log � + 2 log M + O(1) (the choice comes from the security proof).

Furthermore, we assume both M and λ is a power of 2 and λ divides M . We
also have a procedure {Pi}i∈[�] ← Partition(C,M) (as an oracle) that partition
the circuit’s wires 1, 2, ..., |C| into � continuous partitions of size M , such that
for any partition Pi, its size is at most M (allowing a few extra auxiliary wires
and renumbering wires), and every gate in the partition can be evaluated in
parallel once every partition Pj with j < i has been evaluated. Clearly d ≤ � ≤
|C|, but it’s also acceptable to have a sub-optimal partition to best utilize the
computational resources on a PRAM machine. We assume the input wires are
put in partition 0. This preprocessing is essentially scheduling the evaluation of
the circuit to a PRAM machine and it is essential to making our construction’s
online complexity small.

We now give an overview of our construction. At a high level, instead of
garbling the circuit directly, our construction can be viewed as a garbling of a
special PRAM program that evaluates the circuit in parallel. The database D
will be hashed as D̂ using �OT and protected with an one-time pad r as �OT
does not protect its memory content. In each iteration, two read operations for
every processor correspond to two selectively secure garbled circuits, which on
given digest as input, outputs a �OT read ciphertext that generates the input
label for the garbled gate; the garbled gate unmasks the input, evaluates the
gate, and then output the masked output of the gate. After all M processors
have done evaluating their corresponding gates, a garbled Merkle tree will take
their outputs as input to obtain the digest for the M bits of output, and then
generate a �OT block-write ciphertext to store the outputs into the database.
During evaluation, this block-write ciphertext can be used to obtain the input
labels for the read circuits in the next iteration. This garbled PRAM program is
then encrypted using a somewhere equivocal encryption, after which it is given to
the adversary as the garbled circuit. On given input x, we generate the protected
database D̂ and compute the input labels for the initial digest, and we give out
the labels, the masked inputs, the decryption key, and masks for outputs in the
database.

Now we formally present the construction (the description of the evaluation
circuit used in the construction is given in Fig. 8). Inside the construction, we
omit k ∈ [M] when the context is clear. It might also be helpful to see Fig. 9 for
how the garbled circuits are organized.

– AdaGCircuitPartition
(
1λ, C

)
:

crs ← �OT.crsGen(1λ)

306 K.-M. Chung and L. Qian

Fig. 8. Description of the evaluation circuit

key ← SEE.KeyGen(1λ)
K ← PRFKeyGen(1λ)
{Pi}i∈[�] ← Partition(C)
Sample r ← {0, 1}M�

For i = 1 to � do:
Let Cg,1, Cg,2 denote the two input gates of gate g

C̃
eval

i,k ← GCircuit(1λ,Creal
eval[crs, CPi,k,1, CPi,k,2, Pi,k, (rCPi,k,1 , rCPi,k,2 , rPi,k

),

PRFK(1, i, k, 0),PRFK(1, i, k, 1)],
{PRFK(0, i, j, b)}j∈[λ],b∈{0,1})

Let keyEval = {PRFK(1, i, k, b)}k∈[M],b∈{0,1}
Let keyHash = {PRFK(2, i, j, b)}j∈[λ],b∈{0,1}
{C̃hash

i,j }j∈[M−1] ← GHash(1λ, �OTconst.Hash, keyEval, keyHash)
Let Cwrite

i = �OT.SendWriteBlock
(
crs, ·, i, {PRFK(0, i + 1, j, b)}j∈[λ],b∈{0,1}

)

C̃
write

i ← GCircuit
(
1λ, Cwrite

i , keyHash
)

c ← SEE.Enc
(
key,

{
C̃
eval

i,k , C̃
hash

i,j , C̃
write

i

})

Output C̃ := (crs, c, {Pi}i∈[�]) and st := (crs, r, key, �,K)
– AdaGInput(st, x):

Parse st := (crs, r, key, �,K)
D ← r1 ⊕ x1||...||rn ⊕ xn||0M�−n

(d, D̂) ← �OT.Hash(crs,D)
Output ({PRFK(0, 1, j, dj)}j∈[λ], r1 ⊕x1||...||rn ⊕xn, key, rN−m+1||...||rN)

– AdaEval(C̃, x̃):
Parse C̃ := (crs, c, {Pi}i∈[�])
Parse x̃ := ({lab0,j}j∈[λ], s1||...||sn, key, rN−m+1||...||rN)
D ← s1||...||sn||0M�−n

(d, D̂) ← �OT.Hash(crs,D){
C̃
eval

i,k , C̃
hash

i,j , C̃
write

i

}
← SEE.Dec(key, c)

For i = 1 to � do:
Let Cg,1, Cg,2 denote the two input gates of gate g

e ← GCEval(C̃
eval

i,k , {lab0,j}j∈[λ])

Adaptively Secure Garbling Schemes for Parallel Computations 307

e ← �OT.ReceiveD̂(crs, e, CPi,k,1)

(γk, lab1,k) ← �OT.ReceiveD̂(crs, e, CPi,k,2)

{lab2,j}j∈[λ] ← GHEval({C̃hash

i,j }j∈[M−1], {lab1,k}k∈[M])

e ← GCEval(C̃
write

i , {lab2,j}j∈[λ])

{lab0,j}j∈[λ] ← �OT.ReceiveWriteBlockD̃(crs, i, {γk}k∈[M], e)
Recover the contents of the memory D from the final state D̂
Output DN−m+1 ⊕ rN−m+1||...||DN ⊕ rN

Fig. 9. Illustration of the pebbling graph for one layer: C̃
eval

i,k are leaf nodes, C̃
hash

i,j are

intermediate nodes and the root node, finally C̃
write

i is the extra node at the end. Dotted
edges indicate where �OT is invoked. Note that WriteBlock is only invoked once and
its result is reused M times.

Communcation Complexity of AdaGInput. It follows from the construction that
the communication complexity of AdaGInput is λ2 + n + m + |key|. From the
parameters used in the somewhere equivocal encryption and the efficiency of
block writing for laconic oblivious transfer, we note that |key| = poly(λ, log |C|).
Computational Complexity of AdaGInput. The running time of AdaGInput grows
linearly with |C|. However, it’s possible to delegate the hashing of zeros to the
offline phase, i.e. AdaGCircuit. In that case, the running time only grows linearly
with n + log |C|.

308 K.-M. Chung and L. Qian

Parallel Efficiency. With a good Partition algorithm and number of processors
as many as the width of the circuit, AdaEval is able to run in d · poly(λ, log |C|)
where d is the depth of the circuit.

Correctness. We note that for each wire (up to permutation due to rewiring),
our construction manipulates the database and produces the final output the
same way as the construction given by [GS18]. Therefore by the correctness of
their construction, our construction outputs C(x) with probability 1.

Adaptive Security. We formally prove the adaptive security in the full version.

Acknowledgements. The authors would like to thank Tsung-Hsuan Hung and Yu-
Chi Chen for their helpful discussions in the early stage of this research.

References

[ACC+16] Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating
RAM computations with adaptive soundness and privacy. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 3–30. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53644-5 1

[AKS83] Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Com-
puting, STOC 1983, pp. 1–9. ACM, New York (1983)

[App17] Applebaum, B.: Garbled circuits as randomized encodings of functions: a
primer. In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography.
ISC, pp. 1–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57048-8 1

[BCP16] Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applica-
tions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 175–204. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 7

[Ben89] Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J.
Comput. 18(4), 766–776 (1989)

[BHR12a] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 10

[BHR12b] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 784–796. ACM (2012)

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 20

[CCC+16] Chen, Y.-C., Chow, S.S.M., Chung, K.-M., Lai, R.W.F., Lin, W.-K., Zhou,
H.-S.: Cryptography for parallel RAM from indistinguishability obfusca-
tion. In: Proceedings of the 2016 ACM Conference on Innovations in The-
oretical Computer Science, pp. 179–190. ACM (2016)

https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-319-57048-8_1
https://doi.org/10.1007/978-3-319-57048-8_1
https://doi.org/10.1007/978-3-662-49099-0_7
https://doi.org/10.1007/978-3-662-49099-0_7
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20

Adaptively Secure Garbling Schemes for Parallel Computations 309

[CCHR16] Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Adaptive succinct gar-
bled RAM or: how to delegate your database. In: Hirt, M., Smith, A.
(eds.) TCC 2016. LNCS, vol. 9986, pp. 61–90. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 3

[CDG+17] Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou,
A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 2

[CH16] Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Sci-
ence, pp. 169–178. ACM (2016)

[DG17] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7 18

[DGHM18] Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of
identity-based and key-dependent message secure encryption schemes. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–31.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 1

[GGMP16] Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM com-
putation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 491–520. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 19

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.:
Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 23

[GLO15] Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: 2015 IEEE
56th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 210–229. IEEE (2015)

[GLOS15] Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way
functions. In: Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, pp. 449–458. ACM (2015)

[GOS18] Garg, S., Ostrovsky, R., Srinivasan, A.: Adaptive garbled RAM from
laconic oblivious transfer. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 515–544. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96878-0 18

[GS18] Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal
online complexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 535–565. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8 18

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 6

[JKK+17] Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K.,
Wichs, D.: Be adaptive, avoid overcommitting. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 133–163. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 5

https://doi.org/10.1007/978-3-662-53644-5_3
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-319-96878-0_18
https://doi.org/10.1007/978-3-319-96878-0_18
https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-319-63688-7_5

310 K.-M. Chung and L. Qian

[JSW17] Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled
circuits. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp.
40–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-
3 2

[JW16] Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In:
Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 433–458.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 17

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 42

[LO17] Lu, S., Ostrovsky, R.: Black-box parallel garbled RAM. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 66–92. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 3

[PTC76] Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs.
Math. Syst. Theory 10(1), 239–251 (1976)

[Yao82] Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium
on Foundations of Computer Science, 1982, SFCS’08, pp. 160–164. IEEE
(1982)

https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-319-63715-0_3

Statistical Difference Beyond
the Polarizing Regime

Itay Berman1(B), Akshay Degwekar1, Ron D. Rothblum2,
and Prashant Nalini Vasudevan3

1 MIT, Cambridge, USA
{itayberm,akshayd}@mit.edu

2 Technion, Haifa, Israel
rothblum@cs.technion.ac.il
3 UC Berkeley, Berkeley, USA

prashvas@berkeley.edu

Abstract. The polarization lemma for statistical distance (SD), due to
Sahai and Vadhan (JACM, 2003), is an efficient transformation taking
as input a pair of circuits (C0, C1) and an integer k and outputting a new
pair of circuits (D0, D1) such that if SD(C0, C1) ≥ α then SD(D0, D1) ≥
1−2−k and if SD(C0, C1) ≤ β then SD(D0, D1) ≤ 2−k. The polarization
lemma is known to hold for any constant values β < α2, but extending
the lemma to the regime in which α2 ≤ β < α has remained elusive. The
focus of this work is in studying the latter regime of parameters. Our
main results are:
1. Polarization lemmas for different notions of distance, such as Trian-

gular Discrimination (TD) and Jensen-Shannon Divergence (JS),
which enable polarization for some problems where the statisti-
cal distance satisfies α2 < β < α. We also derive a polarization
lemma for statistical distance with any inverse-polynomially small
gap between α2 and β (rather than a constant).

2. The average-case hardness of the statistical difference problem (i.e.,
determining whether the statistical distance between two given cir-
cuits is at least α or at most β), for any values of β < α, implies

This is an extended abstract. The full version of this paper, with formal statements of
the theorems and proofs, may be found at: https://eccc.weizmann.ac.il/report/2019/
038/.
I. Berman and A. Degwekar—Research supported in part by NSF Grants CNS-1413920
and CNS-1350619, MIT-IBM Award, and by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office under Vinod Vaikuntanathan’s
DARPA Young Faculty Award and contracts W911NF-15-C-0226 and W911NF-15-C-
0236.
R. D. Rothblum—This research was supported in part by the Israeli Science Foundation
(Grant No. 1262/18).
P. N. Vasudevan—Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, a Hell-
man Award and research grants by the Okawa Foundation, Visa Inc., and Center
for LongTerm Cybersecurity (CLTC, UC Berkeley).

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 311–332, 2019.
https://doi.org/10.1007/978-3-030-36033-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_12&domain=pdf
https://eccc.weizmann.ac.il/report/2019/038/
https://eccc.weizmann.ac.il/report/2019/038/
https://doi.org/10.1007/978-3-030-36033-7_12

312 I. Berman et al.

the existence of one-way functions. Such a result was previously only
known for β < α2.

3. A (direct) constant-round interactive proof for estimating the sta-
tistical distance between any two distributions (up to any inverse
polynomial error) given circuits that generate them. Proofs of closely
related statements have appeared in the literature but we give a new
proof which we find to be cleaner and more direct.

1 Introduction

The StatisticalDifferenceProblem, introduced by Sahai and Vadhan
[SV03], is a central computational (promise) problem in complexity theory and
cryptography, which is also intimately related to the study of statistical zero-
knowledge (SZK). The input to this problem is a pair of circuits C0 and C1,
specifying probability distributions (i.e., that are induced by feeding the circuits
with a uniformly random string). YES instances are those in which the statisti-
cal distance1 between the two distributions is at least 2/3 and NO instances are
those in which the distance is at most 1/3. Input circuits that do not fall in one
of these two cases are considered to be outside the promise (and so their value
is left unspecified).

The choice of the constants 1/3 and 2/3 in the above definition is somewhat
arbitrary (although not entirely arbitrary as will soon be discussed in detail).
A more general family of problems can be obtained by considering a suitable
parameterization. More specifically, let 0 ≤ β < α ≤ 1. The (α, β) parameterized
version of the StatisticalDifferenceProblem, denoted SDPα,β , has as its
YES inputs pairs of circuits that induce distributions that have distance at least
α whereas the NO inputs correspond to circuits that induce distributions that
have distance at most β.

Definition 1.1 (StatisticalDifferenceProblem). Let α, β : N → [0, 1]
with α(n) > β(n) for every n. The StatisticalDifferenceProblem with
promise (α, β), denoted SDPα,β, is given by the sets

SDPα,β
Y =

{
(C0, C1) | SD(C0, C1) ≥ α(n)

}
and

SDPα,β
N =

{
(C0, C1) | SD(C0, C1) ≤ β(n)

}
,

where n is the output length of the circuits C0 and C1.2

1 Recall that the statistical distance between two distributions P and Q over a set Y
is defined as SD(P, Q) = 1

2

∑
y∈Y |Py − Qy|, where Py (resp., Qy) is the probability

mass that P (resp., Q) puts on y ∈ Y.
2 In prior works α and β were typically thought of as constants (and so their depen-

dence on the input was not specified). In contrast, since we will want to think of
them as parameters, we choose to let them depend on the output length of the cir-
cuit since this size seems most relevant to the distributions induced by the circuits.
Other natural choices could have been the input length or the description size of
the circuits. We remark that these different choices do not affect our results in a
fundamental way.

Statistical Difference Beyond the Polarizing Regime 313

(Here and below we abuse notation and use C0 and C1 to denote both the circuits
and the respective distributions that they generate.)

The elegant polarization lemma of [SV03] shows how to polarize the statistical
distance between two distributions. In more detail, for any constants α and β
such that β < α2, the lemma gives a transformation that makes distributions
that are at least α-far be extremely far and distributions that are β-close be
extremely close. Beyond being of intrinsic interest, the polarization lemma is
used to establish the SZK completeness of SDPα,β , when α2 > β, and has other
important applications in cryptography such as the amplification of weak public
key encryption schemes to full fledged ones [DNR04,HR05].

Sahai and Vadhan left the question of polarization for parameters α and
β that do not meet the requirements of their polarization lemma as an open
question. We refer to this setting of α and β as the non-polarizing regime. We
emphasize that by non-polarizing we merely mean that in this regime polariza-
tion is not currently known and not that it is impossible to achieve (although
some barriers are known and will be discussed further below). The focus of this
work is studying the StatisticalDifferenceProblem in the non-polarizing
regime.

1.1 Our Results

We proceed to describe our results.

1.1.1 Polarization and SZK Completeness for Other Notions of Dis-
tance

The statistical distance metric is one of the central information theoretic tools
used in cryptography as it is very useful for capturing similarity between dis-
tributions. However, in information theory there are other central notions that
measure similarity such as mutual information and KL divergence as well as
others.

Loosely speaking, our first main result shows that polarization is possible
even in some cases in which β ≥ α2. However, this result actually stems from
a more general study showing that polarization is possible for other notions of
distance between distributions from information theory, which we find to be of
independent interest.

When distributions are extremely similar or extremely dissimilar, these differ-
ent notions of distance are often (but not always) closely related and hence inter-
changeable. This equivalence is particularly beneficial when considering appli-
cations of SZK—for some applications one distance measure may be easier to
use than others. For example, showing that the average-case hardness of SZK
implies one-way functions can be analyzed using statistical distance (e.g., [Vad99,
Section 4.8]), but showing that every language in SZK has instance-dependent
commitments is naturally analyzed using entropy (e.g., [OV08]).

However, as the gaps in the relevant distances get smaller (i.e., the distri-
butions are only somewhat similar or dissimilar), the relation between different

314 I. Berman et al.

statistical properties becomes less clear (for example, the reduction from SDPα,β

to the Entropy Difference Problem of [GV99] only works when roughly
α2 > β). This motivates studying the computational complexity of problems
defined using different notions of distance in this small gap regime. Studying this
question can be (and, as we shall soon see, indeed is) beneficial in two aspects.
First, providing a wider bag of statistical properties related to SZK, which can
make certain applications easier to analyze. Second, the computational complex-
ity of these distance notions might shed light on the computational complexity
of problems involving existing distance notions (e.g., SDPα,β when α2 < β).

We focus here on two specific distance notions—the triangular discrimination
and the Jensen-Shannon divergence, defined next.

Definition 1.2 (Triangular Discrimination). The Triangular Discrimination
(a.k.a. Le Cam divergence) between two distributions P and Q is defined as

TD(P,Q) =
1
2

∑

y∈Y

(Py − Qy)2

Py + Qy
,

where Y is the union of the supports of P and Q.
The Triangular Discrimination Problem with promise (α, β), denoted

TDPα,β, is defined analogously to SDPα,β, but with respect to TD rather than
SD.

The triangular discrimination is commonly used, among many other applica-
tions, in statistical learning theory for parameter estimation with quadratic loss,
see [Cam86, P. 48] (in a similar manner to how statistical distance characterizes
the 0–1 loss function in hypothesis testing). Jumping ahead, while the definition
of triangular discrimination seems somewhat arbitrary at first glance, in Sect. 2
we will show that this distance notion characterizes some basic phenomena in
the study of statistical zero-knowledge. Triangular discrimination has recently
found usage in theoretical computer science, and even specifically in problems
related to SZK. Yehudayoff [Yeh16] showed that using TD yields a tighter anal-
ysis of the pointer chasing problem in communication complexity. The work of
Komargodski and Yogev [KY18] uses triangular discrimination to show that the
average-case hardness of SZK implies the existence of distributional collision
resistant hash functions.

Next, we define the Jensen-Shannon Divergence. To start with, recall that the
KL-divergence between two distributions P and Q is defined3 as KL(P ||Q) =∑

y∈Y Py log(Py/Qy). Also, given distributions P0 and P1 we define the dis-
tribution 1

2P0 + 1
2P1 as the distribution obtained by sampling a random coin

b ∈ {0, 1} and outputting a sample y from Pb (indeed, this notation corresponds
to arithmetic operations on the probability mass functions). The Jensen-Shannon
divergence measures the mutual information between b and y.

3 To be more precise, in this definition we view 0 · log 0
0

as 0 and define the KL-
divergence to be ∞ if the support of P is not contained in that of Q.

Statistical Difference Beyond the Polarizing Regime 315

Definition 1.3 (Jensen-Shannon Divergence). The Jensen-Shannon diver-
gence between two distributions P and Q is defined as

JS(P,Q) =
1
2

KL
(

P

∥
∥
∥
∥

P + Q

2

)
+

1
2

KL
(

Q

∥
∥
∥
∥

P + Q

2

)
.

The Jensen-ShannonDivergenceProblem with promise (α, β), denoted
JSPα,β, is defined analogously to SDPα,β, but with respect to JS rather than SD.

The Jensen-Shannon divergence enjoys a couple of important properties (in our
context) that the KL-divergence lacks: it is symmetric and bounded. Both tri-
angular discrimination and Jensen-Shannon divergence (as well as statistical
distance and KL-divergence) are types of f -divergences, a central concept in
information theory (see [PW17, Section 6] and references therein). They are both
non-negative and bounded by one.4 Finally, the Jensen-Shannon divergence is a
metric, while the triangular discrimination is a square of a metric.

With these notions of distance and corresponding computational problems
in hand, we are almost ready to state our first set of results. Before doing so, we
introduce an additional useful technical definition.

Definition 1.4 (Separated functions). Let g : N → [0, 1]. A pair of poly(n)-
time computable functions (α, β), where α = α(n) ∈ [0, 1] and β = β(n) ∈ [0, 1],
is g-separated if α(n) ≥ β(n) + g(n) for every n ∈ N.

We denote by (1/poly)-separated the set of all pairs of functions that are
(1/p)-separated for some polynomial p. Similarly, we denote by (1/log)-separated
the set of all pairs of functions that are (1/(c log))-separated for some constant
c > 0.

We can now state our first set of results: that both TDP and JSP, with a
noticeable gap, are SZK complete.

Theorem 1.5. Let (α, β) be (1/poly)-separated functions such that there exists
a constant ε ∈ (0, 1/2) such that 2−n1/2−ε ≤ β(n) and α(n) ≤ 1 − 2−n1/2−ε

, for
every n ∈ N. Then, TDPα,β is SZK complete.

Theorem 1.6. For (α, β) as in Theorem 1.5, the problem JSPα,β is SZK com-
plete.

The restriction on 2−n1/2−ε ≤ β(n) and α(n) ≤ 1−2−n1/2−ε

should be interpreted
as a non-degeneracy requirement (which we did not attempt to optimize), where
we note that some restriction seems inherent. Moreover, we can actually decouple
the assumptions in Theorems 1.5 and 1.6 as follows. To show that TDPα,β and
JSPα,β are SZK-hard, only the non-degeneracy assumption (i.e., 2−n1/2−ε ≤ β(n)
and α(n) ≤ 1 − 2−n1/2−ε

) is needed. On the other hand, to show that these
problems are in SZK we only require that (α, β) are (1/poly)-separated.
4 In the literature these distances are sometimes defined to be twice as much as our

definitions. In our context, it is natural to have the distances bounded by one.

316 I. Berman et al.

Note that in particular, Theorems 1.5 and 1.6 imply polarization lemmas for
both TD and JS. For example, for triangular discrimination, since TDPα,β ∈
SZK and TDP1−2−k,2−k

is SZK-hard, one can reduce the former to the latter.
Beyond showing polarization for triangular discrimination, Theorem 1.5 has

implications regarding the question of polarizing statistical distance, which was
our original motivation. It is known that the triangular discrimination is sand-
wiched between the statistical distance and its square; namely, for every two
distributions P and Q it holds that (see [Top00, Eq. (11)]):

SD(P,Q)2 ≤ TD(P,Q) ≤ SD(P,Q) (1.1)

Thus, the problem SDPα,β is immediately reducible to TDPα2,β , which
Theorem 1.5 shows to be SZK-complete, as long as the gap between α2 and
β is noticeable. Specifically, we have the following corollary.

Corollary 1.7. Let (α, β) be as in Theorem 1.5, with the exception that (α2, β)
are (1/poly)-separated (note that here α is squared). Then, the promise problem
SDPα,β is SZK complete.

We highlight two implications of Theorem 1.5 and Corollary 1.7 (which were
also briefly mentioned above).

Polarization with Inverse Polynomial Gap. Observe that Corollary 1.7 implies
polarization of statistical distance in a regime in which α and β are functions
of n, the output length of the two circuits, and α2 and β are only separated by
an inverse polynomial. This is in contrast to most prior works which focus on α
and β that are constants. In particular, Sahai and Vadhan’s [SV03] proof of the
polarization lemma focuses on constant α and β and can be extended to handle
an inverse logarithmic gap, but does not seem to extend to an inverse polynomial
gap.5 Corollary 1.7 does yield such a result, by relying on a somewhat different
approach.

Polarization Beyond α2 > β. Theorem 1.5 can sometimes go beyond the require-
ment that α2 > β for polarizing statistical distance. Specifically, it shows
that any problem with noticeable gap in the triangular discrimination can be
polarized. Indeed, there are distributions (P,Q) and (P ′, Q′) with SD(P,Q) >
SD(P ′, Q′) > SD(P,Q)2 but still TD(P,Q) > TD(P ′, Q′).6 Circuits generating
such distributions were until now not known to be in the polarizing regime, but
can now be polarized by combining Theorem 1.5 and Eq. (1.1).

5 Actually, it was claimed in [GV11] that the [SV03] proof does extend to the setting
of an inverse polynomial gap between α2 and β but this claim was later retracted,
see http://www.wisdom.weizmann.ac.il/∼/oded/entropy.html.

6 For example, for a parameter γ ∈ [0, 1] consider the distributions Rγ
0 and Rγ

1 over
{0, 1, 2}: Rγ

b puts γ mass on b and 1 − γ mass on 2. It holds that SD(Rγ
0 , Rγ

1) =

TD(Rγ
0 , Rγ

1) = γ. If, say, (P, Q) = (R
1/2
0 , R

1/2
1) and (P ′, Q′) = (R

1/3
0 , R

1/3
1), then

SD(P, Q) > SD(P ′, Q′) > SD(P, Q)2 but TD(P, Q) > TD(P ′, Q′).

http://www.wisdom.weizmann.ac.il/~/oded/entropy.html

Statistical Difference Beyond the Polarizing Regime 317

1.1.2 From Statistical Difference to One-Way Functions

We continue our study of the StatisticalDifferenceProblem, focusing on
the regime where β < α (and in particular even when β ≥ α2). We show that
in this regime the SDPα,β problem shares many important properties of SZK
(although we fall short of actually showing that it lies in SZK—which is equiva-
lent to polarization for any β < α).

First, we show that similarly to SZK, the average-case hardness of SDPα,β

implies the existence of one-way functions. The fact that average-case hardness
of SZK (or equivalently SDPα,β for β < α2) implies the existence of one-way
functions was shown by Ostrovsky [Ost91]. Indeed, our contribution is in showing
that the weaker condition of β < α (rather than β < α2) suffices for this result.

Theorem 1.8. Let (α, β) be (1/poly)-separated functions. Suppose that SDPα,β

is average-case hard. Then, there exists a one-way function.

The question of constructing one-way functions from the (average-case) hard-
ness of SDP is closely related to a result of Goldreich’s [Gol90] showing that
the existence of efficiently sampleable distributions that are statistically far but
computationally indistinguishable implies the existence of one-way functions.
Our proof of Theorem 1.8 allows us to re-derive the following strengthening
of [Gol90], due to Naor and Rothblum [NR06, Theorem 4.1]: for any (1/poly)-
separated (α, β), the existence of efficiently sampleable distributions whose sta-
tistical distance is α but no efficient algorithm can distinguish between them
with advantage more than β, implies the existence of one-way functions. See
further discussion in Theorem 2.1.

1.1.3 Interactive Proof for Statistical Distance Approximation

As our last main result, we construct a new interactive protocol that lets a
verifier estimate the statistical distance between two given circuits up to any
noticeable precision.

Theorem 1.9. There exists a constant-round public-coin interactive protocol
between a prover and a verifier that, given as input a pair of circuits (C0, C1), a
claim Δ ∈ [0, 1] for their statistical distance, and a tolerance parameter δ ∈ [0, 1],
satisfies the following properties:

– Completeness: If SD(C0, C1) = Δ, then the verifier accepts with probability
at least 2/3 when interacting with the honest prover.

– Soundness: If |SD(C0, C1) − Δ| ≥ δ, then when interacting with any (possi-
bly cheating) prover, the verifier accepts with probability at most 1/3.

– Efficiency: The verifier runs in time poly(|C0|, |C1|, 1/δ).

(As usual the completeness and soundness errors can be reduced by applying
parallel repetition. We can also achieve perfect completeness using a result from
[FGM+89].)

Theorem 1.9 is actually equivalent to the following statement.

318 I. Berman et al.

Theorem 1.10 ([BL13, Theorem 6], [BBF16, Theorem 2]). For any (α, β) that
are (1/poly)-separated, it holds that SDPα,β ∈ AM ∩ coAM.7

It is believed that AM∩ coAM lies just above SZK, and if we could show that
SDPα,β is in SZK, that would imply SD polarization for such α and β.

Since Theorem 1.9 can be derived from existing results in the literature, we
view our main contribution to be the proof which is via a single protocol that
we find to be cleaner and more direct than alternate approaches.

Going into a bit more detail, [BL13,BBF16]’s proofs are in fact a combination
of two separate constant-round protocols. The first protocol is meant to show
that SDPα,β ∈ AM and follows directly by taking the interactive proof for SDP
presented by Sahai and Vadhan (which has completeness error (1 − α)/2 and
soundness error (1+β)/2), and applying parallel repetition (and the private-coin
to public-coin transformation of [GS89]).

The second protocol is meant to show that SDPα,β ∈ coAM, and is based on
a protocol by Bhatnagar, Bogdanov, and Mossel [BBM11]. Another approach for
proving that SDPα,β ∈ coAM is by combining results of [GVW02] and [SV03].
Goldreich, Vadhan and Wigderson [GVW02] showed that problems with laconic
interactive proofs, that is proofs where the communication from the prover to
the verifier is small, have coAM proofs. Sahai and Vadhan [SV03], as described
earlier, showed that SDPα,β , and SZK in general, has an interactive proof where
the prover communicates a single bit. Combining these results immediately gives
a coAM protocol for SDPα,β when (α, β) are Ω(1)-separated. As for (α, β) that
are only (1/poly)-separated, while the [GVW02] result as-stated does not suffice,
it seems that their protocol can be adapted to handle this case as well.8

As mentioned above, we give a different, and direct, proof of Theorem 1.9 that
we find to be simpler and more natural than the above approach. In particular,
our proof utilizes the techniques developed for our other results, which enable us
to give a single and more general protocol—one that approximates the statistical
difference (as in Theorem 1.9), rather than just deciding if that distance is large
or small.

At a very high level, our protocol may be viewed as an application of the
set-lower-bound-based techniques of Akavia et al. [AGGM06] or Bogdanov and
Brzuska [BB15] to our construction of a one-way function from the average-case
hardness of SDP (i.e., Theorem 1.8), though there are technical differences in
our setting. Both these papers show how to construct a coAM protocol for any
language that can be reduced, to inverting a size-verifiable one-way function.9

7 Recall that AM is the class of problems that have constant-round public-coin inter-
active proofs. coAM is simply the complement of AM.

8 In more detail, the [GVW02] result is stated for protocols in which the gap between
completeness and soundness is constant (specifically 1/3). In case α and β are only
1/poly-separated, the [SV03] protocol only has a 1/poly gap (and we cannot afford
repetition since it will increase the communication). Nevertheless, by inspecting the
[GVW02] proof, it seems as though it can be adapted to cover any noticeable gap.

9 Informally, a function f is size-verifiable if given an output y = f(x), there exists an
AM protocol to estimate |f−1(y)|.

Statistical Difference Beyond the Polarizing Regime 319

While we do not know how to reduce solving SDP in the worst-case to inverting
any specific function, we make use of the fact that associated with each instance
of SDP, there is an instance-dependent function [OW93], that is size-verifiable
on the average.

1.2 Additional Related Works

Barriers to Improved Polarization. Holenstein and Renner [HR05] show that
in a limited model dubbed “oblivious polarization”, the condition α2 > β on
the statistical distance is necessary for polarizing statistical distance.10 All the
past polarization reductions fit in this framework and so do ours. Specifically,
Holenstein and Renner show distributions where α2 < β and cannot be polar-
ized in this model. We show a condition that suffices for polarization, even for
distributions where α2 ≤ β. This does not contradict the [HR05] result because
their distributions do not satisfy this condition.

In a more general model, [LZ17,CGVZ18] showed lower bounds for SZK-
related distribution manipulation tasks. The model they consider allows the
reduction arbitrary oracle access to the circuits that sample the distributions,
as opposed to the more restricted model of oblivious polarization. In this model,
Lovett and Zhang [LZ17] show that efficient entropy reversal is impossible11,
and Chen, Göös, Vadhan and Zhang [CGVZ18] showed that entropy flattening
requires Ω(n2) invocations to the underlying circuit. Showing lower bounds for
polarization in this more general model remains an interesting open question.

Polarization for Other Notions of Distance. In the process of characterizing zero-
knowledge in the help model, Ben-Or and Gutfreund [BG03] and Chailloux et
al. [CCKV08] gave a polarization procedure that considers two different distances
for every (1/log)-separated α > β: if the statistical distance is at most β, then it
decreases to 2−k; and if the mutual disjointness12 is at least α, then it increases
to 1 − 2−k. Fehr and Vaudenay [FV17] raise the question of polarization for the
fidelity measure13 but leave resolving it as an open problem (see Sect. 2.3.3 for
details).

10 Roughly speaking, an oblivious polarization is a randomized procedure to polarize
without invoking the circuits; it takes as input a bit σ and an integer k, and outputs
a sequence of bits (bσ

1 , . . . , bσ
�) and a string rσ. Given a pair of circuits (C0, C1), such

a procedure defines a pair of circuits (D0, D1) as follows: Dσ samples (bσ
1 , . . . , bσ

�)
and rσ and outputs (Cbσ

1
, . . . , Cbσ

�
, rσ). We are guaranteed that if SD(C0, C1) ≥ α,

then SD(D0, D1) ≥ 1 − 2−k, and if SD(C0, C1) ≤ β, then SD(D0, D1) ≤ 2−k.
11 Entropy reversal refers to the task of given circuit C and parameter t output (C′, t′)

such that when H(C) > t, then H(C′) < t′ − 1 and if H(C) < t − 1, then H(C′) > t′.
12 For an ordered pair of distributions P and Q, their disjointness is

Disj(P, Q) = Pry∼P [y �∈ Supp(Q)], and their mutual disjointness is MutDisj(P, Q) =
min(Disj(P, Q), Disj(Q, P)).

13 For two distributions P and Q, their fidelity is defined as Fidelity(P, Q) =∑
y

√
Py · Qy.

320 I. Berman et al.

SDP and Cryptography. We show that average-case hardness of SDPα,β implies
one-way functions. In the reverse direction, Bitansky et al. [BDV17] show that
one-way functions do not imply even worst-case hardness of SDPα,β in a black-
box manner for any (1/poly)-separated α, β.14

2 Techniques

We begin in Sect. 2.1 by describing how to construct a one-way function from
the average-case hardness of SD with any noticeable gap (Theorem 1.8). The
techniques used there are also central in our interactive protocol for SD esti-
mation (Theorem 1.9), which is described in Sect. 2.2, as well as in our proof
that triangular discrimination and Jensen-Shannon divergence are SZK complete
(Theorems 1.5 and 1.6), which are outlined in Sect. 2.3 below.

2.1 One-Way Function from Statistical Difference with Any
Noticeable Gap

We first show the existence of distributionally one-way functions. Namely, an
efficiently computable function f for which it is hard to sample a uniformly
random pre-image for a random output y (rather than an arbitrary pre-image as
in a standard one-way function). This suffices since Impagliazzo and Luby [IL89]
showed how to convert a distributionally one-way function into a standard one.

Assume that we are given a distribution over a pair of circuits (C0, C1) such
that it is hard to distinguish between the cases SD(C0, C1) ≥ α or SD(C0, C1) ≤
β, for some α > β + 1/poly. A natural candidate for a one-way function is the
(efficiently computable) function

fC0,C1(b, x) = Cb(x). (2.1)

Namely, f is parameterized by the circuits (C0, C1) (which are to be sampled
according to the hard distribution), and the bit b chooses which of the two circuits
would be evaluated on the string x. This function appears throughout the SZK
literature (e.g., it corresponds to the verifier’s message in the SDP protocol of
[SV03]).

Assume that f is not distributionally one-way, and let A be an algorithm that
given (C0, C1) and a random input y—sampled by first drawing a uniformly ran-
dom bit b and a string x and then computing y = Cb(x)—outputs a uniformly
random element (b′, x′) from the set f−1

C0,C1
(y) = {(b, x) : Cb(x) = y}. For sim-

plicity, we assume that A is a perfect distributional inverter, that is for every
fixed (C0, C1, y) it outputs uniformly random elements of f−1

C0,C1
(y).

Arguably, the most natural approach for distinguishing between the cases of
high or low statistical distance given the two circuits and the inverter, is to choose

14 While [BDV17] state the result for constant α, β, the construction and analysis
extend to our setting.

Statistical Difference Beyond the Polarizing Regime 321

x and b at random, invoke the inverter to obtain (b′, x′), and check whether
b = b′. Indeed, if SD(C0, C1) = 1, then Pr[b = b′] = 1, and if SD(C0, C1) = 0,
then Pr[b = b′] = 1

2 . Thus, we can distinguish between the cases with constant
advantage.

But what happens when the gap in the statistical distance is smaller? To ana-
lyze this case we want to better understand the quantity Pr[b = b′]. It turns out
that this quantity is characterized by the triangular discrimination between the
circuits. Let Pb denote the output distribution of Cb. Using elementary manip-
ulations (and the fact that 1

2 (P0 + P1) is a distribution), it holds that15

Pr[b = b′] =
1
2

Pr
y∼P0

[b′ = 0] +
1
2

Pr
y∼P1

[b′ = 1] (2.2)

=
1
2

∑

y

P0(y)2 + P1(y)2

P0(y) + P1(y)

=
1
4

∑

y

(P0(y) + P1(y))2

P0(y) + P1(y)
+

1
4

∑

y

(P0(y) − P1(y))2

P0(y) + P1(y)

=
1
2

+
1
4

∑

y

(P0(y) − P1(y))2

P0(y) + P1(y)

=
1 + TD(C0, C1)

2
.

Based on the general bounds between triangular discrimination and statistical
distance (Eq. (1.1)), which are known to be tight, all we are guaranteed is

SD(C0, C1) ≥ α =⇒ Pr[b = b′] ≥ 1 + α2

2

SD(C0, C1) ≤ β =⇒ Pr[b = b′] ≤ 1 + β

2
.

So, this approach is limited to settings in which α2 > β.
To overcome this limitation we want to find a quantity that is more tightly

characterized by the statistical distance of the circuits. This quantity, which we
call imbalance, will be central in all of the proofs in this work. The imbalance
measures how likely it is that an output string y was generated from C1 versus
C0. Formally,

θy
Δ= Pr[b = 1|y] − Pr[b = 0|y] =

P1(y) − P0(y)
P1(y) + P0(y)

. (2.3)

15 In Sect. 1 we used Py to denoted the probability mass a distribution P puts on an
element y, while here we use P (y). In the rest of this work we choose which notation
to use based on readability and context.

322 I. Berman et al.

Elementary manipulations yields that

SD(C0, C1) =
1
2

∑

y

|P1(y) − P0(y)| (2.4)

=
∑

y

1
2
(P1(y) + P0(y)) · |P1(y) − P0(y)|

P1(y) + P0(y)

= E
y∼(1

2P0+
1
2P1)

[|θy|] .

(Recall that y is sampled by first drawing a uniform random bit b and a string
x, and setting y = Cb(x). Hence, using the notation that Pb denotes the output
distributions of the circuit Cb, the marginal distribution of y is 1

2P0 + 1
2P1.)

Equation (2.4) naturally gives rise to the following algorithm for approximat-
ing SD(C0, C1):

Algorithm to estimate SD(C0, C1) using the inverter A:

1. Sample polynomially many y1, . . . , yt independently from 1
2P0 + 1

2P1.
2. For every yi:

(a) Call A(yi) polynomially many times to get b′
1, . . . , b

′
k.

(b) Let m be the number of ones in b′
1, . . . , b

′
k.

(c) Set p1 = m/k, p0 = (k − m)/k and θ̂i = p1 − p0.

3. Return 1
t

∑t
i=1 |θ̂i|.

. .

The quantities p1 and p0 are in fact the empirical distribution of b condi-
tioned on y, computed using k samples. By choosing large enough k, we get
that (p1, p0) ≈ (Pr[b = 1|y] ,Pr[b = 0|y]) and so θ̂i ≈ θyi

. By then choosing
large enough t, we get that 1

t

∑t
i=1 |θ̂i| ≈ SD(C0, C1). Hence, we can distinguish

between the cases SD(C0, C1) ≥ α or SD(C0, C1) ≤ β, for any α > β + 1/poly.
Essentially the same proof continues to work if A is not a perfect distribu-

tional inverter, but is close enough to being so—that is, on input y its output
distribution is close to being uniform over f−1(y) for most (but not all) tuples
C0, C1, y.

The above proof strategy also yields a new proof for the strengthening of
[Gol90] by Naor and Rothblum [NR06].16 See Theorem 2.1 below for a discussion
about the differences between our techniques and those of [NR06].

Distributional Collision Resistant Hash Function. As a matter of fact, the above
proof also shows that the average-case hardness of SDPα,β also implies that the

16 Namely, that for any (1/poly)-separated (α, β), the existence of efficiently sampleable
distributions whose statistical distance is α but no efficient algorithm can distinguish
between them with advantage more than β, implies the existence of one-way func-
tions.

Statistical Difference Beyond the Polarizing Regime 323

function fC0,C1(b, x) = Cb(x) is a distributional k-multi-collision17 resistant hash

function, for k = O
(

log n
(α−β)2

)
. That is, for a random output y of f , it is difficult

to find k random preimages of y. This is because access to such a set of k random
pre-images of random yi’s is all we use the inverter A for in the above reduction,
and it could handily be replaced with a k-distributional multi-collision finder.

Remark 2.1 (Comparison to [NR06]). Naor and Rothblum’s proof implicitly
attempts to approximate the maximal likelihood bit of y; that is, the bit bml

such that Pr[b = bml|y] > Pr[b = 1 − bml|y] (breaking ties arbitrarily). Indeed,
the maximal likelihood bit, as shown by [SV03], is closely related to the statistical
distance:

Pr[b = bml] =
1 + SD(C0, C1)

2
. (2.5)

To approximate bml, [NR06] make, like us, many calls to A(y), and take the
majority of the answered bits. The idea is that when the statistical distance is
large, the majority is likely to be bml, and when the statistical distance is small,
the majority is equally likely to be bml or 1 − bml.

To formally prove this intuition, it must hold that if SD(C0, C1) is large, then
Pr[b = bml|y]−Pr[b = 1 − bml|y] is sufficiently large; putting in our terminology
and using Eq. (2.4), if Ey [|θy|] is sufficiently large, then |θy| should be large for
a random y (and the opposite should hold if SD(C0, C1) is small). While these
statements are true, in order to prove them, [NR06]’s analysis involves some
work which results in a more complicated analysis.

We manage to avoid such complications by using the imbalance θy and its
characterization of statistical distance (Eq. 2.4). Furthermore, [NR06]’s approach
only attempts to distinguish between the cases when SD(C0, C1) is high or low,
while our approach generalizes to approximate SD(C0, C1). Lastly, Naor and
Rothblum do not construct one-way functions based on the average-case hardness
of SDPα,β with any noticeable gap as we do. Using their technique to do so seems
to require additional work—work that our analysis significantly simplifies.

2.2 Interactive Proof for Statistical Distance Approximation

We proceed to describe a constant-round public-coin protocol in which a compu-
tationally unbounded prover convinces a computationally bounded verifier that
the statistical difference of a given pair of circuits is what the prover claims it to
be, up to any inverse polynomial (additive) error. Such a protocol simultaneously
establishes the inclusion of SDPα,β in both AM and coAM for any α > β+1/poly.

Our starting point is the algorithm we described above that used a one-way
function inverter to estimate the statistical distance. Specifically, that algorithm

17 Multi-collision hash functions, recently considered in several works [KNY17,KNY18,
BKP18,BDRV18], are hash functions for which it is hard to find multiple inputs that
all hash to the same output.

324 I. Berman et al.

used the inverter to estimate θy for random y’s, and then applied Eq. (2.4). We
would like to use the prover, instead of the inverter, to achieve the same task.

In our protocol, the verifier draws polynomially many y’s and sends them to
the prover. The prover responds with values θ̂i’s, which it claims are the genuine
θyi

’s. But how can the verifier trust that the prover sent the correct values?
In the reduction in Sect. 2.1, we used k many samples of b conditioned on y to
estimate b’s true distribution. A standard concentration bound shows that as k
grows, the number of ones out of b1, . . . , bk, all sampled from (b|y), is very close
to Pr[b = 1|y] · k. Similarly, the number of zeros is very close to Pr[b = 0|y] · k.
Consider the following typical set for any fixed y and arbitrary value θ:

T k,θ
y =

{

(b1, x1, b2, x2, . . . , bk, xk)
Cbi

(xi) = y for all i,

and
∑k

i=1 bi−
∑k

i=1(1−bi)

k ≈ θ

}

.

Namely, T k,θ
y contains every k-tuple of (bi, xi) such that all map to y, and each

tuple can be used to estimate θ well—the difference between the number of ones
and the number of zeros, normalized by k, is close to θ. Also consider the pre-
image set of y: Iy = {(b, x) | Cb(x) = y}. Since as k grows the estimation of
θy improves, we expect that T k,θy

y —the typical set of y with the value θy—to
contain almost all tuples. Indeed, standard concentration bounds show that

∣
∣
∣T k,θy

y

∣
∣
∣

|Iy|k
≥ 1 − e−Ω(k). (2.6)

On the other hand, the sets T k,θ′
y , corresponding to values θ′ that are far from

θy, should be almost empty. Indeed, if |θ′ − θy| ≥ Ω(1), then,
∣
∣
∣T k,θ′

y

∣
∣
∣

|Iy|k
≤ e−Ω(k). (2.7)

So, for the verifier to be convinced that the value θ̂ sent by the prover is
close to θy, the prover can prove that the typical set T k,θ̂

y is large. To do so, the
parties will use the public-coin constant round protocol for set lower-bound of
[GS89], which enables the prover to assert statements of the form “the size of
the set S is at least s”.

However, there is still one hurdle to overcome. The typical set T k,θy
y is only

large relative to |Iy|k. Since we do not known how to compute |Iy| it is unclear
what should be the size s that we run the set lower-bound protocol with. Our
approach for bypassing this issue is as follows. First observe that the expected
value, over a random y, of the logarithm of the size of Iy is the entropy18 of
(b, x) given y. Namely,
18 Recall that the entropy of a random variable X over X is defined as (H(X) =∑

x∈X Pr[X = x] log(1/ Pr[X = x]). The conditional entropy of X given Y is
H(X|Y) = Ey∼Y [H(X|Y = y)].

Statistical Difference Beyond the Polarizing Regime 325

E
y

[log |Iy|] = H(B,X|Y), (2.8)

where the jointly distributed random variables (B,X, Y) take the values of ran-
domly drawn (x, b, y). Thus, if we draw t independent elements y1, . . . , yt, the
average of log|Iy| gets closer to t · H(B,X|Y), as t grows. Specifically,

Pr

[
t∏

i=1

|Iyi
| ≈ 2t·H(B,X|Y)

]

≥ 1 − e−Ω(t/n2), (2.9)

where n denotes the output length of the given circuits. For large enough t, we
can thus assume that the size of this product set is approximately 2t·H(B,X|Y),
and run the set lower bound protocol for all the yi’s together. That is, we ask
the prover to send t estimates (θ̂1, . . . , θ̂t) for the values (θy1 , . . . , θyt

), and prove
that the size of the product set T k,θ̂1

y1
× · · · × T k,θ̂1

y1
is almost 2t·H(B,X|Y).

So far we have reduced knowing the size of Iy to knowing H(B,X|Y), but
again it seems difficult for the verifier to compute this quantity on its own.
Actually, standard entropy manipulations show that

H(B,X|Y) = (m + 1) − H(Y),

where m denotes the input length of the given circuits. It thus suffices to approx-
imate H(Y). Recall that y is the output of the circuit that maps (x, b) to Cb(x),
so Y is drawn according to an output distribution of a known circuit. Luckily,
Goldreich, Sahai and Vadhan [GSV99] showed that approximating the output
entropy of a given circuit is in NISZK, and thus has a constant-round public-coin
protocol (since NISZK ⊆ AM ∩ coAM).

To conclude, we describe the entirety of our protocol, which proves
Theorem 1.9.

Protocol to approximate SD(C0, C1), given the circuits (C0, C1) as input:

1. First, the prover sends the verifier a claim Ĥ of the value of H(Y).
2. The parties execute [GSV99]’s protocol to convince the verifier that this

claim—that Ĥ ≈ H(Y)—is correct.
3. The verifier uses Ĥ to compute Ĥ(B,X|Y) as ((m + 1) − Ĥ).
4. The verifier samples y1, . . . , yt from C0+C1

2 and sends them to the prover.
5. The prover responds with θ̂1, . . . , θ̂t as claims for the values θy1 , . . . , θyt

.
6. The parties run a set lower-bound protocol to prove that the set T θ̂1,k

y1
×· · ·×

T θ̂t,k
yt

is almost as large as (Iy1 × · · · × Iyt
)k.

– Here, they use 2tkĤ(B,X|Y) as a proxy for (|Iy1 | · · · · · |Iyt
|)k.

7. If the verifier has not rejected so far, it outputs 1
t

∑t
i=1 |θ̂i|.

. .

326 I. Berman et al.

2.3 TDP and JSP Are SZK-Complete

We show that both TDPα,β and JSPα,β with α > β + 1/poly are SZK-complete.
Since the proof of the former uses that of the latter we start by giving an outline
that JSPα,β is SZK-complete.

2.3.1 Jensen-ShannonDivergenceProblem Is SZK-Complete

We need to show that JSPα,β with α > β + 1/poly is both in SZK and SZK-
hard. In both parts we use the following characterization of the Jensen-Shannon
divergence, which follows from its definition. Given a pair of circuits C0 and
C1, consider the jointly distributed random variables (B,X, Y), where B is a
uniformly random bit, X is a uniformly random string and Y = CB(X). Then,
it follows from some elementary manipulations that:

JS(C0, C1) = 1 − H(B|Y). (2.10)

We use this characterization to tie Jensen-ShannonDivergenceProblem
to another SZK-complete problem—the Entropy Difference Problem
(EDP) with a gap function g. The input to EDPg is also a pair of circuits C0 and
C1. YES instances are those in which the entropy gap H(C0) − H(C1) is at least
g(n) (where n is the output length of the circuits) and NO instances are those in
which the gap is at most −g(n). Goldreich and Vadhan [GV99] showed that EDPg

is SZK-complete for any noticeable function g. Our proof that JSPα,β is SZK-
complete closely follows the reduction from the reverse problem of SDP (i.e., in
which YES instances are distributions that are statistically close) to EDP [Vad99,
Section 4.4].

JSPα,β is in SZK: We reduce JSPα,β to ED(α−β)/2. Given C0 and C1, the reduc-
tion outputs a pair of circuits D0 and D1 such that D1 outputs a sample from
(B, Y) and D0 outputs a sample from (B′, Y), where B′ is an independent
random bit with H(B′) = 1 − α+β

2 . The chain rule for entropy19 implies that

H(D0) − H(D1) = 1 − α + β

2
− H(B|Y) = JS(C0, C1) − α + β

2
,

where the second equality follows from Eq. (2.10). Thus, if JS(C0, C1) ≥ α,
then H(D0) − H(D1) ≥ α−β

2 ; and if JS(C0, C1) ≤ β, then H(D0) − H(D1) ≤
−α−β

2 . And since ED(α−β)/2 ∈ SZK, we get that JSPα,β ∈ SZK.
JSPα,β is SZK-hard: We reduce SDP1−2−k,2−k

to the problem JSPα,β , for
some large enough k. This is sufficient since SDP1−2−k,2−k

is known to be
SZK-hard [SV03].20 In the presentation of related results in his thesis, Vad-
han relates the statistical distance of the circuits to the entropy of B given

19 For a jointly distributed random variables X and Y , it holds that H(X, Y) = H(X)+
H(Y |X).

20 For the simplicity of presentation, we are ignoring subtle details about the relation
of k to the output length of the circuits. See the full version for the formal proof.

Statistical Difference Beyond the Polarizing Regime 327

Y [Vad99, Claim 4.4.2]. For example, if SD(C0, C1) = 0 (i.e., the distributions
are identical), then B|Y is a uniformly random bit, and so H(B|Y) = 1; and
if SD(C0, C1) = 1 (i.e., the distributions are disjoint), then B is completely
determined by Y , and so H(B|Y) = 0. More generally, Vadhan showed that
if SD(C0, C1) = δ, then21

1 − δ ≤ H(B|Y) ≤ h

(
1 + δ

2

)
. (2.11)

By taking k to be large enough (as a function of α and β), and applying Eqs.
(2.10) and (2.11), we have that if SD(C0, C1) ≥ 1−2−k, then JS(C0, C1) ≥ α;
and if SD(C0, C1) ≤ 2−k, then JS(C0, C1) ≤ β. Thus, the desired reduction
is simply the identity function that outputs the input circuits.

2.3.2 Triangular Discrimination Problem is SZK-Complete

We need to show that TDPα,β with α > β+1/poly is both in SZK and SZK-hard.
Showing the latter is very similar to showing that JSPα,β is SZK-hard, but using
Eq. (1.1) to relate the triangular discrimination to statistical distance (instead
of Eq. (2.11) that relates the Jensen-Shannon divergence to statistical distance).
We leave the formal details to the body of this paper and focus here on showing
that TDPα,β is in SZK.

A natural approach to show that TDPα,β is in SZK is to follow Sahai and
Vadhan’s proof that SDP2/3,1/3 is in SZK. Specifically, a main ingredient in that
proof is to polarize the statistical distance of the circuits (to reduce the simu-
lation error). Indeed, if we can reduce TDPα,β to, say, TDP0.9,0.1 by polarizing
the triangular discrimination, then Eq. (1.1) would imply that we also reduce
TDPα,β to SDP2/3,1/3, which we know is in SZK.

We are indeed able to show such a polarization lemma for triangular discrim-
ination (using similar techniques to [SV03]’s polarization lemma). However, this
lemma only works when the gap between α and β is roughly 1/ log. Actually,
the polarization lemma of [SV03] also suffers the same limitation with respect
to the gap between α2 and β.

Still, we would like to handle also the case that the gap between α and β
is only 1/poly. To do so we take a slightly different approach. Specifically, we
reduce TDPα,β to JSPα′,β′

, where α′ and β′ are also noticeably separated.
An important step toward showing this reduction is to characterize the tri-

angular discrimination and the Jensen-Shannon divergence via the imbalance
θy (see Eq. (2.3)), as we already did for statistical distance. Recall that given
Y = y, the random variable B takes the value 1 with probability 1+θy

2 , and 0
otherwise. Hence, Eq. (2.10) can also be written as

JS(C0, C1) = 1 − E
y∼Y

[
h

(
1 + θy

2

)]
. (2.12)

21 The function h is the binary entropy function. That is, h(p) = −p log(p) − (1 −
p) log(1 − p) is the entropy of a Bernoulli random variable with parameter p.

328 I. Berman et al.

As for the triangular discrimination, it follows from the definition that

TD(C0, C1) = E
y∼Y

[
θ2y

]
. (2.13)

Furthermore, by Taylor approximation, for small values of θ, it holds that

h

(
1 + θ

2

)
≈ 1 − θ2. (2.14)

As we can see, the above equations imply that if all the θy’s were small, a gap
in the triangular discrimination would also imply a gap in the Jensen-Shannon
divergence. Thus, we would like an operation that reduces all the θy.

The main technical tool we use to reduce θy is to consider the convex combi-
nation of the two input circuits. Given a pair of circuits C0 and C1, consider the
pair of circuits D0 and D1 such that Db = λ·Cb+(1−λ)· C0+C1

2 .22 Let Qb denote
the output distribution of Db, and recall that Pb denotes the output distribution
of Cb. We also let θ′

y be defined similarly to θy, but with respect to D0 and D1

(rather than C0 and C1). Using this notation, we have that θy = P1(y)−P0(y)
P1(y)+P0(y)

,
and it may be seen that

θ′
y =

Q1(y) − Q0(y)
Q1(y) + Q0(y)

= λ · θy. (2.15)

So, our reduction chooses a sufficiently small λ, and outputs the circuits
D0 and D1. Some care is needed when choosing λ. Equations (2.13) and (2.15)
yield that TD(D0,D1) = λ2 · TD(C0, C1). Hence, the convex combination also
shrinks the gap in triangular discrimination. We show that by choosing λ ≈√

α − β, the approximation error in Eq. (2.14) is smaller than the aforementioned
shrinkage, and the reduction goes through. The resulting gap in the Jensen-
Shannon divergence is roughly (α − β)2, which is noticeable by the assumption
that α > β + 1/poly.

This shows that TDPα,β is in SZK if α > β + 1/poly. By the relationship
between TD and SD (Eq. (1.1)), this implies that SDPα,β is in SZK if α2 >

β + 1/poly. This, in turn, by the SZK-hardness of SDP2/3,1/3 and the known
polarization lemma that applies for the same, implies polarization for statistical
distance for any (α, β) such that α2 > β + 1/poly.

2.3.3 Reflections and an Open Problem

Many f -divergences of interest can be expressed as an expectation, over y ∼ Y ,
of a simple function of θy. That is, an expression of the form Ey∼Y [g(θy)], for
some function g : [−1, 1] → [0, 1]. For example:

– SD(C0, C1) = Ey∼Y [|θy|] (i.e., g(z) = |z|, see Eq. (2.4));

22 This definition of convex combination is more convenient to analyze than perhaps
the more natural definition of Db = λ · Cb + (1 − λ) · C1−b.

Statistical Difference Beyond the Polarizing Regime 329

– TD(C0, C1) = Ey∼Y

[
θ2y

]
(i.e., g(z) = z2, see Eq. (2.13)); and

– JS(C0, C1) = Ey∼Y

[
1 − h

(
1+θy

2

)]
(i.e., g(z) = 1 − h

(
1+z
2

)
, see Eq. (2.12)).

To reduce TDP to JSP, we took a convex combination of the two circuits
and used the fact that 1 − h

(
1+θy

2

)
≈ O(θ2y) for small values of θy. While this

worked for polarization of TD (which corresponds to g(z) = z2), it seems unlikely
to yield a polarization lemma for SD for an arbitrarily small (but noticeable)
gap. The reason is that the function g(z) = |z|—the g-function corresponding
to SD—is not differentiable at 0 and in particular does not act like z2 for small
values of z. As we find this similarity between the different notions of distance
striking, and indeed our proofs leverage the relations between them, we provide
in Fig. 1 a plot comparing the different choices for the function g.

θ
0 0.2 0.4 0.6 0.8 1

g(θ)

0

0.2

0.4

0.6

0.8

1

|θ| (SD)

θ2 (TD)

1 − h 1+θ
2

(JS)

1 − √√
1 − θ2 (H2)

Fig. 1. Comparison between the difference choices of the function g that were discussed.
Since all functions are symmetric around 0, we restrict to the domain [0, 1]. Recall that
g1(θ) = |θ| corresponds to SD, g2(θ) = θ2 to TD, g3(θ) = 1 − h

(
1+θ
2

)
to JS and

g4(θ) = 1 − √
1 − θ2 to H2.

Another popular f -divergence that we have not discussed thus far23 is the
squared Hellinger distance, defined as H2(P,Q) = 1

2

∑
y

(√
Py −

√
Qy

)2
. It can

23 Actually we will use the squared Hellinger distance to analyze triangular discrim-
ination of direct product distributions (see the full version for details). Also, the
squared Hellinger distance is closely related to the Fidelity distance: Fidelity(P, Q) =
1 − H2(P, Q).

330 I. Berman et al.

be shown that H2(C0, C1) = Ey∼Y

[
1 −

√
1 − θ2y

]
, and so also this distance falls

within the above framework (i.e., by considering g(z) = 1 −
√

1 − z2).
Notably, the squared Hellinger distance also acts like JS (and TD) around 0;

namely, 1 −
√

1 − θ2y ≈ O(θ2y) for small values of θy. However, unlike TDPα,β ,
we do not know how to show that the Hellinger Difference Problem,
denoted HDPα,β and defined analogously to TDPα,β (while replacing the dis-
tance TD with H2), is in SZK for all (1/poly)-separated (α, β). We do mention
that H2(P,Q) ≤ TD(P,Q) ≤ 2H2(P,Q), and thus HDPα,β is in SZK if α and β/2
are (1/poly)-separated. However, the proof described above does not go through
if we try to apply it to the Hellinger distance—we cannot guarantee that the
gap in the Hellinger distance after taking the convex combination is larger than
the error in the Taylor approximation. Indeed, the question whether HDPα,β

is in SZK for any (1/poly)-separated (α, β), first raised by Fehr and Vaudenay
[FV17], remains open.

References

[AARV17] Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional dis-
closure of secrets: amplification, closure, amortization, lower-bounds, and
separations. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 727–757. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 24

[AGGM06] Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-
way functions on NP-hardness. In: Kleinberg, J.M. (ed.) Symposium on
Theory of Computing, pp. 701–710. ACM (2006)

[AH91] Aiello, W., Hastad, J.: Statistical zero-knowledge languages can be recog-
nized in two rounds. J. Comput. Syst. Sci. 42(3), 327–345 (1991)

[BB15] Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions on
NP-hardness. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9014, pp. 1–6. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46494-6 1

[BBF16] Brakerski, Z., Brzuska, C., Fleischhacker, N.: On statistically secure obfus-
cation with approximate correctness. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 551–578. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53008-5 19

[BBM11] Bhatnagar, N., Bogdanov, A., Mossel, E.: The computational complexity of
estimating MCMC convergence time. In: Goldberg, L.A., Jansen, K., Ravi,
R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp.
424–435. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22935-0 36

[BCH+17] Bouland, A., Chen, L., Holden, D., Thaler, J., Vasudevan, P.N.: On the
power of statistical zero knowledge. In: FOCS (2017)

[BDRV18] Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-
collision resistant hash functions and their applications. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 133–161.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 5

https://doi.org/10.1007/978-3-319-63688-7_24
https://doi.org/10.1007/978-3-319-63688-7_24
https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1007/978-3-662-53008-5_19
https://doi.org/10.1007/978-3-642-22935-0_36
https://doi.org/10.1007/978-3-642-22935-0_36
https://doi.org/10.1007/978-3-319-78375-8_5

Statistical Difference Beyond the Polarizing Regime 331

[BDV17] Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness
through the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 696–723. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 23

[BG03] Ben-Or, M., Gutfreund, D.: Trading help for interaction in statistical zero-
knowledge proofs. J. Cryptol. 16(2), 95–116 (2003)

[BHZ87] Boppana, R.B., H̊astad, J., Zachos, S.: Does co-NP have short interactive
proofs? Inf. Process. Lett. 25(2), 127–132 (1987)

[BKP18] Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a
paradigm for keyless hash functions. In: STOC (2018)

[BL13] Bogdanov, A., Lee, C.H.: Limits of provable security for homomorphic
encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 111–128. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 7

[Cam86] Le Cam, L.: Part I. Springer, New York (1986). https://doi.org/10.1007/
978-1-4612-4946-7

[CCKV08] Chailloux, A., Ciocan, D.F., Kerenidis, I., Vadhan, S.: Interactive and non-
interactive zero knowledge are equivalent in the help model. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 501–534. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 28

[CGVZ18] Chen, Y.-H., Göös, M., Vadhan, S.P., Zhang, J.: A tight lower bound for
entropy flattening. In: CCC (2018)

[DNR04] Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from
decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 21

[FGM+89] Fürer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On com-
pleteness and soundness in interactive proof systems. Adv. Comput. Res.
5, 429–442 (1989)

[For89] Fortnow, L.: The complexity of perfect zero-knowledge. Adv. Comput. Res.
5, 327–343 (1989)

[FV17] Fehr, S., Vaudenay, S.: Personal Communication (2017)
[Gol90] Goldreich, O.: A note on computational indistinguishability. Inf. Process.

Lett. 34(6), 277–281 (1990)
[Gol17] Goldreich, O.: Introduction to Property Testing. Cambridge University

Press, Cambridge (2017)
[GS89] Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive

proof systems. Adv. Comput. Res. 5, 73–90 (1989)
[GSV98] Goldreich, O., Sahai, A., Vadhan, S.: Honest-verifier statistical zero-

knowledge equals general statistical zero-knowledge. In: STOC (1998)
[GSV99] Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be

made non-interactive? Or on the relationship of SZK and NISZK. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 30

[GV99] Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowl-
edge with applications to the structure of SZK. In: CCC (1999)

[GV11] Goldreich, O., Vadhan, S.: On the complexity of computational prob-
lems regarding distributions. In: Goldreich, O. (ed.) Studies in Complexity
and Cryptography. Miscellanea on the Interplay Between Randomness and
Computation. LNCS, vol. 6650, pp. 390–405. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22670-0 27

https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-642-40041-4_7
https://doi.org/10.1007/978-3-642-40041-4_7
https://doi.org/10.1007/978-1-4612-4946-7
https://doi.org/10.1007/978-1-4612-4946-7
https://doi.org/10.1007/978-3-540-78524-8_28
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1007/978-3-642-22670-0_27

332 I. Berman et al.

[GVW02] Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a
laconic prover. Comput. Complex. 11(1–2), 1–53 (2002)

[HR05] Holenstein, T., Renner, R.: One-way secret-key agreement and applica-
tions to circuit polarization and immunization of public-key encryption. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 29

[IL89] Impagliazzo, R., Luby, M.: One-way functions are essential for complexity
based cryptography. In: STOC, pp. 230–235 (1989)

[KNY17] Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity
of search problems: Ramsey and graph property testing. In: FOCS (2017)

[KNY18] Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for para-
noids: dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 162–194. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8 6

[KY18] Komargodski, I., Yogev, E.: On distributional collision resistant hashing.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992,
pp. 303–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 11

[LZ17] Lovett, S., Zhang, J.: On the impossibility of entropy reversal, and its
application to zero-knowledge proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10677, pp. 31–55. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2 2

[NR06] Naor, M., Rothblum, G.N.: Learning to impersonate. In: ICML, pp. 649–
656 (2006)

[Ost91] Ostrovsky, R.: One-way functions, hard on average problems, and statisti-
cal zero-knowledge proofs. In: Structure in Complexity Theory Conference,
pp. 133–138 (1991)

[OV08] Ong, S.J., Vadhan, S.: An equivalence between zero knowledge and
commitments. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
482–500. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78524-8 27

[OW93] Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-
trivial zero-knowledge. In: ISTCS, pp. 3–17 (1993)

[PW17] Polyanskiy, Y., Wu, Y.: Lecture notes on information theory (2017).
http://people.lids.mit.edu/yp/homepage/data/itlectures v5.pdf

[SV03] Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge.
J. ACM (JACM) 50(2), 196–249 (2003)

[Top00] Topsøe, F.: Some inequalities for information divergence and related mea-
sures of discrimination. IEEE Trans. Inf. Theory 46(4), 1602–1609 (2000)

[Vad99] Vadhan, S.P.: A study of statistical zero-knowledge proofs. Ph.D. thesis,
Massachusetts Institute of Technology (1999)

[Yeh16] Yehudayoff, A.: Pointer chasing via triangular discrimination. Electron.
Colloq. Comput. Complex. (ECCC) 23, 151 (2016)

https://doi.org/10.1007/11535218_29
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-319-96881-0_11
https://doi.org/10.1007/978-3-319-96881-0_11
https://doi.org/10.1007/978-3-319-70500-2_2
https://doi.org/10.1007/978-3-319-70500-2_2
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/978-3-540-78524-8_27
http://people.lids.mit.edu/yp/homepage/data/itlectures_v5.pdf

Estimating Gaps in Martingales
and Applications to Coin-Tossing:

Constructions and Hardness

Hamidreza Amini Khorasgani(B), Hemanta K. Maji, and Tamalika Mukherjee

Department of Computer Science, Purdue University, West Lafayette, IN, USA
{haminikh,hmaji,tmukherj}@purdue.edu

Abstract. Consider the representative task of designing a distributed
coin-tossing protocol for n processors such that the probability of heads is
X0 ∈ [0, 1]. This protocol should be robust to an adversary who can reset
one processor to change the distribution of the final outcome. For X0 =
1/2, in the information-theoretic setting, no adversary can deviate the
probability of the outcome of the well-known Blum’s “majority protocol”
by more than 1√

2πn
, i.e., it is 1√

2πn
insecure.

In this paper, we study discrete-time martingales (X0, X1, . . . , Xn)
such that Xi ∈ [0, 1], for all i ∈ {0, . . . , n}, and Xn ∈ {0, 1}. These
martingales are commonplace in modeling stochastic processes like coin-
tossing protocols in the information-theoretic setting mentioned above.
In particular, for any X0 ∈ [0, 1], we construct martingales that yield

1
2

√
X0(1−X0)

n
insecure coin-tossing protocols. For X0 = 1/2, our protocol

requires only 40% of the processors to achieve the same security as the
majority protocol.

The technical heart of our paper is a new inductive technique that
uses geometric transformations to precisely account for the large gaps
in these martingales. For any X0 ∈ [0, 1], we show that there exists a
stopping time τ such that

E [|Xτ − Xτ−1|] � 2√
2n − 1

· X0(1 − X0)

The inductive technique simultaneously constructs martingales that
demonstrate the optimality of our bound, i.e., a martingale where the gap
corresponding to any stopping time is small. In particular, we construct
optimal martingales such that any stopping time τ has

E [|Xτ − Xτ−1|] � 1√
n

·
√

X0(1 − X0)

Our lower-bound holds for all X0 ∈ [0, 1]; while the previous bound
of Cleve and Impagliazzo (1993) exists only for positive constant X0.

The research effort is supported in part by an NSF CRII Award CNS–1566499, an NSF
SMALL Award CNS–1618822, the IARPA HECTOR project, MITRE Innovation Pro-
gram Academic Cybersecurity Research Award, a Purdue Research Foundation (PRF)
Award, and The Center for Science of Information, an NSF Science and Technology
Center, Cooperative Agreement CCF–0939370.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 333–355, 2019.
https://doi.org/10.1007/978-3-030-36033-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_13

334 H. A. Khorasgani et al.

Conceptually, our approach only employs elementary techniques to ana-
lyze these martingales and entirely circumvents the complex probabilis-
tic tools inherent to the approaches of Cleve and Impagliazzo (1993) and
Beimel, Haitner, Makriyannis, and Omri (2018).

By appropriately restricting the set of possible stopping-times, we
present representative applications to constructing distributed coin-
tossing/dice-rolling protocols, discrete control processes, fail-stop attack-
ing coin-tossing/dice-rolling protocols, and black-box separations.

1 Introduction

A Representative Motivating Application. Consider a distributed protocol
for n processors to toss a coin, where processor i broadcasts her message in round
i. At the end of the protocol, all processors reconstruct the common outcome
from the public transcript. When all processors are honest, the probability of
the final outcome being 1 is X0 and the probability of the final outcome being 0
is 1−X0, i.e., the final outcome is a bias-X0 coin. Suppose there is an adversary
who can (adaptively) choose to restart one of the processors after seeing her
message (i.e., the strong adaptive corruptions model introduced by Goldwasser,
Kalai, and Park [20]); otherwise her presence is innocuous. Our objective is to
design bias-X0 coin-tossing protocols such that the adversary cannot change the
distribution of the final outcome significantly.

The Majority Protocol. Against computationally unbounded adversaries, (essen-
tially) the only known protocol is the well-known majority protocol [5,10,13] for
X0 = 1/2. The majority protocol requests one uniformly random bit from each
processor and the final outcome is the majority of these n bits. An adversary
can alter the probability of the final outcome being 1 by 1√

2πn
, i.e., the majority

protocol is 1√
2πn

insecure.

Our New Protocol. We shall prove a general martingale result in this paper
that yields the following result as a corollary. For any X0 ∈ [0, 1], there exists
an n-bit bias-X0 coin-tossing protocol in the information-theoretic setting that

is 1
2

√
X0(1−X0)

n insecure. In particular, for X0 = 1/2, our protocol uses only
625 processors to reduce the insecurity to, say, 1%; while the majority protocol
requires 1592 processors.

General Formal Framework: Martingales. Martingales are natural models
for several stochastic processes. Intuitively, martingales correspond to a gradual
release of information about an event. A priori, we know that the probability of
the event is X0. For instance, in a distributed n-party coin-tossing protocol the
outcome being 1 is the event of interest.

A discrete-time martingale (X0,X1, . . . , Xn) represents the gradual release
of information about the event over n time-steps.1 For intuition, we can assume
1 For the introduction, we do not explicitly mention the underlying filtration for

brevity. The proofs, however, clearly mention the associated filtrations.

Estimating Gaps in Martingales and Applications to Coin-Tossing 335

that Xi represents the probability that the outcome of the coin-tossing protocol
is 1 after the first i parties have broadcast their messages. Martingales have the
unique property that if one computes the expected value of Xj , for j > i, at
the end of time-step i, it is identical to the value of Xi. In this paper we shall
consider martingales where, at the end of time-step n, we know for sure whether
the event of interest has occurred or not. That is, we have Xn ∈ {0, 1}.

A stopping time τ represents a time step ∈ {1, 2, . . . , n} where we stop the
evolution of the martingale. The test of whether to stop the martingale at time-
step i is a function only of the information revealed so far. Furthermore, this
stopping time need not be a constant. That is, for example, different transcripts
of the coin-tossing protocol potentially have different stopping times.

Our Martingale Problem Statement. The inspiration of our approach is best
motivated using a two-player game between, namely, the martingale designer
and the adversary. Fix n and X0. The martingale designer presents a martingale
X = (X0,X1, . . . , Xn) to the adversary and the adversary finds a stopping time
τ that maximizes the following quantity.

E [|Xτ − Xτ−1|]
Intuitively, the adversary demonstrates the most severe susceptibility of the mar-
tingale by presenting the corresponding stopping time τ as a witness. The mar-
tingale designer’s objective is to design martingales that have less susceptibility.
Our paper uses a geometric approach to inductively provide tight bounds on
the least susceptibility of martingales for all n � 1 and X0 ∈ [0, 1], that is, the
following quantity.

Cn(X0) := inf
X

sup
τ

E [|Xτ − Xτ−1|]

This precise study of Cn(X0), for general X0 ∈ [0, 1], is motivated by natu-
ral applications in discrete process control as illustrated by the representative
motivating problem. This paper, for representative applications of our results,
considers n-processor distributed protocols and 2-party n-round protocols. The
stopping time witnessing the highest susceptibility shall translate into appropri-
ate adversarial strategies. These adversarial strategies shall imply hardness of
computation results.

1.1 Our Contributions

We prove the following general martingale theorem.

Theorem 1. Let (X0,X1, . . . , Xn) be a discrete-time martingale such that Xi ∈
[0, 1], for all i ∈ {1, . . . , n}, and Xn ∈ {0, 1}. Then, the following bound holds.

sup
stopping time τ

E [|Xτ − Xτ−1|] � Cn(X0),

where C1(X) = 2X(1−X), and, for n > 1, we obtain Cn from Cn−1 recursively
using the geometric transformation defined in Fig. 8.

336 H. A. Khorasgani et al.

Furthermore, for all n � 1 and X0 ∈ [0, 1], there exists a martingale
(X0, . . . , Xn) (w.r.t. to the coordinate exposure filtration for {0, 1}n) such that
for any stopping time τ , it has E [|Xτ − Xτ−1|] = Cn(X0).

Intuitively, given a martingale, an adversary can identify a stopping time where
the expected gap in the martingale is at least Cn(X0). Moreover, there exists a
martingale that realizes the lower-bound in the tightest manner, i.e., all stopping
times τ have identical susceptibility.

Next, we estimate the value of the function Cn(X).

Lemma 1. For n � 1 and X ∈ [0, 1], we have

2√
2n − 1

X(1 − X) =: Ln(X) � Cn(X) � Un(X) :=
1√
n

√
X(1 − X)

As a representative example, consider the case of n = 3 and X0 = 1/2. Figure 1
presents the martingale corresponding to the 3-round majority protocol and
highlights the stopping time witnessing the susceptibility of 0.3750. Figure 2
presents the optimal 3-round coin-tossing protocol’s martingale that has suscep-
tibility of 0.2407.

0.5

0.25

0

0 0

0.5

0 1

0.75

0.5

0 1

1

1 1

Fig. 1. Majority Protocol Tree of depth three. The optimal score in the majority tree
of depth three is 0.3750 and the corresponding stopping time is highlighted in gray.

0.5

0.2593

0.0921

0 1

0.6884

0 1

0.7407

0.3116

0 1

0.9079

0 1

Fig. 2. Optimal depth-3 protocol tree for X0 = 1/2. The optimal score is 0.2407.
Observe that any stopping time achieves this score.

In the sequel, we highlight applications of Theorem 1 to protocol construc-
tions and hardness of computation results using these estimates.

Estimating Gaps in Martingales and Applications to Coin-Tossing 337

Remark 1 (Protocol Constructions). The optimal martingales naturally trans-
late into n-bit distributed coin-tossing and multi-faceted dice rolling protocols.

1. Corollary 1: For all X0 ∈ [0, 1], there exists an n-bit distributed bias-X0 coin-
tossing protocol for n processors with the following security guarantee. Any
(computationally unbounded) adversary who follows the protocol honestly
and resets at most one of the processors during the execution of the protocol
can change the probability of an outcome by at most 1

2
√

n

√
X0(1 − X0).

Remark 2 (Hardness of Computation Results). The lower-bound on the maxi-
mum susceptibility helps demonstrate hardness of computation results. For X0 =
1/2, Cleve and Impagliazzo [14] proved that one encounters |Xτ −Xτ−1| � 1

32
√

n

with probability 1
5 . In other words, their bound guarantees that the expected

gap in the martingale is at least 1
160

√
n
, which is significantly smaller than our

bound 1
2
√
2n

. Hardness of computation results relying on [14] (and its exten-
sions) work only for constant 0 < X0 < 1.2 However, our lower-bound holds for
all X0 ∈ [0, 1]; for example, even when 1/poly(n) � X0 � 1 − 1/poly(n). Con-
sequently, we extend existing hardness of computation results using our more
general lower-bound.

1. Theorem 2 extends the fail-stop attack of [14] on 2-party bias-X0 coin-tossing
protocols (in the information-theoretic commitment hybrid). For any X0 ∈
[0, 1], a fail-stop adversary can change the probability of the final outcome
of any 2-party bias-X0 coin-tossing protocol by �

√
2

12
√

n+1
X0(1 − X0). This

result is useful to demonstrate black-box separations results.
2. Corollary 2 extends the black-box separation results of [15,16,23] separating

(appropriate restrictions of) 2-party bias-X0 coin tossing protocols from one-
way functions. We illustrate a representative new result that follows as a
consequence of Corollary 2. For constant X0 ∈ (0, 1), [15,16,23] rely on (the
extensions of) [14] to show that it is highly unlikely that there exist 2-party
bias-X0 coin tossing protocols using one-way functions in a black-box manner
achieving o(1/

√
n) unfairness [22]. Note that when X0 = 1/n, there are secure

2-party coin tossing protocols with 1/2n unfairness (based on Corollary 1)
even in the information-theoretic setting. Previous results cannot determine
the limits to the unfairness of 2-party bias-1/n fair coin-tossing protocols that
use one-way functions in a black-box manner. Our black-box separation result
(refer to Corollary 2) implies that it is highly unlikely to construct bias-1/n

coin using one-way functions in a black-box manner with <
√
2

12·n3/2 unfairness.
3. Corollary 3 and Corollary 4 extend Cleve and Impagliazzo’s [14] result on

influencing discrete control processes to arbitrary X0 ∈ [0, 1].

2 Cleve and Impagliazzo set their problem as an optimization problem that trades
off two conflicting objective functions. These objective functions have exponential
dependence on X0(1−X0). Consequently, if X0 = 1/poly(n) or X0 = 1−1/poly(n),
then their lower bounds are extremely weak.

338 H. A. Khorasgani et al.

1.2 Prior Approaches to the General Martingale Problem

Azuma-Hoeffding inequality [6,25] states that if |Xi − Xi−1| = o(1/
√

n), for all
i ∈ {1, . . . , n}, then, essentially, |Xn − X0| = o(1) with probability 1. That is,
the final information Xn remains close to the a priori information X0. However,
in our problem statement, we have Xn ∈ {0, 1}. In particular, this constraint
implies that the final information Xn is significantly different from the a priori
information X0. So, the initial constraint “for all i ∈ {1, . . . , n} we have |Xi −
Xi−1| = o(1/

√
n)” must be violated. What is the probability of this violation?

For X0 = 1/2, Cleve and Impagliazzo [14] proved that there exists a round i
such that |Xi−Xi−1| � 1

32
√

n
with probability 1/5. We emphasize that the round

i is a random variable and not a constant. However, the definition of the “big
jump” and the “probability to encounter big jumps” both are exponentially small
function of X0. So, the approach of Cleve and Impagliazzo is only applicable
to constant X0 ∈ (0, 1). Recently, in an independent work, Beimel et al. [7]
demonstrate an identical bound for weak martingales (that have some additional
properties), which is used to model multi-party coin-tossing protocols.

For the upper-bound, on the other hand, Doob’s martingale corresponding
to the majority protocol is the only known martingale for X0 = 1/2 with a
small maximum susceptibility. In general, to achieve arbitrary X0 ∈ [0, 1], one
considers coin tossing protocols where the outcome is 1 if the total number of
heads in n uniformly random coins surpasses an appropriate threshold.

2 Preliminaries

We denote the arithmetic mean of two numbers x and y as A.M.(x, y) :=
(x + y)/2. The geometric mean of these two numbers is denoted by
G.M.(x, y) :=

√
x · y and their harmonic mean is denoted by H.M.(x, y) :=((

x−1 + y−1
)
/2

)−1 = 2xy/(x + y).

Martingales and Related Definitions. The conditional expectation of a ran-
dom variable X with respect to an event E denoted by E [X|E], is defined as
E

[
X · 1{E}

]
/P [E]. For a discrete random variable Y , the conditional expecta-

tion of X with respect to Y , denoted by E [X|Y], is a random variable that
takes value E [X|Y = y] with probability P [Y = y], where E [X|Y = y] denotes
the conditional expectation of X with respect to the event {ω ∈ Ω|Y (ω) = y}.

Let Ω = Ω1 × Ω2 ×· · · × Ωn denote a sample space and (E1, E2, . . . , En)
be a joint distribution defined over Ω such that for each i ∈ {1, . . . , n}, Ei is a
random variable over Ωi. Let X = {Xi}n

i=0 be a sequence of random variables
defined over Ω. We say that Xj is E1, . . . , Ej measurable if there exists a function
gj : Ω1 ×Ω2 ×· · ·×Ωj → R such that Xj = gj(E1, . . . , Ej). Let X = {Xi}n

i=0 be
a discrete-time martingale sequence with respect to the sequence E = {Ei}n

i=1.
This statement implies that for each i ∈ {0, 1, . . . , n}, we have

E [Xi+1|E1, E2, . . . , Ei] = Xi

Estimating Gaps in Martingales and Applications to Coin-Tossing 339

Note that the definition of martingale implies Xi to be E1, . . . , Ei measur-
able for each i ∈ {1, . . . , n} and X0 to be constant. In the sequel, we shall
use {X = {Xi}n

i=0, E = {Ei}n
i=1} to denote a martingale sequence where for

each i = 1, . . . , n, Xi ∈ [0, 1], and Xn ∈ {0, 1}. However, for brevity, we use
(X0,X1, . . . , Xn) to denote a martingale. Given a function f : Ω1×Ω2×· · ·×Ωn →
R, if we define the random variable Zi := E [f(E1, . . . , En)|E1, . . . , Ei], for each
i ∈ {0, 1, . . . , n}, then the sequence Z = {Zi}n

i=0 is a martingale with respect to
{Ei}n

i=1. This martingale is called the Doob’s martingale.
The random variable τ : Ω → {0, 1, . . . , n} is called a stopping time if for each

k ∈ {1, 2, . . . , n}, the occurrence or non-occurrence of the event {τ � k} := {ω ∈
Ω|τ(ω) � k} depends only on the values of random variables E1, E2, . . . , Ek.
Equivalently, the random variable 1{τ�k} is E1, . . . , Ek measurable. Let S(X,E)
denote the set of all stopping time random variables over the martingale sequence
{X = {Xi}n

i=0, E = {Ei}n
i=1}. For � ∈ {1, 2}, we define the score of a martingale

sequence (X,E) with respect to a stopping time τ in the L�-norm as the following
quantity.

score�(X,E, τ) := E

[
|Xτ − Xτ−1|�

]

We define the max stopping time as the stopping time that maximizes the score

τmax(X,E, �) := arg max
τ∈S(X,E)

score�(X,E, τ),

and the (corresponding) max-score as

max-score�(X,E) := E
[|Xτmax − Xτmax −1 |�

]

Let An(x∗) denote the set of all discrete time martingales {X = {Xi}n
i=0, E =

{Ei}n
i=1} such that X0 = x∗ and Xn ∈ {0, 1}. We define optimal score as

optn(x∗, �) := inf
(X,E)∈An(x∗)

max-score�(X,E)

Representing a Martingale as a Tree. We interpret a discrete time martin-
gale sequence X = {Xi}n

i=0 defined over a sample space Ω = Ω1 ×· · · × Ωn as
a tree of depth n (see Fig. 3). For i = 0, . . . , n, any node at depth i has |Ωi+1|
children. In fact, for each i, the edge between a node at depth i and a child at
depth (i+1) corresponds to a possible outcome that Ei+1 can take from the set
Ωi+1 = {x(1), . . . , x(t)}.

Each node v at depth i is represented by a unique path from root to v like
(e1, e2, . . . , ei), which corresponds to the event {ω ∈ Ω|E1(ω) = e1, . . . , Ei(ω) =
ei}. Specifically, each path from root to a leaf in this tree, represents a unique
outcome in the sample space Ω.

Any subset of nodes in a tree that has the property that none of them is an
ancestor of any other, is called an anti-chain. If we use our tree-based notation
to represent a node v, i.e., the sequence of edges e1, . . . , ei corresponding to the

340 H. A. Khorasgani et al.

path from root to v, then any prefix-free subset of nodes is an anti-chain. Any
anti-chain that is not a proper subset of another anti-chain is called a maximal
anti-chain. A stopping time in a martingale corresponds to a unique maximal
anti-chain in the martingale tree.

xi

x(1) x(2)

. . .

x(t)

e1

e2

ei

p(1) p(2) p(t)

Fig. 3. Interpreting a general martingale as a tree.

Geometric Definitions and Relations. Consider curves C and D defined by
the zeroes of Y = f(X) and Y = g(X), respectively, where X ∈ [0, 1]. We restrict
to curves C and D such that each one of them have exactly one intersection with
X = x, for any x ∈ [0, 1]. Refer to Fig. 4 for intuition. Then, we say C is above
D, represented by C � D, if, for each x ∈ [0, 1], we have f(x) � g(x).

C

DX = x

Fig. 4. Intuition for a curve C being above another curve D, represented by C � D.

3 Large Gaps in Martingales: A Geometric Approach

This section presents a high-level overview of our proof strategy. In the
sequel, we shall assume that we are working with discrete-time martingales
(X0,X1, . . . , Xn) such that Xn ∈ {0, 1}.

Estimating Gaps in Martingales and Applications to Coin-Tossing 341

Given a martingale (X0, . . . , Xn), its susceptibility is represented by the fol-
lowing quantity

sup
stopping time τ

E [|Xτ − Xτ−1|]

Intuitively, if a martingale has high susceptibility, then it has a stopping time
such that the gap in the martingale while encountering the stopping time is
large. Our objective is to characterize the least susceptibility that a martingale
(X0, . . . , Xn) can achieve. More formally, given n and X0, characterize

Cn(X0) := inf
(X0,...,Xn)

sup
stopping time τ

E [|Xτ − Xτ−1|]

Our approach is to proceed by induction on n to exactly characterize the curve
Cn(X), and our argument naturally constructs the best martingale that achieves
Cn(X0).

1. We know that the base case is C1(X) = 2X(1 − X) (see Fig. 5 for this
argument).

2. Given the curve Cn−1(X), we identify a geometric transformation T
(see Fig. 8) that defines the curve Cn(X) from the curve Cn−1(X). Section 3.1
summarizes the proof of this inductive step that crucially relies on the geo-
metric interpretation of the problem, which is one of our primary technical
contributions. Furthermore, for any n � 1, there exist martingales such that
its susceptibility is Cn(X0).

3. Finally, Appendix A proves that the curve Cn(X) lies above the curve
Ln(X) := 2√

2n−1
X(1 − X) and below the curve Un(X) := 1√

n

√
X(1 − X).

3.1 Proof of Theorem 1

Our objective is the following.

1. Given an arbitrary martingale (X,E), find the maximum stopping time in
this martingale, i.e., the stopping time τmax(X,E, 1).

2. For any depth n and bias X0, construct a martingale that achieves the max-
score. We refer to this martingale as the optimal martingale. A priori, this
martingale need not be unique. However, we shall see that for each X0, it is
(essentially) a unique martingale.

