
Dennis Hofheinz
Alon Rosen (Eds.)

LN
CS

 1
18

91

17th International Conference, TCC 2019
Nuremberg, Germany, December 1–5, 2019
Proceedings, Part I

Theory 
of Cryptography



Lecture Notes in Computer Science 11891

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Dennis Hofheinz • Alon Rosen (Eds.)

Theory
of Cryptography
17th International Conference, TCC 2019
Nuremberg, Germany, December 1–5, 2019
Proceedings, Part I

123



Editors
Dennis Hofheinz
Karlsruhe Institute of Technology
Karlsruhe, Germany

Alon Rosen
IDC Herzliya
Herzliya, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-36029-0 ISBN 978-3-030-36030-6 (eBook)
https://doi.org/10.1007/978-3-030-36030-6

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-36030-6


Preface

The 17th Theory of Cryptography Conference (TCC 2019) was held during December
1–5, 2019, at the DB Museum in Nuremberg, Germany. It was sponsored by the
International Association for Cryptologic Research (IACR). The general chair of the
conference was Dominique Schröder.

The conference received 147 submissions, of which the Program Committee
(PC) selected 43 for presentation. Each submission was reviewed by at least three PC
members, often more. The 35 PC members (including PC chairs), all top researchers in
our field, were helped by 171 external reviewers, who were consulted when appro-
priate. These proceedings consist of the revised version of the 43 accepted papers. The
revisions were not reviewed, and the authors bear full responsibility for the content
of their papers.

As in previous years, we used Shai Halevi’s excellent Web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions. We made extensive use of the interaction
feature supported by the review software, where PC members could anonymously
interact with authors. This was used to ask specific technical questions, such as sus-
pected bugs. We felt this approach helped us prevent potential misunderstandings and
improved the quality of the review process.

This year’s TCC was extended from three to four days of talks, and the lengths
of the presentations were accordingly extended from 20 to 25 minutes.

This was the sixth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, published at TCC 2008: “Incrementally Verifiable
Computation or Proofs of Knowledge Imply Time/Space Efficiency” by Paul Valiant.
This paper was selected for demonstrating the power of recursive composition of
proofs of knowledge and enabling the development of efficiently verifiable proofs of
correctness for complex computations. The authors were invited to deliver a talk at
TCC 2019. The conference also featured two other invited talks, by Rachel Lin and by
Omer Reingold.

A Best Young Researcher Paper Award was given to Henry Corrigan-Gibbs and
Dmitry Kogan for their paper “The Function-Inversion Problem: Barriers and
Opportunities.”

We are greatly indebted to many people who were involved in making TCC 2019 a
success. First of all, a big thanks to the most important contributors: all the authors who
submitted papers to the conference. Next, we would like to thank the PC members for
their hard work, dedication, and diligence in reviewing the papers, verifying the cor-
rectness, and in-depth discussion. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering



questions, often under time pressure. For running the conference itself, we are very
grateful to the general chair, Dominique Schröder. We appreciate the sponsorship from
the IACR, Deloitte, Siemens, Syss, and HGS. We also wish to thank
Friedrich-Alexander-Universität Erlangen-Nürnberg and Nuremberg Campus of
Technology for their support. Finally, we are thankful to the TCC Steering Committee
as well as the entire thriving and vibrant TCC community.

October 2019 Dennis Hofheinz
Alon Rosen

vi Preface
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Algebraically Structured LWE, Revisited

Chris Peikert(B) and Zachary Pepin

Computer Science and Engineering, University of Michigan, Ann Arbor, USA
cpeikert@umich.edu

Abstract. In recent years, there has been a proliferation of algebraically
structured Learning With Errors (LWE) variants, including Ring-LWE,
Module-LWE, Polynomial-LWE, Order-LWE, and Middle-Product LWE,
and a web of reductions to support their hardness, both among these
problems themselves and from related worst-case problems on structured
lattices. However, these reductions are often difficult to interpret and
use, due to the complexity of their parameters and analysis, and most
especially their (frequently large) blowup and distortion of the error dis-
tributions.

In this paper we unify and simplify this line of work. First, we give
a general framework that encompasses all proposed LWE variants (over
commutative base rings), and in particular unifies all prior “algebraic”
LWE variants defined over number fields. We then use this framework to
give much simpler, more general, and tighter reductions from Ring-LWE
to other algebraic LWE variants, including Module-LWE, Order-LWE,
and Middle-Product LWE. In particular, all of our reductions have easy-
to-analyze and frequently small error expansion; in some cases they even
leave the error unchanged. A main message of our work is that it is
straightforward to use the hardness of the original Ring-LWE problem
as a foundation for the hardness of all other algebraic LWE problems
defined over number fields, via simple and rather tight reductions.

1 Introduction

1.1 Background

Regev’s LearningWith Errors (LWE) problem [15] is a cornerstone of lattice-based
cryptography, serving as the basis for countless cryptographic constructions (see,
for example, the surveys [12,16]). One primary attraction of LWE is that it can be
supported by worst-case to average-case reductions from conjectured hard prob-
lems on general lattices [4,11,14,15]. But while constructions based on LWE can
have reasonably good asymptotic efficiency, they are often not as practically effi-
cient as one might like, especially in terms of key and ciphertext sizes.

Inspired by the early NTRU cryptosystem [6] and Micciancio’s initial worst-
case to average-case reductions for “algebraically structured” lattices over poly-
nomial rings [10], Lyubashevsky, Peikert, and Regev [9] introduced Ring-LWE to

This material is based upon work supported by the National Science Foundation under
Award CNS-1606362. The views expressed are those of the authors and do not neces-
sarily reflect the official policy or position of the National Science Foundation.
c© International Association for Cryptologic Research 2019
D. Hofheinz and A. Rosen (Eds.): TCC 2019, LNCS 11891, pp. 1–23, 2019.
https://doi.org/10.1007/978-3-030-36030-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36030-6_1&domain=pdf
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2 C. Peikert and Z. Pepin

improve the asymptotic and practical efficiency of LWE (see also [19]). Ring-LWE
is parameterized by the ring of integers in a number field, and [9] supported the
hardness of Ring-LWE by a reduction from conjectured worst-case-hard prob-
lems on lattices corresponding to ideals in the ring (see also [14]). Since then,
several works have introduced and studied a host of other algebraically struc-
tured LWE variants—including Module-LWE [1,3,7], Polynomial-LWE [18,19],
Order-LWE [2], and Middle-Product LWE [17]—relating them to each other and
to various worst-case problems on structured lattices. Of particular interest is
the work on Middle-Product LWE (MP-LWE) [17,18], which, building on ideas
from [8], gave a reduction from Ring- or Poly-LWE over a huge class of rings to
a single MP-LWE problem. This means that breaking the MP-LWE problem in
question is at least as hard as breaking all of huge number of Ring-/Poly-LWE
problems defined over unrelated rings.

Thanks to the above-described works, we now have a wide assortment of
algebraic LWE problems to draw upon, and a thick web of reductions to sup-
port their respective hardness. However, these reductions are often difficult to
interpret and use due to the complexity of their parameters, and most espe-
cially their effect on the error distributions of the problems. In particular, some
reductions incur a rather large blowup and distortion in the error, which is often
quite complicated to analyze and bounded loosely by large or even unspecified
polynomials. Some desirable reductions, like the one from Ring-LWE to MP-
LWE, even require composing multiple hard-to-analyze steps. Finally, some of
the reductions require non-uniform advice in the form of special short ring ele-
ments that in general do not seem easy to compute.

All this makes it rather challenging to navigate the state of the art, and espe-
cially to draw conclusions about precisely which problems and parameters are
supported by reductions and proofs. The importance of having a clear, precise
view of the landscape is underscored by the fact that certain seemingly rea-
sonable parameters of algebraic LWE problems have turned out to be insecure
(ultimately for prosaic reasons); see, e.g., [5,13] for an overview. This work aims
to provide such a view.

1.2 Contributions and Technical Overview

Here we give an overview of our contributions and how they compare to prior
works. At a high level, we provide a general framework that encompasses all the
previously mentioned LWE variants, and in particular unifies all prior “algebraic”
LWE variants defined over number fields. We then use this framework to give
much simpler, more general, and tighter reductions from Ring-LWE to other alge-
braic LWE variants, including Module-LWE, Order-LWE, and Middle-Product
LWE. A main message of our work is that it is possible to use the hardness of
Ring-LWE as a foundation for the hardness of all prior algebraic LWE problems
(and some new ones), via simple and easy-to-analyze reductions.

Generalized (Algebraic) LWE. In Sect. 3 we define new forms of LWE that
unify and strictly generalize all previously mentioned ones.
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Generalized LWE. First, in Sect. 3.1 we describe a single general framework that
encompasses all the previously mentioned forms of LWE, including plain, Ring-,
Module-, Poly-, Order-, and Middle-Product LWE (in both “dual” and “primal”
forms, where applicable), as well as the unified algebraic LWE we describe below.
The key observation is that in all such problems, the secret s, public multipli-
ers a, and their (noiseless) products s ·a respectively belong to some free modules
Ms,Ma,Mb over some commutative ring R. Moreover, the products are deter-
mined by a fixed R-bilinear map T : Ms ×Ma → Mb. An LWE problem involves
some fixed choices of these parameters, along with an error distribution. By fix-
ing some R-bases of the modules, the map T can be represented as an order-three
tensor (i.e., a three-dimensional array) where Tijk is the kth coordinate of the
product of the ith and jth basis elements of Ms and Ma, respectively.

For example, plain LWE uses the Zq-modules Ms = Ma = Z
n
q and Mb =

Zq, with the ordinary inner product as the bilinear map, which corresponds to
the n × n × 1 “identity matrix” tensor. Ring-LWE uses the rank-1 Rq-modules
Ms = Mb = R∨

q and Ma = Rq where R = OK is the ring of integers in a number
field K, with field multiplication as the bilinear map, which corresponds to the
scalar unity tensor.

We also show how Middle-Product LWE straightforwardly fits into this
framework. Interestingly, by a judicious choice of bases, the matrix “slices” Ti··
of the middle-product tensor are seen to form the standard basis for the space
of all Hankel matrices. (In a Hankel matrix, the (j, k)th entry is determined by
j + k.) This formulation is central to our improved reduction from Ring-LWE
over a wide class of number fields to Middle-Product LWE, described in Sect. 1.2
below.

LWE over Number Field Lattices. Next, in Sect. 3.2 we define a unified class of
problems that strictly generalizes prior “algebraic” LWE variants defined over
number fields, including Ring-, Module-, Poly-, and Order-LWE. A member L-
LWE of our class is parameterized by any (full-rank) lattice (i.e., discrete additive
subgroup) L of a number field K. Define

OL := {x ∈ K : xL ⊆ L}

to be the set of field elements by which L is closed under multiplication; this set
is known as the coefficient ring of L. Letting L∨ = {x ∈ K : TrK/Q(xL) ⊆ Z}
denote the dual lattice of L, it turns out that OL = (L · L∨)∨, and it is an order
of K, i.e., a subring with unity that is also a lattice. Note that if L itself is an
order O of K or its dual O∨, then OL = O, but in general L can be any lattice,
and OL is just the largest order of K by which L is closed under multiplication.1

1 We caution that OL is not “monotonic” in L under set inclusion, i.e., L′ ⊆ L does
not imply any inclusion relationship between OL′

and OL, in either direction. In
particular, L and cL have the same coefficient ring for any integer c > 1, but there
can exist L′ with cL � L′

� L that has a different coefficient ring.
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In all that follows, let Lq denote the quotient group L/qL for any lattice L
of K and positive integer q. In L-LWE, there is a secret s ∈ L∨

q , and we are given
noisy random products

(a ← OL
q , b = s · a + e mod qL∨),

where a is uniformly random, and e is an error term that is drawn from a specified
distribution (see below for discussion). Observe that the reduction modulo qL∨

is well defined because the (noiseless) product s · a ∈ L∨
q , since L∨ · OL ⊆ L∨

due to Tr(L∨ · OL · L) ⊆ Tr(L∨ · L) ⊆ Z.
We now explain how L-LWE strictly generalizes Ring-, Poly-, and Order-

LWE. As already noted, when L = O or L = O∨ for an order O of K, we have
OL = O, so L-LWE specializes to:

1. Ring-LWE [9] when L = OK is the full ring of integers of K;
2. Poly-LWE [18] when L = Z[α]∨ for some α ∈ OK ; and
3. Order-LWE [2] when L = O∨ for some arbitrary order O of K.

Notice that in the latter two cases, L is the dual of some order, so the secret s
and product s · a belong to the order itself (modulo q). But as we shall see, for
reductions it turns out to be more natural and advantageous to let L itself be an
order, not its dual. Furthermore, L-LWE also captures other cases that are not
covered by the ones above, namely, those for which L is not an order or its dual.
For L-LWE, we just need the OL-module structure of L∨, not any ring structure.

As mentioned above, L-LWE is also parameterized by an error distribution.
For consistency across problems and with prior work, and without loss of gen-
erality, we always view the error distribution in terms of the canonical embed-
ding of K. For concreteness, and following worst-case hardness theorems for
Ring-LWE [9,14], the reader can keep in mind a spherical Gaussian distribution
of sufficiently large width r = ω(

√
log deg(K)) over the canonical embedding.

While this differs syntactically from the kind of distribution often considered for
Poly-LWE—namely, a spherical Gaussian over the coefficient vector of the error
polynomial—the two views are interchangeable via some fixed linear transfor-
mation. For Gaussians, this transformation just changes the covariance, and
if desired we can also add some independent compensating error to recover a
spherical Gaussian. However, our results demonstrate some advantages of work-
ing exclusively with the canonical embedding, even for Poly-LWE.

Error-Preserving Reduction for L-LWE. In Sect. 4 we give a simple reduc-
tion from L-LWE to L′-LWE for any lattices L′ ⊆ L of K for which OL′ ⊆ OL and
the index |L/L′| is coprime with the modulus q. Essentially, the reduction trans-
forms samples of the former problem (for an unknown secret s) to samples of the
latter problem (for a related secret s′). Importantly, and unlike prior reductions of
a similar flavor, our reduction is error preserving : the error distribution over the
number field is exactly the same for the two problems. In addition, the reduction
is sample preserving : it produces as many samples as it consumes.

The only loss associated with the reduction, which seems inherently nec-
essary, is that when L �= L′, the lattice q(L′)∨ by which the resulting noisy
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products b′ ≈ s′ · a′ are reduced is “denser” than the lattice qL∨
� q(L′)∨ by

which the original noisy products b ≈ s ·a are reduced. One can alternatively see
this as the (unchanging) error distribution being “larger” relative to the target
lattice than to the original one. This can have consequences for applications,
where we typically need the accumulated error from some combined samples to
be decodable modulo q(L′)∨. That is, we need to be able to efficiently recover e′

(or at least a large portion of it) from the coset e′ + q(L′)∨; standard decoding
algorithms require sufficiently short elements of q−1L′ to do this. So in general,
the “sparser” we take L′ ⊆ L to be, the denser (L′)∨ is, and the larger we need q
to be to compensate. This weakens both the theoretical guarantees and concrete
hardness of the original L-LWE problem, and is reason to prefer denser L′.

Implications and Comparison to Prior Work. Here we describe some of the
immediate implications of our reduction, and compare to prior related reduc-
tions. Take L = OK to be the full ring of integers of K, which corresponds to
the “master” problem of Ring-LWE, for which we have worst-case hardness theo-
rems [9,14]. Then these same hardness guarantees are immediately inherited by
Order-LWE (and in particular, Poly-LWE) in its “dual” form, by taking L′ to be
an arbitrary order O of K, as long as |L′/L| is coprime with q. These guarantees
are qualitatively similar to the ones established in [2,18], but are obtained in a
much simpler and more straightforward way; in particular, we do not need to
replicate all the technical machinery of the worst-case to average-case reductions
from [9,14] for arbitrary orders O, as was done in [2].

Our reduction can also yield hardness for the “primal” form of Poly-LWE
and Order-LWE via a different choice of L′ (see the next paragraph); however,
it is instructive to see why it is preferable to reduce to the “dual” form of these
problems. The main reason is that the dual form admits quite natural reductions,
both from Ring-LWE and to Middle-Product LWE and Module-LWE, whose
effects on the error distribution are easy to understand and bound entirely in
terms of certain known short elements of O. (See Sect. 1.2 below for further
details.)

By contrast, the reduction and analysis for “primal” Order-LWE over
order O—including Poly-LWE for O = Z[α], as in [18]—is much more com-
plex and cumbersome. Because O∨ �⊆ OK (except in the trivial case K = Q),
we cannot simply take L′ = O∨. Instead, we need to apply a suitable “tweak”
factor t ∈ K, so that L′ = tO∨ ⊆ OK and hence (L′)∨ = t−1O. Reducing to
L′-LWE preserves the error distribution, but to finally convert the samples to
primal Order-LWE samples we need to multiply by t, which distorts the error
distribution. It can be shown that t must lie in the product of the different ideal
of OK and the conductor ideal of O (among other constraints), so the reduction
requires non-uniform advice in the form of such a “short” t that does not distort
the error too much. The existence proof for such a t from [18] is quite involved,
requiring several pages of rather deep number theory. Finally, the decodability
of the (distorted) error modulo qO is mainly determined by the known short
vectors in O∨, which also must be analyzed. (All these issues arise under slightly
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different guises in [18]; in fact, there the error is distorted by t2, yielding an even
lossier reduction.)

Reduction from O-LWE to MP-LWE. In Sect. 5 we give a simple reduction
fromO-LWE, for awide class of number fields K and ordersO including polynomial
rings of the form O = Z[α] ∼= Z[x]/f(x), to a single Middle-Product LWE prob-
lem. Together with the error-preserving reduction described above, this yields a
Ring/MP-LWE connection similar to the one obtained in [17,18], which implies
that breaking the MP-LWE problem in question is at least as hard as breaking all
of a wide class of Ring-LWE problems over unrelated number fields. However, our
result subsumes the prior one by being simpler, more general, and tighter: it drops
certain technical conditions on the order, and the overall distortion in the error
distribution (starting from Ring-LWE) is given entirely by the spectral norm ‖�p‖
of a certain known basis �p of O. In particular, spherical Gaussian error over the
canonical embedding of O translates to spherical Gaussian MP-LWE error (over
the reals) that is just a ‖�p‖ factor wider. These advantages arise from the error-
preserving nature of our L-LWE reduction (described above), and the judicious use
of dual lattices in the definition of O-LWE.

At heart, what makes our reduction work is the hypothesis that the order O
has a “tweaked” power basis �p = t · (xi) for some t, x ∈ O; clearly any monogenic
order O = Z[α] has such a basis (with tweak factor t = 1), but it seems plausible
that some non-monogenic orders may have such bases as well.2 Using our gener-
alized LWE framework from Sect. 3.1 (described above in Sect. 1.2), we show that
when using a tweaked power basis �p and its dual �p∨ for O and O∨ respectively,
all the “slices” Ti·· of the tensor T representing multiplication O∨ ×O → O∨ are
Hankel matrices. So, using the fact that the slices Mi·· of the middle-product
tensor M form the standard basis for the space of all Hankel matrices, we can
transform O-LWE samples to MP-LWE samples. The resulting MP-LWE error
distribution is simply the original error distribution represented in the �p∨ basis,
which is easily characterized using the geometry of �p.

The above perspective is helpful for finding other reductions from wide classes
of LWE problems to a single LWE problem. Essentially, it suffices that all the
slices Ti·· of all the source-problem tensors T over a ring R lie in the R-span
of the slices of the target-problem tensor. We use this observation in our final
reduction, described next.

Reduction from O′-LWE to O-Module-LWE. Finally, in Sect. 6 we give a
reduction establishing the hardness of Module-LWE over an order O of a number
field K, based on the hardness of Ring-LWE over any one of a wide class of

2 For example, consider the ring of integers OK where K = Q(α) for α3−α2−2α−8 =
0. In a classical result, Dedekind showed that this order is non-monogenic, but it has
�p = (t, tx, tx2) as a basis, where x = (α2 − α − 2)/4 and t = 1− 2x. We caution that
x �∈ OK , so this is actually not a tweaked power basis according to our definition,
but it still suffices for a special case of our reduction that does not extend �p by more
powers of x.
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orders O′ of a number field extension K ′/K. This is qualitatively analogous
to what is known for Middle-Product LWE, but is potentially more beneficial
because Module-LWE is easier to use in applications, and is indeed much more
widely used in theory and in practice.

A bit more precisely, we give a simple reduction from O′-LWE, for a wide
class of orders O′, to a single O-LWEk problem, i.e., rank-k Module-LWE over
an order O. (In O-LWEk, the secret �s and public multipliers �a are simply k-
dimensional vectors over their respective domains from O-LWE, and we are given
their noisy inner products.) The only technical condition we require is that O′

should be a rank-k free O-module. For example, this is easily achieved by defining
O = O[α] ∼= O[x]/f(x) for some root α of an arbitrary degree-k monic irreducible
polynomial f(x) ∈ O[x]. Once again, due to the use of duality in the definition
of the problems, the reduction’s effect on the error distribution is very easy
to characterize: the output error is simply the trace (from K ′ to K) of the
input error. In particular, the typical example of spherical Gaussian error in the
canonical embedding of K ′ maps to spherical Gaussian error in the canonical
embedding of K, because the trace just sums over a certain partition of the
coordinates.

We point out that our result is reminiscent of, but formally incomparable to,
the kind of worst-case hardness theorem given in [7]: there the worst-case prob-
lem involves arbitrary rank-k module lattices over O, whereas here our source
problem is an average-case Order-LWE problem for an order that is a rank-k
module over O.

2 Preliminaries

In this work, by “ring” we always mean a commutative ring with identity.

2.1 Algebraic Number Theory

Number Fields. An (algebraic) number field K is a finite-dimensional field exten-
sion of the rationals Q. More concretely, it can be written as K = Q(ζ), by
adjoining to Q some element ζ that satisfies the relation f(ζ) = 0 for some
irreducible polynomial f(x) ∈ Q[x]. The polynomial f is called the minimal
polynomial of ζ, and the degree of f is called the degree of K, which is denoted
by n in what follows.

Trace and Norm. The (field) trace Tr = TrK/Q : K → Q and (field) norm
N = NK/Q : K → Q of x ∈ K are the trace and determinant, respectively, of
the Q-linear transformation on K (viewed as a vector space over Q) representing
multiplication by x. More concretely, fixing any Q-basis of K lets us uniquely
represent every element of K as a vector in Q

n, and multiplication by any x ∈ K
corresponds to multiplication by a matrix Mx ∈ Q

n×n; the trace and norm of x
are respectively the trace and determinant of this matrix.
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Lattices and Duality. For the purposes of this work, a lattice L in K is a discrete
additive subgroup of K for which spanQ(L) = K. A lattice is generated as
the integer linear combinations of n basis elements �b = (b1, . . . , bn) ∈ Kn, as
L = {∑n

i=1 Z·bi}; in other words, L is a free Z-module of rank n. For convenience,
we let Lq denote the quotient group L/qL for any positive integer q.

For any two lattices L,L′ ⊂ K, their product L · L′ is the set of all integer
linear combinations of terms x · x′ for x ∈ L, x′ ∈ L′. This set is itself a lattice,
and given bases for L,L′ we can efficiently compute a basis for L · L′ via the
Hermite normal form.

For a lattice L, its dual lattice L∨ (which is indeed a lattice) is defined as

L∨ := {x ∈ K : Tr (xL) ⊆ Z}.

It is easy to see that if L ⊆ L′ are lattices in K, then (L′)∨ ⊆ L∨, and if �b is
a basis of L, then its dual basis �b∨ = (b∨

1 , . . . , b∨
n) is a basis of L∨, where �b∨ is

defined so that Tr(bi · b∨
j ) is 1 when i = j, and is 0 otherwise. Observe that by

definition, x = �bt · Tr(�b∨ · x) for every x ∈ K.

Orders. An order O of K is a lattice that is also a subring with unity, i.e.,
1 ∈ O and O is closed under multiplication. An element α ∈ K is an algebraic
integer if there exists a monic integer polynomial f such that f(α) = 0. The
set of algebraic integers in K, denoted OK , is called the ring of integers of K,
and is its maximal order: every order O ⊆ OK . For any order O of K, we have
O·O∨ = O∨ because O∨ = 1·O∨ ⊆ O·O∨ and Tr((O·O∨)·O) = Tr(O∨ ·O) ⊆ Z,
since O · O = O.

The Space KR. In order to formally define Gaussian distributions (see Sect. 2.2
below) we define the field tensor product KR = K ⊗Q R, which is essentially the
“real analogue” of K/Q, obtained by generalizing rational scalars to real ones.
In general this is not a field, but it is a ring; in fact, it is isomorphic to the
ring product R

s1 × C
s2 , where K has s1 real embeddings and s2 conjugate pairs

of complex ring embeddings, and n = s1 + 2s2. Therefore, there is a “complex
conjugation” involution τ : KR → KR, which corresponds to the identity map on
each R component, and complex conjugation on each C component.

We extend the trace to KR in the natural way, writing TrKR/R for the resulting
R-linear transform. It turns out that under the ring isomorphism with R

s1 × C
s2 ,

this trace corresponds to the sum of the real components plus twice the sum of the
real parts of the complex components. From this it can be verified that KR is an n-
dimensional real inner-product space, with inner product 〈x, y〉 = TrKR/R(x·τ(y)).
In particular, KR has some (non-unique) orthonormal basis�b, and hence�b∨ = τ(�b).

Extension Fields. For the material in Sect. 6 we need to generalize some of our
definitions to number field extensions K ′/K, where possibly K �= Q. The (field)
trace Tr = TrK′/K : K ′ → K and (field) norm N = NK′/K : K ′ → K of x ∈ K ′

are the trace and determinant, respectively, of the K-linear transformation on K ′

(viewed as a vector space over K) representing multiplication by x. We extend
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the trace to the real inner-product spaces K ′
R and KR in the natural way, writing

TrK′
R
/KR

for the resulting R-linear transform.
Let �b = (b1, . . . , bk) be a K-basis of K ′. Its dual basis �b∨ = (b∨

1 , . . . , b∨
k ) is

defined so that TrK′/K(bi · b∨
j ) is 1 when i = j, and is 0 otherwise.

Lemma 1. Let K ′/K be a number field extension with K-basis �b, and let x =
〈�b∨, �x〉, y = 〈�b, �y〉 for some �x, �y over K. Then TrK′/K(x · y) = 〈�x, �y〉.
Proof. Letting Tr = TrK′/K , by K-linearity of Tr we have

Tr(x · y) = Tr(〈�b∨, �x〉 · 〈�b, �y〉) = Tr(�xt · (�b∨ ·�bt) · �y) = �xt · Tr(�b∨ ·�bt) · �y = �xt · I · �y = 〈�x, �y〉.

We also will need the following standard fact, whose proof is straightforward.

Lemma 2. Let K ′/K be a number field extension, O be an order of K, and O′

be an order of K ′ that is a free O-module with basis �b. Then �b∨ is an O∨-basis
of (O′)∨.

2.2 Gaussians

Here let H be an n-dimensional real inner-product space (e.g., H = R
n or

H = KR) and fix an orthonormal basis, so that any element x ∈ H may be
uniquely represented as a real vector x ∈ R

n relative to that basis.

Definition 1. For a positive definite Σ ∈ R
n×n, called the covariance matrix,

the Gaussian function ρ√
Σ : H → (0, 1] is defined as ρ√

Σ(x) := exp(−πxt ·Σ−1 ·
x), and the Gaussian distribution D√

Σ on H is the one having the normalized
probability density function det(Σ)−1 · ρ√

Σ.3

When Σ = r2 · I for some r > 0, we often write ρr and Dr instead, and
refer to these as spherical Gaussians with parameter r. In this case, the choice
of orthonormal basis for H is immaterial, i.e., any orthonormal basis yields the
same Σ = r2 · I.

It is well known that the sum of two independent Gaussians having covari-
ances Σ1, Σ2 (respectively) is distributed as a Gaussian with covariance Σ1+Σ2.
Therefore, a Gaussian of covariance Σ can be transformed into one of any desired
covariance Σ′ � Σ, i.e., one for which Σ′−Σ is positive definite, simply by adding
an independent compensating Gaussian of covariance Σ′ − Σ.

3 Generalized (Algebraic) Learning with Errors

In this section we define new forms of LWE that unify and strictly generalize pre-
vious ones. First, in Sect. 3.1 we give an overarching framework that encompasses

3 Note that the covariance of D√
Σ is actually Σ/(2π), due to the normalization factor

in the definition of ρ√
Σ .



10 C. Peikert and Z. Pepin

all LWE variants (over commutative rings) that we are aware of. We employ this
framework only in our reductions to MP-LWE and Module-LWE, but expect
that it may be useful for other purposes in the future. Then, in Sect. 3.2 we
generalize and unify algebraic forms of LWE like Ring-, Order-, and Poly-LWE
into a single problem that is merely parameterized by a lattice in a number field.

3.1 Generalized LWE

Here we describe a general framework that captures all variants of Learning
With Errors (over commutative rings) that we are aware of, and will be helpful
in linking some of them together. Our starting point is the observation that
in all such problems, the secret s, public multipliers a, and their “products”
s · a (without noise) all belong to some respective free modules over a particular
finite commutative ring R. Moreover, the products are determined by a fixed R-
bilinear map from (the direct product of) the former two modules to the latter
one. As a few examples:

– Ordinary LWE uses the inner-product map 〈·, ·〉 : Z
n
q × Z

n
q → Zq, where Z

n
q

and Zq are Zq-modules of ranks n and 1, respectively.
– Ring-LWE uses the multiplication map R∨

q × Rq → R∨
q where R = OK is a

number ring; here R∨
q and Rq can be seen as Rq-modules of rank one, or as

Zq-modules of rank n = deg(R/Z).
– Module-LWE interpolates between the above two cases, using the inner-

product map (R∨
q )

d × Rd
q → R∨

q , where here the input modules are of rank d
over Rq, or rank dn over Zq.

In general, an LWE variant involves: (1) a finite commutative ring R, (2) some
finite-rank free R-modules Ms,Ma,Mb, and (3) an R-bilinear map T : Ms ×
Ma → Mb. The associated LWE problem is concerned with “noisy products”
(a ← Ma, b ≈ T (s, a)) for some fixed s ∈ Ms. Clearly, each bilinear map T (and
choice of error distribution) potentially yields a different distribution of noisy
products.

By fixing bases for the modules, the map T can be represented via a third-
order tensor Tijk over R. Specifically, if we fix bases �s,�a,�b for Ms,Ma,Mb

(respectively), then Tijk is the coefficient of bk in T (si, aj) ∈ Mb. By bilinearity,
the coefficient vector of T (a, s) is the product of the tensor T with the coefficient
vectors of a, s along the appropriate dimensions. This naturally generalizes to
fixed generating sets in place of bases for Ms and Ma (and even Mb, if we do
not need a unique representation of the output).

Due to the generality of R and (often desirable) possibility of error distri-
butions over supersets of Mb

∼= Rl (for some l), we do not give a fully general
formal definition of LWE problems in this framework. However, we remark that
frequently R = Oq for an order O of some number field K, in which case one
would usually consider an error distribution over Kl

R.
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Middle-Product LWE. The Middle-Product LWE (MP-LWE) problem from [17]
can be seen as an instance of the above framework, as follows. The middle-
product operation �d takes two polynomials of fixed degree bounds, multiplies
them together, and outputs only the “middle” d coefficients of the product.
More specifically, the product of two polynomials respectively having degrees
< n + d − 1 and < n has degree < 2n + d − 2; the middle-product discards
the lowest and highest n − 1 coefficients, and outputs the remaining d coeffi-
cients. Middle-Product LWE is concerned with random noisy middle products
of a secret polynomial over Zq.

To see this in the above framework, define Ms = Z
n+d−1
q and Ma = Z

n
q , which

we respectively identify with the Zq-modules Z
<n+d−1
q [x] and Z

<n
q [x] of polyno-

mials of degrees < n + d − 1 and < n, via the bases �s = (1, x, . . . , xn+d−2) and
�a = (xn−1, xn−2, . . . , 1), respectively. (Basis �a is in decreasing order by degree
for reasons that will become clear shortly.) Define Mb = Z

d
q , which we identify

with the Zq-module xn−1 · Z
<d
q [x] via the basis �b = (xn−1, xn, . . . , xn+d−2).

The middle-product bilinear form Ms ×Ma → Mb is then represented by the
third-order tensor M (which is indexed from zero in all dimensions) defined by

Mijk =

{
1 if i = j + k

0 otherwise.
(1)

This is because si · aj = xi · xn−1−j = x(n−1)+(i−j), which equals bi−j if 0 ≤
i − j < d, and vanishes under the middle product otherwise. Therefore, the
“slice” matrix Mi··, obtained by fixing the i coordinate arbitrarily, is the n × d
rectangular Hankel matrix defined by the standard basis vector ei ∈ Z

n+d−1,
which is 1 in the ith coordinate and zero elsewhere (again indexing from zero).4
Importantly, these Mi·· slices form the standard basis of all n×d Hankel matrices.

For the following definitions, let M be the third-order tensor defined above
in Eq. (1).

Definition 2 (MP-LWE distribution). Let n, d, q be positive integers and ψ be
a distribution over R

d. For s ∈ Z
n+d−1
q , a sample from the MP-LWE distribution

Cn,d,q,ψ(s) over Z
n
q × (R/qZ)d is generated by choosing a ← Z

n
q uniformly at

random, choosing e ← ψ, and outputting (a,b = M(s,a) + e mod qZ).

Definition 3 (MP-LWE problem, decision). The decision MP-LWEn,d,q,ψ,�

problem is to distinguish between � samples from Cn,d,q,ψ(s) for s ← U(Zn+d−1
q ),

and � samples from U(Zn
q × (R/qZ)d).

Definition 4 (MP-LWE problem, search). The search MP-LWEn,d,q,ψ,� prob-
lem is, given � samples from Cn,d,q,ψ(s) for some arbitrary s ∈ Z

n+d−1
q , find s.

4 Recall that a matrix H is Hankel if each entry Hjk is determined by j + k (equiva-
lently, it is an “upside down” Toeplitz matrix). So, an n×d Hankel matrix is defined
by an (n + d − 1)-dimensional vector whose ith entry defines the entries Hjk for
i = j + k.
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We remark that MP-LWE becomes no harder as d decreases (and the corre-
sponding final coordinate(s) of the error distribution are dropped), because the
degree-(n + d − 2) monomial of the secret can affect only the monomial of the
same degree in the middle product. Therefore, dropping the latter just has the
effect of dropping the former. In the tensor M , this corresponds to removing
the “slices” M(n+d−2)·· and M··(d−1), which yields the tensor for parameters n
and d − 1.

3.2 LWE over Number Field Lattices

We now define an algebraic form of LWE that strictly generalizes prior ones
including Ring-, Module-, Order-, and Poly-LWE. The key observation is that
all these problems arise simply from parameterizing by a suitable lattice in a
given number field, and taking the public multipliers to be over the lattice’s
coefficient ring (modulo q), which we now define.

Coefficient Ring. For any lattice L in a number field K, an x ∈ K for which
xL ⊆ L is called a coefficient of L. It turns out that the set of coefficients of L is
an order of K, and equals (L · L∨)∨. For elucidation we recall the (easy) proofs
of these facts.

Definition 5 (Coefficient ring). For a lattice L in a number field K, its
coefficient ring is defined as

OL := {x ∈ K : xL ⊆ L}.
Lemma 3. We have OL = (L · L∨)∨. In particular, L and L∨ have the same
coefficient ring OL = OL∨

, and if L is an order O of K or its dual O∨, then
OL = O.

Proof. For any x ∈ K, we have

x ∈ (L · L∨)∨ ⇐⇒ Tr(x(L · L∨)) ⊆ Z ⇐⇒ Tr((xL)L∨) ⊆ Z ⇐⇒ xL ⊆ (L∨)∨ = L.

The final claim follows by recalling that O · O∨ = O∨.

Lemma 4. The coefficient ring OL is an order of K.

Proof. It is clear that OL = (L · L∨)∨ is a lattice in K (because L · L∨ is), thus
we only need to show that it is a subring of K with unity. By definition of OL,
we clearly have 1 ∈ OL. Moreover, for any x, y ∈ OL, we have (xy)L = x(yL) ⊆
xL ⊆ L, so xy ∈ OL, as desired.

An immediate corollary is that OL ⊆ OK , the ring of integers (i.e., maximal
order) of K.5

5 This can also be seen by using one of the characterizations of algebraic integers,
that x is an algebraic integer if and only if xL ⊆ L for some nonzero finitely generated
Z-module L ⊆ C.
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L-LWE Problem. Using the coefficient ring, we now define a general algebraic
LWE problem that is parameterized by an arbitrary number-field lattice L.

Definition 6 (L-LWE distribution). Let L be a lattice in a number field K,
OL be the coefficient ring of L, ψ be a distribution over KR, and q, k be positive
integers. For �s ∈ (L∨

q )
k, a sample from the L-LWE distribution AL,k

q,ψ (�s) over
(OL

q )
k × KR/qL∨ is generated by choosing �a ← (OL

q )
k uniformly at random,

choosing e ← ψ, and outputting (a, b = 〈�s,�a〉 + e mod qL∨).

Definition 7 (L-LWE problem, decision). The decision L-LWEk
q,ψ,� problem

is to distinguish between � samples from AL,k
q,ψ (�s) where �s ← U((L∨

q )
k), and �

samples from U((Oq)
k × KR/qL∨).

Definition 8 (L-LWE problem, search). The search L-LWEk
q,ψ,� problem is

given � samples from AL,k
q,ψ (�s) for some arbitrary �s ∈ (L∨

q )
k, find �s

For both of the above definitions, we often omit k when k = 1. Notice that in
this case, we have s ∈ L∨

q , a ∈ OL
q , and a sample from the distribution AL

q,ψ(s)
has the form (a, b = s · a + e mod qL∨).

The above definitions strictly generalize all prior algebraic LWE variants
defined over number fields or polynomial rings. For simplicity, take k = 1 (taking
k > 1 simply yields “Module” analogues of what follows). Recall that if L is an
order O of K or its dual O∨, then OL = O. Therefore, by taking L = OK to
be the full ring of integers, we get the Ring-LWE problem as originally defined
in [9]. Alternatively, by taking L = O∨ we get the “primal” form of Order-LWE
over O [2], which corresponds to the Poly-LWE problem [18] when O = Z[α] for
some α ∈ OK . By instead taking L = O, we get a natural “dual” variant of Order-
LWE, where the secret s and products s ·a are in O∨/qO∨; this formulation has
advantages in terms of simplicity and tightness of reductions. Finally, by taking L
to be neither an order nor the dual of an order, we get other problems that are
not covered by any of the prior ones.

4 Error-Preserving Reduction from L-LWE to L′-LWE

In this section, we present an efficient, deterministic reduction from L-LWEq,ψ,�

to L′-LWEq,ψ,�, where L′ ⊆ L are lattices in a number field K such that OL′ ⊆
OL and the index |L/L′| is coprime with q. We stress that the reduction preserves
the error distribution ψ and the number of samples � exactly.

4.1 Helpful Lemmas

Before presenting the main theorem in Sect. 4.2 below, we introduce a couple
of helpful lemmas. For any lattices L′ ⊆ L in K, the natural inclusion map
L′

q → Lq sends x + qL′ to x + qL. (This can be seen as the composition of
a natural homomorphism and an inclusion map.) The following lemmas give
conditions under which maps of this kind are bijections.
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Lemma 5. Let L′ ⊆ L be lattices in a number field K and let q be a positive
integer. Then the natural inclusion map h : L′

q → Lq is a bijection if and only
if q is coprime with the index |L/L′|; in this case, h is efficiently computable and
invertible given an arbitrary basis of L′ relative to a basis of L.

Because |L/L′| = |(L′)∨/L∨|, the same conclusions hold for the natural inclusion
map L∨

q → (L′)∨q .

Proof. Let �b,�b′ respectively be some Z-bases of L,L′ (and hence Zq-bases of
Lq,L′

q). Then�b′ = T·�b for some given square matrix T. This T is integral because
L′ ⊆ L, and we have |det(T)| = |L/L′|. Letting x′ be the coefficient vector
(over Zq) of some arbitrary x′ = 〈�b′,x〉 ∈ L′

q, we have x′ = 〈T·�b,x′〉 = 〈�b,Tt ·x′〉,
so x = Tt · x′ is the coefficient vector (over Zq) of h(x′) ∈ Lq relative to �b.
Moreover, x and x′ are in bijective correspondence if and only if T is invertible
modulo q, i.e., if |det(T)| = |L/L′| is coprime with q, and we can efficiently
evaluate and invert this bijection given T.

Lemma 6. Let L′ ⊆ L be lattices in a number field K, and let q be a positive
integer that is coprime with the index |L/L′|. If OL′ ⊆ OL, then the natural
inclusion map g : OL′

q → OL
q is a bijection.

Proof. Let h : L′
q → Lq be the natural inclusion map, which by Lemma 5 is a

bijection. First, notice that for any a ∈ OL′
q and x ∈ L′

q, we have h(a · x) =
g(a) · h(x). This is because

g(a) · h(x) = (a + qOL) · (x + qL) = a · x + q(OL · x + a · L + OL · L) = a · x + qL = h(a · x).

Now, let a, b ∈ OL′
q satisfy g(a) = g(b). Then for all x ∈ L′, we have

h(a · x) = g(a) · h(x) = g(b) · h(x) = h(b · x).

Since h is a bijection, it follows that a · x = b · x (mod qL′) for all x ∈ L′.
Therefore,

(a − b) · L′ ⊆ qL′ ⇒ a − b ∈ qOL′ ⇒ a = b (mod qOL′
).

Thus, g is injective. Since the sets OL′
q and OL

q have the same cardinal-
ity qdeg(K/Q), g must bijective.

4.2 Reduction

Theorem 1. Let L′ ⊆ L be lattices in a number field K, ψ be a distribution
over KR, and q be a positive integer. If OL′ ⊆ OL and the natural inclusion
map g : OL′

q → OL
q is an efficiently invertible bijection, then there is an efficient

deterministic transform which:

1. maps distribution U(OL
q ×KR/qL∨) to distribution U(OL′

q ×KR/q(L′)∨), and
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2. maps distribution AL
q,ψ(s) to distribution AL′

q,ψ(s
′), where s′ = s mod q(L′)∨ ∈

(L′)∨/q(L′)∨.

Proof. The claimed transform is as follows: for each given sample (a, b) ∈ OL
q ×

KR/qL∨, output

(a′ = g−1(a) , b′ = b mod q(L′)∨).

It is clear that this transform sends uniformly random a to uniformly random
a′, because g is a bijection. Also, since L′ ⊆ L, we know that qL∨ ⊆ q(L′)∨.
Therefore, the transform sends uniformly random b to uniformly random b′.

It remains to show that if b = a·s+e mod qL∨, then b′ = a′ ·s′+e mod q(L′)∨.
To see this, observe that a = a′ (mod qOL), because g is the natural inclusion
map. Therefore,

a · s = a′ · s + q(OL · s)
⊆ a′ · s + qL∨

⊆ a′ · (s′ + q(L′)∨) + qL∨

⊆ a′ · s′ + q(L′)∨,

where in the first and third containments we have used OL · L∨ ⊆ L∨ and
OL′ · (L′)∨ ⊆ (L′)∨, respectively. The claim follows by adding e to both sides.

Corollary 1. Adopt the notation from Theorem 1, and assume that |L/L′| is
coprime with q, that OL′ ⊆ OL, and that bases of L′,OL′

relative to bases
of L,OL (respectively) are known. Then there is an efficient deterministic reduc-
tion from L-LWEq,ψ,� to L′-LWEq,ψ,� for both the search and decision versions.

A main case of interest is when L = OL and L′ = OL′
are themselves orders, in

which case the above coprimality hypothesis is implied by the conductor of L′

in L being coprime with qL, as ideals of L. The latter hypothesis is used in [18],
so our hypothesis is no stronger.

Proof. We first note that by Lemmas 5 and 6, the natural inclusion maps
h : L′

q → Lq and g : OL′
q → OL

q are efficiently computable and invertible bijec-
tions. For the decision problems, use the deterministic transform from Theorem
1 to transform the input samples of the L-LWEq,ψ,� problem. This will produce
the same number of samples for the L′-LWEq,ψ,� problem, where uniform samples
map to uniform ones, and samples from AL

q,ψ(s) map to samples from AL′
q,ψ(s

′)
for s′ = s mod q(L′)∨. Also, because h is a bijection, the uniformly random
secret s ∈ L∨

q maps to a uniformly random secret s′ ∈ (L′)∨q , as needed. For the
search problems, it suffices to also note that we can recover the original secret s
from s′ by computing h−1(s′).

5 Reduction from O-LWE to MP-LWE

Rosca et al. [17] introduced the Middle-Product LWE (MP-LWE) problem and
gave a hardness theorem for it, by showing a reduction from a wide class of
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Poly-LWE instantiations—and by extension, Ring-LWE instantiations [18]—
over various polynomial rings of the form Z[α] ∼= Z[x]/f(x) for f(x) satisfying
mild conditions. Here we give a reduction that, when combined with our error-
preserving reduction from Sect. 4, subsumes the prior Ring/MP-LWE connection
in the simplicity of its descriptions and analysis, and the tightness of its error
distortion (or expansion). These advantages arise from our use of O-LWE as an
intermediate problem, and in particular its use of dual lattices (in contrast to
the entirely “primal” nature of Poly-LWE).

5.1 Reduction

We start with a slight generalization of the notion of a power basis, by allowing
a “tweak” factor.

Definition 9. For an order O of a number field, a tweaked power basis of L is
a Z-basis �p of O of the form t · (1, x, x2, . . . , xd−1) for some t, x ∈ O.

For simplicity, in the rest of this section the reader may wish to focus initially
on the case d = n.

Theorem 2. Let d ≤ n be positive integers, O be an order of a degree-d number
field K with a tweaked power basis �p, ψ be a distribution over KR, and q be a
positive integer. There is an efficient randomized transform which:

1. maps distribution U(Oq × KR/qO∨) to distribution U(Zn
q × (R/qZ)d), and

2. maps the O-LWE distribution AO
q,ψ(s) to the MP-LWE distribution

Cn,d,q,ψ′(s′), where s′ is some fixed linear function (depending only on �p)
of s, and ψ′ = TrKR/R(ψ · �p).

In particular, there is an efficient randomized reduction from (search or decision)
O-LWEq,ψ,� to (search or decision, respectively) MP-LWEn,d,q,ψ′,�.

Proof. First, we extend the tweaked power basis �p = t · (xi)i=0,...,d−1 of O into
a tweaked power generating set �p′ = t · (xi)i=0,...,n−1 in the natural way, by
including more powers of x (if necessary).

The transform, given a sample (a, b) ∈ Oq ×KR/qO∨, computes and outputs
the (coefficient) vectors

(a , b = TrKR/R(b · �p)) ∈ Z
n
q × (R/qZ)d.

where a is a uniformly random solution to 〈�p′,a〉 = a. This can be generated by
adding to any particular solution (e.g., the unique one using just the elements
of �p) a uniformly random element of the subgroup G = {z ∈ Z

n
q : 〈�p′, z〉 ∈

qO} ⊆ Z
n
q (for which we can find a Zq-basis using standard methods). This

transform sends uniformly random a to uniformly random a, since a corresponds
to a uniformly random coset of G. In addition, the transform sends uniformly
random b to uniformly random b, because TrKR/R(b · �p) is the coefficient vector
of b with respect to �p∨, which is a Z-basis of O∨, and thus an R-basis of KR.
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It remains to show that if b = s ·a+ e mod qO∨ for some s ∈ O∨
q and e ← ψ,

then (a,b) is a properly distributed MP-LWE sample for secret s′. To do this
we use definition of MP-LWE in the generalized LWE framework from Sect. 3.1.
Specifically, consider the Zq-bilinear multiplication map T : O∨

q × Oq → O∨
q ,

and consider the generating sets �p∨, �p′ for the Zq-modules O∨
q ,Oq, respectively.

Then letting Tr = TrK/Q, the third-order tensor representing T relative to �p∨, �p′

is given by

Tijk := Tr(p∨
i · p′

j · pk) mod q = Tr(p∨
i · gj+k) mod q,

where gj+k = p′
j · pk = t2 · xj+k depends only on j + k.

In particular, each “slice” Ti·· for fixed i is a Hankel matrix, so it can be written
as a Zq-linear combination of the slices Mi·· of the tensor for the middle-product
bilinear form M : Z

n+d−1
q ×Z

n
q → Z

d
q , because these slices form the standard basis

for the set of n × d Hankel matrices over Zq. In other words, there exists a matrix
P ∈ Z

(n+d−1)×d
q such that Ti·· =

∑
i′ Mi′··Pi′i for all i; specifically, the ith column

of P is simply the vector defining the Hankel matrix Ti··. Therefore,

Tr((s · a) · �p) = Tr(T (s, a) · �p) = M(Ps,a),

where s = Tr(s · �p) ∈ Z
d
q is the coefficient vector of s with respect to �p∨.

Finally, we address the error term. By linearity and the above, we have
b = M(Ps,a) + e mod qZ

d where e = Tr(e · �p), which has distribution ψ′

because e has distribution ψ over KR.
Notice that for the search and decision reductions, we cannot simply apply

the claimed transformation to each input sample, because the resulting distri-
bution on s′ is not uniform. However, this is easily addressed by the standard
technique of re-randomizing the secret, choosing a uniformly random r ∈ Z

n+d−1
q

and transforming each given sample (a,b) to (a,b + M(r,a)). This preserves
the uniform distribution in the random case, and maps secret s to a uniformly
random secret s′ + r in the LWE case.

To obtain the claimed search reduction, first apply the above transforms to
each input sample of the O-LWEq,ψ,� problem. This produces the same number
of samples for the MP-LWEn,d,q,ψ′,� problem. We can then compute the original
secret s from the transformed secret s′+r via s = P−1

L ·s′, and s = 〈�p∨, s〉 where
P−1

L is a left inverse of P. For the claimed decision reduction, it suffices that the
transform also maps uniform samples to uniform samples.

Corollary 2. Adopt the notation from Theorem 2, and let O′ ⊆ O be a subor-
der which has a known tweaked power basis �p and for which |O/O′| is coprime
with q. There is a randomized sample-preserving reduction from O-LWEq,ψ,� to
MP-LWEn,d,q,ψ′,�, where ψ′ = TrKR/R(ψ · �p).

Proof. We can reduce O-LWEq,ψ,� to O′-LWEq,ψ,� by Corollary 1, and then to
MP-LWEn,d,q,ψ′,� by Theorem 2.

5.2 Managing the Error Distribution

The reduction described in Theorem 2 reduces O-LWE with error distribution ψ
to MP-LWE with error distribution ψ′ = TrKR/R(ψ · �p) where �p is some tweaked
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power basis of O. However, we ultimately want a reduction from many O-LWE
problems to a single MP-LWE problem, so we need to further control the resulting
error distribution. To this end, we consider the usual case where ψ is a Gaussian
distribution over KR, in which case it turns out that ψ′ is a Gaussian over R

n

whose covariance is related to the Gram matrix of �p. Moreover, by a standard
technique we can add some independent Gaussian error having a compensating
covariance to arrive at any desired target covariance that is sufficiently large.

Throughout this section, we use the following notation. Let Tr = TrKR/R,
and given a tweaked basis �p of O, let P = Tr(�p · τ(�p)t) denote the (positive
definite) Gram matrix of �p, whose (i, j)th entry is 〈pi, pj〉 = Tr(pi · τ(pj)). Fix
some orthonormal R-basis �b = τ(�b∨) of KR, and let Pb = Tr(�b · �pt). Then by
R-linearity of τ and trace, we have

P = Tr(�p · τ(�p)t) = Tr
(
�p · τ

(
(�b∨)t · Tr(�b · �pt)

))
= Tr(�p ·�bt) · Tr(�b · �pt) = Pt

b · Pb .

For a real matrix A, let

‖A‖ = max
‖u‖2=1

‖Au‖2

denote the spectral (or operator) norm of A; observe that by the above, we have
‖P‖ = ‖Pb‖2.
Corollary 3. Let d ≤ n be positive integers, O be an order of a degree-d number
field K with a tweaked power basis �p, Σ ∈ R

d×d be a positive definite matrix, and
q be a positive integer. For any Σ′ � Pt

b · Σ · Pb, there is an efficient random-
ized reduction from (search or decision) O-LWEq,D√

Σ ,� to (search or decision,
respectively) MP-LWEn,d,q,D√

Σ′ ,�.
In particular, for any r′ > r · √‖P‖, there is an efficient randomized reduc-

tion from (search or decision) O-LWEq,Dr,� to (search or decision, respectively)
MP-LWEn,d,q,Dr′ ,�.

Proof. By applying Theorem 2 we obtain an efficient randomized reduction from
O-LWEq,D√

Σ ,� to MP-LWEn,d,q,ψ′,�, where ψ′ is a distribution over R
d and is

analyzed as follows. Let D = D√
Σ be the original error distribution over KR,

which (because �b is an orthonormal basis of KR) has the form D = �bt · C where
the coefficient distribution C = D√

Σ is a Gaussian over R
n. Then by R-linearity

of the trace,

ψ′ = Tr(�p · D) = Tr(�p ·�bt · C) = Tr(�p ·�bt) · C = Pt
b · C = D√

Σ1
,

where Σ1 = Pt
b · Σ · Pb.

Since Σ′ � Σ1 by assumption, we may transform the error distribution D√
Σ1

to D√
Σ′ by adding (to the b-part of each MP-LWE sample) a fresh error term

from the compensating Gaussian distribution of covariance Σ′ − Σ1. This yields
the desired error distribution and completes the proof of the first claim.

For the second claim, notice that if Σ = r2 ·I, then Σ′ = (r′)2I � Pt
b ·Σ ·Pb =

r2 ·P, because (r′)2I−r2P is positive definite, since xtPx ≤ ‖P‖·‖x‖22 for any x.
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5.3 Example Instantiations

Corollary 3 bounds the expansion of the error distribution by the square root of
the spectral norm of the Gram matrix P of a tweaked power basis �p of O. Here
we show that there are large families of orders with well-behaved power bases
(with tweak factor t = 1).

Let α be an algebraic integer with minimal polynomial f(x) ∈ Z[x] of degree
d, and consider the order O = Z[α] ⊂ K = Q(α), which has power basis �p =
(1, α, . . . , αd−1). Consider the Vandermonde matrix

V =

⎛

⎜
⎜⎜⎜⎜
⎝

1 α1 α2
1 αd−1

1

1 α2 α2
2 · · · αd−1

2

1 α3 α2
3 αd−1

3
...

. . .
...

1 αd α2
d · · · αd−1

d

⎞

⎟
⎟⎟⎟⎟
⎠

where the αi are the d distinct roots of f , i.e., the conjugates of α. This V
represents the linear transform σ that maps coefficient vectors with respect to �p
to the canonical (or Minkowski) embedding.

It is easy to see that the Gram matrix of �p is P = V∗V, where V∗ denotes
the conjugate transpose of V, so

√‖P‖ = ‖V‖. Therefore, we immediately have
the bound

√‖P‖ ≤ ‖V‖2 ≤ √
d · maxi‖σ(αi)‖, where the maximum is taken

over i ∈ {0, 1, . . . , d − 1}. That is, the Frobenius and Euclidean norms of the
power-basis elements (in the canonical embedding) yield bounds on the error
expansion. The following lemma gives an alternative bound directly in terms of
the minimal polynomial f(x).

Lemma 7. Adopt the above notation, and assume that the minimal polynomial
f(x) = xd − g(x) ∈ Z[x], where g(x) = akxk + · · · + a1x + a0 has degree at
most k < d. Then

√‖P‖ ≤ d · Ad/(d−k) where A =
∑k

i=0|ai|. In particular, if
k = (1 − c)d for some c ∈ (0, 1), then

√‖P‖ ≤ d · A1/c.

For example, if all the |ai| = poly(d) and c < 1 is any positive constant, then√‖P‖ = poly(d). This enlarges the set of moduli f(x) yielding polynomial error
expansion from those considered in [17].

Proof. We bound ‖V‖ as follows. Let α∗ = maxi|αi| ≥ 1 be the maximum
magnitude of any root of f . Then ‖V‖ ≤ dmax|Vi,j | ≤ d · αd

∗. Now, because
the αi satisfy αd

i = g(αi), by the triangle inequality we have αd
∗ ≤ αk

∗ · A and
hence αd−k

∗ ≤ A. The claim follows by raising to the d/(d − k) power.

6 Reduction from O′-LWE to O-LWEk

In this section we give a simple reduction from O′-LWE, for a wide class of
orders O′, to a single rank-k Module-LWE problem over an order O.
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6.1 Reduction

Theorem 3. Let K ′/K be a number field extension; O be an order of K; O′

be an order of K ′ that is a rank-k free O-module with known basis �b; ψ′ be a
distribution over K ′

R; and q be a positive integer. Then there is an efficient,
deterministic transform which:

1. maps distribution U(O′
q × K ′

R/q(O′)∨) to U(Ok
q × KR/qO∨), and

2. maps distribution AO′
q,ψ′(s′) to AO,k

q,ψ (�s), for �s = TrK′/K(s′ ·�b) mod qO∨ and
ψ = TrK′

R
/KR

(ψ′).

It immediately follows that there is an efficient, deterministic reduction from
(search or decision) O′-LWE1

q,ψ′,� to (search or decision, respectively) O-
LWEk

q,ψ,�.

Proof. Let Tr = TrK′
R
/KR

, which coincides with TrK′/K on K ′. The claimed
transform is as follows. Given a sample (a′, b′) ∈ O′

q × K ′
R/q(O′)∨, output

(�a = Tr(a′ ·�b∨) , b = Tr(b′) mod qO∨) ∈ Ok
q × KR/qO∨.

Clearly, this transform sends uniformly random a′ ∈ O′
q to uniformly random

�a ∈ Ok
q , because �b is an Oq-basis of O′

q, and Tr(a′ ·�b∨) is the coefficient vector
of a with respect to this basis. Also, the transform sends uniformly random
b′ ∈ K ′

R/q(O′)∨ to uniformly random b ∈ KR/qO∨, because Tr: K ′
R → KR is a

surjective KR-linear map and Tr((O′)∨) ⊆ O∨, since Tr((O′)∨ · O) ⊆ Tr((O′)∨ ·
O′) ⊆ O∨

K .
What remains to show is that if b′ = s′ · a′ + e′ then b = 〈�s,�a〉 + e for

�s = Tr(s′ ·�b) and e = Tr(e′). Observe that s′ = 〈�b∨, �s〉 and a′ = 〈�b,�a〉. Therefore,
by Lemma 1, we know that Tr(s′ ·a′) = 〈�s,�a〉. The claim then follows by linearity
of Tr.

To obtain the claimed search reduction, simply apply the above transform to
the input samples for the O′-LWE1

q,ψ′,� problem. This produces the same number
of samples for the O-LWEk

q,ψ,� problem. It is clear that this maps the uniformly
random secret s′ ∈ (O′)∨q to uniformly random �s ∈ (O∨

q )
k, because �b∨ is an

O∨
q -basis of (O′)∨q by Lemma 2, and Tr(s′ ·�b) is the coefficient vector of s with

respect to this basis. Furthermore, we can compute the original secret s from
the transformed secret �s, as s = 〈�b∨, �s〉. For the claimed decision reduction, it is
suffices that the transform also maps uniform samples to uniform ones.

6.2 Managing the Error Distribution

Similarly to our reduction from O-LWE to MP-LWE in Sect. 5, we want a reduc-
tion from many O′-LWE problems to a single O-LWEk problem. To control the
resulting error distribution, we consider the usual case where the original error
distribution ψ′ is a Gaussian, in which case it turns out that the resulting error
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distribution ψ is also a Gaussian. As in Sect. 5.2, we can add some indepen-
dent Gaussian error with a compensating covariance to obtain any large enough
desired target covariance. Alternatively, when ψ′ is a spherical Gaussian, then ψ
is one as well, with a covariance that is a k factor larger, so no compensating
error is needed. (Also note that (O′)∨ can be much denser than O∨—or seen
another way, O can have shorter vectors than O′—so the increase in covariance
does not necessarily represent a real loss.)

In what follows, let K ′/K be a number field extension, fix some orthonormal
R-bases �c′ = τ((�c′)∨) and �c = τ(�c∨) of K ′

R and KR (respectively) for defining
Gaussian distributions, and let A = TrK′

R
/R(�c′ · τ(�c)t) be the real matrix whose

(i, j)th entry is 〈c′
i, cj〉. The proof below shows that At · A = kI where k =

deg(K ′/K); by choosing the bases appropriately we can obtain, e.g., A = 1k ⊗ I
where 1k ∈ Z

k is the all-ones vector.

Corollary 4. Adopt the notation and hypotheses of Theorem 3, with ψ′ = D√
Σ′

over K ′
R for some positive definite matrix Σ′. For any Σ � At · Σ′ · A, there is

an efficient, randomized reduction from (search or decision) O′-LWE1
q,D√

Σ′ ,� to

(search or decision, respectively) O-LWEk
q,D√

Σ ,�.

Moreover, for r = r′√k, there is an efficient deterministic reduction
from (search or decision) O′-LWE1

q,Dr′ ,� to (search or decision, respectively)
O-LWEk

q,Dr,�.

Proof. By Theorem 3, there exists an efficient, deterministic reduction from
O′-LWE1

q,D√
Σ′ ,� to O-LWEk

q,ψ,� where ψ is a distribution over KR and is ana-
lyzed as follows. Let D′ = D√

Σ′ be the original error distribution over K ′
R,

which has the form D′ = �c′t · C ′ where the coefficient distribution C ′ = D√
Σ′ is

a Gaussian over R
kn. Further, let Σ1 = At ·Σ′ ·A and let D = D√

Σ1
be a Gaus-

sian over KR, which has the form D = �ct · C where the coefficient distribution
C = D√

Σ1
is a Gaussian over R

n. Then by linearity,

ψ = TrK′
R
/KR

(D′) = �ct · TrK′
R
/R(τ(�c) · �c′t · C ′) = �ct · At · C ′ = �ct · C = D.

Since Σ � Σ1 by assumption, we can transform the error distribution D√
Σ1

to D√
Σ′ by adding (to the b-part of each Module-LWE sample) a fresh error

term from the compensating Gaussian distribution of covariance Σ′ − Σ1. This
yields the desired error distribution and completes the proof of the first claim.

For the second claim, observe that because �c′ and �c are orthonormal,

At · A = TrK′
R

/R(�c · τ(�c)t) = TrKR/R(TrK′
R

/KR
(1) · �c · τ(�c)t) = TrKR/R(k · �c · τ(�c)t) = k · I.

Therefore, if Σ′ = (r′)2 · I and Σ = r2 · I, then Σ1 = At · Σ′ · A = k(r′)2 · I =
r2 ·I = Σ, so no compensating error is needed, yielding a deterministic reduction.

6.3 Instantiations

It is straightforward to instantiate Theorem 3 and Corollary 4 to get reductions
from a huge class of Order-LWE problems to a single Module-LWE problem.
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Let O be an arbitrary order of a number field K, and let α denote some root
of an arbitrary monic irreducible degree-k polynomial f(X) ∈ O[X]. Then we
can satisfy the hypotheses of Theorem 3 by letting K ′ = K(α) and O′ = O[α],
so that (1, α, . . . , αk−1) is an O-basis of O′. (We emphasize that there are no
restrictions on the choice of the algebraic integer α, other than its degree over O.)
Letting, e.g., ψ′ = Dr be a spherical Gaussian over K ′

R and ψ = Dr
√

k be the
corresponding spherical Gaussian over KR, we have an efficient, deterministic
reduction from O′-LWE1

q,ψ′,� to O-LWEk
q,ψ,�.

References

1. Albrecht, M.R., Deo, A.: Large modulus ring-LWE ≥ module-LWE. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 267–296. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_10

2. Bolboceanu, M., Brakerski, Z., Perlman, R., Sharma, D.: Order-LWE and the
hardness of Ring-LWE with entropic secrets. Cryptology ePrint Archive, Report
2018/494 (2018). https://eprint.iacr.org/2018/494

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. TOCT 6(3), 13 (2014). Preliminary version
in ITCS 2012

4. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

5. Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-
LWE revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 147–167. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3_6

6. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

7. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Crypt. 75(3), 565–599 (2015)

8. Lyubashevsky, V.: Digital signatures based on the hardness of ideal lattice problems
in all rings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 196–214. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6_7

9. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43:1–43:35 (2013). Preliminary version in Eurocrypt 2010

10. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Comput. Complex. 16(4), 365–411 (2007). Preliminary version in
FOCS 2002

11. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342 (2009)

12. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10(4), 283–424 (2016)

13. Peikert, C.: How (not) to instantiate ring-LWE. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 411–430. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44618-9_22

14. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWE
for any ring and modulus. In: STOC, pp. 461–473 (2017)

https://doi.org/10.1007/978-3-319-70694-8_10
https://eprint.iacr.org/2018/494
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-662-53890-6_7
https://doi.org/10.1007/978-3-662-53890-6_7
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-44618-9_22


Algebraically Structured LWE, Revisited 23

15. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009). Preliminary version in STOC 2005

16. Regev, O.: The learning with errors problem (invited survey). In: IEEE Conference
on Computational Complexity, pp. 191–204 (2010)

17. Roşca, M., Sakzad, A., Stehlé, D., Steinfeld, R.: Middle-product learning with
errors. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
283–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_10

18. Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_6

19. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7_36

https://doi.org/10.1007/978-3-319-63697-9_10
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36


Lattice Trapdoors and IBE
from Middle-Product LWE

Alex Lombardi1(B), Vinod Vaikuntanathan1, and Thuy Duong Vuong2

1 MIT, Cambridge, MA 02139, USA
alexjl@mit.edu

2 Stanford University, Stanford, CA 94305, USA

Abstract. Middle-product learning with errors (MP-LWE) was recently
introduced by Rosca, Sakzad, Steinfeld and Stehlé (CRYPTO 2017) as a
way to combine the efficiency of Ring-LWE with the more robust security
guarantees of plain LWE. While Ring-LWE is at the heart of efficient
lattice-based cryptosystems, it involves the choice of an underlying ring
which is essentially arbitrary. In other words, the effect of this choice
on the security of Ring-LWE is poorly understood. On the other hand,
Rosca et al. showed that a new LWE variant, called MP-LWE, is as
secure as Polynomial-LWE (another variant of Ring-LWE) over any of
a broad class of number fields. They also demonstrated the usefulness
of MP-LWE by constructing an MP-LWE based public-key encryption
scheme whose efficiency is comparable to Ring-LWE based public-key
encryption. In this work, we take this line of research further by show-
ing how to construct Identity-Based Encryption (IBE) schemes that are
secure under a variant of the MP-LWE assumption. Our IBE schemes
match the efficiency of Ring-LWE based IBE, including a scheme in the
random oracle model with keys and ciphertexts of size Õ(n) (for n-bit
identities).

We construct our IBE scheme following the lattice trapdoors paradigm
of [Gentry, Peikert, and Vaikuntanathan, STOC’08]; our main technical
contributions are introducing a new leftover hash lemma and instantiat-
ing a new variant of lattice trapdoors compatible with MP-LWE.

This work demonstrates that the efficiency/security tradeoff gains of
MP-LWE can be extended beyond public-key encryption to more com-
plex lattice-based primitives.

Keywords: Middle-product LWE · Identity-Based Encryption ·
Lattice Trapdoors

1 Introduction

Cryptographic schemes based on the polynomial learning with errors problem
(PLWE) [23] and the ring learning with errors problem (RLWE) [13] have the
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advantage of having key size and algorithm runtime that are quasi-linear in the
security parameter. However, their security guarantees are not as strong as that
of the original learning with errors problem (LWE) [20].

One of the main differences between these two settings is that the
PLWE problem parametrized by some (say, irreducible) polynomial f , denoted
PLWE(f), is only known to be as hard as a worst-case problem on some class
of lattices that depends on the polynomial f , which could possibly be easier to
solve for some choices of f as compared to others. In particular, we do not have a
clear understanding of the relative hardness of PLWE(f) for different f , making
it hard for a cryptosystem designer to pick the right f . In contrast, with the
LWE problem, there is no such ambiguity. For essentially any choice of possible
modulus q, LWE is as hard as worst-case problems on arbitrary lattices [17,20].
In summary, the concrete efficiency gains of RLWE and PLWE have only been
obtained through a trade-off involving making both quantitatively and qualita-
tively more questionable security assumptions.

Recently, following on an earlier work of Lyubashevsky [11] who initiated the
study of ring-independent assumptions, Rosca et al. [21] introduced the “middle-
product learning with errors” assumption (MP-LWE), a new variant of LWE that
uses the “middle product” of polynomials modulo q. For any f in a broad class
of polynomials, they show a reduction from PLWE(f) to the MP-LWE problem,
which is defined independently of any such f , freeing the cryptosystem designer
from making an essentially arbitrary choice of f . They also describe a public key
encryption (PKE) scheme that has quasi-linear (optimal) key size and algorithm
runtime, while being IND-CPA secure under the MP-LWE assumption. Thus,
they obtain a public-key encryption scheme with the same efficiency gains over
LWE-based PKE as enjoyed by PLWE-based schemes, but prove security under
a worst-case assumption on a comparatively broader class of lattices.

While the idea of using MP-LWE as an alternative to Ring-LWE, as proposed
by [21], is intriguing, it is only currently known how to construct plain public-key
encryption from MP-LWE. In this work, we consider and make progress on the
following question.

Can we instantiate more complex lattice-based primitives using middle-
product LWE while maintaining the improved efficiency/security tradeoff?

Indeed, it is explicitly left open by [21] to instantiate more complex lattice-
based primitives, such as lattice trapdoors [8] and their applications, using MP-
LWE.

1.1 Our Results

We construct an Identity-Based Encryption (IBE) scheme based on MP-LWE.
This scheme is IND-CPA secure in the random oracle model under the MP-LWE
assumption and has quasi-linear key size and algorithm runtime.

Our construction follows the “lattice trapdoors” paradigm of [8]. Specifically,
we construct a “dual” of the public key encryption scheme in [21], then combine
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the dual scheme with Micciancio-Peikert style lattice trapdoors [15] to obtain
the IBE scheme. In addition to our IBE scheme in the random oracle model,
we sketch how techniques for constructing IBE schemes in the standard model
[2,3,7] can also be adapted to the MP-LWE setting using our lattice trapdoors.

Our main IBE construction from MP-LWE can be stated informally as fol-
lows.

Theorem 1 (Informal). For any ε ≥ 2−poly(log n), there is a (T, ε)-secure IBE
scheme (in the random oracle model) under the (T ′, ε′) MP-LWE assumption
with T ′ ≈ T , ε′ ≈ ε. This scheme has quasi-linear Õ(n) key size and encryption
runtime.

By (T, ε)-security, we mean that any T -time adversary fails to break the
primitive/assumption with advantage greater than ε. In particular, assuming
that MP-LWE is hard for T (n) = 2αn-time adversaries, we show that our IBE
scheme is hard to break in time roughly T with better than some inverse quasi-
polynomial advantage.

Our IBE scheme demonstrates that the better efficiency/security trade-off
obtained by [21] for public key encryption can be extended to more expressive
cryptographic primitives such as IBE. Tables 1 and 2 compare the efficiency of
our PKE and IBE schemes to prior works.

Table 1. Summary of parameters of our “dual Regev”-like public encryption scheme
from MP-LWE versus prior ones.

PKE scheme LWE based [19] RLWE based [13] MP-LWE based
(“primal”-[21], “dual”-this
work)

pk size Õ(n2) Õ(n) Õ(n)

sk size Õ(n) Õ(n) Õ(n)

Enc/Dec runtime
per encrypted bit

Õ(n)-amortized Õ(1) Õ(1)

1.2 Technical Overview

As mentioned before, we follow the “lattice trapdoors” paradigm of [8]. We first
recall the approach of [8] for constructing IBE from LWE. The high-level idea is
as follows: using a random oracle H, design a key pair (distribution) (mpk,msk)
such that for any identity id, pkid := (mpk,H(id)) is a valid public key for some
public key encryption scheme PKE. In order for this to yield an IBE scheme, it
must be possible to derive a corresponding secret key skid, using msk, from the
public value H(id). This is achieved in the following way.
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Table 2. Summary of parameters of our identity-based encryption (IBE) scheme from
MP-LWE versus prior ones that are from LWE and Ring-LWE.

IBE scheme LWE based [8,15] RLWE based [15] MP-LWE based (this
work)

mpk size Õ(n2) Õ(n) Õ(n)

msk size Õ(n2) Õ(n) Õ(n)

Enc/Dec runtime
per encrypted bit

Õ(n)-amortized Õ(1) Õ(1)

– Step 1: Dual Regev Encryption. First, [8] constructs a “dual” variant
of Regev encryption [20] in which public keys are (statistically close to) uni-
formly random. In slightly more detail, public keys have the form (A, u = Ar)

for A
$← Z

n×m
q and r

$← χm for some distribution χ of “small numbers.” This
step is done so that in an associated IBE scheme, u = H(id) can be interpreted
as (part of) a dual Regev public key.

– Step 2: Lattice Trapdoors. The most technically complicated step in [8]
is designing an alternative procedure TrapGen that outputs a (statistically
close to) uniformly random matrix A along with a trapdoor TA that allows
for sampling, given an input u ∈ Z

n
q , a random preimage r ← χm | Ar = u.

This step allows for efficient secret key extraction from a public key (A, u).
– Step 3: Constructing IBE. As has been implicitly described already, [8]

then write down an IBE scheme with a master key pair (A, TA) sampled using
TrapGen, so that encryption for an identity id uses dual Regev encryption
with public key (A, u = H(id)), and secret keys skid = r can be extracted
from (A, u = H(id)) using msk = TA.

We now describe how we instantiate this framework using middle-product
LWE.

Step 1: MP-LWE Based Dual Regev. Our first step is to develop an analogue of
dual Regev encryption based on middle-product LWE. We first recall from [21]
that the middle-product learning with errors assumption over Zq with degrees
(n, d) is that the distribution

{(ai, ai �d s + ei)t
i=1}

is computationally pseudorandom, where s is a uniformly random degree n poly-
nomial,1 each ai is a uniformly random degree n − d polynomial, each ei is a
random “small” degree d polynomial, and ai �d s is the “middle product” con-
sisting of the d “middle terms” of the polynomial product a · s. [21] show that
this assumption suffices to construct a “primal Regev” public key encryption
scheme, and show that this assumption follows from the hardness of PLWE(f)

for various polynomials f .
1 The parameters are slightly simplified for exposition.
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We would like to develop a “dual Regev” public-key encryption scheme sim-
ilar to the PKE of [21], and a natural approach suggests itself (based on [21]):
Let a1, . . . , at be t i.i.d. degree n polynomials, let r1, . . . , rt be t i.i.d. degree k
polynomials (for some additional parameter k), and set

(
pk = (a1, . . . , at, u =

∑
airi), sk = (r1, . . . , rt)

)
.

Encrypting a message μ then consists of sampling a random MP-LWE secret s
and outputting middle products2 (ai � s,+2ei)i≤t along with u � s + 2e′ + μ.
We would then like to argue, as in [21], that the security of this scheme follows
from MP-LWE (with secret s).

Technical Challenges. However, there are two main issues that arise from this
approach to Step 1 (which both arise again when implementing Step 2):

– We need a new variant of the leftover hash lemma to argue that the poly-
nomial u =

∑
airi is (statistically close to) uniformly random. The reason

that previous leftover hash lemma variants seem insufficient is related to the
fact that the map r �→ ∑

i airi has a larger range (degree n + k polynomials)
than its domain (degree k polynomials); this stands in contrast to the PLWE
setting, where r �→ ∑

airi (mod f) is reduced modulo a degree n polynomial
f . Indeed, the hash function ha1,...,at

(r1, . . . , rt) =
∑

airi is not 2-universal,
unlike the hash function considered in [21], so we have to argue the desired
statistical indistinguishability directly. We state and prove our new variant
of the LHL in Sect. 4. We use techniques from [14] designed to prove a vari-
ant of the LHL in the Ring-LWE setting; however, these techniques must
be substantially modified to handle the distinction between multiplication of
bounded-degree polynomials in Zq[x] (as in our setting) and multiplication
over rings of the form Rq = Zq[x]/f(x) (as in the RLWE/PLWE setting).

– Middle-product LWE as defined in [21] does not seem directly applicable to
(the security of) our dual-Regev encryption scheme; the reason is that the
“coefficient polynomials” (a1, . . . , at, u) do not all have the same degree.3 In
order to prove security, we have to consider a new variant of MP-LWE in
which “coefficient polynomials” {ai} can have different degrees; we consider
a variant in which the adversary can specify a new degree di for each sample in
advance. In Sect. 3, we show that (a simple modification of) the [21] reduction
from PLWE to MP-LWE carries over to our variant of MP-LWE, which we
call “degree-parametrized MP-LWE.”

After addressing these two difficulties, the approach outlined in Step 1 can
be made to work, yielding a dual-Regev encryption scheme based on MP-LWE.
2 We omit some details regarding degrees; it turns out that the middle products ai �s

will have a different degree from the middle product u� s in order to get decryption
correctness.

3 In fact, after introducing lattice trapdoors, our scheme will be modified so that three
different degrees will be used rather than two (as it is currently written).
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Step 2: Lattice Trapdoors for MP-LWE. Having developed a variant of dual
Regev encryption, we next turn to constructing lattice trapdoors [8] that are
compatible with this new encryption scheme. To do so, we make use of the work
[15], which gives a highly general roadmap for constructing lattice trapdoors.

Following the basic idea of [15], our procedure TrapGen will produce polyno-
mials a1, . . . , at, at+1, . . . , at′ such that for t < i ≤ t′,

ai = ci −
t∑

j=1

ajwij

for random, small “trapdoor” polynomials {wij} and specific polynomials {cj =
2uxdv} which are our analogue to the “G matrix” in plain LWE-based construc-
tions. Similarly to the Ring-LWE setting, we can think of these polynomials as
“structured matrices” by associating a polynomial g(x) with the “multiplica-
tion by g(x)” matrix acting on a vector space of bounded-degree polynomials.
We show that with this choice of polynomials {cj}, the matrix A correspond-
ing to (a1, . . . , at′) has a “G-trapdoor” (as defined in [15]) that can be efficiently
described using our trapdoor {wij}. The preimage sampling algorithm of [15] can
then be adapted to yield a corresponding preimage sampling algorithm for poly-
nomial sum-products; moreover, we show that our preimage sampling algorithm
has the same Õ(n) efficiency gain over plain LWE that is enjoyed by Ring-LWE
based constructions. See Sect. 5 for more details.

Finally, we note that we are implicitly relying on resolutions to both “tech-
nical challenges” mentioned above in this step; our leftover hash lemma is what
guarantees that TrapGen outputs a distribution {(a1, . . . , at′)} that is statisti-
cally close to uniform, while our “degree-parametrized MP-LWE” allows us to
redesign our dual Regev scheme to have public key (a1, . . . , at′ , u) such that
{a1, . . . , at} and {at+1, . . . , at′} have different degrees.

Step 3: Constructing IBE Schemes. Given our variant of dual Regev encryption
from MP-LWE (Step 1) and our variant of lattice trapdoors compatible with
this new encryption scheme (Step 2), constructing IBE is fairly straightforward
given prior work. We describe constructions analogous to those of [8] (in the
random oracle model) and [3] (in the standard model) using our new tools.

Remark On Concrete Efficiency/Security. As usual, some care is required when
comparing the efficiency of various LWE-based cryptosystems to take into
account their expected levels of security. We give an overview of the compar-
ison of LWE/RLWE/MPLWE-based IBE schemes using concrete security [5].

The concrete security of all relevant lattice-based cryptosystems is based on
assumptions of the following form.

Definition 1 ((T, ε)-secure X-LWE, Informal). Any time T adversary
breaks the X-LWE assumption with advantage at most ε.

Our main IBE construction from MP-LWE (as stated in Theorem 1) constructs
(T, ε)-secure IBE from roughly (T, ε)-secure LWE, as long as ε ≥ 2−poly log n.



30 A. Lombardi et al.

This technical limitation is due to the achievable parameters of our leftover hash
lemma (which was already implicitly noted in [21]) when used in a standard hybrid
argument to prove security of the IBE scheme. This barrier also appears in the
Ring-LWE context (see, e.g., the signature scheme of [15]) when quasi-linear effi-
ciency is desired. However, these works (and ours) still attain a meaningful form of
concrete security because security is proved against adversaries that run in expo-
nential time (assuming that the LWE variants are exponentially secure).

In addition, with some more work, it is possible to improve Theorem 1 to
hold for smaller values of ε (without sacrificing efficiency). This improved security
proof is based on the use of Renyi divergence (as opposed to statistical distance),
as demonstrated in [4], and will appear in the full version of this paper.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2, we review basic definitions
and other preliminaries. In Sect. 3, we introduce and prove the hardness of our
“degree-parametrized MP-LWE,” a slight variant on the original definition. In
Sect. 4, we prove our new leftover hash lemma for bounded degree polynomials.
In Sect. 5, we use our new LHL in combination with [15] to develop lattice
trapdoors for middle-product LWE. Finally, in Sect. 6, we combine our new tools
to construct MP-LWE based dual Regev public-key encryption and IBE.

2 Preliminaries

Negligible Functions. We use n to denote the security parameter. We use
standard big-O notation to classify the growth of functions, and say that
f(n) = Õ(g(n)) if f(n) = O(g(n) · logc n) for some fixed constant c. We let
poly(n) denote an unspecified function f(n) = O(nc) for some constant c. We
say that a function f(n) is negligible (denoted f(n) = negl(n)) if f(n) = o(n−c)
for every fixed constant c. We say that a probability (or fraction) is overwhelming
if it is 1 − negl(n).

Statistical and Computational Indistinguishability. The statistical distance
between two distributions X and Y over a countable domain Ω is defined to
be Δ(X,Y ) := 1

2 · ∑d∈Ω |X(d) − Y (d)|. We say that two distributions X,Y
(formally, two ensembles of distributions indexed by n) are statistically indistin-
guishable if Δ(X,Y ) = negl(n), and write X ≈s Y.

Two ensembles of distributions {Xn} and {Yn} are computationally indis-
tinguishable if for every probabilistic poly-time machine A, |Pr[A(1n,Xn) =
1] − Pr[A(1n, Yn) = 1]| = negl(n); we denote this relationship by X ≈c Y.

Polynomials. Let R be a ring. For any integer d > 0 and any set S ⊆ R, we let
S<d[x] denote the set of polynomials in R[x] of degree < d whose coefficients are
in S. For any distribution χ defined over R, let χd[x] denote the distribution on
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polynomials in R<d[x] where each coefficient is sampled independently according
to χ.

Given a polynomial a =
∑d−1

i=0 aix
i ∈ R<d[x], define the coefficient vector of

a as a := (a0, · · · , ad−1)T ∈ Rd. In particular, for any 0 ≤ i ≤ d − 1, ai denotes
the coefficient of xi in a.

Probability. For any distribution X defined on a countable domain Ω, we define
the collision probability

CP(X) := Pr
X,X′ i.i.d.

[X = X ′]

as well as the Renyi entropy of X,

H2(X) := log2
1

CP(X)
,

and the min-entropy of X,

H∞(X) := log2 min
x∈Ω

1
Pr[X = x]

.

We remark that H2(X) ≥ H∞(X) for all distributions X. For a finite set Ω,
we let U(Ω) denote the uniform distribution over Ω, and we use the notation

X
$← Ω to denote that X is sampled uniformly at random from Ω. For a distri-

bution χ over R, let χk denote the distribution over R
k where each coordinate

is independently sampled from χ. For a distribution D over R
k, let D[x] be the

distribution over R
<k[x] where the coefficient vector of polynomials is sampled

from D.

2.1 Identity-Based Encryption

We recall the standard syntax and definition of security under chosen-plaintext
and chosen-identity attack [1,6] for IBE. An IBE scheme consists of four algo-
rithms.

– A setup algorithm IBESetup (on input 1n) outputs a master public key mpk
and master secret key msk.

– A secret key extraction algorithm IBEExtract, given msk and an identity id,
outputs a secret key skid.

– An encryption algorithm Enc, given the master public key mpk, an identity
id, and a message m, outputs a ciphertext c.

– A decryption algorithm Dec, given the secret key sk and a ciphertext c, out-
puts a message m.

We require that an IBE scheme IBE = (IBESetup, IBEExtract,Enc,Dec) satisfies
two properties.
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– Correctness: For all identities id and messages m, we have

Pr[Dec(skid,Enc(mpk, id,m)) = m] = 1 − negl(n),

where the probability is taken with respect to the randomness of IBESetup,
IBEExtract,Enc, and Dec.

– Security: Security is defined by the following game (defined for a given PPT
adversary A).

• (mpk,msk) ← IBESetup(1n) is sampled. Define a (randomized) oracle O(·)
that on input id outputs IBEExtract(msk, id).

• AO(·)(mpk) outputs a challenge (id∗,m0,m1).
• b ← U({0, 1}) is sampled uniformly at random.
• ct∗ ← Enc(mpk, id∗,mb) is sampled.
• AO(·)(ct∗) outputs a bit b′ and wins if (1) O(id∗) was not queried and (2)

b′ = b.
We say that the scheme is secure if every PPT adversary A wins the above
game with probability at most 1

2 + negl(n)

2.2 Middle Product of Polynomials [21]

Definition 2 ([21], Definition 3.1). Let da, db, d, k be integers such that da +
db − 1 = d+2k. The middle product �d : R<da [x]×R<db [x] → R<d[x] is defined
to be the map

(a, b) �→ a �d b = � (a · b) mod xk+d

xk
� =

∑
k≤i+j≤k+d−1

(aibj)xi+j ,

where a and b are the coefficient vectors of a and b, respectively. In other words,
a �d b is obtained by deleting the k highest and k lowest degree terms of the
polynomial product a · b, then dividing the remaining d terms by xk.

Immediately from Definition 2, the middle product is commutative, i.e., a �d

b = b �d a for all polynomials a, b. The middle product also satisfies a “quasi-
associative” property.

Lemma 1 ([21]). Let d, k, n > 0. For all r ∈ R<k+1[x], a ∈ R<n[x], s ∈
R<n+d+k−1[x], we have

r �d (a �d+k s) = (r · a) �d s.

2.3 Lattices

An n-dimensional lattice Λ is a discrete additive subgroup of Rn. A lattice has
rank k ≤ m if it is generated as the set of all Z-linear combinations of some
k linearly independent basis vectors B = (b1, · · · ,bk); we say Λ is full-rank if
k = m. The dual lattice Λ∗ is the set of all v ∈ SpanR(Λ) such that 〈v, x〉 ∈ Z
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for every x ∈ Λ. If B is a basis of Λ, then B∗ = B(BtB)−1 is a basis of Λ∗. Note
that when Λ is full-rank, B is invertible and hence B∗ = B−1.

For any set S = (s1, · · · , sk) of linearly independent vectors, let S̃ denote
its Gram-Schmidt orthogonalization, defined iteratively in the following way:
s̃1 = s1, and for each i = 2, · · · , n, s̃i is the component of si orthogonal to
span (s1, · · · , si−1).

For positive integers n, q and any matrix A ∈ Z
n×m
q , let Λ⊥(A) := {z ∈

Z
m : Az = 0 mod q}. For u ∈ Z

n
q such that ∃t ∈ Z

m
q satisfying At = u, let

Λ⊥
u (A) := {z ∈ Z

m : Az = u mod q} = Λ⊥(A) + t.

Gaussian Distributions

Definition 3 (Continuous Gaussian distribution). For a positive semidef-
inite matrix Σ ∈ R

n×n, the continuous Gaussian distribution DΣ is the
probability distribution over R

n whose density is proportional to ρΣ(x) =
exp(−πxT Σ−1x).

Definition 4 (Discrete Gaussian distribution). Given countable set S ⊂
R

n and s > 0, the discrete Gaussian distribution DS,σ,c is the probability distri-
bution over S whose density is proportional to ρσ,c(x) := exp(−π · ||x−c||2/σ2).
That is, for x ∈ S : DS,σ,c = ρσ,c(x)

ρσ,c(S) . If c = 0, we can omit c and write DS,σ

instead.

As usual, we will make use of various statistical properties of the discrete
Gaussian DΛ,σ when σ is large compared to the smoothing parameter of the
lattice Λ, defined below.

Definition 5 ([16]). For any n-dimensional lattice Λ and real ε > 0, the
smoothing parameter ηε(Λ) is defined to be the smallest real s > 0 such that
ρ1/s(Λ∗ \ {0}) ≤ ε.

The following lemma gives an upper bound on the smoothing parameter of
Λ in terms of its Gram-Schmidt basis B̃.

Lemma 2 ([8], Theorem 3.1). Let Λ ⊂ R
n be a lattice with basis B and real

ε > 0. Then,
ηε(Λ) ≤ ||B̃|| ·

√
ln(2n(1 + ε−1))/π.

where B̃ = (b̃1, · · · , b̃k) is the Gram-Schmidt orthogonalization of B as defined
in Sect. 2.3, and ||B̃|| = maxi∈[k] ||b̃i||.

We will make use of tail bounds on DΛ,σ (for σ larger than the smoothing
parameter).

Lemma 3 ([8], Lemma 2.9). For any ε > 0, any σ ≥ ηε(Z), and any t > 0,
we have

Pr
x←DZ,σ,c

[|x − c| ≥ t · σ] ≤ 2e−πt2 · 1 + ε

1 − ε
.

In particular, for ε ∈ (0, 1/2) and t ≥ ω(
√

log n), the probability that |x−c| ≥ t·σ
is negligible in n.
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In addition, we will make use of entropy bounds on DΛ,σ (again for σ suf-
ficiently large). In order to prove these bounds, we first recall the following
approximation.

Lemma 4 ([18], Lemma 2.10). Let Λ ⊂ R
d be a full-rank lattice. For any

s ≥ ηε(Λ), we have

sd det(Λ∗) · (1 − ε) ≤ ρs(Λ) ≤ sd det(Λ∗) · (1 + ε).

Using Lemma 4, we can bound H∞(DΛ,σ) and H2(DΛ,σ).

Lemma 5. For a full-rank lattice Λ ⊂ R
d and discrete Gaussian distribution

χ = DΛ,σ with parameters ε ∈ (0, 1), δ ∈ (0, 1), and σ ≥ max(
√

2, δ−1) · ηε(Λ),
we have

2−H∞(χ) ≤ δd 1 + ε

1 − ε
and

CP(χ) ≤
(

δ√
2

)d

(
1 + ε

1 − ε
)2.

Proof. Using Lemma 4, we obtain the bound

DΛ,σ(x) ≤ 1
σd det(Λ∗) · (1 − ε)

for all x ∈ Λ. Moreover, we assumed that σδ ≥ ηε(Λ), so by Lemma 4 we also
have

1 ≤ ρσδ(Λ) ≤ (σδ)d det(Λ∗) · (1 + ε).

Combining this with the first inequality, we see that

DΛ,σ(x) ≤ δd 1 + ε

1 − ε
,

yielding the desired bound on 2−H∞(χ). In order to bound CP(χ), we write

CP(χ) =
∑
x∈Λ

DΛ,σ(x)2 = ρσ(Λ)−2
∑
x∈Λ

ρσ(x)2 = ρσ(Λ)−2 · ρσ/
√
2(Λ),

where the last equality uses the identity ρσ(x)2 = ρσ/
√
2(x). Since we assumed

that σ > δσ ≥ ηε(Λ), Lemma 4 (applied three times, to parameters σ, σ√
2

and
σδ) tells us that

ρσ(Λ)−2ρσ/
√
2(Λ) ≤ (σ/

√
2)d det(Λ∗)(1 + ε)

σ2d det2(Λ∗)(1 − ε)2

=
(

δ√
2

)d(1 + ε

1 − ε

)2 1
(σδ)d det(Λ∗)(1 + ε)

≤
(

δ√
2

)d

(
1 + ε

1 − ε
)2,

completing the proof. ��
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2.4 Polynomials and Matrices

For a vector v ∈ R
n, let ||v||, ||v||∞ denote the Euclidean and sup norm

respectively. We define the largest singular value of a matrix A ∈ R
m×n as

σ1(A) := max||u||=1 ||Au||.
Lemma 6. For any matrix A ∈ R

m×n, we have σ1(A) ≤ √
mn maxi,j |Aij |.

We will make use of the following matrix representation of polynomial mul-
tiplication.

Definition 6. Let R be a ring and d, k,> 0 be positive integers. For any poly-
nomial a ∈ R<k[x] of degree less than k, let T k,d(a) denote the matrix in
R(k+d−1)×d whose i-th column, for i = 1, · · · , d, is given by the coefficients of
xi−1 · a, listed from lowest to highest degree. In particular, T k,1(a) is the coeffi-
cient vector a of the polynomial a (possibly with zeros appended).

Lemma 7. For �, k, d > 0, a ∈ R<k[x], b ∈ R<�[x], T k,�+d−1(a) · T �,d(b) =
T �+k−1,d(a · b).

Definition 7 ([21], from[12]). Let f ∈ Z[x] have degree m. The expansion
factor of f is defined as

EF(f) := max
g∈Z<2m−1[x]

||g mod f ||∞
||g||∞ .

For our purposes, we are interested in polynomials with poly(n)-bounded
expansion factors. One such class [12] is the family of all f = xm + h where
deg(h) ≤ m/2 and ||h||∞ ≤ poly(n).

Definition 8. Let f be a monic polynomial over a ring R of degree m. Define
the (Hankel) matrix Mf ∈ Rm×m such that for 1 ≤ i, j ≤ m, (Mf )i,j is the
constant coefficient of xi+j−2 mod f.

Under suitable conditions on f , the matrix Mf is guaranteed to be invertible.

Lemma 8. If f ∈ R[x] has constant coefficient f0 which is invertible in R, then
Mf is an invertible matrix.

Proof. Rearranging the columns of Mf gives a triangular matrix whose diagonal
is the constant coefficient of f . ��
Moreover, when f ∈ Z[x], we will make use of singular value bounds on Mf and
related matrices in terms of the expansion factor of f . For a matrix A ∈ R

m×n

let A(d) denote the matrix whose rows are the first d rows of A.

Lemma 9. For any f ∈ Z[x], σ1(M
(d)
f ) ≤ √

d EF(f).

Remark 1. This inequality generalizes and improves on [21, Theorem 2.8] by a
factor of

√
d.
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Proof. We want to show that for all nonzero vectors u ∈ R
m, the following

inequality holds:
||M(d)

f u||
||u|| ≤

√
d EF(f).

We first note that because Q is dense in R, it suffices to show the same inequality
for all nonzero u ∈ Q

n. Moreover, since the inequality is scale-invariant, we may
further reduce to the case where u ∈ Z

m.
Given any nonzero vector u ∈ Z

m, we define v := Mfu. Then, letting g ∈
R

<m[x] denote the degree < m polynomial with coefficient vector u, we know
by [21, Lemma 2.4] that vi is the constant coefficient of xi−1 · g mod f . Thus,

|vi| ≤ ||g · xi−1 mod f ||∞ ≤ EF(f)||xi−1 · g||∞ = EF(f)||u||∞.

We conclude that

||M(d)
f u||

||u|| ≤
√

d
||u||∞
||u|| EF(f) ≤

√
d EF(f),

where the last inequality holds because ||u||∞ ≤ ||u||. ��

3 Degree-Parametrized MP-LWE

In this section, we define and consider a variant of MP-LWE in which samples
generated from a fixed secret s (which are polynomials with coefficients in Zq) can
have varying (pre-specified) degrees. This is in contrast to the variant considered
in [21], in which all samples have the same degree. We then prove a hardness
reduction relating polynomial LWE (PLWE) to our variant of MP-LWE, which
we call degree-parametrized MP-LWE.

For the rest of the paper, we will let Rq denote R/qZ.

Definition 9 (Degree-Parametrized MP-LWE). Let n > 0, q ≥ 2,m >
0,d ∈ [n

2 ]t, and let χ be a distribution over Rq. For s ∈ Zq
<n−1[x], we define

the distribution MPq,n,d,χ(s) over
∏t

i=1(Zq
<n−di [x] × Rq

<di [x]) as follows.

– For each i ∈ [t], sample ai
$← Zq

<n−di [x]) and sample ei ← χdi (interpreted
as a degree < di polynomial).

– Output (ai, bi := ai �di
s + ei)i∈[t] .

The (degree-parametrized) MP-LWE problem consists of distinguishing between
arbitrarily many samples from MPq,n,d,χ(s) and the same number of samples
from

∏t
i=1 U(Zq

<n−di [x] × Rq
<di [x]) with non-negligible probability over the

choice of s
$← Zq

<n−1[x].

Following [21], we show that degree-parametrized MP-LWE is as hard as the
polynomial-LWE problem PLWEf for a wide class of polynomials f . The reduc-
tion is effectively the same as that of [21], although we obtain better parameters
due to an improved singular value bound on the matrix Mf (Lemma 6). We
recall the definition of PLWEf , taken from [21].
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Definition 10 (PLWE). Let q ≥ 2,m > 0, f a polynomial of degree m, χ a
distribution over R[x]/f. The decision problem PLWE(f)

q,χ consists in distinguish-
ing between arbitrarily many samples

{a
$← Zq[x]/f, e ← χ : (a, a · s + e)}

and the same number of samples from U(Zq[x]/f ×Rq[x]/f) with non-negligible

probability over choice of s
$← Zq[x]/f.

Theorem 2 (Hardness of MP-LWE). Let n > 0, q ≥ 2, t > 0,d ∈ [n
2 ]t, and

α ∈ (0, 1). For S > 0, let F(S,d, n) be the set of polynomials in Z[x] that are
monic, have constant coefficient coprime with q, have degree m in

⋂t
i=1[di, n−di]

and satisfy EF(f) < S. Then, there exists a ppt reduction from PLWE
(f)
Dα·q for

any f ∈ F(S,d, n) to MPLWEq,n,d,Dα′·q with α′ = α ·√n
2 · S.

Proof. For d ∈ [n/2] and any polynomial f of degree m ∈ [d, n − d], we describe
a ppt mapping

φn,d : (a, b) ∈ Zq[x]/f × Rq[x]/f �→ (a′, b′) ∈ Zq
<n−d[x] × Rq

<d[x].

We will then show that φ maps U(Zq[x]/f ×Zq[x]/f) to U(Zq
<n−d[x]×Zq

<d[x])
and maps a random PLWE sample (with secret s) to a random MP-LWE sample
with secret s′ depending on s. This mapping (with slightly different parameters)
was previously defined in [21].

Let (a, b) ∈ Zq[x]/f × Rq[x]/f be an input pair. Then, the pair (a′, b′) ←
φn,d(a, b) is sampled by the following process.

– Define the matrix Σ = (α′q)2Id − (αq)2Jd ·M(d)
f , where Id denotes the d × d

identity matrix and Jd denotes the d × d anti-diagonal matrix.
– Sample h

$← Zq
<n−d−m[x] and ε ← DΣ .

– Set a′ = a + h · f and set b′ to be the polynomial with coefficient vector
b′ = Jd · M(d)

f · b + ε.

We note that the matrix Σ above is positive definite (and hence the distribution
DΣ is well-defined) by the following calculation: using Lemma 9,

σ1

(
(αq)2Jd · M(d)

f

)
≤ αq · σ1(Jd) · σ1(M

(d)
f ) ≤ αq · 1 ·

√
d EF(f) < α′ · q.

We first show that if (a, b) $← Zq[x]/f × Rq[x]/f , then (a′, b′) is distributed
uniformly on the set Zq

<n−d[x] × Rq
<d[x]. Since a and h are uniformly random

distributed in Zq
<m[x] and Zq

<n−d−m[x] respectively, we see that a′ is uniformly
distributed over Zq

<n−d[x]. Moreover, if b is uniformly distributed in Rq[x]/f,
then its coefficient vector b is uniformly distributed in R

m
q . Since J and Mf are

invertible (see Lemma 8), Jd · M(d)
f · b is therefore uniformly distributed (over

R
d
q), thus so is b′ and its polynomial representation b′.
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We next show that if (a, b) is a PLWE-sample, then (a′, b′) is a MP-LWE
sample. Suppose that b = a · s + e for s ∈ Zq[x]/f and error polynomial e with
coefficient vector e ← χd. Let s′ ∈ Zq

<n−1[x] be defined so that it has coefficient
vector

s′ = Jn−1 · (Bn−1,f · Mf · s),
where Bn−1,f ∈ Z

n−1×m
q is defined so that the ith row of Bn−1,f is the coefficient

vector of xi−1 mod f . Moreover, define e′ ∈ Rq
<d[x] to have coefficient vector

e′ = Jd · M(d)
f · e + ε.

We refer to [21] for a proof that b′ = a′ �d s′ + e′. Since ε is sampled inde-
pendent of e, the distribution of e′ is Dα′·q by standard (continuous) Gaussian
distribution identities.

As in [21], the collection of maps φn,di
(ranging over all i ∈ [t]) can be used

to implement a MP-LWE oracle using a PLWE oracle, and hence immediately
give a reduction from PLWE

(f)
Dα·q for any f ∈ F(S,d, n) to MPLWEq,n,d,Dα′·q . ��

4 A Leftover Hash Lemma for Polynomials

In this section, we state and prove Theorem 3, a Leftover Hash Lemma for
polynomials with bounded degree. The closest previous work is [14], in which
the author proves a Leftover Hash Lemma for elements of the ring R :=
Zq[α]/[αn − 1]; the proof technique in [14] inspires our proof of Theorem 3.
However, we encounter some subtleties as a result of working with bounded-
degree polynomials; specifically, difficulties arise due to the fact that the set of
bounded-degree polynomials is not closed under multiplication.

Let q = poly(n) be a sequence of prime numbers, so that Zq is a field for
every q = q(n). For polynomials z1, · · · , zt ∈ Zq[x], we adopt the convention
that gcd(z1, · · · , zt) is always monic.

Our goal is to prove that the hash function

ha1,...,at
(z1, . . . , zt) =

t∑
i=1

aizi,

with hash key �a = (a1, . . . , at) consisting of t polynomials drawn i.i.d. from
U(Zq

<n[x]), extracts uniform randomness from high entropy sources of bounded-
degree polynomials, in the special case of sources that are product distributions.

Following the approach of [14], we want to analyze, for any fixed input �z =
(z1, . . . , zt), the distribution of outputs H(�z) := ha1,...,at

(z1, . . . , zt) over the
choice of uniformly random hash key. In [14], the ai and zi are all elements of
a ring R, so the set {ha1,··· ,at

(z1, · · · , zt)|(a1, · · · , at) ∈ Rt} is simply the ideal
generated by z1, · · · , zt. Moreover, a simple argument shows that H(�z) is uniform
over this set. Here, however, we are working with bounded degree polynomials,
so the characterization of H(�z) is not as immediate. Lemma 10 characterizes
H(�z).
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Lemma 10 (Range of hash output). Consider z1, · · · , zt ∈ Zq
<n[x] that are

not all zero polynomials. Let I denote the set of degree-bounded linear combina-
tions of {zi}, that is,

I =

{
t∑

i=1

aizi | ai ∈ Zq
<n[x]

}
.

Moreover, let d = maxi deg(zi), and let g = gcd(z1, . . . , zt). Then,

I = (g · Zq[x]) ∩ Zq
<n+d[x]

Moreover, for polynomials (a1, . . . , at) sampled i.i.d. from U(Zq
<n[x]), the dis-

tribution
{∑t

i=1 ai · zi

}
is uniform on the set I.

Proof. Recall that g = gcd(z1, · · · , zt) is some monic polynomial in Zq[x] divid-
ing each zi. Therefore, the inclusion

I ⊂ (g · Zq[x]) ∩ Zq
<n+d[x]

is immediate. For the rest of the proof, we aim to show the opposite inclusion.
We assume without loss of generality that all zi are nonzero and prove the claim
by induction on t.

We begin with a base case of t = 2 and further assume (at first) that g = 1.
Fix polynomials (z1, z2) with gcd(z1, z2) = 1, and assume WLOG that d =
deg(z1). We want to show that for every α ∈ Zq

<n+d[x], there exists a key
(a1, a2) such that ha1,a2(z1, z2) = α. To do this, we write

α = z1z2Q + R

for polynomials (Q,R) satisfying deg(Q) < n + d − deg(z1z2) = n − deg(z2),
deg(R) < deg(z1z2). By the Chinese remainder theorem, we know that there
exist polynomials s1, s2 satisfying deg(s1) < deg(z2), deg(s2) < deg(z1), and

s1z1 + s2z2 = R.

Then, choosing a1 = Qz2+s1 and a2 = s2, we see that deg(a1) < n, deg(a2) < n,
and

a1z1 + a2z2 = z1z2Q + (s1z1 + s2z2) = α,

as desired.
In the case that gcd(z1, z2) = g �= 1, for any α ∈ gZq[x] ∩ Zq

<n+d[x] write
α = gα′ with deg(α′) < n + d − deg(g). Since gcd( z1

g , z2
g ) = 1, we just showed

that there exist a1, a2 with deg(ai) < n and a1
z1
g + a2

z2
g = α′, which implies

that a1z1 + a2z2 = gα′ = α. This completes the base case.
For the inductive step, consider any t ≥ 3 and any polynomials (z1, . . . zt)

with d = maxi deg(zi) and g = gcd(z1, . . . , zt). We want to show that for any
α ∈ gZq[x] ∩ Zq

<n+d[x], there exist polynomials (a1, . . . , at) with deg(ai) < n
and

∑
i aizi = α.
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We suppose without loss of generality that deg(z1) = d. Then, let g′ =
gcd(z2, . . . , zt), and note that by the base case, there exist polynomials (a1, a

∗)
such that deg(a1) < n, deg(a∗) < n, and

a1z1 + a∗g′ = α.

The base case applies because max(deg(z1),deg(g′)) = d and gcd(z1, g′) = g.
Now, further note that deg(a∗g′) < n + deg(g′) ≤ n + max2≤i≤t deg(zi). There-
fore, by the inductive hypothesis (applied to (z2, . . . , zt)), there exist polynomials
(a2, . . . , at) such that deg(ai) < n for all i, and

n∑
i=2

aizi = a∗g′.

This completes the inductive step.
Finally, we prove the distributional claim. Our reasoning follows the proof of

([14], Lemma 4.4). For every α ∈ I, define the set

Sα =

{
(a1, · · · , at) ∈ (Zq

<n[x])t :
t∑

i=1

aizi = α

}
.

By construction, the sets Sα for α ∈ I partition (Zq
<n[x])t. In order to prove the

distributional claim, we only need to show that |S0| = |Sα| for all α ∈ I. To see
this, note that for a given α ∈ I, we have already shown that Sα �= ∅, so there
exist a′

1, · · · , a′
t such that deg(a′

i) < n and
∑t

i=1 a′
izi = b. Then, the function

(ai)i≤t �→ (ai − a′
i)i≤t is a bijection from Sα to S0, proving that |Sα| = |S0|, as

desired. ��
Having proved Lemma 10, we are ready to state and prove our variant of the

leftover hash lemma.

Theorem 3. Let χ be a distribution over Zq and δ ∈ (0, 1) be such that
H∞(χ) ≥ log(1δ ). Define the distribution V := (�a, ha(�r)) over S = (Zq

<n[x])t ×
Zq

<n+n′−1[x], where �a = (a1, . . . at) consists of i.i.d. samples from U(Zq
<n[x]),

and �r = (r1, . . . , rt) consists of i.i.d. samples from χn′
[x].

Then, for n′ ≤ n, if δtq = o(1),

Δ(V,U(S)) = O
(
δ

t
2 q + δ

n′t
2 q

n+n′+1
2

)
.

In particular, for any q = poly(n), if δ−1 = ω(1) and n′t/n = Ω(log n), we have
V ≈s U(S).

Proof. By ([10], Claim 2) (i.e., by applying a generalized mean inequality), in
order to prove that Δ(V,U(S)) ≤ ε, it suffices to show that CP(V ) ≤ 1+4ε2

|S| ;

note that in our case, |S| = qnt × qn+n′−1.



Lattice Trapdoors and IBE from Middle-Product LWE 41

More precisely, let �a = (ai)i∈[t],�a
′ = (a′

i)i∈[t], �r = (ri)i∈[t], �r
′ = (r′

i)i∈[t] con-
sist of i.i.d. samples from U(Zq

<n[x]) and χn′
[x] respectively. We want to show

that

CP(V ) = Pr

[
�a = �a′ ∧

t∑
i=1

airi =
t∑

i=1

a′
ir

′
i

]
≤ 1 + 4ε2

qnt+n+n′−1
.

We first partially evaluate the left-hand side of this inequality:

Pr

[
�a = �a′ ∧

t∑
i=1

airi =
t∑

i=1

a′
ir

′
i

]
= Pr

[
�a = �a′ ∧

t∑
i=1

ai(ri − r′
i) = 0

]

= q−nt Pr

[
t∑

i=1

ai(ri − r′
i) = 0

]
. (1)

Defining the random variable �v = �r − �r′, we then have

q−nt Pr

[
t∑

i=1

ai(ri − r′
i) = 0

]
= q−nt

∑
z

Pr [�v = �z] Pr

[
t∑

i=1

aizi = 0

]

≤ q−nt

⎛
⎝CP(χ)n′t +

∑
z �=0

Pr[�v = �z]
|I(�z)|

⎞
⎠ , (2)

where I(z) :=
{∑t

i=1 aizi | ai ∈ Zq
<n[x]

}
= gcd(z1, . . . , zt)Zq[x] ∩ Zq

<n+maxi deg(zi)[x]

as in Lemma 10. The last inequality follows from the distributional claim in
Lemma 10.

To further simplify, we know by assumption that CP(χ) ≤ 2−H∞(χ) ≤ δ. In
addition, we group terms of the summation by the associated sets I(z). That is,
for every monic polynomial g ∈ Zq

<n′
[x] and degree d < n′, we define Ig,d =

gZq[x] ∩ Zq
<n+d[x] and obtain

q−nt

⎛
⎝CP(χ)n′t +

∑
z �=0

Pr[�v = �z]
|I(z)|

⎞
⎠

≤ q−nt

⎛
⎜⎜⎜⎝δn′t +

∑

g monic ∈Zq
<n′

[x]

d<n′

Pr [I(�v) = Ig,d]
1

|Ig,d|

⎞
⎟⎟⎟⎠

≤ q−nt

⎛
⎝δn′t +

∑
g,d

Pr [I(�v) ⊂ Ig,d]
1

|Ig,d|

⎞
⎠ . (3)

We next bound the probability that I(�v) ⊂ Ig,d for any fixed g, d. To do this,
we note by inspection that I(�v) ⊂ Ig,d if and only if vi ∈ gZq[x] ∩ Zq

<d+1[x] for
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all i. For a fixed i, this occurs with probability

Pr
[
vi ∈ gZq[x] ∩ Zq

<d+1[x]
]

= Pr
[
vi ∈ Zq

<d+1[x]
]
Pr
[
vi ∈ gZq[x] | vi ∈ Zq

<d+1[x]
]

= CP(χ)n′−d−1 Pr
[
vi ∈ gZq[x] | vi ∈ Zq

<d+1[x]
]

≤ δn′−d−1 Pr
[
vi ∈ gZq[x] | vi ∈ Zq

<d+1[x]
]

(4)

In order to bound this probability, we define random variables wi, w
′
i to be

drawn i.i.d. from χd+1[x] and compute

Pr
[
vi ∈ gZq[x] | vi ∈ Zq

<d+1[x]
]

= Pr [wi − w′
i ∈ gZq[x]]

≤ max
w∈Zq

<deg(g)[x]
Pr [wi − w ∈ gZq[x]] (5)

Fix an arbitrary w̄. For a vector v ∈ Z
d+1−deg(g)
q let Tv be set of polynomials

wi ∈ Zq
<d+1[x] whose (d + 1 − deg(g)) highest order coefficients are fixed to

match v. Then, the “reduction mod g” map is a bijection from Tv to Zq
<deg(g)[x].

Letting w̄v denote the unique inverse of w̄ in Tv and making use of the fact that
H∞(χ) ≥ log(1δ ), we compute

Pr [wi − w ∈ gZq[x]] =
∑

v∈Z
d+1−deg(g)
q

Pr[wi ∈ Tv] Pr[wi = wv | wi ∈ Tv]

≤
∑

v∈Z
d+1−deg(g)
q

Pr[wi ∈ Tv]δdeg(g)

= δdeg(g). (6)

Combining our calculations (Eqs. (1)–(6)), we conclude that

CP(V ) ≤ q−ntδn′t + q−ntδ(n
′−1)t

∑

g monic ∈Zq
<n′

[x]

d<n′

δdeg(g)−d 1
|Ig,d|

= q−ntδn′t + q−ntδ(n
′−1)t

∑

g monic ∈Zq
<n′

[x]

d<n′

δ(deg(g)−d)t 1
qn+d−deg(g)

= q−ntδn′t + q−nt−nδ(n
′−1)t

∑
d′=deg(g)<n′

d<n′

qd′
(δtq)d′−d

= q−ntδn′t + q−nt−nδ(n
′−1)t

∑
d′<n′
d<n′

δ(d
′−d)tq2d′−d

≤ q−ntδn′t + q−nt−n−n′+1(1 + O(δtq2))

= q−nt−n−n′+1
(
1 + O(δtq2 + δn′tqn+n′−1)

)
,
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where the final inequality follows from the assumption that δtq2 = o(1). This
completes the proof of Theorem 3. ��

For our application to IBE, we are interested in applying Theorem 3 in
the case of a discrete Gaussian input distribution DZ,σ. We now show that the
hypothesis of Theorem 3 holds for sufficiently large σ.

Lemma 11. Let χ := DZ,σ and χq := χ mod q. For σ = poly(n), q =
ω(σ log1/2 n), σ = ω(1), we have H∞(χq) ≥ log(σ

c ) for some constant c.

Proof. Since q = ω(σ log1/2 n), only a negligible fraction of χ’s probability mass
“wraps around,” i.e., is not contained in the interval [− q

2 , q
2 ), so the min-entropy

bound we proved about χ directly gives a min-entropy bound on χq.
In more detail, fix ε ∈ (0, 1/2) to be a small constant. By Lemma 2, nε(Z) ≤

c′ log(1+ε−1) for some constant c′. By Lemma 3 and our hypothesis, we see that

Pr
x∼χ

[|x| ≥ q/2] = negl(n).

Given this, we can compute

2−H∞(χq) = max
z∈Zq

Pr
x∼χ

[x ≡ z (mod q)]

≤ Pr
x∼χ

[|x| ≥ q/2] + max
z∈Z∩[−q/2,q/2]

Pr[x ≡ z (mod q)]

≤ 2−H∞(χ) + negl(n).

The bound 2−H∞(χq) ≤ c
σ then follows from Lemma 5 applied to param-

eter δ = σ−1c′ log(1 + ε−1) < 1/
√

2; this parameter setting is possible since
σ = ω(1). ��

5 Lattice Trapdoors for MP-LWE

In this section, we implement the “lattice trapdoors” paradigm of [8] for middle-
product LWE. In particular, we show that the Micciancio-Peikert variant of
lattice trapdoors [15] can be instantiated for MP-LWE.

In our setting, we want an algorithm TrapGen for generating random polyno-
mials (a1, . . . , at′) along with a trapdoor td that allows for sampling polynomials
(ri) satisfying

t′∑
i=1

airi = u

given any polynomial u (of the correct degree).
We briefly describe the method for generating (ai). Let t ≤ t′, d, n and distri-

bution χ over Zq be parameters to be defined later. For (i, j) ∈ [t] × [t′ − t], we

sample ai
$← Zq

<n[x] and wi,j ← χd[x], and construct at+j = cj −∑
i≤t ai ·wi,j ,

where (cj)j∈[t′−t] is an analogue of matrix G in Definition 11. Note that
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(ai)i≤t′ ∈ (Zq
<n[x])t × (Zq

<n+d−1[x])t′−t. We will choose d according to Theo-
rem 3 to ensure that the distribution of each at+j is close to random. Finally,
we will show that the trapdoor {wij} can be used to implement the preimage
sampling algorithm of [15] by considering the polynomials (ai) as structured
matrices, similarly to the Ring-LWE setting.

For the rest of this section, let τ := �log2 q�. We first recall the notion of a
“G-trapdoor” from [15].

Definition 11 ([15], Definition 5.2). Let G := Ik ⊗ [
1 2 · · · 2τ−1

] ∈ Z
k×kτ
q .

Then, given a matrix A ∈ Z
k×(m+kτ), we say that a matrix R ∈ Z

m×kτ is a
G-trapdoor for A if

A

[
R
Ikτ

]
= G.

We make use of the following result in [15], Section 5.4, which states that G-
trapdoors allow for efficient Gaussian preimage sampling in the style of [8].

Theorem 4 ([15], Theorem 5.5). Let G := Ik ⊗ [
1 2 · · · 2τ−1

] ∈ Z
k×kτ
q and

matrices A ∈ Z
k×(m+kτ), R ∈ Z

m×kτ be such that

A

[
R
Ikτ

]
= G.

There exists an efficient algorithm C = (C1, C2) that operates as follows:

– In the offline phase, C1(A,R, σ) does some polynomial-time preprocessing
on input (A,R, σ) and outputs a state st.

– In the online phase, C2(st, u), additionally given a vector u, samples from
DΛ⊥

u (A),σ, as long as σ ≥ ω(
√

log k)
√

7(σ1(R)2 + 1).

Moreover, the runtime of C2 is the time to compute Rz for z ∈ Z
kτ plus Õ(m +

kτ).

We note that the proof of Theorem 4 given in [15] has a minor error that we
correct in the Appendix. We now use Theorem 4 to instantiate lattice trapdoors
for MP-LWE.

Theorem 5. Suppose that q = poly(n), d ≤ n, dt/n = Ω(log n), σ =
ω(log2 n)

√
ndt and γ = n+2d−2

d is an integer. Then, there exist ppt algorithms
(TrapGen,SamplePre) with the following properties.

– TrapGen(1n) generates polynomials

(a1, · · · , at, at+1, · · · , at+γτ ) ≈s U((Zq
<n[x])t × (Zq

<n+d−1[x])γτ )

together with a trapdoor td that can be stored in O(nτt) space.
– SamplePre(td, u) that operates as follow:

• In the offline phase, does some polynomial-time preprocessing with trap-
door td and parameter σ, and output a state st.
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• In the online phase, given state st and a syndrome u ∈ Zq
<n+2d−2[x],

outputs (ri)
t+γτ
i=1 satisfying

t+γτ∑
i=1

ai · ri = u

in Õ(nt) time. Moreover, the output distribution of (ri) is exactly the condi-
tional distribution

(DZ2d−1,σ[x])t × (DZd,σ[x])γτ |
t+γτ∑
i=1

ai · ri = u,

Proof. Let β :=
⌈
log2 n

2

⌉
.

TrapGenAlgorithm: We first describe TrapGen and prove that it outputs the right
distribution of polynomials (ai).

– For (i, j) ∈ [t] × [γτ ], sample ai
$← Zq

<n[x] and wi,j ← χd[x] where χ =
U({−β, · · · , β}). Since β � q/2, we can interpret samples from χ as elements
of Zq.

– For all j ∈ [γτ ], define polynomials

uj =
t∑

i=1

ai · wi,j

at+j = cj − uj

for cj ∈ Zq
<n+d−2[x] dependent only on j. Specifically, cj = 2uxdv for j =

vτ + u + 1 where u ∈ {0, · · · , τ − 1}, v ∈ {0, · · · , γ − 1}.
– Output (a1, . . . , at+γτ ) with associated trapdoor td = (wi,j).

We first note that the amount of space required to store td = (wi,j) is
O(d(γτ)t) = O(nτt), since γd = n + 2d − 2 ≤ 3n.

To see that the sampled polynomials (a1, . . . , at+γτ ) are statistically close
to uniform, we apply our Leftover Hash Lemma (Theorem 3). In particular,
H∞(χ) = log( 1

β ) ≥ log log n − 1. Therefore, by Theorem 3,

(a1, · · · , at, u1, · · · , uγτ ) ≈s U(Zq
<n[x]t × Zq

<n+d−1[x]γτ ),

and so

(ai)
t+γτ
i=1 = (a1, · · · , at, c1 − u1, · · · , cγτ − uγτ ) ≈s U(Zq

<n[x]t ×Zq
<n+d−1[x]γτ ).

SamplePre Algorithm: We next describe SamplePre using the algorithm from
Theorem 4.
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– Implicitly define matrices A,L by the following equations.

Ã =
[
Tn,2d−1(a1)| · · · |Tn,2d−1(at)

]

L̃ =

⎡
⎢⎣

T d,d(w1,1) · · · T d,d(w1,γτ )
...

...
T d,d(wt,1) · · · T d,d(wt,γτ )

⎤
⎥⎦

Γ (h) =
[
Tn+d−1,d(h)| · · · |Tn+d−1,d(h2τ−1)

]

G =
[
Γ (1)|Γ (xd)| · · · |Γ (x(γ−1)d)

]

I = Iγdτ =

⎡
⎣

T 1,d(1) · · ·
· · · · · ·

T 1,d(1)

⎤
⎦

A = [Ã|G − ÃL̃]

L =
[
L̃
I

]

(7)

so that AL = G = Iγd ⊗ [1 · · · 2τ−1], i.e., L is a G-trapdoor for A.
– Let u = Tn+2d−2(u) ∈ Z

n+2d−2
q be the coefficient vector of u.

– Apply the algorithm from Theorem 4 (for k = γd = n + 2d − 2) to sample y
from DΛ⊥

u (A),σ where

σ = ω(
√

log(γd))β
√

7((γdτ) · d · t + 1) = c ω(log2 n)
√

n · (dt),

for some constant c.

– Write y as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2d−1,1(r1)
...

T 2d−1,1(rt)
T d,1(rt+1)

...
T d,1(rt+γτ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where deg(ri)

{
< 2d − 1 for i ∈ [t]
< d for i ∈ {t + 1, · · · , t + γτ}

– Output (r1, . . . , rt+γτ ).

In order to analyze the correctness of SamplePre, we first note that by con-
struction, maxi,j |L̃ij | ≤ β, and so σ1(L̃) ≤ β

√
(γdτ) · (2d − 1)t by Lemma 6.

Combined with Theorem 4 (for k = γd = n + 2d − 2), this tells us that y is
sampled from from DΛ⊥

u (A),σ where

σ = ω(
√

log(γd))β
√

7((γdτ) · d · t + 1) = c ω(log2 n)
√

n · (dt)

for some constant c. Theorem 4 applies because of our parameter settings of
γd = n + 2d − 2 ≤ 3n and τ = θ(log q) = θ(log n) for q = poly(n).

Moreover, by Lemma 7 and Eq. (7),

ÃL̃ =
[
Tn+d−1,d(u1)| · · · |Tn+d−1,d(uγτ )

]
, and

A =
[
Tn,2d−1(a1)| · · · |Tn,2d−1(at)|Tn+d−1,d(at+1)| · · · |Tn+d−1,d(at+γτ )

]
,
(8)
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and so by Eq. (8) and Lemma 7

Ay = Tn+2d−2,1(
t+γτ∑
i=1

ai · ri). (9)

Thus, y ∈ Λ⊥
u (A) if and only if

∑t+γτ
i=1 ai · ri = u.

To prove the claim about distribution of r = (ri), we note that the columns
of A generate Z

n+2d−2 since (1) the columns of G generate Z
n+2d−2 and (2)

AL = G. Hence, there exists y∗ such that Ay∗ = u. Then, Lemma 5.2 in
[8] applies, allowing us to conclude that the distribution of y sampled by our
algorithm is exactly

DΛ⊥
u (A),σ ≡ y∗ + DΛ⊥(A),σ,−y∗ ≡ D

(2d−1)t+dγτ
Z,σ | Ay = u.

To see that the first equality of distributions holds, note that the two distri-
butions have the same support (i.e., t+Λ⊥(A) = Λ⊥

u (A)), and for all x ∈ Λ⊥
u (A),

DΛ⊥
u (A),σ(x) =

ρσ(x)
ρσ(Λ⊥

u (A))
=

ρσ(x − t + t)
ρσ(Λ⊥(A)) + t

= DΛ⊥(A),σ,−t(x − t).

Thus, the conditional distribution of r is as claimed. Finally, we analyze
the runtime of SamplePre’s online phase, which is precisely the runtime of C2.
Computing L̃z for z ∈ Z

γdτ
q can be performed, using polynomial multiplication,

in O((d log d)tγτ) = Õ(nt) time; this bound uses the fact that γd ≤ 3n, log d ≤
log n and τ = Θ(log n). ��

6 New Encryption Schemes from Middle-Product LWE

In this section, we describe how to build a “Dual Regev”-style public-key encryp-
tion scheme, as well as an identity-based encryption scheme, whose security is
based on the hardness of MP-LWE. As in [8], our IBE scheme is constructed
by combining the Dual Regev scheme with lattice trapdoors as constructed in
Sect. 5.

6.1 Middle Product Dual Regev Encryption

Unless otherwise stated, the following parameters are positive integers.
Let q = q(n) be a prime, τ := �log2 q�, n, d, k be such that γ = n+2d−2

d ∈ N

and 2d + k ≤ n. Let t > 0, t′ = t + γτ. Let χ := �Dα·q� be the distribution over
Z in which ε ← Dα·q is sampled and then rounded to the nearest integer.

Finally, let σ ∈ R>0 be a parameter to be specified later. We then define a
public-key encryption scheme with message space M = {0, 1}<k+1[x].
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– Key Generation: KeyGen(1n) operates as follows.

• For 1 ≤ i ≤ t, sample ai
$← Zq

<n[x], ri ← DZ2d−1,σ[x];

• For t + 1 ≤ i ≤ t′, sample ai
$← Zq

<n+d−1[x], ri ← DZd,σ[x].
• Compute u =

∑t′

i=1 airi and output pk := (a1, . . . , at′ , u); sk :=
(r1, . . . , rt′)

– Encryption: Enc(pk = ((ai)i≤t′ , u), μ) operates as follows.

• Sample s
$← Zq

<n+2d+k−1[x]
• For 1 ≤ i ≤ t, sample ei ← χ2d+k[x], and compute bi = ai �2d+k s + 2ei

• For t + 1 ≤ i ≤ t′, sample ei ← χd+k+1[x], and compute bi = ai �d+k+1

s + 2ei

• Sample e′ ← χk+1[x], and compute c1 = μ + u �k+1 s + 2e′
• Output c = (c1, (bi)i≤t′).

– Decryption: Dec(sk = (ri)i≤t, c = (c1, (bi)i≤t′) outputs (c1−∑t′

i=1 bi �k+1 ri

mod q) mod 2.

Lemma 12. For α−1 > (4ω(log n)σK + 1) where K := t(2d − 1) + γτd, the
scheme satisfies (1 − negl(n))-correctness.

Proof. We want to show that Dec(sk,Enc(pk, μ)) = 1 with probability 1−negl(n)
over the randomness of KeyGen and Enc. Consider a random key pair (pk, sk) ←
KeyGen(1n) and ciphertext c = (c1, (bi)i≤t′) ← Enc(pk, μ). By Lemma 1 (the
quasi-associative law for middle products),

c1 = μ +
t′∑

i=1

(ri · ai) �k+1 s + 2e′

= μ +
t∑

i=1

ri �k+1 (ai �2d+k s) +
t′∑

i=t+1

ri �k+1 (ai �d+k+1 s).

Therefore, we see that

c1 −
t′∑

i=1

bi �k+1 ri = μ + 2(e′ −
t′∑

i=1

ri �k+1 ei).

We conclude that if
∣∣∣
∣∣∣μ + 2(e′ −∑t′

i=1 ri �k+1 ei)
∣∣∣
∣∣∣
∞

< q/2, then Dec(sk, c) will
indeed output the message μ.

To complete the proof of correctness, we want to bound the coefficients of∑t′

i=1 ri �k+1 ei. The coefficient of x� in ri �k+1 ei is
∑

w∈[0,deg(ri)]∩[�+k−deg(ei),z+k]

(ri)w(ei)�+k−w.

Using our discrete Gaussian tail inequality (see Lemma 3) and a union bound,
we obtain the following bounds on ||ri||∞ and ||ei||∞:

Pr[||ri||∞ > ω(
√

log n)σ] = negl(n).
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Pr[||ei||∞ > ω(
√

log n)αq] = negl(n).

Thus, again by union bound, except with negl(n) probability
∣∣∣∣∣∣

∣∣∣∣∣∣
e′ −

t′∑
i=1

ri �k+1 ei

∣∣∣∣∣∣

∣∣∣∣∣∣
∞

< K(ω(
√

log n)σ)(ω(
√

log n)α · q) + (ω(
√

log n)α · q).

for K := t(2d−1)+γτd ≥ ∑t′

i=1(deg(ri)+1). Picking α < (4ω(log n)σK +1)−1,
the above is less than q/4 and so the scheme is (1 − negl(n))-correct. ��
Theorem 6. Assume that σ = ω(1), dt/n = Ω(log n), q is a prime polynomial
in n, q = Ω(α−1n1/2+1/2+c) and q = ω(log1/2 n)σ. The scheme is semantically
secure assuming PLWE

(f)
q,Dα′·q

is hard for some polynomial f such that the con-
stant coefficient of f is coprime with q,deg(f) ∈ [2d + k, n],EF(f) = O(nc) and
error α′ = Ω(

√
deg(f)/q).

Proof. By Theorem 3, Lemma 11 and hypothesis on σ and dt, we have:
(

(ai)t
i=1,

t∑
i=1

ai · ri

)

ai
$←Zq

<n[x]
ri←D

Z2d−1,σ
[x]

≈s

(
(ai)t

i=1, u
′
)

ai
$←Zq

<n[x]

u′ $←Zq
<n+2d−2[x]

Since an honestly generated public key has the form pk = (a1 . . . , at′ , u) for u =∑t
i=1 ai · ri +

∑t′

i=t+1 ai · ri, we see that pk is computationally indistinguishable
from a public key p̃k of the form

p̃k = (a1, . . . , at′ , u), u $← Zq
<n+2d−2[x].

Thus, we see that for any message μ, we have
(
pk,Enc(pk, μ)

)
≈s

(
p̃k,Enc(p̃k, μ)

)
.

Moreover, we have
(
p̃k,Enc(p̃k, μ)

)
≈c

(
p̃k,Enc(p̃k, 0)

)

assuming the hardness of (degree-parametrized) MPLWEq,n+2d+k,d,�Dα·q� with
degree vector

di =

⎧
⎪⎨
⎪⎩

2d + k, if i ∈ [t]
d + k + 1, if t + 1 ≤ i ≤ t′

k + 2, if i = t′ + 1.

The hardness of MPLWEq,n+2d+k,d,�Dα·q� follows from the hardness of
MPLWEq,n+2d+k,d,Dα·q via a standard reduction that maps (a, b) ∈ Zq[x]×Rq[x]
to (a, �b�), where �b� is the polynomial obtained by rounding every coefficient of
b to the nearest integer. Finally, Theorem 2 tells us that MPLWEq,n+2d+k,d,Dα·q

is hard assuming the hardness of PLWE
(f)
q,Dα′·q

, for α · q = Ω(n1/2+1/2+c) ≥
α′ · q

√
n+2d+k

2 nc. This completes the proof of semantic security. ��
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6.2 IBE in the Random Oracle Model

We construct an IBE scheme in the random oracle model by combining our
“Dual Regev” scheme (Sect. 6.1) with our MP-LWE lattice trapdoors (Sect. 5).
The IBE construction is essentially identical to that of [8]; we give an explicit
description for completeness. Let the set of identity be I = Z

n+2d−2
q . We assume

the parameters are chosen such that Theorem 5 holds. Use algorithm TrapGen
to generate mpk:= (ai)t′

i=1 and msk:= L̃. Given an identity id, interpret it as
an element u ∈ Zq

<n+2d−2[x] and use algorithm SamplePre to generate skid :=
(ri)t′

i=1 such that
∑t′

i=1 ai · ri = u. Then use the Dual Regev scheme with public
key pk := ((ai)t′

i=1, u) and secret key sk := (ri)t′
i=1 for encryption/decryption of

message.

– Setup: The setup algorithm IBESetup (on input 1n) calls TrapGen(1n),
obtaining polynomials (a1, . . . , at′) along with a trapdoor td. It outputs mas-
ter public key mpk = (a1, . . . , at′) and master secret key msk = td.

– Key Extraction: The secret key extraction algorithm IBEExtract, given msk
and an identity id, calls SamplePre(td,H(id)), where H(·) is modelled as a
random oracle. It outputs skid = (r1, . . . , rt′), the output of SamplePre.

– Encryption: The encryption algorithm Enc, given the master public key
mpk = (a1, . . . , at′), an identity id, and a message μ, computes u = H(id)
and outputs a ciphertext c ← DualRegev.Enc(pkid, μ) (using the Dual Regev
encryption algorithm) for pkid = (a1, . . . , at′ , u).

– Decryption: The decryption algorithm Dec, given the secret key skid =
(r1, . . . , rt′) and a ciphertext c, outputs DualRegev.Dec(skid, c).

Theorem 7. Assume the parameters are picked as in Theorems 5 and 6 (so that
the Dual Regev Scheme is correct and semantically secure). Then the above IBE
scheme is correct and CPA-secure in the random oracle model.

Proof. See ([8], Theorem 7.2). ��
Remark 2 (Efficiency). Pick d, k = Θ(n), t = log n and σ, α−1, q satisfying
bounds in Theorems 5 and 6. By construction, the schemes in Subsects. 6.1
and 6.2 have key size and ciphertext size Õ(n). We show that encryption and
decryption algorithms in these schemes take Õ(n) time. As in [21], products and
middle products of polynomials can be computed in Õ(n) time using FFT-based
techniques [9,22]. By doing some preprocessing, sampling from χ = �Dα·q� can
be done in quasi-constant time via table look-up as in [15]. Thus, encryption and
decryption in our Dual-Regev like public key scheme and IBE scheme take Õ(n)
time; since the message is of size k = Θ(n), runtime per encrypted bit is Õ(1).

6.3 IBE in the Standard Model

[2,7] present IBE schemes secure in the standard model from the same frame-
work of lattice trapdoors and dual-Regev encryption. A simplified version of one
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construction is presented in [3], Sect. 3. We give a brief summary of [3]’s IBE
construction, and sketch how to adapt it to the MP-LWE setting.

Suppose we have an identity space {0, 1}�. Set m = O(n log n). In IBESetup,
the [3] scheme samples a random matrix A ∈ Z

n×m
q together with trapdoor TA,

as well as random matrices Hi,b ∈ Z
n×m
q for i ∈ [�] and b ∈ {0, 1}. The public

key is (A, (Hi,b)(i,b)∈[�]×{0,1}, u0) where u0 is a random vector in Z
n
q . The master

secret key is TA. The key extraction algorithm IBEExtract, given an identity
id = id1 · · · id�, assembles Hid = H1,id1 | · · · |H�,id�

∈ Z
n×�m
q as the concatenation

of � matrices. It then samples random vectors ri ∈ Z
m
q , and constructs a vector

r = (ri)i∈� ∈ Z
�m
q . Finally, the trapdoor TA is used to sample preimages e ∈ Z

m
q

satisfying Ae = u0 + Hid r, i.e.
[
A | − Hid

] [e
r

]
= u0, yielding a secret key skid =

(e, r). Encryption and Decryption then proceed as in Dual Regev encryption.
[3] proves that their scheme is selective-ID secure in the standard model.

Selective-ID security is defined by a game similar to that in Sect. 2.1, except
that the adversary generates the challenge identity id∗ before seeing the public
parameters of the scheme. [2]’s proof of selective-ID security relies on replacing
each random matrix Hi,b with an indistinguishable matrix H ′

i,b equipped with
trapdoor Ti,b. Then, given an extraction query id that differs from the challenge
id∗, letting i denote an index on which idi �= id∗

i , the trapdoor Ti,idi
can be used

to sample ri such that H ′
i,idi

ri = Ae −∑
j �=i H ′

j,idj
rj − u0, where e and rj are

sampled randomly from Z
m
q , to produce a secret key skid = (e, r). Crucially,

sampling (e, r) using trapdoor Ti,idi
is (statistically) indistinguishable from the

honest key extraction procedure (that uses TA).
Our MP-LWE Dual Regev encryption scheme, combined with the lattice

trapdoors of Theorem 5, can be used to create a standard model IBE scheme
analogous to the one just described. Specifically, we replace the matrix A and
its trapdoor TA with tuple (aj)j≤t of t = Õ(1) polynomials and its trapdoor as
generated by Theorem 5. We replace each matrix Hi,b with tuple h̄(i,b) = (hj)

(i,b)
j≤t

of random polynomials, and replace random vector u0 with a random polynomial.
Theorem 5 allows us to replace any particular h̄(i,b) with h̃(i,b) that is equipped
with a trapdoor Ti,b, and our SamplePre algorithm guarantees the same (TA, Ti,b)
indistinguishability that was leveraged by [3].

To summarize, this allows for an IBE scheme in the standard model based
on MP-LWE with efficiency gains of Õ(n) over the [3] scheme.

Appendix

We describe a minor correction to the proof of ([15], Theorem 5.5).
In [15], it is mistakenly claimed (see Sect. 2.1) that for positive semi-definite

B ≥ A ≥ 0, the inequality A+ ≥ B+ holds. This is not true in general. For
example, when B is positive definite (that is, B > 0), we have B+ = B−1 > 0;
if A+ ≥ B+ then A+ > 0 so A > 0 (a contradiction if A is not invertible).
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However, the proof of ([15], Theorem 5.5) can be modified to avoid using the
mistaken claim. The relevant setting is as follows: consider a matrix of the form

Σ3 = (Σ+
y + Σ+

p )+

such that Σy = 2
[
R
I

] [
RT I

]
and Σp > 2

[
R
I

] [
RT I

]
.4 We want to prove that

Σ3 ≥
[
R
I

] [
RT I

]
(see p. 29)

To prove this, we write 2
[
R
I

] [
RT I

]
= Q

[
D 0
0 0

]
QT where Q is orthogonal

and D is diagonal matrix of positive entries. Then, there exists some small ε > 0

s.t. Σp ≥ Q

[
D 0
0 εI

]
QT > 0. Thus,

0 < Σ+
p = Σ−1

p ≤ Q

[
D−1 0

0 ε−1I

]
QT =

1
2

([
R
I

] [
RT I

])+

+
[
0 0
0 ε−1I

]

and so

0 < Σ+
p + Σ+

y ≤
([

R
I

] [
RT I

])+

+
[
0 0
0 ε−1I

]
= Q

[
2D−1 0

0 ε−1I

]
QT .

We conclude that

(Σ+
y + Σ+

p )+ = (Σ+
y + Σ+

p )−1 ≥ Q

[
1
2D 0
0 εI

]
QT ≥

[
R
I

] [
RT I

]
.
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4. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: using the Rényi divergence rather than the statistical
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Abstract. We initiate a systematic study of pseudorandom functions
(PRFs) that are computable by simple matrix branching programs; we
refer to these objects as “matrix PRFs”. Matrix PRFs are attractive due
to their simplicity, strong connections to complexity theory and group
theory, and recent applications in program obfuscation.

Our main results are:
– We present constructions of matrix PRFs based on the conjectured

hardness of computational problems pertaining to matrix products.
– We show that any matrix PRF that is computable by a read-c, width

w branching program can be broken in time poly(wc); this means
that any matrix PRF based on constant-width matrices must read
each input bit ω(log(λ)) times. Along the way, we simplify the “ten-
sor switching lemmas” introduced in previous IO attacks.

– We show that a subclass of the candidate local-PRG proposed by
Barak et al. [Eurocrypt 2018] can be broken using simple matrix
algebra.

– We show that augmenting the CVW18 IO candidate with a matrix
PRF provably immunizes the candidate against all known algebraic
and statistical zeroizing attacks, as captured by a new and simple
adversarial model.

1 Introduction

Pseudorandom functions (PRFs), defined by Goldreich, Goldwasser, and
Micali [29], are keyed functions that are indistinguishable from truly random
functions given black-box access. In this work we focus on pseudorandom func-
tions that can be represented by simple matrix branching programs; we refer to
these objects as “matrix PRFs”. In the simplest setting, a matrix PRF takes a
key specified by � pairs of w × w matrices {Mi,b}i∈[�],b∈{0,1} where

PRF({Mi,b}i∈[�],b∈{0,1} ,x ∈ {0, 1}�) :=
�∏

i=1

Mi,xi

c© International Association for Cryptologic Research 2019
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https://doi.org/10.1007/978-3-030-36030-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36030-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-36030-6_3


56 Y. Chen et al.

Matrix PRFs are attractive due to their simplicity, strong connections to com-
plexity theory and group theory [1,12,44], and recent applications in program
obfuscation [11,27].

Existing Constructions. First, we note that the Naor-Reingold PRF [37]
(extended to matrices in [34]) and the Banerjee-Peikert-Rosen PRF [7] may be
viewed as matrix PRFs with post-processing, corresponding to group exponen-
tiation and entry-wise rounding respectively. However, the applications we have
in mind do not allow such post-processing. Instead, we turn to a more general
definition of read-c matrix PRFs, where the key is specified by h := c · � pairs of
w × w matrices {Mi,b}i∈[h],b∈{0,1} where

PRF({Mi,b}i∈[h],b∈{0,1} ,x) := uL ·
h∏

i=1

Mi,xi mod �
· uR

Here, uL,uR correspond to fixed vectors independent of the key. This corre-
sponds exactly to PRFs computable by read-c matrix branching programs. By
applying Barrington’s theorem on the existing PRFs in NC1, such as the two
PRFs we just mentioned [7,37], we obtain read-poly(�) matrix PRFs based on
standard assumptions like DDH and LWE.

This Work. In this work, we initiate a systematic study of matrix PRFs.

– From the constructive perspective, we investigate whether there are “simpler”
constructions of matrix PRF, or hardness assumptions over matrix products
that can be used to build matrix PRFs. Here “simpler” means the matrices
Mi,b’s are drawn from some “natural” distribution, for instance, indepen-
dently at random from the same distribution. Note that the constructions
obtained by apply Barrington’s theorem [10] on PRFs in NC1 yield highly
correlated and structured distributions.

– From the attacker’s perspective, the use of matrices opens the gate for simple
linear algebraic attacks in breaking the hardness assumptions. We would like
to understand what are the characteristics that a matrix PRF could or could
not have, by trying different linear algebraic attacks. These characteristics
include the distribution of the underlying matrices, as well as the complexity
of the underlying branching program.

– Finally, we revisit the application of matrix PRFs to program obfuscation as
a mechanism for immunizing against known attacks.

1.1 Our Contributions

Our contributions may be broadly classified into three categories, corresponding
to the three lines of questions mentioned above.
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Constructions. We show how to build a matrix PRF starting from simple
assumptions over matrix products via the Naor-Reingold paradigm [37], and we
present candidates for these assumptions. Concretely, we consider the assump-
tion

(
{Ai,b}i∈[k],b∈{0,1},

k∏

i=1

(Ai,0B),
k∏

i=1

(Ai,1B)
)

≈c

(
{Ai,b}i∈[k],b∈{0,1},B0,B1

)

(1)

where the matrices Ai,b, B, B0 and B1 are uniformly random over some simple
matrix groups. We clarify that the ensuing matrix PRF while efficiently com-
putable, requires a product of O(k�) matrices where � is the length of the PRF
input.

Attacks. We show that any matrix PRF that is computable by a read-c, width-
w branching program can be broken in time poly(wc); this means that any matrix
PRF based on constant-width matrices must read each input bit ω(log(λ)) times.
Our attack and the analysis are inspired by previous zeroizing attacks on obfus-
cation [6,18,23]; we also provide some simplification along the way. We note that
the case of c = 1 appears to be folklore.

The Attack. The attack is remarkably simple: given oracle access to a function
F : {0, 1}� → R,

1. pick any L := w2c distinct strings x1, . . . , xL ∈ {0, 1}�/2;
2. compute V ∈ RL×L whose (i, j)’th entry is F (xi‖xj);
3. output rank(V)

If F is a truly random function, then V has full rank w.h.p. On the other
hand, if F is computable by a read-c, width w branching program, then
we show that F (xi‖xj) can be written in the form 〈ui,vj〉 for some fixed
u1, . . . ,uL,v1, . . . ,vL ∈ Rw2c−1

. This means that we can write

V =

⎛

⎜⎝
← u1 →

...
← uL →

⎞

⎟⎠

︸ ︷︷ ︸
L×w2c−1

⎛

⎝
↑ ↑
v1 · · · vL

↓ ↓

⎞

⎠

︸ ︷︷ ︸
w2c−1×L

which implies rank(V) ≤ w2c−1.
Next, we sketch how we can decompose F (xi‖xj) into 〈ui,vj〉. This was

already shown in [23, Section 4.2], but we believe our analysis is simpler and
more intuitive. Consider a read-thrice branching program of width w where

Mx‖y = uLM1
xN

1
yM

2
xN

2
yM

3
xN

3
yuR
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Suppose we can rewrite Mx‖y as

ûL · (M1
xN

1
y) ⊗ (M2

xN
2
y) ⊗ (M3

xN
3
y) · ûR

= ûL · (M1
x ⊗ M2

x ⊗ M3
x)︸ ︷︷ ︸

1×w3

· (N1
y ⊗ N2

y ⊗ N3
y) · ûR︸ ︷︷ ︸

w3×1

for some suitable choices of ûL, ûR. Unfortunately, such a statement appears to
be false. Nonetheless, we are able to prove a similar decomposition where we
replace ûL · (M1

x ⊗ M2
x ⊗ M3

x) on the left with

flat
(

w2×w3

︷ ︸︸ ︷
uLM1

x ⊗ M2
x ⊗ M3

x

)
︸ ︷︷ ︸

1×w5

where flat “flattens” a n × m matrix into a 1 × nm row vector by concatenating
the rows of the input matrix.

Applications to IO. We show that augmenting the CVW18 GGH15-based IO
candidate with a matrix PRF provably immunizes the candidate against known
algebraic and statistical zeroizing attacks, as captured by a new and simple
adversarial model.

Our IO Candidate. Our IO candidate on a branching program for a function
f : {0, 1}� → {0, 1} samples random Gaussian matrices {Si,b}i∈[h],b∈{0,1}, a
random vector ah over Zq and a random matrix PRF PRFM : {0, 1}� → [0, 2τ ]
where 2τ  q, and outputs

AJ , {Di,b}i∈[h],b∈{0,1}

The construction basically follows that in [18], with the matrix PRF embed-
ded along the diagonal. By padding the programs, we may assume that the
input program and the matrix PRF share the same input-to-index function
� : {0, 1}h → {0, 1}�. Then, we have

AJD�(x) mod q ≈
{

0 · S�(x)ah + PRFM(x) if f(x) = 1
(�= 0) · S�(x)ah + PRFM(x) if f(x) = 0

where ≈ captures an error term which is much smaller than 2τ . Functionality is
straight-forward: output 1 if ‖AJD�(x)‖ < 2τ and 0 otherwise.

Our Attack Model. We introduce the input-consistent evaluation model on
GGH15-based IO candidates, where the adversary gets oracle access to

Or(x) := AJD�(x) mod q
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instead of AJ , {Di,b}i∈[h],b∈{0,1}. Basically, all known attacks on GGH15-based
IO candidates (including the rank attack and statistical zeroizing attacks [18,19]
can be implemented in this model. In fact, many of these attacks only make use
of the low-norm quantities {Or(x) : f(x) = 1}, which are also referred to as
encodings of zeros, and hence the name zeroizing attacks.

Note that our model allow the adversary to perform arbitrary polynomial-
time computation on the output of Or(·), whereas the “weak multi-linear map
model” in [11] only allows for algebraic computation of these quantities. The
latter does not capture computing the norm of these quantities, as was done in
the recent statistical zeroizing attacks [19]. In fact, we even allow the adversary
access to {AJD�(x) mod q : f(x) = 0}, quantities which none of the existing
attack takes advantage of except the some attacks [18,21] for a simple GGH15
obfuscation [31]. In fact, the class of adversaries that only does such evaluations
appears to capture all known attacks for GGH15-based obfuscation.

We clarify that our attack model does not capture so-called mixed-input
attacks, where the adversary computes AJDx′ mod q for some x′ /∈ �({0, 1}�).
As in prior works, we make sure that such quantities do not have small norm,
but pre-processing the branching program to reject all x′ /∈ �({0, 1}�) (see
Construction of Subprograms in Sect. 6.1 for details).

Analysis. We show that for our IO candidate, we can simulate oracle access to
Or(·) given oracle access to f(·) under the LWE assumption (which in particular
implies the existence of matrix PRFs). This basically says that our IO candidate
achieves “virtual black-box security” in the input-consistent evaluation model.

The proof strategy is quite simple: we hide the lower bits by using the embed-
ded matrix PRFs, and hide the higher bits using lattice-based PRFs [7,14]. In
more detail, observe that the lower τ bits of of Or(·) are pseudorandom, thanks
to pseudorandomness of PRFM(·). We can then simulate the higher log q−τ bits
exactly as in [18]:

– if f(x) = 1, then these bits are just 0.
– if f(x) = 0, then we can just rely on the pseudorandomness of existing LWE-

based PRFs [7,14], which tells us that the higher log q − τ bits of S�(x)ah

are pseudorandom.

Note that the idea of embedding a matrix PRF into an IO candidate already
appeared in [27, Section 1.3]; however, the use of matrix PRF for “noise flooding”
the encodings of zeros and the lower-order bits as in our analysis –while perfectly
natural in hindsight– appears to be novel to this work. In prior works [11,27], the
matrix PRF is merely used to rule out non-trivial algebraic relations amongst the
encodings of zeros, namely that there is no low-degree polynomial that vanishes
over a large number of pseudorandom values.

1.2 Discussion

Implications for IO. Our results demonstrate new connections between matrix
PRFs and IO in this work and shed new insights into existing IO constructions
and candidates:
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– Many candidates for IO follow the template laid out in [26]: start out with
a branching program {Mi,b}i∈[h],b∈{0,1}, perform some pre-processing, and
encode the latter using graded encodings. To achieve security in the generic
group model [9] or to defeat against the rank attack [18], the pre-processing
would add significant redundancy or blow up the length of the underlying
branching program. In particular, even if we start out with a read-once
branching program as considered in [31], the program we encode would be a
read-� (e.g. for so-called dual-input branching programs) or read-λ branching
program. But, why read-� or read-λ? Our results –both translating existing
IO attacks to attacks on matrix PRFs, and showing how to embed a matrix
PRF to achieve resilience against existing attacks– suggest that the blow-up
is closely related to the complexity of computing matrix PRFs.

– A recent series of works demonstrated a close connection between building
functional encryption (and thus IO) to that of low-degree pseudorandom gen-
erators (PRG) over the integers [2,5,35], where the role of the PRGs is to flood
any leakage from the error term during FHE decryption [30]. Here, we show to
exploit matrix PRFs –again over the integers– to flood any leakage from the
error term in the GGH15 encodings (but unlike the setting of PRGs, we do
not require the output of the PRFs to have polynomially bounded domain).
Both these lines of works point to understanding pseudorandomness over the
integers as a crucial step towards building IO.

– Our results suggest new avenues for attacks using input-inconsistent eval-
uations, namely to carefully exploit the quantities {AJDx′ mod q : x′ /∈
�({0, 1}�)} instead of the input-consistent evaluations.

We note that our attacks also play a useful pedagogical role: explaining the core
idea of existing zeroizing attacks on IO in the much simpler context of breaking
pseudorandomness of matrix PRFs.

Additional Related Works. Let us remark that recently Boneh et al. [13] also
look for (weak) PRFs with simple structures, albeit with a different flavor of
simplicity. Their candidates in fact use the change of modulus, which is what we
are trying to avoid.

2 Preliminaries

Notations and Terminology. Let R,Z,N be the set of real numbers, integers and
positive integers. Denote Z/(qZ) by Zq. For n ∈ N, let [n] := {1, ..., n}. A vector
in R

n (represented in column form by default) is written as a bold lower-case
letter, e.g. v. For a vector v, the ith component of v will be denoted by vi. A
matrix is written as a bold capital letter, e.g. A. The ith column vector of A is
denoted ai.

Subset products (of matrices) appear frequently in this article. For a given
h ∈ N, a bit-string v ∈ {0, 1}h, we use Xv to denote

∏
i∈[h] Xi,vi

(it is implicit
that {Xi,b}i∈[h],b∈{0,1} are well-defined).
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The tensor product (Kronecker product) for matrices A ∈ R
�×m, B ∈ R

n×p

is defined as

A ⊗ B =

⎡

⎣
a1,1B, . . . , a1,mB
. . . , . . . , . . .

a�,1B, . . . , a�,mB

⎤

⎦ ∈ R
�n×mp. (2)

For matrices A ∈ R
�×m, B ∈ R

n×p, C ∈ R
m×u, D ∈ R

p×v,

(AC) ⊗ (BD) = (A ⊗ B) · (C ⊗ D). (3)

Matrix Rings/Groups. Let Mn(R) denote a matrix ring, i.e., the ring of n × n
matrices with coefficients in a ring R. When Mn(R) is called a matrix group, we
consider matrix multiplication as the group operation. By default we assume R
is a commutative ring with unity. The rank of a matrix M ∈ Mn(R) refers to
its R-rank.

Let GL(n,R) be the group of units in Mn(R), i.e., the group of invertible n×n
matrices with coefficients in R. Let SL(n, F ) be the group of n×n matrices with
determinant 1 over a field F . When q = pk is a prime power, let GL(n, q), SL(n, q)
denote the corresponding matrix groups over the finite field Fq.

Cryptographic Notions. In cryptography, the security parameter (denoted as λ)
is a variable that is used to parameterize the computational complexity of the
cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over λ.

When a variable v is drawn randomly from the set S we denote as v
$←

S or v ← U(S), sometimes abbreviated as v when the context is clear. We
use ≈s and ≈c as the abbreviations for statistically close and computationally
indistinguishable.

Definition 2.1 (Pseudorandom function [29]). A family of deterministic
functions F = {Fk : Dλ → Rλ}λ∈N is pseudorandom if there exists a negligible
function negl(·) for any probabilistic polynomial time adversary Adv, such that

∣∣∣∣ Pr
k,Adv

[AdvFk(·)(1λ) = 1] − Pr
O,Adv

[AdvO(·)(1λ) = 1]
∣∣∣∣ ≤ negl(λ),

where O(·) denotes a truly random function.

3 Direct Attacks on Matrix PRFs

In this section we stand from the attacker’s point of view to examine what are
the basic characteristics that a matrix PRF should (or should not) have. Let
G = Mw(R), h = c · �. We consider read-c matrix PRFs of the form:

F : {0, 1}� → R, x �→ uL ·
h∏

i=1

Mi,xi mod �
· uR (4)

where uL,uR denote the left and right bookend vectors. The seed is given by

uL, {Mi,b ∈ G}i∈[h],b∈{0,1},uR.
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3.1 Rank Attack

We describe the rank attack which runs in time and space wO(c), where w is the
dimension of the M matrices, c is the number of repetitions of each input bits in
the branching program steps. The attack is originated from the zeroizing attack
plus tensoring analysis in the obfuscation literature [6,18,23].

The main idea of the attack is to form a matrix from the evaluations on
different inputs. We argue that the rank of such a matrix is bounded by wO(c),
whereas for a truly random function, the matrix is full-rank with high probability.

Algorithm 3.1 (Rank attack). The algorithm proceeds as follows.

1. Let ρ > w2c−1. Divide the � input bits into 2 intervals [�] = X | Y such that
|X |, |Y| ≥ �log ρ�.

2. For 1 ≤ i, j ≤ ρ, evaluate the function F on ρ2 different inputs of the form
u(i,j) = x(i) | y(j) ∈ {0, 1}�. Let v(i,j) ∈ R be the evaluation result on u(i,j):

v(i,j) := F (u(i,j))

3. Output the rank of matrix V = (v(i,j)) ∈ Rρ×ρ.

Analysis for Read-Once Branching Programs. First we analyze the case
where c = 1, i.e. the function is read-once. For a truly random function, the
R-rank of V is ρ with non-negligible probability.

However, for the function F in Eq. (4), the R-rank of V is bounded by w,
since

V =

⎛

⎝
v(1,1) ... v(1,ρ)

... ... ...
v(ρ,1) ... v(ρ,ρ)

⎞

⎠ =

⎛

⎝
uL · Mx(1)

...
uL · Mx(ρ)

⎞

⎠

︸ ︷︷ ︸
:=X∈Rρ×w

· (My(1) · uR ... My(ρ) · uR

)
︸ ︷︷ ︸

:=Y∈Rw×ρ

. (5)

Here we abuse the subset product notation at My(j) by assuming the index of
the string y(j) starts at the (|X | + 1)th step, for j ∈ [ρ].

Analysis for Matrix PRFs with Multiple Repetitions. The analysis for
read-once width w branching programs simply uses the fact that Mx‖y can be
written as an inner product of two vectors of length w which depend only on x
and y respectively. Here, we show that for read-c width w branching programs,
Mx‖y can be written as an inner product of two vectors of length w2c−1. Note
that this was already shown in [23, Section 4.2], but we believe our analysis is
simpler and more intuitive.

Flattening Matrices. For a matrix A =
(
a1 | ... | am

) ∈ R
n×m, let flat(A) ∈

R
1×nm denote the row vector formed by concatenating the rows of A. As it

turns out, we can write

aB1B2 . . .Bc = flat(aB1 ⊗ B2 ⊗ · · · ⊗ Bc)J (6)
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where J is a fixed matrix over {0, 1} independent of a,B1,B2, . . . ,Bc.1 The
intuition for the identity is that each entry in the row vector aB1 · · ·Bc is a
linear combination of terms, each a product of entries in aB1, . . . ,Bc, which
appears as an entry in aB1 ⊗ · · · ⊗ Bc.

In addition, we also have the identity

flat(AB) = flat(A) · (In ⊗ B) (7)

where n is the height of A.2

Decomposing Read-Many Branching Programs. Given a read-c branching pro-
gram of width w, we can write Mx‖y as

Mx‖y = uLM1
xN

1
y · · ·Mc

xN
c
yuR

= flat
(
(uLM1

xN
1
y) ⊗ · · · ⊗ (Mc

xN
c
yuR)

) · J via (6)

= flat
(
(uLM1

x ⊗ · · · ⊗ Mc
x)︸ ︷︷ ︸

wc−1×wc

· (N1
y ⊗ · · · ⊗ Nc

yuR)
︸ ︷︷ ︸

wc×wc−1

) · J via mixed-product

= flat
(
(uLM1

x ⊗ · · · ⊗ Mc
x)
)

︸ ︷︷ ︸
1×w2c−1

· (Iwc−1 ⊗ N1
y ⊗ · · · ⊗ Nc

yuR) · J
︸ ︷︷ ︸

w2c−1×1

via (7)

That is, Mx‖y can be written as an inner product of two vectors of length
w2c−1. Therefore, the rank of V is at most w2c−1.

Comparison With [6,23]. We briefly mention that the previous analysis in [6,23]
works by iterating applying the identity

flat(A · X · B) = flat(X) · (A� ⊗ B)

c times along with the mixed-product property to switch the order of the matrix
product. (The papers refer to “vectorization” vec, which is the column analogue
of flat.) Our analysis is one-shot and avoids this iterative approach, and also
avoids keeping track of matrix transposes.

1 Here’s a concrete example:

(
a1 a2

) (
b1
b2

)
= flat

((
a1 a2

) ⊗
(

b1
b2

))

︸ ︷︷ ︸
=

(
a1b2 a2b1 a1b2 a2b2

)

⎛

⎜
⎜
⎝

1
0
0
1

⎞

⎟
⎟
⎠ .

2 Here’s a concrete example:

flat
((

a1

a2

)
(
b1 b2

))
=

(
a1b1 a1b2 a2b1 a2b2

)
=

(
a1 a2

)
(

b1 b2
b1 b2

)
.
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Open Problem. Can we prove the following generalization of the rank attack? Let
g be a polynomial of total degree at most d in the variables x1, . . . , xn, y1, . . . , yn

over Fq (or even Z), which computes a function {0, 1}n × {0, 1}n → Fq. Now,
pick some arbitrary X1, . . . , XL, Y1, . . . , YL ∈ {0, 1}n, and consider the matrix

V := (g(Xi, Yj)) ∈ F
L×L
q

Conjecture:
rank(V) ≤ max{L, nO(d)}

If the conjecture is true, then we obtain an attack that works not only for matrix
products, but basically any low-degree polynomial.

Here’s a potential approach to prove the conjecture (based on the analysis of
the rank attack). Write g as a sum of monomials gk. We can write V as a sum
of matrices Vk where Vk := (gk(Xi, Yj)). Each Vk can be written as a product
of two matrices, which allows us to bound the rank of Vk. Then, use the fact
that rank(V) ≤ ∑

k rank(Vk). A related question is, can we use this approach to
distinguish g from random low-degree polynomials? A related challenge appears
here in [1].

3.2 Implication of the Rank Attack

We briefly discuss the implication of the rank attack to two relevant propos-
als (or paradigms) of constructing efficient PRFs [12] and cryptographic hash
functions [43,44]. Both proposals use the group operations over a sequence of
group elements as the evaluation functions. The rank attack implies when the
underlying group G admits an efficiently computable homomorphism to a matrix
group Mn(R), and when each input bit chooses a constant number of steps in
the evaluation, then the resulting function is not a PRF (resp. the resulting hash
function cannot be used as a random oracle).

Let us remark that our attack does not refute any explicit claims in those
two proposals. It mainly serves as a sanity check for the future proposals of
instantiating PRFs (resp. hash functions) following those two paradigms. Let us
also remark that the rank attack is preventable by adding an one-way extraction
function at the end of the evaluation. But when the PRF (resp. hash function)
is used inside other applications, an extraction function that is compatible with
the application may not be easy to construct. As an example, when the matrix
PRFs are used in safeguarding the branching-program obfuscator like [26,27],
it is not clear how to apply an extraction function that is compatible with the
obfuscator.

Efficient PRF Based on the Conjugacy Problem. In the conference on
mathematics of cryptography at UCI, 2015, Boneh proposed a simple construc-
tion of PRF based on the hardness of conjugacy problem, and suggested to look
for suitable non-abelian groups for which the conjugacy problem is hard [12].
If such a group is found, it might lead to a PRF that is as efficient as AES.
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However, even without worrying about efficiency, it is not clear how to find a
group where the decisional conjugacy problem is hard.

Here is a brief explanation of the conjugacy problem and the PRF construc-
tion [12]. Let K be a non-abelian group, G be a subset of K, H be a subgroup

of K. Given g
$← G, z = h ◦ g ◦h−1 where h

$← H, the search conjugacy problem
asks to find h.

The PRF construction relies on the following decision version of the conju-
gacy problem. Let m be a polynomial. For h

$← H, g1, g2, ..., gm
$← Gm. The

decisional problem asks to distinguish

g1, h ◦ g1 ◦ h−1, ..., gm, h ◦ gm ◦ h−1

from 2m random elements in G.
Let the input be x ∈ {0, 1}�, the key be k = g, {hi,b}i∈[�],b∈{0,1}. Then the

following construction is a PRF assuming the decisional conjugacy problem is
hard.

Fk(x) := h�,x�
◦ h�−1,x�−1 ◦ ... ◦ h1,x1 ◦ g ◦ h−1

1,x1
◦ ... ◦ h−1

�,x�

The proof follows the augmented cascade technique of [15].
Note that F only has 2�− 1 steps, with each index in the input repeating for

at most 2 times. So if G admits an efficient homomorphism to a matrix group,
then the rank attack applies.

Finally, let us remark that there are candidate group for which the search
conjugacy problem is hard, e.g. the braid group [33]. But the decisional conjugacy
problem over the braid group is broken exactly using a representation as a matrix
group [22].

Cryptographic Hash Functions Based on Cayley Graphs. We first
recall the hard problems on Cayley graphs and their applications in building
cryptographic hash functions [41]. Let G be a finite non-abelian group, and
S = {s0, ..., sm} be a small generation set. The Cayley graph with respect to
(G, S) is defined as follows: each element v ∈ G defines a vertex; there is an edge
between two vertices vi and vj if vi = vj ◦ s for some s ∈ S. The factorization
problem asks to express an element of the group G as a “short” product of ele-
ments from S. For certain groups and generation sets, the factorization problem
is conjectured to be hard.

In 1991, Zémor [44] introduced a cryptographic hash function based on
a Cayley graph with respect to the group G = SL(2,Fp) and the set S ={

s0 =
(

1, 1
0, 1

)
, s1 =

(
1, 0
1, 1

)}
. Let the input of the hash function be x ∈ {0, 1}�.

