
Chapter 5
Layers and Implementations

Consider a dynamical system modelled by an equation ẋ = f(x), where the function
f(x) is smooth except at some discontinuity threshold D. Let the space of x be di-
vided by D into open regions Ri, where i ∈ ZN with ZN denoting a set of N indices
or modes. Let f(x) take a different functional form fi(x) on each region Ri, so

ẋ = fi(x) if x ∈ Ri, i ∈ ZN . (5.1)

We assume that the functions fi(x) are smooth in x over the closure Ri of each region
Ri. A solution of such a system is depicted crossing a discontinuity threshold in
Fig. 5.1(i), with (ii) showing its tangent vectors following the discontinuous vector
field, and therefore changing direction abruptly at D. Note that (5.1) does not yet
define ẋ for x ∈ D.

Fig. 5.1 (i) A trajectory crossing a discontinuity threshold D, such that (ii) its tangent vectors are
f0 and f1 either side of the discontinuity, and (iii) lie in a connected set G (their endpoints forming
a curve connecting f0 to f1 as depicted) at a point xD on the discontinuity

To study how solutions of this system will behave at D, we need to know how
the tangent vector ẋ switches between the different vectors fi(x) that it encounters
near a point x ∈ D. We will do this by saying that ẋ sweeps continuously through
some set of values as x crossesD, as shown in Fig. 5.1(iii), and expressed as
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ẋ ∈ G(x) where G(x) ⊃
{

fi(x) if x ∈ Ri, i ∈ ZN

}
, (5.2)

where G(x) is a connected set that varies smoothly with x.
This does not fully defineG(x) itself, and we will look into specific ways of doing

so in the following sections. In particular we will look at how different choices for
G(x) relate to different modelling assumptions. All (5.2) tells us is that if x lies on
the discontinuity threshold, then ẋ takes a set of values G(x) that interpolates in
some way between any fi(x) for which x lies on the boundary of Ri, for any i ∈ ZN .
If x lies inside a region Ri and therefore outside the discontinuity threshold, then
G(x) needs to contain only fi(x), and it makes sense to define G(x) in such a way
that it reduces to the right-hand side of (5.1) for x � D.

Before going on to define G(x) more closely, first let us extend (5.2) to describe
our main topic of interest, that of perturbations of the idealized system.

Consider a system where a switch takes place over an ε-neighbourhood of the
thresholdD, which we call the switching layerDε. We can then refine Definition 4.1
as follows.

Definition 5.1. An implementation of the system (5.1) assigns a rule that defines
(discrete or continuous) trajectories x(t) through any point x and satisfies

ẋ ∈ Gε(x) such that Gε(x) =
⋃

u∈Bε(x)

G(u) (5.3)

on a layer Dε for some ε > 0, such that Dε ⊃ D and Dε → D as ε → 0, where
Bε(x) denotes a ball of radius ε about x.

An implementation may represent a more physically precise model of switch-
ing than the idealized system described by (5.1)–(5.2), or a method of simulating
a model described by (5.1)–(5.2). In any case, one of the first goals of piecewise-
smooth systems theory should then be to discover for what classes of implementa-
tions the following holds.

Conjecture 1. Solutions of the implementation (5.3) lie ε-close to solutions of the
piecewise-smooth system given by (5.2).

We shall see that (1) is too imprecise to hold as stated, but the concepts above
permit a more complete statement.

Conjecture 2. For a given implementation, there exists a set G such that solutions
of the implementation (5.3) lie ε-close to solutions of the piecewise-smooth system
given by (5.2).

The next few sections are essentially an exploration of these statements, obtain-
ing insight into the classes of systems that (5.2) represents as a modelling paradigm.
We proceed qualitatively. Rigorous proofs of the conjecture have been achieved so
far only in such limited conditions that they have narrow applicability (but we will
discuss these as we explore some of the implementations below). Alas a general
proof of either conjecture would seem to be premature, most likely requiring a gen-
eral representation of implementations that is far more explicit about their workings
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than Definition 4.1 or Definition 5.1, and relating broad classes of implementations
to explicit forms for Gε(x). Our modest aim here will instead be to gain insight
into the dynamics of such implementations, with an eye to better formulating and
proving these conjectures in the future.