We emphasize that even if we are only interested in the exact value of Cn(X0)
for X0 = 1/2, it is unavoidable to characterize Cn−1(X), for all values of X ∈
[0, 1]. Because, in a martingale (X0 = 1/2,X1, . . . , Xn), the value of X1 can be
arbitrary. So, without a precise characterization of the value Cn−1(X1), it is not
evident how to calculate the value of Cn(X0 = 1/2). Furthermore, understanding
Cn(X0), for all X0 ∈ [0, 1], yields entirely new applications for our result.

Base Case of n = 1. For a martingale (X0,X1) of depth n = 1, we have
X1 ∈ {0, 1}. Thus, without loss of generality, we assume that E1 takes only two

342 H. A. Khorasgani et al.

values (see Fig. 5). Then, it is easy to verify that the max-score is always equal
to 2X0(1 − X0). This score is witnessed by the stopping time τ = 1. So, we
conclude that opt1(X0, 1) = C1(X0) = 2X0(1 − X0)

Inductive Step. n = 2 (For Intuition). For simplicity, let us consider finite
martingales, i.e., the sample space Ωi of the random variable Ei is finite. Suppose
that the root X0 = x in the corresponding martingale tree has t children with
values x(1), x(2), . . . , x(t), and the probability of choosing the j-th child is p(j),
where j ∈ {1, . . . , t} (see Fig. 6).

X0

0 1

1 − X0 X0

Fig. 5. Base Case for Theorem 1. Note C1(X0) = inf(X0,X1) supτ E [|Xτ − Xτ−1|]. The
optimal stopping time is shaded and its score is X0 · |1 − X0| + (1 − X0) · |0 − X0|.

x

x(1)

p(1)

. . . x(j)

p(j)

MSj

. . . x(t)

p(t)

Fig. 6. Inductive step for Theorem 1. MSj represents the max-score of the sub-tree of
depth n−1 whose rooted at x(j). For simplicity, the subtree of x(j) is only shown here.

Given a martingale (X0,X1,X2), the adversary’s objective is to find the stop-
ping time τ that maximizes the score E [|Xτ − Xτ−1|]. If the adversary chooses
to stop at τ = 0, then the score E [|Xτ − Xτ−1|] = 0, which is not a good
strategy. So, for each j, the adversary chooses whether to stop at the child x(j),
or continue to a stopping time in the sub-tree rooted at x(j). The adversary
chooses the stopping time based on which of these two strategies yield a better
score. If the adversary stops the martingale at child j, then the contribution
of this decision to the score is p(j)|x(j) − x|. On the other hand, if she does
not stop at child j, then the contribution from the sub-tree is guaranteed to be
p(j)C1(x(j)). Overall, from the j-th child, an adversary obtains a score that is at
least p(j) max

{|x(j) − x|, C1(x(j))
}
.

Estimating Gaps in Martingales and Applications to Coin-Tossing 343

Let h(j) := max
{|x(j) − x|, C1(x(j))

}
. We represent the points Z(j) =

(x(j), h(j)) in a two dimensional plane. Then, clearly all these points lie on the
solid curve defined by max {|X − x|, C1(X)}, see Fig. 7.

Since (X,E) is a martingale, we have x =
∑t

j=1 p(j)x(j) and the adver-
sary’s strategy for finding τmax gives us max-score1(X,E) =

∑t
j=1 p(j)h(j). This

observation implies that the coordinate (x,max-score1(X,E)) =
∑t

j=1 p(j)Z(j).
So, the point in the plane giving the adversary the maximum score for a tree
of depth n = 2 with bias X0 = x lies in the intersection of the convex hull
of the points Z(1), . . . , Z(t), and the line X = x. Let us consider the mar-
tingale defined in Fig. 7 as a concrete example. Here t = 4, and the points
Z(1), Z(2), Z(3), Z(4) lie on max {|X − x|, C1(X)}. The martingale designer spec-
ifies the probabilities p(1), p(2), p(3), and p(4), such that p(1)x(1) +· · ·+ p(4)x(4) =
x. These probabilities are not represented in Fig. 7. Note that the point(
p(1)x(1) + · · · + p(4)x(4), p(1)h(1) + · · · + p(4)h(4)

)
representing the score of the

adversary is the point p(1)Z(1) + · · · + p(4)Z(4). This point lies inside the convex
hull of the points Z(1), . . . , Z(4) and on the line X = p(1)x(1) + · · ·+p(4)x(4) = x.
The exact location depends on p(1), . . . , p(4).

X-axis

Y -axis

•
X = (x, 0)

C1

•P1

•L

•P2

•R

•
Q

π/4 π/4

◦Z(1)

◦Z(2)

◦Z(3)

◦Z(4)

◦x(1)

◦x(2)

◦x(3)

◦x(4)

⊗Q′
⊗Q′′

Fig. 7. Intuitive summary of the inductive step for n = 2.

The point Q′ is the point with minimum height. Observe that the height of
the point Q′ is at least the height of the point Q. So, in any martingale, the
adversary shall find a stopping time that scores more than (the height of) the
point Q.

On the other hand, the martingale designer’s objective is to reduce the score
that an adversary can achieve. So, the martingale designer chooses t = 2, and
the two points Z(1) = P1 and Z(2) = P2 to construct the optimum martingale.
We apply this method for each x ∈ [0, 1] to find the corresponding point Q. That
is, the locus of the point Q, for x ∈ [0, 1], yields the curve C2(X).

344 H. A. Khorasgani et al.

We claim that the height of the point Q is the harmonic-mean of the heights
of the points P1 and P2. This claim follows from elementary geometric facts. Let
h1 represent the height of the point P1, and h2 represent the height of the point
P2. Observe that the distance of x − xS(x) = h1 (because the line �1 has slope
π −π/4). Similarly, the distance of xL(x)−x = h2 (because the line �2 has slope
π/4). So, using properties of similar triangles, the height of Q turns out to be

h1 +
h1

h1 + h2
· (h2 − h1) =

2h1h2

h1 + h2
.

This property inspires the definition of the geometric transformation T ,
see Fig. 8. Applying T on the curve C1(X) yields the curve C2(X) for which
we have C2(x) = opt2(x, 1).

Given. A curve C defined by the zeroes of the equation Y = f(X), where X ∈ [0, 1].
Definition of the Transform. The transform of C, represented by T (C), is the
curve defined by the zeroes of the equation Y = g(X), where, for x ∈ [0, 1], the value
of g(x) is defined below.

1. Let xS(x) ∈ [0, 1] be a solution of the equation X + f(X) = x.
2. Let xL(x) ∈ [0, 1] be a solution of the equation X − f(X) = x.
3. Then g(x) := H.M.(y(1), y(2)), where y(1) = f(xS(x)), y(2) = f(xL(x)), and

H.M.(y(1), y(2)) represents the harmonic mean of y(1) and y(2).

X-axis

Y -axis

C

(x, 0)

�1

�2

•P1

•P2

•Q

π/4 π/4
xS(x) xL(x)

Fig. 8. Definition of transform of a curve C, represented by T (C). The locus of the
point Q (in the right figure) defines the curve T (C).

General Inductive Step. Note that a similar approach works for general n =
d � 2. Fix X0 and n = d � 2. We assume that the adversary can compute
Cd−1(X1), for any X1 ∈ [0, 1].

Suppose the root in the corresponding martingale tree has t children with
values x(1), x(2), . . . , x(t), and the probability of choosing the j-th child is p(j)

(see Fig. 6). Let (X(j), E(j)) represent the martingale associated with the sub-
tree rooted at x(j).

Estimating Gaps in Martingales and Applications to Coin-Tossing 345

For any j ∈ {1, . . . , t}, the adversary can choose to stop at the child j. This
decision will contribute |x(j)−x| to the score with weight p(j). On the other hand,
if she continues to the subtree rooted at x(j), she will get at least a contribution
of max-score1(X(j), E(j)) with weight p(j). Therefore, the adversary can obtain
the following contribution to her score

p(j) max
{

|x(j) − x|, Cd−1(x(j))
}

X-axis

Y -axis

•
X = (x, 0)

Cd

•P1

•L

•P2

•R

•
Q

π/4 π/4

◦Z(1)

◦Z(2)

◦Z(3)

◦Z(4)

◦Z(5)

◦Z(6)

◦Z(7)

⊗
Q′

Fig. 9. Intuitive Summary of the inductive argument. Our objective is to pick the set
of points {Z(1), Z(2) . . . } in the gray region to minimize the length of the intercept XQ′

of their (lower) convex hull on the line X = x. Clearly, the unique optimal solution
corresponds to including both P1 and P2 in the set.

Similar to the case of n = 2, we define the points Z(1), . . . , Z(t). For n >
2, however, there is one difference from the n = 2 case. The point Z(j) need
not lie on the solid curve, but it can lie on or above it, i.e., they lie in the
gray area of Fig. 9. This phenomenon is attributable to a suboptimal martingale
designer producing martingales with suboptimal scores, i.e., strictly above the
solid curve. For n = 1, it happens to be the case that, there is (effectively) only
one martingale that the martingale designer can design (the optimal tree). The
adversary obtains a score that is at least the height of the point Q′, which is at
least the height of Q. On the other hand, the martingale designer can choose
t = 2, and Z(1) = P1 and Z(2) = P2 to define the optimum martingale. Again,
the locus of the point Q is defined by the curve T (Cd−1).

Conclusion. So, by induction, we have proved that Cn(X) = Tn−1(C1(X)).
Additionally, note that, during induction, in the optimum martingale, we always
have |x(0)−x| = Cn−1(x(0)) and |x(1)−x| = Cn−1(x(1)). Intuitively, the decision
to stop at x(j) or continue to the subtree rooted at x(j) has identical consequence.
So, by induction, all stopping times in the optimum martingale have score Cn(x).

Finally, Appendix A proves Lemma 1, which tightly estimates the curve Cn.

346 H. A. Khorasgani et al.

4 Applications

This section discusses various consequences of Theorem 1 and other related
results.

4.1 Distributed Coin-Tossing Protocol

We consider constructing distributed n-processor coin-tossing protocols where
the i-th processor broadcasts her message in the i-th round. We shall study
this problem in the information-theoretic setting. Our objective is to design
n-party distributed coin-tossing protocols where an adversary cannot bias the
distribution of the final outcome significantly.

For X0 = 1/2, one can consider the incredibly elegant “majority protocol”
[5,10,13]. The i-th processor broadcasts a uniformly random bit in round i. The
final outcome of the protocol is the majority of the n outcomes, and an adversary
can bias the final outcome by 1√

2πn
by restarting a processor once [13].

We construct distributed n-party bias-X0 coin-tossing protocols, for any
X0 ∈ [0, 1], and our new protocol for X0 = 1/2 is more robust to restarting
attacks than this majority protocol. Fix X0 ∈ [0, 1] and n � 1. Consider the opti-
mal martingale (X0,X1, . . . , Xn) guaranteed by Theorem 1. The susceptibility
corresponding to any stopping time is = Cn(X0) � Un(X0) = 1√

n

√
X0(1 − X0).

Note that one can construct an n-party coin-tossing protocol where the i-th pro-
cessor broadcasts the i-th message, and the corresponding Doob’s martingale is
identical to this optimal martingale. An adversary who can restart a processor
once biases the outcome of this protocol by at most 1

2Cn(X0), this is discussed
in Sect. 4.3.

Corollary 1 (Distributed Coin-tossing Protocols). For every X0 ∈ [0, 1]
and n � 1 there exists an n-party bias-X0 coin-tossing protocol such that any
adversary who can restart a processor once causes the final outcome probability
to deviate by � 1

2Cn(X0) � 1
2Un(X0) = 1

2
√

n

√
X0(1 − X0).

For X0 = 1/2, our new protocol’s outcome can be changed by 1
4
√

n
, which is

less than the 1√
2πn

deviation of the majority protocol. However, we do not know
whether there exists a computationally efficient algorithm implementing the coin-
tossing protocols corresponding to the optimal martingales.

4.2 Fail-Stop Attacks on Coin-Tossing/Dice-Rolling Protocols

A two-party n-round bias-X0 coin-tossing protocol is an interactive protocol
between two parties who send messages in alternate rounds, and X0 is the prob-
ability of the coin-tossing protocol’s outcome being heads. Fair computation
ensures that even if one of the parties aborts during the execution of the proto-
col, the other party outputs a (randomized) heads/tails outcome. This require-
ment of guaranteed output delivery is significantly stringent, and Cleve [13]

Estimating Gaps in Martingales and Applications to Coin-Tossing 347

demonstrated a computationally efficient attack strategy that alters the output-
distribution by O(1/n), i.e., any protocol is O(1/n) unfair. Defining fairness
and constructing fair protocols for general functionalities has been a field of
highly influential research [2–4,8,21,22,29]. This interest stems primarily from
the fact that fairness is a desirable attribute for secure-computation protocols in
real-world applications. However, designing fair protocol even for simple func-
tionalities like (bias-1/2) coin-tossing is challenging both in the two-party and
the multi-party setting. In the multi-party setting, several works [1,5,9] explore
fair coin-tossing where the number of adversarial parties is a constant fraction
of the total number of parties. For a small number of parties, like the two-party
and the three-party setting, constructing such protocols have been extremely
challenging even against computationally bounded adversaries [12,24,30]. These
constructions (roughly) match Cleve’s O(1/n) lower-bound in the computational
setting.

In the information-theoretic setting, Cleve and Impagliazzo [14] exhibited
that any two-party n-round bias-1/2 coin-tossing protocol are 1

2560
√

n
unfair.

In particular, their adversary is a fail-stop adversary who follows the protocol
honestly except aborting prematurely. In the information-theoretic commitment-
hybrid, there are two-party n-round bias-1/2 coin-tossing protocols that have
≈1/

√
n unfairness [5,10,13]. This bound matches the lower-bound of Ω(1/

√
n)

by Cleve and Impagliazzo [14]. It seems that it is necessary to rely on strong
computational hardness assumptions or use these primitives in a non-black box
manner to beat the 1/

√
n bound [7,15,16,23].

We generalize the result of Cleve and Impagliazzo [14] to all 2-party n-round
bias-X0 coin-tossing protocols (and improve the constants by two orders of mag-
nitude). For X0 = 1/2, our fail-stop adversary changes the final outcome prob-
ability by � 1

24
√
2

· 1√
n+1

.

Theorem 2 (Fail-stop Attacks on Coin-tossing Protocols). For any
two-party n-round bias-X0 coin-tossing protocol, there exists a fail-stop adver-
sary that changes the final outcome probability of the honest party by at least
1
12C ′

n(X0) � 1
12L′

n(X0) := 1
12

√
2

n+1X0(1 − X0), where C ′
1(X) := X(1 − X) and

C ′
n(X) := Tn−1(C ′

1(X)).

This theorem is not a direct consequence of Theorem 1. The proof relies on
an entirely new inductive argument; however, the geometric technique for this
recursion is similar to the proof strategy for Theorem 1. Interested readers can
refer to the full version of the paper [27] for details.

Black-Box Separation Results. Gordon and Katz [22] introduced the notion
of 1/p-unfair secure computation for a fine-grained study of fair computation
of functionalities. In this terminology, Theorem 2 states that c√

n+1
X0(1 − X0)-

unfair computation of a bias-X0 coin is impossible for any positive constant
c <

√
2

12 and X0 ∈ [0, 1].

348 H. A. Khorasgani et al.

Cleve and Impagliazzo’s result [14] states that c√
n
-unfair secure computation

of the bias-1/2 coin is impossible for any positive constant c < 1
2560 . This result

on the hardness of computation of fair coin-tossing was translated into black-
box separations results. These results [15,16,23], intuitively, indicate that it is
unlikely that c√

n
-unfair secure computation of the bias-1/2 coin exists, for c <

1
2560 , relying solely on the black-box use of one-way functions. We emphasize that
there are several restrictions imposed on the protocols that these works [15,16,23]
consider; detailing all of which is beyond the scope of this draft. Substituting the
result of [14] by Theorem 2, extends the results of [15,16,23] to general bias-X0

coin-tossing protocols.

Corollary 2 (Informal: Black-box Separation). For any X0 ∈ [0, 1] and
positive constant c <

√
2

12 , the existence of c√
n+1

X0(1 − X0)-unfair computation
protocol for a bias-X0 coin is black-box separated from the existence of one-way
functions (restricted to the classes of protocols considered by [15,16,23]).

4.3 Influencing Discrete Control Processes

Lichtenstein et al. [28] considered the problem of an adversary influencing the
outcome of a stochastic process through mild interventions. For example, an
adversary attempts to bias the outcome of a distributed n-processor coin-tossing
protocol, where, in the i-th round, the processor i broadcasts her message. This
model is also used to characterize randomness sources that are adversarially
influenced, for example, [11,17–19,26,31–35].

Consider the sample space Ω = Ω1 × Ω2 ×· · · × Ωn and a joint distribution
(E1, . . . , En) over the sample space. We have a function f : Ω → {0, 1} such
that E [f(E1, . . . , En)] = X0. This function represents the protocol that deter-
mines the final outcome from the public transcript. The filtration, at time-step
i, reveals the value of the random variable Ei to the adversary. We consider
the corresponding Doob’s martingale (X0,X1, . . . , Xn). Intuitively, Xi repre-
sents the probability of f(E1, . . . , En) = 1 conditioned on the revealed values
(E1 = e1, . . . , Ei = ei). The adversary is allowed to intervene only once. She can
choose to intervene at time-step i, reject the current sample Ei = ei, and substi-
tute it with a fresh sample from Ei. This intervention is identical to restarting
the i-th processor if the adversary does not like her message. Note that this
intervention changes the final outcome by

(Xi−1|E1 = e1, . . . , Ei−1 = ei−1) − (Xi|E1 = e1, . . . , Ei = ei)

We shall use a stopping time τ to represent the time-step where an adversary
decides to intervene. However, for some (E1 = e1, . . . , En = en) the adversary
may not choose to intervene. Consequently, we consider stopping times τ : Ω →
{1, . . . , n,∞}, where the stopping time being ∞ corresponds to the event that
the adversary did not choose to intervene. In the Doob martingale discussed
above, as a direct consequence of Theorem 1, there exists a stopping time τ∗

with susceptibility � Cn(X0). Note that susceptibility measures the expected

Estimating Gaps in Martingales and Applications to Coin-Tossing 349

(unsigned) magnitude of the deviation, if an adversary intervenes at τ∗. Some
of these contributions to susceptibility shall increase the probability of the final
outcome being 1, and the remaining shall decrease the probability of the final
outcome being 1. By an averaging argument, there exists a stopping time τ : Ω →
{1, . . . , n,∞} that biases the outcome of f by at least � 1

2Cn(X0), whence the
following corollary.

Corollary 3 (Influencing Discrete Control Processes). Let Ω1, . . . , Ωn be
arbitrary sets, and (E1, . . . , En) be a joint distribution over the set Ω := Ω1×· · ·×
Ωn. Let f : Ω → {0, 1} be a function such that P [f(E1, . . . , En) = 1] = X0. Then,
there exists an adversarial strategy of intervening once to bias the probability of
the outcome away from X0 by � 1

2Cn(X0) � 1
2Ln(X0) = 1√

2n−1
X0(1 − X0).

The previous result of [14] applies only to X0 = 1/2 and they ensure a deviation
of 1/320

√
n. For X0 = 1/2, our result ensures a deviation of (roughly) 1/4

√
2n ≈

1/5.66
√

n.

Influencing Multi-faceted Dice-Rolls. Corollary 3 generalizes to the set-
ting where f : Ω → {0, 1, . . . , ω − 1}, i.e., the function f outputs an arbitrary
ω-faceted dice roll. In fact, we quantify the deviation in the probability of any
subset S ⊆ {0, 1, . . . , ω − 1} of outcomes caused by an adversary intervening
once.

Corollary 4 (Influencing Multi-faceted Dice-Rolls). Let Ω1, . . . , Ωn be
arbitrary sets, and (E1, . . . , En) be a joint distribution over the set Ω := Ω1 ×
· · · × Ωn. Let f : Ω → {0, 1, . . . , ω − 1} be a function with ω � 2 outcomes,
S ⊆ {0, 1, . . . , ω − 1} be any subset of outcomes, and P [f(E1, . . . , En) ∈ S] =
X0. Then, there exists an adversarial strategy of intervening once to bias the
probability of the outcome being in S away from X0 by � 1

2Cn(X0) � 1
2Ln(X0) =

1√
2n−1

X0(1 − X0).

Corollary 3 and Corollary 4 are equivalent to each other. Clearly Corollary 3 is
a special case of Corollary 4. Corollary 4, in turn, follows from Corollary 3 by
considering “f(E1, . . . , En) ∈ S” as the interesting event for the martingale. We
state these two results separately for conceptual clarity and ease of comparison
with the prior work.

4.4 L2 Gaps and Their Tightness

Finally, to demonstrate the versatility of our geometric approach, we measure
large L2-norm gaps in martingales.

Theorem 3. Let (X0,X1, . . . , Xn) be a discrete-time martingale such that Xn ∈
{0, 1}. Then, the following bound holds.

sup
stopping time τ

E

[
(Xτ − Xτ−1)

2
]

� Dn(X0) :=
1
n

X0(1 − X0)

350 H. A. Khorasgani et al.

Furthermore, for all n � 1 and X0 ∈ [0, 1], there exists a martingale
(X0, . . . , Xn) such that for any stopping time τ , it has E

[
(Xτ − Xτ−1)

2
]

=
Dn(X0).

We provide a high-level overview of the proof in Appendix B.
Note that, for any martingale (X0, . . . , Xn) with Xn ∈ {0, 1}, we have

E
[∑n

i=1(Xi − Xi−1)2
]

= E
[
X2

n − X2
0

]
= X0(1 − X0). Therefore, by an averag-

ing argument, there exists a round i such that E
[
(Xi − Xi−1)2

]
� 1

nX0(1−X0).
Theorem 3 proves the existence of a martingale that achieves the lower-bound
even for non-constant stopping times.

This result provides an alternate technique to obtain the upper-bound to
Cn(X) in Lemma 1.

A Proof of Lemma 1

In this appendix, we summarize a high-level argument proving Lemma 1. For a
complete proof, readers are encouraged to read the full version of this paper [27].

Recall that we defined Ln(X) = 2√
2n−1

X(1 − X) and Un(X) = 1√
n√

X(1 − X). Our objective is to inductively prove that Un � Cn � Ln, for
n � 1.

A crucial property of convex upwards curves that we use in our proof is the
following. Suppose we have C � D, where C and D are two convex upwards
curves above the axis Y = 0 defined in the domain X ∈ [0, 1] containing the
points (0, 0) and (1, 0). Then, we have T (C) � T (D). This result is formalized
in Lemma 2 and Fig. 10 summarizes the intuition of its proof.

Lemma 2. Let C and D be concave downward curves in the domain X ∈ [0, 1],
and both curves C and D are above the axis Y = 0 and contain the points (0, 0)
and (1, 0). Let C and D be curves such that C � D in the domain X ∈ [0, 1],
then we have T (C) � T (D).

CD

�0

�1

π/4 π/4

•LC •
LD

•RC

•
RD

•QC

•
QD

Fig. 10. Summary of the intuition underlying the proof of Lemma 2.

Base Case of n = 1. Since, C1(X) = L1(X) = 2X(1 − X), it is obvious that
C1 � L1. Moreover, we know that U1(X) =

√
X(1 − X). It is easy to verify that

U1(X) � C1(X) for all X ∈ [0, 1] which is equivalent to U1 � C1.

Estimating Gaps in Martingales and Applications to Coin-Tossing 351

Inductive Argument. Figure 11 pictorially summarizes the intuition underly-
ing our inductive argument.

Ci Li�

T (Li)

T

Li+1

�

Proven in [27]

T (Ci)

T

Ci+1

=

Ui �

T (Ui)

T

Ui+1

�Proven in [27]

�
Lemma 2

�
Lemma 2

Fig. 11. The outline of the inductive proof demonstrating that if the curves Ui and Li

sandwich the curve Ci, then the curves Ui+1 and Li+1 sandwich the curve Ci+1. Recall
that the notation “A � B” implies that the curve A lies on-or-above the curve B.

Suppose we inductively have Un � Cn � Ln. Then, we have T (Un) �
T (Cn) � T (Ln) (by Lemma 2). Note that Cn+1 = T (Cn). In the full version of
the paper [27], we prove that T (Ln) � Ln+1, and Un+1 � T (Un). Consequently,
it follows that Un+1 � Cn+1 � Ln+1.

B Large L2-Gaps in Martingale: Proof of Theorem 3

In Sect. 3 we measured the gaps in martingales using the L1-norm. In this section,
we extend this analysis to gaps in martingales using the L2-norm. To begin, let
us fix X0 and n. We change the definition of susceptibility to

sup
stopping time τ

E

[
(Xτ − Xτ−1)

2
]

Our objective is to characterize the martingale that is least susceptible

Dn(X0) := inf
(X0,...,Xn)

sup
stopping time τ

E

[
(Xτ − Xτ−1)

2
]

We shall proceed by induction on n and prove that Dn(X0) = 1
nX0(1 − X0).

Furthermore, there are martingales such that any stopping time τ has Dn(X0)
susceptibility.

Base Case n = 1. Note that in this case (see Fig. 5) the optimal stopping time
is τ = 1.

opt1(X0, 2) = D1(X0) = (1 − X0)X2
0 + X0(1 − X0)2 = X0(1 − X0)

352 H. A. Khorasgani et al.

General Inductive Step. Let us fix X0 = x and n = d � 2. We proceed
analogous to the argument in Sect. 3.1. The adversary can either decide to stop
at the child j (see Fig. 6 for reference) or continue to the subtree rooted at it to
find a better stopping time.

Overall, the adversary gets the following contribution from the j-th child

max
{

(x(j) − x)2,Dd−1(x(j))
}

The adversary obtains a score that is at least the height of Q in Fig. 12. Fur-
thermore, a martingale designer can choose t = 2, and Z(1) = P1 and Z(2) = P2

to define the optimal martingale. Similar to Theorem 1, the scores corresponding
to all possible stopping times in the optimal martingale are identical.

One can argue that the height of Q is the geometric-mean of the heights of
P1 and P2. This observation defines the geometric transformation T ′ in Fig. 13.
For this transformation, we demonstrate that Dn(X0) = 1

nX0(1 − X0) is the
solution to the recursion Dn = T ′n−1(D1).

Remark 3. It might seem curious that the upper-bound Un happens to be the
square-root of the curve Dn. This occurrence is not a coincidence. We can prove
that the curve

√
Dn is an upper-bound to the curve Cn (for details, refer to the

full version of the paper [27]).

X-axis

Y -axis

•
X = (x, 0)

Dd

P2

P1

◦Z(1)
◦Z(2)

◦Z(3)
◦Z(4)

◦Z(5)
◦Z(6)

◦Z(7)

◦Q′

•Q

Fig. 12. Intuitive Summary of the inductive argument. Our objective is to pick the set
of points {Z(1), Z(2) . . . } in the gray region to minimize the length of the intercept XQ′

of their (lower) convex hull on the line X = x. Clearly, the unique optimal solution
corresponds to including both P1 and P2 in this set.

Estimating Gaps in Martingales and Applications to Coin-Tossing 353

Given. A curve D defined by the zeroes of the equation Y = f(X), where X ∈ [0, 1].
Definition of the Transform. The transform of D, represented by T ′(D), is the
curve defined by the zeroes of the equation Y = g(X), where, for x ∈ [0, 1], the value
of g(x) is defined below.

1. Let xS(x), xL(x) ∈ [0, 1] be the two solutions of f(X) = (X − x)2.
2. Then g(x) := G.M.(y(1), y(2)), where y(1) = f(xS(x)), y(2) = f(xL(x)), and

G.M.(y(1), y(2)) represents the geometric mean of y(1) and y(2)

X-axis

Y -axis

D

(x, 0)

P2

P1

•Q

xS(x) xL(x)

Fig. 13. Definition of transform of a curve D, represented by T ′(D). The locus of the
point Q (in the right figure) defines the curve T ′(D).

References

1. Alon, B., Omri, E.: Almost-optimally fair multiparty coin-tossing with nearly three-
quarters malicious. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
307–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 13

2. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 13

3. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 199–228. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6 10

4. Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply
fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 243–262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36594-2 14

5. Awerbuch, B., Blum, M., Chor, B., Goldwasser, S., Micali, S.: How to implement
Bracha’s O(log n) byzantine agreement algorithm. Unpublished manuscript (1985)

6. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math.
J. (2) 19(3), 357–367 (1967). https://doi.org/10.2748/tmj/1178243286

7. Beimel, A., Haitner, I., Makriyannis, N., Omri, E.: Tighter bounds on multi-party
coin flipping via augmented weak martingales and differentially private sampling.
In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 838–849. IEEE (2018)

https://doi.org/10.1007/978-3-662-53641-4_13
https://doi.org/10.1007/978-3-662-53641-4_13
https://doi.org/10.1007/978-3-642-54242-8_13
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-642-36594-2_14
https://doi.org/10.1007/978-3-642-36594-2_14
https://doi.org/10.2748/tmj/1178243286

354 H. A. Khorasgani et al.

8. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computa-
tion without honest majority and the best of both worlds. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 16

9. Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with dishon-
est majority. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 538–557.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 29

10. Blum, M.: How to exchange (secret) keys (extended abstract). In: 15th Annual
ACM Symposium on Theory of Computing, Boston, MA, USA, 25–27 April 1983,
pp. 440–447. ACM Press (1983). https://doi.org/10.1145/800061.808775

11. Bosley, C., Dodis, Y.: Does privacy require true randomness? In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 1–20. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70936-7 1

12. Buchbinder, N., Haitner, I., Levi, N., Tsfadia, E.: Fair coin flipping: tighter analysis
and the many-party case. In: Klein, P.N. (ed.) 28th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Barcelona, Spain, 16–19 January 2017, pp. 2580–
2600. ACM-SIAM (2017). https://doi.org/10.1137/1.9781611974782.170

13. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th Annual ACM Symposium on Theory of Computing,
Berkeley, CA, USA, 28–30 May 1986, pp. 364–369. ACM Press (1986). https://
doi.org/10.1145/12130.12168

14. Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete control
processes (extended abstract) (1993)

15. Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box
complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 450–467. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19571-6 27

16. Dachman-Soled, D., Mahmoody, M., Malkin, T.: Can optimally-fair coin tossing be
based on one-way functions? In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
217–239. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 10

17. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: 45th Annual Symposium on Foundations
of Computer Science, Rome, Italy, 17–19 October 2004, pp. 196–205. IEEE Com-
puter Society Press (2004). https://doi.org/10.1109/FOCS.2004.44

18. Dodis, Y., Pietrzak, K., Przydatek, B.: Separating sources for encryption and secret
sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 601–616.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 31

19. Dodis, Y., Spencer, J.: On the (non)universality of the one-time pad. In: 43rd
Annual Symposium on Foundations of Computer Science, Vancouver, BC, Canada,
16–19 November 2002, pp. 376–387. IEEE Computer Society Press (2002). https://
doi.org/10.1109/SFCS.2002.1181962

20. Goldwasser, S., Kalai, Y.T., Park, S.: Adaptively secure coin-flipping, revisited.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 663–674. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6 53

21. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Sym-
posium on Theory of Computing, Victoria, BC, Canada, 17–20 May 2008, pp.
413–422. ACM Press (2008). https://doi.org/10.1145/1374376.1374436

https://doi.org/10.1007/978-3-642-22792-9_16
https://doi.org/10.1007/978-3-642-14623-7_29
https://doi.org/10.1145/800061.808775
https://doi.org/10.1007/978-3-540-70936-7_1
https://doi.org/10.1007/978-3-540-70936-7_1
https://doi.org/10.1137/1.9781611974782.170
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-642-54242-8_10
https://doi.org/10.1007/978-3-642-54242-8_10
https://doi.org/10.1109/FOCS.2004.44
https://doi.org/10.1007/11681878_31
https://doi.org/10.1109/SFCS.2002.1181962
https://doi.org/10.1109/SFCS.2002.1181962
https://doi.org/10.1007/978-3-662-47666-6_53
https://doi.org/10.1007/978-3-662-47666-6_53
https://doi.org/10.1145/1374376.1374436

Estimating Gaps in Martingales and Applications to Coin-Tossing 355

22. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 8

23. Haitner, I., Omri, E., Zarosim, H.: Limits on the usefulness of random oracles.
In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 437–456. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 25

24. Haitner, I., Tsfadia, E.: An almost-optimally fair three-party coin-flipping proto-
col. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of Comput-
ing, New York, NY, USA, 31 May–3 June 2014, pp. 408–416. ACM Press (2014).
https://doi.org/10.1145/2591796.2591842

25. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963). https://doi.org/10.1080/01621459.1963.
10500830

26. Kenyon, C., Rabani, Y., Sinclair, A.: Biased random walks, Lyapunov functions,
and stochastic analysis of best fit bin packing (preliminary version). In: Tardos,
É. (ed.) 7th Annual ACM-SIAM Symposium on Discrete Algorithms, Atlanta,
Georgia, USA, 28–30 January 1996, pp. 351–358. ACM-SIAM (1996)

27. Khorasgani, H.A., Maji, H., Mukherjee, T.: Estimating gaps in martingales
and applications to coin-tossing: constructions and hardness. Cryptology ePrint
Archive, Report 2019/774 (2019). https://eprint.iacr.org/2019/774

28. Lichtenstein, D., Linial, N., Saks, M.: Some extremal problems arising from discrete
control processes. Combinatorica 9(3), 269–287 (1989)

29. Makriyannis, N.: On the classification of finite boolean functions up to fairness.
In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 135–154.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 9

30. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-00457-5 1

31. Nisan, N.: Extracting randomness: how and why-a survey. In: CCC, p. 44. IEEE
(1996)

32. Nisan, N., Ta-Shma, A.: Extracting randomness: a survey and new constructions.
J. Comput. Syst. Sci. 58(1), 148–173 (1999)

33. Srinivasan, A., Zuckerman, D.: Computing with very weak random sources. In:
35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM,
USA, 20–22 November 1994, pp. 264–275. IEEE Computer Society Press (1994).
https://doi.org/10.1109/SFCS.1994.365688

34. Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable distributions.
In: 41st Annual Symposium on Foundations of Computer Science, Redondo Beach,
CA, USA, 12–14 November 2000, pp. 32–42. IEEE Computer Society Press (2000).
https://doi.org/10.1109/SFCS.2000.892063

35. Zuckerman, D.: Simulating BPP using a general weak random source. Algorithmica
16(4–5), 367–391 (1996)

https://doi.org/10.1007/978-3-642-13190-5_8
https://doi.org/10.1007/978-3-642-36594-2_25
https://doi.org/10.1145/2591796.2591842
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://eprint.iacr.org/2019/774
https://doi.org/10.1007/978-3-319-10879-7_9
https://doi.org/10.1007/978-3-642-00457-5_1
https://doi.org/10.1007/978-3-642-00457-5_1
https://doi.org/10.1109/SFCS.1994.365688
https://doi.org/10.1109/SFCS.2000.892063

Fully Homomorphic NIZK
and NIWI Proofs

Prabhanjan Ananth1(B), Apoorvaa Deshpande2, Yael Tauman Kalai3,
and Anna Lysyanskaya2

1 UCSB, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 Brown University, Providence, USA
{acdeshpa,anna}@cs.brown.edu

3 MIT and Microsoft Research, Cambridge, USA
yael@microsoft.com

Abstract. In this work, we define and construct fully homomorphic
non-interactive zero knowledge (FH-NIZK) and non-interactive witness-
indistinguishable (FH-NIWI) proof systems.

We focus on the NP complete language L, where, for a boolean
circuit C and a bit b, the pair (C, b) ∈ L if there exists an input w
such that C(w) = b. For this language, we call a non-interactive proof
system fully homomorphic if, given instances (Ci, bi) ∈ L along with
their proofs Πi, for i ∈ {1, . . . , k}, and given any circuit D : {0, 1}k →
{0, 1}, one can efficiently compute a proof Π for (C∗, b) ∈ L, where
C∗(w(1), . . . ,w(k)) = D(C1(w

(1)), . . . , Ck(w
(k))) and D(b1, . . . , bk) = b.

The key security property is unlinkability : the resulting proof Π is indis-
tinguishable from a fresh proof of the same statement.

Our first result, under the Decision Linear Assumption (DLIN),
is an FH-NIZK proof system for L in the common random string model.
Our more surprising second result (under a new decisional assumption
on groups with bilinear maps) is an FH-NIWI proof system that requires
no setup.

Keywords: Homomorphism · Non-interactive zero-knowledge ·
Non-interactive Witness Indistinguishability

1 Introduction

Homomorphism is a desirable feature that enhances the capabilities of many
cryptographic systems. Most notably, the concept of fully homomorphic encryp-
tion [13,18,25] has revolutionized the area of cryptography. Other primitives
such as homomorphic signatures [10,20] and homomorphic secret sharing [12]
have also found useful cryptographic applications [11,22]. In this work, we study
homomorphism in the context of non-interactive proof systems. Our goal is to

A full version of this paper appears on ePrint [4].
c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 356–385, 2019.
https://doi.org/10.1007/978-3-030-36033-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_14

Fully Homomorphic NIZK and NIWI Proofs 357

design homomorphic proof systems with secrecy guarantees; specifically, we focus
on the most common secrecy guarantees studied in the literature, namely zero-
knowledge [9] and witness indistinguishability [6,17].

Our Work: Fully-Homomorphic NIZK and NIWI Proofs. We introduce the
notion of fully-homomorphic non-interactive zero-knowledge (FH-NIZK) and
witness-indistinguishable (FH-NIWI) proof systems. In the simplest setting, this
proof system allows for combining proofs for the instances A and B into a proof
for the instance A ∧ B. In the more general setting, this proof system allows
for combining proofs for multiple instances A1, . . . , An using a function f into a
single proof for f(A1, . . . , An).

A naïve attempt to combine proofs for the instances (A1, . . . , An) using a
function f is to simply output the concatenation of the individual proofs on
each of the instances A1, . . . , An together with the function f . However, this
combined proof does not resemble an honestly generated proof for the instance
f(A1, . . . , An). Our goal is to combine proofs in a way that is indistinguishable
from an honestly generated proof for the instance f(A1, . . . , An). We call this
property unlinkability.

There are several reasons why unlinkability is an interesting feature: Firstly,
it is often desirable to hide the fact that a proof was obtained by combining
multiple proofs. Unlinkability also preserves the privacy of the underlying proof;
namely, it ensures that homomorphic evaluation of multiple NIZK (resp., NIWI)
proofs still results in a NIZK (resp., NIWI) proof. Moreover, it guarantees that
the homomorphic evaluation can be multi-hop, meaning that the proofs can
be evaluated upon multiple times. We describe the homomorphic evaluation
procedure and unlinkability property below.

We define the notion of a fully-homomorphic proof system for the NP-
complete language LU which consists of instances (C, b), where C is a boolean
circuit with single-bit output and b is a bit, such that there exists a witness w
(a vector of bits) for which C(w) = b. A non-interactive proof system for prov-
ing membership in this language consists of the algorithms Prove and Verify. A
fully homomorphic proof system additionally has the algorithm Eval defined as
follows:

Homomorphic Evaluation (Eval): On input k instances {zi = (Ci, bi)}i∈[k]

accompanied with proofs {Πi}i∈[k] for the statements {zi ∈ LU}i∈[k], and
a circuit D : {0, 1}k → {0, 1}, Eval outputs a proof Π∗ for the statement
z∗ = (C∗,D(b1, . . . , bk)) ∈ LU , where C∗ is defined to be the circuit that on
input (w1, . . . ,wk) outputs D(C1(w1), . . . , Ck(wk)).

We define unlinkability as follows: A proof Π∗ output by Eval on input {zi ∈
LU}i∈[k] accompanied with proofs {Πi}i∈[k], where Πi is output by Prove on
input zi and a valid witness wi, should be indistinguishable from the output
of Prove on input the instance (C∗,D(b1, . . . , bk)) and witness (w1, . . . ,wk). As
mentioned above, unlinkability guarantees that the evaluation property preserves
zero-knowledge (ZK) or witness-indistinguishability (WI) of an evaluated proof,
depending on whether the fresh proof is ZK or WI respectively. We refer the

358 P. Ananth et al.

reader to Fig. 1 for an illustrative description of unlinkability, and refer the reader
to Sect. 4 for our definition of fully homomorphic proofs.

Our Results. We construct both a NIZK and a NIWI fully homomorphic proof
system.

D

b∗

C1 C2 Ck

· · ·

Π∗

C∗

b∗

ΠF≈

Fig. 1. Unlinkability property of Fully Homomorphic Proofs: Let Π∗ be the output
of Eval on input {(Ci, bi) ∈ LU}i∈[k] accompanied with proofs {Πi}i∈[k], where Πi is
output by Prove on input (Ci, bi) and a valid witness wi. Let C∗ be the circuit that
on input (w1, . . . ,wk), outputs D(C1(w1), . . . , Ck(wk)) and let ΠF be an honestly
generated proof for the instance (C∗, b∗) ∈ LU . We require that Π∗ is computationally
indistinguishable from ΠF .

Theorem 1 (Informal). Assuming Decisional Linear Assumption (DLIN),
there exists a fully-homomorphic non-interactive zero-knowledge proof system
in the common random string model.

We describe the construction of FH-NIZK in the technical sections and defer the
proof to the full version [4].

For constructing FH NIWI proofs, we rely on a new decisional assumption
on groups with bilinear maps called DLIN with leakage, defined in Fig. 2.

A proof of security of the assumption in the bilinear generic model is provided
in the full version of the paper [4].

Theorem 2 (Informal). Assuming DLIN with Leakage, there exists a fully-
homomorphic non-interactive witness-indistinguishable proof system in the plain
model (i.e. without setup).

We describe the construction of FH-NIWI in the technical sections and defer the
proof to the full version [4].

Related Works. Most relevant to our work is the work on malleable proof sys-
tems [14,16], who studied unary transformations, i.e., when Eval receives a sin-
gle instance-proof pair and outputs a mauled instance along with the corre-
sponding proof. The work of [14] studied malleable proof systems for specific
relations, and [16] studied malleability for general relations albeit under knowl-
edge assumptions. Moreover, these works consider NIZK proof systems and thus
require trusted setup. We note that [14] satisfies a stronger proof of knowledge

Fully Homomorphic NIZK and NIWI Proofs 359

property (called controlled-malleable simulation-sound extractability) that we
don’t achieve in this work.

The notion of malleability, although seemingly limited due to its unary
nature, has found many applications, such as verifiable shuffles [14], delegat-
able anonymous credentials [7,15] and leakage-resilient proof systems [5]. Re-
randomizability [7], a special case of malleability, has also been studied in the
literature. Following [14,16], Ananth et al. [3] construct privately malleable NIZK
proof systems, and the works of [1,2] study homomorphic proof systems for spe-
cific relations.

Fig. 2. Description of the DLIN with leakage, with respect to a group G of prime
order p with a bilinear map e : G × G → GT . We refer to this as DLIN with leakage
assumption since the first row in both the distributions are indistinguishable assuming
DLIN, and the second and third rows can be viewed as leakage.

It is important to stress that all the prior works, even in the case of
unary transformations studied in the context of malleable proofs [14,16], assume
trusted setup. Thus, in the context of WI proof systems, our results are espe-
cially surprising since it allows for combining proofs that were created completely
independently, with no shared setup.

We now describe some applications of fully-homomorphic proofs.

Private Incremental Proofs. Incremental proofs, introduced by Valiant [26], allow
for merging many computationally sound proofs [23] into one proof which is as
short and easily verifiable as the original proofs. Incremental proofs have been
applied in several contexts such as proof-carrying data [8] and cryptographic
image authentication mechanisms [24]. It is useful in two types of settings: one

360 P. Ananth et al.

where the computation dynamically evolves over a period of time, hence a proof
of correctness of the entire computation cannot be computed all at once, and
the other where different entities wish to compute a proof for the correctness of
computation in a distributed setting.

The focus of prior works on incremental proofs was on succinctness whereas
the focus of our work is on privacy. While our work does not achieve succinctness,
as we will see later achieving privacy alone turns out to be quite challenging
(especially, in the context of fully-homomorphic NIWIs). We hope that our tools
can be combined with succinct incremental proofs to yield incremental proofs
that enjoy both succinctness and privacy guarantees.

Commit-and-Compute Paradigm. Another application of fully-homomorphic
proofs is the commit-and-compute paradigm. At a high level, the commit-and-
compute paradigm allows a prover to commit to its sensitive data, and later on,
prove statements about the committed data. Proofs from different provers can
then be combined to infer arbitrary statements about the committed data. We
give below an example that illustrates the applicability of this paradigm.

Verifiable Data Analysis. Consulting firms often collect data from different
research groups, perform analysis on the joint dataset and then share the ana-
lyzed results with different organizations. For instance, there are firms that col-
lect medical data from different research groups and share the analysis on the
medical data to pharmaceutical companies. This raises concerns about trusting
the research groups and the consulting firms to not lie about their conclusions.
We can tackle this concern by using fully homomorphic NIZK or NIWI proofs.
The research groups can publish their (committed) data along with a proof
that it was collected from valid sources, without revealing the identity of the
sources. The consulting firms can then perform analysis on the joint data sets
and homomorphically compute a proof that the analysis was performed correctly.
Moreover, the homomorphically computed proof will also hide the identities of
the research groups involved in sharing the data to the firms.

Commit-and-compute paradigm is formalized by defining the NP language
LCOM, a modification of LU so that the instance includes a vector of commitments
along with (C, b). The language LCOM is defined as follows:

LCOM =
{

(C, (com1, . . . , comn), b)
∣∣∣ ∃{wi, ri} s.t. C(w1, . . . , wn) = b, and

{comi = Commit(wi, ri)}
}

The evaluation is defined similarly to that of homomorphic Eval for LU . We define
and instantiate the commit-and-compute paradigm using fully-homomorphic
proofs in the full version [4].

Roadmap. In Sect. 2, we give an overview of our techniques. In Sect. 3, we
describe some notation and definitions. In Sect. 4, we present our definition of
fully homomorphic NIZK and NIWI proof systems. In Sect. 5, we define and
instantiate the building blocks for our constructions, and describe our DLIN

Fully Homomorphic NIZK and NIWI Proofs 361

with Leakage assumption (in Sect. 5.3). In Sect. 6, we construct fully homomor-
phic NIZK proofs for NP from DLIN. In Sect. 7, we describe our main result of
fully homomorphic NIWI proofs from the DLIN with Leakage assumption. We
refer the reader to the full version of the paper [4] for a detailed description of
the constructions.

2 Technical Overview

Let us start with some intuition. Suppose we want to generate a proof for the
satisfiability of C1 ∧ C2 for some circuits C1, C2. Given a proof Π1 for the satis-
fiability of C1 and a proof Π2 for the satisfiability of C2, clearly Π = (Π1,Π2)
is a proof for the satisfiability of C1 ∧ C2. However, such a proof does not sat-
isfy unlinkability. Moreover, the structure of the proof Π = (Π1,Π2) may be
different from that of a fresh proof computed for the satisfiability of C1 ∧ C2.

To achieve homomorphism and unlinkability, a natural candidate is a proof
system that works gate-by-gate as follows: Commit to all the wire values of the
circuit and prove that each gate is consistent with the committed values. Such a
proof structure is a good candidate because structurally, a proof of the composed
instance C1 ∧ C2 will be similar to a fresh proof.

Indeed the beautiful work of Groth, Ostrovsky and Sahai [21] (henceforth
referred to as GOS) has this proof structure and it is the starting point for our
FH NIZK construction as well as our FH NIWI construction. GOS constructed
NIZK and NIWI proofs under the decisional linear (DLIN) assumption. First
in Sect. 2.1, we describe our FH NIZK construction which builds on the GOS
NIZK. Then in Sect. 2.2, we describe our FH NIWI construction which contains
the bulk of the technical difficulty in this work.

2.1 Overview: Fully Homomorphic NIZK

Recall that an LU instance is of the form (C, out) where C : {0, 1}t → {0, 1} and
out ∈ {0, 1}. Let w = (w1, . . . , wt) be a witness such that C(w) = out. Let us
first recall the GOS NIZK proof for LU .

GOS NIZK. The GOS NIZK proof system is associated with a commitment
scheme with public parameters (as we elaborate on later). The CRS consists of
the parameters pp for the commitment scheme. The prover on input (C, out)
along with witness w does the following:

1. Let w1, . . . , wn be the values induced by witness w = (w1, . . . , wt) on all the
wires of the circuit C. Commit to all the wire values with respect to pp, except
the output wire. For every i ∈ [n − 1], denote by ci the commitment to wire
value wi. Denote by cn = wn.

2. For each i ∈ [n], prove that the commitment ci is a commitment to a boolean
value. We refer to such proofs by Bit Proofs.

3. For each gate in C, prove that the commitments to the input and the output
wires of the gate are consistent with the gate functionality. We refer to such
proofs by Gate Proofs.

362 P. Ananth et al.

In their construction, GOS use a commitment scheme which has two indis-
tinguishable modes of public parameters: perfectly binding and perfectly hiding.
Loosely speaking, the perfectly binding mode is used to argue perfect soundness,
and the perfectly hiding mode is used to argue zero-knowledge. In addition, they
require the commitment scheme to be additively homomorphic and the additive
homomorphism is used in the Gate Proofs.

GOS constructed NIWI proof systems for Bit Proofs and Gate Proofs, and
proved that this is sufficient for their NIZK construction. Both Bit and Gate
Proofs are computed using the openings of the commitments as the witness.
Our FH NIZK construction follows a similar template (our NIZK construction
is identical to the GOS NIZK) but in order to achieve unlinkability, we need
additional properties from the commitment scheme as well as from the Bit Proofs
and Gate Proofs, as we explain below.

Homomorphic Evaluation. Homomorphic evaluation works as follows: On input
k instances {zi = (Ci, bi)}i∈[k] along with proofs {Πi}i∈[k] where each Πi is a
proof that zi ∈ LU , and a circuit D, we want to output a proof that (C∗, b∗) ∈ LU
where C∗ is the composed circuit and b∗ = D(b1, . . . , bk). First, compute a fresh
proof for the circuit D with witness (b1, . . . , bk). Note that the fresh proof for
(D, b∗) together with the proofs {Πi}i∈[k], forms a verifying proof with respect
to (C∗, b∗). This follows from the fact that in each proof Πi, the output wire bi

is given in the clear. However this combined proof is distinguishable from a fresh
proof (given the individual proofs {Πi}i∈[k]). Thus, to achieve unlinkability, we
randomize this entire proof.

Randomizing the NIZK Proof. A proof system is said to be randomizable [7] if
given a proof Π for an instance x, it is possible to randomize the proof Π to
obtain a proof Π ′ for x, such that Π ′ is indistinguishable from a fresh proof for
x. Randomizability of a proof system is sufficient for achieving unlinkability in
our construction, as explained above.

At a high level, we randomize the proof Π as follows: Randomize all the
commitments in the proof, and then “update” the existing proofs to be with
respect to the randomized commitments. Thus, given the original Bit Proofs and
Gate Proofs, we need to be able to “maul” them to be with respect to the new
randomized commitments in such a way that the updated proofs are distributed
as fresh Bit Proofs and Gate Proofs. We refer to such proofs as malleable proofs.

Ingredients for Our FH NIZK. In summary, for constructing FH NIZK,
we use a commitment scheme (C.Setup,C.Commit,C.Rand) from GOS, which
is also randomizable. We also need malleable proof systems for Bit
proofs and for Gate proofs. (we define the corresponding proof systems
(Bit.Prove,Bit.Verify,Bit.Maul) and (N.Prove,N.Verify,N.Maul) in Sect. 3).

As shown in GOS, both Bit Proofs and Gate Proofs can be reduced to proofs
of linearity with respect to the NP language LLin. The language LLin is param-
eterized by three random group elements (f, h, g) in some underlying group G

of prime order (which has a bilinear map), and whose instances consists of pairs

Fully Homomorphic NIZK and NIWI Proofs 363

(A,B), where A = (fa1 , ha2 , ga3) and B = (f b1 , hb2 , gb3), such that a1 + a2 = a3

or b1 + b2 = b3
1.

GOS constructed a NIWI proof for LLin. Recall that for our purposes, we
need malleable proof systems for Bit Proofs and Gate Proofs, and as a result we
need the underlying NIWI proof for LLin to be malleable with respect to ran-
domization. Namely given a pair (A,B) ∈ LLin with a NIWI proof Π, it should
be possible to maul the proof Π for (A,B) into a proof Π ′ for a randomiza-
tion (A′,B′) of (A,B). We show that the GOS proof for LLin has the desired
malleability property, and we refer the reader to Sect. 3 for the definition of a
malleable proof system.

2.2 Overview: Fully Homomorphic NIWI

We now focus on our construction of a FH NIWI proof system for LU . As we will
see, this is a significantly harder task compared to the FH NIZK, since NIWI is
constructed in the plain model without a CRS.

The GOS NIWI Construction. We will first describe the GOS NIWI proof sys-
tem. Recall that in the GOS NIZK construction, the CRS consists of the param-
eters pp of the commitment scheme. In a NIWI construction, there is no CRS.
In the GOS NIWI, the prover chooses two parameters (pp0, pp1) such that it
is possible to publicly verify that one of them is binding. The NIWI proof for
(C, out) ∈ LU is of the form (pp0,Π0, pp1,Π1) where Πb is the NIZK proof with
respect to ppb for each b ∈ {0, 1}.

Towards Homomorphic Evaluation and Unlinkability. It is not clear how to use
the GOS NIWI construction to construct an FH NIWI. In particular, achieving
unlinkability here is significantly harder. Intuitively, the difficulty stems from
the fact that even though the GOS NIWI appears to be gate-by-gate, there is an
over-arching pair of parameters associated with the entire proof, and this pair is
different for different proofs.

In more detail, a fresh GOS NIWI proof as described above has two param-
eters (pp0, pp1) associated with it. Thus, if we use an approach similar to
the FH NIZK construction for composing proofs, namely if we prove that
(D(C1, . . . , Ck), b∗) ∈ LU , given k instances {zi = (Ci, bi)}i∈[k] along with corre-
sponding proofs {Πi}i∈[k], where b∗ = D(b1, . . . , bk), then the resulting composed
proof will have 2k parameters associated with it. It is unclear how to randomize
such a composed proof to look like a fresh proof which has only two parameters
associated with it.

In order to achieve unlinkability in our construction, we diverge from the
GOS construction. Rather than choosing a pair of parameters per proof, we
choose a fresh pair of parameters (pp0j , pp

1
j) for each gate of the circuit. As in

the GOS construction, the honest prover chooses one of them to be binding
and the other hiding such that one can publicly verify that indeed one of the
parameters is binding. Recall that in the GOS NIWI construction, the prover

1 If a1 + a2 = a3 then A is said to be a linear tuple.

364 P. Ananth et al.

committed to each wire value with respect to two parameters (pp0, pp1). Now
that we are choosing fresh parameters per gate, the question is which parameters
do we use to commit to a wire value?

We associate four parameters pp0i , pp1i , pp0j , pp1j with an internal wire between
the ith and the jth gate in the circuit. In our construction, we commit to the wire
value with respect to all of these parameters and thus, have four commitments
c0i , c

1
i , c

0
j , c

1
j per wire. We compute Bit Proofs with respect to each of the four

commitments, and compute Gate Proofs for every gate with respect to both
parameters associated with that gate.

Ensuring Soundness. Recall that the GOS NIWI consists of two independent
NIZK proofs Π0,Π1 with respect to parameters pp0, pp1 respectively. Thus, the
commitments, Bit Proofs and Gate Proofs with respect to both the parameters
are independent of each other, and Π0,Π1 are verified separately. This is not
the case in our setting.

Our proof contains a pair of parameters per gate, and has four commitments
per wire. Thus, we need to prove that the multiple commitments per wire commit
to the same value. In particular for soundness, it is sufficient to prove that among
the four commitments per wire, the two commitments corresponding to the two
binding parameters commit to the same value.

However the verifier does not know which of the four parameters pp0i , pp1i , pp0j ,
pp1j are binding. All we are guaranteed is that for every gate j, one of (pp0j , pp

1
j)

is binding. So in our construction, we give four pairwise proofs that each com-
mitment with respect to gate i commits to the same value as each commitment
with respect to gate j. Namely, for all b1, b2 ∈ {0, 1}, the commitments (cb1

i , cb2
j)

with respect to ppb1
i , ppb2

j commit to the same value. This ensures consistency
with respect to the two binding commitments across gates i, j. This, along with
the Bit and Gate proofs will ensure that there is a consistent boolean assignment
w1, . . . , wn induced by the witness w across all the wires of the circuit, such that
C(w) = out.

We emphasize that we do not provide consistency proofs between the two
commitments (c0i , c

1
i) for a gate i, and in fact this is crucial for achieving wit-

ness indistinguishability, as we explain later. Towards constructing such pair-
wise proofs, we define the language LTC

2 which consists of instances of the form
(ci, cj , ppi, ppj) where commitment ci with respect to parameters ppi and cj

with respect to ppj commit to the same bit.

Arguing Witness Indistinguishability. The main challenge is to prove that
the final construction is witness indistinguishable even given the additional LTC

proofs for instances of the form (ci, cj , ppi, ppj). We note that even if the proof
system for LTC satisfies WI, we do not know how to argue that the final con-
struction is WI. Intuitively, the issue is that an LTC statement may have a unique
witness, in which case WI offers no secrecy. As we explain below, we need our

2 TC stands for the language of Two Commitments.

Fully Homomorphic NIZK and NIWI Proofs 365

LTC proof system to have a secrecy guarantee of the flavor of strong NIWI (with
respect to specific distributions).

To argue WI of our final FH NIWI construction, we prove that a proof Π0

for (C, out) ∈ LU with respect to witness wit0 is indistinguishable from a proof
Π1 with respect to witness wit1. Let us zoom in on a wire k between gates i, j
whose value changes from 0 (for wit0) to 1 (for wit1). Both Π0,Π1 will contain
four commitments to the wire k with respect to parameters pp0i , pp

1
i , pp

0
j , pp

1
j ,

along with the four LTC proofs (see Fig. 3).
Denote by PP = (pp0i , pp

1
i , pp

0
j , pp

1
j). Denote by W(b) the four commitments

to bit b on wire k, that is W(b) = (c0i , c
1
i , c

0
j , c

1
j) where all the four commitments

are to the bit b. Denote by Π(b) = (π00, π01, π10, π11) where for all b1, b2 ∈ {0, 1},
πb1b2 is a proof for (cb1

i , cb2
j , ppb1

i , ppb2
j) ∈ LTC.

pp0i pp1i

pp0j pp1j

c0i c1i

c0j c1j

π00

π01

π10

π11

Fig. 3. Zooming in on wire k of circuit C with parameters PP = (pp0i , pp
1
i , pp

0
j , pp

1
j),

commitments W = (c0
i , c

1
i , c

0
j , c

1
j) and LTC proofs Π = (π00, π01, π10, π11).

To prove WI of the final construction, in particular the following should hold:
(
PP,W(0),Π(0)

) ≈ (
PP,W(1),Π(1)

)
(1)

This indistinguishability requirement already implies a strong NIWI for LTC,
with respect to distributions D0 and D1, where Db samples LTC instances
(ci, cj , ppi, ppj) such that ci, cj commit to the bit b.

For our analysis, Eq. (1) is insufficient since we need Eq. (1) to hold even given
the rest of the proof for (C, out) ∈ LU . In other words, we need Eq. (1) to hold
given some auxiliary information aux, where given aux it should be possible to
efficiently compute the rest of the proof from it. One possible aux is the openings
of all the four commitments so that it is then possible to compute Bit and Gate
Proofs for the rest of the proof. But if we give the openings with respect to 0 and
1 respectively, then the two distributions in Eq. (1) are clearly distinguishable.

So the question is, what aux can we give? Our key insight is that we can
give equivocated openings for the commitments with respect to the two hiding

366 P. Ananth et al.

parameters and honest openings with respect to the binding parameters, so that
in both the distributions in Eq. (1), two of the openings are to 0 and two of them
are to 1. Without loss of generality, we think of pp0i , pp0j as the binding parameters
and pp1i , pp

1
j as the hiding parameters. We strengthen the requirement in Eq. (1)

as follows:

(
PP(0),W(0),Π(0),O(0)) ≈ (PP(1),W(1),Π(1),O(1)

)
(2)

where PP(b) = (ppb
i , pp

1−b
i , ppb

j , pp
1−b
j), and W(b),Π(b) are as before, and where

in both the distributions, O(b) contains openings for the commitments W(b) to
(0, 1, 0, 1) respectively. This is the case since in the left-hand-side parameters
PP(0), the second and fourth parameters are hiding, and we equivocate c1i , c

1
j to

open to 1, whereas in the right-hand-side parameters PP(1), the first and third
parameters are hiding, and we equivocate c1i , c

1
j to open to 0. Note that the LTC

proofs in Π(b) are still computed using the (honest) openings to b.
This is still not sufficient for our WI analysis. In order to argue WI of the

final construction, we need to invoke Eq. (2) for every wire k in the circuit for
which the value of wit0 on wire k is different from value of wit1 on wire k. These
invocations are not completely independent since two different wires may be
associated with the same gate, and in particular the two wires may be associated
with an overlapping set of parameters. Thus, we need to further strengthen
Eq. (2) to as follows:

(
PP(0),W(0),Π(0),O(0),W(1),Π(1),O(1)

) ≈(
PP(1),W(1),Π(1),O(1),W(0),Π(0),O(0)

)
(3)

where PP(b),W(b),Π(b) and O(b) are as described above. We note that in the
left-hand-side, W(1) are four commitments to 1 with respect to PP(0), Π(1) are
the corresponding LTC proofs computed using the honest openings to 1, and O(1)
are the openings to (1, 0, 1, 0) respectively. Similarly, in the right-hand-side, W(0)
are four commitments to 0 with respect to PP(1), Π(0) are the corresponding LTC

proofs, and again O(0) are the openings to (1, 0, 1, 0) respectively. We refer to the
property from Eq. (3) as Strong Secrecy of LTC. The Strong Secrecy requirement
of LTC as in Eq. (3) is sufficient for our WI analysis. Before explaining our WI
analysis, we describe the ingredients for our FH NIWI Construction.

Recall that our NIWI proof for (C, out) ∈ LU is computed as follows: Choose
a fresh pair of parameters per gate, commit to all the wire values with respect
to all the associated parameters (2 commitments per input wire, 4 commitments
per connecting wire), compute Bit Proofs (one per commitment), compute Gate
Proofs (two per gate) and compute LTC proofs (four per connecting wire). In
order to randomize our NIWI proof, we randomize all the parameters, corre-
spondingly update the commitments and update the proofs to be with respect
to the randomized parameters and commitments. Specifically, we need the fol-
lowing ingredients for our final FH NIWI Construction.

Fully Homomorphic NIZK and NIWI Proofs 367

Ingredients for our FH NIWI.

– A Commitment Scheme as required in the FH NIZK construction, but with
the additional feature that allows for randomizing the parameters and updat-
ing the commitments to be with respect to the randomized parameters, so
that the randomized parameters and commitments are distributed like fresh
commitments.

– Bit Proofs and Gate Proofs as required in the FH NIZK construction, but
with the following (modified) malleability property: Given a proof for com-
mitments with respect to some pp, it is possible to efficiently randomize the
parameters, correspondingly update the commitments and update the proofs
to be with respect to the new parameters and commitments, such that they
are all distributed like fresh ones. As in the FH NIZK, we require the Bit and
Gate Proofs to satisfy WI.

– A proof system for LTC with the same malleability property as Bit and Gate
Proofs, and with the Strong Secrecy property as described in Eq. (3).

We show that the GOS commitment scheme (C.Setup,C.Commit,C.Rand)
satisfies the additional feature that we require. The malleability of Bit Proofs
and Gate Proofs can be reduced to the malleability of the NP language
LLin described previously (similar to the FH NIZK construction). We then
describe the corresponding proof systems (Bit.Prove,Bit.Verify,Bit.GenMaul) and
(N.Prove,N.Verify,N.GenMaul).

Jumping ahead, we construct the proof system for LTC also using the proof
system for LLin, and the malleability of LTC follows from the malleability of LLin.
We then argue that the Strong Secrecy follows from our new DLIN with Leakage
assumption.

WI Analysis. To explain our WI analysis, we describe an algorithm ProofGen
that on input a sample from the left-hand-side distribution in Eq. (3), generates
an entire proof Π for (C, out) ∈ LU which is indistinguishable from an honest
proof generated using wit0, and on input a sample from the right-hand-side
distribution, ProofGen generates a proof Π which is indistinguishable from an
honest proof generated using wit1.

ProofGen Algorithm. Without loss of generality, we assume that every circuit is
layered; that is, all the gates of the circuit can be arranged in t layers so that
for all i ∈ [t], all the output wires of gates from layer i are input wires to gates
in layer i + 1. Fix any two witnesses wit0 and wit1 for (C, out) ∈ LU .

On input
(
PP(b),W(b),Π(b),O(b),W(1 − b),Π(1 − b),O(1 − b)

)
, ProofGen

does the following:

1. Recall that PP(b) = (ppb
i , pp

1−b
i , ppb

j , pp
1−b
j). Assign parameters (ppb

i , pp
1−b
i)

to all the odd layer gates of the circuit and (ppb
j , pp

1−b
j) to all the even layer

gates of the circuit. We will refer to {ppb
i , pp

b
j} as the Left Parameters and

{pp1−b
i , pp1−b

j } as the Right Parameters.

368 P. Ananth et al.

2. For all the input wires of the circuit C, commit to wit0 with respect to
ppb

i (Left Parameter) and commit to wit1 with respect to pp1−b
i (Right

Parameter).
3. For every wire k, produce the 4 commitments and 4 LTC proofs for the wire

as follows: Denote by wk,0 the value induced by wit0 on wire k, and denote
by wk,1 the value induced by wit1 on wire k in the circuit.

– If wk,0 = wk,1 then compute the commitments and LTC proofs honestly.
– If wk,0 = 0 and wk,1 = 1 then use W(b) as the commitments and Π(b) as

the LTC proofs.
– If wk,0 = 1 and wk,1 = 0 then use W(1 − b) as the commitments and

Π(1 − b) as the LTC proofs.
4. Compute the Bit Proofs and Gate Proofs honestly: We have the openings for

all the commitments to the input bits (from Step 2). We also have the openings
for the commitments to every non-input wire k, namely O(b) for W(b) when
wk,0 = 0 and wk,1 = 1, or O(1 − b) for W(1 − b) when wk,0 = 1 and wk,1 = 0,
or since we generated the commitments honestly when wk,0 = wk,1. Note that
the openings with respect to the Left Parameters always correspond to wit0
and the openings with respect to the Right Parameters always correspond to
wit1.

– Bit Proofs can be computed honestly since all the openings are to 0 or 1.
– Gate Proofs can be computed honestly since all the openings with respect

to the Left Parameters are consistent with wit0 and all the openings with
respect to the Right Parameters are consistent with wit1.

5. Randomize the entire proof as follows:
– For every gate, randomize the pair of parameters for that gate.
– Update all the commitments (2 commitments per input wire, 4 com-

mitments per connecting wire) to be with respect to the randomized
parameters.

– Maul all the Bit Proofs (one per commitment), all the Gate Proofs (two
per gate) and all the LTC proofs (four for every connecting wire) to be
with respect to the updated parameters and commitments.

Finally output this randomized proof.

So far, we described the ProofGen algorithm that given a sample from the
distributions in Eq. (3), generates an entire proof for (C, out) ∈ LU . Let Π0

Gen

be a proof output by ProofGen on input a sample from the left-hand-side of
Eq. (3) and let Π1

Gen be a proof output by ProofGen on input a sample from the
right-hand-side of Eq. (3).

From Eq. (3), it follows that Π0
Gen ≈ Π1

Gen. All that remains is to argue
that Π0 ≈ Π0

Gen and Π1 ≈ Π1
Gen, where Πb is an honestly computed proof for

(C, out) ∈ LU using witness witb. Note that Π0 and Π0
Gen are identical except

that Π0
Gen uses equivocated openings to wit1 on the Right Parameters to compute

the Bit and Gate Proofs. Hence, Π0 ≈ Π0
Gen follows from WI of the Bit and Gate

Proofs, and in addition follows by the randomizability of the commitment scheme
and the malleability of the underlying proofs. By a similar argument, Π1 ≈ Π1

Gen.
Thus, WI of the final construction follows form the Strong Secrecy of LTC.

Fully Homomorphic NIZK and NIWI Proofs 369

Constructing the LTC Proof System. We construct a proof system for LTC

with the following properties:

1. Strong Secrecy: As defined in Eq. (3).
2. Malleability: Given a proof π for (c1, c2, pp1, pp2) ∈ LTC, one can efficiently

randomize the parameters to obtain pp′
1, pp

′
2, update the commitments to

obtain c′
1, c

′
2 which are with respect to pp′

1, pp
′
2, and then maul π to a proof

π′ for (c′
1, c

′
2, pp

′
1, pp

′
2) ∈ LTC such that (c′

1, c
′
2, pp

′
1, pp

′
2) looks like a fresh

instance and π′ is distributed like a fresh proof.
3. Soundness: We require that soundness holds for all instances (c1, c2, pp1, pp2)

where both pp1, pp2 are binding. As noted above, this is sufficient for the
soundness of the final construction.

We construct such a proof system using the malleable NIWI proof system
for LLin described before. Recall that LLin is a parameterized language with
parameters pp = (f, h, g) where f, h, g are generators of a group G, and it consists
of a pair of tuples (A,B) such that one of them is of the form (fa1 , ha2 , ga3)
where a3 = a1 + a2.

We reduce proving that (c1, c2, pp1, pp2) ∈ LTC to proving that (A,B) ∈ LLin

for some (A,B). However, we only know how to do this reduction for LTC

instances (c1, c2, pp1, pp2) for which pp1 = pp2. Therefore, we consider an NP-
relation for LTC with an additional witness which lets us convert an instance
(c1, c2, pp1, pp2) into an instance (c∗, c2, pp2, pp2). The additional witness for
(c1, c2, pp1, pp2) is a hard-to-compute function of the parameters pp1, pp2, and
we refer to it as an “intermediate parameter” pp∗ of pp1, pp2. Using the interme-
diate parameter pp∗ we can convert the commitment c1 with respect to pp1 into
a commitment c∗ with respect to pp2.

More specifically in our proof, pp∗ helps in converting the commitment c1
with respect to parameters pp1, into a commitment c∗ (to the same value) with
respect to pp2. Then, we can reduce the instance (c∗, c2, pp2, pp2) ∈ LTC to a
pair of tuples (A,B) ∈ LLin. The soundness and malleability of the LTC proof
system follows from the corresponding properties of LLin proof system. We refer
to the full version [4] for a detailed description of the construction.

Strong Secrecy from DLIN with Leakage. All that remains is to show that the
strong secrecy of LTC follows from our new assumption of DLIN with Leakage.
We first prove that Strong Secrecy of LTC follows from the fact that the NIWI
for LLin is strong WI with respect to the following distributions D0 and D1.

– D0 generates (A,B) where A = (fa1 , ha2 , ga3) for random a1, a2, a3 such that
a1 + a2 = a3, and B = (fa1 , ha2 , ga3+1).

– D1 generates (A,B) where A = (fa1 , ha2 , ga3−1) for random a1, a2, a3 such
that a1 + a2 = a3, and B = (fa1 , ha2 , ga3).

We then prove that the proof system for LLin is strong WI with respect to
D0 and D1 under DLIN with Leakage assumption. We refer to full version [4] for
a detailed description of the reduction.

370 P. Ananth et al.

3 Preliminaries

We denote the security parameter by λ. We use PPT to denote that an algorithm
is probabilistic polynomial time. We denote by y ← A(x) if y is the output of
a single execution of A on input x. We denote by y = A(x; r) to explicitly
mention the randomness used in the execution. We denote y ∈ A(x) if there
exists randomness r such that y = A(x; r).

We use [n] to represent the set {1, . . . , n}. Vectors are denoted by a where
a = (a1, . . . , an) and ai is the i th element of a. |a| denotes the size of a. a ◦ b
denotes concatenation of the vectors a,b. {X}λ∈N ≈c {Y}λ∈N will denote that
distributions {X}λ∈N and {Y }λ∈N are computationally indistinguishable.

3.1 Definition of Proof Systems

Definition 1 (Non-interactive Zero-knowledge Proofs [9]). Let L ∈ NP
and let RL be the corresponding NP relation. A triplet of PPT algorithms
(Setup,Prove,Verify) is called a non interactive zero knowledge (NIZK) proof
system for L if it satisfies:

– Perfect Completeness: For all security parameters λ ∈ N and for all
(x,w) ∈ RL,

Pr[CRS ← Setup(1λ); π ← Prove(CRS, x, w) : Verify(CRS, x, π) = 1] = 1

– Adaptive Soundness: For any all-powerful prover P ∗, there exists a negli-
gible function μ such that for all λ,

Pr[CRS ← Setup(1λ); (x, π) = P ∗(CRS) : Verify(CRS, x, π) = 1 ∧ x /∈ L] ≤ μ(λ)

When this probability is 0, we say it is perfectly sound.
– Adaptive Zero Knowledge: There exists a PPT simulator S = (S1, S2)

where S1(1λ) outputs (CRSS , τ) and S2(CRSS , τ, x) outputs πs such that for
all non-uniform PPT adversaries A,

{CRS ← Setup(1λ) : AO1(CRS,·,·)(CRS)} ≈c

{(CRSS , τ)←S1(1λ) : AO2(CRSS ,τ,·,·)(CRSS)}
where O1,O2 on input (x,w) first check that (x,w) ∈ RL, else output ⊥.
Otherwise O1 outputs Prove(CRS, x, w) and O2 outputs S2(CRSS , τ, x).

Definition 2 (Non interactive Witness Indistinguishable Proofs [6,17]). A pair
of PPT algorithms (Prove,Verify) is called a non interactive witness indistin-
guishable (NIWI) proof for an NP language L with NP relation RL if it satisfies:

– Completeness: For all security parameters λ and for all (x,w) ∈ RL,

Pr[π ← Prove(1λ, x, w) : Verify(1λ, x, π) = 1] = 1

Fully Homomorphic NIZK and NIWI Proofs 371

– Soundness: For any all-powerful prover P ∗, if P ∗(1λ) = (x, π) and x /∈ L,
then Verify(1λ, x, π) = 0.

– Witness Indistinguishability: For all non-uniform PPT adversaries A,
there exists a negligible function ν such that for every λ ∈ N, probability that
b′ = b in the following game is at most 1/2 + ν(λ):
1. (state, x, w0, w1) ← A(1λ).
2. Choose b

$← {0, 1}. If RL(x,w0)
= 1 or RL(x,w1)
= 1 then output
⊥. Else, if b = 0 then π ← Prove(1λ, x, w0), and if b = 1 then π ←
Prove(1λ, x, w1).

3. b′ ← A(state, π).

We say that a pair of PPT algorithms (Prove,Verify) is called a non interactive
proof system for an NP language L if it satisfies completeness and adaptive
soundness.

For our purposes, we will be using NIWI proofs with respect to parameterized
languages of the form L[pp] where pp denotes some global parameters.

Definition 3 (Non interactive Witness Indistinguishability proofs for Param-
eterized Languages). Let Setup be a PPT algorithm that takes as input the
security parameter and outputs a set of parameters pp. A pair of PPT algo-
rithms (Prove,Verify) is called a NIWI proof for a parameterized NP language
L[pp], with NP relation RL[pp] if it satisfies:

– Completeness: For all security parameters λ, for all pp ∈ Setup(1λ) and for
all (x,w) ∈ RL[pp], Pr[π ← Prove(pp, x, w) : Verify(pp, x, π) = 1] = 1.

– Adaptive Soundness: For any all-powerful prover P ∗, there exists a negli-
gible function μ such that for all λ,

Pr[pp ← Setup(1λ) : (x, π) ← P ∗(pp) : Verify(pp, x, π) = 1 ∧ x /∈ L] ≤ μ(λ)

– Witness Indistinguishability: For all non-uniform PPT adversaries A,
there exists a negligible function ν such that for every λ ∈ N, probability that
b′ = b in the following game is at most 1/2 + ν(λ):
1. pp ← Setup(1λ).
2. (state, x, w0, w1) ← A(pp).
3. Choose b

$← {0, 1}. If RL[pp](x,w0)
= 1 or RL[pp](x,w1)
= 1 then output
⊥. Else if b = 0 then π ← Prove(pp, x, w0), else if b = 1 then π ←
Prove(pp, x, w1). Send π to A.

4. b′ ← A(state, π).

Definition 4 (Randomizable NIZK and NIWI Proofs [7]). A NIZK proof
system for an NP language L with NP relation RL with algorithms
(Setup,Prove,Verify) is said to be a randomizable proof system if there exists
a PPT algorithm Rand which on input a CRS, an instance x and a proof π, out-
puts a “randomized” proof π′ for x such that for all non-uniform PPT adversaries
A, there exists a negligible function ν such that for every λ ∈ N, the probability
that b′ = b in the following game is at most 1/2 + ν(λ):

372 P. Ananth et al.

1. CRS ← Setup(1λ).
2. (state, x, w, π) ← A(CRS).
3. Choose b

$← {0, 1}. If Verify(CRS, x, π)
= 1 or RL(x,w)
= 1 then output ⊥.
4. Else if b = 0 then π′ ← Prove(CRS, x, w), else if b = 1 then π′ ←

Rand(CRS, x, π).
5. b′ ← A(state, π′).

More generally, a (WI) proof system (Prove,Verify) is said to be randomizable
if there exists a PPT algorithm Rand with the same description and properties
as above and where CRS = 1λ.

Definition 5 (Malleable NIWI Proofs for Parameterized Languages [14]). Let
(Prove,Verify) be a NIWI proof system for a parameterized NP language L[pp]
with NP relation RL[pp] where pp ← Setup(1λ) (as per Definition 3). Let T =
(T(C, b), Twit) be a pair PPT transformations such that for every (x,w) ∈ RL and
for every randomness σ ∈ {0, 1}poly(λ), (

T(C, b)(pp, x;σ), Twit(pp, x, w, σ)
) ∈ RL.

Such a proof system is said to be malleable with respect to T , if there exists
a randomized PPT algorithm Maul which on input parameters pp, an instance
x, randomness σ and proof π, outputs a “mauled” proof π′ for T (pp, x;σ) such
that the following properties hold:

Malleability. For all non-uniform PPT A, for all pp ∈ Setup(1λ), for all λ ∈ N,

Pr
[
(x, π) ← A(pp) ; (σ,R) ← {0, 1}poly(λ) ; π′ = Maul(pp, x, σ, π;R) :(

Verify(pp, x, π) = 0
) ∨ (

Verify(pp, T (pp, x;σ), π′) = 1
)]

= 1

Perfect Randomizability. There exists a poly-time function fT such that for
all pp ∈ Setup(1λ) and every (x,w) ∈ RL[pp], for every R, σ ∈ {0, 1}poly(λ),

Maul(pp, x, σ,Prove(pp, x, w;R);R′) =

Prove(pp, T(C, b)(pp, x;σ), Twit(pp, x, w, σ);S)

where S = fT (pp, w,R,R′, σ). Moreover, if R′, σ are uniform, then
fT (w,R,R′, σ) is uniformly distributed.

Definition 6 (Strong Non-interactive Witness Indistinguishability [19]). Let
Setup be a PPT algorithm that takes as input the security parameter and outputs
a set of parameters pp. Let D0 = {D0,λ}λ∈N,D1 = {D1,λ}λ∈N be distribution
ensembles in the support of RL[pp] ∩ {0, 1}λ such that for every b ∈ {0, 1},
(xb, wb) ← Db such that (xb, wb) ∈ RL[pp].

A NIWI proof system (Prove,Verify) for a parameterized NP language L[pp]
is a strong non interactive witness indistinguishable (Strong NIWI) proof with
respect to distributions D0,D1, if the following holds:

If {pp, x0} ≈ {pp, x1} then E0 ≈ E1

where Eb(1λ) does the following: Sample (xb, wb) ← Db(pp) and compute πb ←
Prove(pp, xb, wb). Output (pp, xb, πb).

Fully Homomorphic NIZK and NIWI Proofs 373

3.2 Bilinear Maps

We will be working with abelian groups G,GT of prime order p equipped with
a symmetric bilinear map e : G×G �→ GT . We let G be a deterministic polyno-
mial time algorithm that takes as input the security parameter 1λ and outputs
(p,G,GT , e, gp) such that p is a prime, G,GT are descriptions of groups of order
p, gp is a fixed generator of G and e : G × G �→ GT is a bilinear map with the
following properties:

– (Non-degenerate). For any generator g of G, gT = e(g, g) has order p in GT

– (Bilinear). For all a, b ∈ G, for all x, y ∈ Zp, e(ax, by) = e(a, b)xy

We require that the group operations and the bilinear operations are com-
putable in polynomial time with respect to security parameter.

Assumption 1 (Decisional Linear Assumption). We say that the Decisional
Linear (DLIN) Assumption holds for a bilinear group generator G if the following
distributions are computationally indistinguishable:

{(p,G,GT , e, g) ← G(1λ) ; (x, y) $← Z
∗
p : (r, s) $← Zp :

(p,G,GT , e, g, gx, gy, gxr, gys, gr+s)} and

{(p,G,GT , e, g) ← G(1λ) ; (x, y) $← Z
∗
p : (r, s, d) $← Zp :

(p,G,GT , e, g, gx, gy, gxr, gys, gd)}

4 Fully Homomorphic Proofs: Definition

In this section we define fully homomorphic NIZK and NIWI proofs for the
NP-complete language LU consisting of instances of the form (C, b) where C :
{0, 1}k → {0, 1} is a boolean circuit and b ∈ {0, 1}. Formally, LU is defined as:

LU = {(C, b) | ∃ w such that C(w) = b}

Let RU be the corresponding NP-relation. We first define the notion of composing
multiple instances of LU to get a new instance in LU :

Composing LU Instances: On input k instances {(Ci, bi)}k
i=1 where Ci :

{0, 1}ti → {0, 1} and C ′ : {0, 1}k → {0, 1},

Compose({(Ci, bi)}k
i=1, C

′) = (C, b)

where C : {0, 1}T → {0, 1} and T =
∑k

i=1 ti and for all (w1, . . . ,wk) ∈ {0, 1}t1 ×
· · · × {0, 1}tk ,

C(w1, . . . ,wk) = C ′(C1(w1), . . . , Ck(wk)
) ∧ b = C ′(b1, . . . , bk).

374 P. Ananth et al.

4.1 Definition: Fully Homomorphic NIZK and NIWI Proofs

We now define fully homomorphic NIZK and NIWI proofs for the language LU
defined above.

Definition 7 (Fully Homomorphic NIZK Proofs). A randomizable NIZK proof
system (Setup,Prove,Verify,Rand) is a fully homomorphic proof system if there
exists a PPT algorithm Eval with the following input-output behavior:

((C, b),Π) ← Eval(CRS, {(Ci, bi),Πi}k
i=1, C

′): The Eval algorithm takes as input
the CRS, k instances {(Ci, bi)}k

i=1 along with their proofs {Πi}k
i=1, and a

circuit C ′ : {0, 1}k → {0, 1}. It outputs the composed instance (C, b) =
Compose({(Ci, bi)}k

i=1, C
′) and a corresponding proof Π such that the follow-

ing properties hold:

Completeness of Eval: We require that evaluating on valid proofs (proofs that
verify), should result in a proof that verifies. More concretely, we require that
for all non-uniform PPT A and for all λ ∈ N,

Pr

⎡
⎢⎢⎢⎣

CRS←Setup(1λ) ; ({(Ci,bi,Πi)}k
i=1,C′)←A(CRS) ;

((C,b),Π)←Eval(CRS,{(Ci,bi),Πi}k
i=1,C′) :(

Valid(C′)=0
)

∨
(
∃ i∈[k] s.t.Verify(CRS,(Ci,bi),Πi)=0

)
∨(

(Verify(CRS,(C,b),Π)= 1) ∧ (C,b)=Compose({(Ci,bi)}k
i=1,C′)

)

⎤
⎥⎥⎥⎦ = 1

where Valid(C ′) = 1 if and only if C ′ : {0, 1}k → {0, 1}.

Unlinkability: We require that a proof for (C, b) ∈ LU obtained by Eval should
be indistinguishable from a fresh proof for the same instance. Namely, for any
non-uniform PPT adversary A, there exists a negligible function ν such that for
every λ the probability that bit = bit′ in the following game is at most 1/2+ν(λ):
GAMEEval:

1. CRS ← Setup(1λ).
2. (state, {((Ci, bi),wi,Πi)}k

i=1, C
′) ← A(CRS)

3. Choose bit
$← {0, 1}. If for any i ∈ [k], Verify(CRS, (Ci, bi),Πi)
= 1 or

((Ci, bi),wi) /∈ RU , output ⊥.
4. Else if bit = 0 then ((C, b),Π) ← Eval(CRS, {(Ci, bi),Πi}k

i=1, C
′). Else if

bit = 1 then compute (C, b) = Compose({(Ci, bi)}k
i=1, C

′) and
Π ← Prove(CRS, (C, b),w) where w = w1 ◦ · · · ◦ wk. Send (C, b,Π) to A.

5. bit′ ← A(state, (C, b,Π)).

Definition 8 (Fully Homomorphic NIWI Proofs). A randomizable NIWI proof
system (Prove,Verify,Rand) is a fully homomorphic NIWI proof system if there
exists a PPT algorithm Eval with the same description and properties as in
Definition 7 and where CRS = 1λ.

Fully Homomorphic NIZK and NIWI Proofs 375

5 Building Blocks for Fully Homomorphic Proofs

In this section we describe the building blocks for our fully homomorphic (FH)
NIZK and NIWI constructions. In Sect. 5.1, we define a commitment scheme with
additional properties, which we will use in our FH NIZK and NIWI constructions,
and we then instantiate it from DLIN.

In Sect. 5.2, we describe a NIWI proof system for the NP language LLin

(defined in Definition 10) based on DLIN. This proof system is the main ingre-
dient in constructing FH NIZK and FH NIWI proofs.

For our FH NIWI construction, we need the NIWI proof for LLin to have
additional properties of malleability and strong WI with respect to specific dis-
tributions. We prove that the proof system is malleable and we prove that strong
WI holds under a new assumption on bilinear groups: DLIN with Leakage. We
describe the corresponding bilinear assumption in Sect. 5.3.

5.1 Randomizable Commitment Scheme

Definition 9 (Randomizable Commitment Scheme). A Randomizable com-
mitment scheme for message space M consists of PPT algorithms COM =
(C.Setup,C.Commit,C.Rand) with the following descriptions and properties:

pp ← C.Setup(1λ): On input the security parameter, the setup algorithm outputs
public parameters pp.

com = C.Commit(pp, b; o): Using the public parameters pp, the commit algorithm
produces commitment com to message b ∈ {0, 1} using randomness o ←
{0, 1}p(λ) for some polynomial p. We will refer to o as “opening” for the
commitment com.

com′ = C.Rand(pp, com; o′): On input parameters pp, commitment com, random-
ness o′, C.Rand outputs a randomized commitment com′ to same value.

We require the following properties from the commitment scheme:

Perfectly Binding: For all (m0,m1) ∈ M such that m0
= m1 and for all
o0, o1 ∈ {0, 1}poly(λ)

Pr[pp ← C.Setup(1λ) : C.Commit(pp,m0; o0) = C.Commit(pp,m1; o1)] = 0

Computationally Hiding: Let pp ← C.Setup(1λ). For all (m0,m1) ∈ M and
o0, o1 ← {0, 1}poly(λ), (

C.Commit(pp,m0; o0)
) ≈c

(
C.Commit(pp,m1; o1)

)

Perfect Randomizability: Let pp ← C.Setup(1λ). There exists an efficient
function fcom such that for any randomness o, the following holds:

– For every o′ ∈ {0, 1}poly(λ), C.Rand(pp,C.Commit(pp,m; o); o′) =
C.Commit(pp,m; s) where s = fcom(o, o′).

– If o′ is chosen uniformly at random, then fcom(o, o′) is uniformly
distributed.

376 P. Ananth et al.

We now describe additional properties that we require from our commitment
scheme for our FH NIZK construction:

– Additive Homomorphism: We require that if c1 and c2 are commitments
to m1 and m2 respectively, then there exists an efficient function fadd such
that c = fadd(c1, c2) is a commitment to (m1 + m2).

– Perfect Equivocation: There exists a PPT algorithm C.Setup′ and a poly-
nomial time algorithm C.Equivocate such that

• C.Setup′ on input the security parameter, outputs pp′, such that

{pp ← C.Setup(1λ) : pp} ≈c {pp′ ← C.Setup′(1λ) : pp′}.

• Fix any rpp ∈ {0, 1}poly(λ), any m,m′ ∈ M and any randomness o ∈
{0, 1}poly(λ). Let pp′ = C.Setup′(1λ; rpp) and c = C.Commit(pp′,m; o).
Algorithm C.Equivocate on input (pp′, rpp, c, o,m′) outputs o′ such that
c = C.Commit(pp′,m′; o′). Also, for truly random o, (c, o′) is dis-
tributed identically to (c′′, o′′) where o′′ is chosen at random and c′′ =
C.Commit(pp′,m′; o′′).