The evaluation of the hash function is simply

H(x) :=
�∏

i=1

sxi
.

The collision resistance of this function is based on the hardness of the factor-
ization problem.
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The factorization problem with respect to the original proposal of Zémor was
solved by [43]. Then alternative proposals of the group G and generation set S
have since then been given (see the survey of [41]). Most of the groups in these
proposals are still matrix groups.

We observe that since H is read-once, if the underlying group G is a matrix
group, then the rank attack is able to distinguish the hash function from a
random oracle.

Finally, let us clarify that the original authors of the Cayley hash function
proposals do not claim to achieve the random-oracle like properties, and most
of the analyses of the Cayley graph-based hash function focus on its collision
resistance (which is directly related to the factorization problem). Still, many
applications of cryptographic hash functions require random-oracle like proper-
ties (e.g. in the Fiat-Shamir transformation), so we think it is worth to point
out that the Cayley graph-based hash function does not achieve those strong
properties when instantiated with matrix groups.

4 PRFs from Hard Matrix Problems

In this section, we propose plausibly hard problems related to matrix products,
from which we can build a matrix PRF using the Naor-Reingold paradigm. We
start from a few simple problems and explain how these problems can be solved
efficiently. Then we generalize the attack methodology. Finally, we conclude with
the final assumptions which survive our cryptanalytic attempts.

4.1 The Initial Attempts

First Take and the Determinant Attack. Our first assumption sets G to be the
group GL(n, p) where we think of n as being the security parameter. Let m be an
arbitrarily polynomially large integer. The assumption says that the following
two distributions are computationally indistinguishable:

(A1, ...,Am, (A1B)k, ..., (AmB)k) ≈c (A1, ...,Am,U1, ...,Um) (8)

where all the matrices are chosen uniformly at random from GL(n, p).
Let us explain the choice of k. When k = 1, the assumption is trivially broken

since we can just compute B on the LHS. When k is a constant, we are still able
to break the assumption using a linear algebraic technique detailed in Sect. 3.
So we set k to be as large as the security parameter.

Unfortunately, even with a large k the assumption is broken, since on the
LHS we have

det((A2B)k) · det(A1)k = det((A1B)k) · det(A2)k

In general, any group homomorphism from G to an Abelian group H allows us
to carry out this attack.
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Second Take and the Order Attack. The easy fix for this is to take the group
to be SL(n, p), the group of n-by-n matrices with determinant 1. It is known
that for several choices of n and p, SL(n, p) is simple, namely, it has no normal
subgroups. Consequently, it admits no non-trivial group homomorphisms to any
Abelian group.

Fact 1 (see, e.g., [32]). The following are true about the special linear group
SL(n, p).

1. The projective special linear group PSL(n, p) defined as the quotient
SL(n, p)/Z(SL(n, p)) is simple for any n and p, except when n = 2 and
p = 2, 3. Here, Z(G) denotes the center of group G, the set of elements
in G that commute with any other element of G.

2. For n and p where gcd(n, p−1) = 1, the center of SL(n, p) is trivial. Namely,
Z(SL(n, p)) = {In}.

3. As a consequence of (1) and (2) above, for n ≥ 3 and p such that gcd(n, p −
1) = 1, SL(n, p) is simple.

In particular, we will pick p = 2 and n ≥ 3 to be a large number.
However, we notice that there is a way to break the assumption simply using

the group order.

Fact 2 (see, e.g., [32]). The order of SL(n, p) is easily computable. It is

r := |SL(n, p)| = pn(n−1)/2 · (pn − 1) · (pn−1 − 1) · . . . · (p2 − 1)

Therefore, when k is relatively prime to r, we can compute A1B from (A1B)k

as follows: let s = k−1 mod r and compute
(
(A1B)k

)s = A1B. Consequently,
the similar assumption for group SL(n, p) is also broken easily.

One may hope that the assumption holds for certain subgroup of G ⊂
GL(n, p). To rule out the order attack, however, we should choose either (1)
to hide the order of group G or (2) fix the order of group to have many divisors,
but neither is a nontrivial. We instead seek another way as follows.

Summary. From the first two attempts we rule out some choices of the group
and parameters. Here is a quick summary.

– k has to be as large as the security parameter λ to avoid the rank attack.
– The determinant attack can be generalized to the case when there is an

(efficiently computable) homomorphism f from G to an abelian group H,
since it crucially relies on the fact that f((A2B)k) · f(A1)k = f((A1B)k) ·
f(A2)k for f = det. To rule out this class of attacks, we fix G to be non-
abelian simple group.

– The order attack heavily relies on the fact that one can cancel out A1 in the
left-end of the product. We thus use multiple A’s to avoid this canceling with
non-abelian group.
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4.2 The First Formal Assumption and Construction

Let G be a non-commutative simple group where the group elements can be
efficiently represented by matrices (for example, the alternating group An for a
polynomially large n ≥ 5). Let k be as large as the security parameter λ. Our
assumption is

(
{Ai,b}i∈[k],b∈{0,1},

k∏

i=1

(Ai,0B),
k∏

i=1

(Ai,1B)
)

≈c

(
{Ai,b}i∈[k],b∈{0,1},B0,B1

)

(9)

where the matrices {Ai,b}i∈[k],b∈{0,1}, B, B0 and B1 are chosen from U(G).

The PRF Construction. The family of pseudorandom functions is defined iter-
atively as follows.

Construction 4.1 The construction is parameterized by matrices A1,0,
A1,1, . . . ,Ak,0,Ak,1 sampled uniformly random from G.

PRF(i)(x1x2 . . . xi) =
k∏

j=1

(Aj,xi
· PRF(i−1)(x1x2 . . . xi−1))

PRF(0)(ε) = I

where ε is the empty string and I is the identity matrix.

The proof follows a Naor-Reingold style argument and proceeds by showing,
inductively, that PRF(i−1)(x1x2 . . . xi−1) is pseudorandom. If we now denote this
matrix by B,

(
PRF(i)(x1x2 . . . 0),PRF(i)(x1x2 . . . 1)

)
=
( k∏

j=1

(Aj,0 · B),
k∏

j=1

(Aj,1 · B)
)

which, by Assumption 9, is pseudorandom.

4.3 Another Assumption and the Synthesizer-Based PRF
Construction

In the second assumption, we still choose G as a non-commutative simple group
where the group elements can be efficiently represented by matrices. Let m1,m2

be arbitrarily polynomially large integers, k = O(λ). Let {Ai,1, ...,Ai,k ←
U(Gk)}i∈[m1], {Bj,1, ...,Bj,k ← U(Gk)}j∈[m2]. Our assumption is

( k∏

v=1

(Ai,vBj,v)
)

i∈[m1],j∈[m2]

≈c

(
Ui,j ← U(G)

)

i∈[m1],j∈[m2]

(10)
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The Synthesizer-Based PRF Construction. To assist the construction of a
synthesizer-based matrix PRF from Assumption (9), let us first define the lists
of indices used in the induction.

Let k = O(λ), v = �log k�. Let � ∈ poly(λ) be the input length of the PRF.
Let ε denote the empty string. Let || be the symbol of list concatenation. For
any list S of length t, let SL denote the sublist of the �t/2� items from the left,
let SR denote the sublist of the t − �t/2� items from the right.

Define the initial index list as Sε := {i1, i2, ..., i�}. Define the “counter” list
as C := {a1, ..., av}. Let r ∈ {0, 1}∗ ∪ ε, iteratively define Sr0 and Sr1 as:

if Sr is defined and |Sr| ≥ 4v, Sr0 := SL
r ||C, Sr1 := SR

r ||C
if Sr is defined and |Sr| < 4v, ⊥.

Let d ∈ Z be the depth of the induction, i.e., any defined list Sr has |r| ≤ d. We

have 2d ≥ � ≥
(

4−1
3−1

)d

= 1.5d. Since � ∈ poly(λ), we have 2d ∈ poly(λ).

Construction 4.2 The PRF is keyed by 24v · 2d ∈ poly(λ) random matri-
ces {Ai,Sr

← U(G)}i∈{0,1}4v,r∈{0,1}d . The evaluation formula PRF(x) :=
PRFSε

(x1x2 . . . x�) is defined inductively as

if |Sr| ≥ 4v PRFSr (x1x2 . . . xt) =

k∏

j=1

(
PRFSr0(x1x2 . . . x�t/2�j̃) · PRFSr1 (x�t/2�+1 . . . xtj̃)

)

if |Sr| < 4v PRFSr (x1x2 . . . xt) = Ax1x2...xt,Sr .

where j̃ denotes the bit-decomposition of j.

4.4 Open Problems

Open Problem 1. In both of our PRF constructions, the numbers of steps in the
final branching program (i.e., the number of matrices in each product) are super-
polynomial. In Construction 4.1 it takes roughly O(k�) steps; in Construction 4.2
it takes roughly O(kd) steps. Although those PRFs are efficiently computable
(the key is to reuse intermediate products), the numbers of steps are enormous.
Is there a way to obtain a matrix PRF with polynomial number of steps from
inductive assumptions?

Open Problem 2. Any PRF in NC1 gives rise a matrix PRF, with a possibly
different order of products. Is there a canonical order and a canonical group
such that the security of any NC1 PRF can be reduced to one construction?
This would possibly give us a (nice) universal PRF.

5 Matrix Attacks for the Candidate Block-Local PRG
from BBKK18

A pseudorandom generator f : {0, 1}bn → {0, 1}m is called �-block-local if the
input can be separated into n blocks, each of size b bits, such that every output
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bit of f depends on at most � blocks. When roughly m ≥ Ω̃(n�/2)3, there is
a generic attack on �-block-local PRGs [8]. Specific to 3-block-local PRGs, no
generic attack is known for m < n1.5.

In [8], the authors propose a simple candidate �-block-local PRG from group
theory, where m can be as large as n�/2−ε. Let us recall their candidate, with
� = 3 for the simplicity of description. Let G be a finite group that does not have
any abelian quotient group. Choose 3m random indices

{
ij,k

$← [n]
}

j∈[m],k∈[3]
.

The 3-block-local-PRG f is mapping from G
n to G

m as

fj(x1, ..., xn) = xj,1 ◦ xj,2 ◦ xj,3.

In particular, the authors mentioned that G can be a non-commutative simple
group.

We show that when G admits an efficiently computable homomorphism to
a matrix group Mw(R) (e.g. when G is an alternating groups Aw with w ≥ 5),
then there is an attack that rules out certain choices of combinations of indices
in f . In particular, we show that when G is chosen as the alternating group,
then a non-negligible fraction of the candidates (where the randomness is taken
over the choices of the indices) are not PRGs.

The attack uses the fact that for any two matrices A,B ∈ Rw×w, χ(AB) =
χ(BA), where χ denotes the characteristic polynomial. For simplicity let us
assume the group G is super-polynomially large (e.g. G = Aw where w = O(λ)).
The distinguisher trys to find four output bits whose indices are of the pattern

(a, b, c), (d, e, f), (b, c, d), (e, f, a) (11)

where the same letter denote the same index.
Then for these four output group elements represented by matrices M1, M2,

M3, M4, we always have χ(M1M2) = χ(M3M4) in the real case. In the random
case, since we assume G is super-polynomially large, the characteristic polyno-
mials are unlikely to be equal.

Now we bound the probability for the existence of Pattern (11) if the indices
are chosen randomly. The total number N of different layouts of the indices is:

N = n3m

The total number M of different layouts of the indices such that Pattern (11)
occurs can be lower bounded by fixing Pattern (11) over 4 output bits, and choose
the rest arbitrarily. I.e.

M ≥ n3(m−4)

So M/N ≥ n−12, which means as long as m ≥ 4, a non-negligible fraction of
all the candidate 3-block-local-PRGs can be attacked when instantiated with G

as a matrix group.
The attack can be generalized to smaller G, and larger �. On the positive

side, the attack also seem to be avoidable by not choosing the indices that form
Pattern (11).
3 More precisely, m = Ω(2�b)(n + 2�b)��/2� for the size of each block b.
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6 Candidate Indistinguishability Obfuscation

In this section we give a candidate construction of indistinguishability obfusca-
tion O, following [11,18,27].

Preliminaries. A branching program Γ is a set

Γ =
{
uP

L ∈ {0, 1}1×w,
{
Pi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1} ,uR,� : {0, 1}� → {0, 1}h

}

where w is called width of branching program and � an input-to-index function.
We write

Γ (x′) :=

{
uLPx′uR if x′ ∈ {0, 1}h

uLPx′ if x′ ∈ {0, 1}<h

We say that a branching program Γ computes a function f : {0, 1}� → {0, 1}
if

∀x ∈ {0, 1}� : Γ (�(x)) = 0 ⇐⇒ f(x) = 1

We particularly consider a simple input-to-index function � : {0, 1}� → {0, 1}h

that outputs h/� copies of x, i.e. �(x) = x|x| · · · |x. We denote c := h/� and call
this branching program c-input-repeating. We define an index-to-input function
ι : [h] → [�] so that ι : x �→ (x mod �)+1. For a string x ∈ {0, 1}∗, we denote the
length of x by |x|. We say x′ ∈ �({0, 1}�) input-consistent or simply consistent.

Lattice Basics. We briefly describe the basic facts in the lattice problems and
trapdoor functions. For more detailed discussion and review we refer [18] to
readers. What we need for the construction is, roughly speaking, that there is
an algorithm, given matrices A and B and a trapdoor τA, to sample a (random)
matrix D whose entries follow the discrete Gaussian distribution with small
variance such that AD = B mod q. We denote this random small-norm Gaussian
D by A−1(B) following [18]. Readers who are not interested in the details may
skip the detailed definitions and lemmas described here, since they are only used
for technical details such as set parameters, etc.

We denote the discrete Gaussian distribution over Z
n with parameter σ by

DZn,σ. Given matrix A ∈ Z
n×m
q , the kernel lattice of A is denoted by

Λ⊥(A) := {c ∈ Z
m : A · c = 0n mod q}.

Given y ∈ Z
n
q and σ > 0, we use A−1(y, σ) to denote the distribution of a vector

d sampled from DZm,σ conditioned on Ad = y mod q. We sometimes omit σ
when the context is clear.

Definition 6.1 (Decisional learning with errors (LWE) [42]). For n,m ∈
N and modulus q ≥ 2, distributions for secret vector, public matrices, and error
vectors θ, πχ ⊂ Zq. An LWE sample w.r.t. these parameters is obtained by sam-
pling s ← θn, A ← πn×m, e ← χm and outputting (A, sT A + eT mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Z1×m

q ) with probability
bigger than 1/2 plus non-negligible.
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Lemma 6.2 (Standard form [16,38,39,42]). For n ∈ N and for any m =
poly(n), q ≤ 2poly(n). Let θ = π = U(Zq) and χ = DZ,σ where σ ≥ 2

√
n. If there

exist an efficient (possibly quantum) algorithm that solves LWEn,m,q,θ,π,χ, then
there exists an efficient (possibly quantum) algorithm for approximating SIVP
and GapSVP in �2 norm, in the worst case, within Õ(nq/σ) factors.

Lemma 6.3 (LWE with small public matrices [14]). If n,m, q, σ are chosen
as Lemma 6.2, then LWEn′,m,q,U(Zq),DZ,σ,DZ,σ

is as hard as LWEn,m,q,θ,π,χ for
n′ ≥ 2n log q.

Lemma 6.4 ([3,4,28,36]). There is a p.p.t. algorithms TrapSamp(1n, 1m, q)
that, given modulus q ≥ 2 and dimension m,n such that m ≥ 2n log q, out-
puts A ≈s U(Zn×m

q ) with a trapdoor τ. Further, if σ ≥ 2
√

n log q, there is a
p.p.t. algorithm that, given (A, τ) ← TrapSam(1n, 1m, q) and y ∈ Z

n
q , outputs a

sample from A−1(y, σ). Further, it holds that

{A,x,y : y ← U(Zn
q ),x ← A−1(y, σ)} ≈s {A,x,y : x ← DZm,σ,y = Ax}.

6.1 Construction

Input. The obfuscation algorithm takes as input a c-input-repeating branching
program Γ = {uL ∈ {0, 1}1×w, {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} ,uR} computing a
function f : {0, 1}� → {0, 1}.

We modify Γ to a new functionally equivalent branching program Γ ′ so
that it satisfies Γ ′(x′) �= 0 for all x′ /∈ �({0, 1}h) (as well as x′ ∈ {0, 1}<h).
This can be done by padding an input-consistency check program in the right-
bottom diagonal of P, which only slightly increases w and the bound of entries.
Concretely we follow Construction 6.1. For brevity, we just assume that the input
program is of the form

Γ = {uL ∈ {0, 1, · · · , T}1×w,
{
Pi,b ∈ {0, 1, · · · , T}w×w

}
i∈[h],b∈{0,1} ,uR}

and assume that it satisfies the condition above without loss of generality. In
particular, |Γ (�(x))| ≤ T in this construction.

Obfuscation Procedure

– Set parameters n,m, q, τ, ν,B ∈ N and σ ∈ R
+ as in Parameter (Sect. 6.1).

Let d := wn + 5τ + 3� be a dimension of pre-encoding.
– Sample a matrix PRF {uM

L ∈ {0, 1}1×5τ , {Mi,b ∈ {0, 1}5τ×5τ}i∈[h],b∈{0,1},
uM

R ∈ Z
5τ×1} with input length � and c-repetition whose range is [0, 2τ − 1].

Concretely, we follow Construction 6.1. By padding the programs, we may
assume that the input program and the matrix PRF share the same input-
to-index function � : {0, 1}h → {0, 1}�.
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– Sample
{
Si,b ← Dn×n

Z,σ

}

i∈[h],b∈{0,1}
and ah ← U(Zn×1

q ), and compute pre-

encodings as follows:

J :=
(
uL ⊗ 11×n||uM

L

)
, L :=

(
uR ⊗ ah

uM
R

)
,

Ŝi,b :=
(
Pi,b ⊗ Si,b

Mi,b

)
for i ∈ [h]

For brevity we write S(x′) := 11×n ·Sx′ ·ah. In particular, for all x′ ∈ {0, 1}h,

J · Ŝx′ · L
= Γ (x′) · S(x′) + uM

L · Mx′ · uM
R

=

{
PRFM(x) if x′ = �(x) and f(x) = 1
(�= 0) · S(x′) + uM

L Mx′uM
R otherwise

Note that Γ (x′) is a scalar, thus ⊗ is just a multiplication.
– Sample error matrices Ei,b from DZ,σ with the corresponding dimension and

computes

AJ = J · A0 ∈ Z
1×m

Di,b ← A−1
i−1

(
Ŝi,b · Ai + Ei,b

)
∈ Z

m×m, i = 1, 2, · · · , h − 1

Dh,b ← A−1
h−1

(
Ŝh,b · L + Eh,b

)
∈ Z

m×1

Output. The obfuscation algorithms outputs {AJ , {Di,b}i∈[h],b∈{0,1}} as an
obfuscated program.

Evaluation. For input x ∈ {0, 1}�, returns 1 if |AJ · D�(x) mod q| < B, and 0
otherwise.

Correctness. For x ∈ {0, 1}≤h with length h′,

AJ · Dx′ = J · Ŝx′ · Ah′ + J ·
h′∑

j=1

⎛

⎝
(

j−1∏

i=1

Ŝi,xi

)
· Ej,xj

·
h′∏

k=j+1

Dk,xk

⎞

⎠ mod q

(12)

where Ah := L. Note that all entries following the discrete Gaussian distribution
is bounded by

√
mσ with overwhelming probability. The latter term, GGH15

errors, can be bounded, with all but negligible probability, as follows:
∥∥∥∥∥∥
J ·

h′∑

j=1

⎛

⎝
(

j−1∏

i=1

Ŝi,xi

)
· Ej,xj

·
h′∏

k=j+1

Dk,xk

⎞

⎠

∥∥∥∥∥∥
∞

≤ (2wd) · h′ · (m
√

mσ · wT )h′
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In particular, for x′ = �(x) and f(x) = 1, the first term is PRFM(x), which is
bounded by 2τ − 1. We set B ≥ 2τ + (2wd) · h · (m√

mσ · wT )h so that for every
x satisfying f(x) = 1 the obfuscation outputs correctly.

We also note that, if we set q > B · ω(poly(λ)),

Γ (x′) = 0 ⇐⇒ x′ = �(x) ∧ f(x) = 1

holds for any x′ ∈ {0, 1}≤h since we pad the input-consistency check program at
the beginning. This implies that the random matrix A′

h the (partial) evaluation
AJ ·Dx′ is not canceled. That is, the probability that the evaluation of obfusca-
tion outputs 1 is negligible for an incomplete, inconsistent input x′ or an input
x′ = �(x) satisfying f(x) = 0.

Parameters. Our parameter settings follow [11,18], which matches to the cur-
rent existing safety mechanisms. Let λ be a security parameter of construc-
tion and λLWE = poly(λ) a security parameter of underlying LWE problem. Let
d := wn + 5τ be a dimension of pre-encodings. For trapdoor functionalities,
m = Ω(d log q) and σ = Ω(

√
z log q) by Lemma 6.4. Set n = Ω(λLWE log q)

and σ = Ω(
√

λLWE) for the security of LWE as in Lemmas 6.2 and 6.3. Set
q ≤ (σ/λLWE) · 2λ1−ε

LWE for an ε ∈ (0, 1). Also for the security proof in our model,
we set 2τ ≥ (2wd) · h · (m

√
mσ · wT )h · ω(poly(λ)). On the other hand, we set

B ≥ 2τ + (2wd) · h · (m√
mσ · wT )h and q ≥ B · ω(poly(λ)) for the correctness.4

Construction of Subprograms

Input-Consistency Check Program. We describe a read-once branching program
for checking whether x′ ∈ �({0, 1}�); this plays the role of so-called “bundling
scalars” or “bundling matrices” in prior constructions. For i ∈ [h] and b ∈ {0, 1},
compute Ci,b ∈ Z

3�×3� as the diag(C(1)
i,b , · · · ,C(�)

i,b ) where

C(k)
i,b =

⎧
⎪⎨

⎪⎩

I3×3 if ι(i) �= k

diag(1, 0, 1) if ι(i) = k and i ≤ (c − 1)�
diag(0, 1, 1) if ι(i) = k and i > (c − 1)�

Let uC
L = B ·11×3� and uC

R = (1, 1,−1)T ⊗1�×1, where T is an integer satisfying
‖P(x′)‖∞ < T for all x′ ∈ {0, 1}≤h.

Then {uC
L , {Ci,b}i∈[h]b∈{0,1},uC

R} is an input-consistency check program, and
further C(x′) + P(x′) �= 0 for all x′ /∈ �({0, 1}�) and x′ ∈ {0, 1}<h. That is, we
concretely consider

Γ ′ =
{
u′

L = (uL‖uC
L ),

{
P′

i,b = diag(Pi,b,Ci,b)
}

i∈[h],b∈{0,1} ,u′
R =

(
uR

uC
R

)}
.

4 Note that by adjusting λLWE appropriately large, all constraint can be satisfied as
in [11, Section 4.3].



Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 75

In particular, this gives wnew = w + 3� and the bound of entry T = 2w. Also we
note that Γ ′(�(x)) = Γ (�(x)), thus this is bounded by T.

Remark 6.5. Usual construction of branching programs have a property that
uL · P′

x ∈ {0, 1}1×w for all x′ ∈ {0, 1}<h and |P(x′)| ≤ w, thus we can set
T := 2w; or set T = wh safely. In our parameter setting, we used T = 2w.

Matrix PRFs. For concreteness we provide the construction of matrix PRFs
used in the obfuscation given in [27, Section 4.2]. By Barrington’s theorem [10],
we know that there exist matrix PRFs that output a random binary value.
WLOG, we assume that it is c-input-repetition branching program. We write
this as {u(j)

L , {M(j)
i,b }i∈[h],b∈{0,1},u

(j)
R }j∈[τ ] that are independent to each others.

Note that all entries are binary. We concatenate them as

uM
L = (u(1)

L ‖ · · · ‖u(τ)
L ), Mi,b = diag(M(1)

i,b , · · · ,M(τ)
i,b ), vM

R =

⎛

⎜⎜⎜⎝

v(1)
R

2 · v(2)
R

· · ·
2τ−1 · v(τ)

R

⎞

⎟⎟⎟⎠

then PRFM : x �→ uM
L · M�(x) · uM

R ∈ [0, 2τ − 1] is a pseudorandom function,
which is the desired construction. Note that the width of this program is 5τ.

6.2 Security

Security Model. We note that almost all known attacks including the recently
reported statistical zeroizing attack [19], rank attack and subtraction attack [18]
only exploit the evaluations of x′ ∈ �({0, 1}�). While some attacks called mixed-
input attack are considered in the literature (e.g. [26]), however, there is only one
actual attack [17] in such class for GGH15-based obfuscation so far, which only
exploits several input-consistent evaluations as well in the first phase to extract
the information to run mixed-input attack. Some attack that indeed use the
mixed-inputs for other multilinear maps [24,25], but the first step either uses
the valid inputs [40] or decodes the multilinear map using known weakness of
the NTRU problem [20].

From this motivation, we consider a restricted class of adversary which can
gets oracle access to an input-consistent evaluation oracle

Or : x �→ AJD�(x) mod q, ∀x ∈ {0, 1}�

In our model that we call input-consistent evaluation model the purpose of adver-
sary is to obtain any meaningful information of the implementation of Γ beyond
the input-output behavior. More concretely, we say that the obfuscation proce-
dure is VBB-secure in the input-consistent evaluation model if any p.p.t. adver-
sary cannot distinguish the oracle Or from the following oracle

Fr(x) =

{
U([0, 2τ − 1]) if f(x) = 0
U(Zq) otherwise

(13)

with non-negligible probability, i.e. Or(·) ≈c Fr(·).
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Theorem 6.6. The obfuscation construction O is VBB-secure in the input-
consistent evaluation models.

The main strategy is to hide the lower bits by embedded matrix PRFs, and
hide the higher bits using lattice-based PRFs [7,14] stated as follows.

Lemma 6.7 ([18, Lemma 7.4]). Let h, n, q, b ∈ N and σ, σ∗ ∈ R s.t.
n = Ω(λ log q), σ = Ω(

√
λ log q), b ≥ h · (

√
nσ)h, σ∗ > ω(poly(λ)) · b,

q ≥ σ∗ω(poly(λ)). Define a function family F = {fa : {0, 1}h → Z
n
q }, for

which the key generation algorithm samples a ← U(Zn
q ) as the private key,{

Si,b ← Dn×n
Z,σ

}
as the public parameters. The evaluation algorithm takes input

x′ ∈ {0, 1}h and computes

fa(x′) =

(
h∏

i=1

Si,xi

)
· a + ex′ = Sx′ · a + ex′(modq)

where ex′ ← Dn
Z,σ∗ is freshly sampled for every x′ ∈ {0, 1}h. Then, for d =

poly(λ), the distribution of evaluations {fa(x′
1), · · · , fa(x′

d)} over the choice of
a and errors is computationally indistinguishable from d independent uniform
random vectors from Z

n
q , assuming the hardness of LWEn,poly,q,U(Zq),DZ,σ,DZ,σ

.

The proof of the main theorem is as follows.

Proof (Proof of Theorem 6.6). We will show that the sequence of d = poly(λ)
queries to Or are indistinguishable to the corresponding queries to Fr as follows.

{Or(·)} = {x �→ Γ (�(x)) · S(�(x)) + PRFM(�(x)) + (GGH15 errors)}k∈[d]

≈c {x �→ Γ (�(x)) · S(�(x)) + U([0, 2τ − 1]) + (GGH15 errors)}k∈[d]

≈s

{
x �→ Γ (�(x)) · (S(�(x)) + e�(x)) + U([0, 2τ − 1])

}
k∈[d]

≈s {x �→ Γ (�(x)) · U(Zq) + U([0, 2τ − 1])}k∈[d]

≈s {Fr(·)}
Here, we are using noise-flooding applied to Γ (�(x))e�(x)+ (GGH15 errors).
More precisely, to invoke Lemma 6.7, it should hold that 2τ ≥ h · (

√
nσ)h ·

ω(poly(λ)) and 2τ ≥ (2wd) · h · (m
√

mσ · wT )h · ω(poly(λ)) to neglect GGH15
errors.

Remark 6.8 (weakening PRF requirements). We note that we only use the
matrix PRF for noise-flooding, and therefore it suffices to relax pseudorandom-
ness of F : {0, 1}� → [0, 2τ − 1] to the following: for any efficiently computable
B-bounded function g : {0, 1}� → [B,−B] where B  2τ , we have

{x �→ F (x)} ≈c {x �→ F (x) + g(x)}
where + is computed over Z. A similar relaxation has been considered in the
context of weaker pseudorandom generators for building IO [5]. For this notion,
one could potentially have candidates where each Mi,b is drawn uniformly at
random from a Gaussian distribution but where vM

R is the same as in Sect. 6.1.



Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 77

6.3 Comparison

In this section we compare our model to the previous security model in [11].
First, we briefly review the security model in [11]. This model gives a stronger

oracle to the adversary that allows the adversary to query a polynomial (or
circuit) rather than an input x. More precisely, the adversary chooses a circuit
C described by

{
β
(k)
i,b

}

i∈[h],b∈{0,1},k∈K
and queries

T = AJ

∑

k∈K

h∏

i=1

(β(k)
i,0 Di,0 + β

(k)
1,1Di,1) mod q

to a zero-testing oracle, and learns the value T only if it is sufficiently small
compared to q. We index the zerotesting values obtained by the adversary by
u, thus Tu is the adversary’s u-th successful zerotesting value. The purpose of
adversary is to find any non-trivial algebraic relation between Tu’s and pre-
encodings Ŝ.5 Despite the generality of oracle inputs, the statistical zeroizing
attacks in [19] do not fall into this class; the adversary using the statistical
zeroizing attacks is to check if an inequality holds.

On the other hand, our model gives an input-consistent oracle to adversary
which is much weaker. Instead, the purpose of adversary is to find any informa-
tion beyond input-output behavior of the program. That is, we do not restrict
the goal of adversary to computing a nontrivial algebraic relations. This freedom
allows us to capture almost all existing attacks.

An interesting question is to design a model that embrace both models, and
construct a secure obfuscation procedure in such model. A candidate model is
to allow the adversary to access both oracles described above. Note that [11,
Lemma 8] states that the set of adversary’s successful zerotest is essentially a
set of polynomially-many linear sum of input-consistent evaluations. With this
lemma in mind, an obfuscation procedure satisfying the corresponding lemma as
well as the VBB security in the input-consistent evaluation model may satisfy a
meaningful security in this model.
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Abstract. We consider the problem of obfuscating programs for fuzzy
matching (in other words, testing whether the Hamming distance
between an n-bit input and a fixed n-bit target vector is smaller than
some predetermined threshold). This problem arises in biometric match-
ing and other contexts. We present a virtual-black-box (VBB) secure
and input-hiding obfuscator for fuzzy matching for Hamming distance,
based on certain natural number-theoretic computational assumptions.
In contrast to schemes based on coding theory, our obfuscator is based on
computational hardness rather than information-theoretic hardness, and
can be implemented for a much wider range of parameters. The Ham-
ming distance obfuscator can also be applied to obfuscation of matching
under the �1 norm on Z

n.
We also consider obfuscating conjunctions. Conjunctions are equiva-

lent to pattern matching with wildcards, which can be reduced in some
cases to fuzzy matching. Our approach does not cover as general a range
of parameters as other solutions, but it is much more compact. We study
the relation between our obfuscation schemes and other obfuscators and
give some advantages of our solution.

1 Introduction

Program obfuscation is a major topic in cryptography. Since it was shown that
virtual black box (VBB) obfuscation is impossible in general [3], a large amount
of research has gone into constructing solutions in special cases. One special
case that has attracted attention is evasive functions [2,37]. Evasive functions
are programs for which it is hard to find an accepting input from black-box
access to the program. There are some classes of evasive functions that are
quite efficiently obfuscated, such as hyperplane membership [12], logical formulae
defined by many conjunctions [9,10], pattern matching with wild cards [4,6], root
of a polynomial system of low degree [2], compute-and-compare programs [26,44],
and more [37].

More general obfuscation tools are less practical. For example, there are
candidates for indistinguishability obfuscation [24], but the downside of all of
these schemes is they are completely infeasible in terms of runtime and are only

c© International Association for Cryptologic Research 2019
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able to deal with very simple programs. While general-purpose and efficient
obfuscation is a “holy grail”, the hope is that by restricting to a narrow class of
programs we are able to construct customised and practical solutions.

Hamming Distance. One very natural class of evasive functions is fuzzy
matching for the Hamming metric. Define the program Px(y), parametrised by
x ∈ {0, 1}n and a threshold 0 < r < n/2, that determines whether or not the
n-bit input y has Hamming distance at most r from x. Let D be a distribution
on {0, 1}n. Then D determines a program collection P = {Px : x ← D}. For P
to be an evasive program collection it is necessary that the distribution D has
high Hamming ball min-entropy (see Definition 2.4; this notion is also known as
fuzzy min-entropy in [23]). The uniform distribution on {0, 1}n is an example of
such a distribution.

We are interested in obfuscating the membership program Px(y), so that the
description of Px does not reveal the value x. Note that once an accepting input
y ∈ {0, 1}n is known then one can easily determine x by a sequence of chosen
executions of Px. Indeed, as with most other solutions to this problem, our
scheme is essentially an error correcting code, and so the computation recovers
the value x.

Fuzzy matching has already been treated by many authors and there is a
large literature on it. For example, Dodis et al. [18–20] introduced the notion of
secure sketch and a large number of works have built on their approach. They
also show how to obfuscate proximity queries.

One drawback of the secure sketch approach is that the parameters are
strongly constrained by the need for an efficient decoding algorithm. As dis-
cussed by Bringer et al. [11] this leads to “a trade-off between the correction
capacity and the security properties of the scheme”. In contrast, our scheme is
based on computational hardness rather than information-theoretic hardness,
and can be implemented for a much wider range of parameters.

A different solution to fuzzy matching was given by Karabina and Canpo-
lat [33], based on computational assumptions related to the discrete logarithm
problem. Note that they do not mention obfuscation or give a security proof.
Wichs and Zirdelis [44] note that fuzzy matching can be obfuscated using an
obfuscator for compute-and-compare programs.

Our Contribution. We give a full treatment of fuzzy matching based on com-
putational assumptions. We present an extremely practical and efficient obfus-
cator, based on a natural number-theoretic computational assumption we call
the modular subset product problem. In short, given r < n/2, distinct primes
(pi)i=1,...,n, a prime q such that

∏
i∈I pi < q for all subsets I of {1, . . . , n} of size

r, and an integer X =
∏n

i=1 pxi
i mod q for some secret vector x ∈ {0, 1}n, the

problem is to find x. We call the decisional version of the problem the decisional
modular subset product problem: Distinguish between a modular subset product
instance and uniformly random element of (Z/qZ)∗. If q ≤ 2n, we conjecture
that the statistical distance of the distribution

∏n
i=1 pxi

i mod q for uniform x
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and the uniform distribution on (Z/qZ)∗ is negligible. For q > 2n we conjecture
that the distributions are computationally indistinguishable.

The modular subset product problem is similar to computational problems
that have been used in previous works in cryptography [15].

In practice our scheme improves upon all previous solutions to this problem:
It handles a wider range of parameters than secure sketches; it is 20 times faster
than [33]; it is many orders of magnitude more compact than [13,44]; for full
discussion see Sect. 7.5. Our solution is related to [33], but we think our approach
is simpler and furthermore we give a complete security analysis.

We present two variants of our scheme. One is based only on the subset-
product assumption but when r is very small, it admits the possibility of accept-
ing an input y that is not within the correct Hamming ball. The second variant
(and the one we present in the main body of this work) assumes the existence of
a dependent auxiliary input point function obfuscator [5,7,8,37,43] and is per-
fectly correct. The key idea is to use the point function obfuscator to verify the
Hamming ball center after error correction, see Sect. 7.3 for details. The auxiliary
input in our case is the tuple ((pi)i=1,...,n, q,X).

The following theorems are both special cases of Theorem 8.1, which we will
prove later. The first one shows that, under the subset product assumption, our
scheme gives a secure obfuscator for the uniform distribution over {0, 1}n when
n is sufficiently large.

Theorem 1.1. Let λ ∈ N be a security parameter. Consider the family of
parameters (n, r) = (6λ, λ). Assuming the decisional modular subset product
problem is hard and that there exists a dependent auxiliary input distributional
VBB point function obfuscator, the Hamming distance obfuscator for a uniformly
distributed x ∈ {0, 1}n is distributional VBB secure.

Taking λ = 170 gives parameters (n, r) = (1020, 170), which are beyond the
reach of practical secure sketches.

Under the further constraint r < n/ log(n log(n)) we prove security under
the discrete logarithm assumption. Taking n = 1000 this allows r = 113. This
gives us the following

Theorem 1.2. Let λ > 20 be a security parameter. Consider the family of
parameters (n, r) = (6λ, n/ log(n log(n))). Under the discrete logarithm assump-
tion and the assumptions of Theorem5.1 and assuming that there exists a depen-
dent auxiliary input distributional VBB point function obfuscator, the Hamming
distance obfuscator for a uniformly distributed x ∈ {0, 1}n is distributional VBB
secure.

Conjunctions. Another class of evasive functions are conjunctions. A conjunc-
tion on Boolean variables b1, . . . , bn is χ(b1, . . . , bn) =

∧k
i=1 ci where each ci is

of the form bj or ¬bj for some 1 ≤ j ≤ n.
An alternative representation of a conjunction is called pattern matching with

wildcards. Consider a vector x ∈ {0, 1, �}n of length n ∈ N where � is a special
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wildcard symbol. Such an x then corresponds to a conjunction χ : {0, 1}n →
{0, 1} which, using Boolean variables b1, . . . , bn, can be written as χ(b) =

∧n
i=1 ci

where ci = ¬bi if xi = 0, ci = bi if xi = 1, and ci = 1 if xi = �.
Conjunction obfuscators have been considered before [4,6,9,10]. It is clear

that, if the number r of wildcards is sufficiently smaller than n/2, one can reduce
pattern matching with wildcards to fuzzy Hamming matching. Hence our solu-
tion also gives an alternative approach to obfuscating conjunctions that can be
used for certain parameter ranges. We give a full security analysis and compar-
ison to existing schemes.

Applications. Hamming distance obfuscators are interesting for a variety of
applications. One major application is biometric matching, where a biometric
reading is taken and matched with a stored template [32,36,41,42]. Since biomet-
ric readings (e.g., fingerprints, iris scans, or facial features) are a noisy process,
the binary string representing the extracted features may not be an exact match
for the template string.

Our Approach. We give a short summary of our Hamming distance obfuscator.
Let r, n ∈ N with r < n/2. We wish to “encode” an element x ∈ {0, 1}n so that
it is hidden, and yet we will be able to recognise if an input y ∈ {0, 1}n is within
Hamming distance r of x. To do this we will sample a sequence of small distinct
primes (pi)i=1,...,n (i.e., pi �= pj for i �= j) and a small safe prime q such that∏

i∈I pi < q/2 for all I ⊂ {1, . . . , n} with |I| ≤ r. The encoding of x ∈ {0, 1}n is

X =
n∏

i=1

pxi
i mod q

along with the primes (pi)i=1,...,n and q. Given an input y ∈ {0, 1}n anyone can
compute the encoding Y =

∏n
i=1 pyi

i mod q and then compute

XY −1 mod q ≡
n∏

i=1

pxi−yi

i mod q =
n∏

i=1

pεi
i mod q

for errors εi = xi − yi ∈ {−1, 0, 1}. If y is close to x then almost all εi are
zero, and so we are able to recover the errors εi using the continued fraction
algorithm and factoring. We give the background theory and explanation in
Sect. 6. In Remark 1 we explain that this technique also applies to matching
vectors in Z

n under the �1-norm.
Note that these ideas have also been used in [39] where they are used to

construct a number theoretic error correcting code. Some major differences to our
scheme are: In [39] the parameters (pi)i=1,...,n and q are fixed for all messages;
the encoding X is appended to each message. A similar application is given
in [21] to construct a lattice with efficient bounded distance decoding.
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Outline of This Work. Sections 2, 3, and 4 introduce basic notions in ham-
ming distance/fuzzy matching and obfuscation. Section 5 introduces our new
computational assumption. Section 6 gives background on continued fractions.
Section 7 presents the obfuscator for fuzzy matching in the Hamming distance,
including parameters and performance. Section 8 proves that the obfuscator is
VBB secure and input-hiding. Section 9 briefly discusses our solution to obfus-
cating conjunctions.

2 Hamming Distance

We want to obfuscate the function that determines if an input binary vector is
close to a fixed target. In our setting, one of the input vectors will be a secret
and the other an arbitrary input. Let us first state some key definitions.

A natural property of a binary vector is its Hamming weight which is the
number of non-zero elements of the vector. For x ∈ {0, 1}n, we will denote this
by wH(x). The Hamming distance between two binary vectors x, y ∈ {0, 1}n is
then given by dH(x, y) = wH(x− y). Finally, a Hamming ball BH,r(x) ⊂ {0, 1}n

of radius r around a point x ∈ {0, 1}n is the set of all points with Hamming
distance at most r from x. We denote by BH,r the Hamming ball around an
unspecified point.

2.1 Hamming Ball Membership over Uniformly Chosen Centers

We are interested in programs that determine if an input binary vector y ∈
{0, 1}n is contained in a Hamming ball of radius r around some secret value
x, i.e., if y ∈ BH,r(x). This problem is only interesting if it is hard for a user
to determine such an input y, because if it is easy to determine values y such
that y ∈ BH,r(x) and also easy to determine values y such that y �∈ BH,r(x)
then an attacker can easily learn x by binary search. So the first task is to find
conditions that imply it is hard to find a y that is accepted by such a program.
In other words, we need conditions that imply Hamming ball membership is an
evasive problem. As we will see in Fig. 1, there are essentially three ways that
this problem can become easy: if the Hamming balls are too big; if there are too
few possible centers x; or if the centers x are clustered together.

Definition 2.1 (Evasive Program Collection). Let P = {Pn}n∈N be a
collection of polynomial-size programs such that every P ∈ Pn is a program
P : {0, 1}n → {0, 1}. The collection P is called evasive if there exists a negligible
function ε such that for every n ∈ N and for every y ∈ {0, 1}n:

Pr
P←Pn

[P (y) = 1] ≤ ε(n).

In short, Definition 2.1 means that a random program from an evasive collec-
tion P evaluates to 0 with overwhelming probability. Finally, we call a member
P ∈ Pn for some n ∈ N an evasive program or an evasive function.
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Hamming Ball Program Collection. Let r, n ∈ N with 0 < r < n/2. For
every binary vector x ∈ {0, 1}n there exists a polynomial size program Px :
{0, 1}n → {0, 1} that computes whether the input vector y ∈ {0, 1}n is contained
in a Hamming ball BH,r(x) and evaluates to 1 in this case, otherwise to 0. Any
distribution on {0, 1}n therefore gives rise to a distribution Pn of polynomial-size
programs.

We first consider the uniform distribution on {0, 1}n, so that sampling
P ← Pn means choosing x uniformly in {0, 1}n and setting P = Px. Since
the condition y ∈ BH,r(x) is equivalent to x ∈ BH,r(y) we need to determine
the probability that a random element lies in a Hamming ball. This is done
in the next two lemmas. Note that if r ≥ n/2 then a random element lies in
the Hamming ball with probability ≥ 1/2, which is why we are always taking
r < n/2.

Lemma 2.1. Let n ∈ N, x ∈ {0, 1}n. The number of elements in a Hamming
ball BH,r(x) ⊆ {0, 1}n of radius r is given by hr = |BH,r| =

∑r
k=0

(
n
k

)
.

Proof. This can be readily seen from the fact that for each k ∈ [0, r] a vector
has

(
n
k

)
possible ways to be at Hamming distance of k from the origin point. ��

Next we show that the probability for a randomly chosen element in {0, 1}n

to be contained in a Hamming ball BH,r is negligible if the parameters r < n/2
are chosen properly.

Lemma 2.2. Let λ ∈ N be a security parameter and let r, n ∈ N such that
r ≤ n/2 − √

nλ log(2). Fix a point x ∈ {0, 1}n. Then the probability that a
randomly chosen vector y ∈ {0, 1}n is contained in a Hamming ball of radius r
around x satisfies Pry←{0,1}n [y ∈ BH,r(x)] ≤ 1/2λ.

Proof. The total number of points in {0, 1}n is given by 2n. By Lemma 2.1 we
thus have the probability of a randomly chosen vector y ∈ {0, 1}n to be contained
in a Hamming ball of radius r around a point x given by hr/2n = 2−n

∑r
k=0

(
n
k

)
.

On the other hand, consider the cumulative binomial distribution for probability
p which for r ≤ np is bounded1 by

Pr(X ≤ r) =
r∑

k=0

(
n

k

)

pk(1 − p)n−k ≤ exp
(

− 1
2p

(np − r)2

n

)

.

Substitute p = 1/2 to find Pr(X ≤ r) = hr/2n. Hence, for r < n/2−√
nλ log(2)

we have hr/2n ≤ exp
(
− (n/2 − r)2 /n

)
≤ 1/2λ and the result follows. ��

This result shows that Hamming ball membership over the uniform distribu-
tion is evasive when r is small enough.

Lemma 2.3. Let λ(n) be such that the function 1/2λ(n) is negligible. Let r(n) be
a function such that r(n) ≤ n/2 − √

log(2)nλ(n). Let Pn be the set of programs
that tests Hamming ball membership in BH,r(n)(x) ⊆ {0, 1}n over uniformly
sampled x ∈ {0, 1}n. Then Pn is an evasive program collection.
1 Chernoff bound for binomial distribution tail [1,14].
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Proof. We need to show that, for every n ∈ N and for every y ∈ {0, 1}n,
PrP←Pn

[P (y) = 1] is negligible. Note that

Pr
P←Pn

[P (y) = 1] = Pr
x←{0,1}n

[y ∈ BH,r(n)(x)] = Pr
x←{0,1}n

[x ∈ BH,r(n)(y)]

and this is negligible by Lemma2.2. ��

2.2 Hamming Ball Membership over General Distributions

Biometric templates may not be uniformly distributed in {0, 1}n, so it is impor-
tant to have a workable theory for fuzzy matching without assuming that the
input data is uniformly sampled binary strings. For example, in the worst case,
there is only a small number of possible values x ∈ {0, 1}n that arise, in which
case taking y to be one of these x-values will show that Hamming ball member-
ship is not evasive. More generally, as pictured in the right hand panel of Fig. 1,
one could have many centers but if they are too close together then there might
be values for y such that PrP←Pn

[P (y) = 1] is not negligible.

{0, 1}n {0, 1}n

x1

x2 x3

y

Fig. 1. Two example cases of Hamming ball distributions. The left side depicts the
ideal distribution of Hamming ball centers. The right one shows what happens if the
balls overlap.

Hence, for Hamming ball membership to be evasive, the centers x must be
chosen from a “reasonably well spread” distribution. Before treating this in detail
we give some definitions related to entropy of distributions in the computational
sense.

Definition 2.2 (Min-Entropy). The min-entropy of a random variable X is
defined as H∞(X) = − log (maxx Pr[X = x]). The (average) conditional min-
entropy of a random variable X conditioned on a correlated variable Y is defined
as H∞(X|Y ) = − log (Ey←Y [maxx Pr[X = x|Y = y]]).

Definition 2.3 (Computational Indistinguishability). We say that two
ensembles of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are compu-
tationally indistinguishable and write X

c≈ Y if for every (non-uniform) PPT
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distinguisher A it holds that Pr[A(Xλ) = 1] − Pr[A(Yλ) = 1] ≤ ε(λ) where ε(λ)
is some negligible function.

Now suppose we have a distribution Dn on {0, 1}n, which defines a distribu-
tion Pn of Hamming ball membership programs. For the program collection to
be evasive (i.e., to satisfy Definition 2.1), it is necessary that for any y ∈ {0, 1}n

we have PrP←Pn
[P (y) = 1] being negligible. But note that

Pr
P←Pn

[P (y) = 1] = Pr
x←Dn

[y ∈ BH,r(x)] = Pr
x←Dn

[x ∈ BH,r(y)].

So the requirement for evasiveness is that this probability is negligible. In other
words, we need that Dn has large min-entropy in the following sense.

Definition 2.4 (Hamming Ball Min-Entropy). (Also known as fuzzy min-
entropy [23, Definition 3].) The Hamming ball min-entropy of a random variable
X on {0, 1}n is defined to be

HH,∞(X) = − log
(

max
y∈{0,1}n

Pr[X ∈ BH,r(y)]
)

.

For convenience, we give some necessary conditions to have Hamming ball
min-entropy at least λ. Let |Dn| = {x ∈ {0, 1}n : Pr(x ← Dn) > 0} be the
support of Dn. If for any y ∈ {0, 1}n

∣
∣
∣
⋃

x∈|Dn| BH,r(x)
∣
∣
∣

|BH,r(y)| < 2λ

then we certainly do not have min-entropy at least λ. Hence at the very least
it is required that points in Dn are well-spread-out, as pictured in the left-hand
panel of Fig. 1.

Intuitively, we can say that if there are enough points in |Dn| and if they are
spread out such that the overlap between the Hamming balls is relatively small,
then Hamming ball membership is an evasive problem.

Definition 2.5 (Hamming Distance Evasive Distribution). Consider an
ensemble of distributions Dλ over {0, 1}n(λ), call it D = {Dλ}λ∈N. Let r(λ) <
n(λ)/2 be some function. We say that D is Hamming distance evasive if the
Hamming ball min-entropy of Dλ for Hamming balls in {0, 1}n(λ) of radius r(λ)
(as in Definition 2.4) is at least λ.

3 Conjunctions

Similar to Sect. 2, we will first give basic definitions regarding conjunctions and
then determine necessary conditions for a given conjunction to be evasive.
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Definition 3.1 (Conjunction/Pattern Matching With Wildcards). Let
n ∈ N and let x ∈ {0, 1, �}n where � is a special wildcard symbol. Such an x
then corresponds to a conjunction χ : {0, 1}n → {0, 1} which, using a vector of
Boolean variables b = (b1, . . . , bn), can be written as χ(b) =

∧n
i=1 ci where ci =

¬bi if xi = 0, ci = bi if xi = 1, and ci = 1 if xi = �. Denote by Wx = {i|xi = �}
the set of all wildcard positions and let r = |W | ∈ N be the number of wildcards.

Note that a priori the input is considered a plaintext and directly visible
to the evaluating party. The wildcard positions of an obfuscated conjunction
are only secret as long as no matching input is known. Once such an input is
presented to the evaluator, it is straightforward to work out all wildcard positions
in time linear in the input length: Simply flip each input bit and check whether
this changed input still matches, in which case the flipped position must be a
wildcard.

Lemma 3.1. Let λ ∈ N be a security parameter and let r < n/2 ∈ N such that
r ≤ n−λ. Fix a conjunction χ corresponding to a vector x ∈ {0, 1, �}n such that
r = |{i|xi = �}|. Then the probability that χ evaluates to true on a randomly
chosen vector y ∈ {0, 1}n satisfies Pry←{0,1}n [χ(y) = 1] ≤ 1/2λ.

Proof. The total number of points in {0, 1}n is given by 2n. We thus have the
probability of a randomly chosen vector y ∈ {0, 1}n to be matched by χ to
be Pry←{0,1}n [χ(y) = 1] = 2r/2n. This probability is upper-bounded by 1/2λ if
r ≤ n − λ.

Lemma 3.1 shows that all conjunctions which have their non-wildcard values
uniformly distributed over {0, 1}n−r are evasive. For general distributions we
need to consider the following

Definition 3.2 (Conjunction Evasive Distribution). Consider an ensem-
ble D = {Dλ}λ∈N of distributions Dλ over {0, 1, �}n(λ) with r(λ)-many wild-
cards for functions r(λ) < n(λ). We say that D is conjunction evasive if the
min-entropy of Dλ is at least λ.

4 Obfuscation Definitions

Our ultimate goal is to prove that our obfuscators are distributional virtual black
box (VBB) secure. For this we first state the definition of such a distributional
VBB obfuscator.

Definition 4.1 (Distributional Virtual Black-Box Obfuscator [2,3]). Let
P = {Pn}n∈N be a family of polynomial-size programs with input size n and let O
be a PPT algorithm which takes as input a program P ∈ P, a security parameter
λ ∈ N and outputs a program O(P ) (which itself is not necessarily in P). Let
D be a class of distribution ensembles D = {Dλ}λ∈N that sample P ← Dλ with
P ∈ P. The algorithm O is a VBB obfuscator for the distribution class D over
the program family P if it satisfies the following properties:
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– Functionality preserving: There exists a negligible function ε(λ) such that for
all P ∈ P

1 − Pr [∀x ∈ {0, 1}n : P (x) = O(P )(x)] ≤ ε(λ)

where the probability is over the coin tosses of O.
– Polynomial slowdown: For every λ ∈ N and P ∈ P, we have |O(P )| ≤

poly(|P |, λ).
– Virtual black-box: For every (non-uniform) polynomial size adversary A, there

exists a (non-uniform) polynomial size simulator S with oracle access to P ,
such that for every D = {Dλ}λ∈N ∈ D, and every (non-uniform) polynomial
size predicate ϕ : P → {0, 1}:

∣
∣
∣
∣ Pr
P←Dλ,O,A

[A(O(P )) = ϕ(P )] − Pr
P←Dλ,S

[SP (|P |) = ϕ(P )
]
∣
∣
∣
∣ ≤ ε(λ)

where ε(λ) is a negligible function.

In simple terms, Definition 4.1 states that a VBB obfuscated program O(P )
does not reveal anything more than would be revealed from having black box
access to the program P itself.

A definition that is more convenient to work with is distributional indistin-
guishability.

Definition 4.2 (Distributional Indistinguishability [44]). An obfuscator O
for the distribution class D over a family of programs P satisfies distributional
indistinguishability if there exists a (non-uniform) PPT simulator S such that
for every distribution ensemble D = {Dλ}λ∈N ∈ D the following distributions
are computationally indistinguishable

(O(P ), α)
c≈ (S(|P |), α) (4.1)

where (P, α) ← Dλ. Here α denotes some auxiliary information.

Note that the sampling procedure for the left and right side of Eq. (4.1) in
Definition 4.2 is slightly different. For both we sample (P, α) ← Dλ and for the
left side we simply output (O(P ), α) immediately. On the other hand, for the
right side we record |P |, discard P and finally output (S(|P |), α) instead.

It can be shown that distributional indistinguishability implies VBB security
under certain conditions. To see this, we first require the following.

Definition 4.3 (Predicate Augmentation [44]). For a distribution class
D, its augmentation under predicates aug(D) is defined as follows: For any
(non-uniform) polynomial-time predicate ϕ : {0, 1}∗ → {0, 1} and any D =
{Dλ}λ∈N ∈ D, the class aug(D) indicates the distribution D′ = {D′

λ}λ∈N where
D′

λ samples (P, α) ← Dλ, computes α′ = (α,ϕ(P )) and outputs (P, α′). Here α
denotes some auxiliary information.
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Theorem 4.1 (Distributional Indistinguishability Implies VBB [10]).
For any family of programs P and a distribution class D over P, if an obfus-
cator satisfies distributional indistinguishability (Definition 4.2) for the class of
distributions aug(D) then it also satisfies distributional VBB security for the
distribution class D (Definition 4.1).

Lastly, we also want to prove that our obfuscator is input hiding. For this we
state the definition of an input hiding obfuscator.

Definition 4.4 (Input Hiding Obfuscator [2]). An obfuscator O for a col-
lection of evasive programs P is input hiding, if for every PPT adversary A there
exists a negligible function ε such that for every n ∈ N and for every auxiliary
input α ∈ {0, 1}poly(n) to A:

Pr
P←Pn

[P (A(α,O(P ))) = 1] ≤ ε(n),

where the probability is also over the randomness of O.

To summarise, Definition 4.4 states that given the obfuscated program O(P )
it is hard to find an input that evaluates to 1.

5 Computational Assumptions

In this section we introduce our new computational assumptions. We start with
the definition of a safe prime.

Definition 5.1 (Safe Prime, Sophie Germain Prime). A prime q is called
a safe prime if q is of the form q = 2p + 1 for a prime p. The prime p is then
called a Sophie Germain prime.

Problem 5.1 (Distributional Modular Subset Product Problem). Let
r < n ∈ N, D be a distribution over {0, 1}n. Given a sequence of distinct primes
(pi)i=1,...,n, a safe prime q such that

∏

i∈I

pi <
q

2
< (1 + o(1))max{pi}r for all I ⊂ {1, . . . , n} with |I| ≤ r (5.1)

and an integer

X =
n∏

i=1

pxi
i mod q (5.2)

for some vector x ← D, the (r, n,D)-distributional modular subset product
problem (MSPr,n,D) is to find x.

We also state a decisional version of the problem.
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Problem 5.2 (Decisional Distrib. Modular Subset Product Problem).
Let r < n ∈ N, D be a distribution over {0, 1}n. Define the distribution

D0 = ((pi)i=1,...,n, q,X)

where (pi)i=1,...,n are distinct primes, q satisfies Eq. (5.1), and X satisfies
Eq. (5.2) for some vector x ← D. Define the distribution

D1 = ((pi)i=1,...,n, q,X ′)

where (pi)i=1,...,n and q are as in D0, but

X ′ ← (Z/qZ)∗.

Then the (r, n,D)-decisional distributional modular subset product problem
(D-MSPr,n,D) is to distinguish D0 from D1. In other words, given a sample
from Db for uniform b ∈ {0, 1}, the problem is to determine b.

We believe these computational problems are hard whenever the fuzzy match-
ing problem itself is evasive. Precisely we make the following conjecture that
covers all possible distributions D.

Conjecture 1. Fix r < n/2 ∈ N. If D is a distribution on {0, 1}n with Hamming
ball min-entropy at least λ (i.e. D is a Hamming distance evasive distribution
in the sense of Definition 2.5) then solving D-MSPr,n,D (Problem 5.2) requires
Ω(min{2λ, 2n/2}) operations.

Note that Problem 5.2 only makes sense if the two distributions are different.
In the case 2n � q we conjecture that the values X =

∏n
i=1 pxi

i mod q are
distributed close to uniformly if x is sampled uniformly, and so it makes no sense
to ask for a distinguisher between this distribution and the uniform distribution.
For the proof of Theorem 5.1 we need a more precise version of this statement,
so we make the following conjecture that we believe is very reasonable.

Conjecture 2. Let r, n, (pi)i=1,...,n, q be as in Problem 5.1, with the extra con-
dition that q ≤ 2n. Let D be the uniform distribution on {0, 1}n. Then the
statistical distance of the distribution

∏n
i=1 pxi

i mod q over x ← D and the
uniform distribution on (Z/qZ)∗ is negligible.

The situation is summarised in the following diagram. The left hand side
is the low-density case. The right hand side is the high-density case where for
every value X there are likely (multiple) solutions. As can be seen in Fig. 2 our
interest reaches over all density cases.

q � 2n q ≈ 2n q � 2n

injective: given X
then x is unique both assumed hard

decisional: impossible
search: not unique
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A “search-to-decision” reduction in the low-density or density one case (i.e.,
2n < q) is possible by borrowing techniques from [31,38]. One can obtain the
result that a decision oracle for Problem 5.2 in this case can be used to solve
the search problem Problem 5.1 in polynomially many queries to the decision
oracle. This gives further evidence that Problem5.2 should be hard (recall that
the assumption makes no sense in the high-density case).

5.1 Algorithms

We now consider algorithms for Problem5.1. If the Hamming weight of x is
too small, or if q is too large, then it might happen that

∏n
i=1 pxi

i < q and
hence Problem 5.1 can be solved by factoring X over the integers. This is the
low-density case. More generally, an approach to Problem5.1 is to guess some
xi for i ∈ I and try to factor X

∏
i∈I p−xi

i mod q. It can be shown that if
q = O((n log(n))r) and if x is sampled from a distribution with large Hamming
ball min-entropy then this approach does not lead to an efficient attack. In short,
the requirement that the Hamming ball membership program is evasive already
implies that such an attack requires exponential time.

We now consider algorithms that are appropriate in general. There is an
obvious meet-in-the-middle algorithm: Let m = �n/2�. Given X we compute a
list L of pairs (z, Z) where Z =

∏m
i=1 pzi

i mod q for all z ∈ {0, 1}m. Then for

all z′ ∈ {0, 1}n−m compute Z ′ = X
∏n−m

i=1 p
−z′

i
m+i mod q and check if Z ′ is in L.

If there is a match then we have found x = z‖z′. This attack requires O(2n/2)
operations. It follows that n must be sufficiently large for the problem to be
hard.

5.2 Hardness

We now give evidence that Problems 5.1 and 5.2 are hard in the high-density case.
Our argument is based on ideas from index calculus algorithms in finite fields.
We prove that if one can solve Problem5.1 (in the medium-/high-density case) in
time T then can solve the discrete logarithm problem (DLP) in (Z/qZ)∗ in time
poly(T ). Note that this result gives at best a subexponential hardness guarantee,
and does not say anything about post-quantum security. A similar computational
assumption (called the very smooth number discrete log) was considered in [15],
where a similar reduction to the discrete logarithm problem is also given.

Theorem 5.1. Fix r, n ∈ N such that r < n/2. Let q be prime such that q ≤ 2n

and (pi)i=1,...,n be a sequence of distinct primes such that pi ∈ [2, O(n log(n))].
Assume Conjecture 2 holds and suppose MSPr,n,D (Problem 5.1) can be solved
with probability 1 in time T . Then there is an algorithm to solve the DLP in
(Z/qZ)∗ with expected time Õ(nT ).

Proof. Let g, h ∈ Z
∗
q be a DLP instance and let A be an oracle for Problem5.1

that runs in time T and succeeds with probability 1. Let g be a generator of
(Z/qZ)∗ so that its order is M = q − 1. Choose random 1 < a < q and compute
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C = ga mod q. Call A on C. Due to the assumptions in the theorem, with
probability bounded below by a constant, A succeeds and outputs a solution x.
Store (a, x). Note that each relation implies a linear relation a ≡ ∑n

i=1 xi logg(pi)
mod M . Repeat until we have n linearly independent relation vectors x, and
hence use linear algebra to solve for logg(pi). Finally, choose a random b and set
C = hgb mod q. Call A on C to get, with high probability, one more relation
(b, y). Knowing logg(pi) we now compute logg(h) = −b +

∑
i yi logg(pi). ��

The above proof can be generalised to any group whose order is known. When
q = (n log(n))r then the condition 2n ≥ q boils down to r < n/ log2(n log(n)).
Hence, when r < n/ log2(n log(n)) the hardness of Problem 5.1 follows from the
discrete log assumption.

It follows that Problem5.1 has a spectrum of difficulty, ranging from easy
in the extreme low-density case to hard in the medium-/high-density case. We
visualise the situation below.

r = n r = n/2 r = 1r = n/ log2(n log(n))

easy
non-neg. gap√

log(2)nλ
conjectured

hard hard

All index calculus algorithms for factoring and discrete logarithms are based
on smoothness. A typical situation is to generate certain random elements x
modulo N (or p), and check if they are equal to

∏
i pei

i for primes pi less than
some bound. If one could efficiently compute a smooth product

∏
i pei

i that
is congruent to x modulo N (or p) then factorization and discrete logarithm
algorithms would be revolutionised (and classical public key crypto broken).

Our subset product problem is slightly different, since we impose the restric-
tion ei ∈ {0, 1}. But we still believe any fundamentally new algorithmic app-
roach to the problem would likely lead to major advances. The only algorithms
we know for this problem are “combinatorial” (in other words, requiring some
kind of brute-force search), apart from when the density is extremely low and
we can just factor. Note that our parameter choices (e.g. in Fig. 2) are very far
from such low density (as we require r < n/2 by Lemma 2.3).

We briefly discuss the relation with lattice problems in the next section and
in Sect. 7.3. Our feeling is that the subset product problem is not really a lattice
problem but a number-theoretical problem. As evidence, references [21,39] use
similar number theory ideas to solve coding/lattice type problems. Nevertheless,
any new algorithms to solve Problem5.1 would have implications in lattices,
such as giving an improvement on the work of [21].

Ultimately, we are making a new assumption based on our experience and
knowledge. A similar assumption was made in [15]. We hope this work will inspire
further study of these problems.
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5.3 Post-Quantum Security

To the best of our knowledge there exists no classical nor quantum algorithm
that efficiently solves either of Problem 5.1 or Problem 5.2 in general.

Consider an adversary that has access to a quantum computer for computing
discrete logarithms. Given an encoding ((pi)i=1,...,n, q,X) of a secret x ∈ {0, 1}n,
the adversary may then turn it into a modular subset sum instance logg(X) =∑

i xi logg(pi) mod q−1. Such a modular subset sum problem may be classified
by its density d, see [16,34]. In our case, when x is chosen from the uniform
distribution, the density is d = n/ log2(q).

There is a polynomial time algorithm for low-density subset sum instances
where d < 0.645 [34] which was later improved to d < 0.941 [16]. This algorithm
requires access to a perfect lattice oracle (just using LLL [35] is not enough). It
is furthermore assumed that the lattice oracle is perfect.

In our case, we can give an estimate for when we expect post-quantum secu-
rity. By the prime number theorem, we have q ∼ (n log n)r. Thus we can estimate
the density by d ∼ n/(r log2(n log n)). To ensure density of d > 1 we can require

r <
n

log2(n log n)
= rPQ(n). (5.3)

Hence we conjecture post-quantum hardness of the modular subset product prob-
lem when r < rPQ(n), and potentially even for slightly larger values for r.

6 Continued Fractions

The background can be found in any number theory textbook, such as [27]. Con-
sider a rational number x ∈ Q. It has a finite continued fraction representation
of the form

x = a0 +
1

a1 +
1

. . . +
1

aN

for ai ∈ N. We define the notation x = [a0, a1, a2, . . . , aN ] for such a representa-
tion. In the more general case of x ∈ R such a representation also exists, though
it is not necessarily finite.

We call the fractions hi/ki for an index i ∈ N defined by the recursion

hi = aihi−1 + hi−2, h−1 = 1, h−2 = 0,

ki = aiki−1 + ki−2, k−1 = 0, k−2 = 1
(6.1)

the convergents of x.

Theorem 6.1 (Diophantine Approximation [30]). Let α ∈ R then there
exist fractions p/q ∈ Q such that

∣
∣
∣α − p

q

∣
∣
∣ < 1√

5q2 . If, on the other hand, there

exist p/q ∈ Q such that
∣
∣
∣α − p

q

∣
∣
∣ < 1

2q2 , then p/q is a convergent of α.

To find the continued fraction representation it is useful to review the
extended Euclidean algorithm first.
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Extended Euclidean Algorithm. For a pair of integers a, b, the extended
euclidean algorithm finds integers x, y such that ax + by = gcd(a, b). The algo-
rithm proceeds as follows: First, it initialises variables ri, si, ti for i = 0, 1 as

r0 = a, r1 = b, s0 = 1, s1 = 0, t0 = 0, t1 = 1.

Then it iteratively produces the sequence

ri+1 = ri−1 − qiri, si+1 = si−1 − qisi, ti+1 = ti−1 − qiti. (6.2)

Here ri+1 and qi are found using Euclidean division (ri−1 = qiri + ri+1) such
that 0 ≤ ri+1 < |ri|. Finally, the algorithms stops when ri+1 = 0.

It can be shown that the worst-case runtime of the extended Euclidean algo-
rithm is of the order O(log(b)) assuming that b < a; the average runtime is of a
similar order [17,28].

Finding Convergents. Comparison of Equation (6.1) with Equation (6.2)
shows that the convergents of a fraction p/q ∈ Q are exactly produced by the
integers si, ti (up to signs) in the steps of the extended Euclidean algorithm
applied to p and q. Thus the runtime for computing the continued fraction rep-
resentation is essentially the same as that of the extended Euclidean algorithm.
Furthermore, we see that the number of convergents is linear in the input size.

7 Obfuscating Hamming Distance

In this section we will present our Hamming distance obfuscator in detail and
then give some examples for parameter choices. The obfuscator is given in
Sect. 7.1.

The Hamming Distance Obfuscator. Let r, n ∈ N with r < n/2. Choose
a random sequence of small distinct primes (pi)i=1,...,n (i.e., pi �= pj for i �= j).
By the prime number theorem it suffices to randomly sample each pi from the
interval [2, O(n log(n))]. Choose then a safe prime q such that

∏
i∈I pi < q/2

for all I ⊂ {1, . . . , n} with |I| ≤ r. The prime q should be sampled to satisfy
the bound q/2 < (1 + o(1))max{pi}r as in Eq. (5.1). We refer to the discussion
regarding Eq. (9.3) to justify why we may assume that such a suitable safe prime
exists.

To encode an element x ∈ {0, 1}n, publish

X =
n∏

i=1

pxi
i mod q (7.1)

along with the list of primes (pi)i=1,...,n and q. Note that, for this encoding to
hide x, we require that wH(x) > r and

∏n
i=1 pxi

i > q.
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Given another element y ∈ {0, 1}n we can now check if y ∈ BH,r(x) using
the encoding X. First we compute Y =

∏n
i=1 pyi

i mod q from which we can find

E = XY −1 mod q =
n∏

i=1

pxi−yi

i mod q =
n∏

i=1

pεi
i mod q (7.2)

where εi ∈ {−1, 0, 1}. We show in Lemma 7.1 that if y ∈ BH,r(x) then we are able
to recover the errors εi using continued fraction decomposition and factoring.

Legendre Symbol. Recall that the Legendre symbol (a
q ) is +1 if a is a non-zero

square modulo q and −1 if a is a non-zero non-square. It is multiplicative in the
sense that (ab

p ) = (a
p )( b

p ). Thus for X as in Eq. (7.1) the Legendre symbol (X
q )

is equal to the product
∏

i(
pi

q )xi , which reveals a linear equation in the secret
(xi)i=1,...,n. In other words, the encoding X leaks one bit of information about x.
Note that this does not violate the definition of VBB security: since the primes
pi are chosen randomly by the obfuscator, we cannot fix in advance a predicate
and compute it using the Legendre symbol.

Why a Safe Prime. As mentioned, the Legendre symbol leaks a linear equation
in (xi). If there were other small prime divisors of q − 1 then one could extend
this idea to get further linear equations. Hence we choose q to be a safe prime to
ensure that only the single bit of leakage arises. An alternative solution would be
to square X, but this would mean we need to use larger parameters to do fuzzy
matching with Hamming weight r, so we prefer to use the minimal parameters.

7.1 Obfuscator and Obfuscated Program

To be precise, for every pair of integers r < n/2 ∈ N and every binary vector
x ∈ {0, 1}n there exists a polynomial size program Px : {0, 1}n → {0, 1} that
computes whether the input vector y ∈ {0, 1}n is contained in a Hamming ball
BH,r(x) and evaluates to 1 in this case, otherwise to 0. Denote the family of all
such programs with P.

The Hamming distance obfuscator OH : P → P ′ takes one such program
Px ∈ P and uses Algorithm 7.2 to output another polynomial size program in a
different family denoted by P ′. In our case this is the decoding algorithm along
with the polynomial size elements (pi)i=1,...,n, q and X ∈ Z/qZ.

We furthermore require a dependent auxiliary input point function obfuscator
[7,8] that we call OPT . Let Rz : {0, 1}n → {0, 1} be a program that takes
an input y ∈ {0, 1}n and outputs 1 if and only if y = z. The point function
obfuscator outputs an obfuscated version OPT (Rz) of Rz. In addition to the
output of Algorithm7.2, our obfuscator OH also outputs Q = OPT (Rx).

As the decoding algorithm is a universal algorithm, we will simply denote the
obfuscated program OH(P ) with the tuple ((pi)i=1,...,n, q,X,Q). During the exe-
cution of the obfuscated program, Algorithm7.4 is run on (n, (pi)i=1,...,n, q,X, y)
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and returns either ⊥ (in which case the program returns 0) or a candidate value
x′. The obfuscated program then outputs Q(x′), which is 1 if and only if x′ = x.
Formally, the obfuscated program is given in Algorithm7.1.

Algorithm 7.1. Obfuscated Program (with embedded data (pi)i=1,...,n, q,X,Q)
procedure Execute(y ∈ {0, 1}n)

x′ = Decode(n, (pi)i=1,...,n, q, X, y)
if x′ =⊥ then return 0
return Q(x′)

end procedure

The encoder (Algorithm 7.2) receives as an input the distance threshold r, the
vector size n and the target vector x. It then outputs the encoding represented
by a triple ((pi)i=1,...,n, q,X).

Algorithm 7.2. Encoding (Obfuscation)
procedure Encode(r < n/2 ∈ N; x ∈ {0, 1}n)

sample a random sequence of distinct primes (pi)i=1,...,n from [2, O(n log(n))]
sample small safe prime q such that ∀I ⊂ {1, . . . , n} with |I| ≤ r,

∏
i∈I pi < q/2

compute X =
∏n

i=1 pxi
i mod q

return ((pi)i=1,...,n, q, X)
end procedure

The constrained factoring algorithm (Algorithm7.3) factors an input number
using a fixed list of primes and outputs the factors respectively fails if the input
is composite with factors that are not in the list of primes.

Algorithm 7.3. Constrained Factoring
procedure CFactor(n, (pi)i=1,...,n, x ∈ N)

set F = {}
for i = 1, . . . , n do

if pi | x then append pi to F and reduce x ← x/pi

end for
return F if x = 1 else ⊥

end procedure

The decoder (Algorithm 7.4) receives as an input an encoding in the form
of a triple ((pi)i=1,...,n, q,X) and a test vector. It then attempts to decode the
triple and outputs the original target vector or fails if the test vector was not
within the required distance threshold.
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Algorithm 7.4. Decoding (Executing the obfuscated program)
procedure Decode(n, (pi)i=1,...,n, q ∈ N; X ∈ Z/qZ; y ∈ {0, 1}n)

compute Y −1 =
∏n

i=1 p−yi
i mod q

compute E = XY −1 mod q
compute the continued fraction representation of E/q, with convergents C
for all h/k ∈ C do

F ← CFactor(n, (pi)i=1,...,n, k), F ′ ← CFactor(n, (pi)i=1,...,n, kE mod q)
if F �= ⊥ and F ′ �= ⊥ then

let m = (0, . . . , 0) ∈ {0, 1}n be the zero vector
for i = 1, . . . , n do

if pi ∈ F ∪ F ′ then set mi = 1
end for
return y ⊕ m

end if
end for
return ⊥

end procedure

7.2 Decoding

In this section we will analyse decoding complexity and efficiency. For decoding
we have to factor the product Eq. (7.2). First, we note that it can be written
as ND−1 modulo q, or in other words ED = N + sq, N =

∏n
i=1 pμi

i , and
D =

∏n
i=1 pνi

i for some s ∈ Z and where now μi, νi ∈ {0, 1}, μiνi = 0 for all i.
By expanding E/q into a continued fraction we are then able to recover s/D from
one of the convergents hi/ki for some i ∈ N under the condition that ND < q/2.
Hence decoding always succeeds since we have chosen the primes (pi)i=1,...,n and
q such that ND =

∏
i∈I pi < q/2 for some I ⊂ {1, . . . , n} with |I| ≤ r.

Lemma 7.1 (Correctness). Consider the algorithms Encode (Algorithm7.2)
and Decode (Algorithm7.4). For every r < n/2 ∈ N, x ∈ {0, 1}n, for every
((pi)i=1,...,n, q,X) ← Encode(r, n, x) and for every y ∈ {0, 1}n such that
dH(x, y) < r it holds that Decode(n, (pi)i=1,...,n, q,X, y) = x.

Proof. To see why we require ND < q/2, note that there exists an s ∈ Z such
that ED − sq = N . Therefore

∣
∣
∣E

q − s
D

∣
∣
∣ = N

qD . Now Theorem 6.1 asserts us that

s/D is a convergent of E/q if
∣
∣
∣E

q − s
D

∣
∣
∣ < 1

2D2 and so we find the requirement
ND < q/2.

For each convergent hi/ki of E/q, ki respectively (kiE mod q) can be fac-
tored separately using the pi to recover the νi and μi from which x ∈ {0, 1}n can
then finally be recovered using y ∈ {0, 1}n. This all works assuming y ∈ BH,r(x)
since then the factors of N and D will be unique (of multiplicity 1) and con-
tained in the sequence (pi)i=1,...,n. If now y /∈ BH,r(x) then with high probability
(dependent on r, n) the factors of N and D will not be unique and/or not con-
tained in (pi)i=1,...,n in which case the decoding fails. ��
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Remark 1. Note that our decoding algorithm can also be used to solve the prob-
lem of matching distance in Z

n under the �1 norm. If X =
∏

i pxi
i mod q is an

encoding of x ∈ Z
n and if y ∈ Z

n is such that ‖x − y‖1 ≤ r then by taking
continued fractions and factoring still reveals the error vector e = x − y ∈ Z

n.

Decoding Efficiency. We will now argue that decoding E is efficient. Assum-
ing that E = XY −1 for some x, y ∈ {0, 1}n such that dH(x, y) < r, one of the
convergents hi/ki will yield s/D. From Sect. 6 we know that in our case the num-
ber of convergents we have to factor is of the order O(log(q)) in the worst case.
Because we fixed a list of small primes pi beforehand, we can test for a proper
convergent hi/ki and simultaneously factor N and D efficiently. Thus decoding
is of the order O(n log(q)) in the number of (modular) multiplications/divisions.
By the prime number theorem we may take q ∼ (n log n)r and thus decoding is
also of the order O(nr log(n log n)).

7.3 Avoiding False Accepts

We define a false accept to be an input y that is far from x but such that E
has a smooth product representation. Recall that the obfuscator OH defined in
Sect. 7.1 additionally outputs Q = OPT (Rx) which is used to prevent such false
accepts. We will explain in this section that the additional step can be omitted
if r is chosen such that

r > log(2
√

2πe)
n

log(n log(n))
= rf (n). (7.3)

Let y be a false accept, which means XY −1 ≡ ∏
i pεi

i mod q as in Eq. (7.2),
where εi ∈ {−1, 0, 1}. Then

∏n
i=1 pxi−yi−εi

i = 1 mod q where −2 ≤ xi −
yi − εi ≤ 2. It follows that there is a non-zero vector in the lattice Λ =
{x ∈ Z

n | ∏n
i=1 pxi

i = 1 mod q } with norm bounded by 2
√

n.
Treating the lattice Λ as a random lattice, the Gaussian heuristic (see [29,

Section 7.5.3]) estimates the size of the shortest non-zero vector in Λ as λ1 ∼
√

n
2πevol(Λ)

1
n ≤ √

n
2πe (q − 1)

1
n , where equality holds if the pi generate (Z/qZ)∗.

We use this bound to argue that there is no vector of length bounded by 2
√

n,
and hence no false accept, Indeed, to have λ1 > 2

√
n we need

√
n

2πe (n log(n))
r
n >

2
√

n and so
(n log(n))

r
n > 2

√
2πe. (7.4)

Equation (7.4) assumes that q ∼ (n log(n))r, i.e. the size of the primes pi is
as small as possible. If we want to be able to use a smaller r we may also choose
the primes pi > n log(n).

7.4 Example Parameters

The parameters of the Hamming distance obfuscator can be chosen fairly flexibly.
We want to emphasize that a priori any vector size n ∈ N is possible. The
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actual security level of the obfuscator depends on the error parameter r < n/2
which we expect to be fixed by the demands of the application. Note that it is
naturally bounded by Lemma2.2. Assuming a uniform distribution of possible
target vectors x, the bit-security (meaning logarithm to base 2 of the expected
number of operations to find an accepting input) of a parameter set (r, n) can
be calculated using λr,n = − log2(hr/2n) where hr is defined in Lemma 2.1. We
give some example parameter sets along with their bit-security in Fig. 2.

r �λr,n� �log2(q)�
155 64 1804
128 102 1490
32 346 372

(a) n = 512 (rf (n) = 134, rPQ(n) = 44)

r �λr,n� �log2(q)�
306 128 3915
256 199 2546
64 686 818

(b) n = 1024 (rf (n) = 244, rPQ(n) = 80)

Fig. 2. Example parameter sets for obfuscated Hamming distance with r < n/2 and
bit-security parameter λr,n. We estimate the size of q by q ∼ (n log n)r. When r > rf (n)
(see Eq. (7.3)) we do not expect false accepts, and so do not need to use the point
obfuscator. When r < rPQ(n) (see Eq. (5.3)) then the scheme is conjectured to be
post-quantum secure (as long as the point obfuscator is post-quantum secure).

7.5 Performance

For completeness, we have implemented (an unoptimised version of) the Ham-
ming distance obfuscator using the C programming language and conducted
experiments on a desktop computer (Intel(R) Core(TM) i7-4770 CPU 3.40 GHz).
We take n = 511 and r = 85 (i.e. �λ85,511� = 185 and �log2(q)� = 989) to allow
comparison with [33,42]. We measured the time to produce and decode 1000
obfuscation instances. We found an average encoding time of 52 ms and an aver-
age decoding time of 14 ms. In comparison Karabina and Canpolat [33] found
100 ms for encoding and 350 ms for decoding respectively on a similar computer
(Intel(R) Xeon(R) CPU E31240 3.30 GHz). It is possible to further speed up
encoding by choosing a good safe prime generating algorithm and decoding can
be parallelised in the factoring steps instead of attempting to factor after com-
puting each new convergent. Note that the data ((pi)i=1,...,n, q,X) can be stored
in less than one kilobyte.

An interactive model of program obfuscation called token based obfuscation
was first considered by Goldwasser et al. [25] and an LWE based implementa-
tion was presented by Chen et al. [13]. They found experimentally that “For
the case of the Hamming distance threshold of 3 and 24-bit strings, the TBO
construction requires 213 GB to store the obfuscated program.” Obfuscation
took 72.6 min. Of course, the parameters (n, r) = (24, 3) are much too small for
the function to be evasive. Further, this problem is easily solved using a secure
sketch. In comparison our scheme can be implemented with realistic parameters
like (n, r) = (511, 85) and requires less than a kilobyte of storage and less than
a second to run. Clearly the ring-LWE approach in [13] is orders of magnitude
worse than in our scheme. Also for comparison, the scheme of Bishop et al. [6]
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(using the optimised variant in [4]) requires n + 1 elements of a group with a
hard discrete logarithm problem. With n = 511 and a group of size 2256 this
would require at least 16 kilobytes to store the program.

7.6 Polynomial Ring Variant

There is a variant of our Hamming distance obfuscator that uses a polynomial
ring over a finite field to encode binary vectors. Note that this variant works
analogously for the conjunction obfuscator.

Let k be a field and let R = k[z]. The idea is to replace Z/qZ by R/Q where
the ideal Q = (q(z)) is generated by some suitable irreducible polynomial q ∈ R
of sufficiently large degree. For the ground field we may take a finite field of
suitable order.

Given r < n/2 ∈ N, encoding a target vector x ∈ {0, 1}n follows the same
process as before. We choose a random sequence of small distinct irreducible
polynomials (pi)i=1,...,n in R and an irreducible polynomial q such that

∑

i∈I

deg(pi) < deg(q)

for all I ⊂ {1, . . . , n} with |I| ≤ r. To encode x ∈ {0, 1}n, publish X =
∏n

i=1 pxi
i

mod q along with the polynomials (pi)i=1,...,n and q. Given another element
y ∈ {0, 1}n we can check if y ∈ BH,r(x) using the encoding X. Again, to recover
the errors εi we use continued fraction decomposition and factoring, though now
in R. We refer to the full version of this work for details.

Comparison to Z/qZ Case. Using polynomials has several advantages: The
ground field k can be of small order since the order of R/Q is given by |R/Q| =
|k|deg(q) and thus controllable by the size of q ∈ R. We may furthermore choose
a compact representation of the irreducibles (pi)i=1,...,n and q to shrink encoding
size and speed up computation. Working out an exact comparisons of parameters,
encoding sizes, and computational aspects we leave as a future open question.

8 Security

Here we analyse the security of our Hamming distance obfuscator. We will show
distributional VBB security and that the obfuscator is input-hiding. Our results
will depend on the hardness of the distributional modular subset product problem
that was introduced in Sect. 5.

8.1 Security of the Obfuscator

To show that the Hamming distance obfuscator is a distributional VBB obfusca-
tor, we need to show that it satisfies all the properties of Definition 4.1. Note that
Definition 4.1 for VBB obfuscation is given in asymptotic terms with respect to a
security parameter λ. On the other hand, Problems 5.1 and 5.2 are given in terms
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of explicit parameters r, n ∈ N. Thus in the following, let the parameters r, n ∈ N

be implicitly dependent on the security parameter λ, i.e. r = r(λ), n = n(λ).
Taking (n(λ), r(λ)) = (16λ, λ) gives Theorem 1.1 of the introduction.

Theorem 8.1. Let (n(λ), r(λ)) be a sequence of parameters for λ ∈ N. Let
D = {Dλ}λ∈N be an ensemble of Hamming distance evasive distributions (as in
Definition 2.5). Suppose that D-MSPr,n,D (Problem 5.2) is hard and that OPT is
a dependent auxiliary input distributional VBB point function obfuscator. Then
the Hamming distance obfuscator OH is a distributional VBB obfuscator.

Proof. The obfuscator is functionality preserving by Lemma7.1. It is also clear
that the obfuscator causes only a polynomial slowdown when compared to an
unobfuscated Hamming distance calculation since the evaluation algorithm runs
in time polynomial in all the involved parameters.

By Theorem 4.1 it is sufficient to show that there exists a (non-uniform) PPT
simulator S such that, for every distribution ensemble D = {Dλ}λ∈N ∈ D, it
holds that (where α denotes any auxiliary information, if required)

(OH(P ), α)
c≈ (S(|P |), α).

Let D now be a class of distribution ensembles such that each D ∈ D is a
Hamming distance evasive distribution as in Definition 2.5. We will construct
the simulator S. First the simulator S takes as input |P | and determines the
parameters r, n ∈ N. Then it runs Algorithm8.1 which will generate the first
half of the eventual output.

Algorithm 8.1. Encoding Simulator
procedure SimulateEncode(r < n/2 ∈ N)

sample random sequence of distinct primes (pi)i=1,...,n from [2, O(n log(n))]
sample small safe prime q such that ∀I ⊂ {1, . . . , n} with |I| ≤ r:

∏
i∈I pi < q/2

sample X ′ ← Z/qZ uniformly
return ((pi)i=1,...,n, q, X ′)

end procedure

Lastly, the simulator S samples a uniformly random Q′ from the codomain
of OPT (using the simulator SPT that exists due to the assumption of OPT

being a distributional VBB obfuscator). The simulator SPT receives the auxiliary
information ((pi)i=1,...,n, q,X ′) as additional input, provided by the top-level
simulator S.

Denote the simulator output by the tuple ((pi)i=1,...,n, q,X ′, Q′). It is clear
that S is polynomial-time since Algorithm 8.1 is too. Finally, assuming that
Problem 5.2 is hard, a real obfuscation ((pi)i=1,...,n, q,X,Q) obtained from the
Hamming distance obfuscator OH described in Sect. 7.1 and the simulator output
are computationally indistinguishable:

((pi)i=1,...,n, q,X,Q)
c≈ ((pi)i=1,...,n, q,X ′, Q′). (8.1)
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This completes the proof. ��
Remark 2. As noted in Sect. 7.3, the obfuscator OH can be modified to omit the
point obfuscation step. Hence Theorem 8.1 can be restated without requiring
a distributional VBB obfuscator OPT by assuming an ensemble of Hamming
distance evasive distributions {Dλ}λ∈N that satisfy Eq. (7.3).

Next, we will show that the Hamming distance obfuscator is input hiding
according to Definition 4.4.

Theorem 8.2. Let (n(λ), r(λ)) be parameters satisfying r > rf (n) (recall
Eq. (7.3)). Let D = {Dλ}λ∈N be an ensemble of Hamming distance evasive dis-
tributions (as in Definition 2.5). Suppose that MSPr,n,D (Problem 5.1) is hard.
Then the Hamming distance obfuscator OH is input hiding.

Proof. The ensemble {Dλ}λ∈N of Hamming distance evasive distributions
induces an ensemble of programs {Pn}n∈N (see Sect. 7.1). Suppose there exists
a PPT adversary A such that the success probability is bounded by

Pr
P←Pn

[P (A(α,OH(P ))) = 1] ≤ g(n)

for some function g(n) (recall Definition 4.4 of an input hiding obfuscator).
We will now construct an algorithm A′ that solves Problem 5.1 given A with

success probability bounded by g(n). Let ((pi)i=1,...,n, q,X) be an instance of
Problem 5.1. Since r > rf (n), this instance uniquely defines x ∈ {0, 1}n such that
X =

∏n
i=1 pxi

i mod q, and hence defines a program P . Then ((pi)i=1,...,n, q,X)
is a correct obfuscation of P . The algorithm A′ runs the adversary on A on
((pi)i=1,...,n, q,X) and A outputs a vector y ∈ {0, 1}n that is accepted by P
with probability g(n). Note that in Definition 4.4 the adversary outputs a valid
input for P , not OH(P ). Hence, y is close to x as r > rf (n). Finally, A′ decodes
X given y using Algorithm 7.4 and thus outputs x with probability g(n).

But we assumed that Problem 5.1 is hard and hence g(n) is negligible. ��

9 Obfuscating Conjunctions

In this section we describe a new obfuscator for conjunctions, based on the Ham-
ming distance obfuscator of Sect. 7. Recall the notation χ(x) from Definition 3.1.

We first give a generic reduction of pattern matching with wildcards to ham-
ming distance. Let x ∈ {0, 1, �}n be a pattern and let r be the number of
wildcards. Let x′ ∈ {0, 1}n be any string such that x′

i = xi for all non-wildcard
positions 1 ≤ i ≤ n. Then it is clear that any y ∈ {0, 1}n that satisfies the
pattern has Hamming distance at most r from x′. The problem is that there are
many other vectors y that have Hamming distance at most r from x′ but which
do not satisfy the pattern. Further, pattern matching with wildcards can be eva-
sive with r as large as n − λ where λ is a security parameter (e.g., n = 1000 and
r = 900), while Hamming distance is not evasive if r > n/2). So it is clear that
this is not a general reduction of obfuscating conjunctions to fuzzy matching.
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However, in certain parameter ranges (where r < n/2) one can consider
using fuzzy matching to give an approach to obfuscating conjunctions. As we
will explain in this section, our scheme has some advantages over the generic
reduction because inputs y that match the pattern are more easily identified
than vectors y that are close to x′ in the Hamming metric but do not match the
pattern. Indeed, we will explain that, for certain parameter ranges, our approach
is much more compact than other solutions to the conjunction problem.

The Conjunction Obfuscator. Let n ∈ N and x ∈ {0, 1, �}n. Choose a
random sequence of small distinct primes (pi)i=1,...,n (i.e. pi �= pj for i �= j). It
suffices to randomly sample each pi from the interval [(n log(n))2, ((n+1) log(n+
1))2]. Denote by Wx = {i |xi = �} the set of indices such that xi is a wildcard.
Assume we can choose a safe prime q such that

∏

i∈Wx

pi <
q

2
<

∏

i∈Wx∪{j}
pi (9.1)

for all j ∈ {1, . . . , n} \ Wx. Set r = |Wx|; we furthermore require that r < n/2
as we will see shortly.

To encode x, consider the map σ : {0, 1, �} → {−1, 0, 1} that acts in the
following fashion

0 �→ −1, 1 �→ 1, � �→ 0.

Publish then

X =
n∏

i=1

p
σ(xi)
i mod q

along with the list of primes (pi)i=1,...,n and the modulus q. Note that, for this
encoding to hide x, we require

∏n
i=1 p

σ(xi)
i > q.

Given a vector y ∈ {0, 1}n such that χ(y) = 1, we compute Y =
∏n

i=1 p
σ(yi)
i

mod q from which we can immediately find

E = XY −1 mod q =
n∏

i=1

p
σ(xi)−σ(yi)
i mod q =

n∏

i=1

pεi
i mod q (9.2)

where εi ∈ {−1, 0, 1}. We then recover the errors εi using continued fraction
decomposition and factoring. The errors εi directly correspond to the wildcard
positions Wx.

If χ(y) �= 1 then yi �= xi in some non-wildcard positions, i.e. Eq. (9.2) includes
values εi ∈ {−2, 2} and so decoding fails with high probability. The fact that
incorrect inputs give factors p±2

i in the product (while wildcard positions intro-
duce simply pi) is a nice feature that makes our scheme more secure than the
generic transformation of conjunctions to Hamming matching. It means we are
not reducing conjunctions to Hamming distance, but to a weighted �1-distance
on Z, where the non-wildcard positions are weighted double. Hence, even if an
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attacker guesses some wildcard positions (and so does not include the corre-
sponding pi in their product Y ), the value XY −1 mod q has p±2

i terms for each
incorrect non-wildcard position and so the attacker still needs to correctly guess
the correct bits in most non-wildcard positions.

Obfuscator and Obfuscated Program. The conjunction obfuscator works
as follows: For every conjunction x ∈ {0, 1, �}n with |Wx| < n/2 there exists a
polynomial size program P : {0, 1}n → {0, 1} that computes whether the input
vector y ∈ {0, 1}n matches x and evaluates to 1 in this case, otherwise to 0.
Denote the family of all such programs with P.

The conjunction obfuscator OC : P → P ′ takes one such program P ∈ P and
outputs another polynomial size program in a different family P ′. In our case this
is the decoding algorithm along with the polynomial size elements (pi)i=1,...,n,
q and X ∈ Z/qZ. The obfuscator also outputs Q = OPT (Rx′) where x′ denotes
the vector x with the wildcards replaced with 0.

We again identify the obfuscated program with the tuple ((pi)i=1,...,n,
q,X,Q). The obfuscated program outputs 1 if evaluation succeeds for an input
y ∈ {0, 1}n and if the program Q, when executed on the decoded conjunction
with its wildcards replaced with 0, outputs 1, else the output is 0. See the full
version of this work for details.

Parameters. The same considerations regarding the use of a safe prime and
decoding efficiency as in Sect. 7 apply here. Let us now argue that a safe prime
q which is bounded as in Eq. (9.1) exists. We use the following heuristic: The
density of Sophie Germain primes is given by πSG(n) ∼ 2Cn/ log2(n) for a
constant 2C ≈ 1.32032 [40]. An asymptotic inverse is given by n log2(n) and
so we can expect the m-th Sophie Germain prime to be of size approximately
m log2(m). Hence, assuming that the pi are sampled from [(n log(n))2, ((n +
1) log(n + 1))2], we require that there exists an index m ∈ N such that

((n + 1) log(n + 1))2r < m log2(m) < (n log(n))2(r+1) (9.3)

which, heuristically, we may convince ourselves to hold by considering the expo-
nential nature of the bounding expressions in r. We refer to the full version of
this work for details.

9.1 Relation to Hamming Distance

Our conjunction obfuscator construction is related to our Hamming distance
obfuscator (cf. Sect. 7) and thus exhibits several limitations.

Firstly, the construction limits the number of wildcards |Wx| < n/2.
Secondly, due to the construction, the problem of finding a match to x ∈

{0, 1, �}n reduces to the problem of finding a vector y ∈ {−1, 0, 1}n ⊂ Z
n such

that ‖σ(x) − y‖1 < |Wx|. Note that we took the representatives of Z/3Z to be
{−1, 0, 1} such that the wildcard primes never appear as factors of X. We may
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compute the number of possible vectors in an �1-ball of radius r (0 ≤ r ≤ n(q−1)
for Z/qZ) using |B1,q,r| =

∑r
k=0

〈
n
k

〉
q

where
〈

n
k

〉
q

=
∑n

i=0(−1)i
(
n
i

)(
k+n−1−iq

n−1

)

is the q-nomial triangle. The upper limit of the sum may actually be taken as
�(k+n−1)/q� instead of n. The symbol

〈
n
k

〉
q

counts the number of compositions
of k into n parts pi such that 0 ≤ pi ≤ q − 1 for each pi [22].

Finally, an input conjunction x ∈ {0, 1, �}n needs to be evasive. Assuming a
uniform conjunction, this will be the case if |B1,3,r|/3n < 1/2λ is negligible.

9.2 Parameter Choices

In Sect. 9.1 we have learned that the possible parameter choices of the conjunc-
tion obfuscator are more limited. Assuming a uniform and evasive conjunction
distribution, we find from Lemma3.1 and Sect. 9.1 that the bit-security is given
by λr,n = min {n − r,− log2(|B1,3,r|/3n)}. On the other hand, the conjunction
obfuscators given in [4,6] allow for a wider range of r < n − O(log(n)) at the
cost of assuming a generic group model.

Brakerski et al. [10] give no estimate of encoding size or security parameters
for their graded coding scheme based obfuscator. Chen et al. [13] found experi-
mentally that “The TBO of 32-bit conjunctions is close to being practical, with a
total evaluation runtime of 11.6 ms, obfuscation runtime of 5.1 min, and program
size of 11.6 GB for a setting with more than 80 bits of security.” This program
size and obfuscation time is orders of magnitude worse than the encoding size
of our scheme or the schemes of [4,6].

9.3 Security

Showing security of the conjunction obfuscator works in essentially the same
way as for the Hamming distance obfuscator in Sect. 8.1. Note that Problem5.1
respectively Problem 5.2 also makes sense when the distribution D is consid-
ered to be over {−1, 0, 1}n instead of {0, 1}n. Note that Remark 2 applies to
Theorem 9.1 as well.

Theorem 9.1. Let D = {Dλ}λ∈N be an ensemble of conjunction evasive dis-
tributions (as in Definition 3.2). Suppose that D-MSPr,n,D (Problem 5.2) with
the distribution D over {−1, 0, 1}n is hard and that OPT is a dependent auxil-
iary input distributional VBB point function obfuscator. Then the Conjunction
obfuscator OC is a distributional VBB obfuscator.

Theorem 9.2. Let D = {Dλ}λ∈N be an ensemble of conjunction evasive dis-
tributions (as in Definition 3.2). Suppose that MSPr,n,D (Problem 5.1) with the
distribution D over {−1, 0, 1}n is hard for r > rf (n) (recall Eq. (7.3)). Then the
Conjunction obfuscator OC is input hiding.
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10 Conclusion

We have introduced a new special purpose obfuscator for fuzzy matching under
Hamming distance as well as a new special purpose obfuscator for conjunctions.
We have shown that our obfuscators are virtual-black-box secure and input hid-
ing, based on the search and decision versions of the distributional modular
subset product problem. We believe our obfuscators are post-quantum secure.
The Hamming distance obfuscator can cover a wider range of parameters than
previous solutions based on secure sketches.

Open problems include finding optimal parameters. More speculative open
problems include obfuscating fuzzy matching with respect to edit distance or
other metrics.
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thank the Marsden Fund of the Royal Society of New Zealand for funding this research,
and the reviewers for suggestions.
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Abstract. We show how to construct maliciously secure oblivious trans-
fer (M-OT) from a strengthening of key agreement (KA) which we call
strongly uniform KA (SU-KA), where the latter roughly means that the
messages sent by one party are computationally close to uniform, even
if the other party is malicious. Our transformation is black-box, almost
round preserving (adding only a constant overhead of up to two rounds),
and achieves standard simulation-based security in the plain model.

As we show, 2-round SU-KA can be realized from cryptographic
assumptions such as low-noise LPN, high-noise LWE, Subset Sum, DDH,
CDH and RSA—all with polynomial hardness—thus yielding a black-box
construction of fully-simulatable, round-optimal, M-OT from the same
set of assumptions (some of which were not known before).

Keywords: Oblivious transfer · Malicious security · LPN

1 Introduction

Oblivious transfer (OT) is a very simple functionality between two parties: a
sender with input two strings (s0, s1), and a receiver with input a choice bit b;
the output for the receiver equals sb, while the sender learns nothing (i.e., the
receiver’s choice bit remains hidden) [15,51]. The standard security definition
for OT compares an execution of the protocol in the real world—where either
the sender or the receiver might act maliciously—with an execution in the ideal
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world where a trusted third party simply implements the above functionality.
Following previous work, we call “fully simulatable” an OT protocol that meets
this notion.

Surprisingly, OT turned out to be sufficient for constructing secure multi-
party computation (MPC) for arbitrary functionalities [6,20,32,33,38,53,54].
For this reason, constructing OT has been an important objective and received
much attention. Nevertheless, previous constructions of fully-simulatable OT
suffer from diverse shortcomings (cf. also Sect. 1.4): (i) They require trusted
setup, or are based on random oracles (as, e.g., in [34,50]); (ii) They have high
round complexity (as, e.g., in [27]), while the optimal number of rounds would
be 4 [19,32]; (iii) They are non-black-box, in that they are obtained by gener-
ically transforming semi-honestly secure OT (SH-OT)—which in turn can be
constructed from special types of PKE [21]—to fully-simulatable OT via (possi-
bly interactive) zero-knowledge proofs (á la GMW [22]); (iv) They are tailored
to specific hardness assumptions (as, e.g., in [7,41]).

One exception is the work of Ostrovsky, Richelson and Scafuro [49], that
provide a black-box construction of 4-round, fully-simulatable OT in the plain
model from certified trapdoor permutations (TDPs) [5,10,45], which in turn can
be instantiated from the RSA assumption under some parameter regimes [10,35].
This draws our focus to the question:

Can we obtain 4-round, fully-simulatable OT in a black-box way from
minimal assumptions, without assuming trusted setup or relying on

random oracles?

1.1 Our Contribution

We give a positive answer to the above question by leveraging a certain type of
key agreement (KA) protocols, which intuitively allow two parties to establish
a secure channel in the presence of an eavesdropper. The influential work by
Impagliazzo and Rudich [31] showed a (black-box) separation between secret-
key cryptography and public-key cryptography and KA. Ever since, it is com-
mon sense that public-key encryption (PKE) requires stronger assumptions than
the existence of one-way functions, and thus secure KA is the weakest assump-
tion from which public-key cryptography can be obtained. More recent research
efforts have only provided further confidence in this conviction [18].

In more details, our main contribution is a construction of fully-simulatable
OT (a.k.a. maliciously secure OT, or M-OT) from a strengthening of KA pro-
tocols, which we term strongly uniform (SU); our protocol is fully black-box and
essentially round-preserving, adding only a constant overhead of at most two
rounds. In particular, we show:

Theorem 1. For any odd t ∈ N, with t > 1, there is a black-box construction of
a (t + 1)-round, fully-simulatable oblivious transfer protocol in the plain model,
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from any t-round strongly uniform key agreement protocol and a perfectly binding
commitment scheme.1

Since, as we show, 2-round and 3-round SU-KA can be instantiated from several
assumptions, including low-noise (ring) LPN, high-noise (ring) LWE, Subset
Sum, CDH, DDH, and RSA—all with polynomial hardness—a consequence of
our result is that we obtain round-optimal M-OT in the plain model under
the same set of assumptions (in a black-box way). In particular, this yields the
first such protocols from LPN, LWE (with modulus noise ratio

√
n), CDH, and

Subset Sum.2 Note that our LWE parameter setting relates to an approximation
factor of n1.5 for SIVP in lattices of dimension n [52], which is the weakest LWE
assumption known to imply PKE.

In our construction, we use a special kind of “commit-and-open” protocols
which were implicitly used in previous works [39,49]. As a conceptual contri-
bution, we formalize their security properties, which allows for a more modular
presentation and security analysis.

1.2 Technical Overview

We proceed to a high level overview of the techniques behind our main result,
starting with the notion of strong uniformity and the abstraction of commit-
and-open protocols, and landing with the intuition behind our construction of
M-OT (cf. Fig. 1).

Strong Uniformity. As an important stepping stone to our main result, in Sect. 3,
we introduce the notion of strong uniformity. Recall that a KA protocol allows
Alice and Bob to share a key over a public channel, in such a way that the shared
key is indistinguishable from uniform to the eyes of a passive eavesdropper. Strong
uniformity here demands that, even if Bob is malicious, the messages sent by
Alice are computationally close to uniform over an efficiently sampleable group.3

This flavor of security straightforwardly translates to SH-OT and PKE, yield-
ing so-called SUSH-OT and SU-PKE. In the case of SUSH-OT, it demands that
all messages of the receiver have this property (even if the sender is malicious).

1 Statistically binding commitment schemes are implied by perfectly-correct KA pro-
tocols [44]. Both LWE and low-noise LPN implied statistically binding commitment
schemes as well [25].

2 We can also base our construction on Factoring when relying on the hardness of
CDH over the group of signed quadratic residues [30], but this requires a trusted
setup of this group which is based on a Blum integer.

3 We call a group efficiently sampleable if we can efficiently sample uniform elements
from the group and, given a group element, we can simulate this sampling procedure.
A reverse sampleable group [23] would suffice. In the context of public-key encryp-
tion a similar property is called oblivious key generation [14]. In our construction, we
require a stronger property where the public keys are additionally computationally
indistinguishable from uniform.
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M-OT MPC

SUSH-OT SU-KA

SU-PKE (Type A) SU-PKE (Type B)

TDP‡Low-noise LPN LWE Subset Sum CDH DDH

t + 1, t odd
[6], t ≥ 5

t

t = 2 t = 3

† †† †

Fig. 1. Overview over equivalence and implications of the notion of strong uniformity.
The value t ∈ N denotes the round complexity. † This holds over efficiently sampleable
groups. ‡ We need an enhanced certified TDP.

For SU-PKE, we distinguish two types, which are a strengthening of the types
defined by Gertner et al. [21].4

– Type-A PKE: The distribution of the public key is computationally indis-
tinguishable from uniform. This type of PKE is known to exist under
DDH [17] and CDH [24] over efficiently sampleable groups,5 LWE [52], low-
noise LPN [2], and Subset Sum [46].

– Type-B PKE: The encryption of a uniformly random message w.r.t. a mali-
ciously chosen public key is computationally close to the uniform distribution
over the ciphertext space. This type of PKE is harder to obtain, and can be
constructed from enhanced certified TDPs, and from CDH and DDH over
efficiently sampleable groups. In case of a TDP f , a ciphertext has the form
(f(r), h(r) ⊕ m), where h is a hardcore predicate for f , and r is a random
element from the domain of f . Under CDH or DDH, a ciphertext is defined
as gr and h(gxr) ·m, gxr ·m respectively, where gr is a uniform group element,
and gx is the public key. Clearly, for a uniform message m, these ciphertexts
are uniform even under maliciously chosen public keys.

In Sect. 3, we show that SU Type-A and SU Type-B PKE imply, respectively,
2-round and 3-round SU-KA, whereas 2-round SU-KA implies SU Type-A PKE.

4 The difference is that the notions in [21] only ask for oblivious sampleability, rather
than our stronger requirement of computational uniformity over efficiently sampleable
groups.

5 These are groups for which one can directly sample a group element without knowing
the discrete logarithm with respect to some generator. The latter requires non black-
box access to the group, which is also needed when using ElGamal with messages that
are encoded as group elements and not as exponents. Though we need the stronger
property of sampleability of elements that are computationally close to uniform.
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Further, we prove that SU-KA is equivalent to SUSH-OT. The latter implies
that strong uniformity is a sufficiently strong notion to bypass the black-box
separation between OT and KA, in a similar way as Type-A and Type-B PKE
bypass the impossibility of constructing OT from PKE [21].

Commit-and-Open Protocols. A 1-out-of-2 commit-and-open (C&O) protocol is
a 3-round protocol with the following structure: (1) In the first round, the prover,
with inputs two messages m0,m1 and a bit d, sends a string γ (called “commit-
ment”) generated with md but independent of m1−d to the verifier; (2) In the
second round, the verifier sends a value β to the prover (called “challenge”); (3)
In the third round, the prover sends a tuple (δ,m0,m1) to the verifier (called
“opening”). Security requires two properties. The first property, called existence
of a committing branch, demands that a malicious prover must be committed
to at least one message, i.e. md, already after having sent γ. The second prop-
erty, called committing branch indistinguishability, asks that a malicious verifier
cannot learn the committing branch, i.e. d, of an honest prover.

A construction of C&O protocols for single bits is implicit in Kilian [39]. This
has been extended to strings by Ostrovsky et al. [49]. Both constructions make
black-box use of a statistically binding commitment scheme, and allow a prover
to equivocally open one of the messages.

M-OT from SUSH-OT: A Warm Up. In order to explain the main ideas behind
our construction of M-OT, we describe below a simplified version of our protocol
for the special case of t = 2, i.e. when starting with a 2-round SUSH-OT (S′,R′);
here, we denote with ρ the message sent by the receiver, and with σ the message
sent by the sender, and further observe that for the case of 2 rounds the notion of
strong uniformity collapses to standard semi-honest security with the additional
property that the distribution of ρ is (computationally close to) uniform to the
eyes of an eavesdropper. We then construct a 4-round OT protocol (S,R), as
informally described below:

1. (R → S): The receiver picks a uniformly random value m1−b ∈ M, where b
is the choice bit, and runs the prover of the C&O protocol upon input m1−b,
obtaining a commitment γ that is forwarded to the sender.

2. (S → R): The sender samples a challenge β for the C&O protocol, as well as
uniformly random elements r0, r1 ∈ M. Hence, it forwards (β, r0, r1) to the
receiver.

3. (R → S): The receiver runs the receiver R′ of the underlying 2-round OT
protocol with choice bit fixed to 0, obtaining a value ρb which is used to define
the message mb = ρb − rb required to complete the execution of the C&O
protocol in the non-committing branch b. This results in a tuple (δ,m0,m1)
that is forwarded to the sender.

4. (S → R): The sender verifies that the transcript T = (γ, β, (δ,m0,m1)) is
accepting for the underlying C&O protocol. If so, it samples u0, u1 ∈ M uni-
formly at random, and runs the sender S′ of the underlying 2-round OT pro-
tocol twice, with independent random tapes: The first run uses input strings
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(s0, u0) and message m0 + r0 from the receiver, resulting in a message σ0,
whereas the second run uses input strings (s1, u1) and message m1 + r1 from
the receiver, resulting in a message σ1. Hence, it sends (σ0, σ1) to the receiver.

5. Output: The receiver runs the receiver R′ of the underlying 2-round OT pro-
tocol, upon input message σb from the sender, thus obtaining sb.

Correctness is immediate. In order to prove simulation-based security we
proceed in two steps. In the first step, we show the above protocol achieves a
weaker security flavor called receiver-sided simulatability [48,49] which consists
of two properties: (1) The existence of a simulator which by interacting with the
ideal OT functionality can fake the view of any efficient adversary corrupting the
receiver in a real execution of the protocol (i.e., standard simulation-based secu-
rity w.r.t. corrupted receivers); (2) Indistinguishability of the protocol transcripts
with choice bit of the receiver equal to zero or one, for any efficient adversary
corrupting the sender in a real execution of the protocol (i.e., game-based secu-
rity w.r.t. corrupted senders). In the second step, we rely on a round-preserving
black-box transformation given in [49], which allows to boost receiver-sided sim-
ulatability to fully-fledged malicious security. To show (1), we consider a series
of hybrid experiments:

– In the first hybrid, we run the first 3 rounds of the protocol, yielding a
partial transcript γ, (β, r0, r1), (δ,m0,m1). Hence, after verifying that T =
(γ, β, (δ,m0,m1)) is a valid transcript of the C&O protocol, we rewind the
adversary to the end of the first round and continue the execution of the
protocol from there using a fresh challenge (β′, r′

0, r
′
1), except that after the

third round we artificially abort if there is no value b̂ ∈ {0, 1} such that
mb̂ = m′

b̂
, where (δ′,m′

0,m
′
1) is the third message sent by the adversary after

the rewinding.
Notice that an abort means that it is not possible to identify a committing
branch for the C&O protocol, which however can only happen with negli-
gible probability; thus this hybrid is computationally close to the original
experiment.

– In the second hybrid, we modify the distribution of the value r′
1−b (right

after the rewinding) to r′′
1−b = ρ1−b − m1−b, where we set 1 − b

def= b̂ from the
previous hybrid, and where ρ1−b is obtained by running the receiver R′ of the
underlying 2-round OT protocol with choice bit fixed to 1.
To argue indistinguishability, we exploit the fact that the distribution of m1−b

is independent from that of r′
1−b, and thus by strong uniformity we can switch

r′
1−b + m1−b with ρ1−b from the receiver R′.

– In the third hybrid, we use the simulator of the underlying 2-round SH-OT
protocol to compute the messages σ1−b sent by the sender. Note that in both
the third and the second hybrid the messages (ρ1−b, σ1−b) are computed by
the honest sender, and thus any efficient algorithm telling apart the third and
the second hybrid violates semi-honest security of (S′,R′).
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In the last hybrid, a protocol transcript is independent of s1−b but still yields a
well distributed output for the malicious receiver, which immediately implies a
simulator in the ideal world.

To show (2), we first use the strong uniformity property of (S′,R′) to sample
mb uniformly at random at the beginning of the protocol. Notice the this implies
that the receiver cannot recover the value sb of the sender anymore. Finally, we
use the committing branch indistinguishability of the C&O protocol to argue
that the transcripts with b = 0 and b = 1 are computationally indistinguishable.

M-OT from SUSH-OT: The General Case. There are several difficulties when
trying to extend the above protocol to the general case where we start with a
t-round SUSH-OT. In fact, if we would simply iterate sequentially the above
construction, where one iteration counts for a message from R′ to S′ and back,
the adversary could use different committing branches from one iteration to the
other. This creates a problem in the proof, as the simulator would need to be
consistent with both choices of possible committing branches from the adversary,
which however requires knowing both inputs from the sender.

We resolve this issue by having the receiver sending all commitments γi for
the C&O protocol in the first round, where each value γi is generated including
a random message mi

1−b concatenated with the full history mi−1
1−b, . . . ,m

1
1−b.

Hence, during each iteration, the receiver opens one commitment as before. As
we show, this prevents the adversary from switching committing branch from one
iteration to the next one. We refer the reader to Sect. 4 for a formal description
of our protocol, and for a somewhat detailed proof intuition.

1.3 Application to Round-Efficient MPC

Since M-OT implies maliciously secure MPC [6,20] and very recently, the work
of Choudhuri et al. [11], a direct consequence of Theorem 1 is the following:

Corollary 1. For any odd t ∈ N, there is a non-black-box construction of a
(t + 1)-round maliciously secure multi-party computation protocol in the plain
model, from any t-round strongly uniform key agreement protocol.

Corollary 1 yields 4-round maliciously secure MPC from any of low-noise
LPN, high-noise LWE, Subset Sum, CDH, DDH, and RSA, all with polynomial
hardness. Previously to our work, it was known how to get maliciously secure
MPC in the plain model, for arbitrary functionalities:

– Using 5 rounds, via interactive ZK proofs and SH-OT [6], assuming
polynomially-hard LWE with super-polynomial noise ratio and adaptive com-
mitments [8], polynomially-hard DDH [3], and enhanced certified trapdoor
permutations (TDP) [6,49];

– Using 4 rounds, assuming sub-exponentially-hard LWE with super-
polynomial noise ratio and adaptive commitments [8], polynomially-hard
LWE with a SIVP approximation factor of n3.5 [7], sub-exponentially-hard
DDH and one-way permutations [3], polynomially-hard DDH/QR/DCR [4],
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and either polynomially-hard QR or QR together with any of LWE/D-
DH/DCR (all with polynomial hardness) [29].

1.4 Related Work

Maliciously Secure OT. Jarecki and Shamtikov [34], and Peikert, Vaikun-
tanathan, and Waters [50], show how to construct 2-round M-OT in the common
reference string model.

A result by Haitner et al. [27,28] gives a black-box construction of M-OT from
SH-OT. While being based on weaker assumptions (i.e., plain SH-OT instead
of SUSH-OT), assuming the starting OT protocol has round complexity t, the
final protocol requires 4 additional rounds for obtaining an intermediate security
flavor known as “defensible privacy”, plus 4 rounds for cut and choose, plus 2
times the number of rounds required for running coin tossing, plus a final round
to conclude the protocol. Assuming coin tossing can be done in 5 rounds [37],
the total accounts to t + 19 rounds, and thus yields 21 rounds by setting t = 2.

Lindell [41] gives constructions of M-OT with 7 rounds, under the DDH
assumption, the Nth residuosity assumption, and the assumption that homo-
morphic PKE exists. Camenish, Neven, and shelat [9], and Green and Hohen-
berger [26], construct M-OT protocols, some of which even achieve adaptive
security, using computational assumptions over bilinear groups.

There are also several efficient protocols for OT that guarantee only privacy
(but not simulatability) in the presence of malicious adversaries, see, e.g. [1,7,
36,40,47].

Round-Optimal MPC. Katz and Ostrovsky [37] proved that 5 rounds are nec-
essary and sufficient for realizing general-purpose two-party protocols, without
assuming a simultaneous broadcast channel (where the parties are allowed to
send each other messages in the same round). Their result was later extended by
Garg et al. [19] who showed that, assuming simultaneous broadcast, 4 rounds are
optimal for general-purpose MPC. Together with a result by Ishai et al. [32]—
yielding non-interactive maliciously secure two-party computation for arbitrary
functionalities, in the OT-hybrid model—the latter implies that 4 rounds are
optimal for constructing fully-simulatable M-OT in the plain model.

Ciampi et al. [13] construct a special type of 4-round M-OT assuming certified
TDPs,6 and show how to apply it in order to obtain (fully black-box) 4-round
two-party computation with simultaneous broadcast. In a companion paper [12],
the same authors further give a 4-round MPC protocol for the specific case of
multi-party coin-tossing.

6 They also claim [13, Footnote 3] that their OT protocol can be instantiated using
PKE with special properties, however no proof of this fact is provided.
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2 Preliminaries

2.1 Standard Notation

We use λ ∈ N to denote the security parameter, sans-serif letters (such as A,
B) to denote algorithms, caligraphic letters (such as X , Y) to denote sets, and
bold-face letters (such as v, A) to denote vectors and matrices; all vectors are by
default row vectors, and vT denotes a column vector. An algorithm is probabilistic
polynomial-time (PPT) if it is randomized, and its running time can be bounded
by a polynomial in its input length. By y ←$ A(x), we mean that the value y
is assigned to the output of algorithm A upon input x and fresh random coins.
We implicitly assume that all algorithms are given the security parameter 1λ as
input.

A function ν : N → [0, 1] is negligible in the security parameter (or simply
negligible) if it vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈
O(1/p(λ)) for all positive polynomials p(λ). We often write ν(λ) ∈ negl(λ) to
denote that ν(λ) is negligible.

For a random variable X , we write P [X = x] for the probability that X
takes on a particular value x ∈ X (with X being the set where X is defined).
The statistical distance between two random variables X and X ′ defined over
the same set X is defined as Δ (X ;X ′) = 1

2

∑
x∈X |Pr[X = x] − Pr[X ′ = x]|.

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to
denote that they are identically distributed, X ≈s Y to denote that they are
statistically close (i.e., Δ (Xλ;Yλ) ∈ negl(λ)), and X ≈c Y to denote that they
are computationally indistinguishable—i.e., for all PPT distinguishers D there
exists a negligible function ν : N → [0, 1] such that |Pr[D(Xλ) = 1]−Pr[D(Yλ) =
1]| ≤ ν(λ).

We call a group efficiently sampleable if and only if there is a PPT sampling
procedure Samp for the uniform distribution over the group, and moreover there
exists a PPT simulator SimSamp that given an element of the group, outputs the
randomness used by Samp. More precisely, (r,Samp(1λ, r)) ≈c (r′,Samp(1λ, r′))
where r′ ←$ SimSamp(1λ,Samp(1λ; r)) and r ←$ {0, 1}∗.7 A group that is effi-
ciently reverse sampleable (as in [23]) suffices.

2.2 Oblivious Transfer

An interactive protocol Π for the Oblivious Transfer (OT) functionality, features
two interactive PPT Turing machines S, R called, respectively, the sender and
the receiver. The sender S holds a pair of strings s0, s1 ∈ {0, 1}λ, whereas the
receiver R is given a choice bit b ∈ {0, 1}. At the end of the protocol, which
might take several rounds, the receiver learns sb (and nothing more), whereas
the sender learns nothing.

Typically, security of OT is defined using the real/ideal paradigm. Specifi-
cally, we compare a real execution of the protocol, where an adversary might
7 The existence of a simulator is crucial for constructing SUSH-OT from SU-KA; we

solely use it for this purpose.
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corrupt either the sender or the receiver, with an ideal execution where the par-
ties can interact with an ideal functionality. The ideal functionality, which we
denote by FOT, features a trusted party that receives the inputs from both the
sender and the receiver, and then sends to the receiver the sender’s input corre-
sponding to the receiver’s choice bit. We refer the reader to Fig. 2 for a formal
specification of the FOT functionality.

In what follows, we denote by REALΠ,R∗(z)(λ, s0, s1, b) (resp.,
REALΠ,S∗(z)(λ, s0, s1, b)) the distribution of the output of the malicious receiver
(resp., sender) during a real execution of the protocol Π (with s0, s1 as inputs of
the sender, b as choice bit of the receiver, and z as auxiliary input for the adver-
sary), and by IDEALFOT,SimR∗(z)(λ, s0, s1, b) (resp., IDEALFOT,SimS∗(z)(λ, s0, s1, b))
the output of the malicious receiver (resp., sender) in an ideal execution where
the parties (with analogous inputs) interact with FOT, and where the simulator
is given black-box access to the adversary.

Ideal Functionality FOT:

The functionality runs with Turing machines (S,R) and adversary Sim, and works as
follows:

– Upon receiving message (send, s0, s1, S,R) from S, where s0, s1 ∈ {0, 1}λ, store s0
and s1 and answer send to R and Sim.

– Upon receiving a message (receive, b) from R, where b ∈ {0, 1}, send sb to R and
receive to S and Sim, and halt. If no message (send, ·) was previously sent, do
nothing.

Fig. 2. Oblivious transfer ideal functionality

Definition 1 (OT with full simulation). Let FOT be the functionality from
Fig. 2. We say that a protocol Π = (S,R) securely computes FOT with full simu-
lation if the following holds:

(a) For every non-uniform PPT malicious receiver R∗, there exists a non-
uniform PPT simulator Sim such that

{
REALΠ,R∗(z)(λ, s0, s1, b)

}
λ,s0,s1,b,z

≈c

{
IDEALFOT,SimR∗(z)(λ, s0, s1, b)

}

λ,s0,s1,b,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.
(b) For every non-uniform PPT malicious sender S∗, there exists a non-uniform

PPT simulator Sim such that
{
REALΠ,S∗(z)(λ, s0, s1, b)

}
λ,s0,s1,b,z

≈c

{
IDEALFOT,SimS∗(z)(λ, s0, s1, b)

}

λ,s0,s1,b,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.



A Black-Box Construction of Fully-Simulatable, Round-Optimal OT 121

Game-Based Security. One can also consider weaker security definitions for OT,
where simulation-based security only holds when either the receiver or the sender
is corrupted, whereas when the other party is malicious only game-based secu-
rity is guaranteed. Below, we give the definition for the case of a corrupted
sender, which yields a security notion known as receiver-sided simulatability.
Intuitively, the latter means that the adversary cannot distinguish whether the
honest receiver is playing with choice bit 0 or 1.

Definition 2 (OT with receiver-sided simulation). Let FOT be the func-
tionality from Fig. 2. We say that a protocol Π = (S,R) securely computes FOT

with receiver-sided simulation if the following holds:

(a) Same as property (a) in Definition 1.
(b) For every non-uniform PPT malicious sender S∗ it holds that

{
VIEW R

Π,S∗(z)(λ, s0, s1, 0)
}

λ,s0,s1,z
≈c

{
VIEW R

Π,S∗(z)(λ, s0, s1, 1)
}

λ,s0,s1,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, and z ∈ {0, 1}∗, and where VIEW R
Π,S∗(z)

(λ, s0, s1, b) is the distribution of the view of S∗ (with input s0, s1 and aux-
iliary input z) at the end of a real execution of protocol Π with the honest
receiver R given b as input.

Receiver-sided simulatability is a useful stepping stone towards achieving full
simulatability. In fact, Ostrovsky et al. [49] show how to compile any 4-round
OT protocol with receiver-sided simulatability to a 4-round OT protocol with
full simulatability. This transformation can be easily extended to hold for any
t-round protocol, with t ≥ 3; the main reason is that the transform only relies
on an extractable commitment scheme, which requires at least 3 rounds.

Theorem 2. (Adapted from [49]). Assuming t ≥ 3, there is a black-box trans-
formation from t-round OT with receiver-sided simulation to t-round OT with
full simulation.8

2.3 Commit-and-Open Protocols

We envision a 3-round protocol between a prover and a verifier where the prover
takes as input two messages m0,m1 ∈ M and a bit d ∈ {0, 1}. The prover speaks
first, and the protocol is public coin, in the sense that the message of the verifier
consists of uniformly random bits. Intuitively, we want that whenever the prover
manages to convince the verifier, he must be committed to at least one of m0,m1

already after having sent the first message.
More formally, a 1-out-of-2 commit-and-open (C&O) protocol is a tuple of

efficient interactive Turing machines Πc&o
def= (P = (P0,P1),V = (V0,V1)) speci-

fied as follows. (i) The randomized algorithm P0 takes md and returns a string

8 They also need the existence of one-way functions. Since OT implies OT extension
which implies one-way functions [42,43], OT implies one-way functions.
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γ ∈ {0, 1}∗ and auxiliary state information α ∈ {0, 1}∗; (ii) The randomized
algorithm V0 returns a random string β ←$ B; (iii) The randomized algorithm
P1 takes (α, β, γ,m1−d) and returns a string δ ∈ {0, 1}∗; (iv) The deterministic
algorithm V1 takes a transcript (γ, β, (δ,m0,m1)) and outputs a bit.

We write 〈P(m0,m1, d),V(1λ)〉 for a run of the protocol upon inputs
(m0,m1, d) to the prover, and we denote by T

def= (γ, β, (δ,m0,m1)) the ran-
dom variable corresponding to a transcript of the interaction. Note that the
prover does not necessarily need to know m1−d before computing the first mes-
sage. We say that Πc&o satisfies completeness if honestly generated transcripts
are always accepted by the verifier, i.e. for all m0,m1 ∈ M and d ∈ {0, 1}, we
have Pr[V1(T ) = 1 : T ←$ 〈P(m0,m1, d),V(1λ)〉] = 1, where the probability is
over the randomness of P0,V0, and P1.

Security Properties. Roughly, a C&O protocol must satisfy two security require-
ments. The first requirement is that at the end of the first round, a malicious
prover is committed to at least one message. This can be formalized by looking
at a mental experiment where we first run the protocol with a malicious prover,
yielding a first transcript T = (γ, β, (δ,m0,m1)); hence, we rewind the prover
to the point it already sent the first message, and give it a fresh challenge β′

which yields a second transcript T ′ = (γ, β′, (δ′,m′
0,m

′
1)). The security property

now states that, as long as the two transcripts T and T ′ are valid, it shall exist
at least one “committing branch” d̂ ∈ {0, 1} for which md̂ = m′

d̂
. The second

requirement says that no malicious verifier can learn any information on the
committing branch of the prover. See the full version [16] for formal definitions.

3 Strong Uniformity at a Glance

This section contains a brief overview over the notion of strongly uniform OT
and KA. We refer to the full version [16] for detailed definitions and for the
implications of these notions.

In KA, Alice and Bob interact with the goal of establishing a shared key
which remains hidden to an eavesdropper. We strengthen this notion by asking
that Alice’s messages are computationally close to uniform over an efficiently
sampleable group, even when Bob is malicious. We call this security feature
strong uniformity.

Strong uniformity straightforwardly translates to OT. We call an OT protocol
strongly uniform if the receiver’s messages are computationally close to uniform
over an efficiently sampleable group, even when the sender is malicious. An
important consequence of strong uniformity is that strongly uniform secure KA
and strongly uniform semi-honestly secure OT are equivalent.

Theorem 3. There is a black-box construction of strongly uniform semi-
honestly secure OT from strongly uniform secure KA and vice versa, with the
same round complexity.
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Intuitively, one can construct a KA protocol from OT by using the first of
the sender’s inputs as key, and setting the receiver’s choice bit to 0, such that
the receiver learns this key. Gertner et al. [21] already described this protocol,
and it turns out that it preserves strong uniformity.

To construct strongly uniform semi-honestly secure OT from strongly uni-
form secure KA, one can use strong uniformity to let the receiver sample uniform
messages rather than follow the KA protocol. More precisely, the sender and
receiver will run two instances of the KA protocol, and the sender will use the
two shared keys as one-time pad masks for his inputs. The receiver, depending
on his choice bit, will run one of the two KA instances according to the protocol
description, whereas, for the other one, he will sample uniform messages. Hence,
the receiver will learn only one of the shared keys and inputs of the sender.

4 From SUSH-OT to M-OT

Let Πc&o = (P0,P1,V0,V1) be a 1-out-of-2 C&O protocol and Π ′ = (S′,R′) be
a (2t′ + 1)-round OT protocol, where the first message σ1 might be the empty
string. Our OT protocol Π = (S,R) is depicted in Fig. 3 on page 19. The protocol
consists of (2t′ + 2) rounds as informally described below.

1. The receiver samples m1−b,i ∈ M for all i ∈ [t′], where b is the choice bit.
Then he runs the prover of the C&O protocol upon input (m1−b,j)j∈[i] for all
i ∈ [t′], obtaining (γi)i∈[t′] which are forwarded to the sender.

2. The sender samples uniform values u0, u1 ←$ M. Then, he runs the underlying
(2t′ +1)-round OT twice with inputs (s0, u0) and (s1, u1) to generate the first
messages σ1

0 and σ1
1 . Further, the sender samples a challenge β1 for the C&O

protocol, as well as two uniformly random group elements r0,1, r1,1 from M,
and forwards (β1, r0,1, r1,1) to the receiver together with the first messages of
the OTs (i.e. σ1

0 and σ1
1).

3. Repeat the following steps for each i ∈ [t′]:
(a) (R → S): The receiver runs the receiver R′ of the underlying (2t′+1)-round

OT protocol with choice bit fixed to 0, and upon input message σi
b from

the sender, obtaining a message ρi
b which is used to define the message

mb,i = ρi
b − rb,i required to complete the execution of the C&O protocol

in the non-committing branch b. This results in a tuple (δi,m0,i,m1,i)
that is forwarded to the sender.

(b) (S → R): The sender verifies that the transcript Ti = (γi, βi, (δi,
(m0,j)j∈[i], (m1,j)j∈[i])) is accepting for the underlying C&O protocol. If
so, he continues the two runs of the sender S′ for the underlying (2t′ +1)-
round OT protocol. The first run uses state αi

S,0 and message m0,i + r0,i

from the receiver resulting in a message σi+1
0 and state αi+1

S,0 , whereas
the second run uses state αi

S,1 and message m1,i + r1,i from the receiver
resulting in a message σi+1

1 and state αi+1
S,1 . Finally, the sender samples

a challenge βi+1 for the C&O protocol, as well as another two uniformly
random group elements r0,i+1, r1,i+1 from M, and forwards (σi+1

0 , σi+1
1 )

and βi+1, r0,i+1, r1,i+1 to the receiver.
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Sender S(s0, s1) Receiver R(b)

u0, u1 ←$ M α0
R,b = 0

α0
S,0 = (s0, u0) ∀i ∈ [t′] :

α0
S,1 = (s1, u1) m1−b,i ←$ M

(α1
S,0, σ

1
0) ←$ S′(α0

S,0) (γi, αi) ←$ P0((m1−b,j)j∈[i])

(α1
S,1, σ

1
1) ←$ S′(α0

S,1) (γi)i∈[t′]

β1 ←$ V0(1λ)

r0,1, r1,1 ←$ M (β1, (rk,1, σ
1
k)k∈{0,1})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repeat for each i ∈ [t′] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(αi
R,b, ρ

i
b) ←$ R′(αi−1

R,b , σi
b)

mb,i = ρi
b − rb,i

if V(γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i])) = 0 (δi, m0,i, m1,i) δi ←$ P1(αi, βi, γi, (mb,j)j∈[i])

return ⊥
(αi+1

S,0 , σi+1
0 ) ←$ S′(αi

S,0, m0,i + r0,i)

(αi+1
S,1 , σi+1

1 ) ←$ S′(αi
S,1, m1,i + r1,i)

βi+1 ←$ V0(1λ)

r0,i+1, r1,i+1 ←$ M (βi+1, (rk,i+1, σ
i+1
k )k∈{0,1})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(αt′+1
R,b , ρt′+1

b ) ←$ R′(αt′
R,b, σ

t′+1
b )

output sb = ρt′+1
b

Fig. 3. (2t′+2)-round OT protocol achieving receiver-sided simulatability from (2t′+1)-
round strongly uniform semi-honestly secure OT. Note that the initial state information
α0
S,0, α

0
S,1 and α0

R,b is set to be equal, respectively to the inputs used by the sender
and the receiver during the runs of the underlying OT protocol (S′,R′). The values
βt′+1, r0,t′+1, r1,t′+1 are not needed and can be removed, but we avoided to do that in
order to keep the protocol description more compact.

4. Output: The receiver runs the receiver R′ of the underlying (2t′ + 1)-round
OT protocol, upon input the (t′ + 1)-th message σt′+1

b from the sender, thus
obtaining an output ρt′+1

b .

Correctness follows by the fact that, when both the sender and the receiver
are honest, by correctness of the C&O protocol the transcripts Ti are always
accepting, and moreover the messages produced by the sender σi

b are computed
using message mb,i + rb,i = ρi

b from the receiver, so that each pair (ρi
b, σ

i
b)

corresponds to the i-th interaction of the underlying (2t′ +1)-round OT protocol
with input strings (sb, ub) for the sender and choice bit 0 for the receiver, and
thus at the end the receiver outputs sb. As for security, we have:
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Theorem 4. (Receiver-sided simulatability of Π). Assuming that Π ′ is a
(2t′+1)-round strongly uniform semi-honestly secure OT protocol, and that Πc&o

is a secure 1-out-of-2 commit-and-open protocol, then the protocol Π from Fig. 3
securely realizes FOT with receiver-sided simulation.

We give a detailed proof in the full version [16], and here provide some
intuition. In order to show receiver-sided simulatability we need to prove two
things: (1) The existence of a simulator Sim which by interacting with the ideal
functionality FOT can fake the view of any efficient adversary corrupting the
receiver in a real execution of the protocol; (2) Indistinguishability of the protocol
transcripts with choice bit of the receiver equal to zero or one, for any efficient
adversary corrupting the sender in a real execution of the protocol.

To show (1), we consider a series of hybrid experiments that naturally lead
to the definition of a simulator in the ideal world. In order to facilitate the
description of the hybrids, it will be useful to think of the protocol as a sequence
of t′ iterations, where each iteration consists of 2 rounds, as depicted in Fig. 3
on page 19.

– In the first hybrid, we run a malicious receiver twice after he has sent his
commitments. The purpose of the first run is to learn a malicious receiver’s
input bit, i.e. on which branch he is not committed. If he is committed on
both branches, simulation will be easy since he will not be able to receive
any of the sender’s inputs. We use the second run to learn the output of a
malicious receiver. We describe the two runs now.
1. The first round of each iteration yields an opening (δi,m0,i,m1,i). Hence,

after verifying that the opening is valid, we rewind the adversary to the
end of the first round of the i-th iteration to receive another opening
(δ′

i,m
′
0,i,m

′
1,i).

Now, let b ∈ {0, 1} such that mb,i = m′
b,i. By the security of the C&O

protocol, there can be at most one such b. If there is no b we continue the
first run. Otherwise, if there is such a b, we have learned the equivocal
branch and start the second run.

2. We execute the second run according to the protocol with the difference
that we now know the equivocal branch, i.e. b, from the very beginning,
which will help us later to simulate correctly right from the start. Notice
that by the security of the C&O protocol, a malicious receiver cannot
change the equivocal branch in the second run. Obviously, he cannot
change it during the same iteration since then he would be equivocal on
both branches and contradict the security of the C&O protocol. He can
also not change the equivocal branch of one of the later rounds j > i,
since in the j-th commitment δj he cannot be committed to both mb,i

and m′
b,i, so he needs to equivocally open δj as well. Thus, he needs to

be committed on the other branch, i.e. branch 1 − b.
– The values m′

k,i (right after the rewinding) of each iteration of the first run
for k ∈ {0, 1}, and second run for k = 1 − b, are identical to mk,i. Moreover,
m′

k,i = mk,i holds only for the second run for branch k = b. Therefore, in the
second hybrid, we can change the distribution of r′

k,i to r′
k,i = ρi

k − mk,i for
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k ∈ {0, 1}, and both runs except branch k = b during the second run. The
value ρi

k is obtained by running the simulator for the receiver of the under-
lying strongly uniform semi-honest OT protocol with choice bit 1 and input
uk. We can use the messages generated by this simulator on the sender’s side
as well.
We will use the strong uniformity of the OT to argue that a malicious receiver
cannot distinguish r′

k,i = ρi
k − mk,i from uniform. By the semi-honest secu-

rity, the messages generated by the simulator are indistinguishable from the
actual semi-honest OT. At the same time this simulator is independent of the
sender’s inputs s0 and s1. Note that in this hybrid, we only need to known
sb for the second run after having learned b.

In the last hybrid, a protocol transcript is independent of s1−b but still yields a
well distributed output for the malicious receiver, which directly yields a simu-
lator in the ideal world.

To show (2), we first use the strong uniformity of the underlying OT protocol
to sample mb,i uniformly at random at the beginning of the protocol. Notice
that this implies that the receiver cannot recover the value sb of the sender
anymore. Further, we need the strong uniformity property here, since the receiver
is interacting with a malicious sender who could influence the distribution of
mb,i sent by the receiver. Once both messages, m0,i and m1,i for all iterations
are known before the start of the protocol, we can challenge the choice bit
indistinguishability of the C&O protocol. As a consequence, we can argue that
the transcripts with b = 0 and b = 1 are computationally indistinguishable,
which implies game-based security against a malicious sender.

5 Conclusions

We have shown a construction of maliciously secure oblivious transfer (M-OT)
protocol from a certain class of key agreement (KA) and semi-honestly secure OT
(SH-OT) protocols that enjoy a property called strong uniformity (SU), which
informally means that the distribution of the messages sent by one of the parties
is computationally close to uniform, even in case the other party is malicious.

When starting with 2-round or 3-round SUSH-OT or SU-KA, we obtain 4-
round M-OT, and thus, invoking [11], 4-round maliciously secure MPC from
standard assumptions including low-noise LPN, LWE, Subset Sum, CDH, DDH,
and RSA (all with polynomial hardness).

Also, it is a natural question to see whether SU-KA with t ≥ 4 rounds can
be instantiated from concrete assumptions that do not imply PKE.

Acknowledgments. We would like to thank Silas Richelson for a discussion on their
commit-and-open protocol. We also thank the anonymous reviewers who helped remov-
ing wrong claims and clarifying the presentation of our results.
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Abstract. Typically, protocols for Byzantine agreement (BA) are
designed to run in either a synchronous network (where all messages are
guaranteed to be delivered within some known time Δ from when they
are sent) or an asynchronous network (where messages may be arbitrar-
ily delayed). Protocols designed for synchronous networks are generally
insecure if the network in which they run does not ensure synchrony;
protocols designed for asynchronous networks are (of course) secure in
a synchronous setting as well, but in that case tolerate a lower fraction
of faults than would have been possible if synchrony had been assumed
from the start.

Fix some number of parties n, and 0 < ta < n/3 ≤ ts < n/2. We ask
whether it is possible (given a public-key infrastructure) to design a BA
protocol that is resilient to (1) ts corruptions when run in a synchronous
network and (2) ta faults even if the network happens to be asynchronous.
We show matching feasibility and infeasibility results demonstrating that
this is possible if and only if ta + 2 · ts < n.

1 Introduction

Byzantine agreement (BA) [24,35] is a classical problem in distributed comput-
ing. Roughly speaking, a BA protocol allows a group of n parties, each holding
some initial input value, to agree on their outputs even in the presence of some
threshold of corrupted parties. Such protocols are used widely in practice for
ensuring consistency among a set of distributed processors [6,21,23,30], and
have received renewed interest in the context of blockchain protocols. They also
serve as a core building block for more complicated protocols, e.g., for secure
multiparty computation. There is an extensive literature on Byzantine agree-
ment, and many different models in which it can be studied. We focus here on
the setting in which a public-key infrastructure (PKI) is available.
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Typically, protocols for Byzantine agreement are designed and analyzed
assuming either a synchronous network, where messages are guaranteed to be
delivered within some known time bound Δ, or an asynchronous network, where
messages can be delayed arbitrarily. Existing results precisely characterize when
the problem can be solved in each case [5,8,10,24,35]: in a synchronous net-
work, it is possible if and only if ts < n/2 parties are corrupted, while in an
asynchronous network it can be achieved only when there are ta < n/3 corrup-
tions. In each case, protocols tolerating the optimal threshold and running in
expected constant rounds are known [5,20].

In real-world deployments of Byzantine agreement, the network conditions in
which a protocol are run may be unclear; for example, the network may generally
be synchronous but intermittently experience congestion that prevents messages
from being delivered in a timely fashion. This results in the following dilemma
when deciding what protocol to use:

– Protocols designed for a synchronous network are, in general, insecure if the
assumption of network synchrony fails.

– Protocols designed for an asynchronous network will (of course) be secure
when the network is synchronous. But in this case the fraction of faults that
can be tolerated is lower than what could have been tolerated if the protocol
were designed for the synchronous setting.

Fix some thresholds ta, ts with 0 < ta < n/3 ≤ ts < n/2. We ask the following
question: is it possible to design a BA protocol that is (1) resilient to any ts
(adaptive) corruptions when run in a synchronous network and also (2) resilient
to ta (adaptive) corruptions even if the network happens to be asynchronous? We
completely resolve this question by showing matching feasibility and infeasibility
results demonstrating that this is possible if and only if ta + 2 · ts < n.

Positive Result. The protocol achieving our positive result is constructed by
combining two sub-protocols ΠSBA,ΠABA for Byzantine agreement, where ΠSBA

is secure in a synchronous network and ΠABA is secure in an asynchronous net-
work. The key to our analysis is to separately analyze the validity, consistency,
and liveness guarantees of these sub-protocols. Specifically, we design ΠSBA so
that it also satisfies a certain validity guarantee even when run in an asyn-
chronous network. We also design ΠABA so that it achieves validity (in an asyn-
chronous network) even beyond n/3 corruptions. We then use these properties to
prove security of our main protocol, for different thresholds, when run in either
a synchronous or asynchronous network.

Impossibility Result. We also show that our positive result is tight, namely,
that if ta+2·ts ≥ n then there is no protocol that is simultaneously resilient to ts
corruptions when run in a synchronous network and also resilient to ta faults in
an asynchronous network. In fact, we show a result that is slightly stronger: it is
not possible to achieve validity for ts static faults in the synchronous setting while
also achieving a weak notion of consistency for ta static faults in an asynchronous
network.
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1.1 Related Work

The question of designing protocols that remain secure when run in various net-
work conditions is natural, and so it is somewhat surprising that it has only
recently begun to draw attention in the literature. Recent work by Malkhi et
al. [28] is most closely related to our own. Among other things, they consider
protocols with certain guarantees when run in synchronous or partially syn-
chronous networks. In contrast, we consider the case of synchronous or fully
asynchronous networks. Liu et al. [25] design a protocol that is resilient to a
minority of malicious corruptions in a synchronous network, and a minority of
fail-stop faults in an asynchronous network. Our work can be viewed as extend-
ing theirs to consider malicious corruptions in both settings. Guo, Pass, and
Shi [16] consider a model motivated by eclipse attacks [18] on blockchain pro-
tocols, whereby an attacker temporarily disconnects some subset S of honest
parties from the rest of the network S′, e.g., by delaying or dropping messages
between S and S′. Parties in S may not be able to reach agreement with honest
parties in S′; nevertheless, as observed by Guo et al., it may be possible to pro-
vide certain guarantees for the parties in S′ if their network is well-behaved (i.e.,
synchrony continues to hold for messages sent between parties in S′). Guo et
al. gave BA protocols tolerating the optimal corruption threshold in this model,
and Abraham et al. [2] extended their work to achieve similar guarantees for
state-machine replication. The main difference between these works and ours is
that they continue to assume synchrony in part of the network, and their pro-
tocols fail completely if the all communication channels in the network may be
asynchronous.

Kursawe [22] shows a protocol for asynchronous BA that reaches agreement
more quickly in case the network is synchronous. In contrast to our work, that
protocol does not achieve better fault tolerance (and, in particular, cannot tol-
erate n/3 or more faults) in the synchronous case.

Other recent work has looked at designing protocols for synchronous BA
that achieve good responsiveness when the network latency is low. That is,
these protocols ensure that if the actual message-delivery time is δ < Δ then the
time to reach agreement is proportional to δ rather than the upper bound Δ.
This problem was considered by Pass and Shi [31,32], who gave protocols that
rely on a leader and are therefore not adaptively secure, as well as by Loss and
Moran [27], who avoid the use of a leader. The work of Loss and Moran was
extended by Liu-Zhang et al. [26] to the case of general secure computation.
None of these works provides security in case the synchrony assumption fails
altogether.

Several prior works [3,7,12,34] consider a model in which synchrony is
assumed to be available for some (known) limited period of time, and asyn-
chronous afterward. Fitzi et al. [11] and Loss and Moran [27] study trade-offs
between the validity, consistency, and liveness properties of BA that inspired our
asynchronous BA protocol in Sect. 4 and our lower bound in Sect. 6.
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1.2 Paper Organization

We introduce our model as well as definitions for Byzantine agreement and
related tasks in Sect. 2. In Sects. 3 and 4 we describe two protocols for Byzantine
agreement and prove various properties about them. Those protocols are used, in
turn, as sub-protocols of our main protocol in Sect. 5 that achieves security (for
different thresholds) in both synchronous and asynchronous networks. Finally,
in Sect. 6 we show that the bounds we achieve are tight.

2 Model and Definitions

Throughout, we consider a network of n parties P1, . . . , Pn who may communi-
cate over point-to-point authenticated channels. We also assume that the parties
have established a public-key infrastructure in advance of the protocol execu-
tion. This means that all parties hold the same vector (pk1, . . . , pkn) of pub-
lic keys for a digital signature scheme, where each honest party Pi holds the
honestly generated secret key ski associated with pki. (Malicious parties may
choose their keys arbitrarily.) A valid signature σ on m from Pi is one for which
Verifypki

(m,σ) = 1. We make the standard convention of treating signatures
as idealized objects; i.e., throughout our analysis, signatures are assumed to be
perfectly unforgeable. When the signature scheme used is existentially unforge-
able under chosen-message attacks we thus obtain security against computation-
ally bounded adversaries, with a negligible probability of failure. We implicitly
assume that parties use domain separation when signing (e.g., via unique ses-
sion IDs) to ensure that signatures generated for one purpose will be considered
invalid if used in another context.

When we say a protocol tolerates t corrupted parties we always mean that
it is secure against an adversary who may adaptively corrupt up to t parties
during execution of the protocol and coordinate the actions of those parties as
they deviate from the protocol in an arbitrary manner. An honest party is one
who is not corrupted by the end of the protocol. We stress that our claims about
adaptive security are only with respect to the “property-based” definitions we
give here; we do not consider adaptive security with respect to a simulation-based
definition [13,19].

We are interested in protocols running in one of two possible settings. When
a protocol is run in a synchronous network, we assume all messages are delivered
within a known time bound Δ after they are sent. We allow the adversary to
arbitrarily schedule delivery of messages subject to this bound, which implies
in particular that we consider a rushing adversary who may obtain messages
sent to it before sending messages of its own. In the synchronous case, we also
assume all parties begin running the protocol at the same time, and all parties
have local clocks that progress at the same rate. When we refer to a protocol run-
ning in an asynchronous network, we allow the adversary to arbitrarily schedule
delivery of messages without any upper bound on their delivery time. We do,
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however, require that all messages that are sent are eventually delivered. Impor-
tantly, honest parties do not know a priori which type of network the protocol
is running in.

We may view executions in a synchronous network as proceeding in a series of
rounds, where execution begins at time 0 and the rth round refers to the period
of time from (r − 1) · Δ to r · Δ. When we say a party receives a message in
round r we mean that it receives a message in that time interval; when we say it
sends a message in round r we means it sends that message at the beginning of
that round, i.e., at time (r −1) ·Δ. Thus, in a synchronous network all messages
sent in round r are received in round r (but in an asynchronous network this
need not be the case).

We assume a coin-flip mechanism CoinFlip available as an atomic primitive.
This can be viewed as an ideal functionality, parameterized by a value t, that
upon receiving input k from t + 1 parties generates an unbiased coin Coink ∈
{0, 1} and sends (k,Coink) to all parties. (When run in an asynchronous network,
messages to and from CoinFlip can be arbitrarily delayed.) The key property
this ensures is that, if at most t parties are corrupted, at least one honest party
must send k to CoinFlip before the adversary can learn Coink. Several protocols
for realizing such a coin flip1 in an asynchronous network, based on general
assumptions, are known [1,5,29,33]. For our purposes, we need a protocol that is
secure for t < n/3 faults, and that terminates for t′ < n/2 faults. Such protocols
can be constructed using a threshold unique signature scheme [4,14,17,27].

2.1 Definitions

We are ultimately interested in Byzantine agreement, but we find it useful to
define the related notions of broadcast and graded consensus. Relevant definitions
follow.

Byzantine Agreement. Byzantine agreement allows a set of parties who each
hold some initial input to agree on their output. We consider several security
properties that may hold for such protocols. For simplicity, we consider the case
of agreement on a bit; this is without loss of generality as one can run any such
protocol � times to agree on a string of length �.

We consider Byzantine agreement protocols where, in some cases, parties may
not terminate immediately upon generating output, or may never terminate. For
that reason, we treat termination separately in the definition that follows. By
convention, any party that terminates generates output before doing so; however,
we allow parties to output the special symbol ⊥.

Definition 1 (Byzantine agreement). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1}.

1 Some of these realize a p-weak coin flip, where honest parties agree on the coin only
with probability p < 1. We can also rely on such protocols, at an increase in the
expected round complexity by a factor of O(1/p).
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– Weak validity: Π is t-weakly valid if the following holds whenever at most t
of the parties are corrupted: if every honest party’s input is equal to the same
value v, then every honest party outputs either v or ⊥.

– Validity: Π is t-valid if the following holds whenever at most t of the parties
are corrupted: if every honest party’s input is equal to the same value v, then
every honest party outputs v.

– Validity with termination: Π is t-valid with termination if the following
holds whenever at most t of the parties are corrupted: if every honest party’s
input is equal to the same value v, then every honest party outputs v and
terminates.

– Weak consistency: Π is t-weakly consistent if the following holds whenever
at most t of the parties are corrupted: there is a v ∈ {0, 1} such that every
honest party outputs either v or ⊥.

– Consistency: Π is t-consistent if the following holds whenever at most t of
the parties are corrupted: there is a v ∈ {0, 1,⊥} such that every honest party
outputs v.
(In the terminology of Goldwasser and Lindell [15], weak consistency might be
called “consistency with abort” and consistency might be called “consistency
with unanimous abort.”)

– Liveness: Π is t-live if whenever at most t of the parties are corrupted, every
honest party outputs a value in {0, 1}.

– Termination: Π is t-terminating if whenever at most t of the parties are
corrupted, every honest party terminates. Π has guaranteed termination if it
is n-terminating.

If Π is t-valid, t-consistent, t-live, and t-terminating, then we say Π is t-secure.

While several of the above definitions are not entirely standard, our notion of
security matches the standard one. In particular, t-liveness and t-consistency
imply that whenever at most t parties are corrupted, there is a v ∈ {0, 1} such
that every honest party outputs v. Note that t-validity with termination is weaker
than t-validity plus t-termination, as the former does not require termination in
case the inputs of the honest parties do not agree.

Broadcast. Protocols for broadcast allow a set of parties to agree on a value
chosen by a designated sender. We only consider broadcast protocols with guar-
anteed termination, and so do not mention termination explicitly when defining
the various properties.

Definition 2 (Broadcast). Let Π be a protocol executed by parties P1, . . . ,
Pn, where a sender P ∗ ∈ {P1, . . . , Pn} begins holding input v∗ ∈ {0, 1} and all
parties are guaranteed to terminate.

– Weak validity: Π is t-weakly valid if the following holds whenever at most t
of the parties are corrupted: if P ∗ is honest, then every honest party outputs
either v∗ or ⊥.

– Validity: Π is t-valid if the following holds whenever at most t of the parties
are corrupted: if P ∗ is honest, then every honest party outputs v∗.
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– Weak consistency: Π is t-weakly consistent if the following holds whenever
at most t of the parties are corrupted: there is a v ∈ {0, 1} such that every
honest party outputs either v or ⊥.

– Consistency: Π is t-consistent if the following holds whenever at most t of
the parties are corrupted: there is a v ∈ {0, 1,⊥} such that every honest party
outputs v.

– Liveness: Π is t-live if whenever at most t of the parties are corrupted, every
honest party outputs a value in {0, 1}.

If Π is t-valid, t-consistent, and t-live, then we say Π is t-secure.

Graded consensus. As a stepping stone to Byzantine agreement, it is also
useful to define graded consensus [9]. Here, each party outputs both a value v ∈
{0, 1,⊥} as well as a grade g ∈ {0, 1, 2}. As in the case of Byzantine agreement,
we consider protocols that may not terminate; however, parties terminate upon
generating output.

Definition 3 (Graded consensus). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1} and each party
terminates upon generating output.

– Graded validity: Π achieves t-graded validity if the following holds whenever
at most t of the parties are corrupted: if every honest party’s input is equal
to the same value v, then all honest parties output (v, 2).

– Graded consistency: Π achieves t-graded consistency if the following hold
whenever at most t of the parties are corrupted: (1) If two honest parties
output grades g, g′, then |g − g′| ≤ 1. (2) If two honest parties output (v, g)
and (v′, g′) with g, g′ ≥ 1, then v = v′.

– Liveness: Π is t-live if whenever at most t of the parties are corrupted, every
honest party outputs (v, g) with either v ∈ {0, 1} and g ≥ 1, or v =⊥ and
g = 0.

If Π achieves t-graded validity, t-graded consistency, and t-liveness then we say
Π is t-secure.

3 Synchronous BA with Fallback (Weak) Validity

In this section we show a protocol that is secure for some threshold ts of corrupted
parties when run in a synchronous network, and achieves weak validity (though
liveness and weak consistency may not hold) for a lower threshold ta even when
run in an asynchronous network.

Our protocol relies on a variant of the Dolev-Strong broadcast protocol [8]
as a subroutine. Since we use a slightly non-standard version of that protocol,
we describe it in Fig. 1 for completeness. In the protocol, we say that (v,SET) is
an r-correct message (from the point of view of a party Pi) if SET contains valid
signatures on v from P ∗ and r − 1 additional, distinct parties other than Pi.
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Protocol ΠDS

Round 1: P ∗ signs its input v∗ to obtain a signature σ∗. It sets SET :=
{σ∗} and sends (v∗, SET) to all parties.

Rounds 1 to n − 1: Each Pi begins with ACCi = ∅, and then acts as
follows: upon receiving an r-correct message (v, SET) in round r, add
v to ACCi. If r < n − 1, then also compute a signature σi on v, let
SET := SET ∪ {σi}, and send (v, SET) to all parties in the following
round. (This is done at most once for each (v, r) pair.)

Output determination: At time (n − 1) · Δ, if ACCi contains one value,
then output that value and terminate. In any other case, output ⊥ and
terminate.

Fig. 1. The Dolev-Strong broadcast protocol ΠDS.

Lemma 1. Broadcast protocol ΠDS satisfies the following properties:

1. When run in a synchronous network, it is n-consistent and n-valid.
2. When run in an asynchronous network, it is n-weakly valid.

Proof. The standard analysis of the Dolev-Strong protocol shows that, when run
in a synchronous network with any number of corrupted parties, ACCi = ACCj

for any honest parties Pi, Pj . This implies n-consistency. Since an honest P ∗

sends a 1-correct message to all honest parties, and the attacker cannot forge
signatures of the honest sender, n-validity holds.

The second claim follows because an attacker cannot forge the signature of
an honest P ∗.

We now define a BA protocol using ΠDS as a sub-routine. This protocol
is parameterized by a value ta which determines the security thresholds the
protocol satisfies.

Protocol Πta
SBA

Each Pi initially holds a bit vi. The protocol proceeds as follows:

– Each party Pi broadcasts vi by running ΠDS as the sender.
– Let vi

j denote the output of Pi in the jth execution of ΠDS.
– Each Pi does: if there are at least 2ta + 1 values vi

j that are in {0, 1},
output the majority of those values (with a tie broken arbitrarily) and
terminate. Otherwise, output ⊥ and terminate.

Fig. 2. A Byzantine agreement protocol, parameterized by ta.
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Theorem 1. For any ta, ts with ta < n/3 and ta + 2 · ts < n, Byzantine agree-
ment protocol Πta

SBA satisfies the following properties:

1. When the protocol is run in a synchronous network, it is ts-secure.
2. When the protocol is run in an asynchronous network, it is ta-weakly valid.

Moreover, the protocol has guaranteed termination in both cases, and when run
in a synchronous network every honest party terminates in time at most n · Δ.

Proof. The claim about termination is immediate.
When run in a synchronous network with ts corrupted parties, at least n −

ts > 2ta of the executions of ΠDS result in boolean output for all honest parties
(by n-validity of ΠDS) and so all honest parties generate boolean output in Πta

SBA;
this proves ts-liveness. By n-consistency of ΠDS, all honest parties agree on
the {vj} values they obtain and hence Πta

SBA is ts-consistent (in fact, it is n-
consistent). Finally, n-validity of ΠDS implies that when all honest parties begin
holding the same input v ∈ {0, 1}, then all honest parties will have v as their
majority value. This proves ts-validity (in fact, the protocol is t-valid for any
t < n/2).

For the second claim, assume all honest parties begin holding the same
input v, and ta parties are corrupted. Any honest party Pi who generates boolean
output must have at least 2ta + 1 boolean values {vi

j}, of which at most ta of
these can be equal to v̄. Hence, any honest party who generates boolean output
will in fact output v.

4 Validity-Optimized Asynchronous BA

Here we show a protocol that is secure for some threshold when run in an asyn-
chronous network, and achieves validity for a higher threshold. Throughout this
section we only consider protocols running in an asynchronous network, and so
drop explicit mention of this fact for the remainder of this section.

Theorem 2. For any ta, ts with ta < n/3 and ta+2 · ts < n, there is an n-party
protocol for Byzantine agreement that, when run in an asynchronous network,
is ta-secure and also achieves ts-validity with termination.

Our proof of Theorem 2 proceeds in a number of steps. In Sect. 4.1 we describe
a “validity-optimized” protocol Πts

GC for graded consensus that is ta-secure and
also achieves ts-graded validity. Then, in Sect. 4.2, we show a Byzantine agree-
ment protocol Πts

ABA using Πts
GC as a subroutine. This protocol illustrates our main

ideas, and achieves all the properties claimed in Theorem 2 except termination.
We then discuss how termination can be added using existing techniques.

Our protocol is based on the work of Mostéfaoui et al. [29], but allows for vari-
able thresholds. Also, our description simplifies theirs by presenting the protocol
in a modular fashion.
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4.1 Validity-Optimized Graded Consensus

Our graded consensus protocol relies on a sub-protocol Πts
prop for proposing val-

ues, shown in Fig. 3. This protocol is parameterized by a value ts that determines
its security thresholds. We begin by proving some properties of Πts

prop. Through-
out, we let n denote the number of parties.

Protocol Πts
prop

We describe the protocol from the point of view of a party with input v ∈
{0, 1, λ}.
1. Set vals := ∅.
2. Send (prepare, v) to all parties.
3. Upon receiving the message (prepare, b), for some b ∈ {0, 1, λ}, from

strictly more than ts parties, do: If (prepare, b) has not been sent, then
send (prepare, b) to all parties.

4. Upon receiving the message (prepare, b), for some b ∈ {0, 1, λ}, from at
least n − ts parties, set vals := vals ∪ {b}.

5. Upon adding the first value b ∈ {0, 1, λ} to vals, send (propose, b) to all
parties.

6. Once at least n − ts messages (propose, b) have been received on values
b ∈ vals, let prop ⊆ vals be the set of values carried by those messages.
Output prop and terminate.

Fig. 3. A sub-protocol for proposing values, parameterized by ts.

Lemma 2. Assume ta < n−2 ·ts parties are corrupted in an execution of Πts
prop.

If two honest parties Pi, Pj output {b}, {b′}, respectively, then b = b′.

Proof. Since Pi outputs {b}, it must have received at least n − ts messages
(propose, b), of which at least n − ts − ta of those were sent by honest parties.
Similarly, Pj must have received at least n − ts − ta messages (propose, b′) that
were sent by honest parties. If b �= b′, then because 2 · (n − ts − ta) is strictly
greater than the number of honest parties n − ta, this would mean that some
honest party sent propose messages on two different values, which is impossible.

Lemma 3. Assume ta ≤ ts parties are corrupted in an execution of Πts
prop. If no

honest party has input v, then no honest party outputs prop containing v.

Proof. If v was not input by any honest party, then at most ta ≤ ts messages
(prepare, v) are sent in step 2. Thus, no honest party ever sends a message
(prepare, v), and consequently no honest party ever sends a message (propose, v).
It follows that no honest party ever adds v to vals, and so no honest party outputs
prop containing v.
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Lemma 4. Assume ta parties are corrupted in an execution of Πts
prop, where

ta < n − 2 · ts and ta ≤ ts. If an honest party sends a message (propose, b), all
honest parties add b to vals.

Proof. Suppose some honest party Pi sends (propose, b). Then Pi must have
received at least n − ts messages (prepare, b). At least n − ts − ta > ts of these
must have been sent by honest parties, and so eventually all other honest parties
also receive strictly more than ts messages (prepare, b). We thus see that every
honest party will eventually send (prepare, b). Therefore, every honest party will
eventually receive at least n−ta ≥ n−ts messages (prepare, b), and consequently
every honest party will add b to vals.

Note that whenever parties in Πts
prop generate output, they terminate. While

honest parties do not necessarily terminate (for example, if honest parties are
split evenly among 0, 1, and λ), we show they do terminate as long as honest
parties hold at most two different input values.

Lemma 5. Assume ta parties are corrupted in an execution of Πts
prop, where

ta < n − 2 · ts and ta ≤ ts. If all honest parties hold one of two different inputs,
then all honest parties terminate.

Proof. We first argue that every honest party sends a propose message. Indeed,
there are n − ta honest parties, so at least 1

2 (n − ta) > ts honest parties must
have the same input v. Therefore, all honest parties receive strictly more than
ts messages (prepare, v). Consequently, all honest parties will eventually send
(prepare, v). Thus, every honest party receives n−ta ≥ n−ts messages (prepare, v)
and adds v to vals. In particular, vals is nonempty and so every honest party
sends a propose message.

Each honest party thus receives at least n − ta ≥ n − ts propose messages
sent by honest parties. By Lemma 4, for any b proposed by an honest party,
all honest parties eventually have b ∈ vals. Thus, every honest party eventually
receives at least n−ts propose messages for values in their set vals, and therefore
all honest parties terminate.

Πts
prop satisfies a notion of validity even for ts corrupted parties.

Lemma 6. Assume ts < n/2 parties are corrupted in an execution of Πts
prop.

If all honest parties hold the same input v, then all honest parties output
prop = {v}.
Proof. Suppose ts parties are corrupted, and all honest parties hold the same
input v. In step 2, all n − ts honest parties send (prepare, v), and so all honest
parties add v to vals. Any prepare messages on other values in step 2 are sent by
the ts < n− ts corrupted parties, and so no honest party ever adds a value other
than v to vals. Thus, all n− ts honest parties send their (single) propose message
(propose, v) in step 5. It follows that every honest party outputs prop = {v} in
step 6.
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Protocol Πts
GC

We describe the protocol from the point of view of a party with in-
put v ∈ {0, 1}.
– Set b1 := v.
– Run protocol Πts

prop using input b1, and let prop1 denote the output.
– If prop1 = {b}, then set b2 := b. Otherwise, set b2 := λ.
– Run protocol Πts

prop using input b2, and let prop2 denote the output.
– If prop2 = {b′} for b′ �= λ, then output (b′, 2) and terminate. If prop2 =

{b′, λ} for b′ �= λ, then output (b′, 1) and terminate. If prop2 = {λ},
then output (⊥, 0) and terminate.

