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Abstract. Topology-hiding computation (THC) is a form of multi-party
computation over an incomplete communication graph that maintains
the privacy of the underlying graph topology. Existing THC protocols
consider an adversary that may corrupt an arbitrary number of parties,
and rely on cryptographic assumptions such as DDH.

In this paper we address the question of whether information-theoretic
THC can be achieved by taking advantage of an honest majority. In
contrast to the standard MPC setting, this problem has remained open
in the topology-hiding realm, even for simple “privacy-free” functions
like broadcast, and even when considering only semi-honest corruptions.

We uncover a rich landscape of both positive and negative answers to
the above question, showing that what types of graphs are used and how
they are selected is an important factor in determining the feasibility
of hiding topology information-theoretically. In particular, our results
include the following.

– We show that topology-hiding broadcast (THB) on a line with four
nodes, secure against a single semi-honest corruption, implies key
agreement. This result extends to broader classes of graphs, e.g.,
THB on a cycle with two semi-honest corruptions.

– On the other hand, we provide the first feasibility result for
information-theoretic THC: for the class of cycle graphs, with a sin-
gle semi-honest corruption.

Given the strong impossibilities, we put forth a weaker definition of dis-
tributional-THC, where the graph is selected from some distribution (as
opposed to worst-case).

– We present a formal separation between the definitions, by show-
ing a distribution for which information theoretic distributional-
THC is possible, but even topology-hiding broadcast is not possible
information-theoretically with the standard definition.

– We demonstrate the power of our new definition via a new connection
to adaptively secure low-locality MPC, where distributional-THC
enables parties to “reuse” a secret low-degree communication graph
even in the face of adaptive corruptions.
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1 Introduction

In the setting of secure multiparty computation (MPC) [8,15,21,33], a set of
mutually distrusting parties wish to jointly perform a computation, such that
no coalition of cheating parties can learn more information than their outputs
(privacy) or affect the outputs of the computation any more than by choosing
their own inputs (correctness). Seminal results initiated in the 1980s [8,15,21,33],
showed feasibility of MPC for general functions in many settings. The original
definitions—and most works in the rich field of research they gave rise to—
assume the participants are connected via a complete graph: i.e., any pair of
parties can communicate directly with each other. However, in many settings
the communication graph is in fact partial (either by design or by necessity).
Moreover, as we discuss below, the network topology itself may be sensitive
information to be hidden.

Several lines of work have studied secure computation over incomplete net-
works, in different contexts, but without attempting to hide the communica-
tion graph. For example, beginning with classical results in Byzantine agreement
[17,20], a line of work studied the feasibility of reliable communication over
(known) incomplete networks (cf. [4–6,9,13,18,19,28]). More recent lines of work
study secure computation with restricted interaction patterns, motivated by
improving efficiency, latency, scalability, usability, or security, including [7,10,11,
14,22–24]. Some of these works utilize a secret communication subgraph of the
complete graph that is available to the parties as a tool to achieve their goal; e.g.,
[10,11,14] use this idea in order to achieve communication locality.

Topology-Hiding Computation. Moran et al. [31] initiated the study of Topology-
Hiding Computation (THC), addressing the setting where the communication
graph is incomplete and sensitive. Here, the goal is to allow parties who see
only their immediate neighborhood (and possibly know that the graph belongs
to some class), to securely compute arbitrary functions without revealing any
other information about the graph topology. THC is of theoretical interest, but
is also motivated by real-world settings where it is desired to keep the underly-
ing communication graph private. These include social networks, ISP networks,
vehicle-to-vehicle communications, wireless and ad-hoc sensor networks, and
other Internet of Things networks.

THC protocols have been studied within two adversarial settings. In the
semi-honest setting, the adversary follows the prescribed protocol but attempts
to extrapolate disallowed information. In the fail-stop setting, the adversary may
additionally abort the computation of parties at any point. Most existing THC
protocols focus on the former, semi-honest setting, and this will also be our
focus in this paper. We mention that in the fail-stop setting, Moran et al. [31]
showed that THC is not possible except for extremely limited graphs/adversarial
corruption patterns, and Ball et al. [3] and LaVigne et al. [29] showed how to
achieve it with small leakage, assuming a secure hardware setup assumption, and
assuming the hardness of decisional Diffie-Hellman (DDH), quadratic residuosity
(QR), or learning with errors (LWE).
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For the rest of this paper we assume the semi-honest setting (although some
of our results could potentially be extended to fail-stop or malicious settings).
In this regime, after several protocols achieving THC for various subclasses of
graphs (log-diameter, cycles, trees, etc.) [1,26,31] from different cryptographic
assumptions, Akavia et al. [2] showed how to achieve THC for all graphs from
the DDH or QR assumptions, and LaVigne et al. [29] from LWE.

Our Question: Information-Theoretic THC. Existing topology-hiding computa-
tion protocols provide a strong notion of hiding all information about the graph
against an adversary who can corrupt an arbitrary number of parties. On the
other hand, these existing protocols use structured cryptographic assumptions
such as DDH, oblivious transfer (OT), or public-key encryption (PKE) with spe-
cial properties, or even stronger assumptions such as a secure hardware box [3]
to achieve more practical efficiency.

In this paper, we ask whether we can hide topology information theoretically,
against a computationally unbounded adversary (in the plain model, with no cor-
related randomness or other trusted setup). A similar question, albeit only for
(non-private) communication, was considered by Hinkelmann and Jakoby [25].
They claim an impossibility result for the class of all graphs, as well as a positive
result showing an information-theoretic all-to-all communication protocol that
leaks specific information about the graph (routing tables) but no other infor-
mation. In contrast, here we are interested in (positive and negative) results for
subclasses of graphs, as it is typically the case in applications of THC that the
graph belongs to a certain known class. Looking ahead, we will see that what
graphs are allowed and how they are chosen plays a crucial role for the feasibility
of information-theoretic THC.

Ball et al. [3] have also considered this question, and showed that in their
setting—semi-honest, arbitrary number of corruptions—the answer is negative.
Specifically, they prove that even semi-honest secure topology-hiding broadcast
for four parties or more, implies OT. Note that standard information-theoretic
MPC for broadcast (where topology can be revealed) is trivial in the semi-
honest setting, since there is nothing to hide: simply “flooding”—i.e., forwarding
received messages to all neighbors—for sufficiently many rounds, works. Their
proof crucially depends on the adversary corrupting at least half of the parties,
namely no honest majority. This brings up a natural question, which we study
in this paper:

Can we take advantage of a low corruption threshold to achieve
information-theoretic topology-hiding computation?