Note that the parameters output by C.Setup(1λ) are binding and the param-
eters output by C.Setup′(1λ) are hiding.

We will denote a randomizable commitment which is also additively homo-
morphic (aH) and equivocable (E) as described above, by a RaHE-commitment
scheme.

Remark 1. We will denote by 1 and 0 the canonical commitments to 1, 0 respec-
tively, namely the commitments computed with randomness o = 0. Given such
a commitment it is possible to verify, that the commitment is indeed to 0 or 1.

Additional Functionalities for FH NIWI. In our FH NIWI construction,
we use a RaHE-commitment scheme which has additional functionalities
(OutParam,ValidParam,RParam,ChangeCom) with properties described below:

– Outputting hiding parameters: The deterministic algorithm OutParam
takes as input parameters pp0 and outputs pp1 such that for all rpp, if pp0 =
C.Setup(1λ; rpp), then pp1 = C.Setup′(1λ; rpp).

– Verifying if two parameters are valid: The algorithm ValidParam is
an efficient predicate that outputs 1 if pp0 ∈ C.Setup(1λ) and pp1 =
OutParam(pp0). It outputs 0 if both parameters are hiding, namely if
pp0, pp1 ∈ C.Setup′(1λ).

– Randomization of parameters: The RParam algorithm takes as input
parameters pp, randomness r′

pp, and outputs new parameters pp′ such that
for all rpp and for pp = C.Setup(1λ; rpp), the following properties hold:

• There exists an efficient function fpp: fpp(rpp, r′
pp) = σ and pp′ =

RParam(pp; r′
pp) = C.Setup(1λ;σ).

• RParam(OutParam(pp); r′
pp) = OutParam(RParam(pp; r′

pp)).

Fully Homomorphic NIZK and NIWI Proofs 377

– Transformation of commitments with respect to new parameters:
The ChangeCom algorithm takes in parameters pp, randomness r′

pp, commit-
ment c, and outputs commitment c′ to the same value, with respect to the
parameters pp′ = RParam(pp; r′

pp).

Proposition 1. Assuming DLIN, there exists an additively homomorphic ran-
domizable commitment scheme as per Definition 9.

5.2 Proofs of Linearity

In this section we describe the main ingredient for our fully homomorphic proofs,
which is a NIWI proof system with additional properties for the parameterized
language LLin[pp].

Definition 10 (Linear Tuples). Let (p,G,GT , e, gp) = G(1λ) and let f, h, g
be any three generators of G. A tuple A = (fa1 , ha2 , ga3) is said to be linear
with respect to (f, h, g) if a1 + a2 = a3.

Before describing the parameterized language LLin[pp], we describe the corre-
sponding setup algorithm for the parameters of the language, given by Lin.Setup.

Lin.Setup(1λ): Compute G(1λ) = (p,G,GT , e, gp). Choose at random
x, y, z ← Z

∗
p. Compute f = gx

p , h = gy
p , g = gz

p . Output pp =
[p,G,GT , e, gp, f, h, g].

We abuse notation and let pp denote the output of Lin.Setup as well as the
output of C.Setup. Note that pp ← Lin.Setup(1λ) is a subset of pp ← C.Setup(1λ).

We now define the language LLin[pp] where pp ← Lin.Setup(1λ). LLin[pp] is
the language consisting of a pair of tuples such that one of them is linear. It is
defined as follows:

LLin[pp] =
{(

A,B
) | ∃ (w1, w2, w3)

(
(w1 + w2 = w3

) ∧(
A = (fw1 , hw2 , gw3) ∨ B = (fw1 , hw2 , gw3)

)}

NIWI Proof from GOS. We first describe the NIWI proof (Lin.Prove, Lin.
Verify) for LLin[pp] from GOS [21]:

Lin.Prove(pp, (A1, A2, A3), (B1, B2, B3), (a1, a2, a3)): Without loss of generality,
let (a1, a2, a3) be such that (A1, A2, A3) = (fa1 , ha2 , ga3) and a1 + a2 = a3.
Choose t

$← Z
∗
p and output proof Π which consists of the following matrix:

[
π11 = Ba1

1 π12 = Ba1
2 h−t π13 = Ba1

3 g−t

π21 = Ba2
1 f t π22 = Ba2

2 π23 = Ba2
3 gt

]

Lin.Verify(pp, (A1, A2, A3), (B1, B2, B3),Π):
– Compute π31 = π11π21 and π32 = π12π22 and π33 = π13π23.

378 P. Ananth et al.

– Check e(A1, B1) = e(f, π11), e(A2, B2) = e(h, π22), e(A3, B3) = e(g, π33).
– Finally check e(A1, B2)e(A2, B1) = e(f, π12)e(h, π21),

e(A2, B3)e(A3, B2) = e(h, π23)e(g, π32) and e(A1, B3)e(A3, B1) =
e(f, π13)e(g, π31).

Proposition 2 ([21]). Assuming DLIN, the proof system described above is a
perfectly sound witness indistinguishable proof system for the language LLin[pp]
(as per Definition 3).

Remark 2. If Π = [π11, . . . , π33] is a valid proof for ((A1, A2, A3),
(B1, B2, B3)) ∈ LLin[pp], then Π−1 = [π−1

11 , . . . , π−1
33] is a valid

proof for ((A−1
1 , A−1

2 , A−1
3), (B1, B2, B3)) ∈ LLin[pp] and for ((A1, A2, A3),

(B−1
1 , B−1

2 , B−1
3)) ∈ LLin[pp].

GOS [21] provided a NIWI proof for LLin[pp] as described above. In our work,
we need the NIWI proof system to satisfy two additional properties: The first
is malleability with respect to randomization, namely given a tuple (A,B) ∈
LLin[pp] with NIWI proof Π, it is possible to randomize (A,B) to a new tuple
(A′,B′) ∈ LLin[pp] and maul the proof Π to be proof Π ′ with respect to (A′,B′).

As a second property, we require that the proof system satisfies strong witness
indistinguishability with respect to specific distributions (which we describe later
in the section).

Malleable Proofs for LLin. We now show that (Lin.Prove, Lin.Verify) is mal-
leable with respect to the transformation Lin.T = (Lin.Transform, Lin.WitTrans)
defined as follows:

Lin.Transform(pp,A,B; (r, s)) �
(
(A1f

r1 , A2h
r2 , A3g

r1+r2), (B1f
s1 , B2h

s2 , B3g
s1+s2)

)

where pp = [p,G,GT , e, gp, f, h, g], A = (A1, A2, A3) and B = (B1, B2, B3).

Lin.WitTrans(pp, (A,B), (w1, w2, w3); (r1, r2, s1, s2)) � (w1 + z1, w2 + z2, w3 + z1 + z2)

(z1, z2) = (r1, r2) if A = (fw1 , hw2 , gw3) else (z1, z2) = (s1, s2) if B = (fw1 , hw2 , gw3)

Mauled proof for Lin.Transform(pp,A,B, (r1, r2, s1, s2)) = (A1f
r1 , A2h

r2 ,
A3g

r3), (B1f
s1 , B2h

s2 , B3g
s3) is given by Lin.Maul(pp, (A,B), (r1, r2, s1, s2),Π):

Choose t ← Z
∗
p, and output a proof Π ′ consisting of the following matrix:

[
π′
11 = π11A

s1
1 Br1

1 fr1s1 π′
12 = π12A

s1
2 Br1

2 hr1s2−t π′
13 = π13A

s1
3 Br1

3 gr1s3−t

π′
21 = π21A

s2
1 Br2

1 fr2s1+t π′
22 = π22A

s2
2 Br2

2 hr2s2 π′
23 = π23A

s2
3 Br2

3 gr2s3+t

]

Proposition 3. Assuming DLIN, the proof system (Lin.Prove, Lin.Verify,
Lin.Maul) is a malleable NIWI for LLin[pp] as per Definition 5, with respect to
transformation Lin.T = (Lin.Transform, Lin.WitTrans).

Remark 3. We denote by Lin.Transform(pp, (A,B), (r1, r2)) the transformation
given by Lin.Transform(pp, (A,B), (r1, r2, r1, r2)).

Fully Homomorphic NIZK and NIWI Proofs 379

Strong NIWI for LLin. For our FH NIWI construction, we require that the
NIWI proofs for (A,B) ∈ LLin[pp] satisfy strong witness indistinguishability
with respect to distributions D0(pp),D1(pp) for pp ← Lin.Setup(1λ). For every
b ∈ {0, 1}, distribution Db(pp) is defined as follows:

Parse pp = [p,G,GT , e, gp, f, h, g]. Choose a1, a2 ← Z
∗
p, let a3 = a1 + a2. Let

Ab = (fa1 , ha2 , ga3−b) and let Bb = (fa1 , ha2 , ga3−b+1). Output (Ab,Bb).
Recall that (Lin.Prove, Lin.Verify, Lin.Maul) is said to be strong NIWI with

respect to distributions D0(pp),D1(pp) (as per Definition 6), if the following
holds:

{pp, (A0,B0), π0} ≈ {pp, (A1,B1), π1}
where (Ab,Bb) ← Db(pp) and where πb ← Lin.Prove(pp,Ab,Bb, (a1, a2, a3)).

5.3 Assumption: DLIN with Leakage

In this subsection, we state our new assumption on bilinear maps: DLIN with
Leakage.
Let pp ← Lin.Setup(1λ) and parse pp = [p,G,GT , e, f, h, g]. DLIN with Leakage
states that D′

0(1
λ) ≈c D′

1(1
λ) where D′

b(1
λ) is as follows:

– D′
0(1

λ) : Choose R,S, t ← Z
∗
p and output pp along with the following matrix:

⎡
⎣ fR hS gR+S

fR2
hRS−t gR(R+S+1)−t

fRS+t hS2
gS(R+S+1)+t

⎤
⎦

– D′
1(1

λ) : Choose R,S, t ← Z
∗
p and output pp along with the following matrix:

⎡
⎣ fR hS gR+S−1

fR2
hRS−t gR(R+S−1)−t

fRS+t hS2
gS(R+S−1)+t

⎤
⎦

Proposition 4. The DLIN with Leakage assumption is secure in the generic
group model.

Proposition 5. Assuming DLIN with Leakage, (Lin.Prove, Lin.Verify) is strong
NIWI for LLin[pp] with respect to D0,D1 (as described in Sect. 5.2).

6 Fully Homomorphic NIZK Proofs

We use the following ingredients for our FH NIZK construction:

– Randomizable commitment scheme as per Definition 9, which is additively
homomorphic and equivocable, denoted by

(C.Setup,C.Commit,C.Rand)

380 P. Ananth et al.

– Malleable NIWI proof system for Lcom[pp] with respect to transformation
Bit.Transform, denoted by

(Bit.Prove,Bit.Verify,Bit.Maul) where

Lcom[pp] = {c | ∃ (b, o) s.t. c = C.Commit(pp, b; o) ∧ b ∈ {0, 1}}
for pp ← C.Setup(1λ), and transformation Bit.T = (Bit.Transform,
Bit.WitTrans) is given by Bit.Transform(pp, c, o′) = C.Rand(pp, c; o′) and
Bit.WitTrans(pp, c, (b, o), o′) = fcom(pp, o, o′) where o′ is fresh randomness.

– Malleable NIWI proof system for LN[pp] with respect to transformation
N.Transform, denoted by

(N.Prove,N.Verify,N.Maul) where

LN[pp] =
{{ci}i∈[3] | ∃ {bi, oi}i∈[3] s.t. ci = C.Commit(bi; oi) ∧

(b3 = b1 ∧̄ b2) ∧ {bi ∈ {0, 1}}i∈[3]

}

for pp ← C.Setup(1λ), and the transformation: N.T = (N.Transform,
N.WitTrans) is given by N.Transform(pp, {ci}i∈[3], {o′

i}i∈[3]) = {c′
i}i∈[3]

and N.WitTrans(pp, {ci, bi, oi, o
′
i}i∈[3]) = fcom(pp, o, o′) where c′

i =
C.Rand(pp, ci, o

′
i) for fresh randomness (o′

1, o
′
2, o

′
3) and where o = o1 + o2 +

2o3 − 2 and o′ = o′
1 + o′

2 + 2o′
3 − 2.

We now describe our construction:

NIZK.Setup(1k): Output pp ← C.Setup(1λ).
NIZK.Prove(CRS, (C, out),w): Let C : {0, 1}t → {0, 1} consist of n wires

(including input wires and excluding output wire), one output wire and
m NAND gates. Let w1, . . . , wn, wout be the boolean values induced by
w ∈ {0, 1}t on all (input and internal) the wires of circuit C and where
wout is the output wire (wout = out).
1. For wire i, commit to the value wi as follows: Choose oi at random

and compute
ci = C.Commit(wi; oi).

For the output wire wout, use canonical commitments so that cout = 1
if out = 1 and cout = 0 if out = 0.

2. For each wire i (except output), generate a proof that commitment
ci commits to a bit. Namely, compute

πi
bit = Bit.Prove(pp, ci, oi)

where oi is the opening for commitment ci.

Fully Homomorphic NIZK and NIWI Proofs 381

3. For each NAND gate j, let j1, j2 be the input wires and j3 be the
output wire with corresponding commitments cji

for i ∈ [3]. Compute

πj
gate = N.Prove(pp, {cji

}i∈[3], {oji
}i∈[3]).

Finally output

Π =
[
{ci}n

i=1, {πi
bit}n

i=1, {πj
gate}m

j=1, cout
]

NIZK.Verify(CRS, (C, out),Π): Parse Π =[
{ci}n

i=1, {πi
bit}n

i=1, {πj
gate}m

j=1, cout
]
.

1. For each wire i ∈ [n], check whether Bit.Verify(pp, ci, π
i
bit) = 1. Else

output 0.
2. For each NAND gate j ∈ [m], with input wires j1, j2 and output wire

j3 and with corresponding commitments cji
, for i = 1, 2, 3. Check

that N.Verify(CRS, {cji
}3i=1, π

j
gate) = 1. Else output 0.

3. Finally check that πout = 1 for out = 1 and πout = 0 for out = 0.
NIZK.Rand(CRS, (C, out),Π)): Parse Π =

[{ci}n
i=1, {πi

bit}n
i=1, {πj

gate}m
j=1, cout].

1. For each wire i, choose o′
i at random and compute c′

i =
C.Rand(pp, ci, o

′
i).

2. Compute πi′
bit ← Bit.Maul

(
pp, ci, o

′
i, π

i
bit

)
.

3. For each NAND gate j, with input wires j1, j2 and output wire j3,
compute πj′

gate ← N.Maul(pp, {{cji
, o′

ji
}i∈[3], π

j
gate).

4. Finally keep the output proof cout same as before. Output

Π ′ =
[
{c′

i}n
i=1, {πi′

bit}n
i=1, {πj′

gate}m
j=1, cout

]

NIZK.Eval(CRS, {(Ci, bi,Πi)}k
i=1, C

′):
1. Compute (C, out∗) = Compose({(Ci, bi,Πi)}k

i=1, C
′).

2. Let πi
out ∈ Π ′

i be the gate consistency proof for the output gate outi

of circuit Ci for i ∈ [k]. Compute Π̂i as the proof Π ′
i without the

proof πi
out, namely Π̂i = Π ′

i \ πi
out.

3. Compute a proof for C ′ with witness (b1, . . . , bk) by computing: Π∗ ←
NIZK.Prove(CRS, (C ′, out∗), (b1, . . . , bk)) where out∗ = C ′(b1, . . . , bk).

4. For each output gate outi for Ci, i ∈ [k], let i1, i2 be the input wires
to the gate and i3 be the output wire (with value bi).
Let o′

i3
be the randomness used in step 2 such that c′

i3
∈

Π ′ and c′
i3

= C.Commit(pp, bi, o
′
i3

). Compute (πi
out)

′ =
N.Maul(pp, {{c′

ji
, o′

ji
}i∈[3], π

i
out) where o′

ik
= 0 for k ∈ [2].

5. Let Π =
[
Π̂1, . . . , Π̂k,Π∗, (π1

out)
′, . . . , (πk

out)
′]. Compute Π ′ ←

NIZK.Rand(CRS, (C, out∗),Π). Finally output (C, out∗,Π ′).

382 P. Ananth et al.

Theorem 3. Assuming DLIN, the construction as described above is a fully
homomorphic NIZK proof system for LU as per Definition 7.

We refer the reader to the full version [4] for a proof of Theorem 3.

7 Fully Homomorphic NIWI Proofs

Our first ingredient for FH NIWI is (C.Setup,C.Commit,C.Rand), a RaHE-
commitment scheme with the additional functionalities (OutParam,ValidParam,
RParam,ChangeCom,ValidInter, InterParam) as defined in Sect. 5.1.
Our second ingredient is a malleable proof system (TC.Prove,TC.Verify,
TC.Maul) for the language LTC defined as follows:

LTC =
{

(c1, c2, pp1, pp2) | ∃ (b, pp∗, o1, o2) s.t.

{ci = C.Commit(ppi, b; oi)}i∈[2] ∧ (
ValidInter(pp1, pp2, pp∗) = 1

)}

Recall that pp∗ is the intermediate parameter between pp1, pp2. It is a hard-
to-compute function of the parameters which we require as an additional witness
for the language.

The malleability is with respect to the transformation TC.T =
(TC.Transform,TC.WitTrans). TC.Transform takes as input an instance
(c1, c2, pp1, pp2), randomness (r1pp, r

2
pp, o1, o2) and outputs transformed instance

(c′
1, c

′
2, pp

′
1, pp

′
2).

In detail, TC.Transform on input (c1, c2, pp1, pp2), does the following:

– Randomize the parameters as follows: For all i ∈ [2], compute pp′
i =

RParam(ppi; ri
pp).

– Change the commitment ci to be with respect to the new parameters pp′
i, by

computing zi = ChangeCom(ppi, ci; ri
pp) for all i ∈ [2].

– Randomize the commitments as follows: For all i ∈ [2], compute c′
i =

C.Rand(pp′
i, zi; oi). Output (c′

1, c
′
2, pp

′
1, pp

′
2).

Correspondingly,

TC.WitTrans
(
(c1, c2, pp1, pp2), (b, pp∗, o1, o2), (r

1
pp, r

2
pp, o

′
1, o

′
2)

)
= (b, p̂p, r1, r2)

where p̂p = InterParam(pp1, pp2, r1pp) and where for every i ∈ [2], ri =
fcom(oi, o

′
i). Recall that InterParam and fcom are as per the definition of the

RaHE-commitment scheme described in Sect. 5.1.
Let us look at the soundness and secrecy requirements from this proof system.

We weaken the soundness requirement of our NIWI proof system and require a
stronger secrecy property from the proof system. We now describe both of these
properties:

Fully Homomorphic NIZK and NIWI Proofs 383

1. Weak Soundness: Rather than requiring soundness to hold for every
(c1, c2, pp1, pp2) ∈ LTC, we only require soundness to hold for all instances
for which pp1, pp2 ∈ C.Setup(1λ) (when both parameters are binding).
Note that our construction for NIWI proof of LTC achieves standard sound-
ness, however for the FH NIWI construction it suffices for the proof system
to have weak soundness.

2. Strong Secrecy: We require that the distributions DBind and DHide (described
below) are computationally indistinguishable.

– DBind(1λ) : Choose rpp at random and compute pp = C.Setup(1λ; rpp).
Compute pp′ = OutParam(pp). For every d ∈ {0, 1}, do the following:

• Choose od, o
′′
d at random and compute cd = C.Commit(pp, d ; od),

c′
d = C.Commit(pp′, d; o′′

d).
• Compute Πd

TC ← TC.Prove((cd, c′
d, pp, pp

′), (d, pp, od, o
′′
d)).3

• Compute o′
d = C.Equivocate(pp′, rpp, c′

d, o
′′
d , 1 − d).

Output
(
pp, pp′, c0, c′

0, c1, c
′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π1

TC

)
.

– DHide(1λ) : Choose rpp at random and compute pp = C.Setup′(1λ; rpp).
Compute pp′ = OutParam(pp). For every d ∈ {0, 1}, do the following:

• Choose o′
d, o

′′
d at random. Compute cd = C.Commit(pp, 1−d ; o′′

d) and
compute c′

d = C.Commit(pp′, 1 − d; o′
d).

• Compute Πd
TC ← TC.Prove((cd, c′

d, pp, pp
′), (1 − d, pp, o′′

d , o′
d)).

• Compute od = C.Equivocate(pp, rpp, cd, o
′′
d , d).

Output
(
pp, pp′, c0, c′

0, c1, c
′
1, o0, o

′
0, o1, o

′
1,Π

0
TC,Π1

TC

)
.

Recall that

LU = {(C, out) | ∃ w such that C(w) = out}.

We will use the following ingredients in our FH NIWI construction:

– A RaHE-commitment scheme (C.Setup,C.Commit,C.Rand) with the
additional functionalities (OutParam,ValidParam,RParam,ChangeCom,
ValidInter, InterParam) as defined in Sect. 5.1.

– Malleable proof system for LTC with weak soundness and strong secrecy,
with respect to the transformation TC.T = (TC.Transform,TC.WitTrans) as
described before, denoted by (TC.Prove,TC.Verify,TC.Maul).

– Malleable NIWI proof system for Lcom[pp] with respect to the transformation
Bit.GenT = (Bit.GenTrans,Bit.GWitTrans).

– Malleable NIWI proof system for LN[pp] with respect to the transformation
N.GenT = (N.GenTrans,N.GWitTrans).

Theorem 4. Assuming the existence of the ingredients as described above, the
following construction ΠFHNIWI is a Fully Homomorphic NIWI proof system as
per Definition 8.
3 Recall that for parameters pp, pp′ such that pp′ = OutParam(pp), pp itself is an

intermediate parameter between pp, pp′.

384 P. Ananth et al.

We instantiate the first, third and fourth ingredients from DLIN and instan-
tiate the second ingredient from DLIN with Leakage. This gives the following
corollary:

Corollary 1. Assuming DLIN with Leakage, the following construction ΠFHNIWI

is a Fully Homomorphic NIWI proof system as per Definition 8.

We refer the reader to the full version [4] for a proof of Theorem 4 and
instantiation of ingredients.

References

1. Acar, T., Nguyen, L.: Homomorphic proofs and applications (2011). https://www.
microsoft.com/en-us/research/wp-content/uploads/2011/03/rac.pdf

2. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: IACR Cryptology ePrint Archive (2018)

3. Ananth, P., Cohen, A., Jain, A.: Cryptography with updates. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 445–472. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_15

4. Ananth, P., Deshpande, A., Kalai, Y.T., Lysyanskaya, A.: Fully homomorphic
NIZK and NIWI proofs. IACR Cryptology ePrint Archive 2019/732 (2019).
https://eprint.iacr.org/2019/732

5. Ananth, P., Goyal, V., Pandey, O.: Interactive proofs under continual memory
leakage. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
164–182. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1_10

6. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. IACR Cryp-
tology ePrint Archive 2005/365 (2005). http://eprint.iacr.org/2005/365

7. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_7

8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for snarks and proof-carrying data. In: Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing, pp. 111–120. ACM (2013)

9. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

10. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_10

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: optimizations and applications. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2105–2122. ACM
(2017)

12. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 94.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

13. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

https://www.microsoft.com/en-us/research/wp-content/uploads/2011/03/rac.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/03/rac.pdf
https://doi.org/10.1007/978-3-319-56614-6_15
https://eprint.iacr.org/2019/732
https://doi.org/10.1007/978-3-662-44381-1_10
https://doi.org/10.1007/978-3-662-44381-1_10
http://eprint.iacr.org/2005/365
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-20465-4_10

Fully Homomorphic NIZK and NIWI Proofs 385

14. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems
and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_18

15. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
complex unary transformations and delegatable anonymous credentials (2013).
http://eprint.iacr.org/2013/179

16. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Succinct malleable
NIZKs and an application to compact shuffles. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 100–119. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2_6

17. Dwork, C., Naor, M.: Zaps and their applications. In: 2000 41st Annual Symposium
on Foundations of Computer Science, Proceedings, pp. 283–293. IEEE (2000)

18. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis. International
Journal of Distributed Sensor Networks, Stanford University (2009)

19. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York (2000)

20. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Proceedings of the Forty-seventh Annual ACM
Symposium on Theory of Computing, pp. 469–477. ACM (2015)

21. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175_6

22. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 733–765. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_25

23. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

24. Naveh, A., Tromer, E.: PhotoProof: cryptographic image authentication for any set
of permissible transformations. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 255–271. IEEE (2016)

25. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

26. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1

https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
http://eprint.iacr.org/2013/179
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/978-3-540-78524-8_1

Lower and Upper Bounds
on the Randomness Complexity
of Private Computations of AND

Eyal Kushilevitz1, Rafail Ostrovsky2, Emmanuel Prouff3,5, Adi Rosén4(B),
Adrian Thillard5, and Damien Vergnaud3

1 Department of Computer Science, Technion, Haifa, Israel
eyalk@cs.technion.ac.il

2 Department of Computer Science and Department of Mathematics,
UCLA, Los Angeles, USA

rafail@cs.ucla.edu
3 Laboratoire d’informatique de Paris 6, LIP6, Sorbonne Université, CNRS,

Paris, France
damien.vergnaud@lip6.fr

4 CNRS and Université Paris Diderot, Paris, France
adiro@irif.fr

5 ANSSI, Paris, France
{emmanuel.prouff,adrian.thillard}@ssi.gouv.fr

Abstract. We consider multi-party information-theoretic private pro-
tocols, and specifically their randomness complexity. The randomness
complexity of private protocols is of interest both because random bits
are considered a scarce resource, and because of the relation between that
complexity measure and other complexity measures of boolean functions
such as the circuit size or the sensitivity of the function being com-
puted [12,17].

More concretely, we consider the randomness complexity of the basic
boolean function and, that serves as a building block in the design of
many private protocols. We show that and cannot be privately com-
puted using a single random bit, thus giving the first non-trivial lower
bound on the 1-private randomness complexity of an explicit boolean
function, f : {0, 1}n → {0, 1}. We further show that the function and, on
any number of inputs n (one input bit per player), can be privately com-
puted using 8 random bits (and 7 random bits in the special case of n = 3

Research of E. Kushilevitz is supported by ISF grant 1709/14, BSF grant 2012378, NSF-
BSF grant 2015782, and a grant from the Ministry of Science and Technology, Israel,
and the Department of Science and Technology, Government of India. Research of
R. Ostrovsky is supported in part by NSF-BSF grant 1619348, DARPA SafeWare sub-
contract to Galois Inc., DARPA SPAWAR contract N66001-15-1C-4065, US-Israel BSF
grant 2012366, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, JP Morgan Chase Faculty Award, and Lockheed-Martin Corporation Research
Award. The views expressed are those of the author and do not reflect the position of
the Department of Defense or the U.S. Government.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 386–406, 2019.
https://doi.org/10.1007/978-3-030-36033-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_15

Randomness Complexity of Private Computations of AND 387

players), improving the upper bound of 73 random bits implicit in [17].
Together with our lower bound, we thus approach the exact determina-
tion of the randomness complexity of and. To the best of our knowledge,
the exact randomness complexity of private computation is not known
for any explicit function (except for xor, which is trivially 1-random, and
for several degenerate functions).

1 Introduction

A multi-party private protocol for computing a function f is a distributed proto-
col that allows n ≥ 3 players Pi, for 0 ≤ i ≤ n− 1, each possessing an individual
secret input xi, to compute the value of f(x) in a way that does not reveal
any “unnecessary” information to any player.1 The protocol proceeds in rounds,
where in each round each player sends a message to any other player, over a
secure point-to-point channel. The privacy property of such protocol means that
no player can learn “anything” (in an information-theoretic sense) from the exe-
cution of the protocol, except what is implied by the value of f(x) and its own
input. In particular, the players do not learn anything about the inputs of the
other players. Private computation in this setting was the subject of consider-
able research, see e.g., [1,3,6,7,12,16,17]. In addition to its theoretical interest,
this setting constitutes the foundation for many cryptographic applications (in
information theoretic settings) such as electronic secret ballot.

Randomness is necessary in order to perform private computations involving
more than two players (except for the computation of very degenerate func-
tions). That is, the players must have access to (private) random sources. As
randomness is regarded as a scarce resource, methods for saving random bits
in various contexts have been suggested in the literature, see, e.g., [14,20] for
surveys. Thus, an interesting research topic is the design of randomness-efficient
private protocols, and the quantification of the amount of randomness needed to
perform private computations of various functions and under various constraints.
This line of research has received considerable attention, see, e.g.,
[4,5,11,15–17,19,21].

As in most of the work on the randomness complexity of private compu-
tations, we concentrate here on the computation of boolean functions, where
the input xi of each player is a single input bit. Previous work on the ran-
domness complexity of private computations revealed that there is a tradeoff
between randomness and time (i.e., number of communication rounds) for the
private computation of xor [19], or gave lower bounds on the number of rounds
necessary to privately compute any function, in terms of the sensitivity of the
function and the amount of randomness used [12]. However, if one is allowed an
arbitrary number of rounds for the computation then, prior to the present work,
there were no known lower bounds on the number of random bits necessary
for private protocols computing explicit boolean functions (except that some

1 The two-party case, n = 2, is known to be qualitatively different [7].

388 E. Kushilevitz et al.

randomness is indeed necessary, i.e., no deterministic private protocol exists).2

In fact, Kushilevitz et al. [17] gave a relation between the number of random bits
necessary to privately compute a function f : {0, 1}n → {0, 1}, and the Boolean
circuit size necessary to compute f ; it is proved, among other things, that the
class of boolean functions that have O(1)-random, 1-private, protocols is equal
to the class of boolean functions that have linear size circuits. This, perhaps
surprising, connection to circuit size explains the difficulty of proving ω(1) lower
bounds on the number of random bits necessary for the private computation of
any explicit boolean function f , as such a result would imply superlinear lower
bounds on the circuit size of f – a notoriously difficult problem.3 Additional
connections between the randomness complexity of the private computation of a
function to other complexity measures, such as its sensitivity, have been shown
in, e.g., [5,18,19].

This leaves the interesting, and perhaps feasible, task to determine the exact
randomness complexity of the private computation of boolean functions of lin-
ear circuit size, where each player has a single input bit. This class of functions
includes quite a few interesting functions f and, in particular, the basic func-
tions xor and and. Indeed, the functions xor and and serve as basic building
blocks for private protocols that rely on the boolean-circuit representation of
f (more generally, addition and multiplication are used as building blocks for
protocols that use the arithmetic-circuit representation of f). In the context of
lower bounds for communication complexity of private protocols, these building
blocks also serve as the center of analysis (as a first step for a more general
understanding), see, e.g., [8–10].

It is known that xor can be computed privately using a single random bit,
for any number of players, and this is optimal since no deterministic private
multiparty protocol can exist (see [19]). To the best of our knowledge, there is
no exact determination of the randomness complexity of private computation
for any other explicit function. Furthermore, prior to the present paper, there
was no lower bound showing for any explicit boolean function that it cannot

2 Recently, a lower bound on the number of random bits necessary for the private
computation of the Disjointness function was obtained [21]. However, for the Dis-
jointness function each player has m ≥ 1 bits of input. Furthermore, the obtained
lower bound is of Ω(m), and the hidden constant is less than 1. Thus, for the special
case of and (Disjointness with m = 1), the lower bound of [21] only implies, in our
context, the trivial claim that and cannot be privately computed by a deterministic
protocol.

3 When the protocol has to be resilient against coalitions of t > 1 players (so called
t-private protocols) several ω(1) lower bounds on the number of random bits neces-
sary for private protocols for explicit functions have been proved. Kushilevitz and
Mansour [16] proved that any t-private protocol for xor requires at least t random
bits. Blundo et al. [5] gave lower bounds for two special cases. Namely, they proved
that if t = n − c, for some constant c, then Ω(n2) random bits are necessary for
the private computation of xor, and if t ≥ (2 − √

2)n, then Ω(n) random bits are
necessary. Gal and Rosén [13] proved that Ω(log n) random bits are necessary for
2-private computation of xor.

Randomness Complexity of Private Computations of AND 389

be privately computed (in the natural setting that we consider here, i.e., where
each player has one input bit) using a single random bit.

In this paper, we give the first such lower bound, showing that the func-
tion and cannot be privately computed using a single random bit.4 We further
make the first step towards determining the exact randomness complexity of the
private computation of and by showing an improved upper bound of 8 on the
number of random bits necessary for such computation, and we strengthen this
upper bound to 7 for the special case of 3 players.

The rest of the paper is organized as follows. In Sect. 2, we define the model
and the complexity measures that we consider. In Sect. 3, we prove that the
private computation of and cannot be performed with a single random bit. In
Sect. 4, we give a number of upper bounds on the randomness complexity of
private computation of and.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be any Boolean function. A set of n players Pi (0 ≤
i ≤ n − 1), each possessing a single input bit xi (known only to Pi), collaborate
in a protocol to compute the value of f(x). The protocol operates in rounds.
In each round each player may toss some (fair) random coins, and then sends
messages to the other players (messages are sent over private channels so that
other than the intended receiver no other player can see them). After sending
its messages, each player receives the messages sent to it by the other players
in the current round. Without loss of generality (because we are not interested
in this paper in the number of rounds), we assume that the messages sent by
the players consist of single bits. In addition, each player locally outputs the
value of the function at a certain round. We say that the protocol computes the
function f : {0, 1}n → {0, 1} if for every input x ∈ {0, 1}n, and for any outcome
of all coin tosses, the output produced by each player is always f(x) (i.e., perfect
correctness).

To formally define a protocol we first define the notion of a view of a player.

Definition 1 (View). The view of player Pi at round t ≥ 1, denoted V t
i , con-

sists of the input bit to player Pi, i.e. xi, the messages received by Pi in rounds 1
to t − 1, and the results of the coin tosses performed by player Pi in rounds 1 to
t. Let Vt

i be the set of possible views of player Pi at round t. Let V̂ t
i be the view

V t
i without the coins tossed at round t, and let V̂t

i be the set of possible values
of V̂ t

i .

Definition 2 (Protocol). A protocol consists of a sequence of rounds, where
each round t ≥ 1 is formally defined by the following functions:

4 In a different setting, namely, where there are two input players, Alice and Bob,
and a third output player, Charlie, Data et al. [11] also study the randomness (and
communication) complexity of secure computation (in particular of the and function;
see [11, Thm. 11]).

390 E. Kushilevitz et al.

– St,�
i : (V̂t

i × {0, 1}�−1) → {stop, toss}, for � ≥ 1, defining if another random
coin is to be tossed by player Pi, given V̂t

i and the values of the � − 1 random
coins tossed so far by player Pi in round t.

– mt
i,j : Vt

i → {0, 1}, for 0 ≤ i, j ≤ n − 1, defining the message Pi sends to Pj

at round t.
– Ot

i : Vt
i → {0, 1,⊥}, for 0 ≤ i ≤ n − 1, defining if and what value player Pi

outputs at round t. Since the views are increasing, we can require that each
player outputs a non-null output only in one round.

Sometimes it is more convenient to model the coin tossing done by each
player as a set of binary random tapes Ri, each Ri being provided to player Pi.
The number of random coins tossed by player Pi is the number of random bits
it reads from its random tape.

We denote by ri a specific random tape provided to player Pi, by r =
(r1, . . . , rn) the vector of random tapes of all the players, and by R =
(R1, . . . , Rn) the random variable for these tapes. Note that if we fix r, we
obtain a deterministic protocol.

Definition 3 (Randomness Complexity). A d-random protocol is a protocol
such that, for any input assignment x, the total number of coins tossed by all
players in any execution is at most d.

Our main question in this paper is what is the randomness complexity of
the best private protocol (in terms of randomness complexity) for the boolean
function and.

Informally, privacy with respect to player Pi means that player Pi cannot
learn anything (in particular, the inputs of other players) from the messages
it receives, except what is implied by its input bit, and the output value of
the function f being computed.5 Formally, denote by ci a specific sequence of
messages received by Pi, and by Ci the random variable (depending also on R)
for the sequence of messages received by Pi. We define:

Definition 4 (Privacy). A protocol A for computing a function f is private
with respect to player Pi if, for any two input vectors x and y such that f(x) =
f(y) and xi = yi, for any sequence of messages ci, and for any random tape ri

provided to Pi,
Pr[Ci = ci|ri, x] = Pr[Ci = ci|ri, y],

where the probability is over the random tapes of all other players.
A protocol is said to be private if it is private with respect to all players.

5 In the literature, a more general notion of privacy, called t-privacy, is often con-
sidered, where any set of players of size at most t cannot learn anything from the
messages received by all of them. In this paper we consider only 1-privacy, and call
it “privacy” for simplicity.

Randomness Complexity of Private Computations of AND 391

3 Lower Bound

In this section we prove that private computation of and of n bits, n ≥ 3, cannot
be performed with a single random bit. We note that a lower bound on the
number of random bits of private computation for n > 3 does not follow from a
lower bound for n = 3, because, in general, simulating by 3 players a protocol
on n > 3 players may violate the privacy requirement.

Our result for and is in contrast to the situation for the function xor, which
can be computed privately using a single random bit. Our result constitutes, to
the best of our knowledge, the first lower bound that quantifies the amount of
randomness needed to privately compute an explicit boolean function (without
any limitation on the protocol, such as its round complexity).

In the course of this proof, we denote by 1 the all-1 input of length n, and
by eS , for S ⊆ {1, . . . , n}, the input assignment of all 1’s except at the coor-
dinates in S. Specifically, we use ej to denote the vector with 0 at position j
and 1’s elsewhere6 and ei,j to denote the vector with 0’s at positions i, j and 1’s
elsewhere.

Assume, towards a contradiction, that π is a 1-random private protocol for
and. We assume w.l.o.g. that π is in a “canonical form”, that we define as follows:
A protocol is in canonical form if no message m, sent from player Pi to player Pj

at round t, can be inferred from the input xj , the private randomness of player
Pj , and the messages previously received by player Pj (i.e., either received in
round t′ < t, or in round t from a player Pi′ , for i′ < i). In particular, no message
in a protocol in canonical form is a constant message.

Obviously, for π to compute and there must be at least one non-constant
message defined in π. Consider any such message, m, sent in round t = 1 (since
π is in canonical form there must be at least one such message in round t = 1),
say, from player Pi to player Pj . Since the message m is sent in round t = 1,
it can depend only on xi and the random bits tossed by Pi by round t = 1.
To preserve privacy with respect to Pj , the message m has to have the same
distribution when xi = 0 and when xi = 1. Since π is 1-random, the number of
random bits tossed by any single player, in particular Pi, in any execution of the
protocol, is at most 1. It follows that Pr[m = 0] = 1/2, and Pr[m = 1] = 1/2
regardless of the value of xi, thus Pi must toss a random bit by round t = 1
whether xi = 0 or xi = 1. To conclude, there is some player (the sender of m),
w.l.o.g. denote it P0, that regardless of its input, and in any execution, tosses
in π a single random bit, denote it r. Since π is 1-random, no other random bit
is tossed in π in any execution (by any player). Thus, since all messages in π
can depend only on the input bits, xi, 0 ≤ i ≤ n − 1, and the single random
bit r tossed by player P0, we may consider any message sent in π as a sum of
monomials in xi, 0 ≤ i ≤ n − 1, and r. We now analyze some properties of the
(assumed) protocol π.

6 Not to be confused with the j-th unit vector.

392 E. Kushilevitz et al.

Lemma 5. All messages m sent in π are of the form m = r⊕∑
i∈S⊆{0,...,n−1} xi

or m = 1 ⊕ r ⊕ ∑
i∈S⊆{0,...,n−1} xi. No player receives during the execution of π

two (distinct) messages.

Proof. We prove the claim by induction on the round number t ≥ 1, i.e., we prove
that until round t ≥ 1 all messages are of the form m = r ⊕ ∑

i∈S⊆{0,...,n−1} xi

or m = 1 ⊕ r ⊕ ∑
i∈S⊆{0,...,n−1} xi and that no player receives by the end of

round t two (distinct) messages.
For the basis of the induction consider the first round t = 1 and the messages

sent and received in this round. Clearly, a (non-constant) message in the first
round can be sent only by player P0 otherwise it consists of only the input bit
of the sending player (or its negation) and the privacy property will be violated.
Since no message is received before the messages of the first round are sent, the
messages sent by player P0 at round t = 1 are a function of only r and x0.
We argue that such message has therefore to be of the form m = r ⊕ x0 (or
m = 1⊕ r ⊕x0) or of the form m = r (or m = 1⊕ r): since m depends only on r
and x0, the monomials in m can only be 1, x0, r, and rx0. We claim that if the
monomial rx0 appears in the sum representing m then the privacy property is
violated with respect to the player receiving the message, say player Pj . This is
because the possible messages that include rx0 are: rx0, rx0 ⊕ x0 = (r ⊕ 1)x0,
rx0 ⊕x0 ⊕ r = (r ⊕1)(x0 ⊕1)⊕1, and rx0 ⊕ r = r(x0 ⊕1) (and their negations).
Consider the two input assignments e0,j and ej . Observe that the distribution of
each one of these messages on the inputs e0,j and ej is different, which violates
the privacy requirement (“leaking some information” on x0 to Pj). For example,
rx0 is always 0 in e0,j and uniformly distributed in ej . The argument for the
other cases is similar.

It follows that the messages sent in round t = 1 are of the desired form. Since
only player P0 can send messages in round t = 1, it also follows that by the end
of round t = 1 each player receives at most a single message. Thus, the claim
holds for round t = 1.

We now prove the claim for round t > 1, assuming the induction hypothesis
holds for round t − 1. Consider player Pi and the message mt

i,j that it sends in
round t to player Pj . Since this message is computed by player Pi at round t,
it can be expressed as a function of xi, of the single message m that player Pi

receives in some round t′ < t (if such a message exists) and, if i = 0, of the
random bit r. We distinguish between two cases: when i 	= 0, and when i = 0.

When i 	= 0, the message mt
i,j sent by Pi is the sum of a subset of the

monomials 1, xi, m, mxi. If the monomial mxi does not appear in the sum,
then mt

i,j is of the desired form (otherwise mt
i,j is either a messages that can be

inferred by Pj or a message that violates the privacy property with respect to
Pj ; in any case it cannot be part of the protocol.)7

7 By inspection for each of the 8 subsets of 1, xi, and m (represented by {0, 1}3 in the
natural way): (000, 100) - 0, 1: constants, not in protocol; (010, 110) - xi, 1 ⊕ xi:
violates privacy; (001, 101) - m, 1 ⊕ m: of the desired form; (011, 111) - xi ⊕ m,
1 ⊕ xi ⊕ m: of the desired form.

Randomness Complexity of Private Computations of AND 393

On the other hand, we show in the following that any message defined by
any of the 8 sums of monomials that include the monomial mxi violates the
privacy property with respect to Pj , and hence such message cannot be part
of the protocol. By the induction hypothesis m = r ⊕ ∑

k∈S⊆{0,...,n−1} xk (or
1 ⊕ r ⊕ ∑

k∈S⊆{0,...,n−1} xk), for some S. Consider the former form, the latter is
similar. For the message mxi (resp., 1⊕mxi) consider the inputs ei,j and ej and
observe that on the former input the message is always 0 (resp., 1) while on the
latter it is m (resp., 1 ⊕ m), and hence does not exhibit the same distribution
on the two inputs. Similarly, consider the messages mxi ⊕ xi = (m ⊕ 1)xi,
mxi⊕m = m(xi⊕1), and mxi⊕xi⊕m = (m⊕1)(xi⊕1)⊕1 (and their negations),
and observe that the message has different distributions on the inputs ei,j and
ej (in each of the cases, for one of these two inputs the value of the message is
either m or its negation, i.e., the support of the distribution is of size 2, and for
the other input the distribution has support of size 1).

For i = 0, player Pi = P0 has also the random bit r, so the message sent
by P0 at round t to player Pj is the sum of a subset of the monomials 1, x0,
m, mx0, r, rx0, rm, rmxi. But, no message m can be received by player P0

before round t, since any message of the form r ⊕ ∑
k∈S⊆{0,...,n−1} xk (or m =

1 ⊕ r ⊕ ∑
k∈S⊆{0,...,n−1} xk) would either violate the privacy (since P0 knows r),

or would be such that P0 can compute it itself.8 It follows that the message sent
by player P0 at round t is the sum of a subset of the monomials 1, x0, r, rx0.
But, we have proved above (when proving the base case of the induction) that
in this case mt

i,j must be r ⊕ x0 (or 1 ⊕ r ⊕ x0).
We conclude that the messages sent in round t are of the desired form.
Now, assume towards a contradiction that some player Pj receives by the

end of round t two (distinct) messages which, as we proved above, must
be of the desired form. Denote q1 = r ⊕ ∑

i∈S1⊆{0,...,n−1} xi, and q2 =
r ⊕ ∑

i∈S2⊆{0,...,n−1} xi. The two messages received by player Pj are therefore
m1 = q1 (or m1 = 1 ⊕ q1) and m2 = q2 (or m2 = 1 ⊕ q2), for some sets S1

and S2. Consider now Q = m1 ⊕ m2. Observe that Q =
∑

i∈S′⊆{0,...,n−1} xi (or
Q = 1 ⊕ ∑

i∈S′⊆{0,...,n−1} xi) for S′ = S1
S2. If S′ ⊆ {xj} then, since π is
of canonical form, one of the two messages m1 and m2 (the one arriving later)
cannot exist in π. It follows that S′ 	⊆ {xj} and the privacy property is violated
with respect to player Pj , as Q reveals information on the xor of the inputs in
S′.9 A contradiction to π being private.

Therefore, the claim holds for round t. ��
Lemma 6. Consider the protocol π, an arbitrary player Pj and an arbitrary
round t ≥ 1. Then, player Pj cannot compute the function and at the end of
round t.

8 If S = {x0} then P0 can compute the message itself. If there exists a k �= 0, k ∈ S,
consider the two inputs e0, e0,k to see that the privacy property is violated.

9 Formally, consider the two inputs ej,k and ej , for some k ∈ S′, k �= j. These two
inputs agree on xj as well as on the value of the function, but the distributions of
the messages that Pj receives on these two inputs are not identical.

394 E. Kushilevitz et al.

Proof. By Lemma 5, player Pj receives by the end of round t at most a single
message, and this message is of the form m = r ⊕ ∑

i∈S⊆{0,...,n−1} xi or m =
1 ⊕ r ⊕ ∑

i∈S⊆{0,...,n−1} xi. We distinguish between two cases.

Case 1: For all k 	= j, k ∈ S. Since n ≥ 3, there exist two distinct k1, k2 ∈ S, k1 	=
j, k2 	= j. Consider the two inputs 1 and ek1,k2 . While AND(1) 	= AND(ek1,k2),
the view of Pj at the end of round t is the same on 1 and ek1,k2 and hence π must
err on at least one of them (note that this in particular holds when j = 0; for
all other players, who do not know r, the message m is uniformly distributed).

Case 2: There exists an index k 	= j, k /∈ S. Consider the two inputs 1 and ek.
As in Case 1, π must err on at least one of these inputs. ��

We conclude that protocol π (a 1-random private protocol for and) does not
exist.

Theorem 7. The private computation of the function and cannot be performed
with a single random bit.

4 Upper Bounds

In this section, we provide significantly improved upper bounds on the random-
ness complexity of and. Specifically, we show that and on any number of players
n can be privately computed using 8 random bits, and can be computed with 7
random bits for the special case of n = 3 players.

In order to present our protocol, we first present two building blocks which
are used in our constructions. They are both implementations of information-
theoretic 1-out-of-2 Oblivious Transfer.

4.1 1-out-of-2 Oblivious Transfer

In a 1-out-of-2 Oblivious Transfer (1-2 OT) protocol two parties, Alice and Bob,
engage in a protocol that allows Bob to choose which part of the information
that Alice holds he wants to learn, in such a way that Alice does not learn which
part of her information Bob learned.

More formally, for a 1-out-of-2 Oblivious Transfer protocol Alice has two bits
b0 and b1, and Bob has a selection bit s. Alice and Bob, together with a set of
helper players, H, engage in a protocol at the end of which the following holds:

– Bob knows the value of bs.
– Bob does not learn any information on b1⊕s (i.e., the transcript of Bob, given

the values of s and bs, is identically distributed whether b1⊕s is 0 or 1).
– Alice does not learn anything (i.e., the transcript of Alice, given any choice of

values for b0 and b1, is identically distributed; in particular, it is independent
of s).

– The helper players do not learn anything (i.e., the transcript of each of them
is distributed independently of the inputs s, b0, b1).

Randomness Complexity of Private Computations of AND 395

We now give two implementations of this building block using a different
number of helper players, and a different number of random bits. Both are used
in our protocols.

4.1.1 Implementation 1: 3 Random Bits, 1 Helper Player
This implementation is given by Beaver [2].

There is one helper player, denoted by H. The protocol is defined as follows.

1. The helper player H tosses 2 uniformly distributed and independent random
bits, r0 and r1 (to be used as masking bits), and one additional independent
and uniformly distributed random bit p (to define one of the two possible
permutations of {0, 1}).

2. H sends both r0 and r1 to Alice and it sends p and r∗ = rp to Bob.
3. Bob sends to Alice the message i = s ⊕ p.
4. Alice sends to Bob the two bits m0 = b0 ⊕ ri and m1 = b1 ⊕ r1⊕i.
5. Bob “deciphers” the value of the bit he wants to learn (i.e., bs) by computing

ms ⊕ r∗.

The fact that Bob learns the value of bs follows by simple case analysis (p = 0
or p = 1).

For completeness, we sketch a proof of the privacy of this protocol. A more
detailed formal proof is incorporated within the privacy proof for our protocol
that uses the OT protocol as a sub-protocol. We observe the following:

– H does not receive any message and hence privacy is preserved with respect
to H.

– Alice receives from H the bits r0 and r1 and from Bob the bit i = s ⊕ p. All
three are independent and uniformly distributed between 0 and 1 (as r0,r1,
and p are uniformly distributed and independent random bits).

– Bob receives from H the bits p and r∗ = rp (but not the bit r1⊕p), and from
Alice the bits m0 = b0⊕ri and m1 = b1⊕r1⊕i. Observe that bs = ms⊕r∗, but
p and m1⊕s are both independent of ms and r∗, and uniformly distributed.

4.1.2 Implementation 2: 2 Random Bits, 2 Helper Players
Here we assume that there are two helper players, denoted H0 and H1. The
protocol is defined as follows.

1. Alice tosses two independent random bits p and r.
2. Alice sends the message m0 = b0 ⊕ r to player Hp, the message m1 = b1 ⊕ r

to player H1⊕p, and p and r to Bob.
3. Bob sends the bit 1 to player Hs⊕p and the bit 0 to player H1⊕s⊕p.
4. If player H0 (resp., H1) receives 1 from Bob, it sends to Bob the message m

it received from Alice (i.e, either m0 or m1).
Otherwise, if player H0 (resp., H1) receives 0 from Bob, it sends to Bob the
(constant) message 0.10

10 Clearly in this case the relevant helper player does not need to send any message to
Alice. However in order to stay coherent with the model we use, we define which bit

396 E. Kushilevitz et al.

5. Bob “deciphers” the value of the bit he wants to learn (i.e., bs) by computing
bs = m ⊕ r, where m is the message Bob got from Hs⊕p.

The fact that Bob learns the value of bs follows from the protocol, by
inspection.

For completeness, we sketch a proof of the privacy of this protocol. A more
detailed formal proof is incorporated within the privacy proof for our protocol
that uses the OT protocol as a sub-protocol. We observe the following:

– Alice does not get any message and hence privacy is preserved with respect
to Alice.

– Each of H0 and H1 gets a single message from Alice, which is one of her
input bits xored with r; it also received from Bob a bit which is either 0 or
1, depending on the value s ⊕ p; since r and p are uniformly random and
independent, then privacy is preserved with respect to each one of the helper
players H0 and H1.

– Bob receives p and r from Alice. Then, given the value of p and the value of s,
known to Bob, it receives a constant message from one of H0 or H1, and the
message bs ⊕ r from the other (if s⊕p = 1 Bob receives the constant message
from H0, and if s⊕p = 0 Bob receives the constant message from H1.) Hence,
given the value of bs, the transcript of Bob is distributed uniformly.

4.2 The AND Protocol

We first present a protocol, Πodd, applicable to an odd number of players; this
protocol uses 8 random bits. This protocol serves to introduce the main ideas
of our protocols, and is also the basis for a somewhat improved protocol for
n = 3, that uses 7 random bits. Extending Πodd to work also for even number
of players and keeping the 8 random bits bound requires some more effort, and
we give such a protocol in Subsect. 4.2.2, applicable to any n ≥ 4.

4.2.1 Odd Number of Players

We describe our protocol Πodd for odd number of players, n, denoted
P0, P1, . . . , Pn−1.

Initialization Phase. In the initialization phase player P0 tosses 3 random bits
and plays the role of the helper player of implementation 1 of OT for all pairs
of players where Alice is an odd player and Bob is the successive even player.
Player Pn−1 does the same for all pairs of players where Alice is an even player
and Bob is the successive odd player. Specifically:

Player P0 tosses 3 random bits r10, r11, and p1. It sends the bits r10, r11 to all
odd players, and sends the bits p1 and r1p1 to all even players.

is sent in each round between any two players, unless for all inputs and all random
coins values, no message is sent between the two.

Randomness Complexity of Private Computations of AND 397

Player Pn−1 tosses 3 random bits r00, r01, and p0. It sends the bits r00, r01 to
all even players, and sends the bits p0 and r0p0 to all odd players.

In addition, player P0 tosses 2 additional random bits q0 and q1. It sends
q0 to all odd players, and q1 to all even players. P0 also locally computes y0 =
q0 ⊕ q1 ⊕ x0.

Computation Phase. This phase runs in n−1 rounds. The inductive invariant
that we maintain is that at the end of round i ≥ 1 player Pi has the value
yi = q0 ⊕ q1 ⊕ Πi

j=0xj . In each round, the protocol will run an OT protocol. We
give a detailed description of the rounds below.

Final Phase. At the end of the computation phase, player Pn−1 has (by the
inductive invariant) the value yn−1 = q0 ⊕ q1 ⊕ Πn−1

j=0 xj . It sends this value to
P0 who xors it with q0 ⊕ q1 to obtain Πn−1

j=0 xj = AND(x0, x1, . . . , xn−1). Player
P0 then sends this value to all other players.

We now define how the computation phase is implemented so as to maintain
the inductive invariant (and privacy, as we prove later). The invariant clearly
holds at the end of round 0 (i.e., before the computation phase starts) since
player P0 has x0, q0, and q1 and hence can compute y0.

Now, in round i ≥ 1 players Pi−1 and Pi engage in a 1-2 OT protocol, using
Implementation 1 described above. The values that Alice (i.e., player Pi−1) holds
for the OT protocol are b0 = qi mod 2 and b1 = yi−1. Observe that Alice has b0
from the initialization phase, and b1 by the inductive invariant. The selection bit
of Bob (i.e., player Pi) is s = xi. The random bits used for the OT protocol are
rk
0 , rk

1 , and pk, where k = (i+1) mod 2. Observe that Pi and Pi−1 receive in the
initialization phase the random bits needed in order to simulate Alice and Bob
of the OT protocol (i.e., rk

0 , rk
1 for Alice and pk, rk

pk for Bob). Let vi denote the
output (i.e., the bit learned by Bob) of the OT protocol run in the i-th round.

It follows that at the end of the OT protocol, if the value that player Pi holds
is xi = 0, then it gets from player Pi−1 the value vi = qi mod 2, and if xi = 1
then it gets the value vi = yi−1 = q0 ⊕ q1 ⊕ Πi−1

j=0xj .
Now, if xi = 0 then Πi

j=0xj = 0, and player Pi has yi by calculating qi mod 2⊕
q(i+1) mod 2, where the former is just vi and the latter is received from P0 in the
initialization phase.

If xi = 1 then Πi
j=0xj = Πi−1

j=0xj and player Pi just sets yi = vi.
The total number of random bits used in this protocol is 8: the protocol uses

3 bits for each of the two sets of OT protocols, and 2 additional masking bits,
q0 and q1.

It remains to prove that privacy is preserved with respect to all players.
Intuitively, there are n − 1 invocations of the OT protocol. Each internal player
(i.e., all players except P0 and Pn−1) participates in two OT invocations, once
as Alice (with the following player) and once as Bob (with the preceding player),
each of these two invocations using different sets of random bits, one set from
P0 and one set from Pn−1. Players P0 and Pn−1 participate each in a single
invocation of the OT protocol, P0 as Alice with P1 and Pn−1 as Bob with Pn−2.
Hence the number of players must be odd (to guarantee that the random bits

398 E. Kushilevitz et al.

used by the OT protocol of Pn−1 and Pn−2 come from P0 and not from Pn−1).
Formally,

Theorem 8. The AND protocol Πodd is private for n odd, n ≥ 3.

Proof. We first prove the claim for players Pi, 0 < i < n − 1, and then for P0

and for Pn−1.
For 0 < i < n − 1, observe that player Pi receives messages pertaining to

exactly two OT invocations, one in which it plays the role of Alice, and one
where it plays the role of Bob. In addition, Pi receives from player P0 either the
bit q0 or the bit q1 and, at the end of the protocol, the computed value of the
function.

We prove the claim for i even (the case of i odd is analogous, switching the
roles of the random bits, i.e., flipping their superscripts, and switching q0 and
q1). The messages that such player Pi receives are:

1. During the initialization phase: bits r00, r
0
1, p

1, r1p1 , q0.
2. During the OT protocol with player Pi−1 (i.e., when playing the role of Bob):

– q1 ⊕ r1j and yi−1 ⊕ r11⊕j , where j = xi ⊕ p1.
3. During the OT protocol with player Pi+1 (i.e., when playing the role of Alice):

– xi+1 ⊕ p0.
4. In the final phase, from player P0, AND(x0, x1, . . . , xn−1).

Observing the nine messages received by Pi, one can verify that:

1. The messages received in Stage 1 are just the random bits r00, r
0
1, p

1, r1p1 , q0.
2. For the messages of Stage 2 we distinguish between two cases depending on

the value of xi.
If xi = 0 then the first message is q1 ⊕ r1p1 and the second one is yi−1 ⊕ r11⊕p1 .
We have that the first message includes a xor operation with q1, and the
second one a xor with r11⊕p1 .
If xi = 1 then the first message is q1⊕r11⊕p1 and the second one is yi−1⊕r1p1 . In
that case, the first message includes a xor operation with r11⊕p1 and the second
one a xor with q1 (since by the inductive invariant, yi−1 = q0 ⊕ q1 ⊕Πi−1

j=0xj .)
3. The message received in Stage 3 includes a xor operation with p0.
4. The message received in Stage 4 is the value of the function.

Inspecting the distribution of the above messages, the last message (Stage 4)
is, by definition, the value of the function; all other 8 messages are independent
and uniformly distributed (in correspondence with the 8 random bits that are
used): the bits r00, r

0
1, p

1, r1p1 , q0 in Stage 1, the two messages of Stage 2 one
includes a xor operation with r11⊕p1 and the other with q1, and the message
received in Stage 3 which includes a xor operation with p0. Hence, the privacy
with respect to Pi follows.

Almost the same argument applies to player Pn−1 as well. It receives a subset
of the messages received by players Pi, 0 < i < n − 1, namely, those of Stages 1,
2, 4 above. In addition it knows the value of the random bit p0. But, since the

Randomness Complexity of Private Computations of AND 399

message of Stage 3 is not received by Pn−1, the privacy with respect to Pn−1

holds.
As to player P0, it receives the messages listed under Stages 1 and 3 above,

and (from player Pn−1 at the final phase) the message yn−1 = q0 ⊕ q1 ⊕Πn−1
j=0 xj .

In addition, player P0 knows the values of the random bits r10, r11, q0 and q1. We
have that the messages received in Stages 1 and 3 each includes a xor operation
with an independent (uniformly distributed) random bit not known to P0. The
message received in the final phase is determined by the value of the function,
q0 and q1. Hence, privacy with respect to player P0 holds as well. ��

4.2.2 At Least 4 Players

If one attempts to apply the above protocol Πodd to an even number of players
then privacy will not be preserved. This is because when players Pn−2 and Pn−1

engage in their OT protocol, they will do that with the random bits tossed by
player Pn−1 (while in the case of odd n these bits are tossed by the “helper”
P0).

To remedy this problem, we stop the computation phase one round earlier,
that is, we run it for n − 2 rounds only, at the end of which player Pn−2 has,
as in Πodd, the value yn−2 = q0 ⊕ q1 ⊕ Πn−2

j=0 xj . We then perform the last OT
protocol of the computation phase using Implementation 2 defined above and
fresh random bits. This, however, increases the total number of random bits used,
and further requires that the total number of players is at least 4 (as required by
Implementation 2 of OT). While requiring at least 4 players is not an issue since
we have another variant of the protocol for odd number of players, in order not
to increase the total number of random bits used, we generate and distribute
the random bits needed for the various OT invocations in a more efficient way.
That is, while each internal player still participates in 2 OT invocations, we do
not need totally separate 2 sets of random bits. Rather, it is sufficient to ensure
that no player will receive two messages (of two different OT invocations) that
“use” the same random bit. The resulting protocol uses a total of 8 random bits
and is applicable to any n ≥ 4.

We now formally describe our protocol for n ≥ 4 players, denoted
P0, P1, . . . , Pn−1. As indicated above, the high level structure of the protocol
is the same as that of Πodd, with some modifications, most notably a different
way to produce and distribute the random bits.

Initialization Phase. In the initialization phase player Pn−1 tosses 4 random
bits u0, u1, u2, u4 and defines a sequence of bits r0, r1, . . . , r�, for � = 2(n − 2),
recursively as follows:11

11 Here and in the following we sometimes abuse notation and consider indices that
involve summations over both N and F2 (denoted with the operands + and ⊕,
respectively).

400 E. Kushilevitz et al.

r0 = u0, r1 = u1, r2 = u2, r4 = u4, and

rj =
{

rj−3+rj−1 j > 1, j odd
rj−6+(1⊕rj−4) j > 4, j even . (1)

Player Pn−1 then sends to each player Pi, 0 ≤ i ≤ n − 2 the two bits r2i, r2i+1.
In addition, player P0 tosses 2 additional random bits q0 and q1. It sends

q0 to all odd players, and q1 to all even players. P0 also locally computes y0 =
q0 ⊕ q1 ⊕ x0.

Computation Phase. This phase runs in n−1 rounds. The inductive invariant
that we maintain is that at the end of round i ≥ 1 player Pi has the value
yi = q0 ⊕ q1 ⊕ Πi

j=0xj . In each round, the protocol will run an OT protocol. We
give a detailed description of the rounds below.

Final Phase. At the end of the computation phase, player Pn−1 has (by the
inductive invariant) the value yn−1 = q0 ⊕ q1 ⊕ Πn−1

j=0 xj . It sends this value to
P0 who xors it with q0 ⊕ q1 to obtain Πn−1

j=0 xj = AND(x0, x1, . . . , xn−1). Player
P0 then sends this value to all other players.

The following lemma gives the properties of the sequence of bits rj , necessary
both for the correctness of the protocol and for its privacy. The proof of this
lemma is quite technical and the reader may wish to skip this proof.

Lemma 9. For any 1 ≤ i ≤ n − 2, the five bits rj, 2(i − 1) ≤ j ≤ 2(i + 1), are
such that

1. r2i+1 = r2(i−1)+r2i .
2. The four bits r2(i−1), r2(i−1)+1, r2i, r2(i+1) are independent and uniformly dis-

tributed.

Proof. We prove the lemma by induction on i. For the base of the induction (i =
1), observe that Point (2) is satisfied since r0, r1, r2, r4 are set to be u0, u1, u2, u4,
respectively, and these are independent and uniformly distributed random bits
tossed by Player Pn−1. As to Point (1), r3 is set to be equal to rr2 according to
Eq. (1) (first part, with j = 3).

We now prove the lemma for i + 1 assuming it is correct for i. Note that the
5-tuple that corresponds to i + 1 partially overlaps the 5-tuple that corresponds
to i.

Point (1) holds for i + 1 because by the first part of Eq. (1) (taking j to be
2(i + 1) + 1) r2(i+1)+1 = r2i+1+r2(i+1) .

As to Point (2), we consider both parts of Eq. (1) and the value of r2i. There
are two cases:

1. If r2i = 0:
– r2i+1 = r2(i−1) (taking j = 2i + 1 for the first part of Eq. (1)).
– r2(i+2) = r2(i−1)+1 (taking j = 2(i + 2) for the second part of Eq. (1)).

2. If r2i = 1:
– r2i+1 = r2(i−1)+1 (taking j = 2i + 1 for the first part of Eq. (1)).
– r2(i+2) = r2(i−1) (taking j = 2(i + 2) for the second part of Eq. (1)).

Randomness Complexity of Private Computations of AND 401

It follows that the 4-tuple of bits with indices 2i, 2i + 1, 2(i + 1) and
2(i + 2), i.e., the 4-tuple (r2i, r2i+1, r2(i+1), r2(i+2) is equal to either the 4-tuple
(r2i, r2(i−1), r2(i+1), r2(i−1)+1) (if r2i = 0) or to (r2i, r2(i−1)+1, r2(i+1), r2(i−1)) (if
r2i = 1), which are two permutations of the same 4 bits. By the induction
hypothesis, these 4 bits are independent and uniformly distributed. Hence also
Point (2) holds for i + 1. ��

We now define how the computation phase is implemented so as to maintain
the inductive invariant (and privacy, as we prove later). The invariant clearly
holds at the end of round 0 (i.e., before the computation phase starts) since
player P0 has x0, q0, and q1 and hence can compute y0.

Similarly to protocol Πodd, in round 1 ≤ i ≤ n − 2 (but not in round n − 1,
as is the case for Πodd) players Pi−1 and Pi engage in a 1-2 OT protocol, using
Implementation 1 described above. The values that Alice (i.e., player Pi−1) holds
for the OT protocol are b0 = qi mod 2 and b1 = yi−1. Observe that Alice has b0
from the initialization phase, and b1 by the inductive invariant. The selection bit
of Bob (i.e., player Pi) is s = xi. The random bits used for the OT protocol are
r2(i−1) and r2(i−1)+1 held by Alice (player Pi−1) and r2i held by Bob (player Pi).
Observe that Pi and Pi−1 receive these bits from Pn−1 during the initialization
phase. Further, by Lemma 9 the bits r2(i−1) and r2(i−1)+1, held by player Pi−1,
and the bit r2i, held by player Pi, all satisfy the properties required for the OT
protocol to be correct (and private).

Finally, in round i = n−1, players Pn−2 and Pn−1 engage in an OT protocol
as in previous rounds, but using Implementation 2 and using additional new
random bits.12 Specifically, Pn−1 is Bob of the OT protocol and Pn−2 is Alice;
the helper players are P0 (H0) and P1 (H1), and we denote the two fresh random
bits tossed by Pn−2 by u5 and u6 (see Sect. 4.1.2). The use of Implementation 2
of the OT protocol in this round is the reason that the protocol described here
works only for n ≥ 4.

As in protocol Πodd, let vi denote the output (i.e., the bit learned by Bob)
of the OT protocol run in the i-th round, 1 ≤ i ≤ n − 1. It follows that at the
end of the OT protocol, if the value that player Pi holds as input is xi = 0, then
it gets from player Pi−1 the value vi = qi mod 2, and if xi = 1 it gets the value
vi = yi−1 = q0 ⊕ q1 ⊕ Πi−1

j=0xj .
Now, if xi = 0 then Πi

j=0xj = 0, and player Pi has yi by calculating qi mod 2⊕
q(i+1) mod 2, where the former is just vi and the latter is received from P0 in the
initialization phase. If xi = 1 then Πi

j=0xj = Πi−1
j=0xj and player Pi just sets

yi = vi.
The total number of random bits used in this protocol is 8: u0, u1, u2, u4 and

q0, q1 are tossed by player P0, and u5, u6 are tossed by player Pn−2.
It remains to prove that privacy is preserved with respect to all players.

Intuitively, there are n − 1 invocations of the OT protocol. Each internal player

12 It is also possible to perform the OT protocol of this round using Implementation 1
with a separate set of 3 random bits, tossed by another player, say player P0, but
this results in a larger total number of random bits for the protocol.

402 E. Kushilevitz et al.

(i.e., all players except P0 and Pn−1) participates in two OT invocations, once
as Alice and once as Bob, and the privacy property with respect to these players
will follow from the properties of the sequence of bits rj (Lemma 9). We now
prove that the protocol is private.

Theorem 10. The AND protocol for n ≥ 4 is private.

Proof. We first prove the claim for players Pi, 1 < i < n − 2, and then for the
players having special roles, P0, P1, Pn−2, Pn−1.

For 1 < i < n − 2, observe that player Pi receives messages pertaining to
exactly two OT invocations, one in which it plays the role of Alice, and one
where it plays the role of Bob (as implemented in Sect. 4.1.1). In addition, Pi

receives from player P0 either the bit q0 or the bit q1 and, at the end of the
protocol, the computed value of the function.

We prove the claim for i even (the case of i odd is analogous, switching the
roles of q0 and q1). The messages player Pi receives are:

1. During the initialization phase: bits r2i, r2i+1, q0.
2. During the OT protocol with player Pi−1 (i.e., when playing the role of Bob):

– q1 ⊕ r2(i−1)+j and yi−1 ⊕ r2(i−1)+(1⊕j), where j = xi ⊕ r2i.
3. During the OT protocol with player Pi+1 (i.e., when playing the role of Alice):

– xi+1 ⊕ r2(i+1).
4. In the final phase, from player P0, AND(x0, x1, . . . , xn−1).

Observing the seven messages received by Pi, one can verify that:

1. The messages received in Stage 1 are the bits r2i, r2i+1, q0.
2. For the messages of Stage 2, we distinguish between two cases depending on

the value of xi.
If xi = 0 then the first message is q1 ⊕ r2(i−1)+r2i and the second one is
yi−1 ⊕ r2(i−1)+(1⊕r2i). In this case, the first message includes a xor operation
with q1, and the second one a xor operation with r2(i−1)+(1⊕r2i).
If xi = 1 then the first message is q1 ⊕ r2(i−1)+(1⊕r2i) and the second one
is yi−1 ⊕ r2(i−1)+r2i . In this case, the first message includes a xor operation
with r2(i−1)+(1⊕r2i) and the second one a xor operation with q1 (since by the
inductive invariant, yi−1 = q0 ⊕ q1 ⊕ Πi−1

j=0xj).
3. The message received in Stage 3 includes a xor operation with r2(i+1).
4. The message received in Stage 4 is the value of the function.

The last message (Stage 4) is, by definition, the value of the function. From
the observations above, it follows that the distribution of the other 6 messages is
the same as the distribution of the tuple r2i, r2i+1, q0, q1, r2(i−1)+(1⊕r2i), r2(i+1)

(if xi = 0) or the tuple r2i, r2i+1, q0, r2(i−1)+(1⊕r2i), q1, r2(i+1) (if xi = 1). But,
using Lemma 9, we can conclude that both of these 6-tuples are uniformly dis-
tributed over the 26 possible binary vectors. Thus, privacy is preserved for all
players Pi, 1 < i < n − 2.

Similar arguments apply to the remaining four players. Let b̂0 =
q(n−1) mod 2 ⊕ u6 and let b̂1 = yn−2 ⊕ u6 (recall that player Pn−2 tosses two

Randomness Complexity of Private Computations of AND 403

random bits u5, u6, to be used by the OT protocol, Implementation 2, in round
n − 1).
Player P0: Player P0 receives the following messages: those listed under Stages 1
and 3 above; in round n − 1 of the computation phase, when Implementation 2
of OT is invoked, P0 receives from Pn−2 either the message b̂0 = qn−1 mod 2 ⊕u6

or the message b̂1 = yn−2 ⊕ u6 and from Pn−1 the message xn−1 ⊕ u5 ⊕ 1; and
from Pn−1, at the final phase, the message yn−1 = q0⊕q1⊕Πn−1

j=0 xj . In addition,
player P0 has the values of the random bits q0 and q1 tossed by itself. Therefore,
the messages received in Stages 1 and 3, as well as the messages received from
Pn−2 and Pn−1, each includes a xor operation with an independent (uniformly
distributed) random bit not known to P0. The message received in the final
phase is (together with q0 and q1) the value of the function. Hence, privacy with
respect to P0 holds.
Player P1: Player P1 receives the following messages: the messages listed under
Stages 1, 3 and 4 above; in round n − 1 of the computation phase, when
Implementation 2 of OT is invoked, P1 receives from Pn−2 either the message
b̂0 = qn−1 mod 2 ⊕ u6 or the message b̂1 = yn−2 ⊕ u6 and from Pn−1 the message
xn−1 ⊕ u5. Therefore, the messages received in Stages 1 and 3, as well as the
messages received from Pn−2 and Pn−1, each includes a xor operation with an
independent (uniformly distributed) random bit not known to P1. The message
received in Stage 4 is the value of the function. Hence privacy with respect to
P1 holds.
Player Pn−2: The set of messages that player Pn−2 receives is a subset of the
messages received by players Pi, 1 < i < n − 2. None of these messages depend
on u5 or u6 tossed by Pn−2. The privacy with respect to player Pn−2 thus follows
from the proof for Pi, 1 < i < n − 2.
Player Pn−1: Player Pn−1 receives a subset of the messages received by the play-
ers Pi, 1 < i < n − 2, namely those of Stage 1 and of Stage 4. In addition,
it receives, while engaging in Implementation 2 of the OT protocol with player
Pn−2 and helpers P0, P1, the following messages:

(1) the messages u5 and u6 from player Pn−2,
(2) the message M0 · (xn−1 ⊕ u5 ⊕ 1) from player P0, where M0 is the message

P0 receives from Pn−2 in the OT protocol, Implementation 2,
(3) the message M1 · (xn−1 ⊕ u5) from player P1, where M1 is the message P1

receives from Pn−2 in the OT protocol, Implementation 2.

We now have four cases depending on the values of xn−1 and u5. In each of the
four cases, the two messages received from P0 and P1 can be written as follows:

– xn−1 = 0, u5 = 0: Pn−1 receives from P1 the message 0, and from P0 the
message M0 = b̂0 = q(n−1) mod 2 ⊕ u6.

– xn−1 = 0, u5 = 1: Pn−1 receives from P0 the message 0, and from P1 the
message M1 = b̂0 = q(n−1) mod 2 ⊕ u6.

– xn−1 = 1, u5 = 0: Pn−1 receives from P0 the message 0, and from P1 the
message M1 = b̂1 = yn−2 ⊕ u6.

404 E. Kushilevitz et al.

– xn−1 = 1, u5 = 1: Pn−1 receives from P1 the message 0, and from P0 the
message M0 = b̂1 = yn−2 ⊕ u6.

It can be verified that, given the values of xn−1 and
of AND(x0, x1, . . . , xn−1), the distribution of the messages received by Pn−1

is identical in all four cases. Indeed, given the value xn−1, the value of u5 deter-
mines which of the two messages above is a constant, and which includes a xor
operation with q(n−1) mod 2. Now recall that yn−2 = q0 ⊕ q1 ⊕ Πn−2

j=0 xj , thus the
rest of the messages (except AND(x0, x1, . . . , xn−1)) include a xor operation
with a distinct random bit, other than q(n−1) mod 2, all are uniformly distributed
and independent. Hence, privacy is preserved with respect to Pn−1. ��

4.2.3 The Case of n = 3
This case can be slightly improved compared to the general case. We can pri-
vately compute the and of 3 players using 7 random bits instead of 8.

The protocol is simple to define: run the protocol Πodd, but fix the bit q1 to
be 0 (rather than it being a random bit).

The correctness of the protocol clearly holds since it holds for Πodd with
any choice of random bits. To see that privacy is still preserved with respect to
all three players, observe that both player P0 and player P1 get q1 in the original
protocol (P0 tosses it, and P1 gets it in the initialization phase). Therefore, fixing
it to 0 leaves the privacy with respect to these two players intact. As to player
P2, note that the OT protocol performed between P1 and P2 does not change
in the modified protocol. Therefore, if x2 = 0 then P2 gets q1 (which is fixed
to 0), and no other information. If x2 = 1 then the only information P2 gets is
q0 ⊕ q1 ⊕ Π1

j=0xj = q0 ⊕ Π1
j=0xj , from which it can compute, using the bit q0

that it got in the initialization phase, the value of Π1
j=0xj . But this value can

be inferred, in the case of n = 3 and x2 = 1, from the value of the function and
x2, so privacy is preserved with respect to P2 too.

5 Conclusions

We consider the randomness complexity of the information-theoretic multi-party
private computation of the function and. We show that this computation cannot
be done using a single random bit, thus giving the first non-trivial lower bound
on the randomness complexity of the private computation of an explicit boolean
function. We further give an improved upper bound on the randomness complex-
ity of the private computation of and, thus approaching the exact determination
of that measure for and. To the best of our knowledge, for no explicit function
f is the exact randomness complexity of the private computation of f known
(except for xor, which is trivially 1-random, and degenerate functions). We leave
the exact determination of the randomness complexity of private computations
of and for further research.

Randomness Complexity of Private Computations of AND 405

Acknowledgements. We would like to thank an anonymous reviewer of an earlier
version of this paper for comments which helped us reduce the upper bound for even
number of players from 10 random bits to 8 random bits, and hence also the general
upper bound from 10 to 8.

References

1. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. J. Cryptology 30(1), 58–151 (2017)

2. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-44750-4 8

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2–4,
1988, Chicago, Illinois, USA, pp. 1–10 (1988)

4. Blundo, C., Galdi, C., Persiano, P.: Randomness recycling in constant-round pri-
vate computations. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 140–149.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48169-9 10

5. Blundo, C., De Santis, A., Persiano, G., Vaccaro, U.: Randomness complexity of
private computation. Comput. Complex. 8(2), 145–168 (1999)

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA, pp. 11–19 (1988)

7. Chor, B., Kushilevitz, E.: A zero-one law for Boolean privacy. SIAM J. Discrete
Math. 4(1), 36–47 (1991)

8. Chor, B., Kushilevitz, E.: A communication-privacy tradeoff for modular addition.
Inf. Process. Lett. 45(4), 205–210 (1993)

9. Damg̊ard, I., Nielsen, J.B., Ostrovsky, R., Rosén, A.: Unconditionally secure com-
putation with reduced interaction. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 420–447. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 15

10. Damg̊ard, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the communica-
tion required for unconditionally secure multiplication. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 459–488. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 16

11. Data, D., Prabhakaran, V.M., Prabhakaran, M.M.: Communication and random-
ness lower bounds for secure computation. IEEE Trans. Inf. Theory 62(7), 3901–
3929 (2016)

12. Gál, A., Rosén, A.: A theorem on sensitivity and applications in private computa-
tion. SIAM J. Comput. 31(5), 1424–1437 (2002)

13. Gál, A., Rosén, A.: Omega(log n) lower bounds on the amount of randomness in
2-private computation. SIAM J. Comput. 34(4), 946–959 (2005)

14. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness,
vol. 17 of Algorithms and Combinatorics. Springer, Berlin (1998)

15. Jakoby, A., Lískiewicz, M., Reischuk, R.: Private computations in networks: topol-
ogy versus randomness. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607,
pp. 121–132. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-
3 12

https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-48169-9_10
https://doi.org/10.1007/978-3-662-49896-5_15
https://doi.org/10.1007/978-3-662-49896-5_15
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.1007/3-540-36494-3_12
https://doi.org/10.1007/3-540-36494-3_12

406 E. Kushilevitz et al.

16. Kushilevitz, E., Mansour, Y.: Randomness in private computations. SIAM J. Dis-
crete Math. 10(4), 647–661 (1997)

17. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Characterizing linear size circuits in
terms of privacy. J. Comput. Syst. Sci. 58(1), 129–136 (1999)

18. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Amortizing randomness in private mul-
tiparty computations. SIAM J. Discrete Math. 16(4), 533–544 (2003)

19. Kushilevitz, E., Rosén, A.: A randomness-rounds tradeoff in private computation.
SIAM J. Discrete Math. 11(1), 61–80 (1998)

20. Nisan, N., Ta-Shma, A.: Extracting randomness: a survey and new constructions.
J. Comput. Syst. Sci. 58(1), 148–173 (1999)

21. Rosén, A., Urrutia, F.: A new approach to multi-party peer-to-peer communication
complexity. In: Blum, A. (ed.) 10th Innovations in Theoretical Computer Science
Conference, ITCS 2019, January 10–12, 2019, San Diego, California, USA, vol.
124 of LIPIcs, pp. 64:1–64:19. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2019)

Leveraging Linear Decryption: Rate-1
Fully-Homomorphic Encryption

and Time-Lock Puzzles

Zvika Brakerski1, Nico Döttling2, Sanjam Garg3,
and Giulio Malavolta4(B)

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
3 University of California, Berkeley, Berkeley, USA

4 Simons Institute for the Theory of Computing, Berkeley, USA

Abstract. We show how to combine a fully-homomorphic encryption
scheme with linear decryption and a linearly-homomorphic encryption
schemes to obtain constructions with new properties. Specifically, we
present the following new results.
(1) Rate-1 Fully-Homomorphic Encryption: We construct the first

scheme with message-to-ciphertext length ratio (i.e., rate) 1 − σ for
σ = o(1). Our scheme is based on the hardness of the Learning with
Errors (LWE) problem and σ is proportional to the noise-to-modulus
ratio of the assumption. Our building block is a construction of a new
high-rate linearly-homomorphic encryption.
One application of this result is the first general-purpose secure func-
tion evaluation protocol in the preprocessing model where the com-
munication complexity is within additive factor of the optimal inse-
cure protocol.

(2) Fully-Homomorphic Time-Lock Puzzles: We construct the first time-
lock puzzle where one can evaluate any function over a set of puz-
zles without solving them, from standard assumptions. Prior work
required the existence of sub-exponentially hard indistinguishability
obfuscation.

The full version of this work can be found in https://eprint.iacr.org/2019/720.pdf.
Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14), Bina-
tional Science Foundation (Grants No. 2016726, 2014276) and European Union Horizon
2020 Research and Innovation Program via ERC Project REACT (Grant 756482) and
via Project PROMETHEUS (Grant 780701).
S. Garg—Supported in part from DARPA/ARL SAFEWARE Award W911NF-
15C0210, AFOSR Award FA9550-15-1-0274, AFOSR Award FA9550-19-1-0200,
AFOSR YIP Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract
N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foundation,
Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views
expressed are those of the author and do not reflect the official policy or position of
the funding agencies.
G. Malavolta—Part of the work done while at Carnegie Mellon University.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 407–437, 2019.
https://doi.org/10.1007/978-3-030-36033-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_16&domain=pdf
https://eprint.iacr.org/2019/720.pdf
https://doi.org/10.1007/978-3-030-36033-7_16

408 Z. Brakerski et al.

1 Introduction

Fully-homomorphic encryption (FHE) allows one to evaluate any function over
encrypted data. Since the breakthrough result of Gentry [15], the development of
FHE schemes has seen a rapid surge [1,6–8,19,32] and by now FHE has become
a well-established cryptographic primitive. An FHE scheme gives an elegant
solution to the problem of secure function evaluation: One party publishes the
encryption of its input under its own public key Enc(pk, x) while the other eval-
uates some function f homomorphically, returning c = Enc(pk, f(x)). The first
party can recover the output by simply decrypting c. The crucial property of this
approach is that its communication complexity is proportional to the size of the
input and of the output, but does not otherwise depend on the size of f . This
distinguishing feature is essential for certain applications, such as private infor-
mation retrieval [10], and has motivated a large body of work on understanding
FHE and related notions [2,29].

Unfortunately, our understanding in secure computation protocol with opti-
mal communication complexity is much more limited. Typically, FHE schemes
introduce a polynomial blowup factor (in the security parameter) to the ciphere-
text size, thereby affecting the overall communication rate of the protocol. Given
the current state-of-the-art FHE schemes, the only class of functions we can eval-
uate without communication blowup are linear functions [12]. An FHE scheme
with optimal rate, i.e., with a message-to-ciphertext ratio approaching 1, would
immediately give us a general-purpose tool to securely evaluate any function
(with sufficiently large inputs and outputs) with asymptotically optimal com-
munication complexity. Motivated by this objective, this work seeks to answer
the following question:

Can we construct an FHE scheme with rate 1 from standard
assumptions?

We also consider the related problem of constructing fully-homomorphic time-
lock puzzles (FH-TLP), a primitive recently introduced in [22] to address the
computational burden of classical time-lock puzzles [31]. Time-lock puzzles
encapsulate secrets for a pre-determined amount of time, and FH-TLP allow
one to evaluate functions over independently generated puzzles. The key feature
of FH-TLPs is that after a function has been homomorphically evaluated on
a (possibly large) number of input TLPs, only a single output TLP has to be
solved to recover the function result. Consequently, FH-TLP can be used in the
very same way as TLPs, but the solver is spared from solving a large number of
TLPs (in parallel) and only needs to solve a single TLP which encapsulates the
function result.

FH-TLP have been shown to be a very versatile tool and have several appli-
cations, ranging from coin-flipping to fair contract signing [22]. In [22] FH-TLPs
were constructed from probabilistic iO [9] and scheme from standard assump-
tions were limited to restricted classes of functions (e.g., linear functions). Moti-
vated by this gap, the second question that we ask is:

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 409

Can we construct an FH-TLP scheme (ideally with rate 1) from standard
assumptions?

1.1 Our Results

In this work, we answer both questions in the affirmative. Specifically, we present
the following new results:

(1) Our main result is the construction of an FHE which allows compressing
many ciphertexts into a compressed ciphertext which has rate 1 − 1/λ. In
fact, we show that for any a-priori block size � = poly(λ), we can construct
a scheme where the ciphertext length is at most � + τ(λ), where τ is a fixed
polynomial (which does not depend on �). Setting � = λ ·τ(λ), the rate claim
follows.
To prove security of this scheme, we only need to assume the hardness of
the Learning With Errors (LWE) [30] problem with polynomial modulus-to-
noise ratio.1

(2) We provide a construction of a fully-homomorphic time-lock puzzle from
multi-key FHE and linearly homomorphic time-lock puzzles. The security
of the former can be based on the hardness of LWE with superpolyno-
mial modulus-to-noise ratio, whereas the latter can be constructed from
the sequential squaring assumption [31] in groups of unknown order.

On a technical level, both of our main results are tied together by the common
idea of combining an FHE with a linear decryption algorithm with a linearly-
homomorphic encryption (time-lock puzzle, respectively) of optimal rate. The
hybrid scheme inherits the best of both worlds and gives us a rate-optimal FHE
scheme or an FH-TLP from standard assumptions, depending on the building
block that we use. Our techniques are reminiscent of the chimeric scheme of
Gentry and Halevi [16], with a new twist to how to encode information without
inflating the size of the ciphertexts. Somewhat interestingly, our construction of
rate-1 linearly homomorphic encryption from LWE leverages ideas which were
originally conceived in the context spooky FHE [13], homomorphic secret shar-
ing [3] and private-information retrieval [14].

Concurrent Work. In a concurrent work, Gentry and Halevi [17] constructed
rate-1 FHE schemes using similar ideas as in our work. While the goal of their
work is realizing practically efficient high-rate private information retrieval pro-
tocols, our constructions are more general and designed to achieve the best
possible asymptotic rate.

1.2 Applications

We outline a few interesting implications of our results. We stress that the tools
that we develop in this work are of general purpose and we expect them to find
more (possibly indirect) applications in the near future.
1 We note that the modulus-to-noise ratio does depend (linearly) on �.

410 Z. Brakerski et al.

(1) Secure Function Evaluation: FHE yields a very natural protocol for secure
function evaluation (SFE) where one party encrypts its input and the other
computes the function homomorphically. Given that the input and the out-
put are sufficiently large, rate-1 FHE yields a (semi-honest) SFE scheme
where the communication complexity is within additive factor from that of
the best possible insecure protocol.

(2) Encrypted Databases with Updates: Using rate-1 FHE, it is possible to out-
source an encrypted database to an untrusted (semi-honest) cloud provider,
without suffering additional storage overhead due to ciphertext expansion.
While FHE hybrid encryption (using a non-rate-1 FHE) allows to store a
static database without additional storage requirements, as soon as database
entries are homomorphically updated they become FHE-ciphertexts and con-
sequently their size grows substantially. Keeping the database encrypted
under a rate-1 FHE scheme enables the cloud provider to perform updates
on the database, while not increasing the size of the encrypted data.

(3) Malicious Circuit Privacy: Instantiating the generic compiler of Ostrovsky et
al. [25] with our rate-1 FHE scheme gives the first maliciously circuit-private
FHE scheme with rate-1. A maliciously circuit-private scheme does not leak
any information to the decrypter about the homomorphically evaluated func-
tions (beyond the function output) for any choice of the public parameters.
Among others, a rate-1 scheme implies a maliciously statistically sender-
private oblivious transfer [4] with the same rate. Previous works [14] were
able to achieve rate 1 only for oblivious transfer and only in the semi-honest
setting. The prior best known rate in the malicious setting was ≤1/2.