Fig. 4. A protocol for graded consensus, parameterized by ts.

In Fig. 4 we show a graded consensus protocol Πts
GC that relies on Πts

prop as a
subroutine. Note that parties terminate upon generating output. We now analyze
the protocol.

Lemma 7. If ts < n/2, then Πts
GC achieves ts-graded validity.

Proof. Suppose ts parties are corrupted, and every honest party’s input is equal
to the same value v. By Lemma 6, all honest parties have prop1 = {v} following
the first execution of Πts

prop, and so use v as the input for the second execution
of Πts

prop. By the same reasoning, all honest parties have prop2 = {v} after the
second execution of Πts

prop. Thus, all honest parties output (v, 2).

Lemma 8. Assume ta ≤ ts and ta + 2 · ts < n. Then Πts
GC achieves ta-graded

consistency.

Proof. Suppose ta parties are corrupted. First, we show that the grades output by
two honest parties Pi, Pj differ by at most 1. The only way this can possibly fail
is if one of the parties (say, Pi) outputs a grade of 2. Pi must then have received
prop2 = {b}, for some b ∈ {0, 1}, as its output from the second execution of
Πts

prop. It follows from Lemma 2 that Pj could not have received prop2 = {λ}.
Therefore, it is not possible for Pj to output grade 0.

Next, we show that any two honest parties that output nonzero grades must
output the same value. Observe first that there is a bit b such that the inputs
of all the honest parties to the second execution of Πts

prop lie in {b, λ}. (Indeed,
if all honest parties set b2 := λ this claim is immediate. On the other hand, if
some honest party sets b2 := b ∈ {0, 1} then they must have prop1 = {b}; but
then Lemma 2 implies that any other honest party who sets b2 to anything other
than λ will set it equal to b as well.) Lemma 3 thus implies that no honest party
outputs a set prop2 after the second execution of Πts

prop that contains a value
other than b or λ. Thus, any two honest parties that output a nonzero grade
must output the same value b.
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Lemma 9. Assume ta ≤ ts and ta + 2 · ts < n. Then Πts
GC achieves ta-liveness.

Proof. All honest parties hold input in {0, 1} in the first execution of Πts
prop, so

Lemma 5 shows that all honest parties terminate that execution. As in the proof
of the previous lemma, there is a bit b such that the inputs of all the honest
parties to the second execution of Πts

prop lie in {b, λ}; so, using Lemma 5 again,
that execution also terminates. Moreover, by Lemma 3, the set prop2 output by
any honest party is a nonempty subset of {b, λ}, i.e., is either {b}, {b, λ}, or {λ}.
Thus, every honest party generates output and terminates in Πts

GC.

4.2 Validity-Optimized Byzantine Agreement

We present a Byzantine agreement protocol Πts
ABA in Fig. 5. Recall from Sect. 2

that we assume an atomic primitive CoinFlip that allows all parties to generate
and learn an unbiased value Coink ∈ {0, 1} for k = 1, . . .. We refer there for a
discussion as to how it can be realized.

Protocol Πts
ABA

We describe the protocol from the point of view of a party with input
v ∈ {0, 1}.
Set b := v, done := false, and k := 1. Then repeat the following steps
forever:

1. Run Πts
GC on input b, and let (b, g) denote the output.

2. Coink ← CoinFlip(k).
3. If g < 2 then set b := Coink.
4. Run Πts

GC on input b, and let (b, g) denote the output.
5. If g = 2 and done = false, then output b and set done := true.
6. Set k := k + 1.

Fig. 5. A Byzantine agreement protocol, parameterized by ts.

Lemma 10. If ts < n/2, then protocol Πts
ABA satisfies ts-validity. Moreover, if

all honest parties initially hold v, then all honest parties output v at the end of
the first iteration of Πts

ABA.

Proof. Suppose there are at most ts corrupted parties and all honest parties
initially hold v ∈ {0, 1}. All honest parties use input v in the first execution of
Πts

GC in the first iteration; ts-graded validity of Πts
GC (cf. Lemma 7) implies they

all output (v, 2) from that execution. Thus, all honest parties ignore the result of
the coin flip and run a second instance of Πts

GC using input v, again unanimously
obtaining (v, 2) as output. Thus, all honest parties output v in the first iteration.
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Lemma 11. Assume ta ≤ ts and ta +2 · ts < n. Then Πts
ABA satisfies ta-liveness

and ta-consistency. Moreover: (1) if an honest party generates generates output
for the first time in iteration k, then every other honest party generates output
in iteration k or k + 1, and (2) all honest parties generate output in an expected
constant number of iterations.

Proof. Assume ta parties are corrupted. Consider an iteration k of the protocol
by which no honest party has yet generated output. Let Agree be the event that
all honest parties use the same input to the second execution of Πts

GC in that
iteration. If Agree occurs, then ts-graded validity of Πts

GC implies that all honest
parties will obtain a grade of 2 in that execution and hence generate output
in iteration k. We show that Agree occurs with probability at least 1/2. We
distinguish two cases:

– Say some honest party outputs (b, 2) in the first execution of Πts
GC in itera-

tion k. By ta-graded consistency of Πts
GC, all honest parties output either (b, 2)

or (b, 1) in that execution of Πts
GC. Since Coink is not revealed until the first

honest party terminates that execution of Πts
GC, this means b is chosen inde-

pendently of Coink. If Coink = b, which occurs with probability 1/2, then all
parties will use the same input in the second execution of Πts

GC in iteration k.
– If no honest party outputs (b, 2) after the first execution of Πts

GC, then all
honest parties will use Coink as their input in the second execution of Πts

GC in
iteration k.

The above implies that in expected constant rounds some honest party gen-
erates boolean output. We next show that if some honest party Pi outputs
b ∈ {0, 1} in iteration k, then all other honest parties output b in iteration
k or k+1. Since Pi output b in iteration k, it must have seen (b, 2) as the output
of the second execution of Πts

GC in iteration k. By ta-graded consistency of Πts
GC,

every honest party obtains either (b, 1) or (b, 2) as output from that execution of
Πts

GC. Clearly, all honest parties in the second situation output b in iteration k.
We argue that all honest parties in the first situation (namely, who obtain out-
put (b, 1)) will output b in iteration k + 1. This can be seen as follows. Since all
honest parties use input b in the first execution of Πts

GC in iteration k + 1, all
honest parties output (b, 2) in that execution (by ts-validity of Πts

GC). All honest
parties then participate in the coin flip but ignore the result, and use input b
in the next execution of Πts

GC. Thus, all honest parties obtain output (b, 2) from
the second execution of Πts

GC in iteration k + 1, and any honest party that did
not output b in the previous iteration will output it now.

Corollary 1. For any ta, ts with ta < n/3 and ta+2 ·ts < n, there is an n-party
protocol for Byzantine agreement that, when run in an asynchronous network,
achieves ts-validity, ta-consistency, and ta-liveness.

Proof. We may assume ts ≥ ta since, if not, we can set ts = ta and ta +2 · ts < n
will still hold. Note also that the stated conditions imply ts < n/2. The corollary
thus follows from Lemmas 10 and 11.



Synchronous Consensus with Optimal Asynchronous Fallback Guarantees 145

Adding Termination. Corollary 1 proves all the claims of Theorem 2 except for
termination and, indeed, parties in Πts

ABA participate indefinitely and so the pro-
tocol does not terminate. However, we can obtain a terminating protocol Πts

ABA∗

(and hence complete the proof of Theorem 2) using existing techniques [29]. We
refer to the appendix for further discussion.

5 Main Protocol

Fix n, ta, ts with ta < n/3 and ta + 2 · ts < n. As in the proof of Corollary 1 we
may assume ta ≤ ts. Our main protocol Πta,ts

HBA is given in Fig. 6. It relies on the
following sub-protocols:

– Πta
SBA is an n-party BA protocol that is ts-secure when run in a synchronous

network, and ta-weakly valid when run in an asynchronous network. More-
over, the protocol has guaranteed termination regardless of the network, and
when run in a synchronous network all honest parties terminate by time n ·Δ.
The existence of such a protocol is guaranteed by Theorem 1.

– Πts
ABA∗ is an n-party BA protocol that is ta-secure and ts-valid with termina-

tion when run in an asynchronous network. (Of course, these properties also
hold if the protocol is run in a synchronous network.) The existence of such
a protocol is guaranteed by Theorem 2.

Protocol Πta,ts
HBA

Each Pi initially holds a bit vi. The protocol proceeds as follows:

– Each party Pi runs Πta
SBA using input vi for time n · Δ. Let bi denote

the output of Pi from this protocol, with bi =⊥ denoting no output.
– Each party Pi does the following: if bi �=⊥, set v∗

i := bi; otherwise
set v∗

i := vi. Then run Πts
ABA∗ using input v∗

i , output the result, and
terminate.

Fig. 6. A Byzantine agreement protocol, parameterized by ta, ts.

Theorem 3. Let n, ta, ts be as above. Then protocol Πta,ts
HBA satisfies the following

properties:

1. When the protocol is run in a synchronous network, it is ts-secure.
2. When the protocol is run in an asynchronous network, it is ta-secure.

Proof. First consider the case when Πta,ts
HBA is run in a synchronous network, and

at most ts parties are corrupted. By ts-security of Πta
SBA, after running Πta

SBA there
is a value b �=⊥ such that bi = b for every honest Pi. Moreover, if every honest
party’s input was equal to the same value v, then b = v. Thus, all honest parties
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set v∗
i to the same value b and, if every party’s input was the same value v, then

v∗
i = v. By ts-validity with termination of Πts

ABA∗ , all honest parties terminate
and agree on their output from Πta,ts

HBA , proving ts-consistency, ts-liveness, and
ts-termination. Moreover, if every honest party’s original input was equal to the
same value v, then the output of Πts

ABA∗ (and thus of Πta,ts
HBA ) is equal to v. This

proves ts-validity.
Next consider the case when Πta,ts

HBA is run in an asynchronous network, and at
most ta parties are corrupted. The protocol inherits ta-consistency, ta-liveness,
and ta-termination from ta-security of Πts

ABA∗ , and so it only remains to argue
ta-validity. Assume every honest party’s initial input is equal to the same value v.
Then ta-weak validity of Πta

SBA, plus the fact that it always terminates, imply
that bi ∈ {v,⊥}, and hence v∗

i = v, for every honest Pi. It follows from ts-validity
(note ta ≤ ts) of Πts

ABA∗ that all honest parties output v.

6 Impossibility Result

We show here that our positive result from the previous section is tight. That
is:

Theorem 4. For any n, if ta ≥ n/3 or ta + 2 · ts ≥ n there is no n-party
protocol for Byzantine agreement that is ts-secure in a synchronous network and
ta-secure in an asynchronous network.

The case of ta ≥ n/3 follows from existing impossibility results for asyn-
chronous consensus, so the interesting case is when ta < n/3 but ta + 2 · ts ≥ n.
Theorem 4 follows from the lemma below.

Lemma 12. Fix n, ta, ts with ta + 2ts ≥ n. If an n-party Byzantine agreement
protocol is ts-valid in a synchronous network, then it cannot also be ta-weakly
consistent in an asynchronous network.

Proof. The proof is similar to that of [36]. Assume ta + 2ts = n and fix a BA
protocol Π. Partition the n parties into sets S0, S1, Sa where |S0| = |S1| = ts
and |Sa| = ta, and consider the following experiment:

– Parties in S0 run Π using input 0, and parties in S1 run Π using input 1.
All communication between parties in S0 and parties in S1 is blocked (but
all other messages are delivered within time Δ).

– Create virtual copies of each party in Sa, call them S0
a and S1

a. Parties in
S0
a run Π using input 0, and communicate only with each other and parties

in S0. Parties in S1
a run Π using input 1, and communicate only with each

other and parties in S1.

Consider an execution of Π in a synchronous network where parties in S1 are
corrupted and simply abort, and all remaining (honest) parties use input 0. The
views of the honest parties in this execution are distributed identically to the
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views of S0 ∪ S0
a in the above experiment. In particular, ts-validity of Π implies

that all parties in S0 output 0. Analogously, all parties in S1 output 1.
Next consider an execution of Π in an asynchronous network where parties

in Sa are corrupted, and run Π using input 0 when interacting with S0 while
running Π using input 1 when interacting with S1. Moreover, all communication
between the (honest) parties in S0 and S1 is delayed indefinitely. The views of
the honest parties in this execution are distributed identically to the views of
S0 ∪ S1 in the above experiment, yet the conclusion of the preceding paragraph
shows that weak consistency is violated.

Acknowledgments. Julian Loss was supported by ERC Project ERCC (FP7/
615074).

Appendix

Protocol Πts
ABA has the property that parties never terminate. It is worth noting

that the naive way to address this drawback—in which honest parties participate
in one more iteration after generating output, and then terminate—is not suf-
ficient to allow the remaining honest parties to terminate. To see why, suppose
that some honest party Pi receives (b, 2) as output from the second instance of
Πts

GC in iteration k, and some other honest party Pj receives (b, 1). Now Pi will
participate in iteration k + 1, helping Pj to output (b, 2) in that iteration. How-
ever, Pi then terminates and does not participate in iteration k+2, while Pj still
needs to complete iteration k + 2 in order to terminate. Pj will not receive mes-
sages from Pi when running Πts

GC, and (since the network may be asynchronous)
has no way of knowing whether Pi has terminated or is sending messages that
have been delayed. Thus, Pj may never terminate its execution of Πts

GC.
Nevertheless, we can obtain a terminating protocol Πts

ABA∗ using existing
techniques [29]. The basic idea is that when an honest party generates output,
it announces that fact to all other parties and terminates; the remaining honest
parties can then simulate its behavior for the rest of their execution. Specifi-
cally, we modify Πts

ABA as follows: when an honest party Pi outputs b∗, it sends
(notify, b∗) to all parties. Upon receiving such a message, the remaining parties
each locally simulate the behavior of Pi in the rest of the protocol, and specifi-
cally simulate receiving (prepare, b∗) and (propose, b∗) from Pi in each execution
of the Πts

prop subroutines. The following lemma shows that this is sufficient to
simulate the behavior of honest parties who have already terminated.

Lemma 13. Let ta, ts be such that ta ≤ ts and ta + 2 · ts < n, and assume
at most ta parties are corrupted in an execution of Πts

ABA. If an honest party
outputs b∗, then in every future execution of Πts

prop within Πts
ABA that party will

send exactly the messages (prepare, b∗) and (propose, b∗).

Proof. Say honest party Pi outputs b∗ ∈ {0, 1} in some iteration k. Then Pi must
have received (b∗, 2) as the output of the second execution of Πts

GC in iteration k.
By ta-graded consistency of Πts

GC, every honest party obtained (b∗, 1) or (b∗, 2)
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as output from the second execution of Πts
GC in iteration k. Therefore, in the first

execution of Πts
GC in iteration k + 1, all honest parties use input b∗. Using the

same argument as in the proof of Lemma 3, observe that no value other than
b∗ receives enough prepare messages to be echoed (and therefore proposed) in
this execution of Πts

prop. Therefore every honest party sends (prepare, b∗) in that
execution of Πts

prop, and hence every honest party sends (propose, b∗) as in the
proof of Lemma 5. This establishes that honest parties send exactly the messages
(prepare, b∗) and (propose, b∗) in the first execution of Πts

prop (as a subroutine of
the first execution of Πts

GC). Since, by Lemma 6, all honest parties terminate with
{b∗} in that execution, they all use input b∗ in the second execution of Πts

prop

(still in the first execution of Πts
GC), and we can repeat the argument. Moreover,

ts-graded validity of Πts
GC ensures that all parties output (b∗, 2) from the first

execution of Πts
GC. Therefore, all honest parties input b∗ to the second execution

of Πts
GC in iteration k + 1 and we can apply the same argument to show that

during iteration k + 1 of Πts
ABA, all honest parties send exactly the messages

(prepare, b∗) and (propose, b∗). Now, ts-graded validity of Πts
GC ensures that all

honest parties output (b∗, 2) in the second execution of Πts
GC in iteration k +1 as

well, and hence set b = b∗ for iteration k + 2. We can therefore repeat the same
argument inductively for any iteration k′ > k + 1.

Putting everything together, we have:

Lemma 14. For any ta, ts with ta ≤ ts and ta + 2 · ts < n, protocol Πts
ABA∗ is

ta-secure and also achieves ts-validity with termination.

Proof. Protocol Πts
ABA∗ inherits ta-validity, ta-consistency, and ta-liveness

directly from Πts
ABA. In addition, ta-liveness of Πts

ABA implies ta-termination of
Πts

ABA∗ .
It remains only to show that Πts

ABA∗ is ts-valid with termination. Suppose at
most ts parties are corrupted during an execution of Πts

ABA∗ , and all honest parties
hold input v ∈ {0, 1}. The execution proceeds exactly as described in Lemma 10,
and so all honest parties output v in the first iteration and terminate.

Realizing CoinFlip within Πts
ABA∗ . Both Mostéfaoui et al. [29] and the above

analysis treat the coin flip as an atomic primitive that outputs the kth coin
when the first honest party invokes CoinFlip(k), even if some honest parties have
terminated. When the coin flip is realized by an interactive protocol, however,
this may no longer hold. When realizing the coin flip via a threshold unique
signature scheme, however, there is a simple way to fix this issue: When an
honest party terminates in iteration k, it appends its share of the signature for
iteration k + 1 to its notify message. Then, all honest parties who have not yet
terminated will be able to compute the coin in iteration k + 1 as needed. It is
crucial here to note that since an honest party terminated in iteration k, the
value of the coin in iteration k + 1 will be ignored by all honest parties anyway,
so it does not matter if the adversary learns it in advance.



Synchronous Consensus with Optimal Asynchronous Fallback Guarantees 149

References

1. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polynomial
protocol for asynchronous Byzantine agreement with optimal resilience. In: 27th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pp.
405–414. ACM Press (2008)

2. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: simple
and practical synchronous state machine replication (2019). http://eprint.iacr.org/
2019/270
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Abstract. In predicate encryption for a function f , an authority can
create ciphertexts and secret keys which are associated with ‘attributes’.
A user with decryption key Ky corresponding to attribute y can decrypt
a ciphertext CTx corresponding to a message m and attribute x if and
only if f(x, y) = 0. Furthermore, the attribute x remains hidden to the
user if f(x, y) �= 0.

We construct predicate encryption from assumptions on bilinear maps
for a large class of new functions, including sparse set disjointness, Ham-
ming distance at most k, inner product mod 2, and any function with an
efficient Arthur-Merlin communication protocol. Our construction uses a
new probabilistic representation of Boolean functions we call ‘one-sided
probabilistic rank,’ and combines it with known constructions of inner
product encryption in a novel way.

Keywords: Predicate encryption · Bilinear maps · Probabilistic rank

1 Introduction

In this paper, we study Predicate Encryption (PE), a variant of functional
encryption. In PE for a Boolean function f : {0, 1}2n → {0, 1}, an author-
ity can create ciphertexts and secret keys which are labeled with values, or
“attributes”, from {0, 1}n. An authorized user with a decryption key Ky (with
label y ∈ {0, 1}n) can decrypt a ciphertext CTx (with label x ∈ {0, 1}n) if
and only if f(x, y) = 0. Furthermore (in contrast to the related, weaker notion
of attribute-based encryption), the attribute x is hidden unless the user can
decrypt the message1.

Predicate encryption was first introduced by Boneh and Waters [10] and
is a natural cryptographic primitive with a number of applications throughout
cryptography and security [10,22]. For instance, an executive may issue a secret
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1 Predicate encryption is sometimes alternatively defined with the ciphertexts corre-
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a ciphertext can be decrypted if fj(xi) = 0. These formulations are equivalent; we
can go from one to the other by considering the single function f(x, j) := fj(x) or
vice versa.
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key that allows her assistant to read only her emails that are labeled with certain
business-related keywords, without revealing any of the keywords of any other
emails. A credit card company may issue a secret key that allows an intermediary
to check whether a transaction should be flagged for suspicious activity (based
on attributes such as amount, home address, and location of purchase), without
revealing bulk information for all transactions. A bank may issue a secret key
that allows a credit-reporting company to learn complete information about
certain statuses, such as late payments, but not about all of them.

In these examples, the metadata (i.e. attributes) of messages may carry sen-
sitive information and should not be revealed en masse, while revealing only a
limited or targeted set of attributes may be acceptable, especially if the number
of decrypted messages is small relative to the total number of messages (as in
the credit-card example).

1.1 Constructing PE

A long line of work [10,17,18,22] has shown how to construct PE for certain
classes of functions based on various cryptographic assumptions. [10] first con-
structed PE for some simple functions such as wildcard-matching (i.e. s ∈ {0, 1}n

matches p ∈ {0, 1, ∗}n if p[i] = s[i] whenever p[i] �= ∗) with relatively standard
assumptions on bilinear maps. However, the known bilinear maps-based con-
structions typically can only support functions that can be essentially expressed
as inner products. The one known exception is [22], which shows how to con-
struct PE for the greater-than function (which cannot be expressed as a succinct
inner product) using a different approach.

Some recent work has shown how to achieve better results using other
assumptions. [13] showed how the stronger multilinear maps assumption can
be used to construct PE for any f with polynomial-size circuits. [17] showed
how to construct PE for polynomial-size circuits using assumptions on learning
with errors (LWE).

In this work, we return to the question of constructing PE based only on
bilinear maps. We will show how to do so for a large class of functions whose
‘one-sided probabilistic rank’ is low.

1.2 One-Sided Rank

Consider a Boolean function f : {0, 1}2n → {0, 1} where we think of 0 as ‘true’
and 1 as ‘false’. The one-sided rank of f over a ring R is the minimum integer
d such that there are two maps g, h : {0, 1}n → Rd so that for any two x, y ∈
{0, 1}n we have:

– If f(x, y) = 0 then 〈g(x), h(y)〉 = 0, and
– If f(x, y) = 1 then 〈g(x), h(y)〉 �= 0.

One-sided rank is a generalization of the notion of matching vector families
(in the case when f is the equality function), and was recently studied in a
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cryptographic context by Bauer, Vihrovs, and Wee [8]. As first described by [18],
if f has one-sided rank d, then f has ciphertexts of length O(d log |R|) for a
number of different cryptographic primitives, including PE, given assumptions
on bilinear maps. The idea is that g and h give an embedding of f into the
inner product function, for which PE is already known from assumptions on
bilinear maps [20] (specifically, from a variant on the Decisional Diffie-Hellman
assumption; see Sect. 4.4 for more details).

This remark leads to PE for some functions with surprisingly low one-sided
rank. For instance, over any ring with sufficiently large characteristic, Bauer et
al. show that the equality function EQn : {0, 1}2n → {0, 1}, where EQn(x, y)
tests whether x = y, has one-sided rank only 2, by picking g(x) = (x, 1) and
h(y) = (−1, y). However, for a number of other functions f of interest, including
the greater-than function, the not-equals function, threshold functions, and or-
of-equality functions, Bauer et al. show one-sided rank lower bounds, i.e. that
the one-sided rank must be exponentially large in n. Hence, this one-sided rank
approach is insufficient to construct PE with poly(n) size ciphertexts for these
functions.

1.3 One-Sided Probabilistic Rank

In this paper, we nonetheless achieve predicate encryption for these aforemen-
tioned functions and more. Our approach is to consider a new variant on one-
sided rank, which we call one-sided probabilistic rank2, which combines one-sided
rank with the notion of probabilistic rank introduced by Alman and Williams [3].
We say f : {0, 1}2n → {0, 1} has one-sided probabilistic rank d if there is a joint
distribution D on pairs of functions g, h : {0, 1}n → Rd such that for any two
x, y ∈ {0, 1}n we have

– If f(x, y) = 0 then Prg,h∼D[〈g(x), h(y)〉 = 0] ≥ 1/poly(n), and
– If f(x, y) = 1 then Prg,h∼D[〈g(x), h(y)〉 = 0] ≤ ε(n) for a negligible function ε.

Note in particular that, in contrast with the usual notion of probabilistic
rank, or other related notions like matching vector families, the error in the
f(x, y) = 0 case may be very large in our definition; the success probability
must only be polynomially bounded away from 0.

In a surprisingly simple construction, we show that PE can be constructed
given assumptions about bilinear maps for any function with polynomially-low
one-sided probabilistic rank, despite the high error.

Theorem 1 (Informal). Suppose the Boolean function f : {0, 1}2n → {0, 1}
has one-sided probabilistic rank d over the ring R. Then, assuming the existence
of PE for inner product over R, there is a PE scheme for f with ciphertexts of
length O(d log |R|).
2 Bauer et al. [8] also briefly considered a different probabilistic version of one-sided

rank, but their two-sided error seems insufficient to achieve PE; see Sect. 5 for more
details.
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Loosely, the nonnegligible probability of outputting 0 in the f(x, y) = 0 case
of one-sided probabilistic rank will lead to the correctness of the PE scheme,
and the negligible probability ε in the f(x, y) = 1 case will be crucial for the
security, since the scheme will leak information with probability ε. Theorem 1
can then be combined with the aforementioned bilinear maps-based PE for inner
product, or with any other construction of PE for inner product.

We use Theorem 1 to give a number of new constructions of predicate encryp-
tion for various functions. We show that by taking advantage of the allowed error,
we can achieve poly(n) one-sided probabilistic rank upper bounds for many func-
tions f : {0, 1}2n → {0, 1} of interest, including:

Functions with O(log n) Arthur-Merlin (AM) Communication Com-
plexity. In a AM communication protocol for inputs x, y, first a public random
string z is drawn, then Merlin, who sees x, y, and z, picks a proof ϕ. Alice and
Bob, who are each given access to z, ϕ, and their own input, independently
decide to accept or reject. The protocol is correct if there is always a proof ϕ
which makes both players accept when f(x, y) = 0, but there is unlikely to be
one when f(x, y) = 1.

We show that if ¬f has such a protocol where the proof ϕ can be described
by O(log n) bits, then f has poly(n) one-sided probabilistic rank. Such protocols,
which take advantage of both randomness and a nondeterministic proof, are very
powerful, and despite decades of work, there are no explicit functions for which
ω(log n) AM communication lower bounds are known [2,6,12,14,15]. Moreover,
we will be able to use AM communication protocols where the probability that
there is a proof which makes both players accept when f(x, y) = 1 only has to
be ≤ 1 − 1/poly(n); this is even stronger than normal AM communication, and
hence harder to prove lower bounds for.

To complement this result, we give O(log n) AM communication protocols,
and hence poly(n) one-sided probabilistic rank constructions, for some functions
of interest, including:

– The greater-than function GEQn : {0, 1}2n → {0, 1} where GEQn(x, y) tests
whether x ≥ y when interpreted as n-bit integers in the range [0, 2n − 1]. We
show its one-sided probabilistic rank is poly(n), whereas Bauer et al. showed
a 2n lower bound on its one-sided rank.
Range checking (even multidimensional) can be implemented by using two
or more greater-than functions. This supports, for example, the use case of
police stations being permitted to view emergency reports originating within
a fixed area surrounding their precincts.

– Sparse Set Disjointness, the function which, for two subsets S1, S2 ⊆ U of a
universe U with |S1|, |S2| ≤ poly(n) and |U | ≤ 2poly(n), outputs 0 if S1 and S2

are disjoint. Using one-sided probabilistic rank allows us to handle universe
sizes that are exponentially larger than is allowed by one-sided rank (which
can only handle |U | ≤ poly(n)).
As described in the introduction, this can be used in the example where
a CEO wants to give her assistant the ability to decrypt all of her emails,
except those which are labeled with any of a set of keywords, e.g. “personal”,
“receipts” or “legal”.
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Our result is not the first to relate AM communication with variants on PE:
conditional disclosure of secrets (CDS) is known to capture a weaker version of
PE called attribute-based encryption, and is related to several communication
models including AM [4,5].

Polynomial-size SYM ◦ SYM Circuits. Here, SYM refers to the set of
symmetric Boolean functions (i.e. functions which only depend on the number
of 1s in their input), and SYM ◦ SYM is the set of depth-2 circuits of SYM
gates. This is a very expressive circuit class for which proving lower bounds
is a notoriously open problem (the best known lower bounds are only against
quadratic size SYM ◦ SYM circuits; see e.g. [1]).

It includes, as a simple example, for any 0 ≤ k ≤ n, the function which
on input x, y ∈ {0, 1}n tests whether the Hamming distance from x to y is at
most k. It is known that the one-sided rank of this function, as well as the usual
probabilistic rank of this function, must be exponential in n [3,8], but we show
that its one-sided probabilistic rank is only poly(n). PE for this function can be
thought of as PE for the ‘approximately equal’ function, and thus generalizes
Identity-Based Encryption [9]. This is applicable, for example, in approximate
matching for online dating [17], where users may want to find other users that
are sufficiently similar to their target profile.

Interestingly, our one-sided probabilistic rank construction for SYM ◦ SYM
circuits seemingly cannot be converted into an AM communication protocol,
ostensibly showing that one-sided probabilistic rank is a more expressive notion
than just AM communication (although, as mentioned, no ω(log n) AM commu-
nication lower bound is known for SYM ◦ SYM).

Constant-size, polynomial fan-in AND-OR circuits of low one-sided
probabilistic rank functions. It is not hard to see that one can construct PE
for the OR of polynomially many functions for which PE is already known (one
way is to simultaneously use an independent copy of the PE scheme for each
function). We show that if the functions have PE because they have low one-
sided probabilistic rank (such as in the examples above), then one may use any
constant-size AND-OR circuit with polynomial fan-in gates rather than just a
single OR gate. (There are some additional properties we require of the low
one-sided probabilistic rank functions; see Sect. 3.5 for more details.)

Finally, we show that for m ≤ poly(n), functions with low one-sided
probabilistic rank over Zm also have low one-sided probabilistic rank
over any ring of sufficiently large characteristic. Known bilinear maps-
based constructions of PE for inner product, including the aforementioned con-
struction by [20], only seem to work over ZM for M > nω(1). It is thus not
evident, a priori, that low one-sided probabilistic rank expressions over, say, F2,
lead to PE via our construction. We nonetheless show that such a low rank
expression over F2, or any Zm for m ≤ poly(n), also leads to one over ZM , and
hence to PE. This seems surprising: by comparison, many other notions of rank
can change drastically depending on the underlying ring (e.g. [7,16]).
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This construction implies, for instance, that we can construct PE for the
inner product mod 2 given assumptions about bilinear maps, which was not
previously known to the best of our knowledge.

1.4 Outline

In Sect. 2 we introduce the relevant notation and the formal notions of AM
communication and PE we will be using. Then, in Sect. 3 we give our new one-
sided probabilistic rank constructions, and in Sect. 4 we show how to construct
PE using probabilistic one-sided rank and PE for inner product.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] to denote the set {1, 2, . . . , n}. For a r-dimensional vector
x and any i ∈ [r], we write x[i] for the ith entry of x. For an r1-dimensional
vector x1 and an r2-dimensional vector x2, we write x1||x2 to denote the (r1+r2)-
dimensional vector resulting from concatenating the two. For a ring R, n ∈ N,
and length-n vectors a, b ∈ Rn, we write 〈a, b〉R for their inner product over R,
and we simply write 〈a, b〉 when the ring is clear from context. For m ∈ N, we
write Zm for the ring of integers mod m, and if m is a power of a prime, we
write Fm to denote the finite field of order m.

A function f : N → [0, 1] is negligible if it is smaller than any inverse poly-
nomial, i.e. for any positive constant c, there is a Λ > 0 such that f(λ) < 1

λc for
all λ > Λ.

2.2 Boolean Functions

For Boolean functions f : {0, 1}n → {0, 1}, we think of 0 as ‘true’ and 1 as
‘false’. Hence, the function ANDn : {0, 1}n → {0, 1} has ANDn(x) = 1 unless
x is all all-0s vector, in which case ANDn(x) = 0, and ORn : {0, 1}n → {0, 1}
is defined similarly. For any f : {0, 1}n → {0, 1}, we write ¬f for the function
¬f : {0, 1}n → {0, 1} given by ¬f(x) = 1 − f(x).

Define EQn,NEQn : {0, 1}2n → {0, 1} by EQn(x, y) = 0 if x = y and
EQn(x, y) = 1 otherwise, and NEQn(x, y) = ¬EQn(x, y). Further define GEQn :
{0, 1}2n → {0, 1} by GEQn(x, y) = 0 if x ≥ y when interpreted as binary repre-
sentations of integers between 0 and 2n − 1, and GEQn(x, y) = 1 otherwise.

A Boolean function f : {0, 1}n → {0, 1} is symmetric if it only depends on
the Hamming weight of its input, i.e. f(x) = f(y) for any x, y ∈ {0, 1}n with∑n

i=1 xi =
∑n

i=1 yi. We write SYM for the set of such functions. For x, y ∈
{0, 1}n, write HAM(x, y) for the Hamming distance between x and y.

For k, n ∈ N, let Bn,k ⊆ 2[n] denote the set of subsets X ⊆ [n] with size |X| ≤
k. Define DISJn,k : Bn,k × Bn,k → {0, 1} by DISJn,k(X,Y ) = 0 if |X ∩ Y | = 0
and DISJn,k(X,Y ) = 1 otherwise. Note that elements of Bn,k can be described
using only k log n bits.
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2.3 AM Communication Protocols

An Efficient Arthur-Merlin Communication Protocol Π with success probability
p for a Boolean function f : {0, 1}2n → {0, 1} proceeds as follows:

1. Initially Alice has an input x ∈ {0, 1}n and Bob has an input y ∈ {0, 1}n.
2. A uniformly random z ∈ {0, 1}r for some r ∈ N is publicly sampled and given

to Alice, Bob, and Merlin.
3. Merlin observes x, y, and z, and then selects a proof ϕ ∈ {0, 1}t for some

t ∈ N, and sends ϕ to both Alice and Bob.
4. Alice and Bob each look at z, ϕ, and their own input, and independently

decide to accept or reject in deterministic polynomial time.

The communication cost of Π is t. Π is said to be correct for f if for every
x, y ∈ {0, 1}n:

– If f(x, y) = 0 then there is a ϕ that Merlin can send to make both Alice and
Bob accept no matter what z is.

– If f(x, y) = 1 then with probability at least p over the choice of z, there is no
ϕ which makes both Alice and Bob accept.

Past work using AM communication protocols has typically assumed that p
is a constant greater than 0; here we will be able to use the protocol to design a
one-sided probabilistic rank expression in the much more powerful setting where
we only require p ≥ 1/poly(n). One could amplify such a low p to a constant by
repetition, but this would increase t by a factor which will be prohibitive in our
constructions below.

2.4 Cryptographic Definitions

We now formally define the various notions of secure encryption we use. We
follow the notation of [21].

Secret-Key Predicate Encryption. Let Σ be a finite set, denoting the set
of possible attributes; for our purposes, Σ will typically be {0, 1}n. Let f be
a function Σ × Σ → {0, 1}. We say that x ∈ Σ satisfies a predicate y ∈ Σ if
f(x, y) = 0 (recall that 0 corresponds to ‘true’ and nonzero to ‘false’).

Definition 1 (Secret-key predicate encryption). A secret-key predicate
encryption (PE) scheme for a function f over the set of attributes Σ consists of
the following probabilistic polynomial time (PPT) algorithms.

Setup(1λ) : Takes as input a security parameter 1λ; outputs a secret key SK.
Enc(SK, x,m) : Takes as input a secret key SK, an attribute x ∈ Σ, and a
plaintext m ∈ {0, 1} and outputs a ciphertext CT.
KeyGen(SK, y) : Takes as input a secret key SK and a predicate y ∈ Σ and
outputs a predicate key SKy.
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Dec(SKy, CT ) : Takes as input a predicate key SKy and a ciphertext CT (cor-
responding to attribute x and plaintext m) and outputs a value in {0, 1,⊥}.

Correctness. For correctness, we require the following condition. For all λ,
all x ∈ Σ, all y ∈ Σ, and all m ∈ {0, 1}, letting SK ← Setup(1λ), CT ←
Enc(SK, x,m), and SKy ← KeyGen(SK, y):

– If f(x, y) = 0, then Dec(SKy, CT ) = m with all but negligible probability.
– If f(x, y) = 1, then Dec(SKy, CT ) = ⊥ with all but negligible probability.

We further define partial correctness as the same, except that in the case
f(x, y) = 0, we only require that Dec(SKy, CT ) = m with at least 1/poly(λ) (a
much smaller probability), and Dec(SKy, CT ) = 1−m with negligible probabil-
ity (and otherwise Dec(SKy, CT ) = ⊥).

Security. We define security using the following game between an adversary
A and a challenger.

Setup: The challenger runs Setup(1λ) and keeps SK to itself. The challenger
chooses a random bit b.
Queries: A adaptively makes two types of queries:

• Ciphertext query. A submits attributes x0
i , x

1
i and messages m0

i ,m
1
i and

receives CTi ← Enc(SK, xb
i ,m

b
i ).

• Secret key query. A submits a predicate yj and receives
SKyj

← KeyGen(SK, yj).
These queries are subject to the restriction that for every i, j,
f(x0

i , yj) = f(x1
i , yj) = 1.

Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA = |Pr[b′ = b] − 1
2 |.

A PE scheme is secure if, for all PPT adversaries A, the advantage of A in
winning the above game is negligible in λ.

Remark 1. A secure PE scheme that achieves the partial correctness definition
described above can be generically transformed into a secure PE scheme with
full correctness. By repeating the scheme poly(λ) times and taking the first
non-⊥ result, the output is equal to m with all but negligible probability. By a
straightforward hybrid argument (with poly(λ) hybrids, where the i-th hybrid
has i − 1 copies of the scheme hardcoded to 0, then one real copy of the scheme,
then the rest hardcoded to 1), this will not affect security. See Appendix C for
the full proof of this fact.

In light of this remark, in our proof we will only prove partial correctness.
Similarly, although we consider the message here to be a single bit, we can
replicate the scheme in order to allow arbitrary bitstrings as the message.
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Predicate Encryption for Inner Products We will refer to the special case
of predicate encryption for inner products as inner product encryption, or IPE.
For any ring R and integer n ∈ N, predicate encryption for inner products will
be over the set of attributes Rn, and the function f will be the inner-product
zero-testing function: if 〈x, y〉 = 0 then f(x, y) = 0, and otherwise f(x, y) = ⊥.

We note that we define PE (and hence IPE) that is not predicate-hiding (i.e.
the key Ky reveals the predicate y). In fact, we either need the IPE scheme to
be predicate-hiding, or else that the probabilistic rank expression never output
0 in the f(x, y) = 1 case, for the full security of our construction; see the full
version (https://eprint.iacr.org/2019/1045) for more details.

3 One-Sided Probabilistic Rank

3.1 Definitions

We begin by introducing the new notion of one-sided probabilistic rank which we
will use in this paper. Most of our results in this section will hold over arbitrary
rings R (often with a restriction on the characteristic of R), although we will
only need them in the case when R = Zm is the ring of integers mod m in our
application to PE below.

For positive integers n, d, values p1, p2 ∈ [0, 1], ring R, and a Boolean function
f : {0, 1}2n → {0, 1}, we say f has Efficient (p1, p2)-Probabilistic Rank d over R
(or for short we will write “(p1, p2)-rank d over R” and sometimes omit R when
it is clear from context) if there is a joint distribution D on pairs of functions
g, h : {0, 1}n → Rd such that:

– g and h can be sampled from D and evaluated in poly(nd) time,
– all x, y ∈ {0, 1}n with f(x, y) = 0 have Pr(g,h)∼D[〈g(x), h(y)〉 = 0] ≥ p1, and
– all x, y ∈ {0, 1}n with f(x, y) = 1 have Pr(g,h)∼D[〈g(x), h(y)〉 = 0] ≤ p2.

If {fn}n∈N is a family of Boolean functions with fn : {0, 1}2n → {0, 1},
λ : N → N is any function, and R is any ring, we say {fn}n∈N has Efficient
One-sided Probabilistic Rank λ over R if there are functions p1, p2 : N → [0, 1]
and d : N → N such that for all n, fn has (p1(n), p2(n))-rank d(n) over R, where

– d(n) ≤ poly(λ(n)),
– p1(n) ≥ 1/poly(λ(n)), and
– p2(n) ≤ negl(λ(n)).

3.2 Construction from AM Communication Protocols

We now show that a number of functions f : {0, 1}2n → {0, 1} of interest have
efficient one-sided probabilistic rank poly(n). We begin by showing this for any
function whose co-AM communication complexity is O(log n):

Lemma 1. For any n, t ∈ N, any p ∈ [0, 1], any Boolean function f : {0, 1}2n →
{0, 1} such that ¬f has an Arthur-Merlin communication protocol Π with com-
munication t and success probability p, and any ring R of characteristic greater
than 2t, the function f has (p, 0)-rank at most 2t over R.

https://eprint.iacr.org/2019/1045
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Proof. Our randomized construction of the required maps g, h : {0, 1}n → R2t

proceeds as follows. First, sample a uniformly random z ∈ {0, 1}r (where r is
the length of the random string from Π). Then, for x ∈ {0, 1}n, the vector g(x),
whose 2t entries are indexed by ϕ ∈ {0, 1}t, is given by:

g(x)[ϕ] :=

{
1 if Alice accepts in Π on input x, randomness z, and proof ϕ,

0 otherwise.

Similarly, for y ∈ {0, 1}n,

h(y)[ϕ] :=

{
1 if Bob accepts in Π on input y, randomness z, and proof ϕ,

0 otherwise.

Since Alice and Bob must make decisions in polynomial time in the definition
of Π, these maps g and h can also be computed in polynomial time.

Now, for a given x, y ∈ {0, 1}n, the inner product 〈g(x), h(y)〉 counts the
number of proofs ϕ ∈ {0, 1}t that Alice and Bob would both accept given inputs
x, y and randomness z. If f(x, y) = 0, then since Π has correctness p for ¬f ,
there is no such ϕ, and hence 〈g(x), h(y)〉 = 0, with probability at least p. If
f(x, y) = 1, then there is always such a ϕ, and so 〈g(x), h(y)〉 ∈ {1, 2, . . . , 2t},
which is always nonzero since the characteristic of R is greater than 2t. ��

Using Lemma 1, we can construct low one-sided probabilistic rank expressions
for many functions of interest. Some examples include:

Lemma 2 (GREATER THAN OR EQUALS). For any n ∈ N and ring
R with characteristic at least n + 1, and any ε > 0, GEQn has (1 − ε, 0)-rank
O(n2/ε) over R.

Lemma 3 (SPARSE DISJOINTNESS). For any n, k ∈ N and ring R with
characteristic at least k+1, and any ε > 0, the function DISJn,k has (1−ε, 0)-rank
O(k2/ε) over R.

In Appendix A below, we give the AM communication protocols which prove
these results when combined with Lemma 1.

3.3 Circuits of SYM Gates

We first use a technique from [23] for exactly representing SYM gates.

Lemma 4. For every n ∈ N, every symmetric Boolean function f : {0, 1}2n →
{0, 1}, and every ring R, there are maps g, h : {0, 1}n → Rn+1 which can be
computed in polynomial time, such that 〈g(x), h(y)〉 = f(x, y) for all x, y ∈
{0, 1}n.
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Proof. Let w : {0, 1}n → Z be the function which counts the number of 1s in its
input, i.e. w(x) = x[1] + · · · + x[n]. There is a set S ⊆ {0, 1, . . . , 2n} such that
f(x, y) = 1 if and only if w(x) + w(y) ∈ S. We define g and h as follows, for
i ∈ [n + 1]:

g(x)[i] :=

{
1 if w(x) = i − 1,

0 otherwise,

h(y)[i] :=

{
1 if w(y) + i − 1 ∈ S,

0 otherwise.

In other words, g(x) is 0 in every entry except 1 in a single entry, and h(y) has
a 1 in that entry if f(x, y) = 1 and a 0 otherwise. Hence, 〈g(x), h(y)〉 = f(x, y)
for all x, y ∈ {0, 1}n. ��
Lemma 5 (SYM ◦ SYM circuits). Any function f : {0, 1}2n → {0, 1} which
can be written as a depth-2 circuit of SYM gates, with m gates in the bottom
layer, has (1/m, 0)-rank at most nm + m + 1 over any ring R of characteristic
at least m + 1.

Proof. Let p : {0, 1}m → {0, 1} be the symmetric function computed by the top
gate, and let S ⊆ {0, . . . , m} be the set such that, for z ∈ {0, 1}m, p(z) = 0 if
and only if z[1]+ · · ·+z[m] ∈ S. For each i ∈ [m], let gi, hi : {0, 1}2n → Rn+1 be
the maps from Lemma 4 which exactly compute the ith SYM gate in the bottom
layer of the circuit for f .

We now define the probabilistic rank expression for f . Pick a uniformly
random k ∈ S. The rank expressions g, h : {0, 1}n → Rnm+1 are given by
g(x) = g1(x)||g2(x)|| · · · ||gm(x)||(1), and h(y) = h1(y)||h2(y)|| · · · ||hm(y)||(−k).
Hence,

〈g(x), h(y)〉 =

(
m∑

i=1

〈gi(x), hi(y)〉
)

− k,

which is the number of bottom-layer gates satisfied by x and y, minus k. Since
R has characteristic at least m + 1, this equals 0 if and only if exactly k of the
bottom layer gates are satisfied by x and y. It follows that when f(x, y) = 1
we always have 〈g(x), h(y)〉 �= 0, and when f(x, y) = 0 we have 〈g(x), h(y)〉 = 0
with probability 1/|S| ≥ 1/m, which happens when we pick the correct k. ��
Corollary 1. For any positive integer n, any map p : {0, 1, . . . , n} → {0, 1}, and
any ring R of characteristic at least 2n + 1, the function s : {0, 1}2n → {0, 1}
given by s(x, y) = p(HAM(x, y)) has (1/n, 0)-rank O(n) over R.

Proof. The function s is of the form described by Lemma 5, where m = n, and
the ith bottom layer gate is 1 if x[i] �= y[i] (equivalently, x[i] + y[i] ∈ {1}) and 0
otherwise. ��
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3.4 Inner Products in Small Fields

We next show that one-sided probabilistic rank constructions over Zm for
m ≤ poly(λ) lead to one-sided probabilistic rank constructions over any ring
of sufficiently large characteristic, with only a polynomial change in the error
probabilities. This will be helpful in constructing PE later, since the known bilin-
ear maps-based constructions of PE for inner products only work for certain rings
of large characteristic.

Lemma 6. For any m, d ∈ N and p1, p2 ∈ [0, 1], suppose f : {0, 1}2n →
{0, 1} is a Boolean function with (p1, p2)-rank d over Zm. Then, f also has
(p1/(dm), p2/(dm))-rank d + 1 over any ring R of characteristic greater than
d(m − 1)2.

Proof. Draw g′, h′ : {0, 1}n → Z
d
m from the one-sided probabilistic rank expres-

sion over Zm. Interpreting Zm as the set of integers {0, 1, 2, . . . ,m − 1} ⊆ Z, we
have for any x, y that 〈g′(x), h′(y)〉Z is an integer in {0, 1, 2, . . . , d(m−1)2}, such
that 〈g′(x), h′(y)〉Zm

= 0 if and only if 〈g′(x), h′(y)〉Z is an integer multiple of m.
Letting m′ ∈ N be the largest multiple of m which is at most d(m−1)2, it follows
since R has characteristic greater than d(m−1)2 that 〈g′(x), h′(y)〉Zm

= 0 if and
only if 〈g′(x), h′(y)〉R is in the set M := {0,m, 2m, 3m, . . . ,m′}, and otherwise
〈g′(x), h′(y)〉R is in the set {0, 1, 2, . . . , d(m − 1)2} \ M .

We thus pick a uniformly random k ∈ M and output g(x) = g′(x)||(−1)
and h(y) = h′(y)||(k). Thus, we will have 〈g(x), h(y)〉R = 0 if and only if
〈g′(x), h′(y)〉Zm

= 0 (which happens with probability p1 or p2 in the true and
false cases, respectively) and we pick the correct k ∈ M (which happens with
probability 1/|M | ≤ 1/(dm)). ��

3.5 Small Circuits of Low One-Sided Probabilistic Rank Functions

We next give low one-sided probabilistic rank expressions for AND and OR,
which can be combined to give such expressions for small AND-OR circuits.

Lemma 7. Suppose f1, . . . , fm : {0, 1}2n → {0, 1} are Boolean functions, each
of which has (p1, p2)-rank d over field F. Then, the AND of these functions,
f1 ∧ f2 ∧ · · · ∧ fm, has (pm

1 , 1/|F| + p2)-rank dm over F.

Proof. For each i ∈ [m], we draw gi, hi : {0, 1}n → Fd from the assumed prob-
abilistic rank expression for fi, and draw a uniformly random αi ∈ F. We then
output g, h : {0, 1}n → Fdm given by g(x) = α1g1(x)||α2g2(x)|| · · · ||αmgm(x)
and h(x) = α1h1(x)||α2h2(x)|| · · · ||αmhm(x). Hence, for x, y ∈ {0, 1}n we have

〈g(x), h(y)〉 =
m∑

i=1

αi〈gi(x), hi(y)〉.

First, suppose that fi(x, y) = 0 for all i. Thus, with probability pm
1 , we have

〈gi(x), hi(y)〉 = 0 for all i, and thus 〈g(x), h(y)〉 = 0 as desired.
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Second, suppose that there is an i such that fi(x, y) = 1. Then in particular,
〈gi(x), hi(y)〉 �= 0 with probability at least 1−p2. If it is nonzero, then 〈g(x), h(y)〉
is a sum of a positive number of uniformly random elements of F, and so it is 0
with probability 1/|F|. In total, it is 0 with probability at most 1/|F| + p2. ��
Remark 2. Although Lemma 7 only yields an efficient one-sided probabilistic
rank λ expression when |F| is superpolynomial in λ, we can assume this without
loss of generality by first applying Lemma 6 to increase |F|.
Lemma 8. Suppose f1, . . . , fm : {0, 1}2n → {0, 1} are Boolean functions, each
of which has (p1, p2)-rank d over ring R. Then, the OR of these functions, f1 ∨
f2 ∨ · · · ∨ fm, has (p1/m, p2)-rank d over R.

Proof. We draw a uniformly random i∗ ∈ [m], then draw fi∗ , gi∗ : {0, 1}n →
Fd from the assumed probabilistic rank expression for fi∗ , and simply output
g(x) = gi∗(x) and h(y) = hi∗(y).

First, suppose there is an i ∈ [m] such that fi(x, y) = 0. Then, there is a 1/m
probability that we select i∗ = i, and a p1 probability that 〈gi(x), hi(y)〉 = 0, so
there is at least a p1/m probability that 〈g(x), h(y)〉 = 0.

Second, suppose that fi(x, y) = 1 for all i ∈ [m]. Then, for whichever i∗ we
pick, there is a 1 − p2 probability that 〈gi∗(x), hi∗(y)〉 �= 0, and so there is at
most a p2 probability that 〈f(x), g(y)〉 = 0. ��

We can construct one-sided probabilistic rank expressions for many simple
circuits by applying Lemmas 7 and 8 to all the AND and OR gates. To give two
examples:

Corollary 2. Suppose there is a constant c and Boolean functions f1, . . . , fc :
{0, 1}2n → {0, 1} which all have efficient one-sided probabilistic rank λ over a
field F with |F| > λω(1). Then, any constant-sized AND-OR circuit with the fi

as input also has λ-efficient one-sided probabilistic rank over F.

Corollary 3. For any m = poly(n), let f1, . . . , fm : {0, 1}2n → {0, 1} be any
functions whose (1 − 1/2m, 0)-rank is poly(n) over a field F with |F| > nω(1).
Then, any constant-sized AND-OR circuit, with unbounded fan-in AND and OR
gates in the bottom layer, and with the fi as input, has (1/n)-efficient one-sided
probabilistic rank over F.

Remark 3. Recall from Lemma 2 that Corollary 3 applies when the fi are GEQ
on subsets of the input bits.

4 Predicate Encryption Construction

We now construct secret-key predicate encryption for functions f with Efficient
One-sided Probabilistic Rank λ (see the definition in Sect. 3.1). We will use inner
product encryption as described in Sect. 2.4.
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We will assume that our rank expression works over any Zp with prime p >
λω(1),3 and that the underlying inner product encryption takes inner products
over one such Zp. Most constructions of inner product encryption, including the
one we make use of below in Corollary 4, take the inner product over ZM , where
either M is itself a large prime, or else a product of a constant number of large
primes, e.g. M = pqr, which contains Zp as a subfield.

Theorem 2. Assuming a secure inner product encryption scheme (as described
above), there is a secret-key predicate encryption scheme for any Boolean func-
tion f with efficient one-sided probabilistic rank λ (the time and space complex-
ity of the PE scheme is polynomial in λ).

4.1 Construction

We now describe our construction for Theorem 2.
Let g, h ← D be functions sampled from the joint distribution D in the

definition of one-sided probabilistic rank, in Sect. 3.1. In our construction, we
only require a predicate-only IPE scheme, and as such we will always set the
message m to 0 in IPE.Enc(SK, x,m).

Setup(1λ): The setup algorithm runs IPE.Setup(1λ) twice, one scheme for vectors of
length λ and one for vectors of length λ+ 1, to get secret keys sk and sk′ respectively.
It outputs

SK = (sk, sk′).

Enc(SK, x, m): The encryption algorithm outputs

CT = IPE.Enc(sk, g(x), 0), IPE.Enc(sk′, g(x)||m, 0)
)
.

KeyGen(SK, y): The key generation algorithm outputs

SKy = IPE.KeyGen(sk, h(y)), IPE.KeyGen(sk′, h(y)||1)) .

Dec(SKy, CT ): The decryption algorithm takes CT = (c1, c2) and SKy = (k1, k2) and
runs IPE.Dec(c1, k1). If this is ⊥, then it outputs ⊥. Otherwise, if IPE.Dec(c2, k2) = 0
it outputs 0, and if IPE.Dec(c2, k2) = ⊥ it outputs 1.

Fig. 1. Predicate encryption construction

We prove correctness and security in the following subsections.

4.2 Proof of Correctness

Recall (from Remark 1) that it suffices to prove partial correctness, and then
amplify to achieve all but negligible correctness.
3 Recall that all our constructions above have this property, and that one can assume

it without loss of generality by applying Lemma 6.
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Lemma 9. The scheme in Sect. 4.1 achieves partial correctness.

Proof. Let CT = (c1, c2) and SKy = (k1, k2) be as above.

• Suppose f(x, y) = 1. Then by the definition of g, h, 〈g(x), h(y)〉 �= 0 with
all but negligible probability, and thus by the correctness of IPE, we have
IPE.Dec(c1, k1) = ⊥ and Dec(SKy, CT ) = ⊥ as desired.

• Suppose f(x, y) = 0. Then by the definition of g, h, 〈g(x), h(y)〉 = 0 with
probability at least 1/poly(λ(n)). In this case, IPE.Dec(c1, k1) = 0 and
Dec(SKy, CT ) proceeds to check IPE.Dec(c2, k2). Then 〈g(x)||m,h(y)||1〉 =
0 + m = m and hence, if m = 0, IPE.Dec(c2, k2) = 0 and Dec(SKy, CT ) = 0,
and if m = 1, IPE.Dec(c2, k2) = ⊥ and Dec(SKy, CT ) = 1. Thus
Dec(SKy, CT ) = m, except when the decryption algorithm outputs ⊥.

Therefore, in both cases, we satisfy the correctness requirement. ��

4.3 Proof of Security

The security proof is given in Appendix B below.

4.4 Combining with Bilinear Maps

We have now proven Theorem 2. We can thus construct a predicate encryption
scheme directly using an assumption on bilinear maps, the n-eDDH assump-
tion (an extension of the bilinear decisional Diffie-Hellman assumption; see [20,
Section 3.3] for more details), to instantiate the IPE scheme.

Although we use the construction of [20] in a completely black-box way and
the details therefore do not impact our proofs, we will describe the basic idea
here. A typical assumption describes three groups G1,G2,GT and corresponding
generators g1, g2, gT (not to be confused with the function g elsewhere in this
paper), as well as the bilinear map itself, a public function e (gx

1 , gy
2 ) = gxy

T . The
assumption is that discrete log is hard in these groups, so that the exponents
x, y are hidden, except that the map allows an exponent in the first group to
be multiplied with an exponent in the second group. The resulting elements of
gT can then be multiplied to produce gx1y1+x2y2+...+xnyn

T , computing the inner
product in the exponent, and if the exponent is zero this value will be equal to
1. Of course, this simple explanation is not secure, and the construction involves
more details that we omit here.

Corollary 4. If the n-eDDH assumption holds, there is a secret-key predicate
encryption scheme for any Boolean function f with efficient one-sided proba-
bilistic rank λ.

Proof. We can use the n-eDDH assumption to construct a fully secure inner
product encryption scheme following [20], then apply Theorem 2 to construct
the predicate encryption scheme. ��
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5 Conclusion

A natural question is whether this approach can be extended to the stronger
notion of functional encryption (FE), where the attributes are hidden even when
the user can decrypt. At first glance, our scheme seems to offer such a guarantee,
as it only reveals the inner product and not the vectors g(x), h(y). However,
the inner products from one-sided probabilistic rank have an error probability,
and those errors are necessarily correlated, so that an adversary observing a
certain error pattern can make inferences about which x, y pairs are consistent
with that pattern. Furthermore, such an extension could be quite strong. FE
for the greater-than function, also known as order-revealing encryption (ORE),
is a desirable primitive and has potential applications beyond crypto [11,19];
however, it is not known to be constructible using bilinear maps or any other
standard cryptographic assumptions. An extension to FE would also allow sur-
prising constructions if combined with degree-2 PRGs over F2.

One may hope to get around this possibility by designing probabilistic rank
expressions whose error probability is negligible both when f(x, y) = 0 and when
f(x, y) = 1. However, one can see that such a probabilistic rank expression
could be used to construct a one-sided (deterministic) rank expression for f
with only a polynomial blow-up in the rank. It is known that many functions
of interest, including GEQ, do not have such rank expressions, so for these
functions, probabilistic rank expressions with negligible error are also impossible.

Another question is whether our approach can support rank expressions with
polynomial error on both sides, such as those considered in Bauer et al. [8]. For
example, if f(x, y) = 0 then 〈g(x), h(y)〉 = 0 with probability at least 2/3, and
otherwise with probability at most 1/3. One idea for attempting to use such an
expression is to secret-share the message, making 2m shares where m are required
to decrypt, and then instantiate 2m distinct PE schemes to encrypt each share.
However, if the adversary has multiple keys (none of which are authorized to
decrypt x), she could try decrypting a share with each key, and decrypt any
particular share with high probability (since any key works on any share with
probability 1/3).

Acknowledgements. We would like to thank Akshay Degwekar, Alex Lombardi,
Dylan McKay, Hoeteck Wee, Lijie Chen, Lisa Yang, Prabhanjan Ananth, Ryan
Williams, and Vinod Vaikuntanathan for useful discussions throughout this project,
and anonymous reviewers for a number of helpful suggestions.

A AM Communication Protocols

We now present the aforementioned AM communication protocols, which can be
combined with Lemma 1 to construct one-sided probabilistic rank expressions.

Lemma 10 (EQUALITY). For any ε > 0, there is an AM communication
protocol for EQn with success probability 1−ε and communication O(log(1/ε)).
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Proof. We use the well-known strategy for randomized communication protocols
for EQ - simply hash the two inputs. Let r = �1/ε�. Alice, Bob and Merlin use
the public randomness to publicly pick a pairwise-independent random function
b : {0, 1}n → [r]4. Merlin then sends a ϕ ∈ [r], and Alice and Bob accept if
b(x) = ϕ and b(y) = ϕ, respectively.

For any x, y ∈ {0, 1}n, if EQn(x, y) = 0, meaning x = y, then Merlin can
send φ = b(x) and both Alice and Bob will accept. If EQn(x, y) �= 0, then the
probability that b(x) = b(y) is at most 1/r ≤ ε, and if this is not the case, there
is no ϕ that Merlin can send which both Alice and Bob would accept.

��
Lemma 11 (GREATER-THAN-OR-EQUALS). For any ε > 0, there is
an AM communication protocol for ¬GEQn with success probability 1 − ε and
communication O(log(n/ε)).

Proof. Our construction is very similar to [3, Lemma D.2], and again uses a
common strategy for communication protocols for GEQ. For x ∈ {0, 1}n, and
i ∈ {0, 1, . . . , n − 1}, write x[1 : i] ∈ {0, 1}i to denote the first i entries of x. We
use the following characterization of GEQn: GEQn(x, y) = 1 if and only if there
is an i ∈ [n] such that y[i] = 1, x[i] = 0, and x[1 : i − 1] = y[1 : i − 1].

After the public randomness is sampled, Merlin sends an i∗ ∈ [n]. Alice, Bob
and Merlin then use the protocol from Lemma 10 with success probability ε/n
to test whether x[1 : i∗ − 1] = y[1 : i∗ − 1]. Alice accepts if this is the case and
x[i∗] = 0; Bob accepts if this is the case and y[i∗] = 1.

For any x, y ∈ {0, 1}n, suppose first that GEQn(x, y) = 1. Thus, Merlin can
send the i∗ = i ∈ [n] such that y[i] = 1, x[i] = 0, and x[1 : i − 1] = y[1 : i − 1].
By Lemma 10, the equality test will always return that x[1 : i − 1] = y[1 : i − 1],
and so both will always accept.

Next, suppose GEQn(x, y) = 0. Thus, for any i∗ that Merlin can send, there
is at most a ε/n probability that Merlin can send a proof in the protocol for
Lemma 10 which will make Alice and Bob accept. By a union bound over all n
choices of i, there is at most an ε probability that Merlin can send an i∗ and
subsequent proof which will make Alice and Bob accept. ��
Remark 4. In general, for a Boolean function f , the two functions f and ¬f may
have very different AM communication complexities. However, they are actually
essentially equal for f = GEQ since ¬GEQn(x, y) = GEQn(2n − x, 2n − 1 − y).

Lemma 12 (SPARSE DISJOINTNESS). For any n, k ∈ N and any ε > 0,
there is an AM communication protocol for ¬DISJn,k with success probability
1 − ε and communication O(log(k/ε)).

4 There are standard constructions of such pairwise-independent functions which can
be sampled and evaluated in polynomial time. For instance, we may pick uniformly
random c1, c2 ∈ Fr, and define b(x) = c1x + c2.
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Proof. Let r = �k2/ε�. Similar to Lemma 10, Alice, Bob and Merlin first use the
public randomness to publicly sample a random pairwise independent b : [n] →
[r]. Merlin then chooses a proof ϕ ∈ [r] and sends it to both Alice and Bob.
Alice accepts if there is an element of x of her input X with b(x) = ϕ, and Bob
accepts if there is an element y of his input Y with b(y) = ϕ.

If X and Y are not disjoint, and both contain c ∈ [n], then Merlin can
send φ = b(c), and both Alice and Bob will always accept. If X and Y are
disjoint, then for every pair (x, y) ∈ X × Y , there is at most a 1/r probability
that b(x) = b(y). If this is not the case for all such pairs, which happens with
probability at least 1− k2/r ≥ 1− ε by a union bound, then Merlin cannot send
any message to make both Alice and Bob accept. ��
Remark 5. The inputs to DISJn,k are bit-strings of length O(k log n). Lemmas 3
and 12 show that DISJn,k has poly(k)-efficient one-sided probabilistic rank when-
ever n ≤ 2poly(k); note in particular that the rank is independent of n.

B Predicate Encryption Security Proof

We now present the proof of security for the predicate encryption scheme from
Sect. 4.1.

Remark 6. We begin by making a small modification to our given probabilis-
tic rank expression. Considering the g, h corresponding to our function f , the
definition of one-sided probabilistic rank guarantees that if f(x, y) = 1, then
〈g(x), h(y)〉 �= 0 with all but negligible probability. Our modification will ensure
that also, 〈g(x), h(y)〉 �= −1 with all but negligible probability. Our modification
is simple: we pick a uniformly random r ∈ F and replace g with g′(x) = rg(x).
Thus, whenever 〈g(x), h(y)〉 �= 0, then 〈g′(x), h(y) = r · 〈g(x), h(y)〉 is a uni-
formly random nonzero element of F. Since F is superpolynomially large, this
means it is −1 with only negligible probability.

Lemma 13. The scheme in Sect. 4.1 is secure.

Proof. Suppose towards a contradiction that an adversary A can win the PE
security game with probability 1/2 + ε. We will construct an adversary A′ that
wins the IPE security game with the same probability. A′ will actually interact
with two separate IPE challengers, with independently generated secret keys,
with vectors of length d and d + 1 respectively; by a hybrid argument, distin-
guishing the two combined instances also contradicts the IPE security guaran-
tee. A′ acts as the PE challenger to A and transforms each input query into two
queries to the IPE challengers. The game proceeds as shown in Fig. 2.

First, we must prove that A′ only outputs valid queries with all but neg-
ligible probability. Since A outputs only valid queries, for every i, j, we have
f(x0

i , yj) = f(x1
i , yj) = 1. Then, since g, h have one-sided error, with all but

negligible probability, 〈g(x), h(y)〉 �= 0 and furthermore 〈g(x), h(y)〉 �= −1 (as
described at the start of the proof). Therefore, for every i, j and for b ∈ {0, 1},
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Phase A A′ C
Setup Runs Setup(1λ).

Chooses random bit b.
Query Ciphertext query

A x0
i ,m0

i ,x1
i ,m1

i−−−−−−−−−−−−→ A′

A′ g(x0
i ),0,g(x1

i ),0−−−−−−−−−−−−−−−−−−→ C
A′ c1=IPE.Enc(sk,g(xb

i ),0)←−−−−−−−−−−−−−−−−− C
A′ g(x0

i ||m0
i ),0,g(x1

i ||m1
i ),0−−−−−−−−−−−−−−−−−−→ C

A′ c2=IPE.Enc(sk′,g(xb
i ||mb

i ),0)←−−−−−−−−−−−−−−−−−− C
A (c1,c2)←−−−−−−−−−−−− A′

Key query

A yj−−−−−−−−−−−−→ A′

A′ h(yj)−−−−−−−−−−−−−−−−−−→ C
A′ k1=IPE.KeyGen(sk,h(yj))←−−−−−−−−−−−−−−−−− C
A′ h(yj ||1)−−−−−−−−−−−−−−−−−−→ C
A′ k2=IPE.KeyGen(sk′,h(yj ||1))←−−−−−−−−−−−−−−−−−− C

A (k1,k2)←−−−−−−−−−−−− A′

Guess A b′−−−−−−−−−−−−→ A′

A′ b′−−−−−−−−−−−−−−−−−→ C

Fig. 2. IPE Security Game

〈g(xb
i ), h(yj)〉 �= 0 and 〈g(xb

i ||b), h(yj ||1)〉 �= 0. That is, all of the inner products
are nonzero, satisfying the IPE restriction. Now we prove that A′ succeeds in the
security game with almost the same probability as A. A′ responds to ciphertext
query xi with CT =

(
IPE.Enc(sk, g(xb

i ), 0), IPE.Enc(sk′, g(xb
i )||mb

i , 0)
)
, which

is exactly the value Enc(SK, xb
i ,m

b
i ) in the PE security game. Similarly, A′

responds to secret key query yj with
CT =

(
IPE.KeyGen(sk, g(yj)), IPE.KeyGen(sk′, g(yj)||1)

)
, which is the value

KeyGen(SK, yj) in the PE security game. In other words, A is presented with
the same interaction as in the real PE security game, and if it correctly guesses
b′, then so does A in the IPE security game. The only case where A is correct
but A′ is not is the case when A′ outputs an invalid query, which happens with
negligible probability as described in the previous paragraph. Therefore, A′ wins
the IPE security game with non-negligible advantage, a contradiction. ��

C Partial Correctness to Full Correctness Proof

We now present the proof of security for Remark 1 in Sect. 2.4.
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Lemma 14. If a function f with set of attributes Σ has a secure secret-key
predicate encryption scheme with partial correctness, then it also has such a
scheme with full correctness.

We first outline the construction, which uses a standard parallel repetition.
Let PSPE be the partially secure Predicate Encryption scheme; we will use it
to construct a fully secure scheme PE. Let p(λ) be the probability that the
message decrypts successfully in PSPE when f(x, y) = 0; by assumption, p is at
least inverse-polynomial. Our construction of PE is shown in Fig. 3 below.

We now prove the correctness and security of PE.

Proof. We first prove correctness. Consider some x ∈ Σ, y ∈ Σ. First suppose
f(x, y) = 0. By assumption, the probability that m̃i = m for a given i is p(λ).
Hence the probability that m̃i �= m is 1 − p(λ). Then the probability that m̃i �=
m for all i is (1 − p(λ))k =

(
(1 − p(λ))p(λ)

)λ
= exp(−λ), which is negligible.

Therefore, with all but negligible probability, the m̃is contain at least one correct
message. Furthermore, each m̃i is equal to the incorrect message (1 − m) with
negligible probability, so the probability that any of the m̃is is equal to the
incorrect message is also negligible. Hence, with all but negligible probability,
the decoded guesses contain at least one correct guess and no incorrect ones,
hence PE.Dec(SKy, CT ) = m, as desired.

PE.Setup(1λ): The setup algorithm creates k = λ·p(λ) independent copies of the PSPE
scheme, with SKi = PSPE.Setup(1λ) for all i ∈ [k], and outputs the secret key

SK ← (SK1, . . . , SKk)

PE.Enc(SK, x, m): The encryption algorithm takes the secret key
SK = (SK1, . . . , SKk), attribute x, and plaintext m. It outputs a ciphertext

CT ← (PE.Enc(SK1, x, m), . . . ,PE.Enc(SKk, x, m))

PE.KeyGen(SK, y): The key generation algorithm takes the secret key
SK = (SK1, . . . , SKk) and outputs

SKy ← (PSPE.KeyGen(SK1, y), . . . ,PSPE.KeyGen(SKk, y))

PE.Dec(SKy, CT ): The decryption algorithm takes the predicate key SKy =
(SKy,1, . . . , SKy,k) and a ciphertext CT = (CT1, . . . , CTk). It decrypts them to corre-
sponding messages m̃i ← PSPE.Dec(SKy,i, CTi) for i ∈ 1 . . . k. Then:

– If at least one m̃i is 0 and none are 1, it outputs 0.
– If at least one m̃i is 1 and none are 0, it outputs 1.
– Otherwise (if m̃i = ⊥ for every i, or there are both 0’s and 1s), it outputs ⊥.

Fig. 3. Fully correct predicate encryption construction.
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Now suppose f(x, y) = 1. By assumption, PSPE.Dec(SKy,i, CTi) = ⊥ with
all but negligible probability. Hence with all but negligible probability, every one
of the m̃is is equal to ⊥ and therefore PE.Dec(SKy, CT ) is also ⊥, as desired.

Now we prove security. We construct a series of k+1 hybrids. The l-th hybrid
proceeds as follows:

– The challenger runs PE.Setup(1λ) to produce (SK1, . . . , SKk) and chooses a
random bit b.

– In a ciphertext query, the adversary A submits attributes x0
i , x

1
i and messages

m0
i ,m

1
i and receives

CTi ← (PSPE.Enc(SK1, x
0
i ,m

0
i ), . . . ,PSPE.Enc(SKl, x

0
i ,m

0
i ),

PSPE.Enc(SKl+1, x
1
i ,m

1
i ), . . . ,PSPE.Enc(SKk, x1

i ,m
1
i ) (1)

– In a secret key query, the adversary A submits predicate yj and receives
SKyj

← PE.KeyGen(SK, yj).
– After as many queries as desired, the adversary outputs a guess b′ of b.

Note that, when l = 0, this is the b = 1 case of the security game for
PE, and when l = k, this is the b = 0 case. Hence, if an adversary A can
win the security game for PE with non-negligible advantage, it distinguishes
between two adjacent hybrids (say l and l + 1) with non-negligible advantage.
These two hybrids differ only in the (l + 1)-th index of the ciphertext query.
Then we can create an adversary A′ that wins the PSPE security game: it
samples SK1, . . . , SKl, SKl+2, . . . , SKk, then answers queries using those keys
and querying its own challenger in order to receive PSPE.Enc(SKl+1, x

b
i ,m

b
i )

and PSPE.KeyGen(SKl+1, yj) as needed. The cases b = 1 and b = 0 correspond
exactly to hybrids l and l +1 respectively, hence A′ wins the security game with
non-negligible advantage, a contradiction. ��
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Abstract. We construct private-key and public-key functional encryp-
tion schemes in the bounded-key setting; that is, secure against adver-
saries that obtain an a-priori bounded number of functional keys (also
known as the collusion bound).

An important metric considered in the literature on bounded-key func-
tional encryption schemes is the dependence of the running time of the
encryption algorithm on the collusion bound Q = Q(λ) (where λ is the
security parameter). It is known that bounded-key functional encryp-
tion schemes with encryption complexity growing with Q1−ε, for any
constant ε > 0, implies indistinguishability obfuscation. On the other
hand, in the public-key setting, it was previously unknown whether we
could achieve encryption complexity growing linear with Q, also known
as optimal bounded-key FE, based on well-studied assumptions.

In this work, we give the first construction of an optimal bounded-
key public-key functional encryption scheme under the minimal assump-
tion of the existence of any public-key encryption scheme. Moreover, our
scheme supports the class of all polynomial-size circuits.

Our techniques also extend to the private-key setting. We achieve
a construction of an optimal bounded-key functional encryption in the
private-key setting based on the minimal assumption of one-way func-
tions, instead of learning with errors as achieved in prior works.

1 Introduction

Functional Encryption [SW05,BSW11] (FE) is a powerful type of encryption
where the owner of a secret key sk can generate special-purpose functional secret
keys skF which allow anyone to compute F (x) given an encryption of x. The
standard and demanding security notion for functional encryption is collusion-
resistance which, informally stated, requires that an adversary who holds func-
tional secret keys for an arbitrary polynomial number of boolean functions
F1, F2, . . . , Fm of her choice should learn no more than F1(x), F2(x), . . . , Fm(x)
given an encryption of x. Collusion-resistant functional encryption schemes are
extremely powerful: [AJ15,BV15,AJS15] show that such FE schemes can be
used to construct indistinguishability obfuscators and therefore, can be used to
c© International Association for Cryptologic Research 2019
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instantiate a vast majority of cryptographic primitives (see [SW14] and a large
number of followup works.) It is no surprise then that collusion-resistant FE
schemes are very hard to construct and indeed, to this date, we do not know
constructions from well-established cryptographic assumptions.

In many uses of functional encryption, however, the weaker notion of bounded-
key setting might suffice. Bounded-key setting permits the secret-key owner to
release an a priori bounded number Q = Q(λ) of functional keys. (Here and
henceforth, λ denotes the security parameter.) Thus, bounded-key setting is
appropriate in scenarios where functional keys are tied to users, and a large
colluding set of users is hard to form. Historically, bounded-collusion resistance
has been well-studied with the goals of improving efficiency, reducing computa-
tional assumptions, and supporting a larger class of functions; see [DKXY02,
HK04,CHH+07,GLW12,SS10,GVW12a,ISV+17,AR17,Agr17] and the refer-
ences therein.

Encryption Complexity. An important complexity measure considered in the
FE literature is encryption complexity (defined to be the size of the encryp-
tion circuit). Of particular interest in the setting of bounded-collusion resis-
tance (referred as bounded-key FE) is the growth of the encryption complexity
with the collusion bound Q. The importance of this measure stems from the
recent results [BV15,AJ15,AJS15,GS16,LM16,BNPW16,KNT18], which tell us
that, for any constant ε > 0, bounded-key FE with encryption complexity
Q1−ε · poly(λ, s), where s is the maximum size of the functions queried, is
as powerful as collusion-resistant FE. Thus, achieving encryption complexity
Q1−ε·poly(λ, s) in bounded-key FE schemes from well-studied assumptions would
be a breakthrough in cryptography.

On the other hand, we could still hope to base bounded-key FE schemes,
in the public-key setting, with encryption complexity Q · poly(λ, s) (henceforth,
referred to as optimal bounded-key FE) on well-studied assumptions. Unfortu-
nately, this question has remained unanswered so far. The best known result,
by Agrawal and Rosen [AR17], managed to reduce the encryption complexity to
Q2 + poly(λ, s).

We ask the following question:

Can we construct optimal bounded-key public-key FE for all functions in
P/poly based on well-studied assumptions?

1.1 Our Results

In this work, we answer the above question in the affirmative and in fact, our
construction can be based on minimal assumptions alone, i.e., existence of any
public-key encryption scheme.

Specifically, we prove the following theorem.

Theorem 1 (Informal). Assuming the existence of public-key encryption,
there exists a bounded-key public-key FE scheme for P/Poly with encryption
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complexity Q · poly(λ, s), where Q is the collusion bound and s is the maximum
size of the functions queried.

Additionally our scheme has many advantages. It satisfies simulation security
and adaptive security, which is the best possible security notion that we can
achieve in this setting. Moreover, our scheme makes only black box use of the
underlying public-key encryption scheme. We note that even constructing opti-
mal public-key attribute-based encryption, a weaker form of FE, based on min-
imal assumptions was unknown prior to our work.

Private-Key Setting. In the private-key setting, a recent work of Chen, Vaikun-
tanathan, Waters, Wee and Wichs [CVW+18] showed how to achieve optimal
bounded-key FE based on the assumption of learning with errors. Moreover,
their scheme was only selectively secure. Thus, constructing optimal bounded-
key FE in the private-key setting based on the minimal assumption of one-way
functions was open.

We show,

Theorem 2 (Informal). Assuming the existence of one-way functions, there
exists a bounded-key private-key FE scheme for P/Poly with encryption complex-
ity Q · poly(λ, s), where Q is the collusion bound and s is the maximum size of
the functions queried.

Our private-key scheme has the same attractive features as our public-key scheme,
that is, our private-key scheme satisfies simulation security, adaptive security and
only makes black-box use of the underlying cryptographic primitive.

Dichotomy in Bounded-Key Functional Encryption. We see our work as estab-
lishing a dichotomy in bounded-key functional encryption (in both public-key
and private-key settings): (i) for any constant ε > 0, any bounded-key FE scheme
with encryption complexity Q1−εpoly(λ, s) implies indistinguishability obfus-
cation and, (ii) the existence of bounded-key FE with encryption complexity
Q · poly(λ, s) can be based solely on minimal assumptions.

1.2 Prior Works on Bounded-Collusion FE

Dichotomy in Bounded-Key IBE. Early work by Dodis, Katz, Xu and Yung
[DKXY02] showed how to construct a Q-bounded identity-based encryption (IBE)
scheme, another special case of FE, where the public parameters had size O(Q2λ),
and the ciphertexts and secret keys had size O(Qλ), starting from any public-key
encryption scheme. Goldwasser, Lewko and Wilson [GLW12] later showed a con-
struction with public parameters of size O(Qλ), and ciphertexts and secret keys of
size O(λ), albeit under more structured algebraic assumptions.

More recently, Döttling and Garg [DG17b] and followup works [BLSV18,
DG17a] showed how to bootstrap any bounded collusion IBE with public param-
eters of size Q1−ε · poly(λ), irrespective of ciphertext and secret-key length, into a
full-fledged (i.e., fully collusion-resistant) IBE scheme.
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This gives us a dichotomy for IBE: Q-bounded IBE with public parameters
of size Ω(Q) exists under the minimal assumption of public-key encryption; and
doing any better in terms of the size of public parameters is as hard as achieving
unbounded-collusion IBE.

Bounded-Key FE. In the other extreme, the situation with general functional
encryption (FE) is less clear-cut. The first construction of bounded-key FE for
Boolean functions1 in NC1 was demonstrated by Gorbunov, Vaikuntanathan and
Wee [GVW12a], who built on the work of Sahai and Seyalioglu [SS10]; the
encryption complexity in their scheme was Q4 · poly(λ, s). They also showed
how to extend this to support all poly-time computable functions, but at the
expense of an additional assumption, namely pseudorandom functions that can
be computed in NC1, an object that we currently know how to construct based
only on algebraic assumptions such as factoring, DDH and LWE. (see Fig. 1 for
a detailed comparison.) Agrawal and Rosen [AR17] showed how to reduce the
ciphertext size to Q2 + poly(λ, s) under the LWE assumption. Chen, Vaikun-
tanathan, Waters, Wee and Wichs [CVW+18] very recently showed how to
reduce the dependence even further to Q ·poly(λ, d) under the LWE assumption,
except they could only achieve private-key FE. The ciphertext size dependence
on Q in this last result is the best possible (without constructing IO) except
that (a) they rely on LWE; and (b) they only achieve private-key FE. Even
in the much weaker setting of public-key attribute-based encryption (ABE), the
best known ciphertext size is Q2 · poly(λ, s) in constructions that rely only on
public-key encryption [ISV+17].

Dependence on the Circuit Size. We do caution the reader that our focus will
be on the dependence of the ciphertext size on the collusion-bound Q. Cipher-
texts in our scheme grow with the circuit-size of the functions that the scheme
supports (denoted s in Fig. 1). On the one hand, for constructions that rely only
on the minimal assumption of public-key encryption, this dependence seems
hard to remove; indeed, even the best 1-bounded FE with ciphertext size sub-
linear in the circuit-size of the (Boolean) functions assumes (subexponential)
LWE [GKP+13]. On the other hand, we show how to translate any improve-
ment in this state of affairs for 1-bounded FE into a corresponding improvement
in Q-bounded FE with ciphertexts that grow linearly in the collusion bound Q.
Concretely, applying our techniques to the 1-bounded FE of [GKP+13] gives us a
Q-bounded FE from subexponential LWE where ciphertexts grow as Q·poly(λ, d)
where d is the circuit-depth, improving on [AR17] (who achieve a quadratic
dependence in Q) and on [CVW+18] (who construct a private-key FE scheme
with a linear dependence in Q).

1 Handling functions with output size � is morally the same as increasing the collusion
bound and handling � functions with Boolean output. Indeed, this is made precise
in the results of [BV15,AJS15,GS16,LM16].
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Fig. 1. State of the art for bounded key functional encryption schemes in terms of
query dependence. Q denotes the number of circuit queries allowed in the security
experiment and s denotes the size of the circuits for which functional keys are issued.

1.3 Technical Overview

We give an overview of the techniques. For the current discussion, our focus will
be on the public-key setting; the techniques carry over mutatis mutandis to the
private-key setting as well. We show our result in two steps. In the first step,
we construct a public-key bounded-key FE for P/Poly starting from any public-
key encryption scheme. We will not worry about optimizing the ciphertext size;
indeed, it will be a large polynomial in the collusion bound Q. In the second
step, we show a general way to reduce the ciphertext size: we show how to
transform an FE scheme, where the ciphertext complexity grows polynomial in
the collusion bound, into a FE scheme with linear complexity.

We now describe an overview of the techniques involved in the two steps,
in order. In the technical sections, we invert the order of presentation since the
second step (see Sect. 4) is simpler than the first (see Sect. 5).

First Step: Bounded-Key FE for p/poly. Our starting point is the obser-
vation from [SS10,GVW12a] that secure multiparty computation protocols with
certain properties can be used to construct FE schemes; for [SS10], it was
Yao’s two-party computation protocol [Yao86] and for [GVW12a], it was a non-
interactive version of the BGW multi-party protocol [BOGW88]. Broadly speak-
ing, our goal in this paper is to identify the right notion of MPC that can be
turned into optimal bounded-collusion FE.

Towards this end, we define secure multiparty computation protocols in a
client-server framework where there is a single client who wishes to delegate an
a-priori bounded number Q of computations to N servers. We first describe the
syntax of such protocols and then the security we require of them. A protocol
in the client-server framework proceeds in two phases:

– An offline phase where the client encodes a private input x into N encodings,
and the ith server gets the ith encoding.

– An online phase which is executed Q times, once for every function that the
client wishes to delegate. In the jth session, the client encodes a circuit Cj into
N encodings, and sends each server an encoding. At this stage, only n of the
N servers come online, perform some local computation on their encodings,
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and output a single message each. (We call the local computation function
Local.) A public decoding algorithm can then reconstruct the value Cj(x)
from these server messages. (We call the reconstruction function Decode.)
Crucially, we require that the client does not keep any shared state between
the online and offline phases.

As for security, we consider an adversary that corrupts an arbitrary size-t subset
of the servers (for some pre-determined t) and learns (a) the offline phase mes-
sages received by these t servers and (b) the messages of all the servers in the
online phase; that is, the adversary gets to see the entire communication between
the client and the servers in the online phase. We require that such an adversary
does not learn anything more about the client input x other than {Cj(x)}j∈[Q].
This requirement is captured through a simulation-based definition. Two aspects
make it challenging to construct such protocols:

– Reusability: the input encodings generated by the client should be reusable
across different computations; and

– Dynamic Recovery: the ability for only a subset of servers to come together
in the online phase to recover the output.

For the current discussion, we call secure protocols that satisfy both the above
properties as reusable dynamic MPC protocols. In the technical sections, we will
not explicitly use the terminology of reusable dynamic MPC protocols and just
refer to them as client-server protocols.

Implicit in [GVW12a] is a construction of a reusable dynamic MPC protocol,
where the circuits delegated by the client are in NC1. There is a fundamental bar-
rier in extending their approach to handle circuits in P/Poly as they crucially use
a two-round MPC protocol (derived from BGW) that securely computes poly-
nomials. Circuits in P/Poly are believed to not have efficient polynomial rep-
resentations. While several recent works [BL18,GS18,ACGJ18,GIS18,ABT18]
demonstrate two-round MPC protocols that securely compute P/Poly, they
fail to simultaneously satisfy reusability and dynamic recovery. Nonetheless,
we will crucially use the construction of reusable dynamic MPC protocol for
NC1 [GVW12a], denoted by ΠNC1 , to build a protocol for P/Poly.

From Client-Server Protocol for P/Poly to Bounded-Key FE for P/Poly. Before
we construct reusable dynamic MPC protocols for P/Poly, we first show how
such protocols are useful in obtaining bounded-collusion FE for P/Poly. As an
intermediate tool, we use a single-key FE scheme for P/Poly. This is a well studied
object and can be based solely on the existence of public-key encryption [SS10].
We call such a scheme 1fe and we denote the bounded-collusion FE scheme that
we wish to construct to be BFE. The construction of BFE, which follows along
the lines of [GVW12a], proceeds as follows:

– The setup of BFE invokes N = poly(Q) instantiations of 1fe. The N public
keys of 1fe form the master public key of BFE and similarly the N secret keys
of 1fe form the master secret key of BFE.
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– To encrypt an input x in BFE, run the offline phase of the client-server frame-
work. Denote the output to be (x̂1, . . . , x̂N ). Encrypt x̂u under the uth instan-
tiation of 1fe. Output all the N ciphertexts of 1fe.

– The key generation for a circuit C in BFE is done as follows: run the client
delegation procedure CktEnc on C to obtain ( ̂C1, . . . , ̂CN ). Pick a random n-
sized subset S ⊆ [N ] and generate 1fe functional keys for Local( ̂Cu, ·) (recall
that Local is part of the online phase in client-server framework) for every u
in the set S. Output all the n functional keys of 1fe.
Note that here we crucially use the fact that the client does not share state
between the offline and online phases.

– The decryption proceeds by first decrypting the uth ciphertext of 1fe using
the uth functional key to obtain the encoding ŷu. Then run Decode to recover
the answer.

The correctness of BFE follows from the correctness guarantees of 1fe and the
reusable dynamic MPC framework. To argue security, as in [GVW12a], a simple
combinatorial argument is first invoked to prove that the size of pairwise inter-
sections of the sets chosen during the key-generation procedures of all the Q
functional keys is at most t. For this argument to work, we need to set N to be
a sufficiently large polynomial in Q. Using this observation, we can deduce that
at most t instantiations of 1fe can be rendered insecure. An 1fe instantiation
being rendered insecure means that the corresponding server is corrupted in the
client-server framework; note that there is a one-to-one correspondence between
the number of instantiations of 1fe and the number of servers in the client-server
framework. We can then use the property that the client-server protocol is secure
even if at most t servers are corrupted, to argue that the scheme BFE is secure.

Moreover, since 1fe can be based on public-key encryption (resp., one-way
functions), we obtain a public-key (resp., secret-key) BFE for P/Poly from
reusable dynamic MPC for P/Poly assuming only public-key encryption (resp.,
one-way functions).

Reusable Dynamic MPC Protocol for P/Poly. Now that we have shown that
reusable dynamic MPC is useful for constructing bounded-key FE, we shift our
focus to building this object.

Towards this, we first define the abstraction of correlated garbling. This
abstraction allows for generating multiple garbled circuits from a shared random
string. More specifically, it comprises of two algorithms: CorrGarb and CorrEval.
The correlated garbling algorithm CorrGarb takes as input circuit C, input x, a
random string R (not necessarily uniformly generated) and outputs a garbled
circuit GC and appropriate wire labels Kx. The evaluation algorithm CorrEval
takes as input (GC,Kx) and outputs C(x). We require that all the different
correlated garbled circuits {GCi ← CorrGarb(Ci, x,R) produced using the same
string R do not reveal any information about x beyond {(Ci, Ci(x))}.

We use this abstraction to transform ΠNC1 (recall, ΠNC1 is a reusable dynamic
protocol for NC1) into a reusable dynamic for P/Poly as follows:
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– Offline Phase: to encode an input x, generate a random string R (as dictated
by correlated garbling) and then encode (x,R) using the offline phase of ΠNC1

to obtain N input encodings.
– Online Phase: in the ith session, let Ci be the circuit delegated by the client.

The client generates the online phase of ΠNC1 on the circuit CorrGarb(Ci, ·, ·)
to obtain N circuit encodings and sends one encoding to each of the servers.
A subset of the servers perform local computation of ΠNC1 and each of them
output a single message. The value Ci(x) can be recovered from the outputs
of the servers in two steps: (i) run the decoding procedure of ΠNC1 to obtain
the correlated garbled circuit-wire keys pair (GCi,Ki

x) of (Ci, x) and then,
(ii) run CorrEval on the correlated garbled circuit to recover the answer.

In order to implement the above construction, it is required that CorrGarb is
representable by an NC1 circuit: this is because ΠNC1 only allows for delegating
computations in NC1. The security of the above construction follows from the fact
that the different correlated garbled circuits along with wire keys {(GCi,Ki

x)}
can be simulated using {(Ci, Ci(x))}: note that all the correlated garbled cir-
cuits are computed as a function of the same random string R. In Sect. 5, we
give a direct construction of client-server protocol from correlated garbling; in
particular we do not assume that a client-server protocol for NC1 as implicitly
proposed in [GVW12a].

All that remains is to construct a correlated garbling scheme with the garbling
function in NC1. We introduce novel techniques in this construction and this is
the main technical contribution of the paper.

Construction of Correlated Garbling. The main hurdle in constructing a corre-
lated garbling scheme is to ensure the security of different correlated garbled
circuits computed using the same randomness. As a first attempt, we use the
classical garbling scheme of Yao [Yao86]:

– Let s be the number of wires in the circuit to be garbled. For every wire w
in the circuit, generate a large (i.e., poly(λ,Q)) number of uniformly random

keys, denoted by the vector
−→
K0

w, associated with bit 0 and λ number of keys−→
K1

w for bit 1. Similarly, for every gate G in the circuit, generate a large (i.e.,
poly(λ,Q)) number of random strings, denoted by

−→
RG. The collection of all

the strings form the random string R that will be input to CorrGarb.
– To garble a circuit C, CorrGarb performs the following steps:

– Generation of wire keys and randomness for encryption: It
chooses a random λ-sized subset S; for every wire w, it generates the
wire key K0

w (resp., K1
w) for w by XOR-ing the subset S of keys in

−→
K0

w

(resp.,
−→
K1

w). Similarly, generate RG by XOR-ing the subset S of random
strings in

−→
RG.

– Generating the garbled gates: Using the wire keys and the random
strings generated using the above process, we generate the garbled gates
for every gate in the circuit. The generation process will be performed as
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described in [Yao86]. In particular, this process will employ a private-key
encryption scheme to generate four ciphertexts associated with every gate
in the circuit.

– CorrEval is the same as the evaluation algorithm of the garbling scheme
by [Yao86].

In addition to security, we need to argue that CorrGarb can be implemented
in NC1; recall that the latter property was crucially used to construct reusable
dynamic MPC for P/Poly. Let us first give intuition as to why the above template
satisfies security.

Suppose the string R (input to CorrGarb) is reused Q times to generate Q
different collections of wire keys and random strings, with each such collection
generated using a different random set S. Then each collection in turn is used
to generate a single garbled circuit. First we invoke a combinatorial argument to
prove that the joint distribution of the Q collections of wire keys and the random
strings, generated as above, is identical to the product uniform distribution.
Once this is proven, this proof can then be leveraged, using arguments standard
in the garbling literature, to argue the security of the above correlated garbling
candidate.

All is left is to show that CorrGarb can be implemented in NC1. Since the
procedure CorrGarb involves running the encryption algorithm of a private-key
scheme, at the very least we need to start with a private-key scheme with encryp-
tion algorithm computable in NC1. Unfortunately such schemes are known to
exist only based on algebraic assumptions, in particular, assuming PRGs in NC1.
Thus, the above candidate does not work for us.

To overcome this barrier, we make the following observation: notice that the
generation of the random string R fed into CorrGarb is “lightweight”, meaning
that no cryptographic primitives are used. On the other hand, the algorithm
CorrGarb is “crypto-heavy”, meaning that it makes many invocations of a cryp-
tographic primitive and specifically, a private-key encryption scheme. We design
a flipped correlated garbling scheme, where the generation of R is “crypto-heavy”
while CorrGarb is “lightweight”.

Specifically, we make the following changes to the above candidate.

– Instead of invoking the PRG during the execution of CorrGarb, we instead
invoke this during the generation of R. While doing so, we observe that it is
no longer necessary that PRG needs to be computable in NC1, since there is
no such restriction when generating R. As a result, we will end up generating
all the keys in {−→

K0
w,

−→
K1

w} using any pseudorandom generator.
– To maintain correctness, we need to encrypt a subset of the seeds of the PRG

as part of the garbled table. Arguing security is more challenging now. We
need to argue that the joint distribution of the Q collections of the wire keys
and the random strings computed using R, is identical to the product uniform
distribution, even if some of the PRG seeds generating the wire keys are leaked
and this step is crucial to the proof of the correlated garbling lemma.
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The above template is an over-simplified presentation of correlated garbling
and we refer the reader to the technical sections for a precise description.

Summarizing the First Step. We summarize the steps to construct a bounded-
key functional encryption for P/Poly.

1. We construct correlated garbling for P/Poly from one-way functions.
2. Combining correlated garbling with techniques from [GVW12a], we construct

a protocol in the client-server framework (satisfying both reusability and
dynamic recovery) that handles P/Poly computations.

3. Finally, we construct bounded-key FE for P/Poly from a client-server protocol
and single-key functional encryption for P/Poly [SS10,GVW12a].

The ciphertext complexity in the resulting FE scheme, however, grows polyno-
mially in Q.

Second Step: Linear Dependence in Query Complexity. In the second
step, we give a generic transformation to turn the FE scheme resulting from the
first step into one that satisfies linear complexity property. This transformation
is remarkably simple and draws connections to the classical load balancing prob-
lem. Recall in the load balancing problem, there are Q reviewers and there are
Q papers to review, with each reviewer having bandwidth to review at most q
papers. Assigning papers at random to the reviewers ensures that each reviewer
has to review one paper on average. By a simple Chernoff argument coupled
with union bound argument, it follows that, as long as q is large enough, the
probability that any reviewer has to review more than q papers is small. We
propose our transformation along these lines: let bfe be the FE scheme obtained
from the first step and let BFE be the FE scheme with linear complexity that we
wish to construct. To tolerate a query bound Q, we consider Q instantiations of
bfe in parallel, where the collusion bound (read as “load”) in bfe is set to be q.

– To encrypt a message x in BFE, encrypt x in all the instantiations of bfe.
– To generate a functional key for a circuit C, pick an index i in [Q] at random

and generate a bfe functional key corresponding to the ith instantiation. This
is akin to assigning a paper to a reviewer at random.

If we set q to be security parameter, we can prove (using Chernoff and union
bounds) that it is highly unlikely that the number of bfe functional keys issued
for any given index is greater than q. This allows us to invoke the security of
bfe scheme to prove the security of BFE. Moreover, the ciphertext complexity of
BFE is linear in Q, as desired! (each bfe ciphertext is of size fixed polynomial in
the security parameter and in particular, independent of Q).

2 Preliminaries

We denote the security parameter by λ. Suppose x and y be two strings. Then,
we denote x ◦ y to be the concatenation of x and y.
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Let D be a distribution with an efficient sampler. We denote the process of
sampling v from D to be v

$←− D. The statistical distance between two distri-
butions D0 and D1 is ε if

∑

v∈V |Pr[v $←− D0] − Pr[v $←− D1]| ≤ 2ε, where V is
the support of both D0 and D1. Two distributions D0 and D1 are computation-
ally indistinguishable if for every probabilistic polynomial time (PPT) adversary
A, the following holds:

∣

∣

∣Pr
v

$←−D0
[0 ← A(v)] − Pr

v
$←−D1

[0 ← A(v)]
∣

∣

∣ ≤ negl(λ), for

some negligible function negl.
We assume that without loss of generality, every polynomial-sized circuit

considered in this work contain only boolean gates (over any universal basis) with
at most two output wires. Note that if every gate in a polynomial-sized circuit
has at most one output wire then this circuit is representable as a polynomial-
sized formula and thus, is in NC1. The class of all polynomial-sized circuits is
denoted by P/Poly.

2.1 Bounded-Key Functional Encryption

A public-key functional encryption scheme bfe associated with a class of boolean
circuits C is defined by the following algorithms.

– Setup, Setup(1λ, 1Q, 1s): On input security parameter λ, query bound Q,
maximum size of the circuits s for which functional keys are issued, output
the master secret key msk and the master public key mpk.

– Key Generation, KeyGen(msk, C): On input master secret key msk and a
circuit C ∈ C, output the functional key skC .

– Encryption, Enc(mpk, x): On input master public key mpk, input x, output
the ciphertext ct.

– Decryption, Dec(skC , ct): On input functional key skC , ciphertext ct, output
the value y.

Remark 1. A private-key functional encryption scheme is defined similarly,
except that Setup(1λ, 1Q, 1s) outputs only the master secret key msk and the
encryption algorithm Enc takes as input the master secret key msk and the mes-
sage x.

Remark 2. Henceforth, Setup will only take as input (1λ, 1s) in the case when
Q = 1.

A functional encryption scheme satisfies the following properties.

Correctness. Consider an input x and a circuit C ∈ C of size s. We require the
following to hold for every Q ≥ 1:

Pr

[

C(x) ← Dec(skC , ct) :
(mpk,msk)←Setup(1λ,1Q,1s);

skC←KeyGen(msk,C);
ct←Enc(mpk,x)

]

≥ 1 − negl(λ),

for some negligible function negl.
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Efficiency. Setup,KeyGen,Enc and Dec run in time polynomial in their respective
inputs.

We define a measure of efficiency that captures the dependance of the cipher-
text complexity on the query bound. We define this formally below.

Definition 1 (Linear Complexity). A functional encryption scheme bfe =
(Setup,KeyGen,Enc,Dec) is said to have linear complexity if the following holds:

– The time to compute Enc(mpk, x) is Q · poly(λ, s).
– The time to compute KeyGen(msk, C) for a circuit of size s is Q · poly(λ, s).

where (mpk,msk) ← Setup(1λ, 1Q, 1s).

Security. To define the security of a bounded-key functional encryption scheme
bfe, we define two experiments Expt0 and Expt1. Experiment Expt0, also referred
to as real experiment, is parameterized by PPT stateful adversary A and chal-
lenger Ch. Experiment Expt1, also referred to as simulated experiment, is param-
eterized by PPT adversary A and PPT stateful simulator Sim.

Exptbfe,A,Ch
0 (1λ):

– A outputs the query bound Q and the maximum circuit size s.
– Ch executes bfe.Setup(1λ, 1Q, 1s) to obtain the master public key-master

secret key pair (mpk,msk).
– Circuit Queries: A, with oracle access to bfe.KeyGen(msk, ·), outputs the

challenge message x.
– Challenge Message Query: Ch outputs the challenge ciphertext ct.
– Circuit Queries: A, with oracle access to bfe.KeyGen(msk, ·), outputs the

bit b.
– If the total number of oracle calls made by A is greater than Q, output ⊥.

Otherwise, output b.

Exptbfe,A,Sim
1 (1λ):

– A outputs the query bound Q and the maximum circuit size s.
– Sim, on input (1λ, 1Q, 1s), outputs the master public key mpk.
– Circuit Queries: A, with oracle access to Sim (generating simulated func-

tional keys), outputs the challenge message x.
• Let QSet be the set of circuit queries made by A to Sim.
• Construct the set V as follows: for every C ∈ QSet, include (C,C(x))

in V.
– Challenge Message Query: Sim(1|x|,V) outputs the challenge ciphertext

ct.
– Circuit Queries: A, with oracle access to Sim (generating simulated func-

tional keys), outputs bit b.
– If the total number of circuit queries made by A is greater than Q, output

⊥. Otherwise, output b.
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A public-key functional encryption scheme is adaptively secure if the output dis-
tributions of the above two experiments are computationally indistinguishable.
More formally,

Definition 2 (Adaptive Security). A public-key functional encryption
scheme bfe is adaptively secure if for every large enough security parame-
ter λ ∈ N, every PPT adversary A, there exists a PPT simulator Sim such that
the following holds:

∣

∣

∣Pr
[

0 ← Exptbfe,A,Ch
0 (1λ)

]

− Pr
[

0 ← Exptbfe,A,Sim
1 (1λ)

]∣

∣

∣ ≤ negl(λ),

for some negligible function negl.

Remark 3. The selective security notion can be defined by similarly formulating
the real and the simulated experiments. The only difference between selective
security and adaptive security notions is that in the selective security notion, the
adversary is supposed to output the challenge message even before it receives
the master public key or makes any circuit query.

In the private-key setting, selective and adaptive security notions can be
defined similarly.

3 Result Statements

We prove our result in two steps. In the first step, we present a transformation
that converts a bounded-key functional encryption scheme, that doesn’t have
linear complexity property, into one that satisfies linear complexity.

Generic Transformation to Achieve Linear Complexity. We prove the following
theorem in Sect. 4.

Theorem 3. Consider a class C of polynomial-sized circuits. If there exists a
public-key (resp., private-key) bounded-key FE scheme for C then there exists
a public-key (resp., private-key) bounded-key FE scheme for C that additionally
satisfies linear complexity property (Definition 1).

Remark 4. Our transformation does not place any restrictions on C. In particu-
lar, our transformation works for identity-based encryption schemes, attribute-
based encryption schemes, and so on.

The above theorem is restated as Theorem 6 in Sect. 4.

Bounded key FE for P/Poly. We prove the following theorem in Sect. 5.

Theorem 4. Assuming the existence of public-key encryption (resp., one-way
functions), there exists a public-key (resp., private-key) bounded-key functional
encryption scheme for P/Poly.
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We prove the above theorem by first defining a client-server framework and
then we construct a bounded-key FE from a client-server protocol. Finally, we
instantiate client-server protocols from one-way functions.

The above theorem is restated as Theorem 7 in Sect. 5.

Bounded Key FE for P/Poly satisfying Linear Complexity. By combining the
above two theorems, we achieve our main result.

Theorem 5 (Main Theorem). Assuming the existence of public-key encryp-
tion (resp., one-way functions), there exists a public-key (resp., private-key)
bounded-key functional encryption scheme satisfying linear complexity property
for P/Poly.

Our construction of functional encryption scheme in the above theorem makes
only black box use of public-key encryption (or one-way functions).

4 Achieving Linear Complexity Generically

We show how to generically achieve linear complexity for any bounded-key FE
scheme. In particular, we prove the following:

Theorem 6. If there exists a bounded-key FE scheme, denoted by bfe, for C then
there exists a bounded-key FE scheme, denoted by BFE, for C that additionally
satisfies linear complexity property (Definition 1). Moreover, the following holds:

– If bfe is adaptively secure (resp., selectively secure) then BFE is adaptively
secure (resp., selectively secure).

– If bfe is a public-key (resp., private key) scheme then BFE is a public-key
(resp., private key) scheme.

– If bfe is simulation secure (resp., IND-secure) then BFE is simulation secure
(resp., IND-secure).

Proof. We focus on the case when bfe is adaptively secure, public-key and sim-
ulation secure. Our construction easily extends to the other cases as well.

We describe BFE below.

– Setup(1λ, 1Q, 1s): On input security parameter λ, query bound Q, maximum
circuit size s for which functional keys are issued, generate (mpki,mski) ←
bfe.Setup(1λ, 1q, 1s) for every i ∈ [Q], where q = λ (in fact, q can even be set
to be poly-logarithmic in the security parameter). Output the following:

MSK = (msk1, . . . ,mskQ) , MPK =
(

mpk1, . . . ,mpkQ

)

– KeyGen(msk, C): On input master secret key msk, circuit C ∈ C,

• Sample u
$←− [Q].

• Generate skC
$←− bfe.KeyGen(bfe.msku, C).

Output SKC = (u, skC).
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– Enc(MPK, x): On input master public key MPK, input x, generate cti ←
bfe.Enc(mpki, x) for every i ∈ [Q]. Output CT = (ct1, . . . , ctQ).

– Dec(SKC ,CT): On input functional key SKC = (u, skC), ciphertext CT =
(ct1, . . . , ctQ), compute bfe.Dec(skC , ctu). Output the result.

The correctness of BFE follows directly from the correctness of bfe. We analyze
the efficiency of the above scheme next.

Suppose the time taken to generate a bfe ciphertext of message x is poly(λ, s)
then the time taken to generate a BFE ciphertext of message x is Q · poly(λ, s).
Similarly, if the time taken to generate a bfe functional key of C is poly(λ, s),
where s is the size of C, then the time taken to generate a BFE functional key
of f is Q · poly(λ, s). Thus, the resulting scheme BFE satisfies linear complexity
property.

The only property left to be proved is the security property, which we prove
next.

Security. Let sim be the stateful simulator of the bfe scheme. Since we invoke
bfe scheme Q times in the scheme, we consider Q instantiations of the stateful
simulator, denoted by sim1, . . . , simQ. We construct a simulator SIM associated
with the BFE scheme. We denote the PPT adversary to be A.

The simulator SIM proceeds as follows:

1. It receives the query bound Q and the maximum circuit size s from A.
2. For every i ∈ [Q], execute simi(1λ, 1Q, 1s) to obtain the ith master public key

mpki. Set MPK = (mpk1, . . . ,mpkQ). Send MPK to A.
3. Initialize the sets qseti = ∅, for every i ∈ [Q]. For every circuit query C made

by A, do the following:
Sample u

$←− [Q] and then generate skC ← simu(C). Add C to qsetu. If
|qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC).
A finally outputs the challenge message x.

4. For every i ∈ [Q], construct the set Vi as follows: for every C ∈ qseti, include
(C,C(x)) in Vi. For every i ∈ [Q], compute simi(1|x|,Vi) to obtain cti. Set
CT = (ct1, . . . , ctQ). Send CT to A.

5. In the next phase, A makes circuit queries. For every circuit query C made
by the adversary, do the following:
Sample u

$←− [Q] and then generate skC ← simu(C,C(x)). Add C to qsetu. If
|qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC).

Consider the following hybrids. The changes are marked in red.

Hyb1: This corresponds to the real experiment. For completeness, we describe
the real experiment here.

1. The challenger Ch receives the query bound Q and the maximum circuit size
s from A.

2. Execute bfe.Setup(1λ, 1Q, 1s) for Q times to obtain {(mski,mpki)}i∈[Q]. Set
MPK = (mpk1, . . . ,mpkQ). Send MPK to A.
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3. Initialize the sets qseti = ∅, for every i ∈ [Q]. For every circuit query C made
by A, Ch does the following:
Sample u

$←− [Q] and then generate skC ← bfe.KeyGen(msku, C). Add C to
qsetu. Send SKC = (u, skC) to A. A finally outputs the challenge message x.

4. For every i ∈ [Q], generate cti ← bfe.Enc(mpki, x). Set CT = (ct1, . . . , ctQ).
Send CT to A.

5. In the next phase, A makes circuit queries. For every circuit query C made
by A, do the following:
Sample u

$←− [Q] and then generate skC ← bfe.KeyGen(msku, C). Add C to
qsetu. Send SKC = (u, skC) to A.

6. Let b be the output of A. If
∣

∣

∣

⋃Q
i=1 qseti

∣

∣

∣ > Q, output ⊥. Otherwise, output b.

Remark 5. Note that the experiment described above is phrased differently from
the real experiment of the bounded-key FE scheme. In the real experiment, the
challenger only keeps track of the total number of BFE circuit queries made by
the adversary but in Hyb1, the challenger keeps track of the set of bfe functional
keys issued per index. Since ultimately the challenger only aborts if the size of
the union of all these sets exceeds Q, the output distribution of Hyb1 is the
same as the output distribution of the real experiment.

Hyb2: This hybrid is the same as the previous hybrid except that the real
experiment outputs ⊥ if there exists an index u ∈ [Q] such that |qsetu| > q.

In particular, we make the following changes to bullets 3 and 5 in the exper-
iment described in Hyb1.

3. Initialize the sets qseti = ∅, for every i ∈ [Q]. For every circuit query C made
by A, Ch does the following:
Sample u

$←− [Q] and then generate skC ← bfe.KeyGen(msku, C). Add C to
qsetu. If |qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC) to A.
A finally outputs the challenge message x.

5. In the next phase, A makes circuit queries. For every circuit query C made
by A, do the following:
Sample u

$←− [Q] and then generate skC ← bfe.KeyGen(msku, C). Add C to
qsetu. If |qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC) to A.

Claim. The statistical distance between the output distributions of Hyb1 and

Hyb2 is at most Q · e− (q−1)2

1+q and thus, negligible in λ.

Proof. Define Xu,j , for every u ∈ [Q], j ∈ [Q], to be a random variable such that
Xu,j = 1 if in the jth circuit query C made by the adversary, the challenger
responds with SKC = (u, skC); that is, the challenger responds with the func-
tional key corresponding to the uth instantiation of bfe. Let Xu =

∑Q
j=1 Xu,j .

Note that Pr[Xu,j = 1] = 1
Q . By linearity of expectation, E [Xu] = 1.
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By Chernoff bound, we have the following: for every u ∈ Q,

Pr [Xu > q] = Pr [Xu > q · E [Xu]]

≤ 1

e
(q−1)2
2+(q−1) ·E[Xu]

Thus for any fixed u ∈ [Q], the probability that the number of bfe functional

keys per index u issued by the challenger is greater than q is at most e− (q−1)2

1+q . By
union bound, the probability that there exists an index u such that the challenger

issues more than q functional keys with respect to u is at most Q · e− (q−1)2

1+q .

Next, we consider a sequence of intermediate hybrids.

Hyb3.j, for all j ∈ [Q]: In this intermediate hybrid, the first u instantiations,
with u < j are simulated. The rest of the instantiations are honestly computed.

We consider j instantiations of the stateful simulator, denotedby sim1, . . . , simj.
We describe the hybrid experiment below.

1. The challenger Ch receives the query bound Q and the maximum circuit size
s from A.

2. For i < j, execute simi(1λ, 1Q, 1s) to obtain the ith master public key mpki.
For i ≥ j, execute bfe.Setup(1λ, 1Q, 1s) to obtain (mski,mpki). Set MPK =
(mpk1, . . . ,mpkQ). Send MPK to A.

3. Initialize the sets qseti = ∅, for every i ∈ [Q]. For every circuit query C made
by A, Ch does the following:
Sample u

$←− [Q] and then generate skC as follows:
– If u < j, generate skC ← simu(C).
– If u ≥ j, generate skC ← bfe.KeyGen(msku, C).

Add C to qsetu. If |qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC)
to A.
A finally outputs the challenge message x.

4. For every i ∈ [Q], construct the set Vi as follows: for every C ∈ qseti, include
(C,C(x)) in Vi. Compute CT as follows:

– If i < j, compute simi(1|x|,Vi) to obtain cti.
– If i ≥ j, compute cti ← bfe.Enc(mpki, x).

Set CT = (ct1, . . . , ctQ). Send CT to A.
5. In the next phase, A makes circuit queries. For every circuit query C made

by A, do the following:
Sample u

$←− [Q] and then generate skC as follows:
– If u < j, generate skC ← simu(C,C(x)).
– If u ≥ j, generate skC ← bfe.KeyGen(msku, C).

Add C to qsetu. If |qsetu| > q then output ⊥. Otherwise, send SKC = (u, skC)
to A.

6. Let b be the output of A. If
∣

∣

∣

⋃Q
i=1 qseti

∣

∣

∣ > Q, output ⊥. Otherwise, output b.

The following two claims are immediate.
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Claim. The output distributions of Hyb2 and Hyb3.1 are identically distributed.

Claim. For every j ∈ [Q − 1], the security of bfe implies that the output distri-
butions of Hyb3.j and Hyb3.j+1 are computationally indistinguishable.

Hyb4: This corresponds to the simulated experiment.
The proof of the following claim is immediate.

Claim. The security of bfe implies that the output distributions of Hyb3.Q and
Hyb4 are computationally indistinguishable.

5 Construction of Bounded-Key FE for P/Poly

We construct a bounded-key FE scheme for P/Poly as follows:

– First we define a client-server framework and show how to construct a
bounded-key FE for P/Poly from a protocol in this client-server framework.

– We then show, in the full version [AV19], how to construct a protocol in the
client-server framework from one-way functions.

We begin by describing the client-server framework.

5.1 Client-Server Framework

The client-server framework consists of a single client and N = N(λ,Q)
servers, where λ is the security parameter. It is additionally parameterized by
n = n(λ,Q) and t = t(λ,Q). The framework consists of the following two phases:

– Offline Phase: In this phase, the client takes as input the number of sessions
Q, size of the circuit delegated s, input x and executes a PPT algorithm InpEnc
that outputs correlated input encodings (x̂1, . . . , x̂N ). It sends the encoding
x̂u to the uth server.

– Online Phase: This phase is executed for Q sessions. In each session, the
client delegates the computation of a circuit C on x to the servers. This is
done in the following steps:

• Client Delegation: This is performed by the client computing a PPT
algorithm CktEnc on input (1λ, 1Q, 1s, C) to obtain ( ̂C1, . . . , ̂CN ). It sends
the circuit encoding ̂Cu to the uth server. Note that CktEnc is executed
independently of the offline phase and in particular, does not depend on
the randomness used in the offline phase2.

• Local Computation by Servers: Upon receiving the circuit encodings
from the client, a subset S of servers come online and the uth server in
this set S computes Local( ̂Cu, x̂u) to obtain the uth output encoding ŷu.

• Decoding: Finally, the output is recovered by computing a PPT algo-
rithm Decode on

({ŷu}u∈S ,S
)

.

We describe the properties below. We start with correctness.
2 We could define a notion where CktEnc takes as input the randomness of the offline

phase. It is however not clear how to build FE from such a notion.
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Correctness. A protocol Π in the client-server framework is said to be correct if
the following holds:

– Suppose the client computes encodings of input x by computing (x̂1, . . . ,
x̂N ) ← InpEnc(1λ, 1Q, 1s, x).

– In the online phase, let C be the circuit that the client wants to delegate.
The client computes ( ̂C1, . . . , ̂CN ) ← CktEnc(1λ, 1Q, 1s, C) and distributes
the circuit encodings to all the servers. A subset of servers S ⊆ [N ], of size n,
then locally compute on the circuit encodings. That is, for every u ∈ S, the
uth server computes ŷu = Local(gc, x̂u). Finally, the output can be recovered
by computing Decode({ŷu}u∈S,S) to obtain y.

We require that y = C(x).

Security. We allow the adversary to be able to corrupt a subset of servers.
Once the server is corrupted, the entire state of the server is leaked to the
adversary. The adversary, however, is not allowed to corrupt the client. In every
session, since n servers can recover the output, the number of servers that can
be corrupted has to be less than n3.

Informally, we require the following guarantee: even if the adversary can
corrupt a subset of servers, he cannot learn anything beyond the outputs of
the computation (C1(x), . . . , CQ(x)) in every session, where C1, . . . , CQ are the
circuits delegated by the client. However, the circuits (C1, . . . , CQ) are not hidden
from the adversary. Since our end goal is to build FE for P/Poly, we need to
suitably define the security property that would enable us to prove the security
of FE. Towards this, we incorporate the following in the security definition of
the client-server framework:

– We not only allow the adversary to choose the servers to corrupt but also
allow it to decide the subsets of servers S1, . . . ,SQ participating in the Q
sessions.

– In every session, the adversary is provided all the N circuit encodings. More-
over, the outputs of the local computation of all the servers, including the
honest servers, are visible to the adversary.

To define the security notion formally, we first state the following experiments.
The first experiment Expt0 is parameterized by a PPT adversary A and PPT
challenger Ch and the second experiment Expt1 is parameterized by A and PPT
stateful simulator Simcsf .

ExptA,Ch
0 (1λ):

3 If n or more servers can be corrupted then the corrupted set can recover C(x) for
any circuit C: this is because the corrupted servers can execute CktEnc on input C,
run the local computation procedure and then decode their outputs. Thus, such a
notion would imply program obfuscation.
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– A outputs the query bound Q, maximum circuit size s, total number of parties
N , number of parties n participating in any session, threshold t, corruption
set Scorr ⊆ [N ] and the input x. If |Scorr| > t then the experiment aborts. It
also outputs the sets S1, . . . ,SQ ⊆ [N ] such that |Si| = n, where Si is the set
of parties participating in the ith session.

– Circuit Queries: A is allowed to make a total of Q circuit queries. First, it
makes Q1 ≤ Q adaptive4 circuit queries C1, . . . , CQ1 .

For the ith circuit query Ci, Ch computes
(

̂Ci

1
, . . . , ̂Ci

N
)

← CktEnc(1λ, 1Q,

1s, Ci) and sends
(

̂Ci

1
, . . . , ̂Ci

N
)

.
– Challenge Input Query: A submits the input x. Ch generates
InpEnc(1λ, 1Q, 1s, x) to obtain (x̂1, . . . , x̂N ).

Ch sends
(

{x̂u}u∈Scorr ,
{

Local
(

̂Ci

u
, x̂u

)}

i∈[Q1],u∈Si

)

. That is, the challenger

sends the input encodings of the corrupted set of servers along with the out-
puts of Local on the circuit encodings received so far.

– Circuit Queries: A then makes Q2 = Q − Q1 adaptive circuit queries
CQ1+1, . . . , CQ.

Ch computes
(

̂Ci

1
, . . . , ̂Ci

N
)

← CktEnc(1λ, 1Q, 1s, Ci) and sends
{

{(

̂Ci

1
, . . . , ̂Ci

N
)

, Local
(

̂Ci

u
, x̂u

)}

i∈{Q1+1,...,Q},u∈[Si]

}

.

– A outputs a bit b. The output of the experiment is b.

ExptA,Simcsf

1 (1λ):

– A outputs the query bound Q, maximum circuit size s, total number of parties
N , number of parties n participating in any session, threshold t, corruption
set Scorr ⊆ [N ] and the input x. If |Scorr| > t then the experiment aborts. It
also outputs the sets S1, . . . ,SQ ⊆ [N ] such that |Si| = n, where Si is the set
of parties participating in the ith session.

– Circuit Queries: A makes a total of Q adaptive queries. First it makes
Q1 ≤ Q adaptive circuit queries. For the ith circuit query Ci, the simulator

computes
(

̂Ci

1
, . . . , ̂Ci

N
)

← Simcsf(Ci) and sends
(

̂Ci

1
, . . . , ̂Ci

N
)

.
– Challenge Input Query: A submits the input x. Construct V as follows:

V = {Ci, Ci(x) : i ∈ [Q1]}.
Simcsf on input (1|x|,Scorr,V) (and in particular, it does not get x as input)
outputs the simulated encodings ({x̂u}u∈Scorr) and the encodings of outputs
{ŷu

i }i∈[Q1],u∈Si
such that ŷu

i = Local
(

̂Ci

u
, x̂u

)

for every u ∈ Si ∩ Scorr.
– Circuit Queries: A then makes Q2 = Q − Q1 adaptive circuit queries

CQ1+1, . . . , CQ. The simulator Simcsf on input (i, Ci, Ci(x)), for i ∈ {Q1 +

1, . . . , Q}, sends
((

̂Ci

1
, . . . , ̂Ci

N
)

, ŷu
i

)

.
– A outputs a bit b. The output of the experiment is b.
4 By adaptive, we mean that the adversary can decide each circuit query as a function

of all the previous circuit queries.
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We formally define the security property below.

Definition 3 (Security). A protocol Π is secure if for every PPT adversary
A, there exists a PPT simulator Simcsf such that the following holds:

∣

∣

∣Pr[0 ← ExptA,Ch
0 (1λ)] − Pr[0 ← ExptA,Simcsf

1 (1λ)]
∣

∣

∣ ≤ negl(λ),

for some negligible function negl.

5.2 Bounded-Key FE for P/Poly from Client-Server Framework

We now present a construction of a bounded-key functional encryption for all
polynomial-sized circuits from a protocol in the client-server framework.

Theorem 7. There exists a public-key (resp., private-key) adaptively secure
bounded-key functional encryption scheme BFE for P/Poly assuming,

– A public-key (resp., private-key) adaptively secure single-key functional
encryption scheme 1fe for P/Poly and,

– A protocol for P/Poly in the client-server framework, denoted by Π = (InpEnc,
CktEnc, Local,Decode).

Proof. We focus on the public-key setting; the construction and the analysis for
the private-key setting is identical. We describe the algorithms of BFE below.
Let the protocol in the client-server framework be parameterized by t = Θ(Qλ),
N = Θ(Q2t2) and n = Θ(t), where Q is the query bound defined as part of the
scheme.

– Setup(1λ, 1Q, 1s): On input security parameter λ, query bound Q, circuit size
s, generate (mski,mpki) ← 1fe.Setup(1λ, 1s) for i ∈ [N ]. Output the following:

MSK = (msk1, . . . ,mskN ), MPK = (Q, mpk1, . . . ,mpkN )

– KeyGen(MSK, C): On input master secret key MSK, circuit C,

• Sample a set S $←− [N ], of size n, uniformly at random.
• Compute

(

̂C1, . . . , ̂CN
)

← CktEnc(1λ, 1Q, 1s, C).

• Let Eu(·) = Local( ̂Cu, ·). Generate a functional key for Eu; that is, com-
pute skEu ← 1fe.KeyGen(msku,E

u) for every u ∈ S.

Output SKC =
(

S, {skEu}u∈S

)

.

– Enc(MPK, x): On input master public key MPK,
• Compute (x̂1, . . . , x̂N ) ← InpEnc

(

1λ, 1Q, 1s, x
)

.
• For every i ∈ [N ], compute cti ← FE.Enc

(

mpki, x̂
i
)

.

Output CT = (ct1, . . . , ctN ).

– Dec(SKC ,CT): On input functional key SKC =
(

S, {skEu}u∈S

)

, ciphertext
CT = (ct1, . . . , ctN ),

• For every u ∈ S, compute ŷu ← 1fe.Dec(skEu , ctu).
• Compute Decode

({ŷu}u∈S ,S
)

to obtain y.

Output y.
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Correctness. Consider a circuit C and an input x. Suppose CT ←
Enc(MPK, x) and SKC ← KeyGen(MSK, C). Let CT = (ct1, . . . , ctN ) and
SKC =

(

S, {skEu}u∈S

)

. By the correctness of 1fe, 1fe.Dec(skEu , ctu) =
Local( ̂Cu, x̂u) for every u ∈ S. From the correctness of Π, it follows that

Decode

(

{

Local( ̂Cu, x̂u)
}

u∈S
,S

)

= C(x).

We present the proof of security in the full version [AV19].

Instantiation. The bounded-key functional encryption scheme described above
makes black box usage of InpEnc(·) algorithm of Π. Moreover, in the construc-
tion of Π (described in the full version [AV19]), pseudorandom generators are
only used in InpEnc(·). Furthermore, InpEnc(·) only makes black box calls to
the pseudorandom generator. Thus, assuming that 1fe makes black box usage of
public-key encryption, the bounded-key functional encryption scheme described
above, when instantiated with Π, yields a bounded-key scheme that makes only
oracle calls to cryptographic primitives (public-key encryption and pseudoran-
dom generators). All that is left is to demonstrate the feasibility of a single-key
adaptively-secure public-key functional encryption that makes black box usage
of public-key encryption.

To show this, we first present an informal description of single-key public-key
FE 1fe for P/Poly from [SS10].

– 1fe.Setup
(

1λ, 1s
)

: Sample 2s public keys pki,b (i ∈ [s], b ∈ {0, 1}) and secret
keys ski,b (i ∈ [s], b ∈ {0, 1}) corresponding to a public-key encryption
scheme. Call the master public key mpk = (pki,b)i∈[s],b∈{0,1} and the mas-
ter secret key msk = (ski,b)i∈[s],b∈{0,1}.

– 1fe.KeyGen(msk, C): Output skC = (ski,Ci
), where Ci denotes the ith bit in

the description of C. Output skC .
– 1fe.Enc(msk, x): Generate a garbling of Ux(·), where Ux(·) is a universal circuit

that takes as input a circuit C of size s and outputs C(x). Call the resulting
garbled circuit to be GC. Encrypt the (i, b)th wire label, for i ∈ [s], b ∈ {0, 1},
using pki,b; call this ciphertext cti,b. Output ct =

(

GC, (cti,b)i∈[s],b∈{0,1}
)

.

– 1fe.Dec(skC , ct): Decrypt cti,Ci
using ski,Ci

to obtain the (i, Ci)th wire label.
Using all the wire labels recovered, evaluate the garbled circuit to obtain
C(x).

The above construction only guarantees selective security; this construction was
upgraded to adaptive security by [GVW12a]. This construction is described in
Sect. 4.3 (page 14) of the ePrint version of [GVW12a] ([GVW12b], version posted
on 06-Sep-2012 17:57:14 UTC). The ONEQFE scheme (that allows a single func-
tion query and adaptive simulation security) described in Sect. 4.3 is constructed
from randomized encodings for P/poly (which can be based on one-way func-
tions) along with BFFE scheme described in Sect. 4.2. Moreover, the BFFE
scheme described in Sect. 4.2 can be based on any PKE scheme (see the first
para of Sect. 4.2).
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BFFE scheme makes black box usage of PKE. Also, the ONEQFE scheme
makes black-box usage of the one-way function (used for randomized encoding)
and the underlying procedures of the BFFE scheme.
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mania to obfustopia through secret-key functional encryption. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 15

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: STOC
(1988)

https://doi.org/10.1007/978-3-030-03807-6_6
https://doi.org/10.1007/978-3-030-03807-6_6
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-662-47989-6_15
https://eprint.iacr.org/2019/314
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-662-53644-5_15


Optimal Bounded-Collusion Secure Functional Encryption 197

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-
6 16

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: IEEE 56th Annual Symposium on Founda-
tions of Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20
October, 2015, pp. 171–190 (2015)

[CHH+07] Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa,
K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 31

[CVW+18] Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-
tracing from lwe made simple and attribute-based. Cryptology ePrint
Archive, Report 2018/897 (2018). https://eprint.iacr.org/2018/897
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Abstract. Cryptographic combiners allow one to combine many can-
didates for a cryptographic primitive, possibly based on different com-
putational assumptions, into another candidate with the guarantee that
the resulting candidate is secure as long as at least one of the origi-
nal candidates is secure. While the original motivation of cryptographic
combiners was to reduce trust on existing candidates, in this work, we
study a rather surprising implication of combiners to constructing secure
multiparty computation protocols. Specifically, we initiate the study of
functional encryption combiners and show its connection to secure mul-
tiparty computation.

Functional encryption (FE) has incredible applications towards com-
puting on encrypted data. However, constructing the most general form
of this primitive has remained elusive. Although some candidate con-
structions exist, they rely on nonstandard assumptions, and thus, their
security has been questioned. An FE combiner attempts to make use of
these candidates while minimizing the trust placed on any individual FE
candidate. Informally, an FE combiner takes in a set of FE candidates
and outputs a secure FE scheme if at least one of the candidates is secure.

Another fundamental area in cryptography is secure multi-party com-
putation (MPC), which has been extensively studied for several decades.
In this work, we initiate a formal study of the relationship between func-
tional encryption (FE) combiners and secure multi-party computation
(MPC). In particular, we show implications in both directions between
these primitives. As a consequence of these implications, we obtain the
following main results.

– A two-round semi-honest MPC protocol in the plain model secure
against up to n−1 corruptions with communication complexity pro-
portional only to the depth of the circuit being computed assuming
learning with errors (LWE). Prior two round protocols based on
standard assumptions that achieved this communication complexity
required trust assumptions, namely, a common reference string.

– A functional encryption combiner based on pseudorandom genera-
tors (PRGs) in NC1. This is a weak assumption as such PRGs are
implied by many concrete intractability problems commonly used in
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cryptography, such as ones related to factoring, discrete logarithm,
and lattice problems [11]. Previous constructions of FE combiners,
implicit in [7], were known only from LWE. Using this result, we
build a universal construction of functional encryption: an explicit
construction of functional encryption based only on the assumptions
that functional encryption exists and PRGs in NC1.

Keywords: Functional encryption · Cryptographic combiners ·
Multi-party computation

1 Introduction

The foundations of several cryptographic primitives rely upon computational
assumptions. The last few decades have seen the birth of many assumptions,
such as factoring, quadratic residuosity, decisional Diffie-Hellman, learning with
errors, and many more. Understanding the security of these assumptions is still
very much an active research area. Despite years of research, very little is known
in terms of how different cryptographic assumptions compare with each other.
For instance, its not known whether decisional Diffie-Hellman is a weaker or
a stronger assumption than learning with errors. This leads us to the follow-
ing unsatisfactory scenario: suppose a cryptographic primitive (say, public key
encryption) has many candidate constructions based on different assumptions,
and we want to pick the most secure candidate. In this scenario, it is unclear
which one we should pick.

Cryptographic Combiners. The notion of cryptographic combiners was intro-
duced to resolve this dilemma. Given many candidates of a cryptographic prim-
itive, possibly based on different assumptions, a cryptographic combiner churns
these candidates into another candidate construction for the same primitive with
the guarantee that the resulting construction is secure as long as at least one
of the original candidates are secure. For instance, a combiner for public key
encryption can be used to transform two candidates based on decisional Diffie-
Hellman and learning with errors into a different public-key encryption candidate
that is secure as long as either decisional Diffie-Hellman or learning with errors
is secure.

While combiners were originally introduced to reduce trust on existing cryp-
tographic constructions, in this work, we study a rather surprising implication
from combiners to secure multi-party computation. Secure multi-party com-
putation [19,50,79], one of the fundamental notions in cryptography, allows
many parties, who don’t necessarily trust each other, to come together and
compute a function on their private inputs. We consider the primitive of func-
tional encryption and study the implications of functional encryption combiners
to secure multi-party computation. But first, we recall the notion of functional
encryption.
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Functional Encryption. Functional encryption (FE), introduced by [28,73,78],
is one of the core primitives in the area of computing on encrypted data. This
notion allows an authority to generate and distribute constrained keys asso-
ciated with functions f1, . . . , fq, called functional keys, which can be used to
learn the values f1(x), . . . , fq(x) given an encryption of x. Intuitively, the secu-
rity notion states that the functional keys associated with f1, . . . , fq and an
encryption of x reveal nothing beyond the values f1(x), . . . , fq(x). While this
notion is interesting on its own, several works have studied its connections to
other areas in cryptography and beyond, including reusable garbled circuits [51],
indistinguishability obfuscation [8,9,23,68,69], adaptive garbling [57], verifiable
random functions [14,21,54], deniable encryption [52], hardness o1f Nash equi-
librium [45,46], and many more.

Currently, we know how to construct only restricted versions1 of functional
encryption from well studied cryptographic assumptions. However, constructing
the most general form of functional encryption has been an active research area
and has intensified over the past few years given its implication to indistinguisha-
bility obfuscation [8,23]. In fact, if we are willing to tolerate a subexponential
security loss, then even secret-key FE is enough to imply indistinguishability
obfuscation [22,62,63]. All the candidates [10,43,65,66,70,71] we know so far are
either based on assumptions pertaining to the tool of graded encodings [29,42],
or on other new and relatively unstudied assumptions [1,5,67]. Recent cryptan-
alytic attacks [35,36,38,39,60] on assumptions related to graded encodings have
prompted scrutiny of the security of schemes that use this tool as the building
block. Given this, we should hope to minimize the trust we place on any individ-
ual FE candidate. The notion of a functional encryption combiner achieves this
purpose. Roughly speaking, a functional encryption combiner allows for combin-
ing many functional encryption candidates in such a way that the resulting FE
candidate is secure as long as any one of the initial FE candidates is secure. In
other words, a functional encryption combiner says that it suffices to place trust
collectively on multiple FE candidates, instead of placing trust on any specific
FE candidate.

Our Work. We initiate a systematic study of functional encryption combiners. In
particular, we study implications from FE combiners to secure multi-party com-
putation (and vice versa), and by doing so, we achieve interesting consequences
that were previously unknown. We detail our contributions next.

1.1 Our Contributions

Our results can be classified into two parts. The first part shows how to translate
constructions of functional encryption combiners into secure MPC protocols. The
second part studies the other direction.
1 For instance, we can restrict the adversary to only ask for one functional key in the

security experiment. A functional encryption scheme satisfying this property can be
based on public key encryption schemes [53,77] (or one-way functions if one can
settle for the secret key version).
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From Combiners for Single-key FE to Secure MPC: Our first result shows how
to construct a passively secure multi-party computation protocol that is both
round-optimal (two rounds) and communication efficient (depends only on cir-
cuit depth). Recall that in a passively secure MPC protocol, corrupted parties
follow the instructions of the protocol, but try to learn about honest party inputs
from their combined view of the protocol execution. Moreover, our resulting pro-
tocol is in the plain model and can tolerate all but one corruption2. Prior round-
optimal passively-secure MPC protocols were either communication inefficient,
that is communication complexity was proportional to circuit size [20,30,47,48],
based on strong assumptions such as indistinguishability obfuscation [40] or were
based on trust assumptions [32,33,37,72,74] (for instance, a common reference
string). Independently of our work, [76] formulated the notion of laconic func-
tion evaluation, which is quite different from combiners for functional encryption.
However, subsequent to our work, [76] showed that laconic function evaluation
can also be used to build 2-round semi-honest MPC with communication that
is sub-linear in the circuit size.

We prove the following theorem.

Theorem 1 (Informal). Consider an n-party functionality f computable by a
poly-sized circuit of depth d, for any n ≥ 2. Assuming LWE, there is a construc-
tion of a passively secure (semi-honest) n-party computation protocol for f in
the plain model secure against n − 1 corruptions. The number of rounds in this
protocol is 2, and the communication complexity is poly(λ, n, d, Lin, Lout), where
Lin is the input length of this circuit computing f , Lout is its output length and
λ is the security parameter.

We summarize the state of art in the Fig. 1.

Communication Com-
plexity Assumptions Model

[37,72,74,33] poly(λ, n, d, Lin, Lout) LWE CRS

[40] poly(λ, n, d, Lin, Lout)
piO and lossy en-
cryption Plain

[47] poly(λ, n, |f |) Bilinear maps Plain
[20,48] poly(λ, n, |f |) Two-round OT Plain
Our Work, poly(λ, n, d, Lin, Lout) LWE Plain
[76]

Fig. 1. State of the art in terms of communication complexity of two-round passively
secure n-party protocols in the all-but-one corruption model. We denote by |f | and d
the size and depth of the circuit representing the MPC functionality f , respectively.
Moreover, Lin and Lout, respectively, denote the input and output lengths of the cir-
cuit. CRS stands for common reference string and piO stands for probabilistic indis-
tinguishability obfuscation [34].

2 Unless otherwise specified, we only consider MPC protocols tolerating all but one
corruption.
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Central to proving the above theorem is a transformation from a functional
encryption combiner to passively secure MPC. We only require a combiner for
functional encryption schemes where the adversary only receives one functional
key. We require the functional encryption combiner to have some structural
properties. Namely, the functional key for f associated with the combined can-
didate needs to be of the form (f, sk1

f , . . . , skn
f ), where (i) decomposability: ski

f

is produced by the ith FE candidate and, (ii) succinctness: the length of ski
f

is poly(λ, d, Lout), where d is the depth of the circuit computing f and Lout is
its output length. As part of the succinctness property, we also require that the
encryption complexity is poly(λ, d, Lin), where Lin is the length of the message
to be encrypted. We show how to construct such an FE combiner assuming LWE.

An intermediate tool we use in this implication is a communication inefficient
passively secure MPC protocol. By communication inefficient, we mean that the
communication complexity is proportional to the size of the circuit representing
f . We note that such protocols [20,47,48] exist in the literature3 based on just
the assumption of round-optimal passively secure oblivious transfer.

Lemma 1 (Informal). Consider a n-party functionality f , for any n ≥ 2.
There is a passively secure n-party computation protocol for f in two rounds
with communication complexity poly(λ, n, d, Lin, Lout) secure against n − 1 cor-
ruptions, where d is the depth of circuit computing f , Lin is the input length of
the circuit and Lout is its output length. Moreover, we assume (i) a decomposable
and succinct functional encryption combiner and (ii) a communication ineffi-
cient (as defined above) two-round secure n-party computation protocol secure
against n − 1 corruptions.

By plugging in the recent round-optimal secure MPC protocols [20,47,48] that
can be based on two-round oblivious transfer, which in turn can be based on
learning with errors [75], and our new decomposable and succinct FE com-
biner from LWE, we get Theorem 1. We note that MPC with malicious security
requires at least 4 rounds [4,15,32,44,55], and thus, we do not consider MPC
with malicious security in this work.

From Secure MPC to Combiners for Unbounded-Key FE: In the other direction,
we show how to transform existing secure multi-party computation protocols
into constructions of functional encryption combiners. However, we note that
the FE combiners we construct from MPC here do not satisfy decomposability
or succinctness. In particular, we show how to transform specific constant round
passively secure MPC protocols based on low degree randomized encodings [17]
into functional encryption combiners. By instantiating low degree randomized
encodings from pseudorandom generators in NC1, we get the following result.
3 These protocols are inherently communication inefficient. The reason is that they

present a compiler that turns any arbitrary interactive MPC protocol into a two-
round MPC protocol. The communication complexity in the resulting two-round
MPC protocol is at least the computational complexity of the original MPC pro-
tocol. However, the computational complexity of the resulting protocol has to be
proportional to the size of the circuit representing the functionality f .
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Theorem 2 (Informal). Assuming pseudorandom generators in NC1, there is
a construction of a combiner for unbounded-key functional encryption.

By unbounded-key functional encryption, we mean that there is no a priori
bound on the number of functional keys the adversary can request in the security
experiment. We note that such pseudorandom generators in NC1 are implied by
most concrete intractability assumptions commonly used in cryptography, such
as ones related to factoring, discrete logarithm, and lattice problems [11]. Fur-
thermore, such PRGs are also implied by the existence of one-way permutations
in NC1 or one-way functions in NC1 with efficiently computable entropy [11].

Next, we present a generic reduction that can transform two-round passively
secure MPC protocols into functional encryption combiners. For this transforma-
tion to hold, the MPC protocol must satisfy two properties: (i) delayed function-
dependence: the first round of the MPC protocol should be independent of the
functionality being securely computed and (ii) reusability: the first round can
be reused by the parties to securely compute many functionalities (but on the
same inputs fixed by the first round).

Theorem 3 (Informal). Assuming a delayed function-dependent and reusable
round-optimal secure MPC protocol, there is a construction of an unbounded-key
decomposable functional encryption combiner.

We then observe that existing two-round secure MPC protocols [33,72,74],
based on learning with errors, already satisfy delayed function-dependence and
reusability. We note that it is not necessary for the round-optimal protocols to be
in the plain model (indeed, the protocols [33,72,74] are in the common reference
string (CRS) model).

Prior to this work, the only polynomial hardness assumption known to imply
an FE combiner was the learning with errors assumption [7]4. While Theo-
rem 2 already gives a construction of a functional encryption combiner from
learning with errors (pseudorandom generators in NC1 can be based on learning
with errors [16]), the functional encryption combiner constructed in Theorem 3
arguably provides a more efficient transformation. In particular, the efficiency
of the functional keys in the combined scheme from Theorem 3 is linear in the
efficiency of the functional keys in the FE candidates. However, the efficiency in
the combined scheme from Theorem 2 degrades polynomially in the efficiency of
the original FE candidates. Furthermore, the FE combiner from Theorem 3 is
decomposable, a property needed by an FE combiner as a building block in the
proof of Theorem 1. On the other hand, the FE combiner from Theorem 2 is
inherently not decomposable, since it is based on an “onion-layered” approach –
this means that the keys generated with respect to one FE candidate make oracle
calls to other FE candidates (see [56] for a related discussion on black-box com-
biners). Furthermore, the FE combiner from Theorem 3 makes only black-box
use of the underlying FE candidates, whereas the FE combiner from Theorem 2
is inherently non-black-box.
4 Note that [7] required sub-exponential hardness only for constructing iO combiners,

not for constructing FE combiners.
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In terms of techniques, we introduce mechanisms to emulate a MPC protocol
using functional encryption candidates. This is remiscient of “MPC-in-the-head”
paradigm introduced by Ishai et al. [61] and more relevant to the context of FE is
the work of Gorbunov et al. [53] who used information-theoretic MPC protocols
to construct single-key FE. However, we encounter new challenges to implement
the “MPC-in-the-head” paradigm in our context.

Universal Functional Encryption: We strengthen our constructions of FE com-
biners by showing how to transform them into combiners that also work when
the insecure candidates don’t necessarily satisfy correctness (of course, we still
require that the secure candidate is correct). Such combiners are called robust
combiners. To do this, we present correctness amplification theorems based
on previous works on indistinguishability obfuscation [7,24] and, in particular,
our correctness amplification assumes only one-way functions (unlike [24,25]).
Robust combiners have been useful in universal constructions [6,7]. Roughly
speaking, a universal construction of FE is a concrete construction of FE that
is secure as long as any secure and correct construction exists. We show how to
build universal functional encryption from robust FE combiners.

Theorem 4 (Universal Functional Encryption). Assuming pseudorandom
generators in NC1, there is a universal unbounded-key functional encryption
scheme.

Our construction will be parameterized by T , where T is an upper bound on the
running time of all the algorithms associated with the secure candidate. This
was a feature even in the universal iO construction of [6].

Related Work: The notion of combiners has been studied in the context of many
cryptographic primitives. Asmuth and Blakely [13] studied combiners for encryp-
tion schemes. Levin proposed a universal construction of one-way functions [64].
Later, a systematic study of combiners and their relation to universal construc-
tions was proposed by Harnik et al. [56] (also relevant are the constructions
in [58,59]). Recently, Ananth et al. [6] designed universal constructions of indis-
tinguishability obfuscation (iO). Concurrently, Fischlin et al. also proposed com-
biners in the context of program obfuscation [41]. Ananth et al. [7] then pro-
posed the concept of transforming combiners that transforms many candidates
of a primitive X, with at least one of them being secure and, into a secure can-
didate of primitive Y . In particular, they construct iO-to-functional encryption
transforming combiners.

As mentioned previously, independently of our work, [76] formulated the
notion of laconic function evaluation, and, subsequent to our work, showed that
laconic function evaluation can also be used to build 2-round semi-honest MPC
with communication that is sub-linear in the circuit size. [76]’s protocol consists
of pre-processing, online, and post-processing phases. Additionally, they note
that the computation complexity of the online phase is also independent of the
size of the function being computed. After seeing their work, we observe that
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our protocol also satisfies this property. In particular, in the construction in
Sect. 5, steps 1–3 in round 1 can be made the preprocessing phase. The resulting
protocol will now have online computation complexity independent of the size
of the function being computed.

1.2 Technical Overview

We begin by tackling the problem of constructing secure multi-party computa-
tion with depth-proportional communication complexity, i.e, proportional only
to the depth of the circuit being securely computed, starting from a functional
encryption combiner.

Round-Optimal MPC with Depth-Proportional Communication: Let’s start by
recalling prior known two-round secure MPC protocols [33,72,74] with depth-
proportional communication in the CRS model. The basic template is as follows:
in the first round, the ith party broadcasts an encryption of its input xi. These
ciphertexts are computed with respect to public keys that are derived from the
CRS. All the n parties then homomorphically compute on the encryptions of
(x1, . . . , xn) to obtain a ciphertext of f(x1, . . . , xn), where f is the function they
wish to securely compute. The resulting ciphertext is then partially decrypted,
and every party broadcasts its partially decrypted value in the second round.
These values can be combined to recover the output of the functionality.

One could imagine getting rid of the CRS in the above protocol using the
recent round-optimal MPC protocols in the plain model [20,47]. If this were
possible, then it would yield a round-optimal MPC in the plain model that has
depth-proportional communication complexity. However, the issue is that the
messages in the first round of [33,72,74] are computed as functions of the CRS
and thus, such an approach would inherently require three rounds.

To overcome this, we introduce a mechanism to parallelize the evaluation and
the encryption processes. The output of the evaluation in our approach is the
output of the functionality and not a partially decrypted value, as was the case
in [33,72,74], and thus, we save one round. To implement this high level idea,
we use a functional encryption combiner. Before we describe the high level tem-
plate, we require that the underlying functional encryption combiner satisfies the
decomposability property: Suppose we have FE candidates FE1, . . . ,FEn. Then, a
functional key for a circuit C in the combined scheme is just a concatenation of
the functional keys for C, (skC

1 , . . . , skC
n ), where skC

i is computed with respect
to the ith FE candidate.

The template of our depth-proportional communication secure MPC con-
struction from an FE combiner satisfying this decomposability property is in
Fig. 2. As an intermediate tool, we use a size-proportional communication secure
MPC protocol (henceforth, also referred to as a communication inefficient pro-
tocol). By this, we mean that the communication complexity of the secure MPC
protocol grows polynomially with the size of the circuit being securely computed.

At the end of second round, every party has an encryption of (x1, . . . , xn)
with respect to the combined candidate and functional keys for f with respect
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Our Approach

Goal: t-round depth-proportional communication secure MPC from t-round
size-proportional communication secure MPC using decomposable FE combin-
ers.

– Suppose the input of the ith party is xi and f is the function to be securely
computed. All the parties execute the t-round (communication-inefficient)
MPC protocol to obtain an encryption of (x1, . . . , xn) with respect to the
combined FE scheme.

– Simultaneously, the ith party computes the functional key of f with respect
to the ith candidate and sends it to everyone.

Fig. 2. Our approach to construct round-optimal depth-proportional communication
secure MPC from decomposable functional encryption combiners.

to every candidate. From the decomposability property, this is equivalent to
generating a functional key for f with respect to the combined candidate. Each
party can separately execute the FE combiner decryption algorithm to obtain
f(x1, . . . , xn), as desired. Here, we crucially rely on the fact that all the FE
candidates are correct. This completes the high level description of the template.

In the first bullet in Fig. 2, we instantiate the secure MPC protocol with
size-proportional communication with [20,47,48]. The works of [20,47,48] are
two-round protocols in the plain model and by suitably instantiating the FE
combiners (described later), our approach yields a two-round MPC protocol
with depth-proportional communication.

To argue security of our MPC protocol, the idea is to start with the assump-
tion of a secure FE scheme and instantiate all the candidates using the same FE
scheme. If the adversary corrupts all but the jth party, this means that he can
obtain all the master secret keys of the FE scheme except the jth one. This is
effectively the same as all except the jth candidate being broken. At this point,
we can use the security of the jth FE scheme to argue the security of the MPC
protocol. This shows that the above template yields a secure two-round MPC
protocol assuming a secure FE scheme.

Note that we also assume a two-round (communication-inefficient) MPC pro-
tocol. Without showing that our protocol has depth-proportional communica-
tion, the above protocol doesn’t achieve anything new. Indeed, it is unclear
why our protocol should have depth-proportional communication. There are two
sources of concern: (i) we are still using a communication inefficient MPC pro-
tocol and, (ii) the functional key of f could be proportional to the size of the
circuit computing f . Suppose we had a secure (magical) FE scheme satisfying
the following two properties: (1) the encryption complexity of this FE scheme
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is proportional only to the depth of f , and (2) the functional key of f is of the
form (f, aux), where |aux| only depends on the depth of the circuit computing
f . We claim that this would immediately show that our protocol has commu-
nication complexity proportional only to the depth. Concern (i) is addressed
by the fact the communication-inefficient MPC protocol is used only to evalu-
ate the encryption circuit of the underlying FE scheme. Since the underlying
FE scheme is succinct, the size of the encryption circuit only depends on the
depth of the functionality f . Therefore, the communication complexity of the
communication-inefficient MPC protocol does not affect our construction. Con-
cern (ii) is handled by the fact that the parties only have to send the “aux” part
of the function keys to the other parties, which is only proportional to the depth
of f .

We next observe that the functional encryption scheme of Goldwasser
et al. [51] can be used to satisfy both properties (1) and (2). We recall the
functional encryption construction of Goldwasser et al.: the building blocks in
this construction are attribute based encryption (ABE) for circuits, fully homo-
morphic encryption (FHE), and garbling schemes.

– To encrypt a message x, first encrypt x using a (leveled) FHE scheme. Suppose
the maximum output length of the functions for which we generate functional
keys is Lout. Generate poly(Lout) ABE encryptions of the FHE ciphertext,
for some fixed polynomial poly, along with wire keys of a garbled circuit. The
garbled circuit is associated with the FHE decryption circuit.

– A functional key of f consists of poly(Lout) ABE keys associated with the
circuit that computes the FHE evaluation of f .

If we instantiate the ABE scheme with the scheme of Boneh et al. [27] and
the leveled FHE scheme with any of the schemes proposed in [31,49], we achieve
both properties (1) and (2) described above. The schemes of [27] and [31,49] have
encryption complexity proportional only to the depth of the circuit. In terms of
the structure of the functional key, we note that the ABE scheme of [27] satisfies
this nice property: you can express the ABE key of a function f as (f, aux),
where |aux| is a polynomial in depth and Lout. This can be used to argue that
the above FE scheme satisfies property (2).

Thus starting from an FE combiner, we have constructed a communication-
efficient two-round MPC. We note that the FE combiner is required to sat-
isfy simulation security in order to prove that the resulting MPC is simulation
secure. The security proof of the resulting MPC directly follows from the simu-
lation security of the FE combiner and the simulation security of the underlying
communication inefficient MPC.

Next, we show how to construct such an FE combiner.

Constructing the FE Combiner: As in the works of [6,7], we view the FE can-
didates as analogous to parties in a secure MPC protocol. Suppose we want to
construct an FE combiner for n candidates. We start with a two-round (semi-
honest) secure n-party MPC protocol in the plain model. To encrypt a message
x, first additively secret share x into shares (x1, . . . , xn). Compute the first round
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messages of all the parties, where the ith party’s input is xi. Finally, for every
i ∈ [n], encrypt the first round messages of all the parties along with the local
state of the ith party using ith FE candidate. All the n encryptions will form the
ciphertext corresponding to the FE combiner scheme.

To generate a functional key for f , we generate n functional keys with each
key associated with an FE candidate. The ith functional key computes the next
message function of the ith party. In this context, we define the next message
function to be a deterministic algorithm that takes as input the state of the
party along with the messages received so far and produces the next message.
Moreover, the MPC functionality associated with the next message function is
as follows: it takes as input n shares of x, reconstructs x, and computes f(x).
The functional key of f corresponding to the FE combiner is the collection of
all these n functional keys.

The decryption in the FE combiner scheme proceeds by recovering the first
and second round messages of all the parties. The reconstruction algorithm of the
secure MPC protocol is then executed to recover the output of the functionality.
An issue here is that the reconstruction part need not be publicly computable.
Meaning that it might not be possible to recover the output of the functionality
from the transcript of the protocol alone. This can be resolved by revealing the
local state of one of the parties to the FE evaluator who can then use this to
recover the output. We implement this by considering an (n + 1)-party MPC
protocol with the FE evaluator corresponding to one of the parties in the MPC
protocol.

Without restricting ourselves to a specific type of two-round secure MPC
protocols, the above template could be ill defined for two reasons:

– Function-Dependence: The first round messages of the MPC protocol we start
off with could depend on the functionality being securely computed. This
means that the FE encryptor needs to be aware of the function f when it
is encrypting the message x. Hence, we need to enforce a delayed function-
dependence property on the underlying MPC protocol. Roughly, this property
states that the first round messages of the MPC protocol are independent of
the functionality being securely computed.

– Reusability: Suppose we wish to construct a collusion-resistant FE combiner,
meaning that the FE combiner is secure even if the adversary obtains multiple
functional keys during the security experiment. Even if one of the candidates
is secure in the collusion-resistant setting, the above template doesn’t neces-
sarily yield a collusion-resistant FE combiner. This is because the first round
MPC messages are “reused” across different FE evaluations. The security of
MPC, as is, doesn’t necessarily guarantee any security if the first round mes-
sages are reused for secure computation of multiple functionalities. Hence, we
need to enforce a corresponding reusability property on the underlying MPC
protocol to make it work in the collusion resistant setting.

Once we start with a delayed function-dependent and reusable secure MPC pro-
tocol, we can implement an FE combiner using the above template. We observe
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that the schemes of [33,72,74] are both delayed function-dependent and reusable.
As a corollary, we obtain an FE combiner based on learning with errors.

We note that this would give an FE combiner that satisfies indistinguishabil-
ity security. This is inherent since collusion-resistant FE that is also simulation
secure was shown to be impossible [2]. Thus, for our application of commu-
nication efficient MPC, we construct a simulation secure FE combiner in the
single-key setting (i.e., the adversary can only submit one function query) start-
ing from a threshold fully homomorphic encryption scheme.

FE Combiner from Weaker Assumptions: The above constructions and previous
constructions of FE combiners [7] relied on the learning with errors assumption.
However, it would be interesting to try to construct an FE combiner from weaker
assumptions. Our first observation is that there is a simple construction of an
FE combiner for two FE candidates. In this case, one can simply “nest” the two
candidates. That is, if the candidates are denoted FE1 and FE2, we encrypt a
message x by first encrypting x under FE1 and then encrypting the resulting
ciphertext under FE2. To construct a function key for f , we first construct the
function key SK1 for f using FE1 and then construct the function key SK2 for
the decryption circuit of FE1, with SK1 hardcoded as the function key, using
FE2. SK2 is then the function key for f in the nested scheme. In fact, this nested
approach works to combine any constant d number of candidates. However, this
approach does not scale polynomially in the number of candidates, and therefore,
does not give us an FE combiner for a polynomial number of candidates.

Using the above observation, we note that we can evaluate circuits over a con-
stant number of inputs. In particular, we can evaluate constant-sized products.
If we could compute the sum of various constant-sized products, then we could
compute constant-degree polynomials, which would allow us to apply known
bootstrapping techniques to go from FE for constant degree polynomials to FE
for arbitrary functions via randomized encodings. Such randomized encodings
can be constructed assuming a PRG in NC1 [11]. But how do we go about com-
puting the sums of constant degree polynomials? To reason about this, we will
view this as an MPC problem, where each FE candidate is associated with a
party. Given an input x, we bitwise secret share x amongst all the parties. This
effectively gives us an MPC problem where each party/candidate has a secret
input (their share of x). For simplicity, let’s consider the case where each candi-
date is given a single bit (the ith candidate is given the bit xi). As an example,
suppose we wished to evaluate the polynomial

x2
1 + x1x2 + x1x3 + x2x3.

Using the simple nested combiner for two candidates, we could evaluate each
monomial and then sum the resulting monomial evaluations to compute the poly-
nomial. However, this approach is flawed, since it will leak the values of each of the
monomials, whereas functional encryption requires only the value of the polyno-
mial to be computable and nothing else. We resolve this issue by masking each of
the monomial evaluations by secret shares of 0 such that summing all these values
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gives the correct polynomial evaluation, but the individual computed monomial
evaluations hide the true values of the monomials. To illustrate this, for the above
polynomial, candidate 1 has its secret input in 3 monomials x2

1, x1x2, and x1x3.
We secret share 0 across 3 shares. Let Share1,1,Share1,2,Share1,3 denote these val-
ues, where

Share1,1 + Share1,2 + Share1,3 = 0.

Similarly, candidates 2 and 3 have their secret inputs in 2 monomials: x1x2, x2x3

for candidate 2 and x1x3, x2x3 for candidate 3. We secret share 0 across 2 shares
for each of these candidates. These shares are denoted Share2,1,Share2,2 for can-
didate 2 and Share3,1,Share3,2 for candidate 3. We then place a total ordering on
the monomials of the polynomial in order to assign the shares to the monomials.
Suppose our ordering was

x2
1 < x1x2 < x1x3 < x2x3.

Then, we would see that x2
1 was the first monomial containing x1 and assign

Share1,1 to this monomial. For x1x2, we see that it is the second monomial
containing x1 and the first monomial containing x2. Therefore, we assign the
shares Share1,2 and Share2,1 to the monomial x1x2. In a similar manner, we
assign the shares Share1,3,Share3,1 to x1x3 and the shares Share2,2,Share3,2 to
x2x3. When generating the function key to evaluate the monomial x2

1, we actually
give out a function key that evaluates x2

1 + Share1,1. Similarly, when generating
a function key to evaluate the monomial x1x2, we actually give out a function
key that evaluates x1x2 + Share1,2 + Share2,1.

By proceeding in this manner, we have made it so that each monomial evalu-
ation hides the actual monomial value, but the sum of the monomial evaluations
gives the polynomial value. However, this approach still raises several concerns:
(i) how can we ensure that our secret sharing procedure hides intermediate sums
of monomials, and (ii) how can we coordinate the randomness needed to gen-
erate the secret shares amongst the various monomials. To illustrate the first
issue, suppose that the polynomial to evaluate was x1 + x2. In this instance, we
would not add any secret shares, which would reveal x1 and x2. Fortunately,
the first issue is not an issue at all, since such problematic polynomials will not
occur. This is because we begin by secret sharing the bits of the input x amongst
the candidates. Therefore, every monomial will be broken into the sum of new
monomials, such that each candidate contains a private bit in one of these new
monomials. Since one of the candidates is secure, the secret sharing amongst the
monomials with bits corresponding to the secure candidate ensures that nothing
except the actual polynomial evaluation can be learned. To solve issue (ii), we
utilize a PRF and generate a random PRF key for each candidate. This PRF key
is then used to generate the secret shares of 0 associated with that candidate.

Organization: We begin by defining the notion of functional encryption and
secure multi-party computation in Sect. 2. In Sect. 3, we define the notion of a
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functional encryption combiner. In Sect. 4, we show how to build a decompos-
able FE combiner that will be used as a building block in the construction of our
round-optimal and communication efficient MPC protocol and how to instanti-
ate it from [51]. In Sect. 5, we give the construction of our round-optimal and
communication efficient MPC protocol. In Sect. 6, we show how to build an FE
combiner assuming the existence of a PRG in NC1. In Sect. 7, we demonstrate
how to convert a delayed function-dependent and reusable round-optimal secure
MPC protocol into an FE combiner. Finally, in Sect. 8, we show how to convert
an FE combiner into a robust FE combiner and build a universal functional
encryption scheme.

2 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to
denote the set {1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions
D0,D1 are computationally indistinguishable. We use negl(λ) to denote a func-
tion that is negligible in λ. We use x ← A to denote that x is the output of
a randomized algorithm A, where the randomness of A is sampled from the
uniform distribution.

2.1 Functional Encryption

We define the notion of a (secret key) functional encryption candidate and a
(secret key) functional encryption scheme. A functional encryption candidate is
associated with the correctness requirement, while a secure functional encryption
scheme is associated with both correctness and security.

Syntax of a Functional Encryption Candidate/Scheme. A functional encryption
(FE) candidate/scheme FE for a class of circuits C = {Cλ}λ∈N consists of four
polynomial time algorithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ

be the input space of the circuit class Cλ and let Yλ be the output space of Cλ.
We refer to Xλ and Yλ as the input and output space of the candidate/scheme,
respectively.

– Setup, MSK ← FE.Setup(1λ): It takes as input the security parameter λ and
outputs the master secret key MSK.

– Encryption, CT ← FE.Enc(MSK,m): It takes as input the master secret key
MSK and a message m ∈ Xλ and outputs CT, an encryption of m.

– Key Generation, SKC ← FE.KeyGen (MSK, C): It takes as input the master
secret key MSK and a circuit C ∈ Cλ and outputs a function key SKC .

– Decryption, y ← FE.Dec (SKC ,CT): It takes as input a function secret key
SKC , a ciphertext CT and outputs a value y ∈ Yλ.

Throughout this work, we will only be concerned with uniform algorithms. That
is, (Setup,Enc,KeyGen,Dec) can be represented as Turing machines (or equiva-
lently uniform circuits).

We describe the properties associated with the above candidate.
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Approximate Correctness

Definition 1 (Approximate Correctness). A functional encryption candi-
date FE = (Setup,KeyGen,Enc,Dec) is said to be α-correct if it satisfies the
following property: for every C : Xλ → Yλ ∈ Cλ,m ∈ Xλ it holds that:

Pr

⎡
⎢⎢⎣

MSK ← FE.Setup(1λ)
CT ← FE.Enc(MSK,m)

SKC ← FE.KeyGen(MSK, C)
C(m) ← FE.Dec(SKC ,CT)

⎤
⎥⎥⎦ ≥ α,

where the probability is taken over the coins of the algorithms.
We refer to FE candidates that satisfy the above definition of correctness with

α = 1 − negl(λ) for a negligible function negl(·) as (almost) correct candidates.

Except for Sect. 8, we will only deal with correct candidates. Unless explic-
itly stated otherwise, all FE candidates throughout this paper satisfy (almost)
correctness.

IND-Security. We recall indistinguishability-based selective security for FE. This
security notion is modeled as a game between a challenger C and an adversary A
where the adversary can request functional keys and ciphertexts from C. Specif-
ically, A can submit function queries C and C responds with the corresponding
functional keys. A can also submit message queries of the form (x0, x1) and
receives an encryption of messages xb for some bit b ∈ {0, 1}. The adversary A
wins the game if she can guess b with probability significantly more than 1/2
and if for all function queries C and message queries (x0, x1), C(x0) = C(x1).
That is to say, any function evaluation that is computable by A gives the same
value regardless of b. It is required that the adversary must declare the challenge
messages at the beginning of the game.

Definition 2 (IND-secure FE). A secret-key FE scheme FE for a class of
circuits C = {Cλ}λ∈[N] and message space X = {Xλ}λ∈[N] is selectively secure if
for any PPT adversary A, there exists a negligible function μ(·) such that for all
sufficiently large λ ∈ N, the advantage of A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1] − Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined
below:

1. Challenge message queries: A submits message queries,
{

(xi
0, x

i
1)

}

with xi
0, x

i
1 ∈ Xλ to the challenger C.

2. C computes MSK ← FE.Setup(1λ) and then computes CTi ← FE.Enc(MSK,
xi

b) for all i. The challenger C then sends {CTi} to the adversary A.
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3. Function queries: The following is repeated an at most polynomial number
of times: A submits a function query C ∈ Cλ to C. The challenger C computes
SKC ← FE.KeyGen(MSK, C) and sends it to A.

4. If there exists a function query C and challenge message queries (xi
0, x

i
1) such

that C(xi
0) �= C(xi

1), then the output of the experiment is set to ⊥. Otherwise,
the output of the experiment is set to b′, where b′ is the output of A.

Adaptive Security. The above security notion is referred to as selective security
in the literature. One can consider a stronger notion of security, called adaptive
security, where the adversary can interleave the challenge messages and the
function queries in any arbitrary order. Analogous to Definition 2, we can define
an adaptively secure FE scheme. In this paper, we only deal with selectively
secure FE schemes. However, the security of these schemes can be upgraded to
adaptive with no additional cost [3].

Simulation Security. We can also consider a different notion of security, called
(single-key) simulation security.