This question is particularly natural when we consider how fruitful this app-
roach had been in the realm of standard (topology-revealing) secure computa-
tion. Indeed, classical results [8,15,32] show information-theoretic protocols for
secure computation of general functions with an honest majority. However, in the
topology-hiding realm, this question remained open (and explicitly mentioned in
previous works such as [3]). In fact, the question was open even for the special
case of topology-hiding broadcast (THB), where no privacy of inputs is required.
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In this paper, we prove several results answering the above question, both
negatively and positively, in different settings. All our positive results hold for
general THC and all our negative results hold even for THB. Below we first
describe our results for the standard definition of THC. We then discuss a new
weaker definition of distributional -topology-hiding computation that we put for-
ward, together with our results for this definition (as well as motivation and
applications of this relaxation). Our results deepen our understanding of the
nature of topology hiding, and point to a rich terrain of possibilities and appli-
cations of THC.

1.1 Our Results: Standard (Strong) Topology Hiding

We start by presenting both feasibility and infeasibility results of information-
theoretic THC according to the standard definition from [30].

Broadcast on a Line Implies Key Agreement. We identify a large class of graphs
for which information-theoretic THC is not possible, even when the semi-honest
adversary can corrupt just a single party, and even without relying on input
privacy.

Theorem(informal):Topology-hidingbroadcast for a graphwith four parties
on a line, resilient to one semi-honest corruption, implies key agreement.

Note that this theorem is for THB. Information-theoretic THC is trivially not
possible here because the graph is only 1-connected, hence no privacy is possible
with one corruption [18] (recall that we do not have any setup or correlated
randomness).

At a high level, our key-agreement protocol considers two permutations of
the four nodes: G0 = (1 − 2 − 3 − 4) and G1 = (2 − 3 − 4 − 1) (see Fig. 1), with
party 1 acting as the broadcaster. In this setting, a corrupted party 3 cannot
distinguish which topology is being used: namely, whether 1 is a neighbor of 2
or of 4. This gap can be used to achieve a two-party key-agreement protocol.
Consider an execution of the THB where Alice emulates parties 1, 2, and 3
while Bob emulates party 4, and another execution where Alice emulates parties
2 and 3 while Bob emulates parties 4 and 1. In both cases the messages that are
exchanged by Alice and Bob—and so can be heard by an eavesdropper—consist
of a partial view of party 3 in the THB protocol.

The key-agreement protocol now comprises of repeated phases, where in each
phase Alice and Bob run two executions of the THB protocol. Each party tosses
a private coin to decide whether to emulate the broadcaster party 1 in the first
execution or the second. If Alice and Bob toss different coins, then either both
emulate party 1 or nobody does. In this case they simply discard this phase and
continue to the next one. However, if they toss the same coin, an eavesdropper
will not be able to guess with more than negligible probability whether Alice
emulated 1 in the first run and Bob in the second, or vice versa; hence, Alice
and Bob can agree on this bit.



506 M. Ball et al.

Fig. 1. Four-party THB implies two-party key agreement. At the top are two config-
urations of the line, where party 3 is connected to party 2 on the left and to party
4 on the right. Party 3 does not know the location of party 1. At the bottom is the
induced KA protocol, where Alice and Bob simulate executions of the THB protocol.
The transcript visible to Eve forms a partial view of party 3’s view in the THB; hence,
Eve cannot distinguish between both scenarios.

Extension to Broader Classes of Graphs. Clearly, this theorem holds for any class
of graphs that includes all lines over n ≥ 4 parties (topology-hiding here means
that the order of the parties on the line, other than the two neighbors of the
corrupted party, is not known, and in particular, the location of the broadcaster
is hidden).

Our theorem further extends by a standard player-partitioning argument to
more general classes of graphs, namely, any graph that can be partitioned into
4 “subsets” on a line. An example for such a class, most relevant to our positive
result (below), are cycles of seven parties or more and with two corruptions (see
Fig. 2).

Information-Theoretic THC on a Cycle. Our negative result rules out
information-theoretic THC on cycles with two corruptions. Does a similar result
hold even when we have a single corruption? Our next result shows that the
answer is no. We construct a perfectly secure THC protocol on cycles, resilient
to a single corruption.

Theorem (informal): THC on a cycle with one corruption can be achieved
information theoretically, with perfect correctness.

Note that this does not contradict the negative result claimed by Hinkelmann
and Jakoby [25]. While that result precludes information-theoretic THC for the
class of all graphs, here the parties know they are on a cycle (but do not know
in which order the parties are arranged on the cycle).

The proof consists of two parts. Initially, we show how to realize anonymous
and private pairwise communication. That is, each party can send a message to
any other party on the cycle, but without knowing to whom he is sending, and
from whom he is receiving messages. Instead, the sender can send the messages
to the relative location on the cycle, i.e., he can send one message to a party that
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Fig. 2. Reducing a seven-node cycle to a four-node line. Consider the partition of the
seven nodes into P1 = {1}, P2 = {2, 3}, P3 = {4, 5}, and P4 = {6, 7}. The cycle on the
left yields (P1 −P2 −P3 −P4) and the cycle on the right yields (P2 −P3 −P4 −P1).

is 2 hops to his right, another message to a party that is 3 hops to his left, and
so on. To send a message to a party that is j hops to his right (i.e., n− j hops to
his left), the sender secret shares the message and sends one share to his right
neighbor and the second to his left neighbor. A party that receives a message
from one of his neighbors forwards the message to his other neighbor. As there
are n−1 hops in the cycle, sending a message takes n−1 rounds, and the sender
(that is sending to the party that is j hops to his right) starts sending the right
share after n − j rounds and the left share after j rounds. This way, after n − 1
rounds, the receiver obtains both shares and can reconstruct the message.

Once establishing private pairwise channels, the parties can compute any
function using the BGW protocol [8]. However, BGW cannot be executed imme-
diately over an anonymous network, since to process input wires the real identi-
ties should be known, rather than the alias IDs (e.g., for computing (x1+x2)·x3).
To overcome this obstacle, we first observe that symmetric functions f can be
implemented immediately via BGW over an anonymous communication net-
work. Then, we generically reduce arbitrary f to the symmetric case, by having
parties submit their real ID as part of their input (i, xi), and computing the
modified symmetric function f ′ which acts equivalently on all input pairs via
multiplexing.

1.2 Our Results: Distributional-Topology Hiding

Having shown that information-theoretic THC is impossible for a large class
of graphs even in the honest-majority setting, a natural question is whether
we can construct weaker—but still useful—variants of THC for such settings. In
particular, suppose we do not aim to hide everything about the graph, but rather
just hide something about the graph, which will allow us to use the protocol as
a building block in other applications.
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As a motivating example, consider the work of Boyle et al. [11], who showed
a protocol achieving adaptively secure MPC, where the actual communication
graph has a sublinear cut, and thus is not an expander. Their protocol is in
the so-called hidden-channel model, introduced in [14], where the adversary is
unaware of the communication between honest parties (otherwise a trivial attack
would separate the graph).1 Intuitively, the adaptive security of their protocol
hinges on the fact that the adversary cannot find which parties are on the small
cut; if it could corrupt those parties, the security would be compromised. Thus,
although hiding information about the topology was not their goal, it seems
that the main tool used by [11] to prove their result is that something about
the topology (where the sublinear cut is) is hidden. Intuitively, their protocol
captures some notion of topology hiding.

