
Chapter 6
Ideal and Non-ideal Sliding

Sliding—motion along the discontinuity threshold—is central to the most novel
phenomena of nonsmooth dynamics. The theory was largely developed in Filip-
pov’s work [51], but seems to originate in earlier Russian texts, perhaps first from
G. N. Nikol’skii [109] (see also discussion in [4, 107, 148]). The standard definition
would describe sliding as motion along an ideal threshold D. We shall define it as
follows.

Definition 6.1. A solution of an implementation (5.3) of a piecewise-smooth system
(5.1) is said to slide if it evolves inside the layer Dε for a time Δt = O (1) (i.e., a
time not vanishing as ε→ 0).

This allows us to discuss sliding in implementations as well as in the ideal dis-
continuous system. Intuitively, sliding occurs because solutions tend towards some
invariant set in the layer Dε around the discontinuity threshold D. More precisely
we can state the following.

Lemma 6.1. Consider system (5.1) on an open region W, defined piecewise on re-
gions Ri =

{
x ∈ Rn : i = step(σ(x)), σ � 0

}
in terms of vector fields fi that are

differentiable on σ ≥ −ε (for i = 1) and σ ≤ +ε (for i = 0), and a scalar function
σ differentiable for all x. Take an implementation of (5.1) on W according to Def-
inition 5.1. If the discontinuity threshold D = {x : σ = 0} is either attracting or
repelling with respect to the vector fields fi for σ → 0 on W, and the vector fields
fi have non-vanishing components normal to D for σ → 0 on W, then there exists
some E > 0 such that the layer Dε, where σ = O (ε), is invariant inside W for
0 < ε < E.

Proof. The attractivity of D implies f1(x) · ∇σ < 0 < f0(x) · ∇σ, and repulsivity
of D implies the opposite signs, given that the normal components fi · ∇σ are non-
vanishing, evaluated at x as σ → 0. Since f0(x) and f1(x) are differentiable, at any
point x ∈ W on σ = 0, there exists Ẽ(x) > 0 such that f1(u) · ∇σ < 0 < f0(u) · ∇σ
for all u such that |u · ∇σ| < Ẽ(x). Let Ẽ(x) be the largest such value at each x, and
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let E be the infimum of all Ẽ(x) for x ∈ D∩W. Then for any ε < E the vector fields
satisfy f1(x) · ∇σ < 0 for x such that σ < +ε, and f0(x) · ∇σ > 0 for x such that
σ > −ε, therefore the region |σ(x)| < ε is invariant. �	

This suggests that if we can define a switching multiplier (some μ or ν), and a
dynamics on it in the switching layer, then sliding constitutes an invariant of the dy-
namics confined to the layer, when the dynamics would otherwise carry trajectories
through the layer. Even if we cannot define the layer dynamics in closed form, we
can still consider the attracting or repelling objects it forms that constitute sliding.

Lemma 6.1 treats only the case when D is attracting or repelling with respect
to the flows outside it, but attractivity/repulsivity is neither necessary nor sufficient
for sliding to take place. The extension of Lemma 6.1 to a discontinuity thresholdD
formed by the intersection of manifoldsD1∩· · ·∩Dm, for example, is quite straight-
forward, this also has been mainly considered only under conditions of uniformly
attraction ofD with respect to the surrounding flows, e.g., in [5, 38].

The situation in general is greatly more complicated. The discontinuity threshold
D need not be attracting or repelling for sliding to occur (as we saw in the example
of ‘sticky genes’ in Sect. 1.3, see also [81]). Moreover, an intersection of manifolds
D1∩· · ·∩Dm can be attracting without the individual thresholdsD j being attracting,
for example, if the flow spirals around a point x1 = x2 = 0 by crossing through
discontinuity thresholds x1 = 0 and x2 = 0 (see, e.g., [36, 51]). The permutations are
enormous and no substantial accounting of the possibilities has been made. Perhaps
the most ambitious steps in this direction are in [66], where the authors classify the
behaviours a solution can exhibit once it enters an intersection in a planar system.