Definition 3 (SIM-Security). Let FE denote a functional encryption scheme
for a circuit class C. For every PPT adversary A = (A1,A2) and a PPT simula-
tor Sim, consider the following two experiments:

ExprealFE,A(1λ) ExpidealFE,A,Sim(1λ)

{FE.Setup(1λ) → MSK} {FE.Setup(1λ) → MSK}
A1 → (C, stateA1) A1 → (C, stateA1)
{SKC ← FE.KeyGen(MSK, C)} {SKC ← FE.KeyGen(MSK, C)}
A2(stateA1 ,SKC) → (m, stateA2) A2(stateA1 ,SKC) → (m, stateA2)
FE.Enc(MSK,m) → CT Sim(MSK, C,SKC , C(m)) → C̃T
Output (CT, stateA2) Output (C̃T, stateA2)

The scheme is said to be (single-key) SIM-secure if there exists a PPT simulator
Sim such that for all PPT adversaries (A1,A2), the outcomes of the two experi-
ments are computationally indistinguishable:

{ExprealFE,A(1λ)}λ∈N ≈c {ExpidealFE,A,Sim(1λ)}λ∈N

Collusions. We can parameterize the FE candidate by the number of function
secret key queries that the adversary can make in the security experiment. If the
adversary can only submit an a priori upper bounded q secret key queries, we say
that the scheme is q-key or q-collusion secure. We say that the functional encryp-
tion scheme unbounded-key or unbounded-collusion secure if the adversary can
make an unbounded (polynomial) number of function secret key queries. In this
work, unless otherwise stated, we will allow the adversary to make an arbitrary
polynomial number of function secret key queries.
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Succinctness

Definition 4 (Succinctness). A functional encryption candidate FE =
(Setup,Enc,KeyGen,Dec) for a circuit class C containing circuits that take inputs
of length �in, outputs strings of length �out bits and are of depth at most d is said
to be succinct if the following holds: For any circuit C ∈ C,

– Let MSK ← FE.Setup(1λ). The size of the circuit FE.Enc(MSK, ·) < poly(λ, d,
�in, �out) for some polynomial poly.

– The function key SKC ← FE.KeyGen(MSK, C) is of the form (C, aux) where
|aux| ≤ poly(λ, d, �out) for some polynomial poly.

In general, an FE candidate/scheme need not satisfy succinctness. How-
ever, we will need to utilize succinct FE candidates when constructing depth-
proportional communication MPC (Sects. 4 and 5). In such cases, we will explic-
itly state that the FE candidates are succinct.

FE Candidates vs. FE Schemes. As defined above, an FE scheme must satisfy
both correctness and security, while an FE candidate is simply the set of algo-
rithms. Unless otherwise specified, we will be dealing with FE candidates that
satisfy correctness. We will only refer to FE constructions as FE schemes if it is
known that the construction satisfies both correctness and security.

2.2 Secure Multi-party Computation

The syntax and security definitions for secure multi-party computation can be
found in the full version. Since we are dealing throughout this paper with the
efficiency of MPC protocols, we give the definition of a succinct MPC protocol
below.

Definition 5 (Succinct MPC protocol). Consider an n-party semi-honest
secure MPC protocol Π for a functionality f , represented by a polynomial-sized
circuit C. We define the communication complexity of Π to be the total length
of all the messages exchanged in the protocol.

We define Π to be succinct if the communication complexity of Π is
poly(λ, d, n), where λ is the security parameter and d is the depth of the cir-
cuit C.

2.3 Additional Preliminaries

In this work, we will also make occasional use of threshold leveled fully homo-
morphic encryption [12,26,72] and garbling schemes [18,79]. Formal definitions
of these primitives can be found in the full version.

3 FE Combiners: Definition

In this section, we give a formal definition of an FE combiner. Intuitively, an
FE combiner FEComb takes n FE candidates, FE1, . . . ,FEn and compiles them
into a new FE candidate with the property that FEComb is a secure FE scheme
provided that at least one of the n FE candidates is a secure FE scheme.
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Syntax of a Functional Encryption Combiner. A functional encryption combiner
FEComb for a class of circuits C = {Cλ}λ∈N consists of four polynomial time algo-
rithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ be the input space
of the circuit class Cλ and let Yλ be the output space of Cλ. We refer to Xλ and
Yλ as the input and output space of the combiner, respectively. Furthermore, let
FE1, . . . ,FEn denote the descriptions of n FE candidates.

– Setup, FEComb.Setup(1λ, {FEi}i∈[n]): It takes as input the security param-
eter λ and the descriptions of n FE candidates {FEi}i∈[n] and outputs the
master secret key MSK.

– Encryption, FEComb.Enc(MSK, {FEi}i∈[n],m): It takes as input the master
secret key MSK, the descriptions of n FE candidates {FEi}i∈[n], and a message
m ∈ Xλ and outputs CT, an encryption of m.

– Key Generation, FEComb.Keygen
(
MSK, {FEi}i∈[n], C

)
: It takes as input

the master secret key MSK, the descriptions of n FE candidates {FEi}i∈[n],
and a circuit C ∈ Cλ and outputs a function key SKC .

– Decryption, FEComb.Dec
({FEi}i∈[n],SKC ,CT

)
: It is a deterministic algo-

rithm that takes as input the descriptions of n FE candidates {FEi}i∈[n], a
function secret key SKC , and a ciphertext CT and outputs a value y ∈ Yλ.

Remark 1. In the formal definition above, we have included {FEi}i∈[n], the
descriptions of the FE candidates, as input to all the algorithms of FEComb.
For notational simplicity, we will often forgo these inputs and assume that they
are implicit.

We now define the properties associated with an FE combiner. The three
properties are correctness, polynomial slowdown, and security. Correctness is
analogous to that of an FE candidate, provided that the n input FE candidates
are all valid FE candidates. Polynomial slowdown says that the running times
of all the algorithms of FEComb are polynomial in λ and n. Finally, security
intuitively says that if at least one of the FE candidates is also secure, then
FEComb is a secure FE scheme. We provide the formal definitions below.

Correctness

Definition 6 (Correctness). Suppose {FEi}i∈[n] are correct FE candidates.
We say that an FE combiner is correct if for every circuit C : Xλ → Yλ ∈ Cλ,
and message m ∈ Xλ it holds that:

Pr

⎡
⎢⎢⎣

MSK ← FEComb.Setup(1λ, {FEi}i∈[n])
CT ← FEComb.Enc(MSK, {FEi}i∈[n],m)

SKC ← FEComb.Keygen(MSK, {FEi}i∈[n], C)
C(m) ← FEComb.Dec({FEi}i∈[n],SKC ,CT)

⎤
⎥⎥⎦ ≥ 1 − negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is a
negligible function in λ.
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Polynomial Slowdown

Definition 7 (Polynomial Slowdown). An FE combiner FEComb satisfies
polynomial slowdown if on all inputs, the running times of FEComb.Setup,
FEComb.Enc,FEComb.Keygen, and FEComb.Dec are at most poly(λ, n), where
n is the number of FE candidates that are being combined.

IND-Security

Definition 8 (IND-Secure FE Combiner). An FE combiner FEComb is
selectively secure if for any set {FEi}i∈[n] of correct FE candidates, it satis-
fies Definition 2, where the descriptions of {FEi}i∈[n] are public and implicit in
all invocations of the algorithms of FEComb, if at least one of the FE candidates
FE1, . . . ,FEn also satisfies Definition 2.

Note that Definition 2 is the IND-security definition for FE. Unless other-
wise specified, when we say a secure FE combiner, we refer to one that satisfies
IND-security.

Simulation Security. Similarly to FE candidates, we can also consider a different
notion of security called (single-key) simulation security.

Definition 9. An FE combiner FEComb is single-key simulation secure if for
any set {FEi}i∈[n] of correct FE candidates, it satisfies Definition 3, where the
descriptions of {FEi}i∈[n] are public and implicit in all invocations of the algo-
rithms of FEComb, if at least one of the FE candidates FE1, . . . ,FEn also satisfies
Definition 3.

Note that Definition 3 is the simulation security definition for FE.

Succinctness. Similarly to FE candidates, we can also define the notion of a
succinct FE combiner. An FE combiner is not required to satisfy succinctness,
but we will utilize a succinct FE combiner when construction low communication
MPC (Sects. 4 and 5).

Definition 10. An FE combiner FEComb = (Setup,Enc,KeyGen,Dec) for a cir-
cuit class C containing circuits that take inputs of length �in, outputs strings of
length �out bits and are of depth at most d is succinct if for every set of succinct
FE candidates FE1, . . . ,FEn, the following holds: For any circuit C ∈ C,

– Let MSK ← FEComb.Setup(1λ, {FEi}i∈[n]). The size of the circuit
FEComb.Enc(MSK, ·) ≤ poly(λ, d, �in, �out, n) for some polynomial poly.

– The function key SKC ← FEComb.KeyGen(MSK, C) is of the form (C, aux)
where |aux| ≤ poly(λ, d, �out, n) for some polynomial poly.
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Robust FE Combiners and Universal FE

Remark 2. We also define the notion of a robust FE combiner. An FE combiner
FEComb is robust if it is an FE combiner that satisfies the three properties (cor-
rectness, polynomial slowdown, and security) associated with an FE combiner
when given any set of FE candidates {FEi}i∈[n], provided that one is a correct
and secure FE candidate. No restriction is placed on the other FE candidates.
In particular, they need not satisfy correctness at all.

Robust FE combiners can be used to build a universal functional encryption
scheme defined below.

Definition 11 (T -Universal Functional Encryption). We say that an
explicit Turing machine Πuniv = (Πuniv.Setup,Πuniv.Enc,Πuniv.KeyGen,Πuniv.Dec)
is a universal functional encryption scheme parametrized by T if Πuniv is a correct
and secure FE scheme assuming the existence a correct and secure FE scheme
with runtime < T .

4 Succinct Single-Key Simulation Secure Decomposable
FE Combiner

In this section, we define and construct a succinct single-key simulation secure
decomposable FE combiner (DFEComb for short) that will be useful later for
our communication-efficient MPC result. This section can be found in the full
version.

5 Round Optimal MPC with Depth-Proportional
Communication from an FE Combiner

In this section, using any succinct single-key simulation secure decomposable FE
combiner (see Sect. 4), we show how to compile any two round semi-honest secure
MPC protocol into one where the communication complexity is proportional only
to the depth of the circuit being evaluated.

Let Comm.Compl(π) denote the communication complexity of any protocol
π. Let λ denote the security parameter, n denote the number of parties, and
� denote the size of the input to each party. Formally, we show the following
theorem:

Theorem 5. Assuming the existence of

– A succinct single-key single-ciphertext simulation secure decomposable FE
combiner (AND)

– Succinct FE candidates (AND)
– A two round semi-honest MPC in the plain model (that may not be commu-

nication efficient) that is secure against up to all but one corruption,
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there exists a two round semi-honest MPC protocol π in the plain model that
is secure against up to all but one corruption for any boolean circuit C, where
the communication complexity of the protocol π is independent of the size of the
circuit. That is, Comm.Compl(π) = poly(Depth(C), n, �, λ).

We know how to construct a succinct single-key simulation secure decom-
posable FE combiner based on the learning with errors (LWE) assumption (see
Sect. 4). Further, in Sect. 4, we saw that the construction in [51] is a succinct FE
candidate. Also, two round semi-honest MPC protocols secure against up to all
but one corruption can be based on the LWE assumption [20,48,75]5. Instanti-
ating the primitives in the above theorem, we get the following corollary:

Corollary 1. Assuming LWE, there exists a two round semi-honest MPC pro-
tocol π in the plain model that is secure against up to all but one corruption for
any boolean circuit C with Comm.Compl(π) = poly(Depth(C), n, �, λ).

Furthermore, if we allow our protocol to have a preprocessing phase, we can
obtain a two round semi-honest MPC protocol with depth-proportional commu-
nication complexity and with the computational complexity of each party in the
online phase independent of the size of the circuit, matching the result of [76].
By simply making steps 1–3 in round 1 of our construction the preprocessing
phase, we arrive at the following corollary:

Corollary 2. Assuming LWE, there exists a two round semi-honest MPC pro-
tocol π in the plain model that is secure against up to all but one corruption for
any boolean circuit C with Comm.Compl(π) = poly(Depth(C), n, �, λ) and with
the computational complexity of the online phase poly(Depth(C), n, �, λ).

5.1 Construction

Notation:

– Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn, respectively, who wish
to evaluate a boolean circuit C on their joint inputs. Let λ denote the
security parameter and without loss of generality, let’s assume |xi| = λ
for all i ∈ [n]. Also, let’s denote the randomness of each party Pi as
ri = (rSetupi , rEnci , rSHi , rKeyGeni ).

– Let DFEComb = (DFEComb.Setup,DFEComb.Enc,DFEComb.Keygen,
DFEComb.Dec,DFEComb.Partition) be a succinct single-key simulation secure
decomposable FE combiner (see Sect. 4) for n FE candidates FE1, . . . ,FEn.

– Let πSH be a two round semi-honest secure MPC protocol (not necessar-
ily communication efficient). Let (πSH.Round1, π

SH.Round2) denote the algo-
rithms used by any party to compute the messages in each of the two rounds
and πSH.Out denote the algorithm to compute the final output. Further, let

5 [20,48] showed how to construct two round semi-honest MPC in the plain model
from any two round semi-honest OT in the plain model and [75] show that the latter
can be constructed from LWE.
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πSH.Sim = (πSH.Sim1, π
SH.Sim2) denote the simulator for this protocol - that

is, πSH.Simi is the simulator’s algorithm to compute the ith round’s messages.

Protocol. We now describe the construction of our protocol π with depth-
proportional communication complexity.

– Round 1: Each party Pi does the following:
1. Generate MSKi ← FEi.Setup(1λ) using randomness rSetupi .
2. Compute (C1, . . . , Cn) ← DFEComb.Partition(1λ, C).
3. Compute SKi = FEi.KeyGen(MSKi, Ci) using randomness rKeyGeni .
4. Participate in an execution of protocol πSH with the remaining (n − 1)

parties using input yi = (xi,MSKi, r
Enc
i ) and randomness rSHi to compute

the deterministic circuit CCT defined in Fig. 3. That is, compute the first
round message msg1,i ← πSH.Round1(yi; rSHi ).

5. Output (msg1,i,SKi).
– Round 2: Each party Pi does the following:

1. Let τ1 denote the transcript of protocol πSH after round 1.
2. Compute the second round message msg2,i ← πSH.Round2(yi, τ1; rSHi )

where yi = (xi,MSKi, r
Enc
i ).

3. Output (msg2,i).
– Output Computation: Each party Pi does the following:

1. Let τ2 denote the transcript of protocol πSH after round 2.
2. Compute the output of πSH as CT ← πSH.Out(yi, τ2; rSHi ).
3. Let SKC = (SK1, . . . ,SKn).
4. Output DFEComb.Dec(SKC ,CT).

Input: {(xi,MSKi, r
Enc
i )}ni=1

• Let MSK = (MSK1, . . . ,MSKn), x = (x1, . . . , xn) and r = (rEnc1 , . . . , rEncn ).
• Output DFEComb.Enc(MSK, x) using randomness r.

Fig. 3. Circuit CCT

Correctness and Efficiency: Correctness follows immediately from the construc-
tion. In particular, at the end of the protocol, each party possesses CT, an
encryption of x = (x1, . . . , xn) under the FE combiner, and SKC , the function
key for C. This ciphertext can then be decrypted using SKC to yield C(x), as
desired.

Now, let’s analyze the communication complexity of the protocol. First,
observe that each circuit C that is of depth d and outputs a single bit is parti-
tioned into n circuits C1, . . . , Cn by running the DFEComb.Partition algorithm.
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The circuit Ci just computes a partial decryption of TFHE.Eval(C, ·). Now, even
though C is a boolean circuit, the output length of Ci might not be 1. However,
this is not an issue for us. Indeed, observe that from the compactness of the
TFHE scheme, the length of the partial decryption is just poly(λ, d) for some
fixed polynomial poly for all circuits C with depth d and output length 1. Thus,
the size of the output length of Ci for all i ∈ [n] is at most poly(λ, d) bits. Thus,
from Sect. 4, we know that |SKi| = poly(d, n, λ) and |CT| = poly(d, n, λ). Recall
that CT is the ciphertext that is the output of the protocol πSH (computed dur-
ing decryption). In fact, from Sect. 4, we also know that the size of the circuit
computing the ciphertext CT is also bounded by poly(d, n, λ). Then, for the pro-
tocol πSH recall that the input is yi = (xi,MSKi, r

Enc
i ) and so |yi| = poly(λ, d)

for some polynomial. Therefore, for each party Pi, |msg1,i| = poly(d, n, λ) and
|msg2,i| = poly(d, n, λ).

Therefore, in our two round protocol π, in each round the size of the message
sent by any party is poly(n, d, λ). Thus, Comm.Compl(π) = poly(n, d, λ).

The above analysis was for circuits with boolean output. For circuits that
output multi-bit strings, the communication complexity of our MPC protocol π
is bounded by poly(n, d, λ) · �out, where �out is the output length of the circuit.
This follows immediately by viewing the multi-bit output circuit as �out different
boolean circuits and running in parallel.

5.2 Security Proof

The security proof can be found in the full version.

6 Construction of an FE Combiner from Weaker
Assumptions

In this section, we employ a tool extensively used in the secure multi-party com-
putation literature, namely, randomized encodings to construct an FE combiner.
Roughly speaking, a randomized encoding is a mechanism to “efficiently” encode
a function f and an input x such that the encoding reveals f(x) and nothing
more. A randomized encoding scheme is said to be low degree if the encod-
ing algorithm can be represented as a low degree polynomial. Low degree ran-
domized encodings have been used to achieve constant-round secure multi-party
computation [17]. We show how to use this tool to obtain functional encryp-
tion combiners. The underlying assumption used to instantiate the low degree
randomized encoding is the existence of a PRG in NC1. Formally, we show the
following theorem.

Theorem 6. Assuming the existence of a PRG in NC1, there exists an
unbounded-key FE combiner for polynomial-sized circuits.

The rest of this section can be found in the full version.
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7 From MPC to FE Combiners

In this section, we show how to build an FE combiner from any semi-honest
MPC protocol π that satisfies a property called delayed function-dependence.
This section can be found in the full version.

8 From an FE Combiner to a Robust FE Combiner

The FE combiners constructed previously are not robust. By this, we mean that
the constructions provide no guarantee of correctness or security if any of the
underlying FE candidates do not satisfy correctness. However, determining the
correctness of FE candidates may be difficult since a candidate FE may be correct
with overwhelming probability on certain message, circuit pairs (m,C) and not
others. With no worst-case guarantees, it can be challenging to reason about
the correctness of an FE candidate especially if the function space C is say all
poly-sized circuits, where sampling uniformly over the space is difficult.

We can mitigate this issue by making our FE combiners robust. A robust
FE combiner is an FE combiner that satisfies correctness and security provided
that at least one FE candidate, FEi, satisfies both correctness and security. No
restrictions are placed on the other FE candidates. In particular, they may satisfy
neither correctness nor security. In this section, we show how to transform any
FE combiner into a robust FE combiner. Formally, we show the following.

Theorem 7. If there exists an FE combiner, then there exists a robust FE
combiner.

Combining Theorem 7 with Theorem 6, we obtain the following corollary.

Corollary 3. Assuming the existence of a PRG in NC1, there exists an
unbounded-key robust FE combiner.

This is done, at a high level, via the following steps.

1. Transform each FE candidate FEi into a new FE candidate FE′
i such that

(a) If FEi is correct and secure, then FE′
i is also correct and secure.

(b) If FE′
i is correct for any fixed message, circuit pair (m,C) with probability

α, then it is at least α′-correct for all other message, circuit pairs (m′, C ′)
where α′ = α − negl(λ).

2. Fix a message m and a circuit C and test each candidate repeatedly on (m,C)
to determine if each candidate is α-correct for α ≥ 1 − 1

λ . Discard those that
are not.

3. Using standard techniques of BPP correctness amplification, transform the
α-correct candidates into (almost) correct candidates.

4. Instantiate constructions of FE combiners from previous sections with these
(almost) correct candidates.

We defer the construction and proof of Theorem 7 to the full version.
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Universal Functional Encryption: Robust FE combiners are closely related to
the notion of universal functional encryption. Universal functional encryption is
a construction of functional encryption satisfying the following simple guarantee.
If there exists a Turing Machine with running time bounded by some T (n) =
poly(n) that implements a correct and secure FE scheme, then the universal
functional encryption construction is itself a correct and secure FE scheme. Using
the existence of a robust FE combiner (Theorem 7) and the results of [6], we
observe the following.

Theorem 8. Assuming the existence of a robust FE combiner, there exists a
universal functional encryption scheme.

Using the above theorem and Corollary 3, we arrive at the following corollary.

Corollary 4. Assuming the existence of a PRG in NC1, there exists a universal
unbounded-key functional encryption scheme.
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Ji, Liu and Song (CRYPTO 2018) which suggested that a uniform super-
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the same number of copies of a Haar random state.

As a consequence, we get a provable elementary construction of pseu-
dorandom quantum states from post-quantum pseudorandom functions.
Generating pseudorandom quantum states is desirable for physical appli-
cations as well as for computational tasks such as quantum money. We
observe that replacing the pseudorandom function with a (2t)-wise inde-
pendent function (either in our construction or in previous work), results
in an explicit construction for quantum state t-designs for all t. In fact,
we show that the circuit complexity (in terms of both circuit size and
depth) of constructing t-designs is bounded by that of (2t)-wise inde-
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1 Introduction

Randomness is one of the most fundamental resources for computation, and is
indispensable for algorithms, complexity theory and cryptography. It is also a
foundational tool for science in general, for purposes of describing and modeling
natural phenomena. As our understanding of nature expands to quantum phe-
nomena, the importance of understanding the uniform distribution over quantum
states, and being able to sample from it, naturally emerges.

Quantum states can be described as unit vectors in a high-dimensional com-
plex Hilbert space. Thus, a random quantum state is just a random unit vector on
this abstract sphere. This distribution is also referred to as the Haar measure over
quantum states. We note that this is a continuous distribution, even if the Hilbert
space is finite dimensional (i.e. can be described by a finite number of qubits).
Since quantum states cannot be duplicated, the ability to generate random quan-
tum states refers to the ability to generate multiple copies of the same random
state vector. (In fact, a single copy of a quantum random state is identical to a clas-
sical random state.) Haar random quantum states have numerous computational
and physical applications. The former includes optimal quantum communication
channels [8], efficient quantum POVM measurements [14] which are in turn useful
in quantum state tomography, and gate fidelity estimation [4]. The latter includes
constructing physical models of quantum thermalization [13].

Since random states have infinitely long descriptions (and super-exponential
even if restricting to some finite precision), there is extensive literature study-
ing approximate notions and specifically the notion of ε-approximate t-designs.
These are distributions whose t-tensor (i.e. taking t copies of a sample from
this distribution) are ε indistinguishable from (a t-tensor of) Haar (using the
standard notion for statistical indistinguishability known as trace distance). We
adopt the standard asymptotic convention and require by default that ε is negli-
gible in our “security parameter”, which we associate with the logarithm of the
dimension of the Hilbert space. In this work we focus on quantum states over n
qubits (i.e. 2n dimensional Hilbert space), so we associate our security parame-
ter with n. However, our methods are extendable to any finite-dimensional space
(with efficient representation). There is extensive literature studying (approxi-
mate) designs with bounded t, which also carry physical significance, see e.g.
[2,4,5,7,9,10]. Indeed, it is possible to efficiently generate t-designs using quan-
tum circuits of size poly(t, n). Up to asymptotics, this matches the information
theoretic bound (however, the important aspect of the depth complexity of gen-
erating t-designs remained open, to the best of our knowledge), and one cannot
hope to efficiently generate t-designs for super-polynomial t.

Asymptotically Random States, Pseudorandom States and the JLS
Conjecture. Ji, Liu and Song [6] (henceforth JLS) recently proposed to extend
the notion of approximate designs. They proposed the notion of a pseudoran-
dom quantum state (PRS) which has a finite description but is computation-
ally indistinguishable from Haar given a t-tuple, for any t = poly(n). Thus, for
any computationally bounded purpose (experiment, naturally occurring process)
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a PRS is indistinguishable from a Haar state, regardless of the number of copies.
They also showed that PRS are useful for cryptographic applications such as
quantum money.

Furthermore, [6] proposed an insightful template for constructing PRS. They
start by showing that given quantum RAM access to exponentially many classical
random bits, it is possible to construct a negl(n)-approximate nω(1)-design. Let
us call such a distribution ARS, for Asymptotically Random State.1 An ARS is a
statistical notion of PRS which has asymptotic limitations but no computational
restrictions. Then, replacing the exponential random string with a quantum-
query-resistant classically-computable pseudorandom function (PRF), the PRS
construction naturally follows from ARS. The existence of such PRF is implied
by the existence of quantum secure one-way functions [15].

The ARS construction of JLS is quite straightforward to describe. Gener-
ate a uniform superposition over all strings x ∈ {0, 1}n. This is described in
the standard Dirac notation as

∑
x |x〉 (with some normalization factor). Then,

assign a random quantum phase to each component x, i.e. generate
∑

x αx|x〉 for
random independent roots of unity αx. To cope with finite precision, αx is taken
to a finite but exponential resolution αx = ω

f(x)
2n , where f : {0, 1}n → [2n] is a

random function and ω2n is the 2n-th root of unity. Given RAM access to the
truth table of f , this state can be efficiently computed using Quantum Fourier
Transform (QFT) modulo 2n.

JLS then conjecture (but were unable to prove) that a much simpler con-
struction, where αx = (−1)f(x), should also imply ARS. That is, replacing the
“high-resolution” random phase, by the simplest binary phase. While this is only
one of a few conjectures made in that work, it is the only one relevant to our
work and we thus refer to it simply as the JLS conjecture.

Conjecture 1.1 ([6], restated). The distribution over n-qubit quantum states
defined by

2−n/2
∑

x∈{0,1}n

(−1)f(x)|x〉

where f : {0, 1}n → {0, 1} is a random function, is an ARS.

To highlight the gap between the conjecture and the provable ARS construc-
tion of JLS, let us describe a crucial point in the analysis of JLS. The analysis
is based on an equivalence relation between t-tuples of n-bit strings, which nat-
urally arises from the expression for statistical distance from Haar. The tuples
(x1, . . . , xt), (y1, . . . , yt) are equivalent if their histograms (i.e. the number of
times each n-bit string appears) are equal modulo 2n. Since t < 2n this condi-
tion is equivalent to requiring that the tuples are permutations of each other,
which makes it possible to analyze the equivalence classes of this relation and
for the analysis to go through.

1 Actually, their ARS, as well as the one proven in this work, is even stronger: they
show that for all t, their distribution is O(t2)/2n-approximate t-design.
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In the binary setting, the equivalence relates tuples whose histograms are
equal modulo 2. Thus the equivalence classes can no longer be described simply
as a set and all of its permutations, and they don’t even have the same size
anymore. This creates many additional terms in the so called density matrix
of the state (which is a complex matrix of exponential dimensions 2tn × 2tn).
In order to prove the conjecture, one will have to show that the effect of these
exponentially many new terms on the spectrum of the matrix is negligible and
there seems to be no straightforward handle for this analysis. We resolve this
problem in this work.

Our Results – Proving the Conjecture. We prove the JLS conjecture, in
fact we prove that the binary ARS implied by the conjecture has comparable
properties to the prior construction (that used complex phase).

Theorem 1.2 (Main Result). The distribution over n-qubit quantum states
defined by

2−n/2
∑

x∈{0,1}n

(−1)f(x)|x〉

where f : {0, 1}n → {0, 1} is a random function, is a 4t2

2n -approximate t-design
for all t, and thus an ARS.

This result has various implications that we describe below. We furthermore hope
that our techniques will be useful for analyzing similarly complicated quantum
states.

We make two additional observations that refer to the requirement from a
function f to be plugged into either our theorem or that of JLS in order to imply
PRS and quantum t-designs.

1. If we wish to obtain a PRS, the requirement of using a full-fledged quan-
tum secure PRF can be relaxed. In fact, it is sufficient to have a function f
that is indistinguishable from random while allowing only uniform superpo-
sition queries (as opposed to arbitrary superposition queries). This leads to a
quantum notion which is somewhat analogous to the classical notion of weak
pseudorandom functions [11], an object that can be of interest for independent
investigation and possibly more efficient constructions than PRFs.

2. If we only wish to obtain a t-design, it is sufficient to replace f with a (2t)-
wise independent function, using the fact that given t-quantum-query access,
a (2t)-wise independent function is perfectly indistinguishable from a com-
pletely random function [15].

Implications. We find the JLS conjecture compelling from aesthetic, conceptual
and perhaps even practical reasons. In terms of aesthetics, it is bothersome that
one would need to go into exponentially fine-grained resolution on the phase
in order to generate an ARS/PRS, being able to achieve the same parameters
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with a more coarse resolution (and as we show next without compromising on
parameters) seems to be a more desirable state of affairs. Conceptually, the result
shows that ARS, which is for all efficiently observable purposes identical to a
Haar random state, can be generated using only real-valued phases. Recalling
that the Haar distribution is defined over complex vectors, it appears not obvious
that it can be approximated for all observable purposes by real-valued vectors.

In terms of computational complexity, our construction uses circuits with
restricted structure known in the literature as HT [12]. Concretely, the circuit
contains a single parallel layer of Hadamard gates, followed by a circuit of Toffoli
gates. This model is considered fairly weak, and in particular HT circuits are
weakly classically simulatable (i.e. any distribution samplable by an HT circuit
followed by measurement is also classically samplable). Result shows that even
such a restricted model of quantum computation is enough to approximate the
Haar measure.

Lastly, from a practical standpoint, replacing the function f by an efficient
quantum-resilient PRF yields a very simple construction of a PRS, requiring
only an HT circuit with the same circuit size and depth (up to asymptotics) as
that of the PRF. Prior provable PRS candidates do not enjoy this property and
appear to require a more complicated implementation (that in particular seem
to need performing the Quantum Fourier Transform modulo 2n, or a similar
procedure) to allow for the high-resolution of complex phase.

In the context of generating t-designs, using our aforementioned observation
and replacing f with a (2t)-wise independent function (in either our theorem
or JLS) implies a t-design construction with circuit size poly(t, n) and depth
O(log t · log n). We are not aware of prior constructions of t designs with o(n)
depth for t > 2 in the literature. Moreover, the t-design construction which is
implied by our result can be implemented by an HT circuit with the same circuit
size and depth (up to asymptotics) as that of the (2t)-wise independent function.

Proof High-Level Overview. Formally speaking, the proof follows by bound-
ing the trace norm of the difference between the density matrix of t-copies of
the state with binary phase, and the density matrix of t-copies of the state with
2n roots of unity. However, one needs not know much about density matrices, it
suffices to say that we have a complex Hermitian matrix of dimensions 2tn ×2tn,
where the sum of all eigenvalues is 0, and we want to bound the sum of all
absolute values of eigenvalues. It is thus sufficient to consider only positive or
only negative eigenvalues.

Each row of the matrix corresponds to a tuple (x1, . . . , xt) ∈ ({0, 1}n)t and
each column corresponds to a tuple (y1, . . . , yt) ∈ ({0, 1}n)t. The entry in loca-
tion (x1, . . . , xt), (y1, . . . , yt) is nonzero if the aforementioned “histogram con-
dition” holds on the tuples.2 In a bit more detail, up to a global 2−tn scaling
factor, if the modulo-2 histogram condition holds but the modulo-2n condition

2 Recall that the (modulo-2) histogram condition states that (x1, . . . , xt), (y1, . . . , yt)
are equivalent if for all z, the number of times z appears in the first tuple and the
number of times it appears in the second tuple have the same parity.
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(i.e. permutation) does not hold then the entry will be 1, but if both hold then
there is a cancellation and the entry will be 0.

We start by observing that the matrix can be decomposed into “combinatorial
blocks”, each representing an equivalence class of the histogram relation. We
analyze the properties of these blocks. We then provide two structural lemmas
that together imply the theorem:

1. We provide a non-trivial upper bound on the rank of the matrix. While
it is tempting to disregard the cancellations and just count the number of
nonzero blocks and their respective rank, this implies an upper bound that
is too coarse. We must therefore carefully take into account the cancellations
induced by permutations in order to obtain a usable bound.

2. We provide an upper bound on the absolute value of each negative eigenvalue.
We do this by computing the characteristic polynomial of the matrix (the
polynomial whose roots are the eigenvalues), which amounts to a product of
the characteristic polynomials of the blocks. Within each block we obtain a
closed form formula for the characteristic polynomial and show that its root
cannot exceed a bound that is determined by the cardinality of the respective
equivalence class (properly normalized).

Combining the two lemmas by multiplying the rank bound with the eigen-
value absolute value bound implies the theorem.

Paper Organization. We use standard quantum and cryptographic notations
and definitions, essentially following [6], see short summary in Sect. 2. Our con-
struction is presented in Sect. 3 and proven in Sect. 4.

2 Preliminaries

For m ∈ N, we denote [m] := {1, · · · ,m}. For a natural number N , denote by
ωN := e

2πi
N the complex root of unity of order N . Also for N , denote by S(N) the

set of unit vectors in C
N , by D(N) the set of N ×N density matrices over C, and

by U(N) the set of N × N unitary matrices over C. Note that for n ∈ N, S(2n)
is the set of n-qubit pure quantum states, D(2n) is the set of n-qubit mixed
states, and U(2n) is the set of n-qubit unitaries. When we consider quantum
algorithms, we usually think of them as a uniform family of quantum circuits.

When we consider eigenvalues and singular values of matrices throughout
this paper, we implicitly refer to eigenvalues and singular values that possibly
repeat, e.g. λ1 ≥ λ2 ≥ · · · ≥ λn for matrix with n, possibly identical eigenvalues.

The trace distance, defined below, is a generalization of statistical distance
to the quantum setting and represents the maximal distinguishing probability
between quantum states.

Definition 2.1 (Trace distance). Let ρ1, ρ2 ∈ D(2n) be two density matrices
of n-qubit mixed states. The trace distance between them is

TD(ρ1, ρ2) :=
1
2

‖ρ1 − ρ2‖1 ,
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where for a hermitian matrix M , ‖M‖1 =
∑

i |λi|, where λi are the eigenvalues
of M .

The following is a basic fact that shows that classical circuits are a subset
of quantum circuits. Recall that the Toffoli gate implements the 3-qubit unitary
defined by |x, y, z〉 → |x, y, z ⊕ xy〉.
Proposition 2.2 (Toffoli gate is universal for classical computation).
Let f : {0, 1}n → {0, 1}m be a function and let C be a classical circuit that
computes f . Define the unitary Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉. Then there exists a
quantum circuit of size O(|C|) consisting only of Toffoli gates that computes Uf

(possibly using auxiliary |0〉 qubits).

HT circuits are quantum circuits of a restricted structure, defined as follows.

Definition 2.3 (HT Circuit). A quantum circuit C is an HT circuit if the
first layer of the circuit consists of only Hadamard gates on a subset of the qubits,
and the rest of the circuit consists of only Toffoli gates.

2.1 Pseudorandom Functions and k-Wise Independent Functions

Here we define pseudorandom functions with quantum security (QPRFs).

Definition 2.4 (Quantum-Secure Pseudorandom Function (QPRF)).
Let K = {Kn}n∈N be an efficiently samplable key distribution, and let PRF =
{PRFn}n∈N, PRFn : Kn × {0, 1}n → {0, 1}n be an efficiently computable func-
tion. We say that PRF is a quantum-secure pseudorandom function if for every
efficient non-uniform quantum algorithm A that can make quantum queries there
exists a negligible function negl(·) s.t. for every n ∈ N,

∣
∣
∣
∣ Pr
k←Kn

[APRF(k,·)() = 1] − Pr
f←({0,1}n)({0,1}n)

[Af () = 1]
∣
∣
∣
∣ ≤ negl(n) .

In [15], QPRFs were proved to exist under the assumption that post-quantum
one-way functions exist.

We define k-wise independent functions are keyed functions s.t. when the
key is sampled uniformly at random, then any k different inputs to the function
generate k-wise independent random variables.

Definition 2.5 (k(n)-Wise Independent Function). Let k(n) : N → N be
a function, K = {Kn}n∈N be a key distribution, and let f = {fn}n∈N, fn :
Kn×{0, 1}n → {0, 1}n be a function. Thus, f is a k(n)-wise independent function
if for all n, for every distinct k(n) input values x1, · · · , xk(n) ∈ {0, 1}n,

∀y1, · · · , yk(n) ∈ {0, 1}n : Pr
s←Kn

[f(s, x1) = y1 ∧ · · · ∧ f(s, xk(n)) = yk(n)] = 2−n·k(n) .

It is not a part of the standard definition, but it is usually the case that we
consider K to be efficiently samplable and f to be efficiently computable.
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2.2 Quantum Randomness and Pseudorandomness

The Haar Measure on Quantum States. Intuitively, the Haar measure
on quantum states is the quantum analogue of the classical uniform distribution
over bit strings, that is, we can think of it as the uniform (continuous) probability
distribution on quantum states. Recall that an n-qubit quantum state can be
viewed as a unit vector in C

2n

, thus the Haar measure on n qubits is the uniform
distribution over all unit vectors in C

2n

.
Formally, the density matrix representing the distribution of drawing a ran-

dom Haar vector and outputting t copies of it is given below.

Definition 2.6 (n-Qubits, t-Copy Random Haar State). Let t, n ∈ N, we
define the n-qubits t-copy random Haar mixed state to be

ρ(t,n,H) := E|ψ〉←μ(2n)

[
(|ψ〉〈ψ|)⊗t

]
,

where μ(2n) is the continuous distribution over C
2n

that is invariant under uni-
tary transformations (it is known that there is only one such distribution).

Approximate Quantum State t-Designs. Approximate t-designs are quan-
tum distributions that are approximately random when the number of output
copies of the sampled state is restricted. The formal definition follows.

Definition 2.7 (n-Qubits, ε-Approximate State t-Design). Let ε ∈
[0, 1], t ∈ N, and let Q be a quantum distribution over n-qubit states. We say
that Q is an ε-approximate state t-design if

TD
(
E|ψ〉←Q[(|ψ〉〈ψ|)⊗t], ρ(t,n,H)

) ≤ ε .

For the sake of completeness, we give a definition for quantum state t-design
generators.

Definition 2.8 (ε(n)-Approximate State t(n)-Design Generator). Let
ε(n) : N → [0, 1], t(n) : N → N be functions. We say that a pair of quan-
tum algorithms (K,G) is an ε(n)-approximate state t(n)-design generator if the
following holds:

– Key Generation. For all n, K(1n) always outputs a classical key k.
– State Generation. For all n and for all k in the image of K(1n), there

exists an n-qubit pure state |φk〉 s.t. G(1n, k) = |φk〉.
– Approximate Quantum Randomness. For all n, the distribution

|φk〉k←K(1n) is an n-qubit, ε(n)-approximate state t(n)-design.

Note that we define the generator as two algorithms instead of one, to highlight
the fact that a state that is sampled can be generated multiple times on demand.

For the purposes of this work it is convenient to define the notion of Asymp-
totically Random States (ARS) as follows.

Definition 2.9 (Asymptotically Random State (ARS)). An Asymptoti-
cally Random State (ARS) is shorthand for an asymptotic sequence of negl(n)-
approximate nω(1)-designs.
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Quantum Pseudorandomness. The notion of pseudorandom quantum states
was introduced in [6], was shown to be implied by QPRFs, and is defined below.

Definition 2.10 (Pseudorandom Quantum State (PRS)). A pair of quan-
tum polynomial-time algorithms (K,G) is a Pseudorandom State Generator
(PRS Generator) if the following holds:

– Key Generation. For all n, K(1n) always outputs a classical key k.
– State Generation. For all n and for all k in the image of K(1n), there

exists an n-qubit pure state |φk〉 s.t. G(1n, k) = |φk〉.
– Security. For any polynomial t(·) and a non-uniform efficient quantum algo-

rithm A there exists a negligible function negl(·) such that for all n ∈ N,
∣
∣
∣
∣ Pr
k←K(1n)

[A
(|φk〉⊗t(n)

)
= 1] − Pr

|ψ〉←μ
[A

(|ψ〉⊗t(n)
)

= 1]
∣
∣
∣
∣ ≤ negl(n) ,

where μ is the Haar measure on S(2n).

If the above holds, we say that the ensemble PRS = {PRSn}n∈N, where PRSn is
the distribution |φk〉k←K(1n), is a Pseudorandom Quantum State (PRS) which
is generated by (K,G).

In the above definition, the number of qubits in the pseudorandom states
can also be parameterized (i.e. G(1n, k) can output m(n)-qubit states and not
necessarily n-qubit states), but in the current work we will ignore this.

3 Construction

The following construction will be the base of both our pseudorandom state and
quantum state t-design constructions.

Definition 3.1 (Binary Phase State Generator for F ). Let K = {Kn}n∈N

be a key space and let F = {Fn}n∈N be a keyed (boolean) function Fn : Kn ×
{0, 1}n → {0, 1}. GF

bin is the procedure that takes as input a k ∈ Kn and outputs
the superposition

|φk〉 := 2−n/2
∑

x∈{0,1}n

(−1)Fk(x)|x〉 .

The following claim establishes that GF
bin is efficiently implementable when

F is.

Claim. If F is computable by a classical circuit of size s(n) and depth d(n), then
GF
bin is computable by an HT circuit of size O(s(n)) and depth d(n) + 1.

Proof. The algorithm of GF
bin will get as input a key k and generate the state

|+〉⊗n|−〉 by performing (n + 1) Hadamard gates (in parallel) H⊗(n+1) on the
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ancillary classical state |0〉⊗n|1〉, then execute the Fk circuit (which can be real-
ized quantumly by Toffoli gates) on the state |+〉⊗n|−〉. After the execution of
Fk, the state is

2−n/2
∑

x∈{0,1}n

(−1)Fk(x)|x〉|−〉,

thus by tracing out the last qubit we get the output state |φk〉.
We note that previous candidates required a more involved generation process
which required applying quantum Fourier transform modulo 2n, or a similar
procedure.

3.1 Our Pseudorandom Quantum State (PRS) Generator
and Its Properties

Recall the definition of a PRS (see Definition 2.10) and of a QPRF
(Defintion 2.4). We present our construction of a PRS candidate with binary
phase as follows.

Claim. If F is a QPRF then GF
bin (along with the key generation algorithm of

F ) is a secure PRS generator.

Proof. First, it’s clear that the key generation algorithm K of our PRS is the
key generation algorithm of F (that for input 1n, samples k ← Kn), and that
the state generation algorithm G of our PRS is GF

bin.
Now, we argue that by the quantum-security of F , for any polynomial number

of copies t(n), the distribution |φk〉k←Kn
is computationally indistinguishable (by

quantum adversaries) from a random binary phase state, that is, the distribution
over n-qubit quantum states defined by

2−n/2
∑

x∈{0,1}n

(−1)f(x)|x〉 ,

where f : {0, 1}n → {0, 1} is a truly random function.
By Theorem 1.2, a random binary phase state is an ARS (Definition 2.9),

which in particular means that a random Haar state and a random binary phase
state are computationally indistinguishable for any polynomial number of copies.
By the the triangle inequality of computational indistinguishability, we deduce
that for any polynomial number of copies, the quantum distribution |φk〉k←Kn

and the Haar distribution are computationally indistinguishable, which com-
pletes our proof.

Remark 3.2. We note that in our security proof we did not use the full power
of quantumly secure PRFs. Indeed, if we consider the QPRF unitary UPRFk

:
|x〉|y〉 → |x〉|y ⊕ PRFk(x)〉, then in order for the PRS to be secure, it is only
needed that the QPRF will be secure when the input register is in the uniform
superposition |+〉⊗n (and moreover, the output register is |−〉). In particular,
we don’t even need the QPRF to be secure against chosen classical queries. This
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can be thought of as a quantum analog of the classical notion of weak PRFs
[11]. In the classical setting, it is conjectured that weak PRFs reside in a lower
complexity class than full fledged PRFs [1]. If similar behavior can be shown in
the quantum case it could improve the efficiency of PRS constructions.

We leave the investigation of this new notion (which we propose to call quan-
tumly weak PRFs) to future works.

We conclude with observing that by our result, the complexity of PRSs is no
greater than that of QPRFs, and is moreover implementable by HT circuits.

Corollary 3.3. Let PRF = {PRFn}n∈N be a QPRF. Thus there is a PRS gener-
ator construction (K,G) implemented by HT circuits, where K is implemented
by circuits of the same size and depth as that of the key sampling algorithm
of PRF, and G is implemented by circuits of the same size and depth (up to
asymptotics) as that of PRF.

3.2 Shallow-Circuit Approximate t-Design Generators

We note that by a simple observation, we can replace the truly random function
f in Theorem 1.2 with a 2t-wise independent function to gain an elementary and
efficient construction of quantum state approximate t-designs. Formally, we use
the following fact.

Fact 3.4 ([15], Fact 2). The behavior of any quantum algorithm making at
most q queries to a 2q-wise independent function is identical to its behavior
when the queries are made to a random function.

This implies that when f is a 2t-wise independent function, then the state from
Theorem 1.2 is a 4t2

2n -approximate t-design. We note that this observation can also
be applied to the ARS from [6], and it would imply a different (but seemingly
less efficient) construction of t-designs.

Corollary 3.5. The distribution over n-qubit quantum states defined by

2−n/2
∑

x∈{0,1}n

(−1)f(x)|x〉

where f : {0, 1}n → {0, 1} is a 2t-wise independent function, is a 4t2

2n -
approximate t-design.

More explicitly, combining the above with Claim 3 implies that that when
f is a 2t-wise independent function, Gf

bin is an approximate t-design generator
(along with the key generation algorithm of f). The following corollary relates the
complexity of t-design generators with that of the 2t-wise independent functions.

Corollary 3.6. Let t(n) : N → N be a function and let f = {fn}n∈N, fn :
Kn × {0, 1}n → {0, 1} be a (2t(n))-wise independent function. Thus there is an
O(t(n)2)

2n -approximate quantum state t(n)-design generator (K,G) implemented
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by HT circuits, where K is implemented by circuits of the same size and depth
as that of the key sampling algorithm of f , and G is implemented by circuits of
the same size and depth (up to asymptotics) as that of f .

Finally, we can instantiate with known construction of k-wise independent
functions to obtain the following.

Corollary 3.7. For every function t(n) : N → N, there exists a O(t(n)2)
2n -

approximate quantum state t(n)-design generator, implemented by HT circuits
of poly(t(n), n) size and O(log t(n) · log n) depth.

Proof. We recall the most elementary construction of k-wise independent dis-
tributions over 2n variables. Consider the field F = F2n and recall that F ele-
ments correspond to degree (n − 1) formal polynomials with binary coefficients.
Thus there is a natural bijection between F and {0, 1}n that allows to represent
F elements as elements in {0, 1}n. This representation allows to perform field
arithmetic operations using circuits of size poly(n) and depth O(log n).

A k-wise independent distribution over F
F is defined by the evaluations of a

random degree (k−1) polynomial over F, on all elements in F. The computational
complexity of evaluating such a polynomial is poly(k, n) and its depth is O(log k ·
log n). Plugging in k = 2t completes the proof (note that we only require 2t-wise
independence over {0, 1}F so our instantiation is actually a slight overkill).

4 Proof of Theorem1.2

We introduce the following notation.

Notation 4.1 (Complex phase state by f). For a function f : {0, 1}n →
[2n] we denote

|f〉(2n) := 2−n/2
∑

x∈{0,1}n

ω
f(x)
2n |x〉 .

when it is clear from the context, the subscript 2n will be dropped from |f〉(2n).

Notation 4.2 (Binary phase state by f). For a function f : {0, 1}n → {0, 1}
we denote

|f〉(2) := 2−n/2
∑

x∈{0,1}n

(−1)f(x)|x〉 .

when it is clear from the context, the subscript 2 will be dropped from |f〉(2).
Notation 4.3 (t-copy random complex phase mixed state). For t, n ∈ N,
denote

ρ(t,n,2n) := Ef [(|f〉(2n)〈f |(2n))⊗t] ,

where the expectation is taken over a uniformly random function f : {0, 1}n →
[2n].
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Notation 4.4 (t-copy random binary phase mixed state). For t, n ∈ N,
denote

ρ(t,n,2) := Ef [(|f〉(2)〈f |(2))⊗t] ,

where the expectation is taken over a uniformly random function f : {0, 1}n →
{0, 1}.

In [6] It is shown that the random complex phase state is an ARS.

Lemma 4.5 ([6], Lemma 2). Let n, t ∈ N, then

TD
(
ρ(t,n,2n), ρ(t,n,H)

)
=

∏

i∈[t−1]

(

1 − i

2n

)

−
∏

i∈[t−1]

(

1 − 2 · i

2n + i

)

.

We will show that a random binary phase state is asymptotically statistically
close to a random complex phase state. More precisely, we will prove the following
lemma.

Lemma 4.6. Let n, t ∈ N, then

TD
(
ρ(t,n,2), ρ(t,n,2n)

) ≤
∏

i∈[t−1]

(

1 +
i

2n

)

−
∏

i∈[t−1]

(

1 − i

2n

)

.

Using the triangle inequality of trace distance and Lemmas 4.5 and 4.6
(below, in the first inequality), we show that a random binary phase state is
an ARS. In the following, assume that t <

√
2n

2 , otherwise the upper bound on
the trace distance trivially holds:

TD
(
ρ(t,n,2), ρ(t,n,H)

) ≤
∏

i∈[t−1]

(

1 +
i

2n

)

−
∏

i∈[t−1]

(

1 − 2 · i

2n + i

)

≤
(

1 +
t

2n

)t

−
(

1 − 2 · t

2n + t

)t

≤
(

1 +
t

2n

)t

−
(

1 − 2 · t

2n

)t

≤
(∗)

1 +
2 · t2

2n
−

(

1 − 2 · t

2n

)t

≤
(∗∗)

1 +
2 · t2

2n
−

(

1 − 2 · t2

2n

)

=
4 · t2

2n
,

where (∗) is due to one variant of Bernoulli’s inequality (∀r > 1, x ∈ [0, 1
2(r−1) ) :

(1+x)r ≤ 1+2rx), and (∗∗) follows from the more popular variant of Bernoulli’s
inequality (∀r /∈ (0, 1), x ≥ −1 : (1 + x)r ≥ 1 + rx).

Therefore, all that remains is to prove Lemma 4.6, which will require most
technical effort.



242 Z. Brakerski and O. Shmueli

4.1 Proof of Lemma 4.6

Denote the difference matrix ρn := ρ(t,n,2) − ρ(t,n,2n). The proof of the lemma
contains two main components. First, an upper bound on the number of non-zero
eigenvalues of ρn.

Lemma 4.7. Let n ∈ N and let t ∈ {1, 2, · · · , 2n − 1}, thus the number of
non-zero eigenvalues of ρn is upper bounded by

(
2n + t − 1

t

)

−
(

2n

t

)

.

Second, a lower bound on the minimal (as in most negative) eigenvalue of ρn.

Lemma 4.8. Let n ∈ N and let t ∈ {1, 2, · · · , 2n − 1}, thus for all eigenvalues
λ of ρn we have − t!

2tn ≤ λ.

Note that this will give an upper bound on the absolute values of all negative
eigenvalues of ρn.

Given the last two lemmas, we can prove Lemma 4.6.

Proof. Let n ∈ N and let t ∈ {1, 2, · · · , 2n − 1}3. ρn is a difference between two
density matrices, and because that trace is linear and density matrices have a
trace of 1, the trace of ρn is 0. Also recall that the sum of eigenvalues of a matrix
is equal to its trace, so, the positive and negative eigenvalues of ρn balance each
other to 0, and thus, a bound on the sum of absolute values of all eigenvalues of
ρn can be obtained by bounding the sum of the absolute values of its negative
eigenvalues. Formally:

TD
(
ρ(t,n,2), ρ(t,n,2n)

)
=

1
2

‖ρn‖1 =

1
2

·
∑

λ eigenvalue of ρn

|λ| =
∑

λ negative eigenvalue of ρn

|λ| .

Using Lemmas 4.7 and 4.8, we obtain an upper bound on the last sum, which
yields the wanted inequality.

∑

λ negative eigenvalue of ρn

|λ| ≤
((

2n + t − 1
t

)

−
(

2n

t

))
t!

2tn

=
(2n + t − 1)!

2tn(2n − 1)!
− (2n)!

2tn(2n − t)!
=

(2n)!
( ∏

i∈[t−1](2
n + i)

)

2tn(2n − 1)!
−

(2n)!
( ∏

i∈[t−1](2
n − i)

)

2tn(2n − 1)!

=

∏
i∈[t−1](2

n + i)

2(t−1)n
−

∏
i∈[t−1](2

n − i)

2(t−1)n
=

∏

i∈[t−1]

2n + i

2n
−

∏

i∈[t−1]

2n − i

2n

=
∏

i∈[t−1]

(

1 +
i

2n

)

−
∏

i∈[t−1]

(

1 − i

2n

)

.

3 For t ≥ 2n the bound trivially holds: Note that for t ≥ 2n the bound’s expression
is minimized for t = 2n and n = 1, which yields 1 as a trivial bound on any trace
distance.
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4.2 The Structure of the Matrix ρn

We identify the structure of ρn in order to prove Lemma 4.13, which will be used
in both proofs of Lemmas 4.7 and 4.8. We do this by first describing ρ(t,n,2n) and
ρ(t,n,2). More precisely, we will derive combinatorial expressions for ρ(t,n,2n) and
ρ(t,n,2), and as a consequence we’ll have an expression for their difference ρn.

The Structure of ρ(t,n,2n ). We will start with a formula for the entries of
ρ(t,n,2n) (a similar analysis was done for this matrix in [6]); for convenience, the
definition is restated:

ρ(t,n,2n) = Ef←[2n]{0,1}n

[
(|f〉〈f |)⊗t

]
= Ef←[2n]{0,1}n

[|f〉⊗t〈f |⊗t
]

.

Observe that for a function f : {0, 1}n → [2n],

|f〉⊗t =

(

2−n/2
∑

x∈{0,1}n

ω
f(x)
2n |x〉

)⊗t

= 2−tn/2
∑

x=(x1,··· ,xt)∈{0,1}n×t

ω
(
∑

i∈[t] f(xi))

2n |x〉 .

Now we can compute ρ(t,n,2n):

ρ(t,n,2n) = Ef

[|f〉⊗t〈f |⊗t
]

= Ef

[(

2−tn/2
∑

x=(x1,··· ,xt)∈{0,1}n×t

ω
(
∑

i∈[t] f(xi))

2n |x〉
)

·

(

2−tn/2
∑

y=(y1,··· ,yt)∈{0,1}n×t

ω
(− ∑

i∈[t] f(yi))

2n 〈y|
)]

= 2−tn
∑

x,y∈{0,1}n×t

|x〉〈y| · Ef

[

ω
(
∑

i∈[t] f(xi)−
∑

i∈[t] f(yi))

2n

]

,

So, for x,y ∈ {0, 1}n×t, the (x,y)-th entry of ρ(t,n,2n) is

2−tn · Ef

[

ω
(
∑

i∈[t] f(xi)−
∑

i∈[t] f(yi))

2n

]

.

Now, define:

Definition 4.9 ((t, n) permutations). Let x,y ∈ {0, 1}t×n, and denote x =
(x1, · · · , xt),y = (y1, · · · , yt), where ∀i ∈ [t] : xi, yi ∈ {0, 1}n. We say that x,y,
are (t, n) permutations of each other (or just permutations of each other) if there
exists a permutation π ∈ St s.t.

(x1, · · · , xt) = (yπ(1), · · · , yπ(t)) .
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Note that an equivalent convenient characterization of the two strings x,y being
permutations of each other is that the multisets {x1, · · · , xt}, {y1, · · · , yt} are
equal.

Observe that when x and y are permutations of each other, then for every
f we have

∑
i∈[t] f(xi) =

∑
i∈[t] f(yi) and thus the expected value is 1 and the

entry’s value is 2−tn. We would like to also claim that if x,y are not permutations
of each other then the entry is 0, and it turns out we indeed can. Observe that
if x,y are not permutations of each other then there exists a string s ∈ {0, 1}n

that appears a different number of times in x and y, and we can say that the
(x,y)-th entry is

2−tn · Ef

[
ω
(
∑

i∈[t] f(xi)−
∑

i∈[t] f(yi))

2n

]
= 2−tn · β · Ef

[
ω

a·f(s)
2n

]
,

where β ∈ R is some real number (which we won’t care about) and a ∈
{−t, · · · ,−1, 1, · · · , t} is the (non-zero) difference between the number of appear-
ances of s in x and y (last equality follows from the fact that the expectation
of a product of independent random variables is the product of expectations).
Now we will use our restriction on t, which is that t is strictly smaller then 2n.
Combined with the fact that a = 0, it is necessarily the case that ωa

2n = 1 (if t
could be as big as 2n then a will be able to be 2n or some integer multiple of it,
which will yield ωa

2n = 1). After this restriction we obtain:

Ef

[
ω

a·f(s)
2n

]
=

∑

i∈{0,1,··· ,2n−1}
2−n · ωa·i

2n = 2−n ·
(

ωa·2n

2n − 1
ωa
2n − 1

)

= 0 ,

Finally, the above yields a combinatorial description of ρ(t,n,2n):

∀x,y ∈ {0, 1}n×t : ρ(t,n,2n)[x,y] =

{
2−tn x,y are permutations
0 x,y are not permutations

.

The Structure of ρ(t,n,2). By the same reasoning as in the case of ρ(t,n,2n),
we obtain that the (x,y)-th entry of ρ(t,n,2) is

2−tn · Ef

[
(−1)(

∑
i∈[t] f(xi)−

∑
i∈[t] f(yi))

]
,

where this time f is a random function from {0, 1}n to {0, 1} (rather than from
{0, 1}n to [2n]). Because (−1) = (−1)−1, the entry is simplified to

2−tn · Ef

[
(−1)(

∑
i∈[t] f(xi)+

∑
i∈[t] f(yi))

]
.

Like in the case of ρ(t,n,2n), we would like a nice and clean combinatorial
predicate to describe the entries of the matrix, and as we’ll see in a bit, the matrix
ρ(t,n,2) indeed have the same general structure as ρ(t,n,2n) but with different
predicate on x,y.
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First, define the following:

Definition 4.10 ((t, n) stabilizations). Let x,y ∈ {0, 1}t×n, and denote x =
(x1, · · · , xt),y = (y1, · · · , yt), where ∀i ∈ [t] : xi, yi ∈ {0, 1}n. We say that x,y,
are (t, n) stabilizations of each other (or just stabilizations of each other) if in
the concatenated string (x y) = (x1, · · · , xt, y1, · · · , yt), for every s ∈ {0, 1}n, s
appears an even number of times (this, of course, includes appearing 0 times).

We note that the stabilization relation (which is all pairs that stabilize each
other) is an equivalence relation over the set {0, 1}n×t (just like the permutation
relation, which we didn’t mention it being an equivalence relation, but it can
easily be seen as one). It is clear that the stabilization relation is reflexive (x is
always stabilizing x), and it is also easy to verify that it is symmetric. To see
why it is also transitive, we will use an additional characterization:

Definition 4.11. For a string z = (z1, · · · , zt) ∈ {0, 1}n×t with ∀i ∈ [t] : zi ∈
{0, 1}n, Odd(z) is the set of strings from {0, 1}n that appear an odd number of
times in the sequence (z1, · · · , zt).

For example, if n = 3 and t = 7 then Odd(101, 111, 101, 000, 011, 111, 111) =
{111, 000, 011}.

We claim that two strings x,y are stabilizations of each other if and only if
Odd(x) = Odd(y). It is easy to verify the correctness of this claim, and also the
fact that this claim implies the transitivity of the stabilization relation.

To identify the elements of ρ(t,n,2) it remains to observe that when x,y are
stabilizations of each other then the entry is 2−tn, and when they are not, then
we have Odd(x) = Odd(y) and it can be verified that the entry is 0, which yields
the following description of ρ(t,n,2):

∀x,y ∈ {0, 1}n×t : ρ(t,n,2)[x,y] =

{
2−tn x,y are stabilizations
0 x,y are not stabilizations

.

Conclusion. Note that if x,y are permutations then they necessarily sta-
bilize each other, but the opposite is not true generally, furthermore, it is
fairly easy to find stabilizing pairs that are not permutations, for instance
(111, 000, 101, 101, 000) and (110, 111, 111, 111, 110). We’ll call a pair of strings
that suffice this demand (i.e. stabilize each other but are not permutations)
remotely stabilized, that is:

Definition 4.12 ((t, n) remote stabilizations). Let x,y ∈ {0, 1}t×n, we say
that x,y are (t, n) remote stabilizations of each other (or just remote stabiliza-
tions of each other) if they are stabilizations of each other but are not permuta-
tions of each other.

In contrast to the cases of permutation and stabilization, remote stabilization
is not an equivalence relation, and thus (generally speaking) it is harder to work
with it. The stabilization relation is symmetric, but it is not reflexive, and in
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fact it is anti-reflexive, because a string is always a permutation of itself (and
thus not a remote stabilization of itself), and it is also not transitive, because a
(non-empty) relation which is symmetric and anti-reflexive can’t be transitive.

As said above, two strings that are permutations of each other are necessarily
stabilizations of each other (in other words, the permutation relation is a refine-
ment of the stabilization relation), and we deduce that ρn has no negative terms
and is also binary (scaled by 2−tn). Finally, this proves the characterization
lemma of ρn.

Lemma 4.13. Let n ∈ N and let t ∈ {1, 2, · · · , 2n − 1}, then the entries of ρn

can be given by the following formula:

∀x,y ∈ {0, 1}n×t : ρn[x,y] =

{
2−tn x,y are remote stabilizations
0 x,y are not remote stabilizations

.

4.3 Proof of Lemma 4.7

Proof. We will give an upper bound on the number of non-zero eigenvalues of ρn.
ρn is hermitian (and in particular diagonalizable) and thus the sum of dimensions
of its eigenspaces sums up to the order of the matrix, which is 2tn. Also recall
that the 0-eigenspace of ρn is its kernel, thus by the rank-nullity theorem, the
dimension of the 0-eigenspace plus the rank of ρn equals the order of the matrix,
2tn. This means that the rank of ρn equals the sum of dimensions of non-zero
eigenspaces of ρn, which is exactly the number of non-zero (possibly identical)
eigenvalues of ρn, thus, by giving an upper bound of rank(ρn), we get an upper
bound on the number of non-zero eigenvalues of ρn.

It is a well known fact in linear algebra that elementary row operations does
not change the rank of a matrix, it is also known that the rank of a matrix is
bounded from above by the number of non-zero rows (the rank is the dimension
of the row space, which in turn cannot be more than the number of non-zero
rows), thus our bound on the rank of ρn will come from looking at ρ′

n, a row-
equivalent matrix to ρn, and bounding its number of non-zero rows.

ρ′
n is obtained by the following procedure: Recall that the permutation rela-

tion and the stabilization relation are both equivalence relations on {0, 1}t×n

and thus induce equivalence classes. It will be useful (also for the proof of the
next lemma) to define the following:

Definition 4.14 (Sentinel of an Equivalence Class). Let C be an equiva-
lence class of one of the two equivalence relations above (either the permutation
relation or the stabilization relation). We define xC ∈ {0, 1}tn the sentinel of
C to be the element in C with the largest lexicographic order (where the lexico-
graphic order of strings is as usual, with the most significant bit on the left, and
least significant bit on the right).

Observation 1. Let P be a permutation class of {0, 1}tn. Then, every pair in
it x,y ∈ P have the same set of remote stabilizers, and thus have identical rows
in ρn.
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This means we can erase a bunch of redundant rows from ρn; for each per-
mutation class P , take the sentinal row xP of P and subtract it from all other
rows of strings from P . In the obtained matrix ρ′

n, the only non-zero rows are
of sentinels.

The number of sentinels is exactly the number of equivalence classes of the
permutation relation, which in turn is the number of different multisets of t
elements from {0, 1}n (note that a permutaion class can be defined by a multiset
from {0, 1}n of size t), and that number is known as common knowledge in
combinatorics, usually referred to as “n multichoose k”, in our case,

(
2n+t−1

t

)
.

Observation 2. Let P be a permutation class of a multiset of t distinct elements
(essentially, a permutation class of a set of size t with elements from {0, 1}n),
then each of its elements have no remote stabilizers.

The above observation basically says that strings of t distinct elements are a
special case where every stabilizer of them is also a permutation of them. This
observation is useful to us because it means that for every permutation class P
of t distinct elements, all rows of P are zero-rows in the original ρn (and thus so
in ρ′

n).
Furthermore, the reason that Observation 2 is important to our proof comes

from the fact that there are
(
2n

t

)
such permutation classes, which is an over-

whelming precentage from the total number of permutation classes
(
2n+t−1

t

)
. To

conclude, we said that in ρ′
n, only the sentinels can possibly have non-zero rows,

and that there are
(
2n+t−1

t

)
sentinels in total, but now we add the information

that out of these
(
2n+t−1

t

)
sentinels,

(
2n

t

)
have zero rows, and thus, there are at

most (
2n + t − 1

t

)

−
(

2n

t

)

non-zero rows in ρ′
n (and as a side note, there are in fact more zero-rows, for

instance, for permutation classes of a multisets of the same element appearing
t times, but we won’t care about these as their precentage is negligible). This
concludes our proof of Lemma 4.7.

4.4 Proof of Lemma 4.8

We will give a lower bound on the most negative eigenvalue of ρn. Recall that
ρn is hermitian and thus has only real eigenvalues. Let λ ∈ R, we know that λ is
an eigenvalue ρn if and only if det(ρn −λI) = 0. Denote by A the set of negative
relative sizes of the permutation classes (along with 0),

A :=

{

−|P |
2tn

| P is a permutation class

}

∪ {0} ,

where for a permutation class, its size is the number of different possible permu-
tations of it, e.g. if P is a permutation class of a multiset of the same element t
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times, then |P | = 1, if P is a permutation class of a multiset of t distinct elements
(in this specific case it is also a set) then |P | = t!, and if P is a permutation class
of a multiset of (t− 2) distinct elements plus an additional distinct element that
appears twice, then |P | =

(
t
2

) ·(t−2)!. We will show that there are no eigenvalues
of ρn smaller then all elements of A, which will give us a lower bound of (− t!

2tn )
on the minimal eigenvalue of ρn (as this is the minimal element in A).

We prove the eigenvalue lower bound by calculating the determinant det(ρn−
λI) for λ ∈ R \A, and showing that it cannot be 0. Recall that the permutation
relation is a refinement of the stabilization relation, which means that every
stabilization class can be divided into a bunch of permutation classes, also recall
that in the proof of Lemma 4.7 we saw that for some stabilization classes, they
are exactly a single permutation class and not a few (for example, according to
the second observation in the proof, this is the case for permutation classes of
sets of size t) - we’ll call such stabilization classes trivial stabilization classes.

By the observations from Lemma 4.7 and by the restriction λ /∈ A, the cal-
culation of the determinant is enabled and we obtain that for every λ ∈ (R \A),
the value of the determinant det(ρn − λ · I) is,

∏

S trivial stabilization class

(−λ)|S| ·
∏

S non-trivial stabilization class

(
αS · βS · γS

)
,

where,
αS =

∏

x non-sentinel in S

(−λ) ,

βS =
∏

P permutation class in S with P 
=PS

(
− λ − |P |

2tn

)
,

γS = −λ +
(
λ +

|PS |
2tn

)
·

∑

P permutation class in S with P 
=PS

( |P |
2tn

(λ + |P |
2tn )

)

.

The full version of this calculation is in [3].

Using The Determinant to Show The Lower Bound. Given the above
determinant result, we can now finally prove Lemma 4.8.

Proof. Assume towards contradiction that there is a real number λ′ < − t!
2tn (note

that this implies λ′ /∈ A) such that it is an eigenvalue of ρn, thus det(ρn−λ′ ·I) =
0 and thus it is necessarily the case that one of the terms in the above product (of
the determinant) has to be 0. Due to λ′ /∈ A, it can be seen that the only terms
that can possibly be 0 in the above product are the terms γS for non-trivial S,
so let’s check what happens in these terms.

Let S be a non-trivial stabilization class, and consider the term γS in the
product above:

−λ′ +

(

λ′ +
|PS |
2tn

)

·
∑

P permutation class in S with P 
=PS

( |P |
2tn

(λ′ + |P |
2tn )

)

.
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We have,

∀P permutation class in S, including PS : λ′ < −|P |
2tn

,

and thus
(

λ′ +
|PS |
2tn

)

< 0,
∑

P permutation class in S with P 
=PS

( |P |
2tn

(λ′ + |P |
2tn )

)

< 0 ,

which implies
(

λ′ +
|PS |
2tn

)

·
∑

P permutation class in S with P 
=PS

( |P |
2tn

(λ′ + |P |
2tn )

)

> 0 .

Finally, due to −λ′ being in particular positive, the term has to be positive as
well:

−λ′ +

(

λ′ +
|PS |
2tn

)

·
∑

P permutation class in S with P 
=PS

( |P |
2tn

(λ′ + |P |
2tn )

)

> 0 ,

in contradiction to det(ρn − λ′I) = 0.
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Abstract. Starting from the one-way group action framework of Bras-
sard and Yung (Crypto’90), we revisit building cryptography based on
group actions. Several previous candidates for one-way group actions no
longer stand, due to progress both on classical algorithms (e.g., graph
isomorphism) and quantum algorithms (e.g., discrete logarithm).

We propose the general linear group action on tensors as a new can-
didate to build cryptography based on group actions. Recent works
(Futorny–Grochow–Sergeichuk Lin. Alg. Appl., 2019) suggest that the
underlying algorithmic problem, the tensor isomorphism problem, is the
hardest one among several isomorphism testing problems arising from
areas including coding theory, computational group theory, and multi-
variate cryptography. We present evidence to justify the viability of this
proposal from comprehensive study of the state-of-art heuristic algo-
rithms, theoretical algorithms, hardness results, as well as quantum algo-
rithms.

We then introduce a new notion called pseudorandom group actions to
further develop group-action based cryptography. Briefly speaking, given
a group G acting on a set S, we assume that it is hard to distinguish
two distributions of (s, t) either uniformly chosen from S × S, or where
s is randomly chosen from S and t is the result of applying a random
group action of g ∈ G on s. This subsumes the classical Decisional Diffie-
Hellman assumption when specialized to a particular group action. We
carefully analyze various attack strategies that support instantiating this
assumption by the general linear group action on tensors.

Finally, we construct several cryptographic primitives such as digi-
tal signatures and pseudorandom functions. We give quantum security
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proofs based on the one-way group action assumption and the pseudo-
random group action assumption.

1 Introduction

Modern cryptography has thrived thanks to the paradigm shift to a formal app-
roach: precise definition of security and mathematically sound proof of security
of a given construction based on accurate assumptions. Most notably, computa-
tional assumptions originated from specific algebraic problem such as factoring
and discrete logarithm have enabled widely deployed cryptosystems.

Clearly, it is imperative to base cryptography on diverse problems to reduce
the risk that some problems turn out to be easy. One such effort was by Brassard
and Yung soon after the early development of modern cryptography [17]. They
proposed an approach to use a group action to construct a one-way function,
from which they constructed cryptographic primitives such as bit commitment,
identification and digital signature. The abstraction of one-way group actions
(OWA) not only unifies the assumptions from factoring and discrete logarithm,
but more importantly Brassard and Yung suggested new problems to instantiate
it such as the graph isomorphism problem (GI). Since then, many developments
fall in this framework [26,46,65,70]. In particular, the work of Couveignes [26]
can be understood as a specific group action based on isogenies between elliptic
curves, and it has spurred the development of isogeny-based cryptography [28].

However, searching for concrete group actions to support this approach turns
out to be a tricky task, especially given the potential threats from attackers capa-
ble of quantum computation. For graph isomorphism, there are effective heuris-
tic solvers [63,64] as well as efficient average-case algorithms [7], not to mention
Babai’s recent breakthrough of a quasipolynomial -time algorithm [5]. Shor’s cel-
ebrated work solves discrete logarithm and factoring in polynomial time on a
quantum computer [79], which would break a vast majority of public-key cryp-
tography. The core technique, quantum Fourier sampling, has proven powerful
and can be applied to break popular symmetric-key cryptosystems as well [54]. A
subexponential-time quantum algorithm was also found for computing isogenies
in ordinary curves [23], which attributes to the shift to super-singular curves
in the recent development of isogeny-based cryptography [40]. In fact, there
is a considerable effort developing post-quantum cryptography that can resist
quantum attacks. Besides isogeny-based, there are popular proposals based on
discrete lattices, coding problems, and multivariate equations [10,22].

1.1 Overview of Our Results

In this paper, we revisit building cryptography via the framework of group
actions and aim to provide new candidate and tools that could serve as quantum-
safe solutions. Our contribution can be summarized below.

First, we propose a family of group actions on tensors of order at least three
over a finite field as a new candidate for one-way actions. We back up its via-
bility by comparison with other group actions, extensive analysis from heuristic
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algorithms, provable algorithmic and hardness results, as well as demonstrating
its resistance to a standard quantum Fourier sampling technique.

Second, we propose the notion of pseudorandom group actions (PRA) that
extends the scope of the existing group-action framework. The PRA assumption
can be seen as a natural generalization of the Decisional Diffie-Hellman (DDH)
assumption. We again instantiate it with the group action on tensors, and we
provide further evidence (in addition to those for one-wayness) by analyzing
various state-of-art attacking strategies.

Finally, based on any PRA, we show realization of several primitives in
Minicrypt such as digital signatures via the Fiat-Shamir transformation and
pseudorandom functions. We give complete security proofs against quantum
adversaries, thanks to recent advances in analyzing quantum superposition
attacks and the quantum random oracle model [81,82,85], which is known to
be a tricky business. Our constructions based on PRA are more efficient than
known schemes based on one-way group actions. As a side contribution, we also
describe formal quantum-security proofs for several OWA-based schemes includ-
ing identification and signatures, which are incomplete in the literature and
deserve some care.

In what follows, we elaborate on our proposed group action based on tensors
and the new pseudorandom group action assumption. Readers interested in the
cryptographic primitives supported by PRA are referred to the full version of
this paper [53].

The General Linear Group Action on Tensors. The candidate group action we
propose is based on tensors, a central notion in quantum theory. In this paper, a
k-tensor T is a multidimensional array with k indices i1, i2, . . . , ik over a field F,
where ij ∈ {1, 2, . . . , dj} for j = 1, 2, . . . , k. For a tuple of indices (i1, i2, . . . , ik),
the corresponding component of T denoted as Ti1,i2,...,ik is an element of F. The
number k is called the order of the tensor. A matrix over field F can be regarded
as a tensor of order two.

We consider a natural group action on k-tensors that represents a local change
of basis. Let G =

∏k
j=1 GL(dj ,F) be the direct product of general linear groups.

For M =
(
M (j)

)k

j=1
∈ G, and a k-tensor T , the action of M on T is given by

α : (M,T ) �→ T̂ , where T̂i1,i2,...,ik =
∑

l1,l2,...,lk

( k∏

j=1

M
(j)
ij ,lj

)

Tl1,l2,...,lk .

We shall refer to the above group action as the general linear group action on
tensors (GLAT) of dimensions (d1, . . . , dk) over F, or simply GLAT when there
is no risk of confusion. We will consider group actions on tensors of order at least
three, as the problem is usually easy for matrices. In fact, in most of the cases,
we focus on 3-tensors which is most studied and believed to be hard.

General Linear Actions on Tensors as a Candidate for One-Way Group Actions.
We propose to use GLAT as an instantiation of one-way group actions. Roughly
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speaking, a group action is called a one-way group action (OWA in short), if for
a random s ∈ S, a random g ∈ G, t = g · s, and any polynomial-time adversary
A given s and t as input, A outputs a g′ ∈ G such that t = g′ · s only with
negligible probability.

Breaking the one-wayness can be identified with solving some isomorphism
problem. Specifically, two k-tensors T and T̂ are said to be isomorphic if there
exists an M ∈ G such that T̂ = α(M,T ). We define the decisional tensor isomor-
phism problem (DTI) as deciding if two given k-tensors are isomorphic; and the
search version (TI) is tasked with computing an M ∈ G such that T̂ = α(M,T )
if there is one. Clearly, our assumption that GLAT is a one-way group action
is equivalent to assuming that TI is hard for random M ∈ G, random k-tensor
S, and T := α(M,S). We focus on the case when the order k of the tensor
equals three and the corresponding tensor isomorphism problem is abbreviated
as 3TI. We justify our proposal from multiple routes; see Sect. 3 for a more formal
treatment.

1. The 3-tensor isomorphism problem can be regarded as “the most difficult” one
among problems about testing isomorphism between objects, such as polyno-
mials, graphs, linear codes, and groups, thanks to the recent work of Futorny,
Grochow, and Sergeichuk [39]. More specifically, it was proven in [39] that
several isomorphism problems, including graph isomorphism, quadratic poly-
nomials with 2 secrets from multivariate cryptography [70], p-group isomor-
phism from computational group theory [59,69], and linear code permutation
equivalence from coding theory [73,77], all reduce to 3TI; cf. Observation 2.
Note that testing isomorphism of quadratic polynomials with two secrets has
been studied in multivariate cryptography for more than two decades [70].
Isomorphism testing of p-groups has been studied in computational group
theory and theoretical computer science at least since the 1980’s (cf. [59,69]).
Current status of these two problems then could serve as evidence for the
difficulty of 3TI.

2. Known techniques that are effective on GI, including the combinatorial tech-
niques [83] and the group-theoretic techniques [3,60], are difficult to translate
to 3TI. Indeed, it is not even clear how to adapt a basic combinatorial tech-
nique for GI, namely individualizing a vertex [7], to the 3TI setting. It is also
much harder to work with matrix groups over finite fields than to work with
permutation groups. Also, techniques in computer algebra, including those
that lead to the recent solution of isomorphism of quadratic polynomials
with one secret [50], seem not applicable to 3TI.

3. Finally, there is negative evidence that quantum algorithmic techniques
involving the most successful quantum Fourier sampling may not be able
to solve GI and code equivalence [34,45]. It is expected that the same argu-
ment holds with respect to 3TI as well. Loosely speaking, this is because the
group underlying 3TI is a direct product of general linear groups, which also
has irreducible representations of high dimensions.
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A New Assumption: Pseudorandom Group Actions. Inspired by the Decisional
Diffie-Hellman assumption, which enables versatile cryptographic constructions,
we propose the notion of pseudorandom group actions, or PRA in short.

Roughly speaking, we call a group action α : G × S → S pseudorandom, if
any quantum polynomial-time algorithm A cannot distinguish the following two
distributions except with negligible probability: (s, t) where s, t ∈R S, and the
other distribution (s, α(g, s)), where s ∈R S and g ∈R G. A precise definition
can be found in Sect. 4.

Note that if a group action is transitive, then the pseudorandom distribution
trivially coincides with the random distribution. Unless otherwise stated, we
will consider intransitive group actions when working with pseudorandom group
actions. In fact, we can assume that (s, t) from the random distribution are
in different orbits with high probability, while (s, t) from the pseudorandom
distribution are always in the same orbit.

Also note that PRA is a stronger assumption than OWA. To break PRA, it is
enough to solve the isomorphism testing problem on average in a relaxed sense,
i.e., on 1/poly(n) fraction of the input instances instead of all but 1/poly(n)
fraction, where n is the input size.

The Decisional Diffie-Hellman (DDH) assumption [13,32] can be seen as the
PRA initiated with a certain group action; see Observation 4. However, DDH is
broken on a quantum computer. We resort again to GLAT as a quantum-safe
candidate of PRA. We investigate the hardness of breaking PRA from various
perspectives and provide further justification for using the general linear action
on 3-tensors as a candidate for PRA.

1. Easy instances on 3-tensors seem scarce, and average-case algorithms do not
speed up dramatically. Indeed, the best known average-case algorithm, while
improves over worst-case somewhat due to the birthday paradox, still inher-
ently enumerate all vectors in F

n
q and hence take exponential time [15,59].

2. For 3-tensors, there have not been non-trivial and easy-to-compute isomor-
phism invariants, i.e., those properties that are preserved under the action.
For example, a natural isomorphism invariant, the tensor rank, is well-known
to be NP-hard [47]. Later work suggests that “most tensor problems are NP-
hard” [49].

3. We propose and analyze several attack strategies from group theory and
geometry. While effective on some non-trivial actions, these attacks do not
work for the general linear action on 3-tensors. For instance, we notice that
breaking our PRA from GLAT reduces to the orbit closure intersection prob-
lem, which has received considerable attention in optimization, and geometric
complexity theory. Despite recent advances [1,19,20,29,52,66], any improve-
ment towards a more effective attack would be a breakthrough.

Recently, De Feo and Galbraith proposed an assumption in the setting
of supersingular isogeny-based cryptography, which can be viewed as another
instantiation of PRA [36, Problem 4]. This gives more reason to further explore
PRA as a basic building block in cryptography.
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1.2 Discussions

In this paper, we further develop and extend the scope of group action based
cryptography by introducing the general linear group actions on tensors (GLAT)
and formulating the pseudorandom assumption, generalizing the DDH assump-
tion. We construct and prove the quantum security of various cryptographic
primitives such as signatures and pseudorandom functions in this framework.

There are two key features of GLAT that are worth mentioning explicitly.
First, the general linear action is non-commutative simply because the general
linear group is non-abelian. This is, on the one hand, an attractive property
that enabled us to argue the quantum hardness and the infeasibility of quantum
Fourier sampling type of attacks. On the other hand, however, this also makes
it challenging to extend many attractive properties of discrete-logarithm and
decisional Diffie-Hellman to the more general framework of group action cryp-
tography. For example, while it is known that the worst-case DDH assumption
reduces to the average-case DDH assumption [68], the proof relies critically on
commutativity. Second, the general linear action is linear and the space of ten-
sors form a linear space. Linearity seems to be responsible for the supergroup
attacks on the PRA(d) assumption discussed in Sect. 5.1. It also introduces the
difficulty for building more efficient PRF constructions analogous to the DDH-
based ones proposed in [68].

Our work leaves a host of basic problems about group action based cryptog-
raphy as future work. First, we have been focusing on the general linear group
actions on tensors. A mixture of different types of group actions on different
indices of the tensor may enable more efficient constructions or other appealing
structural properties. It will be interesting to investigate how the hardness varies
with the group actions on tensors, and identify group actions for practicability
considerations. Second, it is appealing to recover the average-case to worst-case
reduction, at least to some extent, for the general group actions framework.
Finally, it is an important open problem to build quantum-secure public-key
encryption schemes based on hard problems about GLAT or its close variations.

2 The Group Action Framework

In this section, we formally describe the framework for group action based cryp-
tography to be used in this paper. While such general frameworks were already
proposed by Brassard and Yung [17] and Couveignes [26], there are delicate dif-
ferences in several places, so we will have to still go through the details. This
section should be considered as largely expository.

2.1 Group Actions and Notations

Let us first formally define group actions. Let G be a group, S be a set, and
id the identity element of G. A (left) group action of G on S is a function
α : G × S → S satisfying the following: (1) ∀s ∈ S, α(id, s) = s; (2) ∀g, h ∈ G,
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s ∈ S, α(gh, s) = α(g, α(h, s)). The group operation is denoted by ◦, e.g. for
g, h ∈ G, we can write their product as g ◦ h. We shall use · to denote the
left action, e.g. g · s = α(g, s). We may also consider the right group action
β : S ×G → S, and use the exponent notation for right actions, e.g. sg = β(s, g).

Later, we will use a special symbol ⊥ �∈ G∪S to indicate that a bit string does
not correspond to an encoding of an element in G or S. We extend the operators
◦ and · to ◦ : G∪{⊥}×G∪{⊥} → G∪{⊥} and · : G∪{⊥}×S∪{⊥} → S∪{⊥},
by letting g ◦ h = ⊥ whenever g = ⊥ or h = ⊥, and g · s = ⊥ whenever g = ⊥
or s = ⊥.

Let α : G × S → S be a group action. For s ∈ S, the orbit of s is Os =
{t ∈ S : ∃g ∈ G, g · s = t}. The action α partitions S into a disjoint union
of orbits. If there is only one orbit, then α is called transitive. Restricting α
to any orbit O gives a transitive action. In this case, take any s ∈ O, and let
Stab(s,G) = {g ∈ G : g · s = s} be the stabilizer group of s in G. For any t ∈ O,
those group elements sending s to t form a coset of Stab(s,G). We then obtain
the following easy observation.

Observation 1. Let α : G × S → S, s, and O be as above. The following two
distributions are the same: the uniform distribution of t ∈ O, and the distribution
of g · s where g is sampled from a uniform distribution over G.

2.2 The Computational Model

For computational purposes, we need to model the algorithmic representations
of groups and sets, as well as basic operations like group multiplication, group
inverse, and group actions. We review the group action framework as proposed in
Brassard and Yung [17]. A variant of this framework, with a focus on restricting
to abelian (commutative) groups, was studied by Couveignes [26]. However, it
seems to us that some subtleties are present, so we will propose another version,
and compare it with those by Brassard and Yung, and Couveignes, later.

– Let n be a parameter which controls the instance size. Therefore, polynomial
time or length in the following are with respect to n.

– (Representing group and set elements.) Let G be a group, and S be a set.
Let α : G × S → S be a group action. Group elements and set elements
are represented by bit strings {0, 1}∗. There are polynomials p(n) and q(n),
such that we only work with group elements representable by {0, 1}p(n) and
set elements representable by {0, 1}q(n). There are functions FG and FS from
{0, 1}∗ to G ∪ {⊥} and S ∪ {⊥}, respectively. Here, ⊥ is a special symbol,
designating that the bit string does not represent a group or set element. FG

and FS should be thought of as assigning bit strings to group elements.
– (Unique encoding of group and set elements.) For any g ∈ G, there exists a

unique b ∈ {0, 1}∗ such that FG(b) = g. In particular, there exists a unique
bit string, also denoted by id, such that FG(id) = id. Similarly, for any s ∈ S,
there exists a unique b ∈ {0, 1}∗ such that FS(b) = s.
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– (Group operations.) There are polynomial-time computable functions
PROD : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ and INV : {0, 1}∗ → {0, 1}∗, such that for
b, c ∈ {0, 1}∗, FG(PROD(b, c)) = FG(b)◦FG(c), and FG(INV(b))◦FG(b) = id.

– (Group action.) There is a polynomial-time function a : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗, such that for b ∈ {0, 1}∗ and c ∈ {0, 1}∗, satisfies FS(a(b, c)) =
α(FG(b), FS(c)).

– (Recognizing group and set elements.) There are polynomial-time computable
functions CG and CS , such that CG(b) = 1 iff FG(b) �= ⊥, and CS(b) = 1 iff
FS(b) �= ⊥.

– (Random sampling of group and set elements.) There are polynomial-time
computable functions RG and RS , such that RG uniformly samples a group
element g ∈ G, represented by the unique b ∈ {0, 1}p(n) with FG(b) = g, and
RS uniformly samples a set element s ∈ S, represented by some b ∈ {0, 1}q(n)

with FS(b) = s.

Remark 1. Some remarks are due for the above model.

1. The differences with Brassard and Yung are: (1) allowing infinite groups and
sets; (2) adding random sampling of set elements. Note that in the case of
infinite groups and sets, the parameters p(n) and q(n) are used to control
the bit lengths for the descriptions of legitimate group and set elements. This
allows us to incorporate e.g. the lattice isomorphism problem [48] into this
framework. In the rest of this article, however, we will mostly work with finite
groups and sets, unless otherwise stated.

2. The main reason to consider infinite groups is the uses of lattice isomorphism
and equivalence of integral bilinear forms in the cryptographic setting.

3. The key difference with Couveignes lies in Couveignes’s focus on transitive
abelian group actions with trivial stabilizers.

4. It is possible to adapt the above framework to use the black-box group model
by Babai and Szemerédi [8], whose motivation was to deal with non-unique
encodings of group elements (like quotient groups). For our purposes, it is
more convenient and practical to assume that the group elements have unique
encodings.

5. Babai [4] gives an efficient Monte Carlo algorithm for sampling a group ele-
ment of a finite group in a very general setting which is applicable to most of
our instantiations with finite groups.

2.3 The Isomorphism Problem and the One-Way Assumption

Now that we have defined group actions and a computational model, let us
examine the isomorphism problems associated with group actions.

Definition 1 (The isomorphism problem). Let α : G × S → S be a group
action. The isomorphism problem for α is to decide, given s, t ∈ S, whether s and
t lie in the same orbit under α. If they are, the search version of the isomorphism
problem further asks to compute some g ∈ G, such that α(g, s) = t.
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If we assume that there is a distribution on S and we require the algorithm
to succeed for (s, t) where s is sampled from this distribution and t is arbitrary,
then this is the average-case setting of the isomorphism problem. For example,
the first average-case efficient algorithm for the graph isomorphism problem was
designed by Babai, Erdős and Selkow in the 1970’s [7].

The hardness of the isomorphism problem provides us with the basic intuition
for its use in cryptography. But for cryptographic uses, the promised search
version of the isomorphism problem is more relevant, as already observed by
Brassard and Yung [17]. That is, suppose we are given s, t ∈ S with the promise
that they are in the same orbit, the problem asks to compute g ∈ G such that
g · s = t. Making this more precise and suitable for cryptographic purposes, we
formulate the following problem.

Definition 2 (The group-action inversion (GA-Inv) problem). Let G be
a group action family, such that for a security parameter λ, G(1λ) consists of
descriptions of a group G, a set S with log(|G|) = poly(λ), log(|S|) = poly(λ),
and an group action α : G × S → S that can be computed efficiently, which we
denote as a whole as a public parameter params. Generate random s ← S and
g ← G, and compute t := α(g, s). The group-action inversion (GA-Inv) problem
is to find g given (s, t).

Definition 3 (Group-action inversion game). The group-action inversion
game is the following game between a challenger and an arbitrary adversary A:

1. The challenger and adversary A agree on the public parameter params by
choosing it to be G(1λ) for some security parameter λ.

2. Challenger samples s ← S and g ← G using RS and RG, computes t = g · s,
and gives (s, t) to A.

3. The adversary A produces some g′ and sends it to the challenger.
4. We define the output of the game GA-InvA,G(1λ) = 1 if g′ · s = t, and say A

wins the game if GA-InvA,G(1λ) = 1.

Definition 4. We say that the group-action inversion (GA-Inv) problem is hard
relative to G, if for any polynomial time quantum algorithm A,

Pr
[
GA-InvA,G(1λ)

] ≤ negl(λ).

We propose our first cryptographic assumption in the following. It generalizes
the one in [17].

Assumption 1 (One-way group action (OWA) assumption). There exists a
family G relative to which the GA-Inv problem is hard.

We informally call the group action family G in Assumption 1 a one-way
group action. Its name comes from the fact that, as already suggested in [17],
this assumption immediately implies that we can treat Γs : G → S given by
Γs(g) = α(g, s) as a one-way function for a random s. In fact, OWA assumption
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is equivalent to the assertion that the function Γ : G × S → S × S given by
Γ (g, s) = (g · s, s) is one-way in the standard sense.

Note that the OWA assumption comes with the promise that s and t are
in the same orbit. The question is to compute a group element that sends s to
t. Comparing with Definition 1, we see that the OWA assumption is stronger
than the assumption that the search version of the isomorphism problem is hard
for a group action, while incomparable with the decision version. Still, most
algorithms for the isomorphism problem we are aware of do solve the search
version.

Remark 2. Note that Assumption 1 has a slight difference with that of Brassard
and Yung as follows. In [17], Brassard and Yung asks for the existence of some
s ∈ S as in Definition 2, such that for a random g ∈ G, it is not feasible to
compute g′ that sends s to α(g, s). Here, we relax this condition, namely a
random s ∈ S satisfies this already. One motivation for Brassard and Yung to
fix s was to take into account of graph isomorphism, for which Brassard and
Crepéau defined the notion of “hard graphs” which could serve as this starting
point [16]. However, by Babai’s algorithm [5] we know that hard graphs could
not exist. Here we use a stronger notion by allowing a random s, which we believe
is a reasonable requirement for some concrete group actions discussed in Sect. 3.

A useful fact for the GA-Inv problem is that it is self-reducible to random
instances within the orbit of the input pair. For any given s, let Os be the
orbit of s under the group action α. If there is an efficient algorithm A that
computes g from (t, t′) where t′ = α(g, t) for at least 1/poly(λ) fraction of
the pairs (t, t′) ∈ Os × Os, then the GA-Inv problem can be computed for any
(t, t′) ∈ Os × Os with probability 1 − e− poly(λ). On input (t, t′), the algorithm
samples random group elements h, h′ and calls A with (α(h, t), α(h′, t′)). If A
successfully returns g, the algorithm outputs h−1gh′ and otherwise repeats the
procedure for polynomial number of times.

The one-way assumption leads to several basic cryptographic applications as
described in the literature. First, it gives a identification scheme by adapting the
zero-knowledge proof system for graph isomorphism [42]. Then via the celebrated
Fiat-Shamir transformation [37], one also obtains a signature scheme. Proving
quantum security of these protocols, however, would need more care. Detailed
proofs may be found in the full version of this paper [53].

3 General Linear Actions on Tensors: The One-Way
Group Action Assumption

In this section, we propose the general linear actions on tensors, i.e., the tensor
isomorphism problem, as our choice of candidate for the OWA assumption. We
first reflect on what would be needed for a group action to be a good candidate.
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3.1 Requirements for a Group Action to Be One-Way

Naturally, the hardness of the GA-Inv problem for a specific group action needs
to be examined in the context of the following four types of algorithms.

– Practical algorithms: implemented algorithms with practical performance
evaluations but no theoretical guarantees;

– Average-case algorithms: for some natural distribution over the input
instances, there is an algorithm that are efficient for most input instances
from this distribution with provable guarantees;

– Worst-case algorithms: efficient algorithms with provable guarantees for all
input instances;

– Quantum algorithms: average-case or worst-case efficient algorithms in the
quantum setting.

Here, efficient means sub-exponential, and most means 1 − 1/poly(n) fraction.
It is important to keep in mind all possible attacks by these four types of algo-
rithms. Past experience suggests that one problem may look difficult from one
viewpoint, but turns out to be easy from another.

The graph isomorphism problem has long been thought to be a difficult
problem from the worst-case viewpoint. Indeed, a quasipolynomial-time algo-
rithm was only known very recently, thanks to Babai’s breakthrough [5]. How-
ever, it has long been known to be effectively solvable from the practical view-
point [63,64]. This shows the importance of practical algorithms when justifying
a cryptographic assumption.

Patarin proposed to use polynomial map isomorphism problems in his instan-
tiation of the identification and signature schemes [70]. He also proposed the
one-sided version of such problems, which has been studied intensively, mostly
from the viewpoint of practical cryptanalysis [11,14,15,35,41,55,61,71,72,74].
However, the problem of testing isomorphism of quadratic polynomials with one
secret was recently shown to be solvable in randomized polynomial time [50],
using ideas including efficient algorithms for computing the algebra structure,
and the ∗-algebra structure underlying such problems. Hence, the investigation
of theoretical algorithms is also valuable.

Considering of quantum attacks is necessary for security in the quantum
era. Shor’s algorithm, for example, invalidates the hardness assumption of the
discrete logarithm problems.

Guided by the difficulty met by the hidden subgroup approach on tackling
graph isomorphism [45], Moore, Russell, and Vazirani proposed the code equiv-
alence problem as a candidate for the one-way assumption [65]. However, this
problem turns out to admit an effective practical algorithm by Sendrier [77].

One-Way Group Action Assumption and the Hidden Subgroup App-
roach. From the post-quantum perspective, a general remark can be made on
the OWA assumption and the hidden subgroup approach in quantum algorithm
design.
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Recall that the hidden subgroup approach is a natural generalization of Shor’s
quantum algorithms for discrete logarithm and factoring [79], and can accom-
modate both lattice problems [75] and isomorphism testing problems [45]. The
survey paper of Childs and van Dam [24] contains a nice introduction to this
approach.

A well-known approach to formulate GA-Inv as an HSP problem is the fol-
lowing [24, Sec. VII.A]. Let α : G × S → S be a group action. Given s, t ∈ S
with the promise that t = g · s for some g ∈ G, we want to compute g. To cast
this problem as an HSP instance, we first formulate it as an automorphism type
problem. Let G̃ = G � S2, where S2 is the symmetric group on two elements,
and � denotes the wreath product. The action α induces an action β of G̃ on
S × S as follows. Given (g, h, i) ∈ G̃ = G � S2 where g, h ∈ G, i ∈ S2, if i is
the identity, it sends (s, t) ∈ S × S to (g · s, h · t); otherwise, it sends (s, t) to
(h · t, g · s). Given (s, t) ∈ S × S, we define a function f(s,t) : G̃ → S × S, such
that f(s,t) sends (g, h, i) to (g, h, i) · (s, t), defined as above. It can be verified
that f(s,t) hides the coset of the stabilizer group of (s, t) in G̃. Since s and t lie
in the same orbit, any generating set of the stabilizer group of (s, t) contains an
element of the form (g, h, i), where i is not the identity element in S2, g · s = t,
and h ·t = s. In particular, g is the element required to solve the GA-Inv problem.
In the above reduction to the HSP problem, the ambient group is G � S2 instead
of the original G. In some cases like the graph isomorphism problem, because
of the polynomial-time reduction from isomorphism testing to automorphism
problem, we can retain the ambient group to be G. However, such a reduction
is not known for GLAT.

There has been notable progress on the HSP problems for various ambient
groups, but the dihedral groups and the symmetric groups have withstood the
attacks so far. Indeed, one source of confidence on using lattice problems in
post-quantum cryptography lies in the lack of progress in tackling the hidden
subgroup problem for dihedral groups [75]. There is formal negative evidence
for the applicability of this approach for certain group actions where the groups
have high-dimensional representations, like Sn and GL(n, q) in the case of the
graph isomorphism problem [45] and the permutation code equivalence prob-
lem [34]. The general lesson is that current quantum algorithmic technologies
seem incapable of handling groups which have irreducible representations of
high dimensions.

As mentioned, the OWA assumption has been discussed in post-quantum
cryptography with the instantiation of the permutation code equivalence prob-
lem [33,34,65,78]. Though this problem is not satisfying enough due to the
existence of effective practical algorithms [77], the following quoted from [65]
would be applicable to our choice of candidate to the discussed below.

The design of efficient cryptographic primitives resistant to quantum attack
is a pressing practical problem whose solution can have an enormous
impact on the practice of cryptography long before a quantum computer
is physically realized. A program to create such primitives must necessar-
ily rely on insights into the limits of quantum algorithms, and this paper
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explores consequences of the strongest such insights we have about the lim-
its of quantum algorithms.

3.2 The Tensor Isomorphism Problem and Others

We now formally define the tensor isomorphism problem and other isomorphism
testing problems. For this we need some notation and preparations.

Notation and Preliminaries. We usually use F to denote a field. The finite
field with q elements and the real number field are denoted by Fq and R, respec-
tively. The linear space of m by n matrices over F is denoted by M(m,n,F),
and M(n,F) := M(n, n,F). The identity matrix in M(n,F) is denoted by In. For
A ∈ M(m,n,F), At denotes the transpose of A. The group of n by n invert-
ible matrices over F is denoted by GL(n,F). We will also meet the notation
GL(n,Z), the group of n by n integral matrices with determinant ±1. We use a
slightly non-standard notation GL(m,n,F) to denote the set of rank min(m,n)
matrices in M(m,n,F). We use 〈·〉 to denote the linear span; for example, given
A1, . . . , Ak ∈ M(m,n,F), 〈A1, . . . , Ak〉 is a subspace of M(m,n,F).

We will meet some subgroups of GL(n,F) as follows. The symmetric group Sn

on n objects is embedded into GL(n,F) as permutation matrices. The orthogonal
group O(n,F) consists of those invertible matrices A such that AtA = In. The
special linear group SL(n,F) consists of those invertible matrices A such that
det(A) = 1. Finally, when n = �2, there are subgroups of GL(�2,F) isomorphic to
GL(�,F) × GL(�,F). This can be seen as follows. First we fix an isomorphism of
linear spaces φ : F�2 → M(�,F)1. Then M(�,F) admits an action by GL(�,F) ×
GL(�,F) by left and right multiplications, e.g. (A,D) ∈ GL(�,F) × GL(�,F)
sends C ∈ M(�,F) to ACDt. Now use φ−1 and we get one subgroup of GL(�2,F)
isomorphic to GL(�,F) × GL(�,F).

Definitions of Several Group Actions. We first recall the concept of tensors
and the group actions on the space of k-tensors as introduced in Sect. 1.

Definition 5 (Tensor). A k-tensor T of local dimensions d1, d2, . . . , dk over
F, written as

T = (Ti1,i2,...,ik),

is a multidimensional array with k indices and its components Ti1,i2,...,ik cho-
sen from F for all ij ∈ {1, 2, . . . , dj}. The set of k-tensors of local dimensions
d1, d2, . . . , dk over F is denoted as

T(d1, d2, . . . , dk,F).

The integer k is called the order of tensor T .

1 For example, we can let the first � components be the first row, the second � com-
ponents be the second row, etc.
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Group Action 1 (The general linear group action on tensors). Let F be a
field, k, d1, d2, . . . , dk be integers.

– Group G:
∏k

j=1 GL(dj ,F).
– Set S: T(d1, d2, . . . , dk,F).
– Action α: for a k-tensor T ∈ S, a member M = (M (1),M (2), . . . ,M (k)) of the

group G,

α(M,T ) =
( k⊗

j=1

M (j)

)

T =
∑

l1,l2,...,lk

( k∏

j=1

M
(j)
ij ,lj

)

Tl1,l2,...,lk .

We refer to the general linear group action on tensors in Action 1 as GLAT.
In the following, let us formally define several problems which have been referred
to frequently in the above discussions.

As already observed by Brassard and Yung [17], the discrete logarithm prob-
lem can be formulated using the language of group actions. More specifically, we
have:

Group Action 2 (Discrete Logarithm in Cyclic Groups of Prime Orders). Let
p be a prime, Zp the integer.

– Group G: Z∗
p, the multiplicative group of units in Zp.

– Set S: Cp \ {id}, where Cp is a cyclic group of order p and id is the identity
element.

– Action α: for a ∈ Z
∗
p, and s ∈ S, α(a, s) = sa.

Note that in the above, we refrained from giving a specific realization of the
cyclic group Cp for the sake of clarify; the reader may refer to Boneh’s excellent
survey [13] for concrete proposals that can support the security of the Decisional
Diffie-Hellman assumption.

The linear code permutation equivalence (LCPE) problem asks to decide
whether two linear codes (i.e. linear subspaces) are the same up to a permutation
of the coordinates. It has been studied in the coding theory community since
the 1990’s [73,77].

Group Action 3 (Group action for Linear Code Permutation Equivalence
problem (LCPE)). Let m, d be integers, m ≤ d, and let F be a field.

– Group G: GL(m,F) × Sd.
– Set S: GL(m, d,F).
– Action α: for A ∈ S, M = (N,P ) ∈ G, α(M,A) = NAP t.

The connection with coding theory is that A can be viewed as the generating
matrix of a linear code (a subspace of Fn

q ), and N is the change of basis matrix
taking care of different choices of bases. Then, P , as a permutation matrix, does
not change the weight of a codeword— that is a vector in F

n. (There are other
operations that preserve weights [78], but we restrict to consider this setting for
simplicity.) The GA-Inv problem for this group action is called the linear code
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permutation equivalence (LCPE) problem, which has been studied in the coding
theory community since the 1980’s [57], and we can dodge the only successful
attack [77] by restricting to self-dual codes.

The following group action induces a problem called the polynomial isomor-
phism problems proposed by Patarin [70], and has been studied in the multi-
variate cryptography community since then.

Group Action 4 (Group action for the Isomorphism of Quadratic Polynomials
with two Secrets problem (IQP2S)). Let m, d be integers and F a finite field.

– Group G: GL(d,F) × GL(m,F).
– Set S: The set of tuples of homogeneous polynomials (f1, f2, . . . , fm) for fi ∈

F[x1, x2, . . . , xd] the polynomial ring of d variables over F.
– Action α: for f = (f1, f2, . . . , fm) ∈ S, M = (C,D) ∈ G, C ′ = C−1, define

α(M,f) = (g1, g2, . . . , gm) by gi(x1, x2, . . . , xd) =
∑m

j=1 Di,jfi(x′
1, . . . , x

′
d),

where x′
i =

∑d
j=1 C ′

i,jxj .

The GA-Inv problem for this group action is essentially the isomorphism
of quadratic polynomials with two secrets (IQP2S) assumption. The alge-
braic interpretation here is that the tuple of polynomials (f1, . . . , fn) is
viewed as a polynomial map from F

n to F
m, by sending (a1, . . . , an) to

(f1(a1, . . . , an), . . . , fm(a1, . . . , an)). The changes of bases by C and D then are
naturally interpreted as saying that the two polynomial maps are essentially the
same.

Finally, the GA-Inv problem for the following group action originates from
computational group theory, and is basically equivalent to a bottleneck case of
the group isomorphism problem (i.e. p-groups of class 2 and exponent p) [59,69].

Group Action 5 (Group action for alternating matrix space isometry
(AMSI)). Let d,m be integers and F be a finite field.

– Group G: GL(m,F).
– Set S: the set of all linear spans A of d alternating2 matrices Ai of size m×m.
– Action α: for A = 〈A1, A2, . . . , Ad〉 ∈ S, C ∈ G, α(C,A) = 〈B1, B2, . . . , Bd〉

where Bi = CAiC
t for all i = 1, 2, . . . , d.

3.3 General Linear Actions on Tensors as One-Way Action
Candidates

The Central Position of 3-tensor Isomorphism. As mentioned, the four
problems, linear code permutation equivalence (LCPE), isomorphism of polyno-
mials with two secrets (IQP2S), and alternating matrix space isometry (AMSI),
have been studied in coding theory, multivariate cryptography, and computa-
tional group theory, respectively, for decades. Only recently we begin to see
connections among these problems which go through the 3TI problem thanks to
the work of Futorny, Grochow, and Sergeichuk [39]. We spell out this explicitly.
2 An m × m matrix A is alternating if for any v ∈ F

n, vtAv = 0.
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Observation 2 ([39,43]). IQP2S, AMSI, GI, and LCPE reduce to 3TI.

Proof. Note that the set underlying Group Action 5 consists of d-tuples of m×m
alternating matrices. We can write such a tuple (A1, . . . , Ad) as a 3-tensor A
of dimension m × m × d, such that Ai,j,k = (Ak)i,j . Then AMSI asks to test
whether two such 3-tensors are in the same orbit under the action of (M,N) ∈
GL(m,F)×GL(d,F) by sending a 3-tensor A to the result of applying (M,M,N)
to A as in the definition of GLAT.

Such an action belongs to the class of actions on 3-tensors considered in [39]
under the name linked actions. This work constructs a function r from 3-tensors
to 3-tensors, such that A and B are in the same orbit under GL(m,F)×GL(d,F)
if and only if r(A) and r(B) are in the same orbit under GL(m,F)×GL(m,F)×
GL(d,F). This function r can be computed efficiently [39, Remark 1.1].

This explains the reduction of the isomorphism problem for Group Action 5
to the 3-tensor isomorphism problem. For Group Action 4, by using the classi-
cal correspondence between homogeneous quadratic polynomials and symmetric
matrices, we can cast it in a form similar to Group Action 5, and then apply the
above reasoning using again [39].

Finally, to reduce the graph isomorphism problem (GI) and the linear code
permutation equivalent problem (LCPE) to the 3-tensor isomorphism problem,
we only need to take care of LCPE as GI reduces to LCPE [73]. To reduce LCPE
to 3TI, we can reduce it to the matrix Lie algebra conjugacy problem by [43],
which reduces to 3TI by [39] along the linked action argument, though this time
linked in a different way. ��

This put 3TI at a central position of these difficult isomorphism testing prob-
lems arising from multivariate cryptography, computational group theory, and
coding theory. In particular, from the worst-case analysis viewpoint, 3TI is the
hardest problem among all these. This also allows us to draw experiences from
previous research in various research communities to understand 3TI.

Current Status of the Tensor Isomorphism Problem and Its One-Way
Action Assumption. We now explain the current status of the tensor iso-
morphism problem to support it as a strong candidate for the OWA assump-
tion. Because of the connections with isomorphism of polynomials with two
secrets (IQP2S) and alternating matrix space isometry (AMSI), we shall also
draw results and experiences from the multivariate cryptography and the com-
putational group theory communities.

For convenience, we shall restrict to finite fields Fq, though other fields are
also interesting. That is, we consider the action of GL(�,Fq) × GL(n,Fq) ×
GL(m,Fq) on T ∈ T(�, n,m,Fq). Without loss of generality, we assume � ≥
n ≥ m. The reader may well think of the case when � = n = m, which seems
to be the most difficult case in general. Correspondingly, we will assume that
the instances for IQP2S are m-tuples of homogeneous quadratic polynomials
in n variables over Fq, and the instances for AMSI are m-tuples of alternating
matrices of size n × n over Fq.
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To start, we note that 3TI over finite fields belongs to NP ∩ coAM, following
the same coAM-protocol for graph isomorphism.

For the worst-case time complexity, it can be solved in time qm2 ·
poly(�,m, n, log q), by enumerating GL(m, q), and then solving an instance of
the matrix tuple equivalence problem, which asks to decide whether two matrix
tuples are the same under the left-right multiplications of invertible matri-
ces. This problem can be solved in deterministic polynomial time by reducing
[50] to the module isomorphism problem, which in turn admits a deterministic
polynomial-time solution [18,25,51]. It is possible to reduce the complexity to
qcm2 · poly(�,m, n, log q) for some constant 0 < c < 1, by using some dynamic
programming technique as in [59]. But in general, the worst-case complexity
could not go beyond this at present, which matches the experiences of IQP2S
and AMSI as well; see [50].

For the average-case time complexity, it can be solved in time qO(m) ·
poly(�, n), by adapting the average-case algorithm for AMSI in [59]. This also
matches the algorithm for IQP2S which has an average-case running time of
qO(n) [15].

For practical algorithms, we draw experiences from the computational group
theory community and the multivariate cryptography community. In the com-
putational group theory community, the current status of the art is that one
can hope to handle 10-tuples of alternating matrices of size 10 × 10 over F13,
but absolutely not, for 3-tensors of local dimension say 100, even though in this
case the input can still be stored in only a few megabytes.3 In the multivariate
cryptography community, the Gröbner basis technique [35] and certain combi-
natorial technique [15] have been studied to tackle IQF2S problem. However,
these techniques are not effective enough to break it [15]4.

For quantum algorithms, 3TI seems difficult for the hidden subgroup app-
roach, due to the reasons presented in Sect. 3.1.

Finally, let us also elaborate on the prospects of using those techniques for
graph isomorphism [5] and for isomorphism of quadratic polynomials with one
secret [50] to tackle 3TI. In general, the difficulties of applying these techniques
seem inherent.

We first check out the graph isomorphism side. Recall that most algorithms
for graph isomorphism, including Babai’s [5], are built on two families of tech-
niques: group-theoretic, and combinatorial. To use the group-theoretic tech-
niques, we need to work with matrix groups over finite fields instead of per-
mutation groups. Algorithms for matrix groups over finite fields are in general
far harder than those for permutation groups. For example, the basic member-
ship problem is well-known to be solvable by Sims’s algorithm [80], while for

3 We thank James B. Wilson, who maintains a suite of algorithms for p-group isomor-
phism testing, for communicating this insight to us from his hands-on experience.
We of course maintain responsibility for any possible misunderstanding, or lack of
knowledge regarding the performance of other implemented algorithms.

4 In particular, as pointed out in [15], one needs to be careful about certain claims
and conjectures made in some literature on this research line.
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matrix groups over finite fields of odd order, this was only recently shown to
be efficiently solvable with a number-theoretic oracle and the algorithm is much
more involved [6]. To use the combinatorial techniques, we need to work with
linear or multilinear structures instead of combinatorial structures. This shift
poses severe limitations on the use of most combinatorial techniques, like indi-
vidualizing a vertex. For example, it is quite expensive to enumerate all vectors
in a vector space over a finite field, while this is legitimate to go over all elements
in a set.

We then check out the isomorphism of quadratic polynomials with one secret
side. The techniques for settling this problem as in [50] are based on those devel-
oped for the module isomorphism problem [18,25,51], involutive algebras [84],
and computing algebra structures [38]. The starting point of that algorithm
solves an easier problem, namely testing whether two matrix tuples are equiv-
alent under the left-right multiplications. That problem is essentially linear, so
the techniques for the module isomorphism problem can be used. After that we
need to utilize the involutive algebra structure [84] based on [38]. However, for
3TI, there is no such easier linear problem to start with, so it is not clear how
those techniques can be applied.

To summarize, the 3-tensor isomorphism problem is difficult from all the
four types of algorithms mentioned in Sect. 3.1. Furthermore, the techniques
in the recent breakthrough on graph isomorphism [5], and the solution of the
isomorphism of quadratic polynomials with one secret [50], seem not applicable
to this problem. All these together support this problem as a strong candidate
for the one-way assumption.

Choices of the Parameters. Having reviewed the current status of the tensor
isomorphism problem, we lay out some principles of choosing the parameters for
the security, namely the order k, the dimensions di, and the underlying field F.

Let us first explain why we focus on k = 3, namely 3-tensors. Of course,
k needs to be ≥3 as most problems about 2-tensors, i.e. matrices, are easy.
Recently, Grochow and the third author show that k-tensor isomorphism reduces
to 3-tensor isomorphism [44]. This justifies our choice of k = 3 from the worst-
case analysis viewpoint. From the practical viewpoint though, it will be inter-
esting to investigate into the tradeoff between the local dimensions di and k.

After fixing k = 3, it is suggested to set d1 = d2 = d3. This is because
of the argument when examining the worst-case time complexity in the above
subsection.

Then for the underlying finite field Fq, the intuition is that setting q to be a
large prime would be more secure. Note that we can still store an exponentially
large prime using polynomially-many bits. This is because, if q is small, then
the “generic” behaviors as ensured by the Lang–Weil type theorems [56] may
not be that generic. So some non-trivial properties may arise which then help
with isomorphism testing. This is especially important for the pseudorandom
assumption to be discussed Sect. 4. We then examine whether we want to set q
to be a large prime, or a large field with a small characteristic. The former one is
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preferred, because the current techniques in computer algebra and computational
group theory, cf. [50] and [6], can usually work efficiently with large fields of small
characteristics.

However, let us emphasize that even setting q to be a constant, we do not have
any concrete evidence for breaking GLAT as a one-way group action candidate.
Furthermore, there are certain problems that are easy over large fields, while
NP-hard over small fields; one such example is the maximum rank problem for
matrix spaces [21]. To summarize, the above discussion on the field size issue is
rather hypothetical and conservative.

4 The Pseudorandom Action Assumption

In this section, we introduce the new security assumption for group actions,
namely pseudorandom group actions, which generalizes the Decisional Diffie-
Hellman assumption. In Sect. 5, we shall study the prospect of using the general
linear action on tensors as a candidate for this assumption. In the full version
of this paper [53], the reader can find the cryptographic uses of this assumption
including signatures and pseudorandom functions.

Definition 6. Let G be a group family as specified before. Choose public param-
eters params = (G,S, α) to be G(1λ). Sample s ← S and g ← G. The group
action pseudorandomness (GA-PR) problem is that given (s, t), where t = α(g, s)
or t ← S, decide which case t is sampled from.

Definition 7 (Pseudorandom group action game). The pseudorandom
group action game is the following game between a challenger and an adver-
sary A:

– The challenger and the adversary A agree on the public parameters params =
(G,S, α) by choosing it to be G(1λ) for some security parameter λ.

– Challenger samples random bit b ∈ {0, 1}, s ← S, g ← G, and chooses t ← S
if b = 0 and t = g · s if b = 1.

– Give (s, t) to A who produces a bit a ∈ {0, 1}.
– We define the output of the game GA-PRA,G(1λ) = 1 and say A wins the

game if a = b.

Definition 8. We say that the group-action pseudorandomness (GA-PR) prob-
lem is hard relative to G, if for any polynomial-time quantum algorithm A,

Pr[GA-PRA,G(1λ) = 1] = negl(λ).

Some remarks on this definition are due here.

For Transitive and Almost Transitive Actions. In the case of transitive group
actions, as an easy corollary of Observation 1, we have the following.

Observation 3. GA-PR problem is hard, if the group action α is transitive.
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Indeed, when α is transitive, the two distributions in Definition 6 are the
same, so in fact statistically impossible to distinguish.

Slightly generalizing the transitive case, it is not hard to see that GA-PR prob-
lem is hard, if there exists a “dominant” orbit O ⊆ S. Intuitively, this means that
O is too large such that random s and t from S would both lie in O with high
probability. For example, consider the action of GL(n,F) × GL(n,F) on M(n,F)
by the left and right multiplications. The orbits are determined by the ranks
of matrices in M(n,F), and the orbit of matrices of full-rank is dominant. But
again, such group actions do not seem very useful for cryptographic purposes.
Indeed, we require the orbit structure to satisfy that random s and t do not fall
into the same orbit. Let us formally put forward this condition.

Definition 9. We say that a group action α of G on S does not have a dominant
orbit, if

Pr
s,t←S

[s, t lie in the same orbit] = negl(λ).

This definition is closely related to a classical question in geometry, namely
classifying representations with a Zariski-dense orbit. When the group is a con-
nected linear algebraic group over C and the representation is irreducible, this
question has been settled by Sato and Kimura [76].

We now put forward a key assumption.

Assumption 2 (Pseudorandom group action (PRA) assumption). There exists
an G outputting a group action without a dominant orbit, relative to which the
GA-PR problem is hard.

The name comes from the fact that the PRA assumption says ‘in spirit’ that
the function Γ : G × S → S × S given by Γ (g, s) = (g · s, s) is a secure PRG.
Here, it is only ‘in spirit’, because the PRA assumption does not include the
usual expansion property of the PRG. Rather, it only includes the inexistence
of a dominant orbit.

The applications of the PRA assumption including more efficient quantum-
secure digital signature schemes and pseudorandom function constructions are
given in the full version of this paper [53].

Subsuming the Classical Diffie-Hellman Assumption. We now formulate the clas-
sical decisional Diffie-Hellman (DDH) assumption as an instance of the pseudo-
random group action assumption. To see this, we need the following definition.

Definition 10. Let α : G × S → S be a group action. The d-diagonal action of
α, denoted by α(d), is the group action of G on Sd, the Cartesian product of d
copies of S, where g ∈ G sends (s1, . . . , sd) ∈ Sd to (g · s1, . . . , g · sd).

The following observation shows that the classical DDH can be obtained by
instantiating GA-PR with a concrete group action.

Observation 4. Let α be the group action in Group Action 2. The classi-
cal Decisional Diffie-Hellman assumption is equivalent to the PRA assumption
instantiated with α(2), the 2-diagonal action of α.
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Proof. Recall from Group Action 2 defines an action α of G ∼= Z
∗
p on S = Cp\{id}

where Cp is a cyclic group of order p. The 2-diagonal action α(2) is defined by
a ∈ Z

∗
p sending (s, t) ∈ S × S to (sa, ta). Note that while α is transitive, α(2) is

not, and in fact it does not have a dominant orbit.
PRA instantiated with α(2) then asks to distinguish between the follow-

ing two distributions. The first distribution is ((s, t), (s′, t′)) where s, t, s′, t′ ∈R

S. Since α is transitive, by Observation 1, this distribution is equivalent to
((s, sa), (sb, sc)), where s ∈R S and a, b, c ∈R G. The second distribution is
((s, t), (sb, tb)), where s, t ∈R S, and b ∈R G. Again, by Observation 1, this
distribution is equivalent to ((s, sa), (sb, sab)), where s ∈R S, and a, b ∈R G.

We then see that this is just the Decisional Diffie-Hellman assumption5. ��
As will be explained in Sect. 5.1, the pseudorandom assumption is a strong

one, in a sense much stronger than the one-way assumption. Therefore, Observa-
tion 4 is important because, by casting the classical Diffie-Hellman assumption
as an instance of the pseudorandom assumption, it provides a non-trivial and
well-studied group action candidate for this assumption.

Of course, the DDH assumption is no longer secure under quantum attacks.
Recently, this assumption in the context of supersingular isogeny based cryp-
tography has been proposed by De Feo and Galbraith in [36]. We will study
the possibility for the 3-tensor isomorphism problem as a pseudorandom group
action candidate in Sect. 5

The d-Diagonal Pseudorandomness Assumption. Motivated by Observation 4,
it will be convenient to specialize GA-PR to diagonal actions, and make the
following assumption.

Definition 11. The d-diagonal pseudorandomness (GA-PR(d)) problem for a
group action α, is defined to be the pseudorandomness problem for the d-diagonal
group action α(d).

We emphasize that GA-PR(d) is just GA-PR applied to group actions of a
particular form, so a special case of GA-PR. Correspondingly, we define PRA(d)
to be the assumption that GA-PR(d) is hard relative to some G.

Given a group action α : G × S → S, let Fα = {fg : S → S | g ∈ G, fg(s) =
g · s}. It is not hard to see that PRA(d) is equivalent to say that Fα is a d-query
weak PRF in the sense of Maurer and Tessaro [62]. This gives a straightforward
cryptographic use of the PRA(d) assumption.

Given d, e ∈ Z
+, d < e, it is clear that PRA(e) is no weaker than PRA(d).

Indeed, given an algorithm A that distinguishes between

((s1, . . . , sd), (g · s1, . . . g · sd)) and ((s1, . . . , sd), (t1, . . . , td)),

where si, tj ← S, and g ← G, one can use A to distinguish between
((s1, . . . , se), (g ·s1, . . . g ·se)) and ((s1, . . . , se), (t1, . . . , te)), by just looking at the
5 Here we use the version of DDH where the generator of the cyclic group is ran-

domly chosen as also used in [27]. A recent discussion on distinction between fixed
generators and random generators can be found in [9].
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first d components in each tuple. It is an interesting question whether PRA(e) is
strictly stronger than PRA(d). Note though that in the following, we will exhibit
some group actions, for which PRA(d) does not hold for large enough d.

5 General Linear Actions on Tensors: The Pseudorandom
Action Assumption

5.1 Requirements for a Group Action to Be Pseudorandom

Clearly, a first requirement for a group action to be pseudorandom is that it
should be one-way. Further requirements naturally come from certain attacks.
We have devised the following attack strategies. These attacks suggest that the
pseudorandom assumption is closely related to the orbit closure intersection
problem which has received considerable attention recently.

Isomorphism Testing in the Average-Case Setting. To start with, we consider
the impact of an average-case isomorphism testing algorithm on the pseudoran-
dom assumption. Recall that for a group action α : G × S → S, an average-case
algorithm is required to work for instances (s, t) where s ← S and t is arbi-
trary. Let n be the input size to this algorithm. The traditional requirement for
an average-case algorithm is that it needs to work for all but at most 1/poly(n)
fraction of s ∈ S, like such algorithms for graph isomorphism [7] and for alternat-
ing matrix space isometry [59]. However, in order for such an algorithm to break
the pseudorandom assumption, it is enough that it works for a non-negligible,
say 1/poly(n), fraction of the instances. This is quite relaxed compared to the
traditional requirement.

The Supergroup Attack. For a group action α : G × S → S, a supergroup action
of α is another group action β : H ×S → S, such that (1) G is a subgroup of H,
(2) the restriction of β to G, β|G, is equal to α. If it further holds that (3.1) the
isomorphism problem for H is easy, and (3.2) β is not dominant, we will then
have the following so-called supergroup attack. Give input s, t ∈ S, the adversary
for the GA-PR problem of α will use the solver for the isomorphism problem for
H to check if s, t are from the same orbit induced by H and return 1 if they
are from the same orbit and 0 otherwise. If s, t are from the same orbit induced
by G, the adversary always returns the correct answer as G is a subgroup of H.
In the case that s, t are independently chosen from S, by the fact that β is not
dominant, the adversary will return the correct answer 0 with high probability.

The Isomorphism Invariant Attack. Generalizing the condition (3) above, we can
have the following more general strategy as follows. We now think of G and H as
defining equivalence relations by their orbit structures. Let ∼G (resp. ∼H) be the
equivalence relation defined by G (resp. H). By the conditions (1) and (2), we
have (a) ∼H is coarser than ∼G. By the condition (3.1), we have (b) ∼H is easy to
decide. By the condition (3.2), we have (c) ∼H have enough equivalence classes.
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Clearly, if a relation ∼, not necessarily defined by a supergroup H, satisfies (a),
(b), and (c), then ∼ can also be used to break the PRA assumption for G.

Such an equivalence relation is more commonly known as an isomorphism
invariant, namely those properties that are preserved under isomorphism. The
sources of isomorphism invariants can be very versatile. The supergroup attack
can be thought of as a special case of category where the equivalence relation
is defined by being isomorphic under a supergroup action. Another somewhat
surprising and rich “invariant” comes from geometry, as we describe now.

The Geometric Attack. In the case of matrix group actions, the underlying vector
spaces usually come with certain geometry which can be exploited for the attack
purpose. Let α be a group action of G on V ∼= F

d. For an orbit O ⊆ V , let
its Zariski closure be O. Let ∼ be the equivalence relation on V , such that for
s, t ∈ O, s ∼ t if and only if Os ∩ Ot �= ∅. It is obvious that ∼ is a coarser
relation than ∼G. Furthermore, except some degenerate settings when m or n
are very small, there would be enough equivalence classes defined by ∼, because
of the dimension reason. So (a) and (c) are satisfied. Therefore, if we could test
efficiently whether the orbit closures of s and t intersect, (b) would be satisfied
and we could break the PRA for α. This problem, known as the orbit closure
intersection problem, has received considerable attention recently.

Another straightforward approach based on this viewpoint is to recall that
the geometry of orbit closures is determined by the ring of invariant polynomials
[67]. More specifically, the action of G on V induces an action on F[V ], the ring of
polynomial functions on V . As V ∼= F

d, F[V ] ∼= F[x1, . . . , xd]. Those polynomials
invariant under this induced action form a subring of F[V ], denoted as F[V ]G.
If there exists one easy-to-compute, non-trivial, invariant polynomial f from
F[V ]G, we could then use f to evaluate on the input instances and distinguish
between the random setting (where f is likely to evaluate differently) and the
pseudorandom setting (where f always evaluates the same).

Example Attacks. We now list some examples to illustrate the above attacks.

An Example of Using the Isomorphism Invariant Attack. We first consider the
isomorphism invariant attack in the graph isomorphism case. Clearly, the degree
sequence, consisting of vertex degrees sorted from large to small, is an easy to
compute isomorphism invariant. A brief thought suggests that this invariant is
already enough to break the pseudorandom assumption for graph isomorphism.

An Example of Using the Geometric Attack. We consider a group action similar
to the 3-tensor isomorphism case (Group Action 1), inspired by the quantum
marginal problem [19]. Given a 3-tensor of size � × n × m, we can “slice” this
3-tensor according to the third index to obtain a tuple of m matrices of size �
by n. Consider the action of G = O(�,F) × O(n,F) × SL(m,F) on matrix tuples
M(� × n,F)m, where the three direct product factors act by left multiplication,
right multiplication, and linear combination of the m components, respectively.
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For a matrix tuple (A1, . . . , Am) where Ai ∈ M(�×n,F), form an �n×m matrix
A where the i-th column of A is obtained by straightening Ai according to
columns. Then AtA is an m by m matrix. The polynomial f = det(AtA) is then a
polynomial invariant for this action. For this note that the group O(�,F)×O(n,F)
can be embedded as a subgroup of O(�n,F), so its action becomes trivial on AtA.
Then the determinant is invariant under the SL(m,F). When m < �n, which is
the interesting case, det(AtA) is non-zero. It follows that we have a non-trivial,
easy-to-compute, polynomial invariant which can break the PRA assumption for
this group action.

An Example of Using the Supergroup Attack. We then explain how the super-
group attack invalidates the PRA(d) assumption for certain families of group
actions with d > 1.

Let α be a linear action of a group G on a vector space V ∼= F
N . We show

that as long as d > N , PRA(d) does not hold. To see this, the action of G on
V gives a homomorphism φ from G to GL(V ) ∼= GL(N,F). For any g ∈ G, and
v1, . . . , vd ∈ V , we can arrange an N × d matrix S = [v1, . . . , vd], such that T =
[φ(g)v1, . . . , φ(g)vd] = φ(g)[v1, . . . , vd]. On the other hand, for u1, . . . , ud ∈ V ,
let T ′ = [u1, . . . , ud]. Let us consider the row spans of S, T and T ′, which are
subspaces of Fd of dimension ≤ N < d. Clearly, the row spans of S and T are
the same. On the other hand, when ui’s are random vectors, the row span of
T ′ is unlikely to be the same as that of S. This gives an efficient approach to
distinguish between T and T ′.

We can upgrade the above attack even further as follows. Let α be a linear
action of G on the linear space of matrices M = M(m × n,F). Recall that
GL(m,F) × GL(n,F) acts on M by left and right multiplications. Suppose α
gives rise to a homomorphism φ : G → GL(m,F) × GL(n,F). For g ∈ G, if
φ(g) = (A,B) ∈ GL(m,F) × GL(n,F), we let φ1(g) := A ∈ GL(m,F), and
φ2(g) = B ∈ GL(n,F). We now show that when d > (m2 + n2)/(mn), PRA(d)
does not hold for α. To see this, for any g ∈ G, and S = (A1, . . . , Ad) ∈ M(m ×
n,F)d, let

T = (φ1(g)tA1φ2(g), . . . , φ1(g)tAdφ2(g)).

On the other hand, let T ′ = (B1, . . . , Bd) ∈ Md. Since dim(S) = dim(GL(m ×
n,F)d) = mnd > m2 +n2 = dim(GL(m,F)×GL(n,F)), α does not have a dom-
inant orbit (cf. Definition 9) This means that, when Bi’s are sampled randomly
from S, T ′ is unlikely to be in the same orbit as S. Now we use the fact that, the
isomorphism problem for the action of GL(m,F) × GL(n,F) on S can be solved
in deterministic polynomial time [50, Proposition 3.2]. This gives an efficient
approach to distinguish between T and T ′.

Note that the set up here captures the Group Actions 3 and 4 in Sect. 3.2.
For example, suppose for Group Action 3, we consider linear codes which are
n/2-dimensional subspaces of Fn

q . Then we have m = n/2, so PRA(3) for this
action does not hold, as 3 > (m2 + n2)/(mn) = 5/2.

On the other hand, when d ≤ (m2 + n2)/(mn), such an attack may fail,
simply because of the existence of a dominant orbit.
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5.2 The General Linear Action on Tensors as a Pseudorandom
Action Candidate

We have explained why the general linear action on tensors is a good candidate
for the one-way assumption in Sect. 3. We now argue that, to the best of our
knowledge, it is also a candidate for the pseudorandom assumption.

We have described the current status of average-case algorithms for 3-tensor
isomorphism problem in Sect. 3.3. One may expect that, because of the relaxed
requirement for the average-case setting as discussed in Sect. 5.1, the algorithms
in [15,59] may be accelerated. However, this is not the case, because these algo-
rithms inherently enumerate all vectors in F

n
q , or improve somewhat by using

the birthday paradox.
We can also explain why the relaxed requirement for the average-case setting

is still very difficult, by drawing experiences from computational group the-
ory, because of the relation between GLAT and Group Action 5, which in turn
is closely related to the group isomorphism problem as explained in Sect. 3.2.
In group theory, it is known that the number of non-isomorphic p-groups of
class 2 and exponent p of order p� is bounded as p

2
27 �3+Θ(�2) [12]. The relaxed

average-case requirement in this case then asks for an algorithm that could test
isomorphism for a subclass of such groups containing non-isomorphic groups as
many as p

2
27 �3+Θ(�2)/poly(�, log p) = p

2
27 �3+Θ(�2). This is widely regarded as a

formidable task in computational group theory: at present, we only know of a
subclass of such groups with pO(�2) many non-isomorphic groups that allows for
an efficient isomorphism test [58].

The supergroup attack seems not useful here. The group G = GL(�,F) ×
GL(n,F) × GL(m,F) naturally lives in GL(�nm,F). However, by Aschbacher’s
classification of maximal subgroups of finite classical groups [2], there are few
natural supergroups of G in GL(�nm,F). The obvious ones include subgroups
isomorphic to GL(�n,F) × GL(m,F), which is not useful because it has a domi-
nant orbit (Definition 9).

The geometric attack seems not useful here either. The invariant ring here
is trivial [31]6. For the orbit closure intersection problem, despite some recent
exciting progress in [1,19,20,29,52], the current best algorithms for the corre-
sponding orbit closure intersection problems still require exponential time.

Finally, for the most general isomorphism invariant attack, the celebrated
paper of Hillar and Lim [49] is just titled “Most Tensor Problems Are NP-
Hard.” This suggests that getting one easy-to-compute and useful isomorphism
invariant for GLAT is already a challenging task. Here, useful means that the
invariant does not lead to an equivalence relation with a dominant class in the
sense of Definition 9.

6 If instead of GL(�,F) × GL(n,F) × GL(m,F) we consider SL(�,F) × SL(n,F) ×
SL(m,F), the invariant ring is non-trivial – also known as the ring of semi-invariants
for the corresponding GL action – but highly complicated. When � = m = n, we do
not even know one single easy-to-compute non-trivial invariant. It further requires
exponential degree to generate the whole invariant ring [30].
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The above discussions not only provide evidence for GLAT to be pseudoran-
dom, but also highlight how this problem connects to various mathematical and
computational disciplines. We believe that this could serve a further motivation
for all these works in various fields.
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Abstract. Recent research in quantum cryptography has led to the
development of schemes that encrypt and authenticate quantum mes-
sages with computational security. The security definitions used so far in
the literature are asymptotic, game-based, and not known to be compos-
able. We show how to define finite, composable, computational security
for secure quantum message transmission. The new definitions do not
involve any games or oracles, they are directly operational: a scheme
is secure if it transforms an insecure channel and a shared key into an
ideal secure channel from Alice to Bob, i.e., one which only allows Eve to
block messages and learn their size, but not change them or read them.
By modifying the ideal channel to provide Eve with more or less capa-
bilities, one gets an array of different security notions. By design these
transformations are composable, resulting in composable security.

Crucially, the new definitions are finite. Security does not rely on the
asymptotic hardness of a computational problem. Instead, one proves a
finite reduction: if an adversary can distinguish the constructed (real)
channel from the ideal one (for some fixed security parameters), then
she can solve a finite instance of some computational problem. Such a
finite statement is needed to make security claims about concrete imple-
mentations.

We then prove that (slightly modified versions of) protocols proposed
in the literature satisfy these composable definitions. And finally, we
study the relations between some game-based definitions and our com-
posable ones. In particular, we look at notions of quantum authenticated
encryption and QCCA2, and show that they suffer from the same issues
as their classical counterparts: they exclude certain protocols which are
arguably secure.

1 Introduction

At its core, a security definition is a set of mathematical conditions, and a
security proof consists in showing that these conditions hold for a given pro-
tocol. Given various security definitions, one may analyze which are stronger
and weaker by proving reductions or finding separating examples. This how-
ever does not tell us which definitions one should use, since too weak definitions
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may have security issues and too strong definitions may exclude protocols that
are arguably secure. For example, IND-CCA2 is often considered an unnecessarily
strong security definition, since taking a scheme which is IND-CCA2 and append-
ing a bit to the ciphertext results in a new encryption scheme that is arguably
as secure as the original scheme, but does not satisfy IND-CCA2 [15,17]. In this
work we take a more critical approach to defining security. We ask what crite-
ria a security definition needs to satisfy that are both necessary and sufficient
conditions to call a protocol “secure”. We then apply them to the problem of
encrypting and authenticating quantum messages with computational security
in the symmetric-key setting.

1.1 A Security Desideratum

Operational Security. Common security definitions for encryption and authen-
tication found in the literature are game-based, i.e., they require that an adver-
sary cannot win a game such as guessing what message has been encrypted
given access to certain oracles, see, e.g., [8] and [24] for comparisons of various
such games in the public-key and private-key settings, respectively. These have
been adapted for transmitting quantum messages: a definition for QCPA has
been proposed in [11], QCCA1 in [1], and QCCA2 as well as notions of quantum
unforgeability and quantum authenticated encryption in [2]. These are just some
of the security games one can imagine—in the classical, symmetric-key setting,
[24] analyzes 18 different security notions. A natural question is then to ask
which of these games are the relevant ones, for which ones is it both necessary
and sufficient that an adversary cannot win them. And the general answer is:
we do not know.

Through such cryptographic protocols one wishes to prevent an adversary
from learning some part of a message or modifying a message undetected. But
it is generally unclear how such game-based security definitions relate to these
operational notions—we refer to [32] for a more in-depth critique of game-based
security. Instead, one should directly define security operationally.1 In this work
we follow the constructive paradigm of [28,30,31], and define a protocol to be
secure if it constructs a channel with the desired properties, e.g., only leaks the
message size or only allows the adversary to block the message, but not change
it or insert new messages.

Composable Security. A second drawback of the definitions proposed so far
in the literature for computational security of quantum message transmission
[1,2,11] is that they are not (proven to be) composable. A long history of work
on composable security has shown that analyzing a protocol in an isolated set-
ting does not imply that it is actually secure when one considers the environ-
ment in which it is used. When performing such a composable security analysis,

1 Note that once a game-based definition has been proven to capture operational
notions such as confidentiality or authenticity (e.g., via a reduction), then the game-
based criterion may become a benchmark for designing schemes with the desired
security; see the discussion in Sect. 1.6.
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one sometimes finds that the definitions used are inappropriate but the proto-
cols are actually secure like for quantum key distribution [10,25,39], that the
definitions are still secure (up to a loss of security parameter) like for delegated
quantum computation [18], or that not only the definitions but also the proto-
cols are insecure like in relativistic and bounded storage bit commitment and
(biased) coin tossing [44].2 It is thus necessary for a protocol to be proven to
satisfy a composable security definition before it may be considered (provably)
secure and safely used in an arbitrary environment.

Finite Security. A third problem with the aforementioned security definitions
is that they are all asymptotic. This means that the protocols have a security
parameter k ∈ N—formally, one considers a sequence of protocols {Πk}k∈N—
and security is defined in the limit when k → ∞. An implementation of a
protocol will however always be finite, e.g., the honest players choose a specific
parameter k0 which they consider to be sufficient and run Πk0 . A security proof
for k → ∞ does not tell us anything about security for any specific parameter k0
and thus does not tell us anything about the security of Πk0 , which is run by the
honest players. To resolve this issue, some works consider what is called concrete
security [7], i.e., instead of hiding parameters in O-notation, security bounds and
reductions are given explicitly. This is a first step at obtaining finite security,
but it still considers the security of a sequence {Πk}k∈N instead of security of
the individual elements Πk0 in this sequence. For example, one still considers
adversaries that are polynomial in k, simulators that must be efficient in k, and
errors that are negligible in k. But the security definition of some Πk0 should not
depend on any other elements in the sequence, on how the sequence is defined
or whether it is defined at all. Hence notions such as poly-time, efficiency, or
negligibility should not be part of a security definition for some specific Πk0 . We
call the security paradigm that analyzes individual elements Πk0 finite security,
and show in this work how to define it for computational security of quantum
message transmission.

1.2 Overview of Results

Our contributions are threefold. We first provide definitions for encryption and
authentication of quantum messages that satisfy the desideratum expressed
above. In particular, we show how to define finite security in the computational
case. In Sect. 1.3 below we explain the intuition behind this security paradigm.

We then show that (slightly modified) protocols from the literature [1,2]
satisfy these definitions. These protocols use the quantum one-time pad and
quantum information-theoretic authentication as subroutine [6,36], but run them
with keys that are only computationally secure to encrypt multiple messages.
We explain the constructions and what is achieved in more detail in Sect. 1.4.
2 Note that a negative result in a composable framework only proves that a protocol

does not construct the desired ideal functionality. This does not exclude that the
protocol may construct some other ideal functionality or may be secure given some
additional set-up assumptions.
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Now that we have security definitions that satisfy our desideratum, we revisit
some game-based definitions from the literature, and compare them to our own
notions of security. An overview of these results is given in Sect. 1.5.

1.3 Finite Computational Security

In traditional asymptotic security, a cryptographic protocol is parameterized by
a single value k ∈ N—any other parameters must be expressed as a function
of k—and one studies a sequence of objects {Πk}k∈N. In composable security,
one uses this to define a parameterized real world R = {Rk}k∈N and ideal world
S = {Sk}k∈N, and argues that no polynomial distinguisher D = {Dk}k∈N can
distinguish one from the other with non-negligible advantage. At first glance
the notions of polynomial distinguishers and negligible functions might seem
essential, because an unbounded distinguisher can obviously distinguish the two,
and without a notion of negligibility, how can one define what is a satisfactory
bound on the distinguishability.

The latter problem is the simpler to address: instead of categorizing distin-
guishability as black or white (negligible or not), we give explicit bounds. The
former issue is resolved by observing that we never actually prove that the real
and ideal world are indistinguishable (except in the case of information-theoretic
security), since in most cases that would amount to solving a problem such as
P �= NP. What one actually proves is a reduction, which is a finite statement,
not an asymptotic one. More precisely, one proves that if Dk can distinguish
Rk from Sk with advantage pk, then some (explicit) D′

k can solve some problem
Wk with probability p′

k—if one believes that Wk is asymptotically hard to solve,
then this implies that D cannot distinguish R from S.

A finite security statement stops after the reduction. We prove that for any
k0 and any Dk0 ,

dDk0 (Rk0 ,Sk0) ≤ f(Dk0), (1)

where dDk0 (·, ·) denotes the advantage Dk0 has in distinguishing two given sys-
tems, and f(·) is some arbitrary function, e.g., the probability that D′

k0
(which

is itself some function of Dk0) can solve some problem Wk0 .
Equation 1 does not require systems to be part of a sequence with a single

security parameter k ∈ N. There may be no security parameter at all, or multiple
parameters. Information-theoretic security corresponds to the special case where
one can prove that f(Dk0) is small for all Dk0 .

1.4 Constructing Quantum Channels

As mentioned in Sect. 1.1, we use the Abstract and Constructive Cryptography
(AC) framework of Maurer and Renner [28,30,31] in this work. To define the
security of a message transmission protocol, we need to first define the type of
channel we wish to achieve—for simplicity, we always consider channels going
from Alice to Bob.



286 F. Banfi et al.

The strongest channel we construct in this work is an ordered secure quan-
tum channel, OSC, which allows Eve to decide which messages that Alice sent
will be delivered to Bob and which ones get discarded. But it does not reveal
any information about the messages (except their size and number) to Eve and
guarantees that the delivered messages arrive in the same order in which they
were sent. A somewhat weaker channel, a secure channel SC, also allows Eve to
block or deliver each message, but additionally allows her to jumble their order
of arrival at Bob’s.

Our first result shows that a modified version of a protocol from [2] constructs
the strongest channel, OSC, from an insecure channel and a short key that is
used to select a function from a pseudo-random family (PRF). Security holds
for any distinguisher that cannot distinguish the output of the PRF from the
output of a uniform function. We also show how one can construct OSC from
SC by simply appending a counter to the messages.

The two channels described above are labeled “secure”, because they are both
confidential (Eve does not learn anything about the messages) and authentic (Eve
cannot change or insert any messages). If we are willing to sacrifice authenticity,
we can define weaker channels that allow Eve to modify or insert messages in spe-
cific ways. We define a non-malleable confidential channel,NMCC—which does not
allow Eve to change a message sent by Alice, but does allow her to insert a message
of her choice—and a Pauli-malleable channel, PMCC—which allows Eve to apply
bit and phase flips to Alice’s messages or insert a fully mixed state.

Our second construction modifies a protocol from [1] to construct PMCC
from an insecure channel and a short key that is used to select a function from
a pseudo-random family (PRF). Here too, security holds for any distinguisher
that cannot distinguish the PRF from uniform.

1.5 Comparison to Game-Based Definitions

In the last part of this work, we relate existing game-based security definitions
for quantum encryption with our new proposed security definitions phrased in
constructive cryptography. More concretely, we focus on the notions of quantum
ciphertext indistinguishability under adaptive chosen-ciphertext attack (QCCA2)
and quantum authenticated encryption (QAE), both introduced in [2].

We first note that encryption schemes are defined to be stateless in [1,2,11]
and the proposed game-based definitions are tailored to such schemes. The
restricted class of encryption protocols analyzed can thus not construct ordered
channels, because the players need to remember tags numbering the messages
to be able to preserve this ordering. The strongest notion of encryption from
these works, namely QAE, is thus closest to constructing a SC. In fact, we show
that QAE is strictly stronger than constructing a SC: a scheme satisfying QAE
constructs a SC, however there are (stateless) schemes constructing a SC that
would be considered insecure by the QAE game. These schemes are obtained
in the same way as the ones showing that classical IND-CCA2 is unnecessar-
ily strong: one starts with a scheme satisfying QAE and appends a bit to the
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ciphertext, resulting in a new scheme that still constructs a SC, but is not QAE-
secure. Our proof shows that QAE may be seen as constructing a SC with a fixed
simulator that is hard-coded in the game. A composable security definition only
requires the existence of a simulator, and the separation between the two notions
is obtained by considering schemes that can be proven secure using a different
simulator than the one hard-coded in the game.

For QCCA2, we first propose an alternative game-based security notion that
captures the same intuition, but which we consider more natural than the one
suggested in [2]. In particular, its classical analogue is easily shown to be equiv-
alent to a standard IND-CCA2 notion, whereas the notion put forth in [2], when
cast to a classical definition, incurs a concrete constant factor loss when com-
pared to IND-CCA2, and requires a complicated proof of this fact. We then show
that for a restricted class of protocols (which includes all the ones for which
a security proof is given in previous work), our new game-based notion indeed
implies that the protocol constructs a NMCC. The same separation holds here as
well: QCCA2 definitions are unnecessarily strong, and exclude protocols that nat-
urally construct a NMCC. Note that in the classical case, the IND-RCCA game [15]
that was developed to avoid the problems of IND-CCA2 has been shown to be
exactly equivalent to constructing a classical non-malleable confidential channel
in the case of large message spaces [17].

1.6 Alternative Security Notions

Common security definitions often capture properties of (encryption) schemes,
e.g., let M be a plaintext random variable, let C be the corresponding ciphertext,
H is the entropy function, M ′ is the received plaintext, and accept is the event
that the message is accepted by the receiver, then

H(M |C) = H(M) and Pr [M �= M ′ and accept] ≤ ε (2)

are simple notions of confidentiality and authenticity, respectively. But depend-
ing on how schemes satisfying these equations are used—e.g., encrypt-
then-authenticate or authenticate-then-encrypt—one gets drastically different
results.3 The equations in (2) may be regarded as crucial security properties
of encryption schemes, but before schemes satisfying these may be safely used,
one needs to consider the context and prove what is actually achieved by such
constructs (in an operational sense).

The same applies to security definitions proposed for quantum key distri-
bution. The accessible information4 and the trace distance criterion5 capture
3 Encrypt-then-authenticate is always secure, but one can find examples of schemes

satisfying (2) following the authenticate-then-encrypt paradigm that are insecure [9,
26,33].

4 Iacc(K; E) := maxΓ I(K; Γ(E)), where ρKE is the joint state of the secret key K
and the adversary’s information E, and Γ(E) is the random variable resulting from
measuring the E system with a POVM Γ.

5 ‖ρKE −τK ⊗ρE‖, where ρKE is the joint state of the secret key K and the adversary’s
information E and τK is a fully mixed state.
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different properties of a secret key. If a scheme satisfying the former is used with
an insecure quantum channel, then the resulting key could be insecure, but if
the channel only allows the adversary to measure and store classical information,
then the key has information-theoretic security [25,38]. A scheme satisfying the
latter notion—the trace distance criterion—constructs a secure key even when
the quantum channel used is completely insecure [10,38,39]. Neither criterion is
a satisfactory security definition on its own, they both require a further analysis
to prove whether a protocol satisfying them does indeed distribute a secure key.
But now that this has been done [10,38], the trace distance criterion has become
a reference for what a quantum key distribution scheme must satisfy [40,42].

Previous work on computational security of quantum message transmis-
sion [1,2,11] as well as the new definition of QCCA2 proposed on this paper
may be viewed in the same light. These game-based definitions capture prop-
erties of encryption schemes. But before a scheme satisfying these definitions
may be safely used, one needs to analyze how the scheme is used and what
is achieved by it. The constructive definitions introduced in this work and the
reductions from the game-based definitions do exactly this. As a result of this,
QAE or QCCA2 may be used as a benchmark for future schemes—though unlike
the trace distance criterion, they are only sufficient criteria, not necessary ones.

1.7 Other Related Work

The desideratum expressed in Sect. 1.1 is the fruit of many different lines of
research that go back to the late 90’s. We give an incomplete overview of some
of this work in this section.

Composable security was introduced independently by Pfitzmann and Waid-
ner [3,4,34,35] and Canetti [12–14], who each defined their own framework,
dubbed reactive simulatability and universal composability (UC), respectively.
Unruh adapted UC to the quantum setting [43], whereas Maurer and Renner’s
AC applies to any model of computation, classical or quantum [30]. Quantum UC
may however not be used for finite security without substantial modifications,
since it hard-codes asymptotic security in the framework: machines are defined
by sequences of operators

{E(k)
}

k
, where k ∈ N is a security parameter, and

distinguishability between networks of machines is then defined asymptotically
in k.6

Concrete security [7] addresses the issues of reductions and parameters being
hidden in O-notation by requiring them to be explicit. Theses works consider
distinguishing advantages (or game winning probabilities) as a function of the
allowed complexity or running time of the distinguisher, and aim at proving as

6 The object about which ones makes a security statement is quite different in an
asymptotic and a finite framework. In the former it is an infinite sequence of behav-
iors (e.g., a machine in UC), whereas in the later it is an element in such a sequence
(the sequence itself is not necessarily well-defined). One thus composes different
objects in the two models, and a composition theorem in one model does not imme-
diately translate to a composition theorem in the other.
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tight statements a possible. In such an approach, one would have to define a pre-
cise computational model. This, however, is avoided, meaning that any model in
a certain class of meaningful models is considered equivalent. This unavoidably
means that the security statements are asymptotic, at least with an unspecified
linear or sublinear term. In contrast, the objects we consider, including distin-
guishers, are discrete systems and are directly composed as such, without need
for considering a computational model for implementing the systems.

In the classical case, a model of discrete systems that may be used for finite
security is random systems [27,29]. Generalizations to the quantum case have
been proposed by Gutoski and Watrous [19,20]—and called quantum strate-
gies—by Chiribella, D’Ariano and Perinotti [16]—called quantum combs—and
by Hardy [21–23]—operator tensors. A model for discrete quantum systems that
can additionally model time and superpositions of causal structures is the causal
boxes framework [37].

None of the previous works on computational security of quantum message
transmission satisfy any of the three criteria outlined in Sect. 1.1. These crite-
ria are however standard by now for quantum key distribution [38,42]. In the
classical case, they have also been used for computational security, e.g., [17,32].

1.8 Structure of This Paper

In Sect. 2 we introduce the elements needed from AC [28,30,31], and from the dis-
crete system model with which we instantiate AC, namely quantum combs [16].
This allows us to define the notion of a finite construction of a resource (e.g.,
a secure channel) from another resource (e.g., an insecure channel and a key).
In Sect. 3 we first define the channels and other resources needed in this work.
Then we give protocols and prove that they construct various confidential and
secure channels, as outlined in Sect. 1.4. Finally, in Sect. 4 we compare our secu-
rity definitions to some game-based ones from the literature [2] and prove the
results described in Sect. 1.5.

2 Abstract and Constructive Cryptography

In this section we give a brief overview of the Abstract and Constructive Cryp-
tography (AC) framework, which is sufficient to understand the main claims of
this work. A more extended introduction to AC is provided in the full version [5],
which is needed to understand the proofs. We refer to [28,30,31,38] for further
reading.

The AC framework views cryptography as a resource theory in which a proto-
col is a transformation between resources. Players may share certain resources—
e.g., secret key, an authentic channel, a public-key infrastructure, common refer-
ence strings, etc.—and use these to construct other resources—e.g., an authentic
channel, a secure channel, secret key, a bit commitment resource, an idealization
of a multipartite function, etc. More abstractly, a protocol π uses some resource
R (the assumed resource) to construct some other resource S (the constructed
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resource) within ε, where ε may be thought of as the error of the construction.
We denote this

R
π,ε−−→ S. (3)

A formal definition of Eq. (3) is provided in the full version [5].
Such a security statement is composable, because if π1 constructs S from R

within ε1 and π2 constructs T from S within ε2, the composition of the two
protocols, π2π1, constructs T from R within ε1 + ε2, i.e.,

R
π1,ε1−−−→ S

S
π2,ε2−−−→ T

}

=⇒ R
π2π1,ε1+ε2−−−−−−−→ T. (4)

In this work, resources R, S or T are instantiated with a model of quantum
interactive systems called quantum strategies [19,20] or quantum combs [16] in
the literature. We use the term interface to denote the inputs and outputs acces-
sible to a specific player, e.g., most resources considered in this work have 3
interfaces for Alice, Bob and Eve. In the following we often provide pseudo-code
describing a resource. However, this always corresponds to a specific quantum
strategy/comb. When multiple resources R1, . . . ,Rn are accessible to players, we
write [R1, . . . ,Rn] for the new resource resulting from combining the individual
Ri in parallel. The mathematical meaning of this expression is explained in the
full version [5].

We often write a protocol π = (πA, πB) as a tuple, where each element πA

corresponds to the operations of a specific player (e.g., A for Alice), and only
interacts at the corresponding interface of the shared resources. Formally, these
are functions mapping a resource to another resource. Running several protocols
then corresponds to the composition of the functions as in Eq. (4).

Finally, the error of a construction ε that appears in Eq. (3) is a function
mapping distinguishers to real numbers. In information-theoretic security, one
has that ε(D) is small for all distinguishers D. In computational security this
might not be the case, since security does not hold against all adversaries, only
efficient ones. More precisely, let D[R] be the random variable corresponding to
the distinguisher’s output when interacting with R. Then the functions

ΔD(R,S) := |Pr [D[R] = 0] − Pr [D[S] = 0]| and dD(R,S) := sup
D∈D

ΔD(R,S)

are pseudo-metrics for any set of distinguishers D. We define the error of a
construction using one particular set D, namely the set of distinguishers obtained
from some distinguisher D by adding or removing converters between D and the
measured resources.7 Thus, for any distinguisher D, we define the class

B(D) :=
{
D′∣∣∃α such that Dα = D′ or D′α = D

}
, (5)

where ΔDα(R,S) = ΔD(αR, αS). Abusing somewhat notation, we often write D
instead of B(D). In the following, dD(·, ·) always refers to the pseudo-metric using
the class of distinguishers generated from D as in Eq. (5).
7 For more details on this, we refer to the full version [5].
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We now formalize the notion of (secure) resource construction in the three
party setting, with honest Alice and Bob and dishonest Eve.

Definition 1 (Cryptographic security [30]). Let ε be a function from dis-
tinguishers to real numbers. We say that a protocol πAB = (πA, πB) constructs
a resource S from a resource R within ε if there exists a converter simE (called
a simulator) such that for all D,

dD(πABR, simES) ≤ ε(D).

If this holds, then we write
R

π,ε−−→ S.

When the resources R,S are clear from the context, we say that π is ε-secure.

πABR is often referred to as the real system, and simES as the ideal one.
We emphasis that an ideal (or constructed) resource S will be used as the real
(or assumed) resource in the next construction, so the terms real and ideal are
relative. The details may be found in the full version [5].

3 Constructing Quantum Cryptographic Channels

In Sect. 3.1 we introduce the notations for Pauli operators and Bell basis. In
Sects. 3.2 and 3.3 we formalize the resources used in our constructions. Then,
starting from the insecure quantum channel IC, a shared secret key KEY and
local pseudo random function PRF, we show how to construct (1) the ordered
secure quantum channel OSC in Sect. 3.4 and (2) the Pauli-malleable confiden-
tial quantum channel PMCC in Sect. 3.5. A construction of the ordered secure
quantum channel OSC from one which is secure but not ordered (SC) is also
presented in the full version [5].

3.1 Quantum Operators and States

Pauli Operators. We write Pk or Px,z to denote a Pauli operator on m qubits,
where k = (x, z) are concatenation of two m-bits strings indicating in which
qubit bit flips and phase flips occur.

Pk = Px,z =
m⊗

i=1

Pxizi
, where Pab =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I a = 0, b = 0,

X a = 1, b = 0,

Z a = 0, b = 1,

XZ a = 1, b = 1.

Note that Pk = P †
k , therefore we simply write PkρPk when applying a Pauli-

operator Pk on state ρ. To undo Pauli-operator Pk, we simply apply Pk again,
namely, PkPkρPkPk = ρ.
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Bell Basis. We write |φ0〉 as the maximum entangled state of 2m qubits, |φ0〉 :=(
|00〉+|11〉√

2

)⊗m

, and |φk〉 := I⊗m ⊗ Pk |φ0〉 as the result of applying Pk to half of
the qubits. Then {|φk〉}k∈{0,1}2m forms the Bell basis for 2 m qubits.

3.2 Key Resources

A (shared) secret key resource corresponds to a system that provides a key k to
the honest players, but nothing to the adversary.

Definition 2 (Symmetric (Classical) Key KEY). The resource KEY is asso-
ciated with a probability distribution PK for (classical) key space K. A key k ∈ K
is drawn according to PK and stored in the resource.

– Interface A: On input getKey, k is output at interface A.
– Interface B: On input getKey, k is output at interface B.
– Interface E: Inactive.

In the computational setting, instead of sharing a long key, players often
share a short key which is used as seed in a local key expansion scheme. On such
key expansion scheme which we use in this work is a so-called pseudo random
function. It is essentially a family of functions which looks random.

Definition 3 (Pseudo Random Function PRFr,ν,μ). The resource PRFr,ν,μ

is associated to a family of functions {fk : {0, 1}ν → {0, 1}μ|k ∈ {0, 1}r} and
has an internal variable seed of length r. The functions in the family have input
length ν and output length μ. The resource is local to one party only. Let this
party’s interface be labeled X.

– Interface X:
• On input seed(s), set variable seed to s.
• On input input(x), output fseed(x) at interface X.

The above definition of a PRF does not contain any criterion for what it
means to “look random”. This is defined in a second step as distinguishability
from a uniform random function.

Definition 4 (Uniform Random Function URFν,μ). The resource URFν,μ

picks a function f from all functions {0, 1}ν → {0, 1}μ uniformly at random.

– Interface A: On input input(x), output f(x) at interface A.
– Interface B: On input input(x), output f(x) at interface B.
– Interface E: Inactive.

Let πPRF be the trivial protocol which uses a (short) shared key (from a
KEY resource) and plugs it as seed in a PRF resource, and let εPRF(D) be the
advantage the distinguisher D has in distinguishing such a construction from a
URF, i.e., for all D

dD(πPRF[KEYr,PRFr,ν,μ
A ,PRFr,ν,μ

B ],URFν,μ) ≤ εPRF(D),
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where dD(·, ·) is the distinguisher pseudo-metric as defined in Sect. 2. In terms
of AC construction, this means that

[KEYr,PRFr,ν,μ
A ,PRFr,ν,μ

B ]
πPRF,εPRF−−−−−→ URFν,μ. (6)

Concrete constructions of PRFs proven secure in the presence of quantum adver-
saries may be found in [45].

3.3 Channel Resources

We consider three-party channels in this work: the sending party Alice has access
to interface A, the receiving party Bob to interface B, and the adversary Eve
to interface E. We model all our channels in the following way: upon an input
at interface A, an output is generated at interface E, while upon an input at
interface E, an output is generated at interface B. Moreover, we consider multi-
message channels parameterized by 	, that is, Alice and Eve can provide at most
	 inputs at their respective interfaces. These inputs can be entangled with each
other. We model quantum channels, therefore inputs and outputs to and from the
channels’ interfaces are quantum systems. The channels are also parameterized
by m, the size of each message in qubits.

In the following we introduce the formal description of the channels consid-
ered in this work by specifying the behavior they assume upon inputs at their
A and E interfaces. First, we consider the weakest possible channel, that is, the
insecure one, which gives full control to the adversary Eve. Eve receives all the
message that Alice inputs to the channel. Bob receives all the messages that Eve
inputs to the channel.

Definition 5 (Insecure Quantum Channel IC�,m)

– Interface A: On receiving an input system in some state ρ, perform an iden-
tity map and output the same system at interface E.

– Interface E: On receiving an input system in some state ρ′, perform an
identity map and output the same system at interface B.

Interface A and E will receive at most 	 inputs and ignore the rest. The quantum
systems input at interface A and E and output at interface B have length m in
qubits.

Next, we enhance the insecure channel by providing some form of confiden-
tiality on the states input by Alice. More precisely, we allow Eve to only get a
notification that a new message has arrived in interface A, but still, Eve will
retain the capability to modify each input ρAi (held in register Ai).

Here, one may consider different ways in which Eve is allowed to modify the
messages. The first channel we consider grants Eve the power to insert fully
mixed states on the channel, as well as performing Pauli operators (bit flips and
phase flips) on Alice’s message and decide when each message gets delivered.
This is modeled by keeping registers Ai for each new input at interface A, and
allowing Eve to input indices specifying which register should be modified and
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output at interface B. Along with the index, Eve also inputs a string of length
2 m, indicating on which qubits of the message to apply Pauli operators. If Eve
wants a fully mixed state to be output at Bob’s, she inputs ⊥ at her interface
and the channel generates the corresponding state.

Definition 6 (Pauli-Malleable Confidential Quantum Channel
PMCC�,m). The channel keeps registers A1, A2, . . . , A�, initially set to ⊥.

– Interface A: Upon receiving the i-th input in some state ρ, this system is
stored in register Ai, and newMsg is output at interface E.

– Interface E:
• On input (j, k) ∈ [l] × {0, 1}2m, output system in state PkρAj Pk at inter-

face B, where ρAj is the state of the system held in register Aj and Pk is
the Pauli operator defined by the string k. If the tuple is invalid or ρAj is
⊥, the input is considered as ⊥. After the output, the state in register Aj

becomes ⊥.
• On input ⊥, output a fully mixed stated 1

2m I2m at interface B.

Interface A and E will receive at most 	 inputs and ignore the rest. The quantum
systems input at interface A and output at interface B always have length m in
qubits.

Another type of confidential channel we consider is obtained by removing
Eve’s capability to modify Alice’s messages, while giving her the ability to inject
any system (instead of only systems in the fully mixed state).

Definition 7 (Non-Malleable Confidential Quantum Channel
NMCC�,m). The channel keeps registers A1, A2, . . . , A�, initially set to ⊥.

– Interface A: Upon receiving the i-th input in some state ρ, this system is
stored in register Ai, and newMsg is output at interface E.

– Interface E:
• On receiving an input system in some state ρ′, perform an identity map

and output the same system at interface B.
• On input index j ∈ [	], output the system in state ρAj held in register Aj

at interface B. After the output, the state of register Aj becomes ⊥.

Interface A and E will receive at most 	 inputs and ignore the rest. The quantum
systems input at interface A and output at interface B always have length m in
qubits.

The next property to consider is authenticity: recall that in the quantum
setting, authenticity implies confidentiality, thus it does not make sense to con-
sider a “non-confidential authentic channel”, since a state cannot be cloned to
be given to both Bob and Eve. An authentic channel will automatically also be a
confidential one [6]. Therefore, as a next channel we directly consider the secure
one – by secure we mean both authentic and confidential. Eve only knows a new
message has arrived but cannot read, modify, nor inject messages. Eve still has
the power to block and reorder Alice’s message.
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Definition 8 (Secure Quantum Channel SC�,m). The channel keeps regis-
ters A1, A2, . . . , A�, initially set to ⊥.

– Interface A: Upon receiving the i-th input in some state ρ, this system is
stored in register Ai, and newMsg is output at interface E.

– Interface E: On input index j ∈ [	], output the system in state ρAj held in
register Aj at interface B. After the output, the state in register Aj becomes ⊥.

Interface A and E will receive at most 	 inputs and ignore the rest. The quantum
systems input at interface A and output at interface B always have length m in
qubits.

Finally, we consider an even stronger version of the secure channel which
preserves the order of the transmitted messages. In particular, the adversary
now only retains the power to delete messages, but cannot change the order in
which they are transmitted. This is enforced by replacing the capability to input
indices by the ability of only inputting either send or skip.

Definition 9 (Ordered Secure Quantum Channel OSC�,m). The channel
keeps registers A1, A2, . . . , A�, initially set to ⊥.

– Interface A: Upon receiving the i-th input in some state ρ, this system is
stored in register Ai, and newMsg is output at interface E.

– Interface E: On i-th input send or skip: If the input is send, output the system
in state ρAi held in register Ai at interface B. If the input is skip, then output
⊥ at interface B. After the output, the state in register Ai becomes ⊥.

Interface A and E will receive at most 	 inputs and ignore the rest. The quantum
systems input at interface A and output at interface B always have length m in
qubits.