(4) Sealed Bid Auctions: One of the motivating applications of time-lock puz-
zles is to construct fair sealed bid auctions, where each bid is encrypted in a
time-lock puzzle whose opening can be forced by the auctioneer in case the
bidder refuses to disclose it. This however involves a computational effort
proportional to the number of unopened bids, which can be used as a vec-
tor for denial-of-service attacks. Homomorphic time-lock puzzles solve this
problem by allowing the auctioneer to homomorphically compute the winner
of the auction and only solve a single puzzle. Since this computation cannot
be expressed as a linear function, our work provides the first solution from
standard assumptions.

1.3 Technical Outline

We present a detailed technical outline of our results in the following. As far as
rate-1 FHE is concerned, our focus is on techniques to compress post-evaluation
ciphertexts. Compressed ciphertexts can be further expanded (and homomor-
phically evaluated) via standard bootstrapping techniques.

Schematically, our method for achieving rate-1 FHE is as follows. We consider
the “batched-Regev” LWE based encryption scheme (which appears explicitly
in the literature, e.g., in [5,28]). This scheme has much better rate than “plain”
Regev, but the rate is still asymptotically 0 (i.e., o(1)). It can be shown that
it is possible to convert plain-Regev ciphertexts into batched-Regev, essentially

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 411

using the key-switching technique that is frequently used in the FHE literature
(see, e.g., [7]). We then show that batched-Regev ciphertexts can be compressed
in a way that increases the rate to 1− o(1), but maintains (perfect) decryptabil-
ity. We do this by combining rounding techniques that appeared previously in
the literature [3,13,14] with new techniques that we develop and allow to main-
tain high rate, perfect correctness, and modest LWE modulus simultaneously.
We note that in order to apply key-switching, we need to use batched-Regev in
its non-compressed form, and only apply the compression after the switching is
complete. This transformation, maintains decryptability but homomorphic capa-
bilities are lost. As mentioned above, these can be restored using bootstrapping
in a generic way.

Leveraging Linear Decryption. Our starting point is the observation that, for
essentially any FHE construction in literature, decryption (or rather noisy
decryption) is a linear function in the secret key. More specifically, we can write
the decryption operation as a function Lc(s), which is linear in s, the secret
key. Typically things are set up in a way such that it holds for correctly formed
ciphertexts c that Lc(s) = q

2 · m + e, where m is the plaintext and e is a small
noise term. We can then recover m from Lc(s) via rounding.

For many FHE schemes, the choice of the factor q/2 is not hardwired into
the scheme, but can be provided as an explicit input to the decryption function.
More specifically, it holds that

Lα,c(s) = α · m + e,

where Lα,c(·) is a linear function and e is a small noise term. Assume in the
following that |e| < B for some bound B. We refer to this operation as linear
decrypt-and-multiply. In fact, Micciancio [23] observed that any FHE scheme
with linear decryption can be transformed into a scheme which supports linear
decrypt-and-multiply.

Equipped with a linear decrypt-and-multiply FHE, our main idea to con-
struct a rate-1 FHE scheme is to run the linear decrypt-and-multiply operation
of the FHE scheme inside a high rate linearly homomorphic scheme. Consider
an FHE scheme whose secret keys are vectors over Zq, and a rate-1 linearly
homomorphic scheme HE with plaintext space Zq. Assume we are given as “com-
pression key” the encryption ck = Enc(pk, s) of the FHE secret key s under the
linearly homomorphic scheme HE. Given an FHE ciphertext c encrypting a mes-
sage m ∈ {0, 1}, we can transform c into an encryption of m under the linearly
homomorphic scheme by homomorphically evaluating the linear function Lα,c(·)
on ck, i.e. we compute HE.Eval(Lα,c(·), ck). By homomorphic correctness, this
results in an encryption of α ·m+ e under the linearly homomorphic scheme HE.

So far, we have not gained anything in terms of rate, as we still have a large
ciphertext encrypting only a single bit m. However, we have not yet taken advan-
tage of the fact that we can choose α freely and that the scheme HE has rate 1.
Our idea to increase the rate is to pack many FHE ciphertexts (c1, . . . , c�), each
encrypting a single bit mi, into a single ciphertext of the high-rate linearly homo-
morphic scheme HE. More specifically, for given FHE ciphertexts (c1, . . . , c�) and
a parameter t, consider the function L∗(x) defined as

412 Z. Brakerski et al.

L∗(x) =
�∑

i=1

L2t+i,ci(x).

Note that, although we define L∗ as a sum of functions, this is not how we
compute it. Since L∗ is a linear function, we can obtain a matrix-representation
of it by, e.g., evaluating it on a basis and then later use the matrix representation
to compute the function. By correctness of the FHE scheme it holds that

L∗(s) =
�∑

i=1

L2t+i,ci(s)

=
�∑

i=1

2t+i · mi + e,

where e =
∑�

i=1 ei is an �B-bounded noise term. Consequently, by homomor-
phically evaluating L∗ on ck, we obtain an encryption c̃ of

∑�
i=1 2t+i · mi + e

under the high-rate scheme HE. Given that 2t > �B, the noise e does not inter-
fer with the encodings of the message bits mi and they can be recovered during
decryption.

The main effect that works in our favor here is that we can distribute the mes-
sage bits mi into the high order bits by multiplying them with appropriate powers
of 2, whereas the decryption noise piles up in the low order bits. Consequently, the
noise occupies only the lower ≈ log(�) + log(B) bits, whereas the remaining bits
of the message space can be packed with message bits. Choosing q as q ≈ (�B)1/ε

for a parameter ε > 0 we achieve an encoding rate of log(q)−log(�B)
log(q) = 1−ε. Given

that the linearly homomorphic encryption scheme has a similarly high rate, we
obtain an overall rate of 1−O(ε). Consequently, this construction yields an FHE
scheme with rate 1 − O(1/λ) using, e.g., the Damg̊ard-Jurik cryptosystem or a
variant of Regev encryption as linearly homomorphic scheme, where the LWE
modulus-to-noise ratio is with (sub-)exponential [28].

Towards a Scheme from Standard LWE. Our next goal is to achieve the same
(asymptotic) rate assuming only LWE with polynomial modulus-to-noise ratio.
Recall that our packing strategy consisted in encoding the message vector
m = (m1, . . . ,m�) into the high-order bits of a Zq-element by homomorphi-
cally computing t� · m, where t� = (2t+1, . . . , 2t+�). However, this is not the
only possible strategy. More generally, linear decrypt-and-multiply enables us
to homomorphically pack messages (m1, . . . ,m�) into an encoded vector T · m
for some packing matrix T ∈ Z

k×�
q . Since linear decryption is inherently noisy,

we will require some error correcting properties from such an encoding, i.e., we
need to be able to reconstruct m from T · m + e, for short noise terms e. With
this observation in mind, our next step will be to construct an ad-hoc high-
rate linearly homomorphic encryption and pair it with an appropriate packing
strategy.

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 413

Linearly Homomorphic Encryption with Ciphertext Shrinking. We now discuss
new constructions of linearly homomorphic encryption schemes from LWE which
allow asymptotically optimal ciphertext sizes. To avoid confusion with our FHE
ciphertext compression technique, we will refer to this technique as ciphertext
shrinking. Our starting point is Regev encryption and its variants. Let q be
a modulus. In Regev encryption a ciphertext c consists of two parts, a vector
c1 ∈ Z

n
q and a scalar c2 ∈ Zq. The secret key is a vector s ∈ Z

n
q . Decryption for

this scheme is linear, and it holds that

c2 − s� · c1 =
q

2
· m + e

︸ ︷︷ ︸
m̂

,

where e with |e| < B for some bound B is a decryption noise term. We obtain
the plaintext m by rounding m̂, i.e., by computing

�m̂�2 = �m̂ · 2/q�
=

⌈(q

2
· m + e

)
· 2/q

⌋

= �m + 2e/q� = m,

given that q > 4B. We first show how to shrink the component c2 of the cipher-
text into a single bit at the expense of including an additional ring element
r ∈ Zq in the ciphertext. Although this procedure does not actually shrink the
ciphertext (in fact it increases its size by one Zq element), we will later amortize
the cost of r across multiple components. The main idea is to delegate a part
of the rounding operation from the decrypter to a public operation Shrink and
it is inspired by recent works on spooky encryption [13], homomorphic secret
sharing [3], and private-information retrieval [14].

The algorithm Shrink takes as input the ciphertext c = (c1, c2) where c2 ∈ Zq

and proceeds as follows. It first chooses an r ∈ Zq such that c2 + r /∈ [q/4 −
B, q/4+B]∪ [3/4 ·q−B, 3/4 ·q+B], then it computes w = �c2+r�2 and outputs
a compressed ciphertext c̃ = (c1, r, w). Given a shrunk ciphertext c̃ = (c1, r, w)
and the secret key s, the decrypter computes

m′ = (w − �s�c1 + r�2) mod 2.

We claim that m′ is identical to Dec(s, c) = �c2 − s� · c1�2. To see this, note that
since c2 − s� · c1 = q

2m + e, we can write

c2 − e = s� · c1 +
q

2
· m.

Now, since r is chosen such that c2+r /∈ [q/4−B, q/4+B]∪[3/4·q−B, 3/4·q+B]
and e ∈ [−B,B], it holds that

�c2 + r�2 = �c2 + r − e�2.
Using the above this implies that

w = �c2 + r�2 = �c2 + r − e�2 =
⌈
s� · c1 + r +

q

2
· m

⌋
2

= (�s� · c1 + r�2 + m) mod 2.

414 Z. Brakerski et al.

It follows that m = (w − �s�c1 + r�2) mod 2. Note that after shrinking cipher-
texts, we can no longer perform homomorphic operations (unless one is willing to
run a bootstrapped ciphertext expansion). As a consequence, in our applications
we will only perform the shrinking operation after all homomorphic operations
have been computed.

What is left to be shown is how to amortize the cost of including r by
shrinking many c2 components for the same c1. To achieve this, instead of using
basic Regev encryption, we use batched Regev encryption. In batched Regev
encryption, ciphertexts consist of a vector c1 ∈ Z

n
q and ring elements c2,i ∈ Zq

for i ∈ [�]. To decrypt the i-th message component mi, we compute

mi = �c2,i − s�
i · c1�2.

where si is the secret key for the i-th component. Consequently, we can use the
same shrinking strategy as above for every c2,i. However, now each c2,i imposes a
constraint on r, namely that c2,i +r /∈ [q/4−B, q/4+B]∪ [3/4 ·q−B, 3/4 ·q+B].

Fortunately, given that q is sufficiently large, namely q > 4�B, there exists an
r which fulfills all constraints simultaneously. To find such an r, we compute a
union of all forbidden intervals modulo q, and pick an r outside of this set. Notice
that this procedure can be efficiently implemented even if q is super-polynomially
large. The rate of the resulting scheme is

�

(n + 1) log(q) + �
= 1 − (n + 1) log(q)

(n + 1) log(q) + �
.

For q ≈ 4�B and a sufficiently large � = Ω(λ · (n + 1) log(q)) = poly(λ), we
achieve rate 1 − O(1/λ).

Notice that while basic Regev encryption is only additively homomorphic, we
need a scheme that supports homomorphic evaluation of linear functions. Fortu-
nately, this can be achieved by a very simple modification. Instead of encrypting
a message m, encrypt the messages 2i · m for all i ∈ [log(q)]. Further details are
deferred to the main body (Sect. 3.3).

Back to Rate-1 FHE. Returning to our main objective of rate-1 FHE, if we
instantiate our generic construction from above with the packed Regev scheme
that allows ciphertext shrinking, note that there is a slight mismatch. Recall
that our rate 1 FHE construction assumed a linearly homomorphic encryption
scheme with plaintext space Zq or Zk

q , whereas our Regev scheme with shrinking
has a plaintext space {0, 1}�.

Towards resolving this issue, it is instructive to consider Regev encryption
without message encoding and decryption without rounding. That is, we consider
only the linear part of decryption where a ciphertext c = (c1, c2) decrypts to

Dec(s, c) = c2 − s� · c1 = m∗ + e′

where s is the secret key and the message m∗ is an element of Zq. The important
observation is that in the construction above the message m∗ is the result of a

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 415

linear decrypt-and-multiply operation. This means that m∗ already contains a
certain amount of decryption noise and the actual message contained in m∗ has
already been encoded by the linear decrypt-and-multiply operation.

Assuming for simplicity that m∗ = L q
2 ,c∗(s∗), where c∗ is an FHE ciphertext

encrypting a message m and s∗ the corresponding FHE secret key, we have that

Dec(s, c) = c2 − s� · c1 = L q
2 ,c∗(s∗) + e′

=
q

2
· m + e′ + e′′,

where e′′ is a small noise term which is introduced by the inner FHE decryption.
Note that above we only had to deal with noise e′′ coming from the inner FHE
decryption, whereas now we have an additional noise term e′ coming from the
decryption of the linearly homomorphic scheme. Given that the compound noise
e = e′+e′′ is sufficiently small, our shrinking technique for the ciphertext (c1, c2)
still works. The only condition we need for the shrinking technique to work is
that c2 − s� · c1 is of the form q

2 · m + e for a B-bounded error e.
To sum things up, all we need to ensure is that the encrypted message is

well-formed before ciphertext shrinking via the Shrink procedure. To stay with
the notation from above, for this scheme the packing matrix T which is used
to encode plaintexts during the homomorphic decrypt-and-multiply step will be
q
2 · I, where I is the identity matrix.

Fully Homomorphic Time-Lock Puzzles. We finally show how ideas from our
rate-1 FHE construction can be used to obtain fully homomorphic time-lock
puzzles (FH-TLP) from standard assumptions. Very recently, Malavolta and
Thyargarajan [22] introduced the notion of homomorphic time-lock puzzles and
proposed an efficient construction of linearly homomorphic timelock puzzles (LH-
TLP) from the sequential squaring assumption [31]. An LH-TLP allows for eval-
uations of linear functions on messages encrypted in time-lock puzzles. A key
aspect here is that the time-lock puzzles may be independently generated by
different players.

The basic idea underlying our construction of FH-TLP is to replace the
linearly homomorphic encryption scheme in our rate-1 FHE construction above
by an LH-TLP. More concretely, fix an LH-TLP scheme where the message-
space is Zq and an FHE scheme for which the secret keys are Z

n
q vectors. We

will describe how to generate a puzzle for a message m and time parameter T .
First, generate an FHE public key pk together with a secret key s ∈ Z

n
q . Next,

create a puzzle Z with time parameter T for the LH-TLP scheme encrypting the
FHE secret key s. Finally, encrypt the message m under the FHE public key pk
obtaining a ciphertext c. The time-lock puzzle consists of (pk, c,Z) and can be
solved by recovering the secret key s and then decrypting the message m.

While this simple idea allows us to perform homomorphic computations
on a single message m, it fails at our actual goal of allowing homomorphic
computations on puzzles generated by different puzzle generators. The reason
being that every time we generate a new puzzle, we generate a fresh FHE key,

416 Z. Brakerski et al.

and generally homomorphic computations across different keys are not possi-
ble. To overcome this issue, we instead use a multi-key FHE scheme, which
enables homomorphic computations across different public keys. More specifically,
given � puzzles (pk1, c1,Z1), . . . , (pk�, c�,Z�), encrypting messages (m1, . . . ,m�),
and an � input function f , we can homomorpically compute a ciphertext c∗ =
Eval(pk1, . . . , pk�, f, (c1, . . . , c�)) which encrypts the messagem∗ = f(m1, . . . ,m�).

We have, however, still not solved the main problem. In order to recover
f(m1, . . . ,m�) from c∗, we first have to recover all secret keys (s1, . . . , s�) from
the LH-TLPs (Z1, . . . ,Z�). Thus, the workload is proportional to that of solving
� time-lock puzzles, which is identical to the trivial construction. The final idea
is to use a multi-key FHE scheme with linear decryption: If c∗ is a (homomor-
phically evaluated) ciphertext which encrypts a message m∗ under public keys
pk1, . . . , pk�, we can decrypt c∗ using a function Lc∗(s1, . . . , s�) which is linear
in the secret keys s1, . . . , s�. As before, this decryption operation is noisy, i.e.,

Lc∗(s1, . . . , s�) =
q

2
· m∗ + e,

where e with |e| < B is a small noise term. This allows us to homomorphi-
cally evaluate the linear function Lc∗ over the time-lock puzzles (Z1, . . . ,Z�)
(recall the Zi encrypts the secret key si) and obtain a time-lock puzzle Z∗ =
Eval(Lc∗ , (Z1, . . . ,Z�)) encrypting Lc∗(s1, . . . , s�) = q

2 · m∗ + e. To recover the
computation result m∗ we only have to solve Z∗. Note that the final puzzle Z∗

is a single compact puzzle for the LH-TLP scheme, thus the overhead to solve
this puzzle is that of solving a single LH-TLP and therefore independent of �.

We remark that both multi-key FHE from standard assumptions [11,24] and
LH-TLP from standard assumptions [22] need a setup. Consequently, our FH-
TLP construction inherits this property. Finally, techniques that we develop to
construct rate-1 FHE also apply to our FH-TLP construction.

2 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl(·) is
negligible if it vanishes faster than any polynomial. Given a set S, we denote by
s ←$ S the uniform sampling from S. We say that an algorithm is PPT if it can be
implemented by a probabilistic machine running in time poly(λ). We abbreviate
the set {1, . . . , n} as [n]. Matrices are denoted by M and vectors are denoted by
v. We use the infinity norm of a vector ‖v‖∞, since it behaves conveniently with
rounding. For a given modulus q, we define the rounding function �x�2 = �x·2/q�
mod 2.

2.1 Learning with Errors

The (decisional) learning with errors (LWE) problem was introduced by Regev
[30]. The LWE problem is parametrized by a modulus q, positive integers n,m
and an error distribution χ. An adversary is either given (A, s� ·A+e) or (A,u)

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 417

and has to decide which is the case. Here, A is chosen uniformly from Z
n×m
q , s is

chosen uniformly from Z
n
q , u is chosen uniformly from Z

m
q and e is chosen from

χm. The matrix version of this problem asks to distinguish (A,S · A + E) from
(A,U), where the dimensions are accordingly. It follows from a simple hybrid
argument that the matrix version is as hard as the standard version.

As shown in [27,30], for any sufficiently large modulus q the LWE problem
where χ is a discrete Gaussian distribution with parameter σ = αq ≥ 2

√
n

(i.e. the distribution over Z where the probability of x is proportional to
e−π(|x|/σ)2), is at least as hard as approximating the shortest independent vector
problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lat-
tices. We refer to α = σ/q as the modulus-to-noise ratio, and by the above
this quantity controls the hardness of the LWE instantiation. Hereby, LWE
with polynomial α is (presumably) harder than LWE with super-polynomial
or sub-exponential α. We can truncate the discrete gaussian distribution χ to
σ · ω(

√
log(λ)) while only introducing a negligible error. Consequently, we omit

the actual distribution χ but only use the fact that it can be bounded by a
(small) value B.

2.2 Homomorphic Encryption

We recall the definition of homomorphic encryption in the following.

Definition 1 (Homomorphic Encryption). A homomorphic encryption
scheme consists of the following efficient algorithms.

KeyGen(1λ) : On input the security parameter 1λ, the key generation algorithm
returns a key pair (sk, pk).

Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm
returns a ciphertext c.

Eval(pk, f, (c1, . . . , c�)) : On input the public key pk, an �-argument function f ,
and a vector of ciphertexts (c1, . . . , c�), the evaluation algorithm returns an
evaluated ciphertext c.

Dec(sk, c) : On input the secret key sk and a ciphertext c, the decryption algorithm
returns a message m.

We say that a scheme is fully-homomorphic (FHE) if it is homomorphic for
all polynomial-size circuits. We also consider a restricted class of homomor-
phism that supports linear functions and we refer to such a scheme as linearly-
homomorphic encryption. We characterize correctness of a single function eval-
uation. This can be extended to the more general notion of multi-hop correct-
ness [18] if the condition specified below is required to hold for arbitrary com-
positions of functions.

Definition 2 (Correctness). A homomorphic encryption scheme (KeyGen,
Enc,Eval,Dec) is correct if for all λ ∈ N, all �-argument functions f in the sup-
ported family, all inputs (m1, . . . ,m�), all (sk, pk) in the support of KeyGen(1λ),

418 Z. Brakerski et al.

and all ci in the support of Enc(pk,mi) there exists a negligible function negl(·)
such that

Pr [Dec(sk,Eval(pk, f, (c1, . . . , c�))) = f(m1, . . . ,m�)] ≥ 1 − negl(λ).

We require a scheme to be compact in the sense that the size of the ciphertext
should not grow with the size of the evaluated function.

Definition 3 (Compactness). A homomorphic encryption scheme (KeyGen,
Enc,Eval,Dec) is compact if there exists a polynomial poly(·) such that for all λ ∈
N, all �-argument functions f in the supported family, all inputs (m1, . . . ,m�),
all (sk, pk) in the support of KeyGen(1λ), and all ci in the support of Enc(pk,mi)
it holds that

|Eval(pk, f, (c1, . . . , c�))| = poly(λ, |f(m1, . . . ,m�)|) .

The notion of security is standard for public-key encryption [20].

Definition 4 (Semantic Security). A homomorphic encryption scheme
(KeyGen,
Enc,Eval,Dec) is semantically secure if for all λ ∈ N and for all PPT adver-
saries A = (A0,A1) there exists a negligible function negl(·) such that

Pr

⎡

⎢⎢⎣b = A1(c, st)

∣∣∣∣∣∣∣∣

(sk, pk) ← KeyGen(1λ)
(m0,m1, st) ← A0(pk)
b ←$ {0, 1}
c ← Enc(pk,mb)

⎤

⎥⎥⎦ =
1
2

+ negl(λ) .

Finally we define the rate of an encryption scheme as the asymptotic message-
to-ciphertext size ratio.

Definition 5 (Rate). We say that a homomorphic encryption scheme
(KeyGen,Enc,Eval,Dec) has rate ρ = ρ(λ), if it holds for all pk in the support of
KeyGen(1λ), all supported functions f with sufficiently large output size, all mes-
sages (m1, . . . ,m�) in the message space, and all ci in the support of Enc(pk,mi)
that |f(m1, . . . ,m�)|

|Eval(pk, f, (c1, . . . , c�))| ≥ ρ.

We also say that a scheme has rate 1, if it holds that

lim inf
λ→∞

ρ(λ) = 1.

Note that in Definition 5 we need to restrict ourselves to a class of supported
functions for which the output size |f(m1, . . . ,m�)| is sufficiently large. E.g., if a
function output f(m1, . . . ,m�) is just one bit, we cannot hope to achieve a good
rate. Consequently we will only consider functions with a large output domain.

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 419

2.3 Multi-key Homomorphic Encryption

A multi-key homomorphic encryption supports the evaluation of functions over
ciphertexts computed under different (possibly independently sampled) keys.
The result of the computation can then be decrypted using all of the corre-
sponding secret keys. Formally, this introduces a few syntactical modifications.
Most notably and in contrast with the single-key variant, multi-key schemes
might need a setup which generates public parameters shared across all users.

Definition 6 (Multi-Key Homomorphic Encryption). A multi-key homo-
morphic encryption scheme consists of the following efficient algorithms.

Setup(1λ) : On input the security parameter 1λ, the setup algorithm returns the
public parameters pp.

KeyGen(pp) : On input the public parameters pp, the key generation algorithm
returns a key pair (sk, pk).

Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm
returns a ciphertext c.

Eval((pk1, . . . , pk�), f, (c1, . . . , c�)) : On input a vector of public keys
(pk1, . . . , pk�), an �-argument function f , and a vector of ciphertexts
(c1, . . . , c�), the evaluation algorithm returns an evaluated ciphertext c.

Dec((sk1, . . . , sk�), c) : On input a vector of secret keys (sk1, . . . , sk�) and a cipher-
text c, the decryption algorithm returns a message m.

As before, we say that the scheme is fully-homomorphic (MK-FHE) if it is homo-
morphic for P/poly. The definition of correctness is adapted to the multi-key
settings.

Definition 7 (Multi-Key Correctness). A multi-key homomorphic encryp-
tion scheme (Setup,KeyGen,Enc,Eval,Dec) is correct if for all λ ∈ N, all �
polynomial in λ, all �-argument functions f in the supported family, all inputs
(m1, . . . ,m�), all pp in the support of Setup, all (ski, pki) in the support of
KeyGen(pp), and all ci in the support of Enc(pki,mi) there exists a negligible
function negl(·) such that

Pr [Dec((sk1, . . . , sk�),Eval((pk1, . . . , pk�), f, (c1, . . . , c�))) = f(m1, . . . ,m�)]
≥ 1 − negl(λ) .

Compactness is unchanged except that the ciphertext may grow with the number
of keys.

Definition 8 (Multi-Key Compactness). A multi-key homomorphic encryp-
tion scheme (Setup,KeyGen,Enc,Eval,Dec) is compact if there exists a polyno-
mial poly(·) such that for all λ ∈ N, all � polynomial in λ, all �-argument func-
tions f in the supported family, all inputs (m1, . . . ,m�), all (ski, pki) in the sup-
port of KeyGen(1λ), and all ci in the support of Enc(pki,mi) it holds that

|Eval((pk1, . . . , pk�), f, (c1, . . . , c�))| = poly(λ, �, |f(m1, . . . ,m�)|) .

The definition of semantic security is identical to that of single-key schemes.

420 Z. Brakerski et al.

2.4 Linear Decrypt-and-Multiply

To construct our schemes we will need FHE schemes with a more fine-grained
correctness property. More specifically, we will require an FHE scheme where for
which decryption is a linear function in the secret key. Furthermore, we require
that this linear decryption function outputs a the product of the plaintext with
a constant ω (which is provided as input to the decryption algorithm). We will
refer to such schemes as linear decrypt-and-multiply schemes.

The output of this function may contain some (short) noise, thus we also need
an upper bound on amount of noise linear decrypt-and-multiply introduces. This
property was explicitly characterized in an oral presentation of Micciancio [23]
where he showed that schemes from the literature already satisfy this notion [1,19]
and discussed some applications. A formal definition is given in the following.

Definition 9 (Decrypt-and-Multiply). We call a homomorphic encryption
scheme (KeyGen,Enc,Eval,Dec) a decrypt-and-multiply scheme, if there exists
bounds B = B(λ) and Q = Q(λ) and an algorithm Dec&Mult such that the
following holds. For every q ≥ Q, all (sk, pk) in the support of KeyGen(1λ, q),
every �-argument functions f (in the class supported by the scheme), all inputs
(m1, . . . ,m�), all ci in the support of Enc(pk,mi) and every ω ∈ Zq that

Dec&Mult(sk,Eval(pk, f, (c1, . . . , c�)), ω) = ω · f(m1, . . . ,m�) + e mod q

where Dec&Mult is a linear function in sk over Zq and |e| ≤ B with all but
negligible probability.

We also consider decrypt-and-multiply for multi-key schemes and we extend the
definition below. We note that schemes with such a property were previously
considered in the context of Spooky Encryption [13].

Definition 10 (Multi-Key Decrypt-and-Multiply). We call a multi-key
homomorphic encryption scheme (Setup,KeyGen,Enc,Eval,Dec) a decrypt-and-
multiply scheme, if there exists bounds B = B(λ) and Q = Q(λ) and an algo-
rithm Dec&Mult such that the following holds. For every q ≥ Q, all pp in the sup-
port of Setup(1λ; q), all (ski, pki) in the support of KeyGen(1λ), every �-argument
functions f (in the class supported by the scheme), all inputs (m1, . . . ,m�), all
ci in the support of Enc(pki,mi) and every ω ∈ Zq that

Dec&Mult((sk1, . . . , sk�),Eval((pk1, . . . , pk�), f, (c1, . . . , c�)), ω)
= ω · f(m1, . . . ,m�) + e mod q

where Dec&Mult is a linear function in the vector (sk1, . . . , sk�) over Zq and
|e| ≤ B with all but negligible probability.

An aspect we have omitted so far is to specify over which domain we require
decryption to be linear. For essentially all FHE schemes in the literature, decryp-
tion is a linear function over a ring Zq, which also requires that secret keys are
vectors over Zq. As mentioned before, the main idea behind our constructions

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 421

will be to perform linear decrypt-and-multiply under a linearly homomorphic
encryption scheme. Consequently, we need to match the plaintext space of the
linearly homomorphic scheme with the secret key-space of the fully homomor-
phic scheme. As for some linearly homomorphic schemes we consider, we will
need a way to connect the two. Luckily, for essentially all FHE schemes in the
literature, the modulus q does not depend on any secret but depends only on
the security parameter. Moreover, LWE-based FHE schemes can be instantiated
with any (sufficiently large) modulus q without affecting the worst-case hardness
of the underlying LWE problem [27].

Consequently, we can consider the modulus q as a system parameter for the
underlying FHE scheme. In abuse of notation, we will provide the modulus q as
an explicit input to the FHE key generation algorithm.

Schemes with Linear Decrypt-and-Multiply. Micciancio [23] has recently
shown that any FHE scheme with linear decryption always admits an efficient
linear decrypt-and-multiply algorithm. Notable examples of constructions that
support linear decrypt-and-multiply right away are GSW-based schemes [19],
e.g., [1,8,11,13,24].

In these schemes, ciphertexts are of the form C = A · R + m · G, where
A ∈ Z

n×m
q is a matrix specified in the public key, R is a matrix with small

entries and G is the so-called gadget matrix. The secret key is a vector s, for
which the last component sn = 1, which has the property that s� · A = e�, for
a vector e� with small entries. For a vector v let G−1(v) be a binary vector
with the property that G ·G−1(v) = v (G−1(·) is a non-linear function). For an
ω ∈ Zq let ω ∈ Z

n
q be a vector which is 0 everywhere but ω in the last component.

We can perform the linear decrypt-and-multiply operation by computing

s� · C · G−1(ω) = s� · A · R · G−1(ω) + m · s� · G · G−1(ω)

= e� · R · G−1(ω) + m · s� · ω

= ω · m + e′,

where e′ = e� · R · G−1(ω) is a short noise vector. The second equality holds
as s� · A = e�, and the third one holds as s� · ω = ω. We remark that the
scheme of Brakerski and Vaikunthanatan [8] satisfies these constraints with a
polynomial modulus-to-noise ratio, by exploiting the asymmetric noise growth
in the GSW scheme and a specific way to homomorphically evaluate functions.

Since we need a multi-key FHE scheme in our construction of fully homomor-
phic time-lock puzzles, we briefly discuss a linear decrypt-and-multiply procedure
for the MK-FHE construction of Mukherjee and Wichs [24], which in turn is a
simplified version of the scheme from Clear and McGoldrick [11]. Recall that the
scheme shown in [11,24] is secure against the Learning with Errors problem (with
super-polynomial modulo-to-noise ratio) and satisfies the following properties:

(1) The construction is in the common random string model and all parties have
access to a uniform matrix A ←$Z

(n−1)×m
q .

422 Z. Brakerski et al.

(2) For any fixed depth parameter d, the scheme supports multi-key evaluation
of depth-d circuits using public keys of size d · poly(λ), while secret keys are
vectors s ←$Z

n
q , regardless of the depth parameter. More concretely, there

exists an efficient algorithm MK-FHE.Eval that is given as input:
(a) Parameters (�, d) ∈ N, where � is the number of public keys that perform

depth-d computation.
(b) A depth-d circuit that computes an �-argument Boolean function f :

{0, 1}∗ → {0, 1}.
(c) A vector of public keys (pk1, . . . , pk�) and a fresh (bit-by-bit) encryption

of each argument xi under pki, denoted by ci ← MK-FHE.Enc(pki, xi).
Then MK-FHE.Eval outputs a matrix C ∈ Z

n�×m�
q such that

s̃ · C · G−1 (ω) = ω · f(x1, . . . , x�) + e (mod q)

where s̃ is the row concatenation of (s1, . . . , s�), ω is the vector (0, . . . , 0, ω) ∈
Z

n�
q , and G−1 is the bit-decomposition operator. Furthermore, it holds that

|e| ≤ β · (m4 + m)(m� + 1)d = β · 2O(d·log(λ))

where β is a bound on the absolute value of the noise of fresh ciphertexts.
(3) By further making a circular-security assumption, MK-FHE.Eval supports

the evaluation of circuits of any depth without increasing the size of the
public keys. In this case the bound on the noise is |e| ≤ β · 2O(dDec·log(λ)),
where dDec is the depth of the decryption circuit, which is poly-logarithmic
in λ.

Note that that by setting � = 1 we recover the FHE scheme of [19] except
that for the latter we can give a slightly better bound for the noise, namely
|e| ≤ β · m2(m + 1)d. The important observation here is that C · G−1 (ω) does
not depend on the secret key and therefore defining

Dec&Mult(s̃,C, ω) = s̃ · C · G−1 (ω)

gives a syntactically correct linear decrypt-and-multiply algorithm and B = |e|
is the corresponding noise bound. Finally we remark that the MK-FHE scheme
does not impose any restriction on the choice of q (except for its size) so we can
freely adjust it to match the modulus of the companion time-lock puzzle.

2.5 Homomorphic Time-Lock Puzzles

Homomorphic time-lock puzzles generalize the classical notion of time-lock puz-
zles [31] by allowing one to publicly manipulate puzzles to evaluate functions
over the secrets. They were introduced in a recent work [22] and we recall the
definition in the following.

Definition 11 (Homomorphic Time-Lock Puzzles). A homomorphic time-
lock puzzle consists of the following efficient algorithms.

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 423

Setup(1λ, T) : On input the security parameter 1λ and a time parameter T , the
setup algorithm returns the public parameters pp.

PuzGen(pp, s) : On input the public parameters pp and a secret s, the puzzle
generation algorithm returns a puzzle Z.

Eval(pp, f, (Z1, . . . ,Z�)) : On input the public parameters pp, an �-argument func-
tion f , and a vector of puzzles (Z1, . . . ,Z�), the evaluation algorithm returns
an evaluated puzzle Z.

Solve(pp,Z) : On input the public parameters pp and a puzzle Z, the solving
algorithm returns a secret s.

By convention, we refer to a puzzle as fully-homomorphic (FHTLP) if it is homo-
morphic for all circuits. We now give the definition of (single-hop) correctness.

Definition 12 (Correctness). A homomorphic time-lock puzzle (Setup,
PuzGen,Eval,Solve) is correct if for all λ ∈ N, all T ∈ N, all �-argument func-
tions f in the supported family, all inputs (s1, . . . , s�), all pp in the support of
Setup(1λ, T), and all Zi in the support of PuzGen(pp, si) the following two con-
ditions are satisfied:

(1) There exists a negligible function negl(·) such that

Pr [Solve(pp,Eval(pp, f, (Z1, . . . ,Z�))) = f(s1, . . . , s�)] = 1 − negl(λ) .

(2) The runtime of Solve(pp,Z), where Z ← Eval(pp, f, (Z1, . . . ,Z�)), is bounded
by poly(λ, T), for some fixed polynomial poly(·).

In this work we consider the stronger notion of security where time is counted
starting from the moment the puzzle is generated (as opposed to the moment
where the public parameters of the scheme are generated). This is termed secu-
rity with reusable setup in [22] and we henceforth refer to it simply as security.

Definition 13 (Security). A homomorphic time-lock puzzle (Setup,PuzGen,
Eval,Solve) is secure if for all λ ∈ N, all T ∈ N, all PPT adversaries A =
(A0,A1) such that the depth of A1 is bounded by T , there exists a negligible
function negl(·) such that

Pr

⎡

⎢⎢⎣b = A1(Z, st)

∣∣∣∣∣∣∣∣

pp ← Setup(1λ, T)
(s0, s1, st) ← A0(pp)
b ←$ {0, 1}
Z ← PuzGen(pp, sb)

⎤

⎥⎥⎦ =
1
2

+ negl(λ) .

3 Shrinking Linearly Homomorphic Encryption

In the following section we introduce the useful abstraction of linearly homomor-
phic encryption with compressing ciphertexts and we discuss several concrete
instantiations.

424 Z. Brakerski et al.

3.1 Definitions

We start by providing relaxed correctness definitions for linearly homomorphic
encryption. As discussed before, for Regev-like encryption schemes decryption
is a linear operation which, unavoidably, introduces noise. This noise is dealt
with by encoding the message accordingly and decoding the result of linear
decryption, usually by applying a rounding function. In this section we provide
definitions for linearly homomorphic encryption which account for noise, and
allow to treat encoding and decoding of the message separately. We assume
that a linearly homomorphic encryption scheme is described by four algorithms
(KeyGen,Enc,Dec,Eval) with the usual syntax. We further assume that each
public key pk specifies a message space of the form Z

k
q .

Definition 14 (Relaxed Correctness). Let HE = (KeyGen,Enc,Dec,Eval) be
a linearly homomorphic encryption scheme. Let B = B(λ) and � = poly(λ). We
say that HE is correct with B-noise, if it holds for every (pk, sk) in the support
of KeyGen(1λ), where pk specifies a message space Z

k
q , every linear function

f : (Zk
q)� → Z

k
q , all messages (m1, . . . ,m�) ∈ Z

k
q that

Dec(sk,Eval(pk, f, (Enc(pk,m1), . . . ,Enc(pk,m�)))) = f(m1, . . . ,m�) + e,

where e ∈ Z
k is a noise term with ‖e‖∞ ≤ �B.

Notice that we allow the amount of noise to depend linearly on the parameter
�. We also consider linearly homomorphic encryption schemes which allow for
shrinking post-evaluation ciphertexts. Such schemes will have two additional
algorithms Shrink and ShrinkDec defined below.

Shrink(pk, c) : Takes as input a public key pk and an evaluated ciphertext c and
outputs a shrunk ciphertext c̃.

ShrinkDec(sk, c̃) : Takes as input a secret key sk and a shrunk ciphertext c̃ and
outputs a message m.

Furthermore, for such schemes we assume that the public key pk contains
an encoding matrix T ∈ Z

k×�
q . The encoding matrix T will specifies how binary

messages are supposed to be encoded in the message space Z
k
q . We can now define

the notion of shrinking correctness for a homomorphic encryption scheme HE.

Definition 15 (Shrinking Correctness). Let HE = (KeyGen,Enc,Dec,Eval)
be a linearly homomorphic encryption scheme with additional algorithms
(Shrink,ShrinkDec). Let K = K(λ). We say that HE is correct up to K-noise,
if the following holds. For every (pk, sk) in the support of KeyGen(1λ), where pk
specifies a message space Z

k
q and an encoding matrix T ∈ Z

k×�
q , and every c with

Dec(sk, c) = T · m + e,

where m ∈ {0, 1}� and ‖e‖ ≤ K, it holds that

ShrinkDec(sk,Shrink(pk, c)) = m.

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 425

In our main construction, we will set the bounds B (in the Definition 14)
and K (in Definition 15) in such a way that the amount of noise K tolerated
by shrinking correctness is substantially higher than the noise B introduced
by decryption. Finally, we remark that the notion of shrinking correctness also
applies to non-homomorphic encryption, albeit it seems not very useful in this
context, as optimal rate can be achieved via hybrid encryption.

3.2 A Ciphertext Shrinking Algorithm

We discuss a ciphertext shrinking technique which applies to a broad class of
encryption schemes. Let (KeyGen,Enc,Dec,Eval) be an encryption scheme where
the public key specifies a message space Z

�
q, the secret key S is a matrix in Z

�×n
q ,

(evaluated) ciphertexts are of the form (c1, c2), and (noisy) decryption computes

Dec(S, (c1, c2)) = F (c2) − S · H(c1),

where F (c2) ∈ Z
�
q, H(c1) ∈ Z

n
q . Here the two functions F and H are part of the

description of the scheme and publicly known. Assume in the following that q is
even. We describe a general method to shrink ciphertexts of schemes that satisfy
these conditions. Consider the following algorithms Shrink and ShrinkDec.

Shrink(pk, (c1, c2)) : Compute F (c2) and parse it as (y1, . . . , y�) ∈ Z
�
q. Compute

the union of intervals

U =
�⋃

i=1

([q/4 − yi − B, q/4 − yi + B] ∪ [−q/4 − yi − B,−q/4 − yi + B]) ⊆ Zq.

Pick any r ∈ Zq\U . For i = 1, . . . , � compute wi = �yi + r�2. Output c̃ =
(r, c1, w1, . . . , w�).

ShrinkDec(S, c̃ = (r, c1, w1, . . . , w�)) : Compute v = S · H(c1) and parse v =
(v1, . . . , v�). For i = 1, . . . , � set m′

i = (wi − �vi + r�2) mod 2. Output m′ =
(m′

1, . . . ,m
′
�).

The encoding matrix T for this scheme is defined to be T = q
2 · I, where

I ∈ Z
�×�
q is the identity matrix. We now state the conditions under which the

modified scheme has shrinking correctness.

Lemma 1. Let HE = (KeyGen,Enc,Dec,Eval) be an encryption scheme as
above, let (Shrink,ShrinkDec) be as above and let K = K(λ). Let pk be a pub-
lic key for HE specifying a message space Z

�
q with a corresponding secret key

S ∈ Z
�×n
q . Then given that q > 4� ·K the scheme has shrinking correctness up to

noise K.

Proof. Let (c1, c2) be a ciphertext under pk for which it holds that F (c2) − S ·
H(c1) = q

2 ·m+ z for a z with ‖z‖ ≤ K. Let y = F (c2), v = S · H(c1) and parse
y = (y1, . . . , y�) and v = (v1, . . . , v�). I.e., it holds that y − v = q

2 · m + z. Fix
an index i ∈ [�] and write yi − vi = q

2 · mi + zi, for a zi ∈ [−K,K]. This implies

426 Z. Brakerski et al.

that yi = vi + zi + q
2 · mi. Note that given that yi + r /∈ [q/4 − B, q/4 + B],

yi + r /∈ [−q/4 − B,−q/4 + B] and zi ∈ [−B,B], it holds that

�yi + r�2 = �yi + r − zi�2
= �vi + r +

q

2
· mi�2

= (�vi + r�2 + mi) mod 2.

Consequently, it holds that (�yi + r�2 − �vi + r�2) mod 2 = mi.
Thus, given that it holds for all i ∈ [�] that yi + r /∈ [q/4 − B, q/4 + B]

and yi + r /∈ [−q/4 − B,−q/4 + B] then decryption of all mi will succeed.
We will now argue that under the given parameter choice such an r always
exists. For every index i ∈ [�] it holds that yi + r /∈ [q/4 − B, q/4 + B] and
yi + r /∈ [−q/4−B,−q/4+B], if and only if r /∈ [q/4− yi −B, q/4− yi +B] and
r /∈ [−q/4 − yi − B,−q/4 − yi + B]. I.e., for every index i there are two intervals
[q/4 − yi − B, q/4 − yi + B] and [−q/4 − yi − B,−q/4 − yi + B] of forbidden
choices of r. Given that the set of all forbidden choices

U =
�⋃

i=1

([q/4 − yi − B, q/4 − yi + B] ∪ [−q/4 − yi − B,−q/4 − yi + B])

has less than q elements, we can find an r ∈ Zq which satisfies all constraints.
By a union bound it holds that |U | ≤ � · 4B. Consequently, since q > 4�B, it
holds that Zq\U �= ∅, and the compression algorithm will find an r such that
decryption will recover every mi correctly.

3.3 Packed Regev Encryption

We briefly recall the linearly homomorphic packed Regev encryption and aug-
ment it with the shrinking procedures provided in the last section. This will
give use a linearly homomorphic scheme with rate 1 − O(1/λ). Let q = 2q′ be a
k-bit modulus, let (n,m, �) be positive integers and let χ be a B-bounded error
distribution defined on Z. Let Gi ∈ Z

�×k
q be a matrix which is zero everywhere,

but its i-th row is g� = (1, 2, . . . , 2i, . . . , 2k). For a y ∈ Zq let g−1(y) ∈ {0, 1}k

be the binary expansion of y, i.e., it holds that g� · g−1(y) = y.

KeyGen(1λ) : Choose A ←$Z
n×m
q uniformly at random. Choose S ←$Z

�×n
q uni-

formly at random and sample E ←$ χ�×m. Set B = S ·A+E. Set pk = (A,B)
and sk = S.

Enc(pk = (A,B), (m1, . . . ,m�)) : Choose a random matrix R ←$ {0, 1}m×k and
set C1 = A · R and. C2 = B · R + ·∑�

i=1 mi · Gi. Output c = (C1,C2).
Eval((f1, . . . , ft), (c1, . . . , ct)) : Parse ci = (C1,i,C2,i). Compute c1 =

∑t
i=1 C1,i ·

g−1(fi) and c2 =
∑t

i=1 C2,i · g−1(fi). Output c = (c1, c2).
Dec(sk = S, c = (c1, c2): Compute and output c2 − S · c1.

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 427

First notice that under the LWE assumption, the matrix B in the public key
is pseudorandom. Consequently, given that m > (n + �) · log(q) + ω(log(λ)),
we can call the leftover-hash lemma [21] to argue that ciphertexts (C1,C2) are
statistically close to uniform [30] and we obtain semantic security.

We now consider the homomorphic correctness of the scheme. Let f =
(f1, . . . , ft) ∈ Z

t
q define a linear function and let (x1, . . . ,xt) ∈ Z

t
q. For i ∈ [t]

let ci = (C1,i,C2,i) = Enc(pk,mi), i.e., it holds that c1,i = A · Ri and
c2,i = B · Ri +

∑�
j=1 xi,j · Gj . A routine calculation shows that

Dec(S, c∗) =
t∑

j=1

fjxj + z

where z = E · ∑t
j=1 Rj · g−1(fj). We can bound ‖z‖∞ by

‖z‖∞ ≤ t · k · m · B.

Consequently, the scheme HE is correct with t · k · m · B-noise. Since HE fulfills
the structural criteria of Lemma 1 we can augment the scheme with algorithms
Shrink and ShrinkDec and the resulting scheme has shrinking correctness up to
K-noise, given that q > 4� · K.

Rate. We finally analyze the rate of the scheme for some K = poly(λ) and q ≈
4�K. Shrunk ciphertexts generated by Shrink have the form (c1, r, w1, . . . , w�),
where c1 ∈ Z

n
q , r ∈ Zq and wi ∈ {0, 1} for i ∈ [�]. Consequently, the ciphertext

length is (n+1) log(q)+ �. Given that q = poly(λ), we can conservatively bound
log(q) ≤ (log(λ))2 and observe that indeed the ciphertext is only additively
longer than the plaintext. In terms of ratio, we achieve

ρ =
�

(n + 1) log(q) + �
≥ 1 − (n + 1) log(q)

�
,

which translates to 1 − 1/λ for � ≥ n · λ · (log(λ))2.

4 Rate-1 Fully-Homomorphic Encryption

The following section is devoted to the presentation of our main result, an FHE
scheme with optimal rate.

4.1 Definitions

Before presenting the construction of our rate 1 FHE scheme, we will augment
the syntax of an FHE scheme by adding a compression algorithm and an addi-
tional decryption procedure for compressed ciphertexts. This will facilitate the
exposition of our scheme.

428 Z. Brakerski et al.

Definition 16 (Compressible FHE). Let FHE = (KeyGen,Enc,Dec,Eval)
be an FHE scheme and let � = �(λ) = poly (λ). We say that FHE supports
�-ciphertext compression if there exist two algorithms Compress and CompDec
with the following syntax.

Compress(pk, c1, . . . , c�) : Takes as input a public key pk and � ciphertexts
(c1, . . . , c�) and outputs a compressed ciphertext c∗

CompDec(sk, c∗) : Takes as input a secret key sk and a compressed ciphertext c∗

and outputs � messages (m1, . . . ,m�).

In terms of correctness we require the following: Let (pk, sk) be a key pair in
the support of KeyGen(1λ) and let c1, . . . , c� be valid ciphertexts (i.e., freshly
encrypted ciphertext or ciphertexts that are the result of a homomorphic evalu-
ation) such that for all i ∈ [�] it holds mi = Dec(sk, ci). Then it holds that

CompDec(sk,Compress(pk, c1, . . . , c�)) = (m1, . . . ,m�).

For compressible FHE schemes, we say a scheme has rate ρ = ρ(λ) if it
holds for all (pk, sk) in the support of KeyGen(1λ), all messages m1, . . . ,m� and
all ciphertexts c1, . . . , c� with Dec(sk, ci) = mi (for i ∈ [�]) that

|(m1, . . . ,m�)|
|Compress(pk, (c1, . . . , c�))| ≥ ρ.

Note that this rate definition is compatible with Definition 5 when we con-
sider functions f which produce � (bits of) outputs.

4.2 Construction

In the following we describe a compressible FHE scheme which can be instan-
tiated such that compressed ciphertexts achieve rate 1. We assume the exis-
tence of an FHE with linear decrypt-and-multiply (and any rate) and a rate-1
linearly-homomorphic encryption scheme. In this scheme, compressed cipher-
texts no longer support homomorphic operations, i.e., the scheme is single-hop
homormorphic. Later, we briefly discuss how this scheme can be converted into
a multi-hop levelled or fully homomorphic scheme.

Notation. Since the linearly homomorphic scheme HE may work with k parallel
slots, we need some notation on how to address specific slots. If f is a linear
function taking as input a row vector x we can canonically extend f to take as
input matrices X, where the function f is applied to each row individually. In
fact, if the function f is represented by a column vector f , we can evaluate f
on X by computing X · f . Moreover, for a column vector a and a row vector b
we let a · b denote the outer product of a and b. This allows us to put a row
vector x into a certain slot i by computing bi ·x, where bi is the i-th unit vector.
Consequently, this lets us conveniently write f(bi · x) = bi · f(x), where f is a
linear function taking row vectors as inputs as above. For a linearly homomorphic

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 429

scheme HE with message space Z
k
q , we denote inputs as column vectors. We can

encrypt a message m into the i-th slot by computing HE.Enc(pk2,m · bi), where
bi ∈ Z

k
q is the i-th unit column vector.

Let FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec) be a
(somewhat or fully) homomorphic encryption scheme with lin-
ear decrypt-and-multiply and plaintext space {0, 1}. Let further
HE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec,HE.Shrink,HE.ShrinkDec)
be a packed linearly homomorphic encryption scheme with relaxed correct-
ness in which we can pack � message bits. In abuse of notation we assume
that the key-generation algorithm FHE.KeyGen(1λ, q) takes the modulus q
as an explicit input.

FHE.KeyGen(1λ) : On input the security parameter 1λ, the key generation
algorithm samples

(pk2, sk2) ← HE.KeyGen(1λ).

Let q be the modulus of the plaintext space corresponding to pk2. Com-
pute

(sk1, pk1) ← FHE.KeyGen(1λ, q).

Let sk1 = (s1, . . . , sn) ∈ Z
n
q . For i = 1, . . . , k and j = 1, . . . , n compute

cki,j ← HE.Enc(pk2, sj · bi),

Set cki = (cki,1, . . . , cki,n) for i ∈ [k] and set the compression key to
ck = (ck1, . . . , ckk).
Return pk = (pk1, pk2, ck) as the public key and sk = (sk1, sk2) as the
secret key.

FHE.Enc(pk,m) : On input the public key pk = (pk1, pk2, ck) and a message
m ∈ {0, 1}, compute and output c ← FHE.Enc(pk1,m).

FHE.Eval(pk, f, (c1, . . . , c�)) : On input the public key pk = (pk1, pk2, ck),
a function f and ciphertexts (c1, . . . , c�), compute and output
FHE.Eval(pk1, f, (c1, . . . , c�)).

FHE.Dec(sk, c) : On input the secret key sk = (sk1, sk2) and a ciphertext c,
compute and output m ← FHE.Dec(sk1, c).

FHE.Compress(pk, (c1, . . . , c�)) : On input a public key pk = (pk1, pk2, ck),
where the compression key is of the form ck = (ck1, . . . , ckk), and cipher-
texts (c1, . . . , c�) proceed as follows. Let T = (tij) be the encoding matrix
corresponding to the public key pk. First construct a linear function f
which computes

f(x1, . . . ,xk) =
k∑

i=1

�∑

j=1

Dec&Mult (xi, cj , tij) .

430 Z. Brakerski et al.

Note that the function f is specified by the matrix T = (tij) and the
ciphertexts (c1, . . . , c�).
Compute and output c̃ = HE.Shrink(pk2,HE.Eval(pk2, f, ck1, . . . , ckk)).

FHE.CompDec(sk, c̃) : On input the secret key sk = (sk1, sk2) and a com-
pressed ciphertext c̃, compute and output m = HE.ShrinkDec(sk2, c̃).

4.3 Analysis

The security of our scheme is shown in the following. Recall that for LWE-based
FHE schemes, e.g., [1,19,24], the LWE modulus is a system parameter which
can be provided as an input to the KeyGen algorithm. By [27] that worst-case
hardness of the underlying LWE problem is not affected.

Theorem 1 (Semantic Security). Assume that FHE and HE are semanti-
cally secure encryption schemes, then the scheme FHE as described above is also
semantically secure.

Proof (Sketch). Let A be a PPT adversary against the semantic security of FHE.
Consider a hybrid experiment where we compute the compression key by

cki ← HE.Enc(pk2, 0)

for all i ∈ [k]. By the semantic security of HE the adversary A will not detect
this change. In a second hybrid modification, we replace the challenge ciphertext
by an encryption of 0. It follows from the semantic security of FHE that the
advantage of A in this hybrid is at most a negligible amount smaller than in the
last hybrid. Since the advantage of A in this final experiment is 0, it follows that
A’s advantage is negligible.

The more interesting aspects of this construction is its correctness.

Theorem 2 (Correctness). Assume the FHE scheme FHE has decryption
noise at most BFHE, the HE scheme has decryption noise at most BHE and that
HE has shrinking correctness for noise up to K ≥ � ·BFHE + k ·n ·BHE. Then the
scheme FHE has compression correctness.

Proof. Fix a public key pk = (pk1, pk2, ck) where pk2 defines a message space Z
k
q

and a secret key sk = (sk1, sk2). Further fix ciphertexts (c1, . . . , c�) such that ci

is a valid encryption of mi. Let m = (m1, . . . ,m�). Let the linear function f be
defined by

f(x1, . . . ,xk) =
k∑

i=1

�∑

j=1

Dec&Mult (xi, cj , tij) .

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 431

Consider the ciphertext c′ = HE.Eval(pk2, f, (ck1, . . . , ckk)). As cki =
HE.Enc(pk2,bi · sk1), it holds by the relaxed homomorphic correctness of HE
that

HE.Dec(sk2, c′) = f(b1 · sk1, . . . ,bk · sk1) + z,

where ‖z‖∞ ≤ k · n · BHE. Moreover, it holds that

f(b1 · sk1, . . . ,bk · sk1) =
k∑

i=1

�∑

j=1

Dec&Mult (bi · sk1, cj , tij)

=
k∑

i=1

�∑

j=1

bi · Dec&Mult (sk1, cj , tij)

=
k∑

i=1

�∑

j=1

bi · (tij · mj + eij)

= T · m +
k∑

i=1

bi ·
⎛

⎝
�∑

j=1

eij

⎞

⎠

= T · m + e,

where e =
∑k

i=1 bi · (
∑�

j=1 eij) and T = (tij) is the encoding matrix. Since it
holds that |eij | ≤ BFHE, we get that ‖e‖∞ ≤ � ·BFHE. Consequently, it holds that

HE.Dec(sk, c′) = T · m + z + e.

Since ‖z + e‖∞ ≤ ‖z‖∞ + ‖e‖∞ ≤ k · n · BHE + � · BFHE ≤ K, by the shrinking
correctness of HE we have that

HE.ShrinkDec(sk2,HE.Shrink(pk2, c
′)) = m.

This shows that FHE has compression correctness.

4.4 Instantiating with Rate 1

A suitable FHE scheme which readily supports linear decrypt-and-multiply is the
GSW scheme [19] and its variants [1,8,24]. For the Brakerski-Vaikuntanathan
variant of this scheme [8], we can set things up such that the decryption noise-
bound BFHE is polynomial in λ (see Sect. 2.4). Correctness is achieved by choosing
a sufficiently large polynomial modulus q.

When instantiating the linearly homomorphic scheme HE with our packed
Regev encryption that supports ciphertext shrinking (see Sects. 3.2 and 3.3), we
obtain the following. Assume that the decryption noise of the FHE scheme FHE
is some polynomial BFHE. Moreover, let BHE = poly(λ) be the decryption noise
of HE for some fixed B-bounded error distribution χ over Z. By Theorem 2 we
need to setup HE (via the choice of the modulus q) such that we have shrinking
correctness for noise up to K ≥ � · BFHE + k · n · BHE. In turn, by Lemma 1 we

432 Z. Brakerski et al.

can achieve this if q > 4�K. Consequently, since BFHE, BHE, and therefore K
are of size poly(λ), we can choose q of size poly(λ) and achieve a polynomial
modulus-to-noise ratio B/q = poly(λ) for the underlying LWE problem. For
this scheme the encoding matrix T is given by T = q

2 · I, where I ∈ Z
�×�
q is

the identity matrix (see Sect. 3.3). The overall rate of this scheme is exactly the
same as that of HE, which, as we’ve analyzed in Sect. 3.3. That is, for length �
messages we have �+poly(λ) length ciphertexts, and thus for a sufficiently large
� = poly(λ) the rate is (1 − 1/λ).

5 Fully-Homomorphic Time-Lock Puzzles

We propose a construction for a fully-homomorphic time-lock puzzle FHTLP.
The scheme builds on the similar ideas as our rate-1 FHE construction, except
that we have to explicitly use a multi-key fully-homomorphic encryption scheme
with linear decrypt-and-multiply, due to the distributed nature of homomorphic
time-lock puzzles. Below we describe a simplified construction that encapsulates
only binary secrets, however we can easily turn it into a rate-1 scheme by using
a high-rate LH-TLP and packing vectors of binary messages into a single puzzle
via standard techniques.

Let FHE = (MK-FHE.KeyGen,MK-FHE.Enc,MK-FHE.Eval,MK-FHE.Dec) be
a (somewhat or fully) multi-key homomorphic encryption scheme with lin-
ear decrypt-and-multiply and plaintext space {0, 1}. Let further TLP =
(TLP.Setup,TLP.PuzGen,TLP.Eval,TLP.Dec) be a linearly homomorphic
time-lock puzzle. In abuse of notation we assume that the key-generation
algorithm MK-FHE.KeyGen(1λ, q) takes the modulus q as an explicit input.

FHTLP.Setup(1λ, T) : On input the security parameter 1λ and the time
parameter T , the setup generates

pp0 ← MK-FHE.Setup(1λ; q) pp1 ← TLP.Setup(1λ, T)

where q is the modulus of the plaintext space defined by pp1, and returns
pp = (pp1, pp0) as the public parameters.

FHTLP.PuzGen(pp, s) : On input the public parameters pp = (pp1, pp0) and
a secret s ∈ {0, 1} the puzzle generation algorithm samples a fresh key
pair

(sk, pk) ← MK-FHE.KeyGen(pp0).

Then it encrypts the secret and generates a puzzle where the solution is
the secret key

c ← MK-FHE.Enc(pk, s) Z̃ ← TLP.PuzGen(pp1, sk)

and sets the puzzle to be the following tuple Z = (pk, c, Z̃).

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 433

FHTLP.Eval(pp, f, (Z1, . . . ,Z�)) : On input the public parameters pp =
(pp1, pp0), the circuit representation of a function f : {0, 1}� → {0, 1},
and a vector of puzzles (Z1, . . . ,Z�), where each Zi = (pki, ci, Z̃i), the
evaluation algorithm computes

C ← MK-FHE.Eval((pk1, . . . , pk�), f, (c1, . . . , c�)).

Then it evaluates the decrypt-and-multiply function (with C and q/2
hardcoded) over the puzzles

Z̃ ← TLP.Eval(pp1,Dec&Mult(·,C, q/2), (Z̃1, . . . , Z̃�)).

Finally the algorithm returns Z̃ as the evaluated puzzle.
FHTLP.Solve(pp,Z) : We assume without loss of generality that the solv-

ing algorithm is given as input an evaluated puzzle Z. The decryption
algorithm parses pp = (pp1, pp0), solves the input puzzle

s ← TLP.Solve(pp1,Z)

and returns �s�2 as the solution.

5.1 Analysis

In the following we analyze the security and the correctness of our scheme.

Theorem 3 (Security). Let MK-FHE be a semantically secure multi-key
encryption scheme and let TLP be a secure time-lock puzzle, then the scheme
FHTLP as described above is secure.

Proof. We analyze only fresh (non-evaluated) puzzles without loss of generality.
The distribution ensemble induced by the view of the adversary corresponds to

(pp0, pp1, pk,MK-FHE.Enc(pk, s),TLP.PuzGen(pp1, sk))

over the random choices of the public parameters and the random coins of the
algorithms. By the security of TLP it holds that, for all PPT adversaries of depth
at most T , the latter distribution is computationally indistinguishable from

(pp0, pp1, pk,MK-FHE.Enc(pk, s),TLP.PuzGen(pp1, 0)) .

We are now in the position of invoking the semantic security of the MK-FHE
scheme. By a standard reduction, the following distribution

(pp0, pp1, pk,MK-FHE.Enc(pk, 0),TLP.PuzGen(pp1, 0)) .

434 Z. Brakerski et al.

is computationally indistinguishable from the previous one. Although this holds
for any PPT adversary, we remark in our case even computational indistinguisha-
bility against depth-bounded attackers would suffice. The proof is concluded by
observing that the last distribution hides the secret information-theoretically.

What is left to be shown is that the scheme is correct.

Theorem 4 (Correctness). Assume the MK-FHE scheme MK-FHE has
decryption noise at most BMK-FHE and that q > 4 · BMK-FHE. Then the scheme
FHTLP as described above is (single-hop) correct.

Proof. We unfold the computation of the solving algorithm of the underlying
time-lock puzzle.

s = TLP.Solve(pp1,Z)

= TLP.Solve(pp1,TLP.Eval(pp1,Dec&Mult(·,C, q/2), (Z̃1, . . . , Z̃�)))
= Dec&Mult((sk1, . . . , sk�),C, q/2)
= Dec&Mult((sk1, . . . , sk�),MK-FHE.Eval((pk1, . . . , pk�), f, (c1, . . . , c�)), q/2)
= q/2 · f(s1, . . . , s�) + e mod q

by the correctness of the TLP scheme and of the MK-FHE decrypt-and-multiply,
respectively. By our choice of parameters |e| ≤ BMK-FHE (with all but negligible
probability) and therefore the decryption algorithm returns the correct bit with
overwhelming probability.

5.2 Instantiation

A linearly-homomorphic time-lock puzzle has been recently proposed in [22]. In
this construction, all users in the system share the public parameters

(
N = p · q, g, h = g2

T
)

where T is the parameter that dictates the hardness of the puzzle and g is the
generator of Z∗

N (with Jacobi symbol +1). For a secret s ∈ ZN , each user can
locally generate a puzzle computing

gr (mod N) hr·N (N + 1)s (mod N2)

where r ←$ZN2 . The puzzle can be solved by raising the first element to the
power of 2T and removing the blinding factor from the second term. Once (N+1)s

is known, s can be recovered efficiently using the polynomial-time discrete loga-
rithm algorithm from [26]. The puzzle hides the message up to time T assuming
the inherent sequentiality of squaring in groups of unknown order. The scheme is
linearly-homomorphic over the ring (ZN ,+) and can be generalized in the same
spirit as the Damg̊ard-Jurik approach to achieve rate 1 (see [22] for more details).
As discussed in Sect. 2.4, we can use the LWE-based MK-FHE scheme of [24]
(which supports linear decrypt-and-multiply) with an externally provided mod-
ulus q = N . Hardness of the underlying LWE problem for arbitrary (worst-case)
moduli follows by [27].

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 435

References

1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

2. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

3. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 1

4. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 14

5. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7 1

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (eds.) ITCS 2012, pp. 309–
325. ACM, January 2012

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (eds.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

8. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (eds.) ITCS 2014, pp. 1–12. ACM, January 2014

9. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

10. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th FOCS, pp. 41–50. IEEE Computer Society Press, October 1995

11. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

12. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001)

13. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–
122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 4

14. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 1

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (eds.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1

436 Z. Brakerski et al.

16. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: Ostrovsky, R. (eds.) 52nd FOCS, pp. 107–109.
IEEE Computer Society Press, October 2011

17. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. Technical
report (personal communication) (2019)

18. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 9

19. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

20. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC, pp. 365–377. ACM
Press, May 1982

21. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press, May
1989

22. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692,
pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-
7 22

23. Micciancio, D.: From linear functions to fully homomorphic encryption. Technical
report (2019). https://bacrypto.github.io/presentations/2018.11.30-Micciancio-
FHE.pdf

24. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

25. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 30

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

27. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM
STOC, pp. 461–473. ACM Press, June 2017

28. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

29. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications.
In: Thorup, M. (eds.) 59th FOCS, pp. 859–870. IEEE Computer Society Press,
October 2018

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://bacrypto.github.io/presentations/2018.11.30-Micciancio-FHE.pdf
https://bacrypto.github.io/presentations/2018.11.30-Micciancio-FHE.pdf
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

Leveraging Linear Decryption: Rate-1 FHE and Time-Lock Puzzles 437

31. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA (1996)

32. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

Compressible FHE with Applications
to PIR

Craig Gentry(B) and Shai Halevi(B)

Algorand Foundation, New-York City, NY, USA
cbgentry@gmail.com, shaih@alum.mit.edu

Abstract. Homomorphic encryption (HE) is often viewed as impracti-
cal, both in communication and computation. Here we provide an addi-
tively homomorphic encryption scheme based on (ring) LWE with nearly
optimal rate (1 − ε for any ε > 0). Moreover, we describe how to com-
press many Gentry-Sahai-Waters (GSW) ciphertexts (e.g., ciphertexts
that may have come from a homomorphic evaluation) into (fewer) high-
rate ciphertexts.

Using our high-rate HE scheme, we are able for the first time to
describe a single-server private information retrieval (PIR) scheme with
sufficiently low computational overhead so as to be practical for large
databases. Single-server PIR inherently requires the server to perform at
least one bit operation per database bit, and we describe a rate-(4/9)
scheme with computation which is not so much worse than this inher-
ent lower bound. In fact it is probably less than whole-database AES
encryption – specifically about 2.3 mod-q multiplication per database
byte, where q is about 50 to 60 bits. Asymptotically, the computational
overhead of our PIR scheme is Õ(log log λ + log log log N), where λ is
the security parameter and N is the number of database files, which are
assumed to be sufficiently large.

1 Introduction

How bandwidth efficient can (fully) homomorphic encryption ((F)HE) be? While
it is easy to encrypt messages with almost no loss in bandwidth, the same is
generally not true for homomorphic encryption: Evaluated ciphertexts in con-
temporary HE schemes tend to be significantly larger than the plaintext that
they encrypt, at least by a significant constant factor and often much more.

Beyond the fundamental theoretical interest in the bandwidth limits of FHE,
a homomorphic scheme with high rate has several applications. Perhaps the most
obvious is for private information retrieval (PIR), where bandwidth is of the
essence. While HE can clearly be used to implement PIR, even the best PIR
implementation so far (such as [1,3]) are still quite far from being able to sup-
port large databases, mostly because the large expansion factor of contemporary
HE schemes. Another application can be found in the work of Badrinarayanan

This work was done while the authors were in IBM Research.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 438–464, 2019.
https://doi.org/10.1007/978-3-030-36033-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_17

Compressible FHE with Applications to PIR 439

et al. [6], who showed that compressible (additive) homomorphic encryption with
rate better than 1/2 can be used for a high-rate oblivious transfer, which in turn
can be used for various purposes in the context of secure computation. Alas,
prior to our work the only instantiation of high rate homomorphic encryption
was the Damg̊ard-Jurik cryptosystem [14], which however is (a) only additively
homomorphic, (b) rather expensive, and (c) insecure against quantum comput-
ers.

In this work we remedy this situation, devising the first compressible fully
homomorphic encryption scheme, and showing how to use it to get efficient PIR.
Namely, we describe an (F)HE scheme whose evaluated ciphertexts can be pub-
licly compressed until they are roughly the same size as the plaintext that they
encrypt. Our compressible scheme can take “bloated” evaluated ciphertexts of
the GSW cryptosystem [17], and cram them into high-rate matrix-encrypting
matrix-ciphertexts. The ratio of the aggregate plaintext size to the aggregate
ciphertext size can be 1 − ε for any ε (assuming the aggregate plaintext is suf-
ficiently large, proportional to 1/ε3). The compressed ciphertexts are no longer
GSW ciphertexts. However, they still have sufficient structure to allow addi-
tive homomorphism, and multiplication by encryption of small scalars, all while
remaining compressed.1 Just like GSW, the security of our scheme is based on
the learning with errors assumption [31] or its ring variant [26]. (Also circular
security assumption to get fully homomorphic encryption.)

We note that a compressible fully homomorphic encryption easily yields an
end-to-end rate-efficient FHE: Freshly encrypted ciphertexts are immediately
compressed during encryption,2 then “decompressed” using bootstrapping before
any processing, and finally compressed again before decryption. The resulting
scheme has compressed ciphertexts at any time, which are only temporarily
expanded while they are being processed.

1.1 Applications to PIR

We describe many optimizations to the basic scheme, yielding a single-server
private information retrieval scheme with low communication overhead, while
at the same time being computationally efficient. Asymptotically, the computa-
tional overhead is Õ(log log λ + log log log N), where λ is the security parameter
and N is the number of database files, which are assumed to be sufficiently large.

While we did not implement our PIR scheme, we explain in detail why we
estimate that it should be not only theoretically efficient but also practically
fast. Specifically, we can get a rate 4/9 single-server PIR scheme,3 in which the
server’s amortized work is only 2.3 single-precision modular multiplications for

1 Of course, these operations increase the noisiness of the ciphertexts somewhat.
2 One could even use hybrid encryption, where fresh ciphertexts are generated using,

e.g., AES-CTR, and the AES key is send along encrypted under the FHE.
3 The rate can be made arbitrarily close to one without affecting the asymptotic effi-

ciency, but the concrete parameters of this solution are not appealing. See discussion
at the end of Sect. 5.

440 C. Gentry and S. Halevi

every byte in the database. For a comparison point, the trivial PIR solution of
sending the entire database will have to at least encrypt the whole database (for
communication security), hence incurring a cost of an AES block encryption per
16 database bytes, which is surely more work than what our scheme does. Thus,
contra Sion-Carbunar [33], PIR is finally more efficient than the trivial solution
not only in terms of communication, but also in terms of computation.

Those accustomed to thinking of (R)LWE-based homomorphic encryption as
impractical may find the low computational overhead of our PIR scheme hard
to believe. However, RLWE-based HE – in particular, the GSW scheme with
our adaptations – really shines in the PIR setting for a few reasons. First, the
noise in GSW ciphertexts grows only additively with the degree when the mes-
sages multiplied from the left are in {0, 1}. (The receiver’s GSW ciphertexts will
encrypt the bits of its target index.) Second, even though we obviously need
to do Ω(N) ciphertext operations for a database with N files, we can ensure
that the noise grows only proportionally to log N (so its bit size only grows
with log log N). The small noise growth allows our PIR scheme to use a small
RLWE modulus q = Õ(log N + λ) that in practice is not much larger than one
would use in a basic RLWE-based PKE scheme. Third, we can exploit the recur-
sive/hierarchical nature of the classic approach to single-server PIR [23,35] to
hide the more expensive steps of RLWE-based homomorphic evaluation, namely
polynomial FFTs (and less importantly, CRT lifting). In the classical hierarchi-
cal approach to PIR, the computationally dominant step is the first step, where
we project the effective database size from N = N1 × · · · × Nd down to N/N1.
To maximize the efficiency of this first step, we can preprocess the polynomials
of the database so that they are already in evaluation representation, thereby
avoiding polynomial FFTs and allowing each (log q)-bit block of the database to
be “absorbed” into an encrypted query using a small constant number of mod-q
multiplications.4 Therefore, the computational overhead of the first step boils
down to just the overhead of multiplying integers modulo q, where this over-
head is Õ(log log q), where (again) q is quite small. After the first step of PIR,
GSW-esque homomorphic evaluation requires converting between coefficient and
evaluation representation of polynomials, but this will not significantly impact
the overhead of our PIR scheme, as the effective database is already much smaller
(at most N/N1), where we will take N1 = Θ̃(log N + λ).

1.2 Related Work

Ciphertext Compression. Ciphertext compression has always had obvious
appeal in the public-key setting (and even sometimes in the symmetric key con-
text, e.g., [22]). In the context of (F)HE, one can view “ciphertext packing”
[8,9,30,34], where each ciphertext encrypts not one but an array of plaintext ele-
ments, as a form of compression. Other prior works included a “post-evaluation”
ciphertext compression techniques, such as the work of van Dijk et al. [36] for

4 In the first step, the server generates N1 ciphertexts from the client’s log N1 cipher-
texts, which includes FFTs, but their amortized cost is insignificant when N1 � N .

Compressible FHE with Applications to PIR 441

integer-based HE, and the work of Hohenberger et al. for attribute-based encryp-
tion [18]. However, the rate achieved there is still low, and in fact no scheme prior
to our work was able to break the rate-1/2 barrier. (Hence for example no LWE-
based scheme could be used for the high-rate OT application of Badrinarayanan
et al. [6].)

The only prior cryptosystem with homomorphic properties that we know of
with rate better than 1/2 is due to Damg̊ard and Jurik [14]. They described an
extension of the Paillier cryptosystem [29] that allows rate-(1 − o(1)) encryp-
tion with additive homomorphism: In particular, a mod-Ns plaintext can be
encrypted inside a mod-Ns+1 ciphertext for an RSA modulus N and an arbi-
trary exponent s ≥ 1.

Finally, a concurrent work by Döttling et al. [15] and follow-up work by
Brakerski et al. [7] also achieves compressible variants of HE/FHE. The former
work achieves only weaker homomorphism but under a wide variety of hardness
assumptions, while the latter achieves FHE under LWE. The constructions in
those works are more general than ours, but they are unlikely to yield practical
schemes for applications such as PIR.

Private Information Retrieval. Private information retrieval (PIR) [12] lets
a client obtain the N -th bit (or file) from a database while keeping its target
index i ∈ [N] hidden from the server(s). To rule out a trivial protocol where
the server transmits the entire database to the client, it is required that the
total communication is sublinear in N . Chor et al. provided constructions with
multiple servers, and later Kushilevitz and Ostrovsky [23] showed that PIR is
possible even with a single server under computational assumptions.

Kiayias et al. [21] (see also [25]) gave the first single-server PIR scheme
with rate (1 − o(1)), based on Damg̊ard-Jurik [14]. However, Damg̊ard-Jurik is
computationally too expensive to be used in practice for large-scale PIR [28,33],
at a minimum, PIR using Damg̊ard-Jurik requires the server to compute a mod-
N multiplication per bit of the database, where N has 2048 or more bits. The
papers [21,25] expressly call for an underlying encryption scheme to replace
Damg̊ard-Jurik to make their rate-optimal PIR schemes computationally less
expensive.

In terms of computation, the state-of-the-art PIR scheme is XPIR by Aguilar-
Melchor et al. [1], with further optimizations in the SealPIR work of Angel et al.
[3]. This scheme is based on RLWE and features many clever optimizations, but
Angel et al. commented that even with their optimizations “supporting large
databases remains out of reach.” Concretely, the SealPIR results from [3, Fig. 9]
indicate server workload of about twenty cycles per database byte, for a rate of
roughly 1/1000. In contrast, our construction yields rate close to 1/2, and the
server work-load is roughly 2.3 single-precision modular multiplication per byte
(this should be less than 20 cycles).

Organization. Some background information regarding LWE and the GSW
scheme is provided in Sect. 2. In Sect. 3 we define compressible HE, in Sect. 4 we
describe our compresisble (F)HE scheme, and in Sect. 5, we describe our PIR
scheme.

442 C. Gentry and S. Halevi

2 Background on Gadget Matrices, LWE,
PVW and GSW

Gadget Matrices. Many lattice cryptosystems (including GSW [17]) use a
rectangular gadget matrix [27], G ∈ Rn×m

q to add redundancy. For a matrix C
of dimension n × c we denote by G−1(C) a matrix of dimension m × c with
small coefficients such that G · (G−1(C)) = C (mod q). Below we also use the
convention that G−1(C) is always a full rank matrix over the rationals5. In
particular we denote by G−1(0) a matrix M with small entries and full rank over
the rationals, such that G ·M = 0 (mod q) (so clearly M does not have full rank
modulo q). Often G is set to be In1 ⊗g where g is the vector (1, 2, . . . , 2�log q�) –
that is, m = n1�log q� and G’s rows consists of shifts of the vector g. In this case,
one can efficiently find a suitable G−1(C) that has coefficients in {0, 1}. More
generally with g = (1, B, . . . , B�logB q�), G−1(C) has coefficients in [±B/2].
(Ring) Learning With Errors (LWE). Security of many lattice cryptosys-
tems is based on the hardness of the decision (ring) learning with errors (R)LWE
problem [26,31]. LWE uses the ring of integers R = Z, while RLWE typically
uses the ring of integers R of a cyclotomic field. A “yes” instance of the (R)LWE
problem for modulus q, dimension k, and noise distribution χ over R consists of
many uniform ai ∈ Rk

q together with the values bi := 〈s,ai〉 + ei ∈ Rq where s
is a fixed secret vector and ei ← χ. In a “no” instance, both the ai’s and bi’s
are uniform. The decision (R)LWE assumption is that the two distributions are
computationally indistinguishable – i.e., that “yes” instances are pseudorandom.
Typically, χ is such that ‖ei‖∞ < α for some size bound α with probability over-
whelming in the security parameter λ. The security parameter also lower bounds
the ring size and/or the dimension k, and the ratio α/q.
LWE with Matrix Secrets. An LWE instance may (more generally) be asso-
ciated to a secret matrix S′, and one can prove via a hybrid argument that
breaking the matrix version of LWE is as hard as breaking conventional LWE.
In this version, a “yes” instance consists of a uniform matrix A and B = S′A+E.
Let us give dimensions to these matrices: S′ is n0 × k, A is k × m, B and E
are n0 × m. (See Fig. 1 for an illustration of these matrices.) Set n1 = n0 + k.
Set S = [S′|I] ∈ Rn0×n1

q and P to be the matrix with −A on top of B. Then
SP = E mod q. The LWE assumption (matrix version) says that this P is pseu-
dorandom.
Regev and PVW Encryption. Recall that in the Regev cryptosystem, a bit
σ ∈ {0, 1} is encrypted relative to a secret-key vector s ∈ Z

n+1
q (with 1 in the

last coordinate), as a vector c ∈ Z
n+1
q such that 〈s, c〉 = �q/2� · σ + e (mod q),

with |e| < q/4. More generally the plaintext space can be extended to Rp for
some p < q, where a scalar σ ∈ Rp is encrypted as a vector c ∈ Rn+1

q such that
〈s, c〉 = �q/p� · σ + e (mod q), with ‖e‖∞ < q/2p. (There is also a public key in
this cryptosystem and an encryption procedure, but thoese are not relevant to
our construction.)
5 More generally, if the matrices are defined over some ring R then we require full

rank over the field of fractions for that ring.

Compressible FHE with Applications to PIR 443

Peikert et al. described in [30] a batched variant of this cryptosystem (called
PVW), where the plaintext is a vector σ ∈ Rk

p , the secret key is a matrix

S = (S′|I) ∈ R
n×(n+k)
q and the encryption of σ is a vector c ∈ Rn+k

q such that
S · c = �q/p� · σ + e with ‖e‖∞ < q/2p. For notational purposes, it will be
convenient to use a “matrix variant” of PVW, simply encrypting many vectors
and putting them in a matrix. Here the plaintext is a matrix Σ ∈ Rk×m

p (for

some m), and the encryption of Σ is a matrix C ∈ R
(n+k)×m
q such that SC =

�q/p� · Σ + E with ‖E‖∞ < q/2p.
The Regev and PVW cryptosystems are additively homomorphic, supporting

addition and multiplication by small scalars, as long as the noise remains small
enough. The information rate of the PVW cryptosystem is |q|

|p| · k
n+k , which can

be made very close to one if we use k � n and q ≈ p1+ε. Indeed this forms the
basis for one variant of our compressible (F)HE construction.
GSW Encryption with Matrix Secret Keys. We use (a slight variant of)
the GSW cryptosystem of Gentry et al. [17], based on LWE with matrix secret as
above. Namely the secret key is a matrix S and the public key is a pseudorandom
matrix P such that SP = E mod q for a low-norm noise matrix E.

The plaintext space of GSW are (small) scalars. To encrypt σ ∈ Rq under
GSW, the encrypter chooses a random m × m matrix X whose entries have
small norm, and outputs C = σ · G + P · X ∈ Rn1×m

q (operations modulo q). To
decrypt, one computes

S · C = σ · S · G + S · P · X = σ · S · G + E′ (mod q), (1)

where E′ = E · X has small norm. Assuming E′ has coefficients bounded by
an appropriate β, then E′ · G−1(0) will have entries too small to wrap modulo
q, allowing the decrypter to recover E′ (since G−1(0) is invertible) and hence
recover σ · S · G. As S · G has rank n0 (in fact it contains In0 as a submatrix),
the decrypter can obtain σ.
Matrix GSW? We can attempt to use the same GSW invariant (1) to encrypt
matrices, where a ciphertext matrix C GSW-encrypts a plaintext matrix M if
S · C = M · S · G + E (mod q) for a small noise matrix E. The exact same
decryption procedure as above works also in this case, allowing the decrypter to
recover E, then M · S · G, and then M .

However, the encryption procedure above does not work for matrices in gen-
eral, it is unclear how to obtain such a GSW-encryption C of M when M is not
a scalar matrix (i.e., of the form σ · I). If we want to set C = M ′ · G + P · X as
before, we need M ′ to satisfy S · M ′ = M · S, and finding such an M ′ seems to
require knowing S. (For a scalar matrix M = σ · I, M ′ is just the scalar matrix
with the same scalar, but in a larger dimension.) Hiromasa et al. [20] show how
to obtain a version of GSW that encrypts non-scalar matrices, assuming LWE
and a circular security assumption. In our context, our GSW ciphertexts only
encrypt scalars so we rely just on LWE without circular encryptions.
Homomorphic Operations in GSW. Suppose we have C1 and C2 that GSW-
encrypt M1 and M2 respectively (scalar matrices or otherwise). Then clearly

444 C. Gentry and S. Halevi

C1 + C2 GSW-encrypts M1 + M2, provided that the sum of errors remains
β-bounded. For multiplication, set C× = C1 · G−1(C2) mod q. We have:

S · C× = (M1 · S · G + E1) · G−1(C2) = M1 · M2 · S · G + M1 · E2 + E1 · G−1(C2).

Thus, C× GSW-encrypts M1 · M2 provided that the new error E′ = M1 · E2 +
E1 ·G−1(C2) remains β-bounded. In the new error, the term E1 ·G−1(C2) is only
slightly larger than the original error E1, since G−1(C2) has small coefficients.
To keep the term M1 ·E2 small, there are two strategies. First, if M1 corresponds
to a small scalar – e.g., 0 or 1 – then this term is as small as the original error
inside C2. Second, if E2 = 0, then this term does not even appear. For example,
if we want to homomorphically multiply-by-constant σ2 ∈ Rq, we can just set
C2 = σ2 ·G (without any P ·X), and compute C× as above. The plaintext inside
C1 will be multiplied by σ2, and the new error will not depend on either σ1 or
σ2, which therefore can be arbitrary in Rq.

3 Defining Compressible (F)HE

Compressible (F)HE is defined similarly to standard (F)HE, except that decryp-
tion is broken into first compression and then “compressed decryption.” Here we
present the definition just for the simple case of 1-hop fully homomorphic encryp-
tion for bits, but the same type of definition applies equally to multiple hops,
different plaintext spaces, and/or partially homomorphic. (See [19] for detailed
treatment of all these variations.)

Definition 1. A compressible fully homomorphic encryption scheme consists of
five procedures, (KeyGen,Encrypt,Evaluate,Compress,Decrypt):

– (s, pk) ← KeyGen(1λ). Takes the security parameter λ and outputs a
secret/public key-pair.

– c ← Encrypt(pk, b). Given the public key and a plaintext bit, outputs a low-rate
ciphertext.

– c′ ← Evaluate(pk,Π, c). Takes a public key pk, a circuit Π, a vector of low-
rate ciphertexts c = 〈c1, . . . , ct〉, one for every input bit of Π, and outputs
another vector of low-rate ciphertexts c′, one for every output bit of Π.

– c∗ ← Compress(pk, c′). Takes a public key pk and a vector of low-rate
ciphertexts c = 〈c1, . . . , ct〉, and outputs one or more compressed ciphertexts
c∗ = 〈c∗1, . . . , c∗s〉.

– b ← Decrypt(s, c∗). On secret key and a compressed ciphertext, outputs a
string of plaintext bits.

We extend Decrypt to a vector of compressed ciphertexts by decrypting each
one separately. The scheme is correct if for every circuit Π and plaintext bits
b = (b1, . . . , bt) ∈ {0, 1}t, one for every input bit of Π,

Pr
[
(s, pk) ← KeyGen(1λ), c ← Encrypt(pk, b), c′ ← Evaluate(pk,Π, c)

: Π(b) is a prefix of Decrypt(s,Compress(pk, c′))

]
= 1.

(2)

Compressible FHE with Applications to PIR 445

Fig. 1. An illustration of the matrices in our construction. For some small ε > 0 we
have n1 = n0 +k ≈ n2 = n0(1+ ε/2) and m = n1 log q. So, n0 ≈ 2k/ε. Also, for correct
decryption of ciphertexts with error E using gadget matrix H we require ‖E‖∞ < qε/2.

(We allow prefix since the output of Decrypt could be longer than the output
length of Π.)

The scheme has rate α = α(λ) ∈ (0, 1) if for every circuit Π with sufficiently
long output, plaintext bits b = (b1, . . . , bt) ∈ {0, 1}t, and low rate ciphertexts
c′ ← Evaluate(pk,Π,Encrypt(pk, b)) as in Eq. (2) we have

|Compress(pk, c′)| · α ≤ |Π(b)|.
(We note that a similar approach can be used also when talking about com-

pression of fresh ciphertexts.)

4 Constructing Compressible (F)HE

On a high level, our compressible scheme combines two cryptosystems: One is
a low-rate (uncompressed) FHE scheme, which is a slight variant of GSW, and

446 C. Gentry and S. Halevi

the other is a new high-rate (compressed) additively-homomorphic scheme for
matrices, somewhat similar to the matrix homomorphic encryption of Hiromasa
et al. [20]. What makes our scheme compressible is that these two cryptosystems
“play nice,” in the sense that they share the same secret key and we can pack
many GSW ciphertexts in a single compressed ciphertext.

The low-rate scheme is the GSW variant from Sect. 2 that uses matrix LWE
secrets. The secret key is a matrix of the form S = [S′|I], and the public key is a
pseudorandom matrix P satisfying S×P = E (mod q), with q the LWE modulus
and E a low norm matrix. This low-rate cryptosystem encrypts small scalars
(often just bits σ ∈ {0, 1}), the ciphertext is a matrix C, and the decryption
invariant is SC = σSG + E (mod q), with G the gadget matrix and E a low-
norm matrix.

For the high-rate scheme we describe two variants, both featuring matrices
for keys, plaintexts, and ciphertexts. One variant of the high-rate scheme is the
PVW batched encryption scheme [30] (in its matrix notations), and another
variant uses a new type of “nearly square” gadget matrix. Both variants have
the same asymptotic efficiency, but using the gadget matrix seems to yield better
concrete parameters, at least for our PIR application. The PVW-based variant
is easier to describe, so we begin with it.

4.1 Compressible HE with PVW-Like Scheme

We now elaborate on the different procedures that comprise our compressible
homomorphic encryption scheme.
Key Generation. To generate a secret/public key pair we choose two uniformly
random matrices S′ ∈ Rn0×k

q and A ∈ Rk×m
q and a small matrix E ← χn0×m,

and compute the pseudorandom matrix B := S′ × A + E ∈ Rn0×m
q .

The secret key is the matrix S = [S′|In0] ∈ Rn0×n1
q and the public key is

P =
[−A

B

] ∈ Rn1×m
q , and we have S × P = S′ × (−A) + I × B = E (mod q).

Encryption and Evaluation. Encryption and decryption of small scalars and
evaluation of circuit on them is done exactly as in the GSW scheme. Namely a
scalar σ ∈ R is encrypted by choosing a matrix X ∈ Rm×m with small entries,
then outputting the ciphertext C := σG + PX (mod q). These low-rate cipher-
texts satisfy the GSW invariant, namely SC = σSG + E (mod q) with E � q.
These being GSW ciphertexts, encryption provides semantic security under the
decision LWE hardness assumption [17].