The only general statement that can be made is that if the set G from (5.2) has
an intersection with the tangent space TD of the discontinuity threshold at a given
point x ∈ D,

G(x) ∩ TD(x) � ∅ , (6.1)

then sliding motion is possible in (5.1). Similarly if the set Gε of a given implemen-
tation from (5.3) has an intersection with the tangent space TD of the discontinuity
threshold at a given point x ∈ D,

Gε(x) ∩ TD(x) � ∅ , (6.2)

then sliding motion is possible in the implementation of (5.1). A solution arriving at
Dε evolves onto some attractor that lies in Dε, on which solutions x(t) evolve in a
direction ε-close to the tangent space toD. Thus we formalize the notion of sliding
more precisely as follows.

Definition 6.2. A solution x(t) of (5.1) is said to slide along the discontinuity thresh-
oldD if ẋ(t) ∈ G(x)∩TD(x). A solution x(t) of an implementation of (5.1) is said to
slide along the discontinuity threshold D (more strictly along the layer Dε approx-
imatingD) if ẋ(t) ∈ Gε(x) ∩ TD(x).
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By saying ẋ(t) ∈ Gε(x) ∩ TD(x), we mean that the tangent vector along a trajectory,
ẋ(t), which must lie in Gε(x), lies tangent to the discontinuity thresholdD, implying
that x(t) evolves alongDε as t changes.

To find out whether sliding will occur in either situation requires a look at the
dynamics, to find out whether the vector fields in the sets (6.1) and (6.2) possess
attractors or repellers in the layer that can be followed by any solutions x(t). We
explore the different approaches to this over Sects. 6.1 and 6.3.

The experiments in Chap. 4 show sliding under the implementations from Def-
inition 4.1. In each case sliding occurs in a layer Dε j

j that forms an order ε j-

neighbourhood around an ideal discontinuity threshold D j =
{
x : σ j(x) = 0

}
. Re-

gardless of implementation, the attractivity of the layer implies the existence of local
attractors inside it. The effects of Lemma 6.1 are seen in Figs. 4.1 to 7.4, with slid-
ing occurring along the threshold x = 0 in Fig. 4.1, the thresholds x1 = 0 < x2

and x2 = 0 < x1 in Figs. 4.2 and 4.3, and the threshold x1 = 0 < x2 in Figs. 4.4,
4.5, and 4.6. With smoothing, these attractors are normally hyperbolic manifolds or
equilibria. With hysteresis, the attractors are cycles oscillating between the bound-
aries x1 = ±ε1 and x2 = ±ε2, therefore reducible to return maps on those surfaces.
For time stepping or delay the attractors can be bounded within definite ε1 and ε2

neighbourhoods of x1 = 0 and x2 = 0, respectively, and are described by piecewise-
smooth two-dimensional maps on the plane.

Before returning to look at these experiments again closely, we need to build up
a more general picture of the dynamics inside the switching layer that result from
these definitions of layers, implementations, and sliding.

6.1 Sliding Perspective I: The Piecewise-Smooth System

Given the description of a piecewise-smooth system in terms of switching multipli-
ers, as given by (5.2) with (5.8), we can analyse dynamics at the discontinuity as
follows.

In (1.15) we defined the multipliers ν j = step(σ j) only as taking values ν j ∈ [0, 1]
at σ j = 0. We shall now ask how each ν j varies across the interval [0, 1] and derive
dynamics on them induced by the vector fields in σ j � 0. (Clearly outside the
discontinuity surface the ν js are piecewise-constant and so obey ν̇ j = 0 for any j).

On a discontinuity threshold D j, we can treat each ν j as a ‘blow-up’ variable of
the discontinuity set σ j = 0. This is done by letting σ j = ε jν j for some small ε j ≥ 0,
so that the discontinuity occurs across an interval σ j ∈ [0, ε j]→ 0 as ε j → 0. (This
method is developed in [79, 81] but is essentially just a scaling of the quantity σ j

that maps its values on σ j ∈ [0, ε] → 0 to values ν j ∈ [0, 1], and has no doubt
been used earlier, e.g., in [148]. The term ‘blow-up’ itself appears to originate from
singular perturbation literature [40]). We then use this to find the dynamics of ν j on
the interval ν j ∈ [0, 1].
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At a point where D is a codimension m manifold, let x|D ∈ R
n−m denote the

space of x restricted to D. The multipliers ν j in (5.10) lie on intervals [0, 1], so the
dynamics onD can be said to take place inside a switching layer

Dε = { ( ν1, . . . , νm, x|D ) ∈ [0, 1]m × Rn−m } . (6.3)

For economy of nomenclature we use the term ‘switching layer’ to describe both
the parameterization of D given by (6.3) in the piecewise-smooth system, and the
region aroundD given by (5.3) in the implementation, each with an associated small
parameter ε. The concepts are closely related, and one may refer to the ‘switching
layer of the piecewise-smooth system’ or the ‘switching layer of the implementa-
tion’ if necessary to avoid confusion.