We will also not prove that solutions to the dynamical systems above exist. A
knowledge of the most general form of G or Gε that guarantees the existence of
solutions (beyond the convex and upper semi-continuous sets studied by Filippov
in [51]) would help further reveal the kinds of system that can be modelled, but is
beyond our ambitions here.

The concept of an implementation is related but not identical to the concept of a
regularization. The purpose of regularization is, as the term suggests, to achieve reg-
ularity, in this case to make a discontinuous problem well-posed under certain lim-
ited conditions, usually with the aim of obtaining unique solutions. In analysis, for
example, regularization is usually achieved with some kind of smoothing [31, 136],
or in electronics usually with some kind of hysteresis or delay that ensures a finite
interval of motion between each switching event [134, 148]. An implementation, on
the other hand, merely seeks to render a system solvable without any expectation of
uniqueness.

5.1 Linear Switching

A natural choice for the form of the set in (5.2) is to take the convex hull, which we
call F , of the vector fields across a discontinuity.

Definition 5.2. The linear switching system corresponding to (5.1) is given by

ẋ ∈ F (x) (5.4)

where F (x) = hull
{

fi(x) ∀ i : x ∈ Ri, i ∈ ZN

}
,

where hull {Q} denotes the convex hull of the set {Q} (sometimes written as co{Q}
or conv{Q}). Solutions of (5.4) will be called linear solutions of (5.1).

This is often referred to as a Filippov system, but for our purposes here we use
the term linear system to highlight that we can express F as a linear function of
switching multipliers μi, in the following way.

An explicit expression for the hull is given by a linear combination of the vector
fields fi(x),

F (x) =
N∑

i=1

μifi(x) such that
N∑

i=1

μi = 1 , (5.5a)

where
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μi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if x ∈ Ri ,

0 if x � Ri ,

[0, 1] if x ∈ δRi ,

(5.5b)

where δRi = Ri/Ri denotes the boundary of Ri. So μi is a step function that is 1 on
Ri and 0 outside, and set-valued on the boundary. Note that, because the μi’s sum
to unity, if μi = 1 for some i, then μ j = 0 for all j � i. For the sake of defining the
hull we let μi = [0, 1] on δRi, but in Chap. 5 we will look at ways to assign specific
values to μi ∈ [0, 1] for each i ∈ ZN , and hence assign specific values from the hull
(5.5a) to ẋ.

As we said for the discontinuous quantity ν following (1.15) in Sect. 1.1, we will
not make the x-dependence of μi explicit by writing μi(x), but must remember that
it is a piecewise-constant for x � D and is set-valued for x ∈ D where, as the
coefficients μi vary over the intervals [0, 1], the right-hand side of (5.5a) explores all
values in the convex hull.

The hull is the smallest convex set that contains all of the fis from (5.1). Ex-
tensive theory for such convex system was developed in [51], starting with the
proof that solutions exist if F is non-empty, bounded, closed, convex, and upper
semi-continuous. Moreover, making use of a set Fδ that lies δ-close to F , such that
F ⊂ Fδ and F0 = F , in [4, 51] it is proven that a solution exists through a point
xδ that is δ-close to x, and that the limit of a convergent sequence of solutions of
(5.4) is itself a solution of (5.4). Most commonly the term Filippov system refers to
a system where a point x ∈ D can lie on the boundary of two regions R1 and R2

only, in which case the linear solutions of Definition 5.2 are mostly unique (except
at certain singularities). They are no longer unique if x ∈ D can lie on the boundary
of more than two regions.