Trying to formalize this claim and prove it within the existing framework
of THC quickly fails. Indeed, the standard definition of THC (considered in
Sect. 1.1 and in all prior work) captures security in “worst-case” graphs; hence,
the communication graph is chosen by the environment. Since the environment
can choose which parties to corrupt in a correlated way, it can simply corrupt
the parties on the cut and break security of the protocol (even with static cor-
ruptions). This motivates us to define a weaker notion:

We define distributional topology-hiding computation, where, informally,
the environment only knows the distribution from which the graph is cho-
sen, not the specific graph.

Defining Distributional-Topology Hiding. Formalizing this definition poses some
subtleties. In its most intuitive form, this definition resembles the hidden-graph
model from [14]. In this model, the graph is sampled according to some prede-
fined distribution, and each party learns its local neighborhood. Chandran et al.
[14] used this model to construct adaptively secure MPC with sublinear com-
munication locality; however, their protocol was not meant to hide topology,
and indeed each graph was only valid for a one-time use. In the distributional-
topology-hiding case, we wish to construct protocols that do hide the topology,
and so can reuse the same graph.

To support hidden topology during the computation along with strong com-
position capabilities, we allow the environment to receive the communication
graph from the ideal functionality (either the communication-graph functional-
ity in the real world, or the graph-information functionality in the ideal world),
before announcing its decision-bit: real or ideal. Once the environment has
learned the graph, we fall back to a similar state as in the classical THC set-
ting, and we cannot base the security of the protocol on the graph’s entropy.
For this reason, after the environment receives the graph, the ideal functionality

1 This is in fact the communication model that is considered in the topology-hiding
setting, since if the communication is over standard private channels, the adversary
would learn information about the graph just by observing with whom honest parties
communicate.
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will stop processing any further messages, and in a sense, the communication
network enters an “out of order” state.

However, the environment might still attempt to misuse this additional
power, and after receiving the communication graph, corrupt a set of parties
in a way that will break security (e.g., corrupt the entire sublinear cut in the
example above). This attack is quite subtle, since essentially, after learning the
graph the environment has the capability to learn all of the inputs that were used
in the protocol just from the messages received by a small set of parties (recall
that we consider information-theoretic protocols in the plain model). Clearly,
the simulator will not be able to simulate such an attack. One way to protect
against this attack is to rely on secure data erasures and instruct every party
to erase all of the received and sent messages as soon as the network goes out
of order. However, since secure erasures form a strong assumption that cannot
always be realized, and thus limit the model, we resort to an alternative, more
general, solution. To overcome this subtlety, once the environment receives the
graph the ideal functionality will provide the simulator with all of the input
messages it received from honest parties. This new information will allow the
simulator to simulate additional corruption requests that are issued as a function
of the graph, and will balance the additional advantage the environment gained.

In a sense, the new definition guarantees privacy of the communication net-
work as long as it is active; however, if the network enters an “out of order”
state, it does not retain the privacy of the protocols that used it, unless secure
data erasure are employed.

We note that since the new definition hides the communication graph from
the environment while it is active, computation that depend on the communi-
cation graph itself (e.g., finding shortest paths) cannot be supported - this is
another weakening of the original definition.

Relation to Classical THC. Having formalized distributional-THC, one may ask
whether this definition can be used to achieve meaningful computations, and
whether it implies standard THC. We show that this definition can capture the
intuitive topology-hiding property of the protocol in [11], discussed above. In
fact, we modify their protocol to show a strong separation between the defi-
nitions. We construct a distribution D which, on the one hand, can be used
for computing any function while hiding a sublinear cut between two cliques
(tolerating a linear number of adaptive corruptions), and on the other hand,
even broadcast cannot be computed in a topology-hiding manner (in the clas-
sical sense) using any graph in the support of D (tolerating merely a sublinear
number of static corruptions).

Theorem (informal): We show a distribution D over graphs with n nodes
such that:

– Distributional-THC of every function can be achieved with respect
to D, with information-theoretic security, against an adaptive semi-
honest adversary.
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– For any class of graphs C with C ∩ supp(D) �= ∅, even broadcast cannot
be computed information theoretically in the strong THC setting, even
with static semi-honest corruptions (as it implies key agreement).

Connection to Adaptively Secure Low-Locality MPC. Finally, we demonstrate the
power of our new definition via a new connection to adaptively secure low-locality
MPC, where distributional-THC enables parties to “reuse” a secret low-degree
communication graph even in the face adaptive corruptions. Concretely, this will
enable sequential composition of the adaptively secure MPC protocol from [14]
while maintaining sublinear locality. The starting point of [14] was any adaptively
secure MPC protocol over pairwise private channels. They used the hidden-graph
model to sample an Erdős-Rényi graph G (with sublinear degree and polylog
diameter) and showed how to emulate pairwise private communication over the
graph G. In addition, an elegant distributed sampling algorithm for a Erdős-
Rényi graph was given in [14] (based on [13,27]).

However, as discussed above, their protocol does not hide the topology of G,
and so a fresh graph is used for every communication round. For this reason,
their protocol can be used for executing MPC protocols with sublinear many
communication rounds, and maintains sequential composition of sublinear many
computations (otherwise the locality will blow up).

We show that if the private pairwise communication can be instantiated in
a distributional-THC manner, the adaptively secure MPC protocol from [14]
will be able to reuse the same secret Erdős-Rényi communication graph for
polynomially many rounds, and so will remain secure under arbitrary sequential
composition.

Theorem (informal): If there exists an adaptively secure distributional-
THC protocol for private pairwise communication with respect to the
Erdős-Rényi distribution from [14] (tolerating a linear number of semi-
honest corruptions), then there exists an honest-majority adaptively secure
MPC protocol with sublinear locality (tolerating the same corruptions)
that remains secure under polynomially many sequential executions.

We note that this theorem does not present a new feasibility result, as we
do not yet know how to implement the required underlying adaptively secure
distributional-THC protocol. We leave this as an interesting open problem.
Instead, the theorem demonstrates the power and usefulness of our definition
(despite its weakness compared to the original).

1.3 Open Problems

Our results from Sect. 1.1 characterize the feasibility of information-theoretic
THC over lines and cycles. Ultimately, the desire is to provide a similar char-
acterization for all graphs. An interesting starting point is to extend our under-
standing in broader classes of graph, e.g., wheel graphs or 3-regular graphs.

Another intriguing question to come up with more distributions over graphs
that can be computed in a distributional-THC manner.
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Finally, as mentioned above, it is not clear whether private pairwise com-
munication can be realized with distributional-THC security with respect to
the Erdős-Rényi distribution. Answering this question will have implications on
low-locality adaptively secure MPC.

Additional Related Work. In an independent and concurrent work, Damg̊ard
et al. [16] investigate the feasibility of information-theoretic THC. Their setting is
different from ours, as they consider a trusted setup phase to generate correlated
randomness for the parties.