At a point on a discontinuity threshold where σ1 = · · · = σm = 0 for some m ≥ 1,
let us take local coordinates x = (X, x), where X = (σ1, . . . , σm) and x ∈ R

n−m, so
xD = (0, . . . , 0, x). We then obtain onD a switching layer

Dε =
{

( ν1, . . . , νm, x ) ∈ [0, 1]m × Rn−m
}
, (6.4)

with each multiplier ν j constituting the blow-up variable of the set σ j = 0, as some
small parameter ε j → 0+. The switching layer is n dimensional, and differentiating
σ j = ε jν j according to ẋ = F(x; ν1, . . . , νm) in these coordinates, given σ̇ j = F ·
∇σ j = F j, we have

ε jν̇ j = σ̇ j = F j(ε1ν1, . . . , εmνm, x; ν1 . . . , νm)

= F j(0, . . . , 0, x; ν1 . . . , νm) + O (ε1, . . . , εm) . (6.5)

Neglecting the higher order term for ε j → 0, we obtain a well-defined layer system
on X = (0, . . . , 0),

ε jν̇ j = F j(0, . . . , 0, x; ν1, . . . , νm) , j = 1, . . . ,m, (6.6a)

ẋ = F(0, . . . , 0, x; ν1, . . . , νm) , (6.6b)

up to terms of order ε1, . . . , εm, on the right-hand side. We recall that in this notation
F = (F, F) and F = (F1, . . . , Fm) = (F · ∇σ1, . . . ,F · ∇σm).

In deriving this system we have fixed a very simple relationship between ν j and
σ j, namely a linear (if singular as ε j → 0) mapping. We can do this without loss
of generality because, through hidden terms, we are able to express any more com-
plex functional relationship between some switching multiplier ν j and the switching
function σ j using nonlinearity.

Say, for example, a vector field has a component F j = 1 + step(σ j), representing
perhaps the reaction force from an object stuck to a surface with σ j = 0, and say
that F j is known to pass through zero twice as the function σ j changes sign. Clearly
the function F j = 1 + ν j does not satisfy this, as ν j ∈ [0, 1] implies 1 + ν j ∈ [1, 2].
The function F j = 1 + ν j − rν j(1 − ν j), however, varies over F j ∈ [ 1

4 (6 − r−1 − r), 2]
for r > 1, and if, say, F j is known to vanish at some ν j = k, then r = (1+ k)/(1− k)k
provides this.
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With the dynamics at a discontinuity thresholdD thus described by (6.6), sliding
occurs if there exist fix points of (6.6a). These are sets of points satisfying ν̇ j = 0,
and they generate sliding manifolds

M =
{

(x, ν1, . . . , νm) ∈ Rn−m × [0, 1]m such that
F j(0, . . . , 0, x; ν1, . . . , νm) = 0, j = 1, . . . ,m

}

, (6.7)

which are invariant wherever they are normally hyperbolic (see [81]). (Recall that
x|D = (0, . . . , 0, x) denotes x restricted toD, and F · ∇σ j = F j).

OnM the dynamics takes the form of a sliding mode, given by

0 = F j(0, . . . , 0, x; ν1, . . . , νm) , j = 1, . . . ,m, (6.8a)

ẋ = F(0, . . . , 0, x; ν1, . . . , νm) , (6.8b)

Because (6.7) consists of m equations F1 = · · · = Fm = 0, in m unknowns given
by the switching multipliers ν1, . . . , νm, they typically define a well-defined setM
inside a given switching layer. This set may consist of branches of different stability
(determined by considering the eigenvalues of the matrix ∂(F1, . . . , Fm)/∂(ν1, . . . , νm)),
connected by non-hyperbolic points (where those eigenvalues have zero real part).