Evaluation is the same as in GSW, with addition implemented by just adding
the ciphertext matrices modulo q and multiplication implemented as C× :=
C1 × G−1(C2) mod q. Showing that these operations maintain the decryption
invariant (as long as the encrypted scalars are small) is done exactly as in GSW.
Compression. The crux of our construction is a compression technique that
lets us pack many GSW bit encryptions into a single high-rate PVW cipher-
text. Let p < q be the plaintext and ciphertext moduli of PVW and denote
f = �q/p�. (The ciphertext modulus q is the same one that was used for the
GSW encryption.) Also denote � = �log p�, and consider � ·n2

0 GSW ciphertexts,

Compressible FHE with Applications to PIR 447

Cu,v,w ∈ Z
n1×m
q , u, v ∈ [n0], w ∈ [�], each encrypting a bit σi,j,k ∈ {0, 1}. Namely

we have S×Cu,v,w = σu,v,w ·SG+Eu,v,w (mod q) for low norm matrices Eu,v,w.
We want to pack all these ciphertexts into a single compressed PVW cipher-

text, namely a matrix C ∈ Z
n1×n0
q such that SC = f · Z + E′ (mod q) where

Z ∈ Z
n0×n0
p is a plaintext matrix whose bit representation contains all the

σu,v,w’s (and E′ is a noise matrix with entries of magnitude less than f/2).
Denote by Tu,v the square n0 × n0 singleton matrix with 1 in entry (u, v)

and 0 elsewhere, namely Tu,v = eu ⊗ev (where eu,ev are the dimension-n0 unit
vectors with 1 in positions u, v, respectively). Also denote by T ′

u,v the padded

version of Tu,v with k zero rows on top, T ′
u,v =

[
0

eu⊗ev

]
∈ Z

n1×n0
q . We compress

the Cu,v,w’s by computing

C∗ :=
∑

u,v,w

Cu,v,w × G−1(f · 2w · T ′
u,v) (mod q). (3)

Since T ′
u,v are n1 ×n0 matrices, then G−1(f · 2w ·T ′

u,v) are m×n0 matrices, and
since the Cu,v,w’s are n1 × m matrices then C∗ ∈ Z

n1×n0
q , as needed. Next, for

every u, v denote zuv =
∑�

w=0 2wσu,v,w ∈ [p], and we observe that

S × C∗ =
∑

u,v,w

S × Cu,v,w × G−1(f · 2w · T ′
u,v)

=
∑

u,v,w

(σu,v,wS G + Eu,v,w) × G−1(f · 2w · T ′
u,v)

=
∑

u,v,w

f · 2w · σu,v,wS T ′
u,v +

E′︷ ︸︸ ︷∑
u,v,w

Eu,v,w × G−1(f · 2w · Tu,v)

= f ·
∑
u,v

zu,vS T ′
u,v + E′ (∗)

= f ·
Z︷ ︸︸ ︷∑

u,v

zu,vTu,v +E′, (4)

where Z = [zu,v] ∈ [p]n0×n0 . (The equality (∗) holds since S = [S′|I] and T ′ =[
0
T

]
and therefore ST ′ = S′ × 0 + I × T = T .)

Compressed Decryption. Compressed ciphertexts are just regular PVW
ciphertexts, hence we use the PVW decryption procedure. Given the compressed
ciphertext C∗ ∈ Z

n1×n0
q , we compute X := SC = f · Z + E′ (mod q) using the

secret key S. As long as ‖E‖∞ < f/2, we can complete decryption by rounding
to the nearest multiple of f , setting Z := �Z/f�. Once we have the matrix Z, we
can read off the σu,v,w’s which are the bits in the binary expansion of the zu,v’s.

Lemma 1. The scheme above is a compressible (F)HE cryptosystem with rate
α = |p|

|q| · n0
n1

. ��

Setting the Parameters. It remains to show how to set the various parameters
– including the matrix dimensions n0, n1 and the moduli p, q – as a function of
the security parameter k. If we use a somewhat-homomorphic variant of GSW

448 C. Gentry and S. Halevi

without bootstrapping, then the noise magnitude in evaluated ciphertexts would
depend on the functions that we want to compute. One such concrete example
(with fully specified constants) is provided in Sect. 5 for our PIR application.
Here we provide an asymptotic analysis of the parameters when using GSW as a
fully-homomorphic scheme with bootstrapping. Namely we would like to evaluate
an arbitrary function with long output on encrypted data (using the GSW FHE
scheme), then pack the resulting encrypted bits in compressed ciphertexts that
remain decryptable.

We want to ensure that compressed ciphertexts have rate of 1 − ε for some
small ε of our choosing. To this end, it is sufficient to set n0 > 2k/ε and q =
p1+ε/2. This gives n1 = n0 + k ≤ n0(1 + ε/2) and |q| = |p|(1 + ε/2), and hence

n0

n1
· |p|
|q| ≥ (1

1 + ε/2
)2

> (1 − ε/2)2 > 1 − ε,

as needed.
Using q = p1−ε/2 means that to be able to decrypt we must keep the noise

below q/2p = pε/2/2. Following [11,17], when using GSW with fresh-ciphertext
noise of size α and ciphertext matrices of dimension n1 × m, we can perform
arbitrary computation and then bootstrap the result, and the noise after boot-
strapping is bounded below αm2. From Eq. (4) we have a set of n2

0 log p error
matrices Eu,v,w, all satisfying ‖Eu,v,w‖∞ < αm2. The error term after com-
pression is therefore

∑
u,v,w Eu,v,wG−1(something), and its size is bounded by

n2
0 log p · αm2 · m = αm3n2

0 log p.
It is enough, therefore, that this last expression is smaller than pε/2/2, i.e.,

we have the correctness constraint pε/2/2 > αm3n2
0 log p. Setting the fresh-

encryption noise as some polynomial in the security parameter, the last con-
straint becomes pε/2 > poly(k) log p. This is satisfied by some p = kΘ(1/ε), and
therefore also q = p1+ε/2 = kΘ(1/ε).

We conclude that to get a correct scheme with rate 1 − ε, we can use LWE
with noise poly(k) and modulus q = kΘ(1/ε). Hence the security of the scheme
relies on the hardness of LWE with gap kΘ(1/ε), and in particular if ε is a constant
then we rely on LWE with polynomial gap.

We note that there are many techniques that can be applied to slow the
growth of the noise. Many of those techniques (for example modulus switching)
are described in Sect. 5 in the context of our PIR application. While they do not
change the asymptotic behavior — we will always need q = kΘ(1/ε) — they can
drastically improve the constant in the exponent.

Theorem 1. For any ε = ε(λ) > 0, there exists a rate-(1 − ε) compressible
FHE scheme as per definition 1 with semantic security under the decision-LWE
assumption with gap poly(λ)1/ε. ��

More Procedures. In addition to the basic compressible HE interfaces, our
scheme also supports several other operations that come in handy in applications
such as PIR.

Compressible FHE with Applications to PIR 449

Encryption and additive homomorphism of compressed ciphertexts.
Since this variant uses PVW for compressed ciphertexts, then we can use the
encryption and additive homomorphism of the PVW cryptosystem.
Multiplying compressed ciphertexts by GSW ciphertexts. When p
divides q, we can also multiply a compressed ciphertext C ′ ∈ Z

n1×n0
q encrypting

M ∈ Z
n0×n0
p by a GSW ciphertext C ∈ Z

n1×m
q encrypting a small scalar σ,

to get a compressed ciphertext C ′′ that encrypting the matrix σM mod p. This
is done by setting C ′′ := C × G−1(C ′) mod q (and note that C ′ ∈ Z

n1×n0
q so

G−1(C ′) ∈ Z
m×n0
q). For correctness, recall that we have SC = σSG + E and

SC ′ = q/p · M + E′ over Zq, hence

S × C ′′ = S C G−1(C ′) = σSC ′ +

E′′︷ ︸︸ ︷
E G−1(C ′) (5)

= σ(q/p · M + E′) + E′′ = q/p · (σM mod p) +

E∗︷ ︸︸ ︷
σE′ + E′′ (mod q).

This is a valid compressed encryption of σM mod p as long as the noise E∗ =
σE′ + E G−1(C ′) is still smaller than p/2.
Multiplying GSW ciphertexts by plaintext matrices. The same technique
that lets us right-multiply GSW ciphertexts by compressed ones, also lets us
right-multiply them by plaintext matrices. Indeed if M ∈ Z

n0×n0
p is a plaintext

matrix and M ’ is its padded version M ′ =
[

0
M

] ∈ Z
n1×n0
p , then the somewhat

redundant matrix M∗ = q/p · M ′ can be considered a noiseless ciphertext (note
that S ×M∗ = q/p ·M) and can therefore be multiplied by a GSW ciphertext as
above. The only difference is that in this case we can even use a GSW ciphertext
encrypting a large scalar: The “noiseless ciphertext” M∗ has E′ = 0, hence the
term σE′ from above does not appear in the resulting noise term, no matter how
large σ is.

4.2 High-Rate Additive HE Using Nearly Square Gadget Matrix

We now turn to the other variant of our scheme. Here we encrypt plaintext
matrices modulo q using ciphertext matrix modulo the same q, with dimensions
that are only slightly larger than the plaintext matrix. A new technical ingre-
dient in that scheme is a new gadget matrix (described in Sect. 4.4), that we
call H: Just like the G gadget matrix from [27], our H adds redundancy to
the ciphertext, and it has a “public trapdoor” that enables removing the noise
upon decryption. The difference is that H is a nearly square matrix, hence comes
with almost no expansion, enabling high-rate ciphertexts. Of course, an almost
rectangular H cannot have a trapdoor of high quality, so we make do with a
low-quality trapdoor that can only remove a small amount of noise.

The slight increase in dimensions from plaintext to ciphertext in this high-
rate scheme comes in two steps. First, as in the previous variant we must pad
plaintext matrices M with some additional zero rows, setting M ′ =

[
0
M

]
so as to

get SM ′ = M . Second, we add redundancy to M ′ by multiplying it on the right

450 C. Gentry and S. Halevi

by our gadget matrix H, to enable removing a small amount of noise during
decryption. The decryption invariant for compressed ciphertexts is

S × C = M × H + E (mod q),

with S = (S′|I) the secret key, C the ciphertext, M the plaintext matrix and E
a small-norm noise matrix.

To get a high-rate compressed ciphertexts, we must ensure that the increase
in dimensions from plaintext to ciphertext is as small as possible. With n0 × n0

plaintext matrices M , we need to add as many zero rows as the dimension of the
LWE secret (which we denote by k). Denoting n1 = n0 + k, the padded matrix
M ′ has dimension n1 × n0. We further add redundancy by multiplying on the
right with a somewhat rectangular gadget matrix H of dimension n0 × n2. The
final dimension of the ciphertext is n1×n2, so the information rate of compressed
ciphertexts is n2

0/(n1n2). As we show in Sect. 4.3, we can orchestrate the various
parameters so that we can get n2

0/(n1n2) = 1 − ε for any desired ε > 0, using
a modulus q of size kΘ(1/ε). Hence we can get any constant ε > 0 assuming the
hardness of LWE with polynomial gap, or polynomially small ε if we assume
hardness of LWE with subexponential gap.

The rest of this section is organized as follows: We now describe on the
different procedures that comprise this variant, then discuss parameters and
additional procedures, and finally in Sect. 4.4 we describe the construction of
the gadget matrix H.
Key Generation, Encryption, and Evaluation. These are identical to the
procedures in the variant from Sect. 4.1, using GSW with matrix secret keys.
The low-rate ciphertexts satisfy the GSW invariant as GSW, SC = σSG + E
(mod q) with E � q, and provides semantic security under the decision LWE
hardness assumption [17].
Compression. Compression is similar to the previous variant, but instead of
G−1(f ·2w ·T ′

u,v) as in Eq. (3) we use G−1(2w ·T ′
u,v ×H). Recall that we denote by

Tu,v the square n0 × n0 singleton matrix with 1 in entry (u, v) and 0 elsewhere,
and T ′

u,v is a padded version of Tu,v with k zero rows on top
Denote � = �log q�, and consider � · n2

0 GSW ciphertexts, Cu,v,w ∈ Z
n1×m
q ,

u, v ∈ [n0], w ∈ [�], each encrypting a bit σi,j,k ∈ {0, 1}, we pack these GSW bit
encryptions into a single compressed ciphertext by computing

C∗ =
∑

u,v,w

Cu,v,w × G−1(2w · T ′
u,v × H) mod q,

We first note that T ′
u,v × H are n1 × n2 matrices, hence G−1(2w · T ′

u,v × H)
are m × n2 matrices, and since the Cu,v,w’s are n1 × m matrices then C∗ ∈
Z

n1×n2
q , as needed. Next, for every u, v denote zuv =

∑�
w=0 2wσu,v,w ∈ [q], and

Compressible FHE with Applications to PIR 451

we observe that

S × C∗ =
∑

u,v,w

S × Cu,v,w × G−1(2w · T ′
u,v × H)

=
∑

u,v,w

(σu,v,wS G + Eu,v,w) × G−1(2w · T ′
u,v × H)

=
∑

u,v,w

2wσu,v,wS T ′
u,vH +

E′︷ ︸︸ ︷∑
u,v,w

Eu,v,w × G−1(2w · Tu,v × H)

=
∑
u,v

zu,vS T ′
u,vH + E′ (∗)

=
(Z︷ ︸︸ ︷∑

u,v

zu,vTu,v

)
× H + E′, (6)

where Z = [zu,v] ∈ [q]n0×n0 . (The equality (∗) holds since S = [S′|I] and T ′ =[
0
T

]
and therefore ST ′ = S′ × 0 + I × T = T .)

Compressed Decryption. Compressed ciphertexts in this scheme are matrices
C ∈ Z

n1×n2
q , encrypting plaintext matrices M ∈ Z

n0×n0
q . To decrypt we compute

X := S C = M H +E (mod q) using the secret key S. This is where we use the
redundancy introduced by H, as long as ‖E‖∞ is small enough, we can complete
decryption by using the trapdoor F = H−1(0) to recover and then eliminate the
small noise E, hence obtaining the matrix M . This recovers the matrix Z, and
then we can read off the σu,v,w’s which are the bits in the binary expansion of
the zu,v’s.

Lemma 2. The scheme above is a compressible FHE scheme with rate α =
n2
0/n1n2. ��

More Procedures. It is easy to see that the current construction supports the
same additional procedures as the variant from Sect. 4.1. Namely we have direct
encryption and additive homomorphism of compressed ciphertexts, multiplica-
tion of compressed ciphertexts by GSW ciphertexts that encrypts small con-
stants, and multiplication of GSW ciphertexts (encrypting arbitrary constants)
by plaintext mod-q matrices.

4.3 Setting the Parameters

It remains to show how to set the various parameters — the dimensions n0, n1, n2

and the modulus q — as a function of the security parameter k. As above, we
only provide here an asymptotic analysis of the parameters when using GSW as
a fully-homomorphic scheme with bootstrapping.

Again from [11,17], if we use fresh-ciphertext noise of size poly(k) then also
after bootstrapping we still have the noise magnitude bounded below poly(k).
After compression as per Eq. (6), the noise term is a sum of n2

0 log q matrices
Eu,v,w, all of magnitude bounded by poly(k), hence it has magnitude below
poly(k) · log q. We therefore need the nearly-square gadget matrix H to add
enough redundancy to correct that noise.

452 C. Gentry and S. Halevi

On the other hand, to get an information rate of 1 − ε (for some small ε) we
need n2

0/(n1n2) ≥ 1 − ε, which we can get by setting n1, n2 ≤ n0/(1 − ε
2). As

we explain in Sect. 4.4 below, a nearly-square matrix H with n2 = n0/(1 − ε
2)

can only correct noise of magnitude below β = �qε/2/2�. Hence we get the
correctness constraint qε/2

2 > poly(k) log q (essentially the same as for the variant
from Sect. 4.1 above), which is satisfied by some q = kΘ(1/ε).

4.4 A Nearly Square Gadget Matrix

We now turn to describing the new technical component that we use in the
second variant above, namely the “nearly square” gadget matrix. Consider first
why the usual Micciancio-Peikert gadget matrix [27] G ∈ Z

n1×m
q which is used

GSW cannot give us high rate. An encryption of M ∈ Rn0×n0
q has the form

C = M ′ · G + P · X (for some some M ′ that includes M), so the rate can be at
most n0/m simply because C has m/n0 times as many columns as M . This rate
is less than 1/ log q for the usual G.

The rate can be improved by using a “lower-quality” gadget matrix. For
example G = I⊗g where g = (1, B, . . . , B�logB q�) for large-ish B, where G−1(C)
still have coefficients of magnitude at most B/2. But this can at best yield a rate-
1/2 scheme (for B =

√
q), simply because a non-trivial g must have dimension

at least 2. Achieve rate close to 1 requires that we use a gadget matrix with
almost the same numbers of rows and columns.

The crucial property of the gadget matrix that enables decryption, is that
there exists a known “public trapdoor” matrix F = G−1(0) ∈ Rm×m such that:

1. F has small entries (� q)
2. G · F = 0 mod q
3. F is full-rank over R (but of course not over Rq, as it is the kernel of G).

Given such an F , it is known how to compute G−1(C) for any ciphertext C ∈
Rn1×m

q , such that the entries in G−1(C) are not much larger than the coefficients
of F , cf. [16].

In our setting, we want our new gadget matrix (that we call H rather than
G to avoid confusion) to have almost full rank modulo q (so that it is “nearly
square”), hence we want F = H−1(0) to have very low rank modulo q. Once we
have a low-norm matrix F with full rank over R but very low rank modulo q,
we simply set H as a basis of the mod-q kernel of F .

Suppose for simplicity that q = pt −1 for some integers p, t. We can generate
a matrix F ′ with “somewhat small” coefficients that has full rank over the reals
but rank one modulo q as:

F ′ :=

⎡
⎢⎢⎢⎢⎢⎣

1 p p2 pt−1

pt−1 1 p · · · pt−2

pt−2 pt−1 1 pt−3

...
. . .

...
p p2 p3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

Compressible FHE with Applications to PIR 453

Notice that the entries of F ′ have size at most (q + 1)/p ≈ q1−1/t and moreover
for every vector v we have

‖vF ′‖∞ ≤ ‖v‖∞ ·(1+p+ . . .+pt−1) = ‖v‖∞ ·(pt −1)/(p−1) = ‖v‖∞ · q
p−1 . (7)

We can use this F ′ to generate a matrix F with rank r · t over the reals but
rank r modulo q (for any r), by tensoring F ′ with the r × r identity matrix,
F := F ′ ⊗ Ir. This yields the exact same bounds as above on the l∞ norms.
Our gadget matrix H is an r(t − 1) × rt matrix whose rows span the null space
of F modulo q (any such matrix will do). For our scheme below we will set
n0 = r(t − 1) and n2 = rt = n0(1 + 1

t−1).
In the decryption of compressed ciphertexts below, we use the “somewhat

smallness” of F = H−1(0). Specifically, given a matrix Z = MH + E (mod q)
with ‖E‖∞ ≤ p−1

2 , we first multiply it by F modulo q to get ZF = (MH+E)F =
EF (mod q) (since HF = 0 (mod q)). But

‖EF‖∞ ≤ ‖E‖∞ · q

p − 1
≤ p − 1

2
· q

p − 1
= q/2,

and therefore (ZF mod q) = EF over the integers. Now we use the fact that
F has full rank over the reals, and recover E := (ZF mod q) × F−1. Then we
compute Z − E = MH (mod q), and since H has rank n0 modulo q we can
recover M from MH. It follows that to ensure correctness when decrypting
compressed ciphertexts, it is sufficient to use a bound β ≤ p−1

2 = �q1/t�/2 on
the size of the noise in compressed ciphertexts.

The restriction q = pt − 1 is not really necessary; many variants are possi-
ble. The following rather crude approach works for any q that we are likely to
encounter. Consider the lattice L of multiples of the vector u = (1, a, · · · , at−1)
modulo q, where a = �q1/t�. Let the rows of F ′ be the L-vectors ci · u mod q
for i ∈ [t], where ci = �q/ai�. Clearly F ′ has rank 1 modulo q. (We omit a
proof that F ′ is full rank over the integers.) We claim that all entries of F ′ are
small. Consider the j-th coefficient of ci · u mod q, which is �q/ai� · aj mod q
for i ∈ [t], j ∈ {0, . . . , t − 1}. If i > j, then �q/ai� · aj is bounded in magni-
tude by q/ai−j + aj ≤ q/a + at−1 ≤ 2at−1. For the j ≥ i case, observe that
�q/ai� ·ai is an integer in [q, q+ai], and therefore is at most ai modulo q. There-
fore �q/ai� · aj mod q is at most aj ≤ at−1 modulo q. As long as q ≥ tt, we have
that at−1 ≤ (q1/t · (1 + 1/t))t−1 < q(t−1)/t · e – that is, ‖F ′‖∞ is nearly as small
as it was when we used q = pt − 1. As we saw above, q anyway needs to exceed
βt where β is a bound on the noise of ciphertexts, so the condition that q > tt

will likely already be met.

5 Application to Fast Private Information Retrieval

Can we construct a single-server PIR scheme that is essentially optimal both in
terms of communication and computation? With our compressible FHE scheme,
we can achieve communication rate arbitrarily close to 1. Here, we describe a PIR

454 C. Gentry and S. Halevi

which is not only bandwidth efficient but should also outperform whole-database
AES encryption computationally.6

5.1 Toward an Optimized PIR Scheme

Our starting point is the basic hierarchical PIR, where the N database entries
are arranged in a hypercube of dimensions N = N1 × · · · × ND and the scheme
uses degree-D homomorphism:

– The client’s index i ∈ [N] is represented in mixed radix of basis N1, . . . , ND,
namely as (i1, . . . , iD) such that i =

∑D
j=1 ij · ∏D

k=j+1 Nk. The client’s mes-
sage is processed to obtain an encrypted unary representation of all the ij ’s.
Namely, for each dimension j we get a dimension-Nj vector of encrypted bits,
in which the ij ’th bit is one and all the others are zero.

– Processing the first dimension, we multiply each hyper-row u ∈ [N1] by the
u’th encrypted bit from the first vector, which zeros out all but the i1’st
hyper-row. We then add all the resulting encrypted hyper-rows, thus getting
a smaller hypercube of dimension N/N1 = N2 × . . . ND, consisting only the
i1’st hyper-row of the database.

– We proceed in a similar manner to fold the other dimensions, one at a time,
until we are left with a zero-dimension hypercube consisting only the selected
entry i.

We note that the first step, reducing database size from N to N/N1, is typically
the most expensive since it processes the most data. On the other hand, that
step only requires ciphertext-by-plaintext multiplications (vs. the ciphertext-
by-ciphertext multiplications that are needed in the following steps), so it can
sometimes be optimized better than the other steps.

Below we describe the sequence of derivations and optimizations to get our
final construction, resulting in a high rate PIR scheme which is also computa-
tionally efficient. The construction features a tradeoff between bandwidth and
computation (and below we describe a variant with rate 4/9).

The main reason for this tradeoff is that the rate of our scheme is n0
n1

· n0
n2

,
where the secret key matrix S has dimension n0 × n1 and the gadget matrix H
has dimension n0 × n2. Since n0, n1, n2 are integers, we need n0 to be large
if we want n0/n1 and n0/n2 to be close to one. Recalling that the plaintext
matrices M have dimension n0 × n0, a large n0 means that the plaintext is of
high dimension. Hence multiplying GSW-ciphertexts C by plaintext matrices M
takes more multiplications per entry (e.g., using a cubic matrix multiplication
algorithm). A second aggravating factor is that as H becomes closer to square,
we can handle smaller noise/modulus ratio. Hence we need the products C × M

6 The “should” is since we did not implement this construction. Implementing it and
measuring its performance may be an interesting topic for future work.

Compressible FHE with Applications to PIR 455

to be carried over a larger modulus (so we can later mod-switch it down to
reduce the noise), again getting more multiplies per plaintext byte.7

Using Our GSW-Compatible Compressible HE Scheme. An advantage
of GSW over other FHE schemes is its exceptionally slow noise growth during
homomorphic multiplication when the left multiplicand is in {0, 1}. Although
GSW normally operates on encrypted bits, GSW’s advantage remains when the
right multiplicand is a ciphertext of our compressible FHE scheme. So, these
schemes are perfect for PIR, where the left multiplicands are bits of the client’s
query, and the rightmost multiplicands are blocks of the database.
Using Ring-LWE. As usual with LWE schemes, we can improve performance
by switching to the ring (or module) variant, where the LWE secret has low
dimension over a large extension field. Instead of having to manipulate large
matrices, these variants manipulate low-dimension matrices over the same large
extension field, which take less bits to describe and can be multiplied faster (using
FFTs). To get comparable security, if the basic LWE scheme needs LWE secrets
of dimension k, the new scheme will have dimension-k′ secrets over an extension
field of degree d, such that k′d ≥ k. (For ring-LWE we have k′ = 1 and d = k.)
The various matrices in the scheme consist of extension-field elements, and their
dimensions are n′

i = ni/d and m′ = m/d (instead of ni,m, respectively). Below
we use the notation n′

i and m′ to emphasize the smaller values in the RLWE
context.
Saving on FFTs. One of our most important optimizations is pre-processing
the database to minimize the number of FFTs during processing. Our scheme
needs to switch between CRT representation of ring elements (which is needed
for arithmetic operations) and representation in the decoding basis (as needed for
applications of G−1(·)). While converting between the two can be done in quasi-
linear time using FFTs, it is still by far the most expensive operations used in
the implementation. (For our typical sizes, converting an element between these
representations is perhaps 10–20 times slower than multiplying two elements
represented in the CRT basis.)

As in the XPIR work [1], we can drastically reduce the number of FFTs by
pre-processing the database, putting it all in CRT representation. This way, we
only need to compute FFTs when we process the client’s message to get the
encrypted unary representation of the ij ’s (which is independent of the size of
entries in the database), and then again after we fold the first dimension (so it is
only applied to compressed ciphertexts encrypting the N/N1 database entries).

If we set N1 large enough relative to the FFT overhead, then the FFTs after
folding the first dimension will be amortized and become insignificant. On the
other hand we need to set it small enough (relative to N/N1 and the length-L
of the entries) so the initial FFTs (of which we have about n′

1 · m′ · N1) will also
be insignificant.

7 The tradeoffs become harder to describe cleanly when optimizing concrete perfor-
mance as we do here. For example, a 65-bit modular multiplication is as expensive
in software as a 120-bit one.

456 C. Gentry and S. Halevi

In the description below we illustrate the various parameters with N1 = 28,
which seems to offer a good tradeoff. For the other Ni’s, there is (almost) no
reason to make them large, so we use N2 = N3 = · · · = ND = 4. We note that for
the construction below there is (almost) no limit on how many such small Ni’s
we can use. Below we illustrate the construction for a database with N = 220

entries, but it can handle much larger databases. (The same parameters work
upto at least N = 22

20
entries.)

Client-side Encryption. In the context of a PIR scheme, the encrypter is the
client who has the decryption key. Hence it can create ciphertexts using the
secret key, by choosing a fresh pseudorandom public key Pi for each ciphertext
and setting Ci := σiG + Pi mod q. This results in ciphertexts of slightly smaller
noise, namely just the low-norm Ei’s (as opposed to E × Xi that we get from
public-key encrypted ciphertexts).

Since our PIR construction uses small dimensions N2 = N3 = · · · = 4, we
have the client directly sending the encrypted unary vectors for these dimensions.
Namely for each j = 2, 3, . . . the client sends four ciphertexts Cj,0, . . . , Cj,3 such
that Cj,ij

encrypts one and the others encrypt zero.
For the first dimension we have a large N1 = 28, however, so the client sends

encryptions of the bits of i1 and we use the GSW homomorphism to compute
the encrypted unary vector for this dimension. Overall the client therefore sends
log N1 + (N2 + N3 + · · · ND) encrypted bits, in our illustrated sizes this comes
up to 8 + 4 × 6 = 32 encrypted bits.
Multiple G Matrices. The accumulated noise in our scheme has many terms
of the form E × G−1(something), but not all of them are created equal. In par-
ticular, when folding the first (large) dimension N1, the GSW ciphertexts are
evaluated and the noise in them is itself a sum of such. When we multiply
these GSW ciphertexts by the plaintext matrix we get E × G−1(something) ×
G−1(something′), which is larger. For the other (small) dimensions, on the other
hand, we multiply by fresh ciphertexts so we get much smaller noise. This imbal-
ance leads to wasted resources.

Moreover, the multiplication by G−1(something) during the initial processing
of the client’s bits are only applied to a small amounts of data. But the multi-
plication between the GSW matrices and the plaintext data touches all the data
in the database. Hence the latter are much more expensive, and we would like
to reduce the dimension of the matrices involved as much as we can.

For all of these reasons, it is better to use different G matrices in different
parts of the computation. In particular we use very wide-and-short G matrices
(with smaller norm of G−1(0)) when we initially process the client’s bits, and
more-square/higher-norm G matrices later on.
Modulus Switching. Even with a careful balance of the G matrices, we cannot
make the noise as small as we want it to be for our compressed scheme. We
therefore use the modulus-switching technique from [9,10]. Namely we perform
the computation relative to a large modulus Q, then switch to a smaller modulus
q before sending the final result to the client, scaling the noise roughly by q/Q.

Compressible FHE with Applications to PIR 457

This lets us be more tolerant to noise, which improves many of the param-
eters. For example by using Q ≈ q2.5 we can even replace the G matrix for the
actual data by the identity matrix. Even if it means using LWE secret of twice
the dimension and having to write numbers that are more than twice as large,
it would still save a large constant factor. Moreover it lets us use a more square
matrix H (e.g. 2 × 3) thereby getting a higher rate.

We note that using modulus switching requires that we choose the secret key
from the error distribution rather than uniformly. (Also, in the way we implement
it, for some of the bits σ we encrypt the scalar q′ · σ rather than σ itself, where
Q = q′ · q.)

5.2 The Detailed PIR Scheme

Our construction is staged in the cyclotomic ring of index 213 and dimension 212,
i.e., R = Z[X]/(X212 + 1). The ciphertext modulus of the fresh GSW ciphertext
is a composite Q = q · q′, with q ≈ 246 and q′ ≈ 260 (both with primitive 212’th
roots of unity so it is easy to perform FFTs modulo q, q′). Below we denote the
rings modulo these three moduli by RQ, Rq, Rq′ .

We use ring-LWE over RQ, in particular our LWE secret is a scalar in RQ,
chosen from the error distribution [4]. (Consulting Table 1 from [2], using this
cyclotomic ring with a modulus Q of size up to 111 bits yields security level of
128 bits.)

For the various matrices in our construction we use dimensions k′ = 1, n′
0 = 2,

and n′
1 = n′

2 = 3, and the plaintext elements are taken from Rq. Hence we get a
rate of (23)2 ≈ 0.44. While processing, however, most ciphertexts will be modulo
the larger Q = q · q′, it is only before we send to the clients that we mod-switch
them down to q. We use the construction from Sect. 4.4 with a 2-by-3 matrix H.

We split a size-N database into a hypercube of dimensions N = 256 × 4 ×
4 × . . . × 4. A client wishing to retrieve an entry i ∈ [N] first represents i as
(i1, i2, . . . , iD), with ii ∈ [256] and ij ∈ [4] for all j > 1. Let σ1,0, . . . σ1,7 be the
bits of i1, the client then encrypts the scalars q′ · σ1,0 and σ1,1, . . . , σ1,7 in GSW
ciphertexts (modulo Q). For j = 2, . . . , D the client uses GSW ciphertexts to
encrypt the bits of the unit vector eij

which is 1 in position ij and zero elsewhere.
We use three different gadget matrices for these GSW ciphertexts:

– For the LSB of i1 (which will be the rightmost bit to be multiplied using GSW)
we eliminate that gadget matrix G altogether and just use the identity, but
we also multiply the bit σ1,0 by q′. Namely we have C1,0 ∈ R

n′
1×n′

1
Q such that

SC1,0 = σ1,0q
′S + E ∈ R

n′
0×n′

1
Q .

– For the other bits of i1 we use a wide and short G1 ∈ Z
n′
1×m′

1 , where m′
1 =

n′
1�log4 Q� = 3 · 53 = 159. Each bit σ1,t is encrypted by C1,t ∈ Rn′

1×m′
1 such

that SC1,t = σ1,tSG1 + E (mod Q).
– For the bits encoding the unary representation of the other ij ’s (j > 1),

we use a somewhat rectangular (3-by-6) matrix G2 ∈ Z
n′
1×m′

2 , where m′
2 =

n′
1�log253(Q)� = 3 · 2 = 6.

458 C. Gentry and S. Halevi

The client sends all these ciphertexts to the server. The encryption of the bits of
i1 consists of 9 elements for encrypting the LSB and 7 · 3 · 159 = 3381 elements
for encrypting the other seven bits. For each of the other indexes ij we use
4 ·3 ·6 = 72 elements to encrypt the unary representation of ij . In our numerical
example with N = 220 database entries we have 6 more ij ’s, so the number of
ring elements that the client sends is 9 + 3381 + 6 · 72 = 3822. Each element
takes 106 · 212 bits to specify, hence the total number of bits sent by the client
is 106 · 212 · 3822 ≈ 230.6 (a bulky 198 MB).

For applications where the client query size is a concern, we can tweak the
parameter, e.g. giving up a factor of 2 in the rate, and getting a 2–4× improve-
ment in the client query size. A future-work direction is to try and port the
query-expansion technique in the SealPIR work [3] in our setting, if applicable
it would yield a very significant reduction in the client query size.8

The server pre-processes its database by breaking each entry into 2-by-2
plaintext matrices over Rq (recall q ≈ 246). Hence each matrix holds 2·2·46·212 ≈
219.5 bits (92 KB). The server encodes each entry in these matrices in CRT
representation modulo Q.9 Below we let L be the number of matrices that it
takes to encode a single database entry. (A single JPEG picture will have L ≈ 4,
while a 4 GB movie will be encoded in about 44 K matrices).

Given the client’s ciphertext, the server uses GSW evaluation to compute
the GSW encryption of the unit vector ei1 for the first dimension (this can be
done using less than N1 = 256 GSW multiplications). For r = 1, 2, . . . , 256 the
server multiplies the r’th ciphertext in this vector by all the plaintext matrices
of all the entries in the r’th hyperrow of the hypercube, and adds everything
across the first hypercube dimension. The result is a single encrypted hyperrow
(of dimensions N2 × · · · × ND), each entry of which consists of L compressed
ciphertexts.

The server next continues to fold the small dimensions one after the other.
For each size-4 dimension it multiplies the four GSW-encrypted bits by all the
compressed ciphertexts in the four hyper-columns, respectively, then adds the
results across the current dimension, resulting in a 4-fold reduction in the number
of ciphertexts. This continues until the server is left with just a single entry of
L compressed ciphertexts modulo Q.

Finally the server performs modulus switching, replacing each ciphertext C
by C ′ = �C/q′� ∈ Rq, and sends the resulting ciphertexts to the client for
decryption. Note that the ciphertext C satisfied SC = q′MH + E (mod q′q).
Denoting the rounding error by Ξ, the new ciphertext has

SC ′ = S(C/q′ + Ξ) = MH + E/q′ + SΞ (mod q).

8 Using the SealPIR optimization requires a key-switching mechanism for GSW, which
is not straightforward.

9 While the entries in the plaintext matrices are small (in [±245]), their CRT repre-
sentation modulo Q is not. Hence this representation entails a 106/46 ≈ 2.3 blowup
in storage requirement at the server.

Compressible FHE with Applications to PIR 459

Since the key S was chosen from the error distribution and ‖Ξ‖∞ ≤ 1/2, then
the added noise is small and the result is a valid ciphertext. (See more details
below.)
Noise Analysis. For the first dimension, we need to use GSW evaluation to
compute the encrypted unary vector, where each ciphertext in that vector is
a product of log N1 = 8 ciphertexts. Hence the noise of each these evaluated
ciphertexts has roughly the form

∑7
u=1 Eu × G−1

1 (something) with Eu one of
the error matrices that were sampled during encryption. Once we multiply by
the plaintext matrices for the database to get the compressed encryption as in
Eq. (5) and add all the ciphertexts across the N1-size dimension, we get a noise
term of the form

N1∑
v=1

(7∑
u=1

Eu × G−1
1 (somethingu)

)
× plaintextv.

(Note that on the right we just multiply by the plaintext matrix whose entries
are bounded below 245, but without any G−1.)10

The entries of the Eu’s can be chosen from a distribution of variance 8 (which
is good enough to avoid the Arora-Ge attacks [5]). The entries of G−1(·) are
in the range [±2] (because we have m1 = n1 log4(Q)), so multiplication by
G−1

1 (something) increases the variance by a factor of less than 22 ·m′
1 ·212 < 221.4.

Similarly multiplying by a plaintext matrix (of entries in [±245]) increases the
variance by a factor of 22·45·n1·212 < 2103.6. The variance of each noise coordinate
is therefore bounded by 28·7·8·221.4·2103.6 < 28+3+3+21.4+103.6 = 2139. Since each
noise coordinate is a weighted sum of the entries of the Eu’s with similar weights,
it makes sense to treat it as a normal random variable. A good high probability
bound on the size of this error is (say) 16 standard deviations, corresponding
to probability erfc(16/

√
2) ≈ 2−189. Namely after folding the first dimension,

all the compressed ciphertexts have ‖noise‖∞ < 16 ·
√

2139 = 273.5 with high
probability.

As we continue to fold more dimensions, we again multiply the encrypted
unary vectors for those dimensions (which are GSW ciphertexts) by the results
of the previous dimension (which are compressed ciphertexts) using Eq. (5), this
time using G2. We note that the GSW ciphertexts in these dimensions are
fresh, hence their noise terms are just the matrices E that were chosen dur-
ing encryption. Thus each of the Nj noise terms in this dimension is of the form
E × G−1

2 (something) for one of these E matrices. Moreover, only one of the four
terms in each dimension has an encrypted bit σ = 1 while the other have σ = 0.

10 Asymptotically, and disregarding our unconventional way of introducing the plain-
texts which optimizes concrete performance, the noise from this step grows linearly
with N1. If we set N1 = O(log N+λ) for security parameter λ, the noise from this and
the remaining steps will be bounded by O(log N +λ), and so q can be bounded by a
constant-degree polynomial of these quantities. Given that the complexity of mod-q
multiplication is log q · Õ(log log q), the asymptotic overhead of our PIR scheme will
be Õ(log log λ + log log log N).

460 C. Gentry and S. Halevi

Hence the term σ · previousNoise appears only once in the resulting noise term
after folding the j’th dimension. Therefore folding each small dimension j ≥ 2
just adds four noise terms of the form E ×G−1(something) to the noise from the
previous dimension.

Since G2 has m2 = n1 log253(Q), then each entry in G−1
2 is in the interval

[±252], and multiplying by G2 increases the variance by a factor of less than
(252)2 ·m′

2 ·212 = 3 ·2117 (recall m′
2 = 6). With 4(D−1) = 24 of these terms, the

variance of each coordinate in the added noise term is bounded by 24·8·3·2117 =
9 · 2123. We can therefore use the high-probability bound 16 ·

√
9 · 2123 < 267.1

on the size of the added noise due to all the small hypercube dimensions.
The analysis so far implies that prior to the modulus switching operation,

the noise is bounded in size below 273.5 +267.1. The added noise term due to the
rounding error in modulus switching is S × Ξ, and the variance of each noise
coordinate in this expression is 8 · n′

1 · 212/2 = 3 · 215. Hence we have a high
probability bound 16 ·

√
3 · 215 < 212.3 on the magnitude of this last noise term.

The total noise in the ciphertext returned to the client is therefore bounded by

‖noise‖∞ <
273.5 + 267.1

q′ + 212.3 ≈ 213.5 + 27.1 + 212 ≈ 214.

Recalling that we use the nearly square gadget matrix H with p = 3
√

q ≈ 246/3,
the noise is indeed bounded below (p − 1)/2 as needed, hence the ciphertexts
returned to the client will be decrypted correctly with overwhelming probability.
Complexity Analysis. The work of the server while processing the query con-
sists mostly of RQ multiplications and of FFTs. (The other operations such as
additions and applications of G−1() once we did the FFTs take almost no time
in comparison.)

With our cyclotomic ring of dimension 212, each FFT operation is about
10–20 times slower than a ring multiply operation in evaluation representation.
But it is easy to see that when N/N1 times the size L of database entries is
large enough, the number of multiplies dwarf the number of FFTs by a lot more
than a 20× factor. Indeed, FFTs are only preformed in the initial phase where
we process the bits of the index ii sent by the client (which are independent
of L and of N/N1), and after folding the first dimension (which only applies to
N/N1 ≈ 0.25% of the data). With our settings, the multiplication time should
exceed the FFT time once L ·N/N1 is more than a few thousands. With N/N1 =
4000 in our example, even holding a single JPEG image in each entry already
means that the FFT processing accounts for less than 50% of the overall time.
And for movies where L = 29K, the FFT time is entirely insignificant.

Let us then evaluate the time spent on multiplications, as a function of the
database size. For large L · N/N1, by far the largest number of multiplications
is performed when multiplying the GSW ciphertexts by the plaintext matri-
ces encoding the database, while folding the first hypercube dimension. These
multiplications have the form C ′ := C × M ′H mod q′q with C ′ a ciphertext of
dimension n1 ×n1 and M ′H a redundant plaintext matrix of dimension n1 ×n2

(where n1 = n2 = 3). Using the näıve matrix-multiplication algorithm, we need

Compressible FHE with Applications to PIR 461

33 = 27 ring multiplications for each of these matrix multiplications, modulo the
double-sized modulus q′ · q. Each ring multiplication (for elements in CRT rep-
resentation) consists of 212 double-size modular integer multiplication, so each
such matrix multiplication takes a total of 2 ·27 ·212 ≈ 217.75 modular multiplica-
tions. For this work, we process a single plaintext matrix, containing about 216.5

bytes, so the amortized work is about 2.4 modular multiplication per database
byte. (Using Laderman’s method we can multiply 3-by-3 matrices with only 23
multiplications [24], so the amortized work is only 2 modular multiplications per
byte.) Taking into account the rest of the work should not change this number
in any significant way when L is large, these multiplications likely account for
at least 90% of the execution time.

Two (or even three) modular multiplication per byte should be faster than
AES encryption of the same data. For example software implementations of
AES without any hardware support are estimated at 25 cycles per byte or more
[13,32]. Using the fact that we multiply the same GSW matrix by very many
plaintext matrices, we may be able to pre-process the modular multiplications,
which should make performance competitive even with AES implementations
that are built on hardware support in the CPU.

We conclude that for large databases, the approach that we outlined above
should be computationally faster than the näıve approach of sending the whole
database, even without considering the huge communication savings. We stress
that we achieved this speed while still providing great savings on bandwidth,
indeed the rate of this solution is 0.44. In other words, compared to the insecure
implementation where the client sends the index in the clear, we pay with only
2.25× in bandwidth for obtaining privacy.
Achieving Higher Rate. It is not hard to see that the rate can be made arbi-
trarily close to one without affecting the asymptotic efficiency. Just before the
server returns the answer, it can bootstrap it into another instance of compress-
ible FHE that has rate close to one. This solution is asymptotically cheap, since
this bootstrapping is only applied to a single entry. In terms of concrete perfor-
mance, bootstrapping is very costly so the asymptotic efficiency is only realized
for a very large database. Concretely, bootstrapping takes close to 230 cycles per
plaintext byte (vs. the procedure above that takes around 24 cycles per byte).
Hence the asymptotic efficiency is likely to take hold only for databases with at
least N = 230−4 = 64, 000, 000 entries.

Acknowledgment. We thank Yuval Ishai for badgering us over the last four years to
figure out the achievable rate in LWE-based constructions, until we could bare it no
longer and did this work. We also thank Samir Menon and the anonymous reviewers
for their useful comments.

References

1. Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.-O.: XPIR: private infor-
mation retrieval for everyone. Proc. Priv. Enhancing Technol. 2016(2), 155–174
(2016)

462 C. Gentry and S. Halevi

2. Albrecht, M., et al.: Homomorphic encryption standard, November 2018. http://
homomorphicencryption.org/. Accessed Feb 2019

3. Angel, S., Chen, H., Laine, K., Setty, S.: PIR with compressed queries and amor-
tized query processing. In: 2018 IEEE Symposium on Security and Privacy (SP),
pp. 962–979. IEEE (2018)

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

6. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 10

7. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption:
Rate-1 fully-homomorphic encryption and time-lock puzzles. Private communica-
tions (2019)

8. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36362-7 1

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science (ITCS
2012) (2012). http://eprint.iacr.org/2011/277

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

11. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) Innovations in Theoretical Computer Science, ITCS 2014, pp. 1–12. ACM
(2014)

12. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proceedings, 36th Annual Symposium on Foundations of Computer Science
1995, pp. 41–50. IEEE (1995)

13. Crypto++ 5.6.0, pentium 4 benchmarks (2009). https://www.cryptopp.com/
benchmarks-p4.html. Accessed Feb 2019

14. Damg̊ard, I., Jurik, M.: A generalisation, a simpli.cation and some applications
of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

15. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 1

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

http://homomorphicencryption.org/
http://homomorphicencryption.org/
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
http://eprint.iacr.org/2011/277
https://www.cryptopp.com/benchmarks-p4.html
https://www.cryptopp.com/benchmarks-p4.html
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-642-40041-4_5

Compressible FHE with Applications to PIR 463

18. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: Proceedings 20th USENIX Security Symposium, San Francisco, CA,
USA, 8–12 August 2011. USENIX Association (2011)

19. Halevi, S.: Homomorphic encryption. Tutorials on the Foundations of Cryptog-
raphy. ISC, pp. 219–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57048-8 5

20. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrap-
ping in gsw-fhe. IEICE TRANS. Fundam. Electron. Commun. Comput. Sci. 99(1),
73–82 (2016)

21. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate pri-
vate information retrieval from homomorphic encryption. Proc. Priv. Enhancing
Technol. 2015(2), 222–243 (2015)

22. Klinc, D., Hazay, C., Jagmohan, A., Krawczyk, H., Rabin, T.: On compression of
data encrypted with block ciphers. IEEE Trans. Inf. Theory 58(11), 6989–7001
(2012)

23. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: Proceedings, 38th Annual Sym-
posium on Foundations of Computer Science 1997, pp. 364–373. IEEE (1997)

24. Laderman, J.D.: A noncommutative algorithm for multiplying 3×3 matrices using
23 multiplications. Bull. Amer. Math. Soc. 82(1), 126–128 (1976)

25. Lipmaa, H., Pavlyk, K.: A simpler rate-optimal CPIR protocol. In: Kiayias, A.
(ed.) FC 2017. LNCS, vol. 10322, pp. 621–638. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70972-7 35

26. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013). Early version in EUROCRYPT 2010

27. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4 41

28. Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private
information retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–
172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27576-0 13

29. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

30. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 31

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

32. Schmid, P., Roos, A.: AES-NI performance analyzed; limited to 32nm
core i5 CPUs (2010). https://www.tomshardware.com/reviews/clarkdale-aes-ni-
encryption,2538.html. Accessed Feb 2019

33. Sion, R., Carbunar, B.: On the practicality of private information retrieval. In:
Proceedings of the Network and Distributed System Security Symposium, NDSS
2007, San Diego, California, USA, 28 February–2nd March 2007 (2007)

34. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2014). Early verion at http://eprint.iacr.org/2011/133

https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-319-70972-7_35
https://doi.org/10.1007/978-3-319-70972-7_35
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-27576-0_13
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://www.tomshardware.com/reviews/clarkdale-aes-ni-encryption,2538.html
https://www.tomshardware.com/reviews/clarkdale-aes-ni-encryption,2538.html
http://eprint.iacr.org/2011/133

464 C. Gentry and S. Halevi

35. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 28

36. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

https://doi.org/10.1007/3-540-49649-1_28
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

Permuted Puzzles and Cryptographic
Hardness

Elette Boyle1(B), Justin Holmgren2, and Mor Weiss1

1 Department of Computer Science, IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu, mor.weiss01@post.idc.ac.il

2 Department of Computer Science, Princeton University, Princeton, NJ, USA
justin.holmgren@princeton.edu

Abstract. A permuted puzzle problem is defined by a pair of distribu-
tions D0, D1 over Σn. The problem is to distinguish samples from D0, D1,
where the symbols of each sample are permuted by a single secret per-
mutation π of [n].

The conjectured hardness of specific instances of permuted puzzle
problems was recently used to obtain the first candidate constructions of
Doubly Efficient Private Information Retrieval (DE-PIR) (Boyle et al. &
Canetti et al., TCC’17). Roughly, in these works the distributions D0, D1

over F
n are evaluations of either a moderately low-degree polynomial or

a random function. This new conjecture seems to be quite powerful, and
is the foundation for the first DE-PIR candidates, almost two decades
after the question was first posed by Beimel et al. (CRYPTO’00). How-
ever, while permuted puzzles are a natural and general class of problems,
their hardness is still poorly understood.

We initiate a formal investigation of the cryptographic hardness of
permuted puzzle problems. Our contributions lie in three main direc-
tions:

– Rigorous formalization. We formalize a notion of permuted puz-
zle distinguishing problems, extending and generalizing the proposed
permuted puzzle framework of Boyle et al. (TCC’17).

– Identifying hard permuted puzzles. We identify natural exam-
ples in which a one-time permutation provably creates cryptographic
hardness, based on “standard” assumptions. In these examples, the
original distributions D0, D1 are easily distinguishable, but the per-
muted puzzle distinguishing problem is computationally hard. We
provide such constructions in the random oracle model, and in the
plain model under the Decisional Diffie-Hellman (DDH) assumption.
We additionally observe that the Learning Parity with Noise (LPN)
assumption itself can be cast as a permuted puzzle.

– Partial lower bound for the DE-PIR problem. We make
progress towards better understanding the permuted puzzles under-
lying the DE-PIR constructions, by showing that a toy version of
the problem, introduced by Boyle et al. (TCC’17), withstands a rich
class of attacks, namely those that distinguish solely via statistical
queries.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 465–493, 2019.
https://doi.org/10.1007/978-3-030-36033-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_18

466 E. Boyle et al.

1 Introduction

Computational hardness assumptions are the foundation of modern cryptog-
raphy. The approach of building cryptographic systems whose security follows
from well-defined computational assumptions has enabled us to obtain fantastical
primitives and functionality, pushing far beyond the limitations of information
theoretic security. But, in turn, the resulting systems are only as secure as the
computational assumptions lying beneath them. As cryptographic constructions
increasingly evolve toward usable systems, gaining a deeper understanding of the
true hardness of these problems—and the relationship between assumptions—is
an important task.

To date, a relatively select cluster of structured problems have withstood
the test of time (and intense scrutiny), to the point that assuming their hard-
ness is now broadly accepted as “standard.” These problems include flavors of
factoring [RSA78,Rab79] and computing discrete logarithms [DH76], as well
as certain computational tasks in high-dimensional lattices and learning the-
ory [GKL88,BFKL93,Ajt96,BKW00,Ale03,Reg05]. A central goal in the foun-
dational study of cryptography is constructing cryptographic schemes whose
security provably follows from these (or weaker) assumptions.

In some cases, however, it may be beneficial—even necessary—to intro-
duce and study new assumptions (indeed, every assumption that is “standard”
today was at some point freshly conceived). There are several important cryp-
tographic primitives (notable examples include indistinguishability obfuscation
(IO) [BGI+01,GGH+13] and SNARKs [BCC+17]) that we do not currently
know how to construct based on standard assumptions. Past experience has
shown that achieving new functionalities from novel assumptions, especially
falsifiable assumptions [Nao03,GW11,GK16], can be a stepping stone towards
attaining the same functionality from standard assumptions. This was the case
for fully homomorphic encryption [RAD78,Gen09,BV11], as well as many recent
primitives that were first built from IO and later (following a long line of
works) based on more conservative assumptions (notably, non-interactive zero-
knowledge protocols for NP based on LWE [KRR17,CCRR18,HL18,CCH+19,
PS19], and the cryptographic hardness of finding a Nash equilibrium based on the
security of the Fiat-Shamir heuristic [BPR15,HY17,CHK+19]). Finally, crypto-
graphic primitives that can be based on diverse assumptions are less likely to
“go extinct” in the event of a devastating new algorithmic discovery.

Of course, new assumptions should be introduced with care. We should strive
to extract some intuitive reasoning justifying them, and some evidence for their
hardness. A natural approach is to analyze the connection between the new
assumption and known (standard) assumptions, with the ultimate goal of show-
ing that the new assumption is, in fact, implied by a standard assumption.
However, coming up with such a reduction usually requires deep understanding
of the new assumption, which can only be obtained through a systematic study
of it.

Permuted Puzzles and Cryptographic Hardness 467

DE-PIR and Permuted Polynomials. A recent example is the new computa-
tional assumption underlying the construction of Doubly Efficient Private Infor-
mation Retrieval (DE-PIR) [BIPW17,CHR17], related to pseudorandomness of
permuted low-degree curves.

Private Information Retrieval (PIR) [CGKS95,KO97] schemes are protocols
that enable a client to access entries of a database stored on a remote server (or
multiple servers), while hiding from the server(s) which items are retrieved. If
no preprocessing of the database takes place, the security guarantee inherently
requires the server-side computation to be linear in the size of the database
for each incoming query [BIM00]. Database preprocessing was shown to yield
computational savings in the multi-server setting [BIM00], but the goal of single-
server PIR protocols with sublinear-time computation was a longstanding open
question, with no negative results or (even heuristic) candidate solutions. Such
a primitive is sometimes referred to as Doubly Efficient (DE) PIR.1

Recently, two independent works [BIPW17,CHR17] provided the first candi-
date constructions of single-server DE-PIR schemes, based on a new conjecture
regarding the hardness of distinguishing permuted local-decoding queries (for
a Reed-Muller code [Ree54,Mul54] with suitable parameters) from a uniformly
random set of points. Specifically, although given the queries {z1, . . . , zk} ⊆ [N]
of the local decoder it is possible to guess (with a non-trivial advantage) the
index i which is being locally decoded, the conjectures of [BIPW17,CHR17]
very roughly assert that adding a secret permutation can computationally hide
i. More precisely, if an adversary instead sees (many) samples of sets of permuted
queries {π(z1), . . . , π(zk)}, where π : [N] → [N] is a secret fixed permutation
(the same for all samples), then the adversary cannot distinguish these from
independent uniformly random size-k subsets of [N].

This new assumption (which we will refer to as PermRM, see Conjecture
1 in Sect. 6.2) allowed for exciting progress forward in the DE-PIR domain.
But what do we really know about its soundness? Although [BIPW17,CHR17]
provide some discussion and cryptanalysis of the assumption, our understanding
of it is still far from satisfactory.

Permuted Puzzles. The PermRM assumption can be cast as a special case in
a broader family of hardness assumptions: as observed in [BIPW17], it can be
thought of as an example of an instance where a secret random permutation
seems to make an (easy) “distinguishing problem” hard, namely the permutation
is the only sources of computational hardness. It should be intuitively clear
that such permutations may indeed create hardness. For example, while one can
easily distinguish a picture of a cat from that of a dog, this task becomes much
more challenging when the pixels are permuted. There are also other instances in
which random secret permutations were used to introduce hardness (see Sect. 1.2
below). Therefore, using permutations as a source of cryptographic hardness
seems to be a promising direction for research, and raises the following natural
question:

1 Namely, computationally efficient for both client and server.

468 E. Boyle et al.

Under which circumstances can a secret random permutation be a source
of cryptographic hardness?

1.1 Our Results

We initiate a formal investigation of the cryptographic hardness of permuted
puzzle problems. More concretely, our contributions can be summarized within
the following three directions.

Rigorous Formalization. We formalize a notion of permuted puzzle distinguishing
problems, which extends and generalizes the proposed framework of [BIPW17].
Roughly, a permuted puzzle distinguishing problem is associated with a pair of
distributions D0,D1 over strings in Σn, together with a random permutation π
over [n]. The permuted puzzle consists of the distributions D0,π,D1,π which are
defined by sampling a string s according to D0,D1 (respectively), and permuting
the entries of s according to π. A permuted puzzle is computationally hard if
no efficient adversary can distinguish between a sample from D0,π or D1,π, even
given arbitrarily many samples of its choice from either of the distributions. We
also briefly explore related hardness notions, showing that a weaker and simpler
variant (which is similar to the one considered in [BIPW17]) is implied by our
notion of hardness, and that in some useful cases the weaker hardness notion
implies our hardness notion. Our motivation for studying the stronger (and per-
haps less natural) hardness notion is that the weaker variant is insufficient for
the DE-PIR application.

Identifying Hard Permuted Puzzles. We identify natural examples in which a one-
time permutation provably introduces cryptographic hardness, based on standard
assumptions. In these examples, the distributions D0,D1 are efficiently distin-
guishable, but the permuted puzzle distinguishing problem is computationally
hard. We provide such constructions in the random oracle model, and in the
plain model under the Decisional Diffie-Hellman (DDH) assumption [DH76].
We additionally observe that the Learning Parity with Noise (LPN) assump-
tion [BKW00,Ale03] itself can be cast as a permuted puzzle. This is described in
the following theorem (see Propositions 1, 3, and 2 for the formal statements).

Informal Theorem 1 (Hard Permuted Puzzles). There exists a
computationally-hard permuted puzzle distinguishing problem:

– In the random oracle model.
– If the DDH assumption holds.
– If the LPN assumption holds.

Statistical Query Lower Bound for DE-PIR Toy Problem. We make progress
towards better understanding the PermRM assumption underlying the DE-PIR
constructions of [BIPW17,CHR17]. Specifically, we show that a toy version of

Permuted Puzzles and Cryptographic Hardness 469

the problem, which was introduced in [BIPW17], provably withstands a rich
class of learning algorithms known as Statistical Query (SQ) algorithms.

Roughly, the toy problem is to distinguish randomly permuted graphs of
random univariate polynomials of relatively low degree from randomly permuted
graphs of random functions. More formally, for a function f : X → Y , we define
its 2-dimensional graph Graph(f) : X × Y → {0, 1} where Graph(f)(x, y) = 1 ⇔
y = f(x). For a security parameter λ and a field F, the distributions D0,D1 in the
toy problem are over {0, 1}n for n = |F|2, and output a sample Graph(γ) where
γ : F → F is a uniformly random degree-λ polynomial in D0, and a uniformly
random function in D1.

We analyze the security of the toy problem against SQ learning algorithms.
Our motivation for focusing on learning algorithms in general is that permuted
puzzles are a special example of a learning task. Indeed, the adversary’s goal is
to classify a challenge sample, given many labeled samples. Thus, it is natural
to explore approaches from learning theory as potential solvers for (equivalently,
attacks on) the permuted puzzle. Roughly speaking, most known learning algo-
rithms can be categorized within two broad categories. The first category lever-
ages linearity, by identifying correlations with subspaces and using algorithms
based on Gaussian elimination to identify these. The second category, which is
our focus in this work, is SQ algorithms. Informally, an SQ algorithm obtains
no labeled samples. Instead, it can make statistical queries that are defined by a
boolean-valued function f , and the algorithm then obtains the outcome of apply-
ing f to a random sample. A statistical query algorithm is an SQ algorithm that
makes polynomially many such queries. We show that the toy problem is hard
for SQ algorithms (see Theorem 8):

Informal Theorem 2. The BIPW toy problem is hard for statistical query
algorithms.

We contrast this statistical-query lower bound with the bounded-query sta-
tistical indistinguishability lower bound of [CHR17]. That result showed that
there is some fixed polynomial B such that no adversary can distinguish B DE-
PIR queries from random, even if computationally unbounded. In contrast, our
result proves a lower bound for adversaries (also computationally unbounded),
that have no a-priori polynomial bound on the number of queries that they can
make—in fact, they can make up to 2ελ queries where λ is the security parame-
ter and ε is a small positive constant. However, they are restricted in that they
cannot see the result of any individual query in its entirety; instead, adversaries
can only see the result of applying bounded (up to ελ-bit) output functions
separately to each query.

1.2 Other Instances of Hardness from Random Permutations

There are other instances in which random secret permutations were used to
obtain computational hardness. The Permuted Kernel Problem (PKP) is an
example in the context of a search problem. Roughly, the input in PKP consists

470 E. Boyle et al.

of a matrix A ∈ Z
m×n
p and a vector v ∈ Z

n
p , where p is a large prime. A solution

is a permutation π on [n] such that the vector v′ obtained by applying π to
the entries of v is in the kernel of A. PKP is known to be NP-complete in the
worst-case [GJ02], and conjectured to be hard on average [Sha89], for sufficiently
large (n − m) and p. It is the underlying assumption in Shamir’s identification
scheme [Sha89], and has lately seen renewed interest due to its applicability
to post-quantum cryptography (e.g., [LP12,FKM+18,KMP19]). Despite being
studied for 3 decades, the best known algorithms to date run in exponential
time; see [KMP19] and the references therein.

1.3 Techniques

We now proceed to discuss our results and techniques in greater detail.

Defining Permuted Puzzles. We generalize and extend the intuitive puzzle
framework proposed in [BIPW17], by formally defining the notions of (permuted)
puzzle distinguishing problems.

We formalize a puzzle distinguishing problem as a pair of distributions D0,D1

over Σn, for some alphabet Σ and some input length n. Very roughly, hard-
ness of a puzzle distinguishing problem means one cannot distinguish a single
sample from D0 or D1, even given oracle access to D0 and D1. We say that a
puzzle problem is (s, ε)-hard if any size-s adversary distinguishes D0 from D1

with advantage at most ε. This concrete hardness notion naturally extends to
computational hardness of an ensemble of puzzles, in which case we allow the
distributions to be keyed (by both public and secret key information) and require
that they be efficiently sampleable given the key.

With this notion of puzzle distinguishing problems, we turn to defining a
permuted puzzle which, informally, is obtained by sampling a random permuta-
tion π once and for all as part of the secret key, and permutating all samples
according to π. Hardness of a permuted puzzle is defined identically to hardness
of (standard) puzzle distinguishing problems.

We also consider a simpler hardness definition, in which the adversary is given
oracle access only to a randomly selected Db (but not to D1−b), and attempts
to guess b. We say that a puzzle distinguishing problem is weak computationally
hard if every adversary of polynomial size obtains a negligible advantage in this
modified distinguishing game. Weak computational hardness captures the secu-
rity notion considered in [BIPW17], but is too weak for certain applications, as
it allows for trivial permuted puzzles, e.g., D0 =

{
0n/21n/2

}
,D1 =

{
1n/20n/2

}
.

More generally, and as discussed in Remark 3 (Sect. 3), weak computational
hardness is generally weaker than the definition discussed above (which is more
in line with the DE-PIR application). Concretely, we show that the definition
discussed above implies the weaker definition, and that in certain cases (e.g.,
when D1 is the uniform distribution), the weaker definition implies the stronger
one. This last observation will be particularly useful in proving security of our
permuted puzzle constructions.

Permuted Puzzles and Cryptographic Hardness 471

Hard Permuted Puzzle in the Random Oracle (RO) Model. Our first
permuted puzzle is in the random oracle model. Recall that a permuted puzzle is
defined as the permuted version of a puzzle distinguishing problem. For our RO-
based permuted puzzle, the underlying puzzle distinguishing problem is defined
as follows. There is no key, but both the sampling algorithm and the adversary
have access to the random oracle H. The sampling algorithm samples a uniformly
random input x0 for H, and uniformly random seeds s1, . . . , sn, where n = λ,
and computes xn sequentially as follows. For every 1 ≤ i ≤ n, xi

def= H (si, xi−1).
The sample is then (x0, x

′
n, s1, . . . , sn) where x′

n
def= xn in D0, and x′

n is uniformly
random in D1. Notice that in this (unpermuted) puzzle distinguishing problem
one can easily distinguish samples from D0 and D1, by sequentially applying the
oracle to x0 and the seeds, and checking whether the output is x′

n. This will hold
with probability 1 for samples from D0, and only with negligible probability for
samples from D1 (assuming H has sufficiently long outputs). The corresponding
permuted puzzle is obtained by applying a fixed random permutation π∗ to the
seeds (s1, . . . , sn).2

Hardness of the Permuted Puzzle. We focus on a simpler case in which the
adversary receives only the challenge sample (and does not request any additional
samples from its challenger). This will allow us to present the main ideas of the
analysis, and (as we show in Sect. 4), the argument easily extends to the general
case.

At a very high level, we show that the hardness of the permuted puzzle
stems from the fact that to successfully guess b, the adversary has to guess the
underlying random permutation π∗, even though it has oracle access to H.

We first introduce some terminology. For a random oracle H, input x0 and
seeds s′

1, . . . , s
′
n, each permutation π over the seeds uniquely defines a corre-

sponding “output” xπ
n through a length-(n + 1) “path” Pπ defined as follows.

Let xπ
0

def= x0, and for every 1 ≤ i ≤ n, let s′′
i

def= s′
π−1(i) and xπ

i
def= H

(
s′′

i , xπ
i−1

)
.

Then the label of the i’th node on the path Pπ is xπ
i . We say that a node v with

label x on some path Pπ is reachable if x was the oracle answer to one of the
adversary’s queries in the distinguishing game. We note that when s′

i = sπ∗(i),
i.e., the seeds are permuted with the permutation used in the permuted puzzle,
then xπ∗

i = xi for every 1 ≤ i ≤ n. We call Pπ∗ the special path.
We will show that with overwhelming probability, unless the adversary

queries H on all the xi’s on the special path (i.e., on xπ∗
0 , xπ∗

1 , . . . , xπ∗
n = xn), then

he obtains only a negligible advantage in guessing b. Hardness of the permuted
puzzle then follows because there are n! possible paths, and the adversary has

2 We note that syntactically, this is not a permuted puzzle since the permutation
should be applied to the entire sample. However, this simplified view of the per-
muted puzzle captures the fact that in our construction, the permutation essentially
operates only over the seeds. In the actual construction, this is achieved by tagging
the different parts of the sample (with either “input”, “output”, or “seed”) such that
any permutation over the entire sample uniquely determines a permutation over the
seeds; see Sect. 4.

472 E. Boyle et al.

a negligible chance of guessing the special path (because π∗ is a secret random
permutation).

We would first like to prove that all node labels, over all paths Pπ, are unique.
This, however, is clearly false, because the paths are not disjoint: for example,
the label of node 0 in all of them is x0. More generally, if π �= π′ have the same
length-k prefix for some 0 ≤ k < λ, then for every 0 ≤ i ≤ k, the i’th nodes on
Pπ,Pπ′ have the same label. In this case, we say that the i’th nodes correspond
to the same node. Let Unique denote the event that across all paths there do
not exist two nodes that (1) do not correspond to the same node, but (2) have
the same label. Our first observation is that Unique happens with overwhelming
probability. Indeed, this holds when H’s output is sufficiently large (e.g., of the
order of 3λ · log λ), because there are only λ · λ! different nodes (so the number
of pairs is roughly of the order of 22λ·log λ).

Let E denote the event that the adversary queries H on the label of an
unreachable node, and let ReachQ = Ē denote its complement. Our next obser-
vation is that conditioned on Unique, ReachQ happens with overwhelming prob-
ability. Indeed, conditioned on Unique, the label of an unreachable node is uni-
formly random, even given the entire adversarial view (including previous oracle
answers). Thus, querying H on an unreachable node corresponds to guessing the
random node label. When H’s output length is sufficiently large (on the order
of 3λ · log λ as discussed above) this happens only with negligible probability.

Consequently, it suffices to analyze the adversarial advantage in the distin-
guishing game conditioned on Unique∧ReachQ. Notice that in this case, the only
potential difference between the adversarial views when b = 0 and when b = 1 is
in the label of the endpoint vend of the special path Pπ∗ , which is xn when b = 0,
and independent of xn when b = 1. Indeed, conditioned on Unique, the label of
vend appears nowhere else (i.e., is not the label of any other node on any path).
Therefore, conditioned on ReachQ ∧ Unique, the label of vend appears as one of
the oracle answers only if vend is reachable, i.e., only if the adversary queried H
on all the node labels on the special path.

Hard Permuted Puzzles in the Plain Model. Our second permuted puz-
zle is based on the Decisional Diffi-Helman (DDH) assumption. The underlying
puzzle distinguishing problem is defined over a multiplicative cyclic group G of
prime order p with generator g. The public key consists of G, g and a uniformly
random vector u ← (

Z
∗
p

)n. A sample from D0,D1 is of the form (gx1 , . . . , gxn),
where in D0 (x1, . . . , xn) is chosen as a uniformly random vector that is orthog-
onal to u, whereas in D1 (x1, . . . , xn) is uniformly random. As discussed below,
in this (unpermuted) puzzle distinguishing problem one can easily distinguish
samples from D0 and D1. The corresponding permuted puzzle is obtained by
applying a fixed random permutation to the samples (gx1 , . . . , gxn).

Why are Both DDH and a Permutation Needed? The computational hardness of
the permuted puzzles stems from the combination of the DDH assumption and
the permutation, as we now explain. To see why the DDH assumption is needed,

Permuted Puzzles and Cryptographic Hardness 473

notice that in D0, all sampled (x1, . . . , xn) belong to an (n − 1)-dimensional
subspace of Z

n
p , whereas in D1 this happens only with negligible probability,

because each sample is uniformly and independently sampled. Consider a simpler
version in which D0,D1 simply output the vector (x1, . . . , xn). In this case, one
can obtain an overwhelming distinguishing advantage by (efficiently) checking
whether all samples (x1, . . . , xn) lie within an (n−1)-dimensional subspace, and
if so guess that the underlying distribution is D0. This “attack” can be executed
even if the samples are permuted (as is the case in a permuted puzzle), because
applying a permutation to the (x1, . . . , xn) is a linear operation, and therefore
preserves the dimension of the subspace. Therefore, a permutation on its own
is insufficient to get computational hardness, and we need to rely on the DDH
assumption.

To see why the permutation is needed, notice that even if the DDH assump-
tion holds in G, given (gx1 , . . . , gxn) one can efficiently test whether the under-
lying exponents (x1, . . . , xn) are orthogonal to a known vector u, by only com-
puting exponentiations and multiplications in G. Notice that for a sufficiently
large p, the exponents of a sample from D1 will be orthogonal to u only with
negligible probability, so this “attack” succeeds with overwhelming probability.

Hardness of the Permuted Puzzle. We now show that the combination of the
DDH assumption, and permuted samples, gives computational hardness. Notice
that it suffices to prove that the permuted puzzle is weak computationally hard,
because D1 is random over Gn (see Sect. 1.3). In this case, the adversarial view
Vb, b ∈ {0, 1} consists of the public key (G, g,u), and a polynomial number of
permuted samples of the form (gx1 , . . . , gxn) which were all sampled according
to Db and permuted using the same random permutation π.

Our first observation is that Vb is computationally indistinguishable from the
distribution Hb in which the public key is (G, g, π′ (u)) for π′ def= (π)−1, and the
samples from Db are unpermuted.

Our second observation is that the DDH assumption implies that Hb is com-
putationally indistinguishable from the distribution H′

b in which the (x1, . . . , xn)
additionally lie in a random 1-dimensional subspace Lb,v . That is, (x1, . . . , xn)
are chosen at random from Lb,v , where in H′

0 v is random subject to v · u = 0,
and in H′

1 v is uniformly random. Specifically, we show that the problem of
distinguishing between Hb,H′

b can be efficiently reduced to the task of distin-
guishing between a polynomial number of length-(n − 1) vectors of the form
(gy1 , . . . , gyn−1), where the (y1, . . . , yn−1) are all sampled from a random 1-
dimensional subspace of Z

n−1
p or all sampled from the full space Z

n−1
p . If the

DDH assumption holds in G then a polynomial-sized adversary cannot efficiently
distinguish between these distributions [BHHO08]. Consequently, it suffices to
show that H′

0,H′
1 are computationally close.

The final step is to show that H′
0,H′

1 are computationally (in fact, statisti-
cally) close. The only difference between the two distributions is in the choice of
v (which is orthogonal to u in H′

0, and random in H′
1), where all other sampled

values are either identical or deterministically determined by the choice of v.
Notice that in H′

1, (π (u) ,v) is uniformly random in Z
n
p × Z

n
p . Thus, to show

474 E. Boyle et al.

that H′
0,H′

1 are statistically close and conclude the proof, it suffices to prove that
(π (u) ,v) in H′

0 is statistically close to uniform over Zn
p ×Z

n
p . Very roughly, this

follows from the leftover hash lemma due to the following observations. First,
π (u) has high min entropy even conditioned on u (because π is random). Sec-
ond, the family of inner product functions with respect to a fixed vector (i.e.,
hv (v′) = v · v′) is a pair-wise independent hash function.

Permuted Puzzles and the Learning Parity with Noise (LPN) Assumption. The
argument used in the DDH-based permuted puzzle can be generalized to other
situations in which it is hard to distinguish between the uniform distribution
and a hidden permuted kernel (but easy to distinguish when the kernel is not
permuted). This more general view allows us to cast the LPN assumption as a
permuted puzzle, see Sect. 5.1.

Statistical-Query Lower Bound. We show that SQ algorithms that make
polynomially many queries obtain only a negligible advantage in distinguishing
the distributions D0,D1 in the toy problem presented in Sect. 1.1. Recall that a
sample in the toy problem is a permuted Graph(γ) where γ is either a uniformly
random degree-λ polynomial (in D0), or a uniformly random function (in D1),
and that the SQ algorithm obtains the outputs of boolean-valued functions f of
its choice on random samples. Very roughly, we will show that the outcome of
f on (permutation of) a random sample x ← Db is independent of the challenge
bit b and the permutation π.

Notice that every permutation π over Graph(γ) defines a partition Φ
def=

{π ({i} × F)}i∈F
of F × F, where each set in the partition corresponds to a sin-

gle x value. We say that π respects the partition Φ. Notice also that each set
contains a single non-0 entry (which is π (i, γ(i)), where i is the value of x that
corresponds to the set). Thus, an SQ algorithm can compute this partition, so
we cannot hope to hide it. Instead, we show indistinguishability even when the
adversary is given the partition.

Our main observation is that for every partition Φ, and any boolean-valued
function f , there exists pf,Φ ∈ [0, 1] such that for every b ∈ {0, 1}, with over-
whelming probability over the choice of random permutation π that respects
the partition Φ, the expectation Ex←Db

[f (π (x))] is very close to pf,Φ, where
π (x) denote that the entries of x are permuted according to π. Crucially, pf,Φ is
independent of the challenge bit b, any particular sample x, and the permutation
(other than the partition).

We prove this observation in two steps. First, we show that in expectation
over the choice of the permutation, Ex←D0 [f (π (x))] and Ex←D1 [f (π (x))] have
the same value. To see this, we write the expectations over x ← Db as a weighted
sum

∑
x Pb(x)f(π(x)), and apply linearity of the expectation over π. To show

that this is independent of b, we observe that for any fixed x, the distribution of
π(x) is the same (i.e. does not depend on x).

Next, we show that for any distribution D, the variance (over the choice of
the permutation π) of Ex←Db

[f (π (x))] is small. The variance is by definition
the difference between

Permuted Puzzles and Cryptographic Hardness 475

E
π

[
E

x←Db

[f (π (x))]2
]

(1)

and
E
π

[
E

x←Db

[f (π (x))]
]2

. (2)

We show that both Eqs. (1) and (2) can be expressed as an expectation (over
some distribution of g, g′) of Eπ

[(
f(π(Graph(g))), f(π(Graph(g′)))

)]
. We observe

that this depends only on the Hamming distance between g and g′. Finally, we
observe that the distribution of (g, g′) is uniform in Eq. (2) and two independent
samples from Db in Eq. (1). To complete the bound on the variance, we show
that when g, g′ are sampled independently from Db (specifically, the interesting
case is when they are sampled from D0), then the distribution of the Hamming
distance between g and g′ is nearly the same as when g and g′ are independent
uniformly random functions.

To prove this, we prove a lemma (Lemma 4) stating that when t-wise indepen-
dent random variables (X1, . . . , Xn) satisfy Pr[Xi �= �i] = pi for some values of
�i and pi such that

∑
i∈[n] pi ≤ t

4 ≥ ω(log λ), then (X1, . . . , Xn) are statistically
negl(λ)-close to mutually independent. We apply this with Xi being the indica-
tor random variable for the event that g(i) �= g′(i). This lemma quantitatively
strengthens a lemma of [CHR17].

Open Problems and Future Research Directions. The broad goal of bas-
ing DE-PIR on standard assumptions was a motivating starting point for this
work, in which we put forth the framework of permuted puzzles. In describing
hard permuted puzzles, we take a “bottom-up” approach by describing such con-
structions based on standard cryptographic assumptions. Since these permuted
puzzles are still not known to imply DE-PIR, we try to close the gap between
the permuted puzzle on which DE-PIR security is based, and provably hard per-
muted puzzles, by taking a “top-down” approach, and analyzing the security of
a toy version of the DE-PIR permuted puzzle, against a wide class of possible
attacks.

Our work still leaves open a fascinating array of questions, we discuss some
of them below. First, it would be very interesting to construct a hard permuted
puzzle based only on the existence of one-way functions, as well as to provide
“public-key” hard permuted puzzles, namely ones in which the key generation
algorithm needs no secret key, based on standard assumptions. In the context
of DE-PIR and its related permuted puzzle, it would be interesting to construct
DE-PIR based on other (and more standard) assumptions, as well as to analyze
the security of its underlying permuted puzzle (and its toy version) against a
wider class of attacks.

2 Preliminaries

For a set X, we write x ← X to denote that x is sampled uniformly at random
from X. For a distribution D, we use Supp (D) to denote its support. The min

476 E. Boyle et al.

entropy of D is H∞ (D) def= minx∈Supp(D) log 1
Pr[x] . For a pair X,Y of random

variables, we denote their statistical distance by dTV (X,Y). We use · to denote
inner product, i.e., for a pair x = (x1, . . . , xn) ,y = (y1, . . . , yn) of vectors,
x ·y def=

∑n
i=1 xiyi. We use [n] to denote the set {1, . . . , n}, and Sn to denote the

group of permutations of [n].

Notation 3 (Permutation of a vector). For a vector x = (x1, . . . , xn), and a
permutation π ∈ Sn, we denote:

π (x) def=
(
xπ−1(1), . . . , xπ−1(n)

)
.

3 Distinguishing Problems and Permuted Puzzles

In this section, we formally define (permuted) puzzle problems which are,
roughly, a (special case) of ensembles of keyed “string-distinguishing” problems.

We begin in Sect. 3.1 by developing terminology for general string-
distinguishing and puzzle problems. In Sect. 3.2 we present the formal distin-
guishing challenge and define hardness. Then, in Sect. 3.3, we discuss the case of
permuted puzzles, and present an alternative indistinguishability notion that is
equivalent in certain cases.

3.1 String-Distinguishing Problems

At the core, we consider string-distinguishing problems, defined by a pair of
distributions over n-element strings. We begin by defining a finite instance.

Definition 1 (String-Distinguishing Problems). A string-distinguishing
problem is a tuple Π = (n,Σ,D0,D1), where n is a positive integer, Σ is a
non-empty finite set, and each Db is a distribution on Σn. We call n the string
length, and Σ the string alphabet.

More generally, an oracle-dependent string-distinguishing problem is a function
Π(·) that maps an oracle O : {0, 1}∗ → {0, 1} to a string-distinguishing problem
ΠO.

For example, we will consider permuted puzzle string-distinguishing prob-
lems relative to a random oracle in Sect. 4. Note that oracle-dependent string-
distinguishing problems are strictly more general than string-distinguishing
problems, as the distributions can simply ignore the oracle.

Remark 1 (Oracle Outputs). In the above, we modeled the oracle as out-
putting a single bit for simplicity. However, any (deterministic) oracle with multi-
bit output can be emulated given a corresponding single-bit-output oracle, at
the cost of making more oracle queries.

We will be interested in distinguishing problems where the distributions D0

and D1 may depend on common sampled “key” information. Parts of this key
may be publicly available, or hidden from a distinguishing adversary (discussed
in Definition 4); these parts are denoted pk, sk, respectively.

Permuted Puzzles and Cryptographic Hardness 477

Definition 2 (Keyed Families). A keyed family of (oracle-dependent) string-
distinguishing problems is a tuple (K, {Πk}k∈K), where K is a distribution on
a non-empty finite set of pairs (pk, sk) and each Πk is an (oracle-dependent)
string-distinguishing problem. We refer to the support of K as the key space, and
also denote it by K.

Note that any string-distinguishing problem can trivially be viewed as a keyed
family by letting K be a singleton set.

Example 1 (Keyed Family: Dimension-t Subspaces). For a finite field F, and
n ∈ N, consider an example keyed family of string-distinguishing problems
(K, {Πk}k∈K) as follows:

– K samples a random t ← {1, . . . , n − 1}, and a random subspace L ⊆ F
n of

dimension t, sets pk = t and sk = L, and outputs (pk, sk).
– For a key k = (t, L), the corresponding string-distinguishing problem is Πk =

(n,F,D0,D1) where D0 outputs a uniformly random v ∈ L, and D1 outputs
a uniformly random v ∈ F

n.

Note that in this example, it will be computationally easy to distinguish between
the distributions D0,D1 given sufficiently many samples.

We next define a puzzle problem which, informally, is an efficiently sampleable
ensemble of keyed families of string-distinguishing problems.

Definition 3 (Puzzle problem). A puzzle problem is an ensemble {(Kλ,

{Π
(·)
k }k∈Kλ

)}λ∈Z+ of keyed families of (oracle-dependent) string-distinguishing
problems associated with probabilistic polynomial-time algorithms KeyGen and
Samp such that:

– For any λ ∈ Z
+, KeyGen(1λ) outputs a sample from Kλ.

– For any k ∈ Kλ, any b ∈ {0, 1}, and any oracle O : {0, 1}∗ → {0, 1},
SampO(k, b) outputs a sample from Db, where ΠO

k = (n,Σ,D0,D1).

Remark 2 (Abbreviated terminology). Somewhat abusing notation, we will
also refer to a single keyed family of string-distinguishing problems as a puzzle
problem.

3.2 Distinguishing Games and Hardness

We will focus on puzzle problems where it is computationally hard to distinguish
between the pair of distributions. This notion of hardness is formalized through
the following distinguishing game. Roughly, the distinguishing adversary is given
a challenge sample x from a randomly selected Db, and query access to both
distributions (denoted by choices β below), and must identify from which Db

the x was sampled.

Definition 4 (Distinguishing Game). Let P = (K, {Πk}k∈K) be a puzzle
problem, and let O be a distribution of oracles. The distinguishing game GO

dist[P] is
run between an “adversary” A and a fixed “challenger” C, and is defined as follows:

478 E. Boyle et al.

1. C samples a key k = (pk, sk) from K, and O ← O, and denote ΠO
k =

(n,Σ,D0,D1). C sends pk to A, who is also given oracle access to O through-
out the game.

2. C samples a random bit b ← {0, 1}, samples x ← Db, and sends x to A.
3. The following is repeated an arbitrary number of times: A sends a bit β to C,

who samples x′ ← Dβ and sends x′ to A.
4. A outputs a “guess” bit b′ ∈ {0, 1}.

A is said to win the game if b′ = b. A’s advantage is AdvA(GO
dist[P]) def= 2·∣∣ Pr[b′ =

b] − 1
2

∣
∣.

Informally, a permuted puzzle is computationally hard if any polynomial-time
adversary wins the distinguishing game of Definition 4 with negligible advantage.
We first formalize the notion of concrete hardness.

Definition 5 (Concrete Hardness). A puzzle problem P = (K, {Πk}k∈K) is
said to be (s, ε)-hard (with respect to oracle distribution O) if in the game GO

dist[P],
all adversaries A of size at most s have advantage at most ε.

We say a puzzle problem
{
(Kλ, {Π

(·)
k }k∈Kλ

)
}

λ∈Z+ is
(
s(·), ε(·))-hard (with

respect to an ensemble {Oλ} of oracle distributions) if each (Kλ, {Π
(·)
k }k∈Kλ

) is(
s(λ), ε(λ)

)
-hard with respect to Oλ.

Definition 6 (Asymptotic Hardness). As usual, we say simply that P is
(computationally) hard if for every s(λ) ≤ λO(1), there exists ε(λ) ≤ λ−ω(1) such
that for every λ ∈ Z

+, P is (s(·), ε(·))-hard.
P is statistically hard if for some ε(λ) ≤ λ−ω(1), P is (∞, ε(·))-hard.

Remark 3 (Discussion on Definition).
A slightly simpler and more natural definition would be to give the adversary

access to (polynomially-many samples from) only a randomly selected Db, where
the adversary must identify b.

For keyed puzzles, these definitions are in general not equivalent. Consider,
for example, a modified version of Example 1, where both D0 and D1 are defined
by random dimension-t subspaces, L0 and L1. Then over the choice of the key
(including L0, L1), the distributions D0 and D1 on their own are identical: that
is, even an unbounded adversary with arbitrarily many queries would have 0
advantage in the simplified challenge. However, given t samples from both dis-
tributions, as in Definition 4, D0 and D1 are trivially separated, and a sample
x can be correctly labeled with noticeable advantage. On the other hand, hard-
ness with respect to our definition implies hardness with respect to the simplified
notion, by a hybrid argument over the number of queries (see Lemma 1).

Since our motivation for studying puzzles come from applications where cor-
related samples from the corresponding distributions can be revealed (e.g., cor-
related PIR queries on different indices i), we thus maintain the more complex,
stronger definition.

Permuted Puzzles and Cryptographic Hardness 479

The definitional separation in the example above stems from the fact that
given access to only one distribution Db, one cannot necessarily simulate con-
sistent samples from D0 and D1. However, in certain instances, this issue does
not arise; for example, if one of the two is simply the uniform distribution over
strings.We formally address this connection in the following section: presenting
the simplified indistinguishability notion in Definition 8, and proving equivalence
for certain special cases in Lemma 2.

3.3 Permuted Puzzles and a Related Indistinguishability Notion

In this work we will focus on permuted puzzles. This is a special case of puzzle
problems, as we now define. Here, the key includes an additional secret random
permutation on the indices of the n-element strings, and strings output by the
distributions D0,D1 will be permuted as dictated by π.

Definition 7 (Permuted Puzzle Problems). For a puzzle problem P =
{(Kλ, {Π

(·)
k }k∈Kλ

)}λ∈Z+ , we define the associated permuted puzzle problem

Perm (P) def= {(K′
λ, {Π

′(·)
k′ }k′∈K′

λ
)}λ∈Z+ , where:

– A sample from K′
λ is

(
pk, (sk, π)

)
, where:

• (pk, sk) is sampled from Kλ, and
• If Πk = (n,Σ,D0,D1), then π is sampled uniformly at random from the

symmetric group Sn.
– For any key k′ = (pk, (sk, π)), if Π(pk,sk) = (n,Σ,D0,D1) then Π ′

k′ =
(n,Σ,D′

0,D′
1), where a sample from D′

b is π(x) for x ← Db.

Recall (Notation 3) for vector x ∈ Σn and π ∈ Sn, that π(x) denotes the index-
permuted vector.

As discussed in Remark 3, we now present a simplified notion of indistin-
guishability, and show that in certain special cases, this definition aligns with
Definition 6. In such cases, it will be more convenient to work with the simplified
version.

Definition 8 (Weak Hardness of Puzzle Problems). Let P =
(K, {Πk}k∈K) and O be as in Definition 4. The simplified distinguishing game
GO
dist,s[P] is defined similarly to GO

dist[P], except that in Step 3, C samples x′ ← Db

(instead of x′ ← Dβ).
A puzzle problem P = (K, {Πk}k∈K) is weak (s, ε)-hard if AdvA(GO

dist,s[P]) ≤ ε
for any size-s adversary A. Weak computational hardness is defined similarly to
Definition 6.

Note that weak computational (statistical) hardness (with respect to Defini-
tion 8) is implied by hardness with respect to Definition 4:

Lemma 1 (Standard ⇒ Weak). Let P = {(Kλ, {Π
(·)
k }k∈Kλ

)}λ∈Z+ be a puz-
zle problem. If P is computationally (statistically, respectively) hard in the stan-
dard sense (Definition 6) then it is weak computationally (statistically, respec-
tively) hard (Definition 8).

480 E. Boyle et al.

The more interesting direction is that weak hardness implies (standard) hard-
ness in the case that one of the two distributions D0 or D1 is efficiently sampleable
and permutation-invariant, in the following sense.

Definition 9 (Permutation-Invariant Distributions). Let n ∈ N, let Σ be
a non-empty set, and let D be a distribution over Σn. For a permutation π ∈ Sn,
let Dπ be the distribution induced by sampling x ← D and outputting π (x). We
say that D is permutation-invariant if for a uniformly random π ∈ Sn, the joint
distribution Dπ × Dπ is identical to D × Dπ.

Remark 4. One example of a permutation-invariant distribution D particularly
useful in this work is the uniform distribution over Σn.

Lemma 2 (In certain cases Weak ⇒ Standard). Let P =
{(Kλ, {Π

(·)
k }k∈Kλ

)}λ∈Z+ be a puzzle problem. If:

– The corresponding permuted puzzle Perm (P) is weak computationally hard
(Definition 8).

– For every λ, every k = (pk, sk) ∈ Supp (Kλ), and every Πk = (n,Σ,D0,D1):
• D1 is permutation-invariant.
• One can efficiently sample from D1 without sk.

Then Perm (P) is computationally hard in the standard sense (Definition 6).

Finally, we show that the existence of hard permuted puzzles for which the
original distributions D0,D1 are statistically far implies the existence of one-way
functions. Note that this holds with respect to our standard (strong) definition
of computational hardness, but not in general for the weaker notion (where, for
example, even trivially distinguishable singleton distributions D0 over (0, 1) and
D1 over (1, 0) become statistically identical when receiving samples only from
permuted-D0 or permuted-D1).