Organization of the Paper. The preliminaries can be found in Sect. 2. Initially,
we consider the standard THC definition and present our lower bound in Sect. 3,
followed by the positive results in Sect. 4. We proceed to define distributional-
THC in Sect. 5, show a separation between the definitions in Sect. 6. Due to space
limit, some of the proofs and the connection to low-locality MPC are deferred
to the full version.

2 Preliminaries

Notations. For n ∈ N let [n] = {1, · · · , n}. We denote by κ the security param-
eter, by n the number of parties, and by t an upper bound on the number of
corrupted parties. The empty string is denoted by ε.

UC Framework. We consider the UC framework of Canetti [12]. Unless stated
otherwise, we will consider computationally unbounded and semi-honest adver-
saries and environments. We will consider both static corruptions (where the
corrupted parties are chosen before the protocol begins) and adaptive corrup-
tions (where parties can get corrupted dynamically during the course of the
computation), and explicitly mention which type of corruption is considered in
every section.

We will consider the standard secure function evaluation (SFE) functionality,
denoted Ff

sfe. Informally, the functionality is parametrized by an efficiently com-
putable function f : ({0, 1}∗)n → {0, 1}∗. Every honest party forwards its input
received from the environment to the ideal functionality, and the simulator sends
the corrupted parties’ inputs. The functionality computes y = f(x1, . . . , xn) and
returns y to every party. Broadcast is a special case of SFE for the function that
receives an input from a single party, named the broadcaster, (formally, every
other party gives the empty string ε as input) and delivers this value to every
party as the output. We denote the broadcast functionality by Fbc.

Topology-Hiding Computation (THC). We recall the definition of topology-
hiding computation from [31]. The real-world protocol is defined in a model
where all communication is transmitted via the FG

graph functionality (described
in Fig. 3). The functionality FG

graph is parametrized by a family of graphs G.
Initially, before the protocol begins, FG

graph receives the network communication
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graph G from a special graph party Pgraph, makes sure that G ∈ G, and provides
to each party his local neighbor-set. Next, during the protocol’s execution, the
functionality receives a message to be delivered from a sender Pv to a receiver
Pw and delivers the message if the edge (v, w) appears in the graph.

An ideal-model computation of a functionality F is augmented to provide the
corrupted parties with the information that is leaked about the graph; namely,
every ideal (dummy) party should learn his neighbor-set. To capture this, we
define the wrapper-functionality WG

graph-info(F), that runs internally a copy of the
functionality F. The wrapper receives the graph G = (V,E) from Pgraph, makes
sure that G ∈ G, and upon receiving an initialization message from a party Pi

responds with its neighbor set NG[i] (just like FG
graph). All other input messages

are forwarded to F and every message from F is delivered to its recipient.

Fig. 3. The communication graph functionality

Definition 1 (Topology-hiding computation). We say that a protocol π
securely realizes a functionality F in a topology-hiding manner with respect to
G tolerating semi-honest t-adversaries if π securely realizes WG

graph-info(F) in the
FG

graph-hybrid model tolerating semi-honest t-adversaries.

We note a few technical changes in the definition above compared to [31].
First, we let the graph functionality Fgraph and the wrapper Wgraph-info be
parametrized by a family of graphs G. This captures the fact that certain proper-
ties of the graphs might be inherently leaked e.g., the diameter of the graph [31]
or that the graph is a cycle or a tree [1]. This technical adjustment has also been
considered in [26]. A second difference is that we define the graph-information
as a wrapper functionality around F rather than a separate functionality that
is composed with F. Although this difference is only syntactic with respect to
the definition above, it will enable a cleaner definition of distributional THC in
Sect. 5.
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3 TH-Broadcast on a Line Implies Key Agreement

In this section, we show that a topology-hiding broadcast protocol of four parties
(or more) connected in a line that tolerates one semi-honest corruption, implies
the existence of two-party key-agreement protocols.

We define the following class of graphs Gline = {G0, G1}, where each graph
has four nodes on a line: G0 = (1 − 2 − 3 − 4) and G1 = (2 − 3 − 4 − 1) (see
Fig. 1). Consider party 1 to be the broadcaster, then a corrupted party 3 will
not know whether 1 is a neighbor of 2 or of 4. We next show how to utilize this
property to achieve a two-party key-agreement protocol. The high-level idea is
that either Alice will emulate parties 1, 2, and 3 and Bob will emulate party 4, or
that Alice will emulate parties 2 and 3, and Bob will emulate parties 4 and 1. An
eavesdropper listening to their communication will in fact hear all the messages
exchanged between party 3 and party 4 in the THB protocol, and therefore will
not be able to guess with more than negligible probability who emulates party 1.

Theorem 1. The existence of four-party topology-hiding broadcast with respect
to class Gline secure against semi-honest adversaries that may make a single cor-
ruption implies the existence of key agreement.

High-Level Idea. Our key-agreement protocol proceeds in phases. In a given
phase, Alice and Bob will jointly simulate the topology-hiding broadcast protocol
on a line graph of nodes 1, 2, 3, 4. Alice will always simulate nodes 2 and
3 and Bob will always simulate node 4. Alice and Bob will flip private coins
to determine if they simulate 1. Note that it may be that neither or both of
them simulate node 1. It will always be the case that node 2 has an edge to
node 3 which is in turn has an edge to node 4. If Alice’s coin is heads she will
simulate node 1 with a unique edge to node 2. Similarly, if Bob’s coin is heads,
he will simulate node 1 with a unique edge to node 4. The node 1 will always be
broadcaster, and will correspond to the bit agreed upon. The eavesdropper, Eve,
will of course see the messages between 3 and 4 as Alice and Bob communicate
to simulate the protocol execution. We will design our protocol so that Alice
and Bob can identify when both or neither are controlling node 1 so they can
throw them out, as the protocol will have no guarantees in this case. In the other
cases, whether Alice or Bob controls 1 will indicate the bit agreed upon. This bit
will be obvious to both Alice and Bob; however, it will be obscured from Eve.
In particular, any advantage Eve has in guessing the bit can be used to break
the topology hiding of the protocol. To increase the probability of successfully
agreeing on a bit the protocol can simply be repeated. However, for simplicity
we will specify and analyze the low-success version.

Proof. Let π be a topology-hiding broadcast protocol with respect to Gline, where
node 1 is the broadcaster. Via sequential composition, we may assume π is a κ-bit
broadcast protocol without. We use π to construct the following key-agreement
protocol.
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Protocol 2 (Two-party key agreement)

1. Alice sends two random κ-bit strings, r1 and r2, to Bob. These will be the
strings broadcasted in the simulations of π.

2. Alice and Bob each flips a coin: cA, cB ← {0, 1}, respectively. They will jointly
simulate the protocol twice.
– If cA = 1, Alice will first simulate nodes 1 (broadcasting r1), 2, and 3 in π.