In a system of many switches ν j = step(σ j), a solution may evolve between
places where the discontinuity threshold D consists of an intersection of m differ-
ent submanifolds D j, as defined in (5.11). On each different such region of D for
different m, we first blow up each D j into a switching layer, then derive the sliding
modes, which occupy local sliding manifoldsM of dimension R

n−m.
If there is nonlinear dependence on the multipliers ν j, then there may exist multi-

ple equilibria, periodic or complex attractors, undergoing bifurcations and any other
nonlinear phenomena inside the switching layer.

We will apply these ideas later when we look at some examples of linear versus
nonlinear dynamics on the discontinuity threshold.

6.2 Sliding Perspective II: Hybrid Implementations

We define an implementation as hybrid if it cannot be expressed by means of a set of
ordinary differential equations alone, but instead is given by a hybrid of the system

ẋ = fi(x) if x ∈ Rεi , i ∈ ZN , (6.9)

along with a map

ẋ = fi(x) with i �→
⎧
⎪⎪⎨
⎪⎪⎩

i if event(x; ε) = false ,

Ψ (x; i) if event(x; ε) = true ,
(6.10)
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with ZN as before being some discrete set of N labels, and with the regions Rεi
obeying Rεi ⊃ Ri, such that the switching layer Dε is formed by the overlap of two
or more regions Rεi , though R0

i = Ri.
The system evolves as ẋ = fi(x) until a condition ‘event(x; ε)’ is satisfied, then i is

updated to a new mode Ψ (x; i). The hysteretic, delay, stochastic, and time-stepping
implementations in Definition 4.1 are all of this type. Typically in such situations
there is an implementation layer Dε on which the system may exist in more than
one mode i, and its dynamics therefore depends not only on its state x but also
on the current mode, which therefore appears in the update map Ψ (x; i). In other
implementations the dynamics in Dε is instead governed by a transition rule that
only depends on x, i.e., the state lies in a transition ‘mode’ and not in any mode i.

Let Ω ⊂ Dε be a set of points inside the switching layer on which ‘event(x; ε) =
true’ is satisfied, and let x1, x2, . . . denote a set of points inside Ω visited by x(t) at
times t1, t2, . . . . Integrating between these provides a map

xn = Φ(xn−1; ε) where Φ : Ω �→ Ω . (6.11)

We have been deliberately vague in defining the set Ω and map Φ, as the form of
both depends on the implementation. In Chap. 7 we will see how these definitions
apply to the ‘experiments’ from Chap. 4. Still, with these definitions we can derive
some useful results, in particular without knowing the map (6.11) explicitly, we can
derive some implications for the dynamics in the switching layer.

For sliding to occur, the map Φ must have an invariant set on Ω, but that set need
not be unique, and by implication the sliding dynamics need not be unique.

According to the map (6.11), x(t) evolves in increments along each field fi, e.g.,

xn = xn−1 + fi(xn−1)Δt + O
(
Δt2
)

(6.12)

if xn−1 ∈ Ωi(xn−1, x0, tn−1) .

The mode i selected at each time increment can depend not only on the current state
xn−1, but is also typically history dependent, depending on the initial state x0 and the
current time tn−1. The regions Ωi ⊂ Ω may therefore overlap. Because this selection
has discontinuities wherever the mode i changes, this raises the possibility that at-
tractors of the map can bifurcate in a far more arbitrary manner than in continuous
or differentiable maps, able to make abrupt jumps in topology and periodicity (as in
Fig. 2.2(ii), for example).

We can also derive the effect of an attractor on the system’s dynamics. Let x(t)
evolve along an ε-infinitesimal neighbourhood of the discontinuity thresholds for a
time interval [0,T ], switching between modes i ∈ ZN = {1, 2, . . . ,m}, at a sequence
of times t1, t2, . . . , tr, where 0 = t0 < t1 < t2 < · · · < tr = T . Thus x(t) evolves along
a different vector field fi in mode i ∈ ZN on each time interval [t j−1, t j] for some
i = {1, . . . ,m} and j ∈ {1, . . . , r}. Let μi denote the total proportion of the time T
spent evolving along fi,
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μi =
1
T

r∑

n=1

{
tn − tn−1 if xn ∈ Rn ,
0 if xn � Rn .