3.4 Constructing an Ordered Secure Quantum Channel

As shown in [36], there is a construction of one time secure quantum channel
from one time insecure quantum channel resource and a uniform key resource
within εq-auth, i.e.

[
IC1,n,KEYμ,QC1,m,n

A ,QC1,m,n
B

]
πq-auth

AB ,εq-auth

−−−−−−−−−→
[
SC1,m,QC2,m,n

E

]
.

Here, IC, SC and KEY are channel and key resources, as defined above. QCA/B/E

denote a resource that does quantum computation for Alice, Bob or Eve, and
allows them to perform encryption and decryption operations (we informally
refer to such resources as quantum computers in the following). These appear in
the construction statement since for finite security one makes all computational
operations explicit—see the full version [5] for more details.

We denote the encoding and decoding CPTP maps in this construction by
encq-auth : K × L(HA) → L(HC) and decq-auth : K × L(HC̃) → L(HB ⊕ |⊥〉〈⊥|).
We also denote by E the CPTP map that always discards the state and replaces
it with error state |⊥〉〈⊥|. In this section, we build on top of these encoding and
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Fig. 1. Converters and computing resources to construct OSC�,m from IC�,n+log �.
QC�,m,n+log �

A and QC�,m,n+log �
B will be queried � times. The plaintext has length m

and the ciphertext has length n + log �. URFlog �,μ has input length log � and output
length μ.

decoding maps to construct a multi-message ordered secure quantum channel
from a multi-message insecure quantum channel, with a shared uniform ran-
dom function resource URFlog �,μ. The real system is drawn in Fig. 2 and the
components are described in Fig. 1.

Theorem 1. Let πAB = (πA, πB),QC�,m,n+log �
A ,QC�,m,n+log �

B and URFlog �,μ

denote converters and computing resources as described in Fig. 1, correspond-
ing to Alice and Bob both applying the following CPTP maps with increasing
index i:

ΛA→CT
i (·) = encq-authki

(·) ⊗ |i〉〈i|T

ΛC̃T̃→B
i (·) = decq-authki

(
(IC̃ ⊗ 〈i|T̃ )(·)(IC̃ ⊗ |i〉T̃ )

)
+ E

(
P̄ T̃

i (·)P̄ T̃
i )

)
,

where P̄i = I − |i〉〈i|, and ki is the output of URFlog �,μ with input i. Let
QC2�,m,n+log �

E be the computing resource of Eve capable of doing 	 encryption
operations and 	 decryption operations. Let εq-auth be the upper bound on the
distinguishing advantage of the one time secure quantum channel construction.
Then,

[
IC�,n+log �,URFlog �,μ,QC�,m,n+log�

A ,QC�,m,n+log�
B

]

πAB ,�εq-auth

−−−−−−−−→
[
OSC�,m,QC2�,m,n+log �

E

]
.

Proof. The proof of Theorem 1 appears in the full version [5].
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Fig. 2. The real system consisting of the shared resources IC�,n+log � and URFlog �,μ,
Alice and Bob’s computing resources QC�,m,n+log �

A QC�,m,n+log �
B , and the protocol con-

verters πA and πB .

Remark 1. Theorem 1 is meaningful only if the protocol is also correct, i.e., if
the distinguisher always puts back the same ciphertext on the insecure channel
in the right order, then Bob always successfully decrypts. This follows trivially
from the correctness of the underlying quantum authentication protocol, so we
omit a formal discussion of it.

Suppose now that one has a PRF resource and a bound εPRF satisfying Eq. (6),
that is, indistinguishable from URF within εPRF, the following corollary follows
trivially from the composition theorem.

Corollary 1
[
IC�,n+log �,KEYr,PRFr,log �,μ

A ,PRFr,log �,μ
B ,QC�,m,n+log�

A ,QC�,m,n+log�
B

]

π′
AB ,ε−−−−→

[
OSC�,m,QC2�,m,n+log �

E

]
,

where π′
AB = (πAB , πPRF), ε(D) = εPRF(DC)+	εq-auth and C is the system includ-

ing πAB , IC�,n+log �,QC�,m,n+log�
A ,QC�,m,n+log�

B .

3.5 Constructing a Pauli-Malleable Confidential Quantum Channel

In this section, we construct a Pauli-malleable confidential quantum channel
PMCC�,m from an insecure quantum channel IC�,m+ν . In the Pauli-malleable
confidential channel, the adversary can only get a notification of a new message
arriving but has no access to the message. The adversary has the ability to
block, reorder and modify the message via Pauli operators (bit flip and phase
flip), as well as ask the channel to output a fully mixed state at Bob’s interface,
as defined in Definition 6.

Now we present the protocol in the multi-message case, described in Fig. 3.
In the protocol, Alice’s computer will generate a new random string x of length ν
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Fig. 3. Converters and computer resources to construct PMCC�,m from IC�,m+ν .
QC�,m,m+ν

A and QC�,m,m+ν
B will be queried � times. The plaintext has length m and

ciphertext has length m + ν. URFν,2m has input length ν and output length 2m.

for each message different from previous random strings and input it to URFν,2m,
a key k is returned by URFν,2m , the Pauli-operator Pk is applied to the message
and x is appended to the ciphertext. Bob’s computer will do the measurement
on the last ν qubits to get x̃, which is input to URFν,2m, from which k̃ is obtained
and finally the Pauli operator Pk̃ is applied to the ciphertext. The real system
is drawn in Fig. 4.

Theorem 2. Let πAB = (πA, πB),QC�,m,m+ν
A and QC�,m,m+ν

B denote converters
and computing resources, described in Fig. 3, corresponding to Alice and Bob
applying the following CPTP maps,

ΛAi→CT (·) =
1
2ν

∑

x

Pkx
(·)Pkx

⊗ |x〉〈x|T

ΛC̃T̃→B(·) =
∑

x

(Pkx
⊗ 〈x|T̃ )(·)(Pkx

⊗ |x〉T̃ ),

where kx is the output of URFν,2m with input x. Let QC2�,m,m+ν
E be the com-

puting resource of Eve capable of doing 	 encryption operations and 	 decryption
operations. Then πAB constructs a Pauli-malleable confidential quantum channel
PMCC�,m from an insecure quantum channel resource IC�,m+ν , a shared uniform
random function resource URFν,2m within 	2 · 2−ν , i.e.,

[
IC�,m+ν ,URFν,2m,QC�,m,m+ν

A ,QC�,m,m+ν
B

]

πAB ,�22−ν

−−−−−−−→
[
PMCC�,m,QC2�,m,m+ν

E

]
.
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Fig. 4. The real system consisting of shared resources IC�,m+ν and URFν,2m, Alice and
Bob’s computing resources QC�,m,m+ν

A and QC�,m,m+ν
B , and the protocol converters πA

and πB .

Proof. The proof of Theorem 2 appears in the full version [5].

Remark 2. The protocol given in Theorem 2 also has to satisfy correctness, i.e.,
when the distinguisher always puts back the same state Bob should decrypt
correctly. One can easily see that this holds, since in the real world, the state will
be flipped on Alice’s side and be flipped back on Bob side, thus the distinguisher
will get the same state back at interface B.

Suppose now that one has a PRF resource and a bound εPRF satisfying Eq. (6),
that is, indistinguishable from URF within εPRF, the following corollary follows
trivially from the composition theorem.

Corollary 2

[
IC�,m+ν ,KEYr,PRFr,ν,2m,PRFr,ν,2m,QC�,m,m+ν

A ,QC�,m,m+ν
B

]

π′
AB ,ε−−−−→

[
PMCC�,m,QC2�,m,m+ν

E

]
.

where π′
AB = (πAB , πPRF), ε(D) = εPRF(DC)+	22−ν and C is the system including

πAB , IC�,m+ν ,QC�,m,m+ν
A ,QC�,m,m+ν

B .

4 Relations to Game-Based Security Definitions

In this section we explore the relations between our constructive security defi-
nitions and two game based security definitions for (specific protocols making
use of) symmetric quantum encryption schemes, both introduced in [2]. The
two notions we consider are those of quantum ciphertexts indistinguishability
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under adaptive chosen-ciphertext attack (AGM-QCCA2) and quantum authen-
ticated encryption (QAE). Both definitions are inspired by classical security
notions which intrinsically require the ability to copy data, which in [2] were
successfully translated into quantum analogue by circumventing the no-cloning
theorem.

We will first show that QAE security exactly implies the constructive cryp-
tography security notion of constructing a secure channel from an insecure one
and a shared secret key, which we call CC-QSEC (but is actually stronger, and
thus we also show a separation). Secondly, we will relate the AGM-QCCA2 secu-
rity definition to the constructive cryptography security notion of constructing a
confidential channel from an insecure one and a shared secret key, which we call
CC-QCNF, but the implication will be less direct. In fact, we introduce two new
(intermediate) game-based security definitions, RRC-QCCA2 and RRO-QCCA2,
and show that:

1. The classical versions of AGM-QCCA2 and RRC-QCCA2 are asymptotically
equivalent;

2. For a restricted class of schemes, RRC-QCCA2 implies RRO-QCCA2 (they are
actually equivalent);

3. RRO-QCCA2 implies CC-QCNF (but is actually stronger).

We leave open the question whether it is possible to generalize (2.) to general
schemes. Throughout this section we will assume that both the plaintext and
the ciphertext spaces comprise elements of the same length, an thus ignore the
corresponding superscripts for channels and quantum computers.

4.1 Background and Notation

In [6], a characterization of any symmetric quantum encryption schemes (SQES)
was given, which states that encryption works by attaching some (possibly)
key-dependent auxiliary state, and applying a unitary operator, and decryption
undoes the unitary, and then checks whether the support of the state in the aux-
iliary register has changed. Thus, as pointed out in [2], for key-generation func-
tion Gen (inducing a probability distribution over some key-space K), encryp-
tion function Enc, and decryption function Dec, we can characterize a SQES
S := (Gen, Enc, Dec) as follows.

Lemma 1 ([2, Corollary 1]). Let S = (Gen, Enc, Dec) be a SQES. Then for
every k ∈ K there exists a probability distribution pk : R → [0, 1] and a family
of quantum states {|ψk,r〉T }r∈R, with ΠT

k,r := |ψk,r〉〈ψk,r|T , such that:

– Enck(�M ) := Vk

(
�M ⊗ ΠT

k,r

)
V †

k , where r is sampled according to pk;

– Deck(σC) := TrT

(
PT

ωk
(V †

k σCVk)PT
ωk

)
+ D̂k

(
P̄T

ωk
(V †

k σCVk)P̄T
ωk

)
;

where PT
ωk

and P̄T
ωk

are the orthogonal projectors onto the support of

ωT
k :=

∑

r∈R
pk(r) · ΠT

k,r =
∑

r∈R
pk(r) · |ψk,r〉〈ψk,r|T .
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For a SQES S, we define a security notion XXX in terms of the advan-
tage Advxxx

S,D of a distinguisher D in solving some (usually distinction) problem
involving S. In the asymptotic setting, security of S according to notion XXX
should be interpreted as Advxxx

S,D being negligible for every D from some class D
of distinguishers (usually, efficient distinguishers). Following the finite security
approach, here we are just interested in relating advantages of different notions,
making use of black-box reductions. Therefore, for a second notion YYY, we say
that XXX (security) implies YYY (security) if and only if Advyyy

S,D ≤ c·Advxxx
S,DC,

for some c ≥ 1, where C denotes the black-box reduction that uses the distin-
guisher D for YYY to make a new distinguisher DC for XXX.

When describing experiments involving interaction between a distinguisher8

D and a game system G, we use pseudo-code from G’s perspective, that is, the
return statement indicates what is output by the latter. Note that this implies
that for distinction problems we always make the game system output the bit
output by the distinguisher. In this case we use the expression D[G] to denote
the bit output by D after interacting with G. On the other hand, if the output
bit is decided by G (as is the case for the AGM-QCCA2 definition, which is
not a distinction problem), we use the expression G[D]. Moreover, we use both
expressions not only for the returned value, but also for denoting the whole
random experiments. When specifying that a distinguisher D has access to a list
of oracles, e.g. O1(·) and O2(·), we write x ← DO1(·),O2(·), where the variable x
holds the value output by D after the interaction with the oracles. We denote
the application of a two-outcome projective measurement, e.g. {PT

ωk
,1 − PT

ωk
},

as {PT
ωk

,1 − PT
ωk

} ⇒ b, where b ∈ {0, 1} is the result of the measurement (we
associate 0 to the the first outcome and 1 to the second). The state |φ0〉 is
the EPR pair (one of the Bell state), to which we associate the two-outcome
projective measurement {Π+,1 − Π+}. Furthermore, by XY ← |φ0〉 we mean
that the EPR pair has been prepared on registers XY , and we use τX as a
shorthand for the reduced state in register X, that is, half of a maximally-
entangled state.

4.2 Relating QAE and CC-QSEC

In this section we first present the quantum authenticated encryption security
definition introduced in [2], and then show that it directly implies our construc-
tive security notion CC-QSEC of constructing a secure channel from an insecure
one and a shared secret key.

QAE Security Definition ([2]). We begin by restating what it means for a
SQES S to be secure in the QAE sense according to [2]. On a high level, a
distinguisher D must not be able to distinguish between two scenarios: in the
first (the real one), it has access to regular encryption and decryption oracles,
whereas in the second (the ideal one), it has access to an encryption oracle which
replaces its queried plaintexts by random ones (half of a maximally-entangled
8 We understand the distinguisher D as stateful, which can therefore be invoked mul-

tiple times (without making explicit the various updated states).
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state), and a decryption oracle that normally decrypts ciphertext not returned
by the encryption oracle, but answers with the originally queried plaintexts oth-
erwise (thus not really performing correct decryption). Note that this security
notion, as shown in [2], when phrased classically is equivalent to the canonical
notion of authenticated encryption (dubbed IND-CCA3 by Shrimpton in [41]).
The only difference with the latter, is that the decryption oracle returns ⊥ when
queried on ciphertexts previously returned by the encryption oracle. But cru-
cially, this detail is what would not make it possible to adapt IND-CCA3 into a
quantum definition: returning ⊥ would require the game to copy data (store the
ciphertexts returned by the encryption oracle, and then compare them to each
query to the decryption oracle), which is not allowed in general in the quantum
world. Nevertheless, the formulation of QAE introduced in [2] works quantumly
because, intuitively, “it is possible to compare random states generated as half
of a maximally-entangled state”: the trick consists of first ignoring (but storing)
each plaintext submitted by the adversary to the encryption oracle, and then,
for each plaintext, prepare an EPR pair |φ0〉, encrypt just half of it, and store
the other half (as well as the involved randomness) together with the original
plaintext submitted by the distinguisher; then the decryption oracle normally
decrypts each ciphertext, and subsequently applies a projective measurement on
the support of |φ0〉 to the obtained plaintext against each stored half, and the
associated original plaintext can thus be easily retrieved. We now restate the
definition from [2] (Definition 10 therein), adapted to our notation, and in the
concrete setting (as opposed to the asymptotic one).

Definition 10 (QAE Security [2]). For SQES S := (Gen, Enc, Dec) (implicit
in all defined systems) we define the QAE-advantage of S for distinguisher D as

Advqae
S,D := Pr

[
D[Gqae-real] = 1

] − Pr
[
D[Gqae-ideal] = 1

]
,

where the interactions of D with game systems Gqae-real and Gqae-ideal are defined
in Fig. 5.

QAE Implies QSEC. Here we denote by Gqae-real,� and Gqae-ideal,� the games
Gqae-real and Gqae-ideal where the distinguisher is allowed to make at most 	
queries to each oracle (and analogously for Advqae,�

S,D ).

Theorem 3. Let S := (Gen, Enc, Dec) be a SQES (implicit in all defined sys-
tems). Then with protocol πq-enc

AB = (πq-enc
A , πq-enc

B ) making use of quantum com-
puters QC�

A and QC�
B as defined in Fig. 6, simulator simqae

E making use of quan-
tum computer QC�

E as defined in Fig. 7 (until the dashed line), and (trivial)
reduction system C as specified in the proof, for any distinguisher D we have

ΔD(πq-enc
AB [KEY, IC�,QC�

A,QC�
B ], simqae

E [SC�,QC�
E ]) ≤ Advqae,�

S,DC.

Proof. The proof of Theorem 3 appears in the full version [5].
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Fig. 5. QAE security games Gqae-real (left) and Gqae-ideal (right).

Corollary 3. With ε(D) := supD′∈B(D) Advqae,�
S,D′ , we have

[
KEY, IC�,QC�

A,QC�
B

]
πq-enc

AB ,ε−−−−−→
[
SC�,QC�

E

]
,

where the class B(D) is defined in Eq. (5).

QAE is Stronger than QSEC. We remark that even though QAE implies
CC-QSEC, the converse is not true. In particular, we find that QAE is an (unnec-
essarily) stronger notion than CC-QSEC. We can in fact show that there are
SQESs that satisfy CC-QSEC, but not QAE. Following [15], in order to show this
fact it suffices to take any SQES S which is QAE secure, and slightly modify it

Fig. 6. Encryption and decryption protocols.
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Fig. 7. QAE (until the dashed line) and QCCA2 (until the end) simulators.

into a new SQES S′ so that a classical 0-bit is appended to every encryption,
which is then ignored upon decryption. Now an adversary can flip the bit of a
ciphertext that it got from the encryption oracle, and then query the decryption
oracle on the new ciphertext: in the real setting it will get back the original
message, while in the ideal setting it will get back |⊥〉〈⊥|, and can thus perfectly
distinguish between the two, hence S′ cannot be QAE secure. On the other hand,
S′ is still CC-QSEC secure because it can still be used to achieve the construc-
tion of a secure channel from an insecure one and a shared secret key. This is
possible by using a simulator which works essentially as simqae,�

E QC�
E from Fig. 7,

but which ignores the bit.

4.3 Relating QCCA2 and CC-QCNF

The goal of this section is to present and relate several QCCA2 security defini-
tions. We begin by introducing a new definition, RRC-QCCA2 (where RRC stands
for “real-or-random challenge”), which is similar to AGM-QCCA2. Both notions
define a challenge phase, and thus we introduce a third variant, RRO-QCCA2
(where RRO stands for “real-or-random oracles”), in which there is no real-or-
random challenge, but rather access to real-or-random oracles. Crucially, the lat-
ter is identical to QAE as introduced by [2], up to a small detail: upon decryption,
if the ciphertext was not generated by the encryption oracle, instead of returning
|⊥〉〈⊥|, return the decrypted plaintext. Finally, we show that for a restricted class
of SQESs, RRC-QCCA2 implies RRO-QCCA2, and for any SQESs, RRO-QCCA2
implies CC-QCNF.
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Fig. 8. RRC-QCCA2 games Grrc-qcca2-real (left) and Grrc-qcca2-ideal (right).

RRC-QCCA2 Security Definition. We now introduce an alternative game-
based security definition that seems more natural than AGM-QCCA2. This notion
is defined in terms of a distinction problem (as opposed to AGM-QCCA2), and
essentially it is analogous to the test setting of the latter, but where the decryp-
tion oracle provided to the distinguisher behaves differently: after the real-or-
random challenge phase, upon querying the challenge ciphertext, it will respond
with the plaintext originally submitted by the distinguisher, in both the real and
ideal settings. Note that this is possible in the ideal setting, because we make
use of the same trick as in the fake setting of AGM-QCCA2, but we do not just
set a flag whenever we detect that the adversary is cheating, but rather return
the original message that it submitted as challenge. Since a similar behavior is
implemented in the real setting, the adversary must really be able to distinguish
between ciphertexts in order to win.

Definition 11 (RRC-QCCA2 Security). For SQES S := (Gen, Enc, Dec)
(implicit in all defined systems) we define the RRC-QCCA2-advantage of S for
distinguisher D as

Advrrc-qcca2
S,D := Pr

[
D[Grrc-qcca2-real] = 1

] − Pr
[
D[Grrc-qcca2-ideal] = 1

]
,

where the interactions of D with game systems Grrc-qcca2-real and Grrc-qcca2-ideal

are defined in Fig. 8.
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Fig. 9. RRO-QCCA2 games Grro-qcca2-real (left) and Grro-qcca2-ideal (right).

RRO-QCCA2 Security Definition. In order to relate the latter definition with
a constructive notion of confidentiality, it is helpful to have a game-based security
definition which analogously to QAE defines a real and an ideal setting (by
specifying real-or-random oracles, and in particular, not only a real-or-random
challenge). We do this by introducing the notion RRO-QCCA2, which can be
seen as a natural extension of RRC-QCCA2.

Definition 12 (RRO-QCCA2 Security). For SQES S := (Gen, Enc, Dec)
(implicit in all defined systems) we define the RRO-QCCA2-advantage of S for
distinguisher D as

Advrro-qcca2
S,D := Pr

[
D[Grro-qcca2-real] = 1

] − Pr
[
D[Grro-qcca2-ideal] = 1

]
,

where the interactions of D with game systems Grro-qcca2-real and Grro-qcca2-ideal

are defined in Fig. 9.

Relating AGM-QCCA2 and RRC-QCCA2. We feel that RRC-QCCA2 is a much
simpler and more natural definition than AGM-QCCA2. In fact, in [2] the authors
claim that AGM-QCCA2 is a “natural” security definition based on the fact that
its classical analogon is shown to be equivalent to (a variation of) the stan-
dard classical IND-CCA2 security definition. We claim that our RRC-QCCA2 is
more natural in the sense that it is formulated as a normal distinction problem



Composable and Finite Computational Security of Quantum Message Trans. 307

(as opposed to AGM-QCCA2), and its classical analogon can be shown to be
equivalent to standard classical IND-CCA2 security much more directly (in par-
ticular, with no concrete security loss, as opposed to AGM-QCCA2, where it is
shown that the concrete reduction has a factor 2 security loss).

Similarly as done in [2] for QAE, whose classical restriction was shown to be
equivalent to the common classical notion of authenticated encryption IND-CCA3
from [41], we now show that our RRC-QCCA2 security notion, when casted
to a classical definition, dubbed RRC-CCA2, is equivalent (in particular, with
no loss factors, as opposed to AGM-QCCA2) to a common classical notion of
IND-CCA2. The latter definition is the same mentioned in [2], and comprises
a real-or-random challenge, but the decryption oracle returns ⊥ upon submit-
ting the challenge ciphertext. On the other hand, RRC-CCA2 behaves exactly
the same as IND-CCA2, except that it always returns the challenge plaintext as
originally submitted by the adversary upon querying the challenge ciphertext,
independently from the (real or ideal) setting.

Lemma 2. RRC-CCA2 and IND-CCA2 are equivalent.

Proof. To transform RRC-CCA2 into IND-CCA2, the reduction simply stores the
challenge ciphertext ĉ, and returns ⊥ whenever the decryption oracle is queried
upon ĉ. To transform IND-CCA2 into RRC-CCA2, the reduction simply stores the
challenge plaintext m̂ and the challenge ciphertext ĉ, and returns m̂ whenever
the decryption oracle is queried upon ĉ.

RRC-QCCA2 Implies RRO-QCCA2. As above, here we add as superscript the
parameter 	 to games and advantages to denote that the distinguisher is allowed
to make at most 	 queries to the oracles. Note that we relate RRC-QCCA2 and
RRO-QCCA2 for only the subclass of SQESs which satisfy the following condition.

Condition 1. SQES S is such that the auxiliary state does not depend on the
key (but possibly on the randomness), and it appends explicitly the randomness
to the ciphertext, that is:

Enck(�M ) = Uk,r(�M ⊗ ΠT
r )U†

k,r ⊗ |r〉〈r|R,

for some unitary Uk,r depending on both the key k and the randomness r.

We remark that this restriction still captures all the explicit protocols considered
in [2].

Lemma 3. Let S be a SQES satisfying Condition 1. Then for reduction system
CI as specified in the proof, for any distinguisher D we have

Advrro-qcca2,�
S,D ≤ 	 · Advrrc-qcca2,�−1

S,DCI
.

Proof. The proof of Lemma 3 appears in the full version [5].
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It is easy to show that the other direction of Lemma 3 also holds (for the
same class of SQES), that is, RRO-QCCA2 implies RRC-QCCA2. For this, the
reduction C flips a bit B̃ and uses the RRO-QCCA2 security game to emulate
the RRC-QCCA2 game, resulting in perfect emulation with probability 1

2 , and
perfect unguessability otherwise. Thus, with DC outputting 1 if and only if D
correctly guesses B̃, we have Advrrc-qcca2,�

S,D ≤ 2 · Advrro-qcca2,�−1
S,DC , and therefore

the two notions are asymptotically equivalent, as we formalize in the following
lemma.

Lemma 4. For SQES satisfying Condition 1, RRC-QCCA2 and RRO-QCCA2
are asymptotically equivalent.

Just as we casted RRC-QCCA2 into the classical definition RRC-CCA2, we
can cast RRO-QCCA2 into RRO-CCA2. Then it is possible to obtain analogous
results as above for the classical notions (without restrictions on the (classical)
encryption scheme).

Corollary 4. RRC-CCA2 and RRO-CCA2 are asymptotically equivalent.

RRO-QCCA2 Implies CC-QCNF. We can now finally relate QCCA2 game-
based security definitions to the constructive cryptography notion of confiden-
tiality, CC-QCNF. We do that by showing that RRO-QCCA2 security implies
CC-QCNF, and therefore, by Lemma 3, so does RRC-QCCA2 (with concrete secu-
rity loss factor 	).

Theorem 4. Let S := (Gen, Enc, Dec) be a SQES (implicit in all defined sys-
tems). Then with protocol πq-enc

AB = (πq-enc
A , πq-enc

B ) making use of quantum
computers QC�

A and QC�
B (already defined in Fig. 6 for Theorem 3), simula-

tor simqcca2
E making use of quantum computer QC�

E as defined in Fig. 7 (until the
end), and (trivial) reduction system C as specified in the proof, for any distin-
guisher D we have

ΔD(πq-enc
AB [KEY, IC�,QC�

A,QC�
B ], simqcca2

E [NMCC�,QC�
E ]) ≤ Advrro-qcca2,�

S,DC .

Proof. The proof of Theorem 4 appears in the full version [5].

Corollary 5. With ε(D) := supD′∈B(D) Advrro-qcca2,�
S,D′ , we have

[
KEY, IC�,QC�

A,QC�
B

]
πq-enc

AB ,ε−−−−−→
[
NMCC�,QCqcca2,�

E

]
,

where the class B(D) is defined in Eq. (5).

Using Lemma 3, we finally obtain the following corollary.

Corollary 6. With ε(D) := supD′∈B(D) Advrrc-qcca2,�
S,D′ , we have

[
KEY, IC�,QC�

A,QC�
B

]
πq-enc

AB ,(�+1)·ε−−−−−−−−−→
[
NMCC�,QCqcca2,�

E

]
,

where the class B(D) is defined in Eq. (5).
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RRO-QCCA2 is Stronger than CC-QCNF . We remark that even though
RRO-QCCA2 implies CC-QCNF, the converse is not true for the same reason
outlined above for QAE and CC-QSEC: it is possible to show that there are
SQESs that satisfy CC-QCNF but not RRO-QCCA2 by applying the same prin-
ciple of extending a RRO-QCCA2 secure scheme into one which is not anymore
RRO-QCCA2, but still satisfies CC-QCNF.

Acknowledgments. CP acknowledges support from the Zurich Information Security
and Privacy Center.
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Abstract. We study the possibility of achieving full security, with guar-
anteed output delivery, for secure multiparty computation of functional-
ities where only one party receives output, to which we refer as solitary
functionalities. In the standard setting where all parties receive an out-
put, full security typically requires an honest majority; otherwise even
just achieving fairness is impossible. However, for solitary functionalities,
fairness is clearly not an issue. This raises the following question: Is full
security with no honest majority possible for all solitary functionalities?

We give a negative answer to this question, by showing the existence
of solitary functionalities that cannot be computed with full security.
While such a result cannot be proved using fairness-based arguments,
our proof builds on the classical proof technique of Cleve (STOC 1986)
for ruling out fair coin-tossing and extends it in a nontrivial way.

On the positive side, we show that full security against any number
of malicious parties is achievable for many natural and useful solitary
functionalities, including ones for which the multi-output version cannot
be realized with full security.

1 Introduction

Secure multiparty computation (MPC) [7,9,19,32] allows a set of mutually dis-
trusting parties to compute any function of their local inputs while guaranteeing
(to the extent possible) the privacy of the inputs and the correctness of the out-
puts. Security is formulated by requiring that a real execution of a protocol is
indistinguishable from an ideal execution in which the parties hand their inputs
to a trusted party who computes the function and returns the outputs.

The strongest level of security one could hope for is so-called “full secu-
rity” [8,19]. Full security ensures guaranteed output delivery in the sense of
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allowing all parties to learn their outputs without revealing additional infor-
mation about other inputs. In particular, it implies fairness: malicious parties
cannot learn their outputs while preventing honest parties from learning their
outputs. This level of security is achievable in the presence of an honest major-
ity, either unconditionally [4,7,9,31] (assuming secure point-to-point channels
and a broadcast channel) or under standard cryptographic assumptions [18,19]
(assuming a public-key infrastructure).

Without an honest majority, a classical result of Cleve [11] shows that full
security, or even fairness alone, is generally impossible. Concretely, there are
many natural functionalities such that in every protocol for computing them,
malicious parties can gain a significant advantage over honest parties in learning
information about the output. Thus, when no honest majority is assumed, it is
common to settle for weaker notions of security such as “security with abort” [5,
19–21,32].

In this paper, we consider the possibility of achieving full security for func-
tionalities that deliver output to a single party, to which we refer as “functional-
ities with solitary output” or “solitary functionalities” for short. Such function-
alities capture many realistic use-cases of MPC in which different participants
play different roles. For instance, consider a (single) employer who wishes to
learn some aggregate private information about a group of employees, where
the output should remain hidden from the employees. This type of functionali-
ties is commonly considered in the non-interactive setting, including the Private
Simultaneous Messages (PSM) model of secure computation [15] and its robust
variants [1,6].

Beyond being a natural class of functionalities, the class of solitary func-
tionalities is also interesting because it bypasses all fairness-based impossibility
results. Indeed, fairness is not an issue when only one party receives an output,
and thus Cleve’s impossibility result does not have any consequences for such
functionalities. Therefore, the first question that we ask is a very basic feasibility
question in the theory of MPC:

Do all functionalities with solitary output admit a fully secure protocol?

This feasibility question can be contrasted with the state of affairs in other
ongoing lines of work on characterizing the functionalities that admit protocols
with information-theoretic security, or UC security, or fairness [3,10,13,23,28],
where the high-order bit is already known and the current efforts are focused on
trying to fully characterize the realizable functionalities.

We make two main contributions. On the negative side, we settle the high-
order bit by proving that some solitary functionalities cannot be computed with
full security. This is conceptually intriguing because, as mentioned above, soli-
tary functionalities do not introduce “fairness” problems. So what is the source
of difficulty in achieving full security? Our impossibility proof extends Cleve’s
original attack in a rather subtle way. In Cleve’s attack, the adversary gains
advantage over honest parties by aborting the protocol at a point where it knows
significantly more information about the output than the honest parties do. Our
new attack, dubbed the “double-dipping attack”, is based on the following rough
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intuition. (The following simplified description of the attack ignores important
subtleties; see Sects. 1.2 and 3 for a more precise version.) The adversary con-
trols a majority of the parties that includes the output party. It instructs one of
the parties it controls to abort the protocol just when learning enough (but not
all) information about the output. Intuitively, in such a case, the protocol must
be run again with default values (in particular, the original inputs cannot be
recovered as the aborting parties form a majority). In the end of the protocol,
the adversary learns the output of f on two inputs, with the same input values
for honest parties. This is an information that the adversary cannot obtain in
the ideal world, hence security fails.

On the positive side, we make progress towards full characterization of the
solitary functionalities that admit fully secure protocols. We present such pro-
tocols for several natural and useful families of solitary functionalities, including
variants of commonly studied MPC problems such as Private Set Intersection.
Our positive results apply in many cases where negative results are known for
the multi-output variant. We elaborate on both our positive and negative results
below.

1.1 Our Results

For our negative result, we present a family Ω of solitary functionalities for which
no fully secure protocol exists. A representative example of such a functionality,
first considered in the context of “best of both worlds” security [25] (see below),
is the following 3-party functionality feq with two parties P1 and P2 receiving
inputs x, y ∈ {1, 2, 3}, respectively, and an output-receiving party Q. The output
of feq is defined as feq(x, y) = x if x = y and feq(x, y) =⊥ otherwise. We sketch
below how “double dipping” is applied to this functionality, and present the
family Ω and the formal impossibility proof in Sect. 3.

Next, in Sect. 4, we present several positive results. We start by proving that
fairness implies full security in the following sense: if f is an n-party function,
where all parties receive the output, and f can be computed with fairness, then
the (n + 1)-party solitary functionality f ′, with inputs given to P1, . . . , Pn, as in
f , and with the output delivered to the output party Q, can be computed with
full security. Our next positive result shows that we can go much beyond fairness
positive results; specifically, we consider a family of n-party functionalities that
we call functions with “forced output distribution”. Described for the 3-party
case, this family includes all functions f(x, y) (with inputs x, y to P1, P2, respec-
tively, and output to Q) such that for at least one of the input parties, say P1,
there is a distribution on its input, where the output f(x, y) is distributed the
same, no matter what the other input is. Note that such (non-trivial) functions
f cannot be computed with fairness, as this would imply fair coin-tossing, which
is impossible [11]. Finally, as a third positive result, we consider a family of func-
tionalities that we term “functionalities with fully revealing input”. Described in
the 3-party setting above, this family includes all functionalities where one of
the parties, say P1, has an input for which the function f becomes injective.



On Fully Secure MPC with Solitary Output 315

We stress that these results fall short of providing a full characterization of
the fully secure solitary functionalities, as we give an example of a function that
does not fall into any of the families of positive results but nevertheless can
be computed with full security. Interestingly, we compute this function using a
variant of the GHKL protocol [23] for computing fair two-party functionalities,
yet—viewed as a symmetric two-party functionality—it is inherently unfair. We
leave the question of finding a full characterization as an intriguing open question
for future work.

Example. To demonstrate the usefulness of the above positive and negative
results, we consider some variants of the Private Set Intersection (PSI) problem.
In this problem, the inputs x, y of P1, P2 correspond to subsets S1, S2 of some
domain [m] and the output is the intersection S = S1 ∩ S2. It follows from
our negative result that if |S1| = |S2| = k, for some fixed k, then this function
cannot be computed with full security (in fact, the function feq mentioned above
is exactly the case k = 1). On the other hand, for the same inputs, if the required
output is only the intersection size, i.e. |S|, then this becomes a functionality
with a forced output distribution (e.g., by choosing S1 as a uniformly random set
of size k) and so this functionality can be computed with full security. Similarly,
if we allow |S1|, |S2| to be anywhere between k and m then PSI with full security
becomes possible (using [m] as a revealing input) and, if we allow |S1|, |S2| to
be anywhere between 0 and k, this is also possible (using a degenerate version
of the forced output distribution, where ∅ is selected with probability 1). Other
interesting cases, like the case where |S1|, |S2| are between 1 and k, are left as
an open problem. (See the full version of the present paper [24] for an analysis
of additional variants of PSI, including additional variants where the output is
just the intersection size |S|, or just a bit indicating whether S = ∅, sometimes
referred to as the disjointness function. The full version also includes similar
analyses for different natural flavors of Oblivious Transfer (OT)).

Finally, as an additional contribution, we analyse the round complexity of
computing solitary functionalities with full security. We observe that some of
the protocols presented in our positive results are constant-round protocols,
while others use super-logarithmic number of rounds. We prove that, for cer-
tain solitary functionalities, full security actually requires super-constant round
complexity (see Sect. 5). We leave the question of figuring out the exact round-
complexity for any solitary functionality as an intriguing open question for future
work.

Feasibility Landscape of Boolean Solitary Functionalities. We conclude this
section with a few sentences regarding the “feasibility” landscape of solitary
MPC. We focus on functions with Boolean output where the output receiving
party does not provide input; this case is interesting as it is readily comparable
to the non-solitary Boolean two-party case (the most well understood instance
of fully secure MPC with dishonest majority). We distinguish two cases depend-
ing of the size of the input domains. From the fairness criterion, if one party
has a strictly bigger input domain than the other, then almost all functionalities



316 S. Halevi et al.

Fig. 1. Table summarizing our results vis-à-vis the PSI problem

are computable with full security, because almost all two-party Boolean func-
tions admit fair protocols in this case [3]. On the other hand, when the parties
have exactly the same number of inputs, the fairness criterion does not apply,
because almost all two-party Boolean functions are not computable with fair-
ness.1 However, by excluding the functions that are computable using a variant
of the forced criterion, we can succinctly describe the set of functions whose
status is unknown: {M ∈ {0, 1}n×n | ∃x ∈ R

n s.t. Mx = 1n ∧
∑

i xi ≤ 0}. In
words, the set corresponds to 0–1 matrices (viewed as matrices over the reals)
whose columns span 1n with coefficient that have a negative sum. While we could
not rigorously analyze the measure of this set, we conjecture that it represents a
vanishing fraction of the entire space, i.e. relative to {0, 1}n×n; experimental evi-
dence for n ≤ 300 strongly supports our conjecture (see [24], Appendix A). Thus,
the following picture emerges for functionalities with equal-sized input domains:
almost all 2-party functionalities cannot be computed fairly, while almost all
solitary 3-party functionalities (two inputs and one output) can be computed
with full security.

1.2 Our Techniques

Next, we elaborate on some of the techniques that we use.

(i) Impossibility result. As mentioned above, for our impossibility result, we
use a technique inspired by Cleve’s seminal “biasing” attack on coin-tossing [11].
In Cleve’s attack, the adversary is trying to bias the output of a fair coin-flip.
The adversary picks a random round i, and plays honestly until that round.
Then, the adversary computes the corrupted party’s backup value for that round,

1 The reason being that most such functions can be used to implement the coin-tossing
functionality [29] – which does not admit a fair protocol.
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i.e. the output prescribed by the protocol in case the other party aborted at that
round. The adversary aborts the corrupted party at that round or the next round
depending on the “direction” it is attempting to bias the output to. Intuitively,
because the protocol is inherently unfair, the adversary has an advantage in
learning the output. Therefore, by aborting prematurely, the adversary alters
the distribution of the honest party’s output.

Translating the above attack to our setting is not straightforward, given that
the above gives an attack on correctness while we aim for an attack on privacy.
For concreteness, we now explain how our impossibility applies to the 3-party
functionality feq described above. Notice that, in an ideal execution, if P1 chooses
its input at random, then the other two colluding parties can only be sure of
P1’s input with probability at most 1/3 (i.e. by guessing the right value). In the
real-world however, there must be some round of the protocol where the joint
backup value of P2 and Q (i.e. the output prescribed by the protocol in case P1
aborted at that round) contains information about P1’s input, while the joint
backup value of P1 and Q does not contain information about P2’s input. By
aborting P2 at that round, the adversary can effectively compute the output on
two different inputs of P2 and thus guess P1’s input with probability noticeably
greater than 1/3.

Rather crudely, the above can be summarized as follows: We define a coin-
toss between {P1, Q} and {P2, Q} such that the outcome of the “coin-toss” is
tied to some privacy event. By “biasing” the coin-toss, the adversary effectively
increases its chance that the privacy event occurs, which results in a privacy
breach. It should be noted that this picture is not accurate since, in our setting,
the direction of bias is very important and this cannot be guaranteed by Cleve’s
attack.

(ii) Protocols. Our transformation from n-party fair protocols (with output to
all) to (n + 1)-party fully secure protocols with solitary output to Q describes
a compiler that takes a fair protocol Π and transforms it into a fully secure
protocol Π ′ with solitary output. The idea is to emulate Π by sharing the view
of each party Pi in the original protocol Π between Pi and Q in Π ′. This way, an
adversary corrupting a subset of parties not including Q learns nothing, while
an adversary corrupting a subset of parties that includes Q only learns the
views of the corresponding parties in Π. The latter cannot be used to mount an
attack, given the presumed security of the original protocol. Our protocols for the
forced output distribution class and for the fully revealing input class are very
different. Interestingly, these two cases are symmetric in some sense, where each
has “problematic” parties. In the former (forced output distribution) case, the
problematic party is the one that does not have a forced output distribution.
The protocol we propose in this case funnels the communication through the
others parties. Thus, by design, the problematic party only contributes to the
computation once. For the latter (fully revealing input) case, the problematic
parties are the ones without fully revealing input. The protocol we propose for
this case funnels the communication through the party with a revealing input,
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say P1. Thus, by design, unless P1 is corrupt (in which case there are no secrets),
computation only occurs once.

Related Work. Below, we discuss some related work that deals with full security
and other related security notions (in particular, fairness).

In the two-party case, it is known that fairness is equivalent to full security
(with guaranteed output delivery), since if an honest party aborts it can safely
replace the input of the corrupted party by a default value and compute the
resulting output locally. In contrast, Cohen and Lindell [12] show that in the
multiparty case there are functionalities that admit fair protocols but do not
admit fully secure protocols.

Since the work of Cleve [11], it is known that full security, or even fairness,
cannot be achieved in general unless there is an honest majority. This led to a
rich line of work [2,3,14,23,30] attempting to characterize which functions can be
computed with full security. Most works along this line focused on the two-party
case, starting with the results of [23], and culminating in a full characterization
for the class of fair Boolean functions with the same output for both parties [3].

Less is known for the multi-party case. Examples of multi-output functions
for which fair protocols exist (specifically, n-party OR and 3-party majority)
are given in [22]. In [25,27] (see also [26]), the notion of “Best-of-both-worlds
security” is introduced as a hybrid between full security and security with abort.
A protocol satisfies this definition, if there is one protocol that simultaneously
provides full security if there is an honest majority and otherwise it guarantees
security with abort. Note that, in the context of best-of-both-worlds, [25] already
gives an example of a 3-party solitary function for which no constant-round pro-
tocol exists (concretely, the function feq mentioned above). This was improved
to log n rounds in [27].

Open Problems. As mentioned above, the most obvious open problems are
obtaining a characterization or at least reducing the gap between the positive
and negative results, and working out the exact round complexity for fully secure
computation of solitary functionalities. Less obviously, we identify the following
interesting open questions.

1. Our attack in Sect. 3 crucially relies on the rushing capability of the adversary.
It would be interesting to show that this is inherent for impossibility or to
extend the negative result to the case of a non-rushing adversary.

2. In this work, we are mainly concerned with the feasibility questions of solitary
MPC. Therefore, for obtaining malicious security, our protocols use a generic
step that we have not tried to optimize. We leave the interesting question of
improving concrete efficiency for future work, or designing concretely efficient
fully secure protocols for useful special cases such as PSI.

3. As explained in subsequent sections, broadcast is necessary for solitary MPC.
However, some functionalities do not require broadcast. While the question
is orthogonal to the goal of the paper, it would be interesting to understand
which functionalities require broadcast in the solitary setting.
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2 Preliminaries

The following models and definitions are adapted from [12,17].

2.1 Models

In this section we outline the definition of secure computation, following
Canetti’s definition approach for the standalone model [8], and highlight some
details that are important for our purposes. The following version of the def-
inition is somewhat simplified. We refer the reader to [8] for more complete
definitions.

Communication Model. We consider a network of n processors, usually denoted
P1, . . . , Pn and referred to as parties. Each pair of parties is connected via a
private, authenticated point-to-point channel. In addition, all parties share a
common broadcast channel, which allows each party to send an identical message
to all other parties. In some sense, the broadcast channel can be viewed as a
medium which “commits” the party to a specific value.2

Functionality. A secure computation task is defined by some n-party function-
ality f : X1 × . . . × Xn → Σn, specifying the desired mapping from the parties’
inputs to their final outputs. Party Pi’s input domain is denoted by Xi, for each
i ∈ [n], and the outputs of the parties are assumed to belong to some alphabet
Σ. When n = 3, the parties’ input domains will be denoted X, Y and Z to make
the distinction more explicit. One may also consider randomized functionalities,
which take an additional random input; however, in this work we focus on the
deterministic case.

Functionality with Solitary Output. A n-party functionality f : X1 × . . . × Xn →
Σn admits solitary output if it delivers output to (the same) one party alone,
i.e. f is of the form (x1, . . . , xn) 
→ (∅, . . . , ∅, σ, ∅, . . . , ∅), where the index of σ
does not depend on the input. The output-receiving party will be denoted by, Q,
and, unless stated otherwise, will be identified with Pn. If no confusion arises,
we simply write f : X1 × . . . × Xn → Σ or f : (x1, . . . , xn) 
→ σ.

Some Notations. Denote by P = {P1, . . . , Pn} the set of all parties. If no confu-
sion arises, we sometimes identify P with the numbers in [n] = {1, . . . , n}. Sub-
sets of these parties are denoted by calligraphic letters (S, T , . . .), and their com-
plements will be denoted by (S, T , . . .). Random variables are denoted by lower-
case boldface (x,y, . . .) and distributions by upper-case boldface (X,Y, . . .). For
a functionality f taking input from X1 × . . . × Xn we will write xS to denote

2 We remark that our assumption regarding broadcast is in fact necessary for fully
secure computation of solitary functionalities. This observation follows from the fact
that “convergecast” implies broadcast [16]. We also sketch a simpler direct argument
in the full version [24].
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an element of the subspace ×i∈SXi and, abusing notation, f(xS , xS) denotes
the value of f(x1, x2, . . . , xn). Furthermore, for integers m and k, we let

([m]
k

)

denote the subsets of [m] of size exactly k and 2[m] the set of all subsets of
[m]. For set S and distribution S, we write s ← S and s ← S to denote that
element s is sampled uniformly at random from S or according to distribution
S, respectively.

Protocol. Initially, each party Pi holds an input xi, a random input ρi and,
possibly, a common security parameter κ. The parties are restricted to (expected)
polynomial time in κ. The protocol proceeds in rounds, where in each round each
party Pi may send a “private” message to each party Pj (including itself) and
may broadcast a “public” message, to be received by all parties. The messages Pi

sends in each round may depend on all its inputs (xi, ρi and κ) and the messages
it received in previous rounds. Without loss of generality, we assume that each
Pi sends xi, ρi, κ to itself in the first round, so that the messages it sends in each
subsequent round may be determined from the messages received in previous
rounds. We assume that the protocol terminates after a fixed number of rounds,
denoted r (that may depend on the security parameter κ), and that honest
parties never halt prematurely, i.e. honest parties are active at any given round
of the protocol. Finally, each party locally computes some output based on its
view. We note that our negative results extend to protocols that have expected
polynomial number of rounds (in κ) via a simple Markov inequality argument.

Fail-Stop Adversary. We consider a fail-stop t-adversary A, where the parameter
t is referred to as the security threshold. The adversary is an efficient interactive
algorithm,3 which is initially given the security parameter κ and a random input
ρ. Based on these, it may choose a set T of at most t parties to corrupt. The
adversary then starts interacting with a protocol (either a “real” protocol as
above, or an ideal-process or hybrid-process protocol to be defined below), where
it takes control of all parties in T . In particular, it can read their inputs, random
inputs, and received messages and, contrary to the malicious case (see below),
it can control the messages that parties in T send only by deciding whether to
send them or to abort. We assume by default that the adversary has a rushing
capability: at any round it can first wait to hear all messages sent by uncorrupted
parties to parties in T , and use these to make its decisions whether to abort or
continue (some of) the parties he corrupts. Corrupted parties that do not abort
send their prescribed messages for the present round, while corrupted parties
that abort send a special abort symbol to all parties.4

3 It is usually assumed that the adversary is given an “advice” string a, or is alter-
natively modeled by a nonuniform algorithm. In fact, the proofs of our negative
results are formulated in this nonuniform setting, but can be modified to apply to
the uniform one as well.

4 This assumption implies that an abort is detected by all parties, even one that
occurred on a private channel. This assumption can be enforced via a dispute reso-
lution mechanism, thanks to the broadcast channel.
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Malicious Adversaries. Adversaries that deviate arbitrarily from the protocol are
not discussed in the present paper. Using the GMW compiler [19], our positive
results can be extended to malicious adversaries. Negative results trivially extend
to such adversaries (since fail-stop is a special kind of malicious adversary).

Security. We consider two types of security known as full security and security
with identifiable abort. The former is the focus of the paper, i.e. it corresponds to
the security notion we want to realize or rule out. The latter is a weaker security
notion that is useful towards realizing our positive results. Informally, a protocol
computing f is said to be t-secure if whatever a t-adversary can “achieve” by
attacking the protocol, it could have also achieved (by corrupting the same set
of parties) in an ideal process in which f is evaluated using a trusted party. To
formalize this definition, we have to define what “achieve” means and what the
ideal process is. The ideal process for evaluating the functionality f is a protocol
πf involving the n parties and an additional, incorruptible, trusted party TP.

Ideal Model with Full Security. The protocol proceeds as follows: (1) each party
Pi sends its input xi to TP; (2) TP computes f on the inputs (using its own
random input in the randomized case), and sends to each party its corresponding
output. Note that when the adversary corrupts parties T in the ideal process, it
can pick the inputs sent by parties in T to TP (possibly, based on their original
inputs) and then output an arbitrary function of its view (including the outputs
it received from TP). Honest parties always output the message received from
the trusted party and the corrupted parties output nothing.

Ideal Model with Identifiable Abort. In this case, an adversary can abort the
computation in the ideal model after learning its outputs, at the cost of reveal-
ing to the honest parties the identity of at least one of the corrupted parties. The
protocol proceeds as follows: (1) each Pi sends its input xi to TP; (2) TP com-
putes f on the inputs (using its own random input in the randomized case), and
sends to each of the corrupted parties its corresponding output. (3) By sending
to TP either (continue, ∅) or (abort, Pi), for some Pi in T , according to whether
the adversary continues the execution, or aborts the execution at the cost of
revealing one corrupted party. (4) TP sends the outputs to the honest parties
if the adversary continues, or the identity of the corrupted Pi together with a
special abort-symbol, if the adversary aborted the computation. Similarly to the
previous case, when an adversary corrupts parties in the ideal process, it can
pick the inputs sent by parties in T to TP (possibly, based on their original
inputs) and then output an arbitrary function of its view (including the outputs
it received from TP). Honest parties always output the message received from
the trusted party and the corrupted parties output nothing.

2.2 Security Definition

To formally define security, we capture what the adversary “achieves” by a ran-
dom variable concatenating the adversary’s output together with the outputs
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and the identities of the uncorrupted parties. For a protocol Π, adversary A,
input vector x, and security parameter κ, let execΠ,A(κ, x) denote the above
random variable, where the randomness is over the random inputs of the uncor-
rupted parties, the trusted party (if f is randomized), and the adversary. The
security of a protocol Π (also referred to as a real-life protocol) is defined by
comparing the exec variable of the protocol Π to that of the ideal process πtype

f ,
where type ∈ {full_sec, id_abort} specifies the ideal process to be compared with
(either full security or identifiable abort). Formally:

Definition 2.1. We say that a protocol Π t-securely computes f if, for any
(real-life) t-adversary A, there exists (an ideal-process) t-adversary A′ such that
the distribution ensembles execΠ,A(κ, x) and execπtype

f
,A′(κ, x) are indistinguish-

able. The security is referred to as perfect, statistical, or computational according
to the notion of indistinguishability being achieved. For instance, in the compu-
tational case it is required that for any family of polynomial-size circuits {Cκ}
there exists some negligible functionality neg, such that for any x,

|Cκ(execΠ,A(κ, x)) − Cκ(execπtype
f

,A′(κ, x))| ≤ neg(κ).

An equivalent form of Definition 2.1 quantifies over all input distributions
X rather than specific input vectors x. This equivalent form is convenient for
proving our negative results.

Intuitive Discussion. Definition 2.1 asserts that for any real-life t-adversary A
attacking the real protocol there is an ideal-process t-adversary A′ which can
“achieve” in the ideal process as much as A does in the real life. The latter
means that the output produced by A′ together with the inputs and outputs
of uncorrupted parties in the ideal process is indistinguishable from the output
(wlog, the entire view) of A concatenated with the inputs and outputs of uncor-
rupted parties in the real protocol. This concatenation captures both privacy and
correctness requirements. On the one hand, it guarantees that the view of A does
not allow it to gain more information about inputs and outputs of uncorrupted
parties than is possible in the ideal process and, on the other hand, it ensures
that the inputs and outputs of the uncorrupted parties in the real protocol be
consistent with some correct computation of f in the ideal process. We stress
that ideal-world adversary can indeed choose whatever input it likes, and it need
not restrict itself to the input chosen by the real-world adversary.

Default Security Threshold. Throughout the paper, we assume that the security
threshold is t = n − 1, namely an arbitrary strict subset of the parties can be
corrupted. We therefore do not mention the parameter t in the rest of the paper.

2.3 Hybrid Model and Composition

Hybrid Model. The hybrid model extends the real model with a trusted party
that provides ideal computation for predetermined functionalities. In more
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detail, the parties communicate with this trusted party as per the specifications
of the ideal models described above (either fully secure or identifiable abort, to
be specified). Let Fn be a functionality. Then, an execution of a protocol Π com-
puting a functionality f in the Fn-hybrid model involves the parties interacting
as per the real model and, in addition, having access to a trusted party com-
puting Fn. The protocol proceeds in rounds such that, at any given round, the
parties send normal messages as in the standard model, or, make a single invo-
cation of the functionality Fn. Security is defined analogously to Definition 2.1
by replacing the real protocol with the hybrid one. The model in question is
referred to as the (Fn, type)-hybrid model, depending on the specification of the
ideal functionality.

Composition. The hybrid model is useful because it allows cryptographic tasks
to be divided into subtasks. In particular, a fully secure hybrid protocol making
ideal invocations to an ideal functionality with identifiable abort can be trans-
formed into a fully secure real protocol, if there exists a real protocol for the ideal
functionality that is secure with identifiable abort. This technique is captured
by Canneti’s sequential composition theorem.

Theorem 2.1 (Canetti [8]). Suppose that protocol Π securely computes f in
the (Fn, id_abort)-hybrid model with full security, and suppose that Ψ securely
computes f in the real model. Then, protocol ΠΨ securely computes f in the
real model, where ΠΨ is obtained by replacing ideal invocations of Fn with real
executions of Ψ . Furthermore, the quality of the security (computational, statis-
tical or perfect) of the resulting protocol is the weakest among the security of Π
and Ψ .

Finally, we define the notion of backup values. It is immediate from the secu-
rity definition that any fully secure protocol admits well defined backup values.

Definition 2.2 (Backup values). The following definitions are with respect
to a fixed honest execution of an n-party, r-round correct protocol (determined by
the parties’ random coins) for solitary functionality f . The ithround backup value
of a subset of parties Q = {Q} ∪ S ⊆ P at round i ∈ [r], denoted Backup(Q, i),
is defined as the value Q would output, if all parties in P \ Q abort at round
i + 1 and no other party aborts. For consistency, we let Backup(Q, r) denote the
output of the protocol if no parties abort (i.e Backup(Q, r) = Backup(Q′, r), for
every Q and Q′).

3 Impossibility: The Double-Dipping Attack

In this section we prove our main negative result. Namely, we show impossibility
of achieving full security for a number of solitary functionalities, including the
following natural families:

– Equality testing with leakage of input (including feq from the introduction).
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– Private Set Intersection for fixed input size (i.e. PSI as defined in Definition
3.1).

Definition 3.1. Let PSIidm,k :
([m]

k

)
×

([m]
k

)
→ 2[m] be such that PSIidm,k(S1, S2) =

S1 ∩ S2. As a three party functionality, PSIidm,k receives inputs from P1 and P2
and delivers output to an additional party Q.

Namely, PSIidm,k takes as input two sets of size k and outputs their intersection.
We point out that feq ≡ PSIidm,1. In this section, we show impossibility for a
class of functions that includes PSIidm,k, for every 0 < k < m/2. As a warm-up,
we sketch our impossibility result for the specific functionality feq; the general
case is essentially an extrapolation of this case. We will be using the following
notation.

Notation 3.1. Let Π be a three-party, r-round protocol for computing a func-
tion f : X ×Y ×Z → Σ with solitary output. Define random variables a0, . . . ,ar

and b0, . . . ,br such that ai is the value of Backup({Q, P1} , i) in a random exe-
cution of Π and, similarly, bi is the value of Backup({Q, P2} , i) in a random
execution of Π, where Backup(Q, i) is according to Definition 2.2.

3.1 Warm up

Let Π be a three-party protocol for computing feq. Let X and Y denote the
uniform distribution for the inputs of P1 and P2 respectively. We proceed under
the following simplifying assumptions for Π: for every i ∈ [r], it holds that
Prx←X [ai = x] = 1/3 and Pry←Y [bi = y] = 1/3. In words, if P1 (resp. P2)
chooses its input uniformly at random, then the backup output of Q and P1
(resp. Q and P2) at round i is equal to the aforementioned input with probabil-
ity exactly 1/3, regardless of P2’s (resp. P1’s) choice of input. For the purposes
of the present warm up, we will further assume that a0 and b0 are independent
random variables. Next, we rule out fully secure computation for feq under these
simplifying assumptions. When we tackle the general case in the next subsec-
tion, we get rid of these simplifying assumptions, by showing additional attacks
(adversaries) where the aforementioned properties do no to hold.

We show that there exists an adversary that can guess the honest party’s
input with probability noticeably greater than what the ideal model allows.
First, in the ideal model with full security, notice that when an honest party P�

chooses his input uniformly at random, then an adversary corrupting {P3−�, Q}
may guess (with certainty) the honest party’s input with probability at most
1/3 (by using the right input for the corrupted party). We show that for any
real protocol, there exists an adversary that can guess the input with noticeably
greater probability, thus violating security.

Consider two adversaries AP1 and AP2 corrupting {Q, P1} and {Q, P2},
respectively, acting as follows. The honest party and corrupted party choose their
inputs uniformly at random; write x and y for the inputs chosen by P1 and P2.
The adversary AP1 chooses a round i uniformly at random. Then, before sending
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its messages for round i, if ai �= x, the adversary aborts party P1 without send-
ing further messages and instructs Q to continue honestly with P2; otherwise, it
sends its messages for round i and aborts P1 alone. The adversary AP2 chooses
a round i uniformly at random. Then, after sending its messages for round i, if
bi �= y, the adversary aborts P2 without sending further messages and instructs
Q to continue honestly with P1; otherwise, it sends its messages for round i + 1
and aborts P2 alone. Adversary AP1 outputs bi−1 or bi (depending on the round
P1 aborted) and AP2 outputs ai or ai+1 (depending on the round P2 aborted).
We show that at least one of the adversaries outputs the honest party’s input
with probability noticeably greater than 1/3, in violation of privacy. Next, we
compute each of the relevant probabilities.

Pr
[
AP1 outputs y

]
= 1

r
·

r∑

i=1

(

Pr
x←X
y←Y

[ai �= x ∧ bi−1 = y] + Pr
x←X
y←Y

[ai = x ∧ bi = y]

)

Pr
[
AP2 outputs x

]
= 1

r
·

r−1∑

i=0

(

Pr
x←X
y←Y

[bi �= y ∧ ai = x] + Pr
x←X
y←Y

[bi = y ∧ ai+1 = x]

)

Next, we compute the average of the two quantities above.
(
Pr

[
A

P1 outputs y
]
+ Pr

[
A

P2 outputs x
])

/2

=
1
2r

(

Pr
x←X

y←Y

[b0 �= y ∧ a0 = x] + Pr
x←X

y←Y

[ar = x ∧ br = y] +

r−1∑

i=1

Pr
x←X

y←Y

[ai = x] +

r−1∑

i=0

Pr
x←X

y←Y

[bi = y]

)

By correctness of the protocol and simplifying assumptions,

(
Pr

[
AP1 outputs y

]
+ Pr

[
AP2 outputs x

])
/2 = 1

2r
· Pr

x←X
y←Y

[b0 �= y ∧ a0 = x] + 1
3

= 1
3 + 1

2r
· 2

9

We conclude that at least one of the adversaries can guess with certainty the
opponent’s input with probability noticeably greater than 1/3, thus violating
privacy.

3.2 General Case

We define a class Ω of 3-party functions, and we show that no function in this
class admits a fully secure realization. Intuitively, this class of functions satisfies
the following requirement: For both 
 ∈ {1, 2}, there is a (non-trivial) partition
of the inputs of P� and a distribution over the inputs of P� such that if P� samples
its input according to the specified distribution then, with some fixed probability
bounded away from 0 or 1, the output alone5 fully determines what set of the

5 Without knowledge of the inputs of Q and P3−�.
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partition P�’s chosen input belongs to, no matter how the inputs of Q and P3−�

were chosen. Furthermore, if both parties sample their inputs according to their
respective distributions, then either for both inputs their sets in the partitions
are determined from the output alone, or for neither. Formally,

Definition 3.2. The class of functions Ω consists of all functions f satisfying
the following conditions, for some γ1, γ2 ∈ (0, 1). There exist distributions X
and Y over X and Y , respectively, such that supp(X) = X and supp(Y) = Y ,
and partitions X1 . . . Xk and Y1 . . . Y� of X and Y , respectively, such that

1. For every distribution Δ1 over X × Z,
Pr(x0,z0)←Δ1

ỹ←Y
[∃j s.t. Pry′←Y [y′ ∈ Yj | f(x0, ỹ, z0) = f(x0, y′, z0)] = 1] = γ1

2. For every distribution Δ2 over Y × Z,
Pr

x̃←X
(y0,z0)←Δ2

[∃j s.t. Prx′←X [x′ ∈ Xj | f(x̃, y0, z0) = f(x′, y0, z0)] = 1] = γ2

3. There exists z0 ∈ Z such that, for every σ ∈ Σ,
∃j s.t. Pr [x̃ ∈ Xj | f(x̃, ỹ, z0) = σ] = 1 if and only if
∃j s.t. Pr

x̃←X
ỹ←Y

[ỹ ∈ Yj | f(x̃, ỹ, z0) = σ] = 1

Note that PSIidm,k, with 0 < k < m/2, satisfies the above definition: define
X = Y as the uniform distribution and define partitions {Xx = {x}}x∈X and
{Yy = {y}}y∈Y .

Remark 3.1. The class of functions Ω can be generalized in few ways that we
omitted, for the sake of presentation. The first generalization considers functions
that take more than three inputs and can be reduced to functions in Ω by
grouping parties together. The second generalization relaxes the requirement on
the support of the distributions X and Y (allowing supp(X) � X or supp(Y) �

Y ). The proof for the latter is almost identical to the one below.

Theorem 3.2. For any f ∈ Ω and for any protocol Π computing f , at least
one of the following holds.

– There exists an adversary corrupting either P1 or P2 that can violate correct-
ness.

– There exists an adversary corrupting either Q and P1, or Q and P2 that can
violate privacy.

Hereafter, fix a function f , real numbers γ1, γ2 ∈ (0, 1), distributions X and
Y and partitions X1 . . . Xk and Y1 . . . Y�, and z0 satisfying Definition 3.2. It
is immediate that γ1 = γ2, hence we simply write γ (= γ1 = γ2). We define
4r + 1 adversaries {AP1

i }r
i=1, {AP2

i }r−1
i=0 , {CP�

i }r
i=1 and ÃP1

0 (See Fig. 2). Let
Σ′ ⊂ Σ denote all the elements σ ∈ Σ such that there exists j for which
Pr

x̃←X
ỹ←Y

[ỹ ∈ Yj | f(x̃, ỹ, z0) = σ] = 1. Such a Σ′ is guaranteed to exist by Item 2

of Definition 3.2.
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Fig. 2. Description of the adversaries

Proof. Define ã0, . . . , ãr and b̃0, . . . , b̃r such that ãi = 1 (resp. b̃i = 1) if and
only if ai ∈ Σ′ (resp. bi ∈ Σ′) and 0 otherwise. In the following, we consider
an execution of the protocol where Q uses z0 as input, P1 uses input sampled
according to X and P2 uses input sampled according to Y, regardless of whether
the parties are corrupted or not.

Claim 3.1. Unless CP1
i or CP2

i violate correctness, it holds that |Pr[b̃i = 1]−γ|,
|Pr [ãi = 1] − γ| ≤ neg(κ), for every i ∈ {0, . . . , r − 1}.

Next, we analyze the probability that AP1
i and AP2

i output 1. Observe that,
by correctness, with all but negligible probability, whenever AP1

i (resp. AP2
i )

outputs 1, the adversary succeeds in guessing the “bucket” the honest party’s
input belongs to, with certainty. To prove our theorem, we show that one of
the adversaries AP�

i or ÃP1
0 outputs 1 with probability greater than γ, violating

privacy.
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Pr
[
AP1

i outputs 1
]

= Pr
[
ãi = 0 ∧ b̃i−1 = 1

]
+ Pr

[
ãi = 1 ∧ b̃i = 1

]

Pr
[
AP2

i outputs 1
]

= Pr
[
b̃i = 0 ∧ ãi = 1

]
+ Pr

[
b̃i = 1 ∧ ãi+1 = 1

]

Therefore,
r∑

i=1

Pr
[
AP1

i outputs 1
]
+

r−1∑

i=0

Pr
[
AP2

i outputs 1
]

(1)

= Pr
[
b̃0 = 0 ∧ ã0 = 1

]
+

r−1∑

i=1

Pr
[
ãi = 1

]
+

r−1∑

i=0

Pr
[
b̃i = 1

]
+ Pr

[
ãr = 1 ∧ b̃r = 1

]

Thus
r∑

i=1

Pr
[
AP1

i outputs 1
]
+

r−1∑

i=0

Pr
[
AP2

i outputs 1
]
= Pr

[
b̃0 = 0 ∧ ã0 = 1

]
+ 2r · γ

(2)
The last equation follows by correctness and Items 1 to 3 of Definition 3.2. Next,
we argue that Pr[b̃0 = 0 ∧ ã0 = 1] is a noticeable quantity. If not, then we
claim that adversary ÃP1

0 can violate privacy. Suppose that Pr[b̃0 = 0 ∧ ÃP1
0 =

1] ≤ neg(κ) and let ρ denote the (joint) randomness of parties P1 and Q. In
the presence of adversary ÃP1

0 , we claim that the events a0 /∈ Σ′ and ar /∈ Σ′

are independent of each other. To prove it, first notice that a0 may be viewed
as deterministic function of the inputs of P1 and Q and ρ, and ar may be
viewed as a deterministic function of the inputs of f (the latter assumption
holds by correctness, with all but negligible probability). We write a0(x, z0; ρ)
and ar(x, y, z0) to make the dependency explicit and compute:

Pr
x←X,y←Y,ρ←R

[
a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′]

=
∑

x0∈X

Pr
y←Y,ρ←R

[
a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′ | x = x0

]
· Pr

x←X
[x = x0]

Observe that for any fixed x0, the random variables a0(x0, y; ρ) and ar(x0, y, z0)
are independent random variables. Therefore,

Pr
x←X,y←Y,ρ←R

[
a0(x, z0; ρ) /∈ Σ

′ ∧ ar(x, y, z0) /∈ Σ
′]

=
∑

x0∈X

Pr
ρ←R

[
a0(x, z0; ρ) /∈ Σ

′ | x = x0
]

· Pr
y←Y

[
ar(x, y, z0) /∈ Σ

′ | x = x0
]

· Pr
x←X

[x = x0]

Finally, by correctness and Item 2 of Definition 3.2

Pr
x←X,y←Y,ρ←R

[a0(x, z0; ρ) /∈ Σ′ ∧ ar(x, y, z0) /∈ Σ′]

=
∑

x0∈X

Pr
ρ←R

[a0(x, z0; ρ) /∈ Σ′ | x = x0] · (1 − γ) · Pr
x←X

[x = x0]

= (1 − γ) · Pr
x←X,ρ←R

[a0(x, z0; ρ) /∈ Σ′] = (1 − γ)2
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The last equality follows from correctness and Item 1 of Definition 3.2. Thus, if
Pr[b̃0 = 0 ∧ ã0 = 1] ≤ neg(κ), then adversary ÃP1

0 outputs 1 with probability
1 − (1 − γ)2 > γ, in violation of privacy. In conclusion, using an averaging
argument in Eq. 2, at least one of {AP1

i }r
i=1, {AP2

i }r−1
i=0 outputs 1 with probability

noticeably greater than γ and, thus, violates privacy.

4 Positive Results

In this section, we present our positive results. First, we give a generic transfor-
mation from a fully secure n-party protocol with non-solitary output to a fully
secure (n+1)-party protocol with solitary output; The latter protocol computes
the associated functionality that delivers output to an additional auxiliary party
that doesn’t provide input. In light of the positive results for fair two-party
computation, our transformation enables fully secure computation for (almost
all) Boolean functions with unequal domain size. For instance, it yields a secure
protocol for the following PSI variant that escapes our other criteria: From a
universe of size n, party P1 picks a set of size between 1 and k, for some arbi-
trary fixed k ≤ n − 2, party P2 picks a set size between 1 and k + 1 (i.e. one
party has more inputs to pick than the other), and Party Q receives value 1
if the sets intersect and 0 if not.6 Interestingly, this technique yields protocols
with super-constant (in fact, super-logarithmic) round complexity since, with
few exceptions, super-logarithmic number of rounds is necessary for fair compu-
tation. In Sect. 5, we show that super-constant round complexity is inherent for
fully secure MPC with solitary output.

Then, we present a generic protocol for functionalities that satisfy the
“forced output distribution” criterion. Intuitively, these are functionalities where
(almost) all parties can “force” the distribution of the output to be invariant of
the other parties’ choice of input. These functionalities should be contrasted with
the above fair ones, since they are utterly unfair viewed as non-solitary function-
alities (they imply coin-tossing). Interestingly, every functionality in this class
can be computed in a constant number of rounds.

We also present a generic protocol for functionalities that satisfy the “fully
revealing input” criterion. Intuitively, these are functionalities where at least
one party has a choice of input that reveals all other parties’ inputs. While this
family may appear somewhat pathological from a cryptographic point of view, it
contains several natural examples. In particular, it contains a PSI variant where
one party may choose the entire universe as input. Similarly to the previous case,
every functionality in this class can be computed in constant number of rounds.

Finally, for a functionality that escapes the above criteria, we design a fully
secure protocol that runs in superlogarithmic number of rounds. This protocol
is inspired by the GHKL protocol [23]. We emphasize that the feasibility of

6 Viewed as a two-party non-solitary functionality, the fact that it can be computed
with full security (fairness) follows from the criteria of [3].
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this functionality does not follow from the fairness criterion since, viewed as
a non-solitary functionality, it cannot be computed fairly. Furthermore, in the
next section, we show that superconstant round complexity is inherent for this
function.

4.1 Security via Fairness

Let f : X1 × . . . × Xn → Σ be an n-party functionality that delivers the same
output to all parties. Let Π be a fully secure protocol for f . Write m

(�,�′)
i ∈

{0, 1}μκ for the message sent by P� to P�′ at round i. Let Mκ = μκ · n denote
the total length of messages received by party P� in a single round (without loss
of generality μκ and Mκ do not depend on i, 
′ or 
). In this section, we show
how to transform protocol Π into a protocol Π ′ that computes the associated
solitary functionality that delivers the output to one of the parties, or to an
additional auxiliary party. We note that the transformation and analysis of the
two cases are the same, therefore we only focus on the latter transformation
(i.e. from n-party to n+1-party protocol, where the output receiving party does
not provide input). The rest of this sub-section is dedicated to the proof of the
following theorem.

Theorem 4.1. Let Π be a protocol for computing non-solitary functionality f
with full security. Then, there exist a protocol Π ′ that computes with full security
the associated (n + 1)-party solitary functionality that delivers the output to an
additional auxiliary party.

At a high level, to transform the n-party non-solitary protocol Π into an
(n + 1)-party solitary protocol Π ′, we have each party P� in Π ′ share the view
of the party P� in the original protocol Π between himself and the auxiliary
party Q. To do so, we begin by defining protocol’s Π message function NxtMsgΠ

that deterministically maps each party P�’s view until some round i (a view that
includes its identity, its input, its private coins and all incoming messages until
that round) to all messages that P� sends at the upcoming round.

Definition 4.1. Let NxtMsgΠ denote the next message function of r-round pro-
tocol Π. Formally, NxtMsgΠ maps viewP�

i 
→ (m(�,1)
i+1 , . . . , m

(�,n)
i+1 ) such that

1. viewP�
i ∈ {0, 1}i·Mκ corresponds to the view of party P� up to and includ-

ing round i (wlog, we assume that the value of i and the identity of P� are
contained in its view).

2. If i �= r, then m
(�,�′)
i+1 ∈ {0, 1}μκ corresponds to P�’s prescribed message to P�′

at round i + 1 according to Π. If i = r then m
(�,�′)
i+1 ∈ {0, 1}μκ corresponds to

P�’s prescribed output.
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In our protocol design, all messages will be additively-shared between party
P and a helper party Q. That is, a message m will be randomly split into m1, m2
such that m = m1 ⊕ m2 and party P will hold m1 and Q will hold m2. In the
following functionality ShrNxtMsgΠ (Fig. 3) we describe how the messages of the
protocol are created to deliver this sharing. Party P and Q hold viewP

i , P ’s view
up to and including round i, in shared form as vP , vQ and they receive the next
round messages of P also in shared form.

Fig. 3. Two-party functionality ShrNxtMsgΠ for parties P and Q.

We describe the protocol for computing a function with an auxiliary party
Q that receives the solitary output. The idea is that each party P� will invoke
with party Q the protocol for creating the messages that P� needs to send to
all the other parties in the upcoming round. This is done by utilizing the func-
tionality ShrNxtMsgΠ . The result is that P� and Q receive the set of messages
(m(�,1)

i+1 , . . . , m
(�,n)
i+1 ) in shared form. Then, P� send to each other party Pj its share

of the message m(�,j). The auxiliary party Q holds in a string viewQ�

i its share
of the view of the messages of party P� up to and including round i (a different
string for each P�). If (some) parties abort, then proceed under the specifica-
tions of the original protocol Π, while maintaining the invariant that each P�’s
view from the original protocol is shared between P� and Q. At the end of the
execution, Q together with one of the P�’s that hasn’t aborted reconstruct the
output (which is a deterministic function of their joint views).

The above protocol is described where the output is delivered to the auxiliary
party Q (not one of the P1 . . . Pn). However, as noted at the beginning of this
section, this party can be one of the n original parties and simply serves both
as himself and as party Q. Observe that, in this case, Q will simply see all the
messages that it sends and receives (as it holds both shares of the messages).

Proof of Theorem 4.1. We prove the claim by showing that protocol Π ′ from
Fig. 4 is fully secure in the ShrNxtMsgΠ -hybrid model with identifiable abort.
Then, the theorem follows from composition [8]. Let A be an adversary cor-
rupting up to n parties (of the n + 1 parties). Observe that, if party Q is not
among the corrupted parties, then A’s view can be trivially simulated since it



332 S. Halevi et al.

Fig. 4. (n + 1)-party protocol for solitary f in the ShrNxtMsgΠ -hybrid model with
identifiable abort

is just a uniform random string, and it is not hard to see that he cannot affect
correctness. It remains to prove that the protocol is secure when Q is among the
corrupted parties. Let C denote the set of corrupt parties, assuming that Q ∈ C.
For adversary A attacking Π ′ corrupting parties in C, we construct an adversary
Ã attacking Π (on the same input distribution and auxiliary information) and
corrupting parties C̃ = C \ {Q} (there are at most n − 1 such parties). Since A’s
and Ã’s views are identically distributed (modulo a 2-out-of-2 secret sharing),
and since the latter can be simulated in the ideal model with full security, it
follows that the former can be simulated as well. Formally, let S̃ denote the
simulator for Ã and define simulator S for A as follows:
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1. S runs S̃ on the relevant inputs, security parameter and auxiliary information.
Write (vPi

)
Pi∈C̃ for S̃’s output corresponding to the joint simulated view of

the parties.
2. S samples (νPi

)
Pi∈C̃ uniformly at random from the relevant space and out-

puts (vPi
⊕ νPi

)
Pi∈C̃ (the simulated views of parties in C̃) and (νPi

)
Pi∈C̃ (the

simulated view of Q).

��

4.2 Functions with Forced Output Distribution

In this section, we present the “Forced Output Distribution” criterion. First, we
define the notion.

Definition 4.2. A party Pi �= Q admits a forced output distribution for f if
there exists a distribution Δi over Xi such that the distribution of the random
variable f(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)|x̂i←Δi

is independent of the (n−1)-tuple
(x1, . . . , xi−1, xi+1, . . . , xn).

Intuitively, a party admits a forced output distribution if it can choose its
input in a way that “forces” the output, i.e. it makes the output distribution
independent of the other parties’ inputs. The theorem below states that if all-
but-one parties, not including Q, admit a forced output distribution, then the
functionality is computable with perfect full security in a constant number of
rounds in a hybrid model with ideal access with identifiable abort to functionality
ShrGnf (to be specified below). As a corollary, assuming OT, functions with a
forced output distribution admit fully secure protocol in the plain model.

Theorem 4.2. Assume that at least n − 1 of the parties in P \ {Q} admit a
forced output distribution for functionality f . Then, f is computable with perfect
full security in the ShrGnf -hybrid model with identifiable abort. Furthermore, the
computation runs in a constant number of rounds.

We now introduce functionality ShrGnf (Fig. 5) and we will prove our theorem
in the ShrGnf -hybrid model with identifiable abort. This functionality provides
the following. It shares the output of the function f between the parties that
invoke it, by obliviously choosing a random input for the parties that do not
provide input. That is, it provides uniform random shares to all-parties-but-one,
and that last party gets the xor of these shares with the output of the function.
We emphasize that this functionality may be invoked by a subset of the n parties,
and, as per the ideal model with identifiable abort, the invocation can be aborted
by any single party in that set (at the cost of revealing its identity).

Without loss of generality, if it exists, suppose that P1 is the party without
forced output distribution (the protocol and our analysis remains sound if all
parties have a forced output distribution). The protocol (see Fig. 6) proceeds as
follows: the parties invoke the trusted party for computing ShrGnf , and obtain
shares of the output. Then, in two distinct steps (1) P1 sends its share of the
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Fig. 5. n-party functionality ShrGnf .

output to Q and (2) all other parties send their shares to Q. In case of abort, there
are two scenarios; either P1 aborts alone, in which case the process starts again
without P1, or, if anyone else aborts at this iteration or the next, the computation
halts and Q outputs a value from the forced distribution. Intuitively, the protocol
maintains security because it is not useful to abort any of the parties; aborting
any party but P1 halts the execution, while aborting P1 does not reveal anything
about the output (since the honest party will not send its share before P1 sends
his).

Proof of Theorem 4.2. First note that distribution D in Fig. 6 is well defined
since it is unique. Let A denote an adversary corrupting a subset of parties. Like
in the previous proof, it is straightforward that if A does not corrupt Q then it
cannot affect correctness and its view can be trivially simulated. Let C be the
set of corrupted parties. Define simulator S that does the following: S invokes
the trusted party on the inputs of the corrupted parties and receives output
out form the trusted party. Then, S samples |C| random elements {σ′

C}C∈C and
hands them to the adversary.

– If P1 alone aborts, S samples |C| − 1 fresh random values {σ′′
C}C∈C\{P1}, and

hands them to the adversary.
– If any other party aborts (at any point in the simulation), S samples d′ ← D,

hands d to the adversary, and outputs whatever A outputs.
– If no other party aborts, S hands out to the adversary and outputs whatever

A outputs. ��
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Fig. 6. n-Party Protocol Π for f with Ideal Access to ShrGnf with Identifiable Abort

4.3 Functions with Fully Revealing Input

In this section, we present the “Fully Revealing Input” criterion. First, we define
the notion.

Definition 4.3. Let S � P. We say that the parties in S admit a fully revealing
input, if there exists xS ∈ ×

Pi∈S
Xi such that the following function is injective

fxS : xS 
→ f(xS , xS).

The theorem below states that if there exists a fixing of the inputs of P1
and Q (or any Pi and Q) that yields an injective function, then the overlying
functionality f is computable with full security in a constant number of rounds
in the ShrGnf -hybrid model. Similarly to the previous section, assuming OT, it
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follows as an immediate corollary that functions with fully revealing input admit
fully secure protocol in the plain model.

Theorem 4.3. Assume there exists i such that {Pi, Q} admit a fully reveal-
ing input. Then, functionality f is computable with perfect full security in the
ShrGnf -hybrid model with identifiable abort. Furthermore, the computation runs
in a constant number of rounds.

Without loss of generality, suppose that P1, Q admit a fully revealing input.
The protocol (Fig. 7) proceeds as follows: the parties invoke the trusted party
for computing ShrGnf , and obtain shares of the output. Then, in two distinct
steps (1) All-parties-but-P1 send their shares of the output to Q and (2) P1
sends its share to Q. In case of abort, the process is repeated until it succeeds.
Intuitively, the protocol maintains security because the only way to extract more
information from the protocol is to corrupt both P1 and Q. In that case however,
P1 and Q can provide input in the ideal model that reveals everything about the
inputs of the honest parties.

Proof of Theorem 4.3. Let A denote the adversary corrupting a subset of parties.
Like in the previous proof, it is straightforward that if A does not corrupt both Q
and P1 then it cannot affect correctness and its view can be trivially simulated.
If A corrupts both P1 and Q, then by instructing the simulator to send the
fully revealing input in the ideal model, the adversary’s view can be simulated
perfectly, no matter what is its course of action.7 ��

4.4 Outliers

In this section, we present protocol for a function that escapes the above criteria
but is nevertheless computable with full security. Due to space constraints, we
only give here a brief overview of the protocol. For the formal description and
security analysis, the reader is refered to the full version of the present paper [24].
Define functionality f that takes inputs x ∈ {0, 1, 2} from P1 and y ∈ {0, 1, 2}
from P2 and delivers f(x, y) to Q such that

f(x, y) =

⎧
⎪⎨

⎪⎩

1 if x = y ∈ {0, 1}
2 if x = y = 2
0 otherwise

In this section, we show that the functionality f is computable with full security
in ω(log(κ)) rounds. In what follows, we identify {0, 1, 2} with {x0, x1, x2} or
{y0, y1, y2} to make the distinction between the parties’ input-spaces explicit.

Our protocol is inspired by the GHKL protocol and proceeds as follows.
Formal descriptions and more detailed security analysis appear in the full version
7 We stress that honest-but-curious adversaries can be simulated without having
recourse to the fully revealing input, conforming to the standard definition. We
have omitted the analysis here, since it is straightforward.
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Fig. 7. n-Party Protocol Π for f in the ShrGnf -Hybrid Model with Identifiable Abort

of the present paper [24]. In the remainder of this section, we only give a high level
overview. Write x and y for the inputs used by the parties. In a share generation
phase, the parties obliviously generate two sequences of values (a0, . . . , ar) and
(b0, . . . , br) and an integer i∗ ∈ [r] such that every value ai and bi is equal to
f(x, y) for indices succeeding i∗, and, for indices preceding i∗, ai is computed
by obliviously choosing a fresh input from {y0, y1} for P2, and using input x
for P1 and, similarly, bi is computed by obliviously choosing a fresh input from
{x0, x1} for P1, and using input y for P2. The value of i∗ is chosen according to a
suitable distribution. The two sequences are then shared in a 3-out-of-3 additive
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(modulo 3) secret sharing among the parties. Then, in the share exchange phase,
in r iterations, P1 is instructed to send its share of bi to Q, and P2 is instructed
to send its share of ai to Q. If party P1 aborts at round i, then P2 sends its share
of bi−1 to Q, and, similarly, if P2 aborts at round i, then P1 sends its share of
ai to Q. Party Q is instructed to output the value it can reconstruct from the
shares.

We crucially observe that, prior to i∗, the obliviously chosen input for each
party is sampled from {0, 1}, and not {0, 1, 2}. This seemingly superficial tech-
nicality is what enables the protocol to be secure.

We conclude with the following theorem which immediately yields full secu-
rity for f , assuming a protocol for OT.

Theorem 4.4. Protocol Π computes f with statistical full security in the
ShrGn∗

f -hybrid model with identifiable abort.

5 Lower-Bound on Round-Complexity

In this section, we present a lower bound for the functionality f from the previous
section. Let f be the three-party solitary functionality from Sect. 4.4. In what
follows, let Π denote a protocol for f , let κ denote the security parameter, and
assume the round-complexity of Π is set to some value r that is independent
of κ. It follows as an immediate corollary of the theorem below that no such
protocol can be fully secure.

Theorem 5.1. Using the notation above, there exists i ∈ [r] such that at least
one of the following is true:

1. An adversary corrupting P2 and Q violates P1’s privacy by aborting P2 at
round i.

2. An adversary corrupting P1 and Q violates P2’s privacy by aborting P1 at
round i.

3. An adversary corrupting P1 violates correctness by aborting at round i.
4. An adversary corrupting P2 violates correctness by aborting at round i.

For the proof of the above, the reader is referred to the full version [24] of the
present paper.

Acknowledgments. We are grateful to Noam Mazor, Matan Orland and Jad Silbak
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Abstract. We propose a simple and powerful new approach for secure
computation with input-independent preprocessing, building on the gen-
eral tool of function secret sharing (FSS) and its efficient instantiations.
Using this approach, we can make efficient use of correlated randomness
to compute any type of gate, as long as a function class naturally corre-
sponding to this gate admits an efficient FSS scheme. Our approach can
be viewed as a generalization of the “TinyTable” protocol of Damg̊ard
et al. (Crypto 2017), where our generalized variant uses FSS to achieve
exponential efficiency improvement for useful types of gates.

By instantiating this general approach with efficient PRG-based FSS
schemes of Boyle et al. (Eurocrypt 2015, CCS 2016), we can imple-
ment useful nonlinear gates for equality tests, integer comparison, bit-
decomposition and more with optimal online communication and with
a relatively small amount of correlated randomness. We also provide a
unified and simplified view of several existing protocols in the prepro-
cessing model via the FSS framework.

Our positive results provide a useful tool for secure computation tasks
that involve secure integer comparisons or conversions between arith-
metic and binary representations. These arise in the contexts of approx-
imating real-valued functions, machine-learning classification, and more.
Finally, we study the necessity of the FSS machinery that we employ, in
the simple context of secure string equality testing. First, we show that
any “online-optimal” secure equality protocol implies an FSS scheme for
point functions, which in turn implies one-way functions. Then, we show
that information-theoretic secure equality protocols with relaxed opti-
mality requirements would follow from the existence of big families of
“matching vectors.” This suggests that proving strong lower bounds on
the efficiency of such protocols would be difficult.

1 Introduction

The power of correlated randomness in secure computation has recently been an
active area of research. In the setting of secure computation with preprocessing,
c© International Association for Cryptologic Research 2019
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two or more parties receive correlated random inputs from a trusted dealer in an
offline phase, before the inputs are known. In a subsequent online phase, once the
inputs are known, the parties use this correlated randomness to obtain significant
speedup over similar protocols in the plain model, either unconditionally or under
weaker cryptographic assumptions. Alternatively, in the absence of a trusted
dealer, the correlated randomness can be generated via an interactive secure
protocol that is executed offline, before the inputs are known, and only the
outputs of this protocol need to be stored for later use. For simplicity, we focus
in this work on the case of secure two-party computation with security against
semi-honest adversaries.1

Originating from the work of Beaver [2], who showed how to use “multiplica-
tion triples” for secure arithmetic computation with no honest majority, many
current protocols for secure computation make extensive use of correlated ran-
domness. Commonly used types of two-party correlations include garbled circuit
correlations, OT and OLE correlations, multiplication (“Beaver”) triples and
their authenticated version, and one-time truth-tables [2,4,11,13,14,22].

Motivated by secure computation applications that involve integer compar-
isons or conversions between arithmetic and boolean values, we introduce a
simple and powerful new approach for secure computation in the preprocess-
ing model. Our approach is based on the general tool of function secret sharing
(FSS) [7] and its efficient instantiations from any pseudorandom generator. Infor-
mally, a (2-party) FSS scheme splits a function f : Gin → G

out from a function
class F , where G

in and G
out are finite Abelian2 groups, into two functions, f0

and f1, such that (1) each fσ is represented by a compact key kσ that allows its
efficient evaluation; (2) each key kσ hides the function f ; and (3) for any input
x ∈ G

in we have f(x) = f0(x) + f1(x).

The Idea in a Nutshell. Our FSS-based approach for secure computation with
preprocessing is very simple. Denote the two parties by P0 and P1. We represent
the function being evaluated as a circuit C, in which inputs internal wires take
values from (possibly distinct) groups. The circuit nodes are labeled by gates,
where each gate g maps an input from a group G

in into an output from a group
G

out. Note that we can use product groups to capture a gate with multiple input
or output wires. To securely evaluate C in the preprocessing model, the dealer
generates and distributes the following type of correlated randomness. First, for
every wire j in C, the dealer picks a random mask rj from the corresponding
group. Each party Pσ receives the random masks of the input wires it owns. The
online phase evaluates the circuit gate-by-gate in a topological order, maintaining
the following invariant: for every wire value wj in C, both parties learn the masked

1 Our techniques naturally generalize to the multi-party setting, though typically with
reduced efficiency benefits over alternative approaches. Moreover, most of our pro-
tocols can be extended to the malicious security model by employing simple authen-
tication techniques (as in [4,14]).

2 Unlike previous applications of FSS, here it is important that the input domain
additionally be endowed with group structure. From here on, the term “group” will
always refer to a finite Abelian group.



Secure Computation with Preprocessing via Function Secret Sharing 343

value wj + rj . This is easy to achieve at the inputs level: if input xi is owned by
party Pσ, this party can simply compute and send xi + ri to the other party.

The key idea is the following FSS-based gate evaluation procedure. For each
gate g : Gin → G

out, the dealer uses an FSS scheme for the class of offset functions
G that includes all functions of the form grin,rout(x) = g(x−rin)+rout. If the input
to gate g is wire i and the output is wire j, the dealer uses the FSS scheme for G
to split the function gri,rj

into two functions with keys k0, k1, and delivers each
key kσ to party Pσ. Now, evaluating their FSS shares on the common masked
input wi + ri, the parties obtain additive shares of the masked output wj + rj ,
which they can exchange and maintain the invariant for wire j. Finally, the
outputs are reconstructed by having the dealer reveal to both parties the masks
of the output wires.

The above protocol is not only simple, but in a sense is implicit in the lit-
erature. It can be viewed as a generalization of the “TinyTable” protocol of
Damg̊ard et al. [13], where the novel idea is to use efficient FSS for achieving
exponential compression (and speedup3) for natural types of gates that are useful
in applications. We discuss several useful instances of this approach below.

While the correlated randomness in the above protocol depends on the topol-
ogy of C, we also present a circuit-independent variant where the input and
output masks of different gates are independent of each other. In this variant,
for each gate g the dealer chooses additive rin offsets only for the input wires of
g, and provides FSS shares for the function grin,0(x) = g(x − rin) + 0, together
with additive shares of rin. During the online phase, the parties can “match
up” the offsets for adjacent gates, and non-interactively emulate FSS shares of
grin,rout(x) = g(x − rin) + rout using the additive shares, where rout is defined to
be (rin)′ for the appropriate next gate g′. The resulting online communication is
one element per wire, as opposed to only one element per computed wire value
as in the circuit-dependent version (where circuit fan-out introduces extra wires
but not new wire values).

Finally, one could alternatively consider a variant of our protocols in which
FSS is used to convert secret-shared inputs to secret-shared outputs rather than
common masked inputs to masked outputs. Whereas in the above protocol both
parties first apply FSS on the common masked input and then exchange their
output shares to obtain a masked output, in the alternative variant they start by
reconstructing a common masked input from their input shares, and then apply
FSS to directly obtain the output shares.

Application: Simple Derivation of Existing Protocols. By using simple
information-theoretic FSS schemes for truth-tables and low-degree polynomials,
our FSS-based approach can be used to derive in a simple and unified way
several previous protocols for secure computation in the preprocessing model.
For instance, protocols from [2,11,13,22,23] can be easily cast in this framework.

3 A general method for compressing truth-table correlations was recently suggested
in [6]. However, the running time still grows linearly with the truth-table size, or
exponentially with the gate input length.
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We also present useful generalizations of such protocols to broader classes of
algebraic computations.

Application: Online-Optimal Secure Equality, Comparison, Bit
Decomposition, and More. Our FSS-based technique yields a simple new
approach for securely performing useful nonlinear operations on masked or
secret-shared values. We first describe the types of nonlinear operations we can
efficiently support, and then the efficiency features of our FSS-based solution.

When performing secure arithmetic computations, it is often useful to switch
between an arithmetic representation, where the values are secret-shared over
a big modulus Zq, and a Boolean representation, where the values are secret
shared bit-by-bit over Z2. Other useful nonlinear operations include zero-testing
of a shared value or equality testing of two shared values, comparing between
different integer values (i.e., the “greater than” predicate), or checking if an
integer value is in an interval. For all of the above predicates, the input is secret-
shared over Zq and the 0/1 output is secret-shared for further computations over
either Z2, Zq, or another group. A more general class of nonlinear computations
are spline functions that output a different polynomial on each interval. A useful
special case is the ReLU function g(x) = max(0, x) that is commonly used as an
activation function in neural networks. Finally, one can also consider a garbling-
compatible variant of the above operations, where the bits of the output select
between pairs of secret keys that can be fed to a garbled circuit.

In all of the above cases, we can use computationally secure FSS schemes
based on one-way functions [7,8,19] to efficiently realize the corresponding offset
classes G using only symmetric cryptography. Concretely, for all the above types
of gates we can use efficient preprocessing to convert shares of an input into
shares of an output with optimal online communication that only involves a
single round of exchanging masked input shares and no further interaction. Each
party can then directly compute its share of the output given its part of the
correlated randomness and the message received from the other party.

The above types of nonlinear “FSS gates” can provide a valuable toolbox for
the large body of work on secure machine learning classification, secure imple-
mentation of bounded-precision arithmetic, and secure approximations of real-
valued functions. In fact, they can even be useful for evaluating standard Boolean
circuits. For instance, evaluating an AND/OR gate with fan-in m reduces to a
secure equality of m-bit strings.

Comparison with Prior Approaches. There is a long line of work on secure
implementation of useful nonlinear computations such as bit-decomposition in
different models (see [10,12,15,25] and references therein). As discussed above,
our FSS-based technique has an optimal online cost of converting secret-shared
inputs to secret-shared outputs. Compared to the commonly used “ABY frame-
work” [15] for performing such operations using garbled circuits, our approach
has better round complexity (1 instead of 2 rounds) and, more importantly,
it avoids the big overhead of sending a key for each bit of the input. In con-
crete terms, this improves the online communication complexity by two orders
of magnitude. Even in the relatively simple cases of equality testing and integer
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Table 1. Comparison of the performance of our protocols to the ABY framework by
Demmler, Schneider and Zohner [15] and protocols of Couteau [10] (bit-decomposition
is not directly supported by [10]). The inputs are taken from a group G

in with m =
�log |Gin|� (e.g., Gin = Z2m). We let λ denote the seed length of a length-doubling PRG
(λ = 128 for an AES-based implementation) and use big-O notation to hide small
constants that are strictly bigger than 1. Online rounds allow one message per party
per round. The specified complexity refers to converting secret-shared input to secret-
shared output, where the input sharing is over G

in and the output sharing is over Z2

(for zero test or comparison) or Z
m
2 (for bit-decomposition). The online computational

cost of our protocols is dominated by roughly s/λ invocations of the PRG, where s is
the offline storage in bits.

Gate type Protocol Online com-
munication
(bits per
party)

Online rounds Offline storage
(bits)

Zero test [10] m + o(m) ≥ 3 2m + o(m)

ABY [15] O(λm) 2 O(λm)

Proposition 2 m 1 ≈ λm

Zero test
example
m = 64

[10] 77 3 152

Proposition 2 64 1 8384

Integer
comparison

[10] SC1 O(m) O(log log m) 3m + o(m)

ABY [15] O(λm) 2 O(λm)

Proposition 3 m 1 ≈ λm

Comparison
example
m = 64

[10] SC1 1120 12 ≈ 300

Proposition 3 64 1 8512

Bit
decomposition

ABY [15] O(λm) 2 O(λm)

Proposition 5 m 1 ≈ λm2/2

Spline over
Z2m k + 1
deg.-d
polynomials

ABY [15] O(m(λk + d)) 2 O(m(λk + d))

Proposition 4 m 1 ≈ 2 km(λ + d)

comparison, where improved special-purpose protocols are known (see [10] and
references therein), our FSS-based approach has significant advantages over the
best previous protocols.
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The low online cost of our FSS-based protocols is inherited from the efficiency
of recent constructions of FSS schemes for point functions, intervals, and decision
trees [7,8,19]. These constructions make a black-box use of any pseudorandom
generator, which can be instantiated by AES in practice. Thus, for the type
of “gates” supported by such simple FSS schemes, our protocols significantly
improve the online communication complexity and round complexity of prior
approaches while still being very computationally efficient in the online phase.
See Table 1 for comparison.

Realizing the Dealer. We turn to discuss the offline cost of securely generating
and storing the correlated randomness. The amount of correlated randomness
used by our protocols is dominated by the size of the FSS keys. For equality
and comparison gates, this includes a linear number of PRG seeds (e.g., AES
keys) in the bit-length of the inputs, and for bit-decomposition it involves a
quadratic number of PRG seeds. When the input domain is not too big, the
distributed generation of this correlated randomness can be done with good
concrete efficiency using a distributed FSS key generation protocol of Doerner
and Shelat [16]. Otherwise one can use concretely efficient general-purpose secure
computation protocols (such as [24]) for emulating the dealer. Finally, one can
avoid the cost of securely distributing the correlated randomness by using a third
party as a dealer and settling for security against a single corrupted party. This
is similar to the 3-party ABY3 framework from [25], except that here the third
party is only used to generate correlated randomness and can remain offline
during the actual computation.

Is FSS Necessary? Our most useful positive results make use of symmet-
ric cryptography. Given that most protocols in the preprocessing model are
information-theoretic, one may ask if it is possible to obtain similar results in
the information-theoretic model with a polynomial amount of correlated ran-
domness. For simplicity, we consider a shared equality protocol with optimal
online complexity. In such a protocol, the parties hold n-bit strings x0 and
x1, and in a single round of interaction they send an n-bit message to each
other. These messages should hide their inputs. Following this interaction, they
each locally output a single output bit such that the exclusive-or of the two
bits is 1 if and only if x0 = x1. We show that our FSS machinery is not only
sufficient for obtaining this type of protocols, but is also necessary. In partic-
ular, any protocol as above implies the existence of a one-way function. (This
implication is more subtle than it may seem since unlike our simple FSS-based
protocol, a general shared equality protocol may correlate the randomness used
to mask the inputs with the randomness used to compute the output shares.)
On the other hand, we show that efficient information-theoretic shared equality
protocols with constant-size output shares would follow from the existence of
big families of “matching vectors” [17,18,21], a longstanding open problem in
extremal combinatorics. This suggests that strong lower bounds on the efficiency
of information-theoretic shared equality protocols would be difficult to obtain.
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Organization. In Sect. 2, we provide necessary preliminaries. In Sect. 3, we
present our general framework for secure computation with preprocessing via
FSS. In Sect. 4, we present applications, instantiating the necessary FSS schemes
for specific motivated computation tasks. We conclude in Sect. 5 by exploring
negative results and barriers.

2 Preliminaries

2.1 Representing Functions

In order to seamlessly handle both arithmetic and Boolean operations, we will
consider all functions to be defined over Abelian groups. For instance, a Boolean
function f : {0, 1}n → {0, 1}m will be viewed as a mapping from the group Z

n
2 to

the group Z
m
2 . Given our heavy use of function secret sharing, we use a similar

convention for function representation to the one used in [8] (the only difference
being that here we also endow the input domain with a group structure).

Definition 1 (Function families). A function family is defined by F =
(PF , EF ), where PF ⊆ {0, 1}∗ is an infinite collection of function descriptions
f̂ and EF : PF × {0, 1}∗ → {0, 1}∗ is a polynomial-time algorithm defining the
function described by f̂ . Concretely, f̂ ∈ PF describes a corresponding function
f : Df → Rf defined by f(x) = EF (f̂ , x). We require Df and Rf to be finite
Abelian groups, denoted by G

in and G
out respectively. We will typically let G

in

and G
out be product groups, which can capture the case of multiple inputs and

outputs. When there is no risk of confusion, we will sometimes write f instead
of f̂ and f ∈ F instead of f̂ ∈ PF . We assume that f̂ includes an explicit
description of Gin and G

out.

By convention, we denote by 0 ∈ G the identity element of G. We will use
the notation 1 ∈ G to denote a fixed canonical nonzero element of G; when
G is additionally endowed with a multiplicative structure, e.g., when G is the
additive group of a finite ring, 1 will be set to the multiplicative identity.

2.2 Secure Computation with Preprocessing

We follow the standard definitional framework for secure computation (cf.
[9,20]), except that we allow a trusted input-independent setup phase that dis-
tributes correlated secret randomness to the parties. This setup phase can be
securely emulated by an interactive preprocessing protocol that can be carried
out before the inputs are known. We focus here on protocols with security against
a semi-honest adversary who may non-adaptively corrupt any strict subset of
parties. For simplicity, we explicitly spell out the definitions for the two-party
case, and later explain the (straightforward) extension to the multi-party case.
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Functionalities. We denote the two parties by P0 and P1 and a party index
by σ ∈ {0, 1}. We consider by default protocols for deterministic functionalities
that deliver the same output to the two parties. The general case (of randomized
functionalities with different outputs) can be reduced to this case via a standard
reduction [9,20]. A two-party functionality f is described by a bit-string f̂ via a
function family F , as in Definition 1. We assume that the input domain G

in is
split into G

in = G
in
0 × G

in
1 , capturing the inputs of the two parties.

Protocols with Preprocessing. A two-party protocol is defined by a pair of PPT
algorithms Π = (Setup,NextMsg). The setup algorithm Setup(1λ, f̂), given a
security parameter λ and functionality description f̂ , outputs a pair of correlated
random strings (r0, r1). We also consider protocols with function-independent
preprocessing, in which Setup only receives a bound 1S on the size of f̂ instead
of f̂ itself. The next-message function NextMsg determines the messages sent by
the two parties. Concretely, the function NextMsg, on input (σ, j, f̂ , xσ, rσ,m),
specifies the message sent by party Pσ in Round j depending on the functionality
description f̂ , input xσ, random input rσ, and vector m of previous messages
received from P1−σ. We assume both parties can speak to each other in the
same round. (In the semi-honest model, one can eliminate this assumption by at
most doubling the number of rounds.) If the output of NextMsg is of the form
(Out, y) then party Pσ terminates the protocol with output y. We denote by
OutΠ,σ(λ, f̂ , (x0, x1)) and ViewΠ,σ(λ, f̂ , (x0, x1)) the random variables contain-
ing the output and view of party Pσ (respectively) in the execution of Π on
inputs (x0, x1), where the view includes rσ and messages received from P1−σ.

Security Definition. We require both correctness and security, where security is
captured by the existence of a PPT algorithm Sim that simulates the view of a
party given its input and output alone. We formalize this below.

Definition 2 (Secure computation with preprocessing). We say that
Π = (Setup,NextMsg) securely realizes a function family F in the preprocessing
model if the following holds:

– Correctness: For all f̂ ∈ PF describing f : Gin
0 ×G

in
1 → G

out, (x0, x1) ∈ G
in
0 ×

G
in
1 , λ ∈ N, σ ∈ {0, 1}, we have Pr[OutΠ,σ(λ, f̂ , (x0, x1)) = f(x0, x1)] = 1.

– Security: For each corrupted party σ ∈ {0, 1} there exists a PPT algo-
rithm Simσ (simulator), such that for every infinite sequence (f̂λ)λ∈N of
polynomial-size function descriptions from PF and polynomial-size input
sequence (xλ

0 , xλ
1 )λ∈N for fλ, the outputs of the following experiments Real

and Ideal are computationally indistinguishable:
• Realλ: Output ViewΠ,σ(λ, f̂λ, (xλ

0 , xλ
1 ))

• Idealλ: Output Simσ(1λ, f̂λ, xλ
σ, fλ(xλ

0 , xλ
1 ))

We say that Π realizes F with statistical (resp., perfect) security if the above
security requirement holds with statistical (resp., perfect) indistinguishability
instead of computational indistinguishability.
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2.3 Function Secret Sharing

We follow the definition of function secret sharing (FSS) from [8]. Intuitively, a
(2-party) FSS scheme is an efficient algorithm that splits a function f ∈ F into
two additive shares f0, f1, such that: (1) each fσ hides f ; (2) for every input x,
f0(x) + f1(x) = f(x). The main challenge is to make the descriptions of f0 and
f1 compact, while still allowing their efficient evaluation. As in [7,8], we insist
on an additive representation of the output rather than settle for an arbitrary
compact output representation. The additive representation is critical for the
applications we consider in this work and is achieved by existing constructions.

We now formally define the notion of FSS. While in this work we consider the
2-party case for simplicity, the definitions and the applications can be extended
in a natural way to the k-party case.

Definition 3 (FSS: Syntax). A (2-party) function secret sharing (FSS)
scheme is a pair of algorithms (Gen,Eval) with the following syntax:

– Gen(1λ, f̂) is a PPT key generation algorithm, which on input 1λ (security
parameter) and f̂ ∈ {0, 1}∗ (description of a function f) outputs a pair of
keys (k0, k1). We assume that f̂ explicitly contains descriptions of input and
output groups G

in,Gout.
– Eval(σ, kσ, x) is a polynomial-time evaluation algorithm, which on input σ ∈

{0, 1} (party index), kσ (key defining fσ : Gin → G
out) and x ∈ G

in (input for
fσ) outputs a group element yσ ∈ G

out (the value of fσ(x), the σ-th share of
f(x)).

Definition 4 (FSS: Correctness and Security). Let F = (PF , EF ) be a
function family (as defined in Definition 1) and Leak be a polynomial-time com-
putable function specifying the allowable leakage about f̂ . When Leak is omitted,
it is understood to output only G

in and G
out. We say that (Gen,Eval) as in Def-

inition 3 is an FSS scheme for the function family F (with respect to leakage
Leak) if it satisfies the following requirements.

– Correctness: For all f̂ ∈ PF describing f : Gin → G
out, and every x ∈ G

in,
if (k0, k1) ← Gen(1λ, f̂) then Pr [Eval(0, k0, x) + Eval(1, k1, x) = f(x)] = 1.

– Security: For each σ ∈ {0, 1} there is a PPT algorithm Simσ (simula-
tor), such that for every infinite sequence (f̂λ)λ∈N of polynomial-size function
descriptions from PF and polynomial-size input sequence xλ for fλ,
the outputs of the following experiments Real and Ideal are computationally
indistinguishable:

• Realλ: (k0, k1) ← Gen(1λ, f̂λ); Output kσ.
• Idealλ: Output Simσ(1λ, Leak(f̂λ)).

We refer to the FSS scheme as being statistical (resp., perfect) if the above holds
with statistical (resp., perfect) indistinguishability instead of computational indis-
tinguishability.
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Definition 5 (Distributed Point Function (DPF)). A point function fα,β,
for α ∈ G

in and β ∈ G
out, is defined to be the function f : Gin → G

out such that
f(α) = β and f(x) = 0 for x �= α. A Distributed Point Function (DPF) is an
FSS scheme for the family of all point functions, with the default leakage (i.e.,
Leak(f̂) = (Gin,Gout)).

Definition 6 (Distributed Interval Function (DIF)). An interval function
f(a,b),β, for a, b ∈ G

in, and β ∈ G
out, and given an arbitrary total order ≤ on G

in,
is defined to be the function f : Gin → G

out such that f(x) = β for x ∈ G
in, a ≤

x ≤ b, while f(x) = 0 for x < a or x > b. If a = 0 (the minimal element of Gin) or
b = |Gin|−1 (the maximal element) then we say that f(a,b),β is a special interval
function. A Distributed Interval Function (DIF) is an FSS scheme for the family
of all interval functions, with the default leakage (i.e., Leak(f̂) = (Gin,Gout)) and
a similar definition holds for Distributed Special Interval Functions.

The following theorem captures the complexity of the best known construc-
tions of DPF and distributed interval functions from a PRG.

Theorem 1 (Concrete complexity of DPF and DIF schemes [8]). Given
a PRG G : {0, 1}λ → {0, 1}2λ+2, there exists a DPF for fα,β : Gin → G

out with
key size m · (λ+2)+λ+ � bits, where m = �log2 |Gin|	 and � = �log2 |Gout|	. For
�′ = � �

λ+2	, the key generation algorithm Gen invokes G at most 2(m+ �′) times
and the evaluation algorithm Eval invokes G at most m + �′ times. For special
(resp., general) DIF, the above costs are multiplied by at most 2 (resp., 4).

3 Secure Computation with Preprocessing from FSS

In this section, we develop our primary general transformation for using FSS to
obtain secure 2PC with preprocessing. We then demonstrate how this approach
captures and generalizes existing techniques within this regime.

3.1 Circuit and Offset-Family Notation

We begin by introducing some notation for modeling circuits of computation
gates.

Definition 7 (Computation Gate). A computation gate is a function fam-
ily G (Definition 1), where each function describes a pair of Abelian groups
(Gin,Gout), and a mapping g : Gin → G

out. In some cases it will be convenient to
interpret Gin and G

out explicitly as product groups, of the form G
in =

∏
i∈[�] G

in
i

and G
out =

∏
i∈[m] G

out
i .

For example, one may consider a zero-test gate, corresponding to the family
of zero-test functions parameterized by different input and output groups.

For syntactic purposes, it will be useful to define notation for the following
type of (trivial) input and output gates.
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Definition 8 (Input and Output Gates). An input gate is a gate GInp which
syntactically receives no input from other gates (Gin = ∅), and outputs a single
value. An output gate is a gate GOut which syntactically sends no output to
further gates (Gout = ∅), and receives as input a single value.

We now define a circuit of input, output, and computation gates, via two
parts: (1) the circuit syntax, dictating its topological connectivity amongst gates,
and (2) the circuit instantiation, selecting a specific function for each gate, such
that the choices of input/output groups are consistent across edges. For example,
given multiplication gates followed by a zero-test gate (each corresponding to a
family of functions), these gates could be instantiated over any arithmetic ring
R followed by zero-test from G

in = R to any other space G
out with canonical 0

and 1 values.
The syntax of the circuit will be modeled by the structure of a directed

acyclic graph, with nodes serving as gates and edges serving as wires. In order
to model fan-out, each gate will be associated with both an out-degree (dictated
by the graph) and an out-arity �out, which may not be the same. The out-arity
corresponds to the number of values output by the gate computation. Each
outgoing edge from the gate corresponds to a wire carrying the value of one
of these outputs to another gate, and is labeled with the corresponding index
j ∈ [�out].

Definition 9 (Circuit syntax). Let B be a finite set (“basis”) of gates. A
circuit C over basis B specifies a directed acyclic graph (V,E), where each node
v ∈ V is labeled with an input and output arity (�inv , �outv ), and a gate type Gv ∈ B,
such that:

– Each source node is labeled by an input gate and every sink an output gate
(as per Definition 8). We sometimes denote the set of input and output gates
of C by Inp and Out.

– The in-arity �inv of each node v ∈ V is equal to its in-degree; each incoming
edge into v is associated with a distinct index i ∈ [�inv ]. Each outgoing edge
from v is labeled with an index j ∈ [�outv ], possibly with repetition (representing
fan-out).

– The depth of C, denoted depth(C), is defined as the length of the longest
directed path in C.

Definition 10 (Circuit instantiation). Let C be a circuit over basis B with
graph (V,E). An instantiation Cg of C is a selection for each v ∈ V of a func-
tion gv : Gin

v → G
out
v from the gate function family Gv, subject to the following

constraints:

1. G
in
v =

∏
i∈[�inv ]

G
in
(v,i) and G

out
v =

∏
j∈[�outv ] G

out
(v,j) for some abelian groups

G
in
(v,i),G

out
(v,j), where �inv , �outv are the arity of v.

2. For every edge (u, v) ∈ E labeled by i ∈ [�outu ] and j ∈ [�inv ], it holds that
G

out
(u,i) = G

in
(v,j).

We will sometimes refer to edges (u, v) ∈ E as wires w ∈ C, denoting Gw :=
G

out
(u,i) = G

in
(v,j).
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Remark 1 (Instantiation-dependent topology). In some cases, the circuit topology
cannot be completely decoupled from the instantiation. For example, instanti-
ating a bit-decomposition gate with G

in = Z2k would yield output G
out = Z

k
2

of arity k. However, we will attempt to keep syntax and instantiation separate
whenever possible for sake of modularity.

Our approach for preprocessing a gate computation relies on FSS sharing of
a corresponding family of functions, formed by allowing different additive offset
values to both the input and output value. In our application to 2PC, these will
serve as the values of random wire masks.

Definition 11 (Offset function family). Let G be a computation gate. The
family of offset functions Ĝ of G is given by

Ĝ :=
{

g[r
in,rout] : Gin → G

out

∣
∣
∣
∣

g : Gin → G
out ∈ G,

rin ∈ G
in, rout ∈ G

out

}

, where

g[r
in,rout](x) := g(x − rin) + rout,

and where each g[r
in,rout] contains an explicit description of rin, rout.

3.2 Secure 2-Party Computation with Preprocessing from FSS

We now demonstrate how to apply the ideas from the introduction to obtain
a secure 2-party computation protocol in the preprocessing model with cheap
online complexity. We restrict our protocol descriptions to the 2-party setting,
both for purposes of simplicity, and since this is currently the setting of most
efficient FSS constructions. However, the statements generalize to the multi-
party case (given corresponding multi-party FSS) with any number of corrupted
parties.

The following statement constitutes our core protocol, which leverages the
structure of the circuit to provide tailored preprocessing information. Later, in
Theorem 3, we extend the approach to support circuit-independent preprocess-
ing, at small extra offline and communication cost. Roughly, the extra commu-
nication corresponds to an element communicated for every wire as opposed to
every gate output value; note that multiple wires may correspond to the same
gate output, in the case of circuit fanout.

Theorem 2 (Circuit-Dependent Preprocessing). Let C be a circuit over
basis B. For each G ∈ B, let (GenĜ ,EvalĜ) be an FSS for the offset-function
family Ĝ with key size sizeĜ(λ, |Gin|, |Gout|). Then for any instantiation Cg of
C, there exists a 2-party protocol for securely computing Cg with the following
properties:

– Preprocessing. Given circuit C with gate (“vertex”) indices v ∈ C, denote the
set of gates by Gv and their instantiations by gv, which in particular specify
input/output groups G

in
v ,Gout

v . The preprocessing phase executes GenĜv
for

each gv and produces output of size
∑

v∈C sizeĜv
(λ, |Gin

v |, |Gout
v |).
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– Online. The online protocol requires local execution of EvalĜ for each gate,
yielding the following properties:

• Rounds: depthB(C).
• Communication:

∑
v∈C log |Gout

v | bits per party.

If the FSS schemes are perfectly (resp., statistically) secure, then the resulting
protocol is perfectly (resp., statistically) secure in the preprocessing model.

The proof of Theorem 2 follows the high-level description from the Introduc-
tion and appears in the full version.

Remark 2 (Compressing preprocessing output). In some cases, the size of the
offline preprocessing information can be compressed, when e.g. FSS keys of neigh-
boring gates contain redundant information. This will be the case, for example,
when generating FSS keys for neighboring gates which are each instantiated by
degree-2 functions. (Here, the output mask rw of the first gate will be identical to
the input mask of the second, as they correspond to the same wire; thus includ-
ing secret shares of rw as part of both FSS keys is unnecessary.) See discussion
in the following section for further cases.

Circuit-Independent Preprocessing. The protocol construction in Theorem 2 used
preprocessing information that was tailored to the topology of the given circuit
C. More concretely, we were able to “match up” the input/output offset masks
rv of every pair of gates sharing a wire, hardcoding the same offset into the FSS
keys for the respective functions. In particular, this enabled “for free” a direct
translation from masked output of one gate to appropriate masked input to all
gates in the next level which accepted this value as input (via fan-out).

In some cases, it may be advantageous to produce generic preprocessing
information that depends on the individual gate structure, but which can be
used for any circuit built from such gates (independent of the topology linking
the gates together). Our approach generalizes to this circuit-independent setting
with a small amount of additional overhead, via a few small changes, which we
now describe.

The only difference between the two constructions is that the circuit-
dependent correlation could directly “match up” the outgoing mask rout for
a gate to be equal to the incoming mask rin of any gate to which it enters. In
contrast, when the structure of the circuit C is not a priori known, this can be
effectively emulated as follows.

– For each gate g, we will sample a random input offset mask rin (but not rout),
and provide FSS shares for the offset function g[r

in,0] = g(x−rin)+0, together
with additive secret shares of the mask rin (which was not needed previously).
Note that a mask per input corresponds directly to a mask per wire in the
circuit.

– Then, once the structure of the circuit C is known (during the protocol), a
party Pσ can locally convert his overall collection of preprocessing information
over all gates (kσ

v , (rinv )σ)v∈C into FSS shares for the desired “matched up”
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g[r
in,rout] (where rout is equal to the input mask rin for the next gate that

the gate v output value will enter into), by leveraging the additive secret
shares of all wire masks rin together with linearity of FSS reconstruction: i.e.,
outputting Eval(σ, kσ

v , x) + (routv )σ.

This effectively reduces us back to the circuit-dependent version, in terms of
correctness and security. Observe, however, that whereas in the circuit-dependent
version, rin values of all target gates for fan-out wires of the same value could a
priori be coordinated, in this setting (when this structure is not a priori known),
the parties must send a separate element per fan-out wire. We also must provide
the additive shares of the input masks rin as part of the correlated randomness.

Theorem 3 (Circuit-Independent Preprocessing). Let B be a finite gate
basis; for each G ∈ B, let (GenĜ ,EvalĜ) be an FSS for the offset-function family
Ĝ with key size sizeĜ(λ, |Gin|, |Gout|). Then there exists a 2-party protocol for
securely computing any B-circuit instantiation Cg consisting of sG ∈ N gates g
of type G for each G ∈ B, with the following complexity:

– Preprocessing. (Independent of Cg ) The preprocessing phase executes sG exe-
cutions of GenĜ for each gate G ∈ B and produces output size

∑

G∈B
sG · (

sizeĜ(λ, |Gin|, |Gout|) + log |Gin|).

– Online. The online execution takes depth(C) rounds (as before), but requires
communication

∑
v∈C log |Gin

v | bits per party (vs.
∑

v∈C log |Gout
v |). Equiva-

lently, one element is communicated per wire, as opposed to only one element
per value (where fan-out introduces extra wires but not values).

The proof of Theorem 3 appears in the full version.

3.3 Recasting and Generalizing Existing Protocols

We begin by briefly demonstrating that common existing approaches to 2PC
with preprocessing (and even useful extensions) can be cast as instances of the
FSS-based framework, for special simple cases of FSS.

Low-Degree Gates. The first category is FSS of low-degree polynomials, which
can be attained simply by providing additive secret shares of each coefficient.
More broadly:

Observation 4 (FSS via Coefficient-Sharing). For any module M
over coefficient ring R, and family of functions of the form F =
{∑m

i=1 αiFi(x) | αi ∈ R} for public functions (Fi)i∈[m] : Gin → M , there exists
an FSS scheme for F with perfect security and correctness, as follows:
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– Gen(1λ, f): Parse the description of f ∈ F as secret coefficients (αi)i∈[m] ∈
Rm. The output FSS keys are additive secret shares of each αi over R, yielding
key size m log |R|.

– Eval(σ, kσ, x): Parse kσ = (ασ
i )i∈[m]. Output

∑
i∈[m] α

σ
i Fi(x).

Note that FSS keys perfectly hide the coefficients αi, and thus f . Correctness
holds by the distributive law within the module M .

As an example of “public functions” Fi, one can consider, e.g., input mono-
mials of a certain degree. Indeed, we can use this approach to instantiate FSS
schemes for offset-function classes Ĝ for the following types of low-degree gates.

Definition 12 (Low-Degree Gates).

1. The degree-d gate Gdeg-d is the class of functions gdeg-d : Rn → Rm param-
eterized by a ring R and n,m ∈ N, such that for each i ∈ [m], the ith out-
put function (gdeg-d)i(x1, . . . , xn) is a polynomial over R of degree no greater
than d.

2. The bilinear map gate Gblin is the class of functions gblin : Gin
1 × G

in
2 → G

out

such that Gin = G
in
1 ×G

in
2 ,Gout are Abelian groups, and gblin is a bilinear map.

Note that these two classes are incomparable: Gdeg-d addresses higher-order
polynomials, beyond degree 2. On the other hand, Gblin captures bilinear oper-
ations across different structures beyond a single ring R: e.g., multiplication of
non-square matrices, Gin

1 = Rm1×m2 , Gin
2 = Rm2×m3 , and G

out = Rm1×m3 .

Proposition 1 (Information-Theoretic FSS for Low-Degree Gates). Let
d ∈ N . Then there exists perfectly secure FSS for the following offset-function
families, with the given complexities:

– Ĝdeg-d: For G
in = Rn, Gout = Rm, key size is m

(
n+d

d

)
(log |R|) bits.

– Ĝblin: For G
in = G

in
1 × G

in
2 ,Gout, key size is (log |Gin| + log |Gout|) bits.

Proof. Consider the following FSS constructions.

– For Ĝdeg-d: Recall we are sharing offset functions of the form g
[rin,rout]
deg-d , where

g = (g1, . . . , gm) is a degree-d polynomial g : Rn → Rm, and with offsets
rin = (rin1 , . . . , rinn ) ∈ Rn and rout = (rout1 , . . . routm ) ∈ Rm. By definition, for
each i ∈ [m],

(g[r
in,rout]

deg-d )i(x1, . . . , xn) = gi(x1 − rin1 , . . . , xm − rinm) + routi .

In particular, each (g[r
in,rout]

deg-d )i itself is a degree-d polynomial in the inputs,
where the coefficients of each degree ≤ d monomial in the variables xi depends
on the secret values rin, rout. By Observation 4, we can thus obtain secure FSS
by giving additive secret shares of each of these coefficients. There are

(
n+d

d

)

distinct monomials of degree ≤ d in the n input variables; for each output
i ∈ [m], the FSS key will contain an additive share of size log |R| for each
monomial.



356 E. Boyle et al.

– For Ĝblin: Given an offset function of the form g
[rin,rout]
blin , parse as a bilinear

function g : Gin
1 ×G

in
2 → G

out, and rin = (rin1 , rin2 ) ∈ G
in
1 ×G

in
2 , and rout ∈ G

out.
By definition,

g
[rin,rout]
blin (x1, x2) = g(x1 − rin1 , x2 − rin2 ) + rout

= g(x1, x2) − g(rin1 , x2) − g(x1, r
in
2 ) + g(rin1 , rin2 ) + rout.

Consider the following observations: (1) g(x1, x2) is publicly computable. (2)
r3 := g(rin1 , rin2 ) + rout is a fixed additive term, independent of the input x.
(3) Bilinearity of g implies the functions g(·, x2) and g(x1, ·) are linear in the
corresponding second position.
We can thus achieve FSS for this function class by giving out additive secret
shares of the values rin1 , rin2 , and r3 := g(rin1 , rin2 )+rout. The corresponding FSS
key size is log |Gin

1 | + log |Gin
2 | + log |Gout| = (log |Gin| + log |Gout|) bits.

Plugging these FSS constructions into our protocols from the previous section
(Theorems 2 and 3), we obtain secure computation protocols isomorphic to
existing protocols from the literature. In addition, the FSS abstraction extends
directly to broader classes: e.g., directly supporting general bilinear gates over
different rings Ri (such as matrix multiplications), as well as arbitrary low-degree
gates over a ring R.

Note that a degree-d mapping can have circuit complexity ∼ nd. In the cor-
responding approach, this increases only the size of the FSS preprocessing infor-
mation (corresponding to more coefficients) whereas the online communication
scales just with the input and output size of the gate. Similarly, bilinear opera-
tions such as matrix multiplication when expressed as circuits over the base ring
R require significantly more small gates as compared to a single matrix input
and output when viewed as a single large bilinear gate.

Corollary 1 (2PC with Preprocessing: Low-Degree and Bilinear
Gates). Applying our FSS framework (Theorems 2 and 3) for circuits of degree-
d and bilinear gates Gdeg-d,Gblin as above yields perfectly secure protocols in the
preprocessing model isomorphic to (and generalizing) the following:

– Beaver Triples [2]: Applying Theorem 3, yielding circuit-independent prepro-
cessing 2PC for low-degree and bilinear gates.

– Circuit-Dependent Beaver (e.g., [3,11,13,23]): Applying Theorem 2, yielding
circuit-dependent preprocessing 2PC for low-degree and bilinear gates.

Proof. Consider the two approaches.
(Circuit-independent). Applying the protocol framework of Theorem 3, we

obtain the following structure. We describe for the case of multiplication gates
over a ring R to illustrate the Beaver triple structure (but observe that the
construction extends directly to more general degree-d and bilinear gates).

– For each multiplication gate v with input wires (w1, w2) and output wire w3,
sampling random r1, r2 ← R, and generating FSS shares for the gate-offset



Secure Computation with Preprocessing via Function Secret Sharing 357

function will correspond to sharing the function

g[(r1,r2),0]
v (x1, x2) = (x1 − r1)(x2 − r2)

= x1x2 − r1x2 − x2r1 + r1r2.

Note that x1x2 is always with coefficient 1 and publicly computable. Applying
Observation 4 for the remaining (secret) coefficients yields FSS keys that are
additive secret shares of 3 values: r1, r2, and r1r2.

– The circuit-independent 2PC preprocessing included FSS keys of each such
gate offset function, as well as additive shares of the input masks themselves.
In this case, additive shares of the input masks are already included as part
of the FSS keys. Thus, the final resulting correlation corresponds directly to
Beaver triples: for each gate, additive shares of random r1, r2, and r1r2.

(Circuit-dependent). Applying Theorem 2 results in an optimization of this
approach, as in [11,13,23], where the offset masks are correlated across gates.

Truth-Table Gates. The second category is a straightforward FSS of arbitrary
functions of polynomial-size domain, formed by simply providing additive secret
shares of each element of the truth table. Perfect secrecy and evaluation with
additive reconstruction follow in a trivial manner.

Observation 5 (FSS via Shared Truth Table). Let F be any family of
functions where for a given (Gin,Gout), the truth table of a function f ∈ F can
be described by s = s(Gin,Gout) elements of the output space G

out. Then there
exists an FSS scheme for F with perfect security and correctness, with key size
s · log |Gout| bits.

Note that one can always express the truth table of a function g : G
in →

G
out using |Gin| many elements of Gout. However, for some interesting function

classes, this can be made even smaller. For example, functions with bounded
locality: where G

in =
∏n

i=1 G̃
in, and each output of the function depends only

on a bounded number �(Gin,Gout) of fixed coordinates of the input; in such case,
the full truth table of the function can be expressed given just |G̃in|� · log |Gout|
bits, as opposed to |Gin| · log |Gout| = |G̃in|n · log |Gout| bits.

In a straightforward way, this translates to the offset-function family F̂ of
any such function family F .

Analogous to the case of low-degree functions, plugging these general truth
table FSS constructions into our 2PC protocols from Theorems 2 and 3
yields secure computation protocols that reproduce existing protocols from the
literature.

Corollary 2 (2PC with Preprocessing: Truth Table Gates). Applying
our FSS framework (Theorems 2 and 3) for circuits of arbitrary gates G as
above rederives perfectly secure protocols in the preprocessing model isomorphic
to the following:
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– One-Time Truth Tables [13,22]: Applying Theorem 3 together with Observa-
tion 5 for arbitrary truth tables.

– Leveled circuits, with sublinear online communication [11]: Applying Theo-
rem 2, together with Observation 5 for circuits with bounded locality.

Proof. (One-Time Truth Tables). For a given gate function g, the truth table
of the offset-function g[r

in,0] (recall in the circuit-independent setting, we take
rout = 0) is simply a randomly shifted version of the original truth table, and
FSS shares of this function will be precisely additive shares of the shifted truth
table.

(Leveled Circuits). The core technical insight in [11] is that a leveled circuit of
size s can be partitioned into large “gates” of depth log log s, whose input locality
are each bounded by log s, and thus whose truth tables can each be described
in polynomial size. Applying Theorem 2 to such circuit decomposition yields a
comparable protocol, with polynomial-size preprocessing information, and where
parties need only communicate O(s/ log log s) elements, corresponding to just
inputs and outputs of these gates, in depth(C)/ log log s rounds.

4 Applications

In this section we explore applications of our technique to useful types of gates for
which we can obtain significant improvements over the current state of the art.

4.1 Zero Test/Equality

We start with gates that either compare a single group element to 0 or check
that two group elements are equal.

Definition 13 (Equality-Type Gates).

1. The zero-test gate Gzt is the class of functions gzt : Gin → G
out parameterized

by Abelian groups G
in,Gout and given by

gzt(x) =

{
0 ∈ G

out if x = 0 ∈ G
in

1 ∈ G
out else

.

2. The equality-test gate Geq is the class of functions geq : G
in × G

in → G
out

parameterized by G
in,Gout and given by

geq(x, x′) =

{
0 ∈ G

out if x = x′ ∈ G
in

1 ∈ G
out else

.

Note that the offset function class of the zero-test gate is precisely the class
of point functions, where the special input α corresponds to the input offset and
the output value β to the output offset. Hence, realizing a zero-test gate (on a
masked input) reduces to a single DPF evaluation.
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Proposition 2 (Zero Test from DPF). There is an FSS scheme
(Genzt,Evalzt) for the offset function family Ĝzt making black-box use of a PRG.
The scheme has the same key size and number of PRG invocations as a DPF
with input domain G

in and output domain G
out.

Proof. Consider the following construction, where (GenDPF,EvalDPF) is a dis-
tributed point function.

– Genzt(1λ, g
[rin,rout]
zt ): Parse g

[rin,rout]
zt to recover G

in,Gout, rin, rout. Sample and
output keys (k′

0, k
′
1) ← GenDPF(1λ, fα,β), for α = rin ∈ G

in and β = 1 ∈ G
out.

Sample random additive secret shares 〈r0, r1〉 of rout ∈ G
out. Output keys

k0 = (k′
0, r0) and k1 = (k′

1, r1).
– Evalzt(σ, kσ, x): Output EvalDPF(σ, k′

σ, x) + rσ.

Correctness and security can be easily seen to follow from those of the DPF.
Moreover, the construction does not involve additional cryptographic operations
beyond making a single call to the DPF.

The case of comparing two group elements can be easily reduced to the above
case of a zero-test. Indeed, by taking the difference between the two masked
inputs, the problem reduces to a zero-test of a masked input whose mask is
the difference between the two masks, where the latter are known to the key
generation algorithm. We provide an explicit description of the corresponding
FSS scheme below.

Theorem 6 (Equality Test from DPF). There is an FSS scheme
(Geneq,Evaleq) for the offset function family Ĝeq making black-box use of a PRG.
The scheme has the same key size and number of PRG invocations as a DPF
with input domain G

in and output domain G
out.

Proof. Consider the following construction, where (GenDPF,EvalDPF) is a dis-
tributed point function.

– Geneq(1λ, g
[rin,rout]
eq ): Parse g

[rin,rout]
eq to recover G

in = (Gin
1 × G

in
2 ),Gout, rin, rout,

where rin = (rin1 , rin2 ) ∈ G
in. Sample and output keys (k′

0, k
′
1) ←

GenDPF(1λ, fα,β), for α = (rin1 − rin2 ) ∈ G
in and β = 1 ∈ G

out. Sample random
additive secret shares 〈r0, r1〉 of rout ∈ G

out. Output keys k0 = (k′
0, r0) and

k1 = (k′
1, r1).

– Evaleq(σ, kσ, (x1, x2)): Output EvalDPF(σ, kσ, (x1 − x2)) + rσ.

Security follows directly. Correctness holds since the point function fα,β(x) eval-
uates to β = 1 exactly when (x1 − x2) = α = (rin1 − rin2 ), or equivalently, when
(x1 − rin1 ) = (x2 − rin2 ). As before, the only cryptographic operations involve a
single call to the DPF.
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4.2 Integer Comparison, Interval Membership, and Splines

We turn from equality-type gates to the slightly more involved case of gates
related to integer comparisons. The offset functions of such gates can be easily
expressed in terms of distributed interval functions (DIFs) as constructed in [8].
See Definition 6 and Theorem 1.

Definition 14 (Comparison-Type Gates).

1. The interval-containment gate G(a,b) is the class of functions g(a,b) : Gin →
G

out parameterized by Abelian groups G
in,Gout endowed with a total ordering

a ≤ b ∈ G
in, and given by

g(a,b)(x) =

{
0 ∈ G

out if a ≤ x ≤ b ∈ G
in

1 ∈ G
out else

.

We also sometimes consider the sub-family of “special” (one-sided) intervals,
in which a = 0 is set to the minimum element of G

in (or, alternatively,
the family wherein b is set to the maximum element of Gin). For these sub-
families, Leak is amended to include this information.

2. The comparison gate G≤ is the class of functions g≤ : G
in × G

in → G
out

parameterized by Abelian groups G
in,Gout endowed with a total ordering, and

given by

g≤(x, x′) =

{
0 ∈ G

out if x ≤ x′ ∈ G
in

1 ∈ G
out else

.

3. The spline gate Gspline is the class of functions g(a,f ) : Gin → G
out parame-

terized by Abelian groups G
in,Gout endowed with a total ordering, a list a =

a1 < a2 < · · · < ak ∈ G
in, and a list of functions f = f0, . . . , fk : Gin → G

out,
given by

g(a,f )(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f0(x) ∈ G
out if x ≤ a1 ∈ G

in

f1(x) ∈ G
out if a1 < x ≤ a2 ∈ G

in

...
fk(x) ∈ G

out if ak < x

.

By default, we consider the case where G
in and G

out are the additive groups
of the same finite ring (e.g., R = Z2m), and each fi is a degree-d univariate
polynomial over R. This is useful in the context of approximating real-valued
functions.

We start with the case of interval containment. The key observation is that
the offset function of an interval (a, b) is can be expressed as the sum of two
special intervals.
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Proposition 3 (Interval-Containment from FSS for Intervals). There
exists an FSS scheme (Gen(a,b),Eval(a,b)) for the offset function family Ĝ(a,b)

making black-box use of a PRG. The scheme has the same cost (in key size
and number of PRG invocations) as two instances of a special DIF with input
domain G

in and output domain G
out, except that each key includes an additional

element of G
out. Moreover, there is an FSS scheme with the same parameters

for the offset function family Ĝ≤ of comparison gates.

Proof. We argue that each function in the offset family Ĝ(a,b) can be expressed as
the sum of two special intervals plus the constant offset rout. Indeed, the effect of
the input offset rin is cyclically shifting the interval function f(a,b),1 to the right.
There are two possible cases:

1. There is no wrap-around, namely we get another standard interval of the form
f(a′,b′),1. If a′ = 0, this is a special interval. Otherwise it can be expressed as
the sum of two special intervals: f(a′,b′),1 = f(0,b′),1 + f(0,a′−1),−1.

2. There is a wrap-around, in which case we get a sum of two disjoint special
intervals: one starting with a + rin and one ending with (b + rin) mod |Gin|.

We can now realize FSS for the offset function by letting Gen generate indepen-
dent keys for the two instances of a DIF, and Eval output the sum of the two
output shares. Finally, given additive shares of the output offset rout as part of
the key, Eval can add rout to the output. We can obtain an analogous statement
for comparison gates Ĝ≤ similarly to the reduction of Ĝeq to Ĝzt.

We turn to the case of spline functions, starting with the default case where
G

in and G
out are the same finite ring R and each function fi(x) is a degree-d

univariate polynomial over R. Here the high level idea is to use 2(k+1) instances
of special DIF to additively share, for each interval, the d + 1 coefficients of
either the degree-d polynomial f ′

i(x
′) = fi(x′ − rin) + rout in case the input x′ is

in the shifted i-th interval or the 0 polynomial if x′ is not in this interval. The
2(k+1)(d+1) coefficients can then be linearly combined with public coefficients
to yield additive output shares.

Proposition 4 (Splines from FSS for Intervals). There exists an FSS
scheme (Gen(a,f ),Eval(a,f )) for the offset function family Ĝspline, where G

in =
G

out = R and each fi, 0 ≤ i ≤ k, is a polynomial of degree at most d over R,
making black-box use of a PRG. The scheme has the same cost (in key size and
number of PRG invocations) as 2(k + 1) instances of a special DIF with input
domain R and output domain Rd+1.

Proof. We express the shifted spline function as the sum of k + 1 cyclically
shifted interval functions. As before, each shifted interval can be expressed as
the sum of two special intervals. For the shifted interval i, 0 ≤ i ≤ k, the
payload βi ∈ Rd+1 is the coefficient vector of the univariate polynomial f ′

i ,
where f ′

i(x
′) = fi(x′ − rin) + rout. Note that if x is not in the shifted interval,

the output of the shifted interval function will be βi = (0, 0, . . . , 0) ∈ Rd+1.
Finally, given the k + 1 additively-shared coefficient vectors βi, the parties
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can homomorphically evaluate 〈∑k
i=0 βi , (1, x′, (x′)2, . . . , (x′)d)〉 = g

[rin,rout]
(a,f ) (x′),

where 〈·, ·〉 denotes inner product over R. Since x′ is public, this can be done
via a local linear combination of the (k +1)(d+1) ring elements included in the
payloads βi.

We note that, with some loss of concrete efficiency, the spline construction
can be generalized to accommodate any functions fi from a class that supports
efficient FSS. Such a construction can be obtained by using the general tensoring
operator for FSS from [8] (Theorem 3.2 of full version) to obtain an FSS scheme
for functions that output the same output as fi on a shifted interval and 0
outside the interval.

4.3 Bit Decomposition

As a concluding item, we turn our attention to the more involved task of bit
decomposition.

Definition 15 (Bit-Decomposition Gate). The bit-decomposition gate Gbit

is the class of functions gbit : ZM → Z
m
2 parameterized by M ∈ N (and m :=

�log M	), given by

gbit(a) = (am−1, . . . , a0) ∈ Z
m
2 such that

m−1∑

i=0

2iai = a ∈ ZM .

We now describe how to obtain the required FSS for these gates.

Remark 3 (Bit Decomposition for Special Modulus). For the sake of simplicity,
we present in Proposition 5 a construction of bit decomposition for the special
case of ZM for M = 2m. In this setting, modular arithmetic over M does not
incur wraparound carries. The same construction and analysis covers also a
promise setting where M is arbitrary, but both the input x ∈ ZM and the secret
offset rin ∈ ZM are guaranteed to be of low magnitude (bounded by e.g.

√
M), as

stated in Corollary 3. The general case of ZM with arbitrary inputs and offsets
requires a slightly more sophisticated treatment. We discuss the extension of our
construction in Remark 4 below.

Proposition 5 (Bit-Decomposition for M = 2m). There exists an FSS
(Genbit,Evalbit) for the offset function family Ĝbit (restricted to ZM with M = 2m)
making black-box use of a pseudorandom generator PRG : {0, 1}λ → {0, 1}2(λ+1)

with the following complexities.

– Genbit for function gbit : ZM → Z
m
2 (with M = 2m) makes m(m − 1) calls to

PRG. It outputs keys k0, k1 each of size (λ + 4)m(m − 1)/2 + m bits.
– Evalbit makes m(m − 1)/2 calls to PRG.
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Proof. Consider the following construction, making use of an FSS for special
intervals (GenSI,EvalSI). Recall the goal is to recover shares of the (rout-shifted)
bit representation of x + (−rin) ∈ ZM , where rin, rout are known at time of
FSS generation. Let r = (rm−1, . . . , r0) ∈ Z

m
2 denote the bit representation of

(−rin) ∈ ZM (note the additive inverse for notational convenience). For (public)
input x ∈ ZM , we similarly denote its bit representation as (xm−1, . . . , x0).

Given public input x, we will compute (shares of) each bit of (x+(−rin)) over
ZM by computing “grade-school” addition on the bits. Each desired output bit
yi, i ∈ {0, . . . , m−1} can be expressed as a sum over Z2: yi = xi ⊕ ri⊕carryi,r (x),
where carryi,r (x) ∈ {0, 1} is equal to 1 precisely when there is a carry entering
into bit i from the lower-order bits, indexes j < i. Note that for M = 2m, there
are no wraparound carries.

The function xi ⊕ ri is linear over the output space Z2 and can thus be
directly evaluated given the public input x and additive secret shares of ri (over
Z2). The challenge is in implementing the nonlinear function carryi,r (x), while
hiding the value of r. To do so, we make a simple observation: carryi,r (x) = 1
if and only if (

∑i−1
j=0 2jxj) ≥ 2i − (

∑i−1
j=0 2jrj) ∈ Z2i . That is, there is a carry

exactly if the numbers formed by the two truncated bit strings (xi−1, . . . , x0) and
(ri−1, . . . , r0) sum to greater than 2i (note they will never reach 2i+1). For each
index i ∈ {0, . . . , m − 1}, we can thus implement FSS for carryi,r (x) directly by
one FSS for a special (one-sided) interval f(a,2i−1) : Z2i → {0, 1}, which evaluates
to 1 on input x′ ∈ Z2i precisely if x′ > a.

We thus achieve the desired FSS with the following construction.

– Genbit(1λ, g
[rin,rout]
bit ):

1. Parse g
[rin,rout]
bit to recover M, rin ∈ ZM , rout ∈ Z

m
2 . Parse rin as its bit

representation r = (rm−1, . . . , r0).
2. For each i ∈ {0, . . . , m − 1}, do the following.

(a) Sample special interval FSS keys (ki
0, k

i
1) ← GenSI(1λ, f(a,2i−1)), for

f(a,2i−1) : Z2i → {0, 1}, with a = 2i − (
∑i−1

j=0 2jrj) ∈ Z2i .
(b) Sample random additive secret shares 〈zi

0, z
i
1〉 of (ri ⊕ routi ) over Z2.

3. Output keys k0 = (ki
0, z

i
0)

m−1
i=0 and k1 = (ki

1, z
i
1)

m−1
i=0 .

– Evalbit(σ, kσ, x): Parse kσ = (ki
σ, zi

σ)m−1
i=0 and x = (xm−1, . . . , x0) For each

i ∈ {0, . . . , m − 1}, do the following.
1. Execute carryi

σ = EvalSI
(
σ, ki

σ,
∑i−1

j=0 2jxj

)
.

2. Let yi
σ = σ ·xi ⊕ carryi

σ ⊕ zi
σ ∈ Z2. Note that a single party will contribute

xi. (Recall zi
σ incorporates party σ’s shares of both the ri bit itself, as

well as output offset bit routi .)
– Output (ym−1

σ , . . . , y0
σ) ∈ Z

2
m as party σ’s output share.

Correctness of the construction holds as argued above; FSS security holds
directly by the security of the underlying FSS scheme for special intervals (and
additive secret sharing).
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As mentioned, this case extends beyond just ZM for M = 2m, if we are in
a promise setting of small inputs as compared to the modulus size. This can be
useful within applications, e.g., in order to emulate computations over a non-2m

modulus by emulating over ZM for an artificially large M .

Corollary 3 (Bit Decomposition for Small Inputs). There is an FSS
scheme for the family of bit-decomposition functions with small inputs

Ĝsmall-input
bit :=

{

g[r
in,rout] : ZM → Z

m
2

∣
∣
∣
∣

gbit : ZM → Z
m
2 ∈ Gbit,

rin ∈ ZM , |rin| ≤ √
M, rout ∈ Z

m
2

}

,

where the FSS guarantees correctness for inputs x ∈ ZM of small magnitude
|x| ≤ √

M . The complexities of the FSS are as in Proposition 5.

Remark 4 (Bit Decomposition for General Modulus). Our bit-arithmetic app-
roach can be extended to the setting of general modulus M , by combining with
an additional branch that either computes the same function as in the M = 2m

case (if no wraparound occurs), or the function with an additional additive offset
of 2m − M (if a wraparound does occur). Ultimately, the computation of each
carryi,r can be expressed by the linear combination of two different functions,
each an AND of two special intervals (namely, [> value to wraparound] ∧ [>
value to induce carry given wraparound] as well as [< value to wraparound] ∧
[> value to induce carry without wraparound]).

This can be instantiated via FSS for 2-dimensional intervals, as described in
[8]. We leave optimization of such scheme to future work.

4.4 Garbling-Compatible Variants

For the purpose of minimizing round complexity, it can be beneficial to combine
FSS-based gate evaluation with garbled circuits, where the outputs of FSS gates
are fed into a garbled circuit. This motivates garbling-compatible variants of the
above types of gates, where the bits of the output select between pairs of secret
keys that correspond to inputs of the garbled circuit.

We can realize this modified functionality with a low additional cost for
almost all of the above types of gates (the only exception is spline gates, whose
output is not binary). This is done in the following way. The secret keys are
incorporated into the function families as part of the function description. The
key selection is done by incorporating the keys in the DPF or DIF payload β.
For instance, in the case of interval membership, the input domain is partitioned
into intervals, where for each interval a DIF whose payload is the corresponding
key is used to produce an additive secret-sharing of the key corresponding to
membership in the (shifted) interval.

5 Negative Results and Barriers

In this section we rule out information-theoretic protocols that achieve the effi-
ciency features of our FSS-based protocols, showing that the machinery we use is
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in a sense necessary. This should be contrasted with the fact that most positive
results on secure computation given a trusted source of correlated randomness
are information-theoretic.

We also give evidence that ruling out information-theoretic protocols with
slightly relaxed efficiency features is difficult, by establishing a link with the
existence of big matching vector families, a well known open problem in extremal
combinatorics.

5.1 Online-Optimal Shared Equality Implies DPF

One of the simplest nontrivial instances of our positive results is a secure protocol
for string equality with preprocessing and with secret-shared output. Concretely,
we consider a protocol that given a pair of n-bit strings (x0, x1) and correlated
randomness (r0, r1) outputs a secret-sharing of a single bit that indicates whether
x0 = x1.

We define an online-optimal protocol to be one that has a single online round
in which the message sent by each party is of the same length as its input. (By
the perfect correctness requirement, the message length cannot be shorter than
the input.) Note that this optimality feature is indeed satisfied by our DPF-
based protocol, whose existence can be based on any OWF. We show that any
online-optimal protocol can be used to build a DPF, though possibly with an
exponential computation overhead in the input length. The latter suffices to
prove that an online-optimal shared equality protocol implies a OWF.

Given the very restricted nature of an online-optimal protocol, this converse
direction of showing that it implies a DPF may appear to be a mere syntactic
translation. However, there are two main challenges that complicate this proof.
First, the mapping of the inputs to messages does not necessarily rely on just
additive masking. We get around this by requiring this masking to be efficiently
invertible. (This requirement is not needed in case the input domain size is poly-
nomial in the security parameter.) Second, the class of online-optimal protocols
can deviate from the template of first masking the inputs using a pair of inde-
pendent random strings and then independently applying an FSS scheme to the
offset class defined by mapping the masked inputs to the secret-shared output.
Indeed, a general protocol allows an arbitrary dependence between the two parts.
As a result of these subtleties, it is not clear how to extend our argument from
equality to general functions. Even in the case of equality, we need to assume
the protocol to have the extra “efficient inversion” property mentioned above,
unless the input domain is small.

We now formalize the notion of an online-optimal shared equality protocol
and prove that it implies a DPF.

Definition 16 (Online-optimal shared equality protocol). A protocol
Π = (Setup,Msg,Out) is an online-optimal shared equality protocol with inver-
sion algorithm Inv if it satisfies the following requirements:

– Syntax: The protocol has the following structure.
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1. Setup(1λ, 1n) outputs correlated randomness (r0, r1) of size poly(λ, n).
2. In the online phase party Pσ, on input xσ ∈ {0, 1}n, sends a single mes-

sage mσ = Msg(σ, rσ, xσ) to P1−σ, where mσ ∈ {0, 1}n.
3. Party Pσ outputs yσ ∈ {0, 1} where yσ = Out(σ, rσ, xσ,m1−σ).

– Correctness: For any x0, x1 ∈ {0, 1}n, the resulting outputs y0, y1 always
satisfy y0 ⊕ y1 = EQ(x0, x1), where EQ outputs 1 if the two inputs are equal
and outputs 0 otherwise.

– Security: The protocol Π computationally hides from Pσ the input x1−σ.
Formally, it satisfies the security requirement of Definition 2 with respect to
the constant function f(x0, x1) = 0.

– Inversion: The algorithm Inv extracts the input from the corresponding ran-
domness and message. That is, for any σ ∈ {0, 1} and rσ, xσ,mσ consistent
with an execution of Π, we have Inv(σ, 1λ, rσ,mσ) = xσ.

Note that the correctness requirement implies that xσ is uniquely determined
by rσ and mσ. Moreover, whenever n = O(log λ), one can implement Inv in
polynomial-time via brute-force search. This will suffice for constructing a DPF
on a polynomial-size input domain, which implies a OWF. In our DPF-based
shared equality protocol, however, the message is obtained by simply adding
(or XORing) the input and a part of the randomness, and thus Inv can be
implemented in linear time.

We now construct a DPF given oracle access to Π and Inv as in Definition 16.
The intuition for the construction is the following. Given Inv, the output of
each party σ can be computed from rσ,m0,m1 alone (without relying on the
input xσ). The correlated randomness (r0, r1) then defines a pair of tables T rσ

σ ,
where T rσ

σ [m0,m1] contains the output of Pσ on randomness rσ and messages
(m0,m1). The two tables can be viewed as shares of a shifted identity matrix
T = T r0

0 ⊕ T r1
1 , where the location Δ of the 1-entry in the first row of T is

masked by randomness of both parties. To convert this into a DPF for a point
function fα,1, we include α ⊕ Δ in both keys. This does not reveal α to either
party and yet effectively allows the parties to convert the first row of T into
one that contains 1 only in position α and 0 elsewhere, as required for sharing
fα,1. Finally, to guarantee security even in the case of super-polynomial input
domains, we need to replace the first row with a random row ρ, where ρ is
included in both DPF keys.

The construction is formally described in Fig. 1.

Theorem 7. If (Setup,Msg,Out, Inv) form an online-optimal shared equality
protocol as in Definition 16, then (Gen,Eval) defined in Fig. 1 is a DPF.

Proof. We separately argue correctness and security.
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Fig. 1. DPF from online-optimal shared equality protocol (Setup,Msg,Out, Inv).

For correctness, letting πσ, T rσ
σ be as in Fig. 1 and T = T r0

0 ⊕ T r1
1 , we can

write:

y0 ⊕ y1 = T [ρ, α′ ⊕ x] (1)

= EQ(π−1
0 (ρ), π−1

1 (α′ ⊕ x)) (2)

= EQ(π1(π−1
0 (ρ)), α′ ⊕ x) (3)

= EQ(Δ,α′ ⊕ x) (4)
= EQ(Δ, (α ⊕ Δ) ⊕ x) (5)
= EQ(α, x) (6)

as required, where (1) follows from Lines 3–4 of Eval, (2) from the correctness of
the equality protocol, (3) from applying π1 to both sides from the left, (4) from
Line 4 of Gen, (5) from Line 5 of Gen and Line 2 of Eval, and (6) by masking
both sides with α ⊕ Δ.

We turn to argue security. A key kσ produced by Gen is of the form kσ =
(rσ, ρ, α ⊕ Δ), where Δ = π1(π−1

0 (ρ)). From the (computational) security of
the equality protocol against P0, it follows that (r0, ρ, π1(ρ)) ≈ (r0, ρ, π1(ρ′)),
where ρ′ is distributed uniformly over {0, 1}n independently of ρ, and since π1

is a permutation we have

(r0, ρ, π1(ρ)) ≈ (r0, ρ, ρ′). (7)

Similarly, from the security against P1 it follows that

(r1, ρ, π0(ρ)) ≈ (r1, ρ, ρ′). (8)

It follows from (7) that

(r0, ρ, π1(π−1
0 (ρ))) ≡ (r0, π0(ρ), π1(ρ)) ≈ (r0, π0(ρ), π1(ρ′)) ≡ (r0, ρ, ρ′)
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and hence k0 = (r0, ρ, α ⊕ Δ) ≈ (r0, ρ, ρ′) as required. Similarly, it follows
from (8) and from (ρ, π−1

0 (ρ)) ≡ (π0(ρ), ρ) that k1 = (r1, ρ, α ⊕ Δ) ≈ (r1, ρ, ρ′)
as required.

Corollary 4. If there exists an online-optimal shared equality protocol as in
Definition 16 with efficient (Setup,Msg,Out) (but possibly without an efficient
inversion algorithm Inv) then a one-way function exists.

Proof. The algorithm Inv can be implemented in time poly(λ, 2n) via a brute-
force search that enumerates over all possible choices of xσ. Suppose that the
DPF described in Fig. 1 (with oracle to Inv) has key size |kσ| = O((λ + n)c)
for a positive integer c. Then, letting n(λ) = (c + 1) log λ, we get a DPF with
domain size N(λ) = λc+1 and asymptotically smaller key size |kσ| = O(λc).
Using Theorem 5 from [19], this implies a one-way function.

5.2 Matching Vectors Imply Shared Equality

In the previous section we have shown that any shared equality protocol that
has optimal online complexity implies a DPF, which in turn implies a one-way
function. This raises the following question: suppose we relax the optimality
requirement by, say, allowing each online message to be of length 10n or even
poly(n) rather than n. Does such a protocol still imply a DPF? Alternatively,
can we get an information-theoretic protocol with this complexity?

We do not know the answer to the above question. However, we show that
if we slightly relax the output sharing requirement by allowing a constant-size
(rather than single-bit) shares, then the problem of shared equality reduces to
finding big families of matching vectors modulo a composite [5,17,18,21], a well
studied problem in combinatorics. Given known constructions of matching vec-
tors, this connection implies some unexpected (but rather weak) upper bounds.
Perhaps more interestingly, the lack of progress on ruling out much bigger match-
ing vector families suggests that proving strong lower bounds on information-
theoretic shared equality protocols would be difficult.

Definition 17 (Matching vectors). [17] Let m be a positive integer and S ⊆
Zm\{0}. We say that subsets U = {u1, . . . , uN} and V = {v1, . . . , vN} of vectors
in Z

h
m form an S-matching family if the following two conditions are satisfied:

– For all i ∈ [N ], 〈ui, vi〉 = 0, where 〈·, ·〉 denotes inner product over Zm;
– For all i, j ∈ [N ] such that i �= j, 〈ui, vj〉 ∈ S.

The best known constructions of matching vectors over a constant composite
modulus m are of quasi-polynomial size. For instance, for m = 6 the best known
construction is of size N = hO(log h/ log log h) [21]. Whether bigger sets of matching
vectors exist is a well known open problem, and only weak upper bounds are
known; see [5] for the current state of the art.

We now show how to use families of matching vectors over a constant-size
modulus m to obtain an information-theoretic shared equality protocol that has
a single online round and constant-size output shares.
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Theorem 8. Let n be a positive integer and N = 2n. Suppose there is a family
of matching vectors with parameters m,h,N as in Definition 17. Then there is
a perfectly secure shared equality protocol (Setup,Msg,Out) for n-bit inputs with
the following efficiency features:

– Setup outputs correlated randomness (r0, r1) consisting of O(h) elements of
Zm;

– Msg(σ, rσ, xσ) outputs a message in Z
h
m;

– Out(σ, rσ, xσ,m1−σ) outputs an output share in Zm.

Moreover, the two output shares produced by Out are equal if and only if x0 = x1.

Proof. The protocol first encodes each input into a corresponding matching vec-
tor, and then computes shares of the inner product using the correlated ran-
domness. In more detail, Setup generates a pair of random masks R0, R1 ∈ Z

h
m

and additive shares of their inner product (this can be viewed as a generalized
Beaver triple, or an instance of our FSS-based construction for a bilinear gate).
Msg first encodes xσ into a corresponding matching vector Xσ (where x0 is
encoded using U and x1 using V ) and outputs Xσ + Rσ. Finally, Out uses the
correlated randomness and the two messages to compute subtractive shares of
the inner product of X0 and X1 (namely, the difference between the outputs is
the inner product). Security follows from the masking, and correctness from the
definition of a matching vector family.

Generalizing Theorem 8 to other useful predicates beyond equality seems
challenging. Indeed, there are strong limitations on the existence of big sets of
matching vectors with respect predicates other than equality, even for simple
ones such as the “greater than” predicate [1]. This should be contrasted with
our (computational) FSS-based protocols, which are not only more efficient for
the simple case of equality but also apply almost as efficiently to the “greater
than” predicate and other types of simple predicates.
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Abstract. A private PEZ protocol is a variant of secure multi-party
computation performed using a (long) PEZ dispenser. The original paper
by Balogh et al. presented a private PEZ protocol for computing an arbi-
trary function with n inputs. This result is interesting, but no follow-up
work has been presented since then, to the best of our knowledge. We
show herein that it is possible to shorten the initial string (the sequence
of candies filled in a PEZ dispenser) and the number of moves (a player
pops out a specified number of candies in each move) drastically if the
function is symmetric. Concretely, it turns out that the length of the ini-
tial string is reduced from O(2n!) for general functions in Balogh et al.’s
results to O(n · n!) for symmetric functions, and 2n moves for general
functions are reduced to n2 moves for symmetric functions. Our main
idea is to utilize the recursive structure of symmetric functions to con-
struct the protocol recursively. This idea originates from a new initial
string we found for a private PEZ protocol for the three-input majority
function, which is different from the one with the same length given by
Balogh et al. without describing how they derived it.

Keywords: Private PEZ protocol · Multi-party computation ·
Symmetric functions · Threshold functions

1 Introduction

1.1 Background and Motivation

A private PEZ protocol is a type of implementation of secure multi-party com-
putation (MPC, [5]) that employs a (long) PEZ dispenser.1 The private PEZ
protocol is interesting not only because MPC can be implemented by physical
tools2 such as a PEZ dispenser but also because the protocol does not require
randomness for executing MPC.3 The original paper by Balogh et al. [1] pre-
sented a model of the PEZ protocol for computing a function fn with n inputs

This work was supported by JSPS KAKENHI Grant Numbers JP17H01752,
JP18K19780, JP18K11293, JP18H05289, and JP18H03238.
1 An ordinary PEZ dispenser can store 12 candies.
2 The other examples are card-based protocols [2,3].
3 Several card-based protocols, e.g., [4], do not require any randomness, either.
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Table 1. Comparison of the lengths of initial strings

n 2 3 4 5 6 7

Balogh et al. [1] 7 72 6941 6.3 · 107 5.3 · 1015 3.8 · 1031

Recursive construction (Sect. 4) 7 31 165 1, 031 7, 423 60, 621

Efficient maj�n/2�
n (Sect. 5) 3 13 21 131 223 1, 821

without privacy, and they extended it to a model of the private PEZ protocol.
The paper also proposed a method for constructing private PEZ protocols for a
general function fn.

There are two major efficiency measures of a private PEZ protocol: the length
of the initial string and the number of moves. An initial string is a sequence of
candies filled in a PEZ dispenser at the beginning of the protocol. A move refers
to the execution step in which each player reads the candies according to the
protocol. The shorter the initial string and the smaller the number of moves, the
better. Unfortunately, Balogh et al.’s protocol is very inefficient in terms of both
measures although the proposed protocol can compute an arbitrary function fn.

The length of an initial string for computing fn presented in [1] is O(2n!),
which does not depend on fn itself but depends only on n. The numbers of
candies for specific n ≤ 7 are provided in Table 1. For instance, for n = 7, almost
3.8 × 1031 candies are required for the initial string, which is far from practical.
The other efficiency measure is also impractical because the number of moves in
[1] is 2n − 1.

Although the initial strings are very long for computing the general function
fn, Balogh et al.’s paper also presented a private PEZ protocol with a very short
initial string for the majority function with three inputs, which is denoted by
maj23 in this paper. Surprisingly, only 13 candies are shown to be sufficient for the
initial string in this protocol, whereas 72 candies are required for an arbitrary f3.
Unfortunately, nothing was mentioned about why and how the authors obtained
this protocol, and no follow-up work on private PEZ protocols has been presented
after Balogh et al.’s original paper.

1.2 Our Contributions

Efficient Protocols for Symmetric Functions (Section 4): Our motivation
is to propose a more efficient private PEZ protocol. A shorter length for the initial
string and a smaller number of moves are desirable, but it is not easy to realize
these for a general function fn. We instead succeeded in making the length of
the initial strings shorter and the number of moves smaller by restricting the
class of functions to be computed to symmetric functions.

The impact of the restriction is so great that the length of the initial string
is reduced from O(2n!) for general functions in [1] to O(n · n!) for symmetric
functions. For instance, the case where n = 7 in Table 1 shows us that the length
of the initial string is almost 3.8×1031 for a general function, but it is reduced to
only 60, 621 for symmetric function. Furthermore, 2n −1 moves in [1] for general
functions are considerably reduced to n2 moves for symmetric functions.
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Why Are 13 Candies Sufficient for maj23? (Sections 3 and 5): Our main
idea for constructing a private PEZ protocol for a symmetric function fn is to
utilize the recursive structure of fn to construct the protocol recursively. This
idea is suggested by observation of the new initial string with length 13 for
computing maj23, which is different from the initial string with the same length
presented in [1]. We will explain how we obtained such a short initial string in
Sect. 3 as a preliminary step before proposing a general protocol for symmetric
functions.

As is explained in Sect. 4, observation of our new initial string suggests how
private PEZ protocols with much shorter initial strings for arbitrary symmetric
functions can be constructed. Furthermore, our new initial string also suggests
that the initial string of majority functions can be further shortened, which will
be explained in Sect. 5. The difference between the constructions of initial strings
for symmetric functions in Sect. 4 and for majority functions in Sect. 5 is that
instead of constructing the initial string completely recursively, we use the initial
string for and/or functions in the middle of the recursions because these functions
can be implemented by very short initial strings. As seen from Table 1, we can
further shorten the initial strings compared to the case of recursive construction
proposed in Sect. 4. For n = 7, only 1, 821 candies are sufficient: i.e., our new
construction requires initial strings with a length of only 4.8×10−27% of Balogh
et al.’s result!

1.3 Organization of the Paper

The remaining part of this paper is organized as follows: In Sect. 2, the notations
and models of PEZ protocols with/without privacy [1] are provided. Section 3 is
devoted to finding initial strings of private PEZ protocols for computing maj23
and maj24, which suggests how private PEZ protocols can be constructed recur-
sively. Then, we propose the recursive construction of a private PEZ protocol
for computing arbitrary symmetric functions in Sect. 4. Section 5 revisits a pri-
vate PEZ protocol for computing majority functions. We show how to further
shorten the (short) initial strings presented in Sect. 4. Section 6 concludes this
paper. Technical lemma and proofs are provided in Appendix A.

2 Preliminaries

2.1 Notations

– For integers a and b such that a ≤ b, [a : b] := {a, a + 1, . . . , b}.
– For a bit b ∈ {0, 1}, define b := 1 − b.
– For two strings a, b ∈ Γ ∗, |a| denotes the length of a, and a ≺ b means that

the string a is a prefix of the string b.
– λ is the empty string. Note that |λ| = 0.
– For two strings a, b ∈ Γ ∗, a◦b is the concatenation of a and b. Concatenations

of n identical strings of a are expressed as [a]n := a ◦ · · · ◦ a
︸ ︷︷ ︸

n times

.



Efficient Private PEZ Protocols for Symmetric Functions 375

Table 2. A PEZ protocol for a function fn

Move Player to move # of symbols to be read

xij = σ1 · · · xij = σk

M1 Pi1 μ1(σ1) · · · μ1(σk)

M2 Pi2 μ2(σ1) · · · μ2(σk)

...
...

...
. . .

...

Mm Pim μm(σ1) · · · μm(σk)

– For a binary string a, hw(a) is the Hamming weight of a.
– For a binary string a of length n, andn(a) and orn(a) are the results of the

conjunction and disjunction of all the elements of a, respectively.
– For two sets X and Y , the difference set is defined as X \Y := X ∩Y c, where

Y c is the complement set of Y .

2.2 PEZ Protocols

Suppose that there are n(≥ 2) semi-honest players P1, P2, . . . , Pn. Each player
Pi has an input xi ∈ Σ, and the players wish to compute a function fn : Σn → Γ
while hiding their inputs from each other. The PEZ protocol for computing fn

consists of the following three steps:

Initialization Prepare a public fixed string, called an initial string, α ∈ Γ ∗

depending on only fn.
Execution Follow a sequence of moves M1,M2, . . . ,Mm: at each move Mj ,

player Pij reads the next μj(xij ) symbols of α privately, where μj(σ) indicates
the number of symbols read at the j-th move with input σ ∈ Σ. The sequence
i1, i2, . . . , im is called the move order.