The second time, Alice will just simulate nodes 2 and 3. If cA = 0, Alice
will just simulate nodes 2 and 3 the first time and additionally simulate
node 1 (broadcasting r2), the second time.

– If cB = 1, Bob will first simulate nodes 1 (broadcasting r1) and 4 in π.
The second time, Bob will just simulate node 4. If cB = 0, Bob will just
simulate node 4 the first time, and additionally simulate node 1 (broad-
casting r2), the second time.

3. Alice and Bob jointly simulate π twice according to the roles designated above,
communicating messages between 3 and 4 as needed.
– If node 2 did not output either r1 in the first simulation of π or r2 in the

second simulation of π, Alice outputs ⊥. Otherwise, Alice outputs cA.
– If node 4 did not output either r1 in the first simulation of π or r2 in the

second simulation of π, Bob outputs ⊥. Otherwise, Bob outputs 1 − cB.

There are 4 cases for how (cA, cB) is chosen (each occurring with probability
1/4. We will divide them into two sets (each occurring with probability 1/2):
cA = cB and cA �= cB . We claim that in the first case both Alice and Bob output
⊥ with probability ≥ 1 − 21−κ. In the second case, we claim that both Alice
and Bob output cA with overwhelming probability and that Eve’s output can
be at most negligibly correlated with cA. Thus, conditioned on Alice and Bob
not outputting ⊥ (which happens with probability negligibly close to 1/2), Alice
and Bob will agree on a bit (with overwhelming probability) that is negligibly
correlated with any bit outputted by an efficient eavesdropper. Therefore, it
suffices to prove the claim for each case.

The case of cA = cB. If both cA = 1 and cB = 1, then neither Alice nor Bob is
simulating the broadcasting node 1 in the second simulation. In which case, all
outputs of π in this simulation is independent of r2. Thus, the probability that
either node 2 or node 4 outputs r2 in the simulation is at most 2/2κ. Conversely,
if both cA = 0 and cB = 0, then neither party is simulating node 1 in the first
simulation and all outputs are independent of r1. And similarly the probability
that either node 2 or node 4 outputs r1, in this case, is at most 2/2κ.

In either case there is a simulation where both node 2 and node 4 fail to
output the chosen string with probability at least 1 − 21−κ. Thus, both Alice
and Bob will output ⊥ with probability at least 1 − 21−κ.

The case of cA �= cB. In this case, in each simulation exactly one of Alice and Bob
is simulating node 1, the broadcaster. By correctness, all nodes (including nodes
2 and 4) will output the string r1 in the first simulation and r2 in the second
simulation with overwhelming probability. Thus, both Alice and Bob will output
cA (note that cA = 1 − cB , in this case) with overwhelming probability.
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On the other hand, suppose Eve outputs a bit b such that Pr[b = cA] =
1/2 + α. Note that Eve only sees the correspondence between nodes 3 and 4.
We can use such an Eve to distinguish between running π on G0 or G1 with
advantage at least α/3. Moreover, it will distinguish with respect to a specific
distribution of broadcast messages and topology: the one where both message
and topology are chosen uniformly and independently.

A semi-honest adversary that has corrupted node 3 will wait until the pro-
tocol has completed and the output r has been received before simulating Eve.
The adversary will flip a bit b′: effectively guessing the opposite topology of
actual execution 1-2-3-4 (in the case that b′ = 0) or 2-3-4-1 (in the case that
b′ = 1). After the protocol has completed, the adversary will sample a random
string r′ and run Eve on a transcript comprised of r, r′, the actual communi-
cation between nodes 3 and 4, and a communication between nodes 3 and 4 in
a simulated execution where r′ is broadcasted over the guessed topology. The
simulated Eve will output a bit b. If b = 1, the adversary will output the 1-2-3-4
topology, and the 2-3-4-1 topology otherwise.

In the case that the adversary guessed correctly (which happens with proba-
bility 1/2), the transcript Eve is given is identically distributed to the that of the
key-agreement protocol. In this case, the simulated Eve’s bit will be α-correlated
with the actual topology. In the other case, when Eve is given two independent
invocations of the protocol on the same graph, Eve’s output must be negligi-
bly close to 1/2 and the security of π. Therefore, the probability the adversary
outputs the correct topology is at least

1/4 − negl(κ) + 1/4 + α/2 > 1/2 + α/3.

So, by the topology-hiding property, α must be negligible.
This concludes the proof of Theorem1. 
�
Next, we extend the lower bound to more classes of graphs using the player-

partitioning technique.

Corollary 1. Let G be a class of (connected) graphs with n nodes such that there
exists a partition of the nodes into four subsets P1,P2,P3,P4, and there exists
graphs G̃0, G̃1 ∈ G such that:

– In G̃0: there are no edges (i, j) ∈ P1 × P3, or (i, j) ∈ P2 × P4, or (i, j) ∈
P1 × P4,

– In G̃1: there are no edges (i, j) ∈ P1 × P3, or (i, j) ∈ P2 × P4, or (i, j) ∈
P1 × P2.

Let t = |P3|. Then, a THB protocol with respect to G tolerating semi-honest,
static t-adversaries, implies the existence of key agreement.

Proof. Let π be such a THB protocol, and without loss of generality assume that
the broadcaster is in P1. We will construct the following four-party broadcast
protocol on a line with respect to the class of two graphs Gline = (G0, G1), where

– G0 = (1 − 2 − 3 − 4),
– G1 = (2 − 3 − 4 − 1).
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To define the protocol, every party i, for i ∈ [4], emulates in its head the parties
in Pi executing protocol π. Whenever a party Pj ∈ Pi wishes to send a message
m to a party Pj′ , proceed as follows: (1) If Pj′ ∈ Pi, party i simulates in its head
party Pj′ receiving the message m from party Pj . (2) If Pj′ ∈ Pi′ for some i′ �= i,
send the message (j, j′,m) to party i′; in this case, party i′ simulates party Pj′

receiving the message m from party Pj .
Note that for b ∈ {0, 1}, an execution of the four-party THB over Gb cor-

responds to an execution of the protocol π over G̃b. Since |P3| = t and π is
t-secure, it holds that the new protocol is secure tolerating a single corruption
of party P3. The proof now follows from Theorem 1. 
�

An example for a family of graphs that satisfies the above requirements are
cycles of seven nodes tolerating two corruptions. Indeed, consider the partition

P1 = {1}, P2 = {2, 3}, P3 = {4, 5}, P4 = {6, 7}.

Then, the two cycle-graphs G̃0 = (2 − 1 − 3 − 4 − 6 − 7 − 5) and G̃1 = (2 − 3 −
4 − 6 − 1 − 7 − 5) satisfy the properties of the corollary, as illustrated in Fig. 2.

4 Perfect THC on a Cycle

In this section, we show a perfectly secure topology-hiding computation protocol
tolerating a single semi-honest corruption with respect to cycles. Note that in
this setting we are only hiding a permutation of the nodes.