(6.13)

Let γi(xi) = 1 if xn is currently in mode fi and γi(xi) = 0 otherwise. Then the total

change in x(t) over the time increment T =
r∑

n=1

(tn − tn−1) is

Δx
T
=

1
T

r∑

n=1

Δxn−1

=
1
T

r∑

n=1

γi(xn−1)fi(xn−1)(tn − tn−1) + O
(
Δt2
)

=
∑

i=1

μifi(x) + O (T ) , (6.14)

where μi ≥ 0 and
∑N

i=1 μi = 1. In the limit T → 0 this gives an effective equation of
motion,

ẋ = Fco(x; μ1, . . . , μN) :=
∑

i=1

μifi(x) . (6.15)

Comparing to (5.5a), we see that as the coefficients μi vary over [0, 1] the effective
vector field Fco traces out the convex hull F (x) of the fi’s.

Using these effective equations of motion we can understand a basic separation
of scales that distinguishes motion across and along the discontinuity threshold.
Assume that x evolves along an ε-neighbourhood of the intersection of discontinuity
thresholds σ1 = · · · = σm = 0. Define scaled coordinates x = (u, v, . . . ,w, x), where
u = σ1/ε, v = y/ε, . . . , w = σm/ε, and x ∈ Rn−m. Let Fco = (Fco

u , . . . , F
co
w , F

co), then
ẋ = Fco becomes

εu̇ = Fco
u (εu, . . . , εw, x; μ1, . . . , μm)

= Fco
u (0, . . . , 0, x; μ1, . . . , μm) + O (ε) ,

...
...

εẇ = Fco
v (εu, . . . , εw, x; μ1, . . . , μm)

= Fco
w (0, . . . , 0, x; μ1, . . . , μm) + O (ε) , (6.16a)

ẋ = Fco(εu, . . . , εw, x; μ1, . . . , μm)

= Fco(0, . . . , 0, x; μ1, . . . , μm) + O (ε) . (6.16b)

(Here part (a) labels the fast equations ε ˙[ ] = ... and (b) the slow equation ẋ = ...).
The (u, . . . ,w) coordinates therefore evolve on a fast timescale τ = t/ε. Denoting
the derivative with respect to τ by a prime, the system instead becomes
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u′ = Fco
u (0, . . . , 0, x; μ1, . . . , μm) + O (ε) ,

...
...

w′ = Fco
w (0, . . . , 0, x; μ1, . . . , μm) + O (ε) , (6.17a)

x′ = O (ε) . (6.17b)

When we simulate the system on the τ-timescale, the variables (u, . . . ,w) evolve
across the O (ε) space of the switching layer, while the variables x remain quasi-
static.

To identify the coefficients μi in (6.14), we therefore simulate (6.17) for a time
interval T , keeping x fixed. If the time interval T can be taken long enough that
the coefficients μi as calculated by (6.13) reach a steady state, their values define
an effective equation of motion (6.15) at any given x. If one of the μi takes a value
of unity, with all μ j�i = 0, then the system is determined to have crossed the dis-
continuity threshold. If one or more μi settle to steady values between 0 and 1, then
the simulation of the fast (u, . . . ,w) subsystem of (6.17) must have reach a steady
state or other attractor inside the switching layer, and is said to be sliding along the
discontinuity.

The maps (6.11) and their invariants may not in general have any closed form
expression that can be determined from the system (5.1), but must be discovered by
simulation and approximated.

Although (6.16) is similar formally to (6.6), the latter describes a continuous
flow on σ1 = · · · = σm = 0, while the former describes a hybrid implementation
that jumps between the 2m different modes specified by (6.16) when each μ j takes a
value 0 or 1 in the neighbourhood of σ1 = · · · = σm = 0.

6.3 Sliding Perspective III: Smoothed Implementations

If switching is implemented by a smooth process, then we can proceed by steps that
are actually very similar to Sect. 6.1. This has the advantage that the analysis then
follows standard methods of singular perturbation theory, but this familiarity dis-
guises unobvious ambiguities that accompany smoothing. Though we can describe
these to some extent here, we are still learning what kind of dynamics, and more
specifically what kind of singularities, persists under smoothing.