We refer the reader to [51] for the full theory of convex solutions rather than
restating it here, because it is rather lengthy, and although a natural choice math-
ematically, the system (5.4) is actually a strong restriction of the possible systems
allowed by (5.2). There is no physical or dynamical reason in general that restricts
a system to follow a vector field lying in the convex hull F . At the same time, in
associating one switching multiplier μi with each vector field fi, the model (5.5a)
contains somewhat more multipliers than are necessary to continuously transition
between all of the modes fi, and instead it is possible to define sets that are both
more general, and yet involve less unknown multipliers. This will matter when, in
order to study solutions in detail, we come to fix the values of these multipliers by
dynamical or physical considerations.

5.2 Nonlinear Switching

A common way that models like (5.1) arise in practice is when a function F depends
on a number of discontinuous quantities. Let these quantities be a set of switching
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multipliers ν1, . . . , νm, defined without loss of generality as

ν j = step
(
σ j(x)

)
for σ j � 0 , (5.6)

recalling the definition (1.15), in terms of smooth scalar functions σi(x) for i =
1, . . . ,m. We then write G(x) in (5.2) as

G(x) = F(x; ν1, . . . , νm) , (5.7a)

where

ν j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if σ j(x) > 0 ,

0 if σ j(x) < 0 ,

[0, 1] if σ j(x) = 0 .

(5.7b)

Similarly to the hull (5.5), for the sake of defining G(x) we let ν j = [0, 1] on σ j = 0,
but in Chap. 5 we will look at ways to assign specific values to ν j ∈ [0, 1] for each
j = 1, . . . ,m, and hence assign specific values from the set (5.8) to ẋ.

The right-hand side of (5.7a) is then set-valued on D due to the set-valuedness
of (5.7b) at σ j = 0, but taking a unique value if σ j � 0 for all j = 1, . . . ,m. We may
assume the σ js and F to be defined for all x (or one may restrict these domains and
the differentiability of these functions as a problem requires, but our analysis will
mainly be local).

For (5.8) to correspond to (5.1) and (5.2) there must be a direct correspondence
between each fi(x) and each F(x; ν1, . . . , νm) outside D, that is when σ j � 0 for all
j = 1, . . . ,m. The simplest way this happens is if G(x) is a convex canopy of the
fields fi(x).

Definition 5.3. The set G(x) is a convex canopy of the vector fields fi(x) indexed by
i ∈ ZN in (5.1) if it is expressible in the form (5.7a) in terms of switching multipliers
ν1, . . . , νm, given by (5.7b), such that N = 2m, and such that: F has continuous
dependence on x and on the ν j s, and there is a one-to-one correspondence between
each of the N functions fi with i ∈ ZN , and the 2m vector fields F(x; ν1, . . . , νm) in
which each ν j takes value 0 or 1.

We then write the following.

Definition 5.4. The nonlinear switching system corresponding to (5.1) is given by

ẋ ∈ G(x) where G(x) = F(x; ν1, . . . , νm) , (5.8)

where F depends smoothly on x and on switching multipliers ν j as defined in (5.7b).
Solutions of (5.8) will be called nonlinear solutions of (5.1).

The correspondence required in Definition 5.3 can be achieved by associating
each i ∈ ZN with a binary string i1 . . . im of 0s and 1s, by either



40 5 Layers and Implementations

(a) i = 1 +
m∑

j=1

2 j−1i j or (b) i = i1 . . . im , (5.9)

where (a) simply numbers regions so i ∈ ZN = {1, 2, . . . ,N}, while (b) identifies i as
the binary string i = i1i2 . . . im itself.

The simplest example of a canopy is then given by writing

G(x) =
2m∑

i=1

μifi(x) where μi =

m∏

j=1

ν
i j

j (1 − ν j)
1−i j , (5.10)

with i and i1 . . . im related by either rule in (5.9). Thus when all σ js are non-
vanishing, G(x) has a unique value fi(x). If any σ j vanishes, then the corresponding
multiplier ν j is set-valued, each μi either vanishes or is set-valued, and hence G is
set-valued.