Theorem 3. Let n > 2, and let f be an efficiently computable n-party function.
Then, Ff

sfe can be securely realized in a topology-hiding manner with respect to
the class of graphs that includes all cycles on n nodes, tolerating a single, semi-
honest corruption. Moreover, the protocol is perfectly correct and perfectly secure.

To prove Theorem 3, we will first show how to realize anonymous secure
channels without revealing the topology of the cycle. Given anonymous secure
channels, it is not difficult to realize general THC on a cycle.

Private Anonymous Communication over a Cycle. We begin by defining
the anonymous communication functionality. This randomized functionality ini-
tially assigns aliases to all parties based on their location, so that the parties can
address each other by these aliases. Specifically, the functionality will choose a
random party to be assigned with the alias ‘1’, and will choose a random ori-
entation of “left” and “right” for its outgoing edges. This will define an alias
for each other party, in an increasing order going to the left. Each party will
receive its alias and orientation (hence allowing it to compute the alias of any
party that is a certain number of hops away in each direction). Then, each party
can privately send messages to any alias of their choice. The party associated
with the alias will receive the message along with the alias of the sender. A full
description is provided in Fig. 4.
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Fig. 4. The anonymous communication functionality

Let Gcycle(n) be the class of cycles over n nodes. Next, we show how to
perfectly securely realize WGcycle(n)

graph-info(Fanon) in the FGcycle(n)
graph -hybrid model.

High-Level Idea. At a high level, our protocol proceeds in two phases. In the first
phase, a fixed designated party P ∗, will randomly assign an alias in [n] for itself,
as well as an orientation of left and right. This defines aliases for the rest of the
parties based on their distance from P ∗ and its randomly chosen alias. A protocol
is then performed to securely provide all parties with their alias and orientation.
In the communication phase, parties use their output from the initialization
phase and the 2-connectedness of the cycle to securely communicate with other
parties (specified via their aliases, indicating how many hops away they are).
Before specifying the full protocol in Fig. 5, we give some intuition.

To begin, suppose that n = 2k is even, and that a party Pv wishes to send a
message m to the party directly opposite it on the cycle (denote that party as
Pu, although Pv does not know Pu’s identity, just location). This can be done
easily by uniformly sampling r and forwarding m ⊕ r to the right and r to the
left (where right and left are from some arbitrary orientation). If other parties
forward received messages in the same direction, after exactly k rounds, Pu will
receive m ⊕ r and r simultaneously and can compute (m ⊕ r) ⊕ r = m. Because
every other party sees either m ⊕ r or r, but not both, this will be uniformly
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distributed ensuring privacy of the message. By delaying timing of messages to
left and right appropriately, we can adjust the protocol to allow any party to
deliver a message to any other party that is a given number of hops away.

Once aliases have been agreed upon by all parties, the above will in fact suffice
for the communication phase, as there will be nothing more to hide. However,
for the initialization phase, if the designated party P ∗ simply uses the above
to deliver aliases to other parties, this will leak the distance from the sender
P ∗. Hence, we will have all parties perform the above secure message sending
protocol to all other parties, in parallel. The designated party P ∗ will send the
actual aliases to each other party, while all other parties will perform the above
as if sending 0 to all other parties. Note that message privacy here is only being
used to hide the location of the designated party.

To perform the above in parallel, in each round parties will take the message
received from the left in the previous round, XOR it with what they should send
to the right themselves according to the secure message passing above, and then
send the result to the right. They behave identically with respect to messages
travelling in the other direction. In the final round, all parties simply XOR what
they received from the left and right to receive their own alias. Moreover, because
up to that point the view of any single party is simply a sequence of random
messages, the location of P ∗ remains hidden. (The final messages of P ∗ will not
be uniform, but XOR to 0.)

Lemma 1. Let n > 2. Protocol πanon-cycle perfectly securely realizes Fanon in a
topology-hiding manner with respect to the class of graphs that includes all cycles
on n nodes, tolerating a single semi-honest adversary.

Proof (sketch). Let π : [n] → [n] denote the map such that idi 
→ i for the id’s
implicitly defined by P ∗. Let α : [n] → [n] denote the cyclic permutation such
that i 
→ i + 1 for i < n and n 
→ 1. Additionally, let α(k) denote k sequential
applications of α. We take left and right to denote the orientation selected by
P ∗ in the initialization phase.

For correctness, consider the sequence of messages: the message sent left by
the party left of Pu in the first round, the message send left by the party two
nodes left of Pu, and so on until the message that is delivered to Pu from the
right in final round. Each subsequent message is formed by XORing with the
previous message in the sequence. Because all parties other than P ∗ behave
identically with respect to each direction in this phase, we may assume they all
chose an orientation consistent with P ∗. Then, we can observe that Pu receives
π−1(u)⊕⊕n−1

j=1 r
π(α(j)(π−1(u)))
j on the right in the final round of the initialization

phase. Via the same argument, we can see Pu receives r
π(α(j)(π−1(u)))
j on the left

of the initialization phase.
For security, note that if we view the ri

j values each party sends to the right
and left as traveling around the cycle in either direction (having values XORed
with them), the only other party that sees both is the one that they arrive at
simultaneously in the last round. Thus, to all other parties, they are uniformly
distributed.
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Fig. 5. Securely realizing Fanon in a topology-hiding manner, for cycles
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Therefore, the view of the corrupted party Pc is simply uniformly distributed
messages in each round, until the last. In the last round, if Pc �= P ∗, party Pc

receives two random messages (one from each side) that XOR to a random
i ∈ [n]. If Pc = P ∗, party Pc receives two random messages that XOR to zero.
This can be simulated by simply sending random messages until the last round,
where the messages XOR to a uniformly drawn i ← [n] if Pc �= P ∗ and 0
otherwise. Because of this simulation the view of any party is clearly independent
of the ordering of parties outside that party’s immediate neighborhood.

The correctness and security of the communication phase proceed similarly,
except here we will use the fact that the relative positions of idc and the idi to
start simulating via uniformly random values on a given side. The full simulator
is described below.

Initialization Phase:
– Let Pu be the corrupted party. Get NG[u] from WG

graph-info(Fanon).
– Invoke WG

graph-info(Fanon) with NG[u] (as the input to Fanon) and receive
back idu and the orientation.

– If Pu �= P ∗, deliver uniformly random messages from neighbors for first
n − 2 rounds. In final round, deliver uniformly random messages condi-
tioned on them XORing to idu.
Otherwise, deliver uniformly random messages from neighbors to either
side for the first n−2 rounds. In the final round, deliver uniformly random
messages that XOR to 0.

Communication Phase: In each communication “round,” get from the envi-
ronment the tuples {(idu, i,mi

idu
)}i�=u (as the input of Pu).

In the i’th sub-phase of each “round,”
– From round idu−i (mod n) of the sub-phase until the penultimate round,

give Pu uniformly random messages from the right.
– From round i−idu (mod n) of the sub-phase until the penultimate round,

give Pu uniformly random messages from the left.
– In the final round if idu �= i, give Pu random messages conditioned on

them XORing to mi
idu

.
If idu = i, Pu doesn’t receive anything throughout the phase.