We begin with the system ẋ = F(x; ν1, . . . , νm) in terms of switching multi-
pliers ν j = step(σ j). To smooth the discontinuity we simply make the replace-
ment ν j �→ φε j (σ j), where φε j (σ j) is a smooth monotonic function, satisfying
φε j (σ j) = step(σ j) + O

(
ε j

)
for |σ j| ≥ ε j.

Observe that for |σ j| ≥ ε j this definition gives φε j (σ j) = φ1(σ j/ε j), so let assume
this also holds for |σ j| < ε. The dynamics of the quantity ν j is found simply by
differentiating and applying the chain rule, ν̇ j = ε

−1
j (∂φε j/∂σ j)σ̇ j = ε̂

−1
j ẋ · ∇σ j =

ε̂−1
j F · ∇σ j = ε̂ jF j, where ε̂ j = ε j(∂φε j/∂σ j)−1.
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The result is formally that in (6.5)–(6.6), except that the definition of ν j now
differs and, more crucially, the small quantity ε̂ j is now a function of σ j. We have

ε̂ j(σ j)ν̇ j = F j(0, . . . , 0, x; ν1 . . . , νm) + O (ε1, . . . , εm) , (6.18a)

ẋ = F(0, . . . , 0, x; ν1, . . . , νm) + O (ε1, . . . , εm) . (6.18b)

By the definition of φε j the quantity ε̂ j is non-zero on the layer, where |σ j| < ε j. We
can refine this if we limit the derivative of φε j away from zero, for example, choose
φε j such that ∂φε j/∂σ j > K for |σ j| < 1 − εp

j , for fixed K > 0 and p ≥ 1 such

that ε j/K → 0 as ε j → 0. Then ε̂ j behaves as a small quantity ε̂ j/K = O
(
ε j

)
for

σ j ∈ [−1 + εp
j ,+1 − εp

j ].
We see that this is analogous to the system (6.6) obtained by piecewise-smooth

methods, and in fact they can be shown to be equivalent in the limit ε1, ε2 → 0, see
[81].

Equations of the form (6.18) can be found in singular perturbation studies of
climate and gene regulation, e.g., [96, 103]. An equivalent form in common use
when using Sotomayor–Teixeira regularization [136] is to define a parameter uj =

σ j/ε j, to obtain instead

ε ju̇ j = F j(0, . . . , 0, x; ν1 . . . , νm) + O (ε1, . . . , εm) , (6.19a)

ẋ = F(0, . . . , 0, x; ν1, . . . , νm) + O (ε1, . . . , εm) . (6.19b)

In either case (6.18) or (6.19), analysis proceeds using standard concepts from
geometric singular perturbation theory, see, e.g., [49, 86]. If we assume all of the
ε js are of the same order, that is every ratio εi/ε j is non-vanishing as εi, ε j → 0 for
i, j = 1, . . . ,m, then the analysis is closely analogous to that of the piecewise-smooth
system in Sect. 6.1. The switching layer of the implementation is given as in (6.4)
treating the ν j as variables, or the same expression with ν j replaced by u j in the
alternative variables. The slow-fast system has a critical manifold, corresponding
precisely to the sliding manifold M in (6.7), where the fast ν j subsystem (6.6a)
vanishes. According to Fenichel’s theory [49], whereverM is normally hyperbolic
with respect to the fast ν j subsystem, for ε j > 0, there exists an invariant manifold
Mε j in an ε j-neighbourhood of M. The dynamics on M is precisely the sliding
dynamics (6.8), and moreover the dynamics onMε j is topologically equivalent to
(6.8).

If all of the ε js are of different orders, then the dynamics in the switching layer
will be more intricate, involving a separation onto more timescales, but still falls
under standard methods of singular perturbation theory. The case ε j = ε

j
1 for j =

1, . . . ,m, for instance, falls under Fenichel’s analysis in [49]. The author is not aware
of any studies to date applying such many timescale dynamics to piecewise-smooth
problems.