The canopy given by (5.10) is typically a subset of the hull in (5.5a), that is
G(x) ⊆ F (x). In fact the canopy is typically a lower dimensional set, as rather than
N − 1 coefficients μi in the hull (5.5a), we now have only m − 1 coefficients ν j, with
N = 2m. Canopies still given by (5.7a) but taking values outside the hull (5.5a) are
also possible if F includes hidden terms, which we will come to in Sect. 5.3.

Although the expression (5.10) may look somewhat opaque at first, it is easy
to expand for any given m and the resulting expressions are rather easier to under-
stand. For convenience we give the cases m = 1 in the different indexing systems in
Appendix B.

This system now consists of m discontinuity thresholds D j that comprise the
discontinuity surfaceD,

D j =
{
x ∈ Rn : σ j(x) = 0

}
and (5.11)

D = {x ∈ Rn : σ1(x) . . . σm(x) = 0} ,
and clearly this assumes that the discontinuity surface is a manifold expressible as a
union of submanifoldsD = D1 ∪ · · · ∪ Dm.

The convex canopy of the vector fields fi is a natural choice for a set interpo-
lating between the fields fi, as just the multi-linear interpolation between the fi’s in
terms of the coefficients ν j, in some ways more natural than the convex hull (5.5a)
which is strictly linear in it coefficients μi but requires a larger number of them. As
such the expression (5.10) result has been arrived at independently from different
viewpoints by several authors, perhaps first in [5] as a way of ‘blending’ the fields
fi to seek unique motion along D, as well as in [37, 38] as a way of facilitating
computation, in [78, 81] as a study of nonlinearity in switching, and in [98, 141] to
derive equivalence classes of regularized systems.

Functions like F(x; ν1, . . . , νm) appear naturally in many applications, wherever a
physical parameter ν j jumps in value as some scalar quantity σ j crosses a threshold.
The ‘three experiments’ in Chap. 4 took this form, and in electronic control this is
familiar as Utkin’s formulation of variable structure systems (see, e.g., [127, 148]).
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5.3 Hidden Terms: The ‘Ghosts’ of Switching

The expression (5.10) for G is allowed to have nonlinear dependence on the switch-
ing multipliers ν j = step(σ j). Let us now ask what this nonlinearity signifies, and
how this relates to the problem of defining the value of step(0).

Consider that we have a vector field that behaves as ẋ = F(x; step(σ(x))) for
σ � 0, and a modelling parameter that behaves as ν = step(σ(x)). Can we simply
assume that an adequate model is given by ẋ = F(x; ν)? What is the difference if we
instead model this as ẋ = F(x; νp) for some p ∈ N, since we can also write νp =

step(σ(x))? This will have non-trivial consequences on the discontinuity threshold,
where ν varies over the interval [0, 1].

The difference between any monomial νp and the linear term ν can be written as

νp − ν = ν(ν − 1)
p−2∑

r=0

νr for p ≥ 2 . (5.12)

This is what we called in Sect. 1.1 a hidden term, since it vanishes for all σ � 0,
as highlighted by the factorization on the right-hand side where either ν or ν − 1
vanishes if ν is 0 or 1. The hidden term need not vanish inside the switching layer,
however, where 0 ≤ ν ≤ 1. Let us now write this more formally.

Definition 5.5. A hidden term H(x; ν) associated with a discontinuity threshold D
vanishes everywhere outside D. If x ∈ D at a point where D is an intersection
D1 ∩ · · · ∩ Dm of manifoldsD j =

{
x ∈ Rn : σ j(x) = 0

}
, then we can write this as

H(x; ν)σ1(x) . . . σm(x) = 0 for any x . (5.13)

That is, either some σ j = 0 and x lies on the discontinuity threshold, or σ j � 0 for
all j in which case H(x; ν) = 0.

Using hidden terms we can distinguish between different systems such as ẋ =
F(x; ν) and ẋ = F(x; h(ν)), where h is any function of ν that behaves like h(ν) =
step(σ(x)), for example, h(ν) = νp for p ∈ N.

More generally we have the following.