�

THC from Secure Anonymous Channels. Equipped with secure anony-
mous point-to-point channels, we can now use standard honest-majority MPC
techniques to achieve general THC.

Lemma 2. Let n ∈ N, let t ≤ n/2, and let f be an efficiently computable n-
party function. Then, Ff

sfe can be UC-realized with perfect security in Fanon-hybrid
model, tolerating t semi-honest corruptions.

Proof (sketch). Without loss of generality, it suffices to consider functionalities
that give the same output to all parties. Let f ′ denote the symmetric func-
tionality that takes in n tuples of the form (i, xi) ∈ [n] × {0, 1}n and outputs
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f(x1, . . . , xn) if all i are distinct, and ⊥ otherwise. Note that for any permutation
π of [n] (describing i 
→ idi, the alias of Pi), it holds that

f ′ ((π−1(1), xπ−1(1)

)
, . . . ,

(
π−1(n), xπ−1(n)

)) ≡ f(x1, . . . , xn).

So, to complete the proof, parties simply securely evaluate f ′ under their aliases,
where the input of Pi with alias idi is (i, xi), using the BGW protocol [8] over
secure anonymous channels (between aliased identities) provided by Fanon. 
�

Putting together Lemmas 1 and 2, and using UC-composition, completes the
proof of Theorem3, our positive result for cycles with one corruption.

5 Distributional-Topology-Hiding Computation

In this section, we present a relaxed notion of topology-hiding computation.
Namely, it is not required that all of the topology of the graph will remain
hidden, but only certain properties of the graph. The crucial difference to THC
is that the functionality does not receive the graph from a graph party; rather,
the communication-graph functionality is parametrized by a distribution over
graphs and locally samples a graph from this distribution. As a result of this
modification, the environment is ignorant of the actual graph that is used during
the communication phase.

As discussed in Sect. 1.2, we require strong composition capabilities from this
definition. Therefore, the environment is allowed to ask for the graph. This is

Fig. 6. The distributional-graph-communication functionality
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done via a special graph party Pgraph. Unlike in classical THC, where Pgraph is used
to give the graph to the functionality, here Pgraph is used to ask the graph from
the functionality. Once the environment asks for the graph, the communication
functionality enters an “out of order” state and stops processing other messages
(Fig. 6).

As before, the ideal-model computation of a functionality F needs to be aug-
mented to provide the simulator with the appropriate leakage on the graph, i.e.,
the neighbor-set of each corrupted party. Toward this purpose, we define a graph-
information wrapper functionality around F, denoted WD

dist-graph-info(F). Initially,
the wrapper samples a graph from the distribution and provides every corrupted
party with the neighbor-set. All subsequent input messages are forwarded to F
and all messages from F are delivered to their recipients.

To keep the graph hidden from the environment during the computation
phase, WD

dist-graph-info(F) does not send the neighbor-set to honest parties. The
environment can adaptively issue corruption requests, and upon any such adap-
tive corruption WD

dist-graph-info(F) outputs the neighbor-set of the newly corrupted
party.

As before, the environment can request the communication graph via a special
graph partyPgraph. After receiving this request fromPgraph, thewrapper functional-
ity stops processing further messages, other than corruption requests. As explained
in Sect. 1.2, to balance the advantage given to the environment, that now can cor-
rupt parties as a function of the graph, after giving the graph to Pgraph, the wrapper
gives the simulator all of the input messages it received (Fig. 7).

Fig. 7. The distributional-graph-information wrapper functionality
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Definition 2 (Distributional topology hiding). Let D be a distribution
over graphs with n nodes. A protocol π securely realizes a functionality F in a
distributional-topology-hiding manner with respect to D tolerating semi-honest t-
adversaries, if π securely realizes WD

dist-graph-info(F) in the FD
dist-graph-hybrid model

tolerating semi-honest t-adversaries.

The Relation Between the Definitions. We show that Definition 2 is indeed a
relaxation of Definition 1. We start by showing that every protocol that satisfies
Definition 1 will also satisfy Definition 2, at least as long as the functionality does
not depend on the graph. Next, in Sect. 6, we will show a separation between
the definitions.

Consider an environment Z of the form Z = (Z1,Z2), where Z1 invokes
Pgraph with a graph G ∈ G and receives back its output, and Z2 interacts with
the parties and the adversary (without knowing the output received by Z1) and
outputs the decision bit. We say that an n-party functionality F does not depend
on the communication graph if for every family G of graphs with n nodes and
every environment Z = (Z1,Z2) as described above, the output of Z (i.e., the
output of Z2) in an ideal computation of WG

graph-info(F) is identically distributed

as the output of Z in an ideal computation of W̃G
graph-info(F), where W̃G

graph-info

acts like WG
graph-info with the exception that it ignores the graph G it receives and

chooses an arbitrary graph from G instead. In the modified functionality, the
input provided by the environment is independent of the communication graph;
hence, if the output of the functionality is identically distributed in both cases,
it can’t be dependent on the graph structure.

Theorem 4. Let F be functionality that does not depend on the communication
graph and let D be an efficiently sampleable distribution over graphs with n nodes.
If F can be securely realized in a topology-hiding manner with respect to supp(D),
then F can be securely realized in a distributional-topology-hiding manner with
respect to D.

Proof. Assume that F cannot be securely realized in a distributional-topology-
hiding manner with respect to D, i.e., for every protocol and every simulator
for the dummy adversary, there exists an environment Z that can create a non-
negligible distinguishing advantage. Note that initially, Z knows only the distri-
bution D but not the actual graph, but at any point can invoke Pgraph to obtain
the graph. We will show that F cannot be securely realized in a topology-hiding
manner with respect to supp(D).

We use Z to construct an environment Z ′ as follows. Initially, Z ′ samples
a graph G ← D and sends it to Pgraph to initialize the communication graph
functionality (or the graph-information functionality). Next, Z ′ invokes Z and
forwards any message from Z to the parties or the adversary, and vice versa.
Once an honest party receives its neighbor-set from the functionality, Z ′ does
not forward the message to Z, but upon a corruption of a party Z ′ provides its
neighbor-set to Z. If Z asks Pgraph to get the graph, Z ′ responds with the graph
G and proceed to process only corruption requests from Z. Finally, Z ′ outputs
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the output of Z and halts. Clearly, Z ′ has the same distinguishing probability
as Z, and the proof follows. 
�

6 Distributional-THC with Hidden Sublinear Cuts

In this section, we show a distributional-THC protocol that hides sublinear cuts
between two linear-size cliques in the communication graph, and tolerates a
linear number of adaptive semi-honest corruptions. The protocol is based on
a recent work by Boyle et al. [11], that constructed an adaptively secure MPC
protocol in the dynamic-graph setting (where every party can talk to every other
party, but dynamically decides on its neighbor-set).