Lemma 3. If P is a puzzle problem that is not statistically hard, but Perm(P)
is computationally hard, then there exists a one-way function.

The proofs of Lemmas 1, 2 and 3 are deferred to the full version.

4 Hard Permuted Puzzles in the Random Oracle Model

We show that there exist computationally hard permuted puzzles in the random
oracle model. We first formally define the notion of a random oracle.

Definition 10 (Random Oracle). We use the term random oracle to refer to
the uniform distribution on functions mapping {0, 1}∗ → {0, 1}.
Construction 4 (Permuted puzzles in the ROM). Let H be a random oracle.
For a security parameter λ, we interpret H as a function Hλ : {0, 1}mλ+λ →
{0, 1}mλ for mλ = 2 (λ + 1) log λ (also see Remark 1). We define a puzzle prob-
lem P =

{
(Kλ, {Πk}k∈Kλ

)
}

by the following KeyGen and Samp algorithms:

Permuted Puzzles and Cryptographic Hardness 481

– KeyGen
(
1λ

)
outputs 1λ as the public key (the secret key is empty).3

We note that for any λ, the corresponding string distinguishing problem Πλ =(
n,Σ,D(·)

0 ,D(·)
1

)
has n = λ + 2 and Σ = {0, 1}mλ × {INPUT, OUTPUT, SEED}.

– Samp (k, b) where k = 1λ outputs a sample from DHλ

λ,b for Hλ : {0, 1}mλ+λ →
{0, 1}mλ as defined above, where DHλ

λ,b is defined as follows.
• A sample from DHλ

λ,0 is of the form (σ1, . . . , σλ+2), where:
* For i ∈ [λ], σi = (si, SEED) for uniformly random and independent

s1, . . . , sλ in {0, 1}mλ .
* σλ+1 = (x0, INPUT), where x0 is uniformly random in {0, 1}mλ .
* σλ+2 = (xλ, OUTPUT), where for each i ∈ [λ], xi = Hλ(s′

i, xi−1), where
s′

i is the length-λ prefix of si. (That is, the random oracle uses length-
λ seeds, and the rest of the bits in the seed are ignored.)

• DHλ

λ,1 is defined identically to DHλ

λ,0 , except that xλ is uniformly random in
{0, 1}mλ , independent of x0, Hλ, and s1, . . ., sλ.

Proposition 1. The puzzle problem P of Construction 4 is computationally
easy, and the corresponding permuted puzzle problem Perm (P) is statistically
hard, with respect to a random oracle.

We note that P is computationally easy in an extremely strong sense: a
polynomial-sized adversary can obtain advantage 1−negl (λ) in the distinguish-
ing game. The proof of is deferred to the full version.

5 Hard Permuted Puzzles in the Plain Model

In this section we discuss permuted puzzle problems based on hidden permuted
kernels. At a high level, these puzzles have the following structure. First, the
distributions D0,D1 are associated with a group G with generator g, and a
uniformly random public “constraint vector” c. Samples from D0 and D1 are
vectors in Gm, of the form gx . Specifically, D1 samples a uniformly random vector
in Gm, whereas D0 samples a vector x that is uniformly random subject to being
orthogonal to c. Intuitively, since D1 is uniformly random, weak computational
hardness of the permuted puzzle problem implies computational hardness by
Lemma 2.

Remark 5 (An alternative formulation of the problem). In the high-level
blueprint of a permuted puzzle problem described above, the constraint vector c
is given “in the clear” (namely, we assume it is public, and indistinguishability
does not rely on the secrecy of c), and the samples x are permuted according
to a random permutation π ∈ Sn, namely, the adversary obtains π (x) (recall
that π (x) =

(
xπ−1(1), . . . , xπ−1(n)

)
Let C denote the set of “good” vectors c, i.e.,

vectors that satisfy the requirement, and let Gn denote the domain over which

3 We note that in this permuted puzzle construction the key generation stage is obso-
lete.

482 E. Boyle et al.

D0,D1 are defined. Let D′
b
def=

(
c, (π (xi))i∈[q]

)

c←C,π←Sn,xi←Db

denote the distri-

bution over the adversary’s view in the simplified distinguishing game of Defini-
tion 8, where b is the challenge bit, and q is the number of samples the adversary
receives from the challenger. Denote D′′

b
def=

(
π (c) , (xi)i∈[q]

)

c←C,π←Sn,xi←Db

.

The permuted puzzle problems described in this section will have the property
that D′

b ≈ D′′
b for b ∈ {0, 1}, which will be used in the security proofs.

5.1 Permuted Puzzles and the Learning Parity with Noise (LPN)
Assumption

We now describe how to cast the Learning Parity with Noise (LPN) assumption
as a permuted puzzle.

Notation. For a ∈ F
n
2 , we use |a| to denote the Hamming weight of a. For i ∈ [n],

we denote vn,i = 1i · 0n−i (i.e., a canonical length-n vector of Hamming weight
i). For n ∈ N, let Rn denote the distribution that outputs a uniformly random
x ← F

n
2 . For a fixed s ∈ F

n
2 , and γ ∈ (0, 1), let DLPN,s,γ denote the distribution

over F
n
2 that with probability γ outputs a uniformly random x ← F

n
2 , and

otherwise (with probability 1 − γ) outputs a uniformly random element of the
set {x ∈ F

n
2 : x · s = 0}.

Definition 11 (Learning Parity with Noise (LPN)). Let γ ∈ (0, 1). The
γ-Learning Parity with Noise (γ-LPN) assumption conjectures that for every
polynomial-sized oracle circuit ensemble A = {Aλ}λ there exists a negligible
function ε (λ) such that for every λ,

AdvLPNA (λ) def=
∣
∣
∣
∣ Pr
s←F

λ
2

[ADLPN,s ,γ (1λ) = 1
] − Pr

[ARλ(1λ) = 1
]
∣
∣
∣
∣ ≤ ε (λ) .

Remark 6 (Equivalence to standard LPN formulation). Recall that the
standard γ-LPN assumption, for 0 < γ < 1

2 , states that any polynomial-time
adversary obtains only a negligible advantage in distinguishing between (poly-
nomially many samples from) the following distributions:

– (ai, 〈ai, s〉 + ei)m
i=1, where for every i, ai ← F

n
2 and ei is sampled from a

Bernoulli distribution with Pr[ei = 1] = γ; vs.
– (ai, ui)m

i=1, where each (ai, ui) is sampled uniformly at random from F
n+1
2 .

We now show that if the standard LPN assumption holds with parameters (λ −
1, γ/2), then Definition 11 holds with parameters (λ, γ), where the distinguishing
advantage increases by at most 2−λ.

– In Definition 11 if s = 0 then DLPN,s,γ and Rλ are identically distributed,
whereas in the standard LPN formulation they might be distinguishable (with
some advantage ≤ 1).

Permuted Puzzles and Cryptographic Hardness 483

– Conditioned on s �= 0 in Definition 11, there exists at least one nonzero
coordinate i ∈ [λ] such that si = 1, in which case the i’th coordinate of
a sample from DLPN,s,γ is a noisy linear function of the other coordinates.
That is, with probability (1 − γ) + γ

2 , it holds that x is random subject to
xi =

∑
j �=i xjsj , and with probability γ

2 , the vector x is random subject to
xi =

∑
j �=i xjsj + 1 with offset noise. Moreover, since s is uniformly random

over non-zero vectors, such coordinate is equally likely to occur for any index
i ∈ [λ] (in contrast, in the standard LPN formulation the last coordinate
always necessary satisfies this “special” structure; i.e., equivalent to DLPN,s,γ

with secret s = (s′, 1)).

Thus, conditioned on the (overwhelming probability) event that s �= 0, we can
reduce the problem of distinguishing standard LPN with parameters (λ−1, γ/2),
to distinguishing our version parameters (λ, γ), by selecting a random i ← [λ]
and transposing the i’th coordinate of all received LPN samples with the final
coordinate.

We now describe how to cast LPN as a permuted puzzle.

Construction 5 (Permuted puzzle problem from LPN). For a noise parameter
γ ∈ (0, 1/2), we define a puzzle problem P =

{
(Kλ, {Πk}k∈Kλ

)
}

by the following
KeyGen and Samp algorithms:

– KeyGen
(
1λ

)
samples a weight w according to the binomial distribution over

[n]. It outputs w as the secret key (there is no public key).
For a key k generated by KeyGen

(
1λ

)
, the corresponding string-distinguishing

problem Πk =
(
n,Σ,D0,D1

)
has string length n = λ and alphabet Σ = F2.

– Samp (w, b) outputs a sample from Dλ,b, where Dλ,0 = DLPN,vλ,w,γ , and Dλ,1 =
Rλ.

Proposition 2. For any constant γ ∈ (0, 1/2), the γ-LPN assumption is equiv-
alent to the computational hardness of the permuted puzzle problem Perm (Pγ)
of Construction 5.

Proof. Regarding the equivalence of the γ-LPN assumption and the computa-
tional hardness of Perm (Pγ), notice that the permuted distribution D′

λ,0 of the
permuted puzzle is exactly DLPN,s,γ , where s = π (vλ,w) for a uniformly random
π ∈ Sλ, and a weight w ∈ [λ] which was sampled according to the binomial distri-
bution, so s is uniformly random in F

n
2 . Therefore, the distinguishing advantage

in the distinguishing game of the permuted puzzle corresponds exactly to the
γ-LPN assumption (because additionally D′

λ,1 = Rλ). ��
Remark 7 ((Unpermuted) puzzle problem is computationally easy). We
note that the (unpermuted) puzzle problem of Construction 5 is computationally
easy. Indeed, in the unpermuted puzzle problem there are only λ possible “secret”
vectors (i.e., vλ,1, . . . , vλ,λ). Given a polynomial number of samples from Dλ,0

the adversary can determine, with overwhelming probability, which of these is
the secret vector used in Dλ,0, and can then determine (with constant advantage)
whether the challenge sample is from Dλ,0 or Dλ,1.

484 E. Boyle et al.

5.2 Permuted Puzzles Based on DDH

In this section we describe a permuted puzzle problem based on the DDH
assumption. We first recall the standard DDH assumption, and describe an
equivalent formulation which we use.

Definition 12 (Group Samplers). A group sampler is a probabilistic
polynomial-time algorithm G that on input 1λ outputs a pair (G, g), where G
is a multiplicative cyclic group of order p = Θ(2λ), and g is a generator of G.
We assume that p is included in the group description G, and that there exists an
efficient algorithm that given G and descriptions of group elements g1, g2 outputs
a description of g1 · g2.

Definition 13 (DDH assumption). For any cyclic group G of order p with
generator g, define the following distributions:

– DDDH(G, g) is uniform over the set
{
(gx, gy, gxy) : x, y ∈ Zp

}
.

– RDDH(G, g) is uniform over G3.

For a group sampler G, the DDH assumption over G conjectures that for any
polynomial-sized circuit family A = {Aλ}λ there exists a negligible function ε (λ)
such that for every λ:

Adv
DDH(G)
A (λ) def=

∣
∣
∣
∣
∣
∣
∣

Pr
(G,g)←G(1λ)
v←DDDH(G,g)

[Aλ (v) = 1] − Pr
(G,g)←G(1λ)
v←RDDH(G,g)

[Aλ (v) = 1]

∣
∣
∣
∣
∣
∣
∣
≤ ε (λ) .

We will use the matrix version of DDH, defined next. Informally, in matrix
DDH the adversary is given many vectors of the form (gx1 , . . . , gxn), and the
conjecture is that no polynomial-time adversary can distinguish between the
case that the (x1, . . . xn) are sampled uniformly from Z

n
p , and the case that

(x1, . . . , xn) are sampled from a random 1-dimensional subspace of Zn
p .

Definition 14 (Matrix DDH assumption). For a cyclic group G of order
p, and n, q ∈ N, define

Rki

(
Gq×n

)
=

{
gA = (gaij)i∈[q],j∈[n] : A ∈ Z

q×n
p , rank (A) = i

}
.

Let G be as in Definition 13, and let n = n (λ) , q = q (λ) be polynomials such
that q (λ) ≥ n (λ) for every λ. The matrix DDH assumption over G conjectures
that for any polynomial-sized circuit family A = {Aλ}λ there exists a negligible
function ε (λ) such that for every λ:

Adv
M-DDH(G)
A (λ)

def
=

∣
∣
∣
∣
∣
∣
∣
∣

Pr
(G,g)←G(1λ)

v←Rkn(Gq×n)

[Aλ (v) = 1] − Pr
(G,g)←G(1λ)

v←Rk1(Gq×n)

[Aλ (v) = 1]

∣
∣
∣
∣
∣
∣
∣
∣

≤ ε (λ) .

Permuted Puzzles and Cryptographic Hardness 485

Boneh et al. proved [BHHO08, Lemma 1] that the DDH assumption over G
implies the matrix DDH assumption over G:

Imported Theorem 6 (DDH implies matrix-DDH [BHHO08]). Let λ be a
security parameter, let G be as in Definition 13, and let n = n (λ) , q = q (λ) be
polynomials. Then for any polynomial-sized adversary circuit AM-DDH there exists
an adversary ADDH of size |AM-DDH| + poly (q, n) such that Adv

M-DDH(G)
AM-DDH

(λ) ≤
(n − 1) · AdvDDH(G)

ADDH
(λ).

We are now ready to define the permuted puzzle problem based on DDH.

Construction 7 (Permuted puzzle problem from DDH). Let G be as in Defi-
nition 13. We define a puzzle problem P =

{
(Kλ, {Πk}k∈Kλ

)
}

by the following
KeyGen and Samp algorithms:

– KeyGen on input 1λ samples (G, g) ← G(1λ), where G is the group sampling
algorithm of Definition 13. Let p denote the order of G. Then, KeyGen samples
a uniformly random vector u ∈ Z

n
p for n = λ2 and outputs (G, g,u) as a public

key (there is no secret key).
We note that for any k = (G, g,u), the corresponding string distinguishing
problem Πk = (n,Σ,D0,D1) has alphabet Σ = G.

– Samp (k, b) for k = (n,Σ,D0,D1) outputs a sample from Db, where:
• D0 is uniform over {gx ∈ Gn : x · u = 0}.
• D1 is uniform over Gn.

Proposition 3. The puzzle problem P of Construction 7 is computationally
easy. Moreover, if G is an ensemble of groups in which the matrix DDH assump-
tion of Definition 14 holds, then the corresponding permuted puzzle problem
Perm(P) is computationally hard.

We note that P is computationally easy in an extremely strong sense: a
polynomial-sized adversary can obtain advantage 1−negl (λ) in the distinguish-
ing game. The proof of Proposition 3 is deferred to the full version.

6 Statistical Query Lower Bound

In this section we discuss a specific permuted puzzle toy problem introduced
by [BIPW17], and study its hardness against a large class of potential adver-
sarial algorithms called statistical-query algorithms. We first define this class of
algorithms in Sect. 6.1, then present the toy problem in Sect. 6.2 and prove it is
secure against such algorithms.

6.1 Statistical Query Algorithms

Definition 15 (Statistical Query Algorithms). Let P = (K, {Πk}k∈K) be a
puzzle problem. A statistical q-query algorithm for Gdist,s[P] is a stateful adversary
A using an “inner adversary” ASQ as follows.

486 E. Boyle et al.

1. Upon receiving the public key pk, A forwards it to ASQ.
Recall that pk is part of the key k, and denote Πk = (n,Σ,D0,D1).

2. The following is repeated q times:
(a) ASQ outputs a boolean-valued function f .4

(b) A requests a sample x ← Db from the challenger (where b ∈ {0, 1} is the
challenger’s secret bit), computes f(x) (this is a single bit), and forwards
f(x) to ASQ.

3. When ASQ outputs a “guess” bit b′, A forwards b′ to the challenger.

Remark 8. We consider only statistical query algorithms for the simplified dis-
tinguishing game Gdist,s of Definition 8 because our lower bounds (proven in
Sect. 6.2) hold for puzzle problems in which weak computational hardness (i.e.,
hardness of Gdist,s) is equivalent to computational hardness (i.e., hardness of the
more standard distinguishing game Gdist of Definition 4) by Lemma 2.

Statistical Query (SQ) algorithms constitute a broad class of distinguishing
algorithms, that is incomparable in power to polynomial-time algorithms. For
example, an SQ algorithm can distinguish between a PRG output and a uni-
formly random string with a single query. On the other hand, SQ algorithms
cannot distinguish between a distribution that is uniform on {0, 1}n and one
that is uniform on a random high-dimensional subspace of {0, 1}n. These dis-
tributions can be distinguished (given many samples) in polynomial time by a
simple rank computation.

Still, in the context of distinguishing problems, SQ algorithms seem to be a
powerful class of adversarial algorithms. In fact, except for the aforementioned
examples of algorithms which exploit algebraic structure, we are not aware of
any natural distinguishing algorithms that cannot be simulated by statistical
query algorithms. A challenging and important open problem, which we leave
for future work, is to formalize a class of algorithms that use algebraic structure
(or even only linear algebra), possibly together with statistical queries, and to
prove lower bounds against this class.

6.2 The Toy Problem and Lower Bound

The works [CHR17,BIPW17] base the security of their DE-PIR schemes on the
PermRM conjecture, for which they also discuss different variants (e.g., noisy
versions). Boyle et al. [BIPW17] also put forth a toy version of the problem, for
which we will prove a lower bound against SQ algorithms. We first recall the
PermRM conjecture and its toy version.

Conjecture 1 (PermRM, Conjecture 4.2 in [BIPW17]). Let m ∈ N be a dimension
parameter, let λ ∈ N be a security parameter, let d = dm (n) be the minimal
integer such that n ≥ (

m+d
d

)
, and let F be a finite field satisfying |F| > dλ + 1.

Define a probabilistic algorithm Samp (b, π, v) that operates as follows:

4 We do not assume any bound on the description size or complexity of f , which will
not matter for our lower bounds.

Permuted Puzzles and Cryptographic Hardness 487

– If b = 0:
1. Select m random degree-λ polynomial p1, . . . , pm ← F[X] such that for

every 1 ≤ i ≤ λ, pi(0) = v. Notice that these polynomials determine a
curve γ (t) in F

m, given by {(p1(t), . . . , pm(t)) : t ∈ F}.
2. Sample dλ + 1 distinct points on the curve γ (t), determined by non-zero

parameters t0, . . . , tdλ ← F.
3. Output the points, in order, where each point is permuted according to

π : Fm → F
m, namely output

(π (p1(ti), . . . , pm(ti)))
dλ
i=0 ∈ (Fm)dλ+1

.

– If b = 1: sample dλ + 1 random points in F
m (w0, . . . , wdλ) ← (Fm)dλ+1, and

output (w0, . . . , wdλ).

The PermRM conjecture is that for every efficient non-uniform A = (A1,A2)
there exists a negligible function μ(λ) = negl (λ) such that:

Pr

⎡

⎣

(
1n, 1|F|, aux

) ← A1

(
1λ

)

π ← S(Fm); b ← {0, 1}
b′ ← ASamp(b,π,·)

2 (1n, aux)
: b′ = b

⎤

⎦ ≤ 1/2 + μ (λ)

Let F = {Fλ}λ∈Z+ denote an ensemble of finite fields with |Fλ| = Θ(λ2). Let
q = qλ denote |Fλ|.

For a function f : X → Y , we define Graph(f) : X × Y → {0, 1} such that

Graph(f)(x, y) =

{
1 if y = f(x)
0 otherwise.

Define the puzzle problem Πλ = (n, {0, 1},D0,D1), where n = q2, and D0

and D1 are defined as follows.

– A sample from D0 is Graph(γ), where γ : F → F is a uniformly random
degree-λ polynomial.

– A sample from D1 is Graph(U), where U : F → F is a uniformly random
function.

Conjecture 2 ([BIPW17]). The permuted puzzle problem P def= Perm({Πλ}λ∈Z+)
is computationally hard.

Theorem 8. The simplified distinguishing game Gdist,s[P] is hard for statistical-
query algorithms. That is, for all polynomially bounded q(·), the advantage of any
statistical q(λ)-query adversary in Gdist,s[P] is at most e−Ω(λ).

Proof. We will show that even if we give the statistical query adversary addi-
tional information about π, it cannot distinguish permuted samples from D0

from permuted samples from D1. Specifically, we will give the adversary (for
free) the unordered partition Φ1 ∪ · · · ∪ Φq of F × F, where Φi = π({i} × F).
(Intuitively, Φi is the image under π of all points in which the X coordinate

488 E. Boyle et al.

equals i. In particular, π (Graph (f)) takes value “1” at exactly one coordinate
in Φi.) Note that it is indeed possible for a statistical query adversary to learn
Φ

def= {Φ1, . . . , Φq}: if (x, y) and (x′, y′) belong to the same Φi, then for a random
sample z ← Db, it is never the case that π(z)(x,y) = π(z)(x′,y′) = 1. However, if
(x, y) and (x′, y′) do not belong to the same Φi, then π(z)(x,y) = π(z)(x′,y′) = 1
with probability at least 1

q2 .
We say that a permutation π respects a partition Φ = {Φ1, . . . , Φq} if {π({i}×

F)}i = Φ. For any partition Φ, we will write PrΦ to denote the probability
space in which a permutation π is sampled uniformly at random from the set of
permutations that respect Φ. Similarly, we will write EΦ to denote expectations
in PrΦ, and we write VarΦ to denote variances in PrΦ.

We will show that there is some negligible function ν : Z+ → R such that
for any function f : {0, 1}n → {0, 1} and any partition Φ, there exists some
pf,Φ ∈ [0, 1] such that for every b ∈ {0, 1}, it holds that

Pr
Φ

[

E
x←Db

[
f(π(x))] − pf,Φ

∣
∣ ≥ ν(λ)

]
≤ ν(λ).

Crucially, pf,Φ is independent of the challenge bit b, the specific sample x, and
the secret permutation π (except for its dependence on Φ). Thus, the answer to
a query f can be simulated by computing pf,Φ.

The following two observations are at the core of our proof. Recall that Δ
denotes the Hamming distance. For a pair of functions g, g′ : X → Y , we denote
Δ (g, g′) = |{x ∈ X : g (x) �= g′ (x)}|.
Claim 1. For any partition Φ, any function g : F → F, and any fixed permutation
π∗ that respects Φ, the distribution of π(Graph(g)) under PrΦ is identical to the
distribution of π∗(Graph(u)) when u : F → F is a uniformly random function.

Proof. To sample a random permutation π conditioned on
{
π({i}×F)

}
i
= Φ

def=
{Φ1, . . . , Φq}, one can sample a uniformly random permutation σ : F → F and q
independent bijections πi : F → Φσ(i), and then define π(j, k) = πj(k).

π(Graph(g)) is defined by the set of points {π(j, g(j))}j∈F = {πj(g(j))}. It is
clear that sampling g uniformly at random corresponds to independently picking
each g(j) at random, which produces an identical distribution of π(Graph(g))
as picking the bijections {πj} independently and uniformly at random. Thus,
π∗(Graph(u)) for a fixed π∗ which respects the partition Φ, and a random u,
is distributed identically to π(Graph(g)) for a fixed g and a random π that
respects Φ. ��
Claim 2. For any partition Φ, any functions g, g′ : F → F, and any fixed per-
mutation π∗ that respects Φ, the distribution of

(
π(Graph(g)), π(Graph(g′))

)

under PrΦ is identical to the distribution of
(
π∗(Graph(u)), π∗(Graph(u′))

)
, where

u, u′ : F → F are jointly uniformly random conditioned on Δ(u, u′) = Δ(g, g′).

Proof. We first consider the distribution under PrΦ of (x, x′) =(
π(Graph(g)), π(Graph(g′))

)
, where g and g′ are fixed. Because g and g′ are func-

tions, both x and x′ will consist mostly of zeros, but for each j ∈ F, they will

Permuted Puzzles and Cryptographic Hardness 489

contain a 1 in exactly one position in Φj . Recall from the proof of Claim 1 that
π can be sampled by sampling a uniformly random permutation σ : F → F and
q independent bijections πi : F → Φσ(i), and defining π(j, k) = πj(k). Therefore,
for any j ∈ F if g(j) = g′(j) then x and x′ will agree on the position within
Φσ(j) at which they contain a 1 entry. Otherwise, they will disagree. Other than
that, the positions are uniformly random within Φσ(j) because πj is a random
bijection. Moreover, since σ is a random permutation, the set of Φi’s for which
x, x′ agree on the 1-entry is a random subset of size Δ (g, g′).

Now consider the distribution of (y, y′) =
(
π∗(Graph(u)), π∗(Graph(u′))

)

where π∗ is fixed and defined by σ∗ and {π∗
i }i∈F

. The same arguments show
that for every j ∈ F, y, y′ agree on the positions within Φσ∗(j) at which they
contain a 1 if and only if u(j) = u′(j). Since u, u′ are random and independent,
the positions in Φσ∗(j) in which y, y′ have a 1 are otherwise random because
these positions are π∗

j (u(j)) and π∗
j (u′(j)), respectively. Additionally, the Φi’s

for which y, y′ agree on the position of the 1 entry is a uniformly random subset
of size Δ (g, g′) = Δ (u, u′), because this set is {σ∗(j) : u(j) = u′(j)}, and u, u′

are random and independent. ��
Claim 3. If g0, g1 : F → F are two independent uniformly random degree-λ
polynomials, then Δ (g0, g1) is e−Ω(λ)-close to Δ (g′

0, g
′
1) for uniformly random

g′
0, g

′
1 : F → F.

Proof. For i ∈ F, let Xi (respectively, Yi) be indicator of the event that
g0(i) = g1(i) (respectively, g′

0(i) = g′
1(i)). Then Xi, Yi are λ-wise independent

with E[Xi] = E[Yi] = |F|−1. The claim now follows from Lemma 4 below for
n = |F|. ��

We now state the lemma used in the proof of Claim 3, the proof is deferred
to the full version.

Lemma 4. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be t-wise independent
{0, 1}-valued random variables with t ≥ 2e2, such that for all i ∈ [n], E[Yi] =
E[Xi]

def= pi, let p denote 1
n · ∑

i pi, and suppose that p ≤ t
4n . Then the total

variation distance dTV(X,Y) is at most

(n + 3) · (4pn/t)t/2

∏
i∈[n](1 − pi)

Now, we will show that Ex←D0 [f(π(x))] and Ex←D1 [f(π(x))], viewed as ran-
dom variables that depend on π, have the same expectation and also have very
small (negligible) variance.

Claim 4. For any f : {0, 1}n → {0, 1} and any partition Φ,

E
Φ

[
E

x←D0

[f(π(x))]
]

= E
Φ

[
E

x←D1

[f(π(x))]
]
.

490 E. Boyle et al.

Proof. Consider any f : {0, 1}n → {0, 1} and any partition Φ. By Claim 1, there
is a distribution U that is equal to the distribution (in PrΦ) of π(Graph(g)) for all
functions g : F → F. Let μ denote Ex′←U [f(x′)]. Let Pb denote the probability
mass function of Db. Then for any b ∈ {0, 1},

E
Φ

[

E
x←Db

[f(π(x))]
]

= E
Φ

[
∑

x

Pb(x) · f(π(x))

]

=
∑

x

Pb(x) · E
Φ
[f(π(x))]

=
∑

x

Pb(x) · μ

= μ,

which does not depend on b. ��
Now we analyze the variance. Recall that our goal is to show that

VarΦ

[
Ex←Db

[f(π(x))]
]

is negligible for b ∈ {0, 1}. Because of Claim 3, this fol-
lows from the following more general claim.

Claim 5. Let D be any distribution on functions mapping F to F. Suppose that
when g and g′ are sampled independently from D and u, u′ : F → F are inde-
pendent uniformly random functions, the distribution of Δ(g, g′) is statistically
ε-close to that of Δ(u, u′).

Then, for any f : {0, 1}n → {0, 1}, any partition Φ,

Var
Φ

[
E

g←D

[
f
(
π(Graph(g))

)]] ≤ ε.

Proof. Let P denote the probability mass function of D, and let π∗ be an arbi-
trary permutation in Sn such that {π∗({i} × F)}i = Φ. By the definition of
variance,

Var
Φ

[

E
g←D

[f(π(Graph(g)))]

]

= E
Φ

[

E
g←D

[f(π(Graph(g)))]2
]

− E
Φ

[

E
g←D

[f(π(Graph(g)))]

]2

.

For the first term, we have

E
Φ
[E
g←D

[f(π(Graph(g)))]2] = E
Φ

⎡
⎣

⎛
⎝∑

g

P (g) · f(π(Graph(g)))

⎞
⎠

2⎤
⎦

=
∑
g,h

P (g) · P (h) · E
Φ
[f(π(Graph(g))) · f(π(Graph(h)))] (Claim 2)

= E
g,h←D

⎡
⎢⎣ E

u,v:F→F

Δ(u,v)=Δ(g,h)

[
f(π

∗
(Graph(u))) · f(π

∗
(Graph(v)))

]
⎤
⎥⎦ .

Permuted Puzzles and Cryptographic Hardness 491

For the second term, we have

=E
Φ

[
E

g←D
[f(π(Graph(g)))]

]2

=

⎛
⎝∑

g

P (g) · E
Φ

[
f(π(Graph(g)))

]
⎞
⎠

2

=

⎛
⎝∑

g

P (g) · E
u:F→F

[
f(π∗(Graph(u)))

]⎞⎠
2

(Claim 1)

= E
u:F→F

[
f(π∗(Graph(u)))

]2
= E

u,v:F→F

[
f(π∗(Graph(u))) · f(π∗(Graph(v)))

]

= E
g,h:F→F

⎡
⎢⎣ E

u,v:F→F

Δ(u,v)=Δ(g,h)

[
f(π∗(Graph(u))) · f(π∗(Graph(v)))

]
⎤
⎥⎦ (law of total expectation).

The difference between these two expressions is only in the distribution of g
and h over which the (outer) expectation is taken. Furthermore, the value whose
expectation is computed lies in [0, 1] and depends only on the Hamming distance
between g and h. The claim follows. ��

Theorem 8 follows from Claims 3, 4, and 5, and Chebyshev’s inequality. ��

Acknowledgments. We thank Yuval Ishai for many useful discussions. We thank
Fermi Ma for helpful discussions, in particular for pointing out that the blueprint of
the DDH-based permuted puzzle extends also to the LPN setting, for simplifying one
step of the proof of Proposition 3, and for allowing us to include these observations in
the current work. We thank the anonymous TCC reviewers for helpful comments.

References

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended abstract).
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 99–108 (1996)

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In: Pro-
ceedings of the 44th Symposium on Foundations of Computer Science (FOCS 2003),
Cambridge, MA, USA, 11–14 October 2003. pp. 298–307 (2003)

[BCC+17] Bitansky, N., et al.: The hunting of the snark. J. Cryptol. 30(4), 989–1066
(2017)

[BFKL93] Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48329-2 24

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 1

https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-44647-8_1

492 E. Boyle et al.

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 7

[BIM00] Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44598-6 4

[BIPW17] Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database
both locally and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 662–693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 22

[BKW00] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity prob-
lem, and the statistical query model. In: Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, Portland, OR, USA, , 21–23 May 2000,
pp. 435–440 (2000)

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding
a Nash equilibrium. In: IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 1480–1498 (2015)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. ECCC 18(109), 2011 (2011)

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019)
[CCRR18] Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and corre-

lation intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 4

[CGKS95] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. In: 36th Annual Symposium on Foundations of Computer Science, Mil-
waukee, Wisconsin, USA, 23–25 October 1995, pp. 41–50 (1995)

[CHK+19] Choudhuri, A.R., Hubávcek, P., Kamath, C., Pietrzak, K., Rosen, A., Roth-
blum, G.N.: Finding a Nash equilibrium is no easier than breaking Fiat-Shamir.
IACR Cryptology ePrint Archive, 2019/158 (2019)

[CHR17] Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private
information retrieval. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678,
pp. 694–726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-
3 23

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf.
Theory 22(6), 644–654 (1976)

[FKM+18] Faugère, J.-C., Koussa, E., Macario-Rat, G., Patarin, J., Perret, L.: PKP-
based signature scheme. IACR Cryptology ePrint Archive 2018/714 (2018)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the STOC 2009, pp. 169–178. ACM (2009)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all circuits. In:
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
Berkeley, CA, USA, 26–29 October 2013, pp. 40–49 (2013)

[GJ02] Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. wh freeman,
New York (2002)

[GK16] Goldwasser, S., Tauman Kalai, Y.: Cryptographic Assumptions: A Position
Paper. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 505–
522. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 21

https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/978-3-662-49096-9_21

Permuted Puzzles and Cryptographic Hardness 493

[GKL88] Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom
generators (extended abstract). In: 29th Annual Symposium on Foundations of
Computer Science, White Plains, New York, USA, 24–26 October 1988, pp. 12–24
(1988)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all
falsifiable assumptions. In: STOC, pp. 99–108. ACM (2011)

[HL18] Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way func-
tions (or: one-way product functions and their applications). In: 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 850–858.
IEEE (2018)

[HY17] Hubávcek, P., Yogev, E.: Hardness of continuous local search: query complexity
and cryptographic lower bounds. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, 16–19 January, pp. 1352–1371 (2017)

[KMP19] Koussa, E., Macario-Rat, G., Patarin, J.: On the complexity of the permuted
kernel problem. IACR Cryptology ePrint Archive 2019/412 (2019)

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: 38th Annual Symposium on
Foundations of Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22
October 1997, pp. 364–373 (1997)

[KRR17] Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the secu-
rity of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part
II. LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

[LP12] Lampe, R., Patarin, J.: Analysis of some natural variants of the PKP algorithm.
In: SECRYPT 2012 - Proceedings of the International Conference on Security and
Cryptography, Rome, Italy, 24–27 July 2012, SECRYPT is part of ICETE - The
International Joint Conference on e-Business and Telecommunications, pp. 209–214
(2012)

[Mul54] Muller, D.E.: Application of Boolean algebra to switching circuit design and
to error detection. Trans. I.R.E. Prof. Group Electron. Comput. 3(3), 6–12 (1954)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)
learning with errors. IACR Cryptology ePrint Archive 2019/158 (2019)

[Rab79] Michael, O.: Rabin. Digitalized signatures and public-key functions as
intractable as factorization. Technical report, MIT Laboratory for Computer Sci-
ence (1979)

[RAD78] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy
homomorphisms. Foundations of secure computation, Academia Press (1978)

[Ree54] Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme.
Trans. IRE Prof. Group Inf. Theory (TIT) 4, 38–49 (1954)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

[Sha89] Shamir, A.: An efficient identification scheme based on permuted kernels
(extended abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
606–609. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 54

https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/0-387-34805-0_54

Linear-Size Constant-Query IOPs
for Delegating Computation

Eli Ben-Sasson1, Alessandro Chiesa2(B), Lior Goldberg1, Tom Gur3,
Michael Riabzev1, and Nicholas Spooner2

1 StarkWare, Tel Aviv, Israel
{eli,lior,michael}@starkware.co

2 UC Berkeley, Berkeley, USA
{alexch,nick.spooner}@berkeley.edu
3 University of Warwick, Coventry, UK

tom.gur@warwick.ac.uk

Abstract. We study the problem of delegating computations via inter-
active proofs that can be probabilistically checked. Known as interac-
tive oracle proofs (IOPs), these proofs extend probabilistically checkable
proofs (PCPs) to multi-round protocols, and have received much atten-
tion due to their application to constructing cryptographic proofs (such
as succinct non-interactive arguments). The relevant complexity mea-
sures for IOPs in this context are prover and verifier time, and query
complexity.

We construct highly efficient IOPs for a rich class of nondeterministic
algebraic computations, which includes succinct versions of arithmetic
circuit satisfiability and rank-one constraint system (R1CS) satisfiabil-
ity. For a time-T computation, we obtain prover arithmetic complexity
O(T log T) and verifier complexity polylog(T). These IOPs are the first
to simultaneously achieve the state of the art in prover complexity, due
to [14], and in verifier complexity, due to [7]. We also improve upon the
query complexity of both schemes.

The efficiency of our prover is a result of our highly optimized proof
length; in particular, ours is the first construction that simultaneously
achieves linear-size proofs and polylogarithmic-time verification, regard-
less of query complexity.

Keywords: Interactive oracle proofs · Probabilistically checkable
proofs · Delegation of computation

1 Introduction

Verifiable delegation of computation is a central goal in cryptography. The
complexity-theoretic study of proof systems has enabled significant progress in
this area, and the efficiency of numerous delegation schemes crucially relies on
the efficiency of the underlying complexity-theoretic objects.

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 494–521, 2019.
https://doi.org/10.1007/978-3-030-36033-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_19

Linear-Size Constant-Query IOPs for Delegating Computation 495

An influential line of work began with probabilistically checkable proofs
(PCPs) [5]. These are non-interactive proofs for membership in a language, which
admit fast probabilistic verification based on local queries to the proof. While
the most prominent application of PCPs is to hardness of approximation [26],
seminal works of Kilian [34] and Micali [37] showed that PCPs can also be used
to obtain computationally-sound verifiable delegation schemes that are asymp-
totically efficient.

The application of PCPs to delegation singles out particular design objec-
tives, distinct from those which arise from hardness of approximation. The rel-
evant complexity measures for PCPs in the context of delegation are: query
complexity, verifier time, and prover time. The latter two are self-explanatory,
since the proof must be produced and validated; the former arises because in
existing delegation schemes based on PCPs, communication complexity depends
linearly on the query complexity of a PCP. Note that the running time of the
prover is not typically considered in the context of PCPs, because one considers
only the existence of a valid PCP and not how it is constructed. For delegation
schemes, on the other hand, the time required to generate the proof is often a
barrier to practical use.

An ideal PCP for delegation would have constant query complexity,
(poly)logarithmic verifier time and linear prover time. State-of-the-art PCPs
achieve constant query complexity and polylogarithmic verifier time, but only
quasilinear (N logc N) prover time [38]. While the prover time is asymptotically
close to optimal, c is a fairly large constant, and more generally the construction
uses gap amplification techniques that are not believed to be concretely efficient.
The value of c turns out to be very significant in practical settings, but improving
it has proven to be a serious challenge in PCP constructions.

In light of these apparent barriers, Ben-Sasson et al. [15] have demonstrated
how to obtain computationally-sound delegation schemes from a natural gener-
alization of PCPs known as interactive oracle proofs (IOPs) [15,40]. An IOP is
an interactive protocol consisting of multiple rounds, where in each round the
verifier sends a challenge and the prover responds with a PCP oracle to which
the verifier can make a small number of queries (generalizing the “interactive
PCP” model studied in [33]). The proof length of an IOP is the total length of
all oracles sent by the prover, and the query complexity is the total number of
queries made to these oracles. The study of IOPs explores the tradeoff between a
new efficiency measure, round complexity, and other efficiency measures. Viewed
in this way, a PCP is an IOP with optimal round complexity.

A recent line of works has demonstrated that this additional freedom is valu-
able, proving a number of results for IOPs that we do not know how to obtain
via PCPs alone [6–8,10,11,14]. For example, there are constant-round IOPs with
linear proof length and constant query complexity for Boolean circuit satisfiabil-
ity [10], whereas the best linear-size PCPs known have query complexity N ε [18].
Interaction also enables gains in prover time: the FRI protocol [8] is an O(log N)-
round IOP of proximity for the Reed–Solomon code where the prover has lin-
ear arithmetic complexity. In contrast, state-of-the-art PCPs of proximity for this

496 E. Ben-Sasson et al.

code have quasilinear arithmetic complexity [13,20]. This theoretical progress has
led to IOP-based implementations [7,14], which are significantly more efficient
than those based on PCPs [6].

The work of [15] justifies why exploiting the tradeoff between round
complexity and other efficiency measures is advantageous for constructing
computationally-sound verifiable delegation schemes. In particular, if we could
obtain IOPs with constant round complexity that otherwise match the param-
eters of an ideal PCP (constant queries, polylogarithmic verifier, linear prover),
then we would obtain delegation schemes that have the same asymptotic effi-
ciency as those derived from an ideal PCP. Thus, for the purposes of verifiable
delegation schemes, it suffices to construct such ‘ideal’ IOPs.

A recent work [14] constructs IOPs for arithmetic circuits with logarithmic
query and round complexity where the prover has O(N log N) (strictly quasilin-
ear) arithmetic complexity, and hence bit complexity ˜O(N log N). Because the
construction emphasizes concrete efficiency over asymptotics, query and round
complexity fall somewhat short of the state of the art, but the prover time, while
still not linear, is the best among known schemes with subpolynomial query
complexity. However, the IOPs in [14] do not achieve polylogarithmic verifica-
tion time: for the language they target even sublinear verification is impossible
(without preprocessing) because the size of the input is the same as the size of
the computation.

When the arithmetic circuit can be represented succinctly, however, polylog-
arithmic time verification is possible in principle. Unfortunately the protocol of
[14] cannot exploit this property, and the verifier would still run in linear time.
Our goal is to achieve an exponential improvement in this case.

1.1 Our Results

In this work we construct IOPs for algebraic computations that are “almost”
ideal, namely, we achieve constant query and round complexity, polylogarithmic
time for the verifier, and O(N log N) (strictly quasilinear) arithmetic complexity
for the prover. Our new IOP protocols match the state-of-the-art prover time of
[14], while at the same time achieving an exponential improvement in verification
time for a rich class of computations. We focus on arithmetic complexity as the
natural notion of prover efficiency for IOPs for algebraic problems; moving to
bit complexity incurs an additional poly(log log) factor to account for the cost
of field multiplication.

While the arithmetic complexity of our prover is not linear, the length of the
proof is linear in the computation size, which is optimal. The single logarith-
mic factor in our prover’s arithmetic complexity comes solely from fast Fourier
transforms. In particular, if there were a linear-time encoding procedure for the
Reed–Solomon code, our prover would run in linear time, and thereby achieve
optimal prover efficiency without any other changes in the scheme itself.

Small Fields. All of our results are stated over large fields. Computations over
small fields (e.g. F2) can be handled by moving to an extension field, which

Linear-Size Constant-Query IOPs for Delegating Computation 497

introduces an additional logarithmic factor in the proof length and prover time
(the same is true of [7,14]). Even with this additional logarithmic factor, our con-
struction matches the state of the art for prover complexity for succinct boolean
circuit satisfiability, while improving the verifier running time to polylogarithmic.

Delegating Bounded-Space Algebraic Computation. Rank-one con-
straint satisfiability (R1CS) is a natural generalization of arithmetic circuits
that is widely used across theoretical and applied constructions of proof systems
(see [24]). An R1CS instance is specified by matrices A,B,C over a finite field
F, and is satisfied by a vector w if Aw ◦ Bw = Cw, where ◦ is the element-
wise (Hadamard) product. Arithmetic circuits reduce in linear-time to R1CS
instances.

Many problems of interest, however, involve R1CS instances where the matri-
ces A,B,C have some structure. For example, many applications consider com-
putations that involve checking many Merkle authentication paths — in this
case a hash function is invoked many times, within the same path and across
different paths. It would be valuable for the verifier to run in time that is related
to a succinct representation of such instances, rather than to the (much larger)
explicit representation that “ignores” the structure. In light of this motivation,
we introduce a notion of succinctly-represented R1CS instances that capture a
rich class of bounded-space algebraic computations. (Later in the paper we refer
to these as algebraic automata.)

Definition 1 (informal). A succinct R1CS instance is specified by matrices
A = [A0|A1], B = [B0|B1], C = [C0|C1] ∈ F

k×2k over F, and a time bound T ,
and is satisfied by a vector z ∈ F

kT if

⎛
⎜⎜⎜⎝

A0 A1

A0 A1

. . .
. . .

A0 A1

⎞
⎟⎟⎟⎠ w ◦

⎛
⎜⎜⎜⎝

B0 B1

B0 B1

. . .
. . .

B0 B1

⎞
⎟⎟⎟⎠ w =

⎛
⎜⎜⎜⎝

C0 C1

C0 C1

. . .
. . .

C0 C1

⎞
⎟⎟⎟⎠ w

The relation Succinct-R1CS is the set of pairs (x, w) such that x is an instance
of succinct R1CS which is satisfied by w.

The size of an instance is O(k2 + log T), but the size of the computation
described is kT . Note that Succinct-R1CS is a PSPACE-complete relation, while
the (regular) R1CS relation is merely NP-complete.

To obtain some intuition about the definition, consider the problem of
repeated application of an arithmetic circuit C : Fn → F

n. Suppose that we want
to check that there exists z such that CT (z) = 0n, where CT = C(C(· · · C(·))) is
the circuit which applies C iteratively T times. The circuit CT has size Ω(|C| ·T),
and if the verifier were to “unroll” the circuit then it would pay this cost in
time. However, the R1CS instance corresponding to CT is of the above form,
with k = O(|C|), where (roughly) the matrices A0, B0, C0 represent the gates of

498 E. Ben-Sasson et al.

C and A1, B1, C1 represent the wires between adjacent copies of C. (The condition
that the output of CT is zero is encoded separately as a “boundary constraint”.)

Our first result gives a constant-round IOP for satisfiability of succinct R1CS
where the verifier runs in time poly(k, log T), the prover has arithmetic complex-
ity O(kT log kT), and the proof length is O(kT log |F|) (linear in the computation
transcript). In the theorem statement below we take k = O(1) for simplicity.

Theorem 1 (informal). There is a universal constant ε0 ∈ (0, 1) such that,
for any computation time bound T (n) and large smooth field family F(n), there is
a 4-round IOP for succinct R1CS over F(n), with proof length O(T (n) log |F(n)|),
4 queries, and soundness error ε0. The prover uses O(T (n) log T (n)) field oper-
ations and the verifier uses poly(n, log T (n)) field operations.

As in prior work (e.g., [20]), “large smooth field” refers to a field of size Ω(N),
whose additive or multiplicative group has a nice decomposition. For example,
ensembles of large enough binary fields have this property, as well as prime fields
with smooth multiplicative groups.

Delegating Unbounded-Space Algebraic Computation. While algebraic
automata capture a useful class of computations, they are restricted to space-
bounded computation (recall Succinct-R1CS ∈ PSPACE). In particular, using
Theorem 1 we can obtain useful delegation protocols for computations whose
space usage is much smaller than their running time.

To handle computations which use more space, we introduce the algebraic
machine relation. This is a natural algebraic analogue of the bounded accept-
ing problem for nondeterminstic random-access machines, where the transition
function is an arithmetic (rather than Boolean) circuit. It is NEXP-complete via
a linear time reduction from succinct arithmetic circuit satisfiability.

Theorem 2 (informal). There is a universal constant ε0 ∈ (0, 1) such that,
for any computation time bound T (n) and large smooth field F(n), there is
a 5-round IOP for the satisfiability problem of T (n)-time algebraic machines
over F(n), with proof length O(T (n) log |F(n)|), 5 queries, and soundness error
ε0. The prover uses O(T (n) log T (n)) field operations and the verifier uses
poly(n, log T (n)) field operations.

For simplicity, as with Theorem 1 we have stated Theorem 2 for machines
whose description is a constant number of field elements, or Θ(log |F|) bits.
The proof length is linear in the size of the computation trace, which is N :=
Θ(T log |F|) bits. We stress that the number of queries is 5, regardless of the
choice of machine.

The above theorem is obtained by bootstrapping Theorem1. Namely we show
that leveraging interaction, we can design an automaton which checks whether
a pair of automata have satisfying assignments which are permutations of one
another; for more details see Sect. 2.4.

On the Power of Machines. In the linear-length regime, the choice of compu-
tational model supported by a proof protocol is important, because reductions

Linear-Size Constant-Query IOPs for Delegating Computation 499

between problems typically introduce logarithmic factors. For example, it is not
known how to reduce a random-access machine, or even a Turing machine, to
a circuit of linear size. Indeed, the sublinear-query PCP of [18] achieves linear
proof size for circuits but not machine computations. We thus view Theorem2
as particularly appealing, because it achieves linear length for a powerful model
of computation, algebraic machines, which facilitates linear-size reductions from
many other problems; notably, succinct arithmetic circuit satisfiability. We view
the identification of a model which is both highly expressive and amenable to
efficient probabilistic checking using IOPs as a contribution of this work.

1.2 Relation to Prior Work

There are relatively few works which explicitly deal with prover complexity for
PCP and IOP constructions. We present a comparison of the relevant parameters
for each construction in Table 1. Since we are concerned with logarithmic factors,
it is not sufficient to specify only a complexity class (NP or NEXP) for each one.
Instead, for each proof system we give a canonical expressive language for which
the given parameters are achieved. In particular, the first three proof systems
are for boolean circuit problems, and the latter three are for arithmetic circuit
problems. For purposes of comparison, all of the parameters for both boolean
and arithmetic constructions are presented in terms of bit complexity.

Table 1. Comparison of PCP/IOP constructions for circuit satisfiability problems for
a (fixed) constant soundness. Here N is the size of the circuit in bits, which means that
for ASAT and Succinct-ASAT, N implicitly includes a factor of log |F|. For succinct
problems, the circuit size N is exponential in the size of its description.

Rounds Circuit type Prover time Verifier time Proof length Queries

[38] 1 Succinct boolean N polylog(N)∗ polylog(N) N polylog(N) O(1)

[18] 1 Boolean poly(N)† poly(N)† Oε(N) Nε

[10] 3 Boolean poly(N) poly(N) O(N) O(1)

[7] O(log N) Succinct arithmetic♦
˜O(N log2 N)‡ polylog(N) O(N log N) O(log N)

[14] O(log N) Arithmetic♦
˜O(N log N)‡ poly(N) O(N) O(log N)

This work 5 Succinct arithmetic♦
˜O(N log N)‡ polylog(N) O(N) 5

∗: [38] shows a poly(N) bound; this tighter bound is due to [13].

♦: The size of the underlying field must grow as Ω(N) to achieve the stated efficiency. Problems over

smaller fields (e.g. boolean circuits) incur a multiplicative cost of log N in prover time and proof length.

†: The specified time is for non-uniform computation (each input size receives poly(N) advice bits).

‡: The notation ˜O hides poly(log log N) factors, which arise because here we consider the bit complexity

of the prover (rather than the arithmetic complexity).

From a technical perspective, prover running time is tightly connected to
proof length, which is more well-studied. In all constructions, the proof length
is a lower bound on the prover running time. Moreover, in the most prover-
efficient constructions [7,14], the dominant cost for the prover is in comput-
ing Reed–Solomon encodings, which means that for proof length � the arith-
metic complexity of the prover is O(� log �). Finally, since proof length is an

500 E. Ben-Sasson et al.

information-theoretic property of the system, it is also usually easier to analyse.
We proceed by discussing the state of the art for PCPs and IOPs with linear
(optimal) proof length, since this is what our construction achieves.

There are two natural approaches that one could follow to simultaneously
achieve linear proof length and constant query complexity: (1) start from a
construction with constant query complexity and reduce proof length; or (2)
start from a construction with linear proof length and reduce query complexity.
We summarize prior works that have followed these approaches, and highlight
the limitations that arise in each case.

Approach (1). The first approach has been studied extensively [5,17,21,27,
31,39], leading to PCPs for NEXP with proof length N polylog(N) and query
complexity O(1) [16,20,25,38]. Later works have reduced the logarithmic factors
in the proof length [12,13], but attempts to achieve linear length have failed.
Recent work has obtained IOPs with proof length O(N log N) but at the cost of
increasing query complexity from O(1) to O(log N) [6,7].

Approach (2). The second approach has received much less attention. Insist-
ing on linear proof length significantly restricts the available techniques because
many tools introduce logarithmic factors in proof length. For example, one
cannot rely on arithmetization via multivariate polynomials and standard low-
degree tests, nor rely on algebraic embeddings via de Bruijn graphs for routing;
in addition, query-reduction techniques for interactive PCPs [33] do not apply
to the linear proof length regime. The state-of-the-art in linear-length PCPs is
due to [18], and the construction is based on a non-uniform family of algebraic
geometry (AG) codes (every input size needs a polynomial-size advice string).
In more detail, [18] proves that for every ε ∈ (0, 1) there is a (non-uniform) PCP
for the NP-complete problem CSAT (Boolean circuit satisfiability) with proof
length 2O(1/ε)N and query complexity N ε, much more than our goal of O(1).

By leveraging interaction, [10] obtains IOPs for CSAT with proof length O(N)
and query complexity O(1). This is a natural starting point for our goal of achiev-
ing polylogarithmic-time verification, because we are “only” left to extend this
result from CSAT to its succinct analogue, Succinct-CSAT. Unfortunately, the
construction in [10] uses AG codes and such an extension would, in particular,
require obtaining a succinct representation of a dense asymptotically good family
of AG codes over a small field, which is out of reach of current techniques. More
generally, we do not know of any suitable code over small fields, which currently
seems to prevent us from obtaining linear-size IOPs for Succinct-CSAT. More-
over, obtaining an efficient prover would require efficient encoding and decoding
procedures for AG codes.

We now consider arithmetic circuit satisfiability (ASAT) defined over fields
F that are large (of size Ω(N)). In this regime, [14] obtains IOPs for ASAT with
proof length O(N) and query complexity O(log N). The arithmetization, follow-
ing [20], is based on the Reed–Solomon code and uses the algebraic structure of
large smooth fields. Testing is done via FRI [8], a recent IOP of proximity for the
Reed–Solomon code with linear proof length and logarithmic query complexity.
The construction in [14], which we will build upon, falls short of our goal on two

Linear-Size Constant-Query IOPs for Delegating Computation 501

fronts: verification is linear in the size of the circuit rather than polylogarithmic,
and query complexity is logarithmic rather than constant.

1.3 Open Questions

We highlight four problems left open by our work.

Optimal Arithmetic Complexity. The prover in our construction has strictly
quasilinear arithmetic complexity and produces a proof of linear size. A natural
question is whether the arithmetic complexity of the prover can be reduced to
linear. To do so with our construction would require a breakthrough in encoding
algorithms for the Reed–Solomon code. A promising direction is to build IOPs
based on codes with linear-time encoding procedures [23,30,42].

All Fields. The question of whether it is possible to simultaneously achieve
linear-length proofs and polylogarithmic-time verifier for Succinct-ASAT over
any field F remains open. Progress on this question motivates the search for
arithmetization-friendly families of good codes beyond the Reed–Solomon code.
For example, the case of F = F2, which corresponds to boolean circuits, motivates
the search for succinctly-represented families of good algebraic-geometry codes
over constant-size fields with fast encoding algorithms.

Zero Knowledge. Zero knowledge, while not a goal of this work, is a desir-
able property, because zero knowledge PCP/IOPs lead to zero knowledge suc-
cinct arguments [15,32]. Straightforward modifications to the protocol, similar
to [14], achieve a notion of zero knowledge wherein the simulator runs in time
polynomial in the size of the computation being checked, which is meaningful
for nondeterministic problems since it does not have access to the witness.

There is a stronger notion of zero knowledge for succinct languages where
the simulator runs in polylogarithmic time, which is exponentially more efficient.
This gap was precisely the subject of a work on designing succinct simulators
for certain tests [9]. Whether succinct simulators can be designed for low-degree
tests that we could use for our protocol remains an intriguing problem that we
leave to future research.

Round Complexity. Our protocol has 5 rounds. Round complexity can be
reduced to 4 at the cost of increased (constant) query complexity. Reducing
round complexity beyond this while preserving linear proof length and polylog-
arithmic time verification, or finding evidence against this possibility, remains
open.

2 Technical Overview

We discuss the main ideas behind our results. Our goal is to construct an IOP
for algebraic machines, over a large field F, with prover arithmetic complexity
which is strictly quasilinear in the size of the computation (i.e. O(N log N));
and crucially, the running time of the verifier is polylogarithmic in the size of the

502 E. Ben-Sasson et al.

computation (more precisely, polynomial in the machine description). Addition-
ally, we strive to optimize the query and round complexity of this IOP. We stress
that no prior work achieves non-trivial strictly quasilinear prover PCPs or IOPs
wherein the verifier runs in polylogarithmic time in the size of the computation.

Following [7,14], our construction relies heavily on the Reed–Solomon code,
and the dominant cost for the prover is in the encoding procedure. Thus to
achieve strictly quasilinear arithmetic complexity in our construction, we must
achieve a linear proof length. Thus from this point on, discussion will focus
primarily on proof length.

The rest of this section is organized as follows. In Sect. 2.1 we discuss our
starting point, which is a construction of [14]. In Sect. 2.2 we discuss our app-
roach to overcoming the limitations of prior work by describing a new protocol
for checking succinctly-represented linear relations; this achieves an exponential
improvement over the prior state of the art. In Sect. 2.3 we discuss how to over-
come the challenges that arise when attempting to build on this exponential
improvement to checking the computation of algebraic automata. In Sect. 2.4,
we discuss how to extend these techniques to algebraic machines (which cap-
ture succinct arithmetic circuit satisfiability). In Sect. 2.5 we describe a modular
framework, which we call oracle reductions, in which we prove our results.

2.1 Our Starting Point

The starting point of our work is [14], which obtains IOPs for R1CS with proof
length O(N) and query complexity O(log N), and in which the prover uses
O(N log N) field operations and the verifier uses O(N). Recall that the R1CS
problem is as follows: given matrices A,B,C over a finite field F, the problem
asks whether there exists a witness vector w, where some entries are fixed to
known values, for which the following R1CS equation holds: (Aw)◦ (Bw) = Cw,
where “◦” denotes entry-wise product.

Our initial goal in this paper is to achieve an IOP for satisfiability of algebraic
automata. This entails an exponential improvement in the running time of the
verifier, from linear in the circuit size to polylogarithmic in the circuit size.
Moreover, we need to achieve this improvement with proof length O(N) and
query complexity O(1) (and a prover that uses O(N log N) field operations).

The ideas behind our results are better understood if we first briefly recall the
IOP of [14]. The prover sends to the verifier four oracles πw, πA, πB , πC that are
purported encodings of w,Aw,Bw,Cw. The verifier must now check two sub-
problems: (a) πw encodes w then πA, πB , πC respectively encode Aw,Bw,Cw;
and (b) if πA, πB , πC encode wA, wB , wC then wA ◦ wB = wC .

As usual, there is a tension in selecting the encoding used to obtain the ora-
cles πw, πA, πB , πC . One needs an encoding that allows for non-trivial checking
protocols, e.g., where the verifier makes a small number of queries. On the other
hand, the encoding must have constant rate so that proof length can be linear.

The encoding used relies on univariate polynomials: denote by RS [L, ρ] ⊆ F
L

the Reed-Solomon code over a subset L of a field F with rate parameter ρ ∈ (0, 1]
(that is, the set of all functions f : L → F of degree less than ρ|L|). Also, denote

Linear-Size Constant-Query IOPs for Delegating Computation 503

by f̂ the unique univariate polynomial of degree less than ρ|L| whose evaluation
on L equals f . Given a subset H ⊆ F (the domain of the encoding), a Reed–
Solomon codeword f encodes x ∈ F

H if f̂(a) = xa for all a ∈ H; for each x,
there is a unique encoding fx of x of minimal rate. We can now restate the
aforementioned sub-problems in terms of the Reed–Solomon code.

– Lincheck: given a subset H ⊆ F, Reed–Solomon codewords f, g ∈ RS [L, ρ]
that encode x, y ∈ F

H respectively, and a matrix M ∈ F
H×H , check that

x = My.
– Rowcheck: given a subset H ⊆ F and Reed–Solomon codewords f, g, h ∈

RS [L, ρ] that encode x, y, z ∈ F
H respectively, check that x ◦ y = z.

The IOP in [14] is obtained by combining sub-protocols for these sub-problems,
a lincheck protocol and a rowcheck protocol. The latter is a simple reduction
from the rowcheck problem to testing membership in the Reed–Solomon code,
and is implied by standard PCP tools. The former, however, is a novel (and
non-trivial) reduction from the lincheck problem to testing membership in the
Reed–Solomon code.

While on the one hand the verifier in the rowcheck protocol runs in time that
is polylogarithmic in |H| (which is good) the verifier in the lincheck protocol
runs in time that is linear in |H| (which is much too slow). In other words, if
we simply invoked the IOP in [14] on the circuit described by a succinct R1CS
instance, the verifier would run in time that is linear in T , which is exponentially
worse than our goal of polylog(T). This state of affairs in the starting point of
our work.

Next, in Sect. 2.2, we discuss how to obtain a succinct lincheck protocol
that, for suitable linear relations, is exponentially more efficient. After that, in
Sect. 2.3, we discuss the notion of algebraic automata in detail and describe how
the succinct lincheck protocol enables efficient probabilistic checking of algebraic
automata. Finally in Sect. 2.4 we describe how we can bootstrap our protocol
for algebraic automata to check the more powerful algebraic machine model.

Throughout, we present our contributions as oracle reductions from some
computational task to testing membership in the Reed–Solomon code. Loosely
speaking, these are reductions in the setting of the IOP model (and therefore,
in particular, allow interaction in which the prover sends PCP oracles). This
abstraction allows us to decouple IOP protocol-design from the low-degree test
that we invoke at the end of the protocol. See Sect. 2.5 for details.

2.2 Checking Succinctly-Represented Linear Relations

Following the above discussion, we now temporarily restrict our attention to
devising a lincheck protocol, which reduces checking linear relations defined by
matrices M ∈ F

H×H to testing membership in the Reed–Solomon code, in which
the verifier runs in time that is polylogarithmic in |H|. This is not possible in
general, however, because the verifier needs to at least read the description of the
matrix M . We shall have to consider matrices M that have a special structure

504 E. Ben-Sasson et al.

that can be exploited to obtain an exponential improvement in verifier time.
This improvement is a core technical contribution of this paper, and we refer to
the resulting reduction as the succinct lincheck protocol. We start by describing
the ideas behind the (non-succinct) lincheck protocol of [14].

Definition 2 (informal). In the lincheck problem, we are given a subset H ⊆
F, Reed–Solomon codewords f, g ∈ RS [L, ρ] encoding vectors x, y ∈ F

H , and a
matrix M ∈ F

H×H . The goal is to check that x = My.

A simple probabilistic test for the claim “x = My” is to check that 〈r, x −
My〉 = 0 for a random r ∈ F

H . Indeed, if x �= My, then Prr∈FH [〈r, x − My〉 =
0] = 1/|F|. However, this approach would require the verifier to sample, and
send to the prover, |H| random field elements (too many).

A natural derandomization is to choose r using a small-bias generator over F,
rather than uniformly at random. A small-bias generator G over F is a function
with the property that for any nonzero z ∈ F

H , it holds with high probability
over ρ ∈ {0, 1}� that 〈z,G(ρ)〉 �= 0. Now the verifier needs to send only � bits to
the prover, which can be much smaller than |H| log |F|.

A natural choice (used also, e.g., in [5, §5.2]) is the powering construc-
tion of [1], which requires sending a single random field element (� = log |F|),
and incurs only a modest increase in soundness error. In this construction, we
define a vector r(X) ∈ F[X]H of linearly independent polynomials in X, given
by (1,X,X2, . . . , X |H|−1). The small-bias generator is then G(α) := r(α) for
α ∈ F. If z is nonzero then h(X) := 〈r(X), z〉 is a nonzero polynomial and so
Prα∈F[〈G(α), z〉 = 0] ≤ deg(h)/|F|. The verifier now merely has to sample and
send α ∈ F, and the prover must then prove the claim “h(α) = 0” to the ver-
ifier. Rearranging, this is the same as testing that 〈r(α), x〉 − 〈r(α)M,y〉 = 0.
The problem is thus reduced to checking inner products of known vectors with
oracles.

In the setting of Reed–Solomon codewords, if fu is an encoding of u and fv

is an encoding of v, then fu · fv is an encoding of u ◦ v, the pointwise product of
u and v. Hence, to check that 〈u, v〉 = c, it suffices to check that the low-degree
polynomial fu · fv sums to c on H, since 〈u, v〉 =

∑

h∈H fu(h)fv(h). This can
be achieved by running the univariate sumcheck protocol ([14]) on the codeword
fu · fv. This protocol requires the verifier to efficiently determine the value of
fu · fv at a given point in L.

The Inefficiency. The foregoing discussion tells us that, to solve the lincheck
problem, the verifier must determine the value of the Reed–Solomon encodings
of r(α) ◦ x and r(α)M ◦ y at a given point in L. The encodings of the vectors
x and y are provided (as f and g). Hence it suffices for the verifier to evaluate
low-degree extensions of r(α) and r(α)M at a given point, and then perform a
field multiplication.

This last step is the computational bottleneck of the protocol. In [14], the
verifier evaluates the low-degree extensions of r(α) and M�r(α) via Lagrange
interpolation, which requires time Ω(|H|). To make our verifier efficient, we
must evaluate both low-degree extensions in time polylog(|H|). In particular,

Linear-Size Constant-Query IOPs for Delegating Computation 505

this requires that M be succinctly represented, since computing the low-degree
extension of r(α)M in general requires time linear in the number of nonzero
entries in M , which is at least |H|.

The lincheck protocol in [14] chooses the linearly independent polynomials
r(X) to be the standard (or coefficient) basis (1,X, . . . ,X |H|−1). For this basis,
however, we do not know how to efficiently evaluate the low-degree extension of
r(α). This problem must be addressed regardless of the matrix M .

A New Basis and Succinct Matrices. We leverage certain algebraic proper-
ties to overcome the above problem. There is another natural choice of basis for
polynomials, the Lagrange basis (LH,h(X))h∈H , where LH,h is the unique polyno-
mial of degree less than |H| with LH,h(h) = 1 and LH,α(γ) = 0 for all γ ∈ H\{h}.
We observe that the low-degree extension of r(α) = (LH,h(α))h∈H ∈ F

H has a
simple form that allows one to evaluate it in time polylog(|H|) provided that
H is an additive or multiplicative subgroup of F. In other words, the Lagrange
basis yields a small-bias generator over F whose low-degree extension can be
computed efficiently.

It remains to find a useful class of succinctly-represented matrices M for
which one can efficiently evaluate a low-degree extension of r(α)M ∈ F

H . The
foregoing discussion suggests a natural condition: if we can efficiently compute a
low-degree extension of a vector v ∈ F

H then we should also be able to efficiently
compute a low-degree extension of the vector vM . If this holds for all vectors v,
we say that the matrix M is (algebraically) succinct. For example, the identity
matrix satisfies this definition (trivially), and so does the matrix with 1s on the
superdiagonal for appropriate choices of F and H.

In sum, if we choose the Lagrange basis in the lincheck protocol and the
linear relation is specified by a succinct matrix, then, with some work, we obtain
a lincheck protocol where the verifier runs in time polylog(|H|). To check satisfi-
ability of succinctly-represented arithmetic circuits, however, we need to handle
a more general class of matrices, described next.

Succinct Lincheck for Semisuccinct Matrices. We will relax the condition
on a matrix M in a way that captures the matrices that arise when check-
ing succinctly-described arithmetic circuits, while still allowing us to obtain a
lincheck protocol in which the verifier runs in time polylog(|H|).

We show that the matrices that we consider are semisuccinct, namely, they
can be decomposed into a “large” part that is succinct and a “small” part that
has no special structure.1 This structure should appear familiar, because it is
analogous to how a succinctly-described circuit consists of a small arbitrary
component (the circuit descriptor) that is repeatedly used in a structured way
to define the large circuit. Another analogy is how in an automaton or machine
computation a small, and arbitrary, transition function is repeatedly applied
across a large computation.

1 We actually need to handle matrices that are the sum of semisuccinct matrices, but
we ignore this in this high-level discussion.

506 E. Ben-Sasson et al.

Specifically, by “decompose” we mean that the matrix M ∈ F
H×H can be

written as the Kronecker product of a succinct matrix A ∈ F
H1×H1 and a small

matrix B ∈ F
H2×H2 ; we write M = A ⊗ B. (Succinctly representing a large

operator like M via the tensor product of simpler operators should be a natural
idea to readers familiar with quantum information.) In order for the product
to be well-defined, we must supply a bijection Φ : H → H1 × H2. If this bijec-
tion satisfies certain algebraic properties, which preserve the succinctness of the
matrix A, we call it a bivariate embedding.

We obtain a succinct lincheck protocol for semisuccinct matrices.

Lemma 1 (informal). There is a linear-length reduction from the lincheck
problem for semisuccinct linear relations to testing membership in the Reed–
Solomon code, where the verifier runs in polylogarithmic time.

Next, we discuss how to obtain a reduction from algebraic automata (succinct
R1CS) to testing membership in the Reed–Solomon code, where the verifier runs
in time that is polylogarithmic in the circuit size, by building on our succinct
lincheck protocol for semisuccinct matrices.

2.3 Checking Bounded-Space Computations in Polylogarithmic
Time

An instance of the algebraic automaton relation is specified by three k × 2k
matrices (A,B,C) over F, and a time bound T . A witness f : [T] → F

k is valid
if

∀ t ∈ [T − 1] Af(t, t + 1) ◦ Bf(t, t + 1) = Cf(t, t + 1), (1)

where f(t, t + 1):=f(t)‖f(t + 1) is the concatenation of the consecutive states
f(t) ∈ F

k and f(t + 1) ∈ F
k.

We use the term “algebraic automata” since one can think of A,B,C as
specifying the transition relation of a computational device with k algebraic
registers, and f as an execution trace specifying an accepting computation of
the device. The relation is PSPACE-complete: it is in NPSPACE because it can
be checked by a polynomial-space Turing machine with one-directional access
to an exponential-size witness, and recall that NPSPACE = PSPACE; also, it
is PSPACE-hard because given an arithmetic circuit specifying the transition
relation of a polynomial-space machine, we can find an equisatisfiable R1CS
instance in linear time.

If we view the execution trace f as a vector f = f(1)‖ · · · ‖f(T) ∈ F
Tk, then

we can rewrite the condition in Eq. (1) via the following (possibly exponentially
large) R1CS equation:
⎛

⎜

⎜

⎜

⎝

A0 A1

A0 A1

.
A0 A1

⎞

⎟

⎟

⎟

⎠

f ◦

⎛

⎜

⎜

⎜

⎝

B0 B1

B0 B1

.
B0 B1

⎞

⎟

⎟

⎟

⎠

f =

⎛

⎜

⎜

⎜

⎝

C0 C1

C0 C1

.
C0 C1

⎞

⎟

⎟

⎟

⎠

f

Linear-Size Constant-Query IOPs for Delegating Computation 507

where A0, A1 ∈ F
k×k are the first half and second half of A respectively; and

likewise for B and C. We thus see that algebraic automata are equivalent to
Succinct-R1CS.

The matrices in the above R1CS equation have a rigid block structure that
we refer to as a staircase. Given the discussions in Sects. 2.1 and 2.2, in order
to achieve polylogarithmic verification time, it suffices to show that staircase
matrices are semisuccinct (or, at least, the sum of few semisuccinct matrices).

So let S(M0,M1) be the staircase matrix of two given k ×k matrices M0,M1

over F. Namely, S(M0,M1) is the Tk×Tk matrix with M0-blocks on the diagonal
and M1-blocks on the superdiagonal. Observe that:

1. we can write the matrix with M0-blocks on the diagonal as I ⊗ M0, where I
is the T × T identity matrix;

2. we can write the matrix with M1-blocks on the superdiagonal as I � ⊗ M1,
where I � is the T × T matrix with 1s on the superdiagonal.

Under an appropriate mapping from [Tk] into a subset of F, we prove that both
of these matrices are semisuccinct. This tells us that S(M0,M1) is the sum of
two semisuccinct matrices:

S(M0,M1) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

M0 M1

M0 M1

.
M0 M1

M0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= I ⊗ M0 + I � ⊗ M1 ∈ F
Tk × F

Tk.

(Note that the above is not exactly the matrix structure we want, because of the
extra M0 block; we handle this technicality separately.) We obtain the following
lemma.

Lemma 2 (informal). There is a linear-length reduction from the algebraic
automaton relation to testing membership in the Reed–Solomon code, where the
verifier runs in time poly(k, log T).

2.4 Checking Machine Computations in Polylogarithmic Time

An instance of the algebraic (R1CS) machine relation is specified by two alge-
braic (R1CS) automata (A,A′). A witness (f, π), where f : [T] → F

k is an
execution trace and π : [T] → [T] is a permutation, is valid if: (1) f is a valid
witness for the automaton A, and (2) f ◦ π is a valid witness for the automaton
A′. The algebraic machine relation is NEXP-complete, as the NEXP-complete
problem of succinct arithmetic circuit satisfiability reduces to it in linear time.

Execution Traces for Machines. Before we discuss how we reduce from the
algebraic machine relation, we briefly explain why the above relation is a natural
problem to consider, and in particular why it has anything to do with (random-
access) machines. Recall that a random-access machine is specified by a list of

508 E. Ben-Sasson et al.

instructions, each of which is an arithmetic operation, a control-flow operation,
or a read/write to memory. One way to represent the execution trace for the
machine is to record the state of the entire memory at each time step; for a
time-T space-S computation, such an execution trace has size Θ(TS) (much
more than linear!). Yet, the machine can access only a single memory location
at each time step. Thus, instead of writing down the state of the entire memory
at each time step, we could hope to only write the state of the accessed address
— this would reduce the size of the trace to Θ(T log S). The problem then is
that it is no longer possible to check consistency of memory via local constraints
because the same address can be accessed at any time.

Classical techniques of Gurevich and Shelah [29] tell us that one can effi-
ciently represent an execution trace for a machine via two execution traces that
are permutations of one another. Informally, sorting the execution trace by time
enables us to check the transition relation of the machine; and sorting the exe-
cution trace by the accessed addressed (and then by time) enables us to locally
check that memory is consistent. (One must ensure that, for each location, if
we write some value to memory and then read the same address, we retrieve
that same value.) The transition relation and memory consistency can each be
expressed individually as automata. This view of machines immediately gives
rise to the algebraic machine relation above.

Checking the Algebraic Machine Relation. We have discussed how to check
automata in Sect. 2.3, so it remains to check that the traces are permutations
of one another. Historically this has been achieved in the PCP literature using
algebraic embeddings of routing networks; e.g., see [12]. The problem is that
this increases the size of the representation of the execution trace by at least
a logarithmic factor. We instead use an interactive permutation test from the
program checking literature [22,36]. The test is based on the observation that u ∈
F

T is a permutation of v ∈ F
T if and only if the multi-sets given by their elements

are equal, which is true if and only if the polynomials pu(X) =
∏T

i=1(X−ui) and
pv(X) =

∏T
i=1(X − vi) are equal. Thus it suffices to evaluate each polynomial

at a random point and check equality.
These polynomials require time Θ(T) to evaluate, which in our setting is

exponential. Therefore the prover must assist the verifier with the evaluation. We
show that evaluating this polynomial can be expressed as an algebraic automa-
ton, and can therefore be checked again using the protocol from Sect. 2.3.

The reader may believe that by now we have reduced checking an algebraic
machine to checking three instances of algebraic automata. Recall, however, that
the algebraic automaton relation is PSPACE-complete, whereas the algebraic
machine relation is NEXP-complete. What happened? The answer lies in the ran-
domness used in the permutation automaton. In order to check that u is a per-
mutation of v, the prover must first commit to u and v before the verifier chooses
his evaluation point α, and then the prover sends the trace of the automaton that
evaluates pu(α), pv(α). This trace depends on the choice of α, and so we use inter-
action. This is captured by the interactive automaton relation, which is NEXP-
complete; it can be checked in essentially the same way as the automaton relation.

Linear-Size Constant-Query IOPs for Delegating Computation 509

We hence obtain the following lemma.

Lemma 3 (informal). There is a linear-length reduction from the algebraic
machine relation to testing membership in the Reed–Solomon code, where the
verifier runs in time poly(k, log T).

2.5 Oracle Reductions

Many results in this paper describe IOPs that reduce a computational problem
to membership in (a subcode of) the Reed–Solomon code. We find it useful to
capture this class of reductions via a precise definition. This lets us prove general
lemmas about such reductions, and obtain our protocols in a modular fashion.

We thus formulate a new notion that we call interactive oracle reductions
(in short, oracle reductions). Informally, an oracle reduction is a protocol that
reduces from a computational problem to testing membership in a code (in this
paper, the code is the interleaved Reed–Solomon code). This is a well-understood
idea in constructions of PCPs and IOPs. Our contribution is to provide a formal
framework for this technique.

We illustrate the notion of oracle reductions via an example. Consider the
problem of testing proximity to the vanishing Reed–Solomon code, which plays
an important role in a PCP of Ben-Sasson and Sudan [20] and several other
PCPs/IOPs. Informally, the goal is to test whether a univariate polynomial f ,
provided as an oracle, is zero everywhere on a subset H of F.

We describe an oracle reduction that maps the foregoing problem to the prob-
lem of testing membership in the Reed–Solomon code of the related polynomial
g := f/ZH . Observe that f is divisible by ZH if and only if f is zero everywhere
in H, and so g is in the Reed–Solomon code if and only if f satisfies the desired
property. But what exactly is g? In the oracle reduction framework, we refer
to g as a virtual oracle: an oracle whose value at any given point in its domain
can be determined efficiently by making a small number of queries to concrete
oracles. In this case, so long as the domain L we choose for g does not intersect
H, a verifier can evaluate g at any point α ∈ L with only a single query to f . To
test that g is low degree, the verifier can invoke any low-degree test on g, and
simulate queries to the virtual oracle g via queries to f .

The two main parameters in an oracle reduction are the proof length, which is
simply the total length of the oracles sent by the prover, and the locality, which
is the number of queries one would have to make to the concrete oracles to
answer a single query to any virtual oracle (in this paper, locality always equals
the number of rounds). Using the perspective of oracle reductions, our main
theorems (Theorems 1 and 2) follow by combining two main sub-components: (1)
a linear-length 3-local oracle reduction from the algebraic automata or machine
problem to proximity testing to the Reed–Solomon code (discussed in Sects. 2.3
and 2.4); and (2) a linear-length strictly quasilinear prover 3-query IOP for
testing proximity to the Reed–Solomon code from [10].

510 E. Ben-Sasson et al.

3 Roadmap

Figure 1 below provides a diagram of the results proved in this paper. The
remaining sections in this paper are organized as follows. In Sect. 4 we recall
useful notions and definitions. In Sect. 5 we define oracle reductions, and prove
how to create IOP protocols from RS oracle reductions and RS proximity tests.
In the full version, we define and construct trace embeddings, describe our suc-
cinct lincheck protocol, describe an oracle reduction from R1CS automata to
testing proximity to the Reed–Solomon code, describe an oracle reduction from
R1CS machines to testing proximity to the Reed–Solomon codem, and finally
prove Theorems 1 and 2.

Theorem 1:
IOP for succinct R1CS

Theorem 2:
IOP for algebraic machines

[10]:
linear-size constant-query
IOP of proximity for RS
with polylog verifier

[14]:
univariate sumcheck

succinct lincheck

(interactive) algebraic automata

R1CS machines

Corollary 1: create IOP protocol from
RS oracle reduction and RS proximity test

Fig. 1. Diagram of the results in this paper.

4 Preliminaries

Given a relation R ⊆ S × T , we denote by L(R) ⊆ S the set of s ∈ S such that
there exists t ∈ T with (s, t) ∈ R; for s ∈ S, we denote by R|s ⊆ T the set
{t ∈ T : (s, t) ∈ R}. Given a set S and strings v, w ∈ Sn for some n ∈ N, the
fractional Hamming distance Δ(v, w) ∈ [0, 1] is Δ(v, w):= 1

n |{i : vi �= wi}|. We
denote the concatenation of two vectors u1, u2 by u1‖u2, and the concatenation

Linear-Size Constant-Query IOPs for Delegating Computation 511

of two matrices A,B by [A|B]. All fields F in this paper are finite, and we denote
the finite field of size q by Fq. We say that H is a subgroup in F if it is either
a subgroup of (F,+) (an additive subgroup) or of (F \ {0},×) (a multiplicative
subgroup); we say that H is a coset in F if it is a coset of a subgroup in F

(possibly the subgroup itself).

4.1 Codes and Polynomials

The Reed–Solomon Code. Given a subset S of a field F and rate ρ ∈ (0, 1],
we denote by RS [S, ρ] ⊆ F

S all evaluations over S of univariate polynomials of
degree less than ρ|S|. Namely, a word c ∈ F

S is in RS [S, ρ] if there is a polynomial
of degree less than ρ|S| that, for every a ∈ S, evaluates to ca at a. We denote
by RS [S, (ρ1, . . . , ρn)] :=

∏n
i=1 RS [S, ρi] the interleaving of Reed–Solomon codes

with rates ρ1, . . . , ρn.

Representations of Polynomials. We frequently move from univariate poly-
nomials over F to their evaluations on subsets of F, and back. We use plain
letters like f, g, h, π to denote evaluations of polynomials, and “hatted letters”
f̂ , ĝ, ĥ, π̂ to denote corresponding polynomials. This bijection is well-defined only
if the size of the evaluation domain is larger than the degree. If f ∈ RS [S, ρ] for
S ⊆ F and ρ ∈ (0, 1], then f̂ is the unique polynomial of degree less than ρ|S|
whose evaluation on S equals f . Likewise, if f̂ ∈ F[X] with deg(f̂) < ρ|S|, then
fS :=f̂ |S ∈ RS [S, ρ] (but we drop the subscript when the subset is clear from
context).

Vanishing Polynomials. Let F be a finite field, and S ⊆ F. We denote by
ZS the unique non-zero monic polynomial of degree at most |S| that is zero
everywhere on S; ZS is called the vanishing polynomial of S. In this work we
use efficiency properties of vanishing polynomials for sets S that have group
structure.

If S is a multiplicative subgroup of F, then ZS(X) = X |S| −1, and so ZS(X)
can be evaluated at any α ∈ F in O(log |S|) field operations. More generally, if
S is a γ-coset of a multiplicative subgroup S0 (namely, S = γS0) then ZS(X) =
γ|S|

ZS0(X/γ) = X |S| − γ|S|.
If S is an (affine) subspace of F, then ZS is called an (affine) subspace polyno-

mial. In this case, there exist coefficients c0, . . . , ck ∈ F, where k:= dim(S), such
that ZS(X) = Xpk

+
∑k

i=1 ciX
pi−1

+c0 (if S is linear then c0 = 0). Hence, ZS(X)
can be evaluated at any α ∈ F in O(k log p) = O(log |S|) operations. Such poly-
nomials are called linearized because they are Fp-affine maps: if S = S0 +γ for a
subspace S0 ⊆ F and shift γ ∈ F, then ZS(X) = ZS0(X −γ) = ZS0(X)−ZS0(γ),
and ZS0 is an Fp-linear map. The coefficients c0, . . . , ck can be derived from a
description of S (any basis of S0 and the shift γ) in O(k2 log p) field operations
(see [35, Chapter 3.4] and [12, Remark C.8]).

Lagrange Polynomials. For F a finite field, S ⊆ F, a ∈ S, we denote by
LS,a the unique polynomial of degree less than |S| such that LS,a(a) = 1 and

512 E. Ben-Sasson et al.

LS,a(b) = 0 for all b ∈ S \ {a}. Note that

LS,a(X) =

∏

b∈S\{a}(X − b)
∏

b∈S\{a}(a − b)
=

L′
S(X)

L′
S(a)

,

where L′
S(X) is the polynomial ZS(X)/(X − a). For additive and multiplicative

subgroups S and a ∈ S, we can evaluate LS,a(X) at any α ∈ F in polylog(|S|)
field operations. This is because an arithmetic circuit for L′

S can be efficiently
derived from an arithmetic circuit for ZS [41].

4.2 Interactive Oracle Proofs

The information-theoretic protocols in this paper are Interactive Oracle Proofs
(IOPs) [15,40], which combine aspects of Interactive Proofs [4,28] and Proba-
bilistically Checkable Proofs [2,3,5], and also generalize the notion of Interactive
PCPs [33].

A k-round public-coin IOP has k rounds of interaction. In the i-th round of
interaction, the verifier sends a uniformly random message mi to the prover; then
the prover replies with a message πi to the verifier. After k rounds of interaction,
the verifier makes some queries to the oracles it received and either accepts or
rejects.

An IOP system for a relation R with round complexity k and soundness
error ε is a pair (P, V), where P, V are probabilistic algorithms, that satisfies
the following properties. (See [15,40] for details.)

Completeness: For every instance-witness pair (x,w) in the relation R, (P (x,w),
V (x)) is a k(n)-round interactive oracle protocol with accepting probability 1.

Soundness: For every instance x /∈ L(R) and unbounded malicious prover P̃ , (P̃ ,
V (x)) is a k(n)-round interactive oracle protocol with accepting probability
at most ε(n).

Like the IP model, a fundamental measure of efficiency is the round complex-
ity k. Like the PCP model, two additional fundamental measures of efficiency
are the proof length p, which is the total number of alphabet symbols in all of
the prover’s messages, and the query complexity q, which is the total number of
locations queried by the verifier across all of the prover’s messages.

We say that an IOP system is non-adaptive if the verifier queries are non-
adaptive, namely, the queried locations depend only on the verifier’s inputs and
its randomness. All of our IOP systems will be non-adaptive.

IOPs of Proximity. An IOP of Proximity extends an IOP the same way that
PCPs of Proximity extend PCPs. An IOPP system for a relation R with round
complexity k, soundness error ε, and proximity parameter δ is a pair (P, V) that
satisfies the following properties.

Linear-Size Constant-Query IOPs for Delegating Computation 513

Completeness: For every instance-witness pair (x,w) in the relation R, (P (x,w),
V w(x)) is a k(n)-round interactive oracle protocol with accepting probability 1.

Soundness: For every instance-witness pair (x,w) with Δ(w,R|x) ≥ δ(n) and
unbounded malicious prover P̃ , (P̃ , V w(x)) is a k(n)-round interactive oracle
protocol with accepting probability at most ε(n).

Efficiency measures for IOPPs are as for IOPs, except that we also count queries
to the witness: if V makes at most qw queries to w and at most qπ queries to
prover messages, the query complexity is q := qw + qπ.

5 Oracle Reductions

We define interactive oracle reductions (henceforth just oracle reductions),
which, informally, are reductions from computational problems to the problem
of testing membership of collections of oracles in a code.

The main result in this section is Lemma 4 (and an implication of it, Corol-
lary 1), which enables the construction of IOPs by modularly combining oracle
reductions and proximity tests. The ideas underlying oracle reductions are not
new. Essentially all known constructions of PCPs/IPCPs/IOPs consist of two
parts: (1) an encoding, typically via an algebraic code, that endows the witness
with robust structure (often known as arithmetization); and (2) a procedure that
locally tests this encoding (often known as low-degree testing).

Oracle reductions provide a formal method of constructing proof systems
according to this framework. We use them to express results in the full version
of the paper, which significantly simplifies exposition. Additionally, expressing
our results as oracle reductions enables us to consider the efficiency of the oracle
reduction itself as a separate goal from the efficiency of the low-degree test. In
particular, future improvements in low-degree testing will lead immediately to
improvements in our protocols.

This section has two parts: in Sect. 5.1 we define oracle reductions; then in
Sect. 5.2, we introduce a special case of oracle reductions where the target code is
the Reed–Solomon (RS) code. For this special case we give additional lemmas: we
show that it suffices to prove a weaker soundness property, because it generically
implies standard soundness; also, we show that all such oracle reductions admit
a useful optimization which reduces the number of low-degree tests needed to a
single one.

5.1 Definitions

Informally, an oracle reduction is an interactive public-coin protocol between
a prover and a verifier that reduces membership in a language to a promise
problem on oracles sent by the prover during the protocol.

In more detail, an oracle reduction from a language L ⊆ X to a relation
R′ ⊆ X ′ × Σs is an interactive protocol between a prover and a verifier that
both receive an instance x ∈ X, where in each round the verifier sends a message

514 E. Ben-Sasson et al.

and the prover replies with an oracle (or several oracles), as in the IOP model.
Unlike in an IOP, the verifier does not make any queries. Instead, after the
interaction the verifier outputs a list of claims of the form “(x,Π) ∈ R′”, which
may depend on the verifier’s randomness, where x′ ∈ X ′ and Π is a deterministic
oracle algorithm that specifies a string in Σs as follows: the i-th entry in Σs is
computed as Ππ1,...,πr (i), where πj is the oracle sent by the prover in the j-th
round. The reduction has the property that if x ∈ L then all claims output by
the verifier are true, and if instead x /∈ L then (with high probability over the
verifier’s randomness) at least one claim is false.

We refer to each oracle algorithm Π(j) as a virtual oracle because Π(j) repre-
sents an oracle that is derived from oracles sent by the prover. We are interested
in virtual oracles Π(j) where, for each i, the number of queries Ππ1,...,πr (i) makes
to the oracles is small. For simplicity, we also assume that the algorithms are
non-adaptive in that the queried locations are independent of the answers to the
queries.