The Sotomayor–Teixeira approach of replacing the switching multipliers ν j by
smooth (but non-analytic) functions φε j (σ j) can be weakened so that the functions
φε j (σ j) are analytic. It is then impossible for these functions to be constant outside
the switching layer, so they require defining to φε j (σ j) = step(σ j) + E where E is
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small, for example, E = O
(
ε j

)
or O

(
ε j/σ j

)
or O

(
e−σ j/ε j

)
. This is often the case

in applications. One example is in [96], where φε j (σ j) = 1
2 +

1
2 arctan(σ j/ε) =

step(σ j)+O
(
ε j/σ j

)
. Another example is in [103, 117], where φε j (σ j) = Z(σ j+1) =

step(σ j)+O(σ
1/ε j

j

)
in terms of the Hill function Z(w) = 1/(1+w−1/ε j ) [70]. Both of

these functions are analytic and are asymptotic to step(σ j) for large argument.
Good examples of these methods applied to genetic models like that of Sect. 4.2

can be found in [41, 76, 102, 103, 117]. They tell a story similar to that obtained
by piecewise-smooth analysis, but an appreciation of possible hidden terms would
bring more insight into the robustness of these studies. Hill functions as a class are
sometimes used without rigorous justification from the biology, and in such cases
the possible differences between alternate sigmoid functions can be calculated as
hidden terms, including representing the different between Hill functions of different
stiffnesses (different powers 1/ε j).

Hidden terms survive when we smooth a discontinuity, and have the interpreta-
tion that they vanish (asymptotically at least) outside the discontinuity threshold. If
we smooth by replacing ν j �→ φε j (σ j) = step(σ j) + E(ε j), then the term ν(ν − 1)
which from (5.16) typically characterizes hidden terms, simplifies to

ν(ν − 1) �→ 2 sign(σ j)E(ε j) + e2(ε j) .

Hence the hidden term is of order E(ε j), vanishing (asymptotically) outside the
discontinuity threshold with E.

Hidden terms therefore allow us to distinguish between different kinds or rates of
switching according to different methods of smoothing. For instance, consider the
one-dimensional system

ẋ = F(x; ν(r)) = a(x) + νb(x) , (6.20)

defined in terms of a switching multiplier

ν = ν(r) := lim
ε→0
φε(r)(x) , (6.21)

for different smooth functions φε(1)(x), φε(2)(x), . . . , such that ν(r) → step(x) for any
r. Does it matter how we choose the function φε(r), or do we always obtain the same
piecewise-smooth system (6.20) in the limit ε→ 0?

As examples consider the following sigmoid quantities

φε(0)(x) = 1
2 +

x/ε

2
√

1+(x/ε)2
(6.22a)

φε(1)(x) = 1
2 +

x/ε

2
√

1+(x/ε)2
+

A(x)

2(1+(x/ε)2)k , (6.22b)

φε(2)(x) = 1
2 +

1
π

arctan(x/ε) , (6.22c)

φε(3)(x) = 1
2 +

1
2 tanh(x/ε) , (6.22d)

where k > 0 and A(x) is a smooth function of x.
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We will show the following.

Lemma 6.2. We can write each system ẋ = F(x; ν(r)) from (6.20) as

ẋ = F(x; ν(r)) = F(x; step(x)) + Hε(r)(x) , (6.23)

an asymptotic expansion whose tail satisfies Hε(r)(x) → 0 as ε → 0 for x � 0. This
can be re-written in an ε-independent form as

ẋ = F(x; ν(r)) = F(x; ν(0)) + H(r)(x; ν(0)) , (6.24)

with hidden terms satisfying H(r)(x; 0) = H(r)(x; 1) = 0, but with H(r)(x; ν) begin
non-vanishing in the layer |x| < ε for r = 1, 2, 3.

Proof. The proof is directly by asymptotic expansion and straightforward calcu-
lations, so for brevity we place some of the details in Appendix C. The expan-
sions of the sigmoid functions φε(r) for large argument all take the form φε(r)(x) =
step(x) + O (ε/x) (the precise expressions are given in Appendix C, and in fact for
r = 3 the error is O

(
e−ε/x
)
). Substituting these into (6.20) gives (6.23) with the tail

of the expansion given by Hε(r)(x) = O (ε/x).
This means that the systems (6.20) with (6.21) and (6.22) are equivalent for

x � 0. For x = 0, however, these asymptotic series diverge. To compare the dif-
ferent systems at x = 0, the second part of the theorem instead seeks a form of the
expansions that is independent of ε, by expressing them all in terms of ν(0).