Output Read the first symbol of the unread string in α.

By defining in advance the one-to-one correspondence between the colors of
candies and symbols in α, the PEZ protocol can be interpreted as follows: Ini-
tialization consists of filling a sequence of candies represented by α into a PEZ
dispenser. Execution consists of popping out μj(xij ) candies from the dispenser
privately. Finally, we output the topmost candy left in the PEZ dispenser, which
indicates the result of fn(x1, x2, . . . , xn).

We define a PEZ protocol with an initial string α that computes a function
fn : Σn → Γ , where n is the number of players of this protocol. When we denote
an initial sequence by α(fn), it means an initial sequence of the PEZ protocol
for computing the function fn.

Definition 1 (PEZ protocol [1]). Let α ∈ Γ ∗ be an initial string and fn :
Σn → Γ be a function to be computed. A PEZ protocol Πα,fn

is defined by
an initial string α and a sequence of m moves (M1,M2, . . . ,Mm). Each move
Mj consists of a pair (ij , μj), where ij is a player index specifying who moves
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(i.e., reads symbols from α) and μj : Σ → {0, 1, . . . , |α| − 1} maps each input of
players to the number of symbols to be read.

Table 2 indicates how many candies are popped out by the ij-th player at
the j-th move.

2.3 Private PEZ Protocols

Definition 2 (Private PEZ protocol [1]). For an initial string α and a func-
tion fn with n inputs, a PEZ protocol Πα,fn

is called private if there exists a
mapping ν : {1, 2, . . . ,m}×Σ → Γ ∗ that satisfies the following two conditions4:

1. For all j ∈ {1, 2, . . . ,m}, and for all σ ∈ Σ, the following holds:

|ν(j, σ)| = μj(σ).

2. For any x := (x1, x2, . . . , xn) ∈ Σn, the following holds:

ν(1, xi1) ◦ ν(2, xi2) ◦ · · · ◦ ν(m,xim) ◦ fn(x) ≺ α.

Intuitively, Definition 2 can be explained as follows: Condition 1 means that
the number of candies read by player Pij at the j-th move is specified by j
and the input xij of Pij . Condition 2 requires that if we read the candies with
the number specified by Condition 1, the output becomes fn(x), which implies
correctness.

Condition 2 simultaneously requires that if every player reads the candies by
following Condition 1, player Pij with input xij at the j-th move must eventually
read the same sequence ν(j, xij ), which guarantees privacy. In other words, the
substrings to be read by Pi, i.e., the view of Pi, in each move depends on xi

only, so that the view contains no information about the other players’ inputs.

Definition 3 (Round in a private PEZ protocol). In a private PEZ proto-
col for computing fn, we call a series of n moves a round if the n moves satisfy
the following conditions. The 	-th round is denoted by R�, 	 ≥ 0.

1. Every player Pi moves only once in the n moves.5
2. During the same round, every Pi reads the same sequence if the input of Pi

is the same.

If a sequence of moves consists of rounds, the move order in each round does
not affect the output.

Example 1 (Private PEZ protocols for andn and orn [1]). We show private
PEZ protocols for computing AND and OR of n binary inputs which are denoted
by andn and orn, respectively. The private PEZ protocols for andn and orn are
useful for constructing efficient private PEZ protocols discussed hereafter.

A private PEZ protocol for andn uses the (n+1)-bit initial string α(andn) :=
[0]n ◦ 1 and has n moves: each player Pi reads one candy of “0” from α(andn)
4 In [1], β was used instead of ν, but in this paper, we use β to express a string.
5 If fn is symmetric, the move order in a round does not affect the output.
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Table 3. A private PEZ protocol Πα,andn where α := α(andn) = [0]n ◦ 1

Round Player to move # of bits to be read Substring to be read

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}n
i=1 0 1 – 0

Table 4. A private PEZ protocol Πα,orn where α := α(orn) = [1]n ◦ 0

Round Player to move # of bits to be read Substring to be read

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}n
i=1 1 0 1 –

if the input value of Pi is 1, otherwise each Pi does not read any candy. After
round R0, i.e., n moves by P1, P2, and Pn, the first remaining candy of α(andn)
becomes “1” only when all the input values of Pi are 1, otherwise it becomes “0”.
This protocol Πα(andn),andn is summarized in Table 3. A private PEZ protocol for
orn can be specified analogously by letting α(orn) := [1]n ◦ 0 and following the
moves in Table 4.

The privacy of andn is easy to see because every player reads “0” during R0 if
Pi inputs 1, and hence, no information leaks until the output phase. The privacy
of orn is also easy to understand.

Example 2 (Private PEZ protocol for maj23). Consider the case of a major-
ity function with three inputs denoted by maj23, which outputs 1 if two or more
inputs are 1. The initial string for maj23 is given by α(maj23) = 0010010010001,
and the protocol works as shown in Table 5.

In this example, correctness is easy to check. Privacy is easy to see as well
because every player who inputs 1 reads “001” and “0” in rounds R0 and R1,
respectively, and nothing is read by the player who inputs 0.

Remark. Note that a private PEZ protocol for maj23 with an initial string with
length 13 was presented in [1], which is different from the one in Example 2.
Unfortunately, however, no description was given in [1] regarding why and how
the protocol was derived. On the other hand, in this paper, we will explain
how we derived the protocol in Example 2, which is insightful for constructing
a private PEZ protocol for symmetric functions and its improvement for majtn
that are proposed in Sects. 4 and 5, respectively.

Table 5. A private PEZ protocol Πα,maj23
where α := α(maj23) = 0010010010001

Round Players to move # of bits to be read Substring to be read

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}3
i=1 0 3 – 001

R1 {Pi}3
i=1 0 1 – 0
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2.4 Symmetric Functions

Definition 4 (Symmetric functions). A function fn : {0, 1}n → Γ is called
symmetric if

fn(x1, x2, . . . , xn) = fn(xσ(1), xσ(2), . . . , xσ(n)) (1)

holds for all (x1, x2, . . . , xn) ∈ {0, 1}n and an arbitrary permutation σ : [n] → [n].

Since the symmetric function does not depend on the order of x1, x2, . . . , xn,
we will sometimes regard fn as a function taking a multiset as an input.
For instance, a symmetric function f2(x1, x2) = f2(x2, x1) is also written as
fm
2 ({x1, x2}) := f2(x1, x2) = f2(x2, x1). Furthermore, if fn takes n binary inputs,

fn depends only on the Hamming weight of the n binary inputs. Summarizing,
we use the following equivalent expressions for symmetric functions.

Definition 5 (Equivalent expressions for symmetric functions). For a
symmetric function fn : {0, 1}n → Γ , define fm

n : {{x1, x2, . . . , xn} | xi ∈
{0, 1}} → Γ and fw

n : [0 : n] → Γ as

fm
n ({x1, x2, . . . , xn}) := fn(x1, x2, . . . , xn), (2)

fw
n (w) := fn(x1, x2, . . . , xn), (3)

where {x1, x2, . . . , xn} is a multiset and x1, x2, . . . , xn are the binary inputs
satisfying w = hw(x1, x2, . . . , xn) .

Hereafter, we choose an appropriate expression for a symmetric function from
(1)–(3) depending on the context. The superscripts m and w will be omitted if
they are clear from the context.

3 Warm-Up: Private PEZ Protocols for Majority Voting

Before presenting our construction of private PEZ protocols for general sym-
metric functions, we show private PEZ protocols for n-input majority voting
(n ≥ 3).

Definition 6 (Majority function with threshold). Let n and t be positive
integers with n ≥ t. For x1, x2, . . . , xn ∈ {0, 1}, define a majority function with
threshold t by

majtn(x1, x2, . . . , xn) :=

{

1, if
∑n

i=1 xi ≥ t

0, otherwise.
(4)

For t = 	n/2
, majtn reduces to the ordinary majority voting.
In this section, for intuitive understanding, we construct private PEZ pro-

tocols from the perspective of each player’s view and do not explicitly prove
that proposed protocols satisfy Definition 2. Later, we directly prove that the
proposed private PEZ protocols for symmetric functions satisfies Definition 2.
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Table 6. Truth table of maj23 classified by x3

x1 x2 x3 = 0 x3 = 1

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Example 3 (A private PEZ protocol for three-input majority voting).
Table 6 is the truth table of maj23 classified by the value of x3 ∈ {0, 1}. Observing
the input values of x1 and x2, and the output values for x3 = 0 in Table 6, we
can see that maj23({x1, x2, 0}) can be regarded as and2({x1, x2}): i.e.,

maj23({x1, x2, 0}) = maj22({x1, x2}) = and2({x1, x2}). (5)

We can also find

maj23({x1, 0, x3}) = maj22({x1, x3}) = and2({x1, x3}), (6)

maj23({0, x2, x3}) = maj22({x2, x3}) = and2({x2, x3}). (7)

(5)–(7) imply that if there exists at least one input with value 0, maj23 can
be computed by and2 with two inputs obtained by fixing one input to 0 in three
inputs of maj23. Only when x1 = x2 = x3 = 1, maj23 is not representable by and2.
Therefore, maj23 can be represented as follows:

maj23({x1, x2, x3})

=

{

maj23({1, 1, 1}), if x1 = x2 = x3 = 1,

maj22({x1, x2, x3} \ {0}) = and2({x1, x2, x3} \ {0}), otherwise.
(8)

Equivalently, for w ∈ [0 : 3],6

maj23(w) =

{

maj23(3), if w = 3,

maj22(w − 0) = and2(w − 0), otherwise.
(9)

We construct a private PEZ protocol for maj23 based on (8). Let α(maj23) be
an initial string for maj23.

Let β0 and β1 be strings used for computing and2({x1, x2, x3} \ {0}) and
maj23({1, 1, 1}), in (8), respectively. The actual sequence of β0 and β1 are unde-
termined so far, but will be specified below. Note here that the cases in (8) are
classified by the results of and3. From Example 1, the initial string for computing
and3 is given by α(and3) = 0001, and we replace 0 and 1 in α(and3) with β0 and
β1, respectively. Then we obtain

α(maj23) = β0 ◦ β0 ◦ β0 ◦ β1 (10)

6 “−0” means that the weight does not change, which is used to aid in understanding.
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as the initial string for computing maj23. The reason of these replacements will
be explained later more clearly.

Using the initial string α(maj23) in (10), the private PEZ protocol for com-
puting maj23 can be described as follows: In round R0, each player Pi who inputs
xi = 1 reads |β0| bits: otherwise (xi = 0), Pi does not read any bit. The following
shows the remaining string α′ after round R0.

α′ �
{

β1, if x1 = x2 = x3 = 1
β0, otherwise.

(11)

After R0, several moves are added to compute maj23 using β0 or β1, which will
specify β0 and β1.

The correctness ((11) holds) and privacy (no player obtains information
about other players’ inputs) in R0 are guaranteed by the correctness and pri-
vacy of the private PEZ protocol for and3, which is the reason why we replaced
0 and 1 in α(and3) with β0 and β1, respectively, to obtain (10). Therefore, to
construct the private PEZ protocol for maj23, the additional moves have to satisfy
the following requirements:

Correctness of the additional moves
C-1 Compute and2({x1, x2, x3} \ {0}) using β0(≺ α′).
C-2 Compute maj23({1, 1, 1}) using β1(≺ α′).

Privacy of the additional moves
P-1 Computation of and2({x1, x2, x3} \ {0}) is private.
P-2 Computation of maj23({1, 1, 1}) is private.
P-3 Each string read by each player for and2({x1, x2, x3} \ {0}) is the same

as the one for maj23({1, 1, 1}).

First, we discuss C-1 and P-1 to specify β0 and the additional moves. Since
0 ∈ {x1, x2, x3}, and2({x1, x2, x3}\{0}) can be computed in the same way as the
private PEZ protocol for and2. That is, using the string β0 := 001, each player
Pi, 1 ≤ i ≤ 3, reads one bit represented by “0” if xi = 1, otherwise Pi does not
read any bit. Note that there exists a bit in β0 to be output when three players
execute the move in the private PEZ protocol for and2 with α(and2) = 001,
because there exists at least one player Pj whose input xj = 0 and does not read
any bit. Therefore, and2({x1, x2, x3} \ {0}) can be computed using β0 = 001. In
addition, no player can obtain information about other players’ inputs because
one bit read by a player is always “0” regardless of other players’ inputs. Hence,
in summary, to satisfy C-1 and P-1, we should use β0 = 001 and add three
moves as round R1; each player Pi, 1 ≤ i ≤ 3, reads one bit from β0 if xi = 1,
which is always “0”, otherwise the player does nothing.

Next, we discuss C-2, P-2, and P-3, to specify β1. To satisfy P-3, we must
follow the moves in round R1 in the same manner as when {x1, x2, x3} contains
at least one 0. To be specific, every player Pi, 1 ≤ i ≤ 3, reads one bit “0” in
round R1, which determines the prefix of β1 as 000, i.e., 000 ≺ β1. These three
moves also satisfy P-2. Since the remaining one bit is read as output after round
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Table 7. Truth tables of maj24 and maj34 classified by x4

Table 8. A private PEZ protocol Πα,maj24
where α := α(maj24) = 111011101110

111011110

Round Players to move # of bits to read Substring of read bits

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}4
i=1 4 0 1110 –

R1 {Pi}4
i=1 1 0 1 –

R1, the next bit of 000 in β1 is determined as 1(= maj23({1, 1, 1})) to satisfy C-2.
As a result, we obtain β1 = 0001.

Summarizing the above discussion, a private PEZ protocol for maj23 is shown
in Table 5, which can be implemented with the 13-bit initial string α = β0 ◦ β0 ◦
β0 ◦ β1 = 0010010010001 and six moves.

Throughout Example 3, the input of a function is written as a multiset such
as maj23({x1, x2, x3}). Hereafter, an input of a symmetric function is represented
by the Hamming weight of the input such as maj23(3) (= maj23({1, 1, 1})). This is
because the Hamming weight of the input is sufficient information to compute
the symmetric function.

Example 4 (Private PEZ protocols for four-input majority voting). In
Table 7, (a) and (b) are the truth tables of maj24 and maj34, respectively. Note
that the truth values in these tables are classified by the value of x4 ∈ {0, 1}. In
the following, we mainly explain the construction of a private PEZ protocol for
maj24 in the same way as for maj23 in the Example 3, but a protocol for maj34 is
obtained analogously.

Let w ∈ [0 : 4] be the Hamming weight of the four inputs of maj24.
When w �= 0, i.e., when there exists at least one input whose value is 1, the

outputs of maj24(w) is equal to the outputs of or3 with input w − 1, i.e., three
inputs obtained by fixing one input to 1 in four inputs of maj24. Actually, the
right column of the outputs in Table 7(a) shows the case when x4 is fixed to 1,
and it can be regarded as maj13(w − 1) = or3(w − 1).
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Together with the case where w = 0, the following holds:

maj24(w) =

{

maj24(0), if w = 0
maj13(w − 1) = or3(w − 1), otherwise (w �= 0).

(12)

We can construct a private PEZ protocol for maj24 based on (12) similar to
how the private PEZ protocol for maj23 was constructed in Example 3. Let β̃0

and β̃1 be the undetermined strings which are used for computing maj24(0) and
or3(w − 1), respectively.

Let α(maj24) be an initial string for computing maj24. In the same way as
Example 3, set α(maj24) := [β̃1]4 ◦ β̃0, which is obtained by replacing “0” and
“1” in α(or4) = 1110 with β̃0 and β̃1, respectively. In round R0, each player Pi,
1 ≤ i ≤ 4, reads |β̃1| bits if the input xi = 0, otherwise the player does not read
any bit. Then, at the end of round R0, the remaining string α̃′ satisfies

α̃′ �
{

β̃0, if w = 0
β̃1, otherwise.

(13)

In round R1, we will add four moves for computing maj24(0) and or3(w − 1)
by using β̃0 and β̃1, respectively.

The function or3(w − 1) can be computed in the same way as the private
PEZ protocol for or3. That is, by using a string β̃1 := 1110 in round R1, each
player Pi, 1 ≤ i ≤ 4, reads one bit represented by “1” if xi = 0, otherwise the
player does not read any bit. Then, every move is specified as shown in Table 8.

Now we are prepared to compute maj24(0) privately; the first four bits of β̃0

have to be 1111, which is the string read in round R1. Since the next bit of 1111
becomes the output, β̃0 is obtained by appending 0(= maj24(0)) to the rightmost
part of 1111. Therefore, we obtain β̃0 := 11110. In summary, Table 8 shows a
private PEZ protocol for maj24, which uses the 21-bit initial string α := α(maj24) =
111011101110111011110, and has eight moves.

The private PEZ protocol for computing maj34 can be derived in the same
manner starting from the truth table (b) in Table 7 and based on

maj34(w) =

{

maj34(4), if w = 4
maj33(w) = and3(w), otherwise (w �= 4).

(14)

and the private PEZ protocol for and4. The protocol is shown in Table 9, with
eight moves and the initial string α := α(maj34) = 000100010001000100001.

4 A Private PEZ Protocol for Symmetric Functions

4.1 Recursive Structure of Symmetric Functions

We generalize the discussion in Sect. 3 for a general symmetric function fn with
n inputs. First, we generalize the relations (8), (12) and (14) as follows.
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Table 9. A private PEZ protocol Πα,maj34
where α := α(maj34) = 0001000100

01000100001

Round Players to move # of bits to read Substring of read bits

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}4
i=1 0 4 – 0001

R1 {Pi}4
i=1 0 1 – 0

Theorem 1. Let fn : {0, 1}n → Γ be an arbitrary symmetric function with n
binary inputs. Then, we recursively define the symmetric functions gk : {0, 1}k →
Γ and hk : {0, 1}k → Γ , for 1 ≤ k ≤ n, by gn := fn, hn := fn, and

gmk−1({x1, x2, . . . , xk} \ {0}) := gmk ({x1, x2, . . . , xk}),
if {x1, x2, . . . , xk} contains at least one 0, (15)

hm
k−1({x1, x2, . . . , xk} \ {1}) := hm

k ({x1, x2, . . . , xk}).
if {x1, x2, . . . , xk} contains at least one 1. (16)

Then, the following holds for w ∈ [0 : k]:

gwk (w) =

{

gwk (k) = fw
n (k) if w = k

gwk−1(w) otherwise,
(17)

hw
k (w) =

{

hw
k (0) = fw

n (n − k) if w = 0
hw

k−1(w − 1) otherwise,
(18)

where gw0 (0) := fw
n (0) and hw

0 (0) := fw
n (n).

The proof is provided in Appendix A.2.

Example 5. We revisit the case of Example 4. Let f4 = h4 = maj24. Then, it is
easy to see that h3 = or3 from Table 7(a). On the other hand, for f4 = g4 = maj34,
we can choose g3 = and3 from Table 7(b). This is the reason why (12), and (14)
hold.

4.2 Proposed Construction for General Symmetric Functions

We propose the construction of a private PEZ protocol for computing a symmetric
function fn. Let α(fn) be an initial sequence of the private PEZ protocol for com-
puting the function fn. There are two ways of constructing α(fn), as shown below.

Construction 1. Assume that a symmetric function fn is recursively decom-
posed into two cases by either (17) or (18). For 1 ≤ k ≤ n, α(gk) and α(hk)
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Table 10. A private PEZ protocol for fn using α(gn) as the initial string

Round Players to move # of bits to read Substring of read bits

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}n
i=1 0 |α(gn−1)| – α(gn−1)

R1 {Pi}n
i=1 0 |α(gn−2)| – α(gn−2)

...
...

...
...

...
...

Rn−1 {Pi}n
i=1 0 |α(g0)| – α(g0)

Table 11. A private PEZ protocol for fn using α(hn) as the initial string

Round Players to move # of bits to read Substring of read bits

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}n
i=1 |α(hn−1)| 0 α(hn−1) –

R1 {Pi}n
i=1 |α(hn−2)| 0 α(hn−2) –

...
...

...
...

...
...

Rn−1 {Pi}n
i=1 |α(h0)| 0 α(h0) –

are the initial strings for computing gk and hk, respectively. From (17) and (18),
α(gk) and α(hk) can be recursively constructed as follows:

α(gk) := [α(gk−1)]k ◦ [α(gk−2)]k ◦ · · · ◦ [α(g0)]k ◦ gwk (k), (19)

α(hk) := [α(hk−1)]k ◦ [α(hk−2)]k ◦ · · · ◦ [α(h0)]k ◦ hw
k (0), (20)

where α(g0) := g0 = fw
n (0) and gwk (k) = fw

n (k) in (19), and α(h0) := h0 = fw
n (n)

and hw
k (0) = fw

n (n − k) in (20). Finally, we obtain two types of the initial string
α(gn) and α(hn) recursively from (19) and (20). Then, we have

α(fn) := α(gn), (21)
α(fn) := α(hn). (22)

Note that the sequences of α(fn) obtained from (21) and (22) are not in
general the same.

First, we describe the private PEZ protocol for fn using α(fn) obtained from
(21) as the initial string. In this protocol, the sequence of n2 moves (M1,M2,
. . . ,Mn2) for computing fn is determined as follows: Each move Mj consists of
((j mod n) + 1, μj) where μj : {0, 1} → {0, |α(g0)|, |α(g1)|, · · · , |α(gn−1)|} and
μj(0) = 0, μj(1) = |α(gn−�j/n�)|. These moves can be represented as n rounds
(R0, R1, . . . , Rn−1), and each player Pi reads μrn+i(xi) bits in the r-th round.
These n rounds are shown in Table 10.

Second, the private PEZ protocol for fn using α(fn) obtained from (22) as
the initial string is similar to the protocol for α(fn) obtained from (21) and is
shown in Table 11.
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Theorem 2. The private PEZ protocol obtained from Construction 1 satisfies
Definition 2.

The proof is provided in Appendix A.3.

4.3 Evaluation of the Length of Initial Strings

For a symmetric function fn, let an := |α(fn)| for simplicity.

Theorem 3. The length of the initial string of a private PEZ protocol for com-
puting a symmetric function fn is computed as

an = n · n!
n

∑

i=1

1
i!

+ 1, (23)

from which we can conclude that an = O(n × n!).

The proof is provided in Appendix A.4.

5 A More Efficient Private PEZ Protocol
for the Majority Function majtn

By restricting the functions to be computed to majtn, the length of the initial
string α becomes much shorter than that for computing symmetric functions.

Consider the case t = 1 and t = n for majtn. Since maj1n and majnn are
equivalent to orn and andn, respectively, they can be computed with only
(n + 1)-bit strings [1]n ◦ 0 and [0]n ◦ 1 as shown in Example 1. Therefore,
|α(andn)| = |α(orn)| = O(n) while |α(fn)| = O(n × n!) as shown in Theorem 3
for a symmetric function fn.

In Examples 3 and 4, α(maj23) = 13 and α(maj24) = α(maj34) = 21, whereas
|α(f3)| = 31 and |α(f4)| = 165 in Construction 1. The reason for this difference
is the number of times decomposition is performed by either (17) or (18). In
Construction 1, α(f3), and α(f4) are obtained by decomposing two times and
three times, respectively, to the end. On the other hand, in Examples 3 and 4,
α(maj23), α(maj24) and α(maj34) are obtained by decomposing only once. After
the one-time decomposition by (17) or (18), the functions α(maj23), α(maj24) and
α(maj34) can be computed using and2, or3, and and3, respectively.

In general, we can construct private PEZ protocols for majority functions
majtn using the initial strings for {andi}n

i=2 or {orn}n
i=2. Therefore, the initial

string becomes shorter by reducing the number of decompositions using a private
PEZ protocol for andn or orn rather than by recursively decomposing to the end.

Let s be the number of times majtn is decomposed by (17) where 0 ≤ s ≤ n−1.
From observation of (17), we can learn that if majtn is decomposed by (17),
majtn becomes majtn−1. Therefore, after s decompositions by (17), majtn becomes
majtn−s. In addition, if n − s = t, i.e., s = n − t, then majtn−s = majn−s

n−s is
identical to andn−s. Similarly, when (18) is used for s decompositions, majtn
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Table 12. A private PEZ protocol for majtn for t ≥ (n + 1)/2

Round Players to move # of bits to read Substring of read bits

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}n
i=1 0 |α(majtn−1)| – α(majtn−1)

R1 {Pi}n
i=1 0 |α(majtn−2)| – α(majtn−2)

...
...

...
...

...
...

Rs {Pi}n
i=1 0 |α(majtn−s−1)| – α(majtn−s−1)

becomes majt−s
n−s and if t − s = 1, i.e., s = t − 1, then majtn−s = maj1n−s is

identical to orn−s.
To reduce the number of decompositions, s should be as small as possible.

Thus, if n− t ≤ t−1, i.e., t ≥ (n+1)/2, majtn should be decomposed by (17). On
the other hand, if n − t ≥ t − 1, i.e., t ≤ (n + 1)/2, majtn should be decomposed
by (18).

Construction 2. Assume that majtn is decomposed s times by either (17) or
(18), where

s =

{

n − t if t ≥ (n + 1)/2,

t − 1 if t ≤ (n + 1)/2,

and we define α(majtk), where n − s ≤ k ≤ n, as follows:

α(majtk) :=
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

[α(majtk−1)]
k ◦ [α(majtk−2)]

k ◦ · · · ◦ [α(majtn−s)]
k ◦ [α(majtn−s−1)]

k ◦ majtk(k),
if t ≥ (n + 1)/2,

[α(majt−1
k−1)]

k ◦ [α(majt−2
k−2)]

k ◦ · · · ◦ [α(maj1n−s)]
k ◦ [α(maj0n−s−1)]

k ◦ majtk(0),
if t ≤ (n + 1)/2,

(24)

where α(majtn−s−1) := 0 and α(maj0n−s−1) := 1. Then, we obtain the initial
string α(majtn) by substituting n for k in (24). Note that if n is odd, we can use
either equation.

If t ≤ (n + 1)/2, the sequence of n(s + 1) moves (M1,M2, . . . ,Mn(s+1)) for
computing majtn is determined as follows: each move Mj consists of ((j mod n)+
1, μ′

j), where μ′
j : {0, 1} → {0, |α(maj1n−s−1)|, |α(maj2n−s)|, . . . , |α(majt−1

n−1)|} and

μ′
j(0) = |α(maj

t−�j/n�
n−�j/n�)|, μ′

j(1) = 0. These moves can be represented as s + 1
rounds (R0, R1, . . . , Rs), and each player Pi reads μ′

rn+i(xi) bits in the r-th
round. These s + 1 rounds are shown in Table 13. The sequences of moves for
t ≥ (n + 1)/2 are similar to those for t ≤ (n + 1)/2 and are shown in Table 12.
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Table 13. A private PEZ protocol for majtn for t ≤ (n + 1)/2

Round Players to move # of bits to read Substring of read bits

xi = 0 xi = 1 xi = 0 xi = 1

R0 {Pi}n
i=1 |α(majt−1

n−1)| 0 α(majt−1
n−1) –

R1 {Pi}n
i=1 |α(majt−2

n−2)| 0 α(majt−2
n−2) –

...
...

...
...

...
...

Rs {Pi}n
i=1 |α(maj1n−s−1)| 0 α(maj1n−s−1) –

Example 6. Consider the case of maj24 in Example 4. In this case, since t =
2 < 5/2 = (n + 1)/2, s = t − 1 = 1. Therefore, we decompose maj24 once by
using (17). Then, we obtain α(maj24) = [α(maj13)]

4 ◦ [1]4 ◦maj24(0) and α(maj13) =
[1]3 ◦ maj13(0) = 1110, which yields

α(maj24) = [1110]4 ◦ [1]4 ◦ 0. (25)

Therefore, this initial string α(maj24) coincides with the initial string obtained in
Example 4. We can also see that the moves (rounds) of this protocol obtained
by Construction 2 coincide with the rounds of the protocol for maj24 in Table 8,
which is obtained in Example 4.

Theorem 4. The private PEZ protocol obtained from Construction 2 satisfies
Definition 2.

The proof is omitted since it is similar to the proof of Theorem 2.
Finally, let an,t be the length of the initial string of a private PEZ protocol

for computing majtn obtained from Construction 2. From (24), for n−s ≤ k ≤ n,
the following holds:

ak,t =

{

kak−1,t + kak−2,t + · · · + kan−s,t + kan−s−1,t + 1 if t ≤ (n + 1)/2
kak−1,t−1 + kak−2,t−2 + · · · + kan−s,1 + kan−s−1,0 + 1 if t ≥ (n + 1)/2

=

{

k
∑s+1

i=1 an−i,t + 1 if t ≤ (n + 1)/2
k

∑s+1
i=1 an−i,t−i + 1 if t ≥ (n + 1)/2

(26)

where an−s−1,t = 1 and an−s−1,0 = 1. Then, the theorem below immediately
follows from Lemma 1 in Appendix A.1 and (24), and hence, the proof is omitted.

Theorem 5. The length of the initial string of a private PEZ protocol for com-
puting majtn is computed as

an,t = n
n

∑

i=n−s

n!
i!

+ 1, where s =

{

t − 1 if t ≤ (n + 1)/2
n − t if t ≥ (n + 1)/2

(27)

from which we can conclude that an = O(n × ns).
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6 Conclusion

In the previous work [1], a general, but inefficient private PEZ protocol was
presented. By restricting our attention to the symmetric functions, we achieved
the exponential improvement on a private PEZ protocol for symmetric functions
using the recursive structure of symmetric functions. Specifically, the double
exponential length of initial string is reduced to exponential length, and the
exponential number of moves is reduced to polynomial moves. Furthermore, in
the case of threshold functions, the length of an initial string and the number
of moves are further reduced compared with the ones for symmetric functions.
These results resolve a part of open problems suggested in [1].

Finally, we mention the relationship between our construction for symmetric
functions and the general construction [1]. A general function fn with n inputs
can be easily computed by applying our construction for symmetric function
g2n−1 with 2n − 1 inputs in the following manner.

– For w ∈ [0 : 2n − 1], g2n−1(w) := fn(w)
– For i ∈ [0 : n−1], each player Pi behaves as if Pi were Pj , j ∈ [2i−1 : 2i+1−2]

in the protocol for g2n−1.

However, the private PEZ protocol obtained from this method is different from
the one obtained from the general construction in [1] although the order of an
initial string is the same: O((2n − 1) × (2n − 1)!) = O(2n!). For instance, for
n = 3, |α(g2n−1)| = |α(g7)| = 60, 621 for the above protocol, whereas |α(fn)| =
|α(f3)| = 72 for original protocol in [1], as you can see in Table 1. Therefore,
it seems that the general protocol in [1] cannot be directly obtained from our
construction.

Acknowledgements. The authors would like to thank the reviewers for their helpful
comments and suggestions. They are also grateful to Mr. Shota Yamamoto for insightful
discussions.

A Technical Lemma and Proofs

A.1 Technical Lemma

Lemma 1. Let n and s (n ≥ s) be nonnegative integers such that n−s−1 ≥ 0.
For k ∈ [0 : n], let

an−s−1 = 1 and ak = k
k−1
∑

i=n−s−1

ai + 1, (28)

be a recurrence relation with respect to (ai)k−1
i=n−s−1. Then, the following holds:

an = n · n!
n

∑

i=n−s

1
i!

+ 1. (29)
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Proof of Lemma 1: For fixed s and n, let

Sk :=
k

∑

i=n−s−1

ai. (30)

Then, we have Sn−s−1 = an−s−1 = 1 and

ak = kSk−1 + 1. (31)

We also have

Sk − Sk−1 = ak = kSk−1 + 1, (32)

where the first and the second equalities are due to (30) and (31), respectively.
Equation (32) can be rearranged as Sk = (k + 1)Sk−1 + 1. Dividing both

sides of this equality by (k + 1)!, we obtain

Tk = Tk−1 +
1

(k + 1)!
, and Tn−s−1 =

1
(n − s)!

, (33)

where Tk := Sk/(k + 1)!. Equation (33) is easy to solve. That is,

Tk = Tk−1 +
1

(k + 1)!

= Tk−2 +
1

(k + 1)!
+

1
k!

· · ·
= Tn−s−1 +

1
(k + 1)!

+ · · · 1
(n − s + 1)!

=
k+1
∑

i=n−s

1
i!

. (34)

Therefore, we have Sk = (k + 1)!Tk = (k + 1)!
∑k+1

i=n−s 1/i!. Substituting this
into (31), we obtain (29). �

A.2 Proof of Theorem 1

We prove (17). Equation (18) can be proved similarly.
For the weight w ∈ [0 : k], fix the input (x1, x2, . . . , xk) arbitrarily such that

hw(x1, x2, . . . , xk) = w. Then, gwk (w) = gk(x1, x2, . . . , xk) holds. If w = k, the
following holds:

gwk (w) = gwk (k) = gmk ({1, 1, . . . , 1
︸ ︷︷ ︸

k

})
(a)
= gmn ({1, 1, . . . , 1

︸ ︷︷ ︸

k

, 0, 0, . . . , 0
︸ ︷︷ ︸

n−k

})
(b)
= fw

n (k)

(35)
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where the marked equalities are due to the following reasons:

(a): From (15), the value of gk equals to the value of gn if the Hamming weights
of inputs are equal.

(b): Definition of gn: gn := fn, given in Theorem 1.

If w �= k, there exists an index i ∈ [0 : k − 1] such that xi = 0, and we have

gwk (w) = gk(x1, x2, . . . , xk)

= xkgk(x1, x2, . . . ,
i

0̌, . . . , xk−1, 1) + xkgk(x1, x2, . . . , xk−1, 0)

(c)
= xkgk(x1, x2, . . . ,

i

1̌, . . . , xk−1, 0) + xkgk(x1, x2, . . . , xk−1, 0)

(d)
= xkgk−1(x1, x2, . . . ,

i

1̌, . . . , xk−1) + xkgk−1(x1, x2, . . . , xk−1)
(e)
= gwk−1(w), (36)

where the marked equalities are due to the following reasons:

(c): Symmetry of gk.
(d): Definition of gk−1 given by (15).

(e): For xk = 1, hw(x1, x2, . . . ,
i

1̌, . . . , xk−1) = w holds, otherwise hw(x1, x2, . . . ,
xk−1) = w holds. �

A.3 Proof of Theorem 2

We show the proof for the private PEZ protocol constructed by using (19) in
Construction 1. If (20) is used, the proof is similar to that for (19).

Let Σ = {0, 1}. Let ν : {1, 2, . . . , n2} × {0, 1} → Γ ∗ be a mapping such
that ν(j, 0) = λ, and ν(j, 1) = α(gn−�j/n�) for all j ∈ {1, 2, . . . , n2}. From the
definition of ν and μ, we obtain for all j ∈ {1, 2, · · · , n2},

|ν(j, 0)| = |λ| = 0 = μj(0) (37)
|ν(j, 1)| = |α(gn−�j/n�)| = μj(1) (38)

Therefore, ν satisfies the first condition in Definition 2.
Next, we show that ν also satisfies the second condition in Definition 2. Let w

be a Hamming weight of n inputs where 0 ≤ w ≤ n, and N(w) be the substring
read by players throughout n rounds when the Hamming weight of n inputs is
w. Since the substring read in the j-th round can be represented by [α(gn−j)]w,
we have

N(w) = [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(g0)]w. (39)

Note that it is not necessary to care about the move order in each round, but it is
necessary to care about the Hamming weight of n inputs. Using N(w), the second
condition in Definition 2 can be rewritten as follows: For all w ∈ {0, 1, . . . , n},

N(w) ◦ fw
n (w) = [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(g0)]w ◦ fw

n (w) ≺ α(gn). (40)
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Noting that gww(w) = fw
n (w) and (19), we have

α(gw) = [α(gw−1)]w ◦ [α(gw−2)]w ◦ · · · ◦ [α(g0)]w ◦ fw
n (w). (41)

Hence, N(w) ◦ fw
n (w) is written as follows:

N(w) ◦ fw
n (w)

= [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(gw+1)]w ◦ [α(gw)]w ◦ α(gw)

= [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(gw+1)]w ◦ [α(gw)](w+1)

≺ [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(gw+1)]w ◦ [α(gw)](w+1)

◦ [α(gw−1)](w+1) ◦ · · · ◦ [α(g0)](w+1) ◦ fw
n (w + 1)

= [α(gn−1)]w ◦ [α(gn−2)]w ◦ · · · ◦ [α(gw+2)]w ◦ [α(gw+1)]w ◦ α(gw+1)
· · ·
≺ [α(gn−1)]w ◦ α(gn−1)

= [α(gn−1)]w+1, (42)

where the first and the third equalities are due to (41). Therefore, for all w ∈ [0 :
n−1], N(w)◦fw

n (w) ≺ [α(gn−1)]w+1 ≺ [α(gn−1)]n ≺ α(gn) holds. In addition, for
w = n, N(w) ◦ fw

n (w) = α(gn). Thus, for all w ∈ [0 : n], N(w) ◦ fw
n (w) ≺ α(gn).

Therefore, there exists a mapping ν for a PEZ protocol of Construction 1 using
an initial string α(gn) such that ν satisfies the two condition in Definition 2. �

A.4 Proof of Theorem 3

From (19) and (20), we obtain the length of the initial string |α(gn)| and |α(hn)|
as follows:

|α(gn)| = n|α(gn−1)| + n|α(gn−2)| + · · · + n|α(g0)| + 1

= n

n−1
∑

i=0

|α(gi)| + 1, (43)

|α(hn)| = n|α(hn−1)| + n|α(hn−2)| + · · · + n|α(h0)| + 1

= n

n−1
∑

i=0

|α(hi)| + 1, (44)
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where |α(g0)| = |fw
n (0)| = 1 and |α(h0)| = |fw

n (n)| = 1. Therefore, we obtain the
same relation between |α(gn)| and |α(hn)|. Summarizing the above, and noting
that an = |α(fn)| = |α(gn)| = |α(hn)|, {ai}n

i=0 satisfies the following recurrence
relation:

a0 = 1, an = n

n−1
∑

i=0

ai + 1, (45)

which is a special case of (28) in Lemma 1 with s = n − 1. Thus, we
obtain (23).

In addition, the following relations hold:

n
∑

i=1

1
i!

<

n−1
∑

i=0

1
2i

= 2 − (1/2)n < 2 (46)

Therefore, an < 2n · n! + 1, which yields an = O(n × n!). �
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Abstract. The task of function inversion is central to cryptanalysis:
breaking block ciphers, forging signatures, and cracking password hashes
are all special cases of the function-inversion problem. In 1980, Hellman
showed that it is possible to invert a random function f : [N ] → [N ]

in time T = ˜O(N2/3) given only S = ˜O(N2/3) bits of precomputed
advice about f . Hellman’s algorithm is the basis for the popular “Rain-
bow Tables” technique (Oechslin 2003), which achieves the same asymp-
totic cost and is widely used in practical cryptanalysis.

Is Hellman’s method the best possible algorithm for inverting func-
tions with preprocessed advice? The best known lower bound, due to
Yao (1990), shows that ST = ˜Ω(N), which still admits the possibility of

an S = T = ˜O(N1/2) attack. There remains a long-standing and vexing
gap between Hellman’s N2/3 upper bound and Yao’s N1/2 lower bound.
Understanding the feasibility of an S = T = N1/2 algorithm is cryptan-
alytically relevant since such an algorithm could perform a key-recovery
attack on AES-128 in time 264 using a precomputed table of size 264.

For the past 29 years, there has been no progress either in improving
Hellman’s algorithm or in strengthening Yao’s lower bound. In this work,
we connect function inversion to problems in other areas of theory to (1)
explain why progress may be difficult and (2) explore possible ways for-
ward.

Our results are as follows:
– We show that any improvement on Yao’s lower bound on function-

inversion algorithms will imply new lower bounds on depth-two cir-
cuits with arbitrary gates. Further, we show that proving strong
lower bounds on non-adaptive function-inversion algorithms would
imply breakthrough circuit lower bounds on linear-size log-depth
circuits.

– We take first steps towards the study of the injective function-
inversion problem, which has manifold cryptographic applications.
In particular, we show that improved algorithms for breaking PRGs
with preprocessing would give improved algorithms for inverting
injective functions with preprocessing.

– Finally, we show that function inversion is closely related to well-
studied problems in communication complexity and data structures.
Through these connections we immediately obtain the best known
algorithms for problems in these domains.

c© International Association for Cryptologic Research 2019
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1 Introduction

A central task in cryptanalysis is that of function inversion. That is, given a
function f : [N ] → [N ] and a point y ∈ [N ], find a value x ∈ [N ] such that
f(x) = y, if one exists. The hardness of function inversion underpins the security
of almost every cryptographic primitive we use in practice: block ciphers, hash
functions, digital signatures, and so on. Understanding the exact complexity of
function inversion is thus critical for assessing the security of our most important
cryptosystems.

We are particularly interested in function-inversion algorithms that only
make black-box use of the function f—or formally, that have only oracle access
to f—since these algorithms invert all functions. A straightforward argument
shows that any black-box inversion algorithm that makes at most T queries to
its f -oracle succeeds with probability at most O(T/N), over the randomness of
the adversary and the random choice of the function. This argument suggests
that an attacker running in o(N) time cannot invert a black-box function on
domain [N ] with good probability.

When the inversion algorithm may use preprocessing, this logic breaks down.
An algorithm with preprocessing runs in two phases: In the preprocessing phase,
the algorithm repeatedly queries f and then outputs an “advice string” about f .
In the subsequent online phase, the algorithm takes as input its preprocessed
advice string and a challenge point y ∈ [N ]. It must then produce a value
x ∈ [N ] such that f(x) = y. When using these algorithms for cryptanalysis, the
attacker typically seeks to jointly minimize the bit-length S of the advice string
and the running time T of the online algorithm. The computation required to
construct the advice string, though usually expensive, can often be amortized
over a large number of online inversions.

A trivial preprocessing algorithm stores a table of f−1 in its entirety as its
advice string using S = ˜O(N) bits and can then invert the function on all points
using a single lookup into the table. In contrast, constructing algorithms that
simultaneously achieve sublinear advice and online time S = T = o(N) is non-
trivial.

In a seminal paper, Hellman [46] introduced time-space tradeoffs as a tool
for cryptanalysis and gave a black-box preprocessing algorithm that inverts a
function f : [N ] → [N ] using only S = ˜O(N2/3) bits of advice and online time
T = ˜O(N2/3), where the algorithm is guaranteed to succeed only on a constant
fraction of functions. (More precisely, the algorithm has a constant success proba-
bility over the uniformly random choice of the function f .) Fiat and Naor [27,28]
later gave a rigorous analysis of Hellman’s algorithm and extended it to invert all
possible functions, albeit with a slightly worse trade-off of the form S3T = ˜O(N3)
for any choice of N3/4 ≤ S ≤ N . Hellman’s trade-off is the best known today,
and his algorithm is a fundamental tool in real-world cryptanalysis [7,8,59,61].

In this work, we investigate the following question:

Is it possible to improve upon Hellman’s time-space trade-off?
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Yao first asked this question in 1990 [77] and proved that any preprocessing
algorithm for function inversion that uses S bits of advice and T online queries
must satisfy ST = ˜Ω(N). (Counting only queries—and not online computation—
only strengthens lower bounds in this model.) Notably, this lower bound does not
rule out an algorithm that achieves S = T = ˜O(N1/2). In contrast, Hellman’s
algorithm only gives an upper bound of S = T = ˜O(N2/3), even for the slightly
easier case of inverting a random function. The question resurfaces in the work
of Fiat and Naor [28], Barkan, Biham, and Shamir [5] (who show that Hellman’s
method is optimal for a certain natural but restricted class of algorithms), De,
Trevisan and Tulsiani [21], and Abusalah et al. [1].

In addition to the problem’s theoretical appeal, determining the best pos-
sible time-space trade-offs for function inversion is relevant to practice, since
the difference between an online attack time of N2/3 and an N1/2 becomes cru-
cial when dealing with 128-bit block ciphers, such as the ubiquitous AES-128.
Hellman’s algorithm gives the best known preprocessing attack against AES-
128, with S = T ≈ 286. If we could improve Hellman’s algorithm to achieve
S = T = N1/2, matching Yao’s lower bound, we could break AES-128 in time
264 with a data structure of size 264, albeit after an expensive preprocessing
phase. While today’s S = T = 286 attack is likely far beyond the power of any
realistic adversary, an improved S = T = 264 attack would leave us with an
alarmingly narrow security margin.

Recent work proves new lower bounds on preprocessing algorithms for various
cryptographic problems, using both incompressibility arguments [1,23,32] and
the newer presampling method [19,65]. While this progress might give hope
for an improved lower bound for function inversion as well, both techniques
mysteriously fail to break the ST = ˜Ω(N) barrier.

Non-adaptive Algorithms. Another avenue for study is to explore the role
of parallelism or adaptivity in preprocessing algorithms for function inversion.
All non-trivial algorithms for function inversion, including Hellman’s algorithm
and Rainbow-table methods [61], critically use the adaptivity of their queries.
It would be very interesting to construct a highly parallelizable preprocessing
algorithm for function inversion. Such an algorithm would achieve the same
advice and time complexity S = T = ˜O(N2/3) as Hellman’s algorithm, but
would make all ˜O(N2/3) of its queries to the f -oracle in one non-adaptive batch.
Such a non-adaptive inversion algorithm could speed up function inversion on
cryptanalytic machines with a very large number of parallel processing cores.

We do not even know if there exists a non-adaptive algorithm with S =
T = o(N). Can we find new non-adaptive inversion algorithms, or is adaptivity
necessary for good time-space trade-offs? Proving lower bounds in this more
restricted model could be a stepping stone to improving the general lower bounds
on function inversion.
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1.1 Our Results

This work establishes new connections between the function-inversion problem
and well-studied problems in cryptography, complexity theory, and data struc-
tures. These connections are useful in two directions.

First, they shed new light on the function-inversion problem: a connection
to circuit complexity suggests that improving on the known lower bounds for
function-inversion will be difficult. In particular, we show that new lower bounds
for function inversion will imply new circuit lower bounds and could even resolve
complexity-theoretic questions that predate Hellman’s results [66]. Moreover, a
new connection to the problem of breaking PRGs with preprocessing suggests
a new avenue for better inversion algorithms for injective functions. For many
of the cryptanalytic applications, progress on this variant of function inversion
would in fact be sufficient.

Second, these connections, together with classic cryptanalytic algorithms,
give rise to better algorithms for problems in the other areas of theory. For
example, a connection to communication complexity leads to the best known
algorithm for the multiparty pointer-jumping problem, improving upon a twenty-
year-old upper bound [63]. Similarly, a connection to data structures leads to a
new upper bound for the systematic substring-search problem, resolving an open
question [29].

We now state our results in detail.

Proving Better Lower Bounds for Function-Inversion Implies New Cir-
cuit Lower Bounds. A major question in circuit complexity, open since the
1970s [66,67], is to give an explicit family of functions Fn : {0, 1}n → {0, 1}n

that cannot be computed by fan-in-two circuits of size O(n) and depth O(log n).
Following ideas of Brody and Larsen [13], we demonstrate a close connection
between this classic problem in circuit complexity and non-adaptive preprocess-
ing algorithms for function inversion.

Specifically, we show that proving that every non-adaptive black-box
function-inversion algorithm that uses S = N log N/ log log N bits of advice
requires at least T = Ω(N ε) oracle queries, for some constant ε > 0, would give
an explicit family of functions that cannot be computed by linear-size log-depth
Boolean circuits. This, in turn, would resolve a long-standing open problem in
circuit complexity. Though we cannot prove it, we suspect that the above lower
bound holds even for ε = 1.

This connection implies that proving lower bounds against non-adaptive
function-inversion algorithms that use the relatively large amount of advice
S = N log N/ log log N should be quite difficult. A much more modest goal
would be to rule out any non-adaptive algorithm using S = T = ˜O(N1/2+ε), for
some ε > 0. This would represent only a slight strengthening of Yao’s ST = ˜Ω(N)
bound for adaptive algorithms. However, we show that achieving even this far-
more-modest goal would improve the best known lower bound for circuits in
Valiant’s common-bits model [66,67]. This, in turn, would represent substan-
tial progress towards proving lower bounds against linear-size log-depth circuits.
In particular, since any lower bound against algorithms without a restriction
on adaptivity would only be more general, improving the ST = ˜Ω(N) lower



The Function-Inversion Problem: Barriers and Opportunities 397

bound for function inversion would imply new circuit lower bounds in Valiant’s
common-bits model.

We believe that the difficulty of proving such a circuit lower bound suggests
that beating the square-root barrier exhibited by both the compression [33,77]
and presampling [19,65] techniques might prove more difficult than previously
expected.

One-to-One Function Inversion from PRG Distinguishers. Many crypt-
analytic applications of Hellman tables (cryptanalysis of block ciphers, password
cracking, etc.) only require inverting injective functions. Does there exist a better-
than-Hellman algorithm for inverting injective functions with preprocessing?

One reason to hope for a better algorithm for injective functions is that for
the very special case of permutations, there exists an inversion algorithm with
preprocessing that achieves the improved trade-off ST = ˜O(N) (i.e., S = T =
N1/2) [77]. Can we achieve the same trade-off for injective functions?

While we have not been able to answer this question yet, we do open one pos-
sible route to answering it. In particular, we show that the problem of inverting
injective functions with preprocessing has a close connection to the problem of
breaking pseudorandom generators (PRGs) with preprocessing [2,19,21,23,24].
Specifically, De, Trevisan, and Tulsiani [21] show that black-box PRG distin-
guishers with preprocessing can realize the trade-off S = ˜O(ε2N), for T = ˜O(1)
and for any choice of distinguishing advantage ε.

We show that achieving a more general trade-off of the form ST = ˜O(ε2N),
for any constant ε, would imply a better-than-Hellman algorithm for inverting
injective functions. Thus, improving the known PRG distinguishers with prepro-
cessing can improve the known injective inversion algorithms.

New Protocols for Multiparty Pointer Jumping. We show that algorithms
for the black-box function-inversion problem are useful in designing new com-
munication protocols for a well-studied problem in communication complexity.
In particular, any black-box preprocessing algorithm for inverting permutations
yields a protocol for the permutation variant of the “k-party pointer-jumping”
problem (MPJpermN,k ) [10,11,14,20,56,63,70] in the number-on-the-forehead model
of communication complexity [15].

Then, by instantiating the permutation-inversion algorithm with a vari-
ant of Hellman’s method, we obtain the best known protocol for MPJpermN,k for
k = ω(log N/ log log N) players (this regime is in fact the most consequential for
the original motivation for studying this problem), improving the previous best
upper bound of O(N log log N/ log N), by Pudlák et al. [63], to ˜O(N/k +

√
N).

We thus make progress on understanding the communication complexity of
multiparty pointer jumping, a problem with significance to ACC0 circuit lower
bounds [6,47,78].

Beyond the quantitative improvement, our protocol is different from all pre-
vious approaches to the problem and is an unexpected application of a crypt-
analytic algorithm to a communication-complexity problem. While the use of
a cryptanalytic algorithm in this context appears new, prior work has found
application of results in communication complexity to lower bounds [44] and
constructions [12] in the cryptographic setting.
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This connection presents a path forward for proving non-adaptive lower
bounds for permutation inversion. In particular, we show that for every non-
adaptive black-box permutation-inversion algorithm using S bits of advice and
T online queries, it must hold that max{S, T} is at least as large as the communi-
cation complexity of MPJpermN,3 . Any improvement on the lower bound for MPJpermN,3

would give an improved lower bound for non-adaptive black-box permutation-
inversion algorithms. The best lower bound for MPJpermN,3 is Ω(

√
N) [3,73]. Inter-

estingly, this matches the best lower-bound for black-box permutation-inversion
algorithms, regardless of their adaptivity.

New Time-Space Trade-Off for Systematic Substring Search. Finally, we
show that improved algorithms for function inversion will also imply improved
data structures for the systematic substring-search problem [22,29,30,40,41]. In
particular, we prove that there is a preprocessing algorithm for the function-
inversion problem using few bits of advice and few online queries if and only if
there is a space- and time-efficient data structure for systematic substring search
in the cell-probe model [75]. In the systematic substring-search problem, we are
given a bitstring of length N (the “text”), and from it we must construct an
S-bit data structure (the “index”). Given a query string, we should be able to
determine whether the query string appears as a substring of the text by reading
the index and by inspecting at most T bits of the original text.

This connection is fruitful in two directions: First, we show that instantiating
this connection with the Fiat-Naor algorithm for function inversion [28] yields
an S3T = ˜O(N3) systematic data structure, which is the best known in the
parameter regime S = ˜O(Nα) for α < 1. Gál and Miltersen [29] ask whether a
very strong S + T = ˜Ω(N) lower bound on this problem is possible. By beating
this hypothetical lower bound, our algorithm answers their open question in the
negative.

Second, Gál and Miltersen prove an ST = ˜Ω(N) lower bound for system-
atic substring search. Our barrier to proving lower bounds against black-box
algorithms for function inversion implies that improving this lower bound would
also imply new lower bounds in Valiant’s circuit model and therefore may be
quite challenging.

1.2 Related Work

We now recall a few salient related results on function inversion, and we discuss
additional related work at relevant points throughout the text.

Fiat and Naor [27,28] proved that Hellman’s algorithm [46] achieves a trade-
off of the form S2T = ˜O(N2), when the algorithm needs only to invert a random
function with constant probability (i.e., in the cryptanalytically interesting case).
For the worst-case problem of inverting arbitrary functions, Fiat and Naor give
an algorithm that achieves a trade-off of the form S3T = O(N3). De, Trevisan,
and Tulsiani [21] improve the Fiat-Naor trade-off when the algorithm needs only
to invert the function at a sub-constant fraction of points.
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For inverting functions, Yao [77] proved that every algorithm that uses S

bits of advice and makes T online queries must satisfy ST = ˜Ω(N) lower bound.
Impagliazzo gives a short alternative proof [48]. Dodis et al. [23], building on
prior work [21,33], extended the lower bound to capture algorithms that invert
only a sub-constant fraction of functions f .

Barkan, Biham, and Shamir [5] show that, for a restricted class of prepro-
cessing algorithms, a Hellman-style trade-off of the form S2T = ˜O(N2) is the
best possible. Their lower bound is powerful enough to capture the known inver-
sion schemes, including Hellman’s algorithm and Oechslin’s practically efficient
“Rainbow tables” technique [61]. At the same time, this restricted lower bound
leaves open the possibility that an entirely new type of algorithm could subvert
their lower bound.

For inverting permutations, Yao [77] observed that a Hellman-style algorithm
can achieve the ST = ˜O(N) upper bound and proved a matching lower bound.
Gennaro and Trevisan [33], Wee [71], and De, Trevisan, and Tulsiani [21] extend
this lower bound to handle randomized algorithms and those that succeed with
small probability.

Two recent works [39,52] use the function-inversion algorithm of Fiat and Naor
to obtain new algorithms for the preprocessing version of the 3-SUM problem.

1.3 Preliminaries

Notation. Through this paper, Z≥0 denotes the non-negative integers, and Z
>0

denotes the positive integers. For any N ∈ Z
>0 we write [N ] = {1, 2, . . . , N}.

We often identify every element x ∈ [N ] with the binary representation of x − 1
in {0, 1}�log N�. We use x ← 4 to denote assignment and, for a finite set X , we
use x R← X to denote a uniform random draw from X . For a function f : A → B
and y ∈ B, we define the preimage set of y as f−1(y) := {x ∈ A | f(x) = y}.
All logarithms are base-two unless stated otherwise. Parameters S and T are
always implicit functions of the parameter N , and to simplify the bounds, we
always implicitly take S = T = Ω(1). The notation ˜Ω(·) and ˜O(·) hides factors
polynomial in log N .

Definition 1 (Black-box inversion algorithm with preprocessing). Let
N ∈ Z

>0. A black-box inversion algorithm with preprocessing for functions on
[N ] is a pair (A0,A1) of oracle algorithms, such that A0 gets oracle access to a
function f : [N ] → [N ], takes no input, and outputs an advice string stf ∈ {0, 1}∗.
Algorithm A1 gets oracle access to a function f : [N ] → [N ], takes as input a
string stf ∈ {0, 1}∗ and a point y ∈ [N ], and outputs a point x ∈ [N ]. Moreover,
for every x ∈ [N ], it holds that Af

1 (Af
0 (), f(x)) ∈ f−1(f(x)).

We can define a black-box inversion algorithm for permutations analogously
by restricting the oracle f : [N ] → [N ] to implement an injective function. In
this case, we will often denote the oracle as π instead of f .

Definition 2 (Adaptivity). We say that an oracle algorithm is k-round adap-
tive if the algorithm’s oracle queries consist of k sets, such that each set of queries
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depends on the advice string, the input, and the replies to the previous rounds
of queries. We call a 1-round adaptive algorithm non-adaptive. Finally, we say
that an algorithm is strongly non-adaptive if it issues a single set of queries that
only depends on the algorithm’s input, but not on the advice string. In all of the
above cases, when referring to the number of queries made by the algorithm, we
account for the sum over all rounds.

Worst Case Versus Average Case. The algorithms in Definition 1 are deter-
ministic and successfully invert all functions on all points. It is also interesting
to consider algorithms that invert successfully only with probability ε < 1, over
the random choice of: the function f : [N ] → [N ], the point to invert, and/or
algorithm’s randomness. As most of the results in this paper deal with barri-
ers for improving lower bounds, restricting ourselves to deterministic algorithms
that always succeed in inverting only makes these results stronger. In any case,
assume that all algorithms we consider halt with probability 1.

Running Time Versus Query Complexity. For the purposes of proving
lower bounds, and reductions towards proving lower bounds, it suffices to con-
sider the query complexity of a preprocessing algorithm’s online phase. Counting
only queries (and not computation time) only strengthens lower bounds proved
in this model. The algorithms we construct can be made to use only ˜O(N) prepro-
cessing time in a suitable RAM model, when they are allowed to fail with small
probability. Furthermore, the running time of our algorithms’ T -query online
phase is ˜O(T ).

Non-uniformity. Our definition allows for “free” non-uniformity in the param-
eter N . Nevertheless, in a model that only “charges” the online algorithm for
queries to the oracle and ignores the actual running time, non-uniformity makes
little difference since a uniform algorithm can simply search for the optimal
choice of non-uniform advice without increasing its query complexity.

Shared Randomness. We allow the preprocessing and online phases to access
a common stream of random bits. Allowing the adversary to access correlated
randomness in both phases only strengthens the lower bounds. Only one of our
upper bounds (Theorem 8) makes use of this correlated randomness.

2 Lower Bounds on Inversion Imply Circuit Lower
Bounds

The motivating question of this work is whether Hellman’s S = T = ˜O(N2/3)
algorithm for inverting random functions is optimal. In this section, we show
that resolving this question will require proving significant new lower bounds
in Valiant’s “common bits” model of circuits [66]. We also show that proving
strong lower bounds on non-adaptive algorithms for function inversion would
imply new lower bounds against linear-sized logarithmic-depth circuits.

We obtain these connections by observing that the function-inversion prob-
lem is an example of a class of so called “succinct” static data-structure prob-
lems [4,17,30,31,40,41,43,45,49,58,64]. We show a barrier to proving lower
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bounds against systematic data structures, which are a special case of succinct
data structures.

Related Work. Brody and Larsen [13] showed that proving certain lower
bounds against linear data structures for dynamic problems would imply strong
lower bounds on the wire complexity of linear depth-two circuits. We follow
their general blueprint, but we instead focus on arbitrary algorithms for solv-
ing static data-structure problems (e.g., function inversion), and our connection
is to Valiant’s common-bits model of circuits, rather than to linear depth-two
circuits.

In recent independent work, Viola [69, Theorem 3] shows that lower bounds
against a large class of static data-structures problems imply circuit lower
bounds. In his work, Viola considers an incomparable circuit model that, on
the one hand, admits circuits of depth larger than two, but, on the other hand,
restricts the number of wires connected to the common bits. As a result, Viola’s
work does not seem to apply to the function-inversion problem within the rele-
vant parameter regime (namely, in the gap between Hellman’s upper bound and
Yao’s lower bound).

In another recent independent work, Dvir, Golovnev, and Weinstein [26] con-
nect data-structure lower bounds to matrix rigidity and circuit lower bounds.
Their focus is on linear data structures, whereas the function inversion problem,
considered in our work, does not have an apparent linear structure.

Boyle and Naor [9] make a surprising connection between cryptographic algo-
rithms and circuit lower bounds. They show that proving the non-existence of
certain “offline” oblivious RAM algorithms (ORAMs) [34,38,62] would imply
new lower bounds on the size of Boolean circuits for sorting lists of integers.
Larsen and Nielsen [54] recently skirted this barrier by proving a lower bound
against ORAMs in the “online” setting. Following that, Weiss and Wichs [72]
showed that a variant of the Boyle-Naor barrier still holds against “online read-
only” ORAMs.

2.1 Systematic Data Structures and Low-Depth Circuits

A major open question in circuit complexity is whether there exists an explicit
family of Boolean functions (from n bits to one bit) that cannot be com-
puted by fan-in-two circuits of size O(n) and depth O(log n). An easier prob-
lem, which is still famously difficult, is to find an explicit family of functions
Fn : {0, 1}n → {0, 1}n with n-bit output—often called Boolean operators—that
cannot be computed by this same class of circuits. Even this question has been
open since the 1970s [51,66,67].

More precisely, we say that a family of Boolean operators {Fn}n∈Z>0 , for
Fn : {0, 1}n → {0, 1}n, is an explicit operator if the decision problem associated
with each bit of the output of Fn is in the complexity class NP.

The main result of this section is that proving a certain type of data-structure
lower bound implies the existence of an explicit Boolean operator on n bits that
cannot be computed by fan-in-two circuits of size O(n) and depth O(log n).
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Fig. 1. Common-bits circuit with n = 4 inputs, degree d = 2, and width w = 2.

We then show that a lower bound on function-inversion algorithms can be cast
as a data-structure lower bound, and therefore a function-inversion lower bound
implies a circuit lower bound.

We now give the necessary background on data-structure problems. A sys-
tematic data structure of size s and query complexity t for an operator Fn is a
pair of algorithms:

– a preprocessing algorithm, which takes as input the data x ∈ {0, 1}n and
outputs a string st ∈ {0, 1}s of length s = o(n), and

– a query algorithm, which takes as input the string st, and an index i ∈ [n],
may probe (read) t bits of the input x, and then outputs the ith bit of Fn(x).

A systematic data structure is non-adaptive if the query algorithm probes a set
of bits of the input data x whose location depends only on the index i and not
on the input data x.

The following theorem is the main result of this section.

Theorem 3. If an explicit operator {Fn}n∈Z>0 has fan-in-two Boolean circuits
of size O(n) and depth O(log n) then, for every ε > 0, then this operator admits
a non-adaptive systematic data structure of size O(n/ log log n) and query com-
plexity O(nε).

To prove this, we first recall Valiant’s common-bits model of circuits [66,67].

Valiant’s Common-Bits Model. A circuit in the common-bits model of width
w and degree d computing a Boolean operator Fn : {0, 1}n → {0, 1}n contains an
input layer, a middle layer, and output layer (Fig. 1). The input layer consists of
n input bits x1, . . . , xn ∈ {0, 1}, and the output layer consists of n output gates.
There are w gates in the middle layer of the circuit (the “common bits”); each
input feeds into each of these w middle gates, and the output of each of the w
middle gates feeds into each output gate. Further, each output gate reads from
at most d of the inputs. Unlike in a standard circuit, the gates in the middle
and output layers of the circuit compute arbitrary functions of their inputs. The
output of the circuit is the n-bit string formed at the output gates.

It is immediate that any Boolean operator Fn : {0, 1}n → {0, 1}n has common-
bits circuits of width n and degree 0 or, alternatively, of width 0 and degree n.
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A non-trivial question is: For a given operator Fn and choice of degree (e.g., d =
n1/3), what is minimal width of a common-bits circuit that computes Fn?

Lemma 4. If there exists a circuit in the common-bits model of width w and
degree d that computes an operator F : {0, 1}n → {0, 1}n, then there exists a
non-adaptive systematic data structure for F of size w and query complexity d.

Proof. Let C be a circuit in the common-bits model as in the statement of the
lemma. The data structure consists of the outputs of the w middle-layer gates
in the circuit C (i.e., the circuit’s common bits). On input i ∈ [n], the algorithm
reads all the input bits connected to the ith output gate of C and computes the
value of the output gate. Since each output gate in the circuit is connected to at
most d input bits, the query complexity of the systematic data structure is at
most d. �	

Theorem 3 then follows from Lemma 4 and the following result of Valiant:

Theorem 5 (Valiant [66,67]). If every explicit operator has fan-in-two Boolean
circuits of size O(n) and depth O(log n), then for every constant ε > 0, every
explicit operator has circuits in the common-bits model of width O(n/ log log n)
and degree nε.

Viola [68, Section 3] and Jukna [50, Chapter 13] give detailed proofs of
Theorem 5.

2.2 Consequences for Function Inversion

Observe that every function f : [N ] → [N ] can be described using O(N log N)
bits, so there is a trivial strongly non-adaptive algorithm that inverts every func-
tion using O(N log N) bits of advice and no queries to the function in the online
phase. We know of no non-adaptive function-inversion algorithm that inverts
with constant probability using o(N log N) bits of advice and o(N) queries. The
following theorem states that ruling out the existence of such a non-adaptive algo-
rithm is as hard as proving lower bounds against linear-size logarithmic-depth
Boolean circuits.

Theorem 6. If, for some ε > 0, every family of strongly non-adaptive black-
box algorithms for inverting functions f : [N ] → [N ] that uses O(N ε) queries
requires ω(N log N/ log log N) bits of advice, then there exists an explicit operator
that cannot be computed by fan-in-two Boolean circuits of size O(n) and depth
O(log n).

The theorem considers a restricted class of inversion algorithms that: (i) may
only use strongly non-adaptive queries (the most restrictive type of query), (ii)
are only allowed, for example, O(N0.0001) queries (very few queries), and (iii)
must invert arbitrary functions with probability one (the most difficult variant
of the inversion problem).

So, even though we may suspect that there are no algorithms for inverting func-
tions f : [N ] → [N ] using O(N log N/ log log N) bits of advice and O(N0.0001) non-
adaptive queries, proving such an assertion seems very challenging.
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Proof of Theorem 6. Let n = N log N , where N ∈ Z
>0 is a power of two. (For all

other values of n, define the inversion operator trivially as the identity mapping.)
We define the inversion operator F inv

n : {0, 1}n → {0, 1}n as follows. Let x ∈
{0, 1}n be an input to F inv

n , and view x as the concatenation of N blocks of
length log N bits each: x = x1‖x2‖ · · · ‖xN . For each i ∈ [N ], let yi ∈ [N ] be the
least j ∈ [N ] such that xj = i, if one such j exists. If no such j exists, set yi = 0.
We define F inv

n (x) =
(

y1‖y2‖ · · · ‖yN

)

.
Observe that a systematic data structure for F inv

n gives a strongly non-
adaptive preprocessing algorithm that inverts every function f : [N ] → [N ]. The
preprocessing phase constructs the data structure for operator F inv

n on input
f(1)‖f(2)‖ . . . ‖f(N) and outputs this data structure as the advice string.

In the online phase, on input i ∈ [N ], the algorithm uses the data structure
in the advice string and its oracle access to f to compute all log N bits of the ith
output block yi of F inv

n , which is enough to recover some inverse of i under f , if it
exists.

The theorem now follows from Theorem 3, instantiated with F inv
n . For n of

the form n = N log N , where N > 0 is a power of two, we get that the length
of the advice string is O(N log N/ log log(N log N)) = O(N log N/ log log N) and
the online query complexity is log N ·O ((N log N)ε) = O(N ε′

), for any ε′ > ε. �	
Theorem 6 suggests the hardness of proving stronger lower bounds for non-

adaptive inversion algorithms, but it applies only to algorithms that use a rel-
atively long advice string, of length O(N log N/ log log N). We might still hope
to improve upon Yao’s ST = ˜Ω(N) lower bound for function inversion without
breaking the aforementioned barrier.

The following corollary shows that ruling out function-inversion algorithms
using advice and time S = T = ˜O(N1/2+ε), for any ε > 0, would imply the
existence of an explicit operator that cannot be computed by circuits of width
O(n1/2+ε′

) and degree O(n1/2+ε′
) in the common-bits model, for some ε′ > 0.

As we will discuss, no such lower bound in the common-bits model is known,
so proving the optimality of Hellman’s ˜O(N2/3) algorithm, or even showing
that inverting functions with preprocessing is marginally harder than inverting
permutations with preprocessing, would imply an advance in the state of lower
bounds on circuits in the common-bits model.

Corollary 7. If, for some ε > 0, there does not exist a family of strongly
non-adaptive algorithms for inverting functions f : [N ] → [N ] using O(N1/2+ε)
bits of advice and O(N1/2+ε) queries, then there exists an explicit operator that
does not have circuits in the common-bits model of width O(n1/2+ε′

) and degree
O(n1/2+ε′

), for every ε′ satisfying 0 < ε′ < ε.

Proof. We prove the contrapositive. Assume that for every ε′ > 0, every explicit
operator has common-bits circuits of width O(n1/2+ε′

) and depth O(n1/2+ε′
).

Then, as in the proof of Theorem 6, we can apply Lemma 4 to operator F inv
n

to show that, for n = N log N , there exists a strongly non-adaptive prepro-
cessing algorithm that inverts functions f : [N ] → [N ] using O(n1/2+ε′

) =
O((N log N)1/2+ε′

) = O(N1/2+ε′
log N) bits of advice and O(n1/2+ε′

log N) =
O((N log N)1/2+ε′

log N) online queries. Then, for any ε > ε′, the advice usage
and number of online queries is O(N1/2+ε). �	
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Notice that while the hypothesis of Corollary 7 considers a lower bound against
strongly non-adaptive inversion algorithms, this only strengthens the statement.
This is true because proving a lower bound against adaptive inversion algorithms
implies a lower bound against strongly non-adaptive algorithms as well.

If we instantiate Corollary 7 with ε = 1/6, we find that ruling out function-
inversion algorithms using S = T = o(N2/3), even against the restricted class of
strongly non-adaptive algorithms, would give an explicit operator that does not
have common-bits circuits of width w and degree d satisfying w = d = o(n2/3−δ),
for any δ > 0.

Proving such a lower bound on common-bits circuits is not strong enough to
yield a lower bound against linear-size log-depth circuits via Valiant’s method
(Theorem 5). However, this lower bound would improve the best known lower
bound against circuits in the common-bits model. The best known bound, due
to Pudlák, Rödl, and Sgall, gives d = Ω( n

w · log( n
w )), for a common-bits circuit of

width w and degree d [63]. In particular, they construct an explicit operator that
does not have common-bits circuits satisfying w = d = ˜O(n1/2). By Corollary 7,
ruling out function-inversion algorithms with S = T = ˜O(N1/2+ε), for any ε > 0,
would thus improve the best lower bounds on common-bits circuits.

2.3 Consequences for Other Succinct Data-Structure Problems

Theorem 3 and Lemma 4 together imply that proving strong lower bounds for
any systematic data-structure problem—not only for the function-inversion
problem—will be challenging. To explain how this barrier applies to a com-
pletely different data-structure problem, we recall the systematic variant of the
standard data-structure problem of polynomial evaluation with preprocessing [57].
We give an informal description of the problem, and the transformation into a
formal systematic data-structure problem (as in Sect. 2.1) is straightforward.

The problem of polynomial evaluation with preprocessing is parameterized
by an integer N ∈ Z

>0 and a finite field F of size Θ(N). The input data is
a polynomial p ∈ F[X] of degree at most N − 1, represented as its vector of
coefficients c̄ = (c0, c1, . . . , cN−1) ∈ F

N . The preprocessing algorithm reads this
input (the entire polynomial p) and produces a preprocessed S-bit string st. In
a subsequent online phase, the query algorithm takes as input a point x0 ∈ F,
and must output the evaluation p(x0) ∈ F of the polynomial p at point x0.
To produce its answer, the query algorithm may read the entire preprocessed
string st, query at most T coordinates of the coefficient vector c̄, and perform
an unlimited amount of computation.

For what choices of space usage S and query complexity T does there exist
a systematic data structure for polynomial evaluation with preprocessing?

The two näıve approaches to solving this problem are:

1. Have the preprocessing algorithm store in the string st the evaluation of the
polynomial p on every point in the field F, using S = Ω(N) space.
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2. Have the online-phase algorithm read the entire coefficient vector c̄, using
T = Ω(N) queries, and then evaluate p(x0) =

∑

i cix0 ∈ F directly.

These solutions both have S + T = ˜Ω(N).
It seems very difficult to construct an algorithm that simultaneously uses a

data structure of size S = N δ and query complexity T = N δ, for some δ < 1. And
yet, the best lower bound we have for this problem, implied by a bound of Gál and
Miltersen [30], is of the form ST = ˜Ω(N). A variant of Corollary 7 implies that
proving stronger lower bounds for this problem—or proving any lower bound
better than ST = ˜Ω(N) for any systematic or succinct data-structure problem,
for that matter—will also imply new lower bounds in Valiant’s common-bits
model. Proving even a stronger lower bound could, via Theorem3, imply a lower
bound against linear-size log-depth fan-in-two circuits.

3 Breaking PRGs Is as Hard as Inverting Injective
Functions

Many cryptanalytic applications of Hellman tables only require inverting injec-
tive functions. That is given a injective function f : [N ] → [M ] and a point
y ∈ [M ], find a value x ∈ [N ] such that f(x) = y, if one exists.

For example, consider the classic application of Hellman tables to plaintext
attacks on block ciphers: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher,
where k is the key size and n is the block size. If we define fE : {0, 1}k → {0, 1}n

such that fE(x) = E(x,m0) for some fixed plaintext m0, then an algorithm
with preprocessing for the function fE essentially gives a known-plaintext attack
on the block cipher E. We can (heuristically) expect the resulting function
fE to behave similar to a random function, and therefore be injective only
beyond the birthday bound k � 2n. However, even for shorter keys, we can
reduce a known-plaintext attack to the problem of inverting an injective func-
tion by considering the encryption of multiple known plaintexts m0,m1,m2.
For example, if k = n, then we expect fE×3 : {0, 1}n → {0, 1}3n, defined as
fE×3(x) = E(x,m0)‖E(x,m1)‖E(x,m2), to have no collisions.

A function-inversion algorithm can invert an injective function f : [N ] → [M ]
without taking any advantage of the fact that it is injective, so Hellman’s S2T =
˜O(N2) upper bound for function inversion [46] applies in this setting as well.
However, the fact that for the case of random permutations (i.e., an injective
function f : [N ] → [N ]), Hellman’s algorithm gives a significantly better upper
bound of ST = ˜O(N), gives hope that a similar improvement—or at least some
improvement—is possible for injective length-increasing functions.

To the best of our knowledge, the injective variant of the function-inversion
problem has not been studied directly so far, even though it is a special case
with wide cryptanalytic applications. As a first step, we connect the injective
inversion problem to the problem of breaking pseudorandom generators (PRGs)
with preprocessing [2,19,21,23,24]. In that problem, we model a “black-box”
PRG as an oracle G : [N ] → [M ], with N < M . A PRG distinguisher with
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preprocessing first makes arbitrarily many queries to G and outputs an S-bit
advice string. In the online phase, the distinguisher can then use its advice
string, along with T queries to G, to distinguish whether a given sample y ∈ [M ]
has been drawn from the distribution {G(x) | x R← [N ]} or the distribution
{y | y R← [M ]}.

In their work, De, Trevisan, and Tulsiani [21] give a distinguisher with
S = O(ε2N) and T = ˜O(1) that achieves a distinguishing advantage ε ≤ 1/

√
N .

They ask whether it is possible to realize the trade-off ST = ˜O(ε2N) for other
parameter settings as well. The following theorem shows that a PRG distin-
guisher that achieves constant distinguishing advantage at points on this trade-
off (e.g., ε = 1/100, S = N1/4, and T = N3/4) would imply a better-than-
Hellman algorithm for inverting injective functions.

Theorem 8. Suppose that there is a black-box PRG distinguisher that uses S
bits of advice, makes T online queries to a PRG G : [N ] → [M ], and achieves
distinguishing advantage ε. Then there exists a black-box algorithm that inverts
any injective function f : [N ] → [M ] using ˜O(ε−2S) bits of advice and ˜O(ε−2T )
online queries, and that inverts f with probability 1 − 1/ log N (over the algo-
rithm’s randomness).

Furthermore, if the preprocessing and online phase algorithms have access to
a common random oracle, the online phase also runs in time ˜O(T ).

Remark 9 (Relation to Goldreich-Levin). A classic line of results [36,37,55,76]
shows how to use any injective one-way function f : [N ] → [M ] to construct
an efficient PRG Gf : [N2] → [2N2] which makes black-box use of f . The
proof uses the Goldreich-Levin theorem [37] to show that any efficient distin-
guisher for Gf yields an inversion algorithm for f . (Consult Goldreich’s textbook
[35, Section 3.5] for the details.) It is not clear to us whether a non-uniform gen-
eralization of these classic results directly implies Theorem 8. The problem is
that the domain of the PRG Gf has size N2, whereas the domain of the origi-
nal function f has size N . Since we are interested in the exact exponent of the
advice and time usage of function-inversion algorithms (i.e., S = N3/4 versus
S = N1/2), we are sensitive to this polynomial expansion in the domain size. For
example, say that we were able to construct a black-box PRG distinguisher that
achieves S = T = ˜O(

√
N). Applying the classic reduction directly to Gf would

only imply the existence of an inverter for the function f that uses the trivial
advice and time complexity S = T = ˜O(

√
N2) = ˜O(N). In contrast, Theorem 8

implies that an S = T = ˜O(
√

N) distinguisher yields an S = T = ˜O(
√

N)
inverter.

Proof Idea for Theorem 8. Given a distinguisher for any length-increasing gener-
ator G : [N ] → [M ], we construct an inversion algorithm for injective functions
f : [N ] → [M ] in two steps. First, for each i ∈ [n], we construct a bit-recovery
algorithm Bi that, given f(x), achieves a non-trivial advantage in recovering the
ith bit of x. We then use the algorithms (B1, . . . ,Bn) to construct an inversion
algorithm I that, given f(x), recovers the full preimage x with good probability.
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To give the intuition behind the bit-recovery algorithm Bi: Given a function
f : [N ] → [M ] to invert, we construct a function Gi : [N ] → [M ] such that a
point y = f(x) is in the image of Gi if and only if the ith bit of x is 1. Then, we
can apply the PRG distinguisher to Gi and recover the ith bit of y’s preimage.

This simple algorithm does not quite work when the PRG distinguisher has
small distinguishing advantage ε, since the distinguisher may fail on the point
y. To fix this, we give Bi access to two random permutations π : [N ] → [N ] and
σ : [M ] → [M ] that allow Bi to essentially randomize the point it gives as input
to the PRG distinguisher.

We then can run Bi many times with different random permutations and
then take the majority vote of the outputs of these runs. This majority vote will
yield the ith bit of the x with high probability. To complete the construction,
we instantiate the permutations π and σ using correlated randomness between
the preprocessing and online algorithms. The full description of the construction
appears in the full version of this paper. �	

4 From Cryptanalysis to New Communication Protocols

Communication complexity [53,74] quantifies the number of bits that a set of
players need to communicate amongst themselves in order to compute a function
on an input that is split between the players. One of the major open problems
in communication complexity is to obtain a non-trivial lower bound for some
problem for a super-poly-logarithmic number of players. Such a bound would
in turn lead to a breakthrough circuit lower bound for the complexity class
ACC0 [6,47,78].

In this section, we develop connections between the function-inversion prob-
lem and the multiparty pointer-jumping problem in the number-on-the-forehead
(NOF) model of communication complexity [15]. By combining these new
connections with the classic cycle-walking algorithm for permutation inver-
sion, we obtain the best known NOF protocols for the permutation variant
of the pointer-jumping problem. Since pointer jumping is a candidate hard
problem in the k-party NOF setting, understanding the exact communication
complexity of pointer jumping for a super-poly-logarithmic number of play-
ers is an important step towards the eventual goal of proving circuit lower
bounds [10,11,14,20,56,63,70].

4.1 Multiparty Pointer-Jumping in the NOF Model

A classical problem in the NOF model is the pointer-jumping problem. We
describe the permutation variant of the problem, and then discuss the general
case. In the pointer-jumping problem MPJpermN,k , there are k computationally-
unbounded players, denoted P0, P1, . . . , Pk−1, and each has an input “written
on her forehead.” The first player P0 has a point x ∈ [N ] written on her fore-
head, the last player Pk−1 has a Boolean mapping β : [N ] → {0, 1} written on
her forehead, and each remaining player Pi, for i = 1, . . . , k − 2, has a permu-
tation πi : [N ] → [N ] written on her forehead. Each player can see all k − 1
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inputs except the one written on her own forehead. The goal of the players is to
compute the value β ◦πk−2 ◦ · · · ◦π1(x), which loosely corresponds to “following
a trail of pointers” defined by the permutations, starting from x (Fig. 2). The
players can communicate by writing messages on a public blackboard. The com-
munication complexity of a protocol is the total number of bits written on the
blackboard for a worst-case input.

A one-way protocol is a protocol in which each player writes a single message
on the blackboard in the fixed order P0, . . . , Pk−1, and the last player’s message
must be the output. The one-way communication complexity of a function f ,
denoted CC1(f), is the minimum communication complexity of all one-way pro-
tocols that successfully compute f . Without the “one-way” restriction, there are
protocols for MPJpermN,k that require only O(log N) bits of communication.

Known Bounds. The best upper bound for MPJpermN,k is due to Pudlák et al. [63],
who showed that CC1(MPJpermN,k ) = O(N log log N/ log N). More recently, Brody
and Sanchez [14] showed that this upper bound applies to the more general
pointer-jumping problem, in which we replace the permutations π1, . . . , πk−2

with arbitrary functions. In this general case, Wigderson [73] proved an Ω(
√

N)
lower bound for k = 3 players (see also [3]), and Viola and Wigderson [70] proved
an ˜Ω(N

1
k−1 ) lower bound for k ≥ 3 players.

Fig. 2. A pointer-jumping instance for ̂MPJ
perm

k=4,N=5 with π1 = (1 2 4 5 3), π2 =
(2 3)(4 5), π3 = (2 3 4 5) and x = 2. Lemma 11 reduces this instance to inverting the
permutation π−1

1 π−1
2 π−1

3 = (1 3 5 4) on the point x = 2.

4.2 A New Communication Protocol from Permutation Inversion

We obtain the best known communication protocol for the permutation variant
of the pointer-jumping game on parameter N for k = ω(log N/ log log N) players.
Our result improves the previously best known upper bound of ˜O(N) to ˜O

(

N/k+√
N

)

. Extending our upper bound to the general multiparty pointer-jumping
problem remains an open problem, which we discuss in Remark 13.
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On the lower-bound side, this connection suggests a path to prove lower
bounds against partially adaptive permutation-inversion algorithms, as in
Definition 2. In contrast, the techniques of Sect. 2 can only prove lower bounds
against strongly non-adaptive algorithms.

In this section, we prove the following new upper bound on CC1(MPJpermN,k ):

Theorem 10. CC1(MPJpermN,k ) ≤ O
(

(N/k +
√

N) log N
)

.

To prove Theorem 10, as we do later in this section, we use the integer-
valued version the pointer-jumping problem, commonly denoted ̂MPJ

perm

N,k . In this
version, the last player Pk−1 holds a permutation πk−1 : [N ] → [N ], instead of a
boolean mapping, so the output of the problem is a value in [N ]. The following
technical lemma, which we prove in Appendix A, shows that the boolean-valued
version of the pointer-jumping problem has communication complexity that is
not much larger than that of the integer-valued pointer-jumping problem.

Lemma 11. CC1(MPJpermN,k ) ≤ CC1( ̂MPJ
perm

N,k ) + log N� .

Then, our main lemma technical uses an arbitrary permutation-inversion
algorithm with preprocessing to solve the integer-valued problem ̂MPJ

perm

N,k :

Lemma 12. If there exists a (k − 2)-round adaptive algorithm for inverting
permutations π : [N ] → [N ] that uses advice S and time T , then

CC1( ̂MPJ
perm

N,k ) ≤ S + T log N� .

Proof. Let (A0,A1) be a (k − 2)-round adaptive algorithm for inverting permu-
tations with preprocessing. We give a protocol for ̂MPJ

perm

N,k .

– Player P0 runs the preprocessing algorithm A0 on the permutation π−1
1 ◦ · · · ◦

π−1
k−1 and writes the advice string on the blackboard.

– Player P1 runs the online inversion algorithm A1 on the input x (written
on player P0’s forehead) using the advice string that has been written on
the blackboard, to produce the first round of queries q1,1, . . . , q1,t1 . For each
query q1,�, she computes the partial reply p1,� = π−1

2 (. . . (π−1
k−1(q1,�)) . . . ) and

writes it on the blackboard.
– Player Pi, for i ∈ {2, . . . , k − 2}, reads the partial replies pi−1,1, . . . , pi−1,ti−1

written by the previous player, computes the (complete) query replies ri−1,1,
. . . , ri−1,ti−1 by computing ri−1,� = π−1

1 (. . . (π−1
i−1(pi−1,�)) . . . ). Player Pi then

runs (in her head) the first i − 1 rounds of the online inversion algorithm on
input x, using the advice string and the replies to the first i − 1 rounds of
queries, all of which, she can compute using the partial replies written on
the blackboard. Player Pi then produces the ith round of queries, on which,
similarly to Player P1, she computes the partial replies and writes them on
the blackboard.

– Player Pk−1 completes the evaluation of round k−2 of the queries by evaluat-
ing the remaining permutations π−1

1 ◦ · · · ◦π−1
k−2 on the partial replies written

by Pk−2. Player Pk−1 then runs in her head all k − 2 rounds of the online
inversion algorithm and writes the output on the blackboard.
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By definition, the output y of the algorithm satisfies π−1
1 ◦ · · · ◦ π−1

k−1(y) = x.
Since all πi are permutations, it must hold πk−1 ◦ · · · ◦ π1(x) = y and so y is the
correct output for ̂MPJ

perm

N,k .
The communication consists of the advice string written by Player P0 and

a partial reply for each query, giving a total of S + T log N�. (The last player
writes the log N�-bit output, but does not need to write the response to the
T -th query). �	
Proof of Theorem 10. To prove Theorem 10, we instantiate Lemma 12 using Hell-
man’s cycle-walking algorithm [46], which we recall in the full version of this paper.
The algorithm inverts permutations using T queries and S bits of advice, for every
choice of S and T such that ST ≥ 2Nlog N + 1�. Furthermore the algorithm
is T -round adaptive. Specifically, for k ≤ √

N + 2, using Hellman’s algorithm
with T = k − 2 and S = (2N log N)/T � gives a protocol with communication
O((N/k) log N). For k >

√
N + 2, we use Hellman’s algorithm with T =

√
N

and S = 2
√

N(log N� + 1) to find that CC1( ̂MPJ
perm

N,k ) ≤ O(
√

N log N). Then,
applying Lemma 11 lets us conclude that CC1(MPJpermN,k ) ≤ O(

√
N log N). �	

Remark 13 (The function case). We might hope to show that a good function-
inversion algorithm, such as that of Fiat and Naor [28], implies a good protocol
for the general multiparty pointer-jumping problem, in which each player i has
an arbitrary function fi (which may not be a permutation) written on her fore-
head. We do not know how to prove such a result. The problem is that the reduc-
tion of Lemma 12 requires that the composition f−1

1 ◦f−1
2 ◦· · ·◦f−1

k−1 is a function,
and this is not true in the general case. (In contrast, when f1, . . . , fk are all per-
mutations it holds that f−1

1 ◦f−1
2 ◦· · ·◦f−1

k−1 is a permutation.) Since several upper
bounds for the permutation variant of the pointer-jumping problem [11,20,63]
have led to subsequent upper bounds for the unrestricted case [11,14], there is
still hope to generalize the result.

5 From Cryptanalysis to Data-Structures

In this section, we show how to apply the Fiat-Naor algorithm for function inver-
sion [28] to obtain the best known data structure for the systematic substring-
search problem [22,29,30,40,41], in a wide range of parameter regimes. As a
consequence of this connection, we show that the open problem of improving
the known lower bounds on function inversion is equivalent to the open problem
in the data-structure literature of whether it is possible to improve the known
lower bounds for systematic substring search.

In the systematic substring-search problem, we are given a bitstring of length
N (“the text”) and a bitstring of length P � N (“the pattern”). If the pattern
appears in the text, we must output an index i ∈ [N ] into the text at which the
pattern begins. We take the pattern length to be P = Θ(log N).

An algorithm for systematic substring search is a two-part algorithm A =
(A0,A1). The preprocessing algorithm A0 takes as input only the text, may
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perform arbitrary computation on it, and then outputs an S-bit “index” into
the text. The online algorithm A1 takes as input the index and the pattern,
queries T bits of the text, and then outputs the location of pattern in the text,
if one exists.

By applying the Fiat-Naor function inversion algorithm [28], we obtain the
best known algorithm for systematic substring search on texts of length N when
using an index of size O(N ε) bits, for any ε < 1. Gál and Miltersen [30] asked
for a strong lower bound against search algorithms using an O(N/polylog N)-
bit index, and we answer this question by giving an upper bound that beats
their hypothetical lower bound. This connection also gives evidence that finding
a faster algorithm for systematic substring search will require a cryptanalytic
breakthrough.

Known Lower Bounds. Demaine and López-Ortiz [22] prove that on texts of
length N with pattern length P = Θ(log N), any algorithm that uses an
S-bit index and makes T = o(P 2/ log P ) queries in the online phase must satisfy
ST = Ω(N log N). Golynski [40,41] gives a stronger version of this bound that
applies even for larger T = o(

√
N/ log N). Gál and Miltersen prove a slightly

weaker bound but that holds for all values of T . They show that for certain
pattern lengths P = Θ(log N), and any choice of T , any algorithm must satisfy
ST = Ω(N/ log N).1

The main technical result of this section is the following theorem, which we
prove in the full version of this paper.

Theorem 14. For any integer N ∈ Z
>0 and integral constant c > 2, if there is

an algorithm for systematic substring search on texts of length cN · log N� with
pattern length c · log N� that uses an S-bit index and reads T bits of the text
in its online phase, then there is a black-box algorithm for inverting functions
f : [N ] → [N ] that uses S bits of advice and makes T online queries.

For any integer N ∈ Z
>0, if there is a black-box algorithm for inverting

functions f : [2N ] → [2N ] that uses S bits of advice and T queries, then, for any
integral constant c > 1, there is an algorithm for systematic substring search on
texts of length N with pattern length c · log N� that uses an ˜O(S)-bit index and
reads ˜O(T ) bits of the text in its online phase.

Remark 15. It is possible to make the preprocessing time ˜O(N) by allowing
the algorithm to fail with probability O(1/N) over the randomness of the pre-
processing phase. Similarly, the online running time (in addition to the query
complexity) is ˜O(T ).

1 Gál and Miltersen in fact prove their lower bound against algorithms that solve the
decision version of the problem, rather than the search version that we describe here.
Using an argument similar to that of Theorem 8, which treats the case of black-box
PRG distinguishers, we can show that these problems are equivalent up to log factors
when we demand constant success probability.
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Proof Idea. The full proof appears in the full version of this paper. In the first
part, we must use a substring-search algorithm to invert a function f : [N ] →
[N ]. The idea is to construct a text τ of length Θ(N log N) by writing out the
evaluation of f at all points in its domain, in order, with a few extra bits added
as delimiters. To invert a point y ∈ [N ], we use the substring search algorithm
to find the location at which y appears in the text τ . This location immediately
yields a preimage of y under f . Demaine and López-Ortiz [22] use a similar—
but more sophisticated encoding—on the way to proving a data-structure lower
bound for systematic substring search. Their encoding maps a function f : [N ] →
[N ] into a string of length (1 + o(1))N log N , while ours maps f into a string of
length 3N log N .

In the second part, we must use a function-inversion algorithm to solve sub-
string search on a text τ of length N with pattern length P = c · log N�, for
some constant c > 1. To do so, we define a function f ′ : [N ] → [N c] such that
f ′(i) is equal to the length-P substring that starts from the ith bit of the text τ .
Given a pattern string σ = {0, 1}P , finding the inverse of y under f ′ is enough
to locate the position of the pattern string σ in the text τ . The only remaining
challenge is that f ′ is length-increasing, rather than length-preserving. We then
use universal hashing to reduce the problem of inverting length-increasing func-
tions to the problem of inverting length-preserving functions, which completes
the proof. �	

We now apply Theorem 14 to construct a new algorithm for systematic sub-
string search that resolves an open question of Gál and Miltersen. In their 2007
paper, Gál and Miltersen say that “it would be nice to prove a lower bound of,
say, the form,” T < N/polylog N ⇒ S > N/polylog N (using our notation) for
systematic substring search [30]. Goyal and Saks [42] use an elegant argument
to show that the specific technique of Gál and Miltersen cannot prove this lower
bound. As a corollary of Theorem 14, we construct an algorithm for substring
search that beats the hypothetical lower bound.

Corollary 16. For any integral constant c > 1 there is an algorithm for sys-
tematic substring search on texts of length N with pattern length c · log N�, that
uses an S-bit index, reads T bits of the text in its online phase, and achieves the
trade-off S3T = ˜O(N3).

Proof. Theorem 14 shows that systematic substring search on strings of length
N with pattern length Θ(log N) reduces to the problem of inverting arbitrary
functions f : [N ] → [N ]. The inversion algorithm of Fiat and Naor [28] inverts
such functions f achieving the desired complexity bounds. �	
In particular, we get an algorithm that solves systematic substring search using
an index size and time satisfying S = T = ˜O(N3/4), for strings of length N
and patterns of length Θ(log N). Furthermore, this connection, along with the
results of Sect. 2.2, shows that improving on the ST = ˜Ω(N) bound of Gál and
Miltersen will require advances in techniques for proving lower bounds on the
power of depth-two circuits.
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6 Discussion and Future Directions

In this final section, we discuss a few directions for future work.

6.1 Which Lower-Bound Techniques Can Work?

In Sect. 2, we showed that improving Yao’s lower bound on function-inversion
algorithms requires new circuit lower bounds in the common-bits model. What
potential approaches do we have to prove such a lower bound?

Function Inversion and Yao’s “Box Problem.” Yao’s “box problem”
[60,77] is a preprocessing problem that is closely related to the function-
inversion problem. In the box problem, we are given oracle access to a function
f : [N ] → {0, 1}. First, we get to look at all of f and write down an S-bit advice
string stf . Later on, we are given our advice string stf and a point x ∈ [N ]. We
may then make T queries to f , provided that we do not query f(x), and we must
then output a value y ∈ {0, 1} such that y = f(x).

The box problem is in some sense the dual of the function-inversion problem:
we are given an f -oracle and we must compute f in the forward direction, rather
than in the inverse direction. The same ST = ˜Ω(N) lower bound applies to
both problems [77]. However, in contrast to the inversion problem, for which
we suspect that good parallel (i.e., non-adaptive) algorithms do not exist, the
natural algorithm for the box problem is already non-adaptive and achieves
ST = O(N log N).2

Puzzlingly, the two main techniques for proving time-space lower bounds do
not distinguish between the function-inversion problem and Yao’s box problem.
In particular, the known lower bounds use compression [21,23,33,77] or bit-
fixing [18,19,65]. Both techniques essentially look at the information that the
oracle queries and their replies give on the pair (x, f(x)) induced by the challenge,
regardless of whether the actual challenge is x, and the algorithm has to find
f(x) (as in the case of Yao’s box problem), or the challenge is y = f(x), and the
algorithm has to find x = f−1(y) (as in the case of the inversion problem).

Since there is an ST = ˜O(N) upper bound for Yao’s box problem, then any
method that proves a lower bound better than ST = Ω(N) for function inversion
must not apply to the box problem. Therefore, a “sanity check” for any improved
lower bound for the function-inversion problem is to verify that the same proof
technique does not apply to Yao’s box problem.

Strong-Multiscale-Entropy. Drucker [25] shows, at the very least, that
improving lower bounds in the common-bits model will require new types of
arguments. In particular, Jukna [50, Chapter 13], generalizing earlier arguments
of Cherukhin [16] defined the “strong multiscale entropy” (SME) property of

2 Divide [N ] into disjoint blocks of (at most) T + 1 points each. For each block, store
the sum of the values of the function over all points in the block. In the online phase,
query all the other points in the block given by the challenge point, and use the
stored sum to recover the value of the function over the given challenge point.
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Boolean Operators. Jukna proved that an operator on n bits with the SME prop-
erty cannot be computed by common-bits circuits of width o(n1/2) and degree
o(n1/2). (These results are actually phrased in terms of the wire complexity of
depth-two circuits with arbitrary gates, but the implications to the common-bits
model are straightforward.)

Strengthening Jukna’s lower bound on the circuit complexity of SME oper-
ators appeared to be one promising direction for progress on lower bounds.
Thwarting this hope, Drucker constructs an explicit operator with the SME prop-
erty that has circuits in the common-bits model of width O(n1/2) and degree
O(n1/2). Thus, SME-type arguments alone are not strong enough to prove that
an operator cannot be computed by circuits of width O(n1/2+ε) and degree
O(n1/2+ε) for ε > 0.

6.2 One-to-One Functions

Prompted by the fact that many cryptanalytic applications of function inversion
only require inverting injective function, we initiated in Sect. 3 the study of
injective function inversion. Though we take the first step by connecting this
problem to the problem of distinguishing PRGs, the basic question remains: is it
easier to invert a random injective function f : [N ] → [M ], for N � M , than it
is to invert a random length-preserving function f : [N ] → [N ]? A better-than-
Hellman attack against injective functions would be remarkable. Or, can we prove
that inverting injective functions is as hard as inverting random functions?

6.3 Barriers for Upper Bounds

Is there a barrier to getting an S = T = o(N2/3) algorithm for function inversion?
Barkan, Biham, and Shamir [5] prove a lower bound against a certain restricted
class of Hellman-like algorithms, which suggests that better algorithms must use
new techniques. It would be satisfying to show at least that improving Hellman’s
upper bound would result in a dramatic algorithmic improvement for a well-
studied problem in another domain.
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A Proof of Lemma 11

The first step is to define a permutation πβ : [N ] → [N ], for every func-
tion β : [N ] → {0, 1}. We then use this permutation πβ to convert a
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Boolean-valued pointer-jumping instance (x, π1, . . . , πk−1, β) to an integer-
valued pointer-jumping instance (x, π1, . . . , πk−1, πβ). Solving the integer-valued
instance using a protocol for ̂MPJ

perm

N,k is then enough—with a few extra bits of
communication—to solve the Boolean-valued instance of MPJpermN,k .

Table 1. Example of the encoding procedure of Lemma 11. N = 23, and β : [N ] →
{0, 1}. Note that the last column is a permutation over the elements of [N ]. Also note
how β can be recovered from πβ(x) for all x �= 0.

x β(x) (x|3, x|2, x|1) β(x|3)β(x|2)β(x|1) y = πβ(x)

000 1 (100, 010, 001) 001 100

001 1 (101, 011, 001) 011 101

010 0 (110, 010, 001) 101 000

011 1 (111, 011, 001) 111 011

100 0 (100, 010, 001) 001 010

101 0 (101, 011, 001) 011 001

110 1 (110, 010, 001) 101 100

111 1 (111, 011, 001) 111 111

Towards constructing πβ , consider first the case when N is a power of two.
For N = 2n, consider the following mapping from {0, 1}N to permutations on
{0, 1, . . . , N − 1} = {0, 1}n. On β : {0, 1}n → {0, 1} we construct a permutation
πβ on {0, 1}n as follows: let x ∈ {0, 1}n and let x = xnxn−1 . . . x1 be the binary
representation of x. Set πβ(x) = y = ynyn−1 . . . y1 defined by yi = β(x|i)⊕xi ⊕1
where x|i = 0 . . . 01xi−1xi−2 . . . x1. The following two properties hold:

– The mapping πβ defined above is a permutation. To see this let x �= x′ be two
distinct elements in {0, 1}n, and let y = πβ(x) and y′ = πβ(x′). Let i ∈ [n]
be the rightmost bit position on which x and x′ differ. Then xi �= x′

i but
x|i = x′|i. Therefore yi = β(x|i) ⊕ xi ⊕ 1 �= β(x′|i) ⊕ x′

i ⊕ 1 = y′
i, so y �= y′.

– For any x ∈ {0, 1}n such that x = xn . . . x1 �= 0, let i be the leftmost bit
position such that xi = 1. It then holds that β(x) is equal to the ith bit of
πβ(x).

Note that the latter property guarantees that the value of β(x) for every x �= 0
can be recovered from a single bit of πβ(x).

For N which is not a power of 2, we can view N as a sum
∑�

j=1 2nj of at
most log N� powers of 2, and construct a permutation πβ on {0, . . . , N − 1} =
{0, 1}n1 ∪· · ·∪{0, 1}n� as a union of permutations on {0, 1}nj . By the properties
above, for all but 
 = log N� bad points, the value of β can be recovered from
the corresponding value of πβ . Note that the set of bad points depends only on
N and not on β. We give an example of this encoding procedure in Table 1.

Therefore, given a communication protocol for ̂MPJ
perm

N,k , we construct a pro-
tocol for MPJpermN,k as follows. Let β ∈ {0, 1}N be the input (on the forehead) of
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the last player. Each of the first k−1 players computes the permutation πβ from
β according to the mapping above. The first player also writes on the blackboard
the value of β evaluated on all of the bad points of πβ . The players then run the
protocol for ̂MPJ

perm

N,k on the instance (x, π1, . . . , πk−2, πβ).
The last player computes the output of the original protocol πβ ◦ πk−2 ◦ · · · ◦

π1(x) = πβ(x̂) ∈ {0, 1, . . . , N − 1} where x̂ = πk−2 ◦ · · · ◦ π1(x). If x̂ is not a
bad point she can recover and output β ◦ πk−2 ◦ · · · ◦ π1(x) = β(x̂) ∈ {0, 1} from
πβ(x̂). Otherwise, if x̂ is a bad point, she outputs the value β(x̂), which the first
player wrote on the blackboard.

The new protocol increases the communication complexity of the original
protocol by log N�.
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Abstract. The complexity of collision-resistant hash functions has been
long studied in the theory of cryptography. While we often think about
them as a Minicrypt primitive, black-box separations demonstrate that
constructions from one-way functions are unlikely. Indeed, theoretical
constructions of collision-resistant hash functions are based on rather
structured assumptions.

We make two contributions to this study:
1. A New Separation: We show that collision-resistant hashing does

not imply hard problems in the class Statistical Zero Knowledge in
a black-box way.

2. New Proofs: We show new proofs for the results of Simon, ruling out
black-box reductions of collision-resistant hashing to one-way per-
mutations, and of Asharov and Segev, ruling out black-box reduc-
tions to indistinguishability obfuscation. The new proofs are quite
different from the previous ones and are based on simple coupling
arguments.

1 Introduction

Collision-resistant hash functions (CRHFs) are perhaps one of the most stud-
ied and widely used cryptographic primitives. Their applications range from
basic ones like “hash-and-sign” [Dam87,Mer89] and statistically hiding commit-
ments [DPP93,HM96] to more advanced ones like verifiable delegation of data
and computation [Kil92,BEG+94] and hardness results in complexity theory
[MP91,KNY17].

Constructions. Collision resistance is trivially satisfied by random oracles and
in common practice, to achieve it, we heuristically rely on unstructured hash
functions like SHA. Accordingly, we often think of CRHFs as a creature of
Minicrypt, the realm of symmetric key cryptography [Imp95]. However, when
considering theoretical constructions with formal reductions, collision resistance
is only known based on problems with some algebraic structure, like Factor-
ing, Discrete Log, and different short vector and bounded distance decoding
c© International Association for Cryptologic Research 2019
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problems (in lattices or in binary codes) [Dam87,GGH96,PR06,LM06,AHI+17,
YZW+17,BLVW19]. Generic constructions are known from claw-free permuta-
tions [Dam87,Rus95], homomorphic primitives [OK91,IKO05], and private infor-
mation retrieval [IKO05], which likewise are only known from similar structured
assumptions. An exception is a recent work by Holmgren and Lombardi [HL18]
which constructs CRHFs from a new assumption called one-way product func-
tions. These are functions where efficient adversaries succeed in inverting two
random images with probability at most 2−n−ω(log n). Indeed, this assumption
does not explicitly require any sort algebraic structure.

Understanding the Complexity of CRHFs. In light of the above, it is
natural to study what are the minimal assumptions under which CRHFs can
be constructed, and whether they require any sort of special structure. Here
Simon [Sim98] provided an explanation for our failure to base CRHFs on basic
Minicrypt primitives like one-way functions or one-way permutations. He showed
that there are no black-box reductions of CRHFs to these primitives. In fact,
Asharov and Segev [AS15] demonstrated that the difficulty in constructing
CRHFs from general assumptions runs far deeper. They showed that CRHFs
cannot be black-box reduced even to indistinguishability obfuscation (and one-
way permutations), and accordingly not to anyone of the many primitives it
implies, like public key encryption, oblivious transfer, or functional encryption.

CRHFs and SZK. An aspect common to many CRHF constructions is that
they rely on assumptions that imply hardness in the class SZK. Introduced by
Goldwasser, Micali and Rackoff [GMR85], SZK is the class of promise prob-
lems with statistical zero-knowledge proofs. Indeed, SZK hardness is known
to follow from various algebraic problems that lead to CRHFs, such as Dis-
crete Logarithms [GK93], Quadratic Residuosity [GMR85], and Lattice Prob-
lems [GG98,MV03], as well as from generic primitives that lead to CRHFs such
as homomorphic encryption [BL13], lossy functions [PVW08], and computational
private information retrieval [LV16].

The formal relation between SZK and CRHFs is still not well understood. As
possible evidence that SZK hardness may be sufficient to obtain collision resis-
tance, Komargodski and Yogev [KY18] show that average-case hardness in SZK
implies a relaxations of CRHFs known as distributional CRHFs. Applebaum and
Raykov [AR16] show that CRHFs are implied by average-case hardness in a sub-
class of SZK of problems that have a perfect randomized encoding. Berman et
al. [BDRV18] showed that average-case hardness of a variant of entropy approx-
imation, a complete problem for the class of Non-Interactive SZK (NISZK), suf-
fices to construct yet a different relaxation known as multi-collision resistance.

Is hardness in SZK necessary for CRHFs? Our perception of CRHFs as a
Minicrypt primitive, as well as the result by Holmgren and Lombardi mentioned
above, suggest that this should not be the case. However, we do not know how
to prove this. Meaningfully formalizing a statement of the form “CRHFs do
not require SZK hardness” requires care—it is commonly believed that SZK
does contain hard problems, and if this is the case then formally, CRHFs (or
any other assumption for that matter) imply hardness in SZK. To capture this
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statement we again resort to the methodology of black-box separations; that is,
we aim to prove that hard problems in SZK cannot be obtained from CRHFs in
a black-box way.

Recent work by Bitansky, Degwekar, and Vaikuntanathan [BDV17] showed
that a host of primitives, essentially, all primitives known to follow from IO, do
not lead to hard problems in SZK through black-box reductions. Their separa-
tion, however, does not imply a separation from CRHFs; indeed, CRHFs are not
known to follow from IO, and in fact according to Asharov and Segev [AS15],
cannot in a black-box way.

1.1 This Work

In this work, we close the above gap, proving that CRHFs do not imply hardness
in SZK through black-box reductions.

Theorem 1.1. There are no fully black-box reductions of any (even worst-case)
hard problem in SZK to CRHFs.

Here by fully black box we mean reductions where both the construction and
the security proof are black box in the CRHF and the attacker, respectively. This
is the common type of reductions used in cryptography. We refer the reader to
the technical overview in Sect. 2 for more details.

New Proofs of Simon and Asharov and Segev. Our second contribution is
new proofs for the results of Simon [Sim98], ruling out fully black-box reductions
of CRHFs to OWPs,1 and of Asharov and Segev [AS15], ruling out black-box
reductions of CRHFs to OWPs and IO. The new proofs draw from ideas used
in [BDV17]. They are based mostly on simple coupling arguments and are quite
different from the original proofs.

1.2 More Related Work on Black-Box Separations

Following the seminal work of Impagliazzo and Rudich [IR89], black-box separa-
tions in cryptography have been thoroughly studied (see, e.g., [Rud88, KST99,
GKM+00, GT00, GMR01, BT03, RTV04, HR04, GGKT05, Pas06, GMM07,
BM09, HH09, BKSY11, DLMM11, KSS11, GKLM12, DHT12, Fis12, BBF13,
Pas13, BB15, GHMM18]). Most of this study has been devoted to establishing
separations between different cryptographic primitives and some of it to putting
limitations on basing cryptographic primitives on NP-hardness [GG98,AGGM06,
MX10,BL13,BB15,LV16].

Perhaps most relevant to our works are the works of Simon [Sim98], Asharov
and Segev [AS15] and [BDV17] mentioned above, as well as the work by Haitner
et al. [HHRS15] who gave an alternative proof for the Simon result (and extended
it to the case of statistically-hiding commitments of low round complexity).

1 Simon also ruled out a stronger type of reductions known as semi-black-box reduc-
tions [RTV04]. We only rule out the notion of fully black-box reductions described
above.
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We also note that [KNY18] claim to show that distributional CRHFs cannot
be reduced to multi-collision resistant hash functions in a black box way, which
given the black-box construction of distributional CRHFs from SZK hardness
[KY18], would imply that SZK hardness cannot be obtained from multi-collision
resistance in a black box way. However, for the time being there seems to be a
gap in the proof of this claim [Per].

2 Techniques

We now give an overview of the techniques behind our results.

Ruling Out Black-Box Reductions. Most constructions in cryptography are
fully black-box [RTV04], in the sense that both the construction and (security)
reduction are black box. In a bit more detail, a fully black-box construction of a
primitive P ′ from another primitive P consists of two algorithms: a construction
C and a reduction R. The construction CP implements P ′ for any valid oracle
P. The reduction RA,P , given oracle-access to any adversary A that breaks CP ,
breaks the underlying P. Hence, breaking the instantiation CP of P ′ is at least
as hard as breaking P itself.

A common methodology to rule out fully black black-box constructions of a
primitive P ′ from primitive P (see e.g., [Sim98,HR04,HHRS15]), is to demon-
strate oracles (Γ,A) such that:

– relative to Γ , there exists a construction CΓ realizing P that is secure in the
presence of A,

– but any construction C′Γ realizing P ′ can be broken in the presence of A.

Indeed, if such oracles (Γ,A) exist, then no efficient reduction will be able to use
(as a black-box) the attacker A against P ′ to break P (as the construction of P
is secure in the presence of A).

We now move on to explain how each of our results is shown in this frame-
work.

2.1 Collision Resistance When SZK Is Easy

Our starting point is the work by [BDV17] who showed oracles relative to which
Indistinguishability Obfuscation (IO) and One-Way Permutations (OWPs) exist
and yet SZK is easy. We next recall their approach and explain why it falls short
of separating CRHFs from SZK. We then explain the approach that we take in
order to bridge this gap.

Black-box Constructions of SZK Problems. The [BDV17] modeling of
problems in SZK follows the characterization of SZK by Sahai and Vadhan [SV03]
through its complete Statistical Difference Problem (SDP). SDP is a promise
problem, where given circuit samplers (C0, C1), the task is to determine if the
statistical distance between their respective output distributions is large (>2/3)
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or small (<1/3). Accordingly, we can model a black-box construction of a sta-
tistical distance problem SDPΨ , relative to an oracle Ψ , defined by

SDPΨ
Y =

{
(C0, C1) : SD(CΨ

0 , CΨ
1 ) ≥ 2

3

}
,

SDPΨ
N =

{
(C0, C1) : SD(CΨ

0 , CΨ
1 ) ≤ 1

3

}
.

Jumping ahead, our eventual goal will be construct an oracle Γ = (Ψ,A) such
that SDPΨ is easy in the presence of A, and yet Ψ can be used to securely realize
a CRHF, in the presence of A. Here we naturally choose Ψ to be a random
shrinking function f , and for the SZK breaker A adopt the oracle SDOf from
[BDV17]. SDOf is a randomized oracle that takes as input a pair of oracle-aided
circuits (C(·)

0 , C
(·)
1 ), computes the statistical distance s = SD(Cf

0 , Cf
1 ), samples

a random value t ← (1/3, 2/3), and outputs:

SDOf (C0, C1; t) :=

{
N If s < t

Y If s ≥ t
.

This oracle is clearly sufficient to break (or rather, decide) SDPf . The challenge
is in showing that CRHFs exist in the presence of the oracle SDOf , which may
make exponentially many queries to f when computing the statistical distance.

One-Way Permutations in the Presence of SDO. Toward proving the
existence of CRHFs in the presence of SDO, we first recall the argument from
[BDV17] as to why one-way permutations exist relative to SDO, and then explain
why it falls short of establishing the existence of CRHFs.

Consider the oracle Γ = (f,SDOf ), where f is a random permutation. Show-
ing that f(x) is hard to invert for an adversary Af,SDOf

(f(x)) with access to f
and SDOf relies on two key observations:

1. Inverting f requires detecting random local changes. Indeed, imagine an alter-
native experiment where we replace f with a slightly perturbed function
fx′→f(x), which diverts a random x′ to f(x). In this experiment, the attacker
would not be able to distinguish x from x′ and would output them with the
exact same probability. Note, however, that if the attacker can invert f in
the real experiment (namely, output x) with noticeable probability, then this
means that the probabilities of outputting x and x′ in the original experiment
must noticeably differ. Indeed, in the original experiment x′ is independent of
the attacker’s view. It is not hard to show that without access to the oracle
SDOf , such perturbations cannot be detected (this can be shown for example
via a coupling argument, as we explain in more detail in Sect. 2.2).

2. The SDOf oracle itself, and thus Af,SDOf

, can be made oblivious to random,
local changes. Hence, even given access to the SDOf oracle, the adversary
cannot invert with non-trivial probability. This is shown based on the idea
of “smoothening”: any two circuits (Cf

0 , Cf
1 ) can be transformed into new
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circuits that do not make any specific query x with high probability. This
allows arguing that even if we perturb f at a given point, their statistical
distance s does not change by much. In particular, if s is moderately far
from the random threshold t, chosen by SDO, s′ the statistical distance of the
perturbed circuits remains on the same side of t, which means that SDO’s
answer will remain invariant. Indeed, such “farness” holds with overwhelming
probability over SDO’s choice of t.

What About Collision Resistance? The above approach is not sufficient
to argue that collisions are hard to find (when f is replaced with a shrinking
function). The reason is that collisions are “non-local” — they are abundant,
and it is impossible to eliminate all of them in a shrinking function. In fact, as
we shall show later on, a similar argument to the one above can be made to work
relative to an oracle that trivially breaks CRHFs (this leads to our new proofs
of the separations of CRHFs from OWPs and IO [Sim98,AS15]). Accordingly, a
different approach is required.

Our Approach: Understanding What Statistical Difference Oracles
Reveal. At high level, to show that collisions in f are hard to find, we would
like to argue that queries to SDOf leak no information about any f(x), except
for inputs x, which the adversary had already explicitly revealed by querying
f itself. This would essentially reduce the argument to the standard argument
showing that random oracles are collision resistant—each new query collides
with any previous query with probability at most 2−m, where m is f ’s output
length. Overall, an attacker making q queries cannot find a collision except with
negligible probability q22−m.

However, showing that SDOf reveals nothing is too good to be true. Rather,
we show that this is the case with overwhelming probability. That is, with over-
whelming probability on any partial execution, the value f(x) of any x not
explicitly queried within the execution is uniformly random. Roughly speak-
ing, the property that such partial executions should satisfy is that all queries to
SDOf satisfy smoothness and farness conditions similar to those discussed above.
The essential observation is that when such conditions hold the answer of SDOf

remains invariant not only to a random local change, but to any local change.
In particular, a partial execution transcript satisfying these conditions would
remain invariant if we change the value f(x) for any x not explicitly queried to
any particular y �= f(x).

A Note on Leakage from Random Oracles. Our approach is in part inspired
by the works of Unruh [Unr07] and Coretti et al. [CDGS18] on random oracles
with auxiliary information. They show that revealing short auxiliary information
about f (so called leakage), essentially has the effect of fixing f on a small set of
values, while the rest of f remains hidden. This does not suffice for us, because
it does not restrict in any way which values are fixed. We need to ensure that
all values not explicitly queried remain hidden even under the leakage from the
oracle SDO. (Our argument is restricted though to the specific oracle SDO and
does not say anything about arbitrary leakage.)
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2.2 Proving Simon and Asharov-Segev: A Coupling-Based
Approach

Next, we sketch the main ideas underlying the new proofs of Simon’s result
that OWPs do not imply CRHFs through fully black-box constructions, and
the extended result by Asharov and Segev, which consider not only OWPs, but
also IO. In this overview, we focus on the simpler result by Simon. We refer the
reader to the full version of this paper for the extension to IO.

Simon’s Collision Finding Oracle. The oracle Γ = (f,Collf ) introduced
by Simon consists of a random permutation f and a collision finding oracle
Collf . The oracle Collf given a circuit Cf returns a random w along with a
random element that collides with w; namely a random w′ in the preimage of
y = Cf (w). In particular, if the circuit C is compressing, then the oracle will
output a collision w �= w′ with high probability, meaning that CRHFs cannot
exist in its presence.

Our Proof. To prove that Coll does not help inverting f , Simon used careful
conditional probability arguments, whereas Haitner et al. [HHRS15], and then
Asharov and Segev [AS15] adding also IO to the picture, relied on a compression
and reconstruction argument, originally due to Gennaro and Trevisan [GT00].
Our proof is inspired by the [BDV17] proof that the statistical distance oracle
SDO does not help inverting permutations (discussed above). At high level, we
would like to argue that the collision-finding oracle Coll, like the oracle SDO,
is oblivious to random local changes. Following the intuition outlined for SDO,
an attacker that fails to detect random local changes will also fail in inverting
random permutations.

Punctured Collision Finders. To fulfil this plan, we consider a punctured
version PColl of the oracle Coll, where the function f can be erased at a given
set of values S. Roughly speaking, PColl will allow us to argue that Coll is not
particularly sensitive to the value f(x) of almost any x. To define PColl, we first
give a more concrete description of Coll and then explain how we change it.

The oracle Coll, for any circuit C : {0, 1}k → {0, 1}∗, assigns a random input
w ∈ {0, 1}k and a random permutation π of {0, 1}k � [2k]. It then returns
(w,w′), where w′ is the first among π(1), π(2), . . . such that Cf (w) = Cf (w′).
The oracle PCollfS is parameterized by a set of punctured inputs S ⊆ {0, 1}n. Like
Coll, for any C, it samples a random input w and a permutation π. Differently
from Coll, if Cf (w) queries any x ∈ S, the oracle returns ⊥. Else, it iterates
over the inputs {0, 1}k according to π and finds the first value w′ such that (1)
Cf (w′) makes no queries to any x ∈ S, and (2) Cf (w) = Cf (w′). The oracle
outputs the collision (w,w′).

The PColl oracle satisfies the following essential property. Let τ be a tran-
script generated by the attacker Af,Collf and assume that for all Coll answers
(w,w′) in τ , neither Cf (w) nor Cf (w′) query any x ∈ S. Then Af,PCollfS gener-
ates the exact same transcript τ . Indeed, this follows directly from the definition
of the punctured oracle PColl.
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Proving Hardness of Inversion by Smoothening and Coupling. Equipped
with the punctured oracle, we now explain how it can be used argue the hardness
of inversion. We first consider a smoothening process analogous to the one consid-
ered in the statistical distance separation discussed above. That is, we make sure
that (with overwhelming probability) all queries C made to Coll are smooth in the
sense that Cf (w) does not query any specific input with high probability when
w is chosen at random. We then make a few small perturbations to our oracles,
and argue that they are undetectable by a coupling argument. Finally, we deduce
univertability.

Step 1: Let x be the preimage that Af,Collf (f(x)) aims to find. We first con-
sider, instead of Coll, the punctured oracle PCollf{x}. Due to smoothness, almost

every transcript produced by Af,Collf (f(x)) is such that x is not queried by
Cf (w), Cf (w′) for any query C and answer (w,w′) returned by Coll. Any tran-
script satisfying the latter can be coupled with an identical transcript gener-
ated by Af,PCollf{x}(f(x)), and deduce that the probability of inversion (out-
putting x) in this new experiment E1 is close to the probability in the original
experiment E0.

Step 2: We perturb the oracle again. We sample a random x′ ← {0, 1}n and
make the following two changes: (1) we change the oracle f to fx′→f(x), which
diverts x′ to f(x), and (2) we puncture at x′, namely, we consider PCollf{x,x′}.

We next observe that in this new experiment E2, x and x′ are symmetric.
Accordingly, x and x′ are output with the same probability in the experiment
E2. To complete the proof, we apply a coupling argument to show that x and
x′ are output with almost the same probability also in the previous experiment
E1. This is enough as in E1 the view of the attacker is independent of x′, which
will allows us to deduce that the probability of inversion is negligible overall.

Let us describe the coupling argument more explicitly. Both experiments E1

and E2 are determined by the choice of f, x, x′ and randomness R = {w, π} for
Coll. We can look at the events X1 = X1(f, x, x′, R) and X2 = X2(f, x, x′, R),
where X1 occurs when the attacker outputs x in the experiment E1 and X2

occurs when it outputs x in E2. Similarly, we can look at X ′
1 and X ′

2, which
describe the events that x′ is output in each of the experiments. Then by cou-
pling, we know that∣∣∣Pr [X1] − Pr [X2]

∣∣∣ ≤ Pr
f,x,x′,R

[IX1 �= IX2 ] ,

where IX1 , IX2 are the corresponding indicators. The same holds for X ′
1, X ′

2.
Thus, we can bound:
∣
∣
∣Pr [X1] − Pr

[

X ′
1

]
∣
∣
∣ ≤

∣
∣
∣Pr [X1] − Pr [X2]

∣
∣
∣ +

∣
∣
∣Pr [X2] − Pr

[

X ′
2

]
∣
∣
∣ +

∣
∣
∣Pr

[

X ′
1

] − Pr
[

X ′
2

]
∣
∣
∣

≤ Pr
f,x,x′,R

[IX1 �= IX2 ] + 0 + Pr
f,x,x′,R

[

IX′
1

�= IX′
2

]

.

It is left to see that when fixing f, x,R the outputs in the two experiments E1, E2

(and thus also X1,X2 and X ′
1,X

′
2) are identical as long as x′ does not coincide
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with any of the queries to f , nor with any of the queries induced by any PColl{x}
answer (w,w′). Since the number of such queries is bounded and x′ is chosen
independently at random, this will almost surely be the case.

Organization

In Sect. 3, we provide relevant preliminaries. In Sect. 4, we prove that there are
no fully black-box reductions of SZK hardness to CRHFs. In Sect. 5, we reprove
Simon’s result that there are no fully black-box reductions of CRHFs to OWPs.
The extension of this result to IO can be found in the full version of this paper.

3 Preliminaries

In this section, we introduce the basic definitions and notation used throughout
the paper.

3.1 Conventions

For a distribution D, we denote the process of sampling from D by x ← D.
A function negl : N → R

+ is negligible if for every constant c, there exists a
constant nc such that for all n > nc negl(n) < n−c.

Randomized Algorithms. As usual, for a random algorithm A, we denote by
A(x) the corresponding output distribution. When we want to be explicit about
the algorithm using randomness r, we shall denote the corresponding output by
A(x; r). We refer to uniform probabilistic polynomial-time algorithms as PPT
algorithms.

Oracles. We consider oracle-aided algorithms (or circuits) that make repeated
calls to an oracle Γ . Throughout, we will consider deterministic oracles Γ that are
a-priori sampled from a distribution Γ on oracles. More generally, we consider
infinite oracle ensembles Γ = {Γn}n∈N, one distribution Γn for each security
parameter n ∈ N (each defined over a finite support). For example, we may
consider an ensemble f = {fn} where each fn : {0, 1}n → {0, 1}n is a random
function. For such an ensemble Γ and an oracle aided algorithm (or circuit)
A with finite running time, we will often abuse notation and denote by AΓ (x)
and execution of A on input x where each of (finite number of) oracle calls
that A makes is associated with a security parameter n and is answered by the
corresponding oracle Γn. When we write AΓ

1 , . . . ,AΓ
k for k algorithms, we mean

that they all access the same realization of Γ .

3.2 Coupling and Statistical Distance

Definition 3.1 (Coupling). Given two random variables X,Y over X ,Y, a
coupling of X,Y is defined to be any distribution PX′Y ′ on X × Y such that, the
marginals of PX′Y ′ on X and Y are the distributions X, Y respectively.

Denote by PXY the set of all couplings of X,Y .
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Lemma 3.2. Given any two distributions X,Y supported on X ,

SD(X,Y ) = inf
PX′Y ′ ∈PXY

Pr
(x,y)←PX′Y ′

[x �= y] .

Furthermore, for distributions over a discrete domain X the infimum
is attained: that is, there exists a coupling PXY such that SD(X,Y ) =
Pr(x,y)←PXY

[x �= y].

The lemma allows us to bound the statistical distance between two random
variables (hybrid experiments in our case) by setting up a coupling between two
experiments and bounding the probability of them giving a different outcome.
Looking ahead, in Lemma 5.6, we describe an explicit coupling for the Simon’s
collision finder oracle, of the form above that allows us to bound the statistical
distance between hybrids.

4 Separating SZK and CRHFs

4.1 Fully Black-Box Constructions of SZK Problems

The class of problems with Statistical Zero Knowledge Proofs (SZK)
[GMR85,Vad99] can be characterized by complete promise problems [SV03],
particularly statistical difference, and the transformation is black-box. In order
to consider black-box constructions of hard problems in SZK, we start by defining
statistical difference problem relative to oracles. This modelling follows [BDV17].

In the following definition, for an oracle-aided (sampler) circuit C(·) with
n-bit input and an oracle Ψ , we denote by CΨ the output distribution CΨ (r)
where r ← {0, 1}n. We denote statistical distance by SD: for two distributions
X and Y SD(X,Y ) = 1

2

∑
x |Pr [X = x] − Pr [Y = x]|.

Definition 4.1 (Statistical Difference Problem relative to oracles). For
an oracle Ψ , the statistical difference promise problem relative to Ψ , denoted as
SDPΨ = (SDPΨ

Y , SDPΨ
N ), is given by

SDPΨ
Y =

{
(C0, C1) : SD(CΨ

0 ,CΨ
1 ) ≥ 2

3

}
,

SDPΨ
N =

{
(C0, C1) : SD(CΨ

0 ,CΨ
1 ) ≤ 1

3

}
.

Next, we define formally define fully black-box reductions from CRHFs to
SZK.

Definition 4.2 (Black-Box Construction of SZK-hard Problems). A
fully black-box construction of a hard statistical distance problems (SDP) from
CRHFs consists of

– Black-box construction: A collection of oracle-aided circuit pairs Π(·) ={
Π

(·)
n

}
n∈N

where Πn =
{

(C(·)
0 , C

(·)
1 ) ∈ {0, 1}n×2

}
such that each (C0, C1)

defines an SDP instance.
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– Black-box security proof: A probabilistic oracle-aided reduction R with
functions qR(·), εR(·) such that the following holds: Let f be any distribution
on functions. For any probabilistic oracle-aided A that decides Π in the worst-
case, namely, for all n ∈ N,

Pr
[
Af (C0, C1) = B for all

(C0, C1) ∈ Πn, B ∈ {Y,N}
such that (C0, C1) ∈ SDPf

B

]
= 1

the reduction breaks collision resistance of f , namely, for infinitely many
n ∈ N,

Pr
f

[
fn(x) = fn(x′) where (x, x′) ← Rf,A

]
≥ εR(n),

where R makes at most qR(n) queries to any of its oracles (A, f) where each
query to A consists of circuits C0, C1 each of which makes at most qR(n)
queries to f .

Next, we state the main result of this section: that any fully black-box con-
struction of SDP problems from CRHFs has to either run in time exponential
in the security parameter or suffer exponential security loss.

Theorem 4.3. For any fully black-box construction (Π,R, qR, εR) of SDPs from
CRHFs, the following holds:

1. (The reduction runs in exponential time.) qR(n) ≥ 2n/10. Or,
2. (Reduction succeeds with exponentially small probability.) εR(n) ≤ 2−n/10.

We prove the theorem by describing an oracle Γ = (f,A) such that, A solves
SDPf but f is a CRHF relative to Γ . The rest of the section is devoted to describ-
ing this oracle and proving the theorem. We start by describing the adversary
that breaks SDP: the statistical distance oracle.

4.2 The Statistical Distance Oracle

Next we describe the statistical distance oracle SDO from [BDV17] that solves
SZK instances.

Definition 4.4 (Oracle SDOΨ). The oracle consists of t = {tn}n∈N where
tn : {0, 1}2n → ( 13 , 2

3 ) is a uniformly random function. Given n-bit descrip-
tions of oracle-aided circuits C0, C1 ∈ {0, 1}n, let t� = tn(C0, C1), and let
s = SD(CΨ

0 ,CΨ
1 ), return

SDOΨ (C0, C1; t) :=

{
0 If s < t�

1 If s ≥ t�

It is immediate to see that SDOΨ decides SDPΨ in the worst-case.
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Claim 4.4.1. For any oracle Ψ ,

SDPΨ ∈ PΨ,SDOΨ

.

Remark 4.5 (On the Oracle Used). Our separation is sensitive to the oracle used.
Subsequent to [BDV17,KY18] observed that the Simon’s collision finding oracle
Coll can be used to decide SZK. Clearly, no separation between CRHFs and
SZK holds relative to the Simon’s oracle. It turns out that Simon’s oracle can
be used to estimate a different measure of distance between distributions, the
Triangular Discrimination,2 which like statistical distance also gives an SZK-
complete promise problem [BDRV19]. Our separation does hold with a variant
of Coll and SDO that measures triangular discrimination, but does not output a
collision.

4.3 Insensitivity to Local Changes

Next, we recall the notions of smoothness and farness from [BDV17] that are
used to argue that the SDOΨ oracle is insensitive to local changes. Roughly
speaking farness says that the random threshold t used for a query (C0, C1) to
SDOΨ is “far” from the actual statistical distance. [BDV17] show that with high
probability over the choice of random threshold t, farness holds for all queries
(C0, C1) made to SDOΨ by any (relatively) efficient adversary. This intuitively
means that changing the distributions (CΨ

0 ,CΨ
1 ), on sets of small density, will

not change the oracle’s answer.

Definition 4.6 ((Ψ, t, ε)-Farness). Two oracle-aided circuits (C0, C1) ∈
{0, 1}n satisfy (Ψ, t, ε)-farness if the statistical difference s = SD(CΨ

0 ,CΨ
1 ) and

threshold t are ε-far:
|s − t| ≥ ε.

For an adversary A, we denote by farness(A, Ψ, ε) the event that every SDO query
(C0, C1) made by AΨ,SDOΨ

satisfies (Ψ, t, ε)-farness, where t = tn(C0, C1) is the
threshold sampled by SDO.

Lemma 4.7 ([BDV17](Claim 3.7)). Fix any Ψ and any oracle-aided adversary
A such that AΨ,SDOΨ

makes at most q queries to SDOΨ . Then

Pr
t

[farness(A, Ψ, ε)] ≥ 1 − 6qε,

where the probability is over the choice t of random thresholds by SDO.

We now turn to define the notion of smoothness. Roughly speaking we will
say that an oracle-aided circuit C is smooth with respect to some oracle Ψ if
any specific oracle query is only made with small probability. In particular, for a
pair of smooth circuits (C0, C1), local changes to the oracle Ψ should not change
significantly the statistical distance s = SD(CΨ

0 ,CΨ
1 ).

2 The triangular discrimination is defined as TD(X, Y ) = 1
2

∑

x
(Pr[X=x]−Pr[Y =x])2

(Pr[X=x]+Pr[Y =x])
.

This measure also lies in the interval [0, 1] and is a metric.
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Definition 4.8 ((Ψ, ε)-Smoothness). A circuit C(·) is (Ψ, ε)-smooth, if every
location x ∈ {0, 1}∗ is queried with probability at most ε. That is,

max
x

Pr
w

[
CΨ (w) queries Ψ at x

]
< ε.

For an adversary A, we denote by smooth(A, Ψ, ε) the event that in every SDO

query (C0, C1) made by AΨ,SDOΨ

both circuits are (Ψ, ε)-smooth.

Lemma 4.9 ([BDV17](Claim 3.9)). Let Ψ , Ψ ′ be oracles that differ on at most
c values in the domain. Let C0 and C1 be (Ψ, ε)-smooth. Let s = SD(CΨ

0 , CΨ
1 )

and s′ = SD(CΨ ′
0 , CΨ ′

1 ) then |s − s′| ≤ 2cε.

The above roughly means that (under the likely event that farness holds)
making smooth queries should not help the adversary detect local changes in the
oracle Ψ . [BDV17] show that we can always “smoothen” the adversary’s circuit
at the expense of making (a few) more queries to Ψ , which intuitively deems the
statistical difference oracle SDOΨ useless altogether for detecting local changes
in Ψ .

In what follows, a (q′, q)-query algorithm A makes at most q′ queries to the
oracle Ψ and q queries to SDOΨ such that for each query (C0, C1) to SDO, the
circuits C0, C1 themselves make at most q queries to Ψ on any input.

Lemma 4.10 (Smoothing Lemma for SDO [BDV17](Lemma 3.10)). For
any (q, q)-query algorithm A and β ∈ N, there exists a (q + 2βq2, q)-query algo-
rithm S such that for any input z ∈ {0, 1}� and oracles Ψ,SDOΨ :

1. SΨ,SDOΨ

(z) perfectly simulates the output of AΨ,SDOΨ

(z),
2. SΨ,SDOΨ

(z) only makes queries (C0, C1) where both C0, C1 are (Ψ, ε)-smooth
queries to SDOΨ with probability:

Pr
S

[smooth(S, Ψ, ε)] ≥ 1 − 2−εβ+log(2q2/ε),

over its own random coin tosses.

4.4 Collision Resistance in the Presence of SDO Oracle

In this section, we prove the oracle separation between collision resistant hash
functions and SZK.

Let Fn be the set of all functions from {0, 1}n to {0, 1}m(n) where m(n) < n
is a shrinking function. Let F = {Fn}n∈N denote the family of these sets of
functions. Let T = {Tn}n∈N where Tn denotes the set of threshold functions
t : {0, 1}n → (1/3, 2/3). 3

3 While we describe the threshold function as a real valued function, it can be safely
discretized because statistical distance for any pair of circuits C0, C1 : {0, 1}m →
{0, 1}�, takes values that are multiples of 2−(m+1). We omit the details here.
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Definition 4.11 (The Oracle f). The oracle f = {fn}n∈N on input x ∈
{0, 1}n returns fn(x) where fn : {0, 1}n → {0, 1}m is a random function from
Fn.

The oracle we consider is Γ = (f,SDOf ). It is easy to see that all SDPf ∈
Pf,SDOf

. What remains to show is that f is still collision resistant in the presence
of the SDOf oracle. We do so next.

Theorem 4.12. Let A be a (q, q)query adversary for q = O(2m/10). Then,

Pr
[
fn(x) = fn(x′) where (x, x′) ← Af,SDOf

(1n)
]

≤ 2−m/10.

Proof. Fix oracle f−n = {fk}k �=n arbitrarily. Consider the (q + 2βq2, q)query
smooth version S, of A given by Lemma 4.10 for β = 2m/5 · m and ε = 2−m/5.
We assume w.l.o.g that S makes no repeated oracle queries and that whenever
S outputs a collision (x, x′), x is its last oracle query and x′ is a previous query
(both to the f oracle).

The first assumption is w.l.o.g because S may store a table of previously made
queries and answers. The second is w.l.o.g because S may halt once its f -queries
include a collision and output that collision; also, if one, or both, outputs x, x′

have not been queried, S can query it at the end (and if needed change the order
of the output so that x is queries last). The latter costs at most two additional
queries, and does not affect the smoothness of S.

Next, we define some notation about transcripts generated in the process.

Transcripts. A transcript π consists of all queries asked and answers received
by S to the oracle (f,SDOf ). Let xi denote the i-th query to the f -oracle. We
say that x �∈ π if the location x is not among the queries explicitly made in π.

The Underlying Joint Distribution. The proof infers properties of the joint
distribution (f, t, π) consisting of the oracle f , the SDO oracle’s random thresh-
olds t and the transcript generated by S. The distribution is generated as follows:
f ← F and t ← T and π ← Sf,SDOf;t

where SDOf ;t denotes running the SDO
oracle with random thresholds t. Denote this distribution by PFTΠ .

Note that given f, t, the transcript π is generated in a deterministic manner as
S is deterministic and the oracle’s behavior is completely specified. Furthermore,
we also consider partial transcripts obtained by running S and stopping after i
queries. This transcript is denoted by π<i, xi: that is the π<i consists of queries
and responses received and xi is the next query to the oracle f . Note that xi

is a deterministic function of π<i. Given the distribution PFTΠ , the conditional
distributions PFT |Π=π or PFT |Π=π<i

are well defined: these consist of uniform
distribution on pairs (f, t) that when run using S result in the transcript being
π (or π<i).

The Good Event. We define the concept of Good transcripts. Roughly speak-
ing, these are transcripts π that satisfy sufficient smoothness and farness so to
guarantee that the value f(x) at any x /∈ π is completely hidden.
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Definition 4.13 (Good). A tuple (f, t, π, x, ε) is good, denoted by good(f, t,
π, x, ε) if the following hold:

1. π = Sfx→⊥,SDOfx→⊥;t
(1n), where fx→⊥ is the function equal to f everywhere

except at x where it takes the value ⊥.
2. (x is not explicitly queried:) x �∈ π.
3. (Transcript is smooth:) Every SDO-query made by Sfx→⊥,SDOfx→⊥;t

(1n) is
(fx→⊥, 2ε)-smooth. Denote this event by smooth(fx→⊥, t, π, 2ε).

4. (Transcript is far:) Every SDO-query (C0, C1) made by Sfx→⊥,SDOfx→⊥;t
(1n),

satisfies (fx→⊥, t, 12ε)-farness where t = t(C0, C1). Denote this by
far(f, t, π, 12ε).

The key reason for using fx→⊥ instead of f in the definition is that when an
execution of Sfx→⊥,SDOfx→⊥;t

generates a transcript π while making only smooth
and far queries, all executions of Sfx→z,SDOfx→z ;t

for all z, also generate π while
not necessarily being smooth or far themselves.

A tuple (f, t, π, ε) is good if for all x �∈ π, good(f, t, π, x, ε) holds.

Lemma 4.14. Let PFTΠ as defined above. Then,

Pr
(f,t,π)←PF T Π

[good(f, t, π, ε)] ≥ 1 − 16qε − 2−βε+log(2q2/ε)

The same holds for i-length partial transcripts generated as well, for all i.

Lemma 4.15. For any transcript π and query x �∈ π such that

Pr
(f,t,π)←PF T Π

[good(f, t, π, x, ε)] > 0,

it holds that,
{
f(x) : (f, t) ← PFT |Π=π,good(f,t,π,x,ε)

}
≡ Um .

Next, we prove Theorem 4.12 assuming Lemmas 4.14 and 4.15. Then, we
prove the two lemmas.
Let hit(π) denote the event that π contains two queries x, x′ such that fn(x) =
fn(x′). Then,

Pr
f,t

[
fn(x) = fn(x′) ∧ (x, x′) = Sf,SDOf;t

(1n)
]

= Pr
f,t,π

[hit(π)]

≤ Pr
f,t,π

[hit(π) ∧ good(f, t, π, ε)]

+ Pr
f,t,π

[
good(f, t, π, ε)

]
.

We will bound the two terms separately. The first term will involve using
Lemma 4.15 while the second term is bound using Lemmas 4.7 and 4.10.
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We begin by bounding the first term. This is done by decomposing the proba-
bility of hitting a collision by the first query that hits a collision:

Pr
f,t

[hit(π) ∧ good(f, t, π, ε)]

≤
∑

i

Pr
f,t

[
hit(π≤i) ∧ hit(π<i) ∧ good(f, t, π<i, ε)

]

=
∑

i

Pr
f,t

[
f(xi) ∈ hitSet(π<i) ∧ hit(π<i) ∧ good(f, t, π<i, ε)

]
,

where xi /∈ π denotes the i-th f query made by S and hitSet(π<i) denotes the
answers to f -queries in π<i,

=
∑

i

∑
π<i,xi

Pr
f,t

[
(π<i, xi) = Sf,SDOf;t

(1n) ∧ good(f, t, π<i, xi, ε)
]

· Pr
f,t←PF T |Π=π<i,good

[f(xi) ∈ hitSet(π<i)]

The last equality follows from the definition of conditional probability. At this
point, we can use Lemma 4.15 to argue that

Pr
f,t←PF T |Π=π<i,good(f,t,π<i,xi,ε)

[f(xi) ∈ hitSet(π<i)] ≤ i

2m

because f(xi) is uniformly random and |hitSet(π<i)| ≤ i. Hence, we get that,

≤
∑

i

i

2m
·

∑
π<i,xi

Pr
f,t

[
(π<i, xi) = Sf,SDOf;t

(1n) ∧ good(f, t, π<i, xi, ε)
]

≤
q′∑

i=1

i

2m
≤ q′2

2m
,

where q′ = q + 2βq2 + 2, the number queries that S makes to f .
Hence, by Lemma 4.14, the algorithm’s success probability is bounded by

Pr
f,t

[
fn(x) = fn(x

′) ∧ (x, x′) = Sf,SDOf;t
(1n)

]
≤ Pr

f,t
[hit(π) ∧ good(f, t, π)] + Pr

f,t

[
good(f, t, π)

]

≤ (q + 2βq2 + 2)2

2m
+ 16qε + 2−βε+log(2q2/ε)

≤ O(q4β22−m + 16qε + q2/ε2−εβ)

≤ O(2−m/10) .

when substituting ε = 2−m/5, β = 2m/5 · m, and q ≤ 2m/10.

Proof (of Lemma 4.14). The proof follows from the observation if Sf,SDOf

outputs
π with all the queries being both smooth, and far, then, the same holds for
Sfx→⊥,SDOfx→⊥ with slightly degraded parameters. That is,
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Pr
(f,t,π)←PF T Π

[good(f, t, π, ε)] = Pr
f,t,π

[∧x�∈πgood(f, t, π, x, ε)]

≥ Pr
f,t,π

[smooth(f, t, π, ε) ∧ farness(f, t, π, 8ε)]

≥ 1 − 16εq − 2−βε+log(2q2/ε)

Hence, to complete the proof, we need to show that, for any (f, t) if Sf,SDOf

(1n)
outputs π with all the queries being (f, ε)-smooth, and (f, t, 16ε)-far, then,
Sfx→⊥,SDOfx→⊥ (1n) generates π with all the queries being (f, 2ε-smooth and
(f, t, 12ε)-far.

First observe that by Lemma 4.9, since 16ε-farness and ε-smoothness hold,
answers by SDOfx→⊥ are identical to those by SDOf . Accordingly, the transcript
π = Sfx→⊥,SDOfx→⊥ (1n).

Next, we show that 2ε-smoothness holds with respect to SDOfx→⊥ . Indeed,
any SDO-query (C(·)

0 , C
(·)
1 ) is ε-smooth with respect to f , accordingly the prob-

ability that either circuit Cb queries any individual z is bounded by

Pr
[
Cfx→⊥

b queries z
]

≤ Pr
[
Cfx→⊥

b queries x
]

+ Pr
[
Cf

b queries z
]

≤ 2ε .

Finally, to conclude the proof, we show that 12ε-farness holds with respect
to fx→⊥. Indeed, for any query (C0, C1), let s = SD(Cf

0 , Cf
1 ) be the statistical

distance with respect to f , then by ε-smoothness with respect to f , the statistical
distance sx = SD(Cfx→⊥

0 , Cfx→⊥
1 ) with respect to fx→⊥ is at most 2ε-far from s.

Letting t = t(C0, C1) be the threshold chosen by SDO, we know by 16ε-farness
that |s − t| ≥ 16ε and thus |sx − t| ≥ 12ε, which implies the require farness with
respect to fx→⊥.

The above argument holds unaltered for partial transcripts output by S as
well. Even there, when a partial trancript is output by Sf,SDOf

with all queries
being (f, ε)-smooth and (f, t, 16ε)-far, then, Sfx→⊥,SDOfx→⊥ (1n) generates the
same partial transcript with all the queries being (f, 2ε)-smooth and (f, t, 12ε)-
far. �

Proof (of Lemma 4.15). Given π, x �∈ π, for any y

Pr
f,t←PF T |Π=π,good(f,t,π,x,ε)

[f(x) = y] =
Prf,t

[
π = Sf,SDOf;t

(1n) ∧ f(x) = y ∧ good(f, t, π, x, ε)
]

Prf,t

[
π = Sf,SDOt (1n) ∧ good(f, t, π, x, ε)

]

In order to show that, the distribution
{
f(x) : f ← PF |Π=π,good

}
is uniform, it

suffices to show that for all y1, y2 ∈ {0, 1}m,

Pr
f,t

[
π = Sf,SDOf;t

(1n) ∧ f(x) = y1 ∧ good(f, t, π, x, ε)
]

= Pr
f,t

[
π = Sf,SDOf;t

(1n) ∧ f(x) = y2 ∧ good(f, t, π, x, ε)
]
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To prove this, it suffices to show that for every (f, t) where f(x) = y1,

π = Sf,SDOf;t
(1

n
) ∧ good(f, t, π, x, ε) = 1 ⇐⇒ π = Sfx→y2 ,SDO

fx→y2 ;t
(1

n
) ∧ good(fx→y2 , t, π, x, ε)

This follows because as good(f, t, π, x, ε) holds, π = Sfx→⊥,SDOfx→⊥;t
(1n) and

every query made to SDOfx→⊥;t is both 12ε-far and 2ε-smooth. Hence, when
we change the oracle to (fx→y2 ,SDO

x→y2), each query is answered identically
to fx→⊥,SDOfx→⊥;t. Indeed, for any query (C0, C1), let s = SD(Cfx→⊥

0 , Cfx→⊥
1 )

be their statistical distance with respect to fx→⊥, then by 2ε-smoothness with
respect to fx→⊥, the statistical distance s′ = SD(Cfx→y2

0 , C
fx→y2
1 ) is at most

4ε-far from s. As the threshold t = t(C0, C1) is more than 12ε far by farness,
the answer will be unchanged to this query.

Hence, S(fx→y2 ,SDOx→y2 ) will also return π as the answer. Also, by definition,
good(fx→y2 , t, π, x, ε) will hold because π = Sfx→⊥,SDOfx→⊥;t

(1n) and every query
made to SDOfx→⊥;t is both 12ε-far and 2ε-smooth. Hence, the claim follows.

�

This completes the proof of Theorem 4.12. �

5 A New Proof of an Old Separation

In this section, we give a new proofs of a result by Simon [Sim98] ruling
out fully black-box reductions of collision-resistant hash functions to one-way
permutations.

Fully Black Box Constructions of CRHFs from OWPs. We begin by
defining oracle-aided constructions of CRHFs and then specialize it to the setting
of OWPs.

Definition 5.1 (Oracle-Aided Collision-Resistant Function Families).
A pair of polynomial-time oracle-aided algorithms (Gen,Hash) is a collision-
resistant function family relative to an oracle Γ if it satisfies the following
properties:

– The index-generation algorithm Gen is a probabilistic algorithm that on input
1n and oracle access to Γ outputs a function index σ ∈ {0, 1}m(n).

– The evaluation algorithm Hash is a deterministic algorithm that takes as input
a function index σ ∈ {0, 1}m(n) and a string x ∈ {0, 1}n, has oracle access to
Γ , and outputs a string y = HashΓ (σ, x) ∈ {0, 1}n−1.

Definition 5.2 (Black-Box Construction of CRHFs from OWPs). A
fully black-box construction of a Collision Resistant Hash Functions (CRHFs)
from One-Way Permutations consists of a pair of PPT oracle-aided algorithms
(Gen,Hash), an oracle-reduction R along with functions qR(n), εR(n) such that
the following two conditions hold:
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– Correctness: For any n ∈ N, for any permutation f , and for any function
index σ produced by Genf (1n), it holds that Hashf (σ, ·) : {0, 1}n → {0, 1}n−1.

– Black-box security proof: For any permutation f and probabilistic oracle-
aided algorithm A , if

Pr
[
Hashf (σ, x) = Hashf (σ, x′) ∧ x �= x′

]
≥ 1

2

where the experiment is σ ← Genf (1n) and (x, x′) ← Af (1n, σ), for infinitely
many n, then the reduction breaks f , namely, for infinitely many n ∈ N either

Pr
x←{0,1}n

f,A

[
RA,f (fn(x)) = x

]
≥ εR(n),

for infinitely many values of n where R makes at most qR(n) queries to the
oracles A, f and for every circuit D(·) queried to A makes at most qR(n)
queries to f on any input.

We remark that ruling out black-box reductions as defined above where the
reduction has to break the OWP given an adversary that breaks CRHFs w.p. over
1/2 only makes our result stronger. In the standard setting, the reduction has to
break OWP given an adversary that succeeds with any noticeable probability.

5.1 Simon’s Collision Finding Oracle and Puncturing

Recall that the Simon’s collision finding oracle is defined as follows:

Definition 5.3 (Simon’s Oracle CollΨ). Given any description of a circuit
C with m-bit inputs, the oracle’s randomness contains a random input wC ∈
{0, 1}m and a random permutation πC : {0, 1}m → {0, 1}m. The CollΨ oracle
returns the following:

CollΨ (C) := (wC , w′
C) where w′

C = πC(i) for the smallest i such that CΨ (wC) = CΨ (πC(i)).

W.l.o.g, along with (wC , w′
C), let Coll also return the queries made to Ψ , and

their answers, when evaluating CΨ (wC) and CΨ (w′
C).

The collision-finding oracle breaks any oracle-aided collision resistant hash
function.

Lemma 5.4 ([Sim98]). Let Γ = (Ψ,CollΨ ). Let C(·) : {0, 1}n → {0, 1}n−1 be
any candidate construction of CRHFs. Then,

Pr
[
CΨ (w) = CΨ (w′) ∧ w �= w′ where, (w,w′) ← CollΨ (C)

]
≥ 1

2

where the randomness is over the randomness of Coll.
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Proof. Fix Ψ and omit it from the notation. For any string y ∈ {0, 1}n−1, let
ay = |{x : C(x) = y}|. Then,

Pr [w �= w′] =
∑

y∈Supp(C)

Pr
w,w′←C−1(y)

[w �= w′] · Pr
w

[C(w) = y]

=
∑

y∈Supp(C)

ay − 1
ay

· ay

2n

=
∑

y∈Supp(C)

ay

2n
−

∑
y∈Supp(C)

1
2n

≥ 1 − 2n−1

2n
,

where the second inequality follows from the fact that Prw,w′←C−1(y) [w �= w′] =

Prw′←C−1(y) [w′ �= w] = ay−1
ay

. �

Next we define a variant of the Simon’s oracle, dubbed as the punctured
Simon’s oracle. This collision finding oracle allows Ψ to be punctured, that is, a
set of values in Ψ are erased. As we will show later, this oracle returns the same
answers as CollΨ most of the time, and we can characterize when it does not.

Definition 5.5 (Punctured Simon’s Oracle PCollΨS ). Let Ψ : {0, 1}∗ →
{0, 1}∗ be an oracle. Let S ⊆ {0, 1}∗ be a subset of inputs. The oracle PColl’s
randomness contains for any circuit C with m-bit inputs, a random input
wC ∈ {0, 1}m and a random permutation πC : {0, 1}m → {0, 1}m. The PCollΨS
oracle returns the following:

PCollΨS (C) = ⊥, if CΨ (wC) queries any x ∈ S.

Else,
PCollΨS (C) := (wC , w′

C)

where w′
C = πC(i) for the smallest i such that CΨ (wC) = CΨ (πC(i)) and

CΨ (πC(i)) does not query any x ∈ S. Along with (wC , w′
C), let it also return

the queries made to Ψ when evaluating CΨ (wC) and CΨ (w′
C). We refer to these

queries as Ψ queries induced by the Coll oracle.

There are two key properties of the punctured oracle: (1) The answers of
PCollΨS are independent of the values of the oracle Ψ on all of S; and (2) there
is a natural coupling between CollΨ and PCollΨS such that, as long as there is
no explicit query x ∈ S to Ψ , the two oracles return identical answers. This is
captured by the following lemma.

Lemma 5.6. Let Ψ : {0, 1}∗ → {0, 1}∗ be an oracle, let S ⊆ {0, 1}∗. Consider
the coupling of CollΨ and PCollΨS that instantiates the two oracles with identical
randomness. Let A be any deterministic oracle-aided algorithm. Let τ be the
transcript generated by AΨ,CollΨ . Then,

AΨ,PCollΨS = τ if and only if, Ψ -set(τ) ∩ S = ∅,

where Ψ -set(τ) is the set of all queries made to Ψ in the execution. This includes
the queries to Ψ returned by the Coll oracle.
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Proof. Every direct query to Ψ by A is returned identically in both the execu-
tions. Furthermore, in any transcript τ , such that Ψ -set(τ) ∩ S = ∅, all queries
to CollΨ and PCollΨS are answered identically. This follows from the definition of
PColl because for every query C to Coll and response (wC , w′

C), all the queries
made to Ψ when evaluating CΨ (wC) and CΨ (w′

C) are explicitly made directly to
Ψ , and are thus in Ψ -set. In more detail, for any query CΨ made to CollΨ with
answer (wC , w′

C), CΨ (wC) does not make any queries in S, and thus PColl, will
also return wC . In addition, any w′′ that is lexicographically prior to w′

C will
not be returned because it either induces queries in S, or if it does then it is
such that CΨ (w′′) �= CΨ (wC). In contrast, C(w′

C) does not make any queries to
S, and is such that C(w′

C) = C(wC). Hence w′
C will also be returned by PColl

(and likewise the queries to Ψ induced by wC , w′
C). �

A Word of Caution. In Lemma 4.15, we showed that the distribution f(x)
when conditioned on a transcript τ is close to uniformly random.4

{
f(x) : f ← PF |Π=π,good

}
≡ Um

Lemma 5.6 seems to suggest the same for the collision finding oracle. That is,
the oracle reveals no information about f(x) for any location x not explicitly
queried in τ . Unfortunately, we do not know how to show this. The key reason
for this is that the probability of seeing this transcript τ could itself depend on
the value of f(x). This issue is not new: it also comes up with the SDO oracle.
We are able to remedy this issue in the case of the SDO oracle in part because
of its short output: it allows us to define the notion of farness which shows that
the SDO oracle is robust to any small changes to the SDO oracle. Puncturing
only allows us to erase a value, and not set it to a different one.

5.2 Smoothening for the Collision Finding Oracle

Similar to Lemma 4.10, we can show that any algorithm AΨ,CollΨ can be trans-
formed to a smoothened algorithm SΨ,CollΨ that with high probability makes only
smooth queries to the CollΨ oracle.

A (q′, q)-query algorithm A makes at most q′ queries to the oracle f and q
queries to Collf such that each for each query C to Coll, the circuit C makes at
most q queries to f on any input.

Lemma 5.7 (Smoothing Lemma for Coll). For any (q, q)-query algorithm A
and β ∈ N, there exists a (q + βq2, q)-query algorithm S such that for any input
z ∈ {0, 1}∗ and oracles Ψ,CollΨ :

1. SΨ,CollΨ (z) perfectly simulates the output of AΨ,CollΨ (z),

4 We are using τ for transcript here to avoid the ambiguity with the Coll oracle ran-
domness π.
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2. SΨ,CollΨ (z) only makes queries that are (Ψ, ε)-smooth queries to CollΨ with
probability:

Pr
S

[smooth(S, Ψ, ε)] ≥ 1 − 2−εβ+log(q2/ε),

over its own random coin tosses.

The proof of the lemma is identical to that of Lemma 4.10, the bound differs in
a factor of 2: (q + βq2) instead of (q + 2βq2) in case of Lemma 4.10 because Coll
oracle takes only one circuit as input.

5.3 One Way Permutations in the Presence of Coll

In this section, we show that CRHFs cannot be constructed from OWPs in a
black-box manner (Definition 5.2). That is, we show,

Theorem 5.8. Let (Gen,Eval,R, qR, εR) be a fully black-box construction of
CRHFs from OWPs. Then, either

1. (Large Running Time) R makes at least qR(n) ≥ 2n/6 queries. Or,
2. (Large Security Loss) εR(n) ≤ 2−n/6.

To prove the theorem, we consider the oracle Γ = (f,Collf ) where f is a random
permutation. We show that a random permutation f is hard to invert even given
access to Collf . We start by defining the oracle. In what follows, Pn denotes the
set of permutations of {0, 1}n.

Definition 5.9 (The Oracle f). f = {fn}n∈N on input x ∈ {0, 1}n answers
with fn(x) where fn is a random permutation fn ← Pn.

It is clear that Collf breaks any potential CRHF construction with prob-
ability at least 1/2. Our main result states that f cannot be inverted, except
with exponentially small probability, even given an exponential number of oracle
queries to f and Collf . Here, consistently with the previous subsection, we say
that an adversary A is q-query if Af,Collf makes at most q queries to f and q
queries to Collf , and any query made to Collf consists of oracle-aided circuit C
that makes at most q queries to f , on any specific input.

Theorem 5.10. Let q ≤ O(2n/6). Then for any (q, q)-query adversary A,

Pr
f,Coll,x

[
Af,Collf (f(x)) = x

]
≤ O(2−n/6).

Proof. We, in fact, prove a stronger statement: the above holds when fixing
the oracles f−n := {fk}k �=n. Let ε = 2−n/3 and β = 2n/3 · n. Fix a q-query
adversary A and let S be its smooth (q + βq2 + 2q2, q) query simulator given by
Lemma 4.10. The extra 2q2 queries are incurred by the fact that along with each
collision w,w′ from Collf (C), the queries made to f in computing Cf (w) and
Cf (w′) are also returned. Since S perfectly emulates A, it is enough to bound
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the probability that S successfully inverts. To bound S’s inversion probability,
we consider six hybrid experiments {Hi}i∈[6] given in Table 1. Throughout, for
a permutation f ∈ Pn and x, y ∈ {0, 1}n, we denote by fx→y the function that
maps x to y and is identical to f on all other inputs (in particular, fx→y is no
longer a permutation when x �= f−1(y)).

Table 1. The hybrid experiments.

Hybrid H1 (Real) H2 H3 H4 H5 H6 (Ideal)

Permutation fn ← Pn

Preimage x ← {0, 1}n

2nd Preimage z ← {0, 1}n

Planted

Image

y ← {0, 1}n

Challenge f(x) y

Oracle f, Collf f, PColl
f
{x} fz→f(x), PColl

f
{x,z} fx→y, PColl

f{
f−1(y),x

} f, PColl
f{
f−1(y)

} f, Collf

Winning

Condition

Find x

Hybrid H1 is identical to the real world where S wins if it successfully inverts
the permutation at a random output. We show that the probability that the
adversary wins in any of the experiments is roughly the same, and that in hybrid
H6 the probability that S wins is tiny.

Claim 5.10.1. |Pr [S wins in H1] − Pr [S wins in H2]| ≤ O(2−n/6)

Proof. The difference between the two hybrids is in the collision finding oracle:
in H1, S gets the standard Collf oracle, while in H2, punctured oracle PCollf{x},
punctured at x. Note that by coupling the two experiments, we can bound the
statistical distance (and hence the winning probabilities) in H1 and H2 as fol-
lows:

∣∣∣Pr [S wins in H1] − Pr [S wins in H2]
∣∣∣ ≤ Pr

f,x,z
Coll

[
Sf,Collf (f(x)) �= Sf,PCollf{x}(f(x))

]

Let smooth = smooth(S(f(x)), f, ε) be the event that all Coll-queries
made by Sf,Collf (f(x)) are (f, ε)-smooth (Definition 4.8). And let collHit =
collHit(S, f, x, z) denote the event that the collision finder oracle Collf for some
query C returns an answer (w,w′) such that Cf (w) or Cf (w′) queries x during
the evaluation. Note that collHit does not occur when f is queried at x by S, but
only when its indirectly queried by Collf .

Observe that by Lemma 5.6, as long as punctured set {x} is not queried by a
collision returned, that is as long as collHit event does not occur, the two oracles
Collf and PCollf{x} would return identical answers. Hence,

Pr
f,x,z
Coll

[
Sf,Collf (f(x)) �= Sf,PCollf{x}(f(x))

]
≤ Pr

f,x,z
Coll

[collHit]
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We bound the probability of collHit as:

Pr [collHit] ≤ Pr
[
smooth

]
+ Pr [smooth ∧ collHit]

By the smoothness Lemma 5.7,

Pr
[
smooth

]
≤ 2−εβ+log(2q2/ε) ,

and, when smooth holds, we can bound the probability of a collHit.

Pr [smooth ∧ collHit] ≤ 2qε

This follows from the fact that for any (f, ε)-smooth circuit C, and any x, the
following holds:

Pr
r

[
Cf (r) queries x

]
≤ ε

Hence, as the marginal of each coordinate of a collision returned by the Coll oracle
is uniformly random, by a union bound, the probability of collHit occurring for
this particular Coll query C is at most 2·ε. Hence the total probability is bounded
by q · (2ε) as desired.

Hence, we can bound the difference between H1 and H2 by

2−εβ+log(2q2/ε) + 2qε ≤ O(2−n/6)

when setting ε = 2−n/3, β = 2n/3 · n and recalling that q ≤ O(2n/6). �

Claim 5.10.2. |Pr [S wins in H2] − Pr [S wins in H3]| ≤ O(2−n/6).

Proof. The difference between the two hybrids is that in H2, S receives the
normal f oracle, while in H3, it receives the planted oracle fz→f(x). And it
receives PCollf{x} in H2 while receiving PCollf{x,z} in H3. In what follows, we

denote by zHit = zHit(S, f, x, z) the event that Sf,PCollf{x}(f(x)) queries f on z,
either directly or indirectly through a collision returned.

Consider the execution of Sf,PCollf{x} in H2, every query S makes to the oracle
is answered identically in H3, unless the event zHit occurs. This follows because
the f oracle itself differs only at z in the two hybrids, and the PColl oracle
returns the same value by Lemma 5.6 unless zHit occurs. Hence, as S receives
the same answers and hence asks the same questions in both hybrids, it would
have the same output, unless zHit occurs. As z is picked uniformly at random,
independent of everything else in H2,

Pr [zHit] ≤ 2−n · |total f -queries made by S| ≤ 2−n · (q + βq2 + 2q2) ≤ O(2−n/6)

when setting ε = 2−n/3, β = 2n/3 · n and recalling that q ≤ O(2n/6). �

Claim 5.10.3. Pr [S wins in H3] = Pr [S wins in H4].
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Proof. First, by symmetry, observe that in H3, the probability of S outputting x
is the same as that of S outputting z, because they are completely symmetrical in
this hybrid. Then observe that these two hybrids H3 and H4 are relabellings of
each other: z ↔ x, f(x) ↔ y and x ↔ f−1(y). This implies that the probability
of the probability of S outputting z in H3 is the same as that of S outputting x
in H4. This completes the argument. �

Claim 5.10.4. |Pr [S wins in H4] − Pr [S wins in H5]| ≤ O(2−n/6).

The difference between the two hybrids is two fold: the f and PColl oracles
differs at x and are identical otherwise. Note that x is independent of the adver-
sary’s view in H5. The proof of this claim is identical to that of Claim 5.10.2
and is omitted.

Claim 5.10.5. |Pr [S wins in H5] − Pr [S wins in H6]| ≤ O(2−n/6).

The only difference between the two hybrids is that the Coll oracle from H6

is punctured at f−1(y) in H5. The proof of this claim is identical to that of
Claim 5.10.1, relies on smoothness, and is omitted.

To conclude the proof of Theorem 5.10, we observe that

Claim 5.10.6. Pr [S wins in H6] ≤ 2−n.

Proof. The view of S in this hybrid is completely independent of the random
choice of x. �

This completes the proof of Theorem 5.10. �
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Abstract. Linicrypt (Carmer & Rosulek, Crypto 2016) refers to the
class of algorithms that make calls to a random oracle and otherwise
manipulate values via fixed linear operations. We give a characteriza-
tion of collision-resistance and second-preimage resistance for a signifi-
cant class of Linicrypt programs (specifically, those that achieve domain
separation on their random oracle queries via nonces). Our characteriza-
tion implies that collision-resistance and second-preimage resistance are
equivalent, in an asymptotic sense, for this class. Furthermore, there is
a polynomial-time procedure for determining whether such a Linicrypt
program is collision/second-preimage resistant.