A crucial property is that virtual oracles with small locality compose well,
which allows us to compose oracle reductions. For this we need an oracle reduc-
tion of proximity (Definition 5), which we can view as an oracle reduction from a
relation R ⊆ X × Σs to another relation R′ ⊆ X ′ × Σs′

. Then we can construct
an oracle reduction from L to R′ by composing an oracle reduction A from L to
R′ with an oracle reduction of proximity B from R′ to R′′. Such a reduction may
output virtual oracles of the form ΠΠA

B where ΠB is a virtual oracle output by
B and ΠA is a virtual oracle output by A. This can be expressed as a standard
virtual oracle with access to the prover messages, and if ΠA and ΠB have small
locality then so does ΠΠA

B .
We now formalize the foregoing discussion, starting with the notion of a

virtual oracle. Since the virtual oracles in this work are non-adaptive, we specify
them via query (“pre-processing”) and answer (“post-processing”) algorithms.
The query algorithm receives an index i ∈ [s] and computes a list of locations to
be queried across oracles. The answer algorithm receives the same index i, and
answers to the queries, and computes the value of the virtual oracle at location i.
In other words, the answer algorithm computes the value of the virtual oracle at
the desired location from the values of the real oracles at the queried locations.

Definition 3. A virtual oracle Π of length s over an alphabet Σ is a
pair of deterministic polynomial-time algorithms (Q,A). Given any oracles
π1, . . . , πr of appropriate sizes, these algorithms define an oracle Π ∈ Σs

given by Π[π1, . . . , πr](i):=A(i, (πj [k])(j,k)∈Q(i)) for i ∈ [s]. Π is �-local if
maxi∈[s] |Q(i)| ≤ �.

Observe that the definition of a virtual oracle given above is equivalent to
saying that Π is an algorithm with non-adaptive query access to π1, . . . , πr.
Where convenient we will use this perspective.

We now define the notion of an oracle reduction. Since in this work we primar-
ily deal with relations, rather than languages, we define our reductions accord-
ingly.

Linear-Size Constant-Query IOPs for Delegating Computation 515

Definition 4. An oracle reduction from a relation R to a relation R′ with
base alphabet Σ is an interactive protocol between a prover P and verifier V that
works as follows. The prover P takes as input an instance-witness pair (x,w)
and the verifier V takes as input the instance x. In each round, V sends a
message mi ∈ {0, 1}∗, and P replies with an oracle πi ∈ Σ∗

i over an alphabet
Σi = Σsi ; let π1, . . . , πr be all oracles sent.2 After the interaction, V outputs
a list of instances (x(1), . . . ,x(m)) and a list of virtual oracles (Π(1), . . . ,Π(m))
over alphabets Σ′

1, . . . , Σ
′
m respectively, where Σ′

i = Σs′
i .

We say that the oracle reduction has soundness error ε and distance δ if
the following conditions hold.

– Completeness: If (x,w) ∈ R then, with probability 1 over the verifier’s ran-
domness, for every j ∈ [m] it holds that

(

x(j),Π(j)[π1, . . . , πr]
) ∈ R′ where

(x(j),Π(j))j∈[m] ← (P (x,w), V (x)).
– Soundness:3 If x /∈ L(R) then for any prover P̃ , with probability 1 − ε over

the verifier’s randomness, there exists j ∈ [m] such that Δ(Π(j)[π1, . . . , πr],
R′|x(j)) > δ where (x(j),Π(j))j∈[m] ← (P (x,w), V (x)).

An oracle reduction is public coin if all of the verifier’s messages consist of
uniform randomness. All of the oracle reductions we present in this paper are
public coin. Note that we can always choose the base alphabet Σ to be {0, 1},
but it will be convenient for us to use a larger base alphabet.

This above definition can be viewed as extending the notion of linear-
algebraic CSPs [11], and indeed Lemma 4 below gives a construction similar
to the “canonical” PCP described in that work.

It will be useful to compose oracle reductions. As in the PCP setting, for this
we will require an object with a stronger proximity soundness property.

Definition 5. An oracle reduction of proximity is as in Definition 4 except
that, for a given proximity parameter δ0 ∈ (0, 1), the soundness condition is
replaced by the following one.

– Proximity soundness: If (x,w) is such that Δ(w,R|x) > δ0 then for any
prover P̃ , with probability 1−ε over the verifier’s randomness, there exists j ∈
[m] such that Δ(Π(j)[π1, . . . , πr],R′|x(j)) > δ(δ0) where (x(j),Π(j))j∈[m] ←
(P (x,w), V (x)).

In the PCPP literature the foregoing soundness property is usually known as
robust soundness, and the condition is expressed in terms of expected distance.
The definition given here is more convenient for us.

Efficiency Measures. There are several efficiency measures that we study for
an oracle reduction.

2 Sometimes it is convenient to allow the prover to reply with multiple oracles
πi,1, πi,2, . . .; all discussions extend to this case.

3 This is analogous to the “interactive soundness error” εi in [14].

516 E. Ben-Sasson et al.

– An oracle reduction has r rounds if the interactive protocol realizing it has r
rounds.

– An oracle reduction has m virtual oracles and locality � if the verifier out-
puts at most m virtual oracles {Π(j) = (Qj , Aj)}j∈[m], and it holds that
maxi∈[s] | ∪m

j=1 Qj(i)| ≤ �. Note that the answer to a single query may consist
of multiple symbols over the base alphabet Σ, but we count the query only
once.

– An oracle reduction has length s =
∑r

i=1 si|πi| over the base alphabet. Its
length in bits is s log |Σ|.

Other efficiency measures include the running time of the prover and of the
verifier.

Oracle reductions combine naturally with proofs of proximity to produce
IOPs. The following lemma is straightforward, and we state it without proof.

Lemma 4. Suppose that there exist:

(i) an r-round oracle reduction from R to R′ over base alphabet Σ with sound-
ness error ε, distance δ, length s, locality �, and m virtual oracles;

(ii) an r′-round IOPP for R′ over alphabet Σ with soundness error ε′, proximity
parameter δ′ ≤ δ, length s′, and query complexity (qw, qπ).

Then there exists an (r + mr′)-round IOP for R with soundness error ε + ε′,
length s + s′ · m over Σ, and query complexity (qw · � + qπ) · m.

5.2 Reed–Solomon Oracle Reductions

In this work we focus on a special class of oracle reductions, in which we reduce
to membership in the Reed–Solomon code, and where the virtual oracles have a
special form. These reductions coincide with “RS-encoded IOPs” [14, Definition
4.6], which we recast in the language of virtual oracles.

We first define the notion of a rational constraint, a special type of virtual
oracle that is “compatible” with the (interleaved) Reed–Solomon code.

Definition 6. A rational constraint is a virtual oracle Π = (Q,A) over
a finite field F where Q(α) = ((1, α), . . . , (r, α)) and A(α, β1, . . . , βr) =
N(α, β1, . . . , βr)/D(α), for two arithmetic circuits (without division gates)
N : F

∑

i si → F and D : F → F.

A Reed–Solomon (RS) oracle reduction is a reduction from some relation
to membership in the Reed–Solomon code, where additionally every oracle is a
rational constraint.

Definition 7. A Reed–Solomon (RS) oracle reduction over a domain L ⊆
F is an oracle reduction, over the base alphabet F, from a relation R to the
interleaved Reed–Solomon relation

R∗
RS:=

{

(ρ, f) s.t. ρ ∈ (0, 1]∗, f : L → F is a codeword in RS [L,ρ]
}

Linear-Size Constant-Query IOPs for Delegating Computation 517

where every virtual oracle output by the verifier is a rational constraint, except
for a special instance (ρ0,Π0), which the verifier must output. Π0, over alphabet
F

∑

i si , is given by Π0(α) = (π1(α), . . . , πr(α)) (i.e., it is a stacking of the oracles
sent by the prover).

In this work we will assume throughout that L comes a family of subgroups
(of a family of fields) such that there is an encoding algorithm for the Reed–
Solomon code on domain L.

Note that Π0 is not a rational constraint because its alphabet is not F. Later
we will also refer to the non-interleaved Reed–Solomon relation RRS := {(ρ, f) :
ρ ∈ (0, 1], f ∈ RS [L, ρ]}.

RS oracle reductions have a useful property: if the soundness condition holds
for δ = 0, then the soundness condition also holds for a distance δ > 0 related
to the maximum rate of the reduction. Informally, the maximum rate is the
maximum over the (prescribed) rates of codewords sent by the prover and those
induced by the verifier’s rational constraints. To define it, we need notation for
the degree and rate of a circuit.

Definition 8. The degree of an arithmetic circuit C : F1+� → F on input
degrees d1, . . . , d� ∈ N, denoted deg(C; d1, . . . , d�), is the smallest integer e
such that for all pi ∈ F

≤di [X] there exists a polynomial q ∈ F
≤e[X] such that

C(X, p1(X), . . . , p�(X)) ≡ q(X). Given domain L ⊆ F and rates ρ ∈ (0, 1]�, the
rate of C is rate(C;ρ) := deg(C; ρ1|L|, . . . , ρ�|L|)/|L|. (The domain L will be
clear from context.) Note that if � = 0 then this notion of degree coincides with
the usual one (namely, deg(C) is the degree of the polynomial described by C),
and rate(C) := deg(C)/|L|.

An oracle reduction has maximum rate ρ∗ if, for every rational constraint
(σ,Π) output by the verifier, max(rate(N ;ρ0), σ+rate(D)) ≤ ρ∗. This expression
is motivated by the proof of the following lemma; see [14, Proof of Theorem 9.1]
for details.

Lemma 5. Suppose that an RS oracle reduction with maximum rate ρ∗ satis-
fies the following weak soundness condition: if x /∈ L(R) then for any prover
P̃ , with probability 1 − ε over the verifier’s randomness, there exists j ∈ [m]
such that (ρ(j),Π(j)[π1, . . . , πn]) /∈ RRS. Then the reduction satisfies the stan-
dard soundness condition (see Definition 4) with soundness error ε and distance
δ := 1

2 (1 − ρ∗).

This means that for the oracle reductions in this paper we need only establish
weak soundness. Also, one can see that RS oracle reductions have locality r (the
number of rounds), since |Q(α)| = r for all α ∈ L.

The following lemma shows that, for RS oracle reductions, it suffices to run
the proximity test on a single virtual oracle. This reduces the query complexity
and proof length when we apply Lemma4.

518 E. Ben-Sasson et al.

Lemma 6. Suppose that there exists an r-round RS oracle reduction from R
over domain L, m virtual oracles, soundness error ε, maximum rate ρ∗, and dis-
tance δ. Then there is an r-round oracle reduction from R to the non-interleaved
Reed–Solomon relation RRS with locality r, one virtual oracle, soundness error
ε + |L|/|F|, maximum rate ρ∗, and distance min(δ, (1 − ρ∗)/3, (1 − 2ρ∗)/2).

Proof. Implicit in [14, Proof of Theorem 9.1], where it follows from [19].

Combining Lemmas 4 to 6 yields the following useful corollary. We invoke it,
in the full version, on the two main building blocks obtained in this paper in
order to prove our main result.

Corollary 1. Suppose that there exist:

(i) an r-round RS oracle reduction from R over domain L, m virtual oracles,
length s and rate ρ∗ that satisfies the weak soundness condition with sound-
ness error ε;

(ii) an r′-round IOP of proximity for RRS with soundness error ε′, proximity
parameter δ′ < min((1 − ρ∗)/3, (1 − 2ρ∗)/2), length p and query complexity
(qw, qπ).

Then there exists an (r + r′)-round IOP for R with soundness error ε + ε′ + |L|
|F| ,

length s + p and query complexity qw · r + qπ.

Acknowledgments. We thank Michael Forbes for helpful discussions. This work was
supported in part by: donations from the Ethereum Foundation and the Interchain
Foundation.

References

1. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998). Prelimi-
nary version in FOCS 1992

3. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS 1992

4. Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 421–429
(1985)

5. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC 1991, pp. 21–32 (1991)

6. Ben-Sasson, E., et al.: Computational integrity with a public random string from
quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 551–579. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 19

https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-319-56617-7_19

Linear-Size Constant-Query IOPs for Delegating Computation 519

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018)

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive
oracle proofs of proximity. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming, ICALP 2018, pp. 14:1–14:17 (2018)

9. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner,
N.: Zero knowledge protocols from succinct constraint detection. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70503-3 6

10. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive
oracle proofs with constant rate and query complexity. In: Proceedings of the 44th
International Colloquium on Automata, Languages and Programming, ICALP
2017, pp. 40:1–40:15 (2017)

11. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowl-
edge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49099-0 2

12. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs
to delegatable succinct constraint satisfaction problems. In: Proceedings of the 4th
Innovations in Theoretical Computer Science Conference, ITCS 2013, pp. 401–414
(2013)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: Proceedings of the 45th ACM Symposium
on the Theory of Computing, STOC 2013, pp. 585–594 (2013)

14. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 4. Full version available at
https://eprint.iacr.org/2018/828

15. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

16. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs
verifiable in polylogarithmic time. In: Proceedings of the 20th Annual IEEE Con-
ference on Computational Complexity, CCC 2005, pp. 120–134 (2005)

17. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),
889–974 (2006)

18. Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Constant rate
PCPs for circuit-SAT with sublinear query complexity. In: Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp.
320–329 (2013)

19. Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-case to average case reductions for
the distance to a code. In: Proceedings of the 33rd ACM Conference on Computer
and Communications Security, CCS 2018, pp. 24:1–24:23 (2018)

20. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008). Preliminary version appeared in STOC 2005

https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-030-17653-2_4
https://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-662-53644-5_2

520 E. Ben-Sasson et al.

21. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 612–621
(2003)

22. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1),
269–291 (1995). Preliminary version in STOC 1989

23. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

24. Bowe, S., et al.: Implementation track proceeding. Technical report, ZKProof Stan-
dards (2018). https://zkproof.org/documents.html

25. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
26. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and

the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996). Preliminary
version in FOCS 1991

27. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length.
J. ACM 53, 558–655 (2006). Preliminary version in STOC 2002

28. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version
appeared in STOC 1985

29. Gurevich, Y., Shelah, S.: Nearly linear time. In: Meyer, A.R., Taitslin, M.A. (eds.)
Logic at Botik 1989. LNCS, vol. 363, pp. 108–118. Springer, Heidelberg (1989).
https://doi.org/10.1007/3-540-51237-3 10

30. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-
optimal rate. IEEE Trans. Inf. Theory 51(10), 3393–3400 (2005). Preliminary ver-
sion appeared in STOC 2003

31. Harsha, P., Sudan, M.: Small PCPs with low query complexity. Comput. Complex.
9(3–4), 157–201 (2000). Preliminary version in STACS 2001

32. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: lim-
itations, simplifications, and applications (2015). http://www.cs.virginia.edu/
∼mohammad/files/papers/ZKPCPs-Full.pdf

33. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 44

34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp.
723–732 (1992)

35. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge University Press,
Cambridge (1997)

36. Lipton, R.J.: New directions in testing. In: Proceedings of a DIMACS Workshop
in Distributed Computing and Cryptography, pp. 191–202 (1989)

37. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS 1994

38. Mie, T.: Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann.
Math. Artif. Intell. 56, 313–338 (2009)

39. Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: Proceed-
ings of the 26th Annual ACM Symposium on Theory of Computing, STOC 1994,
pp. 194–203 (1994)

https://doi.org/10.1007/978-3-319-70700-6_12
https://zkproof.org/documents.html
https://doi.org/10.1007/3-540-51237-3_10
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44

Linear-Size Constant-Query IOPs for Delegating Computation 521

40. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for
delegating computation. In: Proceedings of the 48th ACM Symposium on the The-
ory of Computing, STOC 2016, pp. 49–62 (2016)

41. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open
questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010)

42. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inf. Theory 42(6), 1723–1731 (1996). Preliminary version appeared in STOC
1995

On the (In)security of Kilian-Based
SNARGs

James Bartusek1(B), Liron Bronfman2, Justin Holmgren3, Fermi Ma4,
and Ron D. Rothblum2

1 UC Berkeley, Berkeley, USA
bartusek.james@gmail.com

2 Technion, Haifa, Israel
{br,rothblum}@cs.technion.ca.il
3 Simons Institute, Berkeley, USA

holmgren@alum.mit.edu
4 Princeton University, Princeton, USA

fermima@alum.mit.edu

Abstract. The Fiat-Shamir transform is an incredibly powerful tech-
nique that uses a suitable hash function to reduce the interaction of gen-
eral public-coin protocols. Unfortunately, there are known counterexam-
ples showing that this methodology may not be sound (no matter what
concrete hash function is used). Still, these counterexamples are some-
what unsatisfying, as the underlying protocols were specifically tailored
to make Fiat-Shamir fail. This raises the question of whether this trans-
form is sound when applied to natural protocols.

One of the most important protocols for which we would like to reduce
interaction is Kilian’s four-message argument system for all of NP, based
on collision resistant hash functions (CRHF) and probabilistically check-
able proofs (PCPs). Indeed, an application of the Fiat-Shamir trans-
form to Kilian’s protocol is at the heart of both theoretical results (e.g.,
Micali’s CS proofs) as well as leading practical approaches of highly effi-
cient non-interactive proof-systems (e.g., SNARKs and STARKs).

In this work, we show significant obstacles to establishing soundness of
(what we refer to as) the “Fiat-Shamir-Kilian-Micali” (FSKM) protocol.
More specifically:

– We construct a (contrived) CRHF for which FSKM is unsound for a
very large class of PCPs and for any Fiat-Shamir hash function. The

UC Berkeley—Research conducted while at Princeton University.
Technion—Partially supported by the Israeli Science Foundation (Grant No. 1262/18),
a Milgrom family grant, the Technion Hiroshi Fujiwara cyber security research center
and the Israel cyber directorate.
Simons Institute—Research conducted while at Princeton University, supported in part
by the Simons Collaboration on Algorithms and Geometry and NSF grant No. CCF-
1714779.
Princeton University—Supported by the NSF and DARPA. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF or DARPA.
The full version of this paper is available at ia.cr/2019/997 [BBH+19].

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 522–551, 2019.
https://doi.org/10.1007/978-3-030-36033-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_20&domain=pdf
https://eprint.iacr.org/2019/997
https://doi.org/10.1007/978-3-030-36033-7_20

On the (In)security of Kilian-Based SNARGs 523

collision-resistance of our CRHF relies on very strong but plausible
cryptographic assumptions. The statement is “tight” in the following
sense: any PCP outside the scope of our result trivially implies a
SNARK, eliminating the need for FSKM in the first place.

– Second, we consider a known extension of Kilian’s protocol to an
interactive variant of PCPs called probabilistically checkable interac-
tive proofs (PCIP) (also known as interactive oracle proofs or IOPs).
We construct a particular (contrived) PCIP for NP for which the
FSKM protocol is unsound no matter what CRHF and Fiat-Shamir
hash function is used. This result is unconditional (i.e., does not rely
on any cryptographic assumptions).

Put together, our results show that the soundness of FSKM must rely on
some special structure of both the CRHF and PCP that underlie Kilian’s
protocol. We believe these negative results may cast light on how to
securely instantiate the FSKM protocol by a synergistic choice of the
PCP, CRHF, and Fiat-Shamir hash function.

1 Introduction

The Fiat-Shamir heuristic [FS86] is an extremely influential approach for elimi-
nating or reducing interaction in a wide variety of cryptographic protocols. First
proposed as a practical method for constructing digital signature schemes from
identification protocols, it was later generalized to reduce interaction of arbitrary
(public-coin) protocols. In a nutshell, the idea is to replace the messages from the
public-coin verifier (which are uniformly random strings) with a suitable hash of
all preceding prover messages.

Identifying whether and when the Fiat-Shamir heuristic is sound has been a
focus of cryptographic research for decades. It has been known for over 25 years
that security holds in an idealized model where the hash function is modeled
as a random oracle [PS96]. While the random oracle is often a useful methodol-
ogy for designing heuristically secure protocols [BR94], it does not provide any
guarantees when the random oracle is replaced with any explicit hash function
family. As a matter of fact, results of Barak [Bar01] and Goldwasser and Kalai
[GK03] give a strong negative indication. Specifically, these works exhibit sound
protocols which become totally insecure after the application of the Fiat-Shamir
transform using any hash function.

Still, the protocols designed by [Bar01,GK03] were, in a sense, specifically tai-
lored to make the Fiat-Shamir fail. Thus, it is important to understand whether
this methodology can be soundly applied to protocols with additional natural
structure that we care about. A prominent example for such a protocol is Kilian’s
[Kil92] beautiful 4-message argument-system for any NP language. Remarkably,
this protocol (which relies on a relatively mild cryptographic assumption) can
be used to prove the correctness of any NP language with an extremely short
proof and with a super efficient verification procedure. A main drawback of Kil-
ian’s protocol is that it requires back and forth interaction between the prover
and verifier (which is undesirable for some applications) and so this protocol is

524 J. Bartusek et al.

(arguably) the prime example of a protocol for which we would like to apply
Fiat-Shamir.

Indeed, this very idea was advocated by Micali [Mic00] in his construc-
tion of CS proofs, which are now more commonly referred to as SNARGs (an
abbreviation for Succinct Non-interactive ARGuments). SNARGs are an incred-
ibly powerful and versatile tool that are currently being implemented and
adopted in practice (especially in the domain of blockchain technology and cryp-
tocurrencies [BGG17,BGM17,BBB+18]). Some leading SNARG implementation
efforts are closely following the basic approach of applying Fiat-Shamir to (suit-
able extensions of) Kilian’s protocol [BCS16,BBC+17,BBHR18a,BBHR18b,
BCR+19]. For convenience, throughout this work we refer to the candidate
SNARG obtained by applying Fiat-Shamir to Kilian’s protocol as the FSKM
protocol.

Thus, a basic question that we would like to understand (and was posed
explicitly by [GK03]) is the following:

Do there exist hash functions with which the FSKM protocol is sound?

Jumping ahead, we show that the FSKM protocol can potentially be inse-
cure when instantiated with any Fiat-Shamir hash function family. However, to
explain our results more precisely, we first recall some details of Kilian’s original
protocol and the resulting FSKM protocol.

1.1 Kilian’s Protocol and FSKM

First and foremost, Kilian’s protocol relies on probabilistically checkable proofs
(PCPs). Recall that PCPs can be thought of as a way to encode a witness w
so that the encoded witness π can be verified by only reading a few of its bits.
The celebrated PCP Theorem [ALM+98] shows that such PCPs exist for all NP
languages.

Consider some language L ∈ NP and let ΠPCP = (PPCP,VPCP) be a PCP
proof-system for L. To establish that x ∈ L, and given a witness w, the prover
PKilian engages in the following protocol with the verifier VKilian:

1. VKilian samples a collision-resistant hash function hCRHF ← HCRHF, and sends
hCRHF to PKilian.

2. PKilian constructs a PCP π for x’s membership in L, and sends a Merkle hash
(using hCRHF) of π to VKilian.

3. VKilian chooses random coins r for the PCP verifier VPCP and sends them to
PKilian.

4. PKilian computes the locations i1, . . . , iq that VPCP would query on randomness
r and input x, and “decommits” to the values of (πi1 , . . . , πiq

).1

5. VKilian checks that the decommitments are valid and that the values that were
opened make the PCP verifier accept using the random string r.

1 A succinct decommitment to the value πij can be accomplished by having PKilian

reveal the hash values of all vertices in the tree that are either on, or adjacent to,
the path from πij to the root in the Merkle tree.

On the (In)security of Kilian-Based SNARGs 525

We denote by FSKM[ΠPCP,HCRHF,HFS] the protocol that results from apply-
ing Fiat-Shamir with hash family HFS to the above 4 message argument. Observe
that FSKM[ΠPCP,HCRHF,HFS] can be implemented using only 2 messages: in the
first message the verifier specifies the collision resistant hash function and the
Fiat-Shamir hash function hFS ← HFS, and in the second message the prover
reveals the root rt of the Merkle tree together with the relevant decommitments
with respect to r = hFS(rt).

We will also consider a variant of the FSKM protocol that uses a gener-
alization of PCPs called probabilistically checkable interactive proofs or PCIPs
[BCS16,RRR16a].2 A PCIP is a type of proof system that combines the locally
checkable aspect of PCPs with the multi-round aspect of interactive proofs,
thereby generalizing both. More precisely, in a PCIP the prover first sends a
PCP proof to the verifier, which can make some queries to this proof string (as
in standard PCPs). The difference however is that now the verifier is allowed to
respond with a random challenge and the prover sends an additional PCP proof
string - this process can continue for several rounds.

One of the key benefits of PCIPs (advocated by [BCS16]) is that they
can allow for practical efficiency benefits over standard PCPs. As observed by
[BCS16], Kilian’s protocol can be readily extended to handle PCIPs, by having
the prover send a Merkle hash of its entire message in every round, and eventu-
ally decommiting to the desired bits as in Kilian’s original protocol. It is natural
therefore to apply Fiat-Shamir to the resulting protocol and this was shown to
be sound by [BCS16] in the random oracle model. We extend our notation of
FSKM to the more general setting of PCIPs in the natural way (see Line 3 for
details).

As mentioned above, the FSKM protocol, when combined with highly efficient
PCIPs, is at the heart of current successful implementations of SNARGs [BCS16,
BBC+17,BBHR18a,BBHR18b,BCR+19].

1.2 Our Results

Loosely speaking, we show that the FSKM protocol can be insecure when instan-
tiated with any Fiat-Shamir hash function unless security relies on specific prop-
erties of both (1) the collision resistant hash function, and (2) the underlying
PCP (or more precisely PCIP). This is established by our two main results which
are described next.

Our first main result shows that there exists a collision-resistant hash family
˜HCRHF such that for any “reasonable” PCP ΠPCP and all candidate Fiat-Shamir
hash families HFS, the protocol FSKM[ΠPCP, ˜HCRHF,HFS] is not sound. We refer
to such a CRHF as being FSKM-incompatible. The existence of such an FSKM-
incompatible CRHF shows that soundness of the FSKM protocol cannot be based
on a generic CRHF. Loosely speaking, by “a reasonable PCP,” we mean one where
it is possible given the verifier’s randomness to compute a proof string that the
verifier would accept.

2 PCIPs are also called interactive oracle proofs IOPs.

526 J. Bartusek et al.

Unreasonable PCPs may exist. For instance, if SNARGs exist, then any PCP
for an NP language L can be modified (in a contrived way) to be an unreasonable
PCP for L: Honest proof strings for x ∈ L are modified by appending a SNARG
πSNARG attesting that x ∈ L; the verifier is modified so that in addition to
performing the original PCP verifier’s checks, it also verifies that πSNARG is a
valid SNARG. However there is a sense in which such PCPs (already having
an embedded SNARG) are the only unreasonable PCPs. We formalize this in
Theorem 6.

The collision-resistance of our FSKM-Incompatible CRHF relies on a strong
cryptographic assumption: the existence of Succinct Non-Interactive ARguments
of Knowledge (SNARKs) with “computationally unique” proofs. By computa-
tionally unique we mean that it should be infeasible to find two different proofs
corresponding to the same NP witness.

Our result implies that under this assumption, FSKM[ΠPCP,HCRHF,HFS] can-
not be proven to be sound when HCRHF is a generic collision-resistant hash
family—even if the PCP ΠPCP and Fiat-Shamir hash function HFS are carefully
engineered.

Theorem 1 (Informally Stated, see Theorem 6). Assume the existence of col-
lision resistant hash functions and (publicly verifiable) SNARKs with computa-
tionally unique proofs. Then, there exists a collision-resistant hash family ˜HCRHF

such that for every “reasonable” PCP ΠPCP and every hash family HFS, the pro-
tocol FSKM[ΠPCP, ˜HCRHF,HFS] is not sound.

We instantiate this theorem with a SNARK constructed in the works of
[BCI+13,BCCT13], whose soundness follows from a knowledge of exponent
assumption in bilinear groups (along with a more standard “power” discrete log
assumption). Such knowledge assumptions are very strong (and are not known to
be falsifiable), but are still plausible, and in particular can be proven to hold in
the generic group model [Nec94,Sho97,Mau05].3 In the full version [BBH+19],
we show that under the same set of assumptions (we need collision resistant
hashing as well, but this follows from either of the assumptions on groups), this
SNARK has computationally unique proofs. However, as discussed in [BCCT13],
the soundness notion satisfied by this SNARK is slightly weaker than standard
soundness. We overcome this difficulty by additionally assuming the existence
of injective one-way functions that are exponentially hard.

Moving on, Theorem 1 still leaves open the possibility that a careful choice of
HCRHF and HFS suffices to establish soundness of FSKM[ΠPCP,HCRHF,HFS]. Our
3 The work of [BCPR14] showed that if indistinguishability obfuscation exists, then
SNARKs where extraction holds with respect to arbitrary unbounded polynomial
length auxiliary input do not exist. We therefore rely on a version of the [BCI+13]
knowledge of exponent assumption which only requires extraction to hold with
respect to auxiliary input from a “benign” distribution (e.g. a uniform distribution);
a similar approach was taken in [CFH+15,FFG+16,Gro16,BCC+17]. We are able
to rely on this relaxed version since the auxiliary input in our construction essen-
tially just consists of the key for some arbitrary collision resistant hash function. We
discuss this issue in further detail in the full version [BBH+19].

On the (In)security of Kilian-Based SNARGs 527

second main result shows a significant obstacle to this possibility. Specifically, we
show that there exists a PCIP such that for any collision-resistant hash function
CRHF and any Fiat-Shamir hash function, the resulting FSKM protocol is not
sound. We refer to such a PCIP as being an FSKM-incompatible PCIP. The
existence of FSKM-incompatible PCIPs implies that the soundness of any FSKM
protocol must rely on specific properties of the underlying PCIP. In contrast to
Theorem 1, this result is unconditional (i.e., does not rely on any cryptographic
assumptions).

Theorem 2 (Informally Stated, see Theorem 7). There exists a PCIP ˜ΠPCIP

such that for all hash families HCRHF and HFS, the protocol FSKM[˜ΠPCIP,HCRHF,
HFS] is not sound.

In the proof of Theorem 2, we show soundness of FSKM[˜ΠPCIP,HCRHF,HFS]
is broken in an extremely strong sense. Namely, there exists a polynomial-time
adversary that convinces the FSKM verifier to accept any input x �∈ L with
probability 1.

Interpretation of Our Results. We emphasize that our construction of CRHF
(in Theorem 1) and PCIP (in Theorem 2) are highly contrived. Thus, it cer-
tainly remains a possibility that some special structure of known CRHFs and
PCPs/PCIPs might be identified that will allow for the FSKM protocol to be
securely instantiated. Indeed, we hope that our results will lead to the identifi-
cation of special structure that can be leveraged to securely instantiate FSKM.

In fact, we give some initial progress towards this goal. In the full ver-
sion [BBH+19], we give a sound instantiation (under standard assumptions) of
the FSKM protocol when the underlying PCP is a specific PCP for the empty lan-
guage. In order to bypass our impossibility, we make use of a collision-resistant
hash function with special structure: the somewhere statistically binding hash
function of Hubáček and Wichs [HW15b]. For the Fiat-Shamir hash function,
we use a correlation-intractable hash function for efficiently searchable relations,
recently constructed under the Learning with Errors assumption by Peikert and
Shiehian [PS19]. Needless to say, SNARK constructions for the empty language
are not particularly interesting. However, we hope that this blueprint will be use-
ful in the future for proving instantiations of FSKM sound when the underlying
PCP is defined for more expressive languages.

1.3 Additional Prior Work

Goldwasser and Kalai [GK03] showed that the original application of the Fiat-
Shamir heuristic is not sound; there exists a contrived identification protocol
such that no matter what hash function is used in the Fiat-Shamir transform,
the resulting digital signature scheme is insecure. Since they use a very particular
protocol, their result does not yield a negative result for applying Fiat-Shamir to
the FSKM protocol (indeed, as mentioned above, finding such a negative result
was posed as an open problem in [GK03]).

528 J. Bartusek et al.

Another very related work is that of Gentry and Wichs [GW11], who showed
a substantial barrier to constructing SNARGs. Our work is incomparable to that
of [GW11]. On the one hand [GW11] rule out a very general class of SNARG
constructions whereas we focus on a very particular approach (i.e., applying Fiat-
Shamir to FSKM with a generic CRHF). On the other hand, when restricting
to the foregoing approach, we overcome some significant limitations of [GW11].
First, in contrast to [GW11], our result is not limited to SNARGs whose security
holds under a black-box reduction from a falsifiable assumption. Second, it applies
also to constructions based on non-falsifiable assumptions. Third, it rules out
protocol achieving standard (i.e., non-adaptive) soundness, whereas [GW11] only
rules out adaptively sound protocols. And fourth, our work applies to any NP
language whereas [GW11] only rules out SNARGs for particular (extremely) hard
NP languages.

A recent line of work [KRR17,CCRR18,HL18,CCH+19,PS19] constructs
hash functions that are compatible with Fiat-Shamir, when applied to statis-
tically sound interactive proofs. Still, the question of whether the Fiat-Shamir
transform can be securely applied to preserve the computational soundness of
Kilian’s argument scheme has remained open.

1.4 Technical Overview

We proceed to an overview of our two main results. First, in Sect. 1.4 we give
an overview of our FSKM-incompatible CRHF and then, in Sect. 1.4, we give an
overview of our FSKM-incompatible PCIP.

An FSKM-incompatible CRHF. For simplicity, in this overview we describe
a weaker result. Specifically, we construct an FSKM-incompatible CRHF for a
particular choice of the language L and for a PCP for L (rather than handling
all languages L and all “reasonable” PCPs). Nevertheless, this weaker result
demonstrates the main ideas that go into the proof of Theorem 1. Specifically,
we focus on the empty language L = ∅. While this language has a trivial PCP
ΠPCP (of length 0) in which the verifier always rejects, we will consider a different
PCP ˜ΠPCP for L (parameterized by a security parameter λ): the PCP proof string
is expected to have length 2λ and the verifier uses a random string of length
λ, and accepts if the first λ bits of the PCP are equal to its random string.
Completeness holds in an empty sense whereas the soundness error is clearly
2−λ. We construct a contrived collision-resistant hash function ˜HCRHF such that
FSKM[˜ΠPCP, ˜HCRHF,HFS] is not sound for any hash family HFS.

We will construct ˜HCRHF = { ˜H
(λ)
CRHF : {0, 1}2λ → {0, 1}λ} so that it satisfies

the following property: Given ˜hCRHF ← ˜H
(λ)
CRHF and any efficiently computable

function f , it is possible to efficiently find (x0‖x1) ∈ {0, 1}2λ such that x0 =
f(˜hCRHF(x0‖x1)). This property immediately allows us to break the soundness
of FSKM[˜ΠPCP, ˜HCRHF,HFS] as follows. We view hFS ← HFS as the function f ,
and so a cheating prover can produce a valid commitment rt to a string (x0‖x1)
such that the verifier’s randomness is hFS(rt) = x0. The prover sends rt as the
Merkle root but can now decommit to x0, which makes the PCP verifier accept.

On the (In)security of Kilian-Based SNARGs 529

We refer to a CRHF having the foregoing property as a circular tractable (CT-)
CRHF.

A CT-CRHF from Ideal Obfuscation. We first illustrate how it is possible to con-
struct a CT-CRHF assuming ideal Turing-machine obfuscation. For readability,
we will use collision-resistant hash functions (rather than ensembles) in this
section.

We will start with any CRHF h′
CRHF : {0, 1}2λ → {0, 1}λ−1, and we construct

a CT-CRHF hash function ˜hCRHF : {0, 1}2λ → {0, 1}λ. The hash function ˜hCRHF

will have two types of outputs: normal outputs, which end in a 1, and special
outputs, which end in 0λ/2. On almost all inputs x0‖x1, we will have

˜hCRHF(x0‖x1) = h′
CRHF(x0‖x1)‖1.

However, we will guarantee that for every x0 and special output y‖0λ/2, x0

can be extended into a (not efficiently computable) “special” x0‖x1 such that
˜hCRHF(x0‖x1) = y‖0λ/2. This is easy to achieve if we augment the description
of ˜hCRHF to include a verification of a (public-key) digital signature scheme, and
˜hCRHF is defined as

˜hCRHF(x0|x1) =

{

y‖0λ/2 if x1 = y‖σ, for σ a valid signature of (x0, y).

h′
CRHF(x0‖x1)‖1 otherwise.

In order to actually (efficiently) use the added structure of ˜hCRHF, we will
also augment the description of ˜hCRHF to include an obfuscation ̂P of a program
P that has the signature signing key hard-wired, and on input the description
〈f〉 of a function f acts as follows:

1. Computes y = h′′
CRHF(〈f〉), where h′′

CRHF : {0, 1}∗ → {0, 1}λ/2 is a generic
CRHF.

2. Compute x0 = f(y‖0λ/2).
3. Compute a signature σ of (x0, y).
4. Output (x0, y, σ).

It is clear that the inclusion of ̂P in the description of ˜hCRHF makes ˜hCRHF

circular tractable, but why is ˜hCRHF collision-resistant?
Suppose that an efficient adversary A were to output a colliding pair (x0‖x1)

and (x′
0‖x′

1) of ˜hCRHF. The only new collisions that ˜hCRHF has compared to h′
CRHF

(and thus that A might possibly output) are collisions for special outputs (stan-
dard outputs can never collide with special outputs due to their last bit being
different). That is, we may assume that x1 = y‖σ and x′

1 = y‖σ′. The security
of the signature scheme and of the ideal obfuscator imply that if A produced
such a collision, it must have queried ̂P on two distinct inputs 〈f〉, 〈f ′〉 such
that P (〈f〉) = (x0, y, σ) and P (〈f ′〉) = (x′

0, y, σ′). But this would in particular
imply that h′′

CRHF(〈f〉) = h′′
CRHF(〈f ′〉) = y, meaning that A found a collision in

h′′
CRHF, which is a contradiction.

530 J. Bartusek et al.

A CT-CRHF from Unique-Proof SNARKs. The above construction is tantalizing,
but unfortunately we do not know how to prove security (collision-resistance)
from any general-purpose notion of obfuscation security (e.g., indistinguishability
obfuscation) that is not known to be unachievable. Instead, we show how to use
similar ideas to obtain a CT-CRHF using special SNARKs that can be constructed
based on a knowledge of exponent assumption.

Taking a closer look at the obfuscation-based construction, we observe that
ideal obfuscation was used to ensure that if an adversary A could come up with
an input x0‖x1 such that ˜hCRHF(x0‖x1) is the special output y‖0λ/2, then A
must “know” an f such that h′′

CRHF(〈f〉) = y (and x0‖x1 are a fixed function of
f).

With this observation in mind, an alternative way of defining special inputs
is as the set of x0‖x1 that contain a SNARK of this fact. That is, let special
inputs be strings x of the form x0‖y‖π, where π is a valid proof of knowledge of f

satisfying h′′
CRHF(〈f〉) = y∧x0 = f(y), and on such inputs let ˜hCRHF(x) = y‖0λ/2.

Is the resulting ˜hCRHF collision-resistant? There are two types of collisions
that we need to consider. The first type is collisions of the form x0‖y‖π, x′

0‖y‖π′

with x0 �= x′
0. The second type is collisions in which x0 = x′

0 (but π �= π′).
The first type of collision is ruled out by the standard SNARK proof-of-

knowledge property. If an adversary produces such a collision, then there is an
extractor that produces 〈f〉, 〈f ′〉 such that h′′

CRHF(〈f〉) = h′′
CRHF(〈f ′〉) = y but

f(y) = x0 �= x′
0 = f ′(y). The latter inequality implies that 〈f〉 �= 〈f ′〉, which

means that the extractor is finding a collision in h′′
CRHF.

To rule out the second type of collision, we require a new “unique proofs”
property for the SNARK to ensure that the extracted 〈f〉, 〈f ′〉 are distinct.
Informally, this property says that for any adversary A that comes up with two
distinct valid SNARK-proofs of the same NP claim, there is an extractor E that
comes up with two distinct NP witnesses for the same claim.

An FSKM-incompatible PCIP. For every language L ∈ NP and collision resis-
tant hash function ensemble HCRHF, we present a contrived PCIP ˜ΠPCIP, such
that for any choice of Fiat-Shamir hash function ensemble HFS, the resulting
protocol FSKM[˜ΠPCIP,HCRHF,HFS] is not sound.

The PCIP construction is inspired by and builds on Barak’s [Bar01] beauti-
ful protocol, while taking steps to make the approach compatible with Kilian’s
protocol. Roughly speaking, our approach is to take an arbitrary PCP for L (say
the one established by the classical PCP theorem) and “tweaking” it so as to
maintain its soundness while enabling an attack on the resulting FSKM protocol.
Since the tweaking of the PCP will add an additional round, we only obtain a
FS-incompatible PCIP rather than a PCP.

In more detail, the first message sent by the honest PCIP prover is π′ = b‖π
where b is a single bit and π is a string. The honest PCIP prover always sets
the bit b to 0 but we add the option of having a malicious prover set b to 1 to
facilitate the attack on FSKM.

The PCIP verifier, given this string, first reads the value of b. In case b = 0, the
verifier simply treats π as a PCP proof string and runs the underlying PCP verifier

On the (In)security of Kilian-Based SNARGs 531

while redirecting its proof queries to π. This concludes the entire interaction and
the PCIP verifier accepts if and only if the PCP verifier accepts. Completeness of
the entire protocol as well as soundness for the case that b = 0 follow immediately
from the construction.

Note however that a malicious prover may indeed send the value b = 1.
While the verifier could immediately reject in this case, we intentionally make
our PCIP verifier do something different. Ignoring π for a moment, the verifier
now chooses a random string r ∈ {0, 1}λ and sends r to the PCIP prover. The
key observation is that when the protocol is compiled via FSKM using a CRHF
hCRHF and FS hash function hFS, in the resulting non-interactive argument the
value r is fully determined. More specifically, it will always be the case that
r = hFS(MerkleCom(hCRHF, π

′)), where MerkleCom simply computes a Merkle
tree of the string π′ using the hash function hCRHF and outputs its root. Thus, in
order to facilitate the attack, we would like to design our PCIP verifier to accept
if it happens to be the case that r = hFS(MerkleCom(hCRHF, π

′)).
What may seem initially problematic is that it is unclear how the PCIP

verifier can know which CRHF and FS hash functions will be used in the FSKM
protocol. We handle this by simply letting the PCIP prover specify these functions
as part of π = (hCRHF, hFS). Thus, after sampling r, we would like for our PCIP
verifier to check that π = (hCRHF, hFS) such that r = hFS(MerkleCom(hCRHF, π

′)).
Suppose for now that the PCIP verifier does this explicitly (i.e., by reading all
of π′). Observe that the PCIP remains sound since r is chosen after the value
hFS(MerkleCom(hCRHF, π

′)) is fully determined (and so the probability that r is
equal to this value is exponentially vanishing).

On the other hand, we can now demonstrate an attack on the resulting
FSKM protocol. Consider a cheating FSKM prover that works as follows. Recall
that the FSKM verifier gives the prover descriptions of a CRHF hCRHF and an
FS hash function hFS. The prover now sets π = (hCRHF, hFS) and continues as
in the FSKM protocol while using π′ = (1, π) as the first PCIP message. In
more detail, it computes and sends a Merkle root MerkleCom(hCRHF, π

′) to the
verifier. By design, the prover and verifier now agree to use the “random” string
r = hFS(MerkleCom(hCRHF, π

′)) which makes all of the verifier’s tests pass.
A final difficulty that we need to overcome is that the PCIP verifier as

described so far has linear query complexity since in case b = 1 it reads the
entire message π. We resolve this by replacing the explicit test done by the
verifier with another round of interaction. In more detail, when b = 1, after
receiving r, the prover is expected to send an additional PCP proving that
r = hFS(MerkleCom(hCRHF, π

′)) holds. Actually, a standard PCP will not suf-
fice since a PCP verifier reads its entire input (which in our case is the first PCIP
message π). Rather, we will use a PCP of proximity (PCPP) [BGH+06,DR06]
which is a PCP in which the verifier only reads a few bits of its input and is
required to reject inputs that are far from the language. To make this approach
work, the prover will actually send π encoded under an error-correcting code.
We defer further details to the technical sections.

532 J. Bartusek et al.

1.5 Organization

In Sect. 2 we give preliminaries. The proof of Theorem 1, via a construction of
an FSKM-Incompatible CRHF is presented in Sect. 3. The proof of Theorem 2,
via a construction of an FSKM-Incompatible PCIP is presented in Sect. 4. In the
full version [BBH+19], we give a sound instantiation of the FSKM protocol for
a specific PCP for the empty language, as well as a candidate construction of a
SNARK with computationally unique proofs.

2 Preliminaries

We let λ denote the security parameter. Let [n] = {1, . . . , n}. Throughout, we will
use 〈P 〉 to denote the description of a function/machine/program P . A function
ε(λ) is said to be negligible, if for every c ∈ N it holds that ε(λ) = O(λ−c).

We let H = {H(λ)}λ, where H(λ) = {h : {0, 1}n(λ) → {0, 1}m(λ)}h denote
a hash function ensemble, where hash functions h : {0, 1}n(λ) → {0, 1}m(λ) are
sampled as h ← H(λ).

The relative distance between strings x, y ∈ Σ� is Δ(x, y) = |{i | xi �= yi}|/	.
The relative distance of a string x ∈ Σ� from a (non-empty) set S ⊆ Σ� is
Δ(x, S) = min

y∈S

(

Δ(x, y)
)

.

2.1 Proof Systems

In this work we adhere to the convention in which all proof systems (as well as
other cryptographic primitives) are relative to a security parameter λ (given in
unary representation to all parties) and with soundness error that is negligible
in λ.

Argument Systems (aka Computationally Sound Proofs). The inter-
action between a prover P, on input x and security parameter 1λ, and a
verifier V, with input y and the same security parameter λ, is denoted by
〈P(x, λ) ↔ V(y, λ)〉 and includes a polynomial number of rounds in which each
party sends the other a message. The interaction terminates when the verifier V
decides whether to accept or reject its input y. The result of the interaction is
the bit b ∈ {0, 1} returned by V indicating whether it accepted, which is denoted
by 〈P(x) ↔ V(y)〉. If b = 1, then we say that V accepts.

Definition 1 (Argument system). An argument system for a language L ∈
NP, with soundness error s : N → [0, 1] is a pair of probabilistic polynomial-time
algorithms P and V such that:

1. Completeness : If x ∈ L and w is a corresponding witness, then for every
security parameter λ it holds that

Pr
[〈P(x,w, 1λ) ↔ V(x, 1λ)〉 = 1

]

= 1.

On the (In)security of Kilian-Based SNARGs 533

2. Computational soundness : If x /∈ L, then for all probabilistic polynomial-
time malicious prover P∗ and all sufficiently large security parameters λ, it
holds that

Pr
[〈P∗(x, 1λ) ↔ V(x, 1λ)〉 = 1

] ≤ s(λ).

An argument system (P,V) is said to be public-coin if all messages sent by
the verifier V are random-coin tosses, and V does not toss any additional random
coins.

Probabilistically Checkable Proofs (PCPs). Roughly speaking, a probabilis-
tically checkable proof (PCP) is an encoding of an NP witness that can be verified
by reading only a few of its bits. More formally:

Definition 2 (Probabilistically checkable proof). A probabilistically
checkable proof (PCP) for a language L ∈ NP consists of a polynomial-time
algorithm P, which receives a main input x and witness w, and a probabilistic
polynomial-time oracle machine V, which receives x and a security parameter 1λ

as explicit inputs, and oracle access to a proof π. The PCP has soundness-error
s : N → [0, 1] if:

1. Completeness : If x ∈ L and w is a corresponding witness, then for π =
P(x,w) and every λ holds that

Pr
[Vπ(x, 1λ) = 1

]

= 1.

2. Soundness : If x /∈ L, for every proof π∗ and security parameter λ it holds
that

Pr
[Vπ∗

(x, 1λ) = 1
]

< s(λ).

In order to query π, the verifier V tosses r = r(|x|, λ) random coins and
generates q = q(|x|, λ) queries. It will often be convenient to view V as two
separate algorithms (V0,V1). The first, V0(x; r), runs on the instance x and
randomness r and outputs the set of queries {qi}i that V makes to π. The second
algorithm, V1({bi}i, x; r), takes the corresponding responses {bi}i as input (as
well as the instance x and the same randomness r as V0), and decides whether
to accept or reject.

The following celebrated theorem by [ALM+98] establishes the expressive
power of PCPs.

Theorem 1 (PCP theorem). Every language L ∈ NP has a PCP with sound-
ness error 1

2 , constant query complexity, and logarithmic randomness complexity.

Note that a PCP with negligible soundness error can be easily obtained from
Theorem 1 by having the verifier generate polylog(λ) independent query sets.

Probabilistically Checkable Proofs of Proximity (PCPP). In a standard
PCP, the verifier is explicitly given the entire input x along with access to an
oracle that encodes a “probabilistically checkable” witness. In contrast, in a
PCP of proximity (PCPP) [BGH+06,DR06] the goal is for the verifier to decide
without even reading the entire input. Thus, the verifier is given oracle access to

534 J. Bartusek et al.

the input and we count the total number of queries to both the input and the
proof.

Since the verifier cannot even read the entire input, the notion of soundness
in PCPP is relaxed: the verifier must only reject inputs that “far” from the
language (i.e. where distance is measured in Hamming distance).

Following [BGH+06], we define PCPPs with respect to pair-languages, which
are simply a subset of {0, 1}∗ × {0, 1}∗. The projection of a pair-language L on
x is L(x) = {y | (x, y) ∈ L}.

In our context, we view the first component x of a pair (x, y) ∈ L as an
explicit input for the verifier whereas the second component, y, is an implicit
input (i.e., the verifier only has oracle access to y). We count the total number of
queries to the oracle y, as well as the proof string π. The soundness requirement
is that the verifier has to reject words in which the implicit input is far from the
projection of L onto x.

Definition 3 (PCPP). A probabilistically checkable proof of proximity (PCPP)
for a pair-language L ∈ NP consists of a polynomial-time prover P that gets
as input a pair (x, y) as well as a witness w, and a probabilistic polynomial-
time oracle machine V that receives x as an explicit input, oracle access to y
and oracle access to a proof string π. The verifier also receives (explicitly) a
proximity parameter δ > 0 and security parameter 1λ. The PCPP has soundness
error s : N → [0, 1] if for every proximity parameter δ ∈ [0, 1], security parameter
λ > 0 and input (x, y):

1. Completeness : If (x, y) ∈ L and w is the corresponding witness, for π =
P((x, y), w) it holds that

Pr[Vy,π(x, |y|, |π|, 1λ, δ) = 1] = 1.

2. Soundness : If Δ(y,L(x)) > δ and oracle π∗, it holds that

Pr[Vy,π∗
(x, |y|, |π∗|, 1λ, δ) = 1] < s(λ).

The verifier V generates r = r(|x|, λ) random coins and makes q = q(|x|, λ)
queries for both oracles. We omit the lengths of the implicit input y and the
proof π from the input of the verifier when these are clear from the context.

Ben-Sasson et al. [BGH+05] give a construction of PCPP for all of NP (with
a suitably efficient verifier).

Theorem 2 ([BGH+05]). For every language L ∈ NTIME(T) and every con-
stant δ ∈ [0, 1], there exists a PCPP for L with respect to proximity parame-
ter δ, soundness-error of 1

2 and proof length poly(T). The verifier runs in time
polylog(T) and the prover runs in time poly(T) (i.e., the PCPP proof can be
generated in time poly(T) given the NP witness).

On the (In)security of Kilian-Based SNARGs 535

Probabilistically Checkable Interactive Proofs. Probabilistically check-
able interactive proofs (PCIPs) [BCS16,RRR16b] (also known as interactive ora-
cle proofs) are generalizations of both interactive proofs and PCPs. They allow
for multi-round interactions, in which the prover provides the verifier with ora-
cle access to long proof strings, but we only count the number of bits that were
actually queried by the verifier. In this work, we will only consider public-coin
PCIPs.

Definition 4 (Probabilistically checkable interactive proof). A proba-
bilistically Checkable Interactive Proof (PCIP) for a language L ∈ NP consists
of a pair of interactive probabilistic machines (P,V). The prover P is a deter-
ministic polynomial-time algorithm, which gets as input x a witness w and a
security parameter λ, and the verifier V is a PPT algorithm, which gets as input
x and λ. The interaction consists of the following 3 phases:

1. Communication phase : The two parties interact for k = k(|x|, λ) rounds,
in which V only sends random strings of total length r = r(|x|, λ) and P sends
proofs strings π1, ..., πk(|x|,λ), where πi is sent in the i-th round.

2. Query phase : In which V sends makes a total of q = q(|x|, λ) queries to the
messages sent by P in the communication phase.

3. Decision phase : Based on its random messages in the communication
phase, and the answers to its queries in the query phase, the verifier V decides
whether to accept or reject.

The PCIP (P,V) has soundness s : N → [0, 1] if:

1. Completeness : If x ∈ L and w is the corresponding witness, then for every
security parameter λ it holds that

Pr [〈P(x,w, λ) ↔ V(x, λ)〉 = 1] = 1.

2. Soundness : If x /∈ L, then ∀P∗ and security parameters λ, it holds that

Pr [〈P∗(x, λ) ↔ V(x, λ)〉 = 1] < s(λ).

2.2 Kilian’s Protocol

Before describing Kilian’s protocol, we first recall the definition of collision resis-
tant hash functions and Merkle trees.

CRHF and Merkle Trees. An efficiently computable hash function ensem-
ble H = {H(λ)}λ where H(λ) = {h : {0, 1}2λ → {0, 1}λ} is collision resistant
(CRHF), if there exists a key generation algorithm Gen that on input 1λ samples
h from H(λ) such that for every PPT adversary A it holds that

Pr
h←Gen(1λ)
(x,x′)←A(h)

[h(x) = h(x′) ∧ x �= x′] ≤ negl(|λ|).

536 J. Bartusek et al.

Remark 1. The above definition of CRHF is sometimes referred to as a private-
coin CRHF [HR04] since security is not guaranteed if the adversary sees the
coins used by Gen. Nevertheless, for sake of conciseness we will sometimes avoid
mentioning Gen explicitly and simply write h ← H(λ).

We will use the following syntax to describe Merkle tree commitments, which
can be built from any CRHF family H =

{H(λ)
}

λ
. For each of the following

algorithms, the input hash function h is drawn uniformly at random from H(λ).
For any d ≥ 1, a Merkle tree commitment allows us to commit to a message
s ∈ {0, 1}m where m := λ · 2d. That is, we view s as 2d blocks of λ bits.

– MerkleCom(h, s ∈ {0, 1}m). Write s as (1‖	2‖ . . . ‖	2d) where each 	j ∈
{0, 1}λ. Build a binary tree of hash evaluations, starting from the 2d leaves
(1‖	2‖ . . . ‖	2d). Output the root com ∈ {0, 1}λ of the resulting tree.

A commitment to s can be locally opened to the reveal the bits in the ith block
by revealing the siblings along the root-to-ith-leaf path:

– MerkleOpen(h, s ∈ {0, 1}m, i ∈ [2d]). Write s as (1‖	2‖ . . . ‖	2d) where each
	j ∈ {0, 1}λ. Determine the path from 	i to the root in the tree of hash eval-
uations under h, denoted {ĉj}j∈[d] where ĉd = 	i. For each i ∈ [d], determine
the sibling sibi of ĉi. Output open = {(ĉi, sibi, pi)}i∈[d] where pi ∈ {left, right}
denotes whether sibi is a left or right sibling of ĉi.
For I ⊆ [2d] we define MerkleOpen(h, s ∈ {0, 1}m, I) as (MerkleOpen(h, s ∈
{0, 1}m, i))i∈I .

These openings can easily be verified by verifying the hash computations
with h:

– MerkleVer(h, com, open) first writes open as {(ĉi, sibi, pi)}i∈[d]. Let ĉ0 = com.
For each i ∈ [d], check that h(sibi‖ĉi) = ĉi−1 if pi = left or that h(ĉi‖sibi) =
ĉi−1 if pi = right. Output 1 (accept) if all checks pass, otherwise output 0.

Kilian’s Protocol. While Kilian’s original protocol relied on PCPs, a natu-
ral generalization to PCIPs was suggested by Ben-Sasson et al. [BCS16]. This
extension proceeds by having the prover repeatedly commit to each of its ora-
cles (rather than sending the entire oracle). At the end of the interaction, the
verifier can specify which locations to open and the prover can use the Merkle
tree structure to succinctly decommit to these specific locations.

Construction 3. Let (P,V) be a public-coin k-round PCIP for L ∈ NP.
Consider the following argument system for L, denoted by (P ′,V ′) =
Kilian[(P,V),H], as described in Fig. 1, w.r.t. a CRHF H.

Theorem 4 (Kilian’s protocol). If (P, V) is a PCIP and H is a CRHF family,
then Construction 3 is a computationally sound argument system with negligible
soundness error, communication complexity poly(λ, log|x|). The verifier runs in
time O(|x| · poly(λ, log|x|)) and the prover runs in time poly(|x|, |w|, λ).

On the (In)security of Kilian-Based SNARGs 537

Protocol 1: Kilian’s protocol
Common input: x, 1λ

Prover’s auxiliary input: w
1 V ′ generates a hash function h ← H(λ) and sends h to P ′.
2 for j = 1, ..., k do
3 P ′ sends comj = MerkleCom(h, πj), where πj is the message sent by P in

(P(x, w, 1λ), V(x, 1λ)) on the j-th round.
4 V ′ sends rj , where rj is the message sent by V on the j-th round of

(P(x, w, 1λ), V(x, 1λ)).
5 P ′ sends openj to V ′ where openj = MerkleOpen(h, πj , Qj), where Qj is

the set of queries generated by V on round j with randomness rj .
6 V ′ computes vj ∈ {0, 1} where vj = MerkleVer(h, comj , openj).
7 end

8 V ′ accepts if and only if
∧
j

vj = 1 and V(x,
{
bi1
1

}
i1

, ...,
{

b
ik
k

}
ik

) = 1, where
{

b
ij
j

}
ij

is the set result of the queries revealed in openj .

Fig. 1. Kilian’s protocol

Completeness follows from the correctness of the Merkle tree commitment
scheme and the completeness of the PCIP for L.

Soundness follows from the binding property of the commitment scheme and
the soundness of the PCP. Note that the soundness of the PCIP was not enough
on its own, as without committing to the PCIP proof strings, the prover could
have engineered proof strings to make the verifier accept according to its queries.

2.3 Fiat-Shamir

The Fiat-Shamir Heuristic. The Fiat-Shamir heuristic [FS86] is a method
for reducing the number of rounds in public-coin interactive proofs. Loosely
speaking, the idea is that instead of having the verifier send their random coins,
the prover uses a hash function in order to generate the verifier’s randomness.

Definition 5 (Fiat-Shamir transform). Let HFS=
{

H(λ)
FS : {0, 1}∗→{0, 1}∗

}

λ∈N

be a hash-function ensemble, Π = (P,V) be a public-coin protocol, and

(α1, β1, ..., αm, βm)

be the set of exchanged messages between (P,V), where {αi}m
i=1 are messages

sent by the prover and {βi}m
i=1 the messages sent by the verifier. The Fiat-Shamir

transform of Π, denoted by (PFS,VFS) = FS[Π,HFS] is defined in Fig. 2.

The FSKM Protocol. The FSKM protocol is obtained by applying the Fiat-
Shamir transform to Kilian’s protocol (or rather to its extension to PCIPs), to
create succinct non-interactive argument systems for NP.

538 J. Bartusek et al.

Protocol 2: Fiat-Shamir transform
Common input: x, 1λ

Prover’s auxiliary input: w
1 VFS generates a key hFS ← H(λ)

FS and sends it to PFS.
2 PFS sends the following, all in a single message

α1, β1 = hFS(τ1), α2, β2 = hFS(τ2), ..., αm, βm = hFS(τm)

where τi = (α1‖β1‖...‖αi) is the transcript thus far.
3 VFS checks that ∀i ∈ [m] : βi = hFS(τi), and accepts iff V(x, α1, β1, ..., αm, βm)

accepts.

Fig. 2. The Fiat-Shamir transform.

Recall that the FSKM protocol emulates Kilian’s protocol, and replaces the
verifier’s randomness with the application of a FS hash function on the transcript
thus far. Regardless of whether it is applied on a PCP or PCIP, the FSKM protocol
is a two-round argument system.

Definition 6 (FSKM Protocol). Given a PCIP Π, a CRHF ensemble HCRHF,
and FS hash function ensemble HFS, we define

FSKM[Π,HCRHF,HFS] � FS
[

Kilian
[

Π,HCRHF

]

,HFS

]

.

3 An FSKM-Incompatible CRHF

In this section, we obtain our first main result by constructing a specific CRHF
family ˜HCRHF, for which, loosely speaking, FSKM is not sound. Our CRHF will
make use of a publicly-verifiable succinct non-interactive argument of knowledge
(pv-SNARK) with an additional “unique proofs” property that we formalize in
Sect. 3.1. For completeness, we start by providing some background on SNARKs.

3.1 Background on SNARKs

We first define the universal relation [BG08] relative to random-access machines.

Definition 7 (Universal Relation). The universal relation is the set RU of
instance-witness pairs (y, w) =

(

(〈M〉, x, t
)

, w
)

, where |y|, |w| ≤ t and 〈M〉 is
the description of a random-access machine M , such that M accepts (x,w) after
at most t steps. We denote by LU the universal language corresponding to RU .

We next define publicly-verifiable succinct non-interactive arguments of
knowledge (pv-SNARKs), following [BCCT13]. The following definition is taken
verbatim from Bitansky et al. [BCCT13], and for more in-depth discussion on
SNARKs we refer the reader to [BCCT13].

On the (In)security of Kilian-Based SNARGs 539

Definition 8. (pv-SNARKs). A triple of algorithms (G,P,V), where G is prob-
abilistic and V is deterministic, is a fully-succinct pv-SNARK if the following
conditions are satisfied:

– Completeness : For every large enough security parameter λ ∈ N, every time
bound B ∈ N, and every instance-witness pair (y, w) = ((〈M〉, x, t), w) ∈ RU
with t ≤ B,

Pr
[

V(crs, y, π) = 1 : crs ← G(1λ, B)
π ← P(crs, y, w)

]

= 1.

– Adaptive Proof of Knowledge : For every polynomial-sized prover P∗

there exists a polynomial-sized extractor EP∗ such that for every auxiliary
input z ∈ {0, 1}poly(λ), every time bound B ∈ N,

Pr

⎡

⎣

V(crs, y, π) = 1
(y, w) /∈ RU

:
crs ← G(1λ, B)

(y, π) ← P∗(z, crs)
w ← EP∗(z, crs)

⎤

⎦ ≤ negl(λ),

– Efficiency : There exists a universal polynomial p such that for every large
enough security parameter λ ∈ N, and t ≤ λlog(λ),

• the generator G(1λ) runs in time p(λ),
• the prover P(crs, y, w) runs in time p(λ + |M | + |x| + t),
• the verifier V(crs, y, π) runs in time p(λ + |M | + |x|),
• and an honestly generated proof has size p(λ).

Computationally Unique SNARK. In this work we introduce a new security
property of SNARKs which we refer to as computationally unique proofs (which
can be thought of as a particular computational variant of unambiguous proofs
[RRR16a]). The requirement here is that if a computationally bounded prover
P can generate two valid proofs π1 �= π2 for the same instance y, it must be
possible to extract from P two distinct witnesses w1 �= w2 for y.

Definition 9. (SNARKs with computationally unique proofs). A SNARK
with computationally unique proofs is defined as in Definition 8, but with one
additional requirement:

– Computationally Unique Proofs : For every polynomial-sized adversary
A∗, there exists a polynomial-sized “extractor” EA∗ such that for every aux-
iliary input z ∈ {0, 1}poly(k), every time bound B ∈ N,

Pr

⎡

⎢

⎢

⎢

⎢

⎣

V(crs, y, π1) = 1
V(crs, y, π2) = 1

π1 �= π2

(y, w1) /∈ RU ∨ (y, w2) /∈ RU
∨w1 = w2

:
crs ← G(1λ, B)

(y, π1, π2) ← A∗(z, crs)
(w1, w2) ← EA∗(z, crs)

⎤

⎥

⎥

⎥

⎥

⎦

≤ negl(λ).

In the full version [BBH+19], we prove that a preprocessing pv-SNARK con-
structed in Bitansky et al. [BCI+13] from a knowledge of exponent assump-
tion satisfies our notion of computationally unique proofs. We then show that

540 J. Bartusek et al.

the generic transformation of [BCCT13] from a preprocessing pv-SNARK to
fully-succinct pv-SNARK maintains the computationally unique proofs property.
Thus, we obtain a fully-succinct pv-SNARK with computationally unique proofs
from a knowledge of exponent assumption (and additionally the existence of
exponentially-secure one-way functions to address a subtlety in the definition of
adaptive proof of knowledge).

3.2 An FSKM-Incompatible CRHF

To formally state our result, we first define a trivial PCP-based 2-message
protocol—a protocol that, intuitively, should not be sound. Jumping ahead, at
a high level, our main result shows that there exists a collision-resistant hash
family ˜HCRHF such that for any ΠPCP and any HFS, the corresponding FSKM
protocol is no more secure than the corresponding trivial protocol.

The first message of the trivial protocol will be a random string r drawn
from some distribution S, which will serve as VPCP’s randomness. The prover
takes r as input and outputs a PCP proof π that will be then verified by VPCP

using randomness r. Intuitively, since a cheating prover is aware of the verifier’s
randomness, it can answer queries adaptively, so we do not expect the trivial
protocol to be sound.

Suppose we have some PCP ΠPCP = (PPCP,VPCP). It will be convenient for
us to split the verifier VPCP into two algorithms: V(0)

PCP (which outputs the set of
query locations) and V(1)

PCP (which decides whether or not to accept after seeing
the prover responses).

Construction 5. (Trivial Protocol). Let Trivial[ΠPCP,S] = (PTrivial,VTrivial) be
the following 2-message protocol, for some PCP ΠPCP = (PPCP,V(0)

PCP,V(1)
PCP) for

a language L, and some sampling algorithm S. The verifier VTrivial generates
a random string r from S and sends r to the prover. The prover PTrivial, on
input (x,w, r) for x ∈ L runs V(0)

PCP(x; r) to obtain a set of query locations {qi}i.
PTrivial then computes bi ← PPCP(x,w, qi) for each i and sends {bi} to the verifier
VTrivial. The verifier VTrivial computes V(0)

PCP(x; r) = {qi}i and accepts if and only
if V(1)

PCP

(

x, {(qi, bi)}i; r
)

accepts.

In what follows, we will sometimes view S as an algorithm that explicitly
takes its randomness u as input, and outputs r = S(u).

For non-contrived choices of a PCP and sampling algorithm we do not expect
Construction 5 to be sound. For example, consider H̊astad’s PCP [H̊as01] in
which the verifier queries 3 bits of the proof and checks whether their parity is
some known fixed value b. Soundness of the trivial protocol can now be violated
by having the prover send the answers (0, 0, b).4

4 Note that H̊astad’s PCP only has constant soundness. Nevertheless, the attack can
be generalized to the sequential repetition of H̊astad’s PCP as long as the sampler
S generates random query sets.

On the (In)security of Kilian-Based SNARGs 541

Recall (see Line 3) that FSKM[ΠPCP,HCRHF,HFS] denotes the 2-message
argument that results from applying the Fiat-Shamir transform with hash func-
tion ensemble HFS to Kilian[ΠPCP,HCRHF].

The main theorem of this section is the following.

Theorem 6. Assume the existence of a fully-succinct pv-SNARK with compu-
tationally unique proofs, where honestly generated proofs have size at most p(λ),
and collision resistant hash functions. Define m := 2λ · p(λ). Then, there exists
a collision resistant hash family ˜HCRHF =

{

˜H(λ)
CRHF : {0, 1}2m → {0, 1}m

}

λ∈N

such that for any PCP ΠPCP = (PPCP,VPCP) with proof length at most 2λ, and
any hash function ensemble HFS, if FSKM[ΠPCP, ˜HCRHF,HFS] is computationally
sound, then Trivial[ΠPCP,HFS] is computationally sound.

We believe that for natural choices of PCPs, the trivial protocol will not be
sound which, by Theorem 6, means that the corresponding FSKM protocol is not
sound. However, actually proving that the trivial protocol is not sound seems to
be difficult in case the sampling algorithm generates a peculiar distribution of
random strings.5

Nevertheless, we can exhibit a specific (trivial) PCP for which the trivial pro-
tocol is provably not sound. The immediate implication is that for every FS hash
function, there exists a PCP and a bounded size CRHF for which soundness of
the corresponding FSKM is violated. This is formalized in the following corollary.

Corollary 1. Assume the existence of a fully-succinct pv-SNARK with compu-
tationally unique proofs. There exists a language L ∈ NP, a PCP for L (with
polylog(λ) query complexity) and a fixed polynomial p(·) such that for all effi-
ciently computable hash function ensembles HFS, there exists a CRHF ensem-
ble HCRHF =

{

H(λ)
CRHF : {0, 1}2s(λ) → {0, 1}s(λ)

}

λ∈N

with s(λ) ≤ p(λ), such that

FSKM[ΠPCP,HCRHF,HFS] is not sound.

We first prove Corollary 1 and then go back to the main part—proving
Theorem 6.

Proof of Corollary 1. We exhibit a contrived PCP Π∅ for the empty language for
which the statement holds. Specifically, consider a PCP verifier that samples at
random r ∈ {0, 1}log2(λ) and checks whether the log2(λ)-long prefix of the proof
is exactly equal to r (by making log2(λ) queries).

Completeness holds vacuously, and this PCP is sound since the proof must
be specified before r was sampled. However, the protocol Trivial[Π∅,HFS] for any
sampler HFS is clearly not sound, since the cheating prover receives the verifier
randomness r as input and simply returns r as its proof. ��

5 One would assume that a random choice of FS hash function from the collection
would produce a uniformly random string for the verifier. However, since we want
to deal with arbitrary candidate FS hash functions, we cannot assume that this is
the case.

542 J. Bartusek et al.

In the full version [BBH+19], we actually give a secure instantiation of FSKM
for a variant of the PCP Π∅ that was used to prove Corollary 2. This does
not contradict our impossibility, which only rules out security of FSKM with
a generic CRHF. In particular, our instantiation requires the collision-resistant
hash function to also be somewhere statistically binding [HW15a]. Unfortunately,
we do not know how to instantiate the FSKM protocol to construct an argument
scheme for a non-trivial language.

The remainder of this section will be devoted to a proof of Theorem 6. As
described in Sect. 1.4, our strategy centers on a carefully-designed hash function
family ˜HCRHF, built using two CRHFs and a fully-succinct pv-SNARK with com-
putationally unique proofs (Definition 9). The result then follows immediately
from combining Lemma 1, which states that ˜HCRHF is a CRHF family, and Lemma
2, which establishes the soundness implication.

3.3 CRHF Construction

Throughout this construction we will use the notation from the statement
of Theorem 6; recall that p(λ) is a bound on the proof size of our pv-SNARK,
m := 2λ · p(λ), and c > 0 is an arbitrary constant independent of p(λ).

We prove Theorem 6 by carefully constructing a CRHF family ˜HCRHF =
{ ˜H(λ)

CRHF : {0, 1}2m → {0, 1}m}λ∈N. Our construction requires the following:

– A fully-succinct pv-SNARK S = (G,P,V) with computationally unique proofs
(Definition 9), where honestly generated proofs have size exactly p(λ)
(assume that shorter proofs are appropriately padded with zeros).

– A CRHF family Hrt = {H(λ)
rt : {0, 1}∗ → {0, 1}m/2−λ−log(λ)−2}λ∈N.

– A CRHF family Htree = {H(λ)
tree : {0, 1}2m → {0, 1}m−2}λ∈N.

3.4 CRHF Key Generation

We sample a hash function ˜hCRHF ← ˜H(λ)
CRHF as follows.

1. Sample uniformly random $rt ← {0, 1}m.
– Let prert denote the first two bits of $rt.
– Define pretree := prert ⊕ 10 and prepath := prert ⊕ 01.

2. Sample uniformly random $path ← {0, 1}λ.
3. Sample hrt ← H(λ)

rt and htree ← H(λ)
tree.

4. Define h′
tree : {0, 1}2m → {0, 1}m such that h′

tree(x) = (pretree‖htree(x)).
5. Sample crs ← G(1λ).
6. For each j ∈ [λ], compute com

(zero)
j = MerkleCom(h′

tree, 0
m·2j

).
7. Output

($rt, $path, pretree, prepath, hrt, h
′
tree, crs, {com(zero)

j }j∈[λ]),

as the description (hash key) of ˜hCRHF.

CRHF Evaluation. Before we describe how to compute ˜hCRHF(x), we need to
introduce some specialized notation and definitions.

On the (In)security of Kilian-Based SNARGs 543

Notation. We will assume without loss of generality that m = 2m′
is a power

of 2, and that the PCP ΠPCP in fact has proof length bounded by 2λ − m.
Throughout, {(qi, bi)}i will denote a set of (index, bit) pairs (representing PCP
query/response pairs) where for each i, qi ∈ [2λ −m] and bi ∈ {0, 1}. We assume
without loss of generality that no index appears more than once.

For any set {(qi, bi)}i satisfying these conditions, we let π{(qi,bi)}i denote the
length 2λ − m bitstring defined bit-wise for each j ∈ [2λ − m] as:

(π{(qi,bi)}i)j :=

{

b if (j, b) ∈ {(qi, bi)}i,

0 else.

In other words, π{(qi,bi)}i is a PCP proof string that consists of the responses
in {(qi, bi)}i and 0s everywhere else.

We divide π{(qi,bi)}i into 2λ−m′ − 1 words 	k of m = 2m′
bits each, i.e.

π{(qi,bi)}i = (1‖	2‖ . . . ‖	2λ−m′ −1), where each word 	k is in {0, 1}m. Next, group
the words as follows. The first 2λ−m′−1 words will form the first block L1, the
next 2λ−m′−2 words will form the second block L2, and so on until the last block
only consists of only 1 word. We can now write π{(qi,bi)}i as
(

L1

∣

∣

∣

∣

∣

∣ . . .
∣

∣

∣

∣

∣

∣Lλ−m′
)

:=
(

(1‖ . . . ‖	2λ−m′−1)
∣

∣

∣

∣

∣

∣

(

	2λ−m′−1+1‖ . . . ‖	2λ−m′−1+2λ−m′−2

)

∣

∣

∣

∣

∣

∣ . . .
∣

∣

∣

∣

∣

∣

(

	2λ−m′ −1

)

)

,

where the jth block Lj is exactly twice the length of the (j + 1)th block Lj+1.
We define the helper functions t(q) and s(q) for any q ∈ [2λ − m] so that the

qth bit in π{(qi,bi)}i is the t(q)th bit in block Ls(q).
Now define

– block-com(h′
tree, {(qi, bi)}i, j) := MerkleCom(h′

tree, Lj), and
– block-open(h′

tree, {(qi, bi)}i, i) := MerkleOpen(h′
tree, Ls(qi), t(qi)).

Note that given {com(zero)
j }j∈[λ], if |{(qi, bi)}i| = poly(λ), it is easy to compute

block-com(h′
tree, {(qi, bi)}i, j) and block-open(h′

tree, {(qi, bi)}i, i) in time poly(λ).

Language. We also define a language L$rt,hrt,h′
tree

based on $rt, hrt, and h′
tree (all

given in the CRHF description ˜hCRHF). Throughout, we use bitλ(j) to denote the
log(λ)-bit binary representation of an integer j.

L$rt,hrt,h′
tree

will be defined by relation R$rt,hrt,h′
tree

, which consists of all
(instance, witness) pairs of the form

(

(α‖bitλ(j)‖sib), (〈hFS〉‖〈ATrivial〉‖〈VPCP〉)
)

,

which satisfy all of the following conditions:

1. 〈hFS〉 and 〈ATrivial〉 can be parsed as descriptions of the (deterministic) circuits
hFS and ATrivial. When used in the proof of Lemma 1, hFS will correspond to
the Fiat-Shamir hash function hFS ← HFS, and ATrivial will correspond to the
adversary breaking the soundness of Trivial[ΠPCP,HFS].

544 J. Bartusek et al.

2. 〈VPCP〉 can be parsed as the description of a two-part PCP verifier V(0)
PCP,V(1)

PCP,
where V(0)

PCP outputs a set of query locations, and V(1)
PCP takes the query

responses and outputs a bit indicating accept/reject (see the discussion in
Sect. 2.1).

3. α = hrt

(〈hFS〉‖〈ATrivial〉‖〈VPCP〉).
4. sib = block-com(h′

tree, {(qi, bi)}i, j) where j is the integer represented by
bitλ(j), and for

r := hFS(rt) where rt := $rt ⊕ (0λ+log(λ)+2‖α‖0m/2),

{(qi, bi)}i satisfies the requirements
– ATrivial

(

r) = x, {bi}i,
– V(0)

PCP(x; r) = {qi}i,
– V(1)

PCP(x, {bi}i; r) = 1.

Since α is the result of applying the CRHF hrt to the witness, which is
〈hFS〉‖〈ATrivial〉‖〈VPCP〉, an efficient adversary will only be able to find a sin-
gle witness corresponding to any given α. The string α fully determines rt and r,
which also determines {(qi, bi)}i (where {qi} is the set of PCP indices that VPCP

would check when running on randomness r, and {bi}i are the PCP responses
output by ATrivial which cause VPCP to accept). This specifies a unique “cheat-
ing” PCP proof string consisting of 0’s in almost every position, except with
bi’s in indices corresponding to the qi’s. sib then corresponds to the label of the
off-path node at level j for the rightmost root-to-leaf path in the Merkle tree,
and is obtained by applying h′

tree to this cheating PCP proof string.
In the proof of Lemma 2, we will rely on the fact that for any j and any

witness 〈hFS〉‖〈ATrivial〉‖〈VPCP〉, a cheating prover can efficiently compute α, sib
such that ((α‖bitλ(j)‖sib), (〈hFS〉‖〈ATrivial〉‖〈VPCP〉)) is in the relation (by simply
applying hFS,ATrivial,V(0)

PCP, h′
tree in the specified way). In the proof of Lemma 1,

we use the fact that for each (α, j) pair, an efficient adversary can only find
one (sib, w) pair such that ((α‖bitλ(j)‖sib), w) is in the relation (due to the
collision-resistance of hrt).

Hash Computation. Parse input x ∈ {0, 1}2m as
(

sib
∣

∣

∣

∣

∣

∣ (pre‖$‖bitλ(j)‖α)
∣

∣

∣

∣

∣

∣ (π1‖ . . . ‖πj‖z)
)

,

where

– sib ∈ {0, 1}m,
– (pre‖$‖bitλ(j)‖α) ∈ {0, 1}m/2 (pre ∈ {0, 1}2, $ ∈ {0, 1}λ, bitλ(j) ∈

{0, 1}log(λ), and α ∈ {0, 1}m/2−λ−log(λ)−2),
– and (π1‖ . . . ‖πj‖z) ∈ {0, 1}m/2 (πi ∈ {0, 1}p(λ) and z ∈ {0, 1}m/2−jp(λ)).

If pre = prepath, $ = $path, and z = 0m/2−jp(λ), run the SNARK verifier for
language L$rt,hrt,h′

tree
on (τ, (α‖bitλ(j)‖sib), πj). If j ≥ 1 and the verifier accepts,

then

On the (In)security of Kilian-Based SNARGs 545

– if j ≥ 2, output
(

(prepath‖$path‖bitλ(j − 1)‖α)
∣

∣

∣

∣

∣

∣ (π1‖ . . . ‖πj−1‖0m/2−(j−1)p(λ))
)

∈ {0, 1}m,

– and if j = 1, output
(

$rt ⊕ (0λ+log(λ)+2‖α‖0m/2)
)

∈ {0, 1}m.

Otherwise, if the input does not parse as above, or the verifier does not accept,
output h′

tree(x).

3.5 Proof of Theorem 6

The proof follows easily from these two lemmas, both of which are proven in the
full version [BBH+19].

Lemma 1. Assuming Hrt and Htree are CRHF families and that S = (G,P,V)
is a fully-succinct SNARK with computationally unique proofs, then the above
construction of ˜HCRHF is a CRHF family.

Lemma 2. For any PCP ΠPCP = (PPCP,VPCP) and HFS, if Trivial[ΠPCP,HFS] is
not sound, then FSKM[ΠPCP, ˜HCRHF,HFS] is not sound.

4 An FSKM-Incompatible PCIP

In this section we show that for every language in NP there exists a probabilis-
tically checkable interactive proof such that for every Fiat-Shamir hash function
and every collision-resistant hash function, the resulting FSKM protocol is not
sound.

Theorem 7. Let L ∈ NP. There exists a PCIP Π for L with negligible soundness
error such that for every collision resistant hash function family HCRHF and every
Fiat-Shamir hash function family HFS, the protocol FSKM[Π,HCRHF,HFS] is not
sound.

As a matter of fact, our attack breaks soundness of FSKM[Π,HCRHF,HFS] in
an extremely strong sense—it is a poly(n, λ)-time attack that causes the verifier
to accept any input x /∈ L, with probability 1.

4.1 Proof of Theorem 7

Let L ∈ NP and let HCRHF =
{

H(λ)
CRHF

}

λ
, H(λ)

CRHF =
{

hCRHF : {0, 1}2λ → {0, 1}λ
}

be a collision resistant hash family. The proof will take the following steps.

1. First, we construct a sound PCIP (P,V) for L. The PCIP will be constructed
in a contrived manner (to facilitate the attack in Step 3). This step is done
in Sect. 4.1.

546 J. Bartusek et al.

2. We briefly describe the argument system (PKilian,VKilian) = Kilian[PCIP,HCRHF].
Its soundness follows from [Kil88,BCS16] (since we are instantiating Kilian’s
protocol with a sound PCIP and a CRHF). This step is done in Line 7.

3. For every hash family HFS, we present the protocol FSKM[PCIP,HCRHF,HFS]
and show an attack that causes the verifier to accept every possible input
x �∈ L with probability 1. This last step is done in Line 7.

A Contrived PCIP for L. We next construct our PCIP (P,V) for the language
L. Before doing so, we first set up some tools that we be used in the construction.

Some Useful Ingredients. Since L ∈ NP, by the PCP Theorem (Theorem 1), there
exists a PCP (PL,VL) for L with soundness error εL(λ) = neg(λ), query com-
plexity qL = polylog(λ) and randomness complexity rL = poly(log(n), log(λ)).

Recall that MerkleCom(h, s) is the Merkle tree root generated from s using the
hash function h (see Sect. 2.2). Let C be an efficiently computable and decodable
error correcting code ensemble with constant rate and constant δ0 > 0 relative
distance (for more background on codes and the fact that such codes exist, see
the full version [BBH+19]. We define an auxiliary pair language L′ as follows:

L′ =

⎧

⎨

⎩

(

r, π = C
(〈hCRHF〉‖〈hFS〉

)

)

:
r ∈ {0, 1}λ

,
〈hCRHF〉, 〈hFS〉 are Boolean circuits, and
hFS

(

MerkleCom(hCRHF, (1‖π))
)

= r

⎫

⎬

⎭

In other words, L′ ⊆ {0, 1}∗ ×{0, 1}∗ is a pair language, in which the first part of
the input r is a binary string of length λ (which will be the security parameter
in the upcoming PCIP), and the second part of the input π is an encoding
under C of two Boolean circuits. Jumping ahead, the first circuit hCRHF will
play the part of the CRHF used in Kilian’s protocol, while the circuit hFS will
be the FS hash function. For such (r, π), it holds that (r, π) ∈ L′ if and only if
hFS

(

MerkleCom(hCRHF, (1‖π))
)

= r.
Observe that L′ can be decided by a polynomial time Turing machine (i.e.,

polynomial in the input length |r| + |π|). Therefore, by Theorem 2 there exists
a PCPP proof-system for L′, denoted by (PL′ ,VL′) such that for input (r, π)
and every proximity parameter δ > 0, the soundness error is εL′(λ) = neg(λ),
query complexity qL′ = poly(log(λ), 1

δ) and randomness complexity rL′ =
poly(log(λ), log(t)/δ), where t = |r| + |π|. Furthermore, the prover PL′ runs
in time poly(t, log(λ)), and VL′ runs in time poly(log(t), log(λ), 1

δ).

PCIP for L. With these tools in hand, we are ready to present the PCIP. Intu-
itively (and as hinted on in Sect. 1.4), the verifier V will accept input x in one of
two possible scenarios: The first scenario (denoted by having the prover initially
send a bit b = 0), is that the prover provides V with an honest PCP proof for
x ∈ L, thus allowing the honest prover P to convince the verifier with probability
1. The second scenario (denoted by having the prover send b = 1), is that the
prover manages to pass the following test (which will act as a backdoor once we
compile the PCIP with FSKM):

On the (In)security of Kilian-Based SNARGs 547

The prover P is required to send a description of a Fiat-Shamir hash function
hFS which manages to accurately predict r1, the random coins of V, which have
yet to be sampled. A cheating PCIP prover has 2−|r1| = negl(λ) probability of
passing the challenge.

In contrast, once the FSKM transform is applied, the challenge becomes easy
to beat. A malicious prover will simply commit to the FS hash function provided
by the verifier, as described in the FSKM transform. Therefore, the malicious
prover will be able to predict the randomness of the verifier, thus passing the
test.

In order to make the number of queries by V polylogarithmic in λ, we shall
have the prover send its messages via an error-correcting code and run a PCPP
checking that the verifier would have accepted had it explicitly read all of π1.

The PCIP (P,V) is formally described in Fig. 3. In the protocol we use the
convention that messages received by the verifier from the prover, which might
be maliciously crafted, are denoted with a tilde.

Protocol 3: PCIP for L ∈ NP

Common input: Input x ∈ {0, 1}n and security parameter 1λ

Prover’s auxiliary input: Witness w
1 P sends (b‖π1), where b = 0 and π1 = PL(x, w) is the PCP proof.
2 V receives (b̃‖π̃1), where b̃ ∈ {0, 1}. If b̃ = 0, V generates r1 ∈R {0, 1}rL (i.e.,

randomness for the PCP verifier VL). Otherwise, (i.e., b = 1) V chooses
uniformly r1 ∈R {0, 1}λ.

3 V sends r1 to P.
4 P sends an empty string π2.
5 V receives the string π̃2.
6 If b = 0, then V runs V π̃1

L (x, 1λ), and accepts iff VL accepted.
7 Otherwise, (i.e., b = 1) the verifier V runs V π̃1,π̃2

L′ r1, 1λ, δ0/2
)
, where π̃1 is

used as the implicit input, π̃2 is used as the proof, and δ0/2 is the proximity
parameter. The verifier V accepts iff VL′ accepted.

Fig. 3. (P, V) a PCIP for L.

We emphasize that while the honest prover always sends b = 0 and π2 as
the empty string, a cheating prover might not. Indeed, we added the possibility
of sending different values here as a kind of backdoor. As we shall show, this
backdoor does not violate the soundness of (P,V) as a PCIP (see Lemma 3) but
completely breaks the soundness of the construction after applying Kilian and
Fiat-Shamir (see Corollary 2).

Lemma 3. The protocol (P,V) is a PCIP for L with negligible soundness error.

A proof of this can be found in the full version [BBH+19].

548 J. Bartusek et al.

Applying Kilian’s Protocol to (P,V). As our next step (the second step
in the outline), we consider the protocol (PKilian,VKilian) resulting from applying
Kilian’s protocol to the PCIP (P,V).

Ben-Sasson et al. [BCS16] showed that applying Kilian’s protocol to any
sound PCIP results in a sound interactive argument. Thus, we obtain the follow-
ing result as an immediate corollary of Lemma 3:

Corollary 2. The argument system (PKilian,VKilian) has negligible soundness
error.

Attack on Fiat-Shamir of (PKilian,VKilian). Lastly, consider (PFS,VFS), the
result of applying Fiat-Shamir to the previous protocol for hash function ensem-
ble HFS =

{

H(λ)
FS

}

λ
.

Lemma 4. There exists a malicious prover P∗ such that for every input x ∈
{0, 1}n and security parameter λ, it holds that P∗ runs in time poly(n, λ) and

Pr
[〈P∗(x, 1λ) ↔ VFS(x, 1λ)〉 = 1

]

= 1.

A proof of this can be found in the full version [BBH+19].

Acknowledgements. We thank the anonymous TCC 2019 reviewers for useful
comments.