To do this we first rearrange (6.22a) to find that

x/ε = (φε(0) − 1
2 )/
√
φε(0)(1 − φ

ε
(0)) ,

followed by substituting this into the expressions in (6.22) and then into (6.20).
To obtain (6.24) for r = 1 is then just a matter of algebra. To obtain (6.24) for
r = 2, 3, it is better to substitute into the asymptotic expansions for each φε(r), thus
expressing them in terms of φε(0). We then replace φε(0) with ν(0). The algebra is set
out in Appendix C, giving (6.24) for r = 1, 2, 3, with

H(1)(x; ν) = (4h)kA(x)b(x) , (6.25a)

H(2)(x; ν) =
{
h C1(2ν − 1) +

√
hC2(2ν − 1)

}
b(x) , (6.25b)

H(3)(x; ν) =
{
h C1(2ν − 1) + e−|2ν−1|/

√
h C3(2ν − 1)

}
b(x) , (6.25c)

where h = ν(1 − ν) ,

in terms of functions Ci(2ν − 1) that are finite valued for all ν ∈ [0, 1], given in
Appendix C. Clearly H(r)(x; 0) = H(r)(x; 1) = 0 in each case. These expressions are
now independent of ε and therefore remain well-defined in terms of ν(0) as ε→ 0.

�	

Compare the hidden terms in (6.25) with the expression (5.12) in (5.3). Note how
the term “ν(1− ν)” appears throughout the hidden terms H(r)(x; ν) in (6.25), but also
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demonstrates more general forms that hidden terms can take than we derived by
polynomial expansion in (5.16).

This merely demonstrates that a piecewise-defined function corresponds not to
one unique function of a switching multiplier ν or limiting smooth function φε(x),
but a whole class of such functions. Comparing to (5.3) we see that the difference
between the alternate smoothings F(x; ν(r)) lies in hidden terms.

Our interest, of course, concerns the dynamical implications of these hidden
terms, left behind from the asymptotic approximations above. It should be quite
clear that they can affect the system’s dynamics. There are examples in [78, 79, 81,
83] of hidden terms deciding whether solutions slide along or cross through a dis-
continuity threshold. The anomalous sliding we described in Sects. 1.2 and 1.3 came
from hidden terms, and more generally that can take all manner of non-trivial forms.
An interesting example is given by taking (6.22b) and letting A(x) be a matrix. The
following example shows how this can destabilize an equilibrium under smoothing.
Consider the piecewise-linear problem

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ
ż

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ν

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
ay + z
az − y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ν = step(x) , (6.26)

for a < 0, which has sliding modes satisfying ν = 1/3, with an attracting focus
equilibrium at y = z = 0. If we smooth this system by replacing ν with φε(0), then
we obtain a topologically equivalent system, with an attracting focus equilibrium on
an invariant manifold, where φε(0) = 1/3. Consider instead smoothing by replacing ν
with φε(1), and let

A = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1/3 0 0
0 a −1
0 1 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (6.27)

for small c > 0. As this is now a smooth system it succumbs to standard stability
analysis. The system has an equilibrium at (x, y, z) = (x∗, 0, 0), where φ(0)(x∗/ε) =
1
3+

8c
27+O

(
c2
)
. This has eigenvalues − 3

ε
(1− 4c

9 )φ′(0)(x∗/ε) and 1
3 (a±i)+ 8c

27 (3+a+3a2±i)

to order c2. This implies that for

−3a

8[(a + 1)2 − 5
3 a]
< c < 9

4 ,

the equilibrium will de-stabilize in the (y, z) directions, becoming a saddle-focus as
depicted in Fig. 6.1.
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x
z
y

c=0 c=1

Fig. 6.1 A focus destabilized by smoothing

In this section we have seen some of the less obvious complexity of switching
and sliding dynamics when considered from different viewpoints, expressed through
layers, nonlinearity, and implementations. Let us now return to see what insight
these give us into the ambiguities of the examples in Chap. 4.
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