1 Introduction

Collision resistance and second-preimage resistance are fundamental proper-
ties of hash functions, and are the basis of security for hash-based signature
schemes [4,7,10,11], which are a promising approach for post-quantum security.

We give a new way to reason about and characterize the collision resistance
and second-preimage resistance of a large, natural class of programs, in the ran-
dom oracle model. Specifically, we characterize these properties for the class of
Linicrypt programs, introduced by Carmer and Rosulek [5]. Roughly speak-
ing, a Linicrypt program is one where all intermediate values are field elements,
and the only operations possible are fixed linear combinations, sampling uni-
formly from the field, and calling a random oracle (whose outputs are field
elements). Many of the most practical cryptographic constructions are captured
by this model: hash-based signatures and block cipher modes, to name a few.

Carmer and Rosulek showed that such programs admit an algebraic repre-
sentations that is amenable to reasoning about programs’ cryptographic proper-
ties. Specifically, they showed a polynomial-time algorithm for deciding whether
two Linicrypt programs induce computationally indistinguishable distributions.
They also demonstrated the feasibility of using a SAT solver to automatically
synthesize Linicrypt programs that satisfy given correctness & security con-
straints, by successfully synthesizing secure Linicrypt constructions of garbled
circuits.
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Our work follows a similar path, showing that collision properties can also be
characterized cleanly in terms of the algebraic representation for Linicrypt pro-
grams. Our characterization holds for programs in which distinct oracle queries
have the form H(t1; ·),H(t2; ·), . . . for distinct nonces ti.

We introduce an algebraic property of Linicrypt programs called a collision
structure, which completely characterizes both second-preimage resistance and
collision resistance. The presence of a collision structure in a program P can be
detected in polynomial time (in the size of P’s algebraic representation).

Theorem 1 (Main Theorem). Let P be a deterministic Linicrypt program
with distinct nonces, making n oracle queries. Let F be the underlying field (and
range of the random oracle). Then the following are equivalent:

1. There is an adversary A making q oracle queries that finds collisions with
probability more than (q/n)2n/|F|.

2. There is an adversary A making q oracle queries that finds second preimages
with probability more than (q/n)n/|F|.

3. There is an adversary A making at most 2n oracle queries that finds second
preimages with probability 1.

4. P either has a collision structure or is degenerate. (See main text for
definitions)

We emphasize that the theorem statement refers to standard security
properties (i.e., security against arbitrary, computationally unbounded algo-
rithms that make only a polynomial number of queries to the random oracle) of
Linicrypt constructions. We are not in a heuristic model that considers Linicrypt
adversaries.

Our results show that second-preimage resistance and collision resistance are
equivalent, in an asymptotic sense (i.e., considering only whether a quantity
is negligible or not). However, as might be expected, it is quadratically easier
to find collisions than second preimages, due to birthday attacks. Our concrete
bounds reflect this. In practice, reducing security to second-preimage resistance
rather than collision resistance can result in constructions with 50% smaller
parameters; e.g., [2,6,8].

1.1 Related Work and Comparison

Bellare and Micciancio [1] discuss the collision resistance of the function
H∗(x1, . . . , xn) = H(1;x1)⊕· · ·⊕H(n;xn), where H is collision-resistant. Indeed,
this function is naturally modeled in Linicrypt over a field GF (2λ). They show
that this function fails to be collision-resistant if n is allowed to vary with the
input (in particular, when n ≥ λ+1). Our characterization shows that an adver-
sary making q oracle queries breaks collision resistance with probability bounded
by (q/n)2n/2λ since the function lacks a “collision structure.” These two results
are not in conflict, since our bound is meaningless when n ≥ λ + 1. In short,
the Linicrypt model is best suited for programs whose only dependence on the
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security parameter is the choice of field, but where (in particular) the number
of inputs and calls to H are fixed constants.

Another related work is that of Wagner [13], who gives an algorithm for
a generalized birthday problem. The problem (translated to our notation) is to
find x1, . . . , xk such that H(x1)⊕· · ·⊕H(xk) = 0. The case of k = 2 corresponds
to the well-known birthday problem. One can see that by generating a list Li of
roughly 2λ/k candidates for each xi (i.e., so |L1×· · ·×Lk| ≥ 2λ), there is likely to
exist some solution to the problem. Wagner’s focus is on the algorithmic aspect
of actually identifying the appropriate candidates. In Linicrypt, all adversaries
are considered to be computationally unbounded but bounded in the number
of queries to the random oracle H. As such, our results do not provide any
upper/lower bounds on attack complexity (other than in random oracle query
complexity).

Black, Rogaway and Shrimpton [3] categorize 64 ways to construct a com-
pression function (suitable for Merkle-Damg̊ard hashing) from an ideal cipher,
building on prior work by Preneel, Govaerts and Vandewalle [12]. These con-
structions can be thought of as GF (2λ)-Linicrypt programs that use only XOR
(e.g., linear combinations with coefficients of 0 or 1 only). However, the reason-
ing is tied to the ideal cipher model rather than the random oracle model, as in
Linicrypt (see Sect. B.3 for more information). We leave it as interesting future
work to extend results in Linicrypt to the ideal cipher model, and potentially
re-derive the characterization of BRS from a linear-algebraic perspective.

2 Preliminaries

We write scalar field elements as lowercase non-bold letters (e.g., v ∈ F). We
write vectors as lowercase bold letters (e.g., q ∈ F

n). We write matrices as
uppercase bold letters (e.g., M ∈ F

n×m). We write vector inner product as q ·v,
and matrix-vector multiplication as M × v or Mv.

2.1 Linicrypt

The Linicrypt model was introduced in [5]. We present a brief summary of the
model and its important properties.

A Linicrypt program (over field F) is one in which every intermediate value
is an element of F, and the program is a fixed, straight-line sequence of the
following kinds of operations:

– Call a random oracle (whose inputs/outputs are field elements).
– Sample a random field element.
– Combinine existing values using a fixed linear combination.

The sequence of operations (including choice of arguments to the oracle, coeffi-
cients of linear combinations, etc.) is entirely fixed. In particular, these cannot
depend on intermediate values in the computation.
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The only source of cryptographic power in Linicrypt is the random oracle,
whose outputs are F-elements. We therefore require the size of the field |F| to be
exponential in the security parameter λ. Since the field depends on the security
parameter, we sometimes write F = Fλ to make the association explicit.

If the field depends on the security parameter, then the program does too
(since it is parameterized by specific coefficients of linear combinations). One
can either consider a Linicrypt program to be a non-uniform family of programs
(one for each choice of field/security parameter), or one can fix all coefficients
in the program from ˜F which is a subfield of every Fλ (for example, a program
that uses only {0, 1} coefficients can be instantiated over any field GF (2λ)). Our
treatment of security is concrete (not asymptotic), so these distinctions are not
important in this work.

We can reason about Linicrypt programs in the following algebraic way. Let
P be such a program, and let v1, . . . , vn denote all of its intermediate variables.
Say the first k of them are P’s input and the last l of them are P’s output. We
say that vi is a base variable if vi is either an input variable, the result of a
call to the oracle, or the result of sampling a field element. All variables can
therefore be expressed as a fixed linear combination of base variables.

Let vbase denote the vector of all base variables. For each variable vi, let ri

denote the vector such that vi = ri · vbase. For example, for base variables, ri is
a canonical basis vector (0s everywhere except 1 in one component).

Suppose the output of P consists of vn−l+1, . . . , vn. Then the output matrix

of P is defined as: M
def=

⎡

⎢

⎣

rn−l+1

...
rn

⎤

⎥

⎦
. This matrix captures the fact that P’s output

can be expressed as M × vbase.
Each oracle query in P is of the form “vi := H(t; vi1 , . . . , vim),” where t is a

string (e.g., nonce) and i1, . . . , im < i are indices, all fixed as part of P. For each

such query we define an associated oracle constraint c =

⎛

⎜

⎝
t,

⎡

⎢

⎣

ri1
...

rim

⎤

⎥

⎦
, ri

⎞

⎟

⎠
. In

other words, an oracle constraint (t,Q,a) captures the fact that if the oracle is
queried as H(t;Q × vbase), then the response is a · vbase. When t is the empty
string, we often omit it from our notation and simply write H(·) instead of
H(ε; ·).

The algebraic representation of P is P = (M , C), where M is the output
matrix of P and C is the set of all oracle constraints. Indeed, these two pieces of
information completely characterize the behavior of P (as established in [5]).
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Example. In this work we focus on deterministic Linicrypt programs. One such
example is given below. Its base variables are (v1, . . . , v5, v7).

PH(v1, v2, v3):
v4 := H(foo; v1)
v5 := H(bar; v3)
v6 := v4 + v5 + v2
v7 := H(foo; v6)
v8 := v7 + v1
return (v8, v5)

⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1
v2
v3
v4
v5
v6
v7
v8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1
v2
v3
v4
v5
v7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Hence, the algebraic representation of P is:

M =
[

1 0 0 0 0 1
0 0 0 0 1 0

]

; C =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

foo, [1 0 0 0 0 0], [0 0 0 1 0 0]
)

,
(

bar, [0 0 1 0 0 0], [0 0 0 0 1 0]
)

,
(

foo, [0 1 0 1 1 0], [0 0 0 0 0 1]
)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

2.2 Security Definitions

The Linicrypt model is meant to capture a special class of construction, but
not adversaries. In this work we characterize standard security definitions,
against arbitrary (i.e., not necessarily Linicrypt) adversaries. As in Impagliazzo’s
“Minicrypt” [9] we consider computationally unbounded adversaries that are
bounded-query: they make only at most p(λ) queries to the random oracle, for
some polynomial p.

Definition 2. Let P be a Linicrypt program over a family of fields F = (Fλ)λ.
Then P is (q, ε)-collision-resistant (in the random oracle model) if for
all q-query adversaries A, Pr[ColGame(P,A, λ) = 1] ≤ ε, where:

ColGame(P,A, λ):
instantiate a random oracle H : {0, 1}∗ × (Fλ)∗ → Fλ

(x,x′) ← AH(λ)
return (x 	= x′) ∧ (PH(x) = PH(x′))

Definition 3. Let P be as above (with k inputs). P is (q, ε)-2nd-preimage-
resistant (in the random oracle model) if for all q-query adversaries A,
Pr[2PIGame(P,A, λ) = 1] ≤ ε, where:

2PIGame(P,A, λ):
instantiate a random oracle H : {0, 1}∗ × (Fλ)∗ → Fλ

x ← (Fλ)k

x′ ← AH(λ,x)
return (x 	= x′) ∧ (PH(x) = PH(x′))
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3 Characterizing Collision-Resistance in Linicrypt

We now present our main technical result, which is a characterization of collision-
resistance for Linicrypt programs.

In order to simplify the notation, we present the results for the special case
of Linicrypt programs that make 1-ary calls to H. That is, every call to H
is of the form H(t; v) for a single v ∈ F (note that Linicrypt supports more
general calls of the form H(t; v1, . . . , vk)). With this simplification, every oracle
constraint has the form (t, q,a) where q is a simple vector (rather than a matrix
as in the most general form).

This special case simplifies the notation required to express our theo-
rems/proofs, but does not gloss over any meaningful complexity. Later in
Sect. B.1 we discuss what minor changes are necessary to extend these results to
the unrestricted general case.

3.1 Easy Case: Degeneracy

Some Linicrypt programs allow easy collisions. Consider the program PH(x, y) =
H(x+y). An obvious collision in P is PH(x, y) = PH(x+z, y−z) for any z 	= 0.
What makes this program particularly easy to attack is that not only do the
two computations give the same output, but they query H on exactly the same
points. In other words, the input of P is not uniquely determined by its sequence
of oracle queries along with its outputs.

Definition 4. Let P = (M , C) be a Linicrypt program with k inputs. In the
algebraic representation, P’s inputs are associated with canonical basis vectors
e1, . . . ,ek (ei has 0s everywhere except a 1 in the ith component). We say that
P is degenerate if

span(e1, . . . ,ek) 	⊆ span
(

{q | (t, q,a) ∈ C} ∪ rows(M)
)

Lemma 5. If P is degenerate, then second preimages can be found with
probability 1.

Proof. Given an input x for P in the second preimage game, compute the base
variables v in the computation of PH(x). If P is degenerate, there must exist
two (actually, at least |Fλ|) solutions for the input x′ that are consistent with
{q · v | (t, q,a) ∈ C} ∪ {r · v | r ∈ rows(M)}. Such an x′ will clearly lead PH to
make the same oracle queries and give the same output.

3.2 Running Example: An Interesting Second-Preimage Attack

Consider the example program below. In fact, it is the example from Sect. 2.1
but with the nonces omitted and most intermediate variables unnamed:

PH(x, y, z):
w := H(x) + H(z) + y
return

(

H(w) + x, H(z)
)
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Suppose we are given x, y, z and are asked to find a second preimage x′, y′, z′

with PH(x, y, z) = PH(x′, y′, z′). Here is how to do it:

1. The second component of P’s output is H(z). Since we cannot hope to find
a second preimage directly in H, we must set z′ = z.

2. The key insight is to now set w′ 	= w arbitrarily (hence, why we gave this value
a name). We make a promise to choose x′, y′ so that w′ = H(x′)+H(z′)+y′.

3. To have a collision, we must have H(w′) + x′ = H(w) + x. Importantly, x′ is
the only unknown value in this expression, and it is possible to simply solve
for x′.

4. It is time to fulfill the promise that w′ = H(x′) + H(z′) + y′. Since w′, x′, z′

are already fixed, we can solve for y′.

Note that we are guaranteed that (x, y, z) 	= (x′, y′, z′) since the two computa-
tions of P lead to different intermediate values w 	= w′ (and P is deterministic).

Perspective. This example is representative of how second preimages can be
computed in arbitrary Linicrypt programs. Given an input x for PH , we compute
a second preimage x′ by focusing on the oracle queries that PH(x) and PH(x′)
will make:

1. Designate some of the oracle queries to take the same values in both PH(x)
and PH(x′). In our example, we decided that the oracle query H(z) would
take the same values in both computations.

2. Identify the first query that we will assign different values in the two compu-
tations. Set the input to this query arbitrarily in PH(x′). In our example, we
identify the H(w) query to take on different values and set w′ 	= w arbitrarily.

3. Repeatedly make followup oracle queries as they become possible, while using
linear algebra to solve for other intermediate values. In our example, we call
H(w′), which allows us to solve for x′, which allows us to call H(x′), which
allows us to solve for y′.

3.3 Collision Structures for Finding Second Preimages

We have given a rough outline of how (we claim) Linicrypt second preimages
must be found. The next step is to formalize what is required of P in terms of
its algebraic representation.

In step 2 above, we identify a query whose input will be chosen arbitrarily.
Suppose that query corresponds to constraint (t, q,a). Since this is the first
value that is fixed differently in PH(x) and PH(x′), we must have q linearly
independent of the vectors that are already fixed by step 1. Otherwise it would
not be possible to find two consistent values for this query.

In steps 2 and 3 above, we repeatedly query H, and we have written the
attack outline to suggest we never get “stuck.” One way we could get stuck is
to make some query H(x′) for the first time, when we have already fixed (either
directly or indirectly) what H(x′) must be. If this is the case, then we cannot
succeed with probability better than 1/|Fλ|. To avoid this case, every query we
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make in steps 2 & 3 of the outline must correspond to a constraint (t, q,a) where
a is linearly independent of the values that have already been fixed.

The following definition formalizes these algebraic intuitions:

Definition 6. Let P = (M , C) be a Linicrypt program. A collision structure
for P is a tuple (i∗; c1, . . . , cn), where:

1. c1, . . . , cn is an ordering of C, and we write ci = (ti, qi,ai).
2. qi∗ 	∈ span

(

{q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M)
)

3. For j ≥ i∗: aj 	∈ span
(

{q1, . . . , qj} ∪ {a1, . . . ,aj−1} ∪ rows(M)
)

Connecting to the previous intuition, a collision-finding attack will let oracle
queries c1, . . . , ci∗−1 be the same in both executions PH(x) and PH(x′). Then
ci∗ is the first oracle query that the attack fixes differently for the two executions.
Property (2) of the definition ensures that it is possible to find 2 query values
that are consistent with the previously fixed values. Property (3) captures the
fact that from this point forward, no query should be forced to result in an
output value that has already been fixed.

Running Example. We now revisit the running example from before, to illustrate
a collision structure for it. The base variables of this program are x, y, z, H(x),
H(z), H(w). Below is the algebraic representation of this program, with the
oracle constraints arranged to show a collision structure (we do not write the
empty nonces of the oracle constraints):

x y z H(x) H(z) H(w)

M =
[

1 0 0 0 0 1
]

0 0 0 0 1 0
q1 = [ 0 0 1 0 0 0 ]

H(z)
a1 = [ 0 0 0 0 1 0 ]

qi∗ = q2 = [ 0 1 0 1 1 0 ]
H(w) = H(y + H(x) + H(z))

ai∗ = a2 = [ 0 0 0 0 0 1 ]
q3 = [ 1 0 0 0 0 0 ]

H(x)
a3 = [ 0 0 0 1 0 0 ]

This ordering of queries is indeed a collision structure since:

– q2 is linearly independent of all vectors above it in this diagram.
– a2 is linearly independent of all vectors above it in this diagram.
– a3 is linearly independent of all vectors above it in this diagram.

Second-Preimage-Finding Algorithm. In Fig. 1 we give an algorithm that finds
second preimages by following the intuitive strategy above, from a given collision
structure.
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Fig. 1. Method for computing second preimages

Lemma 7. If a collision structure (i∗; c1, . . . , cn) exists for P, and P is not
degenerate, then the second-preimage resistance of P is comprehensively broken.
Specifically, let A refer to FindSecondPreimage(P, (i∗; c1, . . . , cn), ·). Then:

Pr
[

2PIGame(P,A, λ) = 1
]

= 1

Proof. Given x, the goal is to compute a second preimage x′. The computation
of PH(x′) has a certain set of base variables v′, and it suffices to compute those
instead since x′ = (e1 · v′, . . . ,ek · v′). The attack FindSecondPreimage fixes one
linear constraint of v′ at a time, until v′ is completely determined.

It suffices to show the following about the behavior of FindSecondPreimage:

1. It computes a different set of base variables v′ than those of PH(x).
2. It never adds incompatible (unsatisfiable) linear constraints on v′.
3. Values v′ are consistent with H. Namely, if (t, q,a) ∈ C, then H(t; q · v′) =

a · v′.
4. By the end of the computation, enough constraints have been added to com-

pletely determine v′.

Property 1 holds since qi∗ · v 	= qi∗ · v′ by design. Regarding property 2:

– The constraints on v′ that are added for M and in the first for-loop are
self-consistent—by construction they already have a valid solution in v.

– The constraint involving qi∗ is compatible with the previous constraints since
qi∗ is linearly independent of the previous constraint vectors {q1, . . . , qi∗−1}∪
{a1, . . . ,ai∗−1} ∪ rows(M), by the collision structure property.
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– Similarly, a constraint involving qi for i ≥ i∗ (if-statement within last for-
loop) is only added in the case that qi is linearly independent of the previous
constraint vectors.

– The constraint involving ai in the second for-loop is consistent since ai is lin-
early independent of existing constraint vectors, again by the collision struc-
ture property.

Fig. 2. Method for finding collision structures in a Linicrypt program.

Regarding property 3: for oracle constraints ci with i < i∗, consistency with H
is ensured by agreeing with the existing values v. For constraints ci with i ≥ i∗,
consistency is guaranteed since the second for-loop actually calls H to determine
the consistent way to constrain ai · v′.

Property 4 follows from the fact that P is not degenerate. We can see that
M × v′ and q · v′ are fixed/determined by the end of the computation, for all
(t, q,a) ∈ C. Non-degeneracy implies that the input of P (and hence all base
variables) is uniquely determined.

3.4 Efficiently Finding Collision Structures

In this section we show that it is possible to efficiently determine whether a
Linicrypt program has a collision structure, by analyzing its algebraic represen-
tation. The algorithm for finding a collision structure is given in Fig. 2.
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Lemma 8. FindColStruct(P) (Fig. 2) outputs a collision structure for P if and
only if one exists. Furthermore, the running time of FindColStruct is polynomial
(in the size of P’s algebraic representation).

In the interest of space, the proof is deferred to Appendix A.

3.5 Breaking Collision Resistance Implies Collision Structure

So far our discussion has centered around the relationship between collision
structures and second-preimage resistance. We now show that if P fails to be even
collision resistant (in the random oracle model), then it has a collision structure.
The main approach is to observe the oracle queries made by an arbitrary attacker
(who computes a collision), and “extract” a collision structure from these queries.

The results in this subsection hold only for the following subclass of Linicrypt
programs. In Sect. B.2 we discuss specifically why the results are restricted to
this subclass.

Definition 9. Let P = (M , C) be a Linicrypt program, with C = {(t1, q1,a1),
. . . , (tn, qn,an)}. If all of {t1, . . . , tn} are distinct then we say that P has dis-
tinct nonces.

Lemma 10. Let P be a deterministic Linicrypt program with distinct nonces
that makes n oracle queries. Let A be an oracle program that makes at most N
oracle queries. If

Pr[ColGame(P,A, λ) = 1] >

(

N

n

)2n

/|Fλ|

or if Pr[2PIGame(P,A, λ) = 1] >

(

N

n

)n

/|Fλ|

then P either has a collision structure or is degenerate.

Proof. Without loss of generality, we can assume the following about A:

– Let (x,x′) be the two preimages from the games (in 2PIGame A gets x as
input and gives x′ as output; in ColGame A outputs both x and x′). We
assume that AH has made the oracle queries that PH(x) and PH(x′) will
make. In ColGame this can be achieved by modifying A to run these two
computations as its last action. In 2PIGame this can be achieved by having
A run PH(x) as its first action and PH(x′) as its last action.

– A never repeats a query to H. This can be achieved by simple memoization.
Note that when A runs, say, PH(x′) as its last action, some of those oracle
queries may have been made previously.

– AH can actually output (v,v′), where v is the set of base variables in the
computation of PH(x), and v′ the base variables in PH(x′). This is because
the base variables are computed during the process of running PH(x) and
PH(x′).
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Note that the base variables have the following property. Let c = (t, q,a) be one
of the oracle constraints of P. Then the computation PH(x) (and hence AH as
well) at some point makes an oracle query H(t, q · v) and gets a response a · v.

From these assumptions, whenever A outputs a successful collision there exist
well-defined mappings T, T ′ : C → N such that:

– For every constraint c = (t, q,a) ∈ C, the T (c)th query made by AH is the
one corresponding to oracle constraint c in the computation of PH(x). In
other words, it is the query in which AH “decided” what q ·v should be (and
learned what a · v was as a result of the query).

– Similarly, the T ′(c)th query made by AH is the one corresponding to oracle
constraint c in the computation of PH(x′). This is the query in which q · v′

was determined.

How many possible mappings (T, T ′) are there if A makes N oracle queries? Let
Ni be the number of oracle queries that A makes which have nonce ti. Since the
nonces are distinct, we have

∑

i Ni ≤ N . There are only Ni choices for how T or
T ′ can map T (ci). Hence there are at most

∏n
i=1 N2

i possible (T, T ′) mappings.
However, in the 2PIGame, the mapping T is completely fixed since we assume A
performs the computation PH(x) as its first action. In that case, there are only
∏n

i=1 Ni choices of the mapping T ′. These products are maximized when each
Ni = N/n, so we get an upper bound of (N/n)2n possible (T, T ′) mappings in
the ColGame and (N/n)n mappings in the 2PIGame.

Applying the pigeonhole principle and uniting both cases from the statement
of the lemma (collision game and second preimage game), there is a specific
(T, T ′) such that:

Pr[AH outputs a valid collision while using mappings (T, T ′)] > 1/|Fλ|

For the rest of the proof, we condition on the event that A computes a collision
while using this specific mapping (T, T ′). This is without loss of generality by
making A, as its final action, output ⊥ if it observes that some different mapping
is used. Hence we can view the association between oracle calls of P and A as
fixed a priori. That is, we can know in advance that a particular oracle call of
A will determine the value of q · v (or q · v′) for a specific q.

For some c ∈ C, if T (c) = T ′(c), then we call c convergent. In this case,
PH(x) and PH(x′) make the same c-query and receive the same output. In other
words, under such a mapping T, T ′, adversary AH will choose that q ·v = q ·v′. If
T (c) 	= T ′(c), we call c divergent—PH(x) and PH(x′) make different c-queries,
i.e., q · v 	= q · v′.

If all c ∈ C are convergent, then two distinct inputs x and x′ cause P to
make identical oracle queries and give identical output. Hence P is degenerate,
and we are done. We continue assuming that some query is divergent, and will
conclude that P has a collision structure.

Define finish(c) = max{T (c), T ′(c)}. Note that since P has distinct nonces,
an oracle query made by A cannot be associated with more than one c ∈ C.
Hence finish is an injective function.
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We obtain a collision structure for P as follows. Order the oracle constraints
in C as (c1, . . . , cn), where all of the convergent queries come first, followed by
the divergent queries ordered by increasing finish time. Let i∗ be the index of
the divergent query with earliest finish time. Then:

– i∗ ≤ i ⇔ ci is divergent
– i∗ ≤ i < j ⇔ finish(i) < finish(j)

Claim. (i∗; c1, . . . , cn) is a collision structure for P.

In the following, we write each oracle constraint ci as ci = (ti, qi,ai).
For j < i∗, the query cj is convergent so we have qj · v = qj · v′ and

aj · v = aj · v′. Since the outputs of the two executions of P are also identical,
we also have Mv = Mv′. Since ci∗ is divergent, we have qi∗ · v 	= qi∗ · v′. From
this we conclude that:

qi∗ 	∈ span
(

{q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M)
)

.

This is the first property required of a collision structure.
It remains to show that for all i > i∗,

ai 	∈ span
(

{q1, . . . , qi} ∪ {a1, . . . ,ai−1} ∪ rows(M)
)

.

Suppose for contradiction that the above is false, and that we actually have:

ai =
∑

j≤i

αjqj +
∑

j<i

βjaj + γM

Focus on the moment when A has asked its finish(ci)th query and is awaiting the
response from H. By symmetry, suppose finish(ci) = T ′(ci), so that this query
is on qi · v′; the result of the query will be assigned to ai · v′. At this moment:

– All queries cj for i∗ ≤ j < i are finished. This means that the oracle queries
of AH have already determined qj · v, aj · v, qj · v′, and aj · v′. Further,
the queries (but not responses) of oracle constraint ci have been fixed as
well—these values are qi · v and qi · v′.

– ai ·v has already been fixed, since this happened at time T (ci) < T ′(ci). But
ai · v′ is about to be chosen as a uniform field element.

Now consider the expression ai · (v′ − v):

ai · (v′ − v) =
∑

j≤i

αjqj · (v′ − v) +
∑

j<i

βjaj · (v′ − v) + γM(v′ − v)

For j < i∗ we know that query cj is convergent. This implies that qj ·(v′−v) = 0
and aj · (v′ − v) = 0. We also know that M(v′ − v) = 0, in the case that AH is
successful generating a collision. Cancelling these terms gives:

ai · (v′ − v) =
i
∑

j=i∗
αjqj · (v′ − v) +

i−1
∑

j=i∗
βjaj · (v′ − v)
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Isolating ai · v′ gives:

ai · v′ = −ai · v +
i
∑

j=i∗
αjqj · (v′ − v) +

i−1
∑

j=i∗
βjaj · (v′ − v)

But all terms on the right-hand side have already been fixed, while the term on
the left is chosen uniformly in F. So equality holds with probability 1/|Fλ|. This
contradicts the assumption that A succeeds with strictly greater probability.

3.6 Putting Everything Together

Our main characterization shows that second-preimage resistance and collision
resistance coincide for this class of Linicrypt programs, in a very strong sense:

Theorem 11. Let P be a deterministic Linicrypt program with distinct nonces,
making n oracle queries. Then the following are equivalent:

1. There is an adversary A making N oracle queries such that

Pr[ColGame(P,A, λ) = 1] >

(

N

n

)2n

/|Fλ|.

2. There is an adversary A making N oracle queries such that

Pr[2PI(P,A, λ) = 1] >

(

N

n

)n

/|Fλ|.

3. There is an adversary A making at most 2n oracle queries such that

Pr[2PIGame(P,A, λ) = 1] = 1.

4. P either has a collision structure or is degenerate

Corollary 12. The collision resistance (equivalently, second-preimage resis-
tance) of deterministic, distinct-nonce Linicrypt programs P can be decided in
polynomial time (in the size of P’s algebraic representation).

Proof. Using standard linear algebraic operations (e.g., Gaussian elimination),
one can check P for degeneracy or for the existence of a collision structure in
polynomial time.

4 A Simple Application

We can illustrate the use of our main theorem with a simple example application.
Suppose we have access to a random oracle which is compressing by a factor of
2-to-1. In the Linicrypt notation, this would be an oracle that takes 2 field
elements (and the oracle nonce) as input and produces one field element as
output—H : {0, 1}∗ × F

2 → F. If we require a collision resistant function that
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compresses by k-to-1 (for some fixed k), the following natural Merkle-Damg̊ard-
style iterative hash comes to mind:

PH(x1, x2, . . . , xk):
y1 := x1

y2 := H(2; y1, x2)
y3 := H(3; y2, x3)

...
yk := H(k; yk−1, xk)
return yk

The algebraic representation of this program is:

x2 x3 · · · xk y1 y2 y3 · · · yk−1 yk

M = [ 0 0 · · · 0 0 0 0 · · · 0 1 ]

Q2 =
[

0 0 · · · 0 1 0 0 · · · 0 0
]

1 0 · · · 0 0 0 0 · · · 0 0
a2 = [ 0 0 · · · 0 0 1 0 · · · 0 0 ]

Q3 =
[

0 0 · · · 0 0 1 0 · · · 0 0
]

0 1 · · · 0 0 0 0 · · · 0 0
a3 = [ 0 0 · · · 0 0 0 1 · · · 0 0 ]

...

Qk =
[

0 0 · · · 0 0 0 0 · · · 1 0
]

0 0 · · · 1 0 0 0 · · · 0 0
ak = [ 0 0 · · · 0 0 0 0 · · · 0 1 ]

We have numbered the oracle constraints so that constraint (i,Qi,ai) corre-
sponds to the statement “yi := H(i; yi−1, xi)” in P.

To determine whether this program is collision-resistant, we execute the Find-
ColStruct algorithm.1 Initially all oracle constraints start in the set LEFT, and
RIGHT starts out empty. The first loop in FindColStruct moves oracle constraints
from LEFT to RIGHT whenever their ai value is linearly independent of all other
vectors appearing in LEFT (the multiset of vectors is represented as the variable
V in FindColStruct).

In this program, every ai vector is zeroes everywhere except for a 1 corre-
sponding to the “yi” column. Also note that ak is identical to M , and ai (for
i < k) appears as the first row of Qi+1 (see the example with a2 and Q3 above).
In other words, every ai is always in the span of other vectors appearing in
LEFT, so no oracle constraint will ever be added to RIGHT.

Hence, FindColStruct will terminate with RIGHT = ∅ and return ⊥. From our
main characterization, this proves that the function is collision-resistant.

1 Look ahead to Appendix B.1 to see how the characterization and FindColStruct are
modified to support a random oracle with arity 2, as we have in this case.
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5 Extensions, Limitations, Future Work

In Appendix B we discuss several extensions and limitations of our techniques:

– How the results generalize to oracle calls that take several field elements as
input (results as stated in previous sections consider a random oracle of the
form H : {0, 1}∗ × F → F).

– Why the restriction to distinct nonces is significant, and how repeated nonces
make the picture more complicated.

– Extending the work to support the ideal cipher model instead of the random
oracle model.

A Proofs

Proof (Proof of Lemma 8). Some useful invariants in FindColStruct are that at
any time, LEFT ∪ RIGHT = C and V is a multiset of the vectors appearing in
rows(M) and LEFT. Note that FindColStruct works in two phases: it starts with
all oracle queries in LEFT and in the first phase moves some to RIGHT. In the
second phase, it moves some of the oracle queries back into LEFT.

(⇒) First, we argue that if FindColStruct(P) = (i∗; c1, . . . , cn) 	= ⊥, then
this output is indeed a collision structure. Write each oracle constraint ci as
ci = (ti, qi,ai).

– At the time the second while-loop terminates, we must have qi∗ 	∈
span(V ) since otherwise ci∗ would have been moved to LEFT. But V =
{q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M), so this establishes one of the
required properties of a collision structure.

– For j ≥ i∗, consider the time at which cj is about to be added to RIGHT in
the first while-loop (i.e., the point that the while loop body is entered). At
that point, LEFT = {c1, . . . , cj}, so V contains {q1, . . . , qj} ∪ {a1, . . . ,aj} ∪
rows(M). Since the while-loop condition is fulfilled, we have

aj 	∈ span(V \ {aj}) = span
(

{q1, . . . , qj} ∪ {a1, . . . ,aj−1} ∪ rows(M)
)

which is the other condition required for a collision structure.

(⇐) For the other direction, suppose (i∗, c1, . . . , cn) is some collision structure
for P. We will show that the algorithm adds ci∗ , . . . , cn to RIGHT in the first
phase, but does not move ci∗ back to LEFT in the second phase. This implies
that the algorithm terminates with |RIGHT| 	= ∅, so by the previous reasoning
it outputs some valid collision structure (perhaps different than the collision
structure we are assuming exists).

The fact that ci∗ , . . . , cn are added to RIGHT in the first phase is essentially
the converse of what was shown above. For example, the collision structure
property is that an 	∈ span

(

{q1, . . . , qn} ∪ {a1, . . . ,an−1} ∪ rows(M)
)

, imply-
ing that cn can trigger the while-loop and be added to RIGHT immediately.
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Note that even if other constraints are added to RIGHT in this phase, it only
makes V smaller, so only causes the condition to check a smaller span than in
the collision-property definition. A simple inductive argument establishes that
ci∗ , . . . , cn are eventually added to RIGHT.

Since {ci∗ , . . . , cn} ⊆ RIGHT after the first phase, we must have LEFT ⊆
{c1, . . . , ci∗−1} after the first phase. We want to show that ci∗ is never placed
back into LEFT. For the sake of contradiction, suppose not. Define S to be a set
of indices such that LEFT = {ci | i ∈ S} at the time ci∗ is about to be moved
into LEFT. Then qi∗ ∈ span(rows(M) ∪ {qi,ai | i ∈ S}). We can then write:

qi∗ =
∑

j∈S

αjqj +
∑

j∈S

βjaj + γM

For j > i∗, the constraint cj was previously in RIGHT and was moved back into
LEFT. The only way to be moved back into LEFT is for qj to be in the span of
other vectors already in LEFT (and hence already on the right-hand side of this
expression). Hence, without loss of generality we can remove the terms involving
qj for j > i∗, to obtain:

qi∗ =
∑

j∈S\{i∗,...,n}
α′

jqj +
∑

j∈S

β′
jaj + γ′M

Let j∗ be the highest j ∈ S for which β′
j 	= 0. There are two cases.

Case j∗ < i∗: Then all of the nonzero terms qj ,aj on the right-hand side
have subscript less than i∗. This contradicts the fact (from the original collision
structure) that qi∗ 	∈ span(rows(M) ∪ {qj ,aj | j < i∗}).

Case j∗ > i∗: We can solve for aj∗ in the above expression, yielding:

aj∗ = − 1
β′

j∗

⎛

⎝

∑

j∈S\{i∗,...,n}
α′

jqj − qi∗ +
∑

j∈S\{j∗}
β′

jaj + γ′M

⎞

⎠

But now all nonzero qj and aj terms on the right-hand side have subscript less
than j∗. This contradicts the fact (from the original collision structure) that
aj∗ 	∈ span({qj | j < j∗} ∪ {aj | j < j∗} ∪ rows(M)).

In either case we have a contradiction to the claim that ci∗ is moved back
into LEFT. Since the algorithm terminates with at least ci∗ ∈ RIGHT, it outputs
some valid collision structure.

B Extensions, Limitations, Future Work

B.1 Generalizing to Higher Arity

For simplicity our results were proven for Linicrypt programs in which all oracle
calls have arity 1. That is, H : {0, 1}∗ × F → F, and all oracle constraints have
the form (t, q,a) where q is a single row. This reflects a program that always
queries the oracle as H(t; v) where v is a single field element.
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More generally, Linicrypt allows calls to H with multiple field elements as
arguments. This leads to oracle constraints of the form (t,Q,a) where Q is now
a matrix. We briefly discuss the changes necessary to support such programs.
Basically, whenever the definitions (of degeneracy & collision structure) or algo-
rithms (to find a second preimage or to find a collision structure) refer to q, the
analogous condition should hold with respect to all rows of Q.

The generalized definition of degeneracy (Definition 4) is that:

span(e1, . . . ,ek) 	⊆ span
(

⋃

(t,Q ,a)∈C
rows(Q) ∪ rows(M)

)

The generalized definition of collision structure (Definition 6) requires the
following change:

2. rows(Qi∗) 	⊆ span
(

rows(Q1)∪· · ·∪ rows(Qi∗−1)∪{a1, . . . ,ai∗−1}∪ rows(M)
)

3. For j ≥ i∗: aj 	∈ span
(

rows(Q1)∪· · ·∪ rows(Qj)∪{a1, . . . ,aj−1}∪ rows(M)
)

Specifically, for item (2) it is enough if any row of Qi∗ is not in the given span.
In the FindSecondPreimage algorithm (Fig. 1), there are times when the algo-

rithm chooses qj · v′ arbitrarily. This happens when such a constraint would be
linearly independent of the existing constraints on v′. In the analogous gener-
alized case, we might have only some of the rows of Qj linearly independent of
the existing constraints. In that case, some of the components of Qj × v′ are
already fixed. We obviously cannot choose these arbitrarily—only the uncon-
strained positions in Qj × v′ are fixed arbitrarily. One can verify that the algo-
rithm only attempts to arbitrarily fix some values if there is some row of Qj

linearly independent with existing constraints on v′.
In the FindColStruct algorithm (Fig. 2) we let V now contain Q-matrices as

well as simple a-vectors. Then we overload notation so that span(V ) considers
the span of all of the rows of all matrices/vectors in V . The second “while”
condition is modified as follows:

while ∃(t,Q,a) ∈ RIGHT such that rows(Q) ⊆ span(V )

In other words, (t,Q,a) is moved from LEFTto RIGHTif all rows of Q are spanned
by V .

With these modifications, all proofs in Sect. 3 go through with straight-
forward modifications.

B.2 Why the Restriction to Distinct Nonces?

The main characterization holds for Linicrypt programs with distinct nonces. It
is instructive to understand why the results are limited in this way. Specifically,
where do we use the property of distinct nonces?

Suppose A breaks the collision-resistance of P. We observe the oracle queries
made by A and obtain a mapping between these queries and the ones made in
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PH(x) and PH(x′). When the nonces are distinct, a query made by A can only
be associated with a unique oracle constraint c ∈ C. When the nonces are not
distinct, a single query of A can serve double-duty and correspond to two oracle
constraints of P. This indeed causes the argument to break down.

We illustrate with the two example Linicrypt programs:

PH
1 (x, y) = H(2,H(1, x)) − H(3, y)

PH
2 (x, y) = H( H( x)) − H( y)

The first has distinct nonces and is indeed collision resistant (it has no collision
structure). The second program is not collision-resistant, because PH

2 (x,H(x)) =
0 for all x. In other words, (x,H(x)) and (x′,H(x′)) constitute a collision.

When given inputs of this form, P2 makes duplicate queries—both H(H(x))
(the outermost H-call) and H(y) receive the same argument. In our previous
proofs, we would observe the adversary making such a query, which would have
to be associated with two distinct oracle constraints.

Another way of seeing what happens is that in the algebraic representation
of P2, the base variables H(x) and y correspond to independent vectors. In this
case, the adversary’s choice of inputs causes these vectors to coincide, and this
has the effect of “collapsing” two oracle queries.

Interestingly, it is possible to give an ad-hoc argument that P2 is second-
preimage resistant. When x and y are chosen uniformly, this has the effect of
keeping the vectors (in the algebraic representation) corresponding to H(x) and
y independent. We can then argue that the adversary doesn’t make any oracle
query that is associated with two distinct queries of P2, so the reasoning of our
main theorem also applies in this case. Hence, P2 demonstrates that our main
characterization is different for Linicrypt programs with non-distinct nonces.

B.3 Random Oracle vs Ideal Cipher

A natural application of collision resistance would be the constructions of
collision-resistant hash functions from an ideal cipher [3,12]. It should be pos-
sible to use Linicrypt to reason about constructions in the ideal cipher model,
although it would require non-trivial modifications. We could interpret E(k,m)
as H(E, k,m) and D(k, c) as H(D, k, c). The constraint that D(k,E(k,m)) = m
adds some extra structure that must be reflected in the algebraic representation.
For example, if a program P makes a query c = E(k,m), we must consider the
adversary’s ability to make this forward query but also its ability to make the
corresponding backwards query D(k, c). Both forward/backwards queries must
be considered before deeming the pair of queries E(k,m) and D(k, c) unreach-
able.

We do not foresee the transition to ideal cipher model to be particularly
problematic. However, the specific analysis of [3] shows several constructions of
hash functions from ideal ciphers where the round functions are not collision-
resistant, and yet their use in a Merkle-Damg̊ard construction gives a collision-
resistant result. So far, the theory of Linicrypt is not developed enough to reason



470 I. McQuoid et al.

about programs with looping constructs, as in an iterated hash function (despite
the fact that such reasoning happens to be tractable for the specific example in
Sect. 4).
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Abstract. At CRYPTO 2018, Cramer et al. introduced a secret-sharing
based protocol called SPDZ2k that allows for secure multiparty compu-
tation (MPC) in the dishonest majority setting over the ring of integers
modulo 2k, thus solving a long-standing open question in MPC about
secure computation over rings in this setting. In this paper we study
this problem in the information-theoretic scenario. More specifically, we
ask the following question: Can we obtain information-theoretic MPC
protocols that work over rings with comparable efficiency to correspond-
ing protocols over fields? We answer this question in the affirmative by
presenting an efficient protocol for robust Secure Multiparty Computa-
tion over Z/pk

Z (for any prime p and positive integer k) that is per-
fectly secure against active adversaries corrupting a fraction of at most
1/3 players, and a robust protocol that is statistically secure against an
active adversary corrupting a fraction of at most 1/2 players.

1 Introduction

Secure Multiparty Computation (MPC) is a technique that allows several parties
to compute any functionality in secret inputs, while revealing nothing more than
the output, even if an adversary corrupts t of the n parties.

Several flavors of MPC exist, depending on the desired security level and
threat model considered. A protocol is perfectly secure if an adversary’s view
of the protocol can be simulated given only his inputs and outputs, and where
the simulated view follows exactly the same distribution as the real view. It is
statistically secure if the statistical distance between the views is negligible in
a security parameter. We will say that a protocol is information-theoretically
secure if it is either perfectly or statistically secure.

MPC has been a very active area of research since the 1980s, beginning with
the seminal work of Yao on garbled circuits. Since then, many theoretical and
practical results have been found by the community, extending the knowledge
about what is possible, and increasing efficiency. However, almost all the progress
c© International Association for Cryptologic Research 2019
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has focused on arithmetic circuits over finite fields (even Boolean circuits are a
special case of this). On the other hand, it is clearly also interesting to securely
compute functions that are defined over other rings, such as Z/pk

Z, the ring
of integers modulo pk, where p is a prime and k is a positive integer. From a
practical point of view, for instance, computing modulo 232 or 264 is close to
what standard CPUs do. Closely matching the data format used by CPUs is an
advantage since one expects that when programming secure computation one
can reuse some of the techniques that CPUs use to run efficiently. Additionally,
bitwise operations like comparison or bit decomposition are expressed more nat-
urally modulo powers of 2, and are very fast when computed over these rings [1].

This observation has been confirmed in practice [13]. For example, for repli-
cated secret sharing, protocols over rings like Z/264Z can provide up to 8×
savings in runtime and memory usage with respect to the field counterpart for
some specific applications like neural network evaluation, which are heavy in
terms of comparisons [2].

Thus, the natural question is: can we design protocols that work directly over
Z/pk

Z and have efficiency close to what we can obtain for fields?
This question was solved recently in the setting of dishonest majority (i.e. t ≤

n−1), where cryptography is required to provide security, with the introduction
of the SPDZ2k protocol [8]. This protocol computes with computational security
circuits defined over the ring Z/2k

Z (in fact, 2 can be replaced by any prime).
This is achieved mainly by the introduction of information-theoretic MACs that
work over rings with zero divisors and non-invertible elements, like Z/pk

Z. The
efficiency is similar to the SPDZ and MASCOT protocols [12,14] which are
state-of-the-art for dishonest majority MPC over finite fields.

However, the question has remained open for the case of honest majority
where we can hope to get better (information-theoretic) security. It is also
expected that in this setting the computational efficiency improves due to the
fact that the computation needed for information-theoretically secure protocols
tends to be simpler, as it is independent of a computational security parameter.

1.1 Our Contributions

In this work we resolve the above open question. Our solution relies on several
key ingredients, which may be interesting in their own right. We give an overview
below.

The first ingredient is a new secret sharing scheme that allows us to do
“Shamir-style” sharing of elements in Z/pk

Z. We begin by noticing that Shamir
secret sharing works over Z/pk

Z as long as the secret is shared by at most p − 1
players. In order to accomodate more players whilst maintaining a constant p,
our key solution is to move to a Galois ring R = (Z/pk

Z[x])/(f(x)), where
f(x) ∈ (Z/pk

Z)[x] is a monic polynomial of degree d such that f(x) ∈ Fp[x], its
reduction modulo p, is irreducible. We get a secret-sharing scheme over R using
polynomial interpolation that works with pd − 1 parties, so using the fact that
R is a free module over Z/pk

Z of rank d, we can embed Z/pk
Z into the first

coordinate of R and get an arithmetic secret-sharing scheme for Z/pk
Z.



Efficient Information-Theoretic Secure Multiparty Computation 473

Since we need that pd is at least the number of players n, this incurs an
overhead of logp(n). To secret-share an element in Z/pk

Z in this manner, each
player gets an element in R as his share, which can be represented as log(n)
elements in Z/pk

Z.
In terms of computational complexity, sharing an element requires

O(n2polylog(n)) ring operations which is an improvement over the black-box
approach from [10]. It is known that the FFT-algorithms for operations over
degree-d finite field extensions, as well as operations on polynomials over such
fields, carry over to degree-d Galois rings, preserving quasi-linear (in d) compu-
tational complexity when working over our ring R [6].

For the remaining key ingredients, we distinguish between two models of
MPC: perfectly secure MPC with t < n/3 assuming secure channels, and statis-
tically secure MPC with t < n/2 in a setting where broadcast is given.

In the setting of perfectly secure MPC with t < n/3, we show that we can
efficiently perform robust reconstruction in the presence of errors, we show that
the hyperinvertible matrices needed in the protocol can be obtained over R can
be obtained by lifting them from the residue field, and we show how to get MPC
over Z/pk

Z by efficient verification of the inputs, using techniques from [7]. We
give the modifications needed to the protocol of [4], to obtain MPC over Z/pk

Z

with the communication complexity for a circuit C of size |C| of O(n log(n)|C|)
elements in Z/pk

Z.
For the setting where t < n/2 and broadcast is given, we develop a way to

reduce the soundness error when checking whether values are secret-shared cor-
rectly.1 We also show a packing technique that allows us to reduce the overhead
to obtain a total communication complexity O(|C|n2 log n) ring elements, plus
some term that does not depend on the size of the circuit. Finally, to get MPC
over Z/pk

Z rather than R, we show how to efficiently sample R-sharings of ran-
dom elements of Z/pk

Z with statistical security. These ideas allow us to adapt
the protocol of Beerliova and Hirt [3]. We chose to adapt this protocol rather
than the state-of-the-art of [5], because it allows for a simpler exposition of our
novel techniques.

The protocols we get for the two settings are both a log(n) factor away
from their original results due to the extension of Z/pk

Z to R. Follow-up work
by some of the authors provides a way to amortize away this factor, by using
so-called “reverse multiplication-friendly embeddings” from algebraic geometric
codes over rings with asymptotically good parameters [11].

1.2 Outline of the Document

In Sect. 2 we introduce the preliminaries for the rest of the work. This includes
basic notation, Shamir secret-sharing over commutative rings, and the notion
1 A problem that arises here is that the error probability of the protocol is not auto-

matically negligible even if pk is large. This is in contrast to the case of finite fields
where the error probability usually is 1/|F|, where |F| is the order of the field. As we
shall explain, by taking an extension of Galois rings R ⊂ R̂ (where R is a subring),
we can reduce the error.
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of Galois rings. Then, in Sect. 3 we present our protocol for perfectly secure
MPC over Z/pk

Z with a corruption threshold of t < n/3. Section 4 discusses our
protocol for statistically secure MPC over Z/pk

Z in the honest majority setting.
Finally, in Sect. 5 we present some conclusions and future work.

2 Preliminaries

2.1 Notation

Z denotes the ring of integers. For m ∈ Z, mZ denotes the ideal {m · n | n ∈ Z},
and Z/mZ denotes the quotient ring, which we regard as the ring of integers
modulo m. For a ring R, let R[X] denote the ring of polynomials in the variable
X with coefficients in R. For an integer m ≥ 0, let R[X]≤m ⊂ R[X] denote the
set of polynomials in R[X] of degree at most m; it is an R-module. We denote
by R∗ the multiplicative subgroup of invertible elements in R.

2.2 Polynomial Interpolation over Commutative Rings

In this section, we will construct secret-sharing schemes over an arbitrary com-
mutative ring. It will be the building block for the MPC protocols presented
in this article. We begin by recalling some notions on polynomial interpolation,
and on how it follows from the Chinese Remainder Theorem for rings; we follow
the approach of Part II of [9].

Throughout this section, R will denote a commutative ring with multiplica-
tive identity 1. Recall that an ideal of R is an additive subgroup I ⊆ R such
that r · x ∈ I for any r ∈ R, x ∈ I, i.e., an R-submodule. For x ∈ R, (x) denotes
the ideal generated by x, i.e., (x) := {r · x | r ∈ R}. Given two ideals I, I ′,
their product is defined as the ideal II ′ given by finite sums of products xy with
x ∈ I, y ∈ I ′, and their sum I + I ′ is defined as the ideal given by all elements
of the from x + y, where x ∈ I, y ∈ I ′.

Now we state the Chinese Reminder Theorem over rings.

Theorem 1. Let I1, . . . , Im be m ideals of R that are pairwise co-maximal, i.e.,
for each pair I, I ′ we have I + I ′ = R. Then, the map

R/(I1 · · · Im) → R/I1 × · · · × R/Im

r mod I1 · · · Im �→ (
r mod I1, . . . , r mod Im

)

is a ring isomorphism.

We now recall some notions and results on polynomials over rings.

Theorem 2. Let g(X), h(X) ∈ R[X] be two polynomials, with h(X) monic (i.e.,
its leading coefficient is equal to 1). Then, there are two unique polynomials
q(X), r(X) ∈ R[X] such that

– g(X) = h(X)q(X) + r(X), and
– deg r(X) < deg h(X).
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Corollary 1. We have the following:

1. For any monic h(X) ∈ R[X] where deg h(X) = d, we have an R-module
isomorphism

R[X]≤d−1
∼−→ R[X]/(h(X))

g(X) �→ g(X) mod (h(X)).

2. If h(X) = X − α for some α ∈ R, then

R[X]/(X − α) ∼−→ R
g(X) mod (X − α) �→ g(α)

is an isomorphism of R-modules.

The above properties lead to the following result:

Theorem 3. Let α1, . . . , αm ∈ R be such that αi − αj is invertible for every
pair of indices i 	= j. We then have that the map

R[X]≤m−1 → R × · · · × R
f(X) �→ (

f(α1), . . . , f(αm)
)

is an R-module isomorphism. Hence, for any x1, . . . , xm ∈ R, there exists a
unique interpolating polynomial of degree at most m−1 such that f(αi) = xi for
each i.

Proof. Let h(X) := (X − α1) · . . . · (X − αm). By Corollary 1, we have that
the map R[X]≤m−1 → R[X]/(h(X)) given by f(X) �→ f(X) mod (h(X)) is an
R-module isomorphism.

Notice that since αi −αj is invertible for every i 	= j, we have that the ideals
(X − αi) and (X − αj) are co-maximal for every i 	= j; thus by Theorem 1 we
have that the map

R[X]/(h(X)) → R[X]/(X − α1) × · · · × R[X]/(X − αm)
f(X) mod h(X) �→ (

f(X) mod X − α1, . . . , f(X) mod X − αm

)

is an R-module isomorphism.
Finally, again by Corollary 1, we have that the map R[X]/(X − αi) → R

given by f(X) mod X − αi �→ f(αi) is an isomorphism for every i = 1, . . . , m. 
�
The above theorem thus shows that polynomial interpolation extends from

the field to the ring case, provided that the evaluation points are not only pair-
wise distinct, but that their pairwise differences are invertible.

Definition 1. Let α1, . . . , αn ∈ R. We say that these points form an exceptional
sequence if for each pair of integers 1 ≤ i, j ≤ n with i 	= j it holds that
αi − αj ∈ R∗. We define the Lenstra constant of R to be the maximum length
of an exceptional sequence in R.

We the theory seen this far we can already define Shamir-secret sharing over
an arbitrary ring R.
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Construction 1 (Shamir-secret sharing over R). Let R be a finite ring, and
let α0, . . . , αn ∈ R be an exceptional sequence. Let t be any positive integer such
that t ≤ n. We define the R-module of share vectors C = {(f(α0), . . . , f(αn)) |
f ∈ R[X]≤t}. To secret-share an element x ∈ R, pick a uniformly random share
vector x ← {(x0, . . . , xn) ∈ C | x0 = x}, and set the i-th share to be f(αi)
for i = 1, . . . , n. If x is secret-shared with each player Pi having a share xi, we
denote the share vector x by [x].

Note that the number of players the secret-sharing scheme admits is bounded
by the Lenstra constant minus 1. Combining Construction 1 with Theorem 3 we
have the following.

Proposition 1. Construction 1 provides t-privacy and (t + 1)-reconstruction.

2.3 Galois Rings

We now restrict our attention to Galois rings, which are very well suited to
our setting, since they contain Z/pk

Z as a subring and have a relatively high
Lenstra constant. For proofs of the assertions in this subsection, we refer the
reader to [16].

Definition 2. A Galois ring is a ring of the form R := (Z/pk
Z)[Y ]/(h(Y )),

where p is a prime number, k is a positive integer, and h(Y ) ∈ (Z/pk
Z)[Y ] is a

non-constant, monic polynomial such that its reduction modulo p is an irreducible
polynomial in Fp[Y ].

Proposition 2. Let R as in the above definition. It has the following properties:

1. R is a local ring, i.e. it has a unique maximal ideal (p) � R. We have that
R/(p) ∼= Fpd , where d denotes the degree of h. In particular, we have a homo-
morphism π : R → Fpd that is “reduction modulo p”.

2. The Lenstra constant of R is pd.
3. For any prime p, positive integer k, and positive integer d there exists a Galois

ring as defined above, and any two of them with identical parameters p, k, d
are isomorphic. We may therefore write R = GR(pk, d).

4. If e is any positive integer, then R is a subring of R̂ = GR(pk, d · e). There is
a non-constant monic polynomial ĥ ∈ R[X] that is irreducible modulo p, such
that R̂ = R[X]/(ĥ(X)).

Remark 1. Let R = GR(pk, d) be a Galois ring. Then there exists an
Z/pk

Z-module isomorphism
(
Z/pk

Z
)d → R, that sends each element ej =

(0, . . . , 1, . . . , 0) of the canonical basis of
(
Z/pk

Z
)d to Y j mod (h(Y )). Also, we

have a natural ring embedding Z/pk
Z ↪→ R, given by x �→ x mod h(Y ).

Moreover, there is another way to uniquely represent the elements of R. We
have R/(p) ∼= Fpd and there exists a non-zero element ξ ∈ R∗ of multiplicative
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order pd − 1. By defining the subset I = {0, 1, ξ, . . . , ξpd−2} ⊂ R, it turns out
that any element a ∈ R can be uniquely written as a =

∑k−1
i=0 ai · pi where

a0, . . . , ak−1 ∈ I. Note that the homomorphism π : R → Fpd that is reduction
modulo p from Item 1 in Proposition 2 is defined by π(a) = a0.

This decomposition also allows us to define “division by powers of p”. Indeed,
notice that given an element a = a0 + a1p + a2p

2 + · · · + ak−1p
k−1 ∈ R and a

positive integer u, we have that pu divides a if and only if ai = 0 for all i < u.
If this is the case, we then define a/pu := au + au+1p + · · · + ak−1p

k−u−1; notice
that a/pu ≡ au (mod p). If u is maximal and a is non-zero in R, then a/pu ∈ R∗.

3 Perfectly Secure MPC for t < n/3 over Galois Rings

We assume that the computation is performed by n players, connected by a com-
plete network of secure and authenticated channels. Let p be a prime number
and k a positive integer; t players are under the control of a malicious, compu-
tationally unbounded adversary, where t < n/3. The adversary can be adaptive
and rushing.

We adapt the protocol of [4], which uses three algebraic tools: the interpola-
tion of a polynomial, hyper-invertible matrices and efficient error correction in
Reed-Solomon codes. In the original protocol, these tools are defined over finite
fields. In this section, we provide analogues of these tools over Galois rings. Note
that the first tool, polynomial interpolation, is already given in Construction 1.

With these new tools, we obtain secure computation over any Galois ring
R that has a Lenstra constant of at least n + 1. By taking the Galois ring to
be large enough, we can accommodate any number of players. In Sect. 3.4, we
show how to we obtain secure computation over Z/pk

Z from computation over
R. For passive security this is automatic, but for active security this requires
verification of the inputs.

3.1 Hyper-Invertible Matrices

Hyper-invertible matrices are introduced in [4] to efficiently obtain secret-shared
randomness in MPC protocols with active security. Here we summarize their
definition and fundamental properties, generalized to hold over rings.

Definition 3. A matrix M ∈ Ru×u′
is hyper-invertible if for any row index set

I ⊆ {1, . . . , u} and column index set J ⊆ {1, . . . , u′} with |I| = |J | > 0, the
matrix MJ

I is invertible, where MI denotes the submatrix of M with rows in I,
MJ denotes the submatrix of M with columns in J , and MJ

I := (MI)
J .

Construction 2. Let n and k be positive integers, and let p be a prime number.
Further, let R = GR(pk, d) with pd ≥ 2n, and let α1, . . . , α2n be an exceptional
sequence in R. Applying Theorem 3 twice, we get an R-module isomorphism
from Rn to Rn, sending (f(α1), . . . , f(αn)) �→ (f(αn+1), f(αn+2), . . . , f(α2n)).
It is represented by an n × n matrix over R which is hyper-invertible. The proof
of this fact follows the lines of its analogous proof over fields, and we refer the
reader to [4] for details.
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Hyper-invertible matrices have the following key property. The proof from
[4] carries over, given the properties that we have shown for R.

Lemma 1. Let M ∈ Rn×n be an n-by-n hyper-invertible matrix, and let I, J ⊆
{1, . . . , n} be index sets such that |I| + |J | = n. Then, there exists a linear
isomorphism ϕ = ϕI,J : Rn → Rn such that for any x,y ∈ Rn it holds that
ϕ(xJ ,yI) = (xJ̄ ,yĪ), where R̄ and C̄ denote the complements {1, . . . , n}\R and
{1, . . . , n} \ C, respectively.

3.2 Robust Reconstruction

Recall from Construction 1 we have an R-module C = {(f(α1), . . . , f(αn)) |
f ∈ R[X]≤t} of share vectors. We wish to have robust reconstruction: a party P
that receives shares xi for i = 1, . . . , n, where xi = f(αi) for “most” values of
i, should be able to reconstruct the correct secret f(α0) even some shares are
corrupted, e.g., they contain arbitrary elements of R.

This is also known as the decoding problem of linear codes. When R is a
finite field, R-vector spaces of the form C as above are known as (generalized)
Reed-Solomon codes. We want an algorithm that does the following. As input we
give a vector (x1, . . . , xn) ∈ (R ∪ {⊥})n such that there exists some f ∈ R[X]≤t

with xi = f(αi) for all i = 1, . . . , n except for at most �n−t−1
2 � positions. As

output, the algorithm has to produce f .
We assume black-box access to a decoding algorithm for Reed-Solomon codes

(i.e. for vector spaces of the form C as above when R is a finite field), such as the
Berlekamp-Massey algorithm [15]. We show how to obtain a decoding algorithm
for C over a Galois ring R = GR(pk, d) that makes k calls to the algorithm over
fields.

We fix an exceptional sequence α1, . . . , αn ∈ R. Recall from Remark 1 that
any element a ∈ R can be uniquely written as

a = a0 + a1p + a2p
2 + · · · + ak−1p

k−1

where a0, . . . , ak−1 ∈ I = {0, 1, ξ, . . . , ξpd−2}. It follows that for f(X) ∈ R[X]≤t,
we can uniquely write f(X) as f(X) = f0(X) + pf1(X) + · · · + pk−1fk−1(X),
where f0(X), . . . , fk−1(X) ∈ I[X]≤t. Moreover, we have

f(αi) ≡
j−1∑

i=0

pifi(αi) (mod pj).

Since α1, . . . , αn have their pairwise differences invertible, this means they
map to distinct elements modulo p. For each i = 1, . . . , n let βi = π(αi) ∈ Fpd

where π : R → Fpd is the reduction modulo p from Item 1 of Proposition 2. Notice
that π gives this one-to-one correspondence between I and Fpd . In particular,
the inverse π−1 is a well-defined function onto I.

Theorem 4. The protocol of Fig. 1 can correct up to �n−t−1
2 � errors with k calls

to the decoding algorithm over Fpd .
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Decoding Reed-Solomon Codes over a Galois Ring R

– Input: x = (x1, . . . , xn) ∈ (R ∪ {⊥})n.
– Let y ← x. For i = 0, . . . , k − 1 perform the following operations:

1. y ← π(y/pi), applied element-wise.
2. Run the decoding algorithm the input y and let the f̄i(X) be the output

polynomial. Let fi(X) = π−1(f̄i(X)) ∈ I[X]≤t.
3. Let tj =

∑i
�=0 p�f�(αj) for j = 1, . . . , n and y ← (x1 − t1, . . . , xn − tn).

4. If there exists j such that xj − tj is not divisible by pi+1, we claim an error
in index j and set ⊥ on the j-th component of y.

– Output: f(X) = f0(X) + pf1(X) + · · · + pk−1fk−1(X).

Fig. 1. Decoding Reed-Solomon Codes over a Galois Ring R

Proof. Let us justify this decoding algorithm. We start with i = 0. Note that
f̄0(X) = π(f0(X)) ∈ Fpd [X]≤t. Thus,

cf = (f̄0(β1), . . . , f̄0(βn))

is a vector in the corresponding Reed-Solomon code over Fpd . Since y = π(x)
is a corrupted vector in F

n
pd differing in at most �n−t−1

2 � positions from cf , the
decoding algorithm over Fpd will recover f̄0(X) and then f0(X). Now, assume
that we have already recovered f0(X), . . . , fi(X). Let us fix xj , the j-th compo-
nent of x. Assume that xj is not corrupted, i.e., xj = f(αj). Then, we have

xj − tj = f(αj) −
i∑

�=0

p�f�(αj) = pi+1
k−i−2∑

�=0

p�f�+i+1(αj).

This implies xj − tj is divisible by pi+1. Moreover, π((xj − tj)/pi+1) =
π((fi+1(αj)) = f̄i+1(βj). Thus π(y/pi) agrees with (f̄i+1(β1), . . . , f̄i+1(βN )) in
the position that is not corrupted. It follows that π(y/pi) differs in at most
�n−t−1

2 � positions from (f̄i+1(β1), . . . , f̄i+1(βN )). Running the decoding algo-
rithm over Fpdon π(y/pi) will output the polynomial fi+1(X). The desired result
follows as we only invoke the decoding algorithm over the finite field k times. 
�

3.3 MPC over R

Let d be the smallest positive integer with pd ≥ 2n, and write R = GR(pk, d).
Let (α0, α1, . . . , αn) and (β1, . . . , β2n) be exceptional sequences of R of respective
lengths n + 1 and 2n.

We replace some of the components of [4] to extend this protocol over rings.
We use the n-player Shamir-like secret-sharing scheme obtained in Construction
1, where αi is assigned to each player Pi. Thus both the share and secret lie in R.
Also, we use the hyper-invertible matrices from Construction 2, with evaluation
points β1, . . . , β2n; and we recover secrets from n′ ≤ n shares with t′ corruptions,
provided that t < n′ − 2t′, using the procedure in Fig. 1.
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With these tools in place, the remainder of the protocol from [4] can be used
to obtain MPC over R, as encapsulated in the following theorem.

Theorem 5. There exists an efficient MPC protocol over the Galois Ring R =
GR(pk, d) with pd ≥ 2n, for n parties, that is secure against the maximal number
of active corruptions �(n − 1)/3�, and that has an amortized communication
complexity of O(n) ring elements per gate.

3.4 MPC over Z/pk
Z

From Theorem 5, we get MPC over R = GR(pk, d) with pd ≥ 2n, but this does
not give us MPC over Z/pk

Z for an arbitrary number of players. We can embed
inputs in Z/pk

Z into R, but we do need to verify that the original inputs are
actually in Z/pk

Z.
Proving that a secret-shared value [a] is in Z/pk

Z reduces to sampling a
secret-shared random element [r] ← Z/pk

Z, as follows: to check that a ∈ Z/pk
Z

we simply locally compute [a + r] and open the result. We have that a ∈ Z/pk
Z

if and only if a + r ∈ Z/pk
Z. Also, since r is a uniformly random element in

Z/pk
Z, a + r does not reveal any information about a (if a is in fact in Z/pk

Z).
We use an idea from [7] to generate these sharings of random elements in

Z/pk
Z. Since R is a free module over Z/pk

Z of rank d, we can write down a
basis of R. In fact, a power basis 1, ξ, . . . , ξd−1 exists. After fixing ξ, an element
b ∈ R can thus be uniquely written b = b0 + b1ξ + · · · + bd−1ξ

d−1, and we can
identify b with its coefficient vector (b0, . . . , bd−1). The map φ : R → (Z/pk

Z)d

such that φ(b) = (b0, . . . , bd−1) is a Z/pk
Z-module isomorphism.

Let λ ∈ R. Multiplication by λ in R defines an R-module endomorphism
R → R, which is in particular an Z/pk

Z-module homomorphism (Z/pk
Z)d →

(Z/pk
Z)d. Thus, this operation can be seen be represented as a d×d matrix Mλ

with entries in Z/pk
Z such that for any b ∈ R it holds that φ(λb) = Mλφ(b).

This is similar to how elements in a field extension can be seen as matrices over
the base field.

Now, let A be an n × n matrix with entries in R, for arbitrary n ≥ 1, and
let (x1, . . . , xn) ∈ Rn be a vector. Each entry xi can in turn be represented as
a vector (xi,1, . . . , xi,d) with entries in Z/pk

Z such that xi = φ ((xi,1, . . . , xi,d)).
The action of A on Rn is R-linear so in particular Z/pk

Z-linear. If we let
(y1, . . . , yn)T = A(x1, . . . , xn)T then each entry yi is the R-linear combination
yi = ai,1x1 + · · ·+ai,nxn, where (ai,1, . . . , ai,n) ∈ Rn is the i-th row of A. Apply-
ing φ−1 to this equation we see that the Z/pk

Z-linear action of A on the elements
xi,j is as follows

(yi,1, . . . , yi,d)T = Mai,1(x1,1, . . . , x1,d)T + · · · + Mai,n
(xn,1, . . . , xn,d)T .

In Fig. 2, we present a protocol for constructing sharings over R of random
elements in Z/pk

Z. The function of RandEl(Z/pk
Z) is to amortize away the cost

of generating sharings of random elements in Z/pk
Z and meanwhile to verify if

the shares correspond to a random element in Z/pk
Z instead of R. Our protocol

is similar to RandElSub(V ) in [7]. Using player elimination, we assume that
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RandEl(Z/pk
Z)

Fixed public parameters: 1 ≤ T ≤ n′−2t′, M an n′×n′ hyper-invertible matrix
over R given in Construction 2.

Processing: 1. For i = 1, . . . , n′, Pi selects d uniformly random elements
si,1, . . . , si,d ∈ Z/pk

Z and secret-shares each of them in parallel using the
secret-sharing scheme in Construction 1 over R with n′ players and t′-
privacy. This can be interpreted as each party secret-sharing a vector of d
elements, and we write �si� := ([si,1], . . . , [si,d]). This constitutes a secret-
sharing where the correct secrets are elements of (Z/pk

Z)d and the shares
are elements of Rd.

2. Players locally compute (�r1�, . . . , �rn′�) = M(�s1�, . . . , �sn′�). Note that
the matrix M is defined over R; the action on the individual R-sharings is
defined via the matrices Mmi,j where M = (mi,j).

3. For i = T + 1, . . . , n′, every party Pj sends its share of �ri� to Pi. Pi then
verifies the values received if the secret is indeed a vector in (Z/pk

Z)d, and
if not, gets unhappy.

Output: If all honest players are happy, the d · T sharings
[r1,1], . . . , [r1,d], [r2,1], . . . , [rT,d] are sharings over R with each secret an
independent uniformly random element from Z/pk

Z.

Fig. 2. Protocol for Generating Sharings of Random Elements in Subring

there are currently n′ parties taking part in the computation (labeled P1, . . . , Pn′

without loss of generality) and at most t′ of them are corrupted. Note that
t < n′ − 2t′. If a party is unhappy, player elimination ensures that we can find a
pair of players that contains at least one corrupted player. Like Proposition 4 in
[7], we only need to communicate O(n) elements in R per sharing of a random
element in Z/pk

Z.

Proposition 3. If all honest players are happy after the execution of
RandEl(Z/pk

Z), then the output is correct, i.e. the d · T sharings
[r1,1], . . . , [r1,d], [r2,1], . . . , [rT,d] are correct sharings of uniformly random ele-
ments in Z/pk

Z, and the adversary has no information about these values, other
than the fact that they belong to Z/pk

Z.

With the help of Proposition 3 and our above analysis, we obtain the following
theorem.

Theorem 6. There exists an efficient n-party MPC protocol for circuits defined
over Z/pk

Z, that is secure against the maximal number of active corruptions
�(n − 1)/3�, and that has an amortized communication complexity of O(n log n)
ring elements per gate.
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4 Statistically Secure MPC for Honest Majority over
Galois Rings

In this section we present a protocol for secure computation over the Galois
ring R = GR(pk, d) that is statistically secure against active adversaries. The
protocol tolerates a number of corrupted parties t < n/2, which is optimal in
this setting.

Our protocol is largely based on the dispute control protocol from [3]. How-
ever, some of their techniques explicitly use properties about fields, which do
not apply to our setting directly. In this section we show that, due to some spe-
cial properties of the Galois ring R (mostly the fact that R is local), most of
these techniques actually apply to this setting as well, at the expense of having
a higher failure probability than in the field case. More explicitly, when work-
ing over a field F it can be shown that the failure probability is roughly 1/|F|,
but in our setting this probability is close to 1/pd, which is potentially far from
1/|R| = 1/pk·d. In particular, this implies that d must be as large as the security
parameter κ.

However, if we have our computation over R = GR(pk, d) with pd ≥ n +
1, so that we have enough interpolation points for each player, we can avoid
much of the overhead. We do this by moving to an extension Galois ring R̂ =
GR(pk, d · d̂) ⊃ R (see Proposition 2). For many subprotocols where the error
depends on pd, we can pack d̂ values of R into R̂ (since R̂ ∼= Rd̂ as R-modules),
and keep the same amortized complexity. In particular, we do not get a total
complexity that is linear in both the size of the circuit and the security parameter
κ, which is what one would get if d were as large as κ.

To get computation over Z/pk
Z where p ≤ n, we embed Z/pk

Z ↪→ R, but we
do need to verify that the inputs are actually in Z/pk

Z, like we saw in Sect. 3.3.
We will develop the machinery needed for this in Sect. 4.7.

4.1 Overview of Our Techniques

We begin by presenting a summary of the main novel techniques used to achieve
the results in this section. The details of these, and their specific usage in the
context of our protocol, are explained thoroughly in subsequent sections.

Error Checking. To guarantee correctness of the computation, we need a
process that checks whether values are secret-shared correctly, with negligible
error. Suppose we have secret-shared values [x1], . . . , [x�] and we want to check
whether the players have consistent shares, i.e. each reconstructing set of honest
players jointly have shares that reconstruct to the same secret value. A trick
commonly used over fields is to fix a random linear combination y = r1x1 +
· · · + r�x�, for publicly known uniformly random values r1, . . . , r�, and to have
the players broadcast the shares of y. They can then check whether their shares
are consistent, e.g. for Shamir’s secret-sharing scheme they check whether the
shares are on a polynomial of degree of at most t.
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This approach works over a finite field F since the inner product of any non-
zero vector (an “error vector”) with a uniformly random vector is zero with
probability 1/|F|. Therefore any inconsistency in some value xi is very likely to
give an inconsistency in y. In other rings, this does not necessarily apply, and
the product of a non-zero value times a random value is not necessarily random:
for example, in Z/2k

Z we have Pr[r · 2k−1 = 0] = 1/2 for uniformly random r.
For the Galois ring R, it turns out the above procedure does work, but only

with error probability p−d, i.e. it only scales in the degree of the Galois ring, not
in its order pk·d. We illustrate this with the following protocol.

Consider the setting where we have a single dealer that secret-shares a single
secret value [x] ∈ R and a single verifier that wants to check whether [x] is
secret-shared correctly. To ensure privacy towards the verifier, the dealer also
secret-shares a random value [u] ∈ R. The protocol runs as follows:

1. The dealer samples u ∈ R and secret-shares [x], [u] among the players.
2. The verifier samples r ∈ R and broadcasts it to all players.
3. All players reconstruct y = rx + u towards the verifier.
4. The verifier accepts if all received shares of y are consistent, and rejects

otherwise.

This protocol is private because u is chosen uniformly random by the dealer.
We shall now analyze the soundness error. It is useful to take a more general
view, and let C ⊆ Rn denote the set of vectors of consistent shares; recall C
from Construction 1. More generally, let C be any free R-module, i.e. it has a
basis. Note that the verifier accepts if y ∈ C, and the dealer cheats successfully
if the verifier accepts and x /∈ C.

We analyze the soundness error using a fact about roots of polynomials
over R:

Lemma 2. Let f ∈ R[X] be a polynomial of arbitrary degree � > 0. Then
Prx←R[f(x) = 0] ≤ �/pd, where x is drawn uniformly from R.

Proof. Write f(X) = a0 + a1X + · · · + a�X
�. Let u be the highest power of

p such that pu divides each coefficient a0, . . . , a� of f . Then, f(X)/pu has at
least one coefficient invertible, hence its reduction g := f(X)/pu modulo p is
a nonzero polynomial of degree ≤ � over the field R/(p) of order pd. Clearly, if
f(x) = 0 then x := x mod (p) is a root of g. Since g has at most � roots, g(x) = 0
with probability ≤ �/pd for uniformly random x. Since reduction modulo (p) is
a homomorphism, in particular it has pre-images of equal size, hence given that
x is uniformly random in R, x is uniformly random in R/(p). 
�
Lemma 3. Let C ⊆ Rn be a free R-module. For all x /∈ C and u ∈ Rn, we have
that

Pr
r←R

[rx + u ∈ C] ≤ 1/pd,

where r is chosen uniformly at random from R.
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Proof. Let g : Rn → R be an R-module homomorphism such that g(c) = 0 for
all c ∈ C, and such that g(x) 	= 0. Such a homomorphism in particular exists
because C is free, and it is therefore a direct summand of Rn.

If rx + u ∈ C, then 0 = g(rx + u) = rg(x) + g(u), so r is a root of the linear
polynomial g(x)X + u, which by the previous lemma occurs with probability
≤ 1/pd. 
�

Packing. To get a negligible correctness error for MPC over R, our solution is
to move from R to an extension R ⊂ R̂, where R̂ = GR(pk, d · d̂) for an integer
d̂ > 1 with pd·d̂ ≥ 2κ. However, the efficiency is unfavorable since communication
and computation is Ω(κn2) per multiplication gate.

To improve efficiency, we observe that R̂ is a free R-module of rank d̂, i.e.
R̂ ∼= Rd̂. Therefore, we can interpret an element of R̂ as a vector of elements of
R of length d̂. This allows us to check d̂ elements of R in parallel, by checking
one element of R̂. In R̂ our correctness check has error probability p−d·d̂ ≤ 2−κ,
and thus by moving to the extension we can both achieve the desired soundness
error while getting no amortized overhead.

Let g(Y ) be a monic polynomial over R of degree d̂ which is irreducible when
taken modulo p, and let R̂ = R[Y ]/(g(Y )). Let w1, . . . , wd̂ be a basis of R̂ over
R as a module and consider the natural isomorphism of modules ψ : Rd̂ → R̂

given by ψ(x1, . . . , xd̂) =
∑d̂

i=1 xi · wi.
Finally, consider y ∈ R̂ with ψ(y1, . . . , yd̂) = y and assume that y is secret-

shared via a polynomial F ∈ R̂[X] and that the exceptional sequence α1, . . . , αn

of evaluation points is in R. This polynomial can be written uniquely as F (X) =∑m
i=1 fi(X) · wi where fi are polynomials in R[X]. Moreover, we notice that for

all r ∈ R it holds that F (r) = ψ(f1(r), . . . , fd̂(r)), so in particular the polynomial
fi defines shares of yi, for i = 1, . . . , d̂. Conversely, if we have shares of y1, . . . , yd̂
using polynomials f1, . . . , fd̂ over R, then we can define a share of ψ(y1, . . . , yd̂)

over R̂ which is given by the polynomial F =
∑d̂

i=1 fi · wi. We abuse notation
and write ψ([y]R̂) = ([y1]R, . . . , [ym]R) to denote the situation above.

We then have the following:

Lemma 4. Let y ∈ R̂ and (y1, . . . , ym) = ψ−1(y), and suppose that ψ([y]R̂) =
([y1]R, . . . , [ym]R). Then [y]R̂ is correctly shared if and only if each [yi]R is cor-
rectly shared.

Proof. Let F be the polynomial over R̂ interpolating y and let fi be the
polynomial over R interpolating yi, for i = 1, . . . ,m. We know that F =∑m

i=1 fi · wi, and since w1, . . . , wi is a basis for R̂ over R it follows that
deg(F ) = max{deg(f1), . . . ,deg(fm)}. Therefore, in particular deg(F ) ≤ t if
and only if deg(fi) ≤ t for all i. The desired result follows. 
�
MPC over Z/pk

Z. Like in Sect. 3.4, checking the membership of a secret-shared
value in a Galois subring S ⊂ R can be reduced to sampling a random secret-
shared [s], where s ← S and the secret-sharing is over R. To check whether an
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input [x] is in S, we can simply mask and open x + s, and check whether it is in
S. This holds for any x ∈ S, since S is additively closed.

To get a random sharing [s], a straightforward solution is to let each player
Pi sample a random element si and secret-share it (over R). The players then
compute [s] =

∑n
i=1[si]. We can check the correctness of [s] by using the method

of Sect. 4.1, where we check a batch of many different values at once. However, in
this situation, we are only allowed to take S-linear combinations. In particular,
for S = Z/pk

Z, Lemma 3 only gives an error probability of 1/p.
To reduce the error probability, we do the following. Let C be the set of share

vectors [s] = (s1, . . . , sn) of secrets s ∈ S, with shares s1, . . . , sn ∈ R. Note that
C is an S-module but not an R-module in general. Since R is a free module over
S, we have R ∼= Se where e = rankR. We may now take the extension of scalars
of C to R via the following tensor product of S-modules:

Ĉ := C ⊗S R ∼= C ⊗S Se

In contrast to C, we have that Ĉ is an R-module, and in fact an R-submodule
of Rn ⊗S R ∼= Rn·e. A dealer will secret-share a vector of e random elements
of S in parallel over R. Each player thus obtains a vector of shares (with each
entry in R), which can be interpreted as one element of R ⊗S R ∼= Re. All of
the players’ shares together form a vector in Rn·e, which is in Ĉ if indeed the e
secret-shared elements are in S. We can now apply the methods from Sect. 4.1
to batch check these values with error probability 1/pd.

4.2 Computation over Fields

As a base for our protocol for statistically secure MPC in the honest majority
setting, we choose the protocol from [3]. It maintains the invariant that every
wire of the circuit is secret-shared using Shamir’s secret-sharing scheme. Linear
gates are given for free by the secret-sharing scheme, and multiplication gates
are handled by means of some preprocessed data known as multiplication triples,
which are generated themselves using a technique known as resharing. The pro-
tocol follows the traditional offline/online paradigm where the multiplication
triples are generated during the so-called offline phase that is independent from
the inputs, and these triples are subsequently used in the online phase to perform
the actual secure computation.

With the secret-sharing scheme over rings from Sect. 2.2, adapting the basic
resharing based protocol to the ring setting is straight-forward. Therefore, an
efficient protocol for statistically secure computation with honest majority with
abort and over rings can be easily developed at this point. However, in this work
we aim for full security, and in order to provide robustness we need to adapt
the tools introduced by the dispute control technique, and this becomes much
more involved since these highly exploit the fact that the underlying structure
is a field.

While we do not have the nice structural properties of fields, we are able
to exploit properties of Galois rings to obtain sub-protocols with comparable
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efficiency to those over fields. In the rest of the section we will focus only on
the algebraic aspects of dispute control that must be modified in order to adapt
them to work over Galois rings. A second part of dispute control uses more
“combinatorial” arguments which are independent of the underlying algebraic
structure and therefore they apply directly to our setting. In these cases we refer
the reader to the appropriate references.

4.3 Dispute Control

Dispute control is a technique used in [3] in order to provide guaranteed out-
put delivery. Here the parties keep track of a publicly known dispute set Δ
of unordered pairs {Pi, Pj} of parties that are in dispute. We write Pi 	↔ Pj

if {Pi, Pj} ∈ Δ, and Pi ↔ Pj otherwise. At a very high level, a new dispute
Pi 	↔ Pj is generated whenever Pi thinks that Pj has cheated, or vice versa, and
the protocol will guarantee that whenever a new dispute is generated then at
least one of the two parties involved is corrupt (i.e. an honest party will never
go in dispute with another honest party).

We let Δi denote the set of parties Pj such that Pi 	↔ Pj . Let X ⊆ P denote
the set of parties Pi that have |Δi| > t, i.e. parties that have a dispute with
more than t other parties. They are universally known as corrupt, because no
honest party can have a dispute with more than t other parties.

At a very high level, the way in which dispute control is used in the protocol
is the following. The computation is divided into segments such that at the end
of each segment there is a consistency check. If the check fails, the parties run a
dispute control protocol that results in a new pair of players that are not yet in
dispute, such that one of them is guaranteed to be corrupt.

Once the dispute has been identified, the segment is re-run. There can be
at most t(t + 1) disputes. By dividing the computation into n2 segments of
approximately equal length, the overhead of repeating failed segments is at most
a factor of 2. In this work we will not focus on the details of dispute control and
we only introduce it as we will need the notation. For the details of dispute
control see [3].

4.4 1D, 2D and 2D∗ Sharings

As before, let h(Y ) ∈ (Z/pk
Z)[Y ] be a monic polynomial of degree d such that its

reduction mod p is irreducible, and let R be the Galois ring (Z/pk
Z)[Y ]/(h(Y )).

We assume that d ≥ logp(1 + n), so that there is an exceptional sequence
0, α1, . . . , αn ∈ R.

Given r ∈ R, we write [r]R to denote the situation in which r is secret-shared
using our secret-sharing scheme from Construction 1 over the ring R (if R is
obvious we omit it, as we have done until now). Recall from Sect. 2.2 that this
means that there is a polynomial f over R of degree at most t such that party
Pi has the share ri = f(αi) for i = 1, . . . , n, and r = f(0). We shall call this a
1D-sharing of r, and refer to the shares r1, . . . , rn as level-one shares.
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If each level-one share ri is itself 1D-shared as [ri]R we say we have a 2D-
sharing of r, and we denote this by [[r]]. We refer to the entries of the share
vector [ri] as level-two shares.

Finally, we denote by 〈r〉 the situation in which r is 2D-shared and addition-
ally the parties hold authentication tags on r. We will call this a 2D*-sharing of
r, and it will be explained in detail in Sect. 4.5.

4.5 Sub-protocols for Secure Computation over Galois Rings

The overall protocol for secure computation follows the offline/online phase
paradigm, which is typical from other secret-sharing based protocols, like these
from [3–5,8,12,14]. Essentially, the parties preprocess some material in the offline
phase which is used in the online phase to perform the computation, after shar-
ing the inputs. The building blocks to achieve this include procedures for sharing
values, generating signatures, checking correctness of triples, and some others.
In this section we describe the pieces required to build our protocol, and also
the protocol itself. We prove their security and analyze their communication
complexity.

For the rest of the section we let κ denote the statistical security parameter.

Dispute Control Broadcast. This protocol allows a set of senders to broad-
cast a set of values among all the parties such that, with overwhelming proba-
bility, all the parties receive the same value which is the one sent initially if the
sender is honest. Also, this broadcast is “compatible” with the dispute control
mechanism, in the sense that it detects cheaters and generates new disputes.
We remark that our model assumes a network with broadcast which may not
provide dispute control by default.2

Even though the protocol for dispute control broadcast of [3] uses fields, no
arithmetic properties of the input values are used. We may therefore just serialize
elements of R as bit strings, map them to a finite field of suitable size, and use
their protocol verbatim.

Complexity Analysis. The protocol communicates O(�nd + κn2) = O(�n log n +
κn2) bits and broadcasts O(nκ) bits. Here � is the number of values in R being
broadcasted, n is the number of players, and κ the security parameter.3

Verifiable 1D-Sharings. This protocol allows one party PD to 1D-share some
value x ∈ R with the guarantee that the shares of the honest parties are con-
sistent with a degree-t polynomial over R.4 Note that we make no guarantees
2 Assuming broadcast is necessary for t ≥ n/3 since it is known that unconditional

broadcast is not possible in this settting.
3 Throughout this work we consider p and k as constants for the asymptotic complexity

analysis. We also ignore the dispute control layer, as our complexity closely matches
the one from [3] for the fault localization.

4 Notice that if there are exactly t + 1 honest parties then this is trivial since any set
of t + 1 values is consistent with a degree-t polynomial. However, VSS1D is needed
for the general case.
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beyond this; in particular, we do not guarantee robustness of shares. With the
protocol, we can verify many different sharings at once, by opening a masked
linear combination of the shares and checking correctness on the combination.

For this protocol we will make use of the packing technique as detailed in
Sect. 4.1. Recall we move to an extension ring R̂ ⊃ R with R̂ = GR(pk, d · d̂).
We denote a 1D-sharing over R̂ as [x]R̂, which corresponds to sharing a vector
of d̂ elements of R via Lemma 4.

The protocol can be found in Fig. 3.

VSS1D

A party PD will distribute � values a(1), . . . , a(�) ∈ R among all parties.

– PD partitions a(1), . . . , a(�) ∈ R into L = �/d̂ vectors of length d̂: s(j) =

(a(1,j), . . . , a(d̂,j)) ∈ Rd̂, for j = 1, . . . , L.
– Let s(j) = ψ(s(j)) ∈ R̂ for j = 1, . . . , L.

Private Computation: PD samples at random s(L+1), . . . , s(L+n) ∈ R̂ and deals
[s(1)]R̂, . . . , [s(L+n)]R̂ to all parties.

Fault Detection: Every verifier PV ∈ P \ X executes the following steps (in
parallel).
1. PV samples a challenge vector (r1, . . . , rL) ∈ R̂L and broadcasts this value

using protocol DCBroadcast.
2. All the parties reconstruct

∑L
i=1 ri[s

(i)]R̂+[s(L+V )]R̂ towards PV , who then
checks correctness of the shares, i.e., PV checks that these shares lie on a
polynomial of degree at most t.

3. PV broadcasts a bit indicating whether or not the check succeeded.
Fault Localization: See Section 3.2 of [3].

If no verifier PV complained in the previous step, the output is defined to be
[a(1)]R, . . . , [a(�)]R = ψ−1([s(1)]R̂), . . . , ψ−1([s(L)]R̂).

Fig. 3. Protocol for Verifiable Secret-Sharing

Proposition 4. If the protocol VSS1D from Fig. 3 succeeds then, with proba-
bility at least 1 − p−κ, each [a(m)]R is correctly 1D-shared for m = 1, . . . , �. If
the protocol aborts then a new dispute is generated. Input-privacy is guaranteed
during the whole protocol (even if it fails).

Proof. It is clear that the shared values remain secret since the random masks
s(L+V ) prevent them from being revealed.

Now, for soundness we consider the setting of an honest verifier PV checking
the shares of the dealer. Let C denote the R̂-module of correct share vectors
(see Construction 1). The adversary successfully cheats if for some i we have
[s(i)] /∈ C and the check passes, i.e.

∑L
i=1 ri[s(i)]R̂ + [s(L+V )]R̂ ∈ C. Since the

adversary knows which values they cheat on, we may take i = 1 without loss of
generality. We can apply Lemma 3 and see that the probability of successfully
cheating is at most 1/pdd̂ ≤ 1/pκ.
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Finally, since each [s(1)]R̂, . . . , [s(L)]R̂ is correctly shared, it follows from
Lemma 4 that the shares [a(1), ]R . . . , [a(�)]R output by the protocol are correct.
For the case in which a dispute is generated see Lemma 2 in [3]. 
�

Complexity Analysis. The protocol communicates O
(
n2κ + �n log n

κ

)
bits and

broadcasts O(n) bits.

Reconstruct 1D. Here we consider the setting in which a set of dealers PD ⊆
P \ X have 1D-shared some values [s(1,D)], . . . , [s(�,D)], PD ∈ PD. The goal
is to reconstruct the values s(m) =

∑
PD∈PD

s(m,D) for m = 1, . . . , � to a set of
recipients PR ⊆ P\X . This is achieved by letting each player Pi ∈ P compute its
share of the sum s

(m)
i =

∑
PD∈PD

s
(m,D)
i and send it to each player in PR. Then

a dispute control layer makes sure that all parties agree that the reconstruction
was done successfully.

Proposition 5. There is a protocol Reconstruct1D such that, on input some
values [s(1,D)], . . . , [s(�,D)] correctly shared by each PD ∈ P\X , the protocol either
fails or each party in P \ X receives s(m) =

∑
PD∈PD

s(m,D) for m = 1, . . . , �.
Moreover, if the protocol aborts a new pair of players in dispute is identified.

For the description of the protocol and its proof of security see Lemma 3 in
Sect. 3.2 of [3]. The main observation is that their argument applies directly to
our setting since it only relies on polynomial interpolation, which works for R
in essentially the same way as it does for a field as long as the base points are
chosen to form an exceptional sequence.

Complexity Analysis. The protocol communicates O(�n2d) bits and broadcasts
O(nd) bits, where d is the degree of the Galois ring R over Z/pk

Z.

Generating Random Challenges. An essential tool needed for statistically
secure MPC is the generation of publicly known random elements. This is
achieved by a protocol GenerateChallenges which operates as follows.

1. Each party Pi ∈ P \ X samples some random values s(1,i), . . . , s(�,i) ∈ R and
uses VSS1D to distribute correct shares of it.

2. The parties compute [s(m)] =
∑

Pi∈P\X [s(m,i)] and open s(m) to all parties
in P \ X using Reconstruct1D, for m = 1, . . . , �.

Since the additive group of R is abelian, if each s(m,i) is independent and
there is at least one that is uniformly random, then s(m) is random. Now, the
s(m,i) are independent from each other since they are secret-shared, so one player
cannot choose its share conditioned on the other players’ shares.

Complexity Analysis. The protocol communicates O(n3κ+�n2d) bits and broad-
casts O(nd) bits where d is the degree of the Galois ring R over Z/pk

Z.
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Upgrading 1D-Sharings to 2D-Sharings. The goal of this protocol is to
upgrade a 1D-sharing [a] of a ∈ R to a 2D-sharing [[a]]. In fact, several values
a(1), . . . , a(�) ∈ R will be upgraded in one go, and moreover, sums of 1D-shares
instead of individual 1D-shares will be upgraded due to our use-case.

More precisely, let PD ⊆ P \ X be some subset of dealers. Each PD ∈ PD

has a list of values a(1,D), . . . , a(�,D) ∈ R it has secret-shared. The goal of the
Upgrade1Dto2D sub-protocol is to let each party Pi distribute shares of its share
a
(m)
i of a(m) =

∑
PD∈PD

a(m,D) for m = 1, . . . , �. At the end of the protocol it is
guaranteed that all shares (both, the shares of each a(m) and the shares of their
shares) are correct.

Upgrade1Dto2D

Let a(1,D), . . . , a(�,D) ∈ R such that each a(m,D) has been 1D-shared by PD ∈ PD.

– The parties partition [a(1,D)]R, . . . , [a(�,D)]R into L = �/d̂ vectors of length d̂:

s(j,D) = ([a(1,j,D)]R, . . . , [a(d̂,j,D)]R) ∈ Rd̂, for j = 1, . . . , L.
– Let [s(j)]R̂ =

∑
PD∈PD

ψ(s(j,D)) ∈ R̂ for j = 1, . . . , L.

Private Computation: 1. Each PD ∈ PD shares a random value s(L+1,D) ∈ R̂.
2. Each player Pi 1D-shares each of its shares s

(m)
i ∈ R̂ for m = 1, . . . , L + 1.

We denote by s
(m)
ij ∈ R̂ the share of s

(m)
i received by Pj .

Fault Detection: Using the protocol GenerateChallenges, the parties jointly gen-
erate random values (r1, . . . , rL) ∈ R̂L. Then the following is executed for every
verifier PV ∈ P \ X .

1. Every Pj with Pj ↔ PV computes the share sij =
∑L

m=1 rm · s(m)
ij + s

(L+1)
ij

for every Pi with Pi ↔ Pj , and sends these to PV (notice that these are

shares of si =
∑L

m=1 rm · s
(m)
i + s

(L+1)
i ).

2. For every Pi with Pi ↔ PV , PV checks that (si1, . . . , sin) lie in a polynomial
over R̂ of degree at most t. Then broadcasts accept or reject depending on
the case.

3. If PV accepted in the previous step, then interpolate s1, . . . , sn and check
whether or not these lie in a polynomial of degree at most t.

Fault Localization: See protocol Upgrade1Dto2D in Section 3.4 of [3].

If no verifier PV complained in the previous step, the output is defined to be
[[a(1)]]R, . . . , [[a(�)]]R = ψ−1([[s(1)]]R̂), . . . , ψ−1([[s(L)]]R̂).

Fig. 4. Protocol for upgrading 1D-shares to 2D-shares

Proposition 6. If Upgrade1Dto2D aborts, then a new conflicting pair of parties
is detected. Otherwise, it is guaranteed with probability at least 1 − p−d that the
values s(m) ∈ R for m = 1, . . . , � are correctly 2D-shared, meaning that for each
m there are polynomials f (m), f

(m)
1 , . . . , f

(m)
n ∈ R[X] of degree at most t such that

each party Pj has shares s
(m)
j , s

(m)
ij ∈ R with s

(m)
j = f (m)(j), s

(m)
ij = f

(m)
i (j),

s
(m)
i ≡k f

(m)
i (0) and s(m) = f (m)(0).
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Proof. The proof of this proposition follows the lines of the proof of
Proposition 4. 
�

Complexity Analysis. The protocol communicates O(n3κ+ �n2) bits and broad-
casts O(nκ) bits.

Information-Checking Signatures with Dispute Control. The goal of
information-checking signatures, or IC signatures for short, is to provide a way
for one party PR to prove to another party PV that it received some specific
shares from some other party PS . This will be used in the online phase to detect
cheaters when revealed shares happen to be inconsistent. The idea is that when-
ever a player sends his share, he is “committed” to it by means of the authen-
tication tags and therefore, if he sends an incorrect share, this can be detected
by checking the tags.

For the IC signatures in this work we follow a similar approach to [3], which
at a very high level consists of finding a polynomial f that interpolates a set
of messages as well as the point (0, y) for a randomly chosen y. The value y
will be referred to as the authentication tag. The authentication key will be a
random poiont (u, f(u)) on this polynomial where u is not an evaluation point
corresponding to any of the messages. To check correctness, the key is used to
interpolate the polynomial and then it is checked that its evaluation at zero
matches the presented tag. Intuitively, if any message is modified then the poly-
nomial will be different, and the only way in which an attacker can make the
check pass is by presenting the right tag, which is equivalent to guessing point
used as authentication key. If there are enough points to choose from, this hap-
pens only with low probability.

In more detail, the protocol IC-Distr allows a sender PS to send � values
m1, . . . ,m� ∈ R to a receiver PR along with authentication tags, and to send an
authentication key to a verifier PV . At a later point the protocol IC-Reveal can
be called to verify correctness of these tags. In this protocol, party PR sends the
messages and their tags to PV , who can then verify their correctness using its
authentication key.

Theorem 7 (Lemma 6 from [3]). If IC-Distr succeeds and PV , PR are honest,
then with overwhelming probability PV accepts the message m in IC-Reveal (com-
pleteness). If IC-Distr fails, then the localized pair in dispute contains at least one
corrupted player. If PS and PV are honest, then with overwhelming probability,
PV rejects any fake message m′ 	= m in IC-Reveal (correctness). If PS and PR

are honest, then PV obtains no information about m in IC-Distr (even if it fails)
(privacy).
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IC-Distr

A sender PS has � messages m(1), . . . , m(�) ∈ R.

– Let d̂ be such that d · d̂ ≥ κ. let L = �/d̂, and assume that d̂ is large enough so
pκ ≥ L + κ + 1, i.e. d̂ ≥ �/(pκ − κ − 1).

– PS partitions m(1), . . . , m(�) ∈ R into �/d̂ vectors of length d̂: s(j) =

(m(1,j), . . . , m(d̂,j)) ∈ Rd̂, for j = 1, . . . , L.
– Let s(j) = ψ(s(j)) ∈ R̂ for j = 1, . . . , L.

Private Computation: 1. Let B = {β1, . . . , βL} ⊆ R̂ be an exceptional se-
quence. PS selects κ random authentication tags y1, . . . , yκ ∈ R̂ and ran-
dom points u1, . . . , uκ ∈ R̂ \ (B ∪ {0}) such that B ∪ {0, u1, . . . , uκ} ⊆ R̂
forms an exceptional sequence.

2. For i = 1, . . . , κ, PS computes the polynomial fi over R̂ of degree at most
L interpolating (0, yi), (β1, s

(1)), . . . , (βL, s(L)), and computes vi = fi(ui).
3. PS sends the messages m(1), . . . , m(�) to PR, along with the authentication

tags y1, . . . , yk. It also sends the authentication keys (u1, v1), . . . , (uκ, vκ)
to PV .

Fault Detection: PV reveals a random half of the keys to PR. Then PR checks
the validity of these keys, who then broadcast accept or reject depending on
the case. If the check passes then the remaining, unrevealed half of the keys is
kept as the actual keys.

Fault Localization: See Section 3.5 of [3].

Fig. 5. Protocol for Distributing IC Signatures

IC-Reveal

A receiver PR has � messages m(1), . . . , m(�) ∈ R and κ′ = κ/2 authentication
tags y1, . . . , yκ′ ∈ R̂. A verifier PV has κ′ authentication keys (u1, v1), . . . , (uκ′ , vκ′)
corresponding to these messages.

– PR partitions m(1), . . . , m(�) ∈ R into L = �/d̂ vectors of length d̂: s(j) =

(m(1,j), . . . , m(d̂,j)) ∈ Rd̂, for j = 1, . . . , L.
– Let s(j) = ψ(s(j)) ∈ R̂ for j = 1, . . . , L.

1. PR sends the messages and the authentication tags to PV

2. PV checks the validity of the tags using its authentication keys by checking
that, for at least one i, the points (0, yi), (β1, s

(1)), . . . , (βL, s(L)), (ui, vi) lie on
a polynomial of degree at most L over R̂.

Fig. 6. Protocol for Revealing and Checking IC Signatures
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Proof. Regarding completeness, notice that if the randomly chosen κ/2 tags are
correct, then it holds that at least one of the remaining authentication tags is
valid with probability at least 1 − κ/2κ.

For correctness, consider the scenario of an honest PV and a corrupt PR.
Suppose that PR manages to make the check pass whilst presenting a different
set of messages. Let fi be the polynomial of degree at most L over R̂ interpolating
(β1, s

′(1)), . . . , (βL, s′(L)), (ui, vi), then PR must have sent a tag y′
i that is equal to

one of the elements in {f1(0), . . . , fκ(0)}. This can be done only if PR guesses at
least one of the authentication keys (ui, vi). Recall that R̂ has a Lenstra constant
of at least pκ, so there are at least pκ −L−1 possibilities for each ui. This means
that the probability of guessing at least one ui is at most κ/(pκ − L − 1).

For the proof of the other properties see the proof of Lemma 6 in [3]. 
�
Upgrading 2D-Sharings to 2D*-Sharings. Recall that in Sect. 4.4 we men-
tioned the concept of 2D*-shares, but we did not explicitly define it since we did
not have the concept of IC signatures. We begin by defining what a 2D*-share
is. Given a ∈ R, we say that a is 2D*-shared, written as 〈a〉, if it holds that [[a]]
and also, for every set of three players PR, PS , PV such that PR ↔ PS , PS ↔ PV

and PR ↔ PV it holds that PR has authentication tags of the level-two share of
PS ’s share, and PV has the corresponding authentication keys.

Protocol Upgrade2Dto2D* takes as input some 2D-shared values s(1), . . . ,
s(�) ∈ R, and upgrades them to 2D*-shares. The protocol works by calling
IC-Distr for every set of three players PR, PS , PV such that PR ↔ PS , PS ↔ PV

and PR ↔ PV , where the message m are the shares s
(1)
SR, . . . , s

(�)
SR.

For the dispute control layer of the protocol and its security proof see Sect. 3.6
of [3].

Complexity Analysis. The protocol communicates O(κ2n3) bits and broadcasts
O(nκ) bits.

Triple-Checking Protocol. The protocol SacrificeTriple, described in Fig. 7,
allows the parties to check that some given shares [a], [b], [c] satisfy c = a ·b. This
is achieved by generating some shares [a′], [c′] where c′ = a′ · b, and “sacrificing”
([a′], [b], [c′]) to check correctness of ([a], [b], [c]).

For the security of the SacrificeTriple protocol we need to argue about the
number of roots of a polynomial over a ring. In general, not much can be said
since over a ring with zero divisors a polynomial can have many more roots than
its degree. However, we have the following lemma, which bounds the number of
roots that constitute an exceptional sequence.
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SacrificeTriple

The inputs are 1D-shared values [a
(m)
k ]R, [b

(m)
k ]R, [c(m,k)]R for m = 1, . . . , �, where

a
(m)
k , b

(m)
k , c(m,k) were dealt by party Pk ∈ P \ X .

1. Every player Pk ∈ P \ X verifiably 1D-shares random values ā
(m)
k ∈ R̂ and

c̄(m,k) ∈ R̂ with c̄(m,k) = ā
(m)
k · b

(m)
k for m = 1, . . . , � as follows:

(a) For m = 1, . . . , �, player Pk ∈ P \ X samples ā
(m)
k and c̄(m,k) as speci-

fied above. Let ψ−1(a
(m)
k ) = (ā

(m)
k,1 , . . . , āk,d̂)(m) ∈ Rd̂ and ψ−1(c̄(m,k)) =

(c̄
(m,k)
1 , . . . , c̄

(m,k)

d̂
) ∈ Rd̂.

(b) Pk 1D-shares the 2�d̂ values ā
(m)
k,1 , . . . , ā

(m)

k,d̂
∈ R and c̄

(m,k)
1 , . . . , c̄

(m,k)

d̂
∈ R

using the VSS1D protocol, for m = 1, . . . , �. This implies that ā
(m)
k ∈ R̂

and c̄(m,k)R̂ are verifiably 1D-shared over R̂.
2. Parties jointly sample a random value r ∈ R̂ using protocol GenerateChallenges.
3. Each player Pk ∈ P \ X sends ã

(m)
k = r · a(m)

k + ā
(m)
k ∈ R̂ to all parties Pi with

Pi ↔ Pk, for m = 1, . . . , �.
4. Parties jointly sample a random value s ∈ R̂ using protocol GenerateChallenges.a

5. Parties invoke Reconstruct1D to reconstruct [z(k)]R̂ =
∑�

m=1 sm−1[z
(m)
k ]R̂,

where [z
(m)
k ]R̂ = ã

(m)
k [b

(m)
k ]R − r[c(m,k)]R − [c̄(m,k)]R, for k = 1, . . . , n.b

6. The parties check that z(k) = 0 for all k. If this fails for some k0 then new
disputes Pi 
↔ Pk0 are generated for all Pi ∈ P \ X .

a We could choose � independent challenges instead, but we use this optimization
to save in communication. Notice that a similar optimization can be applied to
the protocol from [3]

b Some extra step is needed to ensure players are committed to their ã. See [3] for
the details.

Fig. 7. Protocol for Verifying Multiplications

Lemma 5. Let f(X) ∈ R[X] be a non-zero polynomial of degree at most �. If
{α1, . . . , αm} ⊆ R are different roots of f that form an exceptional sequence,
then m ≤ �.

Proof. This follows from Theorem 3. Suppose that � < m, so � ≤ m − 1. We
know that there is a unique polynomial of degree at most m−1 that interpolates
the points (α1, 0), . . . , (αm, 0), but both the zero polynomial and f satisfy this
condition, so f is the zero polynomial, which is a contradiction. Therefore, we
conclude that m ≤ �. 
�

We proceed to the proof of security of the protocol SacrificeTriple.
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Proposition 7. Assume all shares [am
k ], [bm

k ], [c(m,k)] are correctly 1D-shared. If
the protocol SacrificeTriple succeeds, then with probability at least 1−�/pκ it holds
that c(m.k) = am

k · bm
k for all Pk ∈ P \ X and m = 1, . . . , �. If the protocol aborts

then it generates a new dispute.

Proof. Consider a corrupt player Pk for which c̄(m,k) = ā
(m)
k b

(m)
k + γ

(m)
k and

c(m,k) = a
(m)
k b

(m)
k + δ

(m)
k with δ

(m)
k 	= 0 for some m, say m = 1. Now, suppose

the protocol succeeds, then z(k) = 0. However, we see that this value is equal to5

z(k) =
�∑

m=1

sm−1(ã
(m)
k b

(m)
k − rc(m,k) − c̄(m,k))

=
�∑

m=1

sm−1((ra
(m)
k + ā

(m)
k )b

(m)
k − r(a

(m)
k b

(m)
k + δ

(m)
k ) − (ā

(m)
k b

(m)
k + γ

(m)
k ))

= −
�∑

m=1

sm−1(rδ
(m)
k + γ

(m)
k ) = 0.

Now, since δ
(1)
k 	= 0, it follows from Lemma 2 that rδ

(1)
k + γ

(1)
k is non-zero

with probability at least 1 − p−κ (over the choice of r).
Applying Lemma 5 we see that conditioned on rδ

(1)
k + γ

(1)
k 	= 0 the event

rδ
(1)
k + γ

(1)
k +

∑�
m=2 sm−1(rδ(m)

k + γ
(m)
k ) = 0 holds with probability at most

(� − 1)/pκ. Furthermore, using the same lemma we see that the probability that
rδ

(1)
k + γ

(1)
k = 0 is at most 1/pκ. Therefore, putting these together we obtain

that the adversary can only successfully cheat with probability at most �/pκ.
Regarding privacy, we observe that the value r · a

(m)
k ∈ R̂, which contains

information about a
(m)
k , is masked by the element ā

(m)
k ∈ R̂. Since this element

is uniformly random for an honest Pk, and given that R̂ is an additive group,
we conclude that the private value a

(m)
k of Pk remains hidden.

For the arguments related to dispute control see Lemma 8 in [3]. 
�

Complexity Analysis. Assuming that n log(n) ≤ κ2, the protocol transmits
O(n3κ + n2κ�) bits, and broadcasts O(nκ) bits.

4.6 Final Protocol

Offline Phase. In the offline phase the parties generate a number M of multi-
plication triples (〈a〉 , 〈b〉 , 〈c〉), where c = a · b and a, b are random. This phase is
totally independent of the circuit to be computed (parties only need to make sure
to generate as many triples as multiplication gates in the circuit), and therefore
it can be executed at a totally different time than the evaluation of the circuit
itself, thus the name “offline”.

To compute these sharings, a technique known as re-sharing is used to obtain
[a · b] from [a] and [b]. This works by letting the parties locally compute degree
2t−sharings of a · b by taking the local product of their shares on a and b.

5 We use the equality ã
(m)
k = ra

(m)
k + ā

(m)
k , which follows from the extra step we

omitted in the protocol.
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Then these shares are distributed and an appropriate linear combination is taken
to obtain [a · b].

Assume for simplicity that n2 divides M . To produce the M triples, the
parties produce n2 batches of L = M/n2 triples each. To generate the L triples
of each batch (or segment), the parties run the protocol from Fig. 8. Notice that
each segment may fail due to the dispute control, in which case a new dispute is
identified and the segment must be repeated. Since there are most n2 different
disputes that can occur, there may be up to n2 repetitions of segments overall,
and since there are at most n2 segments we see that there are at most 2n2

segment executions.

Proposition 8. The preprocessing protocol generates correctly 2D*-shared mul-
tiplication triples with overwhelming probability.

Proof. The proof follows from the properties of Upgrade1Dto2D, VSS1D and
Upgrade2Dto2D*. See Lemma 10 in [3] for the details. 
�

Complexity Analysis. Suppose that there are M triples to be processed. The
preprocessing phase communicates O(Mn2 log n + κ2n5) bits and broadcasts
O(n3κ) bits.

Preprocessing Protocol

Since this is the first protocol to be executed, initially the dispute set and the set of
identified corrupt parties are Δ, X = {}. The following is executed for each segment,
and each time a new dispute pair Pi 
↔ Pj is identified, it is added to Δ and the
segment is repeated.

1. Each player Pk 1D-shares 2L random values a(m,k), b(m,k) ∈ R for m = 1, . . . , L.
2. Upgrade1Dto2D is called on a(m,i) for m = 1, . . . , L and Pi ∈ P\X to obtain cor-

rect 2D-shares [[a(m)]] and [[bm]] for m = 1, . . . , L, where a(m) =
∑

Pi∈P\X a(m,i)

and similarly b(m) =
∑

Pi∈P\X b(m,i).

3. The players invoke VSS1D to let each Pk ∈ P \ X 1D-share the values c(m,k) =

a
(m)
k · b

(m)
k for m = 1, . . . , L.

4. Invoke the protocol SacrificeTriple to prove that the value [c(m,k)] shared on the

previous step is the product of [a
(m)
k ] and [b

(m)
k ] (recall that a(m) and b(m) are

2D-shared), for m = 1, . . . , L.
5. Let λ1, . . . , λn ∈ R be such that f(0) =

∑n
i=1 λi · f(i) for any polynomial

f over R of degree at most 2t. The parties use Upgrade1Dto2D to compute
[[c(m)]] ← ∑n

k=1 λk · [c(m,k)] for m = 1, . . . , L.
6. Parties use Upgrade2Dto2D* to upgrade all shares to 2D*-shares.

Fig. 8. Protocol for Preparing Multiplication Triples
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Online Phase. In the online phase is where the parties actually compute the
circuit securely, using the triples that were preprocessed in the offline phase. We
present here the online phase without the dispute control layer, which takes care
of executing only certain amount of steps within a segment and checking correct-
ness within that segment, repeating it if something was found to be inconsistent.
We refer the reader to [3] for the details of how this is done.

This phase starts by the parties sharing their inputs. This is done by letting
Pi, for each i, share its input s(i) ∈ R to the other parties. For this Pi begins
by 1D-sharing s(i) and then the parties invoke the procedures Upgrade1Dto2D
and Upgrade2Dto2D* to obtain 2D*-sharings of s(i). Then the parties process
the gates in topological order. For the addition gates, all the 2D-shares of the
inputs are simply added locally, thus requiring no interaction. However, when
two shared values [[x]] and [[y]] need to be multiplied, the parties must make
use of a preprocessed triple ([[a]], [[b]], [[c]]) with c = a · b. The multiplication
is then achieved by computing [[x − a]] = [[x]] − [[a]] and opening it as ε, and
similarly [[y − b]] = [[y]] − [[b]] and opening it as δ, and then computing [[x · y]] =
[[c]] + δ[[x]] + ε[[y]] + εδ.

As we mentioned at the beginning of the section, the details about how to
handle consistency are exactly the same as discussed in [3], so we omit some
of the details of such procedure. See Sect. 6 in the aforementioned reference to
see how this is done precisely. Something to point out is that consistency is
eventually checked by means of the IC signatures from Sect. 4.5. This tool is
used in dispute control so that some party PS can prove to some verifier PV that
certain values were indeed sent by some other party PR.

Complexity Analysis. The input phase communicates O(cIn
2 log n + κn5) bits

where cI is the number of input gates, and broadcasts O(κn3) bits. The com-
putation phase communicates O(|C|n2 log n + n4κ2) bits where |C| is the size of
the circuit, and broadcasts O(n3κ) bits.

4.7 Computation over Z/pk
Z

Summing up, we have seen so far how to perform unconditional secure compu-
tation over the Galois ring R = (Z/pk

Z[Y ])/(h(Y )). However, we wish to obtain
unconditional secure computation over Z/pk

Z itself. We can embed Z/pk
Z into

R in the natural way, and as seen in Sect. 3.4 this works for passive adversaries,
but if an active adversary manages to share values that are in R \ Z/pk

Z, cor-
rectness and security could be broken. As discussed in Sect. 3.4 and Sect. 4.1
this reduces to securely sampling an R-sharing of a random element [s] where
s ← Z/pk

Z.
Here we present a protocol RandElStat(S) in Fig. 9 for sampling this element

[s] ∈ S efficiently. Here S ⊆ R denotes an arbitrary subring; for our use case
S = Z/pk

Z. We have made the protocol to be explicit and removed any mention
of tensor products, but the intuition for this was given already in Sect. 4.1. The
protocol succeeds with overwhelming probability.
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RandElStat(S)

Output: sharings [x
(i)
j ] for j = 0, . . . , d − 1 and i = 1, . . . , L for a total of dL

random elements, where the shares are in R and the secrets x
(i)
j are in S.

Public information: fix ξ ∈ R such that {1, ξ, ξ2, . . . , ξd−1} is an S-basis for R
as an S-module. With respect to this basis, multiplication by an element r ∈ R can
be represented by a d × d matrix Mr with entries in S.

Private Computation: Each player Pk ∈ P \ X samples d(L + 1) uniformly

random values x
(i,k)
j ← S for j = 0, . . . , d − 1 and i = 1, . . . , L + 1, and 1D-

shares each of them over R. The players compute [x
(i)
j ] =

∑n
Pk∈P\X [x

(i,k)
j ]

Fault Detection: The players run GenerateChallenges to sample uniformly ran-
dom r1, . . . , rL in R̂, with associated matrices as mentioned above. Then the
following is executed for every verifier PV ∈ P \ X .

1. The players interpret the random elements [x
(i)
j ] as L+1 column vectors of

length d, i.e. for each i = 1, . . . , L + 1 we have [x(i)] = ([x
(i)
0 ], . . . , [x

(i)
d−1])

T .

Then, they compute the sum [y] = Mr1 [x
(1)] + · · · + MrL [x(L)] + [x(L+1)]

and send the shares of y to PV .
2. PV checks if it holds that all the entries of y are in S, and broadcast a bit

indicating which is the case.
If all verifiers PV ∈ P \ X accepted in the previous step then output the shares

[x
(i)
j ].

Fault Localization: Run the following for the smallest PV ∈ P \ X that com-
plained in the fault detection phase.
1. Every player Pk with Pk ↔ PV sends their shares of each x

(i,�)
j to PV , for

j = 0, . . . , d − 1, i = 1, . . . , L and P� ↔ Pk.
2. PV checks that all the shares for P� ↔ PV interpolate correctly.
3. If they do interpolate correctly then PV gets x

(i,�)
j for j = 0, . . . , d − 1,

i = 1, . . . , L and P� ∈ P \ X . PV broadcasts the smallest index � of the

party for which x
(i,�)
j /∈ S and the protocol fails with PV 
↔ Pk.a

4. If they do not interpolate correctly then PV broadcasts the smallest indexes
�, i, j for which interpolation of x

(i,�)
j failed.

5. Each party Pk ∈ P \ X with Pk ↔ P� broadcasts its share of x
(i,�)
j .

6. If the broadcasted shares interpolate correctly then PV broadcasts the in-
dex k of a party Pk with Pk ↔ PV that broadcasted a share different than
the one it sent to PV before and the protocol fails with PV 
↔ Pk.

7. Otherwise, the accused party P� broadcasts the index of the party Pk who
broadcasted a wrong share and the protocol fails with P� 
↔ Pk.

a Such party exists with overwhelming probability, as we argue in Proposition 9

Fig. 9. Statistically secure protocol for generating sharings of random elements in a
Galois subring S ⊂ R
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With this protocol in hand, the input phase from the previous section is
modified slightly in order to make sure that underlying inputs lie in Z/pk

Z. This
is done as follows:

1. Party Pi ∈ P \ X shares its input x ∈ Z/pk
Z as [x]R.

2. The parties use RandElStat(Z/pk
Z) to obtain shares [s]R of a random element

s ∈ Z/pk
Z. Then use Reconstruct1D to open [s + x]R.

3. If s + x /∈ Z/pk
Z then add Pi ∈ X , i.e. mark Pi as corrupt.

It is clear that if the check is sound since x /∈ Z/pk
Z iff s + x /∈ Z/pk

Z.
Regarding the security of RandElStat, we have the following proposition.

Proposition 9. If RandElStat succeeds, then, with probability at least 1 − p−κ,
each value s

(i)
j is uniformly random in S. If it fails then a new dispute pair is

generated.

Proof. Suppose the check succeeds for an honest verifier PV and the adver-
sary cheats successfully, i.e. there is an element x

(i∗)
j which is not in S. Recall

{1, ξ, . . . , ξd−1} is an S-basis for R, so we may without loss of generality assume
that the ξm-coefficient of xj(i∗) is non-zero. We have

[y] = Mr1 [x
(1)] + · · · + MrL

[x(L)] + [x(L+1)] (1)

where each element of y is in S, but note that the shares are actually vectors
in Rd. On both sides of Eq. 1, we first take the coefficients of ξm for each R-
element, and then interpret the resulting S-vectors and matrices Mr as elements
of R. Both of these operations are S-linear. The result is the equation 0 =
r1u1 + · · ·+ rLuL +uL+1, where ui = φ

(
x
(i)
0

)
+φ

(
x
(i)
1

)
ξ + · · ·+φ

(
x
(i)
d−1

)
ξd−1

for each i, and φ : R → S maps an element in R to its coefficient of ξm. Similarly
to the proof of Proposition 4, we apply Lemma 2 to conclude that this equation
holds with probability at most p−d, since each ri is uniformly random. 
�

5 Conclusions

In this work, we have answered the open question “Can we design protocols
that work directly over Z/pk

Z?” in the affirmative. We have developed novel
machinery that allows us to adapt existing protocols for information-theoretic
MPC to work over the ring Z/pk

Z, for any prime p and any positive integer k. In
fact, by using CRT, this implies information-theoretic MPC over the ring Z/NZ

for any integer N . The communication complexity of our techniques introduce an
overhead of only log n compared to the corresponding protocols over fields, where
n is the number of parties. This overhead comes from the fact that we need to
work over a larger structure (a Galois ring) in order to obtain algebraic properties
that resemble those on fields, and that can be used for multiparty computation.
A similar approach is taken in the SPDZ2k protocol [8] for computation over
Z/2k

Z by using the larger ring Z/2k+s
Z. In that work it is conjectured that this
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is an inherent price to pay for working over an algebraic structure with less nice
properties than a field, and our current approach to information-theoretic MPC
over Z/pk

Z seems to support this claim, at least in the setting of a single circuit
execution.

We consider as future work improving the complexity of the protocols pre-
sented here (specially the one from Sect. 4 for honest majority) by adapting more
efficient protocols over fields like [5], whose complexity is almost-linear in the
number of parties.
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Abstract. Topology-hiding computation (THC) is a form of multi-party
computation over an incomplete communication graph that maintains
the privacy of the underlying graph topology. Existing THC protocols
consider an adversary that may corrupt an arbitrary number of parties,
and rely on cryptographic assumptions such as DDH.

In this paper we address the question of whether information-theoretic
THC can be achieved by taking advantage of an honest majority. In
contrast to the standard MPC setting, this problem has remained open
in the topology-hiding realm, even for simple “privacy-free” functions
like broadcast, and even when considering only semi-honest corruptions.

We uncover a rich landscape of both positive and negative answers to
the above question, showing that what types of graphs are used and how
they are selected is an important factor in determining the feasibility
of hiding topology information-theoretically. In particular, our results
include the following.

– We show that topology-hiding broadcast (THB) on a line with four
nodes, secure against a single semi-honest corruption, implies key
agreement. This result extends to broader classes of graphs, e.g.,
THB on a cycle with two semi-honest corruptions.

– On the other hand, we provide the first feasibility result for
information-theoretic THC: for the class of cycle graphs, with a sin-
gle semi-honest corruption.

Given the strong impossibilities, we put forth a weaker definition of dis-
tributional-THC, where the graph is selected from some distribution (as
opposed to worst-case).

– We present a formal separation between the definitions, by show-
ing a distribution for which information theoretic distributional-
THC is possible, but even topology-hiding broadcast is not possible
information-theoretically with the standard definition.

– We demonstrate the power of our new definition via a new connection
to adaptively secure low-locality MPC, where distributional-THC
enables parties to “reuse” a secret low-degree communication graph
even in the face of adaptive corruptions.
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1 Introduction

In the setting of secure multiparty computation (MPC) [8,15,21,33], a set of
mutually distrusting parties wish to jointly perform a computation, such that
no coalition of cheating parties can learn more information than their outputs
(privacy) or affect the outputs of the computation any more than by choosing
their own inputs (correctness). Seminal results initiated in the 1980s [8,15,21,33],
showed feasibility of MPC for general functions in many settings. The original
definitions—and most works in the rich field of research they gave rise to—
assume the participants are connected via a complete graph: i.e., any pair of
parties can communicate directly with each other. However, in many settings
the communication graph is in fact partial (either by design or by necessity).
Moreover, as we discuss below, the network topology itself may be sensitive
information to be hidden.

Several lines of work have studied secure computation over incomplete net-
works, in different contexts, but without attempting to hide the communica-
tion graph. For example, beginning with classical results in Byzantine agreement
[17,20], a line of work studied the feasibility of reliable communication over
(known) incomplete networks (cf. [4–6,9,13,18,19,28]). More recent lines of work
study secure computation with restricted interaction patterns, motivated by
improving efficiency, latency, scalability, usability, or security, including [7,10,11,
14,22–24]. Some of these works utilize a secret communication subgraph of the
complete graph that is available to the parties as a tool to achieve their goal; e.g.,
[10,11,14] use this idea in order to achieve communication locality.

Topology-Hiding Computation. Moran et al. [31] initiated the study of Topology-
Hiding Computation (THC), addressing the setting where the communication
graph is incomplete and sensitive. Here, the goal is to allow parties who see
only their immediate neighborhood (and possibly know that the graph belongs
to some class), to securely compute arbitrary functions without revealing any
other information about the graph topology. THC is of theoretical interest, but
is also motivated by real-world settings where it is desired to keep the underly-
ing communication graph private. These include social networks, ISP networks,
vehicle-to-vehicle communications, wireless and ad-hoc sensor networks, and
other Internet of Things networks.

THC protocols have been studied within two adversarial settings. In the
semi-honest setting, the adversary follows the prescribed protocol but attempts
to extrapolate disallowed information. In the fail-stop setting, the adversary may
additionally abort the computation of parties at any point. Most existing THC
protocols focus on the former, semi-honest setting, and this will also be our
focus in this paper. We mention that in the fail-stop setting, Moran et al. [31]
showed that THC is not possible except for extremely limited graphs/adversarial
corruption patterns, and Ball et al. [3] and LaVigne et al. [29] showed how to
achieve it with small leakage, assuming a secure hardware setup assumption, and
assuming the hardness of decisional Diffie-Hellman (DDH), quadratic residuosity
(QR), or learning with errors (LWE).
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For the rest of this paper we assume the semi-honest setting (although some
of our results could potentially be extended to fail-stop or malicious settings).
In this regime, after several protocols achieving THC for various subclasses of
graphs (log-diameter, cycles, trees, etc.) [1,26,31] from different cryptographic
assumptions, Akavia et al. [2] showed how to achieve THC for all graphs from
the DDH or QR assumptions, and LaVigne et al. [29] from LWE.

Our Question: Information-Theoretic THC. Existing topology-hiding computa-
tion protocols provide a strong notion of hiding all information about the graph
against an adversary who can corrupt an arbitrary number of parties. On the
other hand, these existing protocols use structured cryptographic assumptions
such as DDH, oblivious transfer (OT), or public-key encryption (PKE) with spe-
cial properties, or even stronger assumptions such as a secure hardware box [3]
to achieve more practical efficiency.

In this paper, we ask whether we can hide topology information theoretically,
against a computationally unbounded adversary (in the plain model, with no cor-
related randomness or other trusted setup). A similar question, albeit only for
(non-private) communication, was considered by Hinkelmann and Jakoby [25].
They claim an impossibility result for the class of all graphs, as well as a positive
result showing an information-theoretic all-to-all communication protocol that
leaks specific information about the graph (routing tables) but no other infor-
mation. In contrast, here we are interested in (positive and negative) results for
subclasses of graphs, as it is typically the case in applications of THC that the
graph belongs to a certain known class. Looking ahead, we will see that what
graphs are allowed and how they are chosen plays a crucial role for the feasibility
of information-theoretic THC.

Ball et al. [3] have also considered this question, and showed that in their
setting—semi-honest, arbitrary number of corruptions—the answer is negative.
Specifically, they prove that even semi-honest secure topology-hiding broadcast
for four parties or more, implies OT. Note that standard information-theoretic
MPC for broadcast (where topology can be revealed) is trivial in the semi-
honest setting, since there is nothing to hide: simply “flooding”—i.e., forwarding
received messages to all neighbors—for sufficiently many rounds, works. Their
proof crucially depends on the adversary corrupting at least half of the parties,
namely no honest majority. This brings up a natural question, which we study
in this paper:

Can we take advantage of a low corruption threshold to achieve
information-theoretic topology-hiding computation?

This question is particularly natural when we consider how fruitful this app-
roach had been in the realm of standard (topology-revealing) secure computa-
tion. Indeed, classical results [8,15,32] show information-theoretic protocols for
secure computation of general functions with an honest majority. However, in the
topology-hiding realm, this question remained open (and explicitly mentioned in
previous works such as [3]). In fact, the question was open even for the special
case of topology-hiding broadcast (THB), where no privacy of inputs is required.
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In this paper, we prove several results answering the above question, both
negatively and positively, in different settings. All our positive results hold for
general THC and all our negative results hold even for THB. Below we first
describe our results for the standard definition of THC. We then discuss a new
weaker definition of distributional -topology-hiding computation that we put for-
ward, together with our results for this definition (as well as motivation and
applications of this relaxation). Our results deepen our understanding of the
nature of topology hiding, and point to a rich terrain of possibilities and appli-
cations of THC.

1.1 Our Results: Standard (Strong) Topology Hiding

We start by presenting both feasibility and infeasibility results of information-
theoretic THC according to the standard definition from [30].

Broadcast on a Line Implies Key Agreement. We identify a large class of graphs
for which information-theoretic THC is not possible, even when the semi-honest
adversary can corrupt just a single party, and even without relying on input
privacy.

Theorem(informal):Topology-hidingbroadcast for a graphwith four parties
on a line, resilient to one semi-honest corruption, implies key agreement.

Note that this theorem is for THB. Information-theoretic THC is trivially not
possible here because the graph is only 1-connected, hence no privacy is possible
with one corruption [18] (recall that we do not have any setup or correlated
randomness).

At a high level, our key-agreement protocol considers two permutations of
the four nodes: G0 = (1 − 2 − 3 − 4) and G1 = (2 − 3 − 4 − 1) (see Fig. 1), with
party 1 acting as the broadcaster. In this setting, a corrupted party 3 cannot
distinguish which topology is being used: namely, whether 1 is a neighbor of 2
or of 4. This gap can be used to achieve a two-party key-agreement protocol.
Consider an execution of the THB where Alice emulates parties 1, 2, and 3
while Bob emulates party 4, and another execution where Alice emulates parties
2 and 3 while Bob emulates parties 4 and 1. In both cases the messages that are
exchanged by Alice and Bob—and so can be heard by an eavesdropper—consist
of a partial view of party 3 in the THB protocol.

The key-agreement protocol now comprises of repeated phases, where in each
phase Alice and Bob run two executions of the THB protocol. Each party tosses
a private coin to decide whether to emulate the broadcaster party 1 in the first
execution or the second. If Alice and Bob toss different coins, then either both
emulate party 1 or nobody does. In this case they simply discard this phase and
continue to the next one. However, if they toss the same coin, an eavesdropper
will not be able to guess with more than negligible probability whether Alice
emulated 1 in the first run and Bob in the second, or vice versa; hence, Alice
and Bob can agree on this bit.
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Fig. 1. Four-party THB implies two-party key agreement. At the top are two config-
urations of the line, where party 3 is connected to party 2 on the left and to party
4 on the right. Party 3 does not know the location of party 1. At the bottom is the
induced KA protocol, where Alice and Bob simulate executions of the THB protocol.
The transcript visible to Eve forms a partial view of party 3’s view in the THB; hence,
Eve cannot distinguish between both scenarios.

Extension to Broader Classes of Graphs. Clearly, this theorem holds for any class
of graphs that includes all lines over n ≥ 4 parties (topology-hiding here means
that the order of the parties on the line, other than the two neighbors of the
corrupted party, is not known, and in particular, the location of the broadcaster
is hidden).

Our theorem further extends by a standard player-partitioning argument to
more general classes of graphs, namely, any graph that can be partitioned into
4 “subsets” on a line. An example for such a class, most relevant to our positive
result (below), are cycles of seven parties or more and with two corruptions (see
Fig. 2).

Information-Theoretic THC on a Cycle. Our negative result rules out
information-theoretic THC on cycles with two corruptions. Does a similar result
hold even when we have a single corruption? Our next result shows that the
answer is no. We construct a perfectly secure THC protocol on cycles, resilient
to a single corruption.

Theorem (informal): THC on a cycle with one corruption can be achieved
information theoretically, with perfect correctness.

Note that this does not contradict the negative result claimed by Hinkelmann
and Jakoby [25]. While that result precludes information-theoretic THC for the
class of all graphs, here the parties know they are on a cycle (but do not know
in which order the parties are arranged on the cycle).

The proof consists of two parts. Initially, we show how to realize anonymous
and private pairwise communication. That is, each party can send a message to
any other party on the cycle, but without knowing to whom he is sending, and
from whom he is receiving messages. Instead, the sender can send the messages
to the relative location on the cycle, i.e., he can send one message to a party that
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Fig. 2. Reducing a seven-node cycle to a four-node line. Consider the partition of the
seven nodes into P1 = {1}, P2 = {2, 3}, P3 = {4, 5}, and P4 = {6, 7}. The cycle on the
left yields (P1 −P2 −P3 −P4) and the cycle on the right yields (P2 −P3 −P4 −P1).

is 2 hops to his right, another message to a party that is 3 hops to his left, and
so on. To send a message to a party that is j hops to his right (i.e., n− j hops to
his left), the sender secret shares the message and sends one share to his right
neighbor and the second to his left neighbor. A party that receives a message
from one of his neighbors forwards the message to his other neighbor. As there
are n−1 hops in the cycle, sending a message takes n−1 rounds, and the sender
(that is sending to the party that is j hops to his right) starts sending the right
share after n − j rounds and the left share after j rounds. This way, after n − 1
rounds, the receiver obtains both shares and can reconstruct the message.

Once establishing private pairwise channels, the parties can compute any
function using the BGW protocol [8]. However, BGW cannot be executed imme-
diately over an anonymous network, since to process input wires the real identi-
ties should be known, rather than the alias IDs (e.g., for computing (x1+x2)·x3).
To overcome this obstacle, we first observe that symmetric functions f can be
implemented immediately via BGW over an anonymous communication net-
work. Then, we generically reduce arbitrary f to the symmetric case, by having
parties submit their real ID as part of their input (i, xi), and computing the
modified symmetric function f ′ which acts equivalently on all input pairs via
multiplexing.

1.2 Our Results: Distributional-Topology Hiding

Having shown that information-theoretic THC is impossible for a large class
of graphs even in the honest-majority setting, a natural question is whether
we can construct weaker—but still useful—variants of THC for such settings. In
particular, suppose we do not aim to hide everything about the graph, but rather
just hide something about the graph, which will allow us to use the protocol as
a building block in other applications.
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As a motivating example, consider the work of Boyle et al. [11], who showed
a protocol achieving adaptively secure MPC, where the actual communication
graph has a sublinear cut, and thus is not an expander. Their protocol is in
the so-called hidden-channel model, introduced in [14], where the adversary is
unaware of the communication between honest parties (otherwise a trivial attack
would separate the graph).1 Intuitively, the adaptive security of their protocol
hinges on the fact that the adversary cannot find which parties are on the small
cut; if it could corrupt those parties, the security would be compromised. Thus,
although hiding information about the topology was not their goal, it seems
that the main tool used by [11] to prove their result is that something about
the topology (where the sublinear cut is) is hidden. Intuitively, their protocol
captures some notion of topology hiding.

Trying to formalize this claim and prove it within the existing framework
of THC quickly fails. Indeed, the standard definition of THC (considered in
Sect. 1.1 and in all prior work) captures security in “worst-case” graphs; hence,
the communication graph is chosen by the environment. Since the environment
can choose which parties to corrupt in a correlated way, it can simply corrupt
the parties on the cut and break security of the protocol (even with static cor-
ruptions). This motivates us to define a weaker notion:

We define distributional topology-hiding computation, where, informally,
the environment only knows the distribution from which the graph is cho-
sen, not the specific graph.

Defining Distributional-Topology Hiding. Formalizing this definition poses some
subtleties. In its most intuitive form, this definition resembles the hidden-graph
model from [14]. In this model, the graph is sampled according to some prede-
fined distribution, and each party learns its local neighborhood. Chandran et al.
[14] used this model to construct adaptively secure MPC with sublinear com-
munication locality; however, their protocol was not meant to hide topology,
and indeed each graph was only valid for a one-time use. In the distributional-
topology-hiding case, we wish to construct protocols that do hide the topology,
and so can reuse the same graph.

To support hidden topology during the computation along with strong com-
position capabilities, we allow the environment to receive the communication
graph from the ideal functionality (either the communication-graph functional-
ity in the real world, or the graph-information functionality in the ideal world),
before announcing its decision-bit: real or ideal. Once the environment has
learned the graph, we fall back to a similar state as in the classical THC set-
ting, and we cannot base the security of the protocol on the graph’s entropy.
For this reason, after the environment receives the graph, the ideal functionality

1 This is in fact the communication model that is considered in the topology-hiding
setting, since if the communication is over standard private channels, the adversary
would learn information about the graph just by observing with whom honest parties
communicate.
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will stop processing any further messages, and in a sense, the communication
network enters an “out of order” state.

However, the environment might still attempt to misuse this additional
power, and after receiving the communication graph, corrupt a set of parties
in a way that will break security (e.g., corrupt the entire sublinear cut in the
example above). This attack is quite subtle, since essentially, after learning the
graph the environment has the capability to learn all of the inputs that were used
in the protocol just from the messages received by a small set of parties (recall
that we consider information-theoretic protocols in the plain model). Clearly,
the simulator will not be able to simulate such an attack. One way to protect
against this attack is to rely on secure data erasures and instruct every party
to erase all of the received and sent messages as soon as the network goes out
of order. However, since secure erasures form a strong assumption that cannot
always be realized, and thus limit the model, we resort to an alternative, more
general, solution. To overcome this subtlety, once the environment receives the
graph the ideal functionality will provide the simulator with all of the input
messages it received from honest parties. This new information will allow the
simulator to simulate additional corruption requests that are issued as a function
of the graph, and will balance the additional advantage the environment gained.

In a sense, the new definition guarantees privacy of the communication net-
work as long as it is active; however, if the network enters an “out of order”
state, it does not retain the privacy of the protocols that used it, unless secure
data erasure are employed.

We note that since the new definition hides the communication graph from
the environment while it is active, computation that depend on the communi-
cation graph itself (e.g., finding shortest paths) cannot be supported - this is
another weakening of the original definition.

Relation to Classical THC. Having formalized distributional-THC, one may ask
whether this definition can be used to achieve meaningful computations, and
whether it implies standard THC. We show that this definition can capture the
intuitive topology-hiding property of the protocol in [11], discussed above. In
fact, we modify their protocol to show a strong separation between the defi-
nitions. We construct a distribution D which, on the one hand, can be used
for computing any function while hiding a sublinear cut between two cliques
(tolerating a linear number of adaptive corruptions), and on the other hand,
even broadcast cannot be computed in a topology-hiding manner (in the clas-
sical sense) using any graph in the support of D (tolerating merely a sublinear
number of static corruptions).

Theorem (informal): We show a distribution D over graphs with n nodes
such that:

– Distributional-THC of every function can be achieved with respect
to D, with information-theoretic security, against an adaptive semi-
honest adversary.
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– For any class of graphs C with C ∩ supp(D) �= ∅, even broadcast cannot
be computed information theoretically in the strong THC setting, even
with static semi-honest corruptions (as it implies key agreement).

Connection to Adaptively Secure Low-Locality MPC. Finally, we demonstrate the
power of our new definition via a new connection to adaptively secure low-locality
MPC, where distributional-THC enables parties to “reuse” a secret low-degree
communication graph even in the face adaptive corruptions. Concretely, this will
enable sequential composition of the adaptively secure MPC protocol from [14]
while maintaining sublinear locality. The starting point of [14] was any adaptively
secure MPC protocol over pairwise private channels. They used the hidden-graph
model to sample an Erdős-Rényi graph G (with sublinear degree and polylog
diameter) and showed how to emulate pairwise private communication over the
graph G. In addition, an elegant distributed sampling algorithm for a Erdős-
Rényi graph was given in [14] (based on [13,27]).

However, as discussed above, their protocol does not hide the topology of G,
and so a fresh graph is used for every communication round. For this reason,
their protocol can be used for executing MPC protocols with sublinear many
communication rounds, and maintains sequential composition of sublinear many
computations (otherwise the locality will blow up).

We show that if the private pairwise communication can be instantiated in
a distributional-THC manner, the adaptively secure MPC protocol from [14]
will be able to reuse the same secret Erdős-Rényi communication graph for
polynomially many rounds, and so will remain secure under arbitrary sequential
composition.

Theorem (informal): If there exists an adaptively secure distributional-
THC protocol for private pairwise communication with respect to the
Erdős-Rényi distribution from [14] (tolerating a linear number of semi-
honest corruptions), then there exists an honest-majority adaptively secure
MPC protocol with sublinear locality (tolerating the same corruptions)
that remains secure under polynomially many sequential executions.

We note that this theorem does not present a new feasibility result, as we
do not yet know how to implement the required underlying adaptively secure
distributional-THC protocol. We leave this as an interesting open problem.
Instead, the theorem demonstrates the power and usefulness of our definition
(despite its weakness compared to the original).

1.3 Open Problems

Our results from Sect. 1.1 characterize the feasibility of information-theoretic
THC over lines and cycles. Ultimately, the desire is to provide a similar char-
acterization for all graphs. An interesting starting point is to extend our under-
standing in broader classes of graph, e.g., wheel graphs or 3-regular graphs.

Another intriguing question to come up with more distributions over graphs
that can be computed in a distributional-THC manner.
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Finally, as mentioned above, it is not clear whether private pairwise com-
munication can be realized with distributional-THC security with respect to
the Erdős-Rényi distribution. Answering this question will have implications on
low-locality adaptively secure MPC.

Additional Related Work. In an independent and concurrent work, Damg̊ard
et al. [16] investigate the feasibility of information-theoretic THC. Their setting is
different from ours, as they consider a trusted setup phase to generate correlated
randomness for the parties.

Organization of the Paper. The preliminaries can be found in Sect. 2. Initially,
we consider the standard THC definition and present our lower bound in Sect. 3,
followed by the positive results in Sect. 4. We proceed to define distributional-
THC in Sect. 5, show a separation between the definitions in Sect. 6. Due to space
limit, some of the proofs and the connection to low-locality MPC are deferred
to the full version.

2 Preliminaries

Notations. For n ∈ N let [n] = {1, · · · , n}. We denote by κ the security param-
eter, by n the number of parties, and by t an upper bound on the number of
corrupted parties. The empty string is denoted by ε.

UC Framework. We consider the UC framework of Canetti [12]. Unless stated
otherwise, we will consider computationally unbounded and semi-honest adver-
saries and environments. We will consider both static corruptions (where the
corrupted parties are chosen before the protocol begins) and adaptive corrup-
tions (where parties can get corrupted dynamically during the course of the
computation), and explicitly mention which type of corruption is considered in
every section.

We will consider the standard secure function evaluation (SFE) functionality,
denoted Ff

sfe. Informally, the functionality is parametrized by an efficiently com-
putable function f : ({0, 1}∗)n → {0, 1}∗. Every honest party forwards its input
received from the environment to the ideal functionality, and the simulator sends
the corrupted parties’ inputs. The functionality computes y = f(x1, . . . , xn) and
returns y to every party. Broadcast is a special case of SFE for the function that
receives an input from a single party, named the broadcaster, (formally, every
other party gives the empty string ε as input) and delivers this value to every
party as the output. We denote the broadcast functionality by Fbc.

Topology-Hiding Computation (THC). We recall the definition of topology-
hiding computation from [31]. The real-world protocol is defined in a model
where all communication is transmitted via the FG

graph functionality (described
in Fig. 3). The functionality FG

graph is parametrized by a family of graphs G.
Initially, before the protocol begins, FG

graph receives the network communication
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graph G from a special graph party Pgraph, makes sure that G ∈ G, and provides
to each party his local neighbor-set. Next, during the protocol’s execution, the
functionality receives a message to be delivered from a sender Pv to a receiver
Pw and delivers the message if the edge (v, w) appears in the graph.

An ideal-model computation of a functionality F is augmented to provide the
corrupted parties with the information that is leaked about the graph; namely,
every ideal (dummy) party should learn his neighbor-set. To capture this, we
define the wrapper-functionality WG

graph-info(F), that runs internally a copy of the
functionality F. The wrapper receives the graph G = (V,E) from Pgraph, makes
sure that G ∈ G, and upon receiving an initialization message from a party Pi

responds with its neighbor set NG[i] (just like FG
graph). All other input messages

are forwarded to F and every message from F is delivered to its recipient.

Fig. 3. The communication graph functionality

Definition 1 (Topology-hiding computation). We say that a protocol π
securely realizes a functionality F in a topology-hiding manner with respect to
G tolerating semi-honest t-adversaries if π securely realizes WG

graph-info(F) in the
FG

graph-hybrid model tolerating semi-honest t-adversaries.

We note a few technical changes in the definition above compared to [31].
First, we let the graph functionality Fgraph and the wrapper Wgraph-info be
parametrized by a family of graphs G. This captures the fact that certain proper-
ties of the graphs might be inherently leaked e.g., the diameter of the graph [31]
or that the graph is a cycle or a tree [1]. This technical adjustment has also been
considered in [26]. A second difference is that we define the graph-information
as a wrapper functionality around F rather than a separate functionality that
is composed with F. Although this difference is only syntactic with respect to
the definition above, it will enable a cleaner definition of distributional THC in
Sect. 5.
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3 TH-Broadcast on a Line Implies Key Agreement

In this section, we show that a topology-hiding broadcast protocol of four parties
(or more) connected in a line that tolerates one semi-honest corruption, implies
the existence of two-party key-agreement protocols.

We define the following class of graphs Gline = {G0, G1}, where each graph
has four nodes on a line: G0 = (1 − 2 − 3 − 4) and G1 = (2 − 3 − 4 − 1) (see
Fig. 1). Consider party 1 to be the broadcaster, then a corrupted party 3 will
not know whether 1 is a neighbor of 2 or of 4. We next show how to utilize this
property to achieve a two-party key-agreement protocol. The high-level idea is
that either Alice will emulate parties 1, 2, and 3 and Bob will emulate party 4, or
that Alice will emulate parties 2 and 3, and Bob will emulate parties 4 and 1. An
eavesdropper listening to their communication will in fact hear all the messages
exchanged between party 3 and party 4 in the THB protocol, and therefore will
not be able to guess with more than negligible probability who emulates party 1.

Theorem 1. The existence of four-party topology-hiding broadcast with respect
to class Gline secure against semi-honest adversaries that may make a single cor-
ruption implies the existence of key agreement.

High-Level Idea. Our key-agreement protocol proceeds in phases. In a given
phase, Alice and Bob will jointly simulate the topology-hiding broadcast protocol
on a line graph of nodes 1, 2, 3, 4. Alice will always simulate nodes 2 and
3 and Bob will always simulate node 4. Alice and Bob will flip private coins
to determine if they simulate 1. Note that it may be that neither or both of
them simulate node 1. It will always be the case that node 2 has an edge to
node 3 which is in turn has an edge to node 4. If Alice’s coin is heads she will
simulate node 1 with a unique edge to node 2. Similarly, if Bob’s coin is heads,
he will simulate node 1 with a unique edge to node 4. The node 1 will always be
broadcaster, and will correspond to the bit agreed upon. The eavesdropper, Eve,
will of course see the messages between 3 and 4 as Alice and Bob communicate
to simulate the protocol execution. We will design our protocol so that Alice
and Bob can identify when both or neither are controlling node 1 so they can
throw them out, as the protocol will have no guarantees in this case. In the other
cases, whether Alice or Bob controls 1 will indicate the bit agreed upon. This bit
will be obvious to both Alice and Bob; however, it will be obscured from Eve.
In particular, any advantage Eve has in guessing the bit can be used to break
the topology hiding of the protocol. To increase the probability of successfully
agreeing on a bit the protocol can simply be repeated. However, for simplicity
we will specify and analyze the low-success version.

Proof. Let π be a topology-hiding broadcast protocol with respect to Gline, where
node 1 is the broadcaster. Via sequential composition, we may assume π is a κ-bit
broadcast protocol without. We use π to construct the following key-agreement
protocol.
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Protocol 2 (Two-party key agreement)

1. Alice sends two random κ-bit strings, r1 and r2, to Bob. These will be the
strings broadcasted in the simulations of π.

2. Alice and Bob each flips a coin: cA, cB ← {0, 1}, respectively. They will jointly
simulate the protocol twice.
– If cA = 1, Alice will first simulate nodes 1 (broadcasting r1), 2, and 3 in π.

The second time, Alice will just simulate nodes 2 and 3. If cA = 0, Alice
will just simulate nodes 2 and 3 the first time and additionally simulate
node 1 (broadcasting r2), the second time.

– If cB = 1, Bob will first simulate nodes 1 (broadcasting r1) and 4 in π.
The second time, Bob will just simulate node 4. If cB = 0, Bob will just
simulate node 4 the first time, and additionally simulate node 1 (broad-
casting r2), the second time.

3. Alice and Bob jointly simulate π twice according to the roles designated above,
communicating messages between 3 and 4 as needed.
– If node 2 did not output either r1 in the first simulation of π or r2 in the

second simulation of π, Alice outputs ⊥. Otherwise, Alice outputs cA.
– If node 4 did not output either r1 in the first simulation of π or r2 in the

second simulation of π, Bob outputs ⊥. Otherwise, Bob outputs 1 − cB.

There are 4 cases for how (cA, cB) is chosen (each occurring with probability
1/4. We will divide them into two sets (each occurring with probability 1/2):
cA = cB and cA �= cB . We claim that in the first case both Alice and Bob output
⊥ with probability ≥ 1 − 21−κ. In the second case, we claim that both Alice
and Bob output cA with overwhelming probability and that Eve’s output can
be at most negligibly correlated with cA. Thus, conditioned on Alice and Bob
not outputting ⊥ (which happens with probability negligibly close to 1/2), Alice
and Bob will agree on a bit (with overwhelming probability) that is negligibly
correlated with any bit outputted by an efficient eavesdropper. Therefore, it
suffices to prove the claim for each case.

The case of cA = cB. If both cA = 1 and cB = 1, then neither Alice nor Bob is
simulating the broadcasting node 1 in the second simulation. In which case, all
outputs of π in this simulation is independent of r2. Thus, the probability that
either node 2 or node 4 outputs r2 in the simulation is at most 2/2κ. Conversely,
if both cA = 0 and cB = 0, then neither party is simulating node 1 in the first
simulation and all outputs are independent of r1. And similarly the probability
that either node 2 or node 4 outputs r1, in this case, is at most 2/2κ.

In either case there is a simulation where both node 2 and node 4 fail to
output the chosen string with probability at least 1 − 21−κ. Thus, both Alice
and Bob will output ⊥ with probability at least 1 − 21−κ.

The case of cA �= cB. In this case, in each simulation exactly one of Alice and Bob
is simulating node 1, the broadcaster. By correctness, all nodes (including nodes
2 and 4) will output the string r1 in the first simulation and r2 in the second
simulation with overwhelming probability. Thus, both Alice and Bob will output
cA (note that cA = 1 − cB , in this case) with overwhelming probability.
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On the other hand, suppose Eve outputs a bit b such that Pr[b = cA] =
1/2 + α. Note that Eve only sees the correspondence between nodes 3 and 4.
We can use such an Eve to distinguish between running π on G0 or G1 with
advantage at least α/3. Moreover, it will distinguish with respect to a specific
distribution of broadcast messages and topology: the one where both message
and topology are chosen uniformly and independently.

A semi-honest adversary that has corrupted node 3 will wait until the pro-
tocol has completed and the output r has been received before simulating Eve.
The adversary will flip a bit b′: effectively guessing the opposite topology of
actual execution 1-2-3-4 (in the case that b′ = 0) or 2-3-4-1 (in the case that
b′ = 1). After the protocol has completed, the adversary will sample a random
string r′ and run Eve on a transcript comprised of r, r′, the actual communi-
cation between nodes 3 and 4, and a communication between nodes 3 and 4 in
a simulated execution where r′ is broadcasted over the guessed topology. The
simulated Eve will output a bit b. If b = 1, the adversary will output the 1-2-3-4
topology, and the 2-3-4-1 topology otherwise.

In the case that the adversary guessed correctly (which happens with proba-
bility 1/2), the transcript Eve is given is identically distributed to the that of the
key-agreement protocol. In this case, the simulated Eve’s bit will be α-correlated
with the actual topology. In the other case, when Eve is given two independent
invocations of the protocol on the same graph, Eve’s output must be negligi-
bly close to 1/2 and the security of π. Therefore, the probability the adversary
outputs the correct topology is at least

1/4 − negl(κ) + 1/4 + α/2 > 1/2 + α/3.

So, by the topology-hiding property, α must be negligible.
This concludes the proof of Theorem1. 
�
Next, we extend the lower bound to more classes of graphs using the player-

partitioning technique.

Corollary 1. Let G be a class of (connected) graphs with n nodes such that there
exists a partition of the nodes into four subsets P1,P2,P3,P4, and there exists
graphs G̃0, G̃1 ∈ G such that:

– In G̃0: there are no edges (i, j) ∈ P1 × P3, or (i, j) ∈ P2 × P4, or (i, j) ∈
P1 × P4,

– In G̃1: there are no edges (i, j) ∈ P1 × P3, or (i, j) ∈ P2 × P4, or (i, j) ∈
P1 × P2.

Let t = |P3|. Then, a THB protocol with respect to G tolerating semi-honest,
static t-adversaries, implies the existence of key agreement.

Proof. Let π be such a THB protocol, and without loss of generality assume that
the broadcaster is in P1. We will construct the following four-party broadcast
protocol on a line with respect to the class of two graphs Gline = (G0, G1), where

– G0 = (1 − 2 − 3 − 4),
– G1 = (2 − 3 − 4 − 1).
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To define the protocol, every party i, for i ∈ [4], emulates in its head the parties
in Pi executing protocol π. Whenever a party Pj ∈ Pi wishes to send a message
m to a party Pj′ , proceed as follows: (1) If Pj′ ∈ Pi, party i simulates in its head
party Pj′ receiving the message m from party Pj . (2) If Pj′ ∈ Pi′ for some i′ �= i,
send the message (j, j′,m) to party i′; in this case, party i′ simulates party Pj′

receiving the message m from party Pj .
Note that for b ∈ {0, 1}, an execution of the four-party THB over Gb cor-

responds to an execution of the protocol π over G̃b. Since |P3| = t and π is
t-secure, it holds that the new protocol is secure tolerating a single corruption
of party P3. The proof now follows from Theorem 1. 
�

An example for a family of graphs that satisfies the above requirements are
cycles of seven nodes tolerating two corruptions. Indeed, consider the partition

P1 = {1}, P2 = {2, 3}, P3 = {4, 5}, P4 = {6, 7}.

Then, the two cycle-graphs G̃0 = (2 − 1 − 3 − 4 − 6 − 7 − 5) and G̃1 = (2 − 3 −
4 − 6 − 1 − 7 − 5) satisfy the properties of the corollary, as illustrated in Fig. 2.

4 Perfect THC on a Cycle

In this section, we show a perfectly secure topology-hiding computation protocol
tolerating a single semi-honest corruption with respect to cycles. Note that in
this setting we are only hiding a permutation of the nodes.

Theorem 3. Let n > 2, and let f be an efficiently computable n-party function.
Then, Ff

sfe can be securely realized in a topology-hiding manner with respect to
the class of graphs that includes all cycles on n nodes, tolerating a single, semi-
honest corruption. Moreover, the protocol is perfectly correct and perfectly secure.

To prove Theorem 3, we will first show how to realize anonymous secure
channels without revealing the topology of the cycle. Given anonymous secure
channels, it is not difficult to realize general THC on a cycle.

Private Anonymous Communication over a Cycle. We begin by defining
the anonymous communication functionality. This randomized functionality ini-
tially assigns aliases to all parties based on their location, so that the parties can
address each other by these aliases. Specifically, the functionality will choose a
random party to be assigned with the alias ‘1’, and will choose a random ori-
entation of “left” and “right” for its outgoing edges. This will define an alias
for each other party, in an increasing order going to the left. Each party will
receive its alias and orientation (hence allowing it to compute the alias of any
party that is a certain number of hops away in each direction). Then, each party
can privately send messages to any alias of their choice. The party associated
with the alias will receive the message along with the alias of the sender. A full
description is provided in Fig. 4.
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Fig. 4. The anonymous communication functionality

Let Gcycle(n) be the class of cycles over n nodes. Next, we show how to
perfectly securely realize WGcycle(n)

graph-info(Fanon) in the FGcycle(n)
graph -hybrid model.

High-Level Idea. At a high level, our protocol proceeds in two phases. In the first
phase, a fixed designated party P ∗, will randomly assign an alias in [n] for itself,
as well as an orientation of left and right. This defines aliases for the rest of the
parties based on their distance from P ∗ and its randomly chosen alias. A protocol
is then performed to securely provide all parties with their alias and orientation.
In the communication phase, parties use their output from the initialization
phase and the 2-connectedness of the cycle to securely communicate with other
parties (specified via their aliases, indicating how many hops away they are).
Before specifying the full protocol in Fig. 5, we give some intuition.

To begin, suppose that n = 2k is even, and that a party Pv wishes to send a
message m to the party directly opposite it on the cycle (denote that party as
Pu, although Pv does not know Pu’s identity, just location). This can be done
easily by uniformly sampling r and forwarding m ⊕ r to the right and r to the
left (where right and left are from some arbitrary orientation). If other parties
forward received messages in the same direction, after exactly k rounds, Pu will
receive m ⊕ r and r simultaneously and can compute (m ⊕ r) ⊕ r = m. Because
every other party sees either m ⊕ r or r, but not both, this will be uniformly
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distributed ensuring privacy of the message. By delaying timing of messages to
left and right appropriately, we can adjust the protocol to allow any party to
deliver a message to any other party that is a given number of hops away.

Once aliases have been agreed upon by all parties, the above will in fact suffice
for the communication phase, as there will be nothing more to hide. However,
for the initialization phase, if the designated party P ∗ simply uses the above
to deliver aliases to other parties, this will leak the distance from the sender
P ∗. Hence, we will have all parties perform the above secure message sending
protocol to all other parties, in parallel. The designated party P ∗ will send the
actual aliases to each other party, while all other parties will perform the above
as if sending 0 to all other parties. Note that message privacy here is only being
used to hide the location of the designated party.

To perform the above in parallel, in each round parties will take the message
received from the left in the previous round, XOR it with what they should send
to the right themselves according to the secure message passing above, and then
send the result to the right. They behave identically with respect to messages
travelling in the other direction. In the final round, all parties simply XOR what
they received from the left and right to receive their own alias. Moreover, because
up to that point the view of any single party is simply a sequence of random
messages, the location of P ∗ remains hidden. (The final messages of P ∗ will not
be uniform, but XOR to 0.)

Lemma 1. Let n > 2. Protocol πanon-cycle perfectly securely realizes Fanon in a
topology-hiding manner with respect to the class of graphs that includes all cycles
on n nodes, tolerating a single semi-honest adversary.

Proof (sketch). Let π : [n] → [n] denote the map such that idi → i for the id’s
implicitly defined by P ∗. Let α : [n] → [n] denote the cyclic permutation such
that i → i + 1 for i < n and n → 1. Additionally, let α(k) denote k sequential
applications of α. We take left and right to denote the orientation selected by
P ∗ in the initialization phase.

For correctness, consider the sequence of messages: the message sent left by
the party left of Pu in the first round, the message send left by the party two
nodes left of Pu, and so on until the message that is delivered to Pu from the
right in final round. Each subsequent message is formed by XORing with the
previous message in the sequence. Because all parties other than P ∗ behave
identically with respect to each direction in this phase, we may assume they all
chose an orientation consistent with P ∗. Then, we can observe that Pu receives
π−1(u)⊕⊕n−1

j=1 r
π(α(j)(π−1(u)))
j on the right in the final round of the initialization

phase. Via the same argument, we can see Pu receives r
π(α(j)(π−1(u)))
j on the left

of the initialization phase.
For security, note that if we view the ri

j values each party sends to the right
and left as traveling around the cycle in either direction (having values XORed
with them), the only other party that sees both is the one that they arrive at
simultaneously in the last round. Thus, to all other parties, they are uniformly
distributed.
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Fig. 5. Securely realizing Fanon in a topology-hiding manner, for cycles
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Therefore, the view of the corrupted party Pc is simply uniformly distributed
messages in each round, until the last. In the last round, if Pc �= P ∗, party Pc

receives two random messages (one from each side) that XOR to a random
i ∈ [n]. If Pc = P ∗, party Pc receives two random messages that XOR to zero.
This can be simulated by simply sending random messages until the last round,
where the messages XOR to a uniformly drawn i ← [n] if Pc �= P ∗ and 0
otherwise. Because of this simulation the view of any party is clearly independent
of the ordering of parties outside that party’s immediate neighborhood.

The correctness and security of the communication phase proceed similarly,
except here we will use the fact that the relative positions of idc and the idi to
start simulating via uniformly random values on a given side. The full simulator
is described below.

Initialization Phase:
– Let Pu be the corrupted party. Get NG[u] from WG

graph-info(Fanon).
– Invoke WG

graph-info(Fanon) with NG[u] (as the input to Fanon) and receive
back idu and the orientation.

– If Pu �= P ∗, deliver uniformly random messages from neighbors for first
n − 2 rounds. In final round, deliver uniformly random messages condi-
tioned on them XORing to idu.
Otherwise, deliver uniformly random messages from neighbors to either
side for the first n−2 rounds. In the final round, deliver uniformly random
messages that XOR to 0.

Communication Phase: In each communication “round,” get from the envi-
ronment the tuples {(idu, i,mi

idu
)}i�=u (as the input of Pu).

In the i’th sub-phase of each “round,”
– From round idu−i (mod n) of the sub-phase until the penultimate round,

give Pu uniformly random messages from the right.
– From round i−idu (mod n) of the sub-phase until the penultimate round,

give Pu uniformly random messages from the left.
– In the final round if idu �= i, give Pu random messages conditioned on

them XORing to mi
idu

.
If idu = i, Pu doesn’t receive anything throughout the phase.


�

THC from Secure Anonymous Channels. Equipped with secure anony-
mous point-to-point channels, we can now use standard honest-majority MPC
techniques to achieve general THC.

Lemma 2. Let n ∈ N, let t ≤ n/2, and let f be an efficiently computable n-
party function. Then, Ff

sfe can be UC-realized with perfect security in Fanon-hybrid
model, tolerating t semi-honest corruptions.

Proof (sketch). Without loss of generality, it suffices to consider functionalities
that give the same output to all parties. Let f ′ denote the symmetric func-
tionality that takes in n tuples of the form (i, xi) ∈ [n] × {0, 1}n and outputs
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f(x1, . . . , xn) if all i are distinct, and ⊥ otherwise. Note that for any permutation
π of [n] (describing i → idi, the alias of Pi), it holds that

f ′ ((π−1(1), xπ−1(1)

)
, . . . ,

(
π−1(n), xπ−1(n)

)) ≡ f(x1, . . . , xn).

So, to complete the proof, parties simply securely evaluate f ′ under their aliases,
where the input of Pi with alias idi is (i, xi), using the BGW protocol [8] over
secure anonymous channels (between aliased identities) provided by Fanon. 
�

Putting together Lemmas 1 and 2, and using UC-composition, completes the
proof of Theorem3, our positive result for cycles with one corruption.

5 Distributional-Topology-Hiding Computation

In this section, we present a relaxed notion of topology-hiding computation.
Namely, it is not required that all of the topology of the graph will remain
hidden, but only certain properties of the graph. The crucial difference to THC
is that the functionality does not receive the graph from a graph party; rather,
the communication-graph functionality is parametrized by a distribution over
graphs and locally samples a graph from this distribution. As a result of this
modification, the environment is ignorant of the actual graph that is used during
the communication phase.

As discussed in Sect. 1.2, we require strong composition capabilities from this
definition. Therefore, the environment is allowed to ask for the graph. This is

Fig. 6. The distributional-graph-communication functionality
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done via a special graph party Pgraph. Unlike in classical THC, where Pgraph is used
to give the graph to the functionality, here Pgraph is used to ask the graph from
the functionality. Once the environment asks for the graph, the communication
functionality enters an “out of order” state and stops processing other messages
(Fig. 6).

As before, the ideal-model computation of a functionality F needs to be aug-
mented to provide the simulator with the appropriate leakage on the graph, i.e.,
the neighbor-set of each corrupted party. Toward this purpose, we define a graph-
information wrapper functionality around F, denoted WD

dist-graph-info(F). Initially,
the wrapper samples a graph from the distribution and provides every corrupted
party with the neighbor-set. All subsequent input messages are forwarded to F
and all messages from F are delivered to their recipients.

To keep the graph hidden from the environment during the computation
phase, WD

dist-graph-info(F) does not send the neighbor-set to honest parties. The
environment can adaptively issue corruption requests, and upon any such adap-
tive corruption WD

dist-graph-info(F) outputs the neighbor-set of the newly corrupted
party.

As before, the environment can request the communication graph via a special
graph partyPgraph. After receiving this request fromPgraph, thewrapper functional-
ity stops processing further messages, other than corruption requests. As explained
in Sect. 1.2, to balance the advantage given to the environment, that now can cor-
rupt parties as a function of the graph, after giving the graph to Pgraph, the wrapper
gives the simulator all of the input messages it received (Fig. 7).

Fig. 7. The distributional-graph-information wrapper functionality
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Definition 2 (Distributional topology hiding). Let D be a distribution
over graphs with n nodes. A protocol π securely realizes a functionality F in a
distributional-topology-hiding manner with respect to D tolerating semi-honest t-
adversaries, if π securely realizes WD

dist-graph-info(F) in the FD
dist-graph-hybrid model

tolerating semi-honest t-adversaries.