In Sect. 6.1, we present the protocol in the distributional-THC setting that
can hide sublinear cuts against adaptive corruptions, and in Sect. 6.2 we show
that a similar result cannot be achieved in the classical THC setting.

6.1 Feasibility in the Distributional-THC Model

We start by defining the distribution of potential communication graphs in the
n-party protocol.

Definition 3. Let n = 4m + 1 for m ∈ N, and let n′ = logc n for a constant
c > 1. Denote

P1 = {1, . . . ,m}, P2 = {m+1, . . . , 2m}, P3 = {2m+1, . . . , 3m}, P4 = {3m+1, . . . , 4m}.

Given a bit b ∈ {0, 1} and two vectors i = (i1, . . . , in′) and j = (j1, . . . , jn′) in
[m]n

′
with distinct coordinates, i.e., ik �= ik′ and jk �= jk′ for k �= k′, define the

graph Gn(b; i; j) as follows:

– Two cliques of size 2m, P1 ∪ P2 and P3 ∪ P4.
– The edges (m + ik, 2m + jk) for every k ∈ [n′] (i.e., a sublinear cut between

P2 to P3).
– The edges (4m + 1, i), for every i ∈ P1 if b = 0, or for every i ∈ P4 if b = 1

(i.e., connecting 4m + 1 to either P1 or P4).

We define the distribution Dcut(n, c) over graphs of n nodes by uniformly sam-
pling a bit b ∈ {0, 1} and i, j ← [m]n

′
with distinct coordinates, and returning

Gn(b; i; j) (Fig. 8).

Theorem 5. Let n ∈ N, let β < 1/4 and c > 1 be constants, and let f be
an efficiently computable n-party function. Then, Ff

sfe can be securely realized
in a distributional-topology-hiding manner with respect to Dcut(n, c) with sta-
tistical security tolerating an adaptive, semi-honest, computationally unbounded
βn-adversary.
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Fig. 8. A graph Gn(b; i; j) with n = 4m + 1 nodes in support of the distribution
Dcut(n, c).

To prove Theorem 5, we construct a protocol πhide-cuts in the FDcut(n,c)
dist-graph -hybrid

model that securely realizes WDcut(n,c)
dist-graph-info(Ff

sfe) (see Fig. 12). More specifically,
the protocol is defined in a hybrid model with the additional ideal functionalities
Fshare-to-committee, Frecon-compute, and Fout-dist (all functionalities are explained and
formally defined in Sect. 6.1). These functionalities need not be defined and
realized in a topology-hiding manner, since each such functionality will be called
by a pre-defined subsets of parties that forms a clique in the communication
graph, and so they can be instantiated using a “standard” MPC protocol such
as BGW.

In Lemma 3 (below) we prove that the protocol πhide-cuts securely realizes Ff
sfe

in a distributional-topology-hiding manner with respect to Dcut(n, c). We start
by defining the ideal functionalities that are used to define the protocol.

Ideal Functionalities Used in the Construction

The Share-to-Committee Functionality. In the share-to-committee m-party func-
tionality, Fshare-to-committee, every party Pi ∈ {P1, . . . , P2m} sends his input
xi ∈ {0, 1}∗, a share si (that can be the empty string), and a bit bi ∈ {0, 1}
indicating whether Pi has a neighbor in {P2m+1, . . . , P3m}. The functionality
first tries to reconstruct the value x4m+1 from the shares s1, . . . , sm. Next, each
party secret shares its input value xi and sends the shares to the parties with
bi = 1. The formal description of the functionality can be found in Fig. 9.

The Reconstruct-and-Compute Functionality. The reconstruct-and-compute
functionality, Frecon-compute, is a 2m-party functionality. Denote the party-set by
{P2m+1, . . . , P4m}. Every party P2m+i has an input value x2m+i ∈ {0, 1}∗, and
additional values consisting of shares of (x1, . . . , x2m, x4m+1). The functionality
starts by using the additional inputs to reconstruct (x1, . . . , x2m, x4m+1). Next,
the functionality computes y = f(x1, . . . , x4m+1) and hands y as the output for
every party. The formal description of the functionality can be found in Fig. 10.
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Fig. 9. The share-to-committee functionality

The Output-Distribution Functionality. The 2m-party output-distribution func-
tionality receives input values from (some) of the parties and sends one of them
as output to all the parties (looking ahead, in the protocol there will be a single
input value). The formal description of the functionality can be found in Fig. 11.

The Protocol. We now describe the protocol πhide-cuts and prove its security.

Fig. 10. The reconstruct-and-compute functionality
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Fig. 11. The output-distribution functionality

Lemma 3. Protocol πhide-cuts UC-realizes the wrapped functional-
ity WDcut(n,c)

dist-graph-info(Ff
sfe) in the (FDcut(n,c)

dist-graph,Fshare-to-committee,Frecon-compute,Fout-dist)-
hybrid model tolerating an adaptive, semi-honest, computationally unbounded
βn-adversary, for any constant β < 1/4.

The proof of Lemma 3 can be found in the full version.

6.2 Impossibility in the Classical THC Model

The protocol πhide-cuts was defined in the weaker distributional-THC model. To
justify the weaker model, we show that a similar result cannot be achieved in
the stronger (classical) THC model. The reason is that according to this model
(Definition 1) the environment, who chooses the communication graph, knows
exactly which parties are on the cut and can corrupt them. This means that
without relying on cryptographic assumptions or some correlated-randomness
setup phase, two honest parties from opposite sides of the cut cannot communi-
cate privately [18].

We prove this intuition using our lower bound from Sect. 3.

Theorem 6. Let c > 1 be a constant and let t = logc(n). Then, Fbc cannot be
securely computed in a topology-hiding manner with respect to supp(Dcut(n, c))
tolerating computationally unbounded, semi-honest, static t-adversaries.

Proof. Let n = 4m + 1 and let π be an n-party t-resilient broadcast protocol
where party P4m+1 is the broadcaster. Let i = (i1, . . . , in′) and j = (j1, . . . , jn′)
in [m]n

′
with distinct coordinates, and consider the following partition of the

nodes:

P1 = {4m + 1} P2 = {1, . . . , 2m} \ {i1, . . . , in′},
P3 = {i1, . . . , in′}, P4 = {2m + 1, . . . , 4m}.

For b ∈ {0, 1}, consider the graph G̃b = G(b; i; j) ∈ supp(Dcut(n, c)). By defini-
tion, it holds that

– In G̃0: there are no edges (i, j) ∈ P1×P3, or (i, j) ∈ P2×P4, or (i, j) ∈ P1×P4,
– In G̃1: there are no edges (i, j) ∈ P1×P3, or (i, j) ∈ P2×P4, or (i, j) ∈ P1×P2.

Since t = |P3|, by Corollary 1 there is no THB protocol with respect to G toler-
ating semi-honest, static t-adversaries with information-theoretic security. 
�
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Fig. 12. Hiding low-weight cuts in the (Fshare-to-committee,Frecon-compute,Fout-dist)-hybrid
model
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