References

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof veri-
fication and the hardness of approximation problems. J. ACM (JACM)
45(3), 501–555 (1998)

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS
(2001)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In:
2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Com-
puter Society Press, May 2018

[BBC+17] Ben-Sasson, E., et al.: Computational integrity with a public random
string from quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10212, pp. 551–579. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 19

[BBH+19] Bartusek, J., Bronfman, L., Holmgren, J., Ma, F., Rothblum, R.D.:
On the (in)security of kilian-basen snargs. Cryptology ePrint Archive,
Report 2019/997 (2019. https://eprint.iacr.org/2018/997

[BBHR18a] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon
interactive oracle proofs of proximity. In: 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, Prague,
Czech Republic, 9–13 July 2018, pp. 14:1–14:17 (2018)

[BBHR18b] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. IACR Cryptology
ePrint Archive 2018, 46 (2018)

https://doi.org/10.1007/978-3-319-56617-7_19
https://eprint.iacr.org/2018/997

On the (In)security of Kilian-Based SNARGs 549

[BCC+17] Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–
1066 (2017)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120.
ACM Press, June 2013

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct
non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36594-2 18

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A:. On the existence of
extractable one-way functions. In: Shmoys, D.B. (eds.) 46th ACM STOC,
pp. 505–514. ACM Press, May/June 2014

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In:
Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 2

[BG08] Barak, B., Goldreich, O.: Universal arguments and their applications.
SIAM J. Comput. 38(5), 1661–1694 (2008)

[BGG17] Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for con-
structing the public parameters of the pinocchio zk-SNARK. Cryptology
ePrint Archive, Report 2017/602 (2017). http://eprint.iacr.org/2017/602

[BGH+05] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short
PCPs verifiable in polylogarithmic time. In: 20th Annual IEEE Confer-
ence on Computational Complexity (CCC 2005), San Jose, CA, USA,
11–15 June 2005, pp. 120–134 (2005)

[BGH+06] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.:
Robust PCPs of proximity, shorter PCPs, and applications to coding.
SIAM J. Comput. 36(4), 889–974 (2006)

[BGM17] Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for
zk-SNARK parameters in the random beacon model. Cryptology ePrint
Archive, Report 2017/1050 (2017). http://eprint.iacr.org/2017/1050

[BR94] Bellare, M., Rogaway, P.: Entity authentication and key distribution.
In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 21

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory (2019)
[CCRR18] Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and cor-

relation intractability from strong KDM-secure encryption. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–
122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-
9 4

[CFH+15] Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015
IEEE Symposium on Security and Privacy, pp. 253–270. IEEE Computer
Society Press, May 2015

[DR06] Dinur, I., Reingold, O.: Assignment testers: towards a combinatorial
proof of the PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006)

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
http://eprint.iacr.org/2017/602
http://eprint.iacr.org/2017/1050
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-319-78381-9_4

550 J. Bartusek et al.

[FFG+16] Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno,
B.: Hash first, argue later: adaptive verifiable computations on out-
sourced data. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1304–1316. ACM Press,
October 2016

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir
paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press,
October 2003

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 11

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments
from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd
ACM STOC, pp. 99–108. ACM Press, June 2011

[H̊as01] H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–
859 (2001)

[HL18] Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-
way functions (or: one-way product functions and their applications).
In: Thorup, M. (eds.) 59th FOCS, pp. 850–858. IEEE Computer Society
Press, October 2018

[HR04] Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure
hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-28628-8 6

[HW15a] Hubacek, P., Wichs, D.: On the communication complexity of secure
function evaluation with long output. In: Roughgarden, T. (eds.) ITCS
2015, pp. 163–172. ACM, January 2015

[HW15b] Hub’avcek, P., Wichs, D.: On the communication complexity of secure
function evaluation with long output. In: Proceedings of the 2015 Con-
ference on Innovations in Theoretical Computer Science, ITCS 2015,
Rehovot, Israel, 11–13 January 2015, pp. 163–172 (2015)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, Chicago,
Illinois, USA, 2–4 May 1988, pp. 20–31 (1988)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press,
May 1992

[KRR17] Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to
the security of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 8

[Mau05] Maurer, U.: Abstract models of computation in cryptography. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 1

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/11586821_1

On the (In)security of Kilian-Based SNARGs 551

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete
logarithm. Math. Notes 55(2), 165–172 (1994)

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In:
Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 33

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from
(plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 4

[RRR16a] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interac-
tive proofs for delegating computation. In: Wichs, D., Mansour, Y. (eds.)
48th ACM STOC, pp. 49–62. ACM Press, June 2016

[RRR16b] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round inter-
active proofs for delegating computation. In: STOC, pp. 49–62. ACM
(2016)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/3-540-69053-0_18

Incrementally Verifiable Computation
via Incremental PCPs

Moni Naor1(B), Omer Paneth2, and Guy N. Rothblum1

1 Weizmann Institute of Science, Rehovot, Israel
moni.naor@weizmann.ac.il, rothblum@alum.mit.edu
2 MIT and Northeastern University, Cambridge, USA

omerpa@mit.edu

Abstract. If I commission a long computation, how can I check that the
result is correct without re-doing the computation myself? This is the
question that efficient verifiable computation deals with. In this work,
we address the issue of verifying the computation as it unfolds. That is,
at any intermediate point in the computation, I would like to see a proof
that the current state is correct. Ideally, these proofs should be short,
non-interactive, and easy to verify. In addition, the proof at each step
should be generated efficiently by updating the previous proof, without
recomputing the entire proof from scratch. This notion, known as incre-
mentally verifiable computation, was introduced by Valiant [TCC 08]
about a decade ago. Existing solutions follow the approach of recursive
proof composition and can be based on strong and non-falsifiable cryp-
tographic assumptions (so-called “knowledge assumptions”).

In this work, we present a new framework for constructing incremen-
tally verifiable computation schemes in both the publicly verifiable and
designated-verifier settings. Our designated-verifier scheme is based on
somewhat homomorphic encryption (which can be based on Learning
with Errors) and our publicly verifiable scheme is based on the notion of
zero-testable homomorphic encryption, which can be constructed from
ideal multi-linear maps [Paneth and Rothblum, TCC 17].

Our framework is anchored around the new notion of a probabilisti-
cally checkable proof (PCP) with incremental local updates. An incre-
mentally updatable PCP proves the correctness of an ongoing computa-
tion, where after each computation step, the value of every symbol can be
updated locally without reading any other symbol. This update results
in a new PCP for the correctness of the next step in the computation.
Our primary technical contribution is constructing such an incrementally

M. Naor—Supported in part by grant from the Israel Science Foundation (no. 950/16).
Incumbent of the Judith Kleeman Professorial Chair.
O. Paneth—Supported by NSF Grants CNS-1413964, CNS-1350619 and CNS-1414119,
and the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
G. N. Rothblum—This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 819702).

c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11892, pp. 552–576, 2019.
https://doi.org/10.1007/978-3-030-36033-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36033-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-36033-7_21

Incrementally Verifiable Computation via Incremental PCPs 553

updatable PCP. We show how to combine updatable PCPs with recently
suggested (ordinary) verifiable computation to obtain our results.

1 Introduction

Efficient verification of complex computations is a foundational question in the
theory of computation. Recent years have seen exciting progress in the study
of this problem, from a rich theory of efficient protocols to concrete implemen-
tations and new application domains. In the verifiable computation paradigm,
the output of a computation is accompanied by a proof of the result’s correct-
ness. The proof should be efficient to construct (not much more expensive than
simply computing the output), and super-efficient to verify (e.g. verification in
nearly-linear time).

Incrementally Verifiable Computation. In this work we revisit the question of
incrementally verifiable computation, introduced by Valiant [Val08] about a
decade ago. To motivate this question, consider the following scenarios:

Intermediate Outputs: Consider a server that executes a long computation for
a client. Even before the entire computation terminates, the client may want
to obtain intermediate outputs or to audit the server’s progress throughout the
computation. This is especially significant in the presence of transient faults that
are hard to detect: suppose that the computation is so long that faults are likely
to occur eventually. Without a methodology for detecting these faults, then the
final output is likely to be wrong.

Transferable Computation: We would like to split a long sequential computa-
tion between different parties such that every party performs a small part of
the computation and passes it on to the next party. Together with the current
state of their computation, parties should include a proof that the computa-
tion was performed correctly, not only in the last step, but in its entirety. As a
compelling example, consider an extremely long computation that would require
all of humanity many generations to complete. We would like every generation
to perform its part, and pass the state of the computation along to the next
generation together with a proof of correctness.

In both examples above we need a correctness proof that can be constructed
incrementally, so that at any intermediate point in the computation, the cur-
rent state can be verified. The process of updating the proof must be fast and
stateless, meaning that, first, the time to update the proof is independent of the
running time of the computation so far and, second, to update the proof we only
need to know the most recent version of the proof and the current state of the
computation.

We restrict our attention to non-interactive protocols for deterministic com-
putations, where both the prover and verifier have access to an honestly gen-
erated common reference string, and where soundness is only required to hold
against computationally bounded adversarial provers. Even without the issue of

554 M. Naor et al.

incremental updates, both of these relaxations are known to be necessary under
standard complexity theoretic assumptions (see Goldreich and H̊astad [GH98]).

In a verifiable computation protocol an honest prover executes a program M
on input y. For every timestep t, let ct denote the state of the program (including
the program’s entire memory) after the first t steps. Given the common reference
string (CRS) the prover constructs a proof Πt for the correctness of the state ct.
For security parameter κ, the verifier takes the CRS, the input y, the state ct

and the proof Πt and decides if to accept the proof in time (|y| + |ct|) · poly(κ),
independently of t. Soundness asserts that, given an honestly generated CRS, no
efficient adversarial prover can find an input y, a time t and an accepting proof
for any state other then ct (except with negligible probability).

A verifiable computation protocol is incrementally updatable if there is an
update procedure that, given the CRS, the state ct and the proof Πt, computes
the proof Πt+1 for the next state in time (|y| + |ct|) · poly(κ).

The State of the Art. Valiant presented an approach for constructing incremen-
tally verifiable computation based on the idea of recursive proof composition.
Very roughly, given a proof Πt for state ct the updated proof Πt+1 for the next
state ct+1 asserts that: (1) there exists a state ct and a proof Πt for timestep t
that are accepted by the verifier, and (2) the computation starting from state
ct transitions to state ct+1. Constructing the proof Πt+1 given ct and Πt may
potentially be fast since Πt+1 only argues about the fast verification algorithm
and one step of the computation.

The challenge in implementing this idea is maintaining soundness. Exist-
ing solutions are based on the strong notion of succinct non-interactive argu-
ments of knowledge for non-deterministic computations also known as SNARKs
[Val08,BCC+17,BCCT13]. Currently such SNARKs are known based on non-
standard non-falsifiable assumptions (so-called “knowledge assumptions”). We
therefore ask:

Is incrementally verifiable computation possible under standard assumptions?

1.1 This Work

In this work we give a new framework for constructing incrementally verifiable
computation. Based on this framework we give new protocols in both the publicly
verifiable and designated-verifier settings.

Designated verifier. In the designated-verifier setting the common reference
string (CRS) is generated together with a secret key. Only a verifier that holds
this secret key can check the proof, and soundness is not guaranteed against
parties who know the secret key. In this setting we prove the following:

Theorem 1.1 (informal). Assuming a somewhat-homomorphic encryption
scheme for computations of poly-logarithmic degree, there exists a designated-
verifier incrementally verifiable computation protocol.

Incrementally Verifiable Computation via Incremental PCPs 555

The protocol is based on the (non-incremental) verifiable computation protocol
of Kalai et al. [KRR14] with the improvements of Brakerski et al. [BHK17].
Their construction can use any computational private information retrieval
(PIR) scheme. To get incremental updates, we rely on the stronger notion of
somewhat-homomorphic encryption. Such encryption schemes are known under
the Learning with Errors assumption (see Brakerski and Vaikuntanathan and
Gentry et al. [BV11,GSW13]).

Public Verification. In a publicly verifiable protocol, the proof can be verified by
anyone who knows the CRS, and there is no secret key. In this setting we prove
the following:

Theorem 1.2 (informal). Assuming a 3-key zero-testable somewhat homo-
morphic encryption scheme with correctness for adversarially-generated cipher-
texts, there exists a publicly verifiable incrementally verifiable computation pro-
tocol.

The protocol is based on the (non-incremental) verifiable computation protocol
of Paneth and Rothblum [PR17] and is proven secure under the same assumption
as their work. We refer the reader to [PR17] for the definition of the required
notion of zero-testable homomorphic encryption. We note, however, that cur-
rently, candidates for such homomorphic encryption are only known based on
(efficiently falsifiable) assumptions about ideal multilinear maps.

Our framework deviates from the recursive proof composition approach.
Instead, our constructions are based on a new type of probabilistically checkable
proof (PCP) with incremental local updates.

Incrementally Updatable PCP. In contrast to the setting of verifiable computa-
tion, known constructions in the PCP model have proofs that are longer than the
computation whose correctness is being proved. Verification, on the other hand,
is performed by querying only a small number of locations in the proof, and in
running time that is nearly-linear in the input length. Moreover, in the PCP
model positive results are known even for non-deterministic computations with
unconditional soundness. PCPs allow us to prove that for a non-deterministic
program M and input y there exists a witness w that will make M reach state
ct after t steps. The proof Πt is a string of size poly(t) over some alphabet Σ
of size polylog(t) (our setting requires a non-binary alphabet) and verification
queries polylog(t) symbols of the proof achieving negligible soundness error.

In this setting, the question of incremental updates is as follows: given the
proof Πt for state ct, and given a state ct+1 that follows ct (for non-deterministic
computations, there may be more than one state that follows ct), we would like
to update Πt and obtain a new proof Πt+1 for ct+1. We cannot hope for the
update time to be independent of t since, given the error-correcting nature of the
proof, every proof symbol must change. Instead we require that every symbol
of the proof can “self-update” quickly. That is, given the i-th symbol of Πt and
the states ct and ct+1 we can compute the i-th symbol of the new proof Πt+1 in
time (|y| + |ct|) · polylog(t).

556 M. Naor et al.

The main technical contribution of this work is a construction of an incre-
mentally updatable PCP. Our construction is based on the classic PCP of Babai,
Fortnow, Levin and Szegedy (BFLS) [BFLS91]. We modify their PCP by con-
sidering a larger alphabet Σ and augmenting every symbol of the original proof
with supplemental values that allow the augmented symbol to self-update.

From PCP to Verifiable Computation, Heuristically. Biehl, Meyer and Wetzel
[BMW98] suggested a heuristic transformation from PCPs to verifiable com-
putation protocols. We refer to their technique as the hidden query heuristic.
Roughly speaking, the idea is to perform the required PCP queries in a manner
that does not allow the prover to figure out the query locations. This idea can
be implemented by placing random PCP queries in the CRS, encoded using a
private information retrieval (PIR) scheme, or, alternatively, encrypted with a
homomorphic encryption scheme (where every query is encrypted under a dif-
ferent key). The prover homomorphically evaluates the PCP answers and sends
the encrypted results as the proof. The (designated) verifier decrypts the results
and checks that the underlying PCP accepts.

We observe that instantiating the hidden query heuristic with a PCP that can
be incrementally updated gives a heuristic incrementally verifiable computation
protocol. To see this, recall that following the hidden query heuristic, the proof
consists of a few PCP symbols encrypted under homomorphic encryption. Since
every one of these symbols can self-update, we can homomorphically evaluate
the PCP update procedure under the encryption and obtain encryptions of the
updated PCP symbols. We note that, while the hidden query heuristic can be
implemented with PIR, getting incrementally verifiable computation requires the
stronger notion of homomorphic encryption which supports “multi-hop” evalu-
ation. This is because we update the proof by homomorphically evaluating the
PCP update procedure over the encrypted PCP answers.

Secure Instantiations. For many years it was not known whether the hidden
query technique can be shown to be sound (see Dwork et al. [DLN+00] for the
obstacles in proving its soundness, as well as [DNR16] and [DHRW16]). However,
recent works give secure instantiations of this heuristic in both the designated-
verifier and the publicly verifiable settings. Next, we discuss these instantiations
and explain how we turn them into incrementally verifiable computation proto-
cols based on our incrementally updatable PCP.

Starting from the designated-verifiable setting, the works of [KRR13,KRR14,
BHK17] prove that the hidden query heuristic is secure, assuming the under-
lying PCP satisfies a strong form of soundness called no-signaling soundness.
Our designated-verifier protocol is based on the no-signaling PCP construction
of Brakerski, Holmgren and Kalai (BHK) [BHK17], which in turn is based on
the PCP of BFLS with several changes that facilitate the proof of no-signaling
soundness. Very roughly, their construction has the following structure:

1. Given a program M , define an augmented program M̃ that emulates M while
encoding each of its states ct with a particular error correcting code.

Incrementally Verifiable Computation via Incremental PCPs 557

2. The honest prover computes the PCP proof for the augmented program M̃ .
This proof is essentially the same as in the PCP of BFLS.

3. The verifier locally tests the PCP proof. These tests differ significantly from
the tests performed by the original BFLS verifier.

To turn this PCP into a verifiable computation protocol, BHK apply the hidden
query technique using any PIR scheme.

To achieve incremental updates, we make the following two changes to the
BHK protocol: first, we modify the prover to compute the PCP proof for M̃
using our incrementally updatable PCP instead of the PCP of BFLS. Recall that
our PCP augments every symbol of the original BFLS proof with supplemental
values. Since these supplemental values are only needed to update the proof,
the verifier can simply ignore them. Other than that, our verifier is the same as
that of BHK. Second, as discussed above, to turn the PCP into an incrementally
verifiable computation protocol we use homomorphic encryption instead of PIR.
We note that in our PCP the answers can be computed by a polynomial of
poly-logarithmic degree and, therefore, somewhat homomorphic encryption is
sufficient [Gen09].

We emphasize that while our honest prover is defined differently, the verifi-
cation procedure of our incrementally verifiable computation is essentially the
same as the one in BHK. Therefore, the soundness of our protocol follows directly
from the analysis in BHK. Indeed, the focus of this work is on showing that the
honest proof can be constructed incrementally. We note that there some minor
differences between the BFLS construction that we use and the one used in
BHK. However, a careful inspection shows that the analysis in BHK can be
easily modified to fit our PCP (see Sect. 2.4 for more detail).

In the publicly verifiable setting, the work of [PR17] gives a verifiable compu-
tation protocol based on the hidden query heuristic. While they do not require
that the PCP satisfies no-signaling soundness, they need a stronger notion of
homomorphic encryption that supports a weak zero-test operation as well as
some additional properties. They show that such encryption can be based on
ideal multi-linear maps. Similarly to the BHK protocol, in [PR17], the honest
prover simply constructs the PCP proof for an augmented program M̃ using
the PCP of BFLS. We modify their protocol to use our incrementally updatable
PCP instead and use the same verification procedure (ignoring any supplemental
values added to the BFLS proof). Therefore, designated-verifiable setting, the
soundness of our protocol follows immediately from the proof analysis of [PR17].

On the Locality of Updates. A natural relaxation of incrementally updatable PCP
would allow for updating of every proof symbol given the values of a small num-
ber of other symbols. PCPs with such local updates may be easier to construct
than PCPs with strictly self-updating symbols. Note, however, that in order to
go from incrementally updatable PCPs to incrementally verifiable computation
following our framework, it is crucial that PCP symbols can self-update. If com-
puting one symbol of the new proof requires the values of even two old symbols,
then the number of symbols we need to maintain under every encryption may
grow exponentially with the number of updates.

558 M. Naor et al.

On Strong Soundness. The focus of this work is on constructing PCPs and
verifiable computation protocols where the honest proof can be computed incre-
mentally. An intriguing question for future research is to design PCPs and ver-
ifiable computation protocols where even an adversarially generated proof can
be updated. That is, if an adversary produces an accepting proof for timestep t,
we can continue updating this proof to get accepting proof for subsequent steps.
This strong soundness guarantee is motivated, for example, by the transferable
computation scenario described above where multiple mutually distrustful par-
ties incrementally construct the correctness proof.

Our PCP construction does not satisfy this stronger guarantee. Very roughly,
the reason is that we augment the standard PCP of BFLS by adding supple-
mental values encoded into every symbol. These supplemental values are crucial
for implementing self-updates, but play no role in the verification of the PCP. In
particular, an adversarially generated proof may consist of a good “core PCP”
that verifies correctly, together with corrupted supplemental values that would
prevent this PCP from updating.

Related Work. In a recent work, Holmgren and Rothblum [HR18] construct
designated-verifier argument systems where the prover’s space and time com-
plexity are very close to the time and space needed to perform the computation.
While their work does not consider or achieve the notion of incrementally updat-
able PCPs, there are technical similarities in the way the two PCP systems are
constructed. Indeed, they consider a related notion where the prover is given
streaming access to the computation’s tableau. In this related model, they can
process additions to the tableau in small amortized time. On a technical level,
we note that they do not limit the space used by the machine, which leads to
significant complications. Further connections between incrementally verifiable
computation and argument systems with very efficient provers were explored in
[Val08,BCCT13].

In a very recent work (subsequent to ours), Kalai, Paneth and Yang [KPY19]
construct a verifiable computation protocol with public verification based on a
falsifiable assumption on bilinear groups. While their protocol also relies on the
hidden query technique, we do not know how to make it incremental based on
our PCP. This is because their protocol also uses a bootstrapping technique (to
go from a long CRS to a short CRS) that significantly complicates the prover’s
strategy.

Future Directions. We leave open the question of constructing incrementally
verifiable computation protocols with strong soundness, where even adversari-
ally generated proofs can be updated as discussed above. Another interesting
direction is to explore alternative approaches to incrementally verifiable compu-
tation based on standard assumptions. One potential path towards this goal is
to implement Valiant’s idea of recursive proof composition, replacing knowledge
assumptions with the recent bootstrapping technique of [KPY19]. We emphasize
that the approach proposed in this work is not based on recursive proof compo-
sition. In particular, our solution can also be applied in the designated-verifier
setting, based on the Learning with Errors assumption.

Incrementally Verifiable Computation via Incremental PCPs 559

2 Technical Overview

Next we describe our construction of an incrementally updatable PCP. We start
by recalling the PCP of BFLS. In Sect. 2.2 we describe our PCP proof string
and in Sect. 2.3 we explain how to update it.

2.1 The BFLS Construction

Our construction builds on the PCP of BFLS [BFLS91]. We recall some of the
details of that construction.

Setup. For a non-deterministic polynomial-time Turing machine M and input
y ∈ {0, 1}n we construct a proof for the fact that there exists a witness that
makes M accepts y. As we know from the Cook-Levin Theorem, it is possible to
represent M ’s computation on an input y by a Boolean 3CNF formula φy over
N = poly(n) variables such that φy is satisfiable if and only if there exists a
witness that makes M accept y. Let F be a field of size Θ(log2 N) and let H ⊂ F

be a subset of size log(N). We set u ∈ N such that |H|u = N and index the
variables of φy by vectors in H

u. Given a witness that makes M accept y we can
compute an assignment X : Hu → {0, 1} that satisfies φy.

Arithmetization. The first part of the PCP proof contains the assignment X
represented as a multi-variate polynomial X̃ : Fu → F of degree at most (|H|−1)
in each variable, that identifies with X on H

u. We also describe the formula
φy algebraically as polynomial ϕy : F� → F over � = 3(u + 1) variables, with
individual degree polylog(N). For every 3 variables h1,h2,h3 ∈ H

u and 3 bits
b1, b2, b3 ∈ {0, 1}, if the formula φy contains the clause:

(X(h1) = b1) ∨ (X(h2) = b2) ∨ (X(h3) = b3),

then the polynomial ϕy evaluates to 1 on (h1,h2,h3, b1, b2, b3). Otherwise, ϕy

evaluates to 0. The polynomial ϕy can be computed by an arithmetic circuit of
size polylog(N) + O(|y|).

The Consistency Check Polynomial. The proof contains a consistency check
polynomial Q0 : F

� → F. For every 3 variables h1,h2,h3 ∈ H
u and 3

bits b1, b2, b3 ∈ {0, 1} the polynomial Q0 evaluates to a non-zero value on
(h1,h2,h3, b1, b2, b3) if only if the formula φy contains the clause defined by
(h1,h2,h3, b1, b2, b3) and this clause is not satisfied by the assigned values
X(h1),X(h3),X(h3). It follows that Q0 vanishes on H

� if and only if the assign-
ment X satisfies φy (which implies that there exists a witness that makes M
accept y). The polynomial Q0 is defined as follows:

Q0 (h1,h2,h3, b1, b2, b3) = ϕy (h1,h2,h3, b1, b2, b3) ·
∏

i∈[3]

(
X̃ (hi) − bi

)
.

560 M. Naor et al.

The Sum-Check Polynomials. To allow the verifier to check that Q0 vanishes on
H

� (and, therefore, M accepts y), the proof contains “sum-check polynomials”
Q1, . . . , Q� : F� → F. The j-th polynomial in this sequence is a low-degree exten-
sion of Q0 in its first j variables. In particular, for 0 < j ≤ �, the polynomial Qj

is defined as:

Qj (y1, . . . , y�) =
∑

h1,...,hj∈H

IDj ((h1, . . . , hj), (y1, . . . , yj)) · Q0 (h1, . . . , hj , yj+1, . . . , y�).

Where IDj : F2j → F is the (unique) polynomial with individual degree (H − 1)
such that for every h,h′ ∈ H

j , IDj(h,h′) = 1 if h = h′ and IDj(h,h′) = 0
otherwise.

The Proof String. The PCP proof string contains, for every u ∈ F
u the value

X̃(u) and for every v ∈ F
� the values Q0(v), . . . , Q�(v).

On Verifying the PCP. For the sake of this technical overview, for the most
part we ignore the tests run by the verifier (which include various low-degree
tests and consistency checks). This is because our focus is on the structure of
the proof itself and the procedure that updates it.

2.2 The Incremental PCP Construction

We start by describing the content of the proof at any intermediate timestep
and then explain how to update. Our construction relies on the leveled structure
of the formula φy representing the computation. Specifically, if the computation
M(y) requires time T and space S, we can view the variables of φy as organized
in a table with T′ = T · β rows and S′ = S · β columns for some constant β. Any
assignment X : [T′] × [S′] → {0, 1} that satisfies φy corresponds to an execution
of M on input y with some witness as follows: for every timestep t ∈ [T] the
assignment to the (t · β)-th row corresponds to the configuration ct of M after
t steps, and rows (t · β) + 1 through ((t + 1) · β) − 1 contain auxiliary variables
used to verify the consistency of the configurations ct and ct+1.1 A crucial fact
that we will use is that φy is leveled. That is, every clause in φy only involves
variables from two consecutive rows.

Partial Assignments. We set m, k ∈ N such that |H|m = T′ and |H|k = S′ and we
index every variable by a pair in H

m ×H
k. As before, given a witness that makes

M accept y we can compute an assignment X : Hm+k → {0, 1} that satisfies φy.
For τ ∈ [T′] we define the assignment Xτ : Hm+k → {0, 1} that agrees with
X on the first τ rows and assigns 0 to all variables in rows larger than τ . As
before, we consider a polynomial X̃τ : Fm+k → F of individual degree at most
(|H|−1), that identifies with Xτ on H

m+k. As discussed above, every step of M ’s
computation determines an assignment for β consecutive rows. After completing

1 These auxiliary rows can be avoided if φy is a k-CNF formula for some constant
k > 3. However, for our purpose, it is important that φy is a 3CNF formula.

Incrementally Verifiable Computation via Incremental PCPs 561

only the first t steps of the computation and reaching configuration ct, we can
already compute the assignment Xτ for τ = t · β. Moreover, the assignment to
the variables in row τ is only a function of the configuration ct.

The New Formula. Now, to prove that M ’s computation on input y can indeed
reach a configuration ct after t steps, it is sufficient to prove that both:

1. The assignment Xτ satisfies all of φy’s clauses involving variables of the first
τ = t · β rows.

2. The assignment to row τ matches the assignment defined by the
configuration ct.

For a fixed configuration ct, we therefore define another 3CNF formula φτ that
is satisfied if and only if the assignment of row τ matches ct.2 As before, we
consider a polynomial ϕτ : F� → F describing the clauses of the formula φτ . We
let ϕy,τ denote the polynomial ϕy + ϕτ describing the clauses of the combined
formula φy,τ = φy ∧ φτ .

The Consistency Check Polynomial. Our new consistency check polynomial
Q0

τ : F� → F is defined similarly to Q0 except that it “ignores” clauses on vari-
ables beyond row τ . Recall that every clause in φy only involves variables from
two consecutive rows. We assume WLOG that if ϕy,τ contains a clause on the
variables (t1, s1), (t2, s2), (t3, s3) ∈ H

m+k then t2 = t3 is the index of the row
immediately before t1. Therefore, the polynomial Q0

τ is defined as follows:

Q0
τ (t1, t2, t3, s1, s2, s3, b1, b2, b3)

= LEm(t1, τ) · ϕy,τ (t1, t2, t3, s1, s2, s3, b1, b2, b3) ·
∏

i∈[3]

(
X̃τ (ti, si) − bi

)
.

Where LEj : F2j → F is the (unique) polynomial of individual degree (|H| − 1)
such that for every h,h′ ∈ H

j , LEj(h,h′) = 1 if the row indexed by h is smaller
than or equal to the one indexed by h′, and LEj(h,h′) = 0 otherwise. We
purposefully order the input variables to Q0

τ leading with the row indices. As
discussed later in this overview, this simplifies the update procedure of the sum-
check polynomials. The sum-check polynomials Q1

τ , . . . , Q�
τ are defined by Q0

τ as
before.

The Proof String. In our new proof we group together O(�) symbols of the orig-
inal proof into one symbol (over a larger alphabet). This grouping is crucial
for allowing this larger symbol to self-update. The PCP proof for the compu-
tation up to timestep t ∈ [T] is given by Πτ for τ = t · β. The string Πτ

contains one symbol σz
τ for every vector z = (t1, t2, t3, s1, s2, s3, b1, b2, b3) ∈ F

�.
The symbol σz

τ contain the values X̃τ (t1, s1), X̃τ (t2, s2), X̃τ (t3, s3) and the val-
ues Q0

τ (z), . . . , Q�
τ (z). Further, every symbol contains additional supplemental

values that are needed for self-updating. The supplemental values are discussed
below, when we detail the update procedure.
2 While φτ can be described by simple conjunction, in our construction it will conve-

nient to view it as a 3CNF formula.

562 M. Naor et al.

On Verifying the PCP. The new PCP can be verified via the same tests per-
formed by the original BFLS verifier. The grouping of values into symbols and
the supplemental values in every symbol are needed only for updates and are
ignored by the verifier. Note that in our new construction every value X̃τ (u) is
contained in multiple symbols. When the BFLS verifier queries the value X̃τ (u),
it is crucial for soundness that the symbol we read in order to answer this query
is chosen as a function of u alone, independently of the other verifier queries.

2.3 Updating the PCP

We start with the (t − 1)-th configuration ct−1 and one symbol σz
(t−1)·β of the

proof Π(t−1)·β . Given the next configuration ct our goal is to compute the symbol
σz

t·β of the new proof Πt·β . Starting from τ = (t − 1) · β + 1 we show how to
update σz

τ−1 to σz
τ and we repeat this update β times. Recall that Xτ is our

partial assignment to the first τ rows. We first use the new configuration ct to
obtain row τ of Xτ . We denote this assignment by γτ : Hk → {0, 1}. We proceed
to update every value in the symbol σz

τ−1. In what follows we denote z = (t, s,b)
for t = (t1, t2, t3) ∈ F

3m, s = (s1, s2, s3) ∈ F
3k, and b = (b1, b2, b3) ∈ F

3.

Updating X̃. The symbol σz
τ−1 contains the evaluations of the assignment poly-

nomial X̃τ−1 at locations (ti, si). We show how to update these evaluations
and compute X̃τ (ti, si). Recall that X̃τ is a polynomial of individual degree at
most (|H| − 1), that identifies with Xτ on H

m+k. Equivalently, X̃τ is the unique
low-degree extension of Xτ given by the sum:

X̃τ (v) =
∑

h∈Hm+k

IDm+k(h,v) · Xτ (h). (1)

Since the assignment Xτ−1 and Xτ only differ on the τ -th row where Xτ−1(τ, ·)
is identically zero and Xτ (τ, ·) = γτ we have that:

Xτ+1(v) − Xτ (v) =
∑

h∈{0,1}k

IDm+k((τ,h),v) · γτ (h).

Therefore, given the old value Xτ−1(ti, si) and γτ we can efficiently compute the
new value Xτ (ti, si) by summing the O(S′) summands above.

Updating Q. The symbol σz
t−1 also contains the evaluations of the consistency

check and sum-check polynomial Qj
τ−1(z) for every 0 ≤ j ≤ �. We show how to

update these evaluations and compute Qj
τ (z). The update procedure for Qj

τ is
more involved than the update of X̃τ , since the polynomial Qj

τ is not just linear
combination of the values Xτ (·). For different values of j, we give a different
procedures updating Qj

τ . In this overview we demonstrate the main technical
ideas by focusing on some of these cases.

Updating Q0. For j = 0 we can efficiently evaluate the consistency check polyno-
mial Q0

τ (z) since the values Xτ (ti, si) have already been computed, the circuit

Incrementally Verifiable Computation via Incremental PCPs 563

LE can be efficiently evaluated, and the circuit ϕy,τ can be efficiently evaluated
given the input y and the assignment γτ .

Updating Qm. For j = m we want to compute:

Qm
τ (z) =

∑

h1∈Hm

ID (h1, t1) · Q0
τ (h1, t2, t3, s,b).

In computing this sum, we exploit the fact that the first m inputs to Q0
τ are

always in H. First, for h1 ∈ H
m we have LE(h1, τ) = 1 when h1 ≤ τ and

LE(h1, τ) = 0 when h1 > τ . (In contrast for an arbitrary u ∈ F
m, LE(u, τ)

may not be in {0, 1}.) Therefore, by the definition of Q0
τ , we can write the sum

above as:
∑

h1≤τ

ID (h1, t1)·ϕy,τ (h1, t2, t3, s,b)·
(
X̃τ (h1, s1) − b1

)
·

∏

i∈[2,3]

(
X̃τ (ti, si) − bi

)
.

Since we have already computed the values X̃τ (t2, s2) and X̃τ (t3, s3) it is suffi-
cient to compute the following sum denoted by Am

τ (z,b):

Am
τ (z) =

∑

h1≤τ

ID (h1, t1) · ϕy,τ (h1, t2, t3, s,b) ·
(
X̃τ (h1, s1) − b1

)
.

Computing the τ summands above from scratch requires time proportional to the
running time of the computation so far. Therefore, we instead maintain Am

τ (z) as
a supplemental value contained in the symbol σz

τ . Thus, it is sufficient to compute
Am

τ (z) from the old value Am
τ−1(z) given in the symbol σz

τ−1. Specifically, we
show how to efficiently compute the difference Am

τ (z) − Am
τ−1(z). We observe

that most of the summands are equal in Am
τ (z) and in Am

τ−1(z) and, therefore,
the difference contains a constant number of summands that we can compute.
Specifically we show that for every h1 < τ − 1:

ϕy,τ−1 (h1, t2, t3, s,b) = ϕy,τ (h1, t2, t3, s,b) . (2)

X̃τ−1 (h1, s1) = X̃τ (h1, s1) . (3)

We first use (2) and (3) to show how to efficiently compute Am
τ (z) − Am

τ−1(z),
and then explain why these equalities hold. Given that (2) and (3) hold for every
h1 < τ − 1 we can write the difference Am

τ (z) − Am
τ−1(z) as:

Am
τ (z)− Am

τ−1(z) =ID (τ, t1) · ϕy,τ (τ, t2, t3, s,b) ·
(
X̃τ (τ, s1)− b1

)

+ ID (τ − 1, t1) · ϕy,τ (τ − 1, t2, t3, s,b) ·
(
X̃τ (τ − 1, s1)− b1

)

− ID (τ − 1, t1) · ϕy,τ−1 (τ − 1, t2, t3, s,b) ·
(
X̃τ−1 (τ − 1, s1)− b1

)

Recall that the circuits ϕy,τ and ϕy,τ−1 can be efficiently evaluated given the
input y and the assignments γτ and γτ−1. Therefore, it remains to compute the
values:

X̃τ (τ, s1) , X̃τ (τ − 1, s1) , X̃τ−1 (τ − 1, s1) .

564 M. Naor et al.

By (1), for any h ≤ τ the value X̃τ (h, s1) is just a linear combination of the
values assigned to the h-th row:

X̃τ (h, s1) =
∑

h′∈Hk

IDk(h′, s1) · Xτ (h,h′) =
∑

h′∈Hk

IDk(h′, s1) · γh(h′). (4)

Therefore, we can compute the required evaluations of X̃τ and X̃τ−1 given the
assignments γτ and γτ−1. To complete the description of the update procedure
for Qm, we argue that (2) and (3) hold. For (2) we first observe that formulas
φy,τ−1 = φy∧φτ−1 and φy,τ = φy∧φτ only differ on clauses over variables in rows
τ−1 and τ . Therefore, if it was the case that z ∈ H

� and h1 < τ−1 then (2) would
hold. We show how to appropriately modify the definition of the polynomial ϕy,τ

so that (2) holds for all z ∈ F
� as long as h1 ∈ H

m. Recall that the polynomial
ϕy,τ = ϕy+ϕτ describes the formula φy,τ = φy∧φτ . We can assume WLOG that
every clause in φτ on variables (t′

1, s
′
1), (t

′
2, s

′
2), (t

′
3, s

′
3) ∈ H

m+k satisfies t′
1 = τ .

Therefore, we can redefine ϕy,τ as:

ϕy,τ (z) = ϕy(z) + IDm(t1, τ) · ϕτ (z).

The new polynomial ϕy,τ (z) still represents the same formula φy,τ and (2) holds
since for h1 < τ − 1 we have:

ϕy,τ−1 (h1, t2, t3, s,b) = ϕy(h1, t2, t3, s,b) = ϕy,τ (h1, t2, t3, s,b) .

To see why (3) holds, recall that by (4), since h1 ≤ τ − 1 the value X̃τ (h1, s1) is
just a linear combination of the values assigned to the h1-th row and therefore:

X̃τ−1 (h1, s1) =
∑

h∈Hk

IDk(h, s1) · γh1(h) = X̃τ (h1, s1) .

Updating Qj for j < m. The final case we consider in this overview is 0 < j < m.
Here we want to compute:

Qj
τ (z) =

∑

h∈Hj

ID (h, t1[:j]) · Q0
τ (h, t1[j + 1:], t2, t3, s,b) ,

where t1[:j] and t1[j +1:] denote the j-bit prefix and the (m− j)-bit suffix of t1
respectively. This case is very similar to the case j = m with the added difficulty
that now only the first j inputs to Q0

τ are in H (as opposed to the previous case,
where the entire first index was in H). In the case where j = m we argued that
when u ∈ H

m, either u ≤ τ and LE(u, τ) = 1, or u > τ and LE(u, τ) = 0. Now,
however, only the first j bits of u are in H and the rest may be in F. Thus, it is
not immediately clear whether we can say anything about the output of LE(u, τ).
We show that in some cases the outcome of LE(u, τ) can be determined given
only the prefix of the inputs that is in H. Specifically, using the fact that LE has
individual degree (|H| − 1), we show that for u ∈ H

j ×F
m−j if u[:j] > τ [:j] then

LE(u, τ) = 0. Therefore, we can write Qj
τ (z) as:

Qj
τ (z) =

∑

h≤τ [:j]

ID (h, t1[:j]) · Q0
τ (h, t1[j + 1:], t2, t3, s,b) .

Incrementally Verifiable Computation via Incremental PCPs 565

As before, since we have already computed the values Xτ (t2, s2) and Xτ (t3, s3),
it is sufficient to show how to maintain the sum Aj

τ (z,b) as a supplemental value
in σz

τ :

Aj
τ (z) =

∑

h≤τ [:j]

ID (h, t1[:j]) · ϕy,τ (h, t1[j + 1:], t2, t3, s,b) ·
(
X̃τ (h, t1[j + 1:], s1)− b1

)
.

As before, in order to compute the difference Aj
τ (z) − Aj

τ−1(z) we first need
to show that, analogously to (2) and (3) above, for every h < (τ − 1)[:j]:

ϕy,τ−1 (h, t1[j + 1:], t2, t3, s,b) = ϕy,τ (h, t1[j + 1:], t2, t3, s,b) . (5)

X̃τ−1 (h, t1[j + 1:], s1) = X̃τ (h, t1[j + 1:], s1) . (6)

The proof of (5) follows the same argument as (2) except that now we also use
the fact that for h < τ [:j] it holds that IDm((h, t1[j + 1:]) , τ) = 0 even when
t1 is not in H

m. To see why (6) holds recall that by (1) for h < τ [:j] and any
u ∈ F

m−j the value X̃τ ((h,u), s1) is just a linear combination of the values
assigned to rows whose indices (in H

m) start with the prefix h where X̃τ and
X̃τ−1 identify on these rows:

X̃τ ((h,u), s1) =
∑

(h′,h′′)∈Hm−j×Hk

ID((h′,h′′), (u, s)) · γ(h,h′)(h
′′) = X̃τ−1 ((h,u), s1) .

Let u denote the vector (t1[j +1:], s1) ∈ F
m−j+k. Similarly to the previous case,

it remains to compute the values:

X̃τ (τ [:j],u) , X̃τ ((τ − 1)[:j],u) , X̃τ−1 ((τ − 1)[:j],u) .

As explained above, the value X̃τ (τ [:j],u) is a linear combination of the val-
ues assigned to rows in whose indices (in H

m) start with the prefix τ [:j]. The
number of such rows can be proportional to τ , so this values cannot be effi-
ciently computed from scratch. Instead, we update these values using additional
supplemental values, which we place in σz

τ and maintain:

X̃τ (τ [:j],u) , X̃τ ((τ − 1)[:j],u) .

We explain how to compute X̃τ (τ [:j],u) given X̃τ−1 ((τ − 1)[:j],u) (updating
X̃τ ((τ − 1)[:j],u) is done similarly). First, recall that the value X̃τ (τ [:j],u) is a
linear combinations of the values assigned to rows whose indices (in H

m) start
with the prefix τ [:j]:

X̃τ (τ [:j],u) =
∑

h∈Hm−j+k

ID(h,u) · Xτ (τ [:j],h).

When updating X̃τ (τ [:j],u), we distinguish between two cases. First we consider
the case where τ [:j] = (τ − 1)[:j]. In this case, both values X̃τ (τ [:j],u) and
X̃τ−1 ((τ − 1)[:j],u) are computed from the values assigned to the same set of
rows whose indices start with the prefix τ [:j] = (τ − 1)[:j]. Since the assignment

566 M. Naor et al.

Xτ−1 and Xτ only differ on the τ -th row where Xτ−1(τ, ·) is identically zero and
Xτ (τ, ·) = γτ we have that:

X̃τ (τ [:j],u) − X̃τ−1 ((τ − 1)[:j],u) =
∑

h′∈Hk

ID((τ [j + 1:],h′),u) · γτ (h′).

Therefore, in this case we can compute the value X̃τ (τ [:j],u) given
X̃τ−1 ((τ − 1)[:j],u) by summing the O(S′) summands above. Next, we consider
the case where τ [:j] �= (τ − 1)[:j]. In this case, the τ -th row is the only row that
starts with the prefix τ [:j] and assigned a non-zero value by Xτ . Therefore, in
this case we can directly compute the value X̃τ (τ [:j],u)

Updating Qj for j > m. Updating Qj
τ (z) for j > m involves many of the ideas

described above. The main difference is that in this case we do not only sum over
the first row index. To update the sum we rely on the fact that the polynomial
ϕy,τ evaluates to 0 whenever the indices t2 and t3 are different than t1 − 1. As
in the case where j < m, here we also need to deal with the cases where only a
prefix of the row indices is in H.

2.4 From PCP to Verifiable Computation

As discussed in Sect. 1.1, our designated-verifier incrementally verifiable compu-
tation protocol is basically the protocol of BHK [BHK16, Appendix A], where the
PCP is replaced by our incrementally updatable PCP. In particular, our verifica-
tion procedure is essentially identical to that of BHK (ignoring the supplemental
values in every symbol that are not part of the original PCP of BFLS). There
is, however, a minor differences between our PCP and the PCP in BHK which
affects the verification procedure: in our PCP, the sum-check polynomial Qj is
the low-degree extension of Q0 in its first j variables, while in BHK, Qj and Q0

satisfy a different relation. However, the analysis in BHK [BHK16, Appendix B]
with only minor changes fits our construction as well.

3 Definitions

In this section we define incrementally updatable PCPs and verifiable
computation.

3.1 Incrementally Updatable PCP

We start by recalling the standard notion of a probabilistically checkable proof
(PCP) and then define incremental updates. Fix a non-deterministic Turing
machine M with running time T = T(n). For an input y ∈ {0, 1}n and a witness
string w ∈ {0, 1}t where t ∈ [T], let M(y;w) denote the configuration of M when
executing on input y after t steps using w as a witness. The configuration includes
the machine’s work tapes, state, and the machine’s locations on all tapes. Let
LM be the language that contains a tuple (y, t, c) if there exists w ∈ {0, 1}t

Incrementally Verifiable Computation via Incremental PCPs 567

such that c = M(y;w). Let RM be the corresponding witness relation. A PCP
system for M with alphabet Σ = {Σn}n∈N

, query complexity q = q(n), and
proof length � = �(n) consists of a deterministic polynomial-time algorithm P
and a randomized oracle machine V with the following syntax:

P : given (x = (y, t, c), w) ∈ RM outputs a proof Π ∈ Σ�.
V : given x and oracle access to the proof Π makes q oracle queries and outputs

a bit.

Definition 3.1 A PCP system (P,V) satisfies the following requirements

Completeness: For every (x,w) ∈ RM , let Π = P(x,w). It holds that:

Pr
[
VΠ(x) = 1

]
= 1.

Soundness: For every x /∈ LM and for every Π ∈ Σ�:

Pr
[
VΠ(x) = 1

] ≤ 1
2
.

Incremental Updates. In an incrementally updatable PCP, each location in the
proof string can be maintained and updated in a step-by-step fashion: given the
machine’s configuration and the value of the PCP at a certain location z after t
steps of the computation, the updated value of the PCP at location z after (t+1)
steps can be computed locally, without looking at any PCP symbols except the
symbol in location z. Note that the “updated PCP” proves an “updated claim”
about the (t + 1)-th configuration. Note also that, while this local update does
require knowledge of the entire current configuration (whose size is dominated
by the machine’s space complexity), this can be much smaller than the length
of the PCP (which is larger than the machine’s time complexity). Formally,
an incrementally updatable PCP comes with a deterministic polynomial-time
algorithm Update with the following syntax: given an instance (y, t − 1, ct−1), a
witness bit wt, a position z ∈ [�], and symbol σz

t−1 ∈ Σ outputs a new symbol
σz

t ∈ Σ. For every (x = (y, t, ct), w) ∈ RM , the PCP proof Πt = P(x,w) can be
constructed by running Update as follows:

1. Let c0 be the initial configuration of M(y) and let σz
0 = ⊥.

2. For every τ ∈ [t], z ∈ [�], update M ’s configuration from cτ−1 to cτ using
witness bit wτ and let:

σz
τ ← Update((y, τ − 1, cτ−1) , wτ , z, σz

τ−1).

3. Output the proof Πt =
(
σ1

t , . . . , σ�
t

)
.

3.2 Incrementally Verifiable Computation

We start with the definition of verifiable computation and then define incremen-
tal updates. Fix a deterministic Turing machine M with running time T = T(n).
For an input y ∈ {0, 1}n and t ∈ [T], let M(y; 1t) be the configuration of M when

568 M. Naor et al.

executing on input y after t steps (a configuration includes the machine’s work
tapes, state, and the machine’s locations on all tapes). Let LM be the language
that contains a tuple (y, t, c) if c = M(y; 1t). A verifiable computation scheme
consists of a randomized polynomial-time algorithm G and deterministic poly-
nomial time algorithms P,V with the following syntax:

G: given the security parameter 1κ, outputs a pair of keys: a prover key pk and
a verifier key vk.

P: given the prover key pk, a time bound 1t and an instance x = (y, t, c), outputs
a proof Π.

V: given the verifier key vk, an instance x and a proof Π, outputs a bit.

We say that the proof is publicly verifiable if the algorithm G always outputs
identical prover and verifier keys vk = pk. Otherwise the proof is designated
verifier.

Definition 3.2 A verifiable computation scheme (G,P,V) for LM satisfies the
following requirements:

Completeness: For every κ ∈ N and for every x = (y, t, c) ∈ LM :

Pr
[
V(vk, x,Π) = 1

∣∣∣∣
(pk, vk) ← G(1κ)
Π ← P(pk, 1t, x)

]
= 1.

Efficiency: In the above honest experiment the length of the proof Π is
poly(κ, log(t)). The verifier’s running time is |x| · poly(κ, |Π|).

Soundness: For every polynomial T = T(κ) and for every polynomial size cheat-
ing prover P∗ there exists a negligible function μ such that for every κ ∈ N:

Pr
[

x = (y,T, c) /∈ LM

V(vk, x,Π) = 1

∣∣∣∣
(pk, vk) ← G(1κ)
(x,Π) ← P∗(pk)

]
≤ μ(κ).

Incremental Updates. A verifiable computation scheme (with either public or
designated verifier) satisfying Definition 3.2 is incrementally verifiable if given
the honest proof Πt for a statement (y, t, ct) and the configuration ct we can
obtain the next proof Πt+1 for the statement (y, t+1, ct+1) without repeating the
entire computation. Formally, an incrementally verifiable computation scheme
also includes a deterministic polynomial-time algorithm Update with the follow-
ing syntax: given the prover key pk, a statement (y, t−1, ct−1) ∈ LM and a proof
Πt−1, Update outputs a new proof Πt. For every statement x = (y, t, c) ∈ LM ,
the proof Πt = P(pk, 1t, x) can be constructed by running Update as follows:

1. Let c0 be the initial configuration of M(y) and let Π0 = ⊥.
2. For every τ ∈ [t], update M ’s configuration from cτ−1 to cτ and let:

Πτ ← Update(pk, (y, τ − 1, cτ−1) ,Πτ−1).

3. Output Πt.

The completeness, efficiency, and soundness requirements of

Incrementally Verifiable Computation via Incremental PCPs 569

4 PCP Construction

In this section we introduce notation and describe the PCP system. The update
procedure for this PCP is described in the full version of this work. Before
reading the full details, we recommend the reader familiarize themselves with
the overview in Sect. 2.

4.1 Preliminaries

We start by introducing notations and simple clams that are used throughout
the following sections.

Operations on Strings. For an alphabet Σ, a string v = v1, . . . , vn ∈ Σn and
1 ≤ i ≤ j ≤ n we denote by v[i:j] the substring vi, . . . , vj . We shorthand v[1:i]
by v[:i] and v[j:n] by v[j:]. We also define v[:0] and v[n + 1:] to be the empty
string. For a pair of strings u,v ∈ Σn and i ∈ [0, n] let (u|v)i denote the string
(u[:i],v[i + 1:]).

The Field F. Fix any field F and a subset H ⊆ F. (The sizes of F and H will be set
later in this section.) We also fix a linear order on H and use the lexicographical
order on strings in H

m for any m ∈ N. We denote the minimal and maximal
element in H by 0 and |H| − 1 respectively. For t ∈ H

m such that t > 0m we
denote the predecessor of t by t − 1.

Arithmetic Circuits. We denote by C : F
i → F

j an arithmetic circuit over a
field F with i input wires and j output wires. The circuit is constructed from
addition, subtraction and multiplication gates of arity 2 as well as constants
from F. The size of C is the number of gates in C. We say that C is of degree d
if the polynomial computed by C over F is of degree d or less in every one of its
input variables.

Useful Predicates. We make use of arithmetic circuits computing simple predi-
cates.

Claim 4.1. For every i ∈ N there exist arithmetic circuits IDi, LEi,PRi : F2i →
F of size O(i) and degree |H|−1 such that for every input u,v ∈ H

i, the circuits’
output is in {0, 1} and:

IDi(u,v) = 1 ⇔ u = v (Identity)
LEi(u,v) = 1 ⇔ u ≤ v (Lesser-or-equal)
PRi(u,v) = 1 ⇔ u − 1 = v (Predecessor)

Proof. For i = 1, circuits ID1, LE1,PR1 exist by straightforward interpolation.
For i > 1, u, v ∈ F and u,v ∈ F

i−1, let u′ = (u,u) and v′ = (v,v). The circuit
IDi is given by:

IDi(u′,v′) = ID1(u, v) · IDi−1(u,v).

570 M. Naor et al.

The circuit LEi is given by:

LEi(u′,v′) = [ID1(u, v) · LEi−1(u,v)] + LE1(u, v) − ID1(u, v).

The circuit PRi is given by:

PRi(u′,v′) = ID1(u, v) · PRi−1(u,v)

+ PR1(u, v) · IDi−1(u, 0i−1) · IDi−1(v, (|H| − 1)i−1)

We also rely on the following useful property of the circuits ID, LE,PR. Intu-
itively, it says that in some cases, the output of the predicate can be determine
from the prefix for the input (even if the rest of the input is not in H).

Claim 4.2. For every i ∈ N, j ∈ [i], t1 = (h1, f1), t2 = (h2, f2) ∈ H
j ×F

i−j and
h ∈ H

i:

– h1 �= h2 ⇒ IDi(t1, t2) = 0.
– h1 > h2 ⇒ LEi(t1, t2) = 0.
– h1 < h2 ⇒ LEi(t1, t2) = 1.
– (h − 1)[:j] �= h1 ⇒ PRi(h, t1) = 0.

The proof of Claim 4.2 follows from the next lemma.

Lemma 4.1. Let ϕ : Fi → F be an arithmetic circuit of degree (|H| − 1). For
every j ∈ [i], t ∈ H

j and b ∈ {0, 1}:
∀h ∈ H

i−j : ϕ(t,h) = b ⇒ ∀f ∈ F
i−j : ϕ(t, f) = b.

4.2 The Constraints

In this section we give an algebraic representation of the constraints of a com-
putation through the notion of a constraint circuit.

The Tableau Formula. Let M be a non-deterministic Turing machine with run-
ning time T = T(n) and space complexity S = S(n). By the Cook-Levin theorem
the computation of M on some input can be described by T′ ·S′ Boolean variables
where T′ = T ·β and S′ = S ·β for some constant β ∈ N. Intuitively, we think the
variables as organized in a table with T′ rows S′ columns. The variables in row
β · t correspond to the configuration of M after t steps. All other rows, whose
indices are not a multiple of β, contain auxiliary variables used to verify the
consistency of adjacent configurations. An assignment to the variables describes
a valid computation of M (with any witness) if and only if it satisfies a 3CNF
“tableau formula” φy.

Claim 4.3. (Cook-Levin-Karp.) There exists a constant β such that for
every input y ∈ {0, 1}n there exists a 3CNF formula φy over the variables
{xt,s}t∈[T′],s∈[S′] where T′ = β · T and S′ = β · S such that the following holds:

Incrementally Verifiable Computation via Incremental PCPs 571

Completeness: For every witness w ∈ {0, 1}T there exists an assignment
Xy,w : [T′] × [S′] → {0, 1} that satisfies φy. Moreover, for any t ∈ [T],
given only the configuration ct = M(y;w[:t]) we can compute a row assign-
ment γct : [S′] → {0, 1} such that Xy,w(t · β, ·) = γct . Similarly, for any
(t − 1) · β < τ ≤ t · β, given only the configuration ct−1 = M(y;w[:t − 1]) and
the witness bit wt we can compute a row assignment γ

ct−1,wt
τ : [S′] → {0, 1}

such that Xy,w(τ, ·) = γ
ct−1,wt
τ .

Soundness: For any assignment X : [T′] × [S′] → {0, 1} that satisfies φy there
exists a witness w such that X = Xy,w. Moreover, for every t ∈ [T] and
configuration c, if X(t · β, ·) = γc then c = M(y;w[:t]).

Leveled structure: Every constraint in φy is of the form (xt1,s1 = b1) ∨
(xt2,s2 = b2) ∨ (xt3,s3 = b3) where t1 − 1 = t2 = t3.

The Configuration Formula. For every τ ∈ [T′] and a row assignment γ : [S′] →
{0, 1} we define a 3CNF “configuration formula” φτ,γ over the same variables
as the tableau formula φy checking that the τ -th row assignment is equal to γ.
That is:

– If τ = t · β for some t ∈ [T] then φτ,γ is satisfied by an assignments X : [T′] ×
[S′] → {0, 1} if and only if X(τ, ·) = γ.

– Otherwise, φτ,γ = 1 is the empty formula.

For technical reasons, we assume WLOG that all the constraints in φτ,γ are of
the form (xt1,s1 = b1) ∨ (xt2,s2 = b2) ∨ (xt3,s3 = b3), where τ = t1. Additionally
we assume that φτ,γ has the same leveled structure as the tableau formula. That
is, t1 − 1 = t2 = t3. For τ that is not a multiple of β, φτ,γ is the empty formula
so our assumptions on the structure of φτ,γ hold vacuously.

Arithmetizing the Constraint Formula. Let F be a field of size Θ(log2 T′), let
H ⊂ F be a subset of size �logT′� such that {0, 1} ⊆ H and let

m =
logT′

log logT′ , k =
log S′

log logT′ .

We assume WLOG that m, k and logT′ are all integers and, therefore, |Hm| = T′

and |Hk| = S′. We identify elements of H
m (with lexicographic order) with

indices in [T], and elements in H
k with indices in [S]. We view an assignment X

for the variables {xt,s} as a function X : Hm+k → {0, 1}.

Constraint Circuits. We can implicitly represent a 3CNF formula φ over the
variables {xt,s} using a multivariate polynomial. Intuitively, this polynomial rep-
resents the indicator function indicating whether a given 3-disjunction is in the
formula. We represent this polynomial via an arithmetic circuit over F.

Definition 4.1. (Constraint circuit). An arithmetic circuit ϕ : F3(m+k+1) →
F is a constraint circuit representing a 3CNF formula φ over the variables

572 M. Naor et al.

{xt,s}t∈Hm,s∈Hk if for every t1, t2, t3 ∈ H
m, s1, s2, s3 ∈ H

k and b1, b2, b3 ∈ {0, 1}
if φ contains the constraint:

(xt1,s1 = b1) ∨ (xt2,s2 = b2) ∨ (xt3,s3 = b3) ,

then ϕ evaluates to 1 on (t1, t2, t3, s1, s2, s3, b1, b2, b3). Otherwise ϕ evaluates
to 0.

Next, we claim that the tableau formula and configuration formula can be effi-
ciently represented as constraint circuits.

Claim 4.4. For every input y ∈ {0, 1}n, τ ∈ [T′] and assignment γ : Hk →
{0, 1} let φy and φτ,γ be the tableau formula and the configuration formula defined
above.

– Given y we can efficiently compute a tableau constraint circuit ϕy of size
O(n) + poly(m) and degree poly(m, k) describing φy.

– Given τ and γ we can efficiently compute a configuration constraint circuit
ϕτ,γ of size S · poly(m) and degree O(1) describing φτ,γ .

The Constraint Circuit ϕ̃. The constraint circuit ϕ̃ used in our PCP construction
is a combination of the constraint circuit and predicates above. Let φy and φτ,γ

be the tableau and configuration formulas defined above and let ϕy and ϕτ,γ be
the constraint circuits that describe them, given by Claim 4.4. For t1, t2, t3 ∈ F

m

and f ∈ F
3k+3, let ϕ̃y,τ,γ be the circuit give by:

ϕ̃y,τ,γ(t1, t2, t3, f)

= PRm(t1, t2) · PRm(t1, t3) · (ϕy(t1, t2, t3, f) + IDm(τ, t1) · ϕτ,γ(t1, t2, t3, f)) .

Claim 4.5. For every y ∈ {0, 1}n, τ ∈ H
m, γ : Hk → {0, 1}, ϕ̃y,τ,γ describes the

3CNF formula φy ∧ φτ,γ . Moreover, for every τ ′ ∈ H
m, γ′ : Hk → {0, 1}, i < m,

t1, t2, t3 ∈ H
i × F

m−i, h ∈ H
m and f ∈ F

3k+3:

{t2[:i], t3[:i]} �= {(h − 1)[:i]} ⇒ ϕ̃y,τ,γ(h, t2, t3, f) = 0,

t1[:i] /∈ {τ [:i], τ ′[:i]} ⇒ ϕ̃y,τ,γ(t1, t2, t3, f) = ϕ̃y,τ ′,γ′(t1, t2, t3, f).

Proof (Proof sketch). Since the tableau constraints and the configuration con-
straints are disjoint, the circuit ϕy +ϕτ,γ describes the 3CNF formula φy ∧φτ,γ .
By the leveled structure of the formulas φy and φτ,γ the circuit ϕy + ϕτ,γ iden-
tifies with ϕ̃y,τ,γ on H

3(m+k+1). The rest of the claim follows from the leveled
structure of the formulas φy and φτ,γ and by Claim 4.2.

4.3 The Proof String

Recall that for every t ∈ [T] and z ∈ [�], σz
t ∈ Σ denotes the z-th symbol

of the proof after t updates. We start by specifying the value of σz
t and in the

next section we describe the procedure Update maintaining it. Next we introduce

Incrementally Verifiable Computation via Incremental PCPs 573

some notation and describe the different components of the PCP. See Sect. 2 for
a high level overview of the construction.

The first part of our construction closely follows the PCP of BFLS. Fix
y ∈ {0, 1}n and w ∈ {0, 1}T and let Xy,w be the assignment given by Claim 4.3.
For τ ∈ H

m we define:

– Let γτ : Hk → {0, 1} be the row assignment γτ = Xy,w(τ, ·).
– Let Xτ : Hm+k → {0, 1} be the assignment such that Xτ (t, ·) = γt for all

t ≤ τ and for all t > τ , Xτ (t, ·) is identically zero.
– Let X̃τ : Fm+k → F be the polynomial of degree |H| − 1 that identifies with

Xτ on H
m+k:

X̃τ (f) =
∑

h∈Hm+k

ID (h, f) · Xτ (h)

– Let Q0
τ : F

3(m+k+1) → F be the following polynomial. For z =
(t1, t2, t3, s1, s2, s3) ∈ F

3(m+k), b = (b1, b2, b3) ∈ F
3 and z̄ = (z,b):

Q0
τ (z̄) = LE (t1, τ) · ϕ̃y,τ,γτ

(z̄) ·
∏

i∈[3]

(
X̃τ (ti, si) − bi

)
.

– For j ∈ [3(m + k)] let Qj
τ : F3(m+k+1) → F be the polynomial:

Qj
τ (f) =

∑

h∈Hj

ID (h, f [:j]) · Q0
τ (h, f [j + 1:]).

Next we introduce additional polynomials that are not a part of the BFLS
construction). These polynomials define the supplemental values added to the
PCP to support updates.

First we define polynomials A0
τ , B0

τ , C0
τ by multiplying together subsets of

the factors of Q0
τ . Let A0

τ , B0
τ , C0

τ : F3(m+k+1) → F be the following polynomials.
For z = (t1, t2, t3, s1, s2, s3) ∈ F

3(m+k), b = (b1, b2, b3) ∈ F
3, and z̄ = (z,b):

A0
τ (z̄) = ϕ̃y,τ,γτ

(z̄) ·
(
X̃τ (t1, s1) − b1

)
,

B0
τ (z̄) = ϕ̃y,τ,γτ

(z̄) ·
(
X̃τ (t1, s1) − b1

)
·
(
X̃τ (t2, s2) − b2

)
,

C0
τ (z̄) = ϕ̃y,τ,γτ

(z̄) ·
(
X̃τ (t1, s1) − b1

)
·
(
X̃τ (t2, s2) − b2

)
·
(
X̃τ (t3, s3) − b3

)
.

Next we define the polynomials Aj
τ , Bj

τ , Cj
τ . Similar to the definition of Qj

τ

via Q0
τ , the evaluations of Aj

τ , Bj
τ and Cj

τ on input z̄ ∈ F
3(m+k+1) are given by a

weighted sum of evaluations of A0
τ , B0

τ and C0
τ respectively, over inputs z̄′ whose

prefix is in H and suffix in equal to that of z̄. However, unlike the definition of
Qj

τ , we do not sum over all possible prefixes in H, but only over prefixes with a
certain structure. Specifically:

– Aj
τ sums over prefixes h ∈ H

j such that h < τ [:j].
– Bj

τ sums over prefixes (h, (h − 1)[:j]) ∈ H
m+j such that 0m < h < τ .

574 M. Naor et al.

– Cj
τ sums over prefixes (h,h − 1, (h − 1)[:j]) ∈ H

2m+j such that 0m < h < τ .

Formally, for j ∈ [m] let Aj
τ , Bj

τ , Cj
τ : F3(m+k+1) → F be the following poly-

nomials. For z = (t1, t2, t3, s1, s2, s3) ∈ F
3(m+k), b = (b1, b2, b3) ∈ F

3 and
z̄ = (z,b):

Aj
τ (z̄) =

∑

h<τ [:j]

ID (h, z̄[:j]) · A0
τ (h, z̄[j + 1:]),

Bj
τ (z̄) =

∑

0m<h<τ

ID ((h, (h− 1)[:j]) , z̄[:m + j]) · B0
τ

(
((h,h− 1) |z̄)m+j

)
,

Cj
τ (z̄) =

∑

0m<h<τ

ID ((h,h− 1, (h− 1)[:j]) , z̄[:2m + j]) · C0
τ

(
((h,h− 1,h− 1) |z̄)2m+j

)
.

Finally, we define polynomials Āj
τ , B̄j

τ , C̄j
τ . These are defined similarly to

Aj
τ , Bj

τ , Cj
τ except that we sum over different prefixes:

– Āj
τ sums over prefixes (h, (h − 1)[:j]) ∈ H

m+j such that 0m < h < τ and
(h − 1)[:j] = τ [:j].

– B̄j
τ sums over prefixes (h,h − 1, (h − 1)[:j]) ∈ H

2m+j such that 0m < h < τ
and (h − 1)[:j] = τ [:j].

– C̄j
τ sums over prefixes (h,h − 1,h − 1,h′) ∈ H

3m+j such that 0m < h < τ
and h′ ∈ H

j .

Formally, for j ∈ [m] let Āj
τ , B̄j

τ : F3(m+k+1) → F be the following polynomi-
als. For z = (t1, t2, t3, s1, s2, s3) ∈ F

3(m+k), b = (b1, b2, b3) ∈ F
3 and z̄ = (z,b):

Āj
τ (z̄) =

∑

0m<h<τ
(h−1)[:j]=τ [:j]

ID ((h, τ [:j]) , z̄[:m + j]) · A0
τ

(
((h, τ) |z̄)m+j

)
,

B̄j
τ (z̄) =

∑

0m<h<τ
(h−1)[:j]=τ [:j]

ID ((h,h − 1, τ [:j]) , z̄[:2m + j])

· B0
τ

(
((h,h − 1, τ) |z̄)2m+j

)
,

For j ∈ [3k] let C̄j
τ : F3(m+k+1) → F be the following polynomial:

C̄j
τ (z̄) =

∑

0m<h<τ
h′∈H

j

ID ((h,h − 1,h − 1,h′) , z̄[:3m + j])

· C0
τ (h,h − 1,h − 1,h′, z̄[3m + j + 1:]) .

We are now ready to define the PCP proof string. We set � = |F|3(m+k) and
identify elements of F3(m+k) with indices in [�].

We first define for every τ ∈ H
m and z = (t1, t2, t3, s1, s2, s3) ∈ F

3(m+k)

an auxiliary symbol σ̄z
τ . These auxiliary symbols will be useful in defining the

update procedure. Then, for every t ∈ [T], we set the proof symbol σz
t to be the

symbol σ̄z
t·β . The auxiliary symbol σ̄z

τ contains the values:

Incrementally Verifiable Computation via Incremental PCPs 575

1. X̃τ ((τ |ti)j , si) for every i ∈ [3] and j ∈ [0,m].
2. X̃τ ((τ − 1|ti)j , si) for every i ∈ [3] and j ∈ [0,m]. (Only if τ > 0m.)
3. Qj

τ (z,b) for every j ∈ [0, 3(m + k)] and b ∈ {0, 1}3.
4. Aj

τ (z,b), Āj
τ (z,b), Bj

τ (z,b), B̄j
τ (z,b), Cj

τ (z,b) for every j ∈ [m] and b ∈
{0, 1}3.

5. C̄j
τ (z,b) for every j ∈ [3k] and b ∈ {0, 1}3.

The following theorem (that follows from the proof of [BFLS91]) states that
the construction above is indeed a PCP proof. In the following sections we prove
that this PCP is incrementally updatable.

Theorem 4.6 (Follows from [BFLS91]). There exists a PCP system (P,V)
for M with alphabet Σ = F

O(m+k), query complexity q = poly(m+k), and proof
length � = |F|3(m+k) = poly(T · S) such that given ((y, t, c), w) ∈ RM , P outputs
the proof Π =

(
σ1

t , . . . , σ�
t

)
.

References

[BCC+17] Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–
1066 (2017)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for snarks and proof-carrying data. In: STOC, pp. 111–
120 (2013)

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in
polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, New Orleans, Louisiana, USA, 5–8 May 1991,
pp. 21–31 (1991)

[BHK16] Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive RAM and batch
NP delegation from any PIR. IACR Cryptology ePrint Archive, 2016:459
(2016)

[BHK17] Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and
batch NP verification from standard computational assumptions. In: Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 474–482
(2017)

[BMW98] Biehl, I., Meyer, B., Wetzel, S.: Ensuring the integrity of agent-based com-
putations by short proofs. In: Rothermel, K., Hohl, F. (eds.) MA 1998.
LNCS, vol. 1477, pp. 183–194. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0057658

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22–25,
2011, pp. 97–106 (2011)

[DHRW16] Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and
its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53015-3 4

https://doi.org/10.1007/BFb0057658
https://doi.org/10.1007/BFb0057658
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4

576 M. Naor et al.

[DLN+00] Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct
proofs for NP ander spooky interactions. Manuscript (2000). http://www.
wisdom.weizmann.ac.il/∼naor/PAPERS/spooky.pdf

[DNR16] Dwork, C., Naor, M., Rothblum, G.N.: Spooky interaction and its discon-
tents: compilers for succinct two-message argument systems. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 123–145. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 5

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, 31 May–2 June, pp. 169–178 (2009)

[GH98] Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042,
pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40041-4 5

[HR18] Holmgren, J., Rothblum, R.: Delegating computations with (almost) mini-
mal time and space overhead. In: 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2018, Paris, France, 7–9 October 2018,
pp. 124–135 (2018)

[KPY19] Kalai, Y., Paneth, O., Yang, L.: How to delegate computations publicly.
In: STOC (2019)

[KRR13] Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In:
STOC, pp. 565–574 (2013)

[KRR14] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the
power of no-signaling proofs. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, 31 May–03 June 2014, pp. 485–494
(2014)

[PR17] Paneth, O., Rothblum, G.N.: On zero-testable homomorphic encryption
and publicly verifiable non-interactive arguments. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017. LNCS, vol. 10678, pp. 283–315. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70503-3 9

[Val08] Valiant, P.: Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78524-8 1

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/spooky.pdf
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/spooky.pdf
https://doi.org/10.1007/978-3-662-53015-3_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-70503-3_9
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1

Author Index

Abe, Yoshiki I-372
Abspoel, Mark I-471
Agrawal, Shweta II-91
Alman, Josh I-151
Alon, Bar I-561
Ananth, Prabhanjan I-174, I-199, II-356

Badrinarayanan, Saikrishna I-199
Ball, Marshall I-502
Banfi, Fabio I-282
Bartusek, James II-522
Ben-Sasson, Eli II-494
Berman, Itay II-311
Bindel, Nina II-61
Bitansky, Nir I-422
Blum, Erica I-131
Boyle, Elette I-341, I-502, II-465
Brakerski, Zvika I-229, II-407
Brian, Gianluca II-211
Bronfman, Liron II-522

Chen, Yilei I-55
Chiesa, Alessandro II-1, II-494
Chung, Kai-Min II-285
Cohen, Ran I-502
Corrigan-Gibbs, Henry I-393
Cramer, Ronald I-471

Damgård, Ivan I-471
Degwekar, Akshay I-422, II-311
Deshpande, Apoorvaa II-356
Döttling, Nico II-407

Escudero, Daniel I-471

Faonio, Antonio II-211
Fleischhacker, Nils II-233
Friolo, Daniele I-111

Galbraith, Steven D. I-81
Garg, Sanjam II-407
Gentry, Craig II-438
Gilboa, Niv I-341

Goldberg, Lior II-494
Goyal, Rishab II-149
Goyal, Vipul II-233
Gur, Tom II-494

Haitner, Iftach I-531
Halevi, Shai I-312, II-438
Hamburg, Mike II-61
Hhan, Minki I-55
Holmgren, Justin II-465, II-522
Hövelmanns, Kathrin II-61
Hubáček, Pavel II-264
Hui, Robin I-151
Hülsing, Andreas II-61

Ishai, Yuval I-312, I-341
Iwamoto, Mitsugu I-372

Jain, Aayush I-199
Jain, Abhishek II-233
Ji, Zhengfeng I-251
Jost, Daniel II-180

Kalai, Yael Tauman II-356
Katz, Jonathan I-131
Khorasgani, Hamidreza Amini II-333
Kitagawa, Fuyuki II-118
Kogan, Dmitry I-393
Koppula, Venkata II-149
Koucký, Michal II-264
Král, Karel II-264
Kushilevitz, Eyal I-312, II-386

Lombardi, Alex I-24
Loss, Julian I-131
Lysyanskaya, Anna II-356

Ma, Fermi II-522
Maitra, Monosij II-91
Maji, Hemanta K. II-333
Makriyannis, Nikolaos I-312
Malavolta, Giulio II-407
Malkin, Tal I-502

Manohar, Nathan I-199
Manohar, Peter II-1
Masny, Daniel I-111
Matsuda, Takahiro II-118
Maurer, Ueli I-282, II-180
Mazor, Noam I-531
McQuoid, Ian I-451
Moran, Tal I-502
Mukherjee, Tamalika II-333
Mularczyk, Marta II-180

Naor, Moni II-552

Ohta, Kazuo I-372
Ostrovsky, Rafail II-386

Paneth, Omer II-552
Paskin-Cherniavsky, Anat I-561, II-233
Peikert, Chris I-1
Pepin, Zachary I-1
Persichetti, Edoardo II-61
Portmann, Christopher I-282
Prouff, Emmanuel II-386

Qian, Luowen II-285
Qiao, Youming I-251

Rabin, Tal I-312
Radune, Slava II-233
Riabzev, Michael II-494
Rosén, Adi II-386
Rosulek, Mike I-451

Rothblum, Guy N. II-552
Rothblum, Ron D. II-311, II-522

Sahai, Amit I-199
Shaltiel, Ronen I-531
Shmueli, Omri I-229
Silbak, Jad I-531
Slívová, Veronika II-264
Song, Fang I-251
Spooner, Nicholas II-1, II-494
Swope, Trevor I-451

Thillard, Adrian II-386

Vaikuntanathan, Vinod I-24, I-55, I-174
Vasudevan, Prashant Nalini II-311
Venturi, Daniele I-111, II-211
Vergnaud, Damien II-386
Vuong, Thuy Duong I-24

Waters, Brent II-149
Wee, Hoeteck I-55
Weiss, Mor II-465

Yamada, Shota II-91
Yuan, Chen I-471
Yun, Aaram I-251

Zhang, Jiayu II-30
Zhu, Jiamin I-282
Zobernig, Lukas I-81

578 Author Index

	Preface
	TCC 2019
	Contents – Part II
	Contents – Part I
	Succinct Arguments in the Quantum Random Oracle Model
	1 Introduction
	1.1 SNARGs with Random Oracles
	1.2 Our Results
	1.3 Related Work

	2 Techniques
	2.1 The Construction of Micali
	2.2 Challenges in the Quantum Setting
	2.3 Outline of Our Approach
	2.4 From Oracle Games to Database Games
	2.5 A Basic Lifting Lemma for Database Games
	2.6 Stronger Lifting via Conditional Instability
	2.7 Instability of the Micali Oracle Game
	2.8 zkSNARKs in the QROM
	2.9 The BCS Construction: Succinct Arguments Beyond Micali

	3 Preliminaries
	3.1 Quantum Notation
	3.2 Oracle Algorithms
	3.3 Non-interactive Arguments in the Quantum Random Oracle Model
	3.4 Probabilistically Checkable Proofs
	3.5 Databases
	3.6 Compressed Phase Oracle

	4 A Lifting Lemma for Database Games
	4.1 Database Properties and the Basic Lifting Lemma
	4.2 Conditional Instability and the Lifting Lemma

	References

	Delegating Quantum Computation in the Quantum Random Oracle Model
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Techniques
	1.4 Organisation

	2 Definitions and Preliminaries
	2.1 Basics of Quantum Computation
	2.2 Encryption with Quantum Adversaries
	2.3 Delegation of Quantum Computation, and Related Problems
	2.4 Quantum Random Oracle Model
	2.5 Garbled Table

	3 The Encoding for Hiding Quantum States with Classical Keys
	4 A Quantum Computation Delegation Protocol for C+P Circuits
	4.1 C+P Circuits and the Relation to Toffoli Depth
	4.2 Protocol Construction
	4.3 Protocol Design
	4.4 Structure of the Security Proofs

	5 KDM Security of Classical Encryption Against Quantum Attack
	5.1 KDM Security in the Classical World
	5.2 KDM Security in the Quantum World
	5.3 A KDM Secure Protocol in the Quantum Random Oracle Model

	6 Security of GBC Protocol
	6.1 Construction of the Underlying Classical Encryption Scheme
	6.2 Security of GBC Against Classical or Quantum Attack
	6.3 Security Proof
	6.4 Standard Model

	7 Applications
	7.1 Blind Quantum Computation for C+P Circuits
	7.2 Delegation of Shor's Algorithm

	8 Quantum KDM Security
	8.1 Protocol Design

	9 Open Problems
	References

	Tighter Proofs of CCA Security in the Quantum Random Oracle Model
	1 Introduction
	1.1 Our Contribution

	2 One-way to Hiding
	2.1 Original O2H
	2.2 Semi-classical O2H
	2.3 Double-sided O2H

	3 KEM and PKE Security Proofs
	3.1 Derandomization: IND-CPAPQROM OW-CPA T(P, G)
	3.2 Deterministic P: OW-CPA P QROM IND-CCA U(P,F,H)
	3.3 Decryption Failures

	4 Explicit Rejection and Key Confirmation
	References
	A Security Notions and Definitions
	B Proof of Lemma5
	C Proof of Theorem1
	D Why Encryption Is Usually Injective for LWE
	E Proof of Lemma6
	F Proof of Theorem4

	Attribute Based Encryption for Deterministic Finite Automata from DLIN
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work
	1.4 Concurrent Work

	2 Preliminaries
	2.1 Definitions: Restricted Monotone Span Programs (MSP)
	2.2 Deterministic Finite Automata
	2.3 Definition: Attribute-Based Encryption
	2.4 Embedding Lemma for ABE

	3 Attribute-Based Encryption for DFA
	3.1 Construction of dfaABE
	3.2 Construction of dfaABE
	3.3 Construction of dfaABE>

	4 Mapping DFA Computation to Monotone Span Programs
	4.1 Encoding Deterministic Finite Automata to Monotone Span Programs
	4.2 Encoding DFA Input Strings to Monotone Span Programs

	5 Putting It All Together: ABE for DFA
	References

	CPA-to-CCA Transformation for KDM Security
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Related Work

	2 Technical Overview
	2.1 Naor-Yung Paradigm with DV-NIZK Fails for KDM
	2.2 How to Solve the Circularity Problem Involving DV-NIZK?
	2.3 KDM-CPA Variant of Our Construction
	2.4 KDM-CCA Secure PKE Using DV-NIZK
	2.5 Extension to KDM-CCA Security in the Multi-user Setting
	2.6 On the Connections with the Techniques by Barak et al. EC:BHHI10

	3 Preliminaries
	3.1 Notations
	3.2 Public-Key Encryption
	3.3 Secret-Key Encryption
	3.4 Designated-Verifier Non-interactive Zero-Knowledge Arguments
	3.5 Garbled Circuits

	4 DV-NIZK via KDM Security
	5 Generic Construction of KDM-CCA Secure PKE
	6 Multi-user KDM-CCA Security from RKA-KDM Security
	7 Putting It All Together
	References

	New Approaches to Traitor Tracing with Embedded Identities
	1 Introduction
	2 Technical Overview
	2.1 Embedded Identity Traitor Tracing Definitions
	2.2 Embedded-Identity Private Linear Broadcast Encryption
	2.3 Building EIPLBE from Standard Assumptions
	2.4 Indexed Embedded-Identity TT to Bounded Embedded-Identity TT
	2.5 Bounded Embedded-Identity TT to Unbounded Embedded-Identity TT
	2.6 Comparing Techniques

	3 Traitor Tracing with Embedded Identities
	3.1 Indexed Embedded-Identity Traitor Tracing

	4 A New Framework for Embedded-Identity Traitor Tracing
	4.1 Embedded-Identity Private Linear Broadcast Encryption
	4.2 Building Indexed EITT from EIPLBE

	References

	A Unified and Composable Take on Ratcheting
	1 Introduction
	1.1 Secure Messaging and Ratcheting
	1.2 Composable Security
	1.3 Contributions
	1.4 Outline

	2 Preliminaries: Constructive Cryptography
	2.1 The Real-World/Ideal-World Paradigm
	2.2 Resources
	2.3 Converters
	2.4 The Construction Notion
	2.5 Composition

	3 Constructive Cryptography with Events
	4 Composable Guarantees for Secure Messaging
	4.1 The Approach
	4.2 Our Channel Model
	4.3 Additional Resources: Memory and Randomness

	5 Unifying Ratcheting: Two Examples
	5.1 A Simple Authentication Scheme
	5.2 Confidentiality from HIBE

	6 Adaptive Security
	6.1 Overview
	6.2 The Construction: Combining RNCE with HIBE

	References

	Continuously Non-malleable Secret Sharing for General Access Structures
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Standard Definitions
	2.1 Secret Sharing Schemes
	2.2 Non-interactive Commitments
	2.3 Non-interactive Zero Knowledge

	3 Continuous Tampering Under Selective Partitioning
	3.1 The Definition
	3.2 Related Notions

	4 Construction in the CRS Model
	4.1 Description of the Scheme
	4.2 Concrete Instantiation

	5 Construction in the Plain Model
	5.1 Description of the Scheme

	6 Statistical One-Time Non-Malleability with Noisy Leakage
	6.1 Asymmetric Noisy-Leakage-Resilient Secret Sharing

	7 Conclusions and Open Problems
	References

	Interactive Non-malleable Codes
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Works

	2 Preliminaries
	3 Definitions
	3.1 Interactive Protocols
	3.2 Interactive Non-malleable Codes

	4 Lower Bounds for Threshold Tampering Functions
	5 Bounded State Tampering
	5.1 Interactive Non-malleable Code for Bounded State Tampering

	6 Split-State Tampering
	6.1 INMC for Split-State Tampering

	7 Fragmented Sliding Window Tampering
	7.1 INMC for Fragmented Sliding Window Tampering

	References

	Stronger Lower Bounds for Online ORAM
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 Online ORAM

	3 Dense Graphs
	4 ORAM Lower Bound
	5 Alternative Definitions for Oblivious RAM
	References

	Adaptively Secure Garbling Schemes for Parallel Computations
	1 Introduction
	1.1 Our Results
	1.2 Applications

	2 Techniques
	2.1 Parallelizing Garbled Circuits
	2.2 Garbling Parallel RAM

	3 Preliminaries
	3.1 Garbled Circuits
	3.2 Somewhere Equivocal Encryption
	3.3 Parallel RAM Programs
	3.4 Sorting Networks
	3.5 Laconic Oblivious Transfer

	4 Adaptive Garbled Circuits Preserving Parallel Runtime
	4.1 Construction Overview
	4.2 Block-Writing Laconic OT
	4.3 Garbled Merkle Tree
	4.4 Construction

	References

	Statistical Difference Beyond the Polarizing Regime
	1 Introduction
	1.1 Our Results
	1.2 Additional Related Works

	2 Techniques
	2.1 One-Way Function from Statistical Difference with Any Noticeable Gap
	2.2 Interactive Proof for Statistical Distance Approximation
	2.3 TDP and JSP are SZK-Complete

	References

	Estimating Gaps in Martingales and Applications to Coin-Tossing: Constructions and Hardness
	1 Introduction
	1.1 Our Contributions
	1.2 Prior Approaches to the General Martingale Problem

	2 Preliminaries
	3 Large Gaps in Martingales: A Geometric Approach
	3.1 Proof of Theorem 1

	4 Applications
	4.1 Distributed Coin-Tossing Protocol
	4.2 Fail-Stop Attacks on Coin-Tossing/Dice-Rolling Protocols
	4.3 Influencing Discrete Control Processes
	4.4 L2 Gaps and Their Tightness

	A Proof of Lemma 1
	B Large L2-Gaps in Martingale: Proof of Theorem 3
	References

	Fully Homomorphic NIZK and NIWI Proofs
	1 Introduction
	2 Technical Overview
	2.1 Overview: Fully Homomorphic NIZK
	2.2 Overview: Fully Homomorphic NIWI

	3 Preliminaries
	3.1 Definition of Proof Systems
	3.2 Bilinear Maps

	4 Fully Homomorphic Proofs: Definition
	4.1 Definition: Fully Homomorphic NIZK and NIWI Proofs

	5 Building Blocks for Fully Homomorphic Proofs
	5.1 Randomizable Commitment Scheme
	5.2 Proofs of Linearity
	5.3 Assumption: DLIN with Leakage

	6 Fully Homomorphic NIZK Proofs
	7 Fully Homomorphic NIWI Proofs
	References

	Lower and Upper Bounds on the Randomness Complexity of Private Computations of AND
	1 Introduction
	2 Preliminaries
	3 Lower Bound
	4 Upper Bounds
	4.1 1-out-of-2 Oblivious Transfer
	4.2 The AND Protocol

	5 Conclusions
	References

	Leveraging Linear Decryption: Rate-1 Fully-Homomorphic Encryption and Time-Lock Puzzles
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Technical Outline

	2 Preliminaries
	2.1 Learning with Errors
	2.2 Homomorphic Encryption
	2.3 Multi-key Homomorphic Encryption
	2.4 Linear Decrypt-and-Multiply
	2.5 Homomorphic Time-Lock Puzzles

	3 Shrinking Linearly Homomorphic Encryption
	3.1 Definitions
	3.2 A Ciphertext Shrinking Algorithm
	3.3 Packed Regev Encryption

	4 Rate-1 Fully-Homomorphic Encryption
	4.1 Definitions
	4.2 Construction
	4.3 Analysis
	4.4 Instantiating with Rate 1

	5 Fully-Homomorphic Time-Lock Puzzles
	5.1 Analysis
	5.2 Instantiation

	References

	Compressible FHE with Applications to PIR
	1 Introduction
	1.1 Applications to PIR
	1.2 Related Work

	2 Background on Gadget Matrices, LWE, PVW and GSW
	3 Defining Compressible (F)HE
	4 Constructing Compressible (F)HE
	4.1 Compressible HE with PVW-Like Scheme
	4.2 High-Rate Additive HE Using Nearly Square Gadget Matrix
	4.3 Setting the Parameters
	4.4 A Nearly Square Gadget Matrix

	5 Application to Fast Private Information Retrieval
	5.1 Toward an Optimized PIR Scheme
	5.2 The Detailed PIR Scheme

	References

	Permuted Puzzles and Cryptographic Hardness
	1 Introduction
	1.1 Our Results
	1.2 Other Instances of Hardness from Random Permutations
	1.3 Techniques

	2 Preliminaries
	3 Distinguishing Problems and Permuted Puzzles
	3.1 String-Distinguishing Problems
	3.2 Distinguishing Games and Hardness
	3.3 Permuted Puzzles and a Related Indistinguishability Notion

	4 Hard Permuted Puzzles in the Random Oracle Model
	5 Hard Permuted Puzzles in the Plain Model
	5.1 Permuted Puzzles and the Learning Parity with Noise (LPN) Assumption
	5.2 Permuted Puzzles Based on DDH

	6 Statistical Query Lower Bound
	6.1 Statistical Query Algorithms
	6.2 The Toy Problem and Lower Bound

	References

	Linear-Size Constant-Query IOPs for Delegating Computation
	1 Introduction
	1.1 Our Results
	1.2 Relation to Prior Work
	1.3 Open Questions

	2 Technical Overview
	2.1 Our Starting Point
	2.2 Checking Succinctly-Represented Linear Relations
	2.3 Checking Bounded-Space Computations in Polylogarithmic Time
	2.4 Checking Machine Computations in Polylogarithmic Time
	2.5 Oracle Reductions

	3 Roadmap
	4 Preliminaries
	4.1 Codes and Polynomials
	4.2 Interactive Oracle Proofs

	5 Oracle Reductions
	5.1 Definitions
	5.2 Reed–Solomon Oracle Reductions

	References

	On the (In)security of Kilian-Based SNARGs
	1 Introduction
	1.1 Kilian's Protocol and FSKM
	1.2 Our Results
	1.3 Additional Prior Work
	1.4 Technical Overview
	1.5 Organization

	2 Preliminaries
	2.1 Proof Systems
	2.2 Kilian's Protocol
	2.3 Fiat-Shamir

	3 An FSKM-Incompatible CRHF
	3.1 Background on SNARKs
	3.2 An FSKM-Incompatible CRHF
	3.3 CRHF Construction
	3.4 CRHF Key Generation
	3.5 Proof of Theorem 6

	4 An FSKM-Incompatible PCIP
	4.1 Proof of Theorem 7

	References

	Incrementally Verifiable Computation via Incremental PCPs
	1 Introduction
	1.1 This Work

	2 Technical Overview
	2.1 The BFLS Construction
	2.2 The Incremental PCP Construction
	2.3 Updating the PCP
	2.4 From PCP to Verifiable Computation

	3 Definitions
	3.1 Incrementally Updatable PCP
	3.2 Incrementally Verifiable Computation

	4 PCP Construction
	4.1 Preliminaries
	4.2 The Constraints
	4.3 The Proof String

	References

	Author Index