The Relation Between the Definitions. We show that Definition 2 is indeed a
relaxation of Definition 1. We start by showing that every protocol that satisfies
Definition 1 will also satisfy Definition 2, at least as long as the functionality does
not depend on the graph. Next, in Sect. 6, we will show a separation between
the definitions.

Consider an environment Z of the form Z = (Z1,Z2), where Z1 invokes
Pgraph with a graph G ∈ G and receives back its output, and Z2 interacts with
the parties and the adversary (without knowing the output received by Z1) and
outputs the decision bit. We say that an n-party functionality F does not depend
on the communication graph if for every family G of graphs with n nodes and
every environment Z = (Z1,Z2) as described above, the output of Z (i.e., the
output of Z2) in an ideal computation of WG

graph-info(F) is identically distributed

as the output of Z in an ideal computation of W̃G
graph-info(F), where W̃G

graph-info

acts like WG
graph-info with the exception that it ignores the graph G it receives and

chooses an arbitrary graph from G instead. In the modified functionality, the
input provided by the environment is independent of the communication graph;
hence, if the output of the functionality is identically distributed in both cases,
it can’t be dependent on the graph structure.

Theorem 4. Let F be functionality that does not depend on the communication
graph and let D be an efficiently sampleable distribution over graphs with n nodes.
If F can be securely realized in a topology-hiding manner with respect to supp(D),
then F can be securely realized in a distributional-topology-hiding manner with
respect to D.

Proof. Assume that F cannot be securely realized in a distributional-topology-
hiding manner with respect to D, i.e., for every protocol and every simulator
for the dummy adversary, there exists an environment Z that can create a non-
negligible distinguishing advantage. Note that initially, Z knows only the distri-
bution D but not the actual graph, but at any point can invoke Pgraph to obtain
the graph. We will show that F cannot be securely realized in a topology-hiding
manner with respect to supp(D).

We use Z to construct an environment Z ′ as follows. Initially, Z ′ samples
a graph G ← D and sends it to Pgraph to initialize the communication graph
functionality (or the graph-information functionality). Next, Z ′ invokes Z and
forwards any message from Z to the parties or the adversary, and vice versa.
Once an honest party receives its neighbor-set from the functionality, Z ′ does
not forward the message to Z, but upon a corruption of a party Z ′ provides its
neighbor-set to Z. If Z asks Pgraph to get the graph, Z ′ responds with the graph
G and proceed to process only corruption requests from Z. Finally, Z ′ outputs
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the output of Z and halts. Clearly, Z ′ has the same distinguishing probability
as Z, and the proof follows. 
�

6 Distributional-THC with Hidden Sublinear Cuts

In this section, we show a distributional-THC protocol that hides sublinear cuts
between two linear-size cliques in the communication graph, and tolerates a
linear number of adaptive semi-honest corruptions. The protocol is based on
a recent work by Boyle et al. [11], that constructed an adaptively secure MPC
protocol in the dynamic-graph setting (where every party can talk to every other
party, but dynamically decides on its neighbor-set).

In Sect. 6.1, we present the protocol in the distributional-THC setting that
can hide sublinear cuts against adaptive corruptions, and in Sect. 6.2 we show
that a similar result cannot be achieved in the classical THC setting.

6.1 Feasibility in the Distributional-THC Model

We start by defining the distribution of potential communication graphs in the
n-party protocol.

Definition 3. Let n = 4m + 1 for m ∈ N, and let n′ = logc n for a constant
c > 1. Denote

P1 = {1, . . . ,m}, P2 = {m+1, . . . , 2m}, P3 = {2m+1, . . . , 3m}, P4 = {3m+1, . . . , 4m}.

Given a bit b ∈ {0, 1} and two vectors i = (i1, . . . , in′) and j = (j1, . . . , jn′) in
[m]n

′
with distinct coordinates, i.e., ik �= ik′ and jk �= jk′ for k �= k′, define the

graph Gn(b; i; j) as follows:

– Two cliques of size 2m, P1 ∪ P2 and P3 ∪ P4.
– The edges (m + ik, 2m + jk) for every k ∈ [n′] (i.e., a sublinear cut between

P2 to P3).
– The edges (4m + 1, i), for every i ∈ P1 if b = 0, or for every i ∈ P4 if b = 1

(i.e., connecting 4m + 1 to either P1 or P4).

We define the distribution Dcut(n, c) over graphs of n nodes by uniformly sam-
pling a bit b ∈ {0, 1} and i, j ← [m]n

′
with distinct coordinates, and returning

Gn(b; i; j) (Fig. 8).

Theorem 5. Let n ∈ N, let β < 1/4 and c > 1 be constants, and let f be
an efficiently computable n-party function. Then, Ff

sfe can be securely realized
in a distributional-topology-hiding manner with respect to Dcut(n, c) with sta-
tistical security tolerating an adaptive, semi-honest, computationally unbounded
βn-adversary.
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Fig. 8. A graph Gn(b; i; j) with n = 4m + 1 nodes in support of the distribution
Dcut(n, c).

To prove Theorem 5, we construct a protocol πhide-cuts in the FDcut(n,c)
dist-graph -hybrid

model that securely realizes WDcut(n,c)
dist-graph-info(Ff

sfe) (see Fig. 12). More specifically,
the protocol is defined in a hybrid model with the additional ideal functionalities
Fshare-to-committee, Frecon-compute, and Fout-dist (all functionalities are explained and
formally defined in Sect. 6.1). These functionalities need not be defined and
realized in a topology-hiding manner, since each such functionality will be called
by a pre-defined subsets of parties that forms a clique in the communication
graph, and so they can be instantiated using a “standard” MPC protocol such
as BGW.

In Lemma 3 (below) we prove that the protocol πhide-cuts securely realizes Ff
sfe

in a distributional-topology-hiding manner with respect to Dcut(n, c). We start
by defining the ideal functionalities that are used to define the protocol.

Ideal Functionalities Used in the Construction

The Share-to-Committee Functionality. In the share-to-committee m-party func-
tionality, Fshare-to-committee, every party Pi ∈ {P1, . . . , P2m} sends his input
xi ∈ {0, 1}∗, a share si (that can be the empty string), and a bit bi ∈ {0, 1}
indicating whether Pi has a neighbor in {P2m+1, . . . , P3m}. The functionality
first tries to reconstruct the value x4m+1 from the shares s1, . . . , sm. Next, each
party secret shares its input value xi and sends the shares to the parties with
bi = 1. The formal description of the functionality can be found in Fig. 9.

The Reconstruct-and-Compute Functionality. The reconstruct-and-compute
functionality, Frecon-compute, is a 2m-party functionality. Denote the party-set by
{P2m+1, . . . , P4m}. Every party P2m+i has an input value x2m+i ∈ {0, 1}∗, and
additional values consisting of shares of (x1, . . . , x2m, x4m+1). The functionality
starts by using the additional inputs to reconstruct (x1, . . . , x2m, x4m+1). Next,
the functionality computes y = f(x1, . . . , x4m+1) and hands y as the output for
every party. The formal description of the functionality can be found in Fig. 10.
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Fig. 9. The share-to-committee functionality

The Output-Distribution Functionality. The 2m-party output-distribution func-
tionality receives input values from (some) of the parties and sends one of them
as output to all the parties (looking ahead, in the protocol there will be a single
input value). The formal description of the functionality can be found in Fig. 11.

The Protocol. We now describe the protocol πhide-cuts and prove its security.

Fig. 10. The reconstruct-and-compute functionality
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Fig. 11. The output-distribution functionality

Lemma 3. Protocol πhide-cuts UC-realizes the wrapped functional-
ity WDcut(n,c)

dist-graph-info(Ff
sfe) in the (FDcut(n,c)

dist-graph,Fshare-to-committee,Frecon-compute,Fout-dist)-
hybrid model tolerating an adaptive, semi-honest, computationally unbounded
βn-adversary, for any constant β < 1/4.

The proof of Lemma 3 can be found in the full version.

6.2 Impossibility in the Classical THC Model

The protocol πhide-cuts was defined in the weaker distributional-THC model. To
justify the weaker model, we show that a similar result cannot be achieved in
the stronger (classical) THC model. The reason is that according to this model
(Definition 1) the environment, who chooses the communication graph, knows
exactly which parties are on the cut and can corrupt them. This means that
without relying on cryptographic assumptions or some correlated-randomness
setup phase, two honest parties from opposite sides of the cut cannot communi-
cate privately [18].

We prove this intuition using our lower bound from Sect. 3.

Theorem 6. Let c > 1 be a constant and let t = logc(n). Then, Fbc cannot be
securely computed in a topology-hiding manner with respect to supp(Dcut(n, c))
tolerating computationally unbounded, semi-honest, static t-adversaries.

Proof. Let n = 4m + 1 and let π be an n-party t-resilient broadcast protocol
where party P4m+1 is the broadcaster. Let i = (i1, . . . , in′) and j = (j1, . . . , jn′)
in [m]n

′
with distinct coordinates, and consider the following partition of the

nodes:

P1 = {4m + 1} P2 = {1, . . . , 2m} \ {i1, . . . , in′},
P3 = {i1, . . . , in′}, P4 = {2m + 1, . . . , 4m}.

For b ∈ {0, 1}, consider the graph G̃b = G(b; i; j) ∈ supp(Dcut(n, c)). By defini-
tion, it holds that

– In G̃0: there are no edges (i, j) ∈ P1×P3, or (i, j) ∈ P2×P4, or (i, j) ∈ P1×P4,
– In G̃1: there are no edges (i, j) ∈ P1×P3, or (i, j) ∈ P2×P4, or (i, j) ∈ P1×P2.

Since t = |P3|, by Corollary 1 there is no THB protocol with respect to G toler-
ating semi-honest, static t-adversaries with information-theoretic security. 
�
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Fig. 12. Hiding low-weight cuts in the (Fshare-to-committee,Frecon-compute,Fout-dist)-hybrid
model
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Abstract. Consider a ppt two-party protocol Π = (A,B) in which the
parties get no private inputs and obtain outputs OA, OB ∈ {0, 1}, and
let V A and V B denote the parties’ individual views. Protocol Π has α-
agreement if Pr[OA = OB] = 1

2
+ α. The leakage of Π is the amount

of information a party obtains about the event
{
OA = OB

}
; that is, the

leakage ε is the maximum, over P ∈ {A,B}, of the distance between
V P|OA=OB and V P|OA �=OB . Typically, this distance is measured in statis-
tical distance, or, in the computational setting, in computational indis-
tinguishability . For this choice, Wullschleger [TCC ’09] showed that if
ε � α then the protocol can be transformed into an OT protocol.

We consider measuring the protocol leakage by the log-ratio distance
(which was popularized by its use in the differential privacy framework).
The log-ratio distance between X, Y over domain Ω is the minimal ε ≥ 0
for which, for every v ∈ Ω, log Pr[X=v]

Pr[Y =v]
∈ [−ε, ε]. In the computational

setting, we use computational indistinguishability from having log-ratio
distance ε. We show that a protocol with (noticeable) accuracy α ∈ Ω(ε2)
can be transformed into an OT protocol (note that this allows ε � α).
We complete the picture, in this respect, showing that a protocol with
α ∈ o(ε2) does not necessarily imply OT. Our results hold for both the
information theoretic and the computational settings, and can be viewed
as a “fine grained” approach to “weak OT amplification”.

We then use the above result to fully characterize the complexity
of differentially private two-party computation for the XOR function,
answering the open question put by Goyal, Khurana, Mironov, Pandey,
and Sahai, [ICALP ’16] and Haitner, Nissim, Omri, Shaltiel, and Sil-
bak [22] [FOCS ’18]. Specifically, we show that for any (noticeable)
α ∈ Ω(ε2), a two-party protocol that computes the XOR function with α-
accuracy and ε-differential privacy can be transformed into an OT proto-
col. This improves upon Goyal et al. that only handle α ∈ Ω(ε), and upon
Haitner et al. who showed that such a protocol implies (infinitely-often)
key agreement (and not OT). Our characterization is tight since OT
does not follow from protocols in which α ∈ o(ε2), and extends to
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functions (over many bits) that “contain” an “embedded copy” of the
XOR function.

Keywords: Oblivious transfer · Differential privacy · Hardness
amplification

1 Introduction

Oblivious transfer (OT), introduced by Rabin [37], is one of the most funda-
mental primitives in cryptography and a complete primitive for secure multi-
party computation [14,43]. Oblivious transfer protocols are known to exist assum-
ing (several types of) families of trapdoor permutations [12,18], learning with
errors [35], decisional Diffie-Hellman [1,33],computational Diffie-Hellman [4] and
quadratic residuosity [28]. While in some of the constructions of OT in the litera-
ture, the construction immediately yields a full-fledged OT, in others it only yields
a “weak” form of OT, that is later “amplified” into a full-fledged one.

In this paper we introduce a new notion for a “weak form of OT”, and
show how to amplify this “weak OT” into full-fledged OT. This notion is more
“fine grained” than some previously suggested notions, which allows us to obtain
OT in scenarios that could not be handled by previous works. Our approach is
suitable for the computational and for the information theoretic settings (i.e.,
the dishonest parties are assumed to be computationally bounded or not).

1.1 Our Results

We start with presenting our results in the information theoretic setting, and
then move to the computation one.

1.1.1 The Information Theoretic Setting
The information theoretic analogue of a two-party protocol between parties A
and B, is a “channel”: namely, a quadruple of random variables C = ((V A, OA),
(V B, OB)), with the interpretation that when “activating” (or “calling”) the chan-
nel C, party P ∈ {A,B} receives his “output” OP and his “view” V P. In other
words, “activating a channel” is analogous to running a two-party protocol with
fresh randomness. (We assume that the view V P contains the output OP).

Log-Ratio Leakage (Channels). We are interested in the special case where the
channel C = ((V A, OA), (V B, OB)) has Boolean outputs (i.e., OA, OB ∈ {0, 1}),
and assume for simplicity that the channel is balanced, meaning that for both
P ∈ {A,B}, OP is uniformly distributed. Such channels are parameterized by
their agreement and leakage:
– A channel C has α-agreement if Pr[OA = OB] = 1

2 + α. (Without loss of
generality, α ≥ 0, as otherwise one of the parties can flip his output).

– The leakage of party B in C is the distance between the distributions
V A|OA=OB and V A|OA �=OB . (Note that these two distributions are well defined
if α ∈ [0, 1

2 )). The leakage of party A is defined in an analogous way, and the
leakage of C is the maximum of the two leakages.
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This approach (with somewhat different notation) was taken by past work
[40,41], using statistical distance as the distance measure.

Loosely speaking, leakage measures how well can a party distinguish the case{
OA = OB

}
from the case

{
OA �= OB

}
. As each party knows his output, this can

be thought of as the “amount of information” on the input of one party that
leaks to the other party.1

We will measure leakage using a different distance measure, which we refer
to as “log-ratio distance”.

Definition 1.1 (Log-Ratio distance). Two numbers p0, p1 ∈ [0, 1] satisfy

p0
R≈ε,δ p1 if for both b ∈ {0, 1}: pb ≤ eε · p1−b + δ. Two distributions D0,D1

over the same domain Ω, are (ε, δ) -log-ratio-close (denoted D0
R≈ε,δ D1) if for

every A ⊆ Ω:

Pr[D0 ∈ A]
R≈ε,δ Pr[D1 ∈ A].

We use the notation D0
S≈δ D1 to say that the statistical distance between D0

and D1 is at most δ. Log-ratio distance is a generalization of statistical distance

as
S≈δ is the same as

R≈0,δ. This measure of distance was popularized by its use
in the differential privacy framework [10] (that we discuss in Sect. 1.1.3).

Loosely speaking, log-ratio distance considers the “log-ratio function”
LD0||D1(x) := log Pr[D0=x]

Pr[D1=x] , and the two distribution are (ε, δ)-log-ratio-close
if this function is in the interval [−ε, ε] with probability 1 − δ. As such, it can
be seen as a “cousin” of relative entropy (also known as, Kullback–Leibler (KL)
divergence) that measures the expectation of the log-ratio function.

Note that for ε ∈ [0, 1], D0
R≈ε,0D1 implies D0

R≈0,2εD1, but the converse is not

true, and the condition (D0
R≈ε,0D1) gives tighter handle on the distance between

independent samples of distributions (as we explain in detail in Sect. 2.1).
We use the log-ratio distance to measure leakage in channels. This leads to

the following definition (in which we substitute “log-ratio distance” as a distance
measure).

Definition 1.2 (Log-ratio leakage, channels, informal). A channel C =
((V A, OA), (V B, OB)) has log-ratio leakage (ε, δ), denoted (ε, δ)-leakage if for both
P ∈ {A,B}:

V P|OA=OB

R≈ε,δ V P|OA �=OB .

This definition is related (and inspired by) the differential privacy frame-
work [10]. In the terminology of differential privacy, this can be restated as

1 We remark that one should be careful with this intuition. Consider a “binary sym-
metric channel”: a channel in which V A = OA and V B = OB (i.e., the parties
receive no additional view except their outputs), OA is uniformly distributed, and
OB = OA⊕Up (where Up is an independent biased coin which is one with probability
p). The leakage of this channel is zero, for every choice of p, whereas each party can
predict the output of the other party with probability 1− p by using his own output
as a prediction.
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follows: let E be the indicator variable for the event
{
OA = OB

}
. For both

P ∈ {A,B}, the “mechanism” V P is (ε, δ)-differentially private with regards to
the “secret”/“database” E.

Channels of Small Log-Ratio Leakage Imply OT. Wullschleger [41] considered
channels with small leakage (measured by statistical distance). Using our termi-
nology, he showed for α ∈ [0, 1

2 ) and ε ∈ [0, 1] with ε “sufficiently smaller than”
α2, a channel with α-agreement and (0, ε)-leakage yields OT. This can be inter-
preted as saying that if the leakage ε is sufficiently smaller than the agreement α,
then the channel yields OT. We prove the following “fine grained” amplification
result, which is restated with precise notation in Theorem 4.2.

Theorem 1.3 (Channels of small log-ratio leakage imply OT, infro-
mal). There exists a constants c1 > 0 such that the following holds for every
ε, δ, α with c1 · ε2 ≤ α < 1/8 and δ ≤ ε2: a channel C that has α-agreement and
(ε, δ)-leakage yields OT (of statistical security).

For simplicity, let us focus on Theorem 1.3 in the case that δ = 0. Two
distributions that are (ε, 0)-log-ratio close, may have statistical distance ε, and
so, a channel with (ε, 0)-leakage, can only be assumed to have (0, ε)-leakage
(when measuring leakage in statistical distance). Nevertheless, in contrast to
[41], Theorem 1.3 allows the leakage parameter ε to be larger than the agreement
parameter α.2

The above can be interpreted as saying that when the leakage is “well
behaved” (that is the δ parameter in log-ratio distance is sufficiently small),
OT can be obtained even from a channel whose leakage ε is much larger than
the agreement α. This property will be the key for our applications in Sect. 1.1.3.

Triviality of Channels with Large Leakage. We now observe that the relationship
between ε and α in Theorem 1.3 is best possible (up to constants). Namely, a
channel with agreement that is asymptotically smaller than the one allowed in
Theorem 1.3 does not necessarily yield OT.

Theorem 1.4 (Triviality of channels with large leakage, informal).
There exists a constant c2 > 0, such that the following holds for every ε > 0: there
exists a two-party protocol (with no inputs) that when it ends, party P ∈ {A,B}
outputs OP and sees view V P, and the induced channel C = ((V A, OA), (V B, OB))
has (c2 · ε2)-agreement and (ε, 0)-leakage.
2 To make this more concrete, consider the following channel C =

((V A, OA), (V B, OB)): OA ← U1/2, OB ← OA ⊕ U1/2−α, V A ← OB ⊕ U1/2−ε,
V B ← OA ⊕ U1/2−ε (where Up denotes a biased coin which is one with probability
p, and the three “noise variables” are independent). This channel is balanced, has
α-agreement, and (O(ε), 0)-leakage. However, if we were to measure leakage using
statistical distance, then we would report that it has (0, O(ε))-leakage. We are
assuming that ε > α, and it will be critical that leakage is measured by log-ratio
distance, as we do not know how to amplify leakage that is measured by statistical
distance in this range.
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Together, the two theorems say that our characterization of “weak-OT” using
agreement α and (ε, 0)-log-ratio leakage has a “threshold behavior” at α ≈ ε2: if
α ≥ c1 · ε2 then the channel yields OT, and if α ≤ c2 · ε2 then such a channel can
be simulated by a two-party protocol with no inputs (and thus cannot yield OT
with information theoretic security). The proof of Theorem1.4 uses a variant of
the well-known randomized response approach of Warner [38].

1.1.2 The Computational Setting
We consider a no-input, Boolean output, two-party protocol Π = (A,B). Namely,
both parties receive a security parameter 1κ as a common input, get no private
input, and both output one bit. We denote the output of party P by OP

κ , and
its view by V P

κ . In other words, an instantiation of Π(1κ) can be thought of
as inducing a channel Cκ = ((V A

κ , OA
κ), (V B

κ , OB
κ)). Similar to the information

theoretic setting, protocol Π has α-agreement if for every κ ∈ N: Pr
[
OA

κ = OB
κ

]
=

1/2 + α(κ).

Log-Ratio Leakage (Protocols). We extend the definition of log-ratio leakage to
the computational setting (where adversaries are ppt machines). We will use
the simulation paradigm to extend the information theoretic definition to the
computational setting.

Definition 1.5 (Log-ratio leakage, protocols, informal). A two-party no-
input Boolean output protocol Π = (A,B) has Comp-log-ratio leakage (ε, δ),
denoted (ε, δ)-comp-leakage, if there exists an “ideal channel” ensemble C̃ ={

C̃κ = ((V ˜A
κ , O

˜A
κ), (V ˜B

κ , O
˜B
κ))

}

κ∈N
such that the following holds:

– For every κ ∈ N: the channel C̃κ has (ε(κ), δ(κ))-leakage.
– For every P ∈ {A,B}: the ensembles

{
V P

κ , OA
κ , OB

κ

}
κ∈N

and
{

V
˜P
κ , O

˜A
κ , O

˜B
κ

}

κ∈N

are computationally indistinguishable.3

Protocols of Small Log-Ratio Leakage Imply OT. We prove the following com-
putational analogue of Theorem1.3.

Theorem 1.6 (Amplification of protocols with small log-ratio leakage,
informal). There exists a constant c1 > 0 such that the following holds for
every function ε, δ, α with c1 · ε(κ)2 ≤ α(κ) < 1/8, δ(κ) ≤ ε(κ)2 and 1/α(κ) ∈
poly(κ): a ppt protocol that has α-agreement and (ε, δ)-comp-leakage yields OT
(of computational security).

Triviality of Protocols with Large Leakage. An immediate corollary of
Theorem 1.4 is the relationship between ε and α in Theorem 1.6 is best possible
(up to constants).

3 In the technical section, we consider computational indistinguishability by both uni-
form and nonuniform ppt machines. We ignore this issue in the introduction.
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Corollary 1.7 (Triviality of protocols with large leakage, informal).
There exists a constant c2 > 0, such that the following holds for every function
ε with ε(κ) > 0: there exists a ppt protocol that has (c2 · ε2)-agreement and
(ε, 0)-leakage.

1.1.3 Application: Characterization of Two-Party Differentially
Private Computation.

We use our results to characterize the complexity of differentially private two-
party computation for the XOR function, answering the open question put by
[17,22]. The framework of differential privacy typically studies a “one-party”
setup, where a “curator” wants to answer statistical queries on a database with-
out compromising the privacy of individual users whose information is recorded
as rows in the database [10]. In this paper, we are interested in two-party
differentially-private computation (defined in [32]). This setting is closely related
to the setting of secure function evaluation: the parties A and B have private
inputs x and y, and wish to compute some functionality f(x, y) without compro-
mising the privacy of their inputs. In secure function evaluation, this intuitively
means that parties do not learn any information about the other party’s input,
that cannot be inferred from their own inputs and outputs. This guarantee is
sometimes very weak: For example, for the XOR function f(x, y) = x⊕y, secure
function evaluation completely reveals the inputs of the parties (as a party that
knows x and f(x, y) can infer y). Differentially private two-party computation
aims to give some nontrivial security even in such cases (at the cost of compro-
mising the accuracy of the outputs).

Definition 1.8 (Differentially private computation [32]). A ppt two-party
protocol Π = (A,B) over input domain {0, 1}n×{0, 1}n is ε-DP, if for every ppt
nonuniform machines B∗ and D, and every x, x′ ∈ {0, 1}n with Ham(x, x′) = 1:
let V B∗

κ (x) be the view of B∗ in a random execution of (A(x),B∗)(1κ)), then

Pr
[
D(V B∗

κ (x)) = 1
]

≤ eε(κ) · Pr
[
D(V B∗

κ (x′)) = 1
]

+ neg(κ),

and the same hold for the secrecy of B.
Such a protocol is semi-honest ε-DP, if the above is only guaranteed for semi-

honest adversaries (i.e., for B∗ = B).

In this paper, we are interested in functionalities f , in which outputs are
single bits (as in the case of the XOR function). In this special case, the accuracy
of a protocol can be measured as follows:

Definition 1.9 (accuracy). A ppt two-party protocol Π = (A,B) over input
domain {0, 1}n × {0, 1}n with outputs OA(x, y), OB(x, y) ∈ {0, 1} has perfect
agreement if for every x, y ∈ {0, 1}n×{0, 1}n, and every κ ∈ N, in a random exe-
cution of the protocol (A(x),B(y))(1κ), it holds that Pr[OA(x, y) = OB(x, y)] = 1.

The protocol implements a functionality f over input domain {0, 1}n×{0, 1}n

with α-accuracy, if for κ ∈ N, every P ∈ {A,B}, and every x, y ∈ {0, 1}n ×
{0, 1}n, in a random execution of the protocol (A(x),B(y))(1κ), it holds that
Pr[OP(x, y) = fP(x, y)] = 1

2 + α(κ).
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A natural question is what assumptions are needed for two-party differentially
private computation achieving a certain level of accuracy/privacy (for various
functionalities). A sequence of works showed that for certain tasks, achieving high
accuracy requires one-way functions [3,6,16,31]; some cannot even be instanti-
ated in the random-oracle model [21]; and some cannot be black-box reduced to
key agreement [29]. See Sect. 1.2 for more details on these results. In this work
we fully answer the above question for the XOR function.

Consider the functionality fα(x, y) which outputs x ⊕ y ⊕ U1/2−α (where
U1/2−α is an independent biased coin which is one with probability 1/2 − α).
Assuming OT, there exists a two-party protocol that securely implement fα,
and this protocol is ε-DP, for ε = Θ(α). This is the best possible differential
privacy that can be achieved for accuracy α. On the other extreme, an Θ(ε2)-
accurate, ε-differential private, protocol for computing XOR can be constructed
(with information theoretic security) using the so-called randomized response
approach of Warner [38], as shown in [16]. Thus, it is natural to ask whether OT
follows from α-accurate, ε-DP computation of XOR, for intermediate choices of
ε2 	 α 	 ε. In this paper, we completely resolve this problem and prove that
OT is implied for any intermediate ε2 	 α 	 ε.

Differentially Private XOR to OT, a Tight Characterization.

Theorem 1.10. [Differentially private XOR to OT, informal] There exists a
constant c1 > 0 such that the following holds for every function ε, α with α ≥ c1 ·
ε2 such that 1/α ∈ poly: the existence of a perfect agreement, α-accurate, semi-
honest ε-DP ppt protocol for computing XOR implies OT (of computational
security).

The above improves upon Goyal et al. [17], who gave a positive answer if the
accuracy α is the best possible: if α ≥ c · ε for a constant c. It also improves (in
the implication) upon Haitner et al. [22], who showed that c · ε2-correct ε-DP
XOR implies (infinitely-often) key agreement. Finally, our result allows ε and
α to be function of the security parameter (and furthermore, allow α and ε to
be polynomially small in the security parameter) whereas previous reductions
[17,22] only hold for constant values of ε and α. Our characterization is tight as
OT does not follow from protocols with α ∈ o(ε2).

Theorem 1.11 (Triviality of differentially private XOR with large
leakage. Folklore, see [16]). There exists a constant c2 > 0 such that for every
functions ε there exists a ppt protocol for computing XOR with information-
theoretic ε-DP, perfect agreement and accuracy c2 · ε2.4

Perspective. Most of the work in differentially private mechanisms/protocols is in
the information theoretic setting (using the addition of random noise). There are,
however, examples where using computational definitions of differential privacy

4 The protocol is the randomized response one, and the proof is very similar to that
of Theorem 1.4 (see Sect. 4).
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together with cryptographic assumptions, yield significantly improved accuracy
and privacy compared to those that can be achieved in the information theoretic
setting (e.g., the inner product and the Hamming distance functionalities [31],
see more references in the related work section below). Understanding the mini-
mal assumptions required in this setting is a fundamental open problem. In this
paper, we completely resolve this problem for the special case of the XOR func-
tion. We stress that the XOR function is the canonical example of a function
f(x, y) where the security guarantee given by secure function evaluation is very
weak. More precisely, for f(x, y) = x⊕y, the security guaranteed by secure func-
tion evaluation is meaningless, and the protocol in which both parties reveal their
private inputs is considered secure. Differential privacy can be used to provide
a meaningful definition of security in such cases, and we believe that the tools
that we developed for the XOR function, can be useful to argue about the min-
imal assumptions required for other functionalities. As a first step, we provide
a sufficient condition under which our approach applies to other functionalities
g : {0, 1}n × {0, 1}n → {0, 1}.

Extending the Result to any Function that Is Not Monotone Under Relabeling.
We can use our results on the XOR function to achieve OT from differentially
private, and sufficiently accurate computation of a wide class of functions that
are not “monotone under relabeling”. A function g : {0, 1}n ×{0, 1}n → {0, 1} is
monotone under relabeling if there exist two bijective functions σx, σy : [2n] →
{0, 1}n such that for every x ∈ {0, 1}n and i ≤ j ∈ [2n]:

g(x, σy(i)) ≤ g(x, σy(j)),

and, for every y ∈ {0, 1}n and i ≤ j ∈ [2n]:

g(σx(i), y) ≤ g(σx(j), y).

We observe that every function g that is not monotone under relabeling has an
“embedded XOR”, meaning that there exist x0, x1, y0, y1 ∈ {0, 1}n such that for
every b, c ∈ {0, 1}, g(xb, yc) = b ⊕ c. This gives that a two-party protocol that
computes g can be used to give a two-party protocol that computes XOR (with
some losses in privacy) and these yield OT by our earlier results.

1.2 Related Work

Information-Theoretic OT. Oblivious transfer protocols are also widely studies
in their information theoretic forms [7,8,34,36,39]. In this form, and OT is sim-
ply a pair of jointly distributed random variable (VA, VB) (a “channel”). A pair
of unbounded parties (A,B), having access to independent samples from this
pair (from each sample (vA, vB), party P gets the value vP). Interestingly, in the
information theoretic form, we do have a “simple” notion of weak OT, that is
complete: such a pair can either be used to construct full-fledged (information
theoretically secure) OT, or is trivial—there exists a protocol that generates
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these views. Unfortunately, these reductions are inherently inefficient: the par-
ties wait till an event that might be of arbitrary small probability to occur,
and thus, at least not in the most general form, cannot be translated into the
computational setting.

Hardness Amplification. Amplifying the security of weak primitives into “fully
secure” ones is an important paradigm in cryptography as well as other key fields
in theoretical computer science. Most notable such works in cryptography are
amplification of one-way functions [15,20,42], key-agreement protocols [26], and
interactive arguments [19,25]. Among the above, amplification of key-agreement
protocols (KA) is the most similar to the OT amplification we consider in this
paper. In particular, we do have a “simple” (non distributional) notion of weak
KA [26]. This is done by reduction to the information theoretic notion of key-
agreement. What enables this reduction to go through, is that unlike the case of
the information theoretic OT, the amplification of information theoretic KA is
efficient, since it only use the designated output of the (weak) KA (and not the
parties’ view).

Minimal Assumptions for Differentially Private Symmetric Computation. An
accuracy parameter α is trivial with respect to a given functionality f and differ-
ential privacy parameter ε, if a protocol computing f with such accuracy and pri-
vacy exists information theoretically (i.e., with no computational assumptions).
The accuracy parameter is called optimal, if it matches the bound achieved in
the client-server model. Gaps between the trivial and optimal accuracy param-
eters have been shown in the multiparty case for count queries [3,6] and in the
two-party case for inner product and Hamming distance functionalities [31]. [21]
showed that the same holds also when a random oracle is available to the parties,
implying that non-trivial protocols (achieving non-trivial accuracy) for comput-
ing these functionalities cannot be black-box reduced to one-way functions.

[16] initiated the study of Boolean functions, showing a gap between the
optimal and trivial accuracy for the XOR or the AND functionalities, and that
non-trivial protocols imply one-way functions. [27] showed that non-interactive
randomised response is optimal among all the information theoretic protocols.
[29] have shown that optimal protocols for computing the XOR or AND, cannot
be black-box reduced to key agreement.

[17] showed that an optimal protocol (with best possible parameters) com-
puting the XOR can be viewed as a form of weak OT, which according to
Wullschleger [41] yields full fledged OT. Whereas for our choice of parameters
the security guarantee is too weak, and it is essential that we correctly amplify
the security.

Very recently, [22] showed that a non-trivial protocol for computing XOR
(i.e., accuracy better than ε2) implies infinitely often key-agreement protocols.
Their reduction, however, only holds for constant value of ε, and is non black box.
Finally, [2,24] gave a criteria that proved the necessity of OT for computationally
secure function evaluation, for a select class of functions.
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Paper Organization
Due to space limitations, some of the technical details appear in the full version
of this paper [23]. In Sect. 2 we give an overview of the main ideas used in
the proof. In Sect. 3 we give some preliminaries and state some earlier work
that we use. In Sect. 4 we give our amplification results, that convert protocols
with small log-ratio leakage into OT. The proofs of our results on two-party
differentially private computation of the XOR function, and on functions that
are not monotone under relabeling omitted from this version.

2 Our Technique

In this section we give a high level overview of our main ideas and technique.

2.1 Usefulness of Log-Ratio Distance

Recall that the leakage we considered is measured using log-ratio distance, and
not statistical distance. We survey some advantages of log-ratio distance over
statistical distance.

As is common in “hardness amplification”, our construction will apply the
original channel/protocol many times (using fresh randomness). Given a distri-
bution X, let X� denote the distribution of 
 independent samples from X. A
natural question is how does the distance between X� and Y � relate to the dis-
tance between X and Y . For concreteness, assume that SD(X,Y ) = ε (where SD
denotes statistical distance) and that we are interested in taking 
 = c/ε2 repeti-
tions where c > 0 is a very small constant. Consider the following two examples
(in the following we use Up to denote a coin which is one with probability p):

– X1 = U0 and Y1 = Uε. In this case, SD(X�
1, Y

�
1 ) = 1 − (1 − ε)� ≈ 1 − e−c/ε

which approaches one for small ε.
– X2 = U1/2 and Y2 = U1/2+ε, in this case SD(X�

2, Y
�
2 ) = η, where η ≈ √

c is
a small constant that is independent of ε, and can be made as small as we
want by decreasing c.

There is a large gap in the behavior of the two examples. In the first, the
distance is very close to one, while in the second it is very close to zero. This
means that when we estimate SD(X�, Y �) in terms of SD(X,Y ), we have to
take a pessimistic bound corresponding to the first example, which is far from
the truth in case our distributions behave like in the second example.

Loosely speaking, log-ratio distance provides a “fine grained” view that dis-

tinguishes the above two cases. Note that X2
R≈O(ε),0Y2, whereas there is no finite

c for which X1
R≈c,0 Y1. For X,Y such that X

R≈ε,δ Y for δ = 0 (or more generally,
for δ 	 ε) we get the behavior of the second example under repetitions, yielding
a better control on the resulting statistical distance. More precisely, it is not hard
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to show that if X
R≈ε Y then for 
 = c/ε2 it holds that X� S≈

O(
√

c·ln(1/c))
Y �.5 A

more precise statement and proof are given in Theorem3.5.6

2.2 The Amplification Protocol

In this section we give a high level overview of the proof of Theorem1.3. The
starting point is a channel C = ((V A, OA), (V B, OB)) that has α-agreement, and
(ε, δ)-leakage. (A good example to keep in mind is the channel from Footnote 2).
For simplicity of exposition, let us assume that δ = 0 (the same proof will go
through if δ is sufficiently small). Our goal is to obtain OT if α ≥ c1 · ε2 for some
constant c1, which we will choose to be sufficiently large.

Wullschleger [41] showed that a balanced channel with α′-agreement, and
(0, ε′)-leakage (that is ε′ leakage in statistical distance) implies OT if ε′ ≤ cWul ·
(α′)2 for some constant cWul > 0. Thus, we are looking for a protocol, that starts
with a channel that has (ε, 0)-leakage and α-agreement, where ε is larger than α,
and produces a channel with (0, ε′)-leakage, and α′-agreement where ε′ is smaller
than α′. We will use the following protocol achieving α′ ≥ 1/5 and an arbitrarily
small constant ε′ > 0.7

Protocol 2.1 (ΔC
� = (Ã, B̃), amplification of log-ratio leakage)

Channel: C = ((V A, OA), (V B, OB)).
Prameter: Number of samples 
.
Operation: Do until the protocol produces output:

1. The parties activate the channel C for 
 times. Let O
A

and O
B

be the (
-bit)
outputs.

5 Let us explain the intuition behind the above phenomenon. The maximum value
of both LX||Y (s) = log Pr[X=s]

Pr[Y =s]
and LY ||X(s) = log Pr[Y =s]

Pr[X=s]
, is at most ε. The rel-

ative entropy (also known as, KL divergence) D(X||Y ) measures the expectation
of LX||Y (s) according to s ← X, and is therefore smaller than ε. But in fact it is
easy to show that both D(X||Y ) and D(Y ||X) are bounded by ε · (eε − 1) which is
approximately ε2 for small ε. It follows that D(X�||Y �) = � · D(X||Y ) ≈ �ε2 = c.
In other words, the expectation of LX�||Y � = D(X�||Y �) = c. The random variable
LX�||Y � can be seen as the sum of � independent copies of LX||Y , and we know that
each of these variables lies in the interval [−ε, ε]. By a standard Hoeffding bound it
follows that the probability that LX||Y deviates from the expectation c, by say some

quantity η is at most e
−Ω( η2

�ε2
)
= e−Ω(η2/c) and this means that we can choose η to

be roughly
√

c · ln(1/c) and obtain that the probability of deviation is bounded by

η. Overall, this gives that X� R≈ η + c, ηY �, meaning that except for an η fraction of
the space, the ratio is bounded by η+c, and therefore, the statistical distance is also
bounded by O(η + c) = O(

√
c · ln(1/c)).

6 This phenomenon is the rationale behind the differential privacy boosting result of
[9], and can be derived from the proof in that paper. In our setting, however, the
proof is straightforward as outlined here, and shown in the proof of Theorem 3.5.

7 Similar protocols were used in the context of key-agreement amplification [5,30].
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2. Ã sends the (unordered) set S = {O
A
, O

A ⊕ 1�} to B̃.
3. B̃ informs Ã whether O

B ∈ S.
If positive, party Ã outputs zero if O

A
is the (lex.) smallest element in S, and

one otherwise. Party B̃ does the same with respect to O
B
. (And the protocol

halts.)

Let Δ = ΔC
� for 
 = 1/4α. We first observe that Δ halts in a given iteration

iff the event E =
{

O
A ⊕ O

B ∈ {
0�, 1�

}}
occurs. Note that Pr[E] ≥ 2−�, and

thus the expected running time of Δ is O(2�) = 2O(1/α) (jumping ahead, the
expected running time can be improved to poly(1/α), see Sect. 2.2.1).

We also observe that the outputs of the two parties agree, iff in the final
(halting) iteration it holds that O

A
= O

B
. Thus, the agreement of Δ is given by:

Pr[O
A

= O
B|E] =

( 12 + α)�

( 12 + α)� + (12 − α)�
=

(

1 +
( 1

2 − α
1
2 + α

)�
)−1

≈ 1
1 + e−4α�

≥ 1
1 + e−1

≥ 1
2 + α′,

for α′ ≥ 1/5.
In order to understand the leakage of Δ, we examine the views of the parties

in the final iteration of Δ (it is clear that the views of the previous iteration
yields no information). Let us denote these part of a view v by final(v). We are
interested in understanding the log-ratio distance between final(V ˜A|O˜A=O˜B) and
final(V ˜A|O˜A �=O˜B). Observe that final(V ˜A|O˜A=O˜B) is a (deterministic) function of 


independent samples from V A|OA=OB (i.e., the function that appends {O
A
, O

A ⊕
1�} to the view), and final(V ˜A|O˜A �=O˜B) is the same deterministic function of

 independent samples from V A|OA �=OB . Thus, by data processing, it suffices to
bound the distance of 
 independent samples from V A|OA=OB from 
 independent
samples from V A|OA �=OB . By assumption, C has (ε, 0)-leakage, which means that

V A|OA=OB

R≈ε,0 V A|OA �=OB .

In the previous section we showed that by choosing a sufficiently small constant
c > 0 and taking 
 = c/ε2 repetitions of a pair of distributions with (ε, 0)-log
ratio distance, we obtain two distributions with statistical distance that is an
arbitrary small constant ε′ > 0. Here we consider 
 = 1/(4α) = 1/(4c1 · ε2)
repetitions, and therefore

final(V ˜A|O˜A=O˜B)
S≈ε′ final(V ˜A|O˜A �=O˜B).

By picking c1 to be sufficiently large, we can obtain that the leakage in Δ is
ε′ ≤ cWul · (α′)2 as required.
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2.2.1 Efficient Amplification
The (expected) running time of Δ� is 2O(�) that for the above choice of 
 =
Θ(1/α) equals 2O(1/α). To be useful in a setting when the running time is limited,
e.g., in the computational setting, this dependency restricts us to “large” values
of α. Fortunately, Protocol 2.1 can be modified so that its (expected) running
time is only polynomial in 1/α.

Intuitively, rather than making 
 invocations of C at once, and hope that
the tuple of invocations happens to be useful : O

A ⊕ O
B ∈ {

0�, 1�
}
, the efficient

protocol combines smaller tuples of useful invocations, i.e., O
A⊕O

B ∈
{

0�′
, 1�′

}
,

for some 
′ < 
, into a useful tuple of 
 invocations. The advantage is that failing
to generate the smaller useful tuples, only “wastes” 
′ invocations of C. By
recursively sampling the 
′ tuples via the same approach, we get a protocol
whose expected running time is O(
2) (rather than 2O(�)).

The actual protocol implements the above intuition in the following way: on
parameter d, protocol Λd mimics the interaction of the inefficient protocol Δ2d

(i.e., the inefficient protocols with sample parameter 2d). It does so by using Δ2

to combines the outputs of two of execution of Λd−1. Effectively, this call to Δ2

combines the two 2d−1 useful tuples produced by Λd−1, into a single 2d useful
tuple.

Let ΛC
0 = C, and recursively define Λd, for d > 0, as follows:

Protocol 2.2 (ΛC
d = (Â, B̂), efficient amplification of log-ratio leakage)

Channel: C.
Prameter: log number of sample d.

Operation: The parties interact in Δ
(ΛC

d−1)

2 .

By induction, the expected running time of ΛC
d is 4d. A more careful analysis

yields that the view of ΛC
d can be simulated by the view of ΔC

2d . Indeed, there
are exactly 2d useful invocations of C in an execution of ΛC

d : invocations whose
value was not ignored by the parties, and their distribution is exactly the same
as the 2d useful invocations of C in ΔC

2d . Hence, using ΛC
d with d = log 1/4α, we

get a protocol whose expected running time is polynomial in 1/α and guarantees
the same level of agreement and security as of Δ1/4α.

2.3 The Computational Case

So far, we considered information theoretic security. In order to prove
Theorem 1.6 (that considers security against ppt adversaries) we note that
Definition 1.5 (of computational leakage) is carefully set up to allow the argument
of the previous section to be extended to the computational setting. Using the
efficient protocol above, the reduction goes through as long as α is a noticeable
function of the security parameter.

2.4 Two-Party Differentially Private XOR Implies OT

In this section we explain the main ideas that are used in the proof of
Theorem 1.10. Our goal is to show that a perfect completeness, α-accurate,
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semi-honest ε-DP protocol for computing XOR, implies OT, if α ≥ c · ε2 for
a sufficiently large constant c. In order to prove this, we will show that such
a protocol can be used to give a two-party protocol that has α-agreement and
(computational) (ε, 0)-leakage. Such a protocol yields OT by our earlier results.8

We remark that there are two natural definitions of “computational differ-
ential privacy” in the literature using either computational indistinguishability
or simulation [32]. Definition 1.8 is using indistinguishability, while for our pur-
poses, it is more natural to work with simulation (as using simulation enables
us to “‘switch back and forth” between the information theoretic setting and
the computational setting). In general, these two definitions are not known to
be equivalent. For functionalities like XOR, where the inputs of both parties are
single bits, however, the two definitions are equivalent by the work of [32]. This
means that when considering differential privacy of the XOR function, we can
imagine that we are working in an information theoretic setting, in which there
is a trusted party, that upon receiving the inputs x, y of the parties, provides
party P, with its output OP and view V P. We will use the following protocol to
obtain a “channel” with α-agreement and (ε, 0)-leakage.

Protocol 2.3 (DP-XOR to channel)
1. A samples X ← {0, 1} and B samples Y ← {0, 1}.
2. The parties apply the differentially private protocol for computing XOR, using

inputs X and Y respectively, and receive outputs OA
DP , OB

DP respectively.
3. A sends R ← {0, 1} to B.
4. A outputs OA = X ⊕ R and B outputs OB

DP ⊕ Y ⊕ R.

The intuition behind this protocol is that if OB
DP = X ⊕ Y , then OB =

(X ⊕ Y ) ⊕ Y ⊕ R = X ⊕ R = OA. This means that the channel induced by this
protocol inherits α-agreement from the α-accuracy of the original protocol. In
Sect. 4 we show that this channel “inherits” log-ratio leakage of (ε, 0) from the
fact that the original protocol is ε-DP.

3 Preliminaries

3.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables and
functions, lowercase for values. For a, b ∈ R, let a ± b stand for the interval
[a − b, a + b]. For n ∈ N, let [n] = {1, . . . , n} and (n) = {0, . . . , n}. The Ham-
ming distance between two strings x, y ∈ {0, 1}n, is defined by Ham(x, y) =∑

i∈[n] xi �= yi. Let poly denote the set of all polynomials, let ppt stand for
probabilistic polynomial time and pptm denote a ppt TM (Turing machine)
8 We believe that our results extend to the case of (ε, δ)-differential privacy, as long as

δ = o(ε2), and then we obtain (ε, δ)-leakage, which is sufficient to yield OT. Proving
this requires a careful examination of some of the previous work (which was stated
for δ = 0) and extending it to nonzero δ, as well as a more careful analysis on our
part. We will not do this in this paper.
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and let pptNUstands for a non-uniform pptm. A function ν : N → [0, 1] is neg-
ligible, denoted ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly and large
enough n.

3.2 Distributions and Random Variables

Given a distribution, or random variable, D, we write x ← D to indicate that
x is selected according to D. Given a finite set S, let s ← S denote that s is
selected according to the uniform distribution over S. The support of D, denoted
Supp(D), be defined as {u ∈ U : D(u) > 0}. We will use the following distance
measures.

Statistical Distance.

Definition 3.1 (statistical distance). The statistical distance between two dis-
tributions P,Q over the same domain U , (denote by SD(P,Q)) is defined to be:

SD(P,Q) = maxA⊆U |Pr[P ∈ A] − Pr[Q ∈ A]|.

We say that P,Q are ε-close (denoted by P
S≈ε Q) if SD(P,Q) ≤ ε.

We use the following fact, see [23] for the proof.

Proposition 3.2. Let 0 < ε < μ < 1, and let (X,Y ), (X̃, Ỹ ) be two pairs of ran-
dom variables over the same domain X × Y, such that SD((X,Y ), (X̃, Ỹ )) ≤ ε.
Let E0, E1 ⊆ X ×Y be two sets such that for every b ∈ {0, 1}, Pr [(X,Y ) ∈ Eb] ≥
μ. Then SD(X̃|{(X̃,Ỹ )∈E0}, X̃|{(X̃,Ỹ )∈E1}) ≤ SD(X|{(X,Y )∈E0},X|{(X,Y )∈E1})+
4ε/μ.

Log-Ratio Distance. We will also be interested in the following natural notion
of “log-ratio distance” which was popularized by the literature on differential
privacy.

Definition 3.3 (Log-Ratio distance). Two numbers p0, p1 ≥ 0 satisfy p0
R≈ε,δ

p1 if for both b ∈ {0, 1}: pb ≤ eε · p1−b + δ. Two distributions P,Q over the same

domain U , are (ε, δ)-log-ratio-close (denoted P
R≈ε,δ Q) if for every A ⊆ U :

Pr[P ∈ A]
R≈ε,δ Pr[Q ∈ A].

We let
R≈ε stands for

R≈ε,0.

It is immediate that D0
S≈δ D1 iff D0

R≈0,δ D1, and that D0
R≈ε,δ D1 implies

D0
S≈(eε−1)+δ D1, and note that for ε ∈ [0, 1], eε − 1 = O(ε). It is also immediate

that the log-ratio distance respects data processing.

Fact 3.4. Assume P
R≈ε,δ Q, then f(P )

R≈ε,δ f(Q) for any (possibly randomized)
function f .
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Log-Ratio Distance Under Independent Repetitions. As demonstrated by the
framework of differential privacy, working with this notion of “relative distance”
is often a very convenient distance measure between distributions, as it behaves
nicely when considering independent executions. Specifically, let D� denote 

independent copies from D, the following follows:

Theorem 3.5 (Relative distance under independent repetitions). If

D0
R≈ε,δ D1 then for every 
 ≥ 1, and every δ′ ∈ (0, 1)

D�
0

R≈(η(ε,�,δ′),�δ+δ′) D�
1,

where η(ε, 
, δ′) = 
 · ε(eε − 1) + ε · √
2
 · ln(1/δ′).

We remark that Theorem 3.5 can also be derived by the (much more complex)
result on “boosting differential privacy” [11]. However, it can be easily derived
directly by a Hoeffding bound, as is done in the full version of this paper.

Definition 3.6 (Computational indistinguishability). Two distribution
ensembles X = {Xκ}κ∈N, Y = {Yκ}κ∈N are [resp non-uniformly] computation-

ally indistinguishable, denoted X
C≈ Y [resp., X

nuC≈ Y ] if for every ppt [resp.,
pptNU] D:

|Pr[D(1κ,Xκ) = 1] − Pr[D(1κ, Yκ) = 1]| ≤ neg(κ).

3.3 Protocols

Let Π = (A,B) be a two-party protocol. Protocol Π is ppt if both A and B
running time is polynomial in their input length. We denote by (A(xA),B(xB))(z)
a random execution of Π with private inputs (xA, yA), and common input z. At
the end of such an execution, party P ∈ {A,B} obtains his view V P(xA, xB, z),
which may also contain a “designated output” OP(xA, xB, z) (if the protocol
specifies such an output). A protocol has Boolean output, if each party outputs
a bit.

3.4 Two-Output Functionalities and Channels

A two-output functionality is just a random function that outputs a tuple of
two values in a predefined domain. In the following we omit the two-output
term from the notation.

Channels. A channel is simply a no-input functionality with designated output
bits. We naturally identify channels with the random variable characterizes their
output.

Definition 3.7 (Channels). A channel is a no-input Boolean functionality
whose output pair is of the from ((V A, OA), (V B, OB)) and for both P ∈
{A,B}, OP is Boolean and determined by V P. A channel has agreement α if
Pr

[
OA = OB

]
= 1

2 +α. A channel ensemble {Cκ}κ∈N has agreement α if Cκ has
agreement α(κ) for every κ.
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It is convenient to view a channel as the experiment in which there are two
parties A and B. Party A receives “output” OA and “view” V A, and party B
receives “output” OB and “view” V B.

We identify a no-input Boolean output protocol with the channel “induced”
by its semi-honest execution.

Definition 3.8 (The protocol’s channel). For a no-input Boolean output
protocol Π, we define the channel CHN(Π) by CHN(Π) = ((V A, OA), (V B, OB)),
for V P and OP being the view and output of party P in a random execution
of Π. Similarly, for protocol Π whose only input is a security parameter, let
CHN(Π) = {CHN(Π)κ = CHN(Π(1κ))}κ∈N.

All protocols we construct in this work are oblivious, in the sense that given
oracle access to a channel, the parties only make use of the channel output
(though the channel’s view becomes part of the party view).9

3.5 Secure Computation

We use the standard notion of securely computing a functionality, cf., [13].

Definition 3.9 (Secure computation). A two-party protocol securely com-
putes a functionality f , if it does so according to the real/ideal paradigm. We add
the term perfectly/statistically/computationally/non-uniform computationally, if
the the simulator output is perfect/statistical/computationally indistinguishable/
non-uniformly indistinguishable from the real distribution. The protocol have the
above notions of security against semi-honest adversaries, if its security only guar-
anteed to holds against an adversary that follows the prescribed protocol. Finally,
for the case of perfectly secure computation, we naturally apply the above notion
also to the non-asymptotic case: the protocol with no security parameter perfectly
compute a functionality f .

A two-party protocol securely computes a functionality ensemble f in the g-
hybrid model, if it does so according to the above definition when the parties have
access to a trusted party computing g. All the above adjectives naturally extend
to this setting.

3.6 Oblivious Transfer

The (one-out-of-two) oblivious transfer functionality is defined as follows.

Definition 3.10 (oblivious transfer functionality fOT). The oblivious
transfer functionality over {0, 1} × ({0, 1}∗)2 is defined by fOT(i, (σ0, σ1)) =
(⊥, σi).

A protocol is ∗ secure OT, for ∗ ∈ {semi-honest statistically/computationally/
computationally non-uniform}, if it compute the fOT functionality with ∗ security.
9 This is in accordance with definition of channels in the literature in which the view

component of the channel is only accessible to the eavesdropper (and not to the
honest parties using the channel).
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3.7 Two-Party Differential Privacy

We consider differential privacy in the 2-party setting.

Definition 3.11 (Differentially private functionality). A functionality
f over input domain {0, 1}n × {0, 1}n is ε-DP, if the following holds: let
(V A

x,y, V B
x,y) = f(x, y), then for every x, x′ with Ham(x, x′) = 1, y ∈ {0, 1}n

and v ∈ Supp(V B
x,y):

Pr
[
V B

x,y = v
] ≤ eε · Pr

[
V B

x′,y = v
]
,

and the for every y, y′ with Ham(y, y′) = 1, x ∈ {0, 1}n and v ∈ Supp(V A
x,y):

Pr
[
V A

x,y = v
] ≤ eε · Pr

[
V A

x,y′ = v
]
.

Note that the above definition is equivalence to asking that V B
x,y

R≈ε V B
x′,y for any

x, x′ with Ham(x, x′) = 1 and y, and analogously for the view of A, for
R≈ε being

the log-ratio according to Definition 3.3.
We also remark that a more general definition allows also an additive error δ

in the above, making the functionality (ε, δ)-DP. However, for the sake simplicity,
we focus on the simpler notion of ε-DP stated above.

Definition 3.12 (Differentially private computation). A ppt two-output
protocol Π = (A,B) over input domain {0, 1}n × {0, 1}n is ε-IND-DP if the
following holds for every pptNU B∗, D and x, x′ ∈ {0, 1}n with Ham(x, x′) = 1:
let V B∗

x be the view of B∗ in a random execution of (A(x),B∗)(1κ), then

Pr
[
D(V B∗

x) = 1
]

≤ eε(κ) · Pr
[
D(V B∗

x′) = 1
]

+ neg(κ),

and the same hold for the secrecy of B.
Such a protocol is semi-honest ε -IND-DP, if the above is only guaranteed to

hold for semi-honest adversaries (i.e., for B∗ = B).

3.8 Passive Weak Binary Symmetric Channels

We rely on the work of Wullschleger [41] that shows that certain channels imply
oblivious transfer. The following notion, adjusted to our formulation, of a “Pas-
sive weak binary symmetric channel” was studied in [41].

Definition 3.13 (Passive weak binary symmetric channels, WBSC,
[41]). An (μ, ε0, ε1, p, q)-WBSC is a channel C = ((V A, OA), (V B, OB)) such that
the following holds:

– Correctness: Pr
[
OA = 0

] ∈ [ 12 − μ/2, 1
2 + μ/2]

and for every bA ∈ {0, 1}, Pr
[
OB �= OA | OA = bA

] ∈ [ε0, ε1].
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– Receiver security: (V A, OA)|OB=OA

S≈p (V A, OA)|OB �=OA .10

– Sender security: for every bB ∈ {0, 1}, V B|OB=bB,OA=0

S≈q V B|OB=bB,OA=1.

The following was proven in [41].

Theorem 3.14 (WBSC implies oblivious transfer). There exist a protocol
Δ such that the following holds. Let ε, ε0 ∈ (0, 1/2), p ∈ (0, 1) be such that
150(1 − (1 − p)2) < (1 − 2ε2

ε2+(1−ε)2 )2, and ε0 ≤ ε. Let C be a (0, ε0, ε0, p, p)-
WBSC. Then Δ(1κ, ε) is a semi-honest statistically secure OT in the C-hybrid
model, and its running time is polynomial in κ, 1/ε and 1/(1−2ε). Furthermore,
the parties in Δ only makes use of the output bits of the channel.

Theorem 3.14 considers channels with μ = 0, and ε0 = ε1. This is equivalent
to saying that the channel is balanced (i.e., each of the output bits is uniform)
and has α-agreement, for α = 1

2 − ε0. When stated in this form, Theorem3.14
says that such a channel implies OT if p = O(α2), and in particular, it is required
that p < α.

3.8.1 Specialized Passive Weak Binary Symmetric Channels
We will be interested in a specific choice of parameters for passive WBSC’s, and
for this choice, it will be more convenient to work with the following stronger
notion of a channel (that is easier to state and argue about, as security is defined
in the same terms for both parties).

Definition 3.15 (Specialized passive weak binary symmetric chan-
nels). An (ε0, p)-SWBSC is a channel C = ((V A, OA), (V B, OB)) such that
the following holds:

– Correctness: Pr
[
OA = 0

]
= 1

2 , and for every bA ∈ {0, 1},
Pr

[
OB �= OA | OA = bA

]
= ε0.

– Receiver security: V A|OA=OB

S≈p V A|OA �=OB .

– Sender security: V B|OB=OA

S≈p V B|OB �=OA .

Proposition 3.16. An (ε0, p)-SWBSC is a (0, ε0, ε0, 2p, 2p)-WBSC.

The proof for Proposition 3.16 appears in the full version.

3.9 Additional Inequalities

The following fact is proven in the full version of this paper.

Proposition 3.17. The following holds for every b ∈ (0, 1/2) and 
 ∈ N such
that b
 < 1/4.

(1/2 + b)�

(1/2 + b)� + (1/2 − b)�
∈ [ 12 (1 + b
), 1

2 (1 + 3b
)].

10 In the requirement above, one can replace (V A, OA) with V A (as by our conventions
the latter determines the former). We remark that [41] does not use this convention,
and this is why we explicitly include the random variable OA.
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4 Amplification of Channels with Small Log-Ratio
Leakage

In this section we formally define log-ratio leakage and prove our amplification
results. We start in Sect. 4.1 with the information theoretic setting, in which we
restate and prove Theorems 1.3 and 1.4. In the full version of this paper we extend
our result to the computational setting, restating and proving Theorem1.6.

4.1 The Information Theoretic Setting

We start with a definition of log-ratio leakage (restating Definition 1.2 with more
formal notation).

Definition 4.1 (Log-ratio leakage). A channel ((OA, V A), (OB, V B)) has
(ε, δ)-leakage if

– Receiver security: V A|OA=OB

R≈ε,δ V A|OA �=OB .

– Sender security: V B|OA=OB

R≈ε,δ V B|OA �=OB .

The following theorem is a formal restatement of Theorem 1.3

Theorem 4.2 (Small log-ratio leakage implies OT). There exists an (obliv-
ious) ppt protocol Δ and constant c1 > 0 such that the following holds. Let
ε, δ ∈ [0, 1] be such that δ ≤ ε2, and let α ≤ αmax < 1/8 be such that
α ≥ max

{
c1 · ε2, αmax/2

}
. Then for any channel C with (ε, δ)-leakage and α-

agreement, protocol ΔC(1κ, 1�1/αmax	) is a semi-honest statistically secure OT in
the C-hybrid model.

Before proving Theorem 4.2, we first show that it is tight. The proof of the
following theorem is given in the full paper.

Theorem 4.3 (Triviality of channels with large leakage). There exists a
constant c2 > 0, such that for every ε > 0 there is a two-party protocol (with
no inputs) where at the end of the protocol, every party P ∈ {A,B} has output
OP and view V P. Moreover, the induced channel C = ((V A, OA), (V B, OB)) has
α-agreement,and (ε, 0)-leakage, for α ≥ c2 · ε2.

Together, the two theorems show that if α ≥ c1 · ε2 then the channel yields
OT, and if α ≤ c2 · ε2 then such a channel can be simulated by a two-party
protocol with no inputs (and thus cannot yield OT with information theoretic
security).

The proof of Theorem4.2 is an immediate consequence of the following two
lemmata.

Recall (Definition 3.8) that CHN(Π) denotes the channel induced by a ran-
dom execution of the no-input, Boolean output protocol Π.
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Lemma 4.4 (Gap amplification). There exists an (oblivious) ppt protocol
Δ and constant c1 > 0 such that the following holds. Let ε, δ, α, αmax be param-
eters satisfying requirements in Theorem4.2 with respect to c1. Let C be a
channel with (ε, δ)-leakage and α-agreement, let 
 = 2(�log 1/αmax	−2) and let
C̃ = CHN(ΔC(1�)). Then

– C̃ has α̃ ∈ [1/32, 3/8]-agreement.
– For any δ′ ∈ (0, 1): C̃ has (ε̃, δ̃)-leakage for ε̃ = 2
ε2 + ε

√
2
 ln(1/δ′) and

δ̃ = δ′ + 
δ.

Definition 4.5 (Bounded execution). Given Boolean output protocol Π and
n ∈ N, let boundn(Π) be the variant of Π that if the protocol does not halt after
n steps, it halts and the parties output uniform independent bits.

Lemma 4.6 (Large Gap to OT). There exist an (oblivious) ppt protocol
Δ and constants n, c > 0 such that the following holds: let Π be a protocol of
expected running time at most t that induces a channel C with α ∈ [1/32, 3/8]-
agreement, and (ε, δ)-leakage for ε, δ ≤ c.

Then ΔC′
(1κ) is a semi-honest statistically secure OT in the C ′ =

CHN(boundn·t(Π)) hybrid model.

We prove the above two Lemmas in the following subsections, but first we
will prove Theorem 4.2.

Proof (Proof of Theorem 4.2). Let 
 = 2(�log 1/αmax	−2). By Lemma 4.4, there
exists an expected polynomially time protocol Λ such that ΛC(1�) induces
a channel C̃ of α̃ ∈ [1/32, 3/8]-agreement, and (ε̃, δ̃)-leakage for ε̃ = 2
ε2 +
ε
√

2
 ln(1/δ′) and δ̃ = δ′ + 
δ, for any δ′ ∈ (0, 1).
Let t ∈ poly be a polynomial that bounds the expected running time of Λ.

By Lemma 4.6, there exist universal constants n, c and ppt protocol Δ, such
that if

ε̃ = 2
ε2 + ε
√

2
 ln(1/δ′) ≤ c and δ̃ = δ′ + 
δ ≤ c (1)

then the protocol Γ , defined by ΓC(1κ, 1�1/αmax	) = ΔC′
(1κ) for C ′ =

CHN(boundn·t(�)(ΛC(1�))), is a semi-honest statistically secure OT. Hence, we
conclude the proof noting that Eq. (1) holds by setting δ′ = 
δ and choosing c1
(the constant in Theorem 4.2) to be sufficiently large.

Lemma 4.6 is proved in Sect. 4.1.3 using the amplification result of [41].
Toward proving Lemma4.4, our main technical contribution, we start in
Sect. 4.1.1 by presenting an inefficient protocol implementing the desired chan-
nel. In Sect. 4.1.2 we show how to bootstrap the the above protocol into an
efficient one.
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4.1.1 Inefficient Amplification
The following protocol implements the channel stated in Lemma4.4, but its
running time is exponential in 1/αmax.

Protocol 4.7 (Protocol ΔC = (Ã, B̃))

Oracle: channel C = ((V A, OA), (V B, OB)).
Input: 1�.
Operation: The parties repeat the following process until it produces outputs:

1. The parties (jointly) call the channel C for 
 times. Let oA =
(oA1 , . . . , oA� ), oB = (oB1 , ..., oB� ) be the outputs.

2. Ã computes and sends S =
{
oA, 1� ⊕ oA

}
according to their lexical order to B̃.

3. B̃ inform Ã whether oB ∈ S.
If positive, both parties output the index of their tuple in S (and the protocol
ends).

We show that the channel induced by protocol ΔC(1�) satisfies all the require-
ment of Lemma 4.4 apart from its expected running time (which is exponential
in 
).

Let C̃ = CHN(ΔC(
)) = ((V ˜A, O
˜A), ((V ˜B, O

˜B)). The following function out-
puts the calls to C made in the final iteration in C̃.

Definition 4.8 (Final calls). For c ∈ Supp(C̃) let final(c) denote the output
of the 
 calls to C made in the final iteration in c.

We make the following observation about the final calls.

Claim 4.9. The following holds for ((·, OA
), (·, OB

)) = final(C̃ =
((·, O˜A), (·, O˜B))).

– O
˜A = O

˜B iff O
A

= O
B
.

– Let C� = ((·, (OA)�), (·, (OB)�)) be the random variable induced by taking 

copies of C and let E be the event that (OB)� ∈ {

(OA)�, (OA)� ⊕ 1�
}
. Then

final(C̃) ≡ C�|E.

Proof. Immediate by construction.

Agreement.

Claim 4.10 (Agreement). Pr
[
O

˜A = O
˜B
]

∈ [17/32, 7/8].

Proof. By Claim 4.9,

Pr
[
O

˜A = O
˜B
]

=
Pr

[
(OA)� = (OB)� | E

]

Pr [(OA)� = (OB)� | E] + Pr [(OA)� ⊕ (OB)� = 1� | E]
(2)

=
Pr

[
(OA)� = (OB)�

]

Pr [(OA)� = (OB)�] + Pr [(OA)� ⊕ (OB)� = 1�]

=
(1/2 + α)�

(1/2 + α)� + (1/2 − α)�
.
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Since, 
 = 2(�log 1/αmax	−2) and αmax/2 ≤ α ≤ αmax, we get that 1/4 ≥ 
 · α ≥
1/16. By Proposition 3.17,

(1/2 + α)�

(1/2 + α)� + (1/2 − α)�
∈ [ 12 (1 + α
), 1

2 (1 + 3α
)] (3)

Thus, Pr
[
O

˜A = O
˜B
]

∈ [17/32, 7/8], which concludes the proof.

Leakage.

Claim 4.11 (Leakage). C̃ has (ε̃, δ̃)-leakage, where ε̃ = 2
ε2 + ε
√

2
 ln(1/δ′)
and δ̃ = δ′ + 
δ for every δ′ ∈ (0, 1).

Proof. We need to prove that for both P ∈ {A,B}:

V
˜P|O˜A=O˜B

R≈(ε̃,˜δ) V
˜P|O˜A �=O˜B (4)

By assumption C has (ε, δ)-leakage. Thus, by Theorem 3.5,

(V P)�|(OA)�=(OB)�

R≈(ε̃,˜δ) (V P)�|(OA)�=(OB)�⊕1� (5)

Let ((V
A
, O

A
), (V

B
, O

B
) = final(C̃). By the above and Claim 4.9,

V
P|O˜A=O˜B

R≈(ε̃,˜δ) V
P|O˜A �=O˜B (6)

Equation (4) now follows by a data processing argument: let f be the randomized
function that on input v ∈ Supp(V

P
) outputs a random sample from V

˜P|
V

P
=v

.

It easy to verify that f(V
P|O˜A=O˜B) = V

˜P|O˜A=O˜B and f(V
P|O˜A �=O˜B) ≡ V

˜P|O˜A �=O˜B .
Thus Eq. (4) follows by Fact 3.4.

4.1.2 Efficient Amplification
We will show how to make Protocol 4.7 protocol more efficient in terms of α.
The resulting protocol will run in poly-time even if α is inverse polynomial. The
efficient amplification protocol is defined as follows. Let Δ be the (inefficient)
protocol from Protocol 4.7.

Protocol 4.12 [ Protocol ΛC = (Â, B̂)]

Oracle: Channel C.
Prameter: Recursion depth d.
Operation: The parties interact in ΔΛC(d−1)(2), letting ΛC(0) = C.

We show that the channel induced by protocol ΛC(d) satisfies all the require-
ment of Lemma 4.4. But we first show that the expected running time of ΛC(d)
is O(4d), and therefore, the protocol that on input 1� invoke ΛC(log 
), is ppt,
as stated in Lemma 4.4.
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Running Time.

Claim 4.13 (Expected running time). Let C be a channel, the for any d ∈ N

the expected running time of ΛC(d) is at most O(4d).

We will use the following claim:

Claim 4.14. For any channel C, ΔC(2) makes in expectation at most 4 calls
to C.

Proof. Let C with a channel with agreement α ∈ [−1/2, 1/2]. Let O
A

= (OA
1 , OA

2 )
and O

B
= (OB

1 , OB
2 ) denote the outputs of two invocations of C, respectively. By

construction, ΔC(2) concludes on the event E =
{

(OB
1 , OB

2 ) ∈ {O
A
, 12 ⊕ O

A}
}

.

It is clear that Pr [E] = (12 + α)2 + (12 − α)2 = 1
2 + α2 ≥ 1

2 . Thus, the expected
number of invocations preformed by ΔC(2) is bounded is 4.

We now prove Claim 4.13 using the above claim.

Proof. (Proof of Claim 4.13). For d ∈ N, let T (d) denote the expected runtime
of ΛC(d). By Claim 4.14,

T (d) = 4 · T (d − 1) + O(1), (7)

letting T (0) = 1. Thus, T (d) ∈ O(4d).

Let Ĉd = CHN(ΛC(d)) = ((V ̂A
d , O

̂A
d ), ((V ̂B

d , O
̂B
d )). The following function out-

puts the “important” calls of C made in Ĉd, the ones used to set the final
outcome.

Let ◦ denote vectors concatenation.

Definition 4.15 (Important calls). For d ∈ N and c ∈ Supp(Ĉd), let
final(c) = (c0, c1) be the two calls to ΛC(d − 1) done in final execution of
ΔΛC(d−1)(2) in c. Define important(c) = important(c0) ◦ important(c1), letting
important(c) = c for c ∈ Supp(Ĉ0).

Similarly to the analysis of inefficient protocol, the crux is the following
observation about the important calls.

Claim 4.16. Let d ∈ N and set 
 = 2d. The following holds for ((·, OA
),

(·, OB
)) = important(Ĉd = ((·, ÔA), (·, ÔB))).

– O
̂A = O

̂B iff O
A

= O
B
.

– Let C� = ((·, (OA)�), (·, (OB)�)) be the random variable induced by taking 

copies of C and let E be the event that (OB)� ∈ {

(OA)�, (OA)� ⊕ 1�
}
. Then

important(Ĉd) ≡ C�|E.

We prove Claim 4.16 below, but first use it for proving Lemma4.4.
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Agreement.

Claim 4.17 (Agreement). Pr
[
O

̂A = O
̂B
]

∈ [17/32, 7/8].

Proof. The proof follows by Claim 4.16, using the same lines as the proof that
Claim 4.10 follows from Claim 4.9.

Leakage.

Claim 4.18 (Leakage). Ĉ has (ε̃, δ̃)-leakage, where ε̃ = 2
ε2 + ε
√

2
 ln(1/δ′)
and δ̃ = δ′ + 
δ for every δ′ ∈ (0, 1).

Proof. The proof follows by Claim 4.16 and a data processing argument, using
similar lines to the proof that Claim 4.11 follows from Claim 4.9.

Proving Lemma 4.4.

Proof (Proof of Lemma 4.4). Consider the protocol TC(1�) = ΛC(�log 
�). The
proof that T satisfies the requirements of Lemma 4.4 immediately follows by
Claims 4.13, 4.17 and 4.18.

Proving Claim 4.16.

Proof (Proof of Claim 4.16). First note that the first item in the claim immedi-
ately follows by construction. We now prove the second item.

Let d ∈ N and let 
 = 2d. For C� = ((·, (OA)�), (·, (OB)�)), let D� be the
distribution of C�|{(OB)�∈{(OA)�,(OA)�⊕1�}}. We need to prove that

important(Ĉd) ≡ D�

We prove the claim by induction on d. The base case d = 1 follows by
Claim 4.9.

Fix d > 1, for j ∈ {0, 1}, let Ĉd−1,j be an invocations of the channel on input
d−1 and let ((·, OA

j ), (·, OB
j )) = important(Ĉd−1,j). By the induction hypothesis,

important(Ĉd−1,j) ≡ D�/2 (8)

The key observation is that by construction, the event final(Ĉd) = Ĉd−1,0 ◦
Ĉd−1,1 occurs if and only if,

O
B
0 ◦ O

B
1 ∈

{
O

A
0 ◦ O

A
1 , 1� ⊕ O

A
0 ◦ O

A
1

}
(9)

Recall this means that,

important(Ĉd) =
(
important(Ĉd−1,0) ◦ important(Ĉd−1,1)

) |E

where E =
{

O
B
0 ◦ O

B
1 ∈

{
O

A
0 ◦ O

A
1 , 1� ⊕ O

A
0 ◦ O

A
1

}}
. The above observations

yields that important(Ĉd) ≡ D�.
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4.1.3 From Channels with Large Gap to OT
Definition 4.19. A channel C = ((V A, OA), (V B, OB)) is balanced if
Pr

[
OA = 1

]
= Pr

[
OB = 1

]
= 1

2 .

We use the following claim.

Claim 4.20. Let C = ((V A, OA), (V B, OB)) be a balanced channel that has α ∈
[αmin, αmax]-agreement and (ε, δ)-leakage. Then C is a (ε0, p)-SWBSC for some
ε0 ∈ [ 12 − αmax,

1
2 − αmin], and p = 2ε + δ.

Proof. For every P ∈ {A,B} we have that, V
˜P|O˜A=O˜B

R≈(ε,δ) V
˜P|O˜A �=O˜B , thus by

definition it follows that, V
˜P|O˜A=O˜B

S≈(2ε+δ) V
˜P|O˜A �=O˜B , and the claim holds.

The following claim, states that a given a channel with bounded leakage and
agreement we can construct a new protocol using the olds one, that has the same
leakage and agreement, while having the additional property of being balanced.

Claim 4.21. There exists a constant-time single oracle call protocol Δ such that
for every channel C, the channel C̃ induced by ΔC is balanced and has the same
agreement and leakage as of C.

Protocol 4.22. [Protocol Δ = (Ã, B̃)]

Oracle: Channel C.
Operation:

1. The parties (jointly) call the channel C. Let oA and oB denote their output
respectively.

2. Ã sends r ← {0, 1} to B̃.
3. Ã outputs oA ⊕ r and B̃ outputs oB ⊕ r.

Proof (Proof of Claim 4.21). Let C̃ = CHN(ΔC). By construction C̃ is balanced
and has α-agreement. Finally, by a data processing argument, C̃ has the same
leakage as C.

Proving Lemma 4.6.

Proof (Proof of Lemma 4.6). Set n = 108, let C = CHN(Π), let Π ′ =
boundn·t(Π) and let C ′ = CHN(Π ′). By Markov inequality,

C ′ S≈1/n C (10)

By Claim 4.21, there exist a protocol Δ such that ΔC is balanced and has
the same leakage and agreement as C. Moreover, since Δ only uses one call to
the channel C, by data processing argument,

CHN(ΔC′
)

S≈1/n CHN(ΔC) (11)
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By Claim 4.21, ΔC′
is also balanced. Claim 4.20 yields that ΔC is a (15/32, p)-

WBSC for p = 2ε + δ. Hence, using Proposition 3.2, we get that ΔC′
is (ε0, p)-

WBSC, for ε0 = ε + 1/108 and p = p + 4/107.
In the following we use Theorem 3.14 to show that ΔC′

can be used to con-
struct semi-honest statistically secure OT. To do this, we need to prove that

150(1 − (1 − 2p)2) < (1 − 2ε20
ε20 + (1 − ε0)2

)2 (12)

Indeed, since (1 − 2 ε20
ε20+(1−ε0)2

)2 ≥ 1/100, for δ′ = 1/107 it holds that, for small
enough c,

(1 − (1 − 2p)2) ≤ 4p ≤ 4p + 2/106 ≤ 2ε + δ + 2/106 (13)

≤ 3c + 2/106

< 1/(150 · 100).

And therefore ΔC′
satisfies the requirement of Theorem 3.14. Let Γ be the pro-

tocol guaranteed in Theorem 3.14, and let Γ̃C′
(1κ) = ΓΔC′

(1κ, 49/100). By
Eq. (12) and Theorem 3.14, Γ̃C′

(1κ) is statistically secure semi-honest OT. Since
ε0 is a bounded from 0 and 1/2 by constants, Γ̃ running time in polynomial in κ.

4.2 The Computational Setting

Due to space limitations, the remainder of this section appears in the full version
of this paper [23].

Conclusion and Open Problems
A natural open problem is to characterize the (Boolean) AND differential pri-
vate functionality. That is, show a similar dichotomy that characterizes which
accuracy and leakage require OT.

More generally, the task of understanding and characterizing other (non
Boolean) differentially private functionalities like hamming distance and inner
product remains open.
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Abstract. A well known result by Kilian [22] (ACM 1988) asserts that
general secure two computation (2PC) with statistical security, can be
based on OT. Specifically, in the client-server model, where only one
party – the client – receives an output, Kilian’s result shows that given
the ability to call an ideal oracle that computes OT, two parties can
securely compute an arbitrary function of their inputs with uncondi-
tional security. Ishai et al. [19] (EUROCRYPT 2011) further showed
that this can be done efficiently for every two-party functionality in NC1

in a single round .
However, their results only achieve statistical security, namely, it is

allowed to have some error in security. This leaves open the natural ques-
tion as to which client-server functionalities can be computed with per-
fect security in the OT-hybrid model, and what is the round complexity
of such computation. So far, only a handful of functionalities were known
to have such protocols. In addition to the obvious theoretical appeal of
the question towards better understanding secure computation, perfect,
as opposed to statistical reductions, may be useful for designing secure
multiparty protocols with high concrete efficiency, achieved by eliminat-
ing the dependence on a security parameter.

In this work, we identify a large class of client-server functionalities
f : X × Y �→ {0, 1}, where the server’s domain X is larger than the
client’s domain Y, that have a perfect reduction to OT. Furthermore,
our reduction is 1-round using an oracle to secure evaluation of many
parallel invocations of

(
2
1

)
-bit-OT, as done by Ishai et al. [19] (EURO-

CRYPT 2011). Interestingly, the set of functions that we are able to
compute was previously identified by Asharov [2] (TCC 2014) in the
context of fairness in two-party computation, naming these functions
full-dimensional. Our result also extends to randomized non-Boolean
functions f : X × Y �→ {0, . . . , k − 1} satisfying |X | > (k − 1) · |Y|.

1 Introduction

In the setting of secure two-party computation (2PC), the goal is to allow two
mutually distrustful parties to compute some function of their private inputs.
The computation should preserve some security properties, even in the face
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of adversarial behavior by one of the parties. The two most common types of
adversaries are malicious adversaries (which may instruct the corrupted party
to deviate from the prescribed protocol in an arbitrary way), and semi-honest
adversaries (which must follow the instructions of the protocol, but may try to
infer additional information based on the view of the corrupted party).

Oblivious transfer (OT) is a two-party functionality, fundamental to 2PC
and the more general secure multiparty computation (MPC). It was first intro-
duced by Rabin [28] and Even et al. [13]. In the setting of

(
2
1

)
-bit-OT, there

is a receiver holding a bit b ∈ {0, 1}, and a sender holding two bit-messages
a0, a1 ∈ {0, 1}. At the end of the interaction, the receiver learns ab and nothing
else, and the sender learns nothing. It turns out that OT can be used in the
construction of protocols, both in 2PC and MPC with various security guar-
antees [6,14,22,33]. Moreover, giving to the parties access to an ideal process
that computes OT securely, is potentially useful. Constructing protocols in this
model, called the OT-hybrid model, could be used for optimizing the complexity
of real-world, computationally secure protocols for several reasons. First, using
the OT-precomputation paradigm of Beaver [4], the heavy computation of OT
can many times be pushed back to an off-line phase. This off-line phase is per-
formed before the actual inputs for the computation (and possibly even the
function to be computed) are known. Later, as the actual computation takes
place, the precomputed OTs are very cheaply converted into actual OT interac-
tions. Furthermore, the OT-extension paradigm of [5] offers a way to efficiently
implement many OTs using a relatively small number of base OTs. This can be
done using only symmetric-key primitives (e.g., one-way functions, pseudoran-
dom generators). Furthermore, it can also be used to implement

(
2
1

)
-s-string-OT

using a sub-linear (in the security parameter) number of calls to
(
2
1

)
-bit-OT and

some additional sub-linear work, assuming a strong variant of PRG [17]. Addi-
tionally, there is a variety of computational assumptions that are sufficient to
realize OT [27], or even with unconditional security under physical assumptions
[10,11,21,26,32].

An interesting family of two-party functionalities are the client-server func-
tionalities, where only one party – the client – receives an output. In addition
to the OT functionality mentioned earlier, client-server functionalities include
many other examples. Securely computing some of theses functionalities could
be useful for many interesting applications, both in theory and in practice.

For client-server, a well known result due to Kilian [22], asserts that OT is
complete. That is, any two-party client-server functionality can be computed
with unconditional security in the OT-hybrid model. Ishai, Prabhakaran, and
Sahai [18] further showed that the protocol can be made efficient. Later, it was
shown by Ishai et al. [19], that in the OT-hybrid model, every client-server
functionality can be computed using a single round. Furthermore, the protocol’s
computational and communication complexity are efficient for functions in NC1.
However, all of the results achieve only statistical security, namely, it is allowed
to have some error in security.
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For the case of perfect security in this setting much less is known. Given
access to (many parallel) ideal computations for

(
2
1

)
-bit-OT, Brassard et al. [8]

showed how to compute the functionality
(
n
1

)
-s-string-OT, and Wullschleger [30]

showed how to compute
(
2
1

)
-bit-TO, which is the same as

(
2
1

)
-bit-OT where the

roles of the parties are reversed. Furthermore, the former protocol has a single
round, in which the parties invoke the OT, and with no additional bits to be sent
over the channel between the parties. The latter protocol requires an additional
bit to be sent by the server.

Observe that the result of [8] implies that any client-server functionality f can
be computed with perfect security against semi-honest corruptions. Indeed, let
n be the number of inputs in the client’s domain, and let s be the number of bits
required to represent an output of f . The server will send to the

(
n
1

)
-s-string-OT

functionality all of the possible outputs with respect to its input, and the client
will send its input. The client then outputs whatever it received from the OT.
Clearly, the protocol is secure against semi-honest adversaries, however, in the
malicious case, this is not true, in general. This is due to the fact that the
server has complete control over the output of the client. For instance, for the
“greater-than” function, the server can force the output of the client to be 1
if and only if y is even. Therefore, we are only interested in security against
malicious adversaries.

Ishai et al. [20] studied perfectly secure multiparty computation in the cor-
related randomness model. They showed that any multiparty client-server func-
tionality can be computed with perfect security, when the parties have access
to a correlated randomness whose correlation depends on the function to be
computed by the parties.

There are also various client-server functionalities that can be computed triv-
ially (even in the plain model). For example, the XOR functionality can be com-
puted by having the server sending its input to the client. These simple examples
suggest that fairness is not a necessary condition for being able to compute a
function perfectly in the client-server model.

Thus, the state of affairs is that most two-party client-server functionalities
remain unclassified as to perfect security in the OT-hybrid model. In this work
we address the following natural questions.

Which client-server functionalities can be computed with perfect security
against malicious adversaries in the OT-hybrid model? What is the round
complexity of such protocols?

The questions have an obvious theoretical appeal to it, and understanding it
could help us gain a better understanding of general secure computation. In
addition, perfect security may be useful for designing multiparty protocols with
high concrete efficiency, achieved by eliminating the dependency on a security
parameter.

We stress that, under the assumption that NP �⊆ BPP, it is impossible to
achieve completeness theorems in our setting, similar to the completeness theo-
rems of Kilian [22]. Indeed, suppose the parties want to compute an NP relation
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with perfect zero-knowledge and perfect soundness. Then it is impossible even
when given access to any ideal functionality with no input (distributing some
kind of correlated randomness) [20]. This is due to the fact that if such a proto-
col does exist, then one can use the simulator to decide the relation, putting it
in BPP. Since OT can be perfectly reduced to a suitable no-input functionality,
this implies that no such protocol exist in the OT-hybrid model.

1.1 Our Results

Our main result is that if the parties have access to many parallel ideal computa-
tions of

(
2
1

)
-bit-OT, most client-server functionalities, where the server’s domain

is larger than the client’s domain, can be computed with perfect full-security in
a single round. Interestingly, the set of functions that we are able to compute
was previously identified by Asharov [2] in the context of fairness in two-party
computation, naming these functions as full-dimensional.

Let f : X × Y �→ {0, 1} be a function, where the server’s domain size |X |
is larger than the client’s domain size |Y|. Write X = {x1, . . . , xn} and Y =
{y1, . . . , ym}. We consider the geometric representation of f as |X | points over
R

|Y|, where the j-th coordinate of the i-th point is simply f(xi, yj). We then
consider the convex polytope1 defined by these points. The function is called
full-dimensional if the dimension of the polytope is exactly |Y|, e.g., a triangle
in the plane.2 We prove the following theorem:

Theorem 1 (Informal). Let f : X × Y �→ {0, 1} be a client-server functional-
ity. If f is full-dimensional, then it can be computed with perfect full-security in
the OT-hybrid model in a single round. Furthermore, the number of OT calls is
O (poly (|Y|)).

In fact, we generalize the above theorem, and we give a similar criterion
for randomized non-Boolean functions. The class of functions that our protocol
can compute can be further extended by letting the client have inputs that fix
the output. This class of functions includes many interesting examples, such as
Yao’s “millionaires’ problem” (the “greater-than” function). Here the parties
have inputs that ranges from 1 to n, and the output of the client is 1 if and only
if its input is greater than or equal to the server’s input. The communication
complexity of our protocol is polynomial in the client’s domain size, and not
in its input’s size. For functions with small domain, however, this does improve
upon known construction that achieve statistical security (e.g., the single round
protocol by Ishai et al. [19], see Sect. 7 for more details).

Its was proven by [2], that the number of full-dimensional functions tends to
1 exponentially fast as |X | and |Y| grow. Specifically, a random function with
domains sizes |X | = m+1 and |Y| = m, will be full-dimensional with probability

1 A polytope is a generalization in any number of dimensions of the two-dimensional
polygon and the three-dimensional polyhedron.

2 Observe that if f is full-dimensional then |X | > |Y|, since the polytope requires at
least |Y| + 1 points to be of dimension |Y|.
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at least 1−pm, where pm denotes the probability that a random Boolean m×m
matrix is singular. The value pm is conjectured to be (1/2 + o(1))m. Currently,
the best known upper bound is (1/

√
2 + o(1))m proved by [31].

Theorem 1 identifies a set of client-server functionalities that are computable
with perfect full-security. It does not yield a full characterization of such func-
tions. For example, the status of the equality function 3EQ : {x1, x2, x3} ×
{y1, y2, y3} �→ {0, 1}, defined as 3EQ(x, y) = 1 if and only if x = y, is currently
unknown. However, for the case of Boolean functions (even randomized), we are
able to show that the protocol suggested in the proof of Theorem 1 computes
only full-dimensional functions.

1.2 Our Techniques

The protocol we suggest is a variation of the protocol of Ishai et al. [19]. Viewing
the protocol abstractly, in addition to the computation of some related function,
the server will also send (via the OT) a proof of correct behavior. The client will
use the OT functionality to learn only a few random bits from the proof so that
privacy is preserved. We next give a technical overview of our construction.

In our construction, we make use of perfect randomized encoding (PRE) [1].
A PRE f̂ of a function f is a randomized function, such that for every input
x and a uniformly random choice of the randomness r, it is possible to decode
f̂(x; r) and compute f(x) with no error. In addition, the output distribution of
f̂ on input x reveals no information about x except what follows from f(x). For
our construction, we rely on a property called decomposability. A PRE is said
to be decomposable, if it can be written as f̂ =

(
f̂1, . . . , f̂n

)
. Here, each f̂i can

be written as one of two vectors that depends on the i-th bit of x, i.e., we can
write it as vi,xi

, where (vi,0,vi,1) depends on the randomness r. This definition
can be viewed as the perfect version of garbled circuits [24,33].

Our starting point is the protocol of Ishai et al. [19], which will be dubbed
the IKOPS protocol. It is a single round protocol in the OT-hybrid model that
achieves statistical security. It allows the parties to compute a “certified OT”
functionality. We next give a brief overview of the IKOPS protocol.

The main idea behind the IKOPS protocol is to have the server run an
“MPC in the head” [18]. That is, the real server locally emulates the execu-
tion of a perfectly secure protocol Π with many virtual servers performing the
computation, and 2m virtual clients, denoted C1,0,C1,1, . . . ,Cm,0,Cm,1, receiving
output, where m is the number of bits in the real client’s input y. The underlying
protocol Π computes (and distributes among the clients) a decomposable PRE
f̂ = (f̂1, . . . , f̂m) of f . Specifically, the input of the virtual servers’ are secret
sharing of the real server’s input x and randomness r. The output of the virtual
client Cj,b in an execution of Π, is f̂j(b; r), i.e., the part of the encoding that
corresponds to the j-th bit of y being equal to b.

The real client can then use OT in order to recover the correct output of
the PRE and reconstruct the output f(x, y). As part of the “MPC in the head”
paradigm, the client and server jointly set up a watchlist (the views of some of
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the virtual servers) allowing the client to check consistency between the virtual
servers’ views and the virtual clients’ views. If there was an inconsistency, the
client outputs f(x0, y) for some default value x0 ∈ X . However, it is unclear how
to have the server send only some of the views according to the request of the
client. Ishai et al. [19] handle this by letting the client get each view with some
constant probability independently of the other views.

The security of the protocol as described so far can still be breached by a
malicious server. By tampering with the outputs of the virtual clients, a malicious
server could force the output of the real client to be f(x, y) for some inputs y
and force the output to be f(x0, y) for other values of y, where the choice is
completely determined by the adversary. To overcome this problem, the function
f is replaced with a function f ′ where each bit yi is replaced with κ random bits
whose XOR equals to yi, where κ is the security parameter.3 This modification
prevents the adversary from having complete control over which inputs the client
will output f(x0, y), and for which inputs it will output f(x, y).

Two problems arise when trying to use the IKOPS protocol to achieve perfect
security. First, a malicious client could potentially receive the views of all virtual
servers, and as a result, it could learn the server’s input. Second, with some non-
zero probability, a malicious server might still be able to have the client output
be f(x0, y) for some inputs y, but output f(x, y) for other inputs y.

We solve the former issue, by showing how the client can request views deter-
ministically. We would like to have the request be made using

(
n
t

)
-s-string-OT,

where t bounds the number of corruptions allowed in Π, namely, the client asks
for exactly t views. However, it is not known if implementing it in the OT-hybrid
model with perfect security is even possible. Therefore, we slightly relax the secu-
rity requirement, so that a malicious client will not be able to receive more than
twice the number of views that an honest client receives. We then let the honest
client ask for exactly t/2 of the views. The idea in constructing such a watchlist
is the following. For each view of a virtual server, the real server sends (via the
OT functionality) either a masking of the view, or a share of the concatenation of
the maskings. That is, the server’s input to the OT is (Vi ⊕ri, r[i]) for every view
Vi of a virtual server Si, where r = (r1, . . . , rn) is a vector of random strings,
and r[i] is the i-th share of r, for some threshold secret sharing scheme with
sufficiently large threshold value.4 As a result, in each invocation of the OT, the
client will be able to learn either a masked view or a share, which bounds the
number of views it can receive.

To solve the second issue, it will be convenient to represent the server security
requirement from a geometric point of view. To simplify the explanation in this
introduction, we only focus on deterministic Boolean functions. Recall that we
can view the function f as |X | points over R

|Y|, where the j-th coordinate of
the i-th point is simply f(xi, yj). Observe that all a simulator for a malicious
server can do, is to send a random input according to some distribution D.

3 This technique for eliminating selective failure attacks was previously used in [22,23].
4 There are additional technical subtleties, however, for this informal introduction we

ignore them.



On Perfectly Secure 2PC in the OT-Hybrid Model 567

The goal of the simulator is to force the distribution of the client’s output to
be equivalent to the distribution in the real-world. Thus, perfect simulation of
a malicious server is possible if and only if there exists such distribution D
over the server’s inputs in the ideal-world, such that for every input y ∈ Y
of the client, Prx←D[f(x, y) = 1] = qy, where qy is the probability the client
outputs 1 in the real-world where its input is y. Since for every y ∈ Y the value
Prx←D[f(x, y) = 1] can be written as the same convex combination of the points
{f(xi, y)}|X |

i=1, the point (Prx←D[f(x, y) = 1])y∈Y lie inside the convex hull of
the points of f . Thus, we can state perfect security as follows. Simulation of an
adversary is possible if and only if the vector of outputs (qy)y∈Y in the real-world
is in the convex-hull of the points in R

|Y| described by f .
Now, consider the IKOPS protocol. It could be the case that the vector of

outputs has different errors in each coordinate created by an adversary, and
hence is not necessarily inside the convex-hull of the points of f . To fix this
issue, instead of having the client output according to a default value in case of
an inconsistency, the client will now pick x0 uniformly at random, and output
f(x0, y). Stated differently, it outputs according to cy, where c is the center of
the polytope.5 We next (roughly) explain why this results in a perfectly secure
protocol. Let p denote the probability of detecting an inconsistency (more pre-
cisely, for each y the probability py of detecting an inconsistency is in [p−ε, p+ε],
for some small ε). Further defined the matrix Mf (x, y) = f(x, y) (i.e., each row
of Mf describes a point in R

|Y|). Thus, the output vector of the client is close
to the point q = p · c + (1 − p) · Mf (x, ·), give or take ±ε in each coordinate, for
some small ε. If p is close to 1, this point q is close to c, and since c is an internal
point, q is also internal for a sufficiently small ε. Otherwise, the point q will be
close to the boundary. As a result, it is unclear as to why perfect security holds.
Here, we utilize a special property of IKOPS protocol’s security. We manage to
prove that ε is bounded by p · ε′, for some small ε′. That is, ε depends on p,
unlike the standard security requirement. This property allows us to prove that
perfect security holds.

1.3 Related Work

In the 2PC settings, Cleve [9] showed that the functionality of coin-tossing,
where the parties output the same random bit, is impossible to compute with
full-security, even in the OT-hybrid model. In spite of that, in the seminal
work Gordon et al. [15], and later followed by [2,3,12,25], it was discovered
that in the OT-hybrid model, most two-party functionalities can be evaluated
with full security by efficient protocols. In particular, [3] completes the charac-
terization of symmetric Boolean functions (where both parties receive the same
output). However, all known general protocols for such functionalities have round
complexity that is super-logarithmic in the security parameter. Moreover, this
was proven to be necessary for functions with embedded XOR [15].
5 The same construction works for any other choice of a point v that is strictly inside

the convex-hull of the points.
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1.4 Organization

In Sect. 2 we provide some notations and definitions that we use in this work,
alongside some required mathematical background. Section 3 is dedicated to
expressing security in geometrical terms and the formal statement of our result.
In Sects. 4 and 5 we present the proof of the main theorem. In Sect. 6 we show
that the analysis of our protocol for Boolean functions is tight.Finally, in Sect. 7
we briefly discuss the efficiency of our construction.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and
matrices, lowercase for values, and we use bold characters to denote vectors and
points. All logarithms are in base 2. For n ∈ N, let [n] = {1, 2 . . . n}. For a set
S we write s ← S to indicate that s is selected uniformly at random from S.
Given a random variable (or a distribution) X, we write x ← X to indicate that
x is selected according to X. We use poly to denote an unspecified polynomial,
and we use polylog to denote an unspecified polylogarithmic function. For a
randomized function (or an algorithm) f we write f(x) to denote the random
variable induced by the function on input x, and write f(x; r) to denote the
value when the randomness of f is fixed to r.

For a vector v ∈ R
n, we denote its i-th component with vi and we let ||v||∞ =

maxi |vi| denote its �∞ norm. We denote by 1n (0n) the all-ones (all-zeros) vector
of dimension n. A vector p ∈ R

n is called a probability vector if pi ≥ 0 for every
i ∈ [n] and

∑n
i=1 pi = 1.

For a matrix M ∈ R
n×m, we let M (i, ·) be its i-th row, we let M (·, j) be its

j-th column, and we denote by MT the transpose of M . For a pair of matrices
M1 ∈ R

n×m1 ,M2 ∈ R
n×m2 , we denote by [M1||M2] the concatenation of M2 to

the right of M1.

2.2 Cryptographic Tools

Definition 1. The statistical distance between two finite random variables X
and Y is

SD (X,Y ) =
1
2

∑

a

|Pr [X = a] − Pr [Y = a]| .

Secret Sharing Schemes. A (t+1)-out-of-n secret-sharing scheme is a mecha-
nism for sharing data among a set of parties {P1, . . . ,Pn}, such that every set of
size t + 1 can reconstruct the secret, while any smaller set knows nothing about
the secret. As a convention, for a secret s and i ∈ [n] we let s[i] be the i-th
share, namely, the share received by Pi. In this work, we rely on Shamir’s secret
sharing scheme [29].
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In a (t + 1)-out-of-n Shamir’s secret sharing scheme over a field F, where
|F| > n, a secret s ∈ F is shared as follows: A polynomial p(·) of degree at most
t + 1 over F is picked uniformly at random, conditioned on p(0) = s. Each party
Pi, for 1 ≤ i ≤ n, receives a share s[i] := p(i) (we abuse notation and let i be
the element in F associated with Pi).

Decomposable Randomized Encoding. We recall the definition of random-
ized encoding [1,33]. They are known to exists unconditionally [1,16].

Definition 2 (Randomized Encoding). Let f : {0, 1}n �→ Z be some func-
tion. We say that a function f̂ : {0, 1}n × R �→ W is a perfect randomized
encoding (PRE) of f if the following holds.

Correctness: There exists a decoding algorithm Dec such that for every x ∈
{0, 1}n

Pr
r←R

[
Dec

(
f̂ (x; r)

)
= f(x)

]
= 1.

Privacy: There exists a randomized algorithm Sim such that for every x ∈ {0, 1}n

it holds that
Sim (f(x)) ≡ f̂ (x; r) ,

where r ← R.

Definition 3 (Decomposable Randomized Encoding). For every x ∈
{0, 1}n, we write x = x1, . . . , xn, where xi is the i-th bit of x. A randomized
encoding f̂ is said to be decomposable if it can be written as

f̂ (x; r) =
(
f̂0 (r) , f̂1 (x1; r) , . . . , f̂n (xn; r)

)
,

where each f̂i, for i ∈ [n], can be written as one of two vectors that depends on
xi, i.e., we can write it as vi,xi

, where (vi,0,vi,1) depends on the randomness r.

2.3 Mathematical Background

Definition 4 (Convex Combination and Convex Hull). Let V =
{v1, . . . ,vm} ⊆ R

n be a set of vectors. A convex combination is a linear combi-
nation

∑m
i=1 αi ·vi where

∑m
i=1 αi = 1 and αi ≥ 0 for all 1 ≤ i ≤ m. The convex

hull of V, denoted

conv (V) =

{
m∑

i=1

αi · vi |
m∑

i=1

αi = 1 and αi ≥ 0 for all i ∈ [m]

}

,

is the set of all vectors that can be represented as a convex combination
of the vectors in V. For a matrix M = [v1|| . . . ||vm] we let conv (M) =
conv ({v1, . . . ,vm}).
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Definition 5 (Affine Hull). For a set of vectors V = {v1, . . . ,vm} ⊆ R
n, we

define their affine hull to be the set

aff (V) =

{
m∑

i=1

αi · vi |
m∑

i=1

αi = 1

}

.

For a matrix M = [v1|| . . . ||vm] we let aff (M) = aff ({v1, . . . ,vm}).

Definition 6 (Affine Independence). A set of points v1, . . . ,vm ∈ R
n is said

to be affinely independent if whenever
∑m

i=1 αi · vi = 0n and
∑m

i=1 αi = 0, then
αi = 0 for every i ∈ [m]. Observe that v1, . . . ,vm are affinely independent if and
only if v2 − v1, . . . ,vm − v1 are linearly independent.

For a square matrix M ∈ R
n×n, we denote by det (M) the determinant of M ,

and we denote by Mi,j the (i, j)’th cofactor of M , which is the (n − 1) × (n − 1)
matrix obtained by removing the i’th row and j’th column of M . It is well known
that:

Fact 2. Let M ∈ R
n×n be an invertible matrix. Then for every i, j ∈ [n] it holds

that
∣
∣M−1 (i, j)

∣
∣ = |det (Mj,i) /det (M)|.

2.4 The Model of Computation

We follow the standard ideal vs. real paradigm for defining security. Intuitively,
the security notion is defined by describing an ideal functionality, in which both
the corrupted and non-corrupted parties interact with a trusted entity. A real-
world protocol is deemed secure if an adversary in the real-world cannot cause
more harm than an adversary in the ideal-world. This is captured by showing
that an ideal-world adversary (simulator) can simulate the full view of the real
world adversary.

We focus our attention on the client-server model. In this model a server
S holds some input x and a client C holds some input y. At the end of the
interaction the client learns the output of some function of x and y, while the
server learns nothing. We further restrict ourselves to allow only a single round
of interaction between the two parties, however, as only trivial functionalities
are computable in this setting, the parties interact in the OT -hybrid model. We
next formalize the interaction done in this model.

The OT Functionality. We start by formally defining the (family) of the OT
functionality. The

(
2
1

)
-bit-OT functionality, is a two-party client-server function-

ality in which the server inputs a pair of bit-messages a0 and a1, and the client
inputs a single bit b. The server receives ⊥ and the client receives ab. For every
natural number � ≥ 1, we define the functionality

(
2
1

)
-bit-OT� as follows. Let

a =
(
ai
0, a

i
1

)�

i=1
and let b = (bi)

�
i=1, where ai

0, a
i
1, bi ∈ {0, 1} for every i. We let

a[b] :=
(
ai

bi

)�

i=1
. The functionality is then defined as (a,b) �→ (⊥,a[b]). That
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is, it is the equivalent to computing
(
2
1

)
-bit-OT � times in parallel. Finally, we

let OT =
{(

2
1

)
-bit-OT�

}

�≥1
.

A generalization of
(
2
1

)
-bit-OT is the

(
n
1

)
-bit-OT functionality, which lets the

client pick one out of n bits a1, a2, . . . , an supplied by the server, and on input i ∈
[n] the client learns ai. This can be further generalized to

(
n
1

)
-s-string-OT where

the n bits are replaced by strings a1, . . . , an ∈ {0, 1}s, and this can generalized
even further to

(
n
k

)
-s-string-OT where the input i of the client is replaced with

k inputs i1, . . . , ik ∈ [n], and it receives ai1 , . . . , aik .

The 1-Round OT -Hybrid Model. We next describe the execution in the
1-round OT -hybrid model. In the following we fix a (possibly randomized) client-
server functionality f : X × Y �→ {0, . . . , k − 1}. A protocol Π in the 1-round
OT -hybrid model with security parameter κ, is a triple of randomized functions
(α, β, ϕ). The server and client use the function α and β respectively to obtain
messages to send to the OT. The client then compute some local function ϕ on
its view to obtain an output. Formally, the computation is done as follows.

Inputs: The server S holds input x ∈ X and the client C holds input y ∈ Y. In
addition, both parties hold the security parameter 1κ.

Parties send inputs to the OT: S samples 2� (κ) bits a = α (x, 1κ), and C
samples � (κ) bits b = β (y, 1κ), for some �(·) determined by the protocol. S
and C send a and b to the OT functionality, respectively. C then receives a[b]
from the OT.

Outputs: The server S outputs nothing, while the client C computes the local
function ϕ (y,b,a[b], 1κ) and outputs its result.

We refer to the � (κ) used in the protocol as the communication complexity
(CC) of Π.

We consider an adversary A that controls a single party. The adversary has
access to the full view of that party. We assume the adversary is malicious, that
is, it may instruct the corrupted party to deviate from the protocol in any way
it chooses. The adversary is non-uniform, and is given an auxiliary input aux.
For simplicity we do not concern ourselves with the efficiency of the protocols
or the adversaries, namely, we assume that the parties and the adversary are
unbounded.

Fix inputs x ∈ X , y ∈ Y, and κ ∈ N. For an adversary A corrupting
the server, we let OutHYBRID

A(x,aux),Π (x, y, 1κ) denote the output of the client in
a random execution of Π. For an adversary A corrupting the client, we let
ViewHYBRID

A(y,aux),Π (x, y, 1κ) denote the adversary’s view in a random execution of
Π, when it corrupts the client. This includes its input, auxiliary input, random-
ness, and the output received from the OT functionality.

The Ideal Model. We now describe the interaction in the ideal model, which
specifies the requirements for fully secure computation of the function f with
security parameter κ. Let A be an adversary in the ideal-world, which is given
an auxiliary input aux and corrupts one of the parties.
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The Ideal Model – Full-Security

Inputs: The server S holds input x ∈ X and the client C holds input y ∈ Y.
The adversary is given an auxiliary input aux ∈ {0, 1}∗ and the input of the
corrupted party. The trusted party T holds 1κ.

Parties send inputs: The honest party sends its input to T. The adversary
sends a value w from its domain as the input for corrupted party.

The trusted party performs computation: T selects a random string r and
computes z = f (x,w; r) if C is corrupted and computes z = f(w, y; r) if S is
corrupted. T then sends z to C (which is also given to A if C is corrupted).

Outputs: An honest server outputs nothing, an honest client output z, and the
malicious party outputs nothing. The adversary outputs some function of its
view.

Fix inputs x ∈ X , y ∈ Y, and κ ∈ N. For an A corrupting the server we
let OutIDEAL

A(x,aux),f (x, y, 1κ) denote the output of the client in a random execu-
tion of the above ideal-world process. For an A corrupting the client we let
ViewIDEAL

A(y,aux),f (x, y, 1κ) be the view description being the output of A in such a
process.

We next present the definition for security against malicious adversaries. The
definition we present is tailored to the setting of the 1-round two-party client-
server in the OT -hybrid model.

Definition 7 (malicious security). Let Π = (α, β, ϕ) be a protocol for com-
puting f in the 1-round OT -hybrid model. Let ε(·) be a positive function of the
security parameter.

1. Correctness: We say that Π is correct if for all κ ∈ N, x ∈ X , and y ∈ Y

Pr [ϕ (y,b,a[b], 1κ) = f(x, y)] = 1.

Here, a = α (x, 1κ), b = β (y, 1κ) and the probability is taken over the
random coins of α, β, ϕ, and f .

2. Server Security: We say that Π is ε-server secure, if for any non-uniform
adversary A corrupting the server in the OT -hybrid world, there exists a
non-uniform adversary SimA (called the simulator) corrupting the server in
the ideal-world, such that for all κ ∈ N, x ∈ X , y ∈ Y, and aux ∈ {0, 1}∗ it
holds that

SD
(
OutHYBRID

A(x,aux),Π (x, y, 1κ) , OutIDEAL
SimA(x,aux),f (x, y, 1κ)

)
≤ ε (κ) .

We say that Π has perfect server security if it is 0-server secure.
3. Client Security: We say that Π is ε-client secure, if for any non-uniform

adversary A corrupting the client in the OT -hybrid world, there exists a
non-uniform simulator SimA corrupting the client in the ideal-world, such
that for all κ ∈ N, x ∈ X , y ∈ Y, and aux ∈ {0, 1}∗ it holds that

SD
(
ViewHYBRID

A(y,aux),Π (x, y, 1κ) , ViewIDEAL
SimA(y,aux),f (x, y, 1κ)

)
≤ ε (κ) .

We say that Π has perfect client security if it is 0-client secure.
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We say that Π computes f with ε-statistical full-security, if Π is correct, is
ε-server secure, and is ε-client secure. Finally, we say that Π computes f with
perfect full-security, if it computes f with 0-statistical full-security.

To alleviate notation, from now on we will completely remove 1κ from the
input the functions α, β, and ϕ, and remove κ from � and ε. Statistical security
will now be stated as a function of ε and the CC of the protocol as a function of �.
Observe that aborts in this model are irrelevant. Indeed, honest server outputs
nothing, and if a malicious server aborts then the client can output f(x0, y)
for some default value x0 ∈ X , which can be perfectly simulated. Therefore,
throughout the paper we assume without loss of generality that the adversary
does not abort the execution.

We next describe the notion of security with input-dependent abort [19]. Gen-
erally, it is a relaxation of the standard full-security notion, which allows an
adversary to learn at most 1 bit of information by causing the protocol to abort
depending on the other party’s inputs. We state only perfect security. Further-
more, the security notion is written with respect only to a malicious server.
Since we work in the client-server model, the trusted party does not send to the
server any output. Therefore, in this relaxation selective abort attacks [22,23]
are simulatable.

Definition 8. Fix f : X × Y �→ {0, . . . , k − 1}. In the input-dependent model,
we modify the ideal-world so that the malicious adversary corrupting the server,
in addition to sending an input x∗ ∈ X , also gives the trusted party T a predicate
P : Y �→ {0, 1}. T then sends to the client f(x∗, y) if P (y) = 0, and ⊥ otherwise.
We let OutIDA(x,aux),f (x, y) denote the output of the client in a random execution
of the above ideal-world process, with A corrupting the server.

Let Π be a protocol that computes f in the 1-round OT -hybrid model. We say
that Π has perfect input-dependent security, if for every non-uniform adversary
A corrupting the server in the OT -hybrid world, there exists a non-uniform
adversary SimA corrupting the server in the input-dependent ideal-world, such
that for all x ∈ X , y ∈ Y, and aux ∈ {0, 1}∗ it holds that

OutHYBRID
A(x,aux),Π (x, y) ≡ OutIDSimA(x,aux),f (x, y) .

3 A Class of Perfectly Computable Client-Server
Functions

In this section, we state the main result of this paper – presenting a large class
of two-party client-server functions that are computable with perfect security.
We start with presenting a geometric view of security in our model. We take a
similar approach to that of [2] to representing the server-security requirement
geometrically.
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3.1 A Geometrical Representation of the Security Requirements

Boolean Functions. We start with giving the details for (randomized) Boolean
functions. For any function f : X × Y �→ {0, 1} we associate an |X | × |Y| matrix
Mf defined as Mf (x, y) = Pr [f(x, y) = 1], where the probability is taken over
f ’s random coins (if f is deterministic, then this value is Boolean). Let X =
{x1, . . . , xn}. Observe that in the ideal-world, every strategy that is employed
by a simulator corrupting the server can be encoded with a probability vector
p ∈ R

n, where pi corresponds to the probability of sending xi to T. Therefore,
if the input of the client is y, then the probability that the output is 1, equals to
pT · Mf (·, y). On the other hand, in the 1-round OT -hybrid model, a malicious
server can only choose a string a∗ ∈ {0, 1}2� and send in to the OT. Then on
input y ∈ Y, the probability the client outputs 1 is exactly

qΠ
y (a∗) := Pr [ϕ (y,b,a∗[b]) = 1] ,

where b = β (y) and the probability is over the randomness of β and ϕ. This
implies that an ideal-world simulator must send a random input x∗ ∈ X such
that the client will output 1 with probability qΠ

y (a∗). Thus, perfect security holds
if and only if for every a∗ ∈ {0, 1}2� there exists a probability vector p ∈ R

n

such that for every y ∈ Y

pT · Mf (·, y) = qΠ
y (a∗) .

Equivalently, for every a∗ the vector qΠ (a∗) := (qΠ
y (a∗))y∈Y is inside the

convex-hull of the rows of Mf . Further observe that this holds true regardless of
the auxiliary input held by a corrupt server.

General Functions. We now extend the above discussion to non-Boolean func-
tions. For every function f : X × Y �→ {0, . . . , k − 1}, and every possible
output z ∈ {0, . . . , k − 1}, we associate an |X | × |Y| matrix Mz

f defined as
Mz

f (x, y) = Pr [f(x, y) = z]. Similarly to the Boolean case, in the ideal world,
every strategy that is employed by a corrupt server can be encoded with a proba-
bility vector p ∈ R

n, hence the probability that the client will output z, on input
y, is pT · Mz

f (·, y). In the 1-round OT -hybrid model, for a string a∗ ∈ {0, 1}2�

chosen by a malicious server, the probability to output z equals to

qΠ
y,z (a∗) := Pr [ϕ (y,b,a∗[b]) = z] ,

where b = β (y) and the probability is over the randomness of β and ϕ.
Therefore, perfect security holds if and only if for every a∗ ∈ {0, 1}2� there
exists a probability vector p ∈ R

n such that for every y ∈ Y and for every
z ∈ {0, . . . , k − 1}

pT · Mz
f (·, y) = qΠ

y,z (a∗) . (1)
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Observe that since p is a probability vector and since
∑

z Mz
f is the all-one

matrix, it is equivalent to consider only k − 1 possible values for z instead of all
k values considered in Eq. (1). We next write the perfect security formulation
more succinctly.

Let Mf =
[
M1

f || . . . ||Mk−1
f

]
be the concatenation of the matrices by columns,

and let qΠ (a∗) :=
(
(qΠ

y,z (a∗))y∈Y
)
z∈[k−1]

. Then Eq. (1) is equivalent to saying

that for every a∗ the vector qΠ (a∗) belongs to the convex-hull of the rows of
Mf . It will be convenient to index the columns of Mf with (y, z), i.e., we let
Mf (x, (y, z)) = Mz

f (x, y).6 We now have an equivalent definition of perfect
server security.

Lemma 1. Let Π be a protocol for computing some function f : X × Y �→
{0, . . . , k − 1} in the 1-round OT -hybrid model with CC of �. Then Π has perfect
server security if and only if for every a∗ ∈ {0, 1}2� it holds that

qΠ (a∗) ∈ conv
(
MT

f

)
.

We next describe another for security against a corrupt server. Intuitively,
it states that for a malicious server, the less it deviates from the prescribed
protocol, the better it can be simulated. Moreover, instead of using the traditional
�1 distance (i.e., statistical distance) we phrase the security in terms of the
�∞ norm. This, somewhat non-standard definition will later act as a sufficient
condition for reducing perfect server-security to perfect client-security.

Definition 9. Let f : (X ∪ {⊥}) × Y �→ {⊥, 0, . . . , k − 1}. Assume that
f(x, y) = ⊥ if and only if x = ⊥. Let Π = (α, β, ϕ) be a protocol for computing
f in the 1-round OT -hybrid model. We say that Π is strong ε-server secure7

if the following holds. For every message a∗ sent by a malicious server in the
OT -hybrid world, there exists a probability vector p = (px)x∈(X∪{⊥}) ∈ R

|X |+1

such that ∣
∣
∣
∣qΠ (a∗) − MT

f · p
∣
∣
∣
∣
∞ ≤ ε · p⊥.

3.2 Stating the Main Result

With the above representation in mind, we are now ready to state our main
result. We first recall the definition of a full-dimensional function, as stated
in [2].

6 We may view the above presentation differently. We can apply the presentation
discussed for Boolean functions, to the function f ′ : X × (Y × [k − 1]) �→ {0, 1},
defined as f ′(x, (y, z)) = Pr [f(x, y) = z].

7 Although this definition as stated is not actually stronger than the standard server
security definition, we decide to keep this name because of the intuition behind it.
Furthermore, stating simulation error with respect to the �1 norm instead of the �∞
norm, is in fact stronger.
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Definition 10 (full-dimensional function). We say that a function f : X ×
Y �→ {0, . . . , k − 1} is full-dimensional if

dim
(
aff

(
MT

f

))
= (k − 1) · |Y|,

namely, the affine-hull defined by the rows of Mf spans the entire vector space.

Recall that a basis for an affine space of dimension n has cardinality n + 1,
and therefore it must holds that |X | > (k − 1) · |Y|. Thus, the assumption that
f is full-dimensional implies this condition. We are now ready to state our main
result.

Theorem 3. Let f : X × Y �→ {0, . . . , k − 1} be a full-dimensional function.
Then there exists a protocol Π in the 1-round OT -hybrid model, that computes
f with perfect full-security. Furthermore, if f is deterministic the CC is the
following. Let γi denote the size of the smallest formula for evaluating the i’th
bit of f(x, y), and let γ = maxi γi. Then Π has CC at most

ξ · γ2 · log k · log |Y| · poly (k · |Y|) ,

where ξ ∈ R
+ is some global constant independent of the function f .

Although the communication complexity of our protocol is roughly
poly (k · |Y|), for functions with small client-domain, it does yield a concrete
improvement upon known protocols such as the protocol proposed by [19].

A simple corollary of Theorem 3 is that adding constant columns to a full-
dimensional function, results in a functions that can still be computed with
perfect security.

Corollary 1. Let f : X × Y �→ {0, . . . , k − 1} be some function. Assume that
there exists a subset Y ′ ⊆ Y that fixes the output distribution of f , i.e., for all
y ∈ Y ′ there exists a distribution Dy over {0, . . . , k − 1} such that f(x, y) ≡ Dy

for every x ∈ X . Then if the function f ′ : X × (Y \Y ′) �→ {0, . . . , k − 1}, defined
as f ′ (x, y) = f(x, y), is full-dimensional, then f can be computed the 1-round
OT -hybrid model with perfect full-security and with the same communication
complexity as f ′.

Many interesting examples of functionalities that satisfy the constraints in
Theorem 3 and Corollary 1 exists. Yao’s millionaires’ problem is an example for
such a function. Here, the server and the client each hold a number from 1 to n.
The output is 1 if and only if the client’s input is greater than or equal to the
server’s input. The matrix for this function has a constant column of 1’s (when
taking the client’s input to be n). After removing it, the last row of the matrix
will be the all 0 vector, and the other rows are linearly independent. Therefore
the function satisfies the constraints in Corollary 1.

Theorem 3 clearly follows from the following two lemmata. The first lemma
reduces the problem of constructing a perfectly secure protocol, to the task of
constructing a protocol with perfect client security and strong statistical server
security. The second lemma states that such a protocol exists.
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Lemma 2. Let f : X×Y �→ {0, . . . , k − 1} be some function. Define the function
g : (X ∪{⊥})×Y �→ {⊥, 0, . . . , k − 1} as g(x, y) = f(x, y) if x �= ⊥ and g(⊥, y) =
⊥, for every y ∈ Y. Assume that for every ε > 0, there exists a protocol Πg(ε) in
the 1-round OT -hybrid model that computes g with correctness, is strong ε-server
secure, has perfect client security, and has CC at most � (ε, |X |, |Y|, k). Then,
if f is full-dimensional, there exists a protocol Πf in the 1-round OT -hybrid
model, that computes f with perfect full-security. Moreover, if f is deterministic
then Πf has CC at most

�

(
1

2n(n + 1)!
, |X |, |Y|, k

)
,

where n = (k − 1) · |Y|.

Lemma 3. Let g : (X ∪ {⊥}) × Y �→ {⊥, 0, . . . , k − 1} be a function such that
g(x, y) = ⊥ if and only if x = ⊥. Then for every ε > 0, there exists a pro-
tocol Πg(ε) in the 1-round OT -hybrid model that computes g with correctness,
is strong ε-server secure, and has perfect client security. Furthermore, its com-
munication complexity is the following. Let γi denote the size of the smallest
formula for evaluating the i-th bit of g(x, y), and let γ = maxi γi. Then Πg(ε)
has CC at most

ξ · γ2 · log k · log |Y| · polylog
(
ε−1

)
,

where ξ ∈ R
+ is some global constant independent of the function g and of ε.

We prove Lemma 2 in Sect. 4 and we prove Lemma 3 in Sect. 5.

4 Proof of Lemma2

In this section, we reduce the problem of constructing a perfectly secure protocol,
to the problem of constructing a protocol that has perfect client security and
has strong statistical server security. The idea is to wrap the given protocol for
computing g. Whenever the output of Πg(ε) is ⊥ (for small enough ε), the client
will choose x0 ∈ X at random and output f(x0, y). Stated from a geometric
point of view, the client outputs according to a distribution that is consistent
with some point that is strictly inside the convex-hull of the rows of Mf (e.g.,
the center).

Proof (of Lemma 2). It is easy to see that if the probability that the output of
Πg(ε) equals ⊥ is 0 for every y ∈ Y for some ε > 0, then Πg(ε) computes f with
perfect security.

Assume otherwise. Let n = (k−1)·|Y|. Since f is full-dimensional there exists
a subset S = {x0, . . . ,xn} ⊆ R

n of the rows of Mf , that is affinely independent.
Let uS ∈ R

n be the vector associated with uniform distribution over S (i.e.,
ui = 1/|S| if i ∈ S and ui = 0 otherwise), and let c = (cy,z)y∈Y,z∈[k−1] := MT

f ·uS
be the center of the simplex8 defined by the points in S. The protocol Πf is
described as follows.
8 A simplex is the convex-hull of an affinely independent set of points.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protocol 4 (Πf)
Input: Server S has input x ∈ X and client C has input y ∈ Y.

1. The parties execute protocol Πg (ε) with small enough ε > 0 to be determined
by the analysis. Let z be the output C receive.

2. If z �= ⊥, then C output z. Otherwise, output z′ ∈ [k −1] with probability cy,z′

(and output 0 with the complement probability).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Correctness and perfect client-security follows from the fact that Πg satis-

fies these properties. It remains to show that perfect server-security holds. By
Lemma 1, it suffices to show that for every a∗ ∈ {0, 1}2� sent to the OT by a
malicious server, it holds that

qΠf (a∗) ∈ conv
(
MT

f

)
. (2)

Fix a∗ ∈ {0, 1}2�. For brevity, we write qf and qg instead of qΠf (a∗) and
qΠg(ε) (a∗) respectively. Since Πg(ε) is strong ε-server secure, it follows that
there exists a probability vector pg ∈ R

|X |+1 such that

qg = MT
g · pg + err, (3)

where err ∈ R
k·|Y| satisfies ||err||∞ ≤ ε · pg

⊥. Let pg = (pg
x)x∈X be the vector

p with p⊥ removed. We first show that Eq. (2) follows from the following two
claims.

Claim 5. There exists a vector êrr ∈ R
k·|Y| satisfying ||êrr||∞ ≤ 2ε, such that

qf = MT
f · pg + p⊥ · (c + êrr).

Claim 6. There exists a small enough ε > 0 such that

c + êrr ∈ conv
(
MT

f

)
,

where êrr is the same as in Claim 5.

Indeed, by Claim 6 there exists a probability vector p̂ ∈ R
|X | such that

c + êrr = MT
f · p̂.

Thus, by Claim 5

qf = MT
f · pg + p⊥ · (c + êrr) = MT

f · (pg + p⊥ · p̂).

Recall that the entries of p sum up to 1−p⊥. Therefore pg+p⊥ ·p̂ is a probability
vector, hence Eq. (2) holds.

To conclude the proof, we next prove Claims 5 and 6.
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Proof (of Claim 5). Let err′ = 1
p⊥

· err. Observe that for every y ∈ Y and
z ∈ [k − 1] it holds that

qf
y,z = qg

y,z + qg
y,⊥ · cy,z

= MT
g (·, (y, z)) · pg + erry,z +

(
MT

g (·, (y,⊥)) · pg + erry,⊥
)

· cy,z

= MT
f (·, (y, z)) · pg + erry,z +(p⊥ + erry,⊥) · cy,z

= MT
f (·, (y, z)) · pg + p⊥ · (cy,z + err′

y,z + err′
y,⊥ ·cy,z),

where the first equality is by the description of Πf , the second is by Eq. (3), and
the third follows from the definition of g. Define the vector êrr as follows. For
every y ∈ Y and z ∈ [k − 1] let êrry,z = err′

y,z + err′
y,⊥ ·cy,z. Then

qf = MT
f · pg + p⊥ · (c + êrr).

To conclude the proof, we upper-bound ||êrr||∞. It holds that

||êrr||∞ ≤ ||err′||∞ · (1 + ||c||∞) =
1

p⊥
· ||err||∞ · (1 + ||c||∞) ≤ 2ε.

Proof (of Claim 6). One approach would be to use similar techniques as in [2],
namely, take a “small enough” Euclidean ball around c and take ε to be small
enough so that c+ êrr is contained inside the ball. This approach, however, only
proves the existence of such an ε. We take a slightly different approach, which
would also provide an explicit upper bound on ε for deterministic functions.

For every i ∈ [n] let xi = xi − x0, let S = {x1, . . . ,xn} be a basis for R
n,

and let A = [x1|| . . . ||xn] be the corresponding change of basis matrix. Then

c = MT
f · uS =

n∑

i=0

1
n + 1

· xi = x0 +
n∑

i=1

1
n + 1

· xi = x0 +
1

n + 1
· A · 1n. (4)

Observe that a point v is in the convex-hull of S if and only if it can be
written as x0 +

∑n
i=1 pi · xi, where the pi’s are non-negative real numbers that

sum up to at most 1. Indeed, we can write

x0 +
n∑

i=1

pi · xi =

(

1 −
n∑

i=1

pi

)

· x0 +
n∑

i=1

pi · xi.

Next, as S forms a basis, there exists a vector ẽrr ∈ R
n such that êrr = A · ẽrr.

Then, if ||ẽrr||∞ ≤ 1
n(n+1) , by Eq. (4) it follows that

c + êrr = x0 + A ·
(

1
n + 1

· 1n + ẽrr
)

= x0 +
n∑

i=1

pi · xi,
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where 0 ≤ pi ≤ 1/n for every i ∈ [n], implying that the point is inside conv (S).
Thus, it suffices to find ε for which ||ẽrr||∞ ≤ 1

n(n+1) . It holds that

||ẽrr||∞ =
∣
∣
∣
∣A−1 · êrr

∣
∣
∣
∣
∞

= max
i∈[n]

{∣∣A−1(i, ·) · êrr
∣
∣}

≤ max
i∈[n]

⎧
⎨

⎩

n∑

j=1

∣
∣A−1(i, j) · êrrj

∣
∣

⎫
⎬

⎭

= max
i∈[n]

⎧
⎨

⎩

n∑

j=1

∣
∣
∣
∣
det (Aj,i)
det (A)

∣
∣
∣
∣ · |êrrj |

⎫
⎬

⎭

≤ n · (n − 1)!
|det (A) | · 2ε

=
2n!

|det (A)| · ε,

where the third equality is by Fact 2, and the second inequality is due to the fact
that each entry in A is a real number between −1 and 1. Therefore, by taking
ε = | det(A)|

2n(n+1)! the claim will follow. Observe that if the function f is deterministic,
then the entries of A are in {−1, 1} implying that |det (A) | ≥ 1, and hence taking
ε = 1

2n(n+1)! suffices. Therefore the communication complexity will be at most

�
(

1
2n(n+1)! , |X |, |Y|, k

)
in this case.

5 Proof of Lemma3

In this section we fix a function g : (X ∪{⊥})×Y �→ {⊥, 0, . . . , k − 1} satisfying
g(x, y) = ⊥ if and only if x = ⊥. We show how to construct a protocol for
computing the function g in the 1-round OT -hybrid model. The protocol we
construct has perfect client security, and has strong statistical server security.
Our protocol is a modified version of the protocol by Ishai et al. [19], which we
shall next give an overview of. Their protocol is parametrized with ε, and we
denote this protocol by ΠIKOPS(ε). It is a single round protocol in the OT -hybrid
model, that has ε-statistical full-security. It is stated for functions computable by
NC1 circuits, however, this is only done for improving concrete efficiency, which
is not a concern in our paper. We therefore restate it for general functions, and
bound its communication complexity as a function of |X |, |Y|, and k (which are
assumed to be finite in our work).
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5.1 The Protocol ΠIKOPSThe IKOPS Protocol

We next give the rough idea of ΠIKOPS. First, we view the inputs x and y as
a binary strings.9 The parties will compute a “certified OT” functionality. We
next give a brief overview of the IKOPS protocol.

The main idea behind the ΠIKOPS is to have the server run an “MPC in the
head” [18]. That is, the real server locally emulates the execution of a perfectly
secure protocol Π with many virtual servers performing the computation, and
2m virtual clients, denoted C1,0,C1,1, . . . ,Cm,0,Cm,1, receiving output, where m
is the number of bits in the client’s input y. The underlying protocol Π computes
a decomposable PRE ĝ = (ĝ0, ĝ1, . . . , ĝm) of g. Specifically, the output of client
Cj,b in an execution of Π is the corresponds to the j-th bit of y, when the bit
equals to b.

The real client can then use OT in order to recover the correct output of
the PRE and reconstruct the output g(x, y). As part of the “MPC in the head”
paradigm, the client further ask the server to send a watchlist (the views of some
of the virtual servers) and check consistency. If there was an inconsistency, then
the client outputs ⊥. To make sure that the client will not receive too large of
a watchlist and break the privacy requirement, it will get each view with some
(constant) probability independently of the other views.

Observe that although the client can use OT in order to receive the correct
output from the virtual clients, the two real parties need to use string-OT,
while they only have access to bit-OT. This technicality can be overcome using
the perfect reduction from

(
n
1

)
-s-string-OT to OT that was put forward in the

elegant work of Brassard et al. [8], which also constitutes one of the few examples
of perfect reductions to

(
2
1

)
-bit-OT known so far. They proved the following

theorem.

Theorem 7. There exists a protocol ΠBCS = (αBCS, βBCS, ϕBCS) in the 1-round
OT -hybrid world that computes

(
n
1

)
-s-string-OT with perfect full-security. Fur-

thermore, its communication complexity is at most 5s(n − 1).

The security of the protocol described so far can still be breached by a mali-
cious server. By tampering with the outputs of the virtual clients, a malicious
server could force the output of the real client to be g(x, y) for some inputs y
and force the output to be ⊥ for other values of y, where the choice is completely
determined by the adversary. To overcome this problem, we replace g with a
function g′ where each bit yi is replaced with m′ random bit whose XOR equals

9 We can assume without loss of generality that the size of X and Y are a power of 2.
This is due to the fact that we can add new elements to X such that the new rows in
Mf are duplicates of existing rows. We then do the same to Y. It is easy to see that
the new function is computable with statistical (perfect) full-security if and only if
the previous function is computable with statistical (perfect) full-security.
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to yi, for some large m′.10 Here, the adversary does not have complete control
over which inputs the client will output ⊥, and for which inputs it will output
g(x, y). We next describe the protocol formally. We start with some notations.

Notation. Throughout the following section, client’s input are now binary strings
y of length m. Let m′ = m′(ε) =

⌈
log

(
ε−1

)⌉
+ 1 and let Enc : {0, 1}m �→(

{0, 1}m′
)m

be a randomized function that on input m bits y1, . . . , ym, outputs

m · m′ random bits
(
y1

i , . . . , ym′
i

)

i∈[m]
conditioned on ⊕m′

j=1y
j
i = yi for every

i ∈ [m]. We also let Dec :
(
{0, 1}m′

)m

�→ {0, 1}m be the inverse of Enc, namely,

Dec

((
y1

i , . . . , ym′
i

)

i∈[m]

)
=

(
y1

i ⊕ . . . ⊕ ym′
i

)

i∈[m]
.

Finally, we let g′ : (X ∪ {⊥}) ×
(
{0, 1}m′

)m

�→ {⊥, 0, . . . , k − 1} be defined as

g′
(

x,
(
y1

i , . . . , ym′
i

)

i∈[m]

)
= g

(
x,Dec

((
y1

i , . . . , ym′
i

)

i∈[m]

))
,

and let ĝ be a decomposable PRE of g′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protocol 8 (ΠIKOPS (ε))
Input: Server has input x ∈ (X ∪ {⊥}) and client has input y ∈ {0, 1}m.

– α (x):
1. The server S runs “MPC in the head” for the following functionality. There

are n = Θ
(
log

(
ε−1

))
virtual servers S1, . . . ,Sn with inputs and 2m·m′ vir-

tual clients C1,0,C1,1, . . . ,Cm·m′,0,Cm·m′,1 receiving outputs. Each virtual
server holds a share of the S’s input and randomness, where the shares are
in an n-out-of-n secret sharing scheme. Each virtual client Cj,b will receive
ĝj,b(x), namely, it will receive the (j, b)-th component of the decomposable
PRE where the first part of the input is fixed to x. In addition every virtual
client will hold ĝ0 (x) which is the value of ĝ that depends only on x and
the randomness.

2. The virtual parties execute a multiparty protocol in order to compute ĝ. The
protocol used has perfect full-security against t = �n/3� − 1 corrupted vir-
tual servers and any number of corrupted virtual clients. We also assume
that the virtual clients receive messages at the last round of the protocol.
(e.g., the BGW protocol [7]).

10 This method has the disadvantage of increasing the length of the client’s input
and as a result increase the communication complexity, so [19] suggested a different
approach. We stick with the presented approach, as we prefer simplicity over concrete
efficiency.
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3. Let Vj,b be the view of Cj,b, and let a1 = (αBCS (Vj,0, Vj,1))j∈[m·m′].
4. Let Vi be the view of Si. For each i ∈ [n] the server creates ãi of length

�2n/t�, where Vi is located in a randomly chosen entry, while the other
entries are ⊥ (this allows the server to send each Vi with probability t/2n).
Let a2 = (αBCS (ãi))i∈[n].

5. Output a = (a1,a2).
– β (y):

1. The client computes
(
y1

i , . . . , ym′
i

)

i∈[m]
= Enc (y).

2. Let b1 =
(
βBCS

(
yj′

j

))

j∈[m],j∈[m′]
.

3. Let b2 = (βBCS (1))i∈[�2n/t�] (i.e., a constant vector of length �2n/t�).
4. Output b = (b1,b2).

– ϕ (y,b, c′):
1. Let c = (ϕBCS (c′

i))i
11. Write c = (c1, c2), where c1 corresponds to the

outputs and c2 corresponds to the watchlist.
2. For every Vj,b in c1, we may write without loss of generality that Vj,b =(

V i
j,b

)

i∈[n]
, where V i

j,b is the message that Vi sends to Vj,b.

3. If there exists Vi1 , Vi2 ∈ c2 or Vi ∈ c2 and V i
j,b ∈ c1 that are inconsistent,

output ⊥.
4. Otherwise, apply the PRE decoder on c1 to recover the output z.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We summarize the properties of the protocol below.

Theorem 9 ([19, Theorem 1]). For every ε > 0, ΠIKOPS (ε) computes g with
ε-statistical full security.12 Furthermore, using the PRE from [1,16] and the
BGW protocol, the CC will be the following. Let γi denote the size of the smallest
formula for evaluating the i’th bit of g(x, y), and let γ = maxi γi. Then, ΠIKOPS

has CC at most

�IKOPS = ξIKOPS · γ2 · log k · log |Y| · polylog
(
ε−1

)
,

where ξIKOPS ∈ R
+ is some global constant independent of the function g and of

ε.

Observe that ΠIKOPS has a (small) non-zero probability of the client seeing
to many views of the virtual servers (in the worst case all of them which gives
him the knowledge of x). Thus, ΠIKOPS is not perfectly client secure.

In the following section, we slightly tweak ΠIKOPS, making the watchlists
deterministic, thereby making it perfectly client secure. The new protocol will
have the desired properties as stated in Lemma 3.

11 The function ϕ is different when applying to recover a1[b1] from when applying to
recover a2[b2]. To keep the presentation simple we will abuse notation and write as
if they are the same function.

12 In fact, the protocol even admits strong ε-server security.
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5.2 Setting up Fixed-Size Watchlists

Recall the problem with client privacy was in the fact that the client may watch
the internal state of too many servers, breaching perfect security of the protocol
ΠIKOPS, and thus of the entire construction. To solve this problem, we replace
the current watchlist setup with a fixed-size watchlist setup.

In order to achieve the fixed-size watchlist, the parties will use a perfectly
secure protocol for computing

(
n

t/2

)
-s-string-OT. We do not know, however, if

such a protocol even exists in the OT -hybrid model. Instead, we relax the secu-
rity notion a bit, so that we will be able to construct the protocol, and its
security guarantees still suffice for the main protocol. Specifically, we show how
in the OT -hybrid model, the parties can compute

(
n

t/2

)
-s-string-OT in a single

round, where a malicious client will only be able to learn at most t strings rather
than t/2. We stress that the construction we suggest does not achieve perfect
server security. Instead, it admits perfect input-dependent security. As we show
in Sect. 5.3, this will not affect the security properties of our final construction.

Let t, n, s ∈ N where t < n, and s ≥ 1. For simplicity, we assume that t is
even. Let f1 and f2 be the

(
n

t/2

)
-s-string-OT and

(
n
t

)
-s-string-OT functionalities

respectively. We next briefly explain the ideas behind the construction. The
parties will use protocol ΠBCS in order to simulate computation of n instances
of

(
2
1

)
-sn-string-OT in parallel. On input (x1, . . . , xn), the i-th pair of strings

the server will send (by first applying αBCS) consist of a masking of the i-th
string xi, and a Shamir share of the concatenation of all of the maskings, that
is, the pair will be (xi ⊕ ri, r[i]), where r = (r1, . . . , rn). The client will then
recover the maskings of the correct outputs alongside the shares, which will help
him to reconstruct the outputs. Since for each i the client will learn either a
share or a masked string, a malicious client will not be able to learn to many
masked strings. The protocol ΠROT = (αROT, βROT, ϕROT) for computing f1 in
the 1-round OT -hybrid model is formally described as follows.

Construction 10 (ΠROT)
Input: Server S holds x = (x1, . . . , xn) ∈ ({0, 1}s)n, and the client C holds
y =

{
y1, . . . , yt/2

}
⊆ [n].

– αROT (x): Samples n random strings r1, . . . , rn ← {0, 1}s independently.
For every i ∈ [n], let r[i] ∈ {0, 1}sn be a share of r = (r1, . . . , rn) in
an (n − t)-out-of-n Shamir’s secret sharing (we pad r[i] if needed). Output
a =

(
αBCS ((xi ⊕ ri, r[i]))

)
i∈[n]

(the xi ⊕ ri’s are also padded accordingly).
– βROT (y): Output b = (βBCS (b1) , . . . , βBCS (bn)), where bi = 0 if and only if

i ∈ y.
– ϕROT (y,b, c′): Let c = (ϕBCS (c′

i))
n
i=1, let c1 = (ci)i∈y, and let c2 = (ci)i/∈y.

If the elements in c2 agree on a common secret r ∈ {0, 1}sn, then output
c1 ⊕ (ri)i∈y. Otherwise, output ⊥.
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Lemma 4. ΠROT computes f1 with CC at most 5 · sn2, such that the following
holds:

– ΠROT is correct.
– ΠROT has perfect input-dependent security.
– For any non-uniform adversary A corrupting the client in the OT -hybrid

world, there exists a non-uniform simulator SimA corrupting the client in the
ideal-world of f2, such that for all x ∈ ({0, 1}s)n, y ⊆ [n] of size t/2, and
aux ∈ {0, 1}∗ it holds that

ViewHYBRID
A(y,aux),ΠROT

(x,y) ≡ ViewIDEAL
SimA(y,aux),f2

(x,y) .

In other words, although the simulator receives t/2 indexes as inputs, it is
allowed to ask for t strings from the server’s input.

Intuitively, a malicious server cannot force the client to reconstruct two dif-
ferent secrets r for two different inputs. This is due to the fact that for every two
different inputs the set of common bi’s that are 1 (i.e., the number of common
shares the client will receive for both inputs) is of size at least n− t. This implies
that up to a certain set of client-inputs that the adversary can choose, the client
will receive a correct output. As for a malicious client, observe that it can ask for
at most t masked values, as otherwise it will not have enough shares to recover
the secret r.

We next incorporate ΠROT into ΠIKOPS to get a protocol that is perfectly
client-secure. The full proof of Lemma 4 is deferred to Sect. 5.4.

5.3 Upgrading ΠIKOPS

We are finally ready to prove Lemma3. As stated in Sect. 5.2, we replace the
randomly chosen watchlist with a deterministic one using ΠROT. Formally, the
protocol, denoted Π+

IKOPS, is described as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protocol 11 (Π+
IKOPS (ε))

Input: Server has input x ∈ (X ∪ {⊥}) and client has input y ∈ {0, 1}m.

– α+ (x): Output (a1,a2) as in ΠIKOPS, with the exception of a2 being equal to
αROT (V1, . . . , Vn) (recall that Vi is the view of the virtual server Si).

– β+ (y): Output (b1,b2) as in ΠIKOPS, with the exception of b2 being equal
to βROT (W), where W ⊆ [n] is of size t/2 chosen uniformly at random
(recall that t = �n/3�− 1 bounds the number of corrupted parties in the MPC
protocol).

– ϕ+ (y,b, c′): Output same as ϕ (y,b, c′), with the exception that we apply
ϕROT to recover the outputs and watchlist.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clearly, Lemma 3 follows from the following lemma, asserting the security of

Π+
IKOPS.
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Lemma 5. For every ε > 0, Π+
IKOPS (ε) computes g with correctness, it is strong

ε-server secure, and has perfect client security. Furthermore, using the PRE from
[1,16] and the BGW protocol, the CC will be the following. Let γi denote the size
of the smallest formula for evaluating the i’th bit of g(x, y), and let γ = maxi γi.
Then, Π+

IKOPS has CC at most

�+IKOPS = ξ+IKOPS · γ2 · log k · log |Y| · polylog
(
ε−1

)
,

where ξ+IKOPS ∈ R
+ is some global constant independent of the function and of ε.

In comparison to ΠIKOPS, the only difference in the CC is in the constant and
the exponent of log

(
ε−1

)
taken. Specifically, it holds that

�+IKOPS

�IKOPS
=

ξ+IKOPS

ξIKOPS
· log2

(
ε−1

)
.

Proof. Correctness trivially holds. We next prove that the protocol is strong
ε-server secure. Consider a message a∗ sent by a malicious server holding x ∈
(X ∪ ⊥) and an auxiliary input aux ∈ {0, 1}∗ in the OT -hybrid world. We need
to show the existence of a certain probability vector p ∈ R

|X |+1. It will be
convenient to describe the vector p using a simulator Sim that will describe the
probability of sending x∗ to T as an input.

The idea is to have the simulator check the inconsistencies made by the
adversary. This is done via an inconsistency graph, where each vertex corresponds
to a virtual party, and each edge corresponds to an inconsistency. There are
three cases in which the simulator will send ⊥ to T. The first case, is when
there is a large vertex cover among the servers. In the OT -hybrid world, the
client will see an inconsistency with high probability, and hence output ⊥. The
second case, is when there are two virtual clients Cj,0 and Cj,1, corresponding
to the same bit of Enc (y) that are both inconsistent with the same server.
Observe that the real client will always see an inconsistency, regardless of its
input or randomness. The final case remaining, is when for each j ∈ [m · m′],
the adversary tampered with exactly one of Cj,0 or Cj,1. Here the real client will
not notice the inconsistency only if asked for the virtual clients the adversary
did not tamper with, which happens with low probability. For all other cases,
the probability that the real client will see an inconsistency is independent of its
input. Therefore the simulator can compute it and send ⊥ with this probability.
When the simulator does not send ⊥ as its input, it uses the MPC simulator to
reconstruct an effective input.

We next formalize the description of the simulator. The simulator holds a∗

and aux as an input.

1. Write a∗ = (a∗
1,a

∗
2), where a∗

1 corresponds to the outputs and a∗
2 corresponds

to the watchlist.
2. Apply the simulator guaranteed by the security of ΠBCS to each pair of mes-

sages in a∗
1 to obtain V1,0, V1,1, . . . , Vm·m′,0, Vm·m′,1, and apply the simulator

guaranteed by ΠROT for each pair in a∗
2 to obtain V1, . . . , Vn and a predicate

P (if the output of the simulator is ⊥ instead of views, then send ⊥ to T).
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3. Generate an inconsistency graph G′, with [n] as vertices, and where {i1, i2}
is an edge if and only if Vi1 and Vi2 are inconsistent. Let VC be a minimum
vertex cover of G′.13 If |VC| > t then send ⊥ to T.

4. Otherwise, pick a subset W ⊆ [n] of size t/2 uniformly at random. If there
exist i1, i2 ∈ W with an edge between them in G or P (W) = 1, then send ⊥
to T.

5. Otherwise, extend G′ into an inconsistency graph G, where there are new
vertices (j, b) ∈ [m ·m′]×{0, 1}, and {i, (j, b)} is an edge if and only if V i

j,b is
inconsistent with Vi (i.e., the view Cj,b received from Si is inconsistent with
the view of Si).

6. Let S ⊆ [m · m′] × {0, 1} be the set of vertices corresponding to the virtual
clients, that have an edge with a vertex in W. If there exists j ∈ [m] such
that either
– (m′(j − 1) + j′, 0) , (m′(j − 1) + j′, 1) ∈ S for some j′ ∈ [m′], or
– for every j′ ∈ [m′] exactly one the vertices (m′(j − 1) + j′, 0), (m′(j − 1) +

j′, 1) is in S,
then send ⊥ to T.

7. Otherwise, send ⊥ with probability 1 − 2−e(S), where e(S) is the number of
edges coming out of S. With the complement probability, apply the (mali-
cious) MPC simulator on the virtual servers Si, where i ∈ VC, to get an input
for each of virtual servers in VC. The simulator Sim can then use the inputs
of the other virtual servers to get an effective input x∗ ∈ (X ∪{⊥}), and send
it to T.

The vector p is then defined as px∗ = Pr [Sim sends x∗ to T]. Recall that for
every y ∈ Y and z ∈ {⊥, 0, . . . , k − 1} we denote

q
Π+

IKOPS
y,z (a∗) = Pr

[
ϕ+ (y,b,a∗[b]) = z

]
,

where b = β (y) and the probability is over the randomness of β and ϕ. To
alleviate notations, we will write q = qΠ+

IKOPS(ε) (a∗). Fix y ∈ {0, 1}m and
z ∈ {⊥, 0, . . . , k − 1}. We show that14

∣
∣qy,z − MT

g (·, (y, z)) · p
∣
∣ ≤ ε · p⊥. (5)

Observe that since ΠBCS and ΠROT has perfect server-security, each
Vm′(j−1)+j′,b and each Vi in the OT -hybrid world is distributed exactly the same
as its counterpart in the ideal world. Therefore, we may condition on the event
that they are indeed the same. Furthermore, by the security of ΠROT, we may
also assume that the watchlist W is distributed the same, and that P (W) = 0,

13 Recall that we do not care about the efficiency of simulator. We stress that it is
also suffices to use a 2-approximation to compute the minimum vertex-cover, while
slightly tweaking t.

14 In fact we can show something stronger – that the �1 distance (i.e., statistical dis-
tance) is smaller than ε·p⊥, implying that the protocol has standard ε-server security.
However, this does not improve our result and the proof is therefore omitted.
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as otherwise in both worlds the client will output ⊥. In the following we fix the
views and W. We next separate into four cases, stated in the following claims
(proven below). These claims together immediately imply Eq. (5).

Claim 12. If |VC| > t then Eq. (5) holds.

Claim 13. Assume that |VC| ≤ t and that for every i ∈ W and every j ∈ [m],
there exists j′ ∈ [m′] such that either both Vm′(j−1)+j′,0 and Vm′(j−1)+j′,1 are
consistent with Vi, or both are inconsistent with Vi. Then Eq. (5) holds. Moreover,
the simulation is perfect.

Claim 14. Assume that |VC| ≤ t and that there exists i ∈ W and j ∈ [m], such
that for every j′ ∈ [m′] exactly one of the views Vm′(j−1)+j′,0 and Vm′(j−1)+j′,1
are inconsistent with Vi, then Eq. (5) holds.

Proof (of Claim 12). Intuitively, the vertex cover of the graph G gives us infor-
mation on which servers “misbehaved”. A large vertex cover means that a lot
of servers have inconsistent views, implying that there are many edges in the
graph. Therefore, a random subset of the vertices would contain at least one
edge with high probability. We next formalize this intuition.

Since |VC| > t then the maximum matching in G′ is of size at least (t+1)/2.
Therefore, in the OT -hybrid world, the expected number of edges that the client

will have in its watchlist is at least t+1
2 · ( n−2

t/2−2)
( n
t/2)

= Θ (n). By applying Hoeffding’s

inequality,15 with probability at least 1 − 2−Θ(n) = 1 − ε the client will output
⊥. As in the ideal-world the simulator sends ⊥ to T with probability 1, Eq. (5)
follows.

Proof (of Claim 13). We separate into two cases. For the first case, assume that
there exist i ∈ W, j ∈ [m], and j′ ∈ [m′] such that both Vm′(j−1)+j′,0 and
Vm′(j−1)+j′,1 are inconsistent with Vi. Then (m′(j − 1) + j′, 0), (m′(j − 1) +
j′, 1) ∈ S, hence the simulator always sends ⊥ in this case. Furthermore, in the
OT -hybrid world, for every input y ∈ {0, 1}m the client will see an inconsis-
tency between either Vm′(j−1)+j′,0 and Vi, or an inconsistency between either
Vm′(j−1)+j′,1 and Vi. Thus, Eq. (5) holds with no error.

By the assumptions of the claim, for the second case we may assume that for
every i ∈ W and every j ∈ [m], there exists j′ ∈ [m′] such that both Vm′(j−1)+j′,0
and Vm′(j−1)+j′,1 are consistent with Vi. In this case, in the OT -hybrid world, the
client will see an inconsistency with probability 1−2−e(S). With the complement
probability, its output is determined by whatever the virtual servers computed.
The output of the client in the ideal-world is either ⊥ with probability 1−2−e(S)

or it is determined by the MPC simulator. Since it is assumed to be perfect and
|VC| ≤ t bound from above the number of corrupted servers, it follows that
Eq. (5) holds with no error.
15 Although Hoeffding’s inequality is stated for the sum of independent random vari-

ables, it still works in our case since the sampled can be modeled as if we are picking
vertices without repetitions. Sampling with repetitions only decreases the probability
for an edge.
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Proof (of Claim 14). By construction, the ideal-world simulator always sends ⊥
in this case. Additionally, in the OT -hybrid world, the client uses Enc on its input
y to receive m · m′ random bits

(
yj′

j

)

j∈[m],j′∈[m′]
conditioned on ⊕m′

j′=1y
j′
j = yj

for every j ∈ [m]. Since we assume that exactly m′ virtual clients, corresponding
to the same input bit yj , where tampered by the adversary, it follows that with
probability 2−(m′−1) ≤ ε the client will see only consistent views. Therefore, for
every y ∈ {0, 1}m it holds that

∣
∣qy,⊥ − MT

g (·, (y,⊥)) · p
∣
∣ = |qy,⊥ − p⊥| = Pr

[
ϕ+ (y,b,a∗[b]) �= ⊥

]
≤ ε,

and for every z �= ⊥
∣
∣qy,z − MT

g (·, (y, z)) · p
∣
∣ =

∣
∣Pr

[
ϕ+ (y,b,a∗[b]) = z

]
− 0

∣
∣ ≤ ε.

Equation (5) follows.

We next show that the protocol has perfect client-security. Consider an adver-
sary A corrupting the client. We construct the simulator SimA. The construction
of the simulator is done in the natural way, namely, it will apply the simulators
of ΠBCS and ΠROT, and then the decoding of the PRE, to receive an output. It
can then use the MPC simulator to simulate the views of the virtual servers in
its watchlist. Formally, the simulator operates as follows.

1. On input y ∈ {0, 1}m and auxiliary input aux ∈ {0, 1}∗, query A to receive
a message b∗ to be sent to the OT.

2. Write b∗ = (b∗
1,b

∗
2), where b∗

1 corresponds to the outputs and b∗
2 corresponds

to the watchlist.
3. Apply the simulator guaranteed by the security of ΠBCS to each pair of

messages in b∗
1 to obtain (bj)j∈[m·m′] for some bj ∈ {0, 1}, and apply the

simulator SimROT, guaranteed by the security of ΠROT, for each pair in b∗
2

to obtain a set W ⊆ [n].
4. Send Dec

(
(bj)j∈[m·m′]

)
to T to obtain an output z.

5. Apply the PRE simulator on z to obtain outputs (zj)j∈[m·m′] for each virtual
client.

6. If |W| > t then output (zj)j∈[m·m′] alongside whatever SimROT outputs and
halt.

7. Otherwise, apply the (semi-honest) MPC simulator on the parties {Si}i∈W
with random strings as inputs, and on

{
Cj,bj

}
j∈[m·m′] with zj as the output

respectively. Send the output of the MPC simulator to SimROT, outputs
whatever it outputs and halt.

The security of ΠBCS and ΠROT implies that (bj)j∈[m·m′] and W are
distributed exactly the same in both worlds. Therefore, the output z =
g
(
x,Dec

(
(bj)j∈[m·m′]

))
is distributed the same, hence applying the PRE simu-

lator on z will also result in the same distribution. Now, if |W| > t then SimROT
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is guaranteed to produce a correct view as an output. If |W| ≤ t, then the
MPC simulator will perfectly generate |W| virtual views. Handing them over to
SimROT would result in the view that is distributed the same as in the OT -hybrid
world.

5.4 Proof of Lemma 4

We first prove the following simple claim, stating that the client will always
reconstruct a unique secret (if its not outputting ⊥).

Claim 15. Consider a message a∗ =
(
(a∗

1,0, a
∗
1,1), . . . , (a

∗
n,0, a

∗
n,1)

)
∈ {0, 1}2sn

sent to the OT by a malicious server. Then for any different inputs y1 �= y2 for
the client, either it will output ⊥ for at least one of the inputs, or there exists a
common secret r that will be reconstructed.

Proof. Let B = {i ∈ [n] : i /∈ y1 ∧ i /∈ y2}. Then |B| ≥ n − t, hence the client –
who receives the shares

(
a∗

i,1

)
i∈B – can reconstruct a secret r in case the share

are consistent. This secret will be the same for both y1 and y2.

We now prove the lemma.

Proof (of Lemma 4). By construction, it is not hard to see that the protocol is
correct. We next prove that the protocol has perfect input-dependent security.
Consider a adversary A corrupting the server. We construct a simulator SimA
as follows. On input x and auxiliary input aux ∈ {0, 1}∗, query A to receive
a message a∗ =

(
(a∗

1,0, a
∗
1,1), . . . , (a

∗
n,0, a

∗
n,1)

)
∈ {0, 1}2sn. If there are no n − t

shares from
(
a∗

i,1

)
i∈[n]

that are consistent, then SimA will send the constant 1
predicate alongside some arbitrary input x0 to the trusted party T. Otherwise,
let B be the maximum set of indexes i ∈ [n] such that the a∗

i,1 are shares
consistent with single value r ∈ ({0, 1}s)n. Then SimA will send to T the input((

a∗
i,0 ⊕ ri

)
i/∈B , (0s)i∈B

)
with the predicate PB(y) = 1 if and only if y ∩ B �= ∅.

To see why the simulator works, observe that SimA sends constant 1 predicate
if and only if A sent at most t consistent shares, forcing C to output ⊥ in the
ideal-world. Since this happens if there are too many inconsistencies, C will
output ⊥ in the OT -hybrid world as well. Furthermore, if there are at least n− t
shares that are consistent, then by Claim 15, there is a unique secret r that can
be reconstructed. Therefore, in the OT -hybrid world, on input y, C will output
⊥ if y∩B �= ∅, and output (a∗[βROT (y)]i ⊕ ri)i∈y otherwise. Since B was chosen
to be the maximum set of indexes, the same holds in the input-dependent ideal-
world.

We next show that the relaxed security requirement against malicious clients
holds. Let A be an adversary corrupting the client. The simulator SimA works
as follows. On input y and auxiliary input aux ∈ {0, 1}∗, query A to receive
b∗ ∈ {0, 1}n. If there are strictly more than t 0’s in b∗ then output n random
strings, each of length s. Otherwise, send {i ∈ [n] : b∗

i = 0} to T to receive output
(xi)i:b∗

i =0. SimA samples n random strings r1, . . . , rn ← {0, 1}s. For i ∈ [n], let
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r[i] ∈ {0, 1}sn be a share of r = (r1, . . . , rn) in an (n−t)-out-of-n Shamir’s secret
sharing (pad r[i] if needed). The simulator then generates the values

a :=
(

(αBCS(xi ⊕ ri, r[i]))i:b∗
i =0 , (αBCS (0sn, r[i]))i:b∗

i =1

)
,

where the xi ⊕ ri’s are padded accordingly. SimA will then compute and output
(

2
1

)
-bit-OT� (a, (βBCS (b∗

1) , . . . , βBCS (b∗
n))) .

SimA works since in the case where there are more than t 0’s in b∗, by the
properties the sharing scheme, the view of C in the OT -hybrid world consist
only of random values. Otherwise, C will receive the masked xi for the indexes i
on which b∗

i = 0, and shares of the maskings for the indexes i on which b∗
i = 1.

6 Tightness of the Analysis

Recall that our final protocol is a “wrapper” for an upgraded version of the
protocol by Ishai et al. [19], namely, protocol Π+

IKOPS from Sect. 5.3. In the
following section, we prove that for any (randomized) Boolean function f that
is not full-dimensional, and does not satisfy the constraints in Corollary 1, no
“wrapper” protocol for Π+

IKOPS will compute f with perfect full-security. Here,
the “wrapper” protocol simply replaces the output ⊥ that the client receive from
Π+

IKOPS with a random bit. Formally, any “wrapper” protocol is parametrized
with a vector v ∈ [0, 1]|Y| and an ε > 0, and is denoted by Πv

f (ε). Let g : (X ∪
{⊥}) × Y �→ {⊥, 0, 1} be defined as g(x, y) = f(x, y) if x �= ⊥ and g(⊥, y) = ⊥.
The “wrapper” protocol Πv

f is described as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Protocol 16 (Πv
f (ε))

Input: Server S has input x ∈ X and client C has input y ∈ Y.

1. The parties execute protocol Π+
IKOPS (ε) in order to compute g. Let z be the

output C receive.
2. If z �= ⊥, then C output z. Otherwise, output 1 with probability vy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We next claim that the protocol cannot compute Boolean functions that are

not full-dimensional with perfect full-security.

Theorem 17. Let f : X × Y �→ {0, 1} denote a (possibly randomized) Boolean
function that has no constant columns, i.e., Mf (·, y) is not constant for every

y ∈ Y, and is not full-dimensional, i.e., dim
(
aff

(
MT

f

))
< |Y|. Then for every

v ∈ [0, 1]|Y| and every ε > 0, Πv
f (ε) does not compute f with perfect full-security.
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Proof. Assume towards contradiction that Πv
f (ε) has perfect server security, for

some v and ε. We next construct |Y| + 1 adversaries, such that each adversary
forces the vector of outputs of the client qΠv

f (ε), to be a different point inside
the convex-hull of the rows of Mf . We then show that these points are affinely
independent, giving us a contradiction. First, write each input of the client as a
binary string y of length m. For every y ∈ Y define the adversary Ay as follows.

1. Fix an encoding y′ =
(
y1

j , . . . , ym′
j

)

j∈[m]
∈ Supp (Enc(y)), and fix some

x∗
y ∈ X such that f(x∗

y,y) �= vy. (such an x∗
y exists, since Mf does not have

constant columns).
2. Execute Π+

IKOPS (ε) honestly with input x∗
y, as fixed above, with the fol-

lowing one exception. For every i ∈ [n], j ∈ [m], and j′ ∈ [m′], modify
V i

m′(j−1)+j′,1−yj′
j

such that it is inconsistent with Vi.

Finally, define the adversary A0 who picks an arbitrary x∗
0 ∈ X as an input, and

acts honestly with the exception that it tampers with all V i
j,b’s, making them

inconsistent with the corresponding Vi. Let a∗ (x∗
y

)
be the message Ay sends to

the OT.
Let us analyze the client’s vector of outputs qΠv

f (ε)
(
a∗ (x∗

y

))
, for any adver-

sary Ay, for y ∈ Y ∪{0}. For brevity, we write q
(
x∗
y

)
instead. By definition, A0

forces the client to sample its output according to v, hence q (x∗
0) = v. Next,

fix y ∈ Y. Observe that for every ŷ �= y, any of their encodings will differ on at
least one bit, i.e., ŷj′

j �= yj′
j for some j ∈ [m] and j′ ∈ [m′], hence on input ŷ,

the client will see V i

m′(j−1)+j′,1−yj′
j

for every i. Since the inconsistency is made

with every virtual server, on input ŷ, the client will notice it and output ⊥ with
probability 1. By the description of Πv

f , it follows that

qŷ
(
x∗
y

)
= vŷ, (6)

for every ŷ �= y. On the other hand, on input y, the client outputs ⊥ if and only
if the event Enc (y) = y′ occurs, which happens with probability 1 − 2−m(m′−1).
With the complement probability 2−m(m′−1) it does not detect an inconsistency,
and outputs f(x∗

y,y). Therefore

qy
(
x∗
y

)
= 2−m(m′−1) · f(x∗

y,y) + (1 − 2−m(m′−1)) · vy. (7)

Thus, Eqs. (6) and (7) yield that

q
(
x∗
y

)
= v − 2−m(m′−1)(vy − f(x∗

y,y)) · ey,

where ey is the y-th unit vector in R
|Y|.

To conclude the proof, observe that x∗
y was chosen so that f(x∗

y,y) �= vy,
implying that the set of points

{
q
(
x∗
y

)}
y∈Y∪{0} are affinely independent. Fur-

thermore, since Πv
f is assumed to have perfect server security, Lemma 1 implies

that all of theses points lie inside conv
(
MT

f

)
. Therefore, aff

(
MT

f

)
= R

|Y|

contradicting the assumption that f is not full-dimensional.
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7 A Note on Efficiency

While our main goal is to understand the feasibility of perfectly secure 2PC,
our construction does confer concrete efficiency benefits for certain parameter
ranges. It is instructive to compare our construction with the IKOPS protocol,
for deterministic functions (from the right class). Here we focus on the number
of OT calls, which are the most expensive part to implement in practice (usually
with computational security). Specifically, for simplicity, we consider the number
of calls to a

(
2
1

)
-s-string-OT oracle, of any length s, rather than

(
2
1

)
-bit-OT. We

note that the strings’ length of our OT’s is quite a bit larger than in IKOPS
(due to the step ensuring perfect client security, where the length is multiplied
by the number of servers). However, we claim that this comparison is somewhat
justified when having practical efficiency in mind, since for particularly long
strings, a string-OT oracle can be used to pick short PRG seeds instead of the
strings themselves during a preprocessing phase. This will be done by having the
server send s0 and s1 to the “short” string-OT functionality, and the client will
receive sb, where b ∈ {0, 1} as its input. Then, to implement the “long” string-
OT during the protocol execution, the sender sends to the client G(sa)⊕ma, for
a ∈ {0, 1}, where G is a PRG and m0 and m1 are the “long” messages.

Fix a deterministic function f : X × Y → {0, . . . , k − 1} satisfying the con-
ditions of Corollary 1. The number of calls to string-OT in Π+

IKOPS (ε) and
ΠIKOPS (ε) is log

(
ε−1

)
(log |Y| + c), where c is a constant circa 1400 (c is

roughly the same in both protocols). When considering our perfectly secure
protocol, we set ε = 1

2n(n+1)! , where n = (k − 1) · |Y|. On the one hand, this
results in communication complexity that is polynomial in |Y| and k, which
may be prohibitive for functions with large client-domain or range sizes. On the
other hand, for functions with a small client-domain and range sizes, we do bet-
ter than IKOPS even for real-world error ranges, and the advantage grows as
the allowed error ε decreases. For instance, consider the greater than function
3 >: {0, 1, 2}×{0, 1, 2} → {0, 1}, with an error of ε = 2−40. The communication
complexity we obtain is bounded by a factor smaller than 40/ log(24) ≈ 8.724
than that of the IKOPS protocol.

Acknowledgements. We are very grateful to Yuval Ishai for suggesting this question,
and for many helpful discussions. We also want to thank Eran Omri for many helpful
comments.
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