Lemma 5.3. If a system ẋ = F(x; ν) can be expressed in terms of a multiplier ν =
step(σ(x)) for some smooth function σ, such that F is k-times differentiable with
respect to ν, then we can decompose it into the convex combination of the fields
f0(x) ≡ F(x; 0) and f1(x) ≡ F(x; 1), plus a k-times differentiable hidden term H(x; ν),
as

ẋ = F(x; ν) = νf1(x) + (1 − ν)f0(x) +H(x; ν) . (5.14)

Proof. The result is straightforward from Definition 5.5. It is clear from (5.14) that
F(x; 0) ≡ f0(x) and F(x; 1) ≡ f1(x), and therefore that H(x; 0) and H(x; 1) must
vanish, so H is a hidden term. The differentiability of H with respect to ν follows
directly from that of F. 
�
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More useful than the result itself is to use this to derive an expression for H. If F is
k-times differentiable with respect to ν, then we can expand it as a polynomial

ẋ = F(x; ν) =
k∑

r=0

cr(x)νr , (5.15)

for some vector fields cr(x). We can express the first two of these, c0 and c1, in terms
of the vector fields f0 and f1 either side of the discontinuity by evaluating F at ν = 0

and ν = 1. Using (5.15) this gives f0(x) = F(x; 0) = c0 and f1(x) = F(x; 1) =
k∑

r=0

cr,

which re-arranges to c0 = f0 and c1 = f1 − f0− k∑

p=2

cp. Substituting these into (5.15)

we obtain (5.14), where

H(x; ν) =
k∑

p=2

cp(x)(νp − ν) = ν(ν − 1)
k∑

p=2

p−2∑

r=0

cp(x)νr , (5.16)

using the identity (5.12) to extract the factor ν(ν − 1) in H. Thus H is a hidden term
since H(x; 0) = H(x; 1) = 0, and hence H(x; ν)σ(x) = 0 for all x.

Nonlinear dependence on discontinuous multipliers therefore gives us a way to
characterize different systems that appear the same almost everywhere, but differ
at a discontinuity threshold, distinguished via hidden terms. The result generalizes
easily to several switching multipliers ν j simply by forming a multi-variable poly-
nomial expansion in powers of ν j.

The hidden term (5.16) has a slightly different formula to that we obtained in
(1.11)–(1.12) in Sect. 1.1, but they are consistent. We developed (1.11) as an infinite
series for a scalar problem ẋ = F(x) with switching threshold x = 0, so to see the
equivalence we need to merely make the scalars x, F, an, bn, into vectors x,F, an,bn,

let the threshold be at σ(x) = 0, and truncate the series at O
(
νk
)
. Clearly then the

linear part of the series in (1.11) and (5.14) is equivalent with f1(x) = a0(x) and
f0(x) = b0(x). The hidden terms are both of the form

H(x; ν) = ν(1 − ν)G(x; ν) where G(x; ν) =
k−2∑

r=0

dr(x) , (5.17)

with coefficients dr(x) related to cr in (5.16) and ar(x), br(x), in (1.12), by

dr(x) = −
k∑

p=r+2

cp(x) = br+1(x) + (−1)r
k−2∑

p=r

p!
r!(p−r)!) ap+1(x) . (5.18)

Thus we are beginning to see how different modelling approaches lead to the same
fundamental form for the expansion of a piecewise-smooth function (5.14), with a
hidden term H = ν(1 − ν)G, and it is only the function G we obtain that changes.
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We will see a few more forms for G yet in Sect. 6.3, obtained by considering imple-
mentations that smooth the discontinuity in different ways.

Such in-depth analysis of dynamics at the discontinuity becomes particularly
necessary if solutions dwell upon the discontinuity threshold for significant intervals
of time, as seen in all of the examples in Chap. 4. That motion is known as sliding
along the discontinuity, and it is one of the oldest and most important notions in
nonsmooth dynamics. To deal with the various behaviours in Chap. 4 associated
with nonlinearity of the vector field or with the implementation of the discontinuity,
we need to significantly expand that standard concept of sliding. We shall do this in
Chap. 6, before applying these ideas specifically to the prototypes from Chap. 4